

Simplifying	JavaScript

Writing	Modern	JavaScript	with	ES5,	ES6,	and
Beyond

by	Joe	Morgan

Version:	P1.0	(April	2018)

Copyright	©	2018	The	Pragmatic	Programmers,	LLC.	This	book	is	licensed	to	the	individual	who
purchased	it.	We	don't	copy-protect	it	because	that	would	limit	your	ability	to	use	it	for	your	own	purposes.
Please	don't	break	this	trust—you	can	use	this	across	all	of	your	devices	but	please	do	not	share	this	copy
with	other	members	of	your	team,	with	friends,	or	via	file	sharing	services.	Thanks.

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products	are	claimed	as
trademarks.	Where	those	designations	appear	in	this	book,	and	The	Pragmatic	Programmers,	LLC	was
aware	of	a	trademark	claim,	the	designations	have	been	printed	in	initial	capital	letters	or	in	all	capitals.	The
Pragmatic	Starter	Kit,	The	Pragmatic	Programmer,	Pragmatic	Programming,	Pragmatic	Bookshelf	and	the
linking	g	device	are	trademarks	of	The	Pragmatic	Programmers,	LLC.

Every	precaution	was	taken	in	the	preparation	of	this	book.	However,	the	publisher	assumes	no
responsibility	for	errors	or	omissions,	or	for	damages	that	may	result	from	the	use	of	information	(including
program	listings)	contained	herein.

About	the	Pragmatic	Bookshelf
The	Pragmatic	Bookshelf	is	an	agile	publishing	company.	We’re	here	because	we	want	to	improve	the	lives
of	developers.	We	do	this	by	creating	timely,	practical	titles,	written	by	programmers	for	programmers.

Our	Pragmatic	courses,	workshops,	and	other	products	can	help	you	and	your	team	create	better	software
and	have	more	fun.	For	more	information,	as	well	as	the	latest	Pragmatic	titles,	please	visit	us	at
http://pragprog.com.

Our	ebooks	do	not	contain	any	Digital	Restrictions	Management,	and	have	always	been	DRM-free.	We
pioneered	the	beta	book	concept,	where	you	can	purchase	and	read	a	book	while	it’s	still	being	written,	and
provide	feedback	to	the	author	to	help	make	a	better	book	for	everyone.	Free	resources	for	all	purchasers
include	source	code	downloads	(if	applicable),	errata	and	discussion	forums,	all	available	on	the	book's
home	page	at	pragprog.com.	We’re	here	to	make	your	life	easier.

New	Book	Announcements

Want	to	keep	up	on	our	latest	titles	and	announcements,	and	occasional	special	offers?	Just	create	an
account	on	pragprog.com	(an	email	address	and	a	password	is	all	it	takes)	and	select	the	checkbox	to
receive	newsletters.	You	can	also	follow	us	on	twitter	as	@pragprog.

About	Ebook	Formats

If	you	buy	directly	from	pragprog.com,	you	get	ebooks	in	all	available	formats	for	one	price.	You	can	synch
your	ebooks	amongst	all	your	devices	(including	iPhone/iPad,	Android,	laptops,	etc.)	via	Dropbox.	You	get
free	updates	for	the	life	of	the	edition.	And,	of	course,	you	can	always	come	back	and	re-download	your
books	when	needed.	Ebooks	bought	from	the	Amazon	Kindle	store	are	subject	to	Amazon's	polices.
Limitations	in	Amazon's	file	format	may	cause	ebooks	to	display	differently	on	different	devices.	For	more
information,	please	see	our	FAQ	at	pragprog.com/frequently-asked-questions/ebooks.	To	learn	more	about
this	book	and	access	the	free	resources,	go	to	https://pragprog.com/book/es6tips,	the	book's	homepage.

Thanks	for	your	continued	support,

Andy	Hunt
The	Pragmatic	Programmers

The	team	that	produced	this	book	includes:	Andy	Hunt	(Publisher), Janet	Furlow	(VP	of	Operations),
Brian	MacDonald	(Managing	Editor), Jacquelyn	Carter	(Supervising	Editor),
Andrea	Stewart	(Development	Editor), Nancy	Rapoport	(Copy	Editor),
Potomac	Indexing,	LLC	(Indexing), Gilson	Graphics	(Layout)

For	customer	support,	please	contact	support@pragprog.com.

For	international	rights,	please	contact	rights@pragprog.com.

http://pragprog.com
https://pragprog.com
https://pragprog.com
https://pragprog.com/frequently-asked-questions/ebooks
https://pragprog.com/book/es6tips
mailto:support@pragprog.com
mailto:rights@pragprog.com

To	Bob	and	Eric	for	giving	me	a	foundation

Table	of	Contents

	 Introduction
How	To	Use	This	Book
Whom	This	Book	Is	For
Online	Resources
Acknowledgments

1. Signal	Intention	with	Variable	Assignment

Tip
1. 	Signal	Unchanging	Values	with	const

Tip
2. 	Reduce	Scope	Conflicts	with	let	and	const

Tip
3. 	Isolate	Information	with	Block	Scoped	Variables

Tip
4. 	Convert	Variables	to	Readable	Strings	with
Template	Literals

2. 	Manage	Data	Collections	with	Arrays

Tip
5. 	Create	Flexible	Collections	with	Arrays

Tip
6. 	Check	Existence	in	an	Array	with	Includes()

Tip
7. 	Mold	Arrays	with	the	Spread	Operator

Tip
8. 	Avoid	Push	Mutations	with	the	Spread	Operator

Tip
9. 	Avoid	Sort	Confusion	with	the	Spread	Operator

3. 	Maximize	Code	Clarity	with	Special	Collections

Tip
10. 	Use	Objects	for	Static	Key-Value	Lookups

Tip
11. 	Create	Objects	Without	Mutations	Using	Object.assign()

Tip
12. 	Update	Information	with	Object	Spread

Tip
13. 	Update	Key-Value	Data	Clearly	with	Maps

Tip
14. 	Iterate	Over	Key-Value	Data	with	Map	and	the
Spread	Operator

Tip
15. 	Create	Maps	Without	Side	Effects

Tip
16. 	Keep	Unique	Values	with	Set

4. Write	Clear	Conditionals

Tip
17. 	Shorten	Conditionals	with	Falsy	Values

Tip
18. 	Check	Data	Quickly	with	the	Ternary	Operator

Tip
19. 	Maximize	Efficiency	with	Short	Circuiting

5. Simplify	Loops

Tip
20. 	Simplify	Looping	with	Arrow	Functions

Tip
21. 	Write	Shorter	Loops	with	Array	Methods

Tip
22. 	Create	Arrays	of	a	Similar	Size	with	map()

Tip
23. 	Pull	Out	Subsets	of	Data	with	filter()	and	find()

Tip
24. 	Apply	Consistent	Actions	with	forEach()

Tip
25. 	Combine	Methods	with	Chaining

Tip
26. 	Transform	Array	Data	with	reduce()

Tip
27. 	Reduce	Loop	Clutter	with	for...in	and	for...each

6. Clean	Up	Parameters	and	Return	Statements

Tip
28. 	Create	Default	Parameters

Tip
29. 	Access	Object	Properties	with	Destructuring

Tip
30. 	Simplify	Key-Value	Assignment

Tip
31. 	Pass	a	Variable	Number	of	Arguments	with	the
Rest	Operator

7. Build	Flexible	Functions

Tip
32. Write	Functions	for	Testability

Tip
33. 	Reduce	Complexity	with	Arrow	Functions

Tip
34. 	Maintain	Single	Responsibility	Parameters	with	Partially
Applied	Functions

Tip
35. 	Combine	Currying	and	Array	Methods	for
Partial	Application

Tip
36. 	Prevent	Context	Confusion	with	Arrow	Functions

8. Keep	Interfaces	Clear	with	Classes

Tip
37. 	Build	Readable	Classes

Tip
38. 	Share	Methods	with	Inheritance

Tip
39. 	Extend	Existing	Prototypes	with	Class

Tip
40. 	Simplify	Interfaces	with	get	and	set

Tip
41. 	Create	Iterable	Properties	with	Generators

Tip
42. 	Resolve	Context	Problems	with	Bind()

9. Access	External	Data

Tip
43. 	Retrieve	Data	Asynchronously	with	Promises

Tip
44. 	Create	Clean	Functions	with	Async/Await

Tip
45. 	Make	Simple	AJAX	Calls	with	Fetch

Tip
46. 	Maintain	State	Over	Time	with	LocalStorage

10. Gather	Related	Files	with	Component	Architecture

Tip
47. 	Isolate	Functionality	with	Import	and	Export

Tip
48. 	Leverage	Community	Knowledge	with	npm

Tip
49. 	Build	Applications	with	Component	Architecture

Tip
50. 	Use	Build	Tools	to	Combine	Components

Tip
51. 	Leverage	CSS	for	Animations

	 Bibliography

Copyright	©	2018,	The	Pragmatic	Bookshelf.

Early	praise	for	Simplifying
JavaScript
You	should	probably	jot	down	each	Tip	from	this	book	on	Post-It	notes	and
plaster	them	all	over	your	desk	area.	These	simple,	practical	bits	of	advice	will
have	a	profound	effect	on	simplifying	your	JavaScript.

→ Kyle	Simpson
Author	of	You	Don’t	Know	JS	and	Open	Web	Evangelist

Joe	provides	a	clear,	organized	path	to	mastering	key	JavaScript	concepts.	This
isn’t	a	boring	textbook.	It’s	a	playbook	filled	with	practical,	real-world
approaches	to	writing	modular,	maintainable,	and	modern	JavaScript.

→ Cory	House
Pluralsight	Author	and	International	Speaker	and	Consultant,
reactjsconsulting.com

This	book	is	great	for	experienced	developers	whose	past	experience	with
JavaScript	has	left	a	bad	taste	in	their	mouth.	Modern	JavaScript,	when
understood	through	this	book,	is	sure	to	turn	former	critics	into	advocates.

New	developers	will	also	benefit	from	thorough	explanations	that	are	in
layman’s	terms—not	the	overly	technical	jargon	that	typically	acts	as	a	barrier	to
entry	with	many	technical	books.

→ Sara	Heins
International	Speaker,	Django	Girls	Kansas	City	Program	Director,	and
Lead	Web	Developer,	Big	6	Media

This	book	is	ideal	for	beginners	as	well	as	intermediate	and	beyond.

→ Shreerang	Patwardhan
Author	of	Mastering	jQuery	Mobile,	Senior	Software	Engineer,	Macy’s	Inc.

I	would	definitely	recommend	this	book	to	others	on	my	team.	I	believe	that
most,	if	not	all,	of	my	team	could	benefit	from	reading	this	book.

→Nick	McGinness
Software	Engineer,	Direct	Supply

Introduction
	

Ever	get	the	feeling	you’ve	woken	up	and	everything’s	different?	If	you’ve
looked	at	modern	JavaScript,	you	may	feel	like	you	woke	up	in	a	new	world
where	nothing’s	the	same.

Yesterday,	you	were	tweaking	a	simple	jQuery	accordion.	Today,	you	look	at
some	JavaScript	code	and	the	ubiquitous	jQuery	$	operator	is	gone.	In	its	place
are	lots	of	strange	dots	(...)	and	strange	symbols	(=>)	(the	spread	operator	and
arrow	functions,	as	you’ll	soon	learn).	Sure,	some	things	look	familiar,	such	as
class,	but	even	that	seems	to	be	unpredictable	(where	are	the	private	methods?).

Are	you	perplexed?	Maybe	a	little	excited?	Well,	I	have	good	news	for	you:
Everything	has	changed	for	the	better.

When	the	ECMAScript	6	spec	was	released—ES6	for	short—JavaScript	code
changed	dramatically.	The	changes	were	so	substantial	that	after	reading	this
book	you’ll	be	able	to	tell	at	a	glance	which	code	was	written	with	pre-ES6
syntax	and	which	code	was	written	with	post-ES6	syntax.	JavaScript	now	is
different.	Modern	JavaScript	is	any	code	composed	with	post-ES6	syntax.

Modern	JavaScript	is	a	pleasure	to	write.	I’m	a	long-time	unrepentant	JavaScript
fan,	but	I’ll	admit	that	I	found	the	old	syntax	a	little	clunky	at	times,	and	it	was
pretty	hard	to	defend.	Modern	JavaScript	is	better.	But	it’s	changed	significantly,
and	catching	up	can	be	hard.

How	To	Use	This	Book
In	this	book,	you’ll	learn	to	write	modern	JavaScript	from	the	ground	up.	But
I’m	not	going	to	throw	a	bunch	of	syntax	at	you.	I	want	you	to	learn	to	think	in
terms	of	contemporary	JavaScript.	You’ll	see	every	piece	of	syntax	with	a
recommendation	for	not	just	how	to	use	it,	but	when	to	use	it.

Also,	I’m	not	going	to	run	through	every	minor	syntax	change.	I	know	your	time
is	valuable,	so	I’ll	only	show	you	syntax	that	has	high	impact	and	that’s
something	you’ll	use	over	and	over	again.	You	can	deal	with	edge	cases	when
they	arise.	This	book	will	give	you	the	best	features	and	nothing	else.

Throughout	the	book,	you’ll	see	why	the	syntax	changes	aren’t	random—they
follow	a	simple	set	of	principles	designed	to	make	the	language	easier	to	read
and	write.	Modern	JavaScript	is	simple,	predictable,	readable,	and	flexible.	And
every	new	piece	of	syntax	should	be	evaluated	in	those	terms,	including	syntax
that	isn’t	yet	part	of	the	spec.

And	because	modern	JavaScript	has	as	many	paradigm	changes	as	there	are
syntax	changes,	you’ll	spend	some	time	reviewing	older	JavaScript	concepts	to
see	how	you	can	use	them	in	a	modern	context.	This	is	important	because
JavaScript	was	previously	written	primarily	using	libraries	(jQuery	above	all
else),	and	it	was	easy	to	plug	in	just	enough	code	to	get	something	working
without	understanding	the	underlying	concepts.	As	more	code	projects
incorporate	JavaScript	as	part	of	major	features,	and	not	just	a	handful	of
plugins,	you’ll	need	to	understand	concepts	you	may	have	glossed	over	before.

For	example,	you	might	have	safely	ignored	syntax	changes	in	ES5.	You	could
use	array	methods	such	as	map()	and	reduce()	for	several	years,	but	you	might
have	ignored	them	because	browsers	weren’t	fully	compatible	and	because
transpilers	weren’t	yet	mature.	Array	methods	are	now	essential	parts	of	good
code.	It’s	worth	taking	a	step	back	to	review	them.

Still,	I	know	you	have	plenty	to	do	every	day—that’s	why	this	book	follows	a

tips	format	that	allows	you	to	jump	in	and	out	at	will.	You	don’t	need	to	read	this
straight	through.	I’ll	reference	syntax	from	previous	and	future	tips	so	that	you
can	jump	around	as	you	need	to.	Keep	a	copy	at	your	desk	and	skim	it	during	a
break,	or	load	it	up	on	your	phone	so	you	can	get	a	quick	tip	in	while	waiting	at
the	dentist	office.

When	learning	new	syntax,	the	most	important	thing	you	can	do	is	read	code.
And	the	best	code	is	real	code.	You	won’t	see	foo-bar	examples	or	lots	of	math
expressions	in	this	book.	Instead,	you’ll	work	with	strings,	objects,	currency,
email	addresses,	and	the	like.	In	other	words,	the	code	samples	you	see	will	be
close	to	life.	This	adds	a	little	complexity	to	the	examples,	but	it	will	ultimately
make	it	much	easier	for	you	to	internalize	the	ideas	so	that	you	can	bring	them
into	your	code	quickly	and	easily.

Finally,	every	sample	is	available	in	a	repo	for	this	book.	The	code	has	nearly
100	percent	test	coverage,	so	jump	in	and	try	ideas	out.	To	get	things	working,
you’ll	need	at	least	Node.js	version	8.5	installed.	You’ll	also	occasionally	want
to	try	code	in	a	browser.	Be	sure	to	use	a	modern	browser	such	as	Chrome,	Edge,
or	Internet	Explorer	11+.

Whom	This	Book	Is	For
This	book	is	for	anyone	who	has	a	little	programming	experience.	It	helps	to
have	some	JavaScript	experience,	but	that’s	not	strictly	necessary.	I’ll	assume
that	you	know	some	basic	programming	concepts,	such	as	loops,	conditionals,
functions,	and	classes.	In	short,	if	you’ve	seen	modern	JavaScript	and	you’re
excited	to	learn	more,	then	this	book	is	for	you.

You	may	feel	like	you	woke	up	in	a	strange	new	world.	That’s	not	a	bad	thing.	In
fact,	this	new	world	is	awesome—the	coffee’s	brewing,	and	the	aroma	of	fresh-
baked	danishes	makes	this	new	world	a	place	you	want	to	wake	up	to.	JavaScript
is	better	than	ever—it’s	time	to	enjoy	it.

Online	Resources
You	can	also	find	the	code	on	github[1]	or	on	the	book’s	Pragmatic	Bookshelf
website.[2]	The	website	also	includes	a	handy	community	forum	if	you’d	like	to
reach	out	for	help	along	the	way.	Thanks	in	advance	for	reporting	any	issues	that
you	find	in	the	book	code	or	text	via	the	errata	form,	also	conveniently	found	on
the	book	website.

To	stay	up-to-date	on	new	syntax	changes,	you	can	follow	me	on	twitter—
@joesmorgan[3]—or	online	at	thejoemorgan.com.[4]

Acknowledgments
First,	thanks	to	anyone	who’s	ever	sent	out	a	tweet,	written	a	blog	post,
submitted	a	pull	request,	spoken	at	a	conference,	answered	a	Stack	Overflow
question,	or	done	anything	to	contribute	to	the	greater	JavaScript	ecosystem.	A
language	is	only	as	good	as	its	community.	We	have	one	of	the	best.

Thank	you	to	my	wife,	Dyan,	and	my	children,	Theo	and	Bea,	for	putting	up
with	my	crazy	schedule.	Thanks	to	my	parents,	Nathan	and	Lorraine,	for	giving
me	plenty	of	sticks,	string,	and	duct	tape,	which	led	me	to	my	lifelong	love	of
building	and	exploring.	And	a	big	thanks	to	Martha	Vogel	for	all	the	extra	help
so	I	could	carve	out	a	few	precious	hours	to	write.

Thank	you	to	the	staff	of	the	University	of	Wisconsin	Center	for	Limnology,	the
librarians	of	the	University	of	Wisconsin,	the	staff	of	MERIT	library,	the
librarians	and	staff	of	the	Johnson	County	Library,	the	engineers	at	Red	Nova
Labs,	the	web	team	and	marketing	department	at	the	University	of	Kansas,	the
engineers	at	Builder	Designs,	the	staff	at	DEG,	and	anyone	else	who	has	taught
me	a	thing	or	two	about	programming	and	communicating	ideas.

Thank	you	to	Sara	Heins,	Ashley	Sullins,	Adam	Braun,	and	Katie	McCurry	for
help	with	marketing.

Thank	you	to	the	good	people	at	Pragmatic	Programmers	for	the	opportunity	to
write	about	JavaScript.	Thank	you	to	Brian	MacDonald	for	helping	me	get
started.	And	a	big	thank	you	to	my	editor,	Andrea	Stewart,	for	helping	me	find
my	voice	and	keeping	the	process	smooth.

Finally,	thank	you	to	all	my	technical	reviewers:	Craig	Hess,	Frank	Ruiz,	Jessica
Janiuk,	Mark	Poko,	Nick	McGinness,	Ryan	Heap,	Shreerang	Patwardhan,	Stefan
Turalski,	and	Vasile	Boris.	You	kept	me	honest	and	made	the	book	even	better.

Joe	Morgan
Lawrence,	KS,	April	2018

[1]

[2]

[3]

[4]

Footnotes

https://github.com/jsmapr1/simplifying-js

https://pragprog.com/book/es6tips/simplifying-javascript

https://twitter.com/joesmorgan

http://thejoemorgan.com

Copyright	©	2018,	The	Pragmatic	Bookshelf.

https://github.com/jsmapr1/simplifying-js
https://pragprog.com/book/es6tips/simplifying-javascript
https://twitter.com/joesmorgan
http://thejoemorgan.com

Chapter	1

Signal	Intention	with	Variable
Assignment

	

Before	we	begin,	I	have	a	question	for	you.	How	many	variables	did	you	declare
in	your	code	yesterday?	It	doesn’t	matter	what	language	you	were	writing.	Was	it
ten?	A	hundred?	How	about	over	the	last	week?	Last	month?	Probably	a	lot.

Now	think	about	how	many	variables	you	read	yesterday.	Maybe	you	read	your
own	code,	or	maybe	you	were	skimming	someone	else’s.	Did	you	see	a	hundred
variables?	a	thousand?	Chances	are,	you	don’t	have	a	clue.

Now	if	I	asked	you	how	many	curried	functions	you	saw	yesterday,	I	bet	you’d
know	the	answer.	I	can	tell	you	that	I	saw	exactly	one	curried	function	yesterday.
I	know	that	because	even	though	there’s	been	lots	of	ink	spilled	about	curried
functions	in	JavaScript	(and	I’ll	be	spilling	some	myself	in	Tip	34,	​	Maintain
Single	Responsibility	Parameters	with	Partially	Applied	Functions	 ​),	it’s	not
nearly	as	common	as	a	simple	variable	declaration.	In	fact,	if	you’ve	never	heard
of	a	curried	function,	that’s	even	more	proof	that	they	aren’t	nearly	as	important
as	simple	variable	declaration.	We	spend	so	much	time	thinking	and	teaching
complex	concepts,	but	something	as	simple	as	variable	declaration	will	affect
your	life	and	the	lives	of	other	developers	in	a	much	more	significant	way.

You’re	about	to	rethink	JavaScript	code	from	the	ground	up.	And	that	means	you
need	to	start	at	the	most	basic	level:	assigning	information	to	variables.	So	that’s
the	theme	for	our	first	chapter.

Modern	JavaScript	has	several	new	ways	to	declare	variables.	Whenever	you
start	to	write	a	variable,	you	just	need	to	ask	yourself	if	this	will	make	the	code
more	readable	and	predictable	for	the	next	developer.	You’ll	find	that	it	actually
changes	how	you	write	quite	a	bit.

You’re	going	to	look	at	two	new	variable	declaration	types.	The	first,	const,
doesn’t	allow	you	to	reassign	the	variable	(which	you’ll	see	is	a	good	thing).	The
second,	let,	will	allow	reassignment,	but	it’s	block	scoped	and	will	protect	you
from	potential	scope	conflicts.	Finally,	you’ll	learn	how	to	use	template	literals
to	create	new	strings	from	your	variables.

The	tips	in	this	chapter	will	help	you	understand	how	your	decisions	will	affect
the	rest	of	the	code,	and	also	how	your	decisions	will	affect	anyone	else	who
might	eventually	pick	up	and	read	your	code.

I	hope	that	as	you	read	this	chapter,	you	begin	to	critically	examine	the
JavaScript	that	you	write	every	day.	The	bonus	is	that	with	just	a	handful	of	tips,
you’ll	be	well	on	your	way	to	writing	JavaScript	code	that’s	more	simple	and
expressive.	And	don’t	be	surprised	if	the	mindset	you	learn	when	assessing
variable	declarations	flows	out	into	the	rest	of	your	code.	After	all,	it’s	the	most
common	decision	you’ll	make	while	you	write—a	decision	you’ll	make	10,	20,
100	times	tomorrow,	and	next	week,	and	next	month.

Ready?	Good.	Let’s	begin.

Tip	1 Signal	Unchanging	Values	with	const

In	this	tip,	you’ll	learn	to	use	const	to	avoid	reassignment	and	signal	your
intention	to	other	developers.

Modern	JavaScript	introduced	several	new	variable	declarations,	which	is	great.
But	it	also	introduced	a	new	problem:	Which	variable	declaration	should	be	the
default?	And	when	should	we	use	another	type?

In	the	past,	you	had	only	one	option	for	non-global	variable	assignment:	var.
Now	there	are	many	different	options—var,	let,	and	const—and	each	one	has	an
appropriate	usage.	Try	and	keep	things	simple.	In	most	cases,	const	is	the	best
choice,	not	because	it	allows	you	to	do	the	most,	but	because	it	lets	you	do	the
least.	It	has	restrictions	that	make	your	code	more	readable.

ECMAScript	6
ECMAScript	is	the	official	technical	specification	for	JavaScript.	JavaScript
incorporated	major	syntax	changes	in	ECMAScript	5	and	ECMAScript	6,	which	are
referred	to	as	ES5	and	ES6.	Going	forward,	the	spec	will	be	updated	yearly.	Most
developers	now	refer	to	the	spec	by	year,	such	as	ES2017.

const	is	a	variable	declaration	that	you	can’t	reassign	within	the	context	of	the
block.	In	other	words,	once	you	establish	it,	it	can’t	be	changed.	That	doesn’t
mean	it’s	immutable—a	value	that	cannot	be	changed.	If	it’s	assigned	to	an	array,
the	items	in	the	array	can	be	changed.	We’ll	look	at	this	more	shortly.

It	may	seem	odd	to	developers	in	other	languages	with	a	constant	assignment
that	const	is	the	preferred	declaration.	In	those	languages,	a	constant	is	usually
something	you’d	write	in	ALLCAPS	and	only	use	on	rare	occasions	to	denote
things	that	are	never	going	to	change,	like	the	first	digits	of	pi.

In	JavaScript,	though,	const	is	a	great	default	choice	precisely	because	it	can’t	be
reassigned.	When	you	assign	a	value,	you	aren’t	just	declaring	a	piece	of

information.	You’re	also	signaling	what	you	plan	to	do	with	that	information.
When	you	assign	values	and	signal	that	they	won’t	be	changed,	you	give	future
developers	(including	yourself!)	the	knowledge	that	they	can	forget	about	a
value	while	they	skim	the	code.	And	when	you’re	reading	a	large	amount	of
code	that	you	haven’t	seen	before,	you’ll	be	happy	that	you	can	forget	some	of
what	you	read.

Let’s	assume	you’re	fixing	a	bug	in	a	piece	of	code.	You’re	skimming	through
the	code	to	get	an	idea	of	how	it	works	and	to	see	if	you	can	guess	where	the
problem	might	be.	Consider	two	programs.	The	first	program	uses	const	to	assign
a	variable	while	the	second	uses	var	to	assign	a	variable.

variables/const/const.js

​ ​const​ taxRate = 0.1;
​
​ ​const​ total = 100 + (100 * taxRate);
​
​ ​// Skip 100 lines of code​
​
​ ​return​ ​`Your Order is ​${total}​`​;

variables/const/const.js

​ ​var​ taxRate = 0.1;
​
​ ​var​ total = 100 + (100 * taxRate);
​
​ ​// Skip 100 lines of code​
​
​ ​return​ ​`Your Order is ​${total}​`​;

They	look	nearly	identical,	but	the	first	is	much	easier	to	understand.	Ignore	the
fact	that	a	block	of	code	shouldn’t	be	100	lines	long;	you	have	a	large	amount	of
code	where	lots	of	changes	are	occurring.

With	the	first	block,	you	know	exactly	what	will	get	returned:	Your Order is 110.
You	know	this	because	total	is	a	constant	that	can’t	be	reassigned.	With	the
second	block,	you	have	no	idea	what	the	return	value	is	going	to	be.	You	are

http://media.pragprog.com/titles/es6tips/code/variables/const/const.js
http://media.pragprog.com/titles/es6tips/code/variables/const/const.js

going	to	need	to	go	through	the	100	lines	of	additional	code	looking	for	loops	or
conditionals	or	reassignments	or	anything	that	might	change	the	value.	Maybe
the	code	is	adding	a	shipping	cost.	Maybe	additional	items	will	be	added	to	the
total.	Maybe	a	discount	is	going	to	be	applied	and	the	total	will	drop.

You	have	no	idea	what	the	total	is	going	to	be	when	it’s	assigned	with	var.	When
you	assign	a	variable	with	const,	it	removes	one	additional	piece	of	information
that	you	need	to	retain	in	your	head	while	reading	code.	Consider	one	last
example:

variables/const/const.js

​ ​const​ taxRate = 0.1;
​ ​const​ shipping = 5.00;
​
​ ​let​ total = 100 + (100 * taxRate) + shipping;
​
​ ​// Skip 100 lines of code​
​
​ ​return​ ​`Your Order is ​${total}​`​;

Take	a	moment	and	think	about	what	you	can	be	certain	of	from	this	code.	You
know	you	can’t	be	sure	of	the	total.	The	developers	have	signaled	that	taxRate

and	shipping	are	unchanging	(if	only	that	were	true),	but	the	total	isn’t	permanent.
You	know	this	value	can’t	be	trusted.

The	best	case	is	to	know	that	an	assignment	won’t	change.	The	second	best	case
is	to	know	that	it	might	change.	If	you	can	see	that	the	developers	used	const

regularly	and	let	rarely,	you	can	guess	areas	of	change.

Make	all	variable	assignments	either	a	known-known	or	a	known-unknown.

There’s	one	important	consideration	when	using	const:	A	value	assigned	to	const

is	not	immutable.	In	other	words,	you	can’t	reassign	the	variable,	but	you	can
change	the	value.	That	may	seem	contradictory,	but	here	it	is	in	practice.

variables/const/const.js

http://media.pragprog.com/titles/es6tips/code/variables/const/const.js
http://media.pragprog.com/titles/es6tips/code/variables/const/const.js

​ ​const​ discountable = [];
​
​ ​// Skip some lines​
​
​ ​for​ (​let​ i = 0; i < cart.length; i++) {
​ ​if​ (cart[i].discountAvailable) {
​ discountable.push(cart[i]);

​ }

​ }

This	is	perfectly	valid	code.	Even	though	discountable	is	assigned	with	const,	you
can	still	push	items	to	it.	This	creates	the	exact	problem	we	saw	earlier:	You
can’t	be	certain	of	what	you’ll	see	later	in	the	code.	For	objects,	arrays,	or	other
collections,	you’ll	need	to	be	more	disciplined.

There’s	no	clear	consensus	on	what	you	should	use,	but	your	best	bet	is	to	avoid
mutations	as	much	as	possible.

Here’s	an	example	of	the	previous	code	written	without	mutations.

variables/const/const.js

​ ​const​ discountable = cart.filter(item => item.discountAvailable);

Same	result.	No	mutations.	If	the	code	is	confusing,	you	can	jump	to	Chapter	5,
Simplify	Loops ​	for	more	information	about	array	methods.

For	now,	just	use	const	as	a	default.	Once	the	code	changes	to	the	point	where
const	is	no	longer	appropriate,	you	can	try	a	different	declaration.

In	the	next	tip,	you’ll	see	precisely	when	const	is	no	longer	an	appropriate	choice
and	why	you	should	use	a	new	declaration:	let.

http://media.pragprog.com/titles/es6tips/code/variables/const/const.js

Tip	2 Reduce	Scope	Conflicts	with	let	and	const

In	this	tip,	you’ll	learn	that	in	cases	where	a	value	is	going	to	change,	let	is	the
best	choice.

You	saw	in	the	previous	tip	that	when	you’re	working	with	variables,	you’re
better	off	avoiding	reassignment.	But	what	do	you	do	in	situations	where	you
really	need	to	reassign	a	variable?	In	those	cases,	you	should	use	let.

let	is	similar	to	var	because	it	can	be	reassigned,	but	unlike	var,	which	is	lexically
scoped,	let	is	block	scoped.	You’ll	explore	scope	more	in	Tip	3,	​	Isolate
Information	with	Block	Scoped	Variables	​.	For	now,	just	know	that	block	scoped
variables	exist	only	in	blocks,	such	as	an	if	block	or	a	for	loop.	Outside	those
blocks,	they	aren’t	accessible.	As	a	rule,	this	means	the	variable	doesn’t	exist
outside	the	curly	braces	in	which	it	was	declared.

To	see	how	a	block	scoped	or	a	lexically	scoped	variable	can	change	code,
consider	an	example.	This	code	looks	for	the	lowest	price	for	an	item.	To	find
the	lowest	price,	it	makes	three	simple	checks:

If	there	is	no	inventory:	Return	0.
If	there	is	a	sale	price	and	sale	inventory:	Return	sale	price.
If	there	is	no	sale	price	or	no	sale	inventory:	Return	price.

variables/let/problem.js

​1: ​function​ getLowestPrice(item) {
​- ​var​ count = item.inventory;
​- ​var​ price = item.price;
​-
​5: ​if​ (item.salePrice) {
​- ​var​ count = item.saleInventory;
​- ​if​ (count > 0) {
​- price = item.salePrice;

​- }

​10: }
​-

http://media.pragprog.com/titles/es6tips/code/variables/let/problem.js

​- ​if​ (count) {
​- ​return​ price;
​- }

​15:
​- ​return​ 0;
​- }

Take	a	moment	and	see	if	you	can	find	the	bug.

Look	at	each	expected	outcome	and	see	what	you	can	find.	Alternatively,	you
can	run	the	test	suite.[5]

Did	you	find	it?	The	problem	is	that	you’re	reassigning	a	variable	to	the	same
variable	name.

If	you	have	an	item	with	no	inventory	and	no	sale	price,	the	item.salePrice

conditional	will	be	skipped	and	you’ll	get	0.

variables/let/let.spec.js

​ ​const​ item = {
​ inventory: 0,

​ price: 3,

​ salePrice: 0,

​ saleInventory: 0,

​ };

Next,	if	you	have	a	sale	price	and	a	sale	inventory,	you	get	the	sale	price.	In	this
case,	the	returned	value	will	be	2.

variables/let/let.spec.js

​ ​const​ item = {
​ inventory: 3,

​ price: 3,

​ salePrice: 2,

​ saleInventory: 1,

​ };

Finally,	if	you	have	a	sale	price	but	no	sale	inventory,	you	expect	to	get	the
regular	price,	3.	What	you	actually	get	is	0.

http://media.pragprog.com/titles/es6tips/code/variables/let/let.spec.js
http://media.pragprog.com/titles/es6tips/code/variables/let/let.spec.js

variables/let/let.spec.js

​ ​const​ item = {
​ inventory: 3,

​ price: 3,

​ salePrice: 2,

​ saleInventory: 0,

​ };

If	you’re	still	a	little	confused,	that’s	okay.	It’s	a	tricky	bug.	The	problem	is	that
you	declare	the	variable	count	on	lines	2	to	3.	There’s	a	sale	price,	so	you	go	into
the	next	if	block.	At	this	point,	you	redeclare	the	variable	count	on	line	6.	Now
the	problem	is	that	this	is	set	to	0	because	there’s	no	more	sale	inventory.	By	the
time	you	get	to	the	next	if	block	on	line	12,	the	inventory	is	wrong.	It	looks	like
there’s	no	sale	inventory	and	no	regular	priced	inventory.	Even	though	you	have
a	regular	inventory,	you’re	accidentally	checking	the	sale	inventory	and
returning	the	wrong	value.

You	might	want	to	dismiss	this	problem	as	trivial.	But	bugs	like	this	are	subtle
and	hard	to	catch	if	they	make	it	into	production.

Fortunately,	you	can	avoid	this	issue	using	let.	In	fact,	let	helps	you	avoid	this
issue	in	two	ways.

let	is	block	scoped,	which	again	means	any	variable	declared	inside	a	block
doesn’t	exist	outside	the	block.

variables/let/let.js

​ ​function​ getLowestPrice(item) {
​ ​let​ count = item.inventory;
​ ​let​ price = item.price;
​
​ ​if​ (item.salePrice) {
​ ​let​ count = item.saleInventory;
​ ​if​ (count > 0) {
​ price = item.salePrice;

​ }

​ }

​

http://media.pragprog.com/titles/es6tips/code/variables/let/let.spec.js
http://media.pragprog.com/titles/es6tips/code/variables/let/let.js

​ ​if​ (count) {
​ ​return​ price;
​ }

​
​ ​return​ 0;
​ }

In	this	case,	using	let	to	declare	the	count	variable	in	the	if	block	isn’t	going	to
conflict	with	the	count	variable	declared	at	the	start	of	the	function.

Of	course,	let	isn’t	the	only	variable	declaration	that’s	block	scoped.	const	is	also
block	scoped.	Because	you’re	never	reassigning	count,	you	can	use	const	instead
and	keep	things	even	more	clear,	although	you’ll	need	to	continue	to	use	let	to
declare	price	because	that	may	update.	Honestly,	you	should	just	use	different
names	to	keep	things	clear.	The	final	code	would	be	this:

variables/let/const.js

​ ​function​ getLowestPrice(item) {
​ ​const​ count = item.inventory;
​ ​let​ price = item.price;
​
​ ​if​ (item.salePrice) {
​ ​const​ saleCount = item.saleInventory;
​ ​if​ (saleCount > 0) {
​ price = item.salePrice;

​ }

​ }

​
​ ​if​ (count) {
​ ​return​ price;
​ }

​
​ ​return​ 0;
​ }

As	an	added	bonus,	let	and	const	have	another	protection.	You	can’t	redeclare	a
variable	of	the	same	name.	With	var,	you	can	redeclare	a	variable	of	the	same
name	in	the	same	scope.	In	other	words,	you	can	say	var price = 1	at,	say	line	10
and	var price = 5	at	line	25	with	no	conflict.	This	can	be	a	huge	problem	if	you

http://media.pragprog.com/titles/es6tips/code/variables/let/const.js

unintentionally	reuse	a	variable	name.	With	let,	you	can’t	make	this	mistake.

This	code	would	generate	a	TypeError.

variables/let/declaration.js

​ ​function​ getLowestPriceDeclaration(item) {
​ ​const​ count = item.inventory;
​ ​let​ price = item.price;
​
​ ​if​ (!count) {
​ ​return​ 0;
​ }

​
​ ​// ...​
​
​ ​let​ price = item.saleInventory ? item.salePrice : item.wholesalePrice;
​
​ ​return​ price;
​ }

This	issue	won’t	come	up	often,	but	it’s	a	nice	way	to	catch	a	potential	bug	early
in	the	process.

In	the	next	tip,	you’ll	take	a	deeper	look	into	scope	and	how	let	solves	one	of	the
most	common	and	perplexing	scope	conflicts	in	JavaScript.

http://media.pragprog.com/titles/es6tips/code/variables/let/declaration.js

Tip	3 Isolate	Information	with	Block	Scoped	Variables

In	this	tip,	you’ll	learn	how	let	prevents	scope	conflict	in	for	loops	and	other
iterations.

At	one	point	or	another,	every	developer	will	make	the	mistake	of	capturing	the
wrong	variable	during	a	for	loop.	The	traditional	solution	involves	some	pretty
advanced	JavaScript	concepts.	Fortunately,	the	let	variable	declaration	makes
this	complex	issue	disappear.

Remember,	when	you	use	a	block	scoped	variable	declaration,	you’re	creating	a
variable	that’s	only	accessible	in	the	block.	A	variable	declared	in	an	if	block
isn’t	available	outside	the	curly	braces.	A	variable	declared	inside	a	for	loop	isn’t
available	outside	the	curly	braces	of	the	for	loop.	But	that	doesn’t	mean	you	can’t
access	variables	declared	outside	a	function.	If	you	declare	a	block	scope
variable	at	the	top	of	a	function,	it	is	accessible	inside	the	block.

If	you	declare	a	lexically	scoped	variable,	however,	it’s	accessible	anywhere
inside	a	function.	A	variable	created	inside	an	if	block	can	be	accessed	anywhere
else	in	the	function.	In	fact,	you	can	even	access	a	variable	before	it	was
declared	because	of	a	compile	process	called	hoisting.[6]

If	that	all	seems	too	abstract,	that’s	fine.	It’s	easier	to	understand	in	practice.
Chances	are,	if	you’ve	encountered	a	lexical	scope	issue	before,	it	probably
occurred	when	you	were	adding	a	click	function	to	a	series	of	DOM	elements:

variables/scope/scope.html

​ ​<!doctype html>​
​
​ <html lang=​"en"​>
​ <body>

​ <ul style=​"cursor:pointer"​>
​ Say Zero

​ Say One

​ Say Two

​

http://media.pragprog.com/titles/es6tips/code/variables/scope/scope.html

​ </body>

​ <script>

​ ​const​ items = document.querySelectorAll(​'li'​);
​ ​for​(​var​ i = 0; i< items.length; i++) {
​ items[i].addEventListener(​'click'​, () => {
​ alert(i);

​ })

​ };

​ </script>

​ </html>

Open	this	code	in	a	browser	and	try	clicking	on	one	of	the	list	elements.	You’ll
find	that	every	click	will	give	the	same	result:	3.

It’s	tempting	to	think	this	is	a	browser	bug,	but	it’s	actually	more	related	to	how
JavaScript	assigns	variables.	It	can	happen	anywhere,	even	in	regular	JavaScript
code.	Let’s	look	at	how	this	issue	can	occur	even	in	plain	JavaScript	without
DOM	manipulation.

If	you	paste	this	code	into	a	browser	console	or	a	REPL,	you’ll	see	the	same
problem.

variables/scope/problem.js

​1: ​function​ addClick(items) {
​2: ​for​ (​var​ i = 0; i < items.length; i++) {
​3: items[i].onClick = ​function​ () { ​return​ i; };
​4: }

​5: ​return​ items;
​6: }

​7: ​const​ example = [{}, {}];
​8: ​const​ clickSet = addClick(example);
​9: clickSet[0].onClick();

Using	REPLs
REPL	is	an	acronym	for	"read	evaluate	print	loop."	It	is	one	of	the	most	valuable
tools	you	can	have	when	working	with	code.	A	REPL	is	simply	a	command-line
interface	where	you	type	in	some	code	and	the	REPL	immediately	evaluates	it
and	returns	the	result.

For	example,	type	in	2+2	and	you’ll	get	4.	These	are	great	when	you	can’t	quite

http://media.pragprog.com/titles/es6tips/code/variables/scope/problem.js

remember	syntax	and	want	to	give	it	a	quick	check.	I	can	never	remember	the
method	for	making	a	string	uppercase,	which	is	a	problem	when	I	need	to	yell
something.	To	refresh	my	memory,	I’ll	go	into	a	REPL	and	type	’hi!’.upperCase(),
which	gives	me	an	error.	Then	I’ll	try	again	with	’hi!’.toUpperCase(); //HI!,	which
works	and	off	I	go.

Where	are	these	REPLs?	If	you	have	Node.js	installed	on	your	computer	(which
you	should),	go	to	a	command	line	and	type	node	and	you’ll	be	dropped	into	a
REPL.

If	you	are	debugging	code	in	a	browser,	you	also	have	a	REPL	at	your	fingertips,
though	it	is	called	console	in	most	browsers.	All	modern	browsers	have	developer
tools	that	contain	a	console	of	some	sort.	This	is	another	place	where	you	can
type	JavaScript	code	and	see	immediate	results.	As	a	bonus,	this	will	help	you
check	which	features	are	natively	implemented	on	that	particular	browser.

No	matter	which	array	element	you	try,	you’ll	get	the	same	result.

Why	is	this	happening?

The	problem	again	is	scope.	Variables	assigned	with	var	are	functionally	scoped
(which,	again,	is	technically	referred	to	as	lexically	scoped).	That	means	that
they’ll	always	refer	to	the	last	value	they’re	assigned	within	a	function.

When	you	set	a	new	function	on	line	3	in	the	preceding	example,	you’re	saying
to	return	the	value	i	whatever	it	may	be	at	the	time	you	call	the	code.	You	are	not
saying:	return	the	value	of	i	at	the	time	it’s	set.	As	a	result,	because	i	belongs	to
the	function,	the	value	changes	on	each	loop	iteration.

The	traditional	solution	is	complicated,	and	it	can	confuse	even	the	most
experienced	JavaScript	developers.

variables/scope/curry.js

​ ​function​ addClick(items) {
​ ​for​ (​var​ i = 0; i < items.length; i++) {
​ items[i].onClick = (​function​ (i) {
​ ​return​ ​function​ () {
​ ​return​ i;
​ };

http://media.pragprog.com/titles/es6tips/code/variables/scope/curry.js

​ }(i));

​ }

​ ​return​ items;
​ }

​ ​const​ example = [{}, {}];
​ ​const​ clickSet = addClick(example);
​ clickSet[0].onClick();

It	involves	a	combination	of	closures	(creating	a	variable	inside	a	function	for
another	function	to	use),	higher-order	functions	(functions	that	return	other
functions),	and	self-invoking	functions.	If	you	don’t	understand	that,	it’s	fine.
You’ll	learn	more	about	higher-order	functions	in	Tip	34,	​	Maintain	Single
Responsibility	Parameters	with	Partially	Applied	Functions	​.

Fortunately,	you	don’t	need	to	understand	these	higher	concepts	quite	yet.	If	you
rewrite	the	preceding	code	using	let,	you’ll	get	the	same	results	without	the	extra
code	clutter.	Test	out	the	following	code	in	a	browser	console	or	REPL	and
you’ll	get	the	results	you	were	expecting.

variables/scope/scope.js

​1: ​function​ addClick(items) {
​2: ​for​ (​let​ i = 0; i < items.length; i++) {
​3: items[i].onClick = ​function​ () { ​return​ i; };
​4: }

​5: ​return​ items;
​6: }

​7: ​const​ example = [{}, {}];
​8: ​const​ clickSet = addClick(example);
​9: clickSet[0].onClick();

Looking	at	line	3,	you’ll	notice	the	only	thing	you	changed	is	using	let	instead	of
var.	Because	let	is	blocked	scoped,	any	variable	declared	inside	the	for	block
belongs	only	to	that	block.	So	even	if	the	value	changes	in	another	iteration,	the
value	won’t	change	on	the	previously	declared	function.

In	simpler	terms,	let	locks	the	value	during	each	iteration	of	the	for	loop.

Because	let	can	do	nearly	everything	var	can	do,	it’s	always	best	to	use	let

whenever	you	might	otherwise	use	var.

http://media.pragprog.com/titles/es6tips/code/variables/scope/scope.js

I	hope	this	gave	you	some	ideas	for	how	to	declare	variables.	You	will	find	in
upcoming	tips	that	variable	declaration	is	so	important	that	you	may	want	to
restructure	whole	code	blocks	to	keep	declarations	clear	and	predictable.

In	the	next	tip,	you’ll	look	at	how	to	transform	data	to	readable	strings	using
template	literals.

Tip	4
Convert	Variables	to	Readable	Strings	with
Template	Literals

In	this	tip,	you	will	learn	how	to	convert	variables	into	new	strings	without
concatenation.

Strings	are	messy.	That’s	all	there	is	to	it.	When	you’re	pulling	information	from
strings,	you	have	to	deal	with	the	ugliness	of	natural	language:	capitalization,
punctuation,	misspellings.	It’s	a	headache.

Collecting	information	into	strings	is	less	painful,	but	it	can	still	get	ugly	quickly.
Combining	strings	in	JavaScript	can	be	particularly	rough,	especially	when	you
combine	strings	assigned	to	variables	with	strings	surrounded	by	quotes.

Here’s	a	situation	that	comes	up	all	the	time:	You	need	to	build	a	URL.	In	this
case,	you’re	building	a	link	to	an	image	on	a	cloud	service.	Your	cloud	service	is
pretty	great,	though.	In	addition	to	hosting	the	asset,	you	can	pass	query
parameters	that	will	convert	the	asset	in	a	variety	of	ways	(height,	width,	and	so
on).

To	keep	things	relatively	simple,	you’re	going	to	make	a	function	that	creates	a
URL	by	combining	your	cloud	provider	URL	with	the	ID	of	the	image	and	the
width	as	a	query	parameter.

To	keep	things	complicated,	you’re	going	to	combine	regular	strings	with	strings
that	are	returned	from	a	function,	strings	that	are	assigned	to	variables,	and
strings	that	are	converted	right	before	concatenation.	You’re	going	to	use	a
function	(implemented	elsewhere)	that	will	return	a	cloud	provider	such	as
pragprog.com/cloud.	Your	function	will	take	ID	and	width	as	parameters,	but	it	will
need	to	parse	the	width	to	make	sure	it’s	an	integer.

URLs	get	particularly	ugly	because	you	have	to	add	slashes	between	the	parts	of
a	route	along	with	the	building	blocks	of	queries	such	as	?,	=,	and	&.
Traditionally,	you	have	to	combine	each	piece	with	a	+	sign.

The	final	result	looks	like	this:

variables/literals/problem.js

​ ​function​ generateLink(image, width) {
​ ​const​ widthInt = parseInt(width, 10);
​ ​return​ ​'https://'​ + getProvider() + ​'/'​ + image + ​'?width='​ + widthInt;
​ }

There’s	a	lot	going	on	there,	and	the	combination	of	information	and	+	signs
doesn’t	help.	And	this	is	a	particularly	simple	URL.	They	can	get	more
complicated	fast.	What	if	the	route	was	longer	or	you	needed	an	additional	four
parameters?	These	things	get	long.

Fortunately,	you	can	cut	down	the	complexity	quite	a	bit	using	template	literals.
Template	literals	are	a	simple	syntax	that	lets	you	combine	strings	along	with
JavaScript	expressions	to	create	a	new	string.

There	are	only	two	things	you	need	to	know:	First,	a	template	literal	is
surrounded	by	backticks	(‘)	instead	of	single	or	double	quotes.	Second,	anything
that’s	not	a	string	(including	strings	assigned	to	variables)	needs	to	be
surrounded	by	a	special	designator:	a	$	sign	with	the	variables	or	other
JavaScript	code	in	curly	braces:	‘${stuff}‘.

You’ll	most	often	use	this	for	combining	strings	and	variables.

variables/literals/literals.js

​ ​function​ greet(name) {
​ ​return​ ​`Hi, ​${name}​`​;
​ }

​ greet(​'Leo'​);
​ ​'Hi, Leo'​;

But	you	can	also	perform	JavaScript	actions.	For	example,	you	can	call	a	method
on	a	object.	In	this	case,	you’re	converting	a	string	to	uppercase:

variables/literals/literals.js

​ ​function​ yell(name) {

http://media.pragprog.com/titles/es6tips/code/variables/literals/problem.js
http://media.pragprog.com/titles/es6tips/code/variables/literals/literals.js
http://media.pragprog.com/titles/es6tips/code/variables/literals/literals.js

​ ​return​ ​`HI, ​${name.toUpperCase()}​!`​;
​ }

​ greet(​'Pankaj'​);
​ ​'HI, PANKAJ!'​;

You	can	even	perform	more	complex	computations,	such	as	combining	math
calculations.	Really,	you	can	perform	any	action	in	the	curly	braces,	but	it	would
only	make	sense	to	perform	actions	that	return	a	string	or	integer.

variables/literals/literals.js

​ ​function​ leapYearConverter(age) {
​ ​return​ ​`You'd be ​${Math.floor(age / 4)}​ if born on a leap year.`​;
​ }

​ leapYearConverter(34);

​ ​// "You'd be 8 if born on a leap year."​

Try	not	to	do	much	with	the	curly	braces.	It	can	be	more	cluttered	than	it’s
worth.	If	you	need	to	do	heavy	data	conversions,	perform	the	action	outside	the
template	literal	and	assign	the	result	to	a	variable.

You	now	have	all	the	tools	to	rewrite	your	original	string	concatenation	as	a
single	template	literal.	Take	a	moment	and	try	it	out.

Your	solution	probably	looks	something	like	this:

variables/literals/literals.js

​ ​function​ generateLink(image, width) {
​ ​return​ ​`https://​${getProvider()}​/​${image}​?width=​${parseInt(width, 10)}​`​;
​ }

Doesn’t	that	look	significantly	cleaner?	Template	literals	are	such	an
improvement	on	string	concatenation	that	you	should	rarely	ever	combine	strings
with	traditional	concatenation.	The	only	time	it	would	be	better	is	if	you’re
combining	two	variables	with	no	additional	information.	Even	in	that	case,	you
may	still	use	template	literals	because	those	backticks	are	a	clue	to	other
developers	that	you’re	returning	a	string.

In	the	next	chapter,	you’re	going	to	learn	about	how	to	use	collections	of	data.

http://media.pragprog.com/titles/es6tips/code/variables/literals/literals.js
http://media.pragprog.com/titles/es6tips/code/variables/literals/literals.js

[5]

[6]

You’ll	be	building	on	many	of	the	ideas	in	this	chapter	as	you	make	choices
between	new	and	existing	collections.

Footnotes

https://pragprog.com/titles/es6tips/source_code

https://developer.mozilla.org/en-US/docs/Glossary/Hoisting

Copyright	©	2018,	The	Pragmatic	Bookshelf.

https://pragprog.com/titles/es6tips/source_code
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting

Chapter	2

Manage	Data	Collections	with	Arrays
	

The	ancient	Greek	poet	Archilochus	wrote,	“A	fox	knows	many	things,	but	a
hedgehog	one	important	thing.”	The	great	historian	Isaiah	Berlin	said	all	thinkers
are	either	hedgehogs	or	foxes.	I	think	the	same	is	true	of	syntax.

As	you’ve	seen,	const	is	a	hedgehog.	It	can	only	do	one	thing—make	an
unchanging	declaration.	By	only	doing	one	thing,	it	makes	your	code	readable
and	predictable.	As	you’ll	see	in	upcoming	tips,	array	methods	are	all
hedgehogs.	They	can	do	only	one	thing	on	an	array.	But	they	do	it	well,	so	you
can	safely	predict	outcomes	without	diving	into	the	details.

For	the	most	part,	you	want	to	stick	with	syntax	that	does	one	thing	very	well.
But	there	are	times	when	you	need	things	to	be	flexible.	An	array	is	the	ultimate
fox	because	it	can	do	many	things.	In	fact,	it	can	do	almost	anything	you’d	ever
want	for	a	collection	of	information.	More	importantly,	many	other	collections
use	concepts	that	you’d	most	often	associate	with	arrays.

For	example,	when	you	have	a	string,	’hedgehog’,	you	have	a	lot	of	available
actions	you’d	normally	perform	on	arrays.	You	can	get	the	size:	’hedgehog’.length

will	return	8.	You	can	also	pick	out	individual	letters	by	index:	’hedgehog’[3]	will
return	’g’.	There	are	so	many	other	methods	that	it	would	take	too	long	to	list
them	all.

These	methods	don’t	belong	to	arrays	specifically	(they	rely	on	a	property	called
Iterator),	but	they’re	most	intuitively	connected	to	arrays.	When	you	study	arrays
carefully,	you’ll	gain	many	insights	into	other	data	structures.	Arrays	know	many

things.	They	are	foxes.

In	this	chapter,	you’ll	see	that	arrays	are	becoming	better	than	ever.	Not	only	are
they	a	good	choice	for	many	data	needs,	but	they	have	new	syntax	that	reduces
many	common	actions	to	one-liners	while	simultaneously	reducing	mutations
that	can	cause	subtle	bugs.	And	pay	attention—you’ll	see	the	same	ideas	in	later
tips.

To	begin,	you’ll	see	how	data	can	always	be	converted	to	arrays,	including
converting	other	collections	(such	as	objects)	to	arrays	when	necessary.	From
there,	you’ll	learn	new	syntax,	such	as	includes(),	to	test	existence	in	arrays	and,
crucially,	the	spread	operator	symbolized	by	three	dots	(...).	The	spread	operator
is	so	important	in	the	modern	use	of	arrays	that	the	next	two	tips	will	explore
how	the	spread	operator	changes	how	you	use	arrays	in	your	code.	Pay	close
attention—you’ll	see	the	spread	operator	in	many	future	tips.

To	keep	code	readable,	you	should	stick	with	simple,	predictable	approaches
(hedgehogs).	But	to	make	code	flexible,	you	need	arrays	to	move	between
structures.	It’s	a	tough	balancing	act,	but	you	need	both.	Everything	you	do	in
JavaScript	will	be	easier	if	you	have	a	clear	understanding	of	arrays.

Time	to	jump	in	and	see	how	arrays	provide	a	level	of	flexibility	you	won’t	find
in	most	collections.

Tip	5 Create	Flexible	Collections	with	Arrays

In	this	tip,	you’ll	learn	how	arrays	maximize	flexibility	and	give	you	a
foundation	for	understanding	all	other	collections.

In	JavaScript,	there	used	to	be	only	two	structures	for	collections	of	data:	arrays
and	objects.	That	list	is	growing.	Now	there	are	maps,	sets,	weakmaps,	weaksets,
objects,	and	arrays.

When	choosing	a	collection,	you	have	to	ask	yourself	what	you	need	to	do	with
the	information.	If	you	need	to	manipulate	it	in	any	way	(add,	remove,	sort,
filter,	alter	all	members),	then	arrays	are	often	the	best	collection.	And	even
when	you	don’t	use	an	array,	you’ll	almost	certainly	use	ideas	that	you’d
associate	with	arrays.

Arrays	have	a	remarkable	amount	of	flexibility.	Because	arrays	preserve	order,
you	can	add	and	remove	items	according	to	their	position	or	determine	if	they
have	a	position	at	all.	You	can	sort	to	give	the	array	a	new	order	as	you’ll	see	in
Tip	9,	​	Avoid	Sort	Confusion	with	the	Spread	Operator	​.

arrays/arrays/arrays.js

​ ​const​ team = [
​ ​'Joe'​,
​ ​'Dyan'​,
​ ​'Bea'​,
​ ​'Theo'​,
​];

​
​ ​function​ alphabetizeTeam(team) {
​ ​return​ [...team].sort();
​ ​// ['Bea', 'Dyan', 'Joe', 'Theo']​
​ }

Interestingly,	order	is	not	technically	guaranteed,[7]	but	it’s	safe	to	assume	that	it
will	work	in	nearly	all	circumstances.

With	array	methods	such	as	map(),	filter(),	and	reduce(),	you	can	alter	or	update	the

http://media.pragprog.com/titles/es6tips/code/arrays/arrays/arrays.js

information	easily	with	single	lines,	as	you’ll	see	starting	with	Tip	22,	​	Create
Arrays	of	a	Similar	Size	with	map()	​.

arrays/arrays/arrays.js

​ ​const​ staff = [
​ {

​ name: ​'Wesley'​,
​ position: ​'musician'​,
​ },

​ {

​ name: ​'Davis'​,
​ position: ​'engineer'​,
​ },

​];

​
​ ​function​ getMusicians(staff) {
​ ​return​ staff.filter(member => member.position === ​'musician'​);
​ ​// [{name: 'Wesley', position: 'musician'}]​
​ }

You	may	notice	some	strange	looking	syntax.	Don’t	worry—you’ll	get	to	it	soon.
A	lot	of	the	new	syntax	in	ES5	and	ES6	is	related	to	arrays.	That	should	be	a
clue	that	they’re	valued	highly	in	the	JavaScript	community.

Still,	you’ll	need	to	use	other	collections.	Yet,	a	solid	understanding	of	arrays
will	greatly	improve	your	code	because	arrays	are	at	the	heart	of	many	popular
data	manipulations.	For	example,	if	you	need	to	iterate	over	an	object,	the	first
thing	you’d	do	is	get	the	keys	into	an	array	with	Object.keys()	and	then	iterate	over
those.	You’re	using	an	array	as	a	bridge	between	the	object	and	a	loop.

arrays/arrays/arrays.js

​ ​const​ game1 = {
​ player: ​'Jim Jonas'​,
​ hits: 2,

​ runs: 1,

​ errors: 0,

​ };

​
​ ​const​ game2 = {
​ player: ​'Jim Jonas'​,

http://media.pragprog.com/titles/es6tips/code/arrays/arrays/arrays.js
http://media.pragprog.com/titles/es6tips/code/arrays/arrays/arrays.js

​ hits: 3,

​ runs: 0,

​ errors: 1,

​ };

​
​ ​const​ total = {};
​
​ ​const​ stats = Object.keys(game1);
​ ​for​ (​let​ i = 0; i < stats.length; i++) {
​ ​const​ stat = stats[i];
​ ​if​ (stat !== ​'player'​) {
​ total[stat] = game1[stat] + game2[stat];

​ }

​ }

​
​ ​// {​
​ ​// hits: 5,​
​ ​// runs: 1,​
​ ​// errors: 1​
​ ​// }​

Arrays	seem	to	pop	up	everywhere	because	they	have	a	built-in	iterable.[8]	An
iterable	is	merely	a	way	for	the	code	to	go	through	a	collection	one	item	at	a
time	while	knowing	its	current	position.	Any	action	you	can	perform	on	an	array
you	can	also	perform	on	any	data	type	that	has	an	iterable	(such	as	strings)	or
one	that	you	can	quickly	transform	into	an	iterable	(as	with	Object.keys()).

If	you	know	that	you	can	create	a	new	array	with	the	spread	operator,	as	you’ll
see	in	Tip	7,	​	Mold	Arrays	with	the	Spread	Operator	 ​,	then	you	know	that	you
can	create	a	new	Map	with	the	spread	operator	because	it	also	has	a	built-in
iterable,	as	you’ll	see	in	Tip	14,	​	Iterate	Over	Key-Value	Data	with	Map	and	the
Spread	Operator	 ​.

Finally,	you	can	express	nearly	every	collection	concept	in	the	form	of	an	array,
which	means	you	can	easily	convert	from	an	array	to	a	specialized	collection	and
back	again.	Think	about	an	object	as	a	key-value	store.

arrays/arrays/arrays.js

​ ​const​ dog = {
​ name: ​'Don'​,

http://media.pragprog.com/titles/es6tips/code/arrays/arrays/arrays.js

​ color: ​'black'​,
​ };

​
​ dog.name;

​ ​// Don​

You	can	describe	that	same	concept,	a	key-value	store,	as	an	array	of	arrays.	The
internal	arrays	contain	only	two	items.	The	first	item	is	a	key.	The	second	item	is
the	value.	This	particular	structure,	an	array	consisting	of	two	items,	is	also
called	a	pair.	Finding	the	value	for	a	specific	key	is	merely	a	matter	of	finding
the	pair	with	the	correct	key	name	and	then	returning	the	second	item.

arrays/arrays/arrays.js

​ ​const​ dogPair = [
​ [​'name'​, ​'Don'​],
​ [​'color'​, ​'black'​],
​];

​ ​function​ getName(dog) {
​ ​return​ dog.find(attribute => {
​ ​return​ attribute[0] === ​'name'​;
​ })[1];

​ }

Admittedly,	that’s	a	lot	of	extra	code	for	something	so	simple.	You	certainly
wouldn’t	put	this	in	a	code	base,	but	it’s	good	to	know	that	an	object	could	be	an
array	of	pairs.

In	fact,	you’ll	use	pairs	to	convert	data	between	the	Map	object	and	an	array.	And
now	that	the	TC39	committee	has	finalized	the	spec	to	convert	an	object	to	an
array	of	pairs	using	Object.entries(),[9]	you’ll	be	able	to	use	any	array	technique	on
objects	with	a	quick	conversion.

The	TC39	Committee
What	does	it	mean	that	something	is	part	of	a	finalized	spec?	The	JavaScript
spec	is	determined	by	a	committee	called	the	TC39	committee.	They	take
proposals	for	syntax	changes	through	a	standard	process	before	defining	their
official	specifications	(or	spec).	You’ll	often	hear	developers	refer	to	“stage	1”	or
“stage	2”	features	when	talking	about	features	still	in	the	review	process.	This

http://media.pragprog.com/titles/es6tips/code/arrays/arrays/arrays.js

just	means	that	they	are	still	being	finalized	but	are	on	the	way	to	adoption	as
part	of	the	spec.	After	a	piece	of	syntax	is	approved,	browsers	start	to	work	on
native	implementations.

In	other	words,	there	are	always	new	syntax	changes	on	the	way.	Up	until	ES6,
you	would	refer	to	syntax	changes	by	version	such	as	ES5	or	ES6.	From	now	on,
you	will	see	syntax	changes	by	year	such	as	ES2017,	ES2018,	and	so	on.	To	add
to	the	confusion,	because	most	JavaScript	will	still	need	to	be	compiled	to	earlier
syntax	to	be	compatible	with	older	browsers,	you	can	use	syntax	before	it’s	final.
This	can	be	dangerous,	but	occasionally	there	are	features	that	are	so	popular
they	are	affectively	adopted	by	the	community	before	they	are	officially
approved.	New	syntax	features	such	as	async	and	await	or	the	Object	spread	are
used	before	they	are	official.

Having	a	deep	understanding	of	arrays,	and	most	iterables	by	proxy,	will	let	you
grasp	not	only	many	of	the	new	ES6	features	that	we’re	about	to	explore,	but
also	many	new	features	that	are	coming	soon.

In	the	next	tip,	you’ll	begin	to	work	with	arrays	by	learning	how	testing
existence	in	arrays	has	become	even	easier	with	includes().

Tip	6 Check	Existence	in	an	Array	with	Includes()

In	this	tip,	you’ll	learn	how	to	find	out	if	a	value	exists	in	an	array	without
checking	position.

It’s	easy	to	get	so	caught	up	in	the	big	exciting	changes	in	a	language	(such	as
the	spread	operator,	which	you’ll	see	in	a	moment)	that	you	miss	the	small
changes	that	simplify	common	tasks.

Arrays	now	have	an	easy	improvement	to	handle	a	common	problem:	testing
existence.	Testing	existence	is	an	important	action,	and	it’s	crucial	in	everything
from	ternaries	(Tip	18,	​	Check	Data	Quickly	with	the	Ternary	Operator	​),	to
short	circuiting	(Tip	19,	​	Maximize	Efficiency	with	Short	Circuiting	 ​),	to	most
conditionals	in	general.

Testing	existence	with	JavaScript	arrays	has	always	been	a	little	clunky.	For
example,	if	you	want	to	see	if	an	array	contains	a	certain	string,	you	check	to	see
if	the	string	has	a	position	(position	being	another	feature	of	an	iterable).	If	the
position	exists,	you’ll	get	the	index.	If	not,	you	get	-1.	The	problem	is	that	the
index	can	be	0,	which	evaluates	to	false	(also	known	as	being	falsy).	This	means
the	existence	can	be	true,	but	the	check	can	evaluate	to	false.

arrays/includes/problem.js

​ ​const​ sections = [​'shipping'​];
​
​ ​function​ displayShipping(sections) {
​ ​if​ (sections.indexOf(​'shipping'​)) {
​ ​return​ ​true​;
​ }

​ ​return​ ​false​;
​ }

​
​ ​// false​

Because	of	this	unfortunate	situation,	a	position	at	0	being	falsy,	you	have	to
compare	the	index	against	a	number	and	not	just	test	that	it’s	truthy.	It’s	not	a	big

http://media.pragprog.com/titles/es6tips/code/arrays/includes/problem.js

problem,	but	it’s	just	extra	code	to	remember.	Jump	ahead	to	Tip	17,	​	Shorten
Conditionals	with	Falsy	Values	​	for	more	on	falsy	values.

arrays/includes/greater.js

​ ​const​ sections = [​'contact'​, ​'shipping'​];
​
​ ​function​ displayShipping(sections) {
​ ​return​ sections.indexOf(​'shipping'​) > -1;
​ }

​
​ ​// true​

Fortunately,	another	feature	coming	up	in	ES2017	will	eliminate	that	boilerplate
comparison.	The	new	array	method,	called	includes(),[10]	will	check	to	see	if	a
value	exists	in	an	array	and	return	a	Boolean	of	true	or	false.

You	can	rewrite	the	preceding	code	with	a	simple	check.

arrays/includes/includes.js

​ ​const​ sections = [​'contact'​, ​'shipping'​];
​
​ ​function​ displayShipping(sections) {
​ ​return​ sections.includes(​'shipping'​);
​ }

This	may	seem	like	a	trivial	change,	but	after	writing	-1	over	and	over	in	a
codebase,	or	even	worse,	forgetting	and	getting	false	negatives	on	a	zero-indexed
value,	it’s	a	welcome	change.

Now	that	you’ve	seen	how	integral	arrays	are	to	JavaScript,	you’ll	dive	into
them	a	little	more	as	we	explore	some	of	the	new	features	that	make	them	even
more	exciting	and	powerful.	It’s	best	to	get	comfortable	with	arrays	because
they’re	everywhere	in	JavaScript.	And	even	if	you	aren’t	using	them	directly,
don’t	be	surprised	if	a	lot	of	what	you	learn	about	arrays	begins	to	show	up	in
other	collections.

In	the	next	tip,	you’ll	learn	how	to	use	the	most	interesting	and	powerful	new
technique	for	working	with	arrays:	the	spread	operator.

http://media.pragprog.com/titles/es6tips/code/arrays/includes/greater.js
http://media.pragprog.com/titles/es6tips/code/arrays/includes/includes.js

Tip	7 Mold	Arrays	with	the	Spread	Operator

In	this	tip,	you’ll	learn	how	to	simplify	many	array	actions	with	the	spread
operator.

As	you’ve	seen,	arrays	provide	an	incredible	amount	of	flexibility	for	working
with	data.	But	the	number	of	methods	that	an	array	contains	can	be	confusing,
and	it	could	lead	you	to	some	problems	with	mutations	and	side	effects.
Fortunately,	the	spread	operator	gives	you	a	way	to	create	and	manipulate	arrays
quickly	with	minimal	code.

The	spread	operator,	symbolized	with	three	dots	(...),	may	be	the	most	widely
used	new	feature	in	JavaScript.	You’re	likely	to	find	it	in	nearly	every	file
containing	ES6+	syntax.

That	said,	it’s	hard	to	take	the	spread	operator	seriously.	I	certainly	didn’t.	What
it	does	is	so	mundane:	It	converts	an	array	to	a	list	of	items.	Turns	out,	that	tiny
action	has	many	benefits	that	we’ll	explore	in	the	next	few	tips.

The	benefits	don’t	end	with	just	arrays.	You’ll	see	the	spread	operator	over	and
over.	It	pops	up	in	the	Map	collection,	as	you’ll	see	in	Tip	14,	​	Iterate	Over	Key-
Value	Data	with	Map	and	the	Spread	Operator	​.	You’ll	use	a	variation	called	the
rest	operator	in	functions,	as	you’ll	see	in	Tip	31,	​	Pass	a	Variable	Number	of
Arguments	with	the	Rest	Operator	​.	And	you	can	use	the	spread	operator	on	any
data	structure	or	class	property	using	generators,	as	you’ll	see	in	Tip	41,	​	Create
Iterable	Properties	with	Generators	​.

I	hope	that	I’ve	sparked	your	interest.	To	start,	try	using	the	spread	operator	on	a
simple	array.

You	begin	with	an	array	of	items.

​ ​const​ cart = [​'Naming and Necessity'​, ​'Alice in Wonderland'​];

You	then	use	the	spread	operator	(...)	to	turn	that	into	a	list—a	series	of	items	that

you	can	use	in	parameters	or	to	build	an	array:

​ ​const​ cart = [​'Naming and Necessity'​, ​'Alice in Wonderland'​];
​ ...cart

If	you	try	this	out	in	a	REPL	or	a	browser	console,	you’ll	get	an	error.	The
syntax	is	correct,	but	you	can’t	use	the	spread	operator	on	its	own.	You	can’t,	for
example,	assign	the	output	to	a	variable.	You	have	to	spread	the	information	into
something.

​ ​const​ copyCart = [...cart];
​ ​// ['Naming and Necessity', 'Alice in Wonderland']​

Now,	before	you	think	“big	deal”	and	skip	to	the	next	tip,	I	want	you	to	know	I
understand.	I	didn’t	appreciate	the	spread	operator	until	I	started	seeing	it	pop	up
everywhere.	And	I	didn’t	love	it	until	I	started	using	it.	But	now	it’s	my	favorite
ES6	feature	by	far.

To	see	how	powerful	the	spread	operator	can	be,	start	with	a	simple	task:
removing	an	item	from	an	array.	Here’s	an	approach	using	only	a	loop:

arrays/spread/problem.js

​ ​function​ removeItem(items, removable) {
​ ​const​ updated = [];
​ ​for​ (​let​ i = 0; i < items.length; i++) {
​ ​if​ (items[i] !== removable) {
​ updated.push(items[i]);

​ }

​ }

​ ​return​ updated;
​ }

This	isn’t	bad	code.	But	there’s	certainly	a	lot	of	it.	It’s	a	good	rule	to	keep	things
as	simple	as	you	can.	The	more	clutter	and	loops	that	exist,	the	harder	it	will	be
to	read	and	understand	the	code.

In	trying	to	simplify,	you	may	stumble	on	an	array	method	called	splice().	It
removes	an	item	from	an	array,	and	that’s	exactly	what	you	want!	If	you	refactor
the	preceding	function,	it	does	become	more	simple.

http://media.pragprog.com/titles/es6tips/code/arrays/spread/problem.js

arrays/spread/splice.js

​ ​function​ removeItem(items, removable) {
​ ​const​ index = items.indexOf(removable);
​ items.splice(index, 1);

​ ​return​ items;
​ }

The	problem	with	splice()	is	that	is	mutates	the	original	array.	Take	a	look	at	the
following	example	and	see	if	you	can	spot	the	problem:

arrays/spread/splice.js

​ ​const​ books = [​'practical vim'​, ​'moby dick'​, ​'the dark tower'​];
​ ​const​ recent = removeItem(books, ​'moby dick'​);
​ ​const​ novels = removeItem(books, ​'practical vim'​);

What	do	you	think	the	novels	array	will	contain?

The	only	book	it	will	contain	is	’the dark tower’.	When	you	called	removeItem()	the
first	time,	you	passed	it	books	and	got	back	the	array	without	’moby dick’.	But	it
also	changed	the	books	array.	When	you	passed	it	to	the	next	function,	it	was
only	two	items	long.

This	is	why	mutations	can	be	so	hazardous,	particularly	if	you’re	using	them	in	a
function.	You	may	not	expect	the	information	passed	to	be	fundamentally
different.	Notice	in	this	case	that	you’re	even	assigning	books	with	const.	You
may	assume	this	won’t	be	mutated,	but	that	isn’t	always	the	case.

Splice	may	seem	like	a	good	alternative	to	a	for	loop,	but	mutations	can	create	so
much	confusion	that	you’re	better	off	avoiding	them	whenever	possible.

Finally,	there’s	one	last	option.	Arrays	also	have	a	method	called	slice(),	which
returns	a	part	of	an	array	without	changing	the	original	array.	When	you’re	using
slice,	you	pass	a	startpoint	and	endpoint,	and	you	get	everything	in	between.
Alternatively,	you	can	pass	just	a	startpoint	and	get	everything	from	that	point
until	the	end	of	the	array.	Then	you	can	use	concat()	to	put	the	pieces	of	the	array
back	together.

http://media.pragprog.com/titles/es6tips/code/arrays/spread/splice.js
http://media.pragprog.com/titles/es6tips/code/arrays/spread/splice.js

arrays/spread/slice.js

​ ​function​ removeItem(items, removable) {
​ ​const​ index = items.indexOf(removable);
​ ​return​ items.slice(0, index).concat(items.slice(index + 1));
​ }

This	code	is	pretty	great.	You	get	the	new	array	back	without	changing	the
original	array,	and	you	avoid	a	lot	of	code.	However,	it	isn’t	clear	what’s	being
returned.	Another	developer	would	need	to	know	that	concat()	joins	two	arrays
into	a	single	flat	array.	There’s	no	visual	clue	for	what	you’re	doing.

This	is	where	the	spread	operator	comes	in.	Combined	with	a	slice,	the	spread
operator	turns	both	sub-arrays	into	a	list	that’s	placed	back	into	square	brackets.
It	actually	looks	like	an	array.	And	more	importantly,	it	gives	you	a	smaller	array
without	affecting	the	larger	array.

arrays/spread/spread.js

​ ​function​ removeItem(items, removable) {
​ ​const​ index = items.indexOf(removable);
​ ​return​ [...items.slice(0, index), ...items.slice(index + 1)];
​ }

Notice	a	few	things	about	this	code.	There	are	no	mutations.	It’s	easy	to	read.	It’s
simple.	It’s	reusable.	It’s	predictable.	In	short,	it	has	all	of	your	favorite
attributes.

You	can	actually	further	improve	this	code.	As	you’ll	see	in	Tip	23,	​	Pull	Out
Subsets	of	Data	with	filter()	and	find()	​,	you	can	pass	a	function	that	removes	a
specific	item	in	an	array.	There	are	many	ways	to	perform	the	same	action.	Go
for	the	one	that	best	communicates	your	intentions.

This	is	just	the	beginning.	The	spread	operator	lets	you	quickly	pull	out	the	items
of	an	array	with	very	few	characters.	And	you’ll	always	put	them	back	into	a
structure	that	you	can	quickly	and	easily	recognize.

If	you	look	back	through	the	four	examples,	you	see	that	they	all	work.	But	the
spread	is	the	most	readable	and	the	easiest	to	predict.

http://media.pragprog.com/titles/es6tips/code/arrays/spread/slice.js
http://media.pragprog.com/titles/es6tips/code/arrays/spread/spread.js

The	other	popular	way	to	use	the	spread	operator	is	to	create	a	list	of	arguments
for	a	function.	Create	a	small	function	to	format	an	array	of	information.

arrays/spread/spread.js

​ ​const​ book = [​'Reasons and Persons'​, ​'Derek Parfit'​, 19.99];
​
​ ​function​ formatBook(title, author, price) {
​ ​return​ ​`​${title}​ by ​${author}​ $​${price}​`​;
​ }

How	can	you	put	the	information	into	the	function?	Try	it	out.	You	probably
came	up	with	something	like	this:

arrays/spread/spread.js

​ formatBook(book[0], book[1], book[2]);

But	there’s	an	even	simpler	version	that	you	won’t	have	to	change	if	the	amount
of	data	on	the	book	changes.	For	example,	say	you	add	a	publication	year.

If	you	came	up	with	something	like	this,	great	work.	Parameters	are	lists	of
arguments,	so	the	spread	operator	allows	you	to	convert	an	array	to	a	list	of
parameters	quickly	and	easily.

arrays/spread/spread.js

​ formatBook(...book);

Here’s	the	interesting	thing:	This	isn’t	the	only	way	you	can	quickly	extract
information	from	an	array	in	parameters.	You	could	also	pull	it	out	directly	using
array	destructuring.	You’ll	explore	destructuring	in	greater	detail	in	Tip	29,	​
Access	Object	Properties	with	Destructuring	​.

And	that’s	not	all!	The	spread	operator	really	starts	to	shine	in	parameters	once
you	begin	to	use	a	variable	number	of	arguments.	If	you	want	a	quick	look,	jump
ahead	to	Tip	31,	​	Pass	a	Variable	Number	of	Arguments	with	the	Rest	Operator	​.
As	you	can	see,	the	spread	operator	is	incredibly	useful	and	there’s	plenty	more
to	explore.

http://media.pragprog.com/titles/es6tips/code/arrays/spread/spread.js
http://media.pragprog.com/titles/es6tips/code/arrays/spread/spread.js
http://media.pragprog.com/titles/es6tips/code/arrays/spread/spread.js

Now	that	you’ve	seen	how	it	works,	it’s	time	to	look	at	how	you	can	rewrite
common	array	actions	using	the	spread	operator	to	avoid	confusing	mutations
and	side	effects.

Tip	8 Avoid	Push	Mutations	with	the	Spread	Operator

In	this	tip,	you’ll	learn	how	to	avoid	array	mutations	by	creating	new	arrays
with	the	spread	operator.

As	you’ve	just	seen,	mutations	can	have	unexpected	consequences.	If	you
change	something	in	a	collection	early	in	the	code,	you	can	create	a	bug	much
deeper.	Mutations	may	not	always	cause	major	headaches,	but	they	do	have	that
potential,	so	it’s	best	to	avoid	them	when	possible.	In	fact,	some	popular
JavaScript	libraries	(such	as	Redux)	won’t	allow	functions	with	any	mutations	at
all.

Plus,	a	lot	of	modern	JavaScript	is	functional	in	style,	meaning	you’ll	need	to
write	code	that	doesn’t	contain	side	effects	and	mutations.	There’s	a	lot	to	be
said	about	functional	JavaScript,	more	than	what	can	fit	in	this	book.	If	you’re
interested,	you	can	learn	more	in	Functional	JavaScript	[Fog13]	by	Michael
Fogus.

I	hope	by	now	you	understand	why	mutations	are	bad.	But	if	you’re	like	me,	you
probably	wonder	what	does	it	all	mean	in	practice?	Consider	a	common	array
mutation:	push().	The	push()	method	changes	the	original	array	by	adding	an	item
to	the	end.	When	you	add	an	item,	you’re	mutating	the	original	array.
Fortunately,	you	can	avoid	the	side	effect	with	the	spread	operator.

Before	that,	start	with	a	problem	caused	by	the	push()	method.

Imagine	a	simple	function	that	takes	a	shopping	cart	and	summarizes	the
contents.	The	function	checks	to	see	if	there	are	too	many	discounts	and	returns
an	error	object	if	there	are.	Otherwise,	if	the	cart	has	enough	items,	it	adds	a	free
gift.

arrays/push/push.js

​ ​const​ cart = [
​ {

​ name: ​'The Foundation Triology'​,

http://media.pragprog.com/titles/es6tips/code/arrays/push/push.js

​ price: 19.99,

​ discount: ​false​,
​ },

​ {

​ name: ​'Godel, Escher, Bach'​,
​ price: 15.99,

​ discount: ​false​,
​ },

​ {

​ name: ​'Red Mars'​,
​ price: 5.99,

​ discount: ​true​,
​ },

​];

​
​ ​const​ reward = {
​ name: ​'Guide to Science Fiction'​,
​ discount: ​true​,
​ price: 0,

​ };

​
​ ​function​ addFreeGift(cart) {
​ ​if​ (cart.length > 2) {
​ cart.push(reward);

​ ​return​ cart;
​ }

​ ​return​ cart;
​ }

​
​ ​function​ summarizeCart(cart) {
​ ​const​ discountable = cart.filter(item => item.discount);
​ ​if​ (discountable.length > 1) {
​ ​return​ {
​ error: ​'Can only have one discount'​,
​ };

​ }

​ ​const​ cartWithReward = addFreeGift(cart);
​ ​return​ {
​ discounts: discountable.length,

​ items: cartWithReward.length,

​ cart: cartWithReward,

​ };

​ }

The	cart	is	a	simple	array,	and	the	gift	is	merely	an	added	item.	The	problem	is

this	code	is	one	line	away	from	causing	an	error.	As	usual,	take	a	moment	and
see	if	you	can	locate	the	problem.

This	is	a	great	example	of	why	a	mutation	can	seem	so	harmless.	What	if	six
months	down	the	road,	a	well-meaning	developer	decides	to	clear	things	up	by
putting	all	the	variable	declarations	at	the	top	of	the	function?

arrays/push/push.js

​ ​function​ summarizeCartUpdated(cart) {
​ ​const​ cartWithReward = addFreeGift(cart);
​ ​const​ discountable = cart.filter(item => item.discount);
​ ​if​ (discountable.length > 1) {
​ ​return​ {
​ error: ​'Can only have one discount'​,
​ };

​ }

​ ​return​ {
​ discounts: discountable.length,

​ items: cartWithReward.length,

​ cart: cartWithReward,

​ };

​ }

Now	the	bug	will	surface.	When	you	use	the	function	addFreeGift(),	you’re
mutating	the	cart	array.	It	will	always	have	at	least	one	discount	if	there	are	more
than	two	items.	Even	though	you’re	assigning	the	return	value	(the	cart	with
added	gift)	to	a	new	variable,	you’ve	mutated	the	original	cart	array.	Any	time
someone	has	a	cart	with	more	than	three	items	and	one	discount,	they’ll	get	an
error.

If	this	had	a	test,	maybe	it	would	be	an	easy	fix.	If	there’s	no	test,	who	knows
how	long	before	customer	service	gets	an	angry	email.

You	might	notice	the	problem	with	a	lot	of	these	examples	is	that	the	mutation
happens	in	a	separate	function.	Good	catch!	In	fact,	that’s	exactly	the	reason	why
mutations	can	be	so	dangerous.	When	you	call	a	function,	you	should	trust	that	it
won’t	change	any	supplied	values.	Functions	that	have	no	side	effects	are	called
“pure”	functions,	and	that’s	what	you	should	strive	to	achieve.

http://media.pragprog.com/titles/es6tips/code/arrays/push/push.js

It	can	be	even	more	confusing	when	you	return	a	value	from	a	function	even
though	you	mutated	the	input.	A	developer	who	comes	through	later	will	likely
assume	that	the	original	values	haven’t	changed	given	that	the	return	value	is	the
one	with	the	update.	In	this	case,	they’d	be	wrong.	The	input	value	was	also
changed.

Time	to	fix	the	problem.	It’s	so	incredibly	simple—you	should	immediately
understand	why	the	spread	operator	became	so	popular.

arrays/push/push.js

​ ​function​ addGift(cart) {
​ ​if​ (cart.length > 2) {
​ ​return​ [...cart, reward];
​ }

​ ​return​ cart;
​ }

​
​ ​function​ summarizeCartSpread(cart) {
​ ​const​ cartWithReward = addGift(cart);
​ ​const​ discountable = cart.filter(item => item.discount);
​ ​if​ (discountable.length > 1) {
​ ​return​ {
​ error: ​'Can only have one discount'​,
​ };

​ }

​ ​return​ {
​ discounts: discountable.length,

​ items: cartWithReward.length,

​ cart: cartWithReward,

​ };

​ }

All	you	need	to	do	is	take	the	current	array	and	spread	it	into	square	brackets,
tacking	the	newest	item	on	at	the	end.

In	essence,	all	you’re	doing	is	rewriting	the	contents	as	a	list.	Note	that	this	is	a
brand	new	array	so	there’s	no	way	we	could	possibly	change	the	original	array.
We’re	just	reusing	the	contents	to	make	a	new	array.

arrays/push/push.js

http://media.pragprog.com/titles/es6tips/code/arrays/push/push.js
http://media.pragprog.com/titles/es6tips/code/arrays/push/push.js

​ ​const​ titles = [​'Moby Dick'​, ​'White Teeth'​];
​ ​const​ moreTitles = [...titles, ​'The Conscious Mind'​];
​ ​// ['Moby Dick', 'White Teeth', 'The Conscious Mind'];​

What	I	love	most	about	creating	new	arrays	this	way	(and	I’m	sure	you	will,	too)
is	that	you	can	forget	so	many	methods.	You	won’t	need	them	anymore.

Quick!	How	do	you	add	a	new	item	to	the	start	of	an	array?	How	do	you	make	a
copy	of	an	array?	Hint:	It’s	different	than	assigning	the	same	array	to	a	new
variable.	Did	you	have	to	look	them	up?	Don’t	worry,	I	still	do,	too.	I	mean,	who
could	remember	that	slice()	is	a	function	to	make	a	copy.	Here	they	are	with	the
spread	replacement:

arrays/push/push.js

​ ​// Add to beginning.​
​ ​const​ titles = [​'Moby Dick'​, ​'White Teeth'​];
​ titles.shift(​'The Conscious Mind'​);
​
​ ​const​ moreTitles = [​'Moby Dick'​, ​'White Teeth'​];
​ ​const​ evenMoreTitles = [​'The Conscious Mind'​, ...moreTitles];
​
​ ​// Copy​
​ ​const​ toCopy = [​'Moby Dick'​, ​'White Teeth'​];
​ ​const​ copied = toCopy.slice();
​
​ ​const​ moreCopies = [​'Moby Dick'​, ​'White Teeth'​];
​ ​const​ moreCopied = [...moreCopies];

And	of	course,	to	repeat	a	point	from	earlier,	you’re	signaling	your	intention	to
return	an	array.	Another	developer	may	not	remember	that	slice()	creates	a	new
array,	but	when	they	see	the	square	brackets,	they’ll	know	exactly	what	they’ll
get.

In	the	next	tip,	you’ll	see	how	creating	copies	of	arrays	can	prevent	problems
when	you	must	use	methods	that	mutate	arrays,	such	as	sort().

http://media.pragprog.com/titles/es6tips/code/arrays/push/push.js

Tip	9 Avoid	Sort	Confusion	with	the	Spread	Operator

In	this	tip,	you’ll	learn	how	to	use	the	spread	operator	to	sort	an	array	multiple
times	while	getting	the	same	result.

You’ve	seen	by	now	that	you	can	replace	many	mutating	functions	with	the
spread	operator.	What	should	you	do	when	there’s	a	function	that	you	can’t
easily	replace?	The	answer	is	fairly	simple:	Use	the	spread	operator	to	create	a
copy	of	the	original	array,	and	then	mutate	that	one.

Don’t	let	the	simplicity	of	the	answer	fool	you.	Mutation	bugs	can	sneak	up
when	you	least	expect	them.

This	comes	up	in	applications	that	have	tabular	sorting	data.	If	you	haven’t
written	an	application	that	displays	tabular	data,	wait	around—I	guarantee	you’ll
do	it.	And	the	minute	you	create	that	table	of	tabular	data,	the	next	request	you’ll
hear	from	your	account	or	project	manager	is	to	make	the	table	sortable.

Skip	the	UI	components	and	look	purely	at	the	data	and	functions.	You	need	to
make	an	application	that	takes	an	array	of	staff	members	and	sorts	them	either	by
name	or	years	of	service.

Start	with	an	array	of	employees.

arrays/sort/sortMutate.js

​ ​const​ staff = [
​ {

​ name: ​'Joe'​,
​ years: 10,

​ },

​ {

​ name: ​'Theo'​,
​ years: 5,

​ },

​ {

​ name: ​'Dyan'​,
​ years: 10,

http://media.pragprog.com/titles/es6tips/code/arrays/sort/sortMutate.js

​ },

​];

Next,	add	a	couple	of	custom	sorting	functions	to	sort	by	either	name	or	age.	If
you	don’t	understand	the	sort	functions,	don’t	worry.	It’s	not	necessary	for	this
example.	If	interested,	you	can	check	out	the	sort	documentation	on	the	Mozilla
Developer	Network.[11]

arrays/sort/sortMutate.js

​ ​function​ sortByYears(a, b) {
​ ​if​ (a.years === b.years) {
​ ​return​ 0;
​ }

​ ​return​ a.years - b.years;
​ }

​
​ ​const​ sortByName = (a, b) => {
​ ​if​ (a.name === b.name) {
​ ​return​ 0;
​ }

​ ​return​ a.name > b.name ? 1 : -1;
​ };

At	this	point,	you’d	just	call	the	sort	function	on	the	array	whenever	the	user
clicks	a	column	heading.	For	example,	if	a	user	chooses	to	sort	by	years	of
service,	the	function	will	sort	and	update	the	array.

arrays/sort/sortMutate.js

​ staff.sort(sortByYears);

​
​ ​// [​
​ ​// {​
​ ​// name: 'Theo',​
​ ​// years: 5​
​ ​// },​
​ ​// {​
​ ​// name: 'Joe',​
​ ​// years: 10​
​ ​// },​
​ ​// {​
​ ​// name: 'Dyan',​

http://media.pragprog.com/titles/es6tips/code/arrays/sort/sortMutate.js
http://media.pragprog.com/titles/es6tips/code/arrays/sort/sortMutate.js

​ ​// years: 10​
​ ​// },​
​ ​//];​

Now	this	is	where	it	gets	tricky.	When	you	sorted	the	array,	you	changed	it.	Even
though	the	code	looks	likes	it’s	finished	executing,	the	change	is	still	there.

Suppose	the	user	then	sorted	by	user	name.	Again,	the	array	mutates.

arrays/sort/sortMutate.js

​ staff.sort(sortByName);

​
​ ​// [​
​ ​// {​
​ ​// name: 'Dyan',​
​ ​// years: 10​
​ ​// },​
​ ​// {​
​ ​// name: 'Joe',​
​ ​// years: 10​
​ ​// },​
​ ​// {​
​ ​// name: 'Theo',​
​ ​// years: 5​
​ ​// },​
​ ​//];​

Nothing	spectacular,	but	look	what	happens	if	the	user	goes	back	and	sorts	by
years	of	service	again.	Maybe	they	forgot	a	name.	Maybe	they	needed	some
different	information.	Who	knows?

What	result	would	the	user	see?	What	result	do	you	think	the	user	should	see?
Turns	out,	sorting	by	name	a	second	time	yields	completely	different	results.

arrays/sort/sortMutate.js

​ staff.sort(sortByYears);

​
​ ​// [​
​ ​// {​
​ ​// name: 'Theo',​
​ ​// years: 5​

http://media.pragprog.com/titles/es6tips/code/arrays/sort/sortMutate.js
http://media.pragprog.com/titles/es6tips/code/arrays/sort/sortMutate.js

​ ​// },​
​ ​// {​
​ ​// name: 'Dyan',​
​ ​// years: 10​
​ ​// },​
​ ​// {​
​ ​// name: 'Joe',​
​ ​// years: 10​
​ ​// },​
​ ​//]​

This	is	a	simple	example.	Imagine	a	table	of	hundreds	of	employees	with	many
of	the	employees	sharing	the	same	years	of	service.	Every	time	a	user	clicks	the
sort	button,	they’d	see	a	slightly	different	order.

At	that	point,	your	user	has	lost	trust	in	the	application.	That’s	something	you
don’t	want.	Mutations	can	have	big	impacts.

How	do	you	stop	mutations	when	the	method	you	want	to	use	has	to	mutate	the
data?	The	answer	is	simple:	Don’t	mutate	the	data.	Make	a	copy	and	then
perform	the	mutation.

The	only	thing	you	need	to	change	in	your	code	is	to	spread	the	original	array
into	a	new	array	before	sorting.

arrays/sort/sortSpread.js

​ [...staff].sort(sortByYears);

​
​ ​// [​
​ ​// {​
​ ​// name: 'Theo',​
​ ​// years: 5​
​ ​// },​
​ ​// {​
​ ​// name: 'Joe',​
​ ​// years: 10​
​ ​// },​
​ ​// {​
​ ​// name: 'Dyan',​
​ ​// years: 10​
​ ​// },​

http://media.pragprog.com/titles/es6tips/code/arrays/sort/sortSpread.js

[7]

[8]

[9]

[10]

[11]

​ ​//];​

Now	your	users	can	sort	however	much	they	want	because	we	aren’t	changing
the	original	array.	The	results	will	always	be	the	same	as	the	previous	sort	for
that	type.

The	spread	operator	is	great,	not	because	it’s	complex	(you’ll	see	some	fancier
collections	in	just	a	moment),	but	because	it’s	so	incredibly	simple	while	still
being	incredibly	powerful.

In	the	next	chapter,	you’ll	start	to	branch	out	into	other	collections.	You’ll	learn
when	it	is	appropriate	to	use	Map,	Set,	or	standard	objects.

Footnotes

https://stackoverflow.com/questions/34955787/is-a-javascript-array-order-guaranteed

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators#Built-
in_iterables

https://github.com/tc39/proposal-object-values-entries

https://github.com/tc39/Array.prototype.includes/

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort

Copyright	©	2018,	The	Pragmatic	Bookshelf.

https://stackoverflow.com/questions/34955787/is-a-javascript-array-order-guaranteed
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators#Built-in_iterables
https://github.com/tc39/proposal-object-values-entries
https://github.com/tc39/Array.prototype.includes/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort

Chapter	3

Maximize	Code	Clarity	with
Special	Collections

	

I’ll	admit	I	like	organizing	things.	I	change	my	garage	constantly.	I	keep	all	the
little	screws	in	a	box	with	drawers	that	I	can	easily	pull	out.	I	keep	most	hand
tools	on	a	pegboard,	but	I	have	a	couple	of	small	toolboxes	stocked	with	the
most	common	items	for	carrying	around	the	house	to	do	small	repairs.	And	I
keep	a	few	cardboard	boxes	full	of	odds	and	ends.

The	thing	is	that	I	don’t	need	those	containers.	I	can	(and	have)	stuffed
everything	into	one	cardboard	box,	but	it	certainly	doesn’t	make	my	life	easier.	I
keep	things	separated	because	the	container	does	matter.	It	changes	how	quickly
I	find	what	I	need	(drawers),	how	easily	I	can	identify	what	I	have	or	don’t	have
(pegboard),	and	how	seamlessly	I	can	transport	the	whole	group	of	things	around
the	house	(toolbox).

I	bet	you	see	where	this	is	going.	This	chapter	is	all	about	how	to	use	collections
to	make	your	data	easy	to	use	and	accessible.	After	all,	the	collections	you	use
for	your	data	can	change	how	you	work	with	the	data.

The	beauty	of	code	is	that,	unlike	my	garage,	you	can	switch	back	and	forth
between	containers.	That’s	great.	You	should	always	use	the	best	collection	for
the	job,	and	fortunately	for	you,	the	options	in	JavaScript	have	significantly
increased.

What	to	do	with	all	this	new	information?	When	choosing	a	variable	declaration,

you	learned	that	the	most	important	consideration	was	signaling	intention	to
future	developers.	Similarly,	when	choosing	a	collection,	you	just	have	to	ask
yourself	one	question:	how	can	you	maintain	simplicity	and	flexibility?

In	this	chapter,	you’ll	look	at	different	collection	types	and	how	they	can	give
you	flexibility	and	simplicity	and	when	they	might	lead	to	confusing	and	buggy
code.

You’ll	start	off	by	looking	at	objects	used	as	key-value	collections	and	when
they’re	an	appropriate	choice	for	data	that	won’t	be	changed.	From	there,	you’ll
see	two	new	collections,	Map	and	Set.	You’ll	learn	why	those	were	introduced
and	how	they	create	clear	interfaces	for	working	with	data	that	you’ll	update	or
iterate	over.

In	addition,	you’ll	learn	how	and	when	to	switch	over	to	another	structure	to	take
advantage	of	its	methods	before	switching	back	to	your	original	structure.

Even	if	you	make	a	choice	that	ends	up	being	wrong	(and	who	among	us	hasn’t
made	a	few	wrong	choices	when	writing	code?),	you	aren’t	going	to	be	bound	by
it	indefinitely.	Take	a	look	at	the	choices,	select	the	one	best	suited	to	your	task,
but	don’t	be	afraid	if	you	have	to	switch	later.	It’s	easy.	The	collection	you	use	to
hold	your	data	does	matter.	But	unlike	my	garage,	you	won’t	need	to	spend	a
Saturday	rearranging	things	if	you	need	to	make	a	change.

Tip	10 Use	Objects	for	Static	Key-Value	Lookups

In	this	tip,	you’ll	learn	why	objects	are	the	best	collection	for	simple	key-value
lookups.

You	probably	noticed	that	I	love	arrays.	But	they	are	not	appropriate	in	many
situations.	As	you	saw,	it	is	always	possible	to	store	any	type	of	information	in
arrays—they	are	really	are	that	flexible—but	it	can	make	things	more	confusing
than	necessary.	And	you	often	end	up	obscuring	information	more	than	you
communicate	it.

What	if	you	had	some	data	and	you	wanted	to	conditionally	apply	some	colors	in
the	UI.	You	want	the	data	to	be	red	if	data	was	below	threshold,	green	if
everything	is	within	normal	range,	and	blue	if	some	data	was	above	a	threshold.
As	usual,	some	very	smart	designer	with	a	lot	of	training	picked	the	absolute
perfect	shades	of	these	colors	(personally,	I	can	never	tell	the	difference,	but
that’s	why	I	don’t	design).

You	could	put	the	hex	values	in	an	array,	but	that	doesn’t	really
communicate	much.

​ ​const​ colors = [​'#d10202'​, ​'#19d836'​, ​'#0e33d8'​];

What	the	heck	does	#d10202	even	mean?	It	happens	to	be	a	shade	of	red,	but
there’s	no	way	to	know	that	without	actually	knowing	it	ahead	of	time.	The
problem	is	that	this	data	is	related—it’s	all	colors—but	not	interchangeable.
Unlike	an	array	of	users	where	all	users	are	structurally	similar	and	one	can	be
substituted	for	another,	the	different	colors	will	serve	different	purposes
(indicating	value	to	users).	When	a	developer	wants	the	hex	code	for	red,	they
don’t	care	what	other	values	are	in	the	collection.	They	don’t	need	to	know	that
red	is	the	first	or	third	color.	In	this	case,	a	key-value	collection	will	be	more
appropriate.	You	really	need	to	give	future	developers	a	better	idea	of	what	the
information	means.

In	cases	where	arrays	aren’t	appropriate	and	you	want	a	key-value	collection,

most	developers	reach	for	objects.	And	objects	are	great,	but	as	you	will	see	in
upcoming	tips,	there	are	now	more	options	for	key-value	collections.

The	TC39	committee	added	more	options	for	collections	because	objects	are
complex.	They	can	be	key-value	collections,	which	is	how	you	will	use	them	in
this	chapter,	or	they	can	be	closer	to	classes	with	constructors,	methods,	and
properties.	Most	things	in	JavaScript,	including	other	collection	types,	are
objects	at	their	core.

This	chapter	will	leave	aside	some	of	the	complexities	of	object	properties,
prototypes,	and	the	keyword	this	and	instead	look	at	how	objects	are	used	as	key-
value	collections.	The	keyword	this,	for	example,	is	a	huge	topic	that’s	well
covered	by	Kyle	Simpson	in	You	Don’t	Know	JS:	this	&	Object
Prototypes.	[Sim14]

Now	that	you	are	thinking	about	objects	primarily	as	collections	competing
against	other	collection	types,	such	as	Map,	the	new	challenge	is	knowing	when
to	chose	plain	objects	deliberately,	as	the	best	solution	for	the	problem,	and	not
as	a	default.

As	a	rule,	objects	are	great	when	you	want	to	share	unchanging	structured	key-
value	data,	but	are	not	appropriate	for	dynamic	information	that	is	updated
frequently	or	unknown	until	runtime,	as	you	will	see	in	later	tips.

For	example,	if	you	wanted	to	share	your	collection	of	colors,	objects	are	a	great
choice.	The	data	doesn’t	change.	You	wouldn’t	dynamically	change	the	hex
value	for	red.	In	this	case,	you	can	change	your	array	of	colors	to	an	object	by
adding	keys	and	wrapping	the	whole	thing	in	curly	braces.	When	you	create	an
object	this	way,	with	key-values	in	curly	braces,	you	are	using	object	literal
syntax.

​ ​const​ colors = {
​ red: ​'#d10202'​,
​ green: ​'#19d836'​,
​ blue: ​'#0e33d8'​
​ }

When	a	future	developer	wants	to	get	the	proper	color	red,	they	don’t	need	to
know	a	position;	they	just	call	it	directly:	colors.red.	Alternatively,	they	can	use
array	syntax	colors[’red’].	It’s	simple.	That’s	why	objects	are	so	valuable	for
retrieving	static	information.

The	key	here	is	static	information.	Objects	are	not	good	for	information	that’s
continually	updated,	looped	over,	altered,	or	sorted.	In	those	cases,	use	Map.
Objects	are	a	path	to	find	information	when	you	know	where	it	will	be.	Config
files	are	often	objects	because	they	are	set	up	before	runtime	and	are	simple	key-
value	stores	of	static	information.

collections/object/object.js

​ ​export​ ​const​ config = {
​ endpoint: ​'http://pragprog.com'​,
​ key: ​'secretkey'​,
​ };

But	static	objects	can	also	be	defined	programmatically.	For	example,	you	can
build	an	object	in	a	function	and	then	pass	it	to	another	function.	The
information	is	collected,	sent,	and	then	unpacked	in	another	function.	In	this
way,	it’s	static	because	it	is	not	mutated	and	updated.

The	trick	is	that	the	data	is	set	and	then	retrieved	the	same	way	every	time.	You
are	not	mutating	an	existing	object;	you	are	creating	a	new	object	in	each
function.	And	more	importantly,	you	know	the	key	names	when	you	are	writing
the	code.	You	are	not	setting	the	keys	using	variables.	The	next	function	knows
in	advance	what	it	will	be	getting.

collections/object/object.js

​ ​function​ getBill(item) {
​ ​return​ {
​ name: item.name,

​ due: twoWeeksFromNow(),

​ total: calculateTotal(item.price),

​ };

​ }

​

http://media.pragprog.com/titles/es6tips/code/collections/object/object.js
http://media.pragprog.com/titles/es6tips/code/collections/object/object.js

​ ​const​ bill = getBill({ name: ​'Room Cleaning'​, price: 30 });
​
​ ​function​ displayBill(bill) {
​ ​return​ ​`Your total ​${bill.total}​ for ​${bill.name}​ is due on ​${bill.due}​`​;
​ }

In	the	preceding	example,	an	object	is	being	used	to	add	structure	to	information
passed	between	objects.	Instead	of	writing	displayBill()	as	a	function	that	takes
each	item	as	a	parameter,	you	are	passing	the	object,	and	the	function	is	pulling
out	the	values	it	needs.

This	is	where	objects	are	far	superior	to	other	collections.	Not	only	are	they
quick	and	clear,	but	with	object	destructuring,	pulling	data	from	objects	is	even
quicker	and	cleaner	than	ever.	Jump	ahead	to	Tip	29,	​	Access	Object	Properties
with	Destructuring	 ​	if	you	want	to	see	it	in	action.	Destructuring	is	part	of	the
reason	why	nothing	beats	an	object	for	a	quick	lookup.

But	again,	notice	that	the	function	is	creating	a	new	object.	It’s	setting	the
information	and	then	immediately	retrieving	it	in	a	different	function.	It’s	not
setting	the	information	repeatedly.	If	you	want	to	add	lots	of	information	to	an
object	programmatically,	other	collections	may	be	better	suited	for	the	task,	such
as	the	Map	object,	which	we’ll	explore	in	Tip	13,	​	Update	Key-Value	Data
Clearly	with	Maps	​.

For	now,	you	know	that	objects	still	play	a	huge	role	in	JavaScript.	You’ll	use
them	all	the	time	when	you’re	sharing	information.	In	the	next	two	tips,	you’ll
look	at	a	common	use	case:	combining	two	similar	objects	together.	And	then
you’ll	explore	some	other	collections	that	you	can	use	in	place	of	objects.

Objects	will	come	up	more	when	you	get	to	functions	and	classes,	but	for	now,
remember	to	keep	their	usage	at	a	basic	level	and	take	a	moment	to	consider
other	collections	before	creating	an	object.

In	the	next	tip,	you’ll	dive	into	working	with	objects,	beginning	with	making
changes	to	objects	without	mutations.

Tip	11
Create	Objects	Without	Mutations	Using
Object.assign()

In	this	tip,	you’ll	learn	how	to	update	an	object	without	mutations,	using
Object.assign().

In	the	previous	tip,	you	took	a	quick	look	at	objects	and	got	rules	for	when	they
offer	distinct	advantages	over	other	collections.	Still,	you	need	to	be	careful
when	using	them	because	they	can	leave	you	open	to	the	same	problems	with
mutations	and	side	effects	that	you	saw	in	arrays.	Casually	adding	and	setting
fields	on	objects	can	create	unseen	problems.

Consider	a	very	common	problem.	You	have	an	object	with	a	number	of	key-
values	pairs.	The	problem	is	that	the	object	is	incomplete.	This	happens	often
when	you	have	legacy	data	and	there	are	new	fields,	or	you	are	getting	data	from
an	external	API	and	you	need	it	to	match	your	data	model.	Either	way,	the	issue
is	the	same:	you	want	to	fill	in	the	remaining	fields	using	a	default	object.

How	can	you	create	a	new	object	that	preserves	the	original	data	while	adding	in
the	defaults?	And,	of	course,	you	don’t	want	side	effects	or	mutations.

Take	a	moment	to	write	out	the	code.	See	what	you	come	up	with.

If	you	wrote	the	code	out,	it	would	probably	look	something	like	this:

collections/assign/problem.js

​ ​const​ defaults = {
​ author: ​''​,
​ title: ​''​,
​ year: 2017,

​ rating: ​null​,
​ };

​
​ ​const​ book = {
​ author: ​'Joe Morgan'​,
​ title: ​'Simplifying JavaScript'​,
​ };

http://media.pragprog.com/titles/es6tips/code/collections/assign/problem.js

​
​ ​function​ addBookDefaults(book, defaults) {
​ ​const​ fields = Object.keys(defaults);
​ ​const​ updated = {};

​ ​for​ (​let​ i = 0; i < fields.length; i++) {
​ ​const​ field = fields[i];
​ updated[field] = book[field] || defaults[field];

​ }

​ ​return​ updated;
​ }

There’s	nothing	wrong	with	this	code,	but	it	sure	is	wordy.	Fortunately,	this	was
a	common	enough	issue	that	ES5	introduced	Object.assign()	to	create	and	update
fields	on	an	object	with	keys	and	values	from	another	object	(or	objects).

In	other	words,	Object.assign()	lets	you	update	an	object	with	properties	from
another	object.

So	how	does	Object.assign()	work?	It’s	fairly	simple.	The	method	takes	a	series	of
objects	and	updates	the	inner-most	object	with	the	keys	and	values	from	outer
objects,	then	returns	the	updated	first	object.	The	outermost	object	has
precedence	over	any	inner	objects.

It’s	easier	to	see	than	explain,	but	when	you	see	how	simple	it	is,	you’ll	love	it.
Here’s	how	you	can	rewrite	addBookDefaults()	using	Object.assign():

collections/assign/mutate.js

​ Object.assign(defaults, book);

​
​ ​// {​
​ ​// author: 'Joe Morgan',​
​ ​// title: 'Simplifying JavaScript',​
​ ​// year: 2017,​
​ ​// rating: null,​
​ ​// }​

Your	nine-line	function	dropped	to	a	single	line.	But	by	now,	you	may	have
guessed	there’s	a	problem	in	this	code.	When	it	updates	the	initial	object—	the
default	object—it	also	mutates	the	original.	If	you	run	the	code	again	with	a

http://media.pragprog.com/titles/es6tips/code/collections/assign/mutate.js

different	book	object,	you’ll	get	an	unexpected	result.

collections/assign/mutate.js

​ ​const​ anotherBook = {
​ title: ​'Another book'​,
​ year: 2016,

​ };

​
​ Object.assign(defaults, anotherBook);

​
​ ​// {​
​ ​// author: 'Joe Morgan',​
​ ​// title: 'Simplifying JavaScript',​
​ ​// year: 2017,​
​ ​// rating: null,​
​ ​// }​

You	accidentally	changed	the	default	object	to	make	me,	‘Joe’,	the	default
author,	so	I’m	going	to	start	getting	credit	for	a	whole	bunch	of	books	I’ve	never
written.

Fortunately,	the	solution	is	simple.	Just	make	the	first	object	an	empty	object.
After	you	do	that,	the	returned	object	will	be	the	updated	empty	object.	The
other	objects	will	have	no	mutations.

collections/assign/assign.js

​ ​const​ defaults = { author: ​''​,
​ title: ​''​,
​ year: 2017,

​ rating: ​null​,
​ };

​
​ ​const​ book = {
​ author: ​'Joe Morgan'​,
​ title: ​'Simplifying JavaScript'​,
​ };

​
​ ​const​ updated = Object.assign({}, defaults, book);

Now,	there’s	one	problem	with	copying	objects	using	Object.assign().	When	it

http://media.pragprog.com/titles/es6tips/code/collections/assign/mutate.js
http://media.pragprog.com/titles/es6tips/code/collections/assign/assign.js

copies	over	properties,	it	just	copies	the	values.	That	may	seem	like	it’s	not	a
problem,	but	it	is.

Up	to	this	point,	you’ve	been	working	with	flat	objects.	Every	key	had	a	simple
value:	a	string	or	an	integer.	And	when	all	you	have	is	a	series	of	strings	or
integers,	it	copies	them	just	fine,	as	you	saw	earlier.	But	when	the	value	is
another	object,	you	start	to	have	problems.

collections/assign/assign.js

​ ​const​ defaultEmployee = {
​ name: {

​ first: ​''​,
​ last: ​''​,
​ },

​ years: 0,

​ };

​
​ ​const​ employee = Object.assign({}, defaultEmployee);

Copying	objects	that	have	nested	objects	is	called	“deep	copying”	(or	“deep
merging”	or	some	variation).	The	property	years	will	copy	over	just	fine,	but	the
property	name	isn’t	copied.	All	that’s	copied	is	a	reference	to	the	independent
object	that’s	assigned	to	the	key	name.	The	nested	object	essentially	exists
independently	of	the	object	that	holds	it.	All	the	containing	object	has	is	a
reference	to	that	object.	When	you	copy	the	reference,	you	aren’t	making	a	deep
copy	of	the	nested	object.	You’re	merely	copying	the	location	of	the	reference.

So	if	you	change	a	value	of	a	nested	object	on	either	the	original	or	the	copy,	it
will	change	the	value	on	both.

collections/assign/assign.js

​ employee.name.first = ​'Joe'​;
​
​ defaultEmployee;

​
​ ​// {​
​ ​// name: {​
​ ​// first:'Joe',​

http://media.pragprog.com/titles/es6tips/code/collections/assign/assign.js
http://media.pragprog.com/titles/es6tips/code/collections/assign/assign.js

​ ​// last: '',​
​ ​// },​
​ ​// years: 0​
​ ​// }​

There	are	two	ways	around	this	problem:	The	first	and	simplest	is	to	keep	your
objects	flat—don’t	have	nested	objects	if	you	can	avoid	it.

Unfortunately,	that	doesn’t	work	in	a	situation	where	you	start	off	with	a	nested
object.	Maybe	the	software	was	designed	with	nested	objects.	Maybe	you’re
getting	a	result	from	an	API	that’s	nested.	It	doesn’t	matter.	Nested	objects	are
very	common.

In	that	case,	you	can	copy	the	nested	objects	with	Object.assign();	you	just	need	a
little	more	code.	Whenever	there	is	a	nested	object,	copy	that	with	Object.assign()

and	everything	will	be	updated.

collections/assign/assign.js

​ ​const​ employee2 = Object.assign(
​ {},

​ defaultEmployee,

​ {

​ name: Object.assign({}, defaultEmployee.name),

​ },

​);

​
​ ​export​ { defaults };

Of	course,	there	are	other	options:	A	library	like	Lodash	has	a	method	called
cloneDeep()	that	can	do	this	for	you.	And	by	all	means,	take	advantage	of
community	libraries,	but	sometimes	you	may	want	to	make	a	change	without
external	code.

If	you’re	thinking	that	code	is	getting	ugly	fast,	you’re	not	wrong.	It	feels	like	it
could	be	simpler.	Sure,	you	can	abstract	it	out	into	a	helper	function,	but
fortunately,	you	may	not	even	need	to	do	that.	There’s	experimental	syntax

that,	though	not	adopted,	is	widely	used	throughout	the	JavaScript	community

http://media.pragprog.com/titles/es6tips/code/collections/assign/assign.js

and	will	likely	be	part	of	the	official	spec	soon.	The	best	part	is,	it	looks	exactly
like	something	you’ve	already	seen.	It’s	called	the	Object	Spread	operator,	and	it
will	give	you	the	ability	to	make	new	objects	with	the	now	familiar	spread
operator.

In	the	next	tip,	you’ll	learn	how	use	the	new	syntax	to	update	object	information
quickly	and	clearly.

Tip	12 Update	Information	with	Object	Spread

In	this	tip,	you’ll	learn	how	the	object	spread	operator	gives	you	all	the
advantages	of	Object.assign()	with	reduced	syntax.

You	saw	in	the	previous	tip	how	you	can	use	Object.assign()	to	make	copies	of
objects	and	how	you	can	overwrite	object	values	with	new	values	from	another
object.	It’s	a	great	tool	that	has	a	lot	of	value.	But,	wow—it’s	ugly.

The	spread	operator	was	such	a	popular	addition	in	ES6	that	similar	syntax	is
being	introduced	for	objects.	The	object	spread	operator	is	not	officially	part	of
the	spec,	but	it’s	so	widely	used	that	it	will	likely	be	adopted	in	the	future.	You
can	check	out	the	proposal	on	github.[12]

Using	Proposed	Syntax
JavaScript	developers	love	new	syntax.	In	fact,	they	love	it	so	much	they	often
start	using	it	before	it’s	officially	adopted.	This	is	the	case	with	the	object	spread
operator	and	other	things	such	as	private	methods	in	classes.	You	see	them	in
many	code	bases	even	though	the	spec	is	not	official.

Deciding	when	to	use	proposed	syntax	is	a	matter	of	preference.	I	tend	to	be
pretty	conservative	and	only	adopt	proposed	syntax	when	it’s	very	clear	that	the
community	supports	the	change	and	the	proposal	is	unlikely	to	change.

Once	you	decide	to	use	proposed	syntax,	you	will	need	to	make	a	few	changes	to
your	development	environment.	If	you	use	Babel	for	compiling	your	code	in	order
to	be	compatible	across	browsers,	all	you	have	to	do	is	add	a	plugin	and
everything	works	fine.	If	you	are	on	Node.js,	it	can	be	a	little	more	difficult.	Many
features	are	supported	using	the	--harmony	flag	when	starting	Node.js.

Feel	free	to	experiment,	but	be	aware	you	may	need	to	refactor	code	if	the
official	proposal	changes.

How	does	the	object	spread	operator	work?	Well,	it’s	simple.	It	works	like	the
array	spread	operator—the	key-values	are	returned	as	if	in	a	list.	You	can	easily
add	information	by	placing	it	either	before	or	after	the	spread.	And	like	the	array
spread,	you	must	spread	it	out	into	something.

collections/objectSpread/objectSpread.js

​ ​const​ book = {
​ title: ​'Reasons and Persons'​,
​ author: ​'Derek Parfit'​,
​ };

​
​ ​const​ update = { ...book, year: 1984 };
​
​ ​// { title: 'Reasons and Persons', author: 'Derek Parfit', year: 1984}​

But	it’s	different	from	the	array	spread	in	that	if	you	add	a	value	with	the	same
key,	it	will	use	whatever	value	is	declared	last.

In	this	way,	it’s	like	Object.assign()	with	much	less	typing.

collections/objectSpread/objectSpread.js

​ ​const​ book = {
​ title: ​'Reasons and Persons'​,
​ author: ​'Derek Parfit'​,
​ };

​
​ ​const​ update = { ...book, title: ​'Reasons & Persons'​ };
​
​ ​// { title: 'Reasons & Persons', author: 'Derek Parfit' }​

That’s	it!	It	takes	the	best	existing	features	and	combines	them.	You	will	not	be
surprised	to	learn	that	the	JavaScript	community	embraces	it	enthusiastically.

Now	that	you	have	some	great	new	syntax,	try	rewriting	the	functions	from	the
previous	tip.	I’ll	give	you	the	original	and	then	the	updated	version.	But	try	it
yourself.	It’s	very	simple.

Here’s	the	way	to	add	or	update	information	with	Object.assign():

collections/assign/assign.js

​ ​const​ defaults = { author: ​''​,
​ title: ​''​,
​ year: 2017,

​ rating: ​null​,

http://media.pragprog.com/titles/es6tips/code/collections/objectSpread/objectSpread.js
http://media.pragprog.com/titles/es6tips/code/collections/objectSpread/objectSpread.js
http://media.pragprog.com/titles/es6tips/code/collections/assign/assign.js

​ };

​
​ ​const​ book = {
​ author: ​'Joe Morgan'​,
​ title: ​'Simplifying JavaScript'​,
​ };

​
​ ​const​ updated = Object.assign({}, defaults, book);

And	here	it	is	with	the	object	spread	operator:

collections/objectSpread/objectSpread.js

​ ​const​ defaults = {
​ author: ​''​,
​ title: ​''​,
​ year: 2017,

​ rating: ​null​,
​ };

​
​ ​const​ book = {
​ author: ​'Joe Morgan'​,
​ title: ​'ES6 Tips'​,
​ };

​
​
​ ​const​ bookWithDefaults = { ...defaults, ...book };
​
​ ​// {​
​ ​// author: 'Joe Morgan',​
​ ​// title: 'ES6 Tips',​
​ ​// year: 2017,​
​ ​// rating: null,​
​ ​// }​

You’ll	have	the	same	deep	merge	problems	that	you	have	with	Object.assign():	you
don’t	copy	nested	objects—you	only	copy	a	reference	creating	a	potential
problem	with	mutations.

Fortunately,	the	fix	is	less	painful	on	the	eyes.	Here’s	the	original.

collections/assign/assign.js

http://media.pragprog.com/titles/es6tips/code/collections/objectSpread/objectSpread.js
http://media.pragprog.com/titles/es6tips/code/collections/assign/assign.js

​ ​const​ employee2 = Object.assign(
​ {},

​ defaultEmployee,

​ {

​ name: Object.assign({}, defaultEmployee.name),

​ },

​);

​
​ ​export​ { defaults };

Now,	before	you	the	look	at	the	answer,	really	try	this	out.	It’s	straightforward,
but	still	a	little	more	complex.	Got	it?	Okay.	Here’s	the	same	update	with	the
object	spread	operator.

collections/objectSpread/objectSpread.js

​ ​const​ employee = {
​ ...defaultEmployee,

​ name: {

​ ...defaultEmployee.name,

​ },

​ };

The	advantages	are	clear.	The	code	is	more	readable.	You’re	signaling	your
intention	to	create	an	object	in	a	clear	way.	You	don’t	have	to	worry	about
mutations	because	you	don’t	need	to	remember	to	start	with	an	empty	object.

The	object	spread	is	fantastic—it’s	great	for	your	code	and	gives	you	an
opportunity	to	integrate	experimental	features	in	your	code	base.

That’s	all	there	is	for	existing	collections.	In	the	next	tip,	you	will	finally	get	to
try	out	some	completely	new	collections	that	should	improve	your	code
communication.	First	up,	the	Map	object.

http://media.pragprog.com/titles/es6tips/code/collections/objectSpread/objectSpread.js

Tip	13 Update	Key-Value	Data	Clearly	with	Maps

In	this	tip,	you’ll	learn	how	to	use	the	Map	object	for	key-value	collections	of
frequently	updated	data.

In	Tip	10,	​	Use	Objects	for	Static	Key-Value	Lookups	 ​,	you	learned	that	you
should	only	use	objects	deliberately	and	not	as	a	default	collection.	Now	you’re
going	to	get	a	chance	to	look	at	an	alternative:	Map.

Map	is	a	special	kind	of	collection	that	can	do	certain	things	very	easily.	The
Mozilla	Developer	Network	has	a	nice	list	of	circumstances	where	Map	is	a
better	option	for	a	collection	than	a	plain	object.[13]	I	encourage	you	to	read	the
full	list,	but	this	tip	examines	two	specific	situations:

Key-value	pairs	are	frequently	added	or	removed.
A	key	isn’t	a	string.

In	the	next	tip,	you’ll	see	another	big	advantage:	using	Map	for	iterating	over
collections.	For	now,	you	just	need	to	be	familiar	with	adding	or	removing
values	to	maps.

First,	think	about	what	it	means	that	key-value	pairs	are	frequently	added	and
removed.	Consider	a	pet	adoption	website.	The	site	has	a	list	of	all	the	adorable
dogs	that	need	homes.	Because	people	have	different	expectations	of	their	pets
(some	want	big	dogs,	some	like	certain	breeds),	you’ll	need	to	include	a	way	to
filter	the	animals.

You’ll	start	off	with	a	collection	of	animals:

​ ​const​ dogs = [
​ {

​ name: ​'max'​,
​ size: ​'small'​,
​ breed: ​'boston terrier'​,
​ color: ​'black'​
​ },

​ {

​ name: ​'don'​,
​ size: ​'large'​,
​ breed: ​'labrador'​,

​ color: ​'black'​
​ },

​ {

​ name: ​'shadow'​,
​ size: ​'medium'​,
​ breed: ​'labrador'​,
​ color: ​'chocolate'​
​ }

​]

The	collection	of	all	dogs	is	an	array,	which	makes	sense	because	the	shape	of
each	item	in	the	collection	is	the	same.

You’ll	need	to	create	one	more	collection:	your	list	of	applied	filters.	The	filters
will	be	a	collection	containing	a	key	(color)	and	a	value	(black).	The	user	will
need	to	be	able	to	add	a	filter,	remove	a	filter,	and	clear	all	filter	values.

If	you	added	the	key	“color”	and	the	value	“black”	to	the	collection,	then
somewhere	else	in	the	code	base,	you’ll	filter	the	objects	using	that	information
and	be	left	with	an	array	of	two	dogs.	Don’t	worry	about	the	implementation
details.	But	if	you’re	curious,	take	a	look	at	Tip	23,	​	Pull	Out	Subsets	of	Data
with	filter()	and	find()	​	to	see	how	to	filter	an	array.

To	understand	why	Map	was	added	to	the	spec,	think	of	how	you	might	solve	the
problem	with	standard	objects.

First,	you’d	make	an	empty	object	that	will	hold	the	new	information:

​ ​let​ filters = {};

Then	you’d	need	three	actions	to	update	the	information	on	the	object:	add	filter,
remove	a	filter,	clear	all	filters.

collections/map/problem.js

​ ​function​ addFilters(filters, key, value) {
​ filters[key] = value;

http://media.pragprog.com/titles/es6tips/code/collections/map/problem.js

​ }

​
​ ​function​ deleteFilters(filters, key) {
​ ​delete​ filters[key];
​ }

​
​ ​function​ clearFilters(filters) {
​ filters = {};

​ ​return​ filters;
​ }

The	strange	thing	here	is	even	though	you’re	performing	three	basic	actions	on	a
collection—setting	a	key-value,	deleting	a	key-value,	clearing	all	key-values—
you’re	using	three	different	paradigms.	The	first,	setting	a	key-value,	uses	a
method	on	the	object	itself.	The	second,	deleting	a	key-value	pair,	uses	an
operator	defined	by	the	language.	The	third,	clearing	all	data,	reassigns	a
variable.	It’s	not	even	an	action	on	the	object.	It’s	variable	reassignment.	When
you	“clear”	an	object,	you’re	really	just	writing	filters = new Object();.

By	contrast,	maps	are	designed	specifically	to	update	key-value	pairs	frequently.
The	interface	is	clear,	methods	have	predictable	names,	and	actions	such	as	loops
(as	you’ll	see	in	the	next	tip)	are	built	in.	This	will	make	you	a	more	productive
developer.	The	more	you	can	predict,	the	faster	you	can	create.

Browser	Engines
JavaScript	code	has	to	be	interpreted	by	an	engine	but,	complicating	the	process,
there	are	many	different	engines.	The	most	popular	is	the	V8	engine,	which
powers	Chrome	and	Node.	But	there’s	also	SpiderMonkey	(Firefox)	and	Chakra
(Internet	Explorer/Edge).	Features	can	be	implemented	in	different	ways.	And
some	syntax	changes	have	advantages	beyond	code	clarity.

Because	maps	are	a	more	specialized	collection,	the	developers	of	JavaScript
engines	can	optimize	the	code	to	make	actions	faster.	Key	lookups	for	objects
will	be	linear,	but	when	maps	are	implemented	natively,	their	lookup	time	can	be
logarithmic.[14]

In	other	words,	big	objects	are	more	expensive	than	big	maps.

You	can	see	some	projects,	such	as	React,	switching	to	natively	implemented
maps	purely	for	performance	reasons.[15]	You’ll	likely	never	need	to	make	a
choice	between	objects	or	maps	for	performance	reasons,	but	it’s	good	to	know

that	the	underlying	engines	do	treat	them	differently.

To	begin,	you	need	to	create	a	new	instance	of	Map	and	add	some	data.

Unlike	an	object,	which	has	a	simple	constructor	shortcut	using	curly	braces,	you
must	always	explicitly	create	a	new	instance	of	a	Map.

​ ​let​ filters = ​new​ Map();

Notice	that	you	assigned	the	new	map	with	let.	let	is	a	better	choice	because
you’ll	be	mutating	the	object	by	adding	some	data.	You	may	be	a	little	confused.
After	spending	a	lot	of	time	learning	how	mutations	are	bad,	here’s	an	object
that,	by	necessity,	must	be	mutated	whenever	you	add	or	remove	data.	For	now,
don’t	worry	about	the	mutations.	There	is	a	way	around	mutating	the	object,	and
you’ll	see	it	in	the	next	tip.

After	creating	an	instance,	you	add	data	with	the	set()	method.	To	add	a	breed	of
’labrador’	to	the	filter	list,	you’d	pass	in	the	key	name	’breed’	as	the	first	argument
and	the	value	’labrador’	as	the	second	argument.

​ filters.​set​(​'breed'​, ​'labrador'​);

To	retrieve	date,	use	the	get()	method,	passing	in	the	key	as	the	only	argument.

​ filters.​get​(​'breed'​);
​ ​// labrador​

Getting	and	setting	data	is	simple,	but	it	can	be	tedious	for	a	large	map.
Fortunately,	the	creators	of	the	spec	anticipated	this	and	created	a	few	shortcuts
when	setting	data.

You	can	easily	add	several	values	with	chaining—applying	methods	one	after
the	other.	You	can	even	chain	directly	from	the	creation	of	the	new	instance.
You’ll	see	more	about	chaining	methods	in	Tip	25,	​	Combine	Methods	with
Chaining	​.

​ ​let​ filters = ​new​ Map()
​ .​set​(​'breed'​, ​'labrador'​)
​ .​set​(​'size'​, ​'large'​)
​ .​set​(​'color'​, ​'chocolate'​);
​
​ filters.​get​(​'size'​);
​ ​// 'large'​

That’s	not	the	only	way	you	can	add	data.	You	can	also	add	information	using	an
array.

Remember	in	Tip	5,	​	Create	Flexible	Collections	with	Arrays	​,	you	learned	that
key-value	objects	can	be	represented	as	an	array	of	pairs.	Here’s	a	perfect	use
case.	Instead	of	creating	a	new	Map	and	then	chaining	setters,	you	can	pass	an
array	of	pairs	with	the	first	element	being	a	key	and	the	second	element	being	a
value.

​ ​let​ filters = ​new​ Map(
​ [

​ [​'breed'​, ​'labrador'​],
​ [​'size'​, ​'large'​],
​ [​'color'​, ​'chocolate'​],
​]

​)

​
​ filters.​get​(​'color'​);
​ ​// 'chocolate'​

If	you	want	to	remove	values,	you	just	need	to	use	the	delete()	method	rather	than
the	language	operator.

​ filters.​delete​(​'color'​);
​
​ filters.​get​(​'color'​);
​ ​// undefined​

Similarly,	you	can	delete	all	the	key-value	pairs	with	the	clear()	method.

​ filters.clear()

​
​ filters.​get​(​'color'​);
​ ​// undefined​

With	these	methods	outlined,	you	have	the	foundation	to	change	your	functions
to	use	a	map	instead	of	an	object.

collections/map/map.js

​ ​const​ petFilters = ​new​ Map();
​ ​function​ addFilters(filters, key, value) {
​ filters.​set​(key, value);
​ }

​
​ ​function​ deleteFilters(filters, key) {
​ filters.​delete​(key);
​ }

​
​ ​function​ clearFilters(filters) {
​ filters.clear();

​ }

The	change	is	subtle	but	very	important.	First,	the	code	is	much	cleaner.	That’s	a
big	advantage	in	itself.	But	you’ll	see	far	bigger	advantages	when	you	compare
these	functions	to	the	ones	you	created	with	an	object.	With	these	functions:

You	always	use	a	method	on	a	Map	instance.
You	don’t	mix	in	language	operators	after	you	create	the	initial	instance.
You	don’t	ever	have	to	create	a	new	instance	to	perform	a	simple	action.

These	are	the	reasons	why	maps	are	so	much	easier	to	work	with	than	objects
when	you’re	frequently	changing	the	information.	Every	action	and	intention	is
very	clear.

In	addition,	with	objects	you’re	limited	in	the	types	of	keys	you	can	use.	Objects
can	use	only	certain	types	of	keys.	Most	significantly,	you	can’t	use	integers	as	a
string,	which	causes	problems	if	you	want	to	store	information	by	a	numerical
ID.	For	example,	if	you	have	an	object	of	error	codes:

​ ​const​ errors = {
​ 100: ​'Invalid name'​,
​ 110: ​'Name should only contain letters'​,
​ 200: ​'Invalid color'​
​ };

http://media.pragprog.com/titles/es6tips/code/collections/map/map.js

you	may	innocently	think	you	could	retrieve	error	text	by	the	numerical	code.

​ ​function​ isDataValid(data) {
​ ​if​(data.length < 10) {
​ ​return​ errors.100
​ }

​ ​return​ ​true​;
​ }

This	code	would	throw	an	Error.	Integers	as	keys	can’t	be	accessed	with	dot
syntax.	You’re	still	able	to	access	the	information	using	array	notation	errors[100].
But	that’s	actually	a	bit	of	a	trick.	You	get	the	right	result	because	when	you
created	the	error	array,	it	converted	all	the	integers	to	strings.	And	when	you	use
array	syntax,	it’s	also	converting	the	integer	to	a	string	before	lookup.	If	you
tried	to	get	the	keys,	it	would	return	an	array	of	strings:

​ Object.keys(errors);

​ ​// ['100', '110', '200']​

A	Map	wouldn’t	have	that	problem.	It	can	take	many	different	types	as	keys.

​ ​let​ errors = ​new​ Map([
​ [100, ​'Invalid name'​],
​ [110, ​'Name should only contain letters'​],
​ [200, ​'Invalid color'​]
​]);

​
​ errors.​get​(100);
​ ​// 'Invalid name'​
​ }

In	case	you’re	wondering,	you	can	also	get	the	keys	from	a	Map	as	you	could
with	an	object.

​ errors.keys();

​
​ ​// MapIterator { 100, 110, 200 }​
​ }

Notice	something	strange?	When	you	asked	for	the	keys,	you	didn’t	get	an	array,
as	you	do	with	Object.keys().	You	didn’t	get	an	object,	or	even	another	Map;	the

return	value	is	something	called	MapIterator.	Don’t	worry—it’s	actually	a	great
thing	to	have.	The	MapIterator	is	what	will	allow	us	to	loop	through	data.

In	the	next	tip,	you’ll	see	how	the	MapIterator	is	the	killer	feature	that	will	make
you	return	to	Map	over	and	over	again.

Tip	14
Iterate	Over	Key-Value	Data	with	Map	and	the
Spread	Operator

In	this	tip,	you’ll	learn	how	to	iterate	directly	over	key-value	data	in	maps	with
either	loops	or	the	spread	operator.

In	the	previous	tip,	you	saw	how	maps	are	an	improved	key-value	collection
when	you’re	regularly	adding	or	deleting	items.	As	you	saw,	objects	are	very
useful,	but	there	are	times	when	a	map	has	distinct	advantages.	You	can	see
those	advantages	on	the	Mozilla	Developer	Network.[16]

You’ve	already	explored	several	advantages	pertaining	to	when	keys	are	set.
Now	you’re	going	to	explore	another	suggested	usage	for	maps:	collections	that
are	iterated.

Objects	are	very	frustrating	to	iterate	over.	In	fact,	there	used	to	be	no	way	to
directly	iterate	over	them.	You	were	always	forced	to	transform	them	before	you
could	loop	over	the	data.	Things	are	a	little	better.	You	can	now	use	a	for...in	loop
to	iterate	over	objects,	but	you’ll	have	access	only	to	the	object	key.	In	a	way,	it’s
not	much	different	from	looping	over	an	array	of	keys.	Check	out	Tip	27,	​
Reduce	Loop	Clutter	with	for...in	and	for...each	​	for	more	about	the	for...in	loop.

As	you	can	see.	Looping	over	objects	is	complicated.	Conversely,	you	can	iterate
over	maps	directly.

Start	by	returning	to	your	filters.	Suppose	you	have	an	object	of	filters	and	you
want	to	list	the	applied	filters.	After	all,	you	want	your	users	to	remember
they’re	seeing	a	subset	of	information.	How	would	you	write	code	that	translates
the	objects	to	a	string?

How	would	you,	for	example,	transform	all	the	key-values	to	be	a	string	of	the
form	“key:value”?

The	odd	thing	is	you	won’t	iterate	over	the	filters	object.	Instead,	you’ll	pull	out
other	information	and	then	iterate	over	that.

collections/mapSpread/object.js

​ ​const​ filters = {
​ color: ​'black'​,
​ breed: ​'labrador'​,
​ };

​
​ ​function​ getAppliedFilters(filters) {
​ ​const​ keys = Object.keys(filters);
​ ​const​ applied = [];
​ ​for​ (​const​ key ​of​ keys) {
​ applied.push(​`​${key}​:​${filters[key]}​`​);
​ }

​ ​return​ ​`Your filters are: ​${applied.join(​', '​)}​.`​;
​ }

​
​ ​// 'Your filters are: color:black, breed:labrador.'​

Looking	at	the	code,	you	see	that	the	first	step	is	pulling	out	a	section	of	the
object	into	an	array	with	Object.keys()	and	then	you	iterate	over	the	keys	with	a	for

loop.	And	during	that	for	loop,	you	have	to	pull	the	value	out	by	referencing	the
object	again.

Plus,	there’s	no	guarantee	of	order	in	an	object.	That	means	an	object	can’t	be
sorted.	If	you	wanted	to	get	the	filters	in	sorted	order,	you’d	first	need	to	sort	the
keys.

collections/mapSpread/object.js

​ ​function​ getSortedAppliedFilters(filters) {
​ ​const​ keys = Object.keys(filters);
​ keys.sort();

​ ​const​ applied = [];
​ ​for​ (​const​ key ​of​ keys) {
​ applied.push(​`​${key}​:​${filters[key]}​`​);
​ }

​ ​return​ ​`Your filters are: ​${applied.join(​', '​)}​.`​;
​ }

​ ​// 'Your filters are: breed:labrador, color:black.'​

That’s	a	lot	to	keep	track	of	when	you	want	to	do	a	simple	iteration.	A	Map,	by
contrast,	has	everything	you	need	to	sort	and	iterate	built	in	as	part	of	the

http://media.pragprog.com/titles/es6tips/code/collections/mapSpread/object.js
http://media.pragprog.com/titles/es6tips/code/collections/mapSpread/object.js

MapIterator	you	saw	at	the	end	of	the	previous	tip.

To	begin	exploring	the	MapIterator,	look	at	a	simple	for	loop	on	your	filters	map.
The	for ... of	syntax	is	also	fairly	new,	but	it’s	very	simple.	It	returns	each	value	in
the	collection	one	at	a	time.	You’ll	explore	it	a	little	more	in	Tip	27,	​	Reduce
Loop	Clutter	with	for...in	and	for...each	 ​.

collections/mapSpread/iterate.js

​ ​const​ filters = ​new​ Map()
​ .​set​(​'color'​, ​'black'​)
​ .​set​(​'breed'​, ​'labrador'​);
​
​ ​function​ checkFilters(filters) {
​ ​for​ (​const​ entry ​of​ filters) {
​ console.log(entry);

​ }

​ }

​ ​// ['color', 'black']​
​ ​// ['breed', 'labrador']​

A	few	things	should	have	immediately	jumped	out	to	you.	The	item	you	get	from
the	iterator	is	neither	the	key	nor	the	value.	It’s	not	even	another	Map.	It’s	a	pair
of	the	key-value.

Even	though	you	created	this	map	using	the	set()	method,	it	still	translated	the
information	back	to	an	array.	You	also	used	a	specific	variable	name,	entries(),
because	Map	has	a	special	method	that	will	give	you	a	MapIterator	of	the	key-
values	of	a	map	as	a	group	of	pairs:

​ filters.entries();

​ ​// MapIterator { ['color', 'black'], ['breed', 'labrador'] }​

Keep	that	in	mind—you’ll	return	to	it	in	a	moment.	For	now,	just	understand	that
a	simple	loop	on	a	map	will	give	you	both	the	keys	and	the	values	in	a	pair.	In
fact,	the	ability	to	get	entries	is	so	convenient	that	it’s	being	added	to	a	method
on	objects	in	the	next	version	of	the	JavaScript	spec.[17]

Of	course,	that	means	you’ll	be	able	to	apply	all	the	ideas	you	learn	here	to

http://media.pragprog.com/titles/es6tips/code/collections/mapSpread/iterate.js

objects	directly	in	the	near	future.	That’s	another	good	reason	to	experiment	with
maps	even	if	you	don’t	adopt	them	often.

Return	to	your	original	method	for	turning	key-values	into	a	string	using	a	for

loop.	Because	you	can	iterate	directly	over	the	map,	you	don’t	need	to	pull	out
the	keys	first.	Plus,	when	you	loop	over	the	entries	in	a	map,	you	get	a	pair	of	the
key-values,	which	you	can	immediately	assign	to	variables	using	destructuring.
You’ll	explore	this	more	in	Tip	29,	​	Access	Object	Properties	with	Destructuring
.

The	result	is	more	simple,	and	it	helps	you	avoid	breaking	apart	your	data
structure.

collections/mapSpread/iterate.js

​ ​function​ getAppliedFilters(filters) {
​ ​const​ applied = [];
​ ​for​ (​const​ [key, value] ​of​ filters) {
​ applied.push(​`​${key}​:​${value}​`​);
​ }

​ ​return​ ​`Your filters are: ​${applied.join(​', '​)}​.`​;
​ }

​
​ ​// 'Your filters are: color:black, breed:labrador.'​

Of	course,	you	quickly	realize	that	you	have	the	same	sorting	problem	as	you	did
earlier.	Well,	there	is	good	news	and	bad	news	for	you:	The	good	news	is	that
Map	does	preserve	order.	The	first	item	you	have	will	always	be	the	first	item	in
the	map.	The	bad	news	is	that	there	isn’t	a	built-in	sort	method	as	there	is	for	an
array.

In	other	words,	you	can’t	do	this:

​ filters.sort()

All	of	a	sudden,	your	map	is	looking	less	helpful.	Fortunately,	there’s	a	very
simple	solution:	the	spread	operator.

The	spread	operator	works	on	a	map	the	same	way	it	does	on	an	array.	The	main

http://media.pragprog.com/titles/es6tips/code/collections/mapSpread/iterate.js

difference	is	that	it	returns	a	list	of	pairs	instead	of	single	values.

​ ...filters;

​ ​// ['color', 'black'], ['breed', 'labrador']​

And	like	the	spread	operator	on	arrays,	you	have	to	spread	it	into	something,
which	means	you	can	easily	make	an	array	of	pairs:

​ [...filters];

​ ​// [['color', 'black'], ['breed', 'labrador']]​

I	hope	this	has	given	you	an	idea	about	how	to	solve	your	sort	problem.	Try	it
out	and	see	what	you	come	up	with.	The	only	catch	is	that,	because	you’re
sorting	an	array	of	arrays,	you	should	supply	an	explicit	compare	function.	This
isn’t	strictly	necessary	because	the	default	compare	function	will	convert	the
array	of	pairs	to	a	string,	but	it’s	better	to	be	clear	in	your	intentions.	Once	you
learn	how	to	make	arrow	functions	in	Tip	20,	​	Simplify	Looping	with	Arrow
Functions	​,	the	compare	function	will	be	a	one	liner.

I	bet	you	came	up	with	something	simple	like	this.

collections/mapSpread/iterate.js

​ ​function​ sortByKey(a, b) {
​ ​return​ a[0] > b[0] ? 1 : -1;
​ }

​
​ ​function​ getSortedAppliedFilters(filters) {
​ ​const​ applied = [];
​ ​for​ (​const​ [key, value] ​of​ [...filters].sort(sortByKey)) {
​ applied.push(​`​${key}​:​${value}​`​);
​ }

​ ​return​ ​`Your filters are: ​${applied.join(​', '​)}​.`​;
​ }

​ ​// 'Your filters are: breed:labrador, color:black.'​

Now	look	closely—it	can	be	easy	to	miss.	In	the	for	loop	initiator	when	you’re
assigning	variables,	you	quickly	spread	the	map	out	into	an	array	and	then	sorted
that	array.	Now	you’re	getting	the	results	you	wanted.

http://media.pragprog.com/titles/es6tips/code/collections/mapSpread/iterate.js

There’s	a	slight	problem.	If	you	read	the	code	carefully,	you	may	have	noticed
that	something	changed.	You	started	off	with	a	map,	but	your	for	loop	didn’t
actually	iterate	over	the	map.	It	iterated	over	a	new	array.

Honestly,	this	isn’t	much	of	a	problem.	There’s	nothing	wrong	with	converting
to	an	array.	In	fact,	it	gives	you	an	opportunity	to	simplify	your	function
even	more.

Now	that	you	can	move	easily	to	an	array,	you	might	as	well	use	all	of	the	array
methods	at	your	disposal.	Because	you’re	changing	every	value	of	the	array	in
the	same	way,	you	don’t	need	to	create	a	new	array	to	collect	the	results	as	you
did	with	let applied = [].	You	can	simply	use	the	map()	method.	If	that’s	new	to	you,
jump	ahead	to	Tip	22,	​	Create	Arrays	of	a	Similar	Size	with	map()	 ​.	Try	rewriting
your	initial	function	to	use	the	map()	method.

collections/mapSpread/mapSpread.js

​ ​function​ getAppliedFilters(filters) {
​ ​const​ applied = [...filters].map(([key, value]) => {
​ ​return​ ​`​${key}​:​${value}​`​;
​ });

​ ​return​ ​`Your filters are: ​${applied.join(​', '​)}​.`​;
​ }

​
​ ​// 'Your filters are: color:black, breed:labrador.'​

And	because	everything	is	now	an	array,	you	can	combine	your	sort()	function
and	your	join()	function	using	chaining	to	get	everything	nice	and	simple.

collections/mapSpread/mapSpread.js

​ ​function​ getSortedAppliedFilters(filters) {
​ ​const​ applied = [...filters]
​ .sort(sortByKey)

​ .map(([key, value]) => {

​ ​return​ ​`​${key}​:​${value}​`​;
​ })

​ .join(​', '​);
​
​ ​return​ ​`Your filters are: ​${applied}​.`​;

http://media.pragprog.com/titles/es6tips/code/collections/mapSpread/mapSpread.js
http://media.pragprog.com/titles/es6tips/code/collections/mapSpread/mapSpread.js

​ }

​ ​// 'Your filters are: breed:labrador, color:black.'​

If	you’re	getting	lost,	here’s	a	summary	of	the	steps:

1.	 Convert	your	map	to	an	array.
2.	 Sort	the	array.
3.	 Convert	each	pair	to	a	string	of	the	form	key:value.
4.	 Join	the	array	items	creating	a	string.
5.	 Combine	the	string	with	other	information	using	a	template	literal.

It’s	worth	repeating	that	a	strong	knowledge	of	arrays	can	help	you	create	very
simple	and	efficient	code.	Now	that	you	know	that	you	can	move	between	a	map
and	array	with	three	simple	dots,	you’ve	opened	yourself	up	to	many	more
opportunities	for	creatively	using	maps.

In	the	next	tip,	you’ll	see	how	you	can	use	the	spread	operator	to	avoid	side
effects	and	mutations.

Tip	15 Create	Maps	Without	Side	Effects

In	this	tip,	you’ll	learn	how	to	avoid	side	effects	by	creating	new	maps	from	an
array	of	pairs.

Up	to	this	point,	you’ve	always	worked	on	a	single	instance	of	a	map.	You’ve
either	added	data	or	removed	data	directly	from	an	instance	of	a	Map	object.

Working	on	the	instance	of	a	map	can	lead	to	a	few	problems.	How	do	you
create	copies	of	a	map?	How	can	you	make	changes	without	side	effects?

Fortunately,	you	can	solve	those	problems	by	applying	a	few	principles	you’ve
learned	from	arrays	and	objects.

To	start,	look	at	an	example	that	combines	the	problems	of	copying	and
mutations:	applying	a	set	of	defaults	to	a	map.

In	your	pet	adoption	code,	you	have	filters	that	users	have	selected,	but	perhaps
you	want	to	add	a	set	of	default	filters.	Any	additional	filters	will	be	overridden
by	the	user,	but	any	not	explicitly	set	by	the	user	will	be	the	default.

collections/mapSideEffects/sideEffects.js

​ ​const​ defaults = ​new​ Map()
​ .​set​(​'color'​, ​'brown'​)
​ .​set​(​'breed'​, ​'beagle'​)
​ .​set​(​'state'​, ​'kansas'​);
​
​
​ ​const​ filters = ​new​ Map()
​ .​set​(​'color'​, ​'black'​);

Now	you’re	in	a	bind.	How	can	you	make	a	new	collection	of	filters,	including
the	defaults	and	the	user-applied	filters?

If	you	didn’t	care	about	side	effects	(and	I	really	hope	you	do	by	now),	you
might	be	tempted	to	check	to	see	if	the	map	has	a	key	using	the	has()	method.	If
no	key	exists,	set	the	key	value.	If	the	key	already	exists,	you	can	ignore	it.

http://media.pragprog.com/titles/es6tips/code/collections/mapSideEffects/sideEffects.js

collections/mapSideEffects/sideEffects.js

​ ​function​ applyDefaults(map, defaults) {
​ ​for​ (​const​ [key, value] ​of​ defaults) {
​ ​if​ (!map.has(key)) {
​ map.​set​(key, value);
​ }

​ }

​ }

​
​ ​export​ { applyDefaults };

If	your	goal	is	solely	to	combine	defaults	and	user	data,	you’ve	succeeded.	But
by	now,	your	skepticism	about	mutations	should	get	to	you.	Consider	how	you
want	to	use	the	filters	object.	You	use	it	to	filter	data,	but	you	also	use	it	to	alert
the	user	to	the	filters	they’ve	applied	(as	you	did	by	creating	a	string	in	the
previous	tip).

Now	that	you’ve	mutated	the	object,	it	will	appear	to	the	user	that	they	applied	a
bunch	of	defaults	they	never	selected.	Notice	that	the	defaults	include	a	state.
You	want	your	users	to	see	only	the	animals	in	their	state,	but	you	don’t	want
them	to	change	the	state	directly.	You’d	rather	they	visit	the	pet	adoption	page
for	that	state.

The	simplest	way	around	this	problem	is	to	create	a	copy	of	the	map.	As	you
may	recall,	you	can	create	a	new	map	by	passing	in	an	array	of	pairs.	And	you
can	create	a	list	of	pairs	with	the	spread	operator.

With	that	in	mind,	try	to	update	the	code	to	create	a	copy	before	it’s	mutated.

collections/mapSideEffects/copy.js

​ ​function​ applyDefaults(map, defaults) {
​ ​const​ copy = ​new​ Map([...map]);
​ ​for​ (​const​ [key, value] ​of​ defaults) {
​ ​if​ (!copy.has(key)) {
​ copy.​set​(key, value);
​ }

​ }

​ ​return​ copy;

http://media.pragprog.com/titles/es6tips/code/collections/mapSideEffects/sideEffects.js
http://media.pragprog.com/titles/es6tips/code/collections/mapSideEffects/copy.js

​ }

If	you	got	something	like	this,	great	work!	You	got	the	copy	of	the	filters,	and
you	applied	the	defaults	to	that	(note	that	it’s	okay	to	mutate	something	that’s
scoped	to	the	function),	and	then	you	returned	the	new	map.	Now	you	can	be
sure	that	your	current	filters	map	is	safe	from	side	effects	while	your	new	map
contains	all	the	defaults	and	all	the	applied	information.

Yet	it	gets	even	better.	You’re	still	manually	checking	a	bunch	of	keys	for
existence.	Fortunately,	that’s	not	even	necessary.	Maps,	like	objects,	can	only
have	a	key	once.	So	if	you	tried	to	create	a	map	with	a	new	key,	it	will	use
whatever	value	for	that	key	is	declared	last.	It’s	as	if	you	were	updating	the	value
instead	of	setting	it.

​ ​const​ filters = ​new​ Map()
​ .​set​(​'color'​, ​'black'​)
​ .​set​(​'color'​, ​'brown'​);
​
​ filters.​get​(​'color'​);
​ ​// brown​

With	this	knowledge,	you	can	combine	what	you	know	about	the	object	spread
operator	to	create	a	combination	of	two	maps	in	one	line.

​ ​let​ filters = ​new​ Map()
​ .​set​(​'color'​, ​'black'​);
​
​ ​let​ filters2 = ​new​ Map()
​ .​set​(​'color'​, ​'brown'​);
​
​ ​let​ update = ​new​ Map([...filters, ...filters2]);
​
​ update.​get​(​'color'​);
​
​ ​// brown​

Now	when	you	update	the	function	again,	you	realize	you	don’t	even	need	the
function	at	all.	Combining	and	creating	maps	becomes	a	one	liner.

collections/mapSideEffects/map.js

http://media.pragprog.com/titles/es6tips/code/collections/mapSideEffects/map.js

​ ​function​ applyDefaults(map, defaults) {
​ ​return​ ​new​ Map([...defaults, ...map]);
​ }

Maps	really	do	combine	some	of	the	best	ideas	from	many	other	data	structures.
This	should	give	you	some	ideas	for	how	you	can	start	using	them	in	your	code.

In	the	next	tip,	you’ll	learn	about	another	new	collection,	Set,	which	does	one
thing	very	well:	creating	a	list	of	unique	items.

Tip	16 Keep	Unique	Values	with	Set

In	this	tip,	you’ll	learn	how	to	quickly	pull	unique	items	from	an	array	with	Set.

Set	is	a	fairly	simple	collection	that	can	do	only	one	thing,	but	it	does	it	very
well.	Set	is	like	a	specialized	array	that	can	contain	only	one	instance	of	each
unique	item.	You’ll	often	want	to	collect	values	from	a	large	array	of	objects,	but
you	only	need	to	know	the	unique	values.	There	are	other	use	cases	as	well,	but
collecting	a	list	of	distinct	information	from	a	group	of	objects	is	very,	very
common.

In	that	spirit,	return	once	again	to	our	set	of	filters	that	you’re	building.	To	even
know	what	a	user	can	filter	on,	you	need	to	gather	all	the	possible	values.	Recall
the	array	of	dogs	that	you	worked	with	earlier.

​ ​const​ dogs = [
​ {

​ name: ​'max'​,
​ size: ​'small'​,
​ breed: ​'boston terrier'​,
​ color: ​'black'​
​ },

​ {

​ name: ​'don'​,
​ size: ​'large'​,
​ breed: ​'labrador'​,
​ color: ​'black'​
​ },

​ {

​ name: ​'shadow'​,
​ size: ​'medium'​,
​ breed: ​'labrador'​,
​ color: ​'chocolate'​
​ }

​]

How	would	you	get	a	list	of	all	the	color	options?	In	this	case,	the	answer	is
obvious,	but	what	if	the	list	grows	into	several	hundred	dogs?	How	can	you	be
sure	we	get	all	the	potential	choices	from	golden	retrievers	to	blue	pit	bulls	to

mottled	border	collies?

One	simple	way	to	get	a	collection	of	all	the	colors	is	to	use	the	map()	array
method.	You’ll	explore	this	more	in	Tip	22,	​	Create	Arrays	of	a	Similar	Size	with
map()	​,	but	for	now,	all	you	need	to	know	is	that	it	will	return	an	array	of	only
the	colors.

collections/set/unique.js

​ ​function​ getColors(dogs) {
​ ​return​ dogs.map(dog => dog.color);
​ }

​
​ getColors(dogs);

​
​ ​// ['black', 'black', 'chocolate']​

The	problem	is	that	this	is	only	the	first	part.	Now	that	you	have	all	the	colors,
you	need	to	reduce	that	to	an	array	of	unique	values.	You	could	pull	those	out	in
a	number	of	different	ways.	There	are	for	loops	and	reduce()	functions.	But	for
now,	stick	with	a	simple	for	loop.

collections/set/unique.js

​ ​function​ getUnique(attributes) {
​ ​const​ unique = [];
​ ​for​ (​const​ attribute ​of​ attributes) {
​ ​if​ (!unique.includes(attribute)) {
​ unique.push(attribute);

​ }

​ }

​ ​return​ unique;
​ }

​
​ ​const​ colors = getColors(dogs);
​ getUnique(colors);

​ ​// ['black', 'chocolate']​

Seems	easy	enough,	but	fortunately	now	you	don’t	even	need	to	write	that	much
code.	You	can	use	the	Set	object	to	handle	the	work	of	pulling	out	unique	values.
A	set	is	a	common	data	type	and	you	may	be	familiar	with	it	from	other

http://media.pragprog.com/titles/es6tips/code/collections/set/unique.js
http://media.pragprog.com/titles/es6tips/code/collections/set/unique.js

languages.

The	interface	is	very	simple	and	resembles	Map	in	many	ways.	The	main
difference	is	that	instead	of	taking	an	array	of	pairs,	you	can	create	a	new
instance	of	Set	by	passing	a	flat	array	as	an	argument.

If	you	pass	your	array	of	colors	into	a	set,	you’re	nearly	there.

​ ​const​ colors = [​'black'​, ​'black'​, ​'chocolate'​];
​
​ ​const​ unique = ​new​ Set(colors);
​ ​// Set {'black', 'chocolate'}​

You	probably	noticed	that	the	value	of	the	object	is	a	Set	containing	only	one
instance	of	each	color.	And	that	may	seem	like	a	problem.	You	don’t	want	a	Set

—you	want	an	array	of	unique	items.

Well,	by	now	you	may	have	guessed	the	solution:	the	spread	operator.	You	can
use	the	spread	operator	on	Set	much	like	you	did	with	Map.	The	only	difference	is
that	Set	returns	an	array.	Exactly	what	you	want!	Now	you	can	refactor	the
getUnique()	function	to	a	one	liner.	Notice	that	you	can	even	use	the	spread
operator	on	instance	creation—you	don’t	even	need	to	assign	it	to	a	variable.

collections/set/set.js

​ ​function​ getUnique(attributes) {
​ ​return​ [...​new​ Set(attributes)];
​ }

Maybe	this	code	still	doesn’t	sit	well	with	you.	Good!	That	means	your	intuition
is	sharpening.	If	it	seems	like	you’re	being	inefficient,	you’re	correct.	You’re
first	looping	over	the	array	of	dogs	to	get	an	array	of	colors;	then	you’re
manipulating	that	array	to	get	a	list	of	unique	values.	Can’t	you	do	both	at	once?

You	sure	can.	Set,	again,	is	similar	to	Map	in	that	you	have	methods	to	add	and
check	for	values.	For	a	set,	you	can	add	a	value	with	add()	and	check	a	value	with
has().	You	also	have	delete()	and	clear(),	which	work	exactly	as	they	do	in	Map.

http://media.pragprog.com/titles/es6tips/code/collections/set/set.js

This	all	means	means	that	you	can	add	items	to	a	set	individually	as	you	go
through	a	loop	instead	of	all	at	once	by	passing	an	array	of	values.	A	set	can
keep	only	one	of	each	value.	If	you	try	to	add	a	value	that	isn’t	yet	in	the	set,	it
will	be	added.	If	you	try	to	add	a	value	that	already	exists,	it	will	be	ignored.
Order	is	preserved,	and	the	initial	point	a	value	is	added	will	remain.	If	you	try	to
add	an	item	that’s	there	already,	it	keeps	the	original	position.

​ ​let​ names = ​new​ Set();
​ names.add(​'joe'​);
​ ​// Set { 'joe'}​
​
​ names.add(​'bea'​);
​ ​// Set { 'joe', 'bea'}​
​
​ names.add(​'joe'​);
​ ​// Set { 'joe', 'bea'}​

You	now	have	the	tools	to	get	the	unique	values	in	one	pass	through	the	array	of
dogs.	There’s	no	need	to	first	get	all	colors	and	then	get	all	the	unique	items.	You
can	get	them	in	one	loop.

collections/set/set.js

​ ​function​ getUniqueColors(dogs) {
​ ​const​ unique = ​new​ Set();
​ ​for​ (​const​ dog ​of​ dogs) {
​ unique.add(dog.color);

​ }

​ ​return​ [...unique];
​ }

In	this	code,	you	used	a	simple	for	loop.	But	you	can	easily	simplify	this	action
to	a	one	liner	with	a	reduce()	function.	Reduce	functions	are	awesome	and	you’ll
love	them,	but	they’re	a	little	more	complicated.	You’ll	get	a	chance	to	explore
them	thoroughly	in	Tip	26,	​	Transform	Array	Data	with	reduce()	 ​,	but	here’s	a
sample	of	how	you	can	get	the	unique	values	in	one	line.

collections/set/set.js

​ [...dogs.reduce((colors, { color }) => colors.add(color), ​new​ Set())];

http://media.pragprog.com/titles/es6tips/code/collections/set/set.js
http://media.pragprog.com/titles/es6tips/code/collections/set/set.js

[12]

[13]

[14]

[15]

[16]

[17]

[18]

By	now	you’re	probably	feeling	excited	about	all	the	new	ways	you	can
experiment	with	collections	in	your	code.	There	are	a	few	more	you	haven’t
touched,	such	as	WeakMap	and	WeakSet,	and	you	should	try	them	out.	The	best
place	for	JavaScript	documentation	is	always	The	Mozilla	Developer	Network.
[18]

But	that’s	enough	talk	about	collections.	It’s	time	to	start	building	things.	The
next	step	is	learning	to	use	control	structures	to	handle	conditional	actions.

In	the	next	chapter,	you’ll	look	at	how	you	can	apply	the	same	standards	of
simplicity	and	readability	to	conditional	statements.

Footnotes

https://github.com/tc39/proposal-object-rest-spread

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map

https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Data_structures#Keyed_collections_Maps_Sets_WeakMaps_WeakSets

https://github.com/facebook/react/pull/7232#issuecomment-231516712

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map

https://github.com/tc39/proposal-object-values-entries

https://developer.mozilla.org

Copyright	©	2018,	The	Pragmatic	Bookshelf.

https://github.com/tc39/proposal-object-rest-spread
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#Keyed_collections_Maps_Sets_WeakMaps_WeakSets
https://github.com/facebook/react/pull/7232#issuecomment-231516712
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://github.com/tc39/proposal-object-values-entries
https://developer.mozilla.org

Chapter	4

Write	Clear	Conditionals
	

Have	you	ever	been	sucked	into	a	round	of	spring	cleaning?	I	don’t	mean	the
kind	where	you	put	“Scrub	the	floors”	on	your	to-do	list	and	then	you	actually
do	it.	Rather,	say	it’s	a	nice	day	so	you	open	the	window,	but	as	soon	as	you	do,
a	pile	of	papers	blows	off	your	desk.	That’s	fine,	you’ve	been	meaning	to
organize	those	anyway.	So	you	start	filing,	but	without	that	stack	of	papers
hiding	everything,	now	you	notice	that	your	computer	cables	look	all	tangled
and	sloppy,	and	how	long	has	that	coffee	mug	been	hiding	back	there?	Before
you	know	it,	you’re	taking	your	whole	office	apart.	Once	you	start	removing
clutter,	it’s	hard	to	stop.

By	now,	you’ve	likely	started	getting	a	taste	for	clean	and	simple	JavaScript.
And	that’s	wonderful.	The	new	syntax	allows	you	to	do	so	much	more	with
much	less	code.	But	you	don’t	need	to	wait	for	new	syntax	before	you	make	a
positive	change	to	your	code.

Let’s	take	a	quick	detour	from	new	syntax	to	explore	some	older	ideas,	but	with
a	new	goal:	making	clean	and	predictable	JavaScript	code.

In	this	chapter,	you’re	going	to	clean	up	conditional	expressions.	You’ll	revisit
basic	ideas,	such	as	truthy	and	falsy	values,	ternary	expressions,	and	short
circuiting,	with	the	goal	of	keeping	everything	simple	and	clean.

There’s	also	a	practical	side:	Now	that	you	have	more	tools	to	assign	and	work
with	data,	you	can	reuse	old	ideas	to	further	leverage	the	new	syntax.

Here’s	a	basic	example:	Let’s	say	you	wanted	to	set	the	color	on	a	value.	If	the
value	is	a	negative	number,	you	want	the	color	to	be	red.	If	the	value	is	positive,
you	want	it	to	be	green.

​ ​const​ transactions = [...spending, ...income];
​ ​const​ balance = calculateBalance(transactions);
​
​ ​let​ color;
​
​ ​if​(balance > 0) {
​ color = ​'green'​;
​ } ​else​ {
​ color = ​'red'​;
​ }

The	first	two	lines	are	like	my	newly	cleaned	desk.	They’re	clear	and	expressive,
and	are	assigned	with	const,	so	you	know	they	aren’t	changing.	But	as	with
spring	cleaning,	you	look	down	and	suddenly	things	seem	awfully	messy.

Where	did	that	let	come	from?	Oh,	right.	You	need	it	to	set	the	color,	which	will
be	mutated	by	the	conditional.	I	guess	it’s	okay,	but	it	just	doesn’t	feel	as	clean
as	the	rest	of	the	code.

All	of	a	sudden,	that	block	of	code	just	doesn’t	look	right.	Fortunately,	you	don’t
need	to	leave	it	like	that.	You	can	rewrite	it	with	the	same	simple	syntax	as
before.	No	new	syntax	necessary.

To	start	off,	you’ll	look	at	truthy	and	falsy	values	in	JavaScript.	Many	techniques
to	simplify	code	involve	truthy	and	falsy	values,	so	you’ll	want	a	firm
foundation.	Next,	you’ll	look	at	ternaries,	a	simple	method	for	reducing	if/else
conditionals	to	a	single	line.	Finally,	you’ll	learn	to	write	extremely	concise
conditionals	and	variable	assignment	with	short	circuiting.

It’s	time	to	clean	up	the	clutter	in	your	conditionals.	Between	truthy	values,
ternaries,	and	short	circuiting,	you’ll	be	writing	conditionals	that	fit	with	your
modern	JavaScript	code.	And	as	you	move	into	array	methods	and	functions,
you’ll	see	these	ideas	return	over	and	over.

Let’s	get	started	putting	your	house	in	order.

Tip	17 Shorten	Conditionals	with	Falsy	Values

In	this	tip,	you’ll	learn	how	to	use	falsy	and	truthy	values	to	check	for
information	from	different	types.

Can	you	remember	the	first	line	of	code	you	ever	wrote?	I	can’t,	but	I	wouldn’t
be	surprised	if	it	was	some	sort	of	conditional.	Responding	one	way	to	some
information	and	a	different	way	to	other	information	is	about	as	basic	as
programming	can	get.

I	still	write	a	lot	of	conditionals	every	day,	and	I	bet	you	do,	too.	Fortunately,
JavaScript,	along	with	many	other	languages,	gives	you	many	tools	for	checking
information	and	reassigning	or	standardizing	information	very	quickly	with
minimal	code.

The	secret	to	being	able	to	check	values	quickly	is	to	understand	the	subtle
difference	between	the	primitive	values	true	and	false	(also	called	Boolean types)
and	the	many	so-called	truthy	and	falsy	values—values	that	aren’t	identical	to
the	Boolean	values	true	or	false	but	act	like	they	are	in	most	cases.

I	bet	you	thought	we	were	about	to	dig	into	that	idea.	Well,	give	me	just	one
more	moment	to	review	another	concept:	equivalency	and	identity—a	value
that’s	equivalent	if	it’s	the	same,	but	of	a	different	type	and	is	checked	with	‘==‘.

​ 1 == ​'1'​ ​// true​

Identical	values,	or	values	with	strict	equality,	mean	that	they	must	be	of	the
same	type.

​ 1 === ​'1'​ ​// false​
​ 1 === 1 ​// true​

Objects,	including	instances	of	arrays,	are	checked	by	their	reference	(remember
reference	from	Object.assign()?).

The	topic	can	get	much	deeper,	but	for	now	we	want	to	identify	values	that	are

equivalent	to	false	or	true	but	not	identical.

Okay.	Back	to	truthy	and	falsy	values.	An	empty	string	is	equal	to	false	(but	not
identical).	In	other	words,	it’s	falsy.

​ ​''​ == ​false​ ​// true​
​ ​if​(​''​) {
​ ​return​ ​'I am not false!'​
​ } ​else​ {
​ ​return​ ​'I am false :(!'​
​ }

​
​ ​// I am false :(​

Here’s	a	quick	list	of	values	that	are	falsy	courtesy	of	Mozilla	Developer
Network:[19]

false

null

0

NaN	(not	a	number)
”

""

The	ones	that	are	worth	memorizing	are	0,	null,	and	an	empty	string.	Let’s	hope
you	can	remember	that	false	is	a	falsy	value.

Notice	a	few	things	conspicuously	absent?	If	you	wondered	about	the	absence	of
arrays	and	objects	(not	to	mention	the	other	collection	types),	good	eye.	Arrays
and	objects,	even	empty	arrays	and	objects,	are	always	truthy.	So	you’ll	have	to
find	another	way	to	check	emptiness	with	either	[].length	or	Object.keys({}).length,
which	will	give	you	either	0	or	a	nice	truthy	number.

Okay,	you	may	be	wondering	why	you	should	care	about	falsy	values	and	truthy
values	(whatever	is	not	falsy	is	truthy,	of	course).	They’re	important	because	you
can	shorten	a	lot	of	otherwise	lengthy	expressions.

​ ​const​ employee = {
​ name: ​'Eric'​,

​ equipmentTraining: ​''​,
​ }

​
​ ​if​(!employee.equipmentTraining) {
​ ​return​ ​'Not authorized to operate machinery'​;
​ }

You	don’t	need	the	code	to	know	anything	about	when	they	received	their
equipment	training.	The	code	doesn’t	need	to	know	if	it’s	a	date	or	a	certificate
name.	All	that	the	code	needs	to	know	is	that	the	value	exists	and	there’s
something	there.

But	there	are	a	few	catches.	Here’s	where	things	get	tricky.	It	can	be	easy	to
create	a	falsy	value	unintentionally.	The	most	common	problem	occurs	when
you’re	testing	existence	in	an	array	by	checking	the	index	of	a	value:

​ [​'a'​, ​'b'​].indexOf(​'a'​)
​ ​// 0 which is falsy​

You	already	saw	this	problem	when	you	explored	Array.includes(),	so	it	should
sneak	up	on	you	less	often	than	it	might	have	before.	A	much	more	subtle
problem	arises	when	you	look	for	key-value	data	that’s	not	defined.	If	you	try	to
pull	a	value	from	a	key	that’s	not	defined,	you’ll	get	undefined,	which	may	cause
a	problem	if	an	object	or	map	were	to	change	elsewhere	in	the	code.

Let’s	change	the	object	just	a	bit	to	make	equipmentTraining	a	Boolean.

​ ​const​ employee = {
​ name: ​'Eric'​,
​ equipmentTraining: ​true​,
​ };

​
​ ​function​ listCerts(employee) {
​ ​if​(employee.equipmentTraining) {
​ employee.certificates = [​'Equipment'​];
​
​ ​// Mutation!​
​ ​delete​ employee.equipmentTraining;
​ }

​ ​// More code.​
​ }

​
​ checkAuthorization() {

​ ​if​(!employee.equipmentTraining) {
​ ​return​ ​'Not authorized to operate machinery'​;
​ }

​ ​return​ ​'Hello, ${employee.name}'​
​ }

​
​ listCerts(employee);

​
​ checkAuthorization(employee);

​ ​// 'Not authorized to operate machinery'​

What	happened	here?	The	function	listCerts()	mutated	the	object	and	removed	the
key-value	data.	In	the	next	function,	you	tried	to	check	a	value	on	the	object.	On
objects,	if	the	key	isn’t	defined,	you	don’t	get	an	error—you	get	undefined	(the
same	is	true	for	maps).	This	would	be	a	puzzling	bug	because	when	you	inspect
the	code,	it	looks	like	the	employee	has	certifications	and	should	pass	the
conditional.	Once	again,	be	very	careful	with	mutations.

How	can	you	solve	the	problem?	There	are	actually	two	answers.	Can	you	guess
both	of	them?

The	first,	and	far	superior,	solution	is	to	not	mutate	the	data.	Falsy	statements	are
way	too	valuable	to	give	up.	If	a	function	is	mutating	the	data,	change	the
function.

If,	for	some	reason,	you’re	unable	to	do	that,	you	can	use	a	strict	equivalency
check	to	make	sure	the	value	is	there	and	it’s	in	the	format	you	want.	If	you	use
strict	equivalency,	you	can	guard	against	a	situation	where	someone	sets
employee.equipmentTraining	to	’Not Trained’,	which	is	truthy.

​ checkAuthorization() {

​ ​if​(employee.equipmentTraining !== ​true​) {
​ ​return​ ​'Not authorized to operate machinery'​;
​ }

​ ​return​ ​'Hello, ${employee.name}'​
​ }

​
​ checkAuthorization(employee);

​ ​// 'Not authorized to operate machinery'​

More	code,	but	that’s	okay.	Things	happen.	You	don’t	need	to	chain	yourself	to
falsy	values,	but	you	should	certainly	understand	them.	They’re	about	to	play	a
big	role.

In	the	next	tip,	you’ll	learn	how	to	use	falsy	and	truthy	values	to	make	quick	data
checks.

Tip	18 Check	Data	Quickly	with	the	Ternary	Operator

In	this	tip,	you’ll	learn	how	to	avoid	reassignment	with	the	ternary	operator.

By	now,	you	may	have	noticed	that	I	love	simple	code.	I’ll	always	try	to	get	an
expression	reduced	down	to	the	fewest	characters	I	can.	I	blame	a	former
coworker	who	reviewed	some	code	I	wrote	at	one	of	my	first	jobs.

​ ​if​(active) {
​ ​var​ display = ​'bold'​
​ } ​else​ {
​ ​var​ display = ​'normal'​
​ }

He	took	one	glance	and	casually	said,	“You	should	just	make	that	a	ternary.”

“Of	course,”	I	agreed,	not	quite	sure	what	he	was	talking	about.	After	looking	it
up,	I	simplified	the	code	to	a	one-line	expression	and	my	code	has	never	been
the	same.

​ ​var​ display = active ? ​'bold'​ : ​'normal'​;

Chances	are	you’ve	worked	with	ternary	operators	before.	They’re	common	in
most	languages,	and	they	allow	you	to	do	a	quick	if/then	check.	(Although	they
aren’t	exclusively	for	this	purpose,	it	is	by	far	the	most	common	usage.)

If	the	ternary	operator	isn’t	new,	why	should	it	interest	you?	In	returning	to	some
of	the	larger	themes	we’ve	been	exploring,	ternary	expressions	allow	your	code
to	be	not	just	more	simple	as	I’ve	mentioned,	but	also	more	predictable.	They	do
this	because	they	cut	down	on	the	number	of	variables	that	are	being	reassigned.

Besides,	with	new	variable	types,	we	hit	some	problems	with	excessive	if/else

statements.	If	you	try	to	check	a	variable	and	you’re	using	a	block	scoped
variable,	you	won’t	be	able	to	access	the	variable	outside	of	the	check.

conditionals/ternary/if.js

​ ​if​ (title === ​'manager'​) {

http://media.pragprog.com/titles/es6tips/code/conditionals/ternary/if.js

​ ​const​ permissions = [​'time'​, ​'pay'​];
​ } ​else​ {
​ ​const​ permissions = [​'time'​];
​ }

​ permissions;

​ ​// ReferenceError: permissions is not defined​

Now	you’re	forced	to	either	use	var,	which	is	accessible	outside	the	block	scope,
or	you	have	to	define	the	variable	with	let	and	then	reassign	it	inside	the	if/else

block.	Here’s	how	it	would	look	with	the	assignment	before	the	block:

conditionals/ternary/if.js

​ ​let​ permissions;
​ ​if​ (title === ​'manager'​) {
​ permissions = [​'time'​, ​'pay'​];
​ } ​else​ {
​ permissions = [​'time'​];
​ }

Before	let	and	const,	you	didn’t	have	to	worry	so	much	about	when	variables
were	created.	Now,	in	addition	to	excessive	code,	there’s	a	potential	for	scope
conflicts.

Ternary	expressions	solve	these	problems.	Clearly,	they	cut	down	on	a	lot	of
extra	code.	But	they	also	allow	you	to	be	more	predictable	by	assigning	a	value
directly	to	const.	How	could	you	rewrite	the	preceding	code	to	use	const	and	a
ternary?

conditionals/ternary/ternary.js

​ ​const​ permissions = title === ​'manager'​ ? [​'time'​, ​'pay'​] : [​'time'​];

Much	cleaner	and	you	now	have	a	predictable	value.

There’s	one	caution	you	should	keep	in	mind:	Though	you	can	chain	multiple
ternary	expressions	together,	you	should	avoid	doing	so.	Imagine	that	there’s
another	user	type	called	supervisor	that	couldn’t	see	the	pay	rate	but	could
authorize	overtime.	You	might	be	tempted	to	just	add	another	ternary	expression.
What’s	the	harm,	right?

http://media.pragprog.com/titles/es6tips/code/conditionals/ternary/if.js
http://media.pragprog.com/titles/es6tips/code/conditionals/ternary/ternary.js

conditionals/ternary/ternaryProblem.js

​ ​const​ permissions = title === ​'supervisor'​ || title === ​'manager'​ ?
​ title === ​'manager'​ ?
​ [​'time'​, ​'overtimeAuthorization'​, ​'pay'​] : [​'time'​, ​'overtimeAuthorization'​]
​ : [​'time'​];

At	that	point,	the	ternary	becomes	unreadable	and	loses	the	value	of	simplicity.
Instead,	you	should	move	the	check	completely	out	of	the	block	into	a
standalone	function	(with	a	nice	test,	of	course).	That	way,	you	can	still	use	const

without	worrying	about	excessive	code.

conditionals/ternary/ternaryProblem.js

​ ​function​ getTimePermissions({ title }) {
​ ​if​ (title === ​'manager'​) {
​ ​return​ [​'time'​, ​'overtimeAuthorization'​, ​'pay'​];
​ }

​
​ ​if​ (title === ​'supervisor'​) {
​ ​return​ [​'time'​, ​'overtimeAuthorization'​];
​ }

​ ​return​ [​'time'​];
​ }

​
​ ​const​ permissions = getTimePermissions({ title: ​'employee'​ });
​ ​// ['time']​

There’s	no	harm	in	making	short	functions	that	have	a	single	non-abstract
purpose.	In	fact,	it’s	a	good	step	to	writing	clean	code.	You	still	get	the	value	of
assigning	the	return	value	to	const	and	everything	is	clear	and	readable.	Ternary
expressions	can	simplify	things,	but	use	them	when	they	add	value	and	go	back
to	standard	if	blocks	if	they	create	too	much	ambiguity.

In	the	next	tip,	you’ll	make	quick	data	checks	even	easier	with	short	circuiting.

http://media.pragprog.com/titles/es6tips/code/conditionals/ternary/ternaryProblem.js
http://media.pragprog.com/titles/es6tips/code/conditionals/ternary/ternaryProblem.js

Tip	19 Maximize	Efficiency	with	Short	Circuiting

In	this	tip,	you’ll	learn	to	reduce	conditionals	to	the	smallest	possible	expression
with	short	circuiting.

You’ve	been	simplifying	conditional	expressions	a	lot	in	the	last	few	tips.	But
there’s	one	more	level	of	simplification	you	can	use:	short	circuiting.

As	the	name	implies,	the	goal	of	short	circuiting	is	to	bypass	information	checks
by	placing	the	most	relevant	information	first.

Consider	the	following	ternary,	which	would	fit	in	well	with	the	discussion	from
the	previous	chapter.

conditionals/shortCircuiting/ternary.js

​ ​function​ getIconPath(icon) {
​ ​const​ path = icon.path ? icon.path : ​'uploads/default.png'​;
​ ​return​ ​`https://assets.foo.com/​${path}​`​;
​ }

The	goal	here	is	fairly	clear.	If	an	icon	has	a	truthy	path	(in	this	case,	that	means
it’s	defined	and	isn’t	an	empty	string),	then	you	want	to	use	the	path.	If	it’s	falsy,
undefined,	or	”,	then	you	want	to	use	the	default.

​ ​const​ icon = {
​ path: ​'acme/bar.png'​
​ }

​
​ getIconPath(icon);

​
​ ​// 'https://assets.foo.com/acme/bar.png';​

Did	you	see	any	clues	that	suggest	you	can	clean	up	this	code	a	bit?

You	probably	noticed	that	you’re	writing	the	information	check,	icon.path,	twice.
Let’s	assume	that	data	is	always	going	to	be	valid,	which	means	there’s	no
difference	between	the	information	we’re	checking	and	the	information	we	want.

http://media.pragprog.com/titles/es6tips/code/conditionals/shortCircuiting/ternary.js

If	it’s	truthy,	we’re	going	to	use	it.

Before	updating	the	code,	take	a	moment	to	think	about	how	logical	operators
work.	The	or	operator,	symbolized	as	||,	will	return	true	if	any	of	the	possible
values	are	true.	That	means	that	as	soon	as	one	thing—anything—returns	true,
you	don’t	care	what	the	other	values	might	be.

Now	here’s	where	it	gets	exciting.	Because	you	can	use	truthy	values	to	test	a
Boolean	expression,	true	or	false,	there’s	no	incentive	for	the	language	to	change
the	value	from	something	truthy	to	true.	So	if	one	value	in	an	||	check	returns
true,	you	get	that	truthy	value	and	not	true.

Lost?	Don’t	worry.	That’s	a	long	way	of	saying	you	can	assign	values	directly
from	a	Boolean	check.

​ ​const​ name = ​'joe'​ || ​'I have no name'​;
​ name

​ ​// 'joe'​

Now	you	have	all	of	the	tools	you	need	to	rewrite	the	ternary	to	something
concise.

conditionals/shortCircuiting/shortCircuiting.js

​ ​function​ getIconPath(icon) {
​ ​const​ path = icon.path || ​'uploads/default.png'​;
​ ​return​ ​`https://assets.foo.com/​${path}​`​;
​ }

As	you	may	have	noticed,	the	best	part	is	that	you	can	append	a	default	value	to
the	end	of	the	expression.	This	means	that	you	never	have	to	worry	about	a
variable	being	falsy	because	you	know	there’s	a	truthy	value	waiting	at	the	end.

There	you	have	it.	You	can	use	short	circuiting	to	bypass	information	once
something	truthy	occurs.	How	about	the	other	way	around?	How	can	you	halt	an
expression	once	something	false	occurs?	That’s	possible	as	well.

Another	popular	usage	of	short	circuiting	is	to	prevent	errors,	particularly	when

http://media.pragprog.com/titles/es6tips/code/conditionals/shortCircuiting/shortCircuiting.js

you	plan	to	use	a	method	or	action	on	a	particular	collection.

Consider	a	slight	change	to	the	problem	of	getting	an	icon.	Instead	of	finding	an
icon	set,	you	need	to	get	a	set	of	images	from	a	user.	The	first	image	will	be	used
as	a	thumbnail.

Because	there	are	many	images,	the	images	collection	will	be	an	array.	And	your
code	needs	to	be	able	to	handle	the	following	representations:

​ ​// No array specified​
​ ​const​ userConfig1 = {
​ }

​
​ ​// An array with no elements​
​ ​const​ userConfig2 = {
​ images: []

​ }

​ ​// An array with elements​
​ ​const​ userConfig3 = {
​ images: [

​ ​'me.png'​,
​ ​'work.png'​
​]

​ }

You	may	start	off	by	thinking	you	could	use	short	circuiting	with	the	||	operator
to	get	the	value	you	want.	But	that	won’t	work	for	instances	where	the	property
isn’t	defined.

​ ​const​ userConfig1 = {
​ }

​
​ ​const​ img = userConfig1.images[0] || ​'default.png'​;
​
​ ​//TypeError: Cannot read property '0' of undefined​

The	next	step	might	be	to	use	a	series	of	nested	conditionals.

conditionals/shortCircuiting/conditional.js

​ ​function​ getFirstImage(userConfig) {

http://media.pragprog.com/titles/es6tips/code/conditionals/shortCircuiting/conditional.js

​ ​let​ img = ​'default.png'​;
​ ​if​ (userConfig.images) {
​ img = userConfig.images[0];

​ }

​ ​return​ img;
​ }

At	least	in	that	example,	you	won’t	get	an	error	if	the	images	array	isn’t	defined.
But	it	will	create	a	problem	if	there	are	no	elements	of	the	array.

​ ​const​ userConfig = {
​ images: []

​ }

​
​ ​const​ img = getFirstImage(userConfig);
​
​ ​//undefined​

Now	to	solve	that	problem,	you	might	add	another	nested	conditional.

conditionals/shortCircuiting/conditional.js

​ ​function​ getImage(userConfig) {
​ ​let​ img = ​'default.png'​;
​ ​if​ (userConfig.images) {
​ ​if​ (userConfig.images.length) {
​ img = userConfig.images[0];

​ }

​ }

​ ​return​ img;
​ }

Things	are	already	starting	to	get	a	little	ugly	and	unreadable.

Fortunately,	short	circuiting	can	help.	Combining	conditionals	with	the	&&

operator	will	allow	you	to	avoid	the	TypeError	you	saw	earlier.	A	logical	string
built	with	an	&&	operator	will	cease	as	soon	as	a	false	value	occurs.	This	means
that	you	don’t	have	worry	about	a	TypeError	when	you	try	to	call	a	method	that
doesn’t	exist.	You	can	safely	check	for	the	existence	of	a	collection	and	then	call
a	method	on	it.

conditionals/shortCircuiting/shortCircuiting.js

http://media.pragprog.com/titles/es6tips/code/conditionals/shortCircuiting/conditional.js
http://media.pragprog.com/titles/es6tips/code/conditionals/shortCircuiting/shortCircuiting.js

​ ​function​ getImage(userConfig) {
​ ​if​ (userConfig.images && userConfig.images.length > 0) {
​ ​return​ userConfig.images[0];
​ }

​ ​return​ ​'default.png'​;
​ }

Now,	this	isn’t	perfect	because	you’re	just	checking	for	a	truthy	value,	which
means	that	if	there’s	bad	data	and	images	is	set	to	a	string,	you’ll	get	a	weird
result	(the	first	letter	of	the	string).	But	I’d	leave	it	the	way	it	is.	At	some	point,
you	have	to	have	a	little	trust	in	your	data	or	you	need	to	find	a	way	to	normalize
the	data	higher	up	the	stream.

Finally,	you	can	combine	your	short	circuiting	back	with	a	ternary	to	get	this
check	down	to	a	one	liner.	Start	by	pulling	the	images	property	into	its	own
variable.	Remember	that	if	it’s	not	there,	the	variable	will	merely	be	undefined.

conditionals/shortCircuiting/ternary.js

​ ​function​ getImage(userConfig) {
​ ​const​ images = userConfig.images;
​ ​return​ images && images.length ? images[0] : ​'default.png'​;
​ }

Be	careful	when	combining	ternaries	and	short	circuiting.	Things	can	get	out	of
hand	very	quickly.	Say,	for	example,	that	you	want	to	make	sure	the	image	didn’t
have	a	GIF	extension.	You’d	still	have	to	make	sure	there	are	elements	in	the
array,	or	else	you’d	get	another	TypeError	by	checking	for	an	index	value	on
undefined.	The	resulting	code	is	getting	crazy.

conditionals/shortCircuiting/ternary.js

​ ​const​ images = userConfig.images;
​ ​return​ images &&
​ images.length &&

​ images[0].indexOf(​'gif'​) < 0
​ ? images[0] : ​'default.png'​;

You	could	refactor	your	code	to	check	for	an	image.	Or	you	could	check	the

http://media.pragprog.com/titles/es6tips/code/conditionals/shortCircuiting/ternary.js
http://media.pragprog.com/titles/es6tips/code/conditionals/shortCircuiting/ternary.js

[19]

extension	with	a	regular	expression	instead	of	an	index.	There	are	lots	of	ways
around	the	problem.	At	some	point,	you	need	to	make	sure	your	conditionals	are
making	code	more	clear	and	not	just	shorter	for	the	sake	of	being	short.

There’s	no	explicit	rule	about	how	many	conditionals	are	too	many.	It’s	more	a
matter	of	taste	and	team	agreement.	But	when	things	get	long	(usually	around
three	conditional	checks),	it’s	better	to	make	it	a	standalone	function.

Simplicity	is	great.	And	it’s	fun	to	try	and	find	clever	ways	to	reduce	things	to
one	line.	But	the	goal	is	always	communication	and	readability.	Use	short
circuiting	to	make	things	readable—not	to	make	code	artificially	small.

Now	that	you	can	make	simple	conditionals,	it’s	time	to	put	that	knowledge	into
action.

In	the	next	chapter,	you’ll	explore	loops	and	how	you	can	create	simplified	loops
that	avoid	mutations,	return	predictable	results,	and	can	be	as	short	as	a	single
line	of	code.

Footnotes

https://developer.mozilla.org/en-US/docs/Glossary/Falsy

Copyright	©	2018,	The	Pragmatic	Bookshelf.

https://developer.mozilla.org/en-US/docs/Glossary/Falsy

Chapter	5

Simplify	Loops
	

My	auto	mechanics	teacher	in	high	school	once	started	off	class	by	holding	up	a
large	adjustable	wrench.	“Some	people	think	this	is	the	only	tool	they	need,”	he
said.	He	demonstrated	how	someone	could	use	the	wrench	to	unscrew	a	bolt,
take	off	a	screw,	and	pry	off	a	gasket	like	a	set	of	pliers.	“They	even	use	it	as	a
hammer,”	he	said	as	he	swung	the	wrench	in	the	air.

“But	if	all	you	use	is	a	wrench,	you’ll	round	off	your	bolts.	You’ll	snap	off	fan
blades,	dent	your	car,	and	generally	make	things	worse.”	As	he	finished,	he
placed	the	wrench	on	the	bench.	“And	that’s	why	we	have	specialized	tools,”	he
said	as	he	showed	us	how	to	use	ratchet	wrenches,	torque	wrenches,	spark	plug
gap	gauges,	and	all	the	other	tools	a	good	mechanic	keeps	at	hand.

You’re	about	to	get	your	specialized	set	of	tools	for	looping	through	data	in
JavaScript.	When	you	use	the	right	tool,	your	code	will	be	more	clear,	and	you’ll
signal	your	intentions	to	other	developers.

You’ve	almost	certainly	used	a	for	loop	before.	If	you	wanted	to	convert	an	array
of	integers	to	strings,	you	could	easily	use	a	for	loop.	You	simply	need	to	create
an	empty	array,	loop	through	the	values	one	at	a	time	using	the	index	from	the
for	loop,	and	push	the	new	values	into	new	array.

But	you	know	that	will	just	create	problems.	You’ll	have	more	variables	to	keep
track	of.	You’ll	have	mutations.	And	other	developers	will	have	no	clue	what
you’re	trying	to	accomplish.	When	you	use	one	type	of	loop,	other	developers
won’t	know	if	you’re	returning	all	results	of	an	original	array	or	just	a	subset.

They	won’t	know	at	a	glance	if	you’re	converting	data	types	or	changing	the
collection	from	an	array	to	an	object.

If	you	try	to	solve	every	problem	with	one	tool,	your	code	will	be	complex	and
hard	to	use.	You	need	better	tools.

We’re	going	to	start	off	by	jumping	ahead	a	bit	to	see	how	to	use	arrow
functions.	Arrow	functions	turn	simple	loops	into	one-liners.	Next,	you’ll	get	an
in-depth	look	at	how	array	methods	simplify	loops	and	how	you	can	know	what
to	expect	based	on	the	specialized	loop.	From	there,	we’ll	explore	several
different	array	methods	one	at	a	time.	We’ll	start	with	map(),	which	pulls	the
same	information	out	from	each	collection.	We’ll	look	at	a	series	of	specialized
loops	that	do	one	task	well,	finishing	with	the	most	flexible	loop,	reduce(),	which
can	do	pretty	much	anything.	We’ll	wrap	up	by	exploring	the	updated	for...of	and
for...in	loops,	which	use	clear	variable	names	instead	of	indexes.

The	best	mechanics	can	always	grab	the	right	tool	for	the	job.	Coding	is	no
different.	If	you	look	at	the	best	code,	you’ll	notice	the	developers	always	use
the	loop	that	fits	their	intentions.	These	new	loops	take	practice	and	can	be
confusing.	But	before	you	know	it,	you’ll	be	able	to	use	them	with	ease,	and
you’ll	love	how	clear	and	expressive	you’ve	made	your	code.	Special	tools	exist
for	a	reason.	Time	to	learn	how	to	use	them.	To	start,	take	a	look	at	one	of	the
most	beloved	new	features	in	JavaScript:	arrow	functions.

Tip	20 Simplify	Looping	with	Arrow	Functions

In	this	tip,	you’ll	learn	to	cut	out	extraneous	information	with	arrow	functions.

In	JavaScript,	you	see	a	lot	of	callback	functions.	Those	are	functions	that	are
passed	as	a	parameter	to	other	functions.	Most	of	the	loops	you’re	about	to	learn
depend	on	callbacks.

Like	most	pre-ES6	code,	functions	are	wordy.	You	have	to	explicitly	declare	that
you’re	creating	a	function	with	the	function	keyword,	add	curly	braces	to	signify
the	body,	use	return	statements	to	end	the	function,	and	so	on.	It’s	not	unusual	for
the	callback	to	be	longer	than	the	function	you	inject	it	into.

Arrow	functions	changed	that	and	made	writing	functions	simple	and	short.	And
learning	about	them	now	will	make	all	the	loops	you	see	in	future	tips	much
more	interesting.	It	will	come	as	no	surprise	that	arrow	functions	combined	with
array	methods	have	led	some	to	abandon	for	loops	altogether.

Well	then,	what	are	arrow	functions?	Arrow	functions	strip	away	as	much
extraneous	information	as	possible.

How	much	extraneous	information	is	there	in	a	function?	Quite	a	bit.	It	turns	out,
you	can	communicate	a	function	without:

The	word	function

Parentheses	around	arguments
The	word	return

Curly	braces

All	you	need	to	do	is	use	the	fat	arrow	=>	to	indicate	that	you’ll	be	building	a
function.	You	might	be	thinking	that	you’ve	just	lost	everything	that	makes	a
function	a	function.	It’s	true	you	can	get	functions	to	a	minimal	state,	but	there
are	still	a	few	rules	you	must	follow.

Before	you	begin,	you	should	know	that	arrow	functions	look	simple,	but	they

actually	have	a	lot	of	subtle	quirks.	Fortunately,	you	don’t	need	to	understand
subtleties	now.	You’ll	get	to	those	when	you	explore	them	more	in	Tip	36,	​
Prevent	Context	Confusion	with	Arrow	Functions	​.	To	start,	look	at	a	function
that	still	has	most	of	the	extra	stuff	(parentheses,	curly	braces,	return	statements).

Here’s	a	simple	function	that	takes	an	argument	and	returns	a	slightly	modified
value.	In	this	case,	it	takes	a	name	and	returns	the	name	with	a	capitalized	first
letter.

loops/arrow/full.js

​ ​function​ capitalize(name) {
​ ​return​ name[0].toUpperCase() + name.slice(1);
​ }

Easy,	right?	But	before	you	can	translate	this	into	an	arrow	function,	you	should
notice	that	this	is	a	named	function.	All	that	means	is	the	name	is	declared	as
part	of	a	function,	like	this:

​ ​function​ namedFunction() {
​
​ }

That’s	not	the	only	way	to	create	a	function.	You	can	also	create	an	anonymous
function—a	function	that	doesn’t	have	a	name—and	assign	it	to	a	variable:

​ ​const​ assignedFunction = ​function​() {
​
​ }

Here’s	the	same	function	as	an	anonymous	function.	Everything	is	the	same
except	you’re	assigning	it	to	a	variable.

loops/arrow/anonymous.js

​ ​const​ capitalize = ​function​ (name) {
​ ​return​ name[0].toUpperCase() + name.slice(1);
​ };

An	arrow	function	version	uses	the	same	idea:	an	anonymous	function	you

http://media.pragprog.com/titles/es6tips/code/loops/arrow/full.js
http://media.pragprog.com/titles/es6tips/code/loops/arrow/anonymous.js

assign	to	a	variable.	You	can	remove	the	function	keyword	and	replace	it	with	a
fat	arrow.	As	a	bonus,	if	you	have	exactly	one	parameter	(which	will	be	the	case
for	many	array	methods),	you	can	dispense	with	the	parentheses.

loops/arrow/arrow.js

​ ​const​ capitalize = name => {
​ ​return​ name[0].toUpperCase() + name.slice(1);
​ };

That’s	all	there	is	to	it.	You’ll	dive	deep	into	where	and	how	to	use	arrow
functions	later.	For	now,	look	at	how	normal	functions	translate	to	regular
functions.	To	keep	it	quick,	you’ll	get	a	rule,	then	a	named	function	version,	then
an	arrow	version.	But	please	try	and	write	it	out	before	you	look	at	the
translation.	This	feature	is	supported	right	now	in	many	browsers,	so	open	up	a
Chrome	console	and	try	it	out.

That	last	example	took	one	parameter,	which	means	that	you	don’t	need	the
parameters.	But	if	you	have	no	parameters,	you	still	need	parentheses.

Before:

loops/arrow/full.js

​ ​function​ key() {
​ ​return​ ​'abc123'​;
​ }

After:

loops/arrow/arrow.js

​ ​const​ key = () => {
​ ​return​ ​'abc123'​;
​ };

If	you	have	more	than	one	parameter,	you’ll	also	need	to	use	parentheses

Before:

http://media.pragprog.com/titles/es6tips/code/loops/arrow/arrow.js
http://media.pragprog.com/titles/es6tips/code/loops/arrow/full.js
http://media.pragprog.com/titles/es6tips/code/loops/arrow/arrow.js

loops/arrow/full.js

​ ​function​ greet(first, last) {
​ ​return​ ​`Oh, hi ​${capitalize(first)}​ ​${capitalize(last)}​`​;
​ }

After:

loops/arrow/arrow.js

​ ​const​ greet = (first, last) => {
​ ​return​ ​`Oh, hi ​${capitalize(first)}​ ​${capitalize(last)}​`​;
​ };

When	the	body	of	your	function	(the	part	normally	inside	the	curly	braces)	is
only	one	line,	you	can	move	everything—the	fat	arrow,	the	parameters,	the
return	statement—to	a	single	line.

And	if	the	function	itself	is	only	one	line,	you	don’t	even	need	to	use	the	return

keyword.	In	other	words,	you	return	the	result	of	the	function	body	line
automatically.

Before:

loops/arrow/full.js

​ ​function​ formatUser(name) {
​ ​return​ ​`​${capitalize(name)}​ is logged in.`​;
​ }

After:

loops/arrow/arrow.js

​ ​const​ formatUser = name => ​`​${capitalize(name)}​ is logged in.`​;

Finally,	you	can	use	arrow	functions	as	anonymous	functions	without	needing	to
assign	them	to	variables.	This	is	how	you’ll	be	using	it	the	most	in	the	upcoming
tips,	so	it’s	worth	a	look	on	its	own.

In	JavaScript,	you	can	pass	a	function	as	an	argument	to	another	function.

http://media.pragprog.com/titles/es6tips/code/loops/arrow/full.js
http://media.pragprog.com/titles/es6tips/code/loops/arrow/arrow.js
http://media.pragprog.com/titles/es6tips/code/loops/arrow/full.js
http://media.pragprog.com/titles/es6tips/code/loops/arrow/arrow.js

Functions	are	just	another	form	of	data.	Passing	a	function	as	an	argument	is
very	common	for	functions	that	take	a	callback,	a	function	that	will	be	executed
at	the	end	of	the	logic	of	the	original	function.

Here	you	have	a	simple	function	that	will	apply	a	custom	greeting.	You’re
passing	in	a	function	to	return	a	custom	greeting	as	a	callback.	This	is	sometimes
called	injecting	a	function.

loops/arrow/full.js

​ ​function​ applyCustomGreeting(name, callback) {
​ ​return​ callback(capitalize(name));
​ }

It’s	perfectly	okay	to	create	a	named	function	and	pass	that	in.	But	often,	it’s	just
more	convenient	to	create	an	anonymous	function	when	you	call	the	original
function.	In	other	words,	you	can	call	the	function	applyCustomGreeting()	and	pass
in	an	anonymous	function	that	you	write	on	the	spot.	You	never	assign	it	to	a
variable	first.

loops/arrow/full.js

​ applyCustomGreeting(​'mark'​, ​function​ (name) {
​ ​return​ ​`Oh, hi ​${name}​!`​;
​ });

What	do	you	have	here?	You	have	a	simple	anonymous	function	that	takes	a
single	parameter	with	a	body	that’s	a	single	line	long,	and	that	single	line	is	just
a	return	statement.	This	is	exactly	the	situation	where	arrow	functions	excel.
That	anonymous	function	has	so	much	of	that	extra	fluff	you	don’t	need.

Now	that	you	have	the	tools,	try	rewriting	the	anonymous	function	as	an	arrow
function.	You’ll	get	something	like	this:

loops/arrow/arrow.js

​ applyCustomGreeting(​'mark'​, name => ​`Oh, hi ​${name}​!`​);

I	hope	you	like	the	look	of	that	because	you’re	about	to	see	a	lot	more	of	that

http://media.pragprog.com/titles/es6tips/code/loops/arrow/full.js
http://media.pragprog.com/titles/es6tips/code/loops/arrow/full.js
http://media.pragprog.com/titles/es6tips/code/loops/arrow/arrow.js

kind	of	function	as	you	work	through	array	methods.	Array	methods	and	arrow
functions	are	convenient	ways	to	update	a	collection	of	data.

In	the	next	tip,	you’ll	learn	why	array	methods	prevent	a	lot	of	mutations	and
extraneous	variables.	You’ll	start	to	see	why	they’ve	become	so	popular	in
JavaScript.

Tip	21 Write	Shorter	Loops	with	Array	Methods

In	this	tip,	you’ll	learn	to	reduce	long	loops	to	single	lines	with	array	methods.

Before	we	begin,	I	want	you	to	know	that	for	loops	and	for...of	loops	are	good.
You’ll	want	to	use	them,	and	you	should	use	them.	They’re	never	going	away.

But	you	should	use	them	less.	Why?	Well,	the	reason	is	simple:	They’re
unnecessary	clutter.	You’re	writing	modern	JavaScript,	which	means	you’re
going	for	simplicity,	readability,	and	predictability,	and	traditional	loops	don’t
meet	those	goals.	Array	methods	do.	Mastering	array	methods	is	the	fastest	way
to	improve	your	JavaScript	code.

Look	at	this	basic	loop	that	converts	an	array	of	price	strings	into	floating	point
values.

loops/methods/problem.js

​ ​const​ prices = [​'1.0'​, ​'2.15'​];
​
​ ​const​ formattedPrices = [];
​ ​for​ (​let​ i = 0; i < prices.length; i++) {
​ formattedPrices.push(parseFloat(prices[i]));

​ }

It’s	short,	sure.	The	whole	thing	takes	four	lines.	Not	bad.	But	consider	a	file	that
has	five	functions.	And	each	function	has	a	loop.	You	just	added	20	lines	to	the
file.

And	this	function	is	pretty	short	to	begin	with.	What	if	you	had	an	array	that
contained	some	non-numerical	strings	and	you	wanted	only	parsable	numbers?
Your	function	starts	to	grow.

loops/methods/problem.js

​1: ​const​ prices = [​'1.0'​, ​'negotiable'​, ​'2.15'​];
​2:
​3: ​const​ formattedPrices = [];

http://media.pragprog.com/titles/es6tips/code/loops/methods/problem.js
http://media.pragprog.com/titles/es6tips/code/loops/methods/problem.js

​4: ​for​ (​let​ i = 0; i < prices.length; i++) {
​5: ​const​ price = parseFloat(prices[i]);
​6: ​if​ (price) {
​7: formattedPrices.push(price);

​8: }

​9: }

Clutter.	Clutter.	Clutter.	Just	look	at	all	the	extra	stuff	you	need	just	to	get	the
float	prices.	On	line	3,	you	declare	a	new	collection	before	you	even	begin
working	with	the	data.	And	before	you	even	enter	the	for	loop,	you’re	facing	a
paradox.	Because	let	is	block	scoped,	you	have	to	declare	the	collection	outside
of	the	loop.	Now	you	have	an	extraneous	array	with	no	members	sitting	outside
the	loop.

Next,	you	have	to	follow	the	crazy	three-part	pattern	to	declare	the	iterator	on
line	4.	You	can	often	get	around	that	with	a	for...of	loop,	but	many	times,	you	still
need	to	declare	the	iterator.

And	finally,	you’re	mixing	two	different	concerns:	transforming	the	value	and
filtering	out	bad	values	with	your	conditional	on	line	6.	This	isn’t	a	horrible
problem,	but	it	does	hurt	predictability.	Is	the	code	standardizing	the	values	in
the	array	or	is	it	filtering	out	unwanted	values?	In	this	case,	it	does	both.

Is	it	simple?	No.	It	takes	multiple	lines	and	several	variable	declarations.

Is	it	readable?	Sure.	But	as	the	number	of	lines	grows,	the	file	decreases	in
readability.

Is	it	predictable?	No.	It	creates	an	empty	array	that	may	or	may	not	be	changed
later	because	it’s	not	a	constant	(and	yes,	you	can	push	to	a	variable	defined	with
const,	but	that’s	a	no-no).	Besides,	we	can’t	predict	at	a	glance	if	formattedPrices
will	include	everything.	In	this	case,	it	won’t.	In	the	first	case,	it	will.	There’s	no
clue	inherent	in	the	action.

Array	methods	are	a	great	way	to	get	clean	predictable	code	with	no	extraneous
data.	Some	find	them	intimidating,	but	with	a	little	effort,	you’ll	master	them
quickly	and	find	your	code	better	than	ever.

The	most	popular	array	methods	change	either	the	size	array	or	the	shape	of	the
data	in	the	array.	There’s	one	big	exception:	the	reduce()	method.	But	you’ll	get
to	that	soon	enough.

What	does	size	and	shape	even	mean?	Look	at	a	simple	array	of	members	of	a
digital	marketing	team.

​ ​const​ team = [
​ {

​ name: ​'melinda'​,
​ position: ​'ux designer'​
​ },

​ {

​ name: ​'katie'​,
​ position: ​'strategist'​
​ },

​ {

​ name: ​'madhavi'​,
​ position: ​'developer'​
​ },

​ {

​ name: ​'justin'​,
​ position: ​'manager'​
​ },

​ {

​ name: ​'chris'​,
​ position: ​'developer'​
​ }

​]

At	a	glance,	you	can	clearly	see	that	this	array	has	a	size	of	five	objects.	You	can
also	see	that	every	item	has	a	shape:	a	name	and	a	position.

Nearly	any	array	method	you	choose	will	alter	either	the	size	or	the	shape	of	the
return	array.	You	simply	need	to	decide	if	you	want	to	change	the	size	or	the
shape	(or	both).

Do	you	want	to	change	the	size	by	reducing	the	number	of	members	in	the	array
by	removing	them?	Do	you	want	to	change	the	shape	by	only	getting	the	names
of	the	team	members?	Do	you	want	to	do	both	and	get	the	names	of	just	the

developers?

You’ll	explore	all	these	in	upcoming	tips,	but	here’s	a	cheat	sheet:

map()

Action:	Changes	the	shape,	but	not	the	size.
Example:	Get	the	name	of	everyone	on	the	team.
Result:	[’melinda’, ’katie’, ’madhavi’, ’justin’, ’chris’]

	
sort()

Action:	Changes	neither	the	size	nor	the	shape,	but	changes	the	order.
Example:	Get	the	team	members	in	alphabetical	order.
Result:	[{name: ’chris’, position: ’developer’}, {name: ’justin’ ...}]

	
filter()

Action:	Changes	the	size,	but	not	the	shape.
Example:	Get	the	developers.
Result:	[{name: ’madhavi’, position: ’developer’}, {name: ’chris’,

position:’developer’}]

	
find()

Action:	Changes	the	size	to	exactly	one,	but	not	the	shape.	Does	not
return	an	array.
Example:	Get	the	manager.
Result:	{name: ’justin’, position: ’manager’}

	
forEach()

Action:	Uses	the	shape,	but	returns	nothing.
Example:	Give	all	members	a	bonus!
Result:	Melinda	gets	a	bonus!	Katie	get	a	bonus!…	(but	no	return
value).
	

reduce()

Action:	Changes	the	size	and	the	shape	to	pretty	much	anything
you	want.
Example:	Get	the	total	developers	and	non-developers.
Result:	{developers: 2, non-developers: 3}

	

Now	that	you	can	see	all	the	options	ahead,	I’m	sure	you’re	excited	to	get
started.	Well,	you	don’t	have	to	wait	any	longer!	Here’s	how	you	can	rewrite	the
for	loop	using	an	array	method.

loops/methods/methods.js

​ ​const​ prices = [​'1.0'​, ​'2.15'​];
​ ​const​ formattedPrices = prices.map(price => parseFloat(price));
​ ​// [1.0, 2.15];​

Try	evaluating	the	code	using	the	usual	criteria:	simple,	readable,	predictable.

Is	it	simple?	Yes.	Everything	fits	on	a	single	line.

Is	it	readable?	Yes.	You	can	see	the	action	on	one	line.	As	the	file	grows,	the
number	of	lines	won’t	grow	any	faster	than	the	number	of	simple	actions.

Is	it	predictable?	Yes.	The	value	is	assigned	with	const	so	you	know	it	won’t
change.	And	because	you	used	a	map,	you	know	that	you’ll	have	an	array	of
exactly	the	same	size.	At	a	glance,	you	can	tell	that	the	goal	is	to	get	the	float
values	with	parseFloat().	So	you	also	know	that	the	array	will	be	the	exact	size	as
the	original	with	only	float	values.

I	know	what	you’re	going	to	say:	You	may	have	solved	the	simple	loop,	but	what
about	the	more	complicated	loop	that	removes	false	values?

Fortunately,	array	methods	can	be	chained.	That	means	you	can	call	one	right
after	the	other	and	it	will	pass	the	result	down	to	the	next	item.

loops/methods/methods.js

​ ​const​ prices = [​'1.0'​, ​'negotiable'​, ​'2.15'​];
​ ​const​ formattedPrices = prices.map(price => parseFloat(price))
​ ​// [1.0, NaN, 2.15]​
​ .filter(price => price);

​ ​// [1.0, 2.15]​

First	you	convert	values	to	floating	point	while	keeping	the	array	the	same	size.
Then	you	change	the	size,	but	not	shape,	by	pulling	out	false	values.

http://media.pragprog.com/titles/es6tips/code/loops/methods/methods.js
http://media.pragprog.com/titles/es6tips/code/loops/methods/methods.js

The	process	is	much	easier	to	follow,	and	because	you	can	chain	them	together,
you	can	still	assign	the	resulting	array	with	const.

Do	I	have	your	interest	now?	Awesome.	Because	it’s	time	to	dive	into	writing
your	own	array	methods.	You’ll	find	you’ll	use	the	same	methods	over	and	over.
But	remember—they	each	have	their	strengths.	If	you	become	frustrated	trying
to	fit	an	action	into	a	method,	try	using	a	different	method	or	think	about	how
you	can	break	the	action	into	pieces	and	chain	it	together.

Now	that	you	have	the	foundation,	it’s	time	to	jump	in.	In	the	next	tip,	you’ll
start	changing	the	shape	of	members	of	an	array	with	map().

Tip	22 Create	Arrays	of	a	Similar	Size	with	map()

In	this	tip,	you’ll	learn	how	to	pull	out	a	subset	of	information	from	an	array
using	map().

In	the	previous	tip,	you	saw	how	you	could	rewrite	a	simple	for	loop	with	an
array	method.	Now	you’re	going	to	start	exploring	how	to	use	specific	array
methods.

You’ll	begin	with	map()	(not	to	be	confused	with	the	Map	object).	It’s	fairly
common,	and	your	new	array	receives	the	information	you	return	in	a	brand	new
array.	In	other	words,	the	return	value	is	transparent,	which	isn’t	the	case	with
other	array	methods.	Here’s	another	good	reason	to	start	with	map():	the	name
“map”	isn’t	very	expressive.	What	does	that	even	mean?	When	I	first	learned	it,
I	needed	a	fair	amount	of	experience	before	I	could	see	and	understand	a	map
function	at	a	glance.

Your	goal	is	to	get	an	idea	of	how	most	array	methods	work.	And	your
secondary	goal	is	to	gain	enough	experience	with	map()	that	you’ll	start	to	see
why	it’s	one	of	the	most	popular	methods.

Start	with	a	simple	map	function.	A	map	function	takes	a	piece	of	information
from	an	input	array	and	returns	something	new.	Sometimes	it	returns	part	of	the
information.	Other	times,	it	transforms	the	information	and	returns	the	new
value.	That	means	it	can	take	a	single	property	from	an	array,	or	it	can	take	a
value	in	an	array	and	return	an	altered	version.	For	example,	it	can	return	an
array	with	all	the	values	capitalized	or	converted	from	integers	to	currency.

The	easiest	example	is	pulling	specific	information	from	an	object.	Let’s	start
with	a	collection	of	musicians.

loops/map/map.js

​ ​const​ band = [
​ {

​ name: ​'corbett'​,

http://media.pragprog.com/titles/es6tips/code/loops/map/map.js

​ instrument: ​'guitar'​,
​ },

​ {

​ name: ​'evan'​,
​ instrument: ​'guitar'​,
​ },

​ {

​ name: ​'sean'​,
​ instrument: ​'bass'​,
​ },

​ {

​ name: ​'brett'​,
​ instrument: ​'drums'​,
​ },

​];

You	have	the	band,	but	what	you	really	want	is	just	a	list	of	instruments	the	band
members	play.

Every	array	method	takes	a	callback	function	that	you’ll	apply	to	each	member
of	the	array.	These	functions	are	very	simple	by	design.	They	can	only	take	one
argument:	the	individual	member	of	an	array	(the	reduce()	method	is	an	exception
that	we’ll	discuss	later).

Before	you	dive	into	building	a	map	function,	create	a	basic	for	loop	to	use	as	a
comparison.	Once	you	have	that	loop,	you’ll	start	slowly	refactoring	it	until	you
get	to	a	working	map	function.	This	will	help	you	gain	an	understanding	for	how
a	map()	function	is	just	a	simplified	loop.

Okay,	here’s	a	simple	for	loop	to	get	the	band	instruments:

loops/map/full.js

​1: ​const​ instruments = [];
​2: ​for​ (​let​ i = 0; i < band.length; i++) {
​3: ​const​ instrument = band[i].instrument;
​4: instruments.push(instrument);

​5: }

Now	it’s	time	to	start	refactoring.	The	first	thing	to	do	is	to	combine	line	3	and
line	4.	Instead	of	getting	the	instrument	and	passing	it	to	the	push	method,	you’ll

http://media.pragprog.com/titles/es6tips/code/loops/map/full.js

get	the	instrument	as	part	of	the	argument	for	push().	To	keep	things	readable,	put
the	logic	to	retrieve	the	instrument	into	a	separate	function.

You’ll	get	a	function	that	looks	like	this:

loops/map/full.js

​ ​function​ getInstrument(member) {
​ ​return​ member.instrument;
​ }

Sure	it	doesn’t	shorten	things	up	much,	but	it	helps.	And	more	important,	you’ve
made	a	huge	step	by	separating	the	iterator	band[i]	and	the	information	you	want
from	the	individual	member:	member.instrument.	Remember	that	with	map()

methods,	you	want	to	think	about	the	individual	pieces,	not	the	whole	array.

Here’s	how	your	new	method	fits	into	the	current	for	loop:

loops/map/full.js

​ ​const​ instruments = [];
​ ​for​ (​let​ i = 0; i < band.length; i++) {
​ instruments.push(getInstrument(band[i]));

​ }

At	this	point,	you’ve	pretty	much	written	your	map	function.

With	map(),	there’s	no	need	to	set	up	a	return	array—that’s	included	as	part	of	the
array	method.	There’s	also	no	need	to	push	information.	map()	pushes	the	result
of	the	function	into	its	own	return	array.

The	only	thing	you	need	for	map()	is	a	function	that	takes	each	item	as	an
argument	and	returns	something	to	put	in	the	return	array.	What	do	you	know—
you	already	have	that	written	out!

Most	of	the	time,	you’ll	just	write	an	anonymous	function	for	an	array	method,
but	that’s	not	a	requirement.	You	can	name	a	function	if	you	want	(and
sometimes	that’s	a	smart	move	for	testing	purposes).	That	means	you	can	reuse

http://media.pragprog.com/titles/es6tips/code/loops/map/full.js
http://media.pragprog.com/titles/es6tips/code/loops/map/full.js

the	getInstrument()	function	you	already	have	and	pass	it	directly	to	map().	At	this
point,	you	can	abandon	your	for	loop.

loops/map/map.js

​ ​function​ getInstrument(member) {
​ ​return​ member.instrument;
​ }

​
​ ​const​ instruments = band.map(getInstrument);
​ ​// ['guitar', 'guitar', 'bass', 'drums']​

Look	at	what	you’ve	accomplished.	You	removed	excess	code	while	keeping
things	more	transparent:

You	know	you’re	going	to	get	an	array.	You	don’t	need	to	define	one	ahead
of	time.

You	know	it	will	be	the	same	size	as	the	original	array.

You	know	it	will	contain	the	instruments	and	nothing	else.

Predictable	and	simple.

If	you	understand	this,	congratulations—you	understand	most	array	methods.	All
array	methods	are	just	methods	that	take	a	callback	that	act	on	each	member	of
an	array.	The	type	of	array	method	determines	what	happens	with	the	return
value	of	that	function.	But	writing	the	function	itself	is	very	similar	for	each
array	method.

Now	that	you’ve	refactored	your	for	loop	to	a	map	method,	you	can	take	the	next
step	and	convert	the	named	function	to	an	anonymous	function.	Remember	those
arrow	functions	you	just	learned?	Now	is	a	perfect	time	to	use	them.

You’re	taking	a	single	argument,	so	you	don’t	need	parentheses.	And	the	body	of
the	function	is	only	one	line	long,	so	you	don’t	need	curly	braces	or	a	return
statement.	Go	ahead	and	try	writing	it	out.	These	functions	become	much	easier
with	practice.

http://media.pragprog.com/titles/es6tips/code/loops/map/map.js

loops/map/map.js

​ ​const​ instruments = band.map(member => member.instrument);
​ ​// ['guitar', 'guitar', 'bass', 'drums']​

map()	is	fairly	simple,	but	it’s	flexible.	You	can	use	it	for	anything—yes,	anything
—when	the	goal	is	to	have	an	array	of	the	same	size.	Up	to	now,	you’ve	only
been	elevating	data	from	an	array	of	objects.	But	you	can	also	transform
information,	as	you	saw	when	you	converted	strings	to	values	with	parseInt()	in
the	previous	tip.

In	the	next	tip,	you’ll	see	an	array	method	that	does	something	a	little	different.
You’ll	maintain	the	shape	of	the	array	items,	but	you’ll	return	only	a	subset	by
performing	a	true	or	false	check	on	each	item.

http://media.pragprog.com/titles/es6tips/code/loops/map/map.js

Tip	23 Pull	Out	Subsets	of	Data	with	filter()	and	find()

In	this	tip,	you’ll	learn	how	to	change	the	size	of	an	array	while	retaining	the
shape	of	the	items.

In	the	previous	tip,	you	created	a	new	array	by	pulling	out	only	the	relevant
information	from	the	original	array.	You’ll	likely	encounter	situations	where	you
want	to	keep	the	shape	of	the	data,	but	you	only	want	a	subset	of	the	total	items.
Maybe	you	only	want	users	that	live	in	a	certain	city,	but	you	still	need	all	their
information.	The	array	method	filter()	will	perform	this	exact	action.	Unlike	the
map()	method,	you	aren’t	changing	any	information	in	the	array—you’re	just
reducing	what	you	get	back.

As	an	example,	let’s	filter	a	simple	array	of	strings.	You	have	a	team	of	people,
and	you	want	only	people	named	some	form	of	Dave	(David,	Davis,	Davina,	and
so	on).	In	my	hometown,	there’s	a	sandwich	shop	that	gives	out	a	free	sandwich
once	a	year	to	anyone	named	Joe/Joseph/Joanna,	so	being	able	to	filter	people	by
name	variant	is	a	crucial	task.	You	wouldn’t	want	to	deprive	your	Daves	or	Joes
of	a	delicious	lunch.

Start	with	a	list	of	coworkers	that	you	want	to	reduce	down.

loops/filter/full.js

​ ​const​ team = [
​ ​'Michelle B'​,
​ ​'Dave L'​,
​ ​'Dave C'​,
​ ​'Courtney B'​,
​ ​'Davina M'​,
​];

You’ll	need	to	check	to	see	if	the	string	contains	a	form	of	“Dav”	using	the
match()	method	on	a	string.	This	method	will	return	an	array	of	information	if	the
string	matches	a	regular	expression	matches	and	null	if	there’s	no	match.	In	other
words,	match()	will	return	a	truthy	value,	an	array,	if	there’s	a	regex	match	and	a

http://media.pragprog.com/titles/es6tips/code/loops/filter/full.js

falsy	value,	null,	if	there	is	none.

​ ​'Dave'​.match(​/Dav/​);
​ ​// ['Dav', index: 0, input: 'Dave']​
​
​ ​'Michelle'​.match(​/Dav/​);
​ ​// null​

Traditionally,	you’d	solve	the	problem	with	a	for	loop.	And	as	you’ve	probably
guessed	by	now,	the	solution	isn’t	pretty.

loops/filter/full.js

​ ​const​ daves = [];
​ ​for​ (​let​ i = 0; i < team.length; i++) {
​ ​if​ (team[i].match(​/Dav/​)) {
​ daves.push(team[i]);

​ }

​ }

A	filter	function	can	do	the	exact	same	thing	in	a	single	line.	Like	the	map()

method,	you	call	the	method	on	an	array	and	you	get	an	array	back.

There’s	one	trick.	Unlike	the	map()	method,	the	function	you	pass	into	the	filter()

method	must	return	a	truthy	value.	When	you	iterate	over	each	item,	if	it	returns
something	truthy,	it’s	retained.	If	it	doesn’t	return	a	truthy	value,	it	isn’t	retained.
See	why	it’s	important	to	have	a	solid	grasp	of	truthiness	(the	programmer	kind,
not	the	Colbert	kind).	Say	you	want	to	get	the	passing	scores	from	an	array.	The
filter	function	would	take	each	score	and	say	whether	it	was	above	the	threshold
(60)	and	keeps	it	if	it	is.

loops/filter/filter.js

​ ​const​ scores = [30, 82, 70, 45];
​ ​function​ getNumberOfPassingScores(scores) {
​ ​const​ passing = scores.filter(score => score > 59);
​ ​// [70, 82]​
​ ​return​ passing.length;
​ }

​ ​// 2​

http://media.pragprog.com/titles/es6tips/code/loops/filter/full.js
http://media.pragprog.com/titles/es6tips/code/loops/filter/filter.js

The	function	returns	either	true	or	false,	but	the	final	array	contains	the	actual
values	of	82	and	70.	The	function	checked	each	score	one	at	a	time,	retaining	the
score	(not	the	return	value)	if	the	return	value	was	true.	Note	also,	the	return
array	preserves	the	order	of	the	original.

Most	important,	filter()	will	always	return	an	array,	even	if	nothing	matches	the
values.	If	you	wanted	to	see	how	many	perfect	scores	you’d	get,	you	may	be	a
little	disappointed.	But	you	can	still	confidently	call	the	length	property	knowing
you’ll	have	an	array	of	some	sort.	Simple	and	predictable.

loops/filter/filter.js

​ ​function​ getPerfectScores(scores) {
​ ​const​ perfect = scores.filter(score => score === 100);
​ ​// []​
​ ​return​ perfect.length;
​ }

​ ​// 0​

To	return	to	your	hungry	Daves:	In	the	previous	anonymous	functions	you	pass
to	filter(),	you’re	returning	a	Boolean—true	or	false—while	in	this	one,	you	want
to	check	a	string.	Because	match()	returns	truthy	and	falsy	values,	you	can	use	it
directly	in	the	filter	function.

Here’s	your	simplified	loop:

loops/filter/filter.js

​ ​const​ daves = team.filter(member => member.match(​/Dav/​));

Filter	is	so	easy	to	use	that	there’s	not	much	left	to	say.	Still,	there’s	one	variation
that	can	be	very	useful.

On	occasion,	you	might	be	lucky	enough	to	know	that	there	will	be	at	most	one
match	(or	you’re	only	interested	in	one	match)	in	your	array.	In	that	case,	you
can	use	a	method	that’s	similar	to	filter()	called	find().	The	find()	method	takes	a
function	as	argument,	a	function	that	returns	a	truthy	or	falsy	value,	and	returns
only	the	first	result	that	evaluates	to	true.	If	there’s	no	true	value,	it	returns

http://media.pragprog.com/titles/es6tips/code/loops/filter/filter.js
http://media.pragprog.com/titles/es6tips/code/loops/filter/filter.js

undefined.

This	is	great	when	you	know	there	will	only	be	one	value—looking	for	an	entry
with	a	specific	ID,	for	example.	Or	if	you	want	the	first	instance	of	a	particular
item—getting	the	last	update	to	a	page	by	a	particular	user	on	a	sorted	array.

Here’s	a	good	way	to	think	about	this:	If	you’d	normally	use	a	break	statement	in
a	loop,	the	action	is	a	good	candidate	for	find().

Let’s	say	you’re	writing	a	scheduling	app	for	library	instructors.	Each	instructor
works	in	several	locations,	but	no	location	has	more	than	one	instructor.

Your	array	of	instructors	would	look	like	this:

loops/filter/full.js

​ ​const​ instructors = [
​ {

​ name: ​'Jim'​,
​ libraries: [​'MERIT'​],
​ },

​ {

​ name: ​'Sarah'​,
​ libraries: [​'Memorial'​, ​'SLIS'​],
​ },

​ {

​ name: ​'Eliot'​,
​ libraries: [​'College Library'​],
​ },

​];

If	you	were	to	write	a	for	loop	to	check	it,	you’d	go	through	each	one	and	break
when	you	get	to	the	correct	result.

loops/filter/full.js

​ ​let​ memorialInstructor;
​ ​for​ (​let​ i = 0; i < instructors.length; i++) {
​ ​if​ (instructors[i].libraries.includes(​'Memorial'​)) {
​ memorialInstructor = instructors[i];

​ ​break​;

http://media.pragprog.com/titles/es6tips/code/loops/filter/full.js
http://media.pragprog.com/titles/es6tips/code/loops/filter/full.js

​ }

​ }

This	loop	will	check	the	first	instructor	and	see	that	he	doesn’t	meet	the	criteria.
The	second	instructor	does	meet	the	criteria,	saving	the	incredible	labor	of
looking	at	the	third	instructor.	Of	course,	in	real-world	data,	there	may	be
hundreds	or	even	thousands	of	results.	Stopping	at	the	first	instance	is	a	nice
little	optimization	to	avoid	iterating	over	the	whole	set.

How	does	this	translate	into	a	find()	function?	It’s	simple:	The	if	block	contains
everything	you	need	to	change	this	into	a	find()	function.	Using	the	ideas	from
filter(),	try	to	write	it	out.

You	probably	came	up	with	something	like	this:

loops/filter/filter.js

​ ​const​ librarian = instructors.find(instructor => {
​ ​return​ instructor.libraries.includes(​'Memorial'​);
​ });

Once	again,	you’ve	reduced	several	lines	down	to	a	simple	expression	(could	be
a	one-liner,	but	it	runs	off	the	printed	page!)	while	simultaneously	removing	an
unstable	let	with	a	predictable	const.	The	only	down-side	to	using	find()	is	that
you	can’t	be	absolutely	sure	of	the	return	value.	If	there’s	no	match,	you	get
undefined,	while	with	filter()	you’d	get	an	empty	array	if	there	were	no	matches.
But	using	your	knowledge	of	short	circuiting,	you	can	always	add	an	or
statement	combined	with	a	default.

​ ​const​ image = [
​ {

​ path: ​'./me.jpg'​,
​ profile:​false​
​ }

​];

​ ​const​ profile = images.find(image => image.profile) || {path:
​ ​'./default.jpg'​};

There	may	be	one	thing	bothering	you	about	that	find()	function:	You	had	to	hard

http://media.pragprog.com/titles/es6tips/code/loops/filter/filter.js

code	the	name	of	the	library,	Memorial.	The	challenge	with	an	array	function	is
that	it	takes	a	single	argument,	the	item	being	checked.	This	is	a	problem	if	you
want	to	add	a	second	parameter,	a	variable	to	check	the	item	against.

What	do	you	do	if	you	want	to	check	against	another	location?	Fortunately,	you
don’t	need	to	write	a	function	for	every	library.	Rather,	you’d	use	a	technique
called	currying	to	reduce	the	number	of	arguments	down	to	one.	You’ll	see	this	a
lot	more	in	Tip	34,	​	Maintain	Single	Responsibility	Parameters	with	Partially
Applied	Functions	​,	but	it’s	one	of	my	favorite	techniques,	so	I’ll	go	ahead	and
give	you	a	taste.

loops/filter/filter.js

​ ​const​ findByLibrary = library => instructor => {
​ ​return​ instructor.libraries.includes(library);
​ };

​ ​const​ librarian = instructors.find(findByLibrary(​'MERIT'​));
​
​ ​// {​
​ ​// name: 'Jim',​
​ ​// libraries: ['MERIT'],​
​ ​// }​

But	don’t	get	too	far	ahead.	There	are	more	array	methods	to	explore.

In	the	next	tip,	you’ll	break	the	pattern	of	returning	a	new	array	by	using	forEach()

to	perform	an	action	on	each	array	without	getting	any	return	values.

http://media.pragprog.com/titles/es6tips/code/loops/filter/filter.js

Tip	24 Apply	Consistent	Actions	with	forEach()

In	this	tip,	you’ll	learn	how	to	apply	an	action	to	each	member	of	an	array	with
forEach().

Things	are	going	to	get	a	little	different	in	this	tip.	The	two	array	methods
you’ve	explored	so	far	return	a	new,	altered	array.	You	either	changed	the	shape
by	pulling	out	a	subset	of	information	on	each	item,	or	you	changed	the	size	by
returning	only	part	of	the	total	number	of	items.

In	this	tip,	you	aren’t	changing	the	input	array	at	all.	Instead,	you’re	going	to
perform	an	action	on	every	member.	This	is	common	when	you	finally	get	an
array	to	the	size	and	shape	you	want	and	then	you	want	to	do	something	with
that	data.

As	an	example,	say	you	have	a	club	with	a	group	of	members	and	you	want	to
write	a	script	to	send	an	invitation	to	every	club	member	when	the	next	meeting
is	scheduled.	You	want	a	function	that	takes	each	member	individually	so	that
you	can	use	other	information—name,	email,	and	so	on—to	customize	the
message.

Here’s	a	list	of	members:

loops/forEach/forEach.js

​ ​const​ sailingClub = [
​ ​'yi hong'​,
​ ​'andy'​,
​ ​'darcy'​,
​ ​'jessi'​,
​ ​'alex'​,
​ ​'nathan'​,
​];

Don’t	worry	about	the	implementation	details	of	the	email	function.	All	you
need	to	know	is	that	it	takes	a	member	object.	As	always,	you	could	easily
achieve	your	goal	with	a	simple	for	loop.

http://media.pragprog.com/titles/es6tips/code/loops/forEach/forEach.js

loops/forEach/full.js

​ ​for​ (​let​ i = 0; i < sailingClub.length; i++) {
​ sendEmail(sailingClub[i]);

​ }

You	really	can’t	get	much	simpler	than	that.	Unlike	other	methods,	forEach()	isn’t
valuable	because	it	makes	your	code	simpler.	It’s	valuable	because	it’s
predictable	and	because	it	works	like	other	array	methods	so	it	can	be	chained
together	(you’ll	see	more	about	that	in	the	next	tip)	with	other	methods.

The	forEach()	method,	like	all	you’ve	seen	before,	takes	a	function	that	takes	a
single	argument:	the	individual	member	of	the	array.	Unlike	the	other	methods,
the	return	statement	(whether	explicitly	or	implicitly	defined)	does	absolutely
nothing.	Any	action	you	take	must	affect	something	outside	the	function.
Changing	something	outside	the	scope	of	the	function	is	called	a	side	effect,	and
though	it’s	not	horrible,	it	should	be	exercised	with	caution.

In	other	words,	if	you	use	forEach()	to	transform	some	names	to	uppercase,	you’d
get	no	results.	This	method	does	nothing	unless	you	have	a	side	effect	of	some
sort.	(By	the	way,	this	is	why	you	should	always	test	your	code.)	This	code
would	effectively	do	nothing:

loops/forEach/forEach.js

​ ​const​ names = [​'walter'​, ​'white'​];
​ ​const​ capitalized = names.forEach(name => name.toUpperCase());
​
​ capitalized;

​ ​// undefined​

You	could	have	a	container	array	to	collect	the	change	result,	but	by	now,	you
know	that’s	bad	because	it	mutates	the	capitalized	array.	Besides,	that	isn’t	even
necessary	because	map()	does	the	same	thing.

loops/forEach/forEach.js

​ ​const​ names = [​'walter'​, ​'white'​];
​ ​let​ capitalized = [];

http://media.pragprog.com/titles/es6tips/code/loops/forEach/full.js
http://media.pragprog.com/titles/es6tips/code/loops/forEach/forEach.js
http://media.pragprog.com/titles/es6tips/code/loops/forEach/forEach.js

​ names.forEach(name => capitalized.push(name.toUpperCase()));

​
​ capitalized;

​ ​// ['WALTER', 'WHITE'];​

So	when	should	you	use	forEach()?	The	best	time	is	precisely	when	you	want	to
perform	an	action	outside	the	scope	of	the	function.	In	other	words,	when	you
know	you	must	cause	a	side	effect,	you	should	use	forEach().

As	it	happens,	that’s	exactly	what	you’re	doing	when	you	send	an	invitation.
You’re	causing	a	side	effect—sending	an	email—but	you	aren’t	mutating	any
data	(you	assume).

Here’s	the	updated	action:

loops/forEach/forEach.js

​ sailingClub.forEach(member => sendEmail(member));

Three	lines	down	to	one	line	isn’t	bad,	but	it’s	certainly	no	cause	for	celebration.

So	what’s	the	point?	The	point	is	that	you	do	get	some	predictability.	When	you
see	a	forEach(),	you	know	there’s	going	to	be	a	side	effect.	And	as	you	learned	in
Tip	1,	​	Signal	Unchanging	Values	with	const	​,	if	you	can’t	be	certain	of
something,	the	next	best	option	is	knowing	that	there	might	be	instability.

Even	with	that,	the	best	reason	to	keep	forEach()	in	your	toolbox	is	that	you	can
combine	it	with	other	array	methods	in	a	process	called	chaining.	That	means
that	you	can	perform	multiple	actions	on	the	same	array	without	needing	to	save
the	output	to	variables	each	time.

In	the	next	tip,	you’ll	use	chaining	to	combine	several	actions	into	one	process.

http://media.pragprog.com/titles/es6tips/code/loops/forEach/forEach.js

Tip	25 Combine	Methods	with	Chaining

In	this	tip,	you’ll	learn	to	perform	multiple	array	methods	with	chaining.

Chaining	is	an	old	concept	in	programming.	You	can	find	it	in	many	object-
oriented	languages.[20]	Like	a	lot	of	programming	concepts,	it	actually	sounds
more	complicated	than	it	is	in	practice.

Here’s	a	quick	definition:	Chaining	is	immediately	calling	a	method	on	a
returned	object	(which	in	some	cases	is	the	original	object)	without	reassigning
the	value	first.

Okay,	now	forget	that	definition.	For	our	purposes,	chaining	means	that	you	can
call	several	array	methods	in	a	row	(as	long	as	you	get	an	array	back).	It’s	a
convenient	way	to	perform	several	actions	in	a	very	clear	manner.

Think	back	to	the	last	example:	sending	notifications	to	club	members.	The
example	was	simplified	(as	examples	always	are).	An	actual	array	of	club
members	would	have	a	lot	more	data.	It	would	have	member	status,	email
addresses,	mailing	addresses,	position,	and	so	on.

To	keep	things	simple,	let’s	add	just	two	fields:	active	and	email.

loops/chain/chain.js

​ ​const​ sailors = [
​ {

​ name: ​'yi hong'​,
​ active: ​true​,
​ email: ​'yh@yhproductions.io'​,
​ },

​ {

​ name: ​'alex'​,
​ active: ​true​,
​ email: ​''​,
​ },

​ {

​ name: ​'nathan'​,
​ active: ​false​,

http://media.pragprog.com/titles/es6tips/code/loops/chain/chain.js

​ email: ​''​,
​ },

​];

There’s	not	much	more	information,	but	you	have	enough	that	you	can	be	more
sophisticated	about	whom	you	email.	First,	you	can	filter	out	all	the	inactive
members—they	won’t	want	an	invitation.

loops/chain/full.js

​ ​const​ active = sailors.filter(sailor => sailor.active);
​
​ ​// [​
​ ​// {​
​ ​// name: 'yi hong',​
​ ​// active: true,​
​ ​// email: 'yh@yhproductions.io',​
​ ​// },​
​ ​// {​
​ ​// name: 'alex',​
​ ​// active: true,​
​ ​// email: '',​
​ ​// },​
​ ​//];​

Next,	you	can	normalize	the	email	addresses.	If	members	have	an	email	set,	use
that.	Otherwise,	use	their	default	club	email	address.

loops/chain/full.js

​ ​const​ emails = active.map(member => member.email
​ || ​`​${member.name}​@wiscsail.io`​);
​
​ ​// ['yh@yhproductions.io', 'alex@wiscsail.io']​

Finally,	after	the	inactive	members	are	removed	and	the	email	addresses	are
normalized,	you	can	call	sendInvitation()	with	the	correct	member	information.

loops/chain/full.js

​ emails.forEach(sailor => sendEmail(sailor));

Notice	that	you	assigned	the	result	to	a	variable	each	time.	With	chaining,	that’s

http://media.pragprog.com/titles/es6tips/code/loops/chain/full.js
http://media.pragprog.com/titles/es6tips/code/loops/chain/full.js
http://media.pragprog.com/titles/es6tips/code/loops/chain/full.js

not	necessary.	Instead,	you	can	remove	the	intermediate	step	of	assigning	to	a
variable	by	calling	a	method	directly	on	the	result.

Because	filter()	always	returns	an	array	(even	if	it’s	an	empty	array),	you	know
that	you	can	call	any	other	array	method	on	it.	Similarly,	because	map()	always
returns	an	array,	you	can	call	another	array	method	on	it.	Crucially,	though,	the
final	method—forEach()—doesn’t	return	an	array,	so	you	can’t	call	another
method.	In	fact,	it	returns	nothing,	so	you	can’t	even	assign	the	output	of	the
whole	group	of	actions	to	a	variable.

Removing	the	intermediate	steps,	you	get	an	identical	set	of	actions	without	any
variable	declarations.

loops/chain/chain.js

​ sailors

​ .filter(sailor => sailor.active)

​ .map(sailor => sailor.email || ​`​${sailor.name}​@wiscsail.io`​)
​ .forEach(sailor => sendEmail(sailor));

Now	you’re	sending	an	email	to	the	preferred	email	address	of	only	active
members.	The	best	part	is	that	because	each	array	method	does	one	very	specific
thing,	you	can	understand	the	code	at	a	glance.

The	only	downside	to	chaining	array	methods	is	that	each	time	you	call	a	new
method,	you’re	iterating	over	the	whole	returned	array.	Instead	of	three	iterations
—one	for	each	member—if	you	performed	all	actions	with	a	for	loop,	you’re
performing	seven	iterations	(three	on	the	original	array	plus	two	more	when
mapping	plus	two	more	when	calling	forEach()).	Don’t	pay	too	much	attention	to
this.	It’s	not	terribly	important	unless	you’re	working	with	large	data	sets.
Sometimes	the	minor	performance	increase	is	worth	extra	readability.
Sometimes	it’s	not.	It’s	just	something	to	keep	in	mind.

There	are	a	few	tricks	to	chaining	methods:	First,	notice	how	there	are	no
semicolons	until	the	final	statement.	The	whole	action	is	like	a	sentence.	It’s	not
over	until	you	hit	the	period,	even	when	it	spans	multiple	lines.

http://media.pragprog.com/titles/es6tips/code/loops/chain/chain.js

This	is	one	reason	that	many	style	guides	still	prefer	semicolons	even	though
they	aren’t	strictly	necessary	in	JavaScript.	If	you	mess	up	and	include	a
semicolon	earlier,	you’ll	get	a	SyntaxError	so	it’s	unlikely	you’ll	get	too	far	with
that	mistake.

More	important,	order	does	matter.	You	couldn’t,	for	example,	flip	the	filter()	and
the	map()	methods	because	the	map()	method	would	remove	the	property	the
filter()	method	would	need	to	check.	With	this	example	at	least,	that	would	be
very	bad.	You	wouldn’t	get	an	error	because	sailor.active	would	return	undefined

for	everything.	The	resulting	array	would	be	empty,	which	isn’t	an	error.	In	other
words,	syntactically,	everything	makes	sense	even	if	you	provide	an	empty	array
to	forEach().

This	is	why	it	always	pays	to	have	a	test.	Check	out	the	test	suite	for	this	book	to
see	examples.[21]

Chaining	isn’t	limited	to	array	methods,	but	because	arrays	have	so	many
methods	that	return	arrays,	they’re	very	convenient	examples	to	explore.	You’ll
see	more	chaining	as	you	continue.	It	pops	up	again	and	again.	You	may
remember	seeing	using	it	with	the	Map	object	in	Tip	13,	​	Update	Key-Value	Data
Clearly	with	Maps	​	when	you	chained	multiple	set()	methods.	And	you’ll	see	it
again	when	you	work	with	promises	in	Tip	43,	​	Retrieve	Data	Asynchronously
with	Promises	 ​.	It’s	a	simple	but	important	concept	that’s	worth	reviewing
several	times.

In	the	next	tip,	you’ll	go	back	and	look	at	one	more	array	method,	reduce().	It’s
the	most	flexible	and	interesting,	but	it’s	also	the	most	unpredictable.

Tip	26 Transform	Array	Data	with	reduce()

In	this	tip,	you’ll	learn	how	use	reduce()	to	generate	a	new	array	with	a	different
size	and	shape.

You’re	probably	tired	of	hearing	me	say	that	good	code	is	predictable.	But	it’s
true.	Array	methods	are	wonderful	because	you	have	an	idea	of	the	result	at	a
glance	without	even	understanding	the	callback	function.	Not	only	that,	but	array
methods	are	easier	to	test	and,	as	you’ll	see	in	Tip	32,	​Write	Functions	for
Testability	​,	it’s	much	easier	to	write	testable	code	than	it	is	to	add	tests	to
complex	code.

Still,	there	are	times	when	you	need	to	create	a	new,	radically	different	piece	of
data	from	an	array.	Maybe	you	need	to	get	a	count	of	certain	items.	Maybe	you
want	to	transform	the	array	to	a	different	structure,	such	as	an	object.	That’s
where	reduce()	comes	in.	The	reduce()	method	is	different	from	other	array
methods	in	several	ways,	but	the	most	important	is	that	it	can	change	both	the
size	and	the	shape	of	data	(or	just	one	or	just	the	other).	And	it	doesn’t
necessarily	return	an	array.

As	usual,	it’s	much	easier	to	see	than	to	explain.	Here’s	a	reduce	function	that
returns	the	exact	same	array.	It’s	useless,	but	it	lets	you	see	how	a	reduce()

function	is	built.

loops/reduce/reduce.js

​1: ​const​ callback = ​function​ (collectedValues, item) {
​2: ​return​ [...collectedValues, item];
​3: };

​4:
​5: ​const​ saying = [​'veni'​, ​'vedi'​, ​'veci'​];
​6: ​const​ initialValue = [];
​7: ​const​ copy = saying.reduce(callback, initialValue);

What’s	going	on	here?	To	start,	notice	that	you	pass	two	arguments	into	the
reduce()	callback	function	on	line	1:	the	return	item	(called	collectedValues)	and
the	individual	item.	The	return	value,	sometimes	called	the	carry,	is	what	makes

http://media.pragprog.com/titles/es6tips/code/loops/reduce/reduce.js

reduce()	unique.	It	can	range	from	an	integer	to	a	collection	such	as	Set.

The	reduce()	method	itself	on	line	7	takes	two	values:	the	callback	function	and
the	initial	value.	Although	the	initial	value	is	optional,	it’s	usually	included
because	you	need	something	to	hold	the	return	values	and,	as	a	bonus,	it	gives
other	developers	a	clue	about	what	they’ll	get	back.	The	trickiest	part	of	a	reduce
method	is	that	the	callback	function	must	always	return	the	carry	item.

It’s	really	worth	reading	the	documentation	to	see	more	examples,	but	many	of
those	examples	are	abstract	ideas	using	numbers.[22]	Consider	a	situation	that’s
much	more	common:	getting	the	unique	values	from	an	array.

You	probably	remember	that	this	is	a	problem	you	already	solved	with	Set	in	Tip
16,	​	Keep	Unique	Values	with	Set	 ​.	You’re	absolutely	correct,	but	you’re	going	to
expand	on	the	solution	to	get	several	sets	of	unique	values.

As	in	the	previous	example,	you’re	going	to	get	a	list	of	unique	values	from	a
collection	of	dogs	for	an	adoption	website.

loops/reduce/reduce.js

​ ​const​ dogs = [
​ {

​ name: ​'max'​,
​ size: ​'small'​,
​ breed: ​'boston terrier'​,
​ color: ​'black'​,
​ },

​ {

​ name: ​'don'​,
​ size: ​'large'​,
​ breed: ​'labrador'​,
​ color: ​'black'​,
​ },

​ {

​ name: ​'shadow'​,
​ size: ​'medium'​,
​ breed: ​'labrador'​,
​ color: ​'chocolate'​,
​ },

http://media.pragprog.com/titles/es6tips/code/loops/reduce/reduce.js

​];

If	you	want	to	see	a	few	approaches	using	a	for	loop	or	Set	directly,	flip	back	to
that	earlier	tip.	For	now,	you’ll	jump	right	into	getting	the	values	with	the
reduce()	method.

If	all	you	wanted	was	the	set	of	unique	colors,	you’d	write	a	reduce	method	that
loops	through	the	objects	checking	the	colors	and	saving	the	unique	values.

loops/reduce/reduce.js

​1: ​const​ colors = dogs.reduce((colors, dog) => {
​2: ​if​ (colors.includes(dog.color)) {
​3: ​return​ colors;
​4: }

​5: ​return​ [...colors, dog.color];
​6: }, []);

When	you	see	a	reduce	method,	the	best	place	to	start	is	at	the	end	so	you	can
see	what	kind	of	item	you’ll	end	up	with.	Remember	that	it	can	be	anything—	a
string,	a	Boolean,	an	object.	Make	no	assumptions.

If	you	look	at	line	6,	you	can	see	that	you’re	initializing	the	function	with	an
empty	array.

The	next	trick	to	grasping	a	reduce	function	is	understanding	what	the	name	of
that	initial	value	is	after	it	enters	the	function.	Generically,	it’s	often	called	a
“carry,”	but	you	can	name	it	whatever	you	want	because	it’s	just	a	parameter.	In
this	function	on	line	1,	you	name	it	something	a	little	more	revealing:	colors.

Without	going	any	further	into	the	body	of	the	function,	you	already	know	that
you’ll	be	getting	back	another	array.	That’s	valuable	information,	and	it’s	the
reason	you	should	always	start	with	an	explicit	carry	value.	You	want	the	next
developer	to	have	as	many	clues	as	possible.

You	have	to	be	careful,	though,	because	if	you	forget	to	return	the	carry	value,	it
will	effectively	disappear.	If	you	were	to	run	the	following	function,	you’d	get	a
TypeError: Cannot read property ’includes’ of undefined.	When	you	forget	to	return	the

http://media.pragprog.com/titles/es6tips/code/loops/reduce/reduce.js

carry	on	line	5,	the	function	will	return	undefined.	This	means	the	parameter
colors	is	now	undefined	and	doesn’t	have	an	includes()	method.

loops/reduce/mistake.js

​1: ​const​ colors = dogs.reduce((colors, dog) => {
​2: ​if​ (colors.includes(dog.color)) {
​3: ​return​ colors;
​4: }

​5: [...colors, dog.color];

​6: }, []);

Moving	in	to	the	body	of	the	initial	unique	colors	function,	you	start	to	see	the
value	of	reduce()	over	other	methods.	On	line	2,	you	check	to	see	if	the	value	is
already	in	the	array.	If	it	is,	no	need	to	add	it.	Return	the	collection	so	far.	If	it’s	a
new	value,	then	you	add	it	to	the	other	colors	on	line	5	and	return	the	updated
array.

Let	that	sink	in	a	moment.	You’re	doing	two	things:	You’re	returning	a	subset	of
data	(changing	the	size)	and	you’re	returning	modified	data	(changing	the
shape).	More	important,	you’re	changing	the	size	based	on	information
contained	inside	the	array	itself.	That’s	not	something	you	can	do	with	filter()

or	find().

Now	here’s	the	interesting	part.	Because	you	can	change	both	the	size	and	the
shape	of	the	data,	you	can	recreate	any	other	array	method	with	reduce().

As	a	quick	example,	if	you	wanted	to	just	get	the	colors	of	the	dogs,	you	could
use	the	map()	method	like	this:

loops/reduce/map.js

​ ​const​ colors = dogs.map(dog => dog.color);

You	could	get	the	same	value	with	a	reduce	function	that	takes	an	empty	array	to
start	and	returns	the	array	on	every	iteration.

loops/reduce/reduce.js

http://media.pragprog.com/titles/es6tips/code/loops/reduce/mistake.js
http://media.pragprog.com/titles/es6tips/code/loops/reduce/map.js
http://media.pragprog.com/titles/es6tips/code/loops/reduce/reduce.js

​ ​const​ colors = dogs.reduce((colors, dog) => {
​ ​return​ [...colors, dog.color];
​ }, []);

As	an	exercise,	try	writing	filter()	and	find()	with	reduce().	You’ll	learn	about	each
of	them	in	the	process.

By	no	means	should	you	rebuild	methods	in	your	code.	Use	the	best	tool	for	the
job.	Still,	the	fact	that	you	can	shows	the	power	of	reduce().

But	back	to	our	unique	value	reducer.	You	may	be	wondering	why	you	should
bother	with	a	reducer	at	all	when	you	just	pass	the	results	of	the	map()	method	in
to	Set	and	get	the	same	result?

That’s	easy.	Reducers	give	you	the	flexibility	to	handle	more	values	with	ease.
And	if	you	were	getting	the	values	for	one	set	of	properties,	map()	would	make
more	sense.	Remember	that	flexibility	is	good,	but	you	should	use	it	only	when
you’ve	exhausted	simpler	options.	When	you	need	it,	though,	it’s	good	to	have.

For	example,	what	if	you	wanted	to	get	the	unique	values	for	all	the	keys	in	the
dog	object?	You	could	run	multiple	map	functions	and	pass	those	to	Set.	Or,	you
can	use	a	reduce	function	that	starts	with	empty	sets	and	fills	the	objects	in	as
you	go.

There	are	many	ways	to	do	this,	but	the	easiest	would	be	to	start	with	an	object
that	contains	empty	sets.	In	the	body	of	the	reduce	function,	add	each	item	to	the
set	(remember	that	it	will	keep	only	the	unique	items).	When	you’re	finished,
you	have	a	collection	of	unique	properties.

loops/reduce/reduce.js

​ ​const​ filters = dogs.reduce((filters, item) => {
​ filters.breed.add(item.breed);

​ filters.size.add(item.size);

​ filters.color.add(item.color);

​ ​return​ filters;
​ },

​ {

http://media.pragprog.com/titles/es6tips/code/loops/reduce/reduce.js

​ breed: ​new​ Set(),
​ size: ​new​ Set(),
​ color: ​new​ Set(),
​ });

Now	you	have	the	benefit	of	keeping	iterations	low	while	also	signaling	the
shape	of	the	transformed	data	to	other	developers.

And	it’s	precisely	because	you	can	change	the	size	and	shape	of	data	that	the
possibilities	are	nearly	endless.

Look	at	another	example.	In	this	case,	you	have	a	list	of	developers,	and	along
with	language	specialty,	you	want	a	count	by	speciality.

loops/reduce/reduce.js

​ ​const​ developers = [
​ {

​ name: ​'Jeff'​,
​ language: ​'php'​,
​ },

​ {

​ name: ​'Ashley'​,
​ language: ​'python'​,
​ },

​ {

​ name: ​'Sara'​,
​ language: ​'python'​,
​ },

​ {

​ name: ​'Joe'​,
​ language: ​'javascript'​,
​ },

​];

You	could	easily	get	a	count	by	incrementing	the	language	specialty	on	each
iteration.

loops/reduce/reduce.js

​ ​const​ aggregated = developers.reduce((specialities, developer) => {
​ ​const​ count = specialities[developer.language] || 0;
​ ​return​ {

http://media.pragprog.com/titles/es6tips/code/loops/reduce/reduce.js
http://media.pragprog.com/titles/es6tips/code/loops/reduce/reduce.js

​ ...specialities,

​ [developer.language]: count + 1,

​ };

​ }, {});

Notice	that	the	initial	value	is	just	an	empty	object.	In	this	case,	you	don’t	know
what	languages	are	going	to	be	used	so	you’ll	need	to	add	them	dynamically.	In
case	you’re	wondering:	Yes,	you	can	build	this	reduce	function	with	Map	instead
of	an	object.	Try	it	out	and	see	what	you	come	up	with.

That’s	all	for	array	methods.	They	provide	a	lot	of	value,	and	when	you	get
comfortable	with	them,	you’ll	appreciate	how	quickly	you	can	reduce	the	lines
of	code	while	being	even	more	transparent	about	the	information	you’re
returning.	Don’t	be	surprised	that	you	turn	to	them	more	and	more.

Still,	there	are	times	when	normal	for	loops	are	the	way	to	go.	In	the	next	tip,
you’ll	look	at	a	slight	variation	to	the	for	loop	called	a	for...in	loop	that	lets	you
ignore	all	the	annoying	declarations	of	iterators	and	length	by	taking	each	item
directly	from	the	iterable.

Tip	27 Reduce	Loop	Clutter	with	for...in	and	for...each

In	this	tip,	you’ll	learn	how	to	maintain	clarity	with	loops	over	iterables	using
for...in	and	over	objects	using	for...of.

Hopefully	by	now	you’re	convinced	that	array	methods	can	handle	most	of	your
iterations	in	clear	and	predictable	ways.	Sometimes,	however,	an	array	method
may	be	either	inefficient	or	cumbersome.

There	may	be	times	you	want	to	exit	out	of	a	loop	when	a	result	doesn’t	match
what	you	need.	In	those	cases,	it	makes	no	sense	to	keep	iterating	over
information.

Alternatively,	an	array	method	may	be	overly	complex	when	you’re	working
with	a	collection	that	isn’t	an	array.	Remember	that	just	because	a	structure	isn’t
an	array	doesn’t	mean	you	can’t	use	array	methods.	If	you’re	working	with	an
object,	you	can	use	Object.keys()	to	create	an	array	of	keys	and	then	perform
whatever	method	you	want.	Or	you	can	use	the	spread	operator	to	convert	a	Map

to	an	array	of	pairs.	If	you	need	a	refresher,	head	back	to	Tip	14,	​	Iterate	Over
Key-Value	Data	with	Map	and	the	Spread	Operator	 ​.

In	fact,	those	are	great	approaches.	The	popular	Airbnb	style	guide,	for	example,
insists	that	you	always	use	array	methods	and	restricts	the	use	of	the	for...of	and
for...in	loops.[23]

That	opinion	isn’t	shared	by	all.	Sometimes	it’s	not	worth	the	hassle	to	convert
structures	to	arrays	and	it’s	worth	knowing	other	options.

Consider	an	application	where	you	can	select	and	compare	multiple	sets	of
information.	Perhaps	you’re	building	an	application	that	has	a	list	of	consulting
firms.	A	user	can	select	multiple	firms	and	compare	and	contrast	services.

Knowing	what	you	know	now,	you’d	probably	use	a	Map	to	hold	the	various
firms	as	users	click	on	options.	After	all,	you’re	constantly	adding	and	deleting
information,	which	is	an	action	a	Map	can	handle	easily.

As	the	user	clicks	on	firms	they’re	interested	in,	you	could	add	the	firms	to	a
simple	map	that	uses	the	ID	of	the	firm	as	a	key	and	the	name	of	the	firm	as	the
value.

loops/for/for.js

​ ​const​ firms = ​new​ Map()
​ .​set​(10, ​'Ivie Group'​)
​ .​set​(23, ​'Soundscaping Source'​)
​ .​set​(31, ​'Big 6'​);

You	can	do	a	lot	with	that	small	amount	of	information.	You	could	select	details
from	a	database.	You	could	check	availability	or	create	a	comparison	chart.	In	all
cases,	you’d	need	to	act	on	the	collection	one	piece	at	a	time.

For	this	example,	loop	through	the	firms	a	user	has	selected	to	check	and	see	if
they’re	available.	(For	the	purposes	of	this	example,	you’ll	use	a	generic
isAvailable()	function	that	would	be	defined	elsewhere.)	If	one	isn’t	available,
return	a	message	saying	the	firm	is	unavailable.	Otherwise,	return	a	message
saying	all	are	available.

If	you	try	writing	this	out,	you’ll	immediately	notice	a	problem.	You	can’t	use	a
traditional	for	loop	because	the	collection	isn’t	an	array.	You	can	easily	bypass
that	problem	by	converting	the	map	to	an	array	with	the	spread	operator	before
looping.

loops/for/traditional.js

​ ​const​ entries = [...firms];
​ ​for​ (​let​ i = 0; i < entries.length; i++) {
​ ​const​ [id, name] = entries[i];
​ ​if​ (!isAvailable(id)) {
​ ​return​ ​`​${name}​ is not available`​;
​ }

​ }

​ ​return​ ​'All firms are available'​;

That	loop	is	pretty	straightforward.	It	gets	the	information	you	need	in	a	fairly
transparent	way.	By	now,	though,	you	know	there	are	better	ways	to	loop.	And

http://media.pragprog.com/titles/es6tips/code/loops/for/for.js
http://media.pragprog.com/titles/es6tips/code/loops/for/traditional.js

you	probably	noticed	that	because	you	have	to	convert	to	an	array,	you	might	as
well	use	an	array	method.

But	there’s	no	good	array	method	to	perform	the	action.	Sure,	there	are	plenty	of
options	that	you	could	try.	You	might	use	find()	to	see	if	there’s	a	firm	that’s
unavailable.

loops/for/full.js

​ ​const​ unavailable = [...firms].find(firm => {
​ ​const​ [id] = firm;
​ ​return​ !isAvailable(id);
​ });

​
​ ​if​ (unavailable) {
​ ​return​ ​`​${unavailable[1]}​ is not available`​;
​ }

​
​ ​return​ ​'All firms are available'​;

You	might	also	write	a	reduce()	method	that	returns	a	string	with	the	success
message	as	a	default.

loops/for/full.js

​ ​const​ message = [...firms].reduce((availability, firm) => {
​ ​const​ [id, name] = firm;
​ ​if​ (!isAvailable(id)) {
​ ​return​ ​`​${name}​ is not available`​;
​ }

​ ​return​ availability;
​ }, ​'All firms are available'​);
​ ​return​ message;

There	are	many	ways	to	solve	the	problem.	Maybe	those	solutions	are	fine	for
you	and	your	team.	Still,	they’re	a	little	clunky.	You’d	probably	have	to	read
them	twice	to	understand	what’s	happening.

The	problem	is	the	find()	approach	is	a	two-step	process	(find	if	there	are
unavailable	firms,	and	then	build	a	message),	and	the	reduce()	approach	is	a	little
difficult	to	understand.

http://media.pragprog.com/titles/es6tips/code/loops/for/full.js
http://media.pragprog.com/titles/es6tips/code/loops/for/full.js

There’s	also	the	problem	that	the	find()	function	will	give	you	only	the	first
unavailable	firm	and	the	reduce()	function	will	give	you	only	the	last.

To	be	fair,	you	won’t	solve	that	problem	here.	Try	to	find	a	solution	both	with
array	methods	and	with	other	loops.	(Hint:	Chain	filter()	and	map()	to	make	an
array	of	messages.)	For	now,	however,	ignore	that	optimization	and	focus	instead
on	whether	all	are	available	or	not.

You’ve	seen	three	ways	to	solve	the	exact	same	problem	with	the	same	result.
They	all	share	a	common	feature:	They	all	require	you	to	first	convert	the	map	to
an	array.	Turns	out	that’s	not	even	necessary.	The	property	on	the	Map	that	lets
you	use	the	spread	operator,	the	MapIterator,	is	the	same	property	that	will	let	you
iterate	over	a	map	directly.

In	the	tip	on	using	the	spread	operator	with	Map,	you	learned	about	the
MapIterator.	It’s	just	a	specific	instance	of	the	more	generalized	Iterator,	which
designates	a	specific	type	of	object	that	can	access	pieces	one	at	a	time.	You	can
find	them	on	maps,	arrays,	and	sets,	and	you	can	even	make	your	own,	as	you’ll
see	in	Tip	41,	​	Create	Iterable	Properties	with	Generators	​.

Most	important,	you	can	use	the	iterator	with	a	special	loop	called	a	for...of	loop.
This	loop	is	very	similar	to	the	for	loop	except	that	you	don’t	iterate	over	the
indexes	(that	let i = 0	part).	Instead,	you	loop	directly	over	the	members	of	the
collection.

In	the	loop	parameters,	you	declare	a	name	for	the	individual	item	and	then	use
that	in	the	body.

Instead	of	converting	a	specialized	object	to	an	array,	you	use	the	exact	same
idea	of	a	for	loop	while	removing	reference	to	indexes.	You	effectively	use	the
callback	method	from	an	array	method.	Here’s	a	translation	of	the	functions	you
saw	earlier.

loops/for/for.js

http://media.pragprog.com/titles/es6tips/code/loops/for/for.js

​ ​for​ (​const​ firm ​of​ firms) {
​ ​const​ [id, name] = firm;
​ ​if​ (!isAvailable(id)) {
​ ​return​ ​`​${name}​ is not available`​;
​ }

​ }

​ ​return​ ​'All firms are available'​;

Notice	a	few	things:	First,	you	declare	the	variable,	firm	with	const.	Because	const

is	block	scoped,	this	variable	won’t	exist	outside	the	loop	so	you	don’t	have	to
worry	about	polluting	the	rest	of	the	code.	Next,	using	the	same	ideas	from	array
methods,	you	act	on	the	item	directly.	You	don’t	need	to	reference	the	full
collection	as	you	do	with	entries[i]	in	the	for	loop.	It’s	a	combination	of	array
callback	methods	and	for	loops.

As	a	bonus,	you	also	gain	a	slight	optimization	by	not	converting	an	iterable	to
an	array	before	then	iterating	over	it	again.	You	don’t	have	to	avoid	array
methods	to	gain	that	micro-optimization,	but	it’s	something	to	consider.

What	are	the	trade-offs?	The	most	obvious	is	that	because	the	loop	can	do
anything,	you	lose	some	predictability.	Honestly,	that’s	about	the	only	problem
as	long	as	you	don’t	mutate	the	collection	as	you	loop	through	it	(which	you
could	easily	do).	But	you	can	mutate	collections	with	array	methods,	too.
Avoiding	side	effects	and	mutations	requires	discipline	more	than	syntax.

With	all	those	advantages	you	may	wonder,	should	you	always	loop	directly?	In
short,	no.	As	a	rule,	use	array	methods	when	they’re	clear	fits	and	you	prefer
them	as	the	default.	When	you’re	filtering	data	in	a	map,	for	example,	you
should	use	filters.	When	you’re	converting	a	map	to	an	array	of	values,	use	the
map()	method.	Otherwise,	you’ll	be	stuck	creating	a	container	array	and	mutating
it	on	each	loop.	Use	for...of	when	it	makes	the	most	sense.

There’s	another	slight	complication—or	benefit,	depending	on	how	you	think
about	it—to	for...of	loops.	There’s	a	similar	but	different	loop	that	only	works	on
key-value	objects.	It’s	called	the	for...in	loop.

The	for...in	loop	is	very	similar	to	the	for...of	loop.	You	don’t	need	to	convert	an

object’s	keys	to	an	array	with	Object.keys()	because	you	operate	directly	on	the
object	itself.	Specifically,	you	loop	over	the	properties	of	an	object.

If	you’ve	worked	with	JavaScript	objects	in-depth,	you’ll	likely	know	there	are
some	complications	with	object	properties	because	they	can	be	inherited	from
other	objects	in	a	prototype	chain.	In	addition,	objects	have	non-enumerable
properties	that	are	also	skipped	during	iteration.

In	short,	properties	on	objects	can	be	complex.	You	can	read	more	about	it	on	the
Mozilla	Developer	Network.[24]

Most	times,	though,	you’re	working	with	simple	things,	and	that’s	what	you’ll
focus	on	here.	To	start	off,	convert	your	map	of	firms	to	an	object.	It’s	almost
identical,	but	because	keys	have	to	be	strings,	you’ll	need	to	convert	them	from
numbers.	In	reality,	you	can	use	numbers	as	keys	in	object	literal	syntax	and
they’ll	be	covertly	converted	to	strings,	but	that’s	a	problem	with	objects,	not	an
advantage.

loops/for/forin.js

​ ​const​ firms = {
​ ​'10'​: ​'Ivie Group'​,
​ ​'23'​: ​'Soundscaping Source'​,
​ ​'31'​: ​'Big 6'​,
​ };

When	using	a	for...in	loop,	you’ll	get	each	property	one	at	a	time.	Unlike	the
for...of	loop,	you	don’t	get	the	values,	and	you’ll	have	to	reference	the	full
collection	using	the	key	on	each	iteration.	Everything	else	should	be	familiar.
You	name	the	variable,	preferably	with	const,	and	then	you	use	that	in	the	body,
knowing	it	will	change	on	each	iteration.

Try	and	convert	the	last	for...of	loop	and	see	what	you	get.

You	probably	came	up	with	something	like	this:

loops/for/forin.js

http://media.pragprog.com/titles/es6tips/code/loops/for/forin.js
http://media.pragprog.com/titles/es6tips/code/loops/for/forin.js

​ ​for​ (​const​ id ​in​ firms) {
​ ​if​ (!isAvailable(parseInt(id, 10))) {
​ ​return​ ​`​${firms[id]}​ is not available`​;
​ }

​ }

​ ​return​ ​'All firms are available'​;

Because	you’re	getting	the	property	and	not	a	pair,	you	don’t	need	to	extract	the
name	and	value	separately.	Any	time	you	need	the	value,	you	can	grab	it	using
array	notation	on	the	individual	item.	If	you	need	the	key	to	be	an	integer,	which
you	do	in	this	case,	you’ll	need	to	convert	it	using	parseInt().	This	is	why	the
subtle	conversions	that	happen	with	object	keys	can	be	so	confusing.

As	with	the	for...of	loop,	use	the	for...in	loop	when	it	makes	sense,	but	try	not	to
use	it	as	the	default.	If	you’re	only	going	to	use	the	keys,	it	may	make	more
sense	to	pull	them	out	with	Object.keys()	before	using	an	array	method.	The	same
is	true	if	you	just	plan	on	using	the	values.	You	can	use	Object.values()	to	convert
those	to	an	array,	though	that’s	less	common.

One	other	precaution:	Don’t	mutate	the	object	as	you	loop	over	it.	That	can	be
very	dangerous,	and	bugs	can	creep	in	quickly,	especially	if	you	add	or	modify
properties	other	than	the	property	currently	being	iterated.

Now	you	have	a	whole	new	set	of	tools	for	iterating	over	collections.	As	you
saw	in	this	example,	you	can	solve	most	problems	with	multiple	methods,	so	it
often	comes	down	to	a	matter	of	personal	and	team	preference.	Over	time,	you’ll
find	that	you	prefer	some	methods	over	the	others,	and	that’s	fine.	There	are
fewer	right	and	wrong	answers	in	development	than	people	think.

In	the	next	chapter,	you’ll	be	moving	from	the	nuts	and	bolts	of	working	with
data	into	composing	functions.	You’ll	start	with	simply	exploring	new	ways	of
working	with	parameters.	And	yes,	there	are	enough	changes	that	we’ll	need	a
whole	chapter	to	explore	them.	JavaScript	can	do	a	lot	of	interesting	things	with
functions,	so	it’s	exciting	that	even	simple	parameters	are	now	more	flexible.
This	is	where	the	fun	really	begins.

[20]

[21]

[22]

[23]

[24]

Footnotes

https://en.wikipedia.org/wiki/Method_chaining

https://github.com/jsmapr1/simplifying-js

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce

https://github.com/airbnb/javascript/issues/851

https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/for...in#Iterating_over_own_properties_only

Copyright	©	2018,	The	Pragmatic	Bookshelf.

https://en.wikipedia.org/wiki/Method_chaining
https://github.com/jsmapr1/simplifying-js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://github.com/airbnb/javascript/issues/851
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...in#Iterating_over_own_properties_only

Chapter	6

Clean	Up	Parameters	and
Return	Statements

	

I’m	famous	for	assuming	I	can	always	find	a	shortcut.	If	I’m	driving	down	the
highway	and	hit	construction,	I’ll	take	the	first	off	ramp,	determined	to	find	a
quick	way	around	the	delay.	Exiting	the	highway	requires	that	I	ignore	the
protests	of	my	wife,	who	thinks	it	would	just	be	easier	to	slow	down	and	follow
the	orange	cones.

Well,	my	wife	is	usually	right.	I	pull	off	and	take	a	side	road	that	suddenly	veers
even	further	off	course.	I	don’t	mind.	I	grew	up	in	the	middle	of	nowhere,	so	I
have	an	intuition	for	county	roads.	At	least	I	think	I	do,	until	the	paved	road
turns	into	a	dirt	road	before	coming	to	a	dead	end	at	a	wheat	field.	Giving	in,	I
take	out	my	phone	to	turn	on	the	GPS.	Oh	wait.	I’m	in	the	middle	of	a	wheat
field.	There’s	no	signal.

Simple	actions	can	spiral	out	of	control	quickly.	This	happens	all	the	time	with
function	arguments.	You	start	with	the	best	of	intentions.	The	function	will	take
two	arguments	and	return	a	simple	value.	Suddenly,	edge	cases	pop	up.	Data
inconsistencies	creep	in.	Before	you	know	it,	you	need	eight	different	parameters
to	cover	dozens	of	situations.	You’d	like	to	give	up,	but	by	now,	you’re	too
afraid	of	breaking	all	the	code	downstream	that	depends	on	this	function.

In	this	chapter,	you’ll	learn	how	to	plan	for	changing	function	arguments	and
how	to	create	parameters	that	will	be	clean	and	give	you	flexibility.

First,	you’ll	see	how	to	add	default	parameters	to	cover	situations	where
information	may	not	be	available.	Next,	you’ll	learn	how	to	pull	information	out
of	objects	using	destructuring	and	how	destructuring	can	be	combined	with
function	parameters	to	accommodate	a	range	of	options.	Using	that	knowledge,
you’ll	combine	information	back	into	new	objects,	creating	return	statements
that	share	plenty	of	information	in	usable	bundles.	After	that,	you’ll	return	to
parameters	to	see	how	you	can	create	functions	without	even	knowing	the
number	of	arguments	to	expect.

There’s	no	problem	with	being	adventurous	as	long	as	you	have	a	plan	for	the
inevitable	contingencies.	In	this	chapter,	you’ll	see	how	functions	can	be	built	to
handle	unexpected	changes.	Learn	the	lesson	I	never	did	as	a	driver:	Leap	into
the	unknown,	but	plan	for	the	unforeseen.

Tip	28 Create	Default	Parameters

In	this	tip,	you’ll	learn	how	to	use	default	parameters	to	set	values	when	a
parameter	is	absent.

No	matter	how	much	planning	you	do,	things	change.	This	is	especially	true	of
function	parameters.	When	you	write	a	function,	you	expect	a	few	parameters.
Then,	as	code	grows	and	edge	cases	emerge,	suddenly	the	parameters	you
supplied	aren’t	enough.

In	the	next	several	tips,	you’ll	learn	different	techniques	for	handling	parameters.
Nearly	all	of	these	techniques	can	help	you	cope	in	some	way	with	changing
requirements.	But	to	start,	you’ll	learn	the	easiest	trick:	setting	default
parameters.

Consider	a	basic	helper	function.	All	you	want	to	do	is	convert	pounds	to
kilograms.	That	seems	simple.	You	simply	need	to	take	the	weight	as	an	input
and	divide	the	weight	in	pounds	by	2.2	to	get	kilograms.	(Apologies	to	non-
Americans	who	don’t	have	to	deal	with	this	silliness.	I’m	sure	you	also	get	stuck
converting	other	measurements.)

params/defaults/simple.js

​ ​function​ convertWeight(weight) {
​ ​return​ weight / 2.2;
​ }

That	code	seems	easy	enough.	And	you	use	it	throughout	the	app.	Before	you
know	it,	a	ticket	comes	in	because	someone	needs	to	be	able	to	pass	ounces.	And
because	there	are	16	ounces	in	a	pound,	you’ll	need	to	convert	that	number	to	a
decimal	before	adding	it	to	the	pounds.

Fine.	You	add	in	a	parameter	for	ounces,	but	now	you’re	in	a	bind.	Do	you	track
down	every	instance	of	the	function	and	add	in	a	zero	for	the	ounces?	Or	do	you
try	to	handle	cases	where	a	value	wasn’t	provided?

http://media.pragprog.com/titles/es6tips/code/params/defaults/simple.js

You	can	try	the	first	approach	and	update	every	function,	but	there’s	always	the
chance	that	you’ll	miss	one.	Fortunately,	in	JavaScript,	you	don’t	need	to	pass	all
the	parameters	to	a	function.	They	can	be	optional.	If	you’re	missing	a
parameter,	the	value	is	set	to	undefined.

Knowing	that,	you	go	for	the	second	approach	and	add	a	little	bit	of	code	to	set
the	value	if	it	doesn’t	exist.

params/defaults/more.js

​ ​function​ convertWeight(weight, ounces) {
​ ​const​ oz = ounces ? ounces / 16 : 0;
​ ​const​ total = weight + oz;
​ ​return​ total / 2.2;
​ }

When	you	run	convertWeight(44,11),	you	get	20.3125,	which	isn’t	bad,	but	nearly
every	other	conversion	returns	a	long	decimal	string.	convertWeight(44, 8)	returns
20.22727....

Stranger	still,	when	you	run	convertWeight(6.6),	you	expect	to	get	3	and	instead
you	get	2.999999....	You	can	thank	floating	point	arithmetic	for	that.[25]

Great—now	you	need	to	round	up	to	handle	cases	where	the	floating	point
arithmetic	doesn’t	match	user	expectations.	And	because	you’re	rounding
anyway,	you	should	make	the	number	of	decimal	points	an	option,	too,	with	a
default	of	two	decimal	places.

You	add	some	more	code	to	handle	the	missing	parameter.	You	also	add	in	a
helper	function,	roundTo,	to	handle	the	rounding	(see	the	book	code	for
implementation	details).

But	there’s	a	complication.	To	make	the	default	two	decimal	places,	you	can’t
just	check	to	see	if	the	parameter	roundTo	is	truthy.	You	can’t,	for	example,	write
const round = roundTo || 2;	because	if	the	user	were	to	pass	in	0	as	the	number	of
decimal	places	they	wanted,	it	would	default	to	falsy	and	go	back	to	two	places.

http://media.pragprog.com/titles/es6tips/code/params/defaults/more.js

Instead,	you’d	have	to	explicitly	check	that	the	value	was	undefined,	which	means
that	no	value	was	submitted.

params/defaults/problem.js

​ ​function​ convertWeight(weight, ounces, roundTo) {
​ ​const​ oz = ounces / 16 || 0;
​ ​const​ total = weight + oz;
​ ​const​ conversion = total / 2.2;
​
​ ​const​ round = roundTo === ​undefined​ ? 2 : roundTo;
​
​ ​return​ roundToDecimalPlace(conversion, round);
​ }

Every	time,	the	function	becomes	a	little	more	complex.	That’s	unavoidable	in	a
world	with	changing	requirements.	What	you	don’t	want	to	do	is	create	problems
by	having	undefined	variables.	That	means	every	time	you	add	a	new	parameter,
you	end	up	adding	a	new	ternary	or	short	circuiting	to	create	a	default	value.

Changing	requirements	are	part	of	life.	There’s	nothing	any	syntax	can	do	about
that.	But	you	can	minimize	a	bunch	of	variable	checks	with	default	parameters.

All	this	means	is	that	if	the	value	isn’t	passed,	it	takes	the	placeholder	value.	It’s
that	simple.	You’ve	probably	seen	it	in	countless	other	languages.	You	define	the
default	parameter	by	putting	an	equal	sign	(=)	after	the	parameter	name	along
with	the	value.	If	there’s	no	value	for	that	parameter,	it	falls	back	to	the	default.

The	updated	function	still	has	the	additional	logic	to	handle	the	new
requirements	(adding	ounces,	rounding	decimals),	but	at	least	you	can	be
confident	you’ll	get	something.

params/defaults/default.js

​ ​function​ convertWeight(weight, ounces = 0, roundTo = 2) {
​ ​const​ total = weight + (ounces / 16);
​ ​const​ conversion = total / 2.2;
​
​ ​return​ roundToDecimalPlace(conversion, roundTo);
​ }

http://media.pragprog.com/titles/es6tips/code/params/defaults/problem.js
http://media.pragprog.com/titles/es6tips/code/params/defaults/default.js

As	a	bonus,	you	give	a	clue	to	other	developers	that	you’re	looking	for	a
particular	data	type.	They’d	know,	for	example,	that	ounces	is	an	integer.	This
isn’t	a	substitute	for	a	proper	type	system,	but	it’s	a	nice	little	extra.

JavaScript	and	Type	Checking
You	don’t	need	a	type	system,	but	if	you	like	one,	there	are	more	options	now
than	ever.	The	most	obvious	example	is	TypeScript,	which	is	a	superset	of
JavaScript	(it	includes	all	of	JavaScript	and	then	some).	It’s	a	good	tool,	and	it’s
popular	with	developers	who	love	a	good	type	system.

If	you	want	to	write	ordinary	JavaScript	but	with	a	type	system,	you	should	check
out	flow,	a	static	type	system	developed	by	Facebook.[26]	It’s	flexible	enough	to
incorporate	into	individual	files,	giving	you	a	chance	to	try	types	without	having
to	fully	switch	over	to	TypeScript.

Default	parameters	aren’t	a	perfect	solution.	Parameter	order	still	matters.	If	you
didn’t	want	to	include	ounces	but	you	did	want	to	specify	the	number	of	decimal
points,	you	would	still	need	to	clarify	the	number—in	this	case,	it	would	be	0.

params/defaults/default.js

​ convertWeight(4, 0, 2);

If	you	absolutely	don’t	want	to	pass	in	a	value,	you	can	pass	in	undefined	and	the
function	would	use	the	default	parameter,	but	use	this	approach	with	caution.	It’s
too	easy	to	make	mistakes	when	you	pass	in	undefined.	If	you	passed	in	null,	for
example,	you	wouldn’t	get	the	default	value.	Besides,	if	you	really	don’t	care
what	the	default	is,	you	should	just	use	the	value	set	as	the	default	parameter.	It’s
more	clear	to	others	reading	the	code	and	it’s	less	likely	to	break	later	if	the
function	changes	slightly.

params/defaults/default.js

​ convertWeight(4, ​undefined​, 2);

A	common	way	around	this	problem	is	to	pass	an	object	as	a	second	parameter.
Because	an	object	can	have	multiple	key-value	pairs,	you	won’t	need	to	change

http://media.pragprog.com/titles/es6tips/code/params/defaults/default.js
http://media.pragprog.com/titles/es6tips/code/params/defaults/default.js

the	function	parameters	every	time	a	new	option	is	added.	You	will,	however,
need	to	pull	the	information	from	the	object.

In	the	next	tip,	you’ll	see	how	it’s	easier	to	use	objects	in	parameters	by	pulling
out	data	with	destructuring.

Tip	29 Access	Object	Properties	with	Destructuring

In	this	tip,	you’ll	learn	how	to	pull	information	out	of	objects	and	arrays	quickly
with	destructuring.

In	the	previous	tip,	you	learned	how	to	create	default	parameters,	which	are	a
great	addition	to	the	language,	but	they	still	have	one	big	problem:	Parameters
always	have	to	be	given	in	order.	If	you	wanted	to	specify	the	third	parameter
but	you	didn’t	care	about	the	second,	you’d	still	be	forced	to	enter	a	value.
Default	parameters	aren’t	helpful	if	you	want	to	skip	a	parameter.

What	about	situations	where	you	need	a	large	number	of	arguments	for	a
function?	What	about	situations	where	you	know	that	the	needs	of	a	functions
are	likely	to	change?	In	JavaScript,	most	developers	add	extra	arguments	to	an
object	and	pass	the	object	as	the	last	parameter	to	a	function.

For	example,	what	if	you	wanted	to	display	a	number	of	photos	and	needed	to
translate	the	values	into	an	HTML	string?	Specifically,	you	want	to	include	the
image,	title,	photographer,	and	location	in	that	order	in	your	string,	but	you	also
want	any	additional	information.	Some	photographs	include	equipment,	image
type,	lenses	information,	and	any	other	customizations.	You	don’t	know	what	it
all	will	be,	but	you	still	want	to	display	it.

There	is	a	lot	of	information	associated	with	a	photograph.	Passing	that
information	as	individual	parameters	would	be	excessive—you	could	end	up
with	about	ten	parameters.	Besides,	the	information	is	already	structured.	What’s
the	point	in	changing	it?	Here’s	an	example	of	some	information	about	a
photograph.

params/destructuring/destructuring.js

​ ​const​ landscape = {
​ title: ​'Landscape'​,
​ photographer: ​'Nathan'​,
​ equipment: ​'Canon'​,
​ format: ​'digital'​,

http://media.pragprog.com/titles/es6tips/code/params/destructuring/destructuring.js

​ src: ​'/landscape-nm.jpg'​,
​ location: [32.7122222, -103.1405556],

​ };

In	this	case,	it	makes	sense	to	pass	the	whole	photo	object	directly	into	a
function.	Of	course,	once	you	have	it	in	the	function,	what	do	you	do	with	it?
You	can	either	pull	the	information	directly	from	the	object	when	needed	using
dot	syntax—photo.title—or	you	can	assign	the	information	to	variables	and	then
use	the	variables	later	in	the	code.

Getting	the	values	you	know	ahead	of	time	is	easy.	The	real	trick	is	getting	the
excess	information—information	that	you	don’t	know	about	ahead	of	time.	The
only	way	to	get	it	is	to	remove	the	key-value	pairs	you’re	using	elsewhere	and
then	keep	whatever	is	leftover.

Fortunately,	you’re	smart	enough	to	know	that	you	should	copy	the	object	before
mutating	it	(good	work).	And	after	you	copy	it,	you	can	delete	the	keys	you
don’t	need	one	at	a	time.	The	end	result	is	a	lot	of	object	assignments	for	a	very
small	action.	Nearly	two-thirds	of	the	function	is	pulling	information	from	an
object.

params/destructuring/problem.js

​ ​function​ displayPhoto(photo) {
​ ​const​ title = photo.title;
​ ​const​ photographer = photo.photographer || ​'Anonymous'​;
​ ​const​ location = photo.location;
​ ​const​ url = photo.src;
​
​ ​const​ copy = { ...photo };
​ ​delete​ copy.title;
​ ​delete​ copy.photographer;
​ ​delete​ copy.location;
​ ​delete​ copy.src;
​
​ ​const​ additional = Object.keys(copy).map(key => ​`​${key}​: ​${copy[key]}​`​);
​
​ ​return​ (​`​
​ ​ ​
​ ​ <div>​${title}​</div>​

http://media.pragprog.com/titles/es6tips/code/params/destructuring/problem.js

​ ​ <div>​${photographer}​</div>​
​ ​ <div>Latitude: ​${location[0]}​ </div>​
​ ​ <div>Longitude: ​${location[1]}​ </div>​
​ ​ <div>​${additional.join(​'
 '​)}​</div>​
​ ​ `​);
​ }

Remember	back	in	Tip	10,	​	Use	Objects	for	Static	Key-Value	Lookups	​	where
you	learned	that	objects	are	great	for	passing	around	static	information?	You’re
about	to	learn	why.

In	JavaScript,	you	can	assign	variables	directly	from	an	object	using	a	process
called	destructuring	assignment.

It	works	like	this:	Destructuring	allows	you	to	create	a	variable	with	the	same
name	as	an	object’s	key	assigned	with	the	value	from	the	object.

As	usual,	it’s	always	easier	to	see.	In	this	case,	you	have	an	object	with	a	key	of
photographer	and	you’re	going	to	create	a	variable	named	photographer	from	that
object.

​ ​const​ landscape = {
​ photographer: ​'Nathan'​,
​ };

​
​ ​const​ { photographer } = landscape;
​ photographer

​ ​// Nathan​

Notice	a	few	things.	First,	you	still	have	to	declare	a	variable	type.	As	usual,	you
should	prefer	const.	Second,	the	assignment	variable	must	match	the	key	in	the
object.	Finally,	it’s	set	against	the	object.	You	are	merely	assigning	a	variable.
The	curly	braces	merely	signal	the	value	that	variable	should	use	is	inside	an
object.

That’s	the	bare	bones—set	a	variable	using	the	key.	Of	course,	nothing	is	ever
that	simple.	What	happens	when	a	key	doesn’t	exist?	Well,	in	that	case,	the	value
is	merely	undefined,	but	you	can	also	set	a	default	value	while	destructuring.

​ ​const​ landscape = {
​ };

​ ​const​ { photographer = ​'Anonymous'​, title} = landscape;
​
​ photographer

​ ​// Anonymous​
​
​ title

​ ​// undefined​

At	this	point,	you’ve	caught	up	to	regular	parameters.	You	can	set	a	variable
from	a	key.	You	can	set	default	values.	But	what	do	you	do	if	you	don’t	know	the
key	name?	How	do	you	get	the	leftover	information?	Remember	that	you	want
any	additional	information	from	a	photograph	and	you	have	no	clue	what	that
will	be.

Good	news:	Your	favorite	three	dots	are	back.	You	can	collect	any	additional
values	into	a	new	variable	using	three	dots	(...)	followed	by	the	variable	name.
When	you	use	the	three-dot	syntax	to	collect	information,	it’s	no	longer	called
the	spread	operator.	It’s	called	the	rest	operator,	and	you’ll	see	more	of	it	in
upcoming	tips.

You	can	name	the	variable	anything	you	want.	It	doesn’t	need	to	match	a	key	(in
fact,	it	shouldn’t	match	a	key).	And	the	value	of	the	variable	will	be	an	object	of
the	remaining	key-value	pairs.

​ ​const​ landscape = {
​ photographer: ​'Nathan'​,
​ equipment: ​'Canon'​,
​ format: ​'digital'​,
​ };

​ j

​ ​const​ {
​ photographer,

​ ...additional

​ } = landscape;

​
​ additional;

​ ​// { equipment: 'Canon', format: 'digital'}​

photographer	is	pulled	out	from	the	object,	and	the	remaining	fields	go	into	a	new

object.	You	essentially	copied	the	photograph	object	and	deleted	the	photographer

key.

Notice	how	the	variable	assignments	are	on	different	lines:	photographer	is	on	one
line	and	...additional	is	on	the	next.	It’s	simply	a	style	preference	to	keep	things
more	readable.	You	can	keep	both	assignments	on	the	same	line	as	you	do	above.

Now	you	can	pull	information	from	an	object,	assign	default	parameters,	and
collect	additional	key-values.	As	if	that	weren’t	enough	to	celebrate,	you	can
also	assign	a	key	to	a	different	variable	name.	This	is	useful	in	situations	where
the	key	name	is	taken	by	a	previously	defined	variable	or	you	just	don’t	like	the
key	name	and	you	want	something	more	expressive.

In	the	original	code,	you	assign	the	information	from	photo.src	to	the	variable
name	url.	To	accomplish	that	with	destructuring,	you	simply	put	the	key	name
first	with	a	colon	followed	by	the	value	you	want	to	assign	it	to.

​ ​const​ landscape = {
​ src: ​'/landscape-nm.jpg'​,
​ };

​
​ ​const​ { src: url } = landscape;
​ src

​ ​// ReferenceError: src is not defined​
​ url

​ ​// '/landscape-nm.jpg'​

You	still	must	use	the	key	name	to	signal	which	value	you	want	to	use,	but	you
are	not	bound	to	that	key	name.

Finally,	you	can	also	use	destructuring	assignment	with	arrays,	with	one	big
exception:	Because	there	are	no	keys	in	arrays,	you	can	use	any	variable	name
you	want,	but	you	must	assign	the	information	in	order.	If	you	want	to	assign	the
third	item	to	a	variable,	you	must	first	assign	the	previous	two	values	to	a
variable.	Otherwise,	it’s	simple.	Destructuring	is	a	great	way	to	work	with	array
pairs	in	a	situation	where	the	order	denotes	some	information.	For	example,	if
you	had	an	array	of	latitude	and	longitude,	you’d	always	know	the	first	value

corresponds	to	latitude	and	the	second	to	longitude.

​ ​const​ landscape = {
​ location: [32.7122222, -103.1405556],

​ };

​
​ ​const​ { location } = landscape;
​ ​const​ [latitude, longitude] = location
​ latitude

​ ​// 32.7122222​
​ longitude

​ ​// -103.1405556​

Of	course,	in	the	preceding	situation,	you	pulled	out	location	first	from	an	object
and	then	latitude	and	longitude	from	the	array.	There’s	no	need	to	make	it	a	two-
step	process.	You	can	combine	the	assignments	during	destructuring.

​ ​const​ landscape = {
​ location: [32.7122222, -103.1405556],

​ };

​
​ ​const​ { location: [latitude, longitude] } = landscape;
​ latitude

​ ​// 32.7122222​
​ longitude

​ ​// -103.1405556​

All	right,	that	was	a	lot	to	think	about.	But	it	really	can	clean	things	up	fast.
Remember	the	original	function?	Here	it	is	with	destructuring:

params/destructuring/alternate.js

​ ​function​ displayPhoto(photo) {
​ ​const​ {
​ title,

​ photographer = ​'Anonymous'​,
​ location: [latitude, longitude],

​ src: url,

​ ...other

​ } = photo;

​ ​const​ additional = Object.keys(other).map(key => ​`​${key}​: ​${other[key]}​`​);

​ ​return​ (​`​

http://media.pragprog.com/titles/es6tips/code/params/destructuring/alternate.js

​ ​ ​
​ ​ <div>​${title}​</div>​
​ ​ <div>​${photographer}​</div>​
​ ​ <div>Latitude: ​${latitude}​ </div>​
​ ​ <div>Longitude: ​${longitude}​ </div>​
​ ​ <div>​${additional.join(​'
 '​)}​</div>​
​ ​ `​);
​ }

Looks	good,	doesn’t	it?	But	you’re	probably	wondering	what	this	is	doing	in	a
chapter	about	cleaning	up	parameters.

The	best	part	about	destructuring	is	that	you	can	move	it	right	into	the
parameters	of	a	function.	The	information	will	be	assigned	just	as	it	was	in	the
body	of	the	function,	but	there’s	no	need	to	declare	the	variable	type.	If	you’re
curious,	it’ll	be	assigned	with	let	so	it’s	possible	to	reassign	the	variable.

In	other	words,	you	can	clean	up	the	original	code	even	more:

params/destructuring/destructuring.js

​ ​function​ displayPhoto({
​ title,

​ photographer = ​'Anonymous'​,
​ location: [latitude, longitude],

​ src: url,

​ ...other

​ }) {

​ ​const​ additional = Object.keys(other).map(key => ​`​${key}​: ​${other[key]}​`​);
​ ​return​ (​`​
​ ​ ​
​ ​ <div>​${title}​</div>​
​ ​ <div>​${photographer}​</div>​
​ ​ <div>Latitude: ​${latitude}​ </div>​
​ ​ <div>Longitude: ​${longitude}​ </div>​
​ ​ <div>​${additional.join(​'
 '​)}​</div>​
​ ​ `​);
​ }

Notice	that	you	still	need	the	curly	braces,	but	otherwise	everything	is	the	same.
Now	when	you	call	the	function,	you	can	just	pass	the	object	and	everything	will
be	assigned	to	the	proper	parameters:	displayPhoto(landscape).

http://media.pragprog.com/titles/es6tips/code/params/destructuring/destructuring.js

Not	only	did	you	save	yourself	all	the	assignment	problems,	but	by	passing	an
object	as	a	parameter,	you	don’t	have	to	worry	about	the	order	of	the	key-values.

And	if	you	wanted	to	pull	out	another	key-value,	it’s	just	a	matter	of	adding	the
new	variable	to	the	destructuring.	Say	you	wanted	to	assign	equipment	explicitly.
All	you	need	to	do	is	add	in	the	new	variable	name	in	the	list	of	variables	and
you’ll	be	good	to	go.	There’s	no	need	to	worry	about	other	times	when	the
function	is	called.	If	equipment	isn’t	part	of	another	object,	it	will	merely	be
undefined.

That	was	probably	a	whirlwind,	but	it	should	give	you	a	taste	for	how	easily	you
can	pull	information	from	objects.	The	only	downside	is	this	only	works	on
objects	used	as	key-value	pairs	or	object	instances	of	a	class.

Destructuring	won’t	work	on	Map,	which	is	fine	because	this	is	primarily	useful
when	you’re	sending	information	between	functions,	meaning	you	shouldn’t	be
looping	or	reassigning	values.	In	other	words,	the	data	is	static,	so	an	object	is	a
great	choice.

As	if	that	wasn’t	overwhelming	enough,	you’ve	only	seen	half	of	it.	In	the	next
tip,	you’re	going	to	go	in	the	other	direction	and	put	information	back	into	an
object.

Tip	30 Simplify	Key-Value	Assignment

In	this	tip,	you’ll	learn	how	to	make	objects	quickly	with	shortened	key-value
assignment.

You	just	learned	how	to	pull	apart	objects	in	a	clear	and	clean	way.	Now	that	you
have	all	those	pieces	laying	out	on	your	proverbial	work	bench,	you	need	to	put
them	back	together.	It	wouldn’t	be	any	good	if	the	writers	of	the	spec	gave	you	a
clean	interface	to	take	objects	apart	while	leaving	you	no	way	to	put	them	back
together.

Well,	you’re	in	luck.	The	same	technique	you’d	use	to	take	objects	apart	works
in	reverse.	It’s	time	to	build	new	objects	using	similar	syntax	that	will	leave	your
code	clear	and	predictable.

Start	with	a	similar	object	of	photo	information:

params/assignment/assignment.js

​ ​const​ landscape = {
​ title: ​'Landscape'​,
​ photographer: ​'Nathan'​,
​ location: [32.7122222, -103.1405556],

​ };

In	this	case,	you	have	the	location	information	in	latitude	and	longitude,	but
what	you	need	is	the	city	and	state	names.

Elsewhere	in	the	code,	you	have	a	helper	function	that	looks	up	regional
information	(city,	state,	county)	from	the	geographical	coordinates.	The
implementation	details	aren’t	important.	What	matters	here	is	that	you	get	back
another	object	of	information.

params/assignment/assignment.js

​ ​const​ region = {
​ city: ​'Hobbs'​,
​ county: ​'Lea'​,

http://media.pragprog.com/titles/es6tips/code/params/assignment/assignment.js
http://media.pragprog.com/titles/es6tips/code/params/assignment/assignment.js

​ state: {

​ name: ​'New Mexico'​,
​ abbreviation: ​'NM'​,
​ },

​ };

Now	you	just	need	to	take	the	city	and	state	from	the	return	object	and	assign	it
to	the	new	object.	Fortunately,	adding	information	into	objects	is	very	simple.

If	you	want	to	add	a	key-value	pair	to	an	object	where	the	key	is	the	same	name
as	the	variable,	simply	put	in	the	variable.	That’s	it.	You	don’t	need	any	extra
colons.

You	can	also	mix	it	up—have	some	key-value	pairs	defined	with	a	variable	and
some	defined	the	traditional	way.

params/assignment/assignment.js

​ ​function​ getCityAndState({ location }) {
​ ​const​ { city, state } = determineCityAndState(location);
​ ​return​ {
​ city,

​ state: state.abbreviation,

​ };

​ ​// {​
​ ​// city: 'Hobbs',​
​ ​// state: 'NM'​
​ ​// }​
​ }

In	this	case,	you’re	adding	a	key	of	city	with	destructuring	assignment	and	a	key
of	state	with	normal	key-value	assignment.

What	if	you	just	want	to	sub	out	one	piece	of	information	in	an	object	but	keep
everything	else?	For	example,	say	you	want	to	use	getCityAndState()	to	translate
the	coordinates	into	strings,	but	you	want	to	keep	everything	else	from	the
original	object.

You	can	combine	the	object	spread	operator	with	regular	key-value	assignment
to	swap	out	one	piece	of	information	while	retaining	everything	else.

http://media.pragprog.com/titles/es6tips/code/params/assignment/assignment.js

params/assignment/assignment.js

​ ​function​ setRegion({ location, ...details }) {
​ ​const​ { city, state } = determineCityAndState(location);
​ ​return​ {
​ city,

​ state: state.abbreviation,

​ ...details,

​ };

​ }

Don’t	gloss	over	this	code	too	quickly.	There’s	actually	something	interesting
happening.	When	you	use	destructuring	to	pull	out	the	location	key-value	pair,
you’re	also	assigning	everything	else	except	location	to	the	variable	name	details.
You’re	essentially	copying	the	object	and	then	running	delete photo.location.

When	you	recombine	the	object	by	spreading	out	details	along	with	new	key
value	pairs,	you’re	doing	some	subtle	but	powerful	manipulation	of	objects	to
get	exactly	the	information	you	want.

The	result	will	have	no	location,	but	it	will	include	all	the	original	information
along	with	the	city	and	state.

params/assignment/assignment.js

​ {

​ title: ​'Landscape'​,
​ photographer: ​'Nathan'​,
​ city: ​'Hobbs'​,
​ state: ​'NM'​,
​ };

As	you	know,	the	spread	operator	is	my	favorite	ES6	feature.	But	I	know	several
developers	who	say	destructuring	is	their	favorite	feature	and	that	it’s	changed
the	way	they	work	with	objects	and	functions.	It	will	change	the	way	you	work,
too.

Now	that	you	have	the	tools	you	need	to	pull	objects	apart	and	put	them	back
together,	be	sure	to	think	twice	before	you	create	objects	by	assigning	each	key-
value	explicitly.	If	you’re	going	to	assign	a	value	to	a	variable,	you	might	as	well

http://media.pragprog.com/titles/es6tips/code/params/assignment/assignment.js
http://media.pragprog.com/titles/es6tips/code/params/assignment/assignment.js

use	the	key	name.	Before	long,	destructuring	will	become	second	nature,	and
you’ll	love	how	it	transforms	your	code.

In	the	next	tip,	you’ll	learn	how	to	have	a	variable	number	of	parameters	with
rest	parameters	using	your	favorite	three-dot	syntax.

Tip	31
Pass	a	Variable	Number	of	Arguments	with	the
Rest	Operator

In	this	tip,	you’ll	learn	to	collect	an	unknown	number	of	parameters	with	the	rest
operator.

In	the	previous	tips,	you	saw	how	object	destructuring	would	let	you	combine
several	parameters	into	a	single	argument.

Using	objects	to	hold	parameters	is	a	great	technique,	but	it’s	really	only	useful
in	situations	where	the	parameters	are	different	and	you	know	them	ahead	of
time.	In	other	words,	it	only	makes	sense	in	situations	with	objects.

That	may	seem	obvious,	but	it	raises	the	question:	How	do	you	handle	an
unknown	number	of	similar	parameters?

Think	back	to	the	photo	display	application.	What	if	you	wanted	to	allow	your
users	to	tag	photos	but	you	only	wanted	the	tags	to	be	a	certain	length?	You
could	easily	write	a	very	short	validation	function	that	takes	a	size	and	an	array
of	tags	and	returns	true	if	all	are	valid.

params/rest/simple.js

​ ​function​ validateCharacterCount(max, items) {
​ ​return​ items.every(item => item.length < max);
​ }

Notice	the	every()	method?	It’s	another	simple	array	method	you	haven’t	seen
before.	As	with	filter(),	you	pass	a	callback	that	returns	a	truthy	or	falsy	value.
The	every()	method	returns	true	if	every	item	in	an	array	passed	to	the	callback
returns	truthy.	Otherwise,	it	returns	false.

Running	the	function	is	simple.	Just	pass	in	an	array	of	strings.

params/rest/simple.js

​ validateCharacterCount(10, [​'Hobbs'​, ​'Eagles'​]);

http://media.pragprog.com/titles/es6tips/code/params/rest/simple.js
http://media.pragprog.com/titles/es6tips/code/params/rest/simple.js

​ ​// true​

This	code	is	great	because	it’s	so	generic.	You	can	easily	reuse	it	elsewhere.	The
only	down	side	to	this	code	is	that	it	locks	the	users	of	your	function	into	a
particular	collection	type.	Another	developer	might,	for	example,	want	to	test
that	a	single	username	isn’t	too	long.	To	use	the	code,	they’d	have	to	know	that
they’d	need	to	pass	an	array.	If	they	didn’t,	they	would	get	an	error.

params/rest/simple.js

​ validateCharacterCount(10, ​'wvoquine'​);
​ ​// TypeError: items.every is not a function​

You	could	write	some	documentation	to	communicate	the	parameters,	but	there’s
a	better	way.	Previously,	JavaScript	developers	solved	this	problem	by	using	the
built-in	arguments	object.	This	handy	object	gives	you	an	array-like	collection	of
all	the	arguments	that	are	passed	to	a	function.

params/rest/problem.js

​ ​function​ getArguments() {
​ ​return​ ​arguments​;
​ }

​ getArguments(​'Bloomsday'​, ​'June 16'​);
​ ​// { '0': 'Bloomsday', '1': 'June 16' }​

You	may	have	noticed	the	phrase	“array-like.”	Unfortunately,	arguments	is	an
object,	so	you’ll	need	to	do	some	converting	to	get	it	to	an	array.	Specifically,
you’ll	need	to	statically	call	a	method	on	the	Array	object	(as	opposed	to	an	array
instance)	as	you	see	in	line	2	in	the	code	that	follows.	This	line	of	code	takes	all
arguments	after	the	first	one,	the	character	count,	and	combines	them	into	an
array.

params/rest/problem.js

​1: ​function​ validateCharacterCount(max) {
​2: ​const​ items = Array.prototype.slice.call(​arguments​, 1);
​3: ​return​ items.every(item => item.length < max);
​4: }

http://media.pragprog.com/titles/es6tips/code/params/rest/simple.js
http://media.pragprog.com/titles/es6tips/code/params/rest/problem.js
http://media.pragprog.com/titles/es6tips/code/params/rest/problem.js

Now	you	can	pass	as	many	arguments	as	you	want	knowing	you’ll	have	an	array
inside	the	function.

What	about	situations	where	you	already	have	an	array?	Because	you	are
converting	the	arguments	into	an	array,	you’ll	need	to	convert	your	array	into	a
list	of	arguments.

Think	back	to	when	you	learned	about	the	spread	operator.	At	the	time,	you
learned	you	always	need	to	spread	into	something.	Up	until	now,	you’ve	only
spread	it	into	another	array.	You	can	also	spread	it	as	a	list	of	parameters.	In
other	words,	when	you	collect	parameters	into	a	list,	you	can	easily	handle	cases
of	strings	or	arrays.

Using	these	techniques,	you	can	now	use	your	function	with	a	variety	of
parameters.

params/rest/problem.js

​ validateCharacterCount(10, ​'wvoquie'​);
​ ​// true​
​
​ ​const​ tags = [​'Hobbs'​, ​'Eagles'​];
​ validateCharacterCount(10, ...tags);

​ ​// true​

This	is	more	flexible,	but	it’s	far	from	perfect.	The	biggest	problem	is	that	the
syntax	to	work	with	the	arguments	object	is	a	little	convoluted.	As	a	result,	few
developers	(except	the	most	hard-core	JavaScript	developers)	used	it.	Not	to
mention	that	when	you	use	the	arguments	object,	there	are	absolutely	no	clues	in
the	function	parameters	that	you	accept	a	list	of	arguments.	Another	developer
would	have	to	dig	into	the	function	body	to	understand	what	they	can	pass	to	the
function.

Enter	rest	parameters.	Rest	parameters	enable	you	to	pass	a	list	of	arguments	and
assigns	them	to	a	variable.

JavaScript	and	Functional	Languages

http://media.pragprog.com/titles/es6tips/code/params/rest/problem.js

JavaScript	was	highly	influenced	by	a	variety	of	languages	including	Java	(an
object-oriented	language),	Scheme	(a	lisp	or	functional	language),	and	Self	(a
prototype	language).[27]	This	means	that	JavaScript	can	handle	multiple
paradigms.	As	a	result,	JavaScript	is	a	great	environment	to	explore	ideas	from
other	paradigms,	especially	concepts	from	functional	languages.

You’ve	already	explored	a	number	of	functional	concepts	such	as	pure	functions,
side	effects,	and	currying.	Rest	arguments	themselves	are	a	carryover	from	Lisp
dialects	(such	as	Scheme).	You’ll	see	even	more	functional	concepts	when	you
explore	higher-order	functions.	JavaScript	is	a	great	way	to	break	out	of	an
object-oriented	mold	to	try	new	ideas.

You	declare	rest	operators	using	your	favorite	three	dots	(...)	followed	by	the
variable	you’d	like	to	assign	them	to.	Any	parameters	passed	beyond	that	point
are	collected	into	the	variable	as	an	array.

params/rest/rest.js

​ ​function​ getArguments(...args) {
​ ​return​ args;
​ }

​ getArguments(​'Bloomsday'​, ​'June 16'​);
​ ​// ['Bloomsday', 'June 16']​

It’s	that	simple.	Try	rewriting	the	validateCharacterCount()	function	using	rest
arguments.

It	probably	took	you	no	time	at	all	to	come	up	with	this:

params/rest/rest.js

​ ​function​ validateCharacterCount(max, ...items) {
​ ​return​ items.every(item => item.length < max);
​ }

In	addition	to	being	simpler	and	cleaner,	it	is	more	predictable.	Now	a	developer
can	tell	that	this	function	takes	at	minimum	two	arguments.	Even	those
unfamiliar	with	the	rest	operator	have	enough	clues	that	a	quick	Stack	Overflow
search	would	fill	in	the	details.

http://media.pragprog.com/titles/es6tips/code/params/rest/rest.js
http://media.pragprog.com/titles/es6tips/code/params/rest/rest.js

You’d	call	the	function	exactly	the	same	way	as	you	did	with	the	previous
function,	by	either	passing	a	list	of	arguments	or	spreading	an	array	of	arguments
into	a	list.	This	is	no	different	from	the	previous	code	when	you	used	the
arguments	object.

params/rest/rest.js

​ validateCharacterCount(10, ​'wvoquie'​);
​ ​// true​
​
​ validateCharacterCount(10, ...[​'wvoquie'​]);
​ ​// true​
​
​ ​const​ tags = [​'Hobbs'​, ​'Eagles'​];
​ validateCharacterCount(10, ...tags);

​ ​// true​
​
​ validateCharacterCount(10, ​'Hobbs'​, ​'Eagles'​);
​ ​// true​

At	this	point,	you’ve	accounted	for	a	situation	where	you	might	get	either	a	list
or	an	array.	There	are	a	few	other	reasons	you	might	use	rest	arguments.

First,	you	want	to	signal	to	other	developers	that	you’ll	be	working	with
arguments	as	an	array.	In	the	absence	of	type	checking,	this	is	another	little	clue
that	will	help	future	developers.	A	lot	of	developers	will	use	the	rest	operator
even	though	the	data	they’re	passing	in	will	be	in	the	form	of	an	array.	Even
though	they	always	spread	in	the	information	when	calling	the	function,	it’s	a
clear	marker	of	the	expected	parameter	type.

Second,	the	rest	operator	can	give	you	a	nice	way	to	debug	code.	For	example,	it
can	help	you	decode	library	functions	that	you	suspect	may	be	getting	additional
parameters,	and	you	can	use	a	rest	argument	to	collect	any	lingering	arguments.

You’ve	worked	with	the	map()	method	several	times,	and	you	know	the	callback
function	takes	the	item	being	checked	as	an	argument.	It	turns	out	that	the
callback	function	passes	a	few	more	arguments	after	the	individual	items.	If	you
collect	the	rest	of	the	parameters	and	log	them,	you’ll	see	the	map()	operator	also

http://media.pragprog.com/titles/es6tips/code/params/rest/rest.js

takes	the	index	of	the	item	being	checked	and	the	full	collection.

params/rest/rest.js

​ [​'Spirited Away'​, ​'Princess Mononoke'​].map((film, ...other) => {
​ console.log(other);

​ ​return​ film.toLowerCase();
​ });

​ ​// [0, ['Spirited Away', 'Princess Mononoke']]​
​ ​// [1, ['Spirited Away', 'Princess Mononoke']]​

This	isn’t	a	big	deal	on	the	map()	operator,	which	is	well-documented,	but	the	rest
operator	can	help	you	see	parameters	that	you	might	not	have	otherwise	known
about.	The	rest	operator	is	a	great	way	to	debug.

Third,	rest	arguments	are	a	great	way	to	pass	props	through	functions	if	you	have
no	plans	to	alter	them.

This	is	nice	when	you	want	to	wrap	a	couple	of	functions	and	pass	the	arguments
through.	For	example,	you	may	have	a	modal,	and	when	changes	are	saved,
you’ll	want	to	close	a	modal	while	simultaneously	updating	some	information
with	another	function.

params/rest/rest.js

​ ​function​ applyChanges(...args) {
​ updateAccount(...args);

​ closeModal();

​ }

Finally,	don’t	forget	the	rest	operator	isn’t	just	for	parameters.	As	you’ve	seen,	it
works	for	pulling	the	remaining	key-values	from	objects	or	the	remaining	values
from	arrays.

Much	like	the	spread	operator,	you	can	recreate	a	common	array	method	while
removing	side	effects.	If	you	wanted	to	recreate	the	shift()	method,	which	returns
the	first	item	of	an	array	and	removes	that	item	from	the	original	array,	simply
combine	the	rest	operator	and	destructuring.

http://media.pragprog.com/titles/es6tips/code/params/rest/rest.js
http://media.pragprog.com/titles/es6tips/code/params/rest/rest.js

[25]

[26]

[27]

params/rest/rest.js

​ ​const​ queue = [​'stop'​, ​'collaborate'​, ​'listen'​];
​ ​const​ [first, ...remaining] = queue;
​ first;

​ ​// 'stop'​
​ remaining;

​ ​// ['collaborate', 'listen'];​

You	get	the	first	value	and	an	array	of	the	remaining	values.	As	a	bonus,	the
original	array	is	still	intact.

The	only	downside	to	using	the	rest	operator	as	an	argument	is	that	it	must	be	the
last	argument	in	all	situations.	It	must	be	the	last	parameter	for	a	function.	It
must	be	the	last	value	when	destructuring.	This	means	that	although	you	can
recreate	the	shift()	method—return	the	first	item—you	can’t	recreate	the	pop()

method,	which	returns	the	last	item	of	an	array.

​ ​const​ [...beginning, last] = queue;
​ ​// SyntaxError: Rest element must be last element​

Still,	the	rest	operator	is	very	useful,	and	you’ll	find	lots	of	opportunities	to	work
it	into	your	code.

Look	at	how	much	more	you	can	do	with	functions	already.	And	you’ve	only
just	begun.	In	the	next	chapter,	you’ll	move	beyond	parameters	and	return
statements	and	explore	how	to	construct	more	powerful	and	flexible	functions.

Footnotes

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

https://flow.org

https://www.youtube.com/watch?v=DogGMNBZZvg

Copyright	©	2018,	The	Pragmatic	Bookshelf.

http://media.pragprog.com/titles/es6tips/code/params/rest/rest.js
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://flow.org
https://www.youtube.com/watch?v=DogGMNBZZvg

Chapter	7

Build	Flexible	Functions
	

Several	years	ago,	the	New	York	Times	asked	a	master	furniture	builder	to	review
furniture	from	Ikea,	Target,	and	other	discount	retailers.[28]

Unsurprisingly,	the	craftsman	was	not	impressed.	He	noticed	problems	with	the
wood	finish,	screws	that	would	tear	out,	and	other	issues.	Astonishingly,	he
noticed	a	piece	of	chipping	paint	and	concluded	that	the	piece	was	painted
before	it	was	cut	and	that	the	blade	cutting	the	wood	was	dull.	A	single	piece	of
chipped	paint	told	him	something	about	the	construction	process	and	the	tools
used	to	create	it.

A	master	of	his	or	her	craft	can	see	things	that	others	don’t.	In	this	chapter,
you’re	going	to	learn	to	master	functions,	and	in	the	process,	you’ll	see	ideas	in
code	that	you’ve	probably	never	considered	before.	Problems	disappear	and	new
ideas	pop	up	regularly.

Functions	are	so	common	that	it’s	easy	to	ignore	them.	But	functions	in
JavaScript	are	different.	You	may	think	you	know	how	to	use	them,	but	you’ll	be
surprised	to	find	how	much	more	they	are	capable	of.	This	chapter	isn’t	about
the	basics.	It’s	about	how	you	can	use	functions	in	ways	you	may	not	have
explored	before.

You’ll	start	off	by	learning	how	to	write	testable	code.	Testable	functions	are
more	clean	and	easy	to	maintain,	but	learning	to	write	them	takes	a	little	effort.
From	there,	you’ll	return	to	arrow	functions	to	see	how	you	can	take	all	the	ideas
from	parameters	and	apply	them	in	single	line	functions.	Next,	you’ll	dive	into

higher-order	functions—functions	that	return	functions—and	learn	two
techniques	to	help	you	lock	in	information	to	make	clear,	reusable	functions.
Finally,	you’ll	return	to	arrow	functions	to	see	how	you	can	use	them	to	solve	a
sneaky	context	problem	that	will	drive	you	crazy	if	you	aren’t	expecting	it.

Functions,	currying,	higher-order	functions.	These	are	the	concepts	that	turn
casual	JavaScript	writers	into	fanatics.	They’re	the	concepts	I	love	most	about
the	language.

When	you’re	finished,	you’ll	see	problems	in	new	ways.	You	won’t	be	baffled
when	this	returns	undefined.	You’ll	see	a	context	problem	that	you	can	solve
with	arrow	functions.	When	a	variable	is	inaccessible,	you’ll	see	an	opportunity
for	closures.	Masters	of	a	craft	see	the	world	differently.	When	you’re	finished
mastering	functions,	you’ll	see	all	problems	in	a	new	way.

Tip	32 Write	Functions	for	Testability

I	had	a	literature	professor	who	said	that	classes	about	writing	don’t	include
enough	reading	and	classes	about	reading	don’t	include	enough	writing.	The
same	is	true	of	code	and	tests:	Books	about	code	don’t	talk	enough	about	testing
and	books	about	testing	don’t	talk	enough	about	composing	code.

Time	to	fix	that.	Testing	is	important.	If	you	don’t	do	it,	you	should.	It	makes
your	code	easier	to	refactor.	It	makes	legacy	code	much	easier	to	understand.
And	it	generally	results	in	cleaner,	less	buggy	applications.

Most	developers	agree	with	this.	Why	then	is	testing	neglected?

It’s	simple.	Writing	tests	is	hard.	Or	more	accurately,	many	developers	think
writing	tests	is	hard	because	they	try	to	fit	tests	onto	their	existing	code.	And
their	existing	code	is	tightly	coupled	with	external	dependencies.

Code	that’s	hard	to	test	is	often	unnecessarily	complex.	Instead	of	struggling	to
make	tests	for	your	code,	you	should	focus	on	writing	code	that	is	testable.	Your
code	will	improve,	your	tests	will	be	easier	to	write,	and	the	user	experience	will
be	identical.	There’s	nothing	to	lose.

If	you’re	new	to	testing,	check	the	documentation	for	one	of	three	popular
testing	frameworks—jasmine,[29]	mocha,[30]	or	jest[31]—for	some	quick	pointers.
You	can	also	check	out	the	code	for	this	book,	which	has	near	100%	code
coverage	using	mocha	as	the	test	runner.

To	get	the	most	out	of	this	tip,	you	should	know	the	basics	of	describe()	and	it()

functions	along	with	expectations.

Now,	how	do	you	write	testable	code?	Here’s	a	function	that	looks	simple	but
has	some	subtle	complexity.

functions/test/problem.js

​1: ​import​ { getTaxInformation } ​from​ ​'./taxService'​;

http://media.pragprog.com/titles/es6tips/code/functions/test/problem.js

​2:
​3: ​function​ formatPrice(user, { price, location }) {
​4: ​const​ rate = getTaxInformation(location);
​5: ​const​ taxes = rate ? ​`plus $​${price * rate}​ in taxes.`​ : ​'plus tax.'​;
​6:
​7: ​return​ ​`​${user}​ your total is: ​${price}​ ​${taxes}​`​;
​8: }

​9:
​10: ​export​ { formatPrice };

You	may	be	wondering,	how	can	this	be	complex?	All	it	does	is	compute	some
tax	information	from	a	price	and	combines	it	with	a	user	to	create	a	string.

The	testing	difficulty	begins	when	you	call	an	outside	function	on	line	4.	Notice
that	you’re	importing	that	function	at	the	top	of	the	file.	You’ll	learn	more	about
importing	functions	in	Tip	47,	​	Isolate	Functionality	with	Import	and	Export	 ​,
but	for	now,	all	you	need	to	know	is	that	you’re	getting	something	from	outside
the	file.

The	problem	with	using	imported	code	directly	is	that	the	function	is	now	tightly
coupled	with	the	imported	function.	You	can’t	run	formatPrice()	without	executing
getTaxInformation().	And	because	the	getTaxInformation()	function	will	likely	need
to	hit	an	external	service	or	a	config	file,	you’re	now	tightly	coupled	to	network
communication.	This	means	that	if	you	run	a	test,	the	test	will	also	have	to
access	the	API.	Now	your	test	is	dependent	on	network	access,	response	time,
and	so	on.	Again,	this	is	a	big	problem.	You’re	just	trying	to	build	a	string.

To	avoid	the	problem,	you	can	create	mocks	that	intercept	imports	and	explicitly
set	a	return	value.	Here’s	what	a	test	would	look	like	for	the	current	function.

functions/test/problem.spec.js

​1: ​import​ expect ​from​ ​'expect'​;
​-
​- ​import​ sinon ​from​ ​'sinon'​;
​- ​import​ * ​as​ taxService ​from​ ​'./taxService'​;
​5: ​import​ { formatPrice } ​from​ ​'./problem'​;
​-
​- describe(​'format price'​, () => {
​- ​let​ taxStub;

http://media.pragprog.com/titles/es6tips/code/functions/test/problem.spec.js

​-
​10: beforeEach(() => {
​- taxStub = sinon.stub(taxService, ​'getTaxInformation'​);
​- });

​-
​- afterEach(() => {

​15: taxStub.restore();
​- });

​-
​- it(​'should return plus tax if no tax info'​, () => {
​- taxStub.returns(​null​);
​20: ​const​ item = { price: 30, location: ​'Oklahoma'​ };
​- ​const​ user = ​'Aaron Cometbus'​;
​- ​const​ message = formatPrice(user, item);
​- ​const​ expectedMessage = ​'Aaron Cometbus your total is: 30 plus tax.'​;
​- expect(message).toEqual(expectedMessage);

​25: });
​-
​- it(​'should return plus tax information'​, () => {
​- taxStub.returns(0.1);

​-
​30: ​const​ item = { price: 30, location: ​'Oklahoma'​ };
​- ​const​ user = ​'Aaron Cometbus'​;
​- ​const​ message = formatPrice(user, item);
​- ​const​ expectedMessage = ​'Aaron Cometbus your total is:​
​- ​ 30 plus $3 in taxes.'​;
​35: expect(message).toEqual(expectedMessage);
​- });

​- });

The	tricky	part	begins	on	line	11.	You’re	creating	a	stub	that	overrides	the
original	getTaxInformation()	function	with	a	simple	return	value.

When	you	create	a	stub,	you’re	bypassing	the	imported	code	and	declaring	what
the	output	would	be	without	running	the	actual	code.	The	upside	is	that	now	you
don’t	have	to	worry	about	any	external	dependencies.	The	downside	is	that	you
constantly	have	to	set	and	reset	the	return	value	in	every	assertion.	See	line	19
for	an	example.

Finally,	after	the	test	suite	is	over,	you	have	to	restore	the	code	to	use	the	original
method.	You	do	this	in	the	afterEach()	method	on	line	15.	Restoring	the	code	is	a
crucial	step.	By	hijacking	the	code	in	this	test	suite,	you’ve	hijacked	it	for	all

tests	unless	you	restore	it.

I	once	had	a	test	suite	that	was	tightly	coupled	and	used	a	lot	of	stubs.
Everything	was	working	until	I	changed	the	location	of	a	file.	All	of	a	sudden,
the	tests	ran	in	a	different	order	and	lots	of	tests	started	failing.	I	thought	I	had
accurately	restored	all	the	stubs,	but	it	was	an	illusion.	The	only	reason	the	test
passed	was	because	they	ran	in	a	specific	order.

Don’t	be	fooled	by	the	shortness	of	the	test	suite.	Tests	that	require	a	lot	of
external	helpers,	such	as	spies,	mocks,	and	stubs,	are	a	clue	that	your	code	is
complex	and	may	be	tightly	coupled.	You	should	simplify	your	code.

Stubs,	Mocks,	Spies
Even	with	your	best	efforts,	you’ll	eventually	need	some	helpers	to	test	your
code.	Fortunately	there	are	quite	a	few	techniques	to	help	you.	The	three	big
ones	are	stubs,	mocks,	and	spies.

In	this	example,	you’re	working	with	stubs.	You’re	overriding	outside	code	and
returning	an	explicit	result.	It’s	called	a	stub	because	you’re	removing	all	the
underlying	logic	of	the	function	and	just	declaring	a	result.

Mocks	are	a	little	more	complex.	They	stand	in	for	the	objects	they’re	replacing,
and	you	make	assertions	based	on	the	messages	they’ll	receive	and	the
methods	you’ll	call	on	them.	For	example,	you	may	mock	an	object	and	assert
that	you’ll	call	a	format()	method	on	your	object	with	the	argument	jabberwocky.

A	crucial	difference	between	mocks	and	stubs	is	that	you	set	up	the	expectations
before	you	call	the	code	with	mocks.	Martin	Fowler	has	a	good	article	on	the
difference	between	mocks	and	stubs.[32]

Spies	are	like	mocks,	but	you	check	how	they	were	called	after	you	execute	the
code.	If	you	called	formatPrice()	and	wanted	to	make	sure	that	getTaxInformation()
was	called	once	with	an	argument	of	Iowa,	you’d	set	up	the	stub	with	a	spy	and
then,	after	calling	formatPrice(),	you’d	make	assertions	on	the	spy.	If	you	look	at
the	code	for	this	book,	you’ll	see	an	occasional	spy.

For	more	on	mocks,	spies,	and	stubs,	Simon	Coffey	goes	into	detail	on	each,
using	Ruby	as	an	example.[33]

Fortunately,	the	fix	for	tightly	coupled	code	is	fairly	simple.	You	simply	pass	in

your	external	functions	as	arguments.	Passing	in	dependencies	as	arguments	is
called	dependency	injection.

	

To	decouple	your	code,	pass	getTaxInformation()	as	an	argument.	You	don’t	need
to	change	anything	else	in	your	code.

functions/test/test.js

​ ​function​ formatPrice(user, { price, location }, getTaxInformation) {
​ ​const​ rate = getTaxInformation(location);
​ ​const​ taxes = rate ? ​`plus $​${price * rate}​ in taxes.`​ : ​'plus tax.'​;
​ ​return​ ​`​${user}​ your total is: ​${price}​ ​${taxes}​`​;
​ }

​
​ ​export​ { formatPrice };

Now	that	you’re	using	dependency	injection,	you	don’t	need	stubs.	When	you
write	your	tests,	you	don’t	need	to	bypass	an	import.	Instead,	you	pass	a	simple
function	that	returns	the	value	you	want.	It’s	a	lot	like	stubbing	but	without	any
external	dependencies.	Your	function	now	takes	inputs,	including	another
function,	and	returns	outputs.	Remember,	you	aren’t	testing	getTaxInformation().
You’re	testing	that	formatPrice(),	given	certain	inputs,	will	return	a	certain	result.

Here’s	your	test:

functions/test/test.spec.js

​ ​import​ expect ​from​ ​'expect'​;
​
​ ​import​ { formatPrice } ​from​ ​'./test'​;
​
​ describe(​'format price'​, () => {
​ it(​'should return plus tax if no tax info'​, () => {
​ ​const​ item = { price: 30, location: ​'Oklahoma'​ };
​ ​const​ user = ​'Aaron Cometbus'​;
​ ​const​ message = formatPrice(user, item, () => ​null​);
​ expect(message).toEqual(​'Aaron Cometbus your total is: 30 plus tax.'​);
​ });

​

http://media.pragprog.com/titles/es6tips/code/functions/test/test.js
http://media.pragprog.com/titles/es6tips/code/functions/test/test.spec.js

​ it(​'should return plus tax information'​, () => {
​ ​const​ item = { price: 30, location: ​'Oklahoma'​ };
​ ​const​ user = ​'Aaron Cometbus'​;
​ ​const​ message = formatPrice(user, item, () => 0.1);
​ expect(message).toEqual(​'Aaron Cometbus your total is:​
​ ​ 30 plus $3 in taxes.'​);
​ });

​ });

Notice	that	you	require	nothing	except	the	function	you’re	testing	and	the	expect
library.	The	tests	are	much	easier	to	write,	and	they	do	a	better	job	of	getting
your	code	down	to	a	single	responsibility.

You	may	argue	that	dependency	injection	didn’t	solve	the	problem—it	moved
the	problem	to	another	function.

That’s	true.	There	are	going	to	be	some	side	effects,	some	input/output,	in	your
code.	The	trick	to	writing	testable	code	is	to	get	that	in	as	few	places	as	possible.

For	example,	you	can	move	all	your	AJAX	calls	into	a	service.	Then,	when	you
need	to	use	them	in	a	function,	you	can	inject	a	service	that’s	easy	to	test	rather
than	trying	to	mock	AJAX	responses	(which	is	very	difficult).

The	important	thing	to	know	is	that	there’s	a	perception	that	writing	tests	is	hard.
That’s	just	not	true.	If	a	test	is	hard	to	write,	spend	time	rethinking	your	code.	If
your	code	isn’t	easy	to	test,	you	should	change	your	code,	not	your	tests.

And	don’t	get	frustrated	when	you	encounter	other	problems.	Tightly	coupled
code	is	just	one	form	of	complexity.	There	are	plenty	of	other	code	smells—code
that’s	technically	correct	but	doesn’t	seem	very	clear—	that	sneak	into	tests.
Joshua	Mock	wrote	a	good	article	on	some	of	the	other	problems	of	testing
JavaScript,	and	it’s	worth	reading	to	learn	more.[34]

The	best	thing	you	can	do	is	start	writing	tests	today.	If	you	need	more	examples,
check	out	the	code	for	this	book.	It	has	nearly	100%	test	coverage	and	has	a
variety	of	tests	(including	some	with	mocks	and	spies).	If	you	want	to	learn
more,	check	out	Test	Driving	JavaScript	Applications.	[Sub16]

In	the	next	tip,	we’ll	get	back	into	the	details	of	writing	functions	by	further
exploring	arrow	functions.

Tip	33 Reduce	Complexity	with	Arrow	Functions

In	this	tip,	you’ll	learn	how	to	use	arrow	functions	to	destructure	arguments,
return	objects,	and	construct	higher-order	functions.

You	explored	arrow	functions	once	in	Tip	20,	​	Simplify	Looping	with	Arrow
Functions	​.	It’s	time	to	take	a	deeper	dive.

As	a	reminder,	arrow	functions	allow	you	to	remove	extraneous	information,
such	as	the	function	declaration,	parentheses,	return	statements,	even	curly	braces.
Now	you’re	going	to	see	how	to	handle	a	few	more	concepts	that	you’ve	just
learned,	such	as	destructuring.	You’ll	also	get	an	introduction	to	new	ideas	that
you’ll	explore	further	in	future	tips.

Let’s	begin	with	destructuring.	You’re	going	to	take	an	object	that	has	a	first	and
last	name	and	combine	them	in	a	string.	You	can’t	get	more	simple	than	that.

functions/arrow/problem.js

​ ​const​ name = {
​ first: ​'Lemmy'​,
​ last: ​'Kilmister'​,
​ };

​
​ ​function​ getName({ first, last }) {
​ ​return​ ​`​${first}​ ​${last}​`​;
​ }

That	should	be	very	easy	to	convert	to	an	arrow	function.	Remove	everything
except	the	parameter	and	the	template	literal.	Add	a	fat	arrow,	=>,	and	you	should
be	done.

Not	quite.	Everything	is	the	same	except	the	parameters.	When	you’re	using	any
kind	of	special	parameter	action—destructuring,	rest	parameters,	default
parameters—you	still	need	to	include	the	parentheses.

This	sounds	trivial,	but	it	will	trip	you	up	if	you	aren’t	aware.	It’s	hard	for	the

http://media.pragprog.com/titles/es6tips/code/functions/arrow/problem.js

JavaScript	engine	to	know	if	you’re	performing	a	function	declaration	and	not	an
object	declaration.	You’ll	get	an	error	like	this:

functions/arrow/close.js

​ ​const​ getName = { first, last } => ​`​${first}​ ​${last}​`​;
​
​ ​// Error: Unexpected token '=>'. Expected ';' after variable declaration​

And	that’s	if	you’re	lucky.	If	you	try	this	in	a	Node.js	REPL,	it	will	just	hang	like
you	forgot	to	add	a	closing	curly	brace.	It	can	be	very	confusing.

The	solution	is	simple:	If	you’re	using	any	special	parameters,	just	wrap	the
parameter	in	parentheses	as	you	normally	would.

functions/arrow/arrow.js

​ ​const​ comic = {
​ first: ​'Peter'​,
​ last: ​'Bagge'​,
​ city: ​'Seattle'​,
​ state: ​'Washington'​,
​ };

​
​ ​const​ getName = ({ first, last }) => ​`​${first}​ ​${last}​`​;
​ getName(comic);

​ ​// Peter Bagge​

If	you’re	returning	an	object,	you	have	to	be	careful	when	omitting	the	return
statement.	Because	an	arrow	function	can’t	tell	whether	the	curly	braces	are	for
an	object	or	to	wrap	a	function	body,	you’ll	need	to	indicate	the	return	object	by
wrapping	the	whole	thing	in	parentheses.

functions/arrow/arrow.js

​ ​const​ getFullName = ({ first, last }) => ({ fullName: ​`​${first}​ ​${last}​`​ });
​ getFullName(comic);

​ ​// { fullName: 'Peter Bagge' }​

It	gets	even	better.	When	you	return	a	value	using	parentheses,	you	aren’t	limited
to	a	single	line.	You	can	return	multi-line	items	while	still	omitting	the	return

http://media.pragprog.com/titles/es6tips/code/functions/arrow/close.js
http://media.pragprog.com/titles/es6tips/code/functions/arrow/arrow.js
http://media.pragprog.com/titles/es6tips/code/functions/arrow/arrow.js

statement.

functions/arrow/arrow.js

​ ​const​ getNameAndLocation = ({ first, last, city, state }) => ({
​ fullName: ​`​${first}​ ​${last}​`​,
​ location: ​`​${city}​, ​${state}​`​,
​ });

​ getNameAndLocation(comic);

​ ​// {​
​ ​// fullName: 'Peter Bagge',​
​ ​// location: 'Seattle, Washington'​
​ ​// }​

Finally,	arrow	functions	are	great	ways	to	make	higher-order	functions—
functions	that	return	other	functions.	You’ll	explore	higher-order	functions	in
upcoming	tips,	so	for	now,	let’s	just	see	how	to	structure	them.

Because	a	higher-order	function	is	merely	a	function	that	returns	another
function,	the	initial	parameter	is	the	same.	And	you	can	return	a	function	from
the	body	like	you	always	would.

functions/arrow/problem.js

​ ​const​ discounter = discount => {
​ ​return​ price => {
​ ​return​ price * (1 - discount);
​ };

​ };

​ ​const​ tenPercentOff = discounter(0.1);
​ tenPercentOff(100);

​ ​// 90​

Of	course,	because	the	return	value	is	another	function,	you	can	leverage	the
implicit	return	to	return	the	function	without	even	needing	extra	curly	braces.
Try	it	out.

functions/arrow/arrow.js

​ ​const​ discounter = discount => price => price * (1 - discount);
​
​ ​const​ tenPercentOff = discounter(0.1);

http://media.pragprog.com/titles/es6tips/code/functions/arrow/arrow.js
http://media.pragprog.com/titles/es6tips/code/functions/arrow/problem.js
http://media.pragprog.com/titles/es6tips/code/functions/arrow/arrow.js

​ tenPercentOff(100);

​ ​// 90;​

If	you’re	anything	like	me,	you’re	probably	already	forgetting	all	about	higher-
order	functions.	When	are	you	going	to	use	them?	Turns	out,	they	can	be	very
helpful.	Not	only	are	they	great	ways	to	lock	in	parameters,	but	they’ll	also	help
you	take	some	of	the	ideas	you’ve	already	seen—array	methods,	rest	parameters
—even	further.

In	all	the	examples,	you	invoked	the	higher-order	functions	by	first	assigning	the
returned	function	to	a	variable	before	calling	that	with	another	parameter.	That’s
not	necessary.	You	can	call	one	function	after	the	other	by	just	adding	the	second
set	of	parameters	in	parentheses	right	after	the	first.	This	essentially	turns	a
higher-order	function	into	a	single	function	with	two	different	parameter	sets.

functions/arrow/arrow.js

​ discounter(0.1)(100);

​ ​// 90​

In	the	next	tip,	you’ll	see	why	using	higher-order	functions	to	keep	parameters
separate	is	such	a	game	changer	by	learning	how	to	create	single	responsibility
parameters.

http://media.pragprog.com/titles/es6tips/code/functions/arrow/arrow.js

Tip	34
Maintain	Single	Responsibility	Parameters	with
Partially	Applied	Functions

In	this	tip,	you’ll	learn	to	keep	parameters	focused	with	partially	applied
functions.

In	the	last	tip,	you	saw	how	you	can	easily	create	higher-order	functions	with
arrow	functions.	If	you	come	from	an	object-oriented	background	or	just	haven’t
seen	much	code	that	uses	higher-order	functions,	you	may	have	problems
understanding	when	you	should	use	higher-order	functions.

Higher-order	functions	provide	unique	value	by	locking	in	parameters	so	you
can	complete	the	function	later	while	still	maintaining	access	to	the	original
arguments.	They	also	isolate	parameters	so	you	can	keep	intentions	clear.	In	the
next	tip,	you’ll	see	more	about	locking	in	parameter	data.	In	this	tip,	you’ll	see
how	you	leverage	higher-order	functions	to	give	parameters	single	responsibility.

A	higher-order	function	is	a	function	that	returns	another	function.	What	this
means	is	that	you	have	at	least	two	rounds	of	parameters	before	the	function	is
fully	resolved.	With	a	partially	applied	function,	you	pass	some	parameters	and
you	get	back	a	function	that	locks	those	parameters	in	place	while	taking	more
parameters.	In	other	words,	a	partially	applied	function	reduces	the	total	number
of	arguments	for	a	function—also	called	the	“arity”—while	giving	you	another
function	that	needs	a	few	more	arguments.

The	takeaway	is	that	you	can	have	multiple	sets	of	parameters	that	are
independent	of	one	another.	Perhaps	it	seems	like	parameters	already	have	single
responsibility.	They	are,	after	all,	the	input	data	to	the	function	so	they	must
relate	to	one	another.	That’s	true,	but	even	inputs	have	different	relationships.
Some	inputs	are	related	to	one	another	while	others	are	more	independent.

Think	about	an	events	page	on	a	website.	An	event	is	going	to	occur	in	a	specific
space.	Each	event	is	unique,	but	the	space	isn’t	going	to	change	radically
between	events.	The	address,	name,	building	hours,	and	so	on	will	be	the	same.
In	addition,	spaces	are	managed	by	people	who	are	points	of	contact,	and	they

will	seldom	change	between	events.

With	that	in	mind,	consider	a	function	that	needs	to	combine	information	about
the	space,	the	space	manager,	and	an	event	on	a	page.	You’ll	likely	get	each
piece	of	information	from	a	different	source,	and	you’ll	need	to	combine	them
together	to	return	the	complete	information.

Here’s	a	sample	of	the	data	you’ll	receive.	The	building	has	an	address	and
hours.	The	manager	has	a	name	and	phone	number.	Then	you	have	two	different
event	types.	The	first,	a	program,	will	have	a	specific	hour	range	that’s	shorter
than	the	building	hours.	The	second,	an	exhibit,	will	be	open	as	long	as	the
building	is	open	but	will	need	the	curator	as	a	contact.

functions/partial/partial.js

​ ​const​ building = {
​ hours: ​'8 a.m. - 8 p.m.'​,
​ address: ​'Jayhawk Blvd'​,
​ };

​
​ ​const​ manager = {
​ name: ​'Augusto'​,
​ phone: ​'555-555-5555'​,
​ };

​
​ ​const​ program = {
​ name: ​'Presenting Research'​,
​ room: ​'415'​,
​ hours: ​'3 - 6'​,
​ };

​
​ ​const​ exhibit = {
​ name: ​'Emerging Scholarship'​,
​ contact: ​'Dyan'​,
​ };

At	this	point,	you	just	need	to	write	a	simple	function	that	takes	three	arguments
—building,	manager,	program/event—and	combines	them	into	one	set	of
information.

functions/partial/problem.js

http://media.pragprog.com/titles/es6tips/code/functions/partial/partial.js
http://media.pragprog.com/titles/es6tips/code/functions/partial/problem.js

​ ​function​ mergeProgramInformation(building, manager, program) {
​ ​const​ { hours, address } = building;
​ ​const​ { name, phone } = manager;
​ ​const​ defaults = {
​ hours,

​ address,

​ contact: name,

​ phone,

​ };

​
​ ​return​ { ...defaults, ...program };
​ }

Notice	every	time	you	call	the	function	for	a	building,	you	have	to	pass	the	same
first	parameters.	The	function	call	is	repetitive.

functions/partial/problem.js

​ ​const​ programInfo = mergeProgramInformation(building, manager, program);
​
​ ​const​ exhibitInfo = mergeProgramInformation(building, manager, exhibit);

This	repetition	is	a	clue	that	your	function	has	a	natural	division.	The	first	two
parameters	are	establishing	a	base	for	a	building,	which	is	then	applied	to	a
series	of	programs	and	exhibits.

A	higher-order	function	can	create	single	responsibility	parameters,	allowing	you
to	reuse	the	first	two	arguments.	The	responsibility	of	the	first	set	of	parameters
is	to	gather	baseline	data.	The	second	set	will	be	the	custom	information	that
overrides	the	baseline.

To	accomplish	this,	you	need	to	make	the	top	function	take	only	two	parameters
—the	building	and	the	manager—and	have	it	return	a	function	that	takes	only
one	parameter—a	program	(which	could	be	a	program,	an	event,	an	exhibit,	and
so	on).

functions/partial/partial.js

​ ​function​ mergeProgramInformation(building, manager) {
​ ​const​ { hours, address } = building;

http://media.pragprog.com/titles/es6tips/code/functions/partial/problem.js
http://media.pragprog.com/titles/es6tips/code/functions/partial/partial.js

​ ​const​ { name, phone } = manager;
​ ​const​ defaults = {
​ hours,

​ address,

​ contact: name,

​ phone,

​ };

​
​ ​return​ program => {
​ ​return​ { ...defaults, ...program };
​ };

​ }

This	can	look	intimidating,	but	it’s	actually	simple.	Again,	a	higher-order
function	is	just	a	function	that	needs	to	be	called	multiple	time	before	it’s	fully
resolved.	That’s	all.	To	invoke	both	parts	of	the	functions	in	a	single	call,	all	you
have	to	do	is	put	parentheses	right	after	one	another.	This	invokes	the	outer
function,	then	immediately	invokes	the	inner	function.	The	result	is	the	same	as
before.

functions/partial/partial.js

​ ​const​ programInfo = mergeProgramInformation(building, manager)(program);
​ ​// {​
​ ​// name: 'Presenting Research',​
​ ​// room: '415',​
​ ​// hours: '3 - 6',​
​ ​// address: 'Jayhawk Blvd',​
​ ​// contact: 'Augusto',​
​ ​// phone: '555-555-5555'​
​ ​// }​
​
​ ​const​ exhibitInfo = mergeProgramInformation(building, manager)(exhibit);
​ ​// {​
​ ​// name: 'Emerging Scholarship',​
​ ​// contact: 'Dyan'​
​ ​// hours: '8 a.m. - 8 p.m.',​
​ ​// address: 'Jayhawk Blvd'​
​ ​// phone: '555-555-5555'​
​ ​// }​

You	may	have	given	the	parameters	a	single	responsibility,	but	it	doesn’t
eliminate	the	repetition.	Fortunately,	with	partial	application,	you	can	get	around

http://media.pragprog.com/titles/es6tips/code/functions/partial/partial.js

that	problem	also.	You’ll	see	how	you	can	reuse	a	returned	function	in	the	next
tip.

To	finish	up,	there’s	another	reason	to	use	partial	application	and	higher-order
functions	to	give	your	parameters	single	responsibility:	you	can	reuse	the	rest
operator.

As	you	probably	remember	from	Tip	31,	​	Pass	a	Variable	Number	of	Arguments
with	the	Rest	Operator	 ​,	nothing	can	come	after	the	rest	parameter.	In	other
words,	you	can	only	have	a	single	rest	parameter	in	a	set	of	arguments.	That’s
fine	most	of	the	time,	but	occasionally	you’ll	have	a	situation	where	you	want	to
have	multiple	rest	parameters.

This	comes	up	often	when	you	have	an	array	of	data	and	more	data	that	has	a
one-to-one	correspondence	with	your	original	data.

For	example,	if	you	have	a	function	that	takes	an	array	of	states	and	returns	the
state	bird,	the	resulting	array	is	nice,	but	you’ll	eventually	need	to	connect	the
original	and	the	result	together	into	a	nice	array	of	pairs.

functions/partial/partial.js

​ ​const​ birds = getBirds(​'kansas'​, ​'wisconsin'​, ​'new mexico'​);
​ ​// ['meadowlark', 'robin', 'roadrunner']​

Combining	two	arrays	into	pairs	is	so	common	that	it	has	a	name:	“zip.”

To	write	a	zip	function	that	can	take	multiple	parameters,	you	need	to	write	a
higher-order	function	that	takes	the	original	array	(call	it	left),	returns	a	function
that	takes	the	results	array	(right),	and	combines	them.	Guess	what?	Because	the
parameters	are	independent,	you	can	use	your	rest	parameters	both	times.

functions/partial/partial.js

​ ​const​ zip = (...left) => (...right) => {
​ ​return​ left.map((item, i) => [item, right[i]]);
​ };

​ zip(​'kansas'​, ​'wisconsin'​, ​'new mexico'​)(...birds);
​ ​// [​

http://media.pragprog.com/titles/es6tips/code/functions/partial/partial.js
http://media.pragprog.com/titles/es6tips/code/functions/partial/partial.js

​ ​// ['kansas', 'meadowlark'],​
​ ​// ['wisconsin', 'robin'],​
​ ​// ['new mexico', 'roadrunner']​
​ ​//]​

This	isn’t	a	technique	you’ll	use	often,	but	it’s	very	valuable	when	you	want	to
keep	an	interface	clear.	Sometimes	parameters	just	don’t	belong	together,	yet
you	still	need	all	the	information.	Partially	applied	functions	are	a	great	way	to
combine	parameters	without	a	lot	of	effort.

In	the	next	tip,	you’ll	go	even	further	and	learn	how	you	can	invoke	a	function
once	to	capture	information	and	then	reuse	it	over	and	over	again.

Tip	35
Combine	Currying	and	Array	Methods	for
Partial	Application

In	this	tip,	you’ll	learn	to	lock	in	variables	with	partial	application	of	functions.

In	the	previous	tip,	you	saw	how	you	can	give	parameters	a	single	responsibility
with	higher-order	functions	and	partial	application.	It	solved	the	problem	of
having	unrelated	parameters,	but	it	didn’t	solve	the	problem	of	using	the	same
parameters	over	and	over.	You	still	passed	in	the	same	parameters	multiple
times.

With	higher-order	functions,	you	can	avoid	repetition	by	creating	a	new	function
with	values	you	lock	in	once	and	use	later.	When	you	return	a	higher-order
function,	you	don’t	have	to	invoke	it	right	away.	After	you	invoke	it	once,	you
have	another	pre-made	function	that	you	can	use	over	and	over.	It’s	like	you
wrote	it	with	the	argument	hard-coded.

To	reuse	the	building	and	manager	from	the	previous	tip,	you	can	assign	the
return	value	from	the	first	function	call	to	a	variable.	You	now	have	a	pre-built
function	with	some	information	locked	in	place.

Invoking	it	once	and	reusing	the	captured	parameters	is	no	different	from
declaring	a	function	knowing	the	inside	variables	ahead	of	time.	These	are
equivalent.

functions/partial/program.js

​ ​const​ setStrongHallProgram = mergeProgramInformation(building, manager);
​
​ ​const​ programInfo = setStrongHallProgram(program);
​
​ ​const​ exhibitInfo = setStrongHallProgram(exhibit);

functions/curry/higherorder.js

​ ​const​ setStrongHallProgram = program => {
​ ​const​ defaults = {
​ hours: ​'8 a.m. - 8 p.m.'​,

http://media.pragprog.com/titles/es6tips/code/functions/partial/program.js
http://media.pragprog.com/titles/es6tips/code/functions/curry/higherorder.js

​ address: ​'Jayhawk Blvd'​,
​ name: ​'Augusto'​,
​ phone: ​'555-555-5555'​
​ }

​ ​return​ { ...defaults, ...program}
​ }

​
​ ​const​ programs = setStrongHallProgram(program);
​
​ ​const​ exhibit = setStrongHallProgram(exhibit);

You	built	the	first	function	with	partial	application	of	a	higher-order	function.
You	built	the	second	function	with	hard-coded	information.	A	higher-order
function	that	takes	two	rounds	of	arguments	will	be	more	flexible	than	the	one
with	hard-coded	information,	but	it	helps	to	think	about	how	they’re	similar.

You	know	higher-order	functions	can	keep	parameters	separate,	but	they	have	an
even	more	important	use:	separating	arguments	so	that	you	can	reduce	the
number	of	arguments	that	a	function	needs	before	it’s	fully	resolved.	Building
functions	that	take	only	one	argument	at	a	time	is	called	“currying,”	and	it’s	an
invaluable	technique	when	you’re	working	with	methods	that	pass	only	one
argument.	And	although	currying	in	its	pure	form	isn’t	fully	supported	in
JavaScript,[35]	partially	applying	a	function	to	reduce	parameters	to	a	series	of
single	parameters	is	common.

Currying	and	Partial	Application
Partially	applied	functions	can	take	multiple	rounds	of	parameters.	This	is	often
confused	with	currying.	And	it’s	true	that	currying	and	partial	application	are
very	similar,	but	they’re	different.

Partially	applied	functions	and	curried	functions	both	reduce	the	number	of
arguments	by	returning	functions	that	need	fewer	arguments	than	the	original.
The	total	number	of	arguments	for	a	function	to	fully	resolve	is	called	the	arity.	A
partially	applied	function	returns	a	function	that	has	a	smaller	arity	than	the
original	function.	If	you	need	three	total	arguments	and	you	pass	two,	the
returned	function	will	need	only	one	argument.	The	original	function	had	a	total
arity	of	three.	With	partial	application,	you	returned	a	function	with	an	arity	of
one.

Currying,	by	contrast,	is	when	you	take	a	function	that	would	require	multiple
arguments	and	return	a	series	of	functions	that	take	exactly	one	argument.	If

you	had	a	function	that	requires	three	arguments	to	resolve,	you’d	need	a
higher-order	function	that	takes	one	argument	and	returns	a	function	that	takes
one	argument,	which	returns	a	function	that	takes	one	argument	that	finally
resolves.

Think	back	to	when	you	were	filtering	an	array	of	dogs	in	Tip	22,	​	Create	Arrays
of	a	Similar	Size	with	map()	​.	At	that	point,	you	only	added	the	filters—you
never	applied	them.	Here’s	a	slightly	modified	version	of	your	array	of	dogs.

functions/curry/curry.js

​ ​const​ dogs = [
​ {

​ name: ​'max'​,
​ weight: 10,

​ breed: ​'boston terrier'​,
​ state: ​'wisconsin'​,
​ color: ​'black'​,
​ },

​ {

​ name: ​'don'​,
​ weight: 90,

​ breed: ​'labrador'​,
​ state: ​'kansas'​,
​ color: ​'black'​,
​ },

​ {

​ name: ​'shadow'​,
​ weight: 40,

​ breed: ​'labrador'​,
​ state: ​'wisconsin'​,
​ color: ​'chocolate'​,
​ },

​];

Try	to	write	a	function	that	takes	the	dogs	and	a	filter	and	returns	just	the	names
of	the	dogs	that	match	the	filter.

Pass	the	dogs	as	the	first	parameter	and	use	a	combination	of	array	methods
—filter()	and	map()—to	get	the	final	result	set.

http://media.pragprog.com/titles/es6tips/code/functions/curry/curry.js

functions/curry/problem.js

​ ​function​ getDogNames(dogs, filter) {
​ ​const​ [key, value] = filter;
​ ​return​ dogs
​ .filter(dog => dog[key] === value)

​ .map(dog => dog.name);

​ }

​
​ getDogNames(dogs, [​'color'​, ​'black'​]);
​ ​// ['max', 'don']​

This	function	looks	pretty	good,	but	it’s	actually	severely	limited.	There	are	two
issues.

First,	your	filter	function	is	constrained.	It	will	work	only	when	you’re	doing	an
exact	comparison	between	a	filter	and	each	individual	dog.	In	other	words,	it
works	only	when	using	===.	What	if	you	need	to	do	a	different	comparison,	such
as	finding	all	the	dogs	below	a	certain	weight?

Second,	the	map,	like	all	array	methods,	can	take	only	one	argument—the	item
being	checked—so	you	have	to	somehow	get	your	other	variables	in	scope.
Because	map	is	a	function	inside	another	function,	it	has	access	to	the	variables
in	the	wrapper	function.	That	means	you’ll	need	to	figure	out	how	to	pass	them
in	as	parameters	to	the	outside	function.

Start	by	trying	to	solve	the	first	problem.	Rewrite	the	function	so	that	you	can
find	all	dogs	below	a	certain	weight.	As	you	saw	in	Tip	32,	​Write	Functions	for
Testability	 ​,	you	can	inject	functions	into	other	functions.	Start	there.	Instead	of
hard	coding	a	comparison	function,	pass	in	the	filter	function	as	a	callback.

functions/curry/curry.js

​ ​function​ getDogNames(dogs, filterFunc) {
​ ​return​ dogs
​ .filter(filterFunc)

​ .map(dog => dog.name)

​ }

​
​ getDogNames(dogs, dog => dog.weight < 20);

http://media.pragprog.com/titles/es6tips/code/functions/curry/problem.js
http://media.pragprog.com/titles/es6tips/code/functions/curry/curry.js

​ ​// ['max']​

You’re	partway	there,	but	you’re	still	forced	to	hard	code	a	value,	the	number	20

in	this	case.	This	means	you’ll	still	have	to	either	code	the	value	by	hand	or
make	sure	there	are	no	scope	conflicts	if	you’re	using	a	variable.	This	may	not
seem	like	a	big	deal,	but	scope	conflicts	creep	in	when	you	least	expect	them.
It’s	much	better	to	inject	values	in	a	function	rather	than	trust	them	to	be	able	to
access	variables	in	an	upper	scope	at	runtime.

The	goal	is	to	have	a	partially	applied	function	with	some	values	locked	in.	You
can	assign	a	partially	applied	function	to	a	variable	and	pass	it	as	data	to	another
function,	which	can	then	provide	the	remaining	arguments.

At	this	point,	you	don’t	even	need	to	rewrite	your	getDogNames()	function.	It
takes	any	comparison	function,	so	you’re	all	set.	What	you	do	need	to	do	is
rewrite	your	comparison	function	so	that	you	don’t	need	to	hard	code	the
comparison	value.

Use	the	technique	from	the	previous	tip	to	create	two	sets	of	arguments—the
first	argument	will	be	a	weight,	the	second	set	will	be	the	individual	dog.

Now	you	can	apply	the	function	first	with	one	weight	and	another	time	with	a
different	weight.	The	actual	number	will	be	locked	in	the	function.	This	means
you	can	reuse	the	function	over	and	over	with	different	weights.	Scope	conflicts
will	be	much	less	likely.

functions/curry/curry.js

​ ​const​ weightCheck = weight => dog => dog.weight < weight;
​
​ getDogNames(dogs, weightCheck(20));

​ ​// ['max']​
​
​ getDogNames(dogs, weightCheck(50));

​ ​// ['max', 'shadow']​

By	currying	the	function,	you’ve	made	it	so	you	can	pass	multiple	parameters	at
different	points.	You’re	also	able	to	pass	a	function	around	as	data.

http://media.pragprog.com/titles/es6tips/code/functions/curry/curry.js

And	the	best	part	is	you	don’t	need	to	limit	yourself	to	just	two	functions	and
two	sets	of	arguments.	What	if	you	wanted	to	rewrite	your	original	comparison
function	using	currying?

First,	you’d	pass	in	the	field	you	want	to	compare,	such	as	color.	In	the	next
function,	you’d	pass	the	value	you	want	to	compare	against,	such	as	black.	The
final	function	takes	the	individual	dog.

The	result	is	a	set	of	comparisons	you	build	up	using	the	same	logic	but	different
parameters.

functions/curry/curry.js

​ ​const​ identity = field => value => dog => dog[field] === value;
​ ​const​ colorCheck = identity(​'color'​);
​ ​const​ stateCheck = identity(​'state'​);
​
​ getDogNames(dogs, colorCheck(​'chocolate'​));
​ ​// ['shadow']​
​
​ getDogNames(dogs, stateCheck(​'kansas'​));
​ ​// ['don']​

Now	think	about	what	you’ve	created.	You	took	a	function	that	had	specific
requirements	and	made	something	abstract	that	can	take	many	different
comparisons.	Because	you	can	assign	partially	applied	functions	to	variables,
they’re	now	just	another	piece	of	data	you	can	pass	around.	This	means	you	can
build	very	sophisticated	comparisons	using	a	small	set	of	simple	tools.

For	example,	if	you	only	wanted	dogs	that	meet	every	criteria,	you	can	pass	an
array	of	checks	and	use	the	every()	array	method,	which	returns	true	if	all	values
return	true.

If	you	only	wanted	the	dogs	that	meet	at	least	one	criteria,	you	can	write	a
function	that	uses	the	some()	array	method,	which	returns	true	if	any	value
returns	true.

functions/curry/curry.js

http://media.pragprog.com/titles/es6tips/code/functions/curry/curry.js
http://media.pragprog.com/titles/es6tips/code/functions/curry/curry.js

​ ​function​ allFilters(dogs, ...checks) {
​ ​return​ dogs
​ .filter(dog => checks.every(check => check(dog)))

​ .map(dog => dog.name);

​ }

​ allFilters(dogs, colorCheck(​'black'​), stateCheck(​'kansas'​));
​ ​// ['Don']​

​ ​function​ anyFilters(dogs, ...checks) {
​ ​return​ dogs
​ .filter(dog => checks.some(check => check(dog)))

​ .map(dog => dog.name);

​ }

​
​ anyFilters(dogs, weightCheck(20), colorCheck(​'chocolate'​));
​ ​// ['max', 'shadow']​

Does	that	make	your	head	spin?	Hopefully	not.	Copy	the	code	into	a	REPL	and
try	playing	with	it.	That’s	the	best	way	to	learn.	Just	remember	this:	If	you	have
functions	that	can’t	take	more	than	one	argument,	currying	is	a	great	tool.	It
makes	otherwise	complicated	problems	very	straightforward.

In	the	next	tip,	you’ll	see	a	problem	related	to	variable	scope—context.	You’ll
learn	how	to	use	arrow	functions	to	solve	nagging	problems	related	to	the	this

keyword.

Tip	36 Prevent	Context	Confusion	with	Arrow	Functions

In	this	tip,	you’ll	learn	how	to	use	the	arrow	function	to	avoid	context	errors.

Scope	and	context	are	probably	the	two	most	confusing	concepts	for	JavaScript
developers.	A	function’s	scope,	at	it	simplest,	is	what	variables	the	functions	can
access.	We	explored	this	previously	in	Tip	3,	​	Isolate	Information	with	Block
Scoped	Variables	​.	Now	you’re	going	to	learn	about	context.	Context	is	what	the
keyword	this	refers	to	in	a	function	or	class.

Not	only	are	both	concepts	hard	to	grasp,	but	people	often	confuse	them.	I	know
I	confuse	them	all	the	time.	Ryan	Morr	gives	a	simple	way	to	remember	the
difference:	Scope	pertains	to	functions	and	context	pertains	to	objects.[36]	While
that’s	not	100	percent	true—you	can	use	this	in	any	function—it’s	a	good	general
rule.

To	understand	context,	start	with	a	very	simple	object.	For	example,	think	about
an	object	called	Validator,	which	sets	an	invalid	message	on	form	fields.	You	have
one	property,	message,	and	one	method,	setInvalidMessage().

In	the	setInvalidMessage()	method,	you	can	refer	to	the	message	property	using
this.message.	To	see	it	in	action,	call	the	method	from	the	object.

functions/context/basic.js

​ ​const​ validator = {
​ message: ​'is invalid.'​,
​ setInvalidMessage(field) {

​ ​return​ ​`​${field}​ ​${​this​.message}​`​;
​ },

​ };

​
​ validator.setInvalidMessage(​'city'​);
​ ​// city is invalid.​

As	you	see,	this.message	refers	to	the	property	on	the	object.	This	works	because,
when	the	method	is	called	from	the	object,	the	function	creates	a	this	binding

http://media.pragprog.com/titles/es6tips/code/functions/context/basic.js

with	the	containing	object	as	context.

Now	before	you	go	any	further,	you	should	know	that	concepts	surrounding	the
keyword	this	are	pretty	complex.	There’s	a	whole	book	in	the	You	Don’t	Know
JS	[Sim14]	series	on	the	subject.	This	book	is	mandatory	reading	for	JavaScript
developers,	and	there’s	no	way	to	cover	the	same	level	of	information	here	in
one	tip.	Instead,	you’re	going	to	see	one	of	the	most	common	context	mistakes.

Working	with	this	on	objects	usually	isn’t	a	problem	until	you	try	to	use	a
function	as	callback	for	another	function.

For	example,	you’ll	encounter	problems	with	this	when	using	setTimeout(),
setInterval(),	or	your	favorite	array	methods	such	as	map()	or	filter().	Each	of	these
functions	takes	a	callback,	which,	as	you’ll	see,	changes	the	context	of	the
callback.

What	do	you	think	will	happen	if	you	try	to	refactor	your	setInvalidMessage()

method	to	take	an	array	of	fields	using	map()	to	add	the	message?	The	code
change	isn’t	complicated.	Create	a	new	method	called	setInvalidMessages()	that
maps	over	an	array	adding	the	message	to	each.

functions/context/problem.js

​ ​const​ validator = {
​ message: ​'is invalid.'​,
​ setInvalidMessages(...fields) {

​ ​return​ fields.map(​function​ (field) {
​ ​return​ ​`​${field}​ ​${​this​.message}​`​;
​ });

​ },

​ };

The	problem	is	that	when	you	invoke	the	function,	you’ll	get	either	a	TypeError	or
undefined.	This	is	where	most	developers	get	frustrated	and	refactor	the	code	to
remove	a	reference	to	this.

functions/context/context.spec.js

http://media.pragprog.com/titles/es6tips/code/functions/context/problem.js
http://media.pragprog.com/titles/es6tips/code/functions/context/context.spec.js

​ validatorProblem.setInvalidMessages(field);

​ ​// TypeError: Cannot read property 'message' of undefined​

Think	for	a	moment	about	what	may	cause	this	problem.	Remember	that
whenever	you	call	a	function,	it	creates	a	this	binding	based	on	where	it’s	called.
setInvalidMessage()	was	called	in	the	context	of	an	object.	The	this	context	was	the
object.	The	callback	for	the	map	function	is	called	in	the	context	of	the	map()

method,	so	the	this	binding	is	no	longer	the	Validator	object.	It	will	actually	be	the
global	object:	window	in	a	browser	and	the	Node.js	environment	in	a	REPL.	The
callback	doesn’t	have	access	to	the	message	property.

This	is	where	arrow	functions	come	in.	Arrow	functions	don’t	create	a	new	this

binding	when	you	use	them.	If	you	were	to	rewrite	the	preceding	map()	callback
using	an	arrow	function,	everything	would	work	as	expected.

functions/context/context.js

​ ​const​ validator = {
​ message: ​'is invalid.'​,
​ setInvalidMessages(...fields) {

​ ​return​ fields.map(field => {
​ ​return​ ​`​${field}​ ​${​this​.message}​`​;
​ });

​ },

​ };

​
​ validator.setInvalidMessages(​'city'​);
​ ​// ['city is invalid.]​

Now	this	may	seem	great	and	a	good	reason	to	always	use	arrow	functions.	But
remember,	sometimes	you	actually	do	want	to	set	a	this	context.

For	example,	what	if	you	wrote	your	original	setInvalidMessage()	method	not	as	a
named	method	but	as	an	arrow	function	assigned	to	a	property?

functions/context/method.js

​ ​const​ validator = {
​ message: ​'is invalid.'​,
​ setInvalidMessage: field => ​`​${field}​ ​${​this​.message}​`​,

http://media.pragprog.com/titles/es6tips/code/functions/context/context.js
http://media.pragprog.com/titles/es6tips/code/functions/context/method.js

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

​ };

You’d	have	the	exact	same	TypeError	when	you	called	it.

functions/context/context.spec.js

​ validatorMethod.setInvalidMessage(field);

​ ​// TypeError: Cannot read property 'message' of undefined​

In	this	case,	you	didn’t	create	a	new	this	context	binding	to	the	current	object.
Because	you	didn’t	create	a	new	context,	you’re	still	bound	to	the	global	object.

To	summarize,	arrow	functions	are	great	when	you	already	have	a	context	and
want	to	use	the	function	inside	another	function.	They’re	a	problem	when	you
need	to	set	a	new	this	binding.

This	isn’t	the	last	you’ll	see	of	this.	It	plays	a	big	part	in	classes,	and	context
bindings	will	come	up	again	in	Tip	42,	​	Resolve	Context	Problems	with	Bind()	​.

The	next	chapter	explores	classes	in	JavaScript.	If	you	come	from	an	object-
oriented	background,	you’ll	see	a	lot	that	looks	familiar	and	a	lot	that	you	won’t
expect.

Footnotes

http://www.nytimes.com/2005/10/20/garden/cheap-its-chic-but-is-it-good.html

https://jasmine.github.io

https://mochajs.org

https://facebook.github.io/jest/

https://martinfowler.com/articles/mocksArentStubs.html

https://about.futurelearn.com/blog/stubs-mocks-spies-rspec

https://www.toptal.com/javascript/writing-testable-code-in-javascript

http://2ality.com/2017/11/currying-in-js.html

http://ryanmorr.com/understanding-scope-and-context-in-javascript/

http://media.pragprog.com/titles/es6tips/code/functions/context/context.spec.js
http://www.nytimes.com/2005/10/20/garden/cheap-its-chic-but-is-it-good.html
https://jasmine.github.io
https://mochajs.org
https://facebook.github.io/jest/
https://martinfowler.com/articles/mocksArentStubs.html
https://about.futurelearn.com/blog/stubs-mocks-spies-rspec
https://www.toptal.com/javascript/writing-testable-code-in-javascript
http://2ality.com/2017/11/currying-in-js.html
http://ryanmorr.com/understanding-scope-and-context-in-javascript/

Copyright	©	2018,	The	Pragmatic	Bookshelf.

Chapter	8

Keep	Interfaces	Clear	with	Classes
	

An	octopus	has	a	brain.	But	in	a	way,	it	has	many	brains.	Neurons	run
throughout	an	octopus’s	body,	so	in	a	sense,	it	can	think	with	its	arms.	If	its	arm
is	removed	from	its	body,	it	can	still	respond	to	stimulus,	change	color,	and	reach
and	grab	for	items.

This	poses	a	challenge	to	researchers.	An	octopus	can	think,	but	not	in	the	way
mammals	do.	It	responds	similarly—it	can	remember	specific	people,	prefer
certain	types	of	food,	and	even	plan	an	escape—but	the	way	its	consciousness
works	is	unusual.	An	octopus’s	mind	is	similar	but	different.

In	this	chapter,	we’re	going	to	explore	concepts	that	are	familiar,	but	they’re	also
different.	Developers	have	been	complaining	for	years	about	these	differences—
they	say	JavaScript	is	broken	because	it	doesn’t	behave	like	other	object-oriented
languages.	The	problem	isn’t	that	it’s	different.	It’s	that	it’s	just	similar	enough	to
create	confusion.

In	ES6+,	things	have	gotten	even	more	confusing	because	now	JavaScript	uses
familiar	syntax—class,	extend,static—but	the	code	doesn’t	always	act	as	you’d
expect	if	you	come	from	another	object-oriented	language.	In	this	chapter,
you’re	going	to	recognize	how	classes	in	JavaScript	are	different	even	while	they
use	many	familiar	concepts.

To	start	off,	you’ll	build	and	extend	a	class.	This	will	look	similar	to	most	object-
oriented	languages.	After	that,	you’ll	see	how	classes	work	under	the	hood	by
combining	class	syntax	and	JavaScript	prototypes.	Next,	you’ll	learn	how	to

mask	complexity	with	getters,	setters,	and	generators.	Finally,	you	will	return	to
common	problems	with	the	this	keyword	and	techniques	for	solving	them.

Remember	that	classes	in	JavaScript	are	a	little	different,	but	they	still	retain
many	of	the	benefits—and	some	of	the	problems—of	class	syntax.	Classes	will
help	you	organize	your	code,	build	new	instances	of	objects,	and	store	local
properties.	Just	keep	in	mind	that	JavaScript	is	its	own	language	with	a	unique
history	and	paradigm.	Learn	how	you	can	use	classes	to	fuse	your	existing
knowledge	of	both	JavaScript	and	other	object-oriented	languages.

Tip	37 Build	Readable	Classes

In	this	tip,	you’ll	learn	how	to	create	extendable	classes	in	JavaScript.

One	of	the	longest	running	criticisms	of	JavaScript	was	that	it	lacked	a	class
syntax.	Well	it’s	here!	But	it	didn’t	arrive	without	controversy.	Proponents	of
classes	argue	it’s	a	common	development	paradigm	that’s	very	familiar	to
developers	in	other	languages.	Skeptics	think	it	obscures	the	underlying	nature
of	the	language	and	encourages	bad	habits.

Like	many	controversies,	the	rhetoric	is	excessive.	Classes	are	now	part	of
JavaScript,	and	if	you	use	any	popular	framework	such	as	Angular	or	React,
you’ll	introduce	them	in	your	code.	And	that’s	great.

As	you’ll	see	in	Tip	39,	​	Extend	Existing	Prototypes	with	Class	​,	the	base
language	hasn’t	changed.	JavaScript	is	still	a	prototype-based	language.	Now
you	have	familiar	syntax	masking	slightly	complicated	concepts.	As	a	result,
there	are	some	surprises.

In	this	tip,	you’ll	get	a	quick	look	at	how	to	write	classes	in	JavaScript.	If	you’ve
written	classes	in	any	other	language,	the	interface	should	seem	pretty	familiar.

To	start	off,	make	a	class	called	Coupon.	You	declare	a	class	with	the	class

keyword.	You	can	then	create	new	instances	using	the	new	keyword.

classes/constructor/problem.js

​ ​class​ Coupon {
​
​ }

​
​ ​const​ coupon = ​new​ Coupon();

When	you	create	an	instance	of	a	class,	the	first	thing	you’re	doing	is	running	a
constructor	function,	which	can	define	a	number	of	properties.	You	aren’t	forced
to	declare	a	constructor	function,	but	it’s	where	you	will	declare	your	properties,
so	you’ll	write	one	in	most	cases.

http://media.pragprog.com/titles/es6tips/code/classes/constructor/problem.js

The	next	step	is	to	create	a	constructor	method.	You’ll	need	to	name	it
constructor().	Add	it	to	the	class	using	what	looks	like	function	syntax,	but
without	the	function	keyword.	Because	the	constructor	is	a	function,	you	can	pass
as	many	arguments	as	you	want.

Part	of	the	job	of	the	constructor	is	creating	a	this	context.	Inside	your
constructor,	you	add	properties	to	a	class	by	assigning	them	to	this	with	a	key
like	you	would	if	you	were	adding	key-values	to	an	object.	And	because	you’re
able	to	pass	arguments	to	the	constructor,	you	can	dynamically	set	properties
when	you	create	a	new	instance.	Currently,	you	are	required	to	set	all	properties
inside	the	constructor.	That	will	likely	change	in	the	future.

For	now,	set	two	properties	on	your	Coupon:	price	and	expiration.	After	setting	the
properties,	you	can	call	them	using	the	familiar	dot	syntax	or	even	array	syntax.
Remember	that	this	is	still	JavaScript,	and	you’re	still	working	with	objects.

classes/constructor/constructor.js

​ ​class​ Coupon {
​ ​constructor​(price, expiration) {
​ ​this​.price = price;
​ ​this​.expiration = expiration || ​'two weeks'​;
​ }

​ }

​
​ ​const​ coupon = ​new​ Coupon(5);
​ coupon.price;

​ ​// 5​
​ coupon[​'expiration'​];
​ ​// 'Two Weeks'​

Note	that	you	aren’t	declaring	properties	as	public	or	private.	Currently,
everything	is	public.	Private	fields—properties	or	methods—are	working	their
way	through	the	TC39	committee.

The	class	and	object	instance	are	getting	a	little	more	interesting,	but	they	still
can’t	do	much.	The	next	step	is	to	add	two	simple	methods:	getPriceText()	to
return	a	formatted	price	and	getExpirationMessage()	to	get	a	formatted	message.

http://media.pragprog.com/titles/es6tips/code/classes/constructor/constructor.js

You	can	add	methods	using	the	same	syntax	as	a	constructor.	The	methods	will
be	normal	functions,	not	arrow	functions.	This	may	not	seem	like	a	big	deal,	but
arrow	functions	behave	differently	in	classes	than	normal	functions,	just	as	you
saw	in	Tip	36,	​	Prevent	Context	Confusion	with	Arrow	Functions	​.	You’ll	see
how	to	use	arrow	functions	in	classes	in	Tip	42,	​	Resolve	Context	Problems	with
Bind()	​.

Speaking	of	context.	You	have	full	access	to	the	this	context	in	the	methods	if
you	call	them	directly	on	an	instance	of	a	class.	This	will	work	as	predicted	most
of	the	time.	You’ll	see	the	exceptions	in	upcoming	tips.

This	means	that	you	can	create	methods	that	refer	to	properties	or	other	methods.

classes/constructor/methods.js

​ ​class​ Coupon {
​ ​constructor​(price, expiration) {
​ ​this​.price = price;
​ ​this​.expiration = expiration || ​'two weeks'​;
​ }

​
​ getPriceText() {

​ ​return​ ​`$ ​${​this​.price}​`​;
​ }

​
​ getExpirationMessage() {

​ ​return​ ​`This offer expires in ​${​this​.expiration}​.`​;
​ }

​ }

​
​ ​const​ coupon = ​new​ Coupon(5);
​ coupon.getPriceText();

​ ​// '$ 5'​
​ coupon.getExpirationMessage();

​ ​// 'This offer expires in two weeks.'​

Now	that	you	have	a	very	basic	but	useful	class,	you	can	create	a	new	object
using	a	constructor	function	that	sets	up	a	this	binding.	You	can	call	methods	and
access	properties.	And	everything	uses	an	intuitive	interface.	The	basics	are
familiar,	but	it’s	important	you	note	the	quirks,	particularly	in	regard	to	setting

http://media.pragprog.com/titles/es6tips/code/classes/constructor/methods.js

properties.	You’re	building	objects,	so	you’ll	still	encounter	some	context	and
scope	issues.

In	the	next	tip,	you’ll	see	how	to	share	code	between	classes	using	inheritance.

Tip	38 Share	Methods	with	Inheritance

In	this	tip,	you’ll	learn	how	to	extend	classes	and	call	parent	methods.

In	the	previous	tip,	you	learned	how	to	create	basic	classes	with	properties	and
methods.	You	may	recall	that	classes	in	JavaScript	were	highly	anticipated	and
slightly	dreaded.	The	core	of	the	controversy	is	inheritance.

Inheriting	methods	on	prototypes	was	a	pretty	complex	process	in	early	versions
of	JavaScript.	First,	you	had	to	loop	through	the	properties	on	an	object;	then,
you	had	to	check	to	see	that	each	property	existed	specifically	on	an	object	as	a
property	and	not	on	the	object	prototype.	Then	you	had	to	copy	the	prototype
from	the	parent	to	a	new	object	before	adding	further	methods.

It	was	hard.

With	classes,	inheritance	is	easy.	Still,	in	recent	years,	JavaScript	developers
have	soured	on	inheritance.	They	argue	that	too	much	inheritance	is	a	bad	thing
and	that	it	leads	to	bloated	code.	There	are	other	techniques	for	sharing	methods
that	don’t	require	inheritance	(such	as	composition).	In	other	words,	use
inheritance	with	caution.

How	does	inheritance	work?	Return	to	your	Coupon	class.	Suppose	you	want	a
FlashCoupon	that	has	deeper	discounts	but	a	shorter	time	span.	To	create	that
class,	simply	declare	a	new	class	called	FlashCoupon	that	inherits	from	the	Coupon

class	using	the	extends	keyword.

Your	new	FlashCoupon	class	inherits	all	the	existing	properties	and	methods.	For
example,	you	can	access	the	price	and	the	getPriceText()	method.

classes/extend/basic.js

​ ​import​ Coupon ​from​ ​'./extend'​;
​
​ ​class​ FlashCoupon ​extends​ Coupon {
​

http://media.pragprog.com/titles/es6tips/code/classes/extend/basic.js

​ }

​
​ ​const​ flash = ​new​ FlashCoupon(10);
​
​ flash.price;

​ ​// 10​
​
​ flash.getPriceText();

​ ​// "$ 10"​

Of	course,	there’s	really	no	point	in	inheriting	code	if	you	aren’t	going	to	add
new	properties	or	methods.	To	make	this	coupon	different,	add	a	new	default
expiration.	Make	the	new	default	expiration	“two	hours”	instead	of	“two	weeks.”

To	make	the	change,	set	up	a	constructor	function	that	takes	price	and	expiration,
as	you	did	on	the	parent.	In	this	constructor,	you’ll	need	to	call	super()	to	access
the	parent	constructor.	super()	calls	the	parent	constructor,	so	pass	through	any
arguments	the	parent	constructor	might	need.	In	this	case,	you’ll	need	to	pass	the
price	to	the	parent	constructor.	After	that,	you	can	set	any	new	properties	or
override	any	properties	that	the	parent	constructor	might	set.

For	the	FlashCoupon,	you’re	setting	the	expiration,	but	you	don’t	need	to	worry
about	setting	the	price.	The	parent	constructor	takes	care	of	that.

classes/extend/constructor.js

​ ​import​ Coupon ​from​ ​'./extend'​;
​
​ ​class​ FlashCoupon ​extends​ Coupon {
​ ​constructor​(price, expiration) {
​ ​super​(price);
​ ​this​.expiration = expiration || ​'two hours'​;
​ }

​ }

​
​ ​const​ flash = ​new​ FlashCoupon(10);
​
​ flash.price;

​ ​// 10​
​
​ flash.getExpirationMessage();

http://media.pragprog.com/titles/es6tips/code/classes/extend/constructor.js

​ ​// "This offer expires in two hours"​

You’re	using	the	parent	getExpirationMessage()	method,	but	you’re	using	the
child’s	expiration	property.	When	you	call	getExpirationMessage(),	you’ll	see	the
familiar	message	with	the	new	default	expiration.

Of	course,	you	may	not	like	that	message.	This	is	a	flash	coupon	after	all.	You
should	alert	your	users	that	this	coupon	is	special.	Any	time	you	call	a	method,
the	JavaScript	engine	first	checks	to	see	if	the	method	exists	on	the	current	class.
If	not,	the	engine	goes	up	the	chain,	checking	each	class	or	prototype	along	the
way.	This	means	you	can	override	any	method	by	creating	a	new	method	with
the	same	name.

Try	adding	a	new	method	called	getExpirationMessage()	to	the	FlashCoupon	class.
This	method	will	be	the	same	as	the	parent	method	except	that	it	returns	a
message	of	This is a flash offer and expires in ${this.expiration}.

At	this	point,	you’ve	created	a	class	that	inherits	methods	and	properties.	You
called	the	parent	constructor	to	set	some	properties	and	overrode	other
properties.	You	also	wrote	methods	that	override	parent	methods.

The	last	step	is	to	write	methods	that	invoke	the	parent	methods.	To	start,	add
two	new	methods	to	your	Coupon	class.	First,	add	the	method	getRewards(),	which
takes	a	user	and	then	calls	isRewardsEligible()	to	find	out	if	the	user	is	eligible	for
further	discounts.	If	the	user	is	eligible	for	further	discounts,	reduce	the	price.

As	a	warning,	any	method	you	add	to	a	parent	class	is	inherited	by	a	child	class.
This	can	be	a	huge	benefit,	but	it’s	also	easy	to	create	bloat	in	child	classes	by
adding	methods	to	parents	that	aren’t	necessary	in	child	classes.

classes/extend/extend.js

​ ​class​ Coupon {
​ ​constructor​(price, expiration) {
​ ​this​.price = price;
​ ​this​.expiration = expiration || ​'Two Weeks'​;
​ }

​

http://media.pragprog.com/titles/es6tips/code/classes/extend/extend.js

​ getPriceText() {

​ ​return​ ​`$ ​${​this​.price}​`​;
​ }

​
​ getExpirationMessage() {

​ ​return​ ​`This offer expires in ​${​this​.expiration}​`​;
​ }

​
​ isRewardsEligible(user) {

​ ​return​ user.rewardsEligible && user.active;
​ }

​
​ getRewards(user) {

​ ​if​ (​this​.isRewardsEligible(user)) {
​ ​this​.price = ​this​.price * 0.9;
​ }

​ }

​ }

​
​ ​export​ ​default​ Coupon;

Giving	users	a	discount	is	great,	but	because	flash	coupons	are	an	even	bigger
savings,	you’ll	probably	want	to	give	eligible	users	a	larger	discount	on	flash
coupons.	But	you	don’t	want	to	give	away	too	much.	Instead,	you	only	want	to
give	your	eligible	users	a	discount	if	the	previous	conditions	are	met,	a	user	is
active	and	is	rewards-eligible,	and	the	base	price	of	the	item	is	$20	or	more.

To	add	this	in,	first	create	a	method	of	the	same	name	in	the	FlashCoupon	class.
Then,	in	the	isRewardsEligible()	method,	first	call	the	parent	method	by	calling	the
method	name	on	super().	After	that,	add	your	additional	code.	Note	that	super()	in
the	constructor	doesn’t	need	a	specific	method	call,	but	if	you	want	to	call	any
other	methods	on	the	parent	class,	you’ll	have	to	specify	them,	even	when
they’re	in	a	method	of	the	same	name.

The	result	is	a	class	that	inherits	some	properties	and	functions	from	a	parent
while	overriding	others.

classes/extend/flash.js

​ ​import​ Coupon ​from​ ​'./extend'​;
​

http://media.pragprog.com/titles/es6tips/code/classes/extend/flash.js

​ ​class​ FlashCoupon ​extends​ Coupon {
​ ​constructor​(price, expiration) {
​ ​super​(price);
​ ​this​.expiration = expiration || ​'two hours'​;
​ }

​
​ getExpirationMessage() {

​ ​return​ ​`This is a flash offer and expires in ​${​this​.expiration}​.`​;
​ }

​
​ isRewardsEligible(user) {

​ ​return​ ​super​.isRewardsEligible(user) && ​this​.price > 20;
​ }

​
​ getRewards(user) {

​ ​if​ (​this​.isRewardsEligible(user)) {
​ ​this​.price = ​this​.price * 0.8;
​ }

​ }

​ }

​
​ ​export​ { FlashCoupon };

That’s	all	there	is	to	it.	For	those	familiar	with	object-oriented	programming,	this
should	be	very	familiar.	Still,	you	should	remember	that	JavaScript	isn’t	the
same	as	Ruby,	Java,	or	other	languages	that	use	classes.	JavaScript	is	a	prototype
language.	Classes	as	you’re	using	them	are	simply	a	familiar	syntax	for	a
different	paradigm.	The	benefit	is	that	because	they	are	using	the	same	prototype
actions	under	the	hood,	you	can	combine	classes	with	legacy	code.

In	the	next	tip,	you’ll	see	how	classes	relate	to	pre-ES6	JavaScript	and	how	you
can	combine	the	two	approaches	in	the	same	codebase.

Tip	39 Extend	Existing	Prototypes	with	Class

In	this	tip,	you’ll	learn	how	to	use	classes	with	existing	prototypes.

Now	that	you	know	how	to	write	classes	in	JavaScript,	it’s	time	to	see	how	the
new	class	syntax	relates	to	JavaScript	prototypes.	It’s	important	to	understand
that	classes	in	JavaScript	and	prototypes	aren’t	different.	Classes	are	just	a	clean
way	to	write	regular	JavaScript.	By	understanding	how	classes	in	JavaScript
differ	from	traditional	object-oriented	languages,	you’ll	be	able	to	integrate	new
syntax	with	legacy	code	and	prevent	subtle	bugs	from	surfacing.

What	are	the	differences	between	JavaScript	and	more	traditional	object-oriented
languages?	Here	are	the	basics:	When	you	use	a	class	in	traditional	object-
oriented	languages,	such	as	Ruby,	it’s	a	blueprint	for	an	object.	When	you	create
a	new	instance,	you	copy	all	the	properties	and	methods	onto	the	new	object.[37]

JavaScript	is	a	prototype	language.	When	you	create	a	new	instance,	you	aren’t
copying	methods.	You’re	creating	a	link	to	a	prototype.	When	you	call	a	method
on	an	instance	of	an	object,	you’re	calling	it	from	the	prototype,	which	is	itself
an	object	instance	(not	a	blueprint).	Eric	Elliot	has	a	longer	article	on	the	subject.
[38]

When	you	see	the	word	class	in	JavaScript,	you	should	know	that	it	isn’t	new
functionality.	It’s	just	a	shorthand	for	a	prototype.	That	means	you	can	integrate
class	syntax	with	your	current	code	bases.

Up	to	this	point,	you’ve	created	object	instances	from	classes,	but	not	from
constructor	functions.	In	pre-ES5	JavaScript,	when	you	wanted	to	create	a	new
object	instance	using	the	new	keyword,	you’d	use	a	function.	You’ll	notice	that
constructor	functions	are	very	similar	to	a	constructor	method	on	a	class.	That
should	be	a	clue	that	new	syntax	will	fit	in	nicely	with	legacy	code.

To	make	an	object	instance	with	a	constructor	function	in	JavaScript,	you’d
simply	write	a	function	as	normal.	By	convention,	when	you	intend	to	use	a
function	as	a	constructor,	you’d	start	the	function	with	a	capital	letter.	Inside	the

function,	you	can	attach	properties	to	an	instance	using	the	this	keyword.

When	you	create	a	new	instance	using	the	new	keyword,	you	run	the	function	as
a	constructor	and	bind	the	this	context.	Here’s	Coupon	written	as	a	constructor
function.

classes/prototypes/prototypes.js

​ ​function​ Coupon(price, expiration) {
​ ​this​.price = price;
​ ​this​.expiration = expiration || ​'two weeks'​;
​ }

​ ​const​ coupon = ​new​ Coupon(5, ​'two months'​);
​ coupon.price;

​ ​// 5​

That	should	look	familiar.	All	you	did	is	pull	out	your	constructor	function	into	a
standalone	action.	The	only	problem	is	you	lost	all	your	methods.	This	is
precisely	where	JavaScript	diverges	from	traditional	object-oriented	languages.

When	you	created	a	new	instance	with	new,	you	ran	the	constructor	and	bound	a
this	context,	but	you	didn’t	copy	methods.	You	can	add	methods	to	this	in	the
constructor,	but	it’s	far	more	efficient	to	add	directly	to	a	prototype.

A	prototype	is	an	object	that’s	the	base	for	the	constructor	function.	All	object
instances	derive	properties	from	the	prototype.	In	addition,	new	instances	can
also	use	methods	on	the	prototype.

To	add	a	method	to	a	prototype,	you	use	the	constructor	name,	Coupon,	and	you
add	the	method	to	the	prototype	property	as	if	you	were	adding	a	function	or
property	to	an	object	instance.	Add	the	getExpirationMessage()	method	to	the
prototype.	Now	remember,	you	already	have	a	working	instance	of	Coupon.
Because	you’re	working	with	an	instance	of	a	prototype,	you	can	access	a
method	you	add	even	after	you’ve	created	a	new	instance.

classes/prototypes/prototypes.js

​ Coupon.prototype.getExpirationMessage = ​function​ () {

http://media.pragprog.com/titles/es6tips/code/classes/prototypes/prototypes.js
http://media.pragprog.com/titles/es6tips/code/classes/prototypes/prototypes.js

​ ​return​ ​`This offer expires in ​${​this​.expiration}​.`​;
​ };

​ coupon.getExpirationMessage();

​ ​// This offer expires in two months.​

When	you	create	an	object	using	the	class	keyword,	you’re	still	creating
prototypes	and	binding	contexts,	but	with	a	more	intuitive	interface.

The	code	you	just	created	using	constructor	functions	and	prototypes	is	identical
to	the	classes	you	created	in	previous	tips.	It	looks	different,	but	behind	the
scenes,	you’re	still	creating	a	prototype.

And	because	they’re	the	same,	you	can	write	classes	for	legacy	code	that	you
built	using	prototypes.	For	example,	if	you	wanted	to	extend	the	Coupon

prototype,	the	process	would	be	the	exact	same	as	when	you	extended	the	Coupon

you	built	with	class	syntax.	You	merely	declare	that	you’re	extending	the	Coupon

prototype	when	you	create	your	new	class.

classes/prototypes/prototypes.js

​ ​class​ FlashCoupon ​extends​ Coupon {
​ ​constructor​(price, expiration) {
​ ​super​(price);
​ ​this​.expiration = expiration || ​'two hours'​;
​ }

​
​ getExpirationMessage() {

​ ​return​ ​`This is a flash offer and expires in ​${​this​.expiration}​.`​;
​ }

​ }

If	you	spend	lots	of	time	with	JavaScript,	it’s	worth	exploring	other	ideas	such	as
the	prototypal	chain,	but	for	now,	all	you	need	to	know	is	that	classes	aren’t	new
functionality.	It’s	just	a	new	name	for	an	old	concept.	Check	out	the	Mozilla
Developer	Network	for	a	few	more	examples	of	how	classes	relate	to	prototypes.
[39]

In	the	next	tip,	you’ll	return	to	class	syntax	and	explore	how	to	make	simple
interfaces	using	get	and	set.

http://media.pragprog.com/titles/es6tips/code/classes/prototypes/prototypes.js

Tip	40 Simplify	Interfaces	with	get	and	set

In	this	tip,	you’ll	learn	how	to	mask	logic	behind	simple	interfaces	with	get
and	set.

You	have	the	basics	of	classes.	You	can	create	instances,	call	properties,	call
methods,	and	extend	parent	classes.	But	it	won’t	be	long	before	someone	tries	to
alter	a	property	you	had	no	intention	of	exposing.	Or	maybe	someone	sets	the
wrong	data	type	on	a	property,	creating	bugs	because	the	code	expects	an
integer,	not	a	string.

One	of	the	major	problems	in	JavaScript	is	that	there	are	no	private	properties	by
default.	Everything	is	exposed.	You	can’t	control	what	the	users	of	your	class	do
with	the	methods	or	properties.

Think	about	your	Coupon.	It	has	a	property	of	price,	which	you	initially	set	in	the
constructor.	A	user	of	the	class	can	access	the	property	on	an	instance	with	dot
syntax:	coupon.price.	So	far,	no	problem.	But	because	an	instance	of	Coupon	is	just
an	object,	the	user	can	also	change	the	property:	coupon.price = 11.

In	itself	that’s	not	a	big	deal.	But	you’ll	eventually	hit	a	problem	where	another
developer	(or,	admit	it,	you	yourself)	innocently	tries	to	set	a	value	other	parts	of
the	code	may	not	expect.	For	example,	what	if	instead	of	setting	the	price	with
an	integer,	you	set	it	using	a	string?	The	change	may	seem	harmless,	but	because
all	methods	expect	an	integer,	the	change	could	ripple	through	the	class,	creating
unexpected	bugs.

classes/get/problem.js

​ ​class​ Coupon {
​ ​constructor​(price, expiration) {
​ ​this​.price = price;
​ ​this​.expiration = expiration || ​'Two Weeks'​;
​ }

​ getPriceText() {

​ ​return​ ​`$ ​${​this​.price}​`​;
​ }

http://media.pragprog.com/titles/es6tips/code/classes/get/problem.js

​ getExpirationMessage() {

​ ​return​ ​`This offer expires in ​${​this​.expiration}​`​;
​ }

​ }

​ ​const​ coupon = ​new​ Coupon(5);
​ coupon.price = ​'$10'​;
​ coupon.getPriceText();

​ ​// '$ $10'​

When	you	set	the	price	to	a	string,	your	message	looks	broken.	What	can	you	do
about	it?

One	solution	is	to	put	properties	behind	extra	logic	using	getters	and	setters.	A
getter	or	setter	is	a	way	to	mask	complexity	by	making	a	function	appear	like	a
property.

The	change	is	very	simple.	You	already	have	a	few	functions	that	are	clearly
getting	data.	You	have	a	getPriceText()	method	and	a	getExpirationMessage()	method
that	have	the	word	“get”	built	right	in	the	function	name.	And,	of	course,	to
execute	the	method,	you	call	it	with	dot	syntax:	coupon.getPriceText().

Refactoring	the	method	to	a	getter	is	simple.	You	simply	add	the	keyword	get	in
front	of	the	method.	After	that,	you	can	also	rename	the	function	to	be	a	noun
instead	of	an	action.	By	convention,	methods	or	functions	are	usually	verbs	and
properties	are	usually	nouns.

Here	are	your	methods	converted	to	getters.	Notice	the	only	change	is	the	get

keyword.

classes/get/price.js

​ ​class​ Coupon {
​ ​constructor​(price, expiration) {
​ ​this​.price = price;
​ ​this​.expiration = expiration || ​'two weeks'​;
​ }

​
​ ​get​ priceText() {
​ ​return​ ​`$ ​${​this​.price}​`​;

http://media.pragprog.com/titles/es6tips/code/classes/get/price.js

​ }

​
​ ​get​ expirationMessage() {
​ ​return​ ​`This offer expires in ​${​this​.expiration}​.`​;
​ }

​ }

After	making	that	small	change,	you	can	call	the	method	using	dot	syntax	but
without	the	parentheses.	The	method	acts	like	a	property	even	though	you’re
executing	code.

classes/get/price.js

​ ​const​ coupon = ​new​ Coupon(5);
​ coupon.price = 10;

​ coupon.priceText;

​ ​// '$10'​
​ coupon.messageText;

​ ​// 'This offer expires in two weeks.​
​ coupon.messageText;

This	makes	information	easier	to	retrieve,	but	it	doesn’t	solve	your	problem	of
someone	setting	a	bad	value.	To	address	that,	you	also	need	to	create	a	setter.

A	setter	works	like	your	getter.	It	masks	a	method	by	making	the	method	appear
like	a	property.	A	setter,	though,	accepts	a	single	argument	and	changes	a
property	rather	than	just	exposing	information.	You	don’t	pass	the	argument
using	parentheses.	Instead,	you	pass	the	object	using	the	equal	sign	(=)	as	if	you
were	setting	a	value	on	an	object.

As	an	example,	make	a	setter	that	sets	the	price	to	half	of	an	argument.	This	may
not	be	a	very	useful	setter,	but	it	will	show	you	how	easy	it	is	to	mask	method
logic	behind	a	setter.

To	create	a	setter,	you	add	the	keyword	set	in	front	of	a	method.	Inside	the
method,	you	can	change	a	value	on	a	property.

classes/get/set.js

​ ​class​ Coupon {

http://media.pragprog.com/titles/es6tips/code/classes/get/price.js
http://media.pragprog.com/titles/es6tips/code/classes/get/set.js

​ ​constructor​(price, expiration) {
​ ​this​.price = price;
​ ​this​.expiration = expiration || ​'Two Weeks'​;
​ }

​
​ ​set​ halfPrice(price) {
​ ​this​.price = price / 2;
​ }

​ }

The	problem	with	setters	is	that	if	you	don’t	have	a	corresponding	getter,	things
get	a	little	odd.	You	can	set	a	value	to	halfPrice.	It	looks	like	it’s	a	normal
property,	but	you	can’t	get	a	value	from	halfPrice.

classes/get/set.js

​ ​const​ coupon = ​new​ Coupon(5);
​ coupon.price;

​ ​// 5​
​ coupon.halfPrice = 20;

​ coupon.price;

​ ​// 10​
​ coupon.halfPrice;

​ ​// undefined​

For	this	reason,	it’s	always	a	good	idea	to	pair	getters	and	setters.	In	fact,	they
can	(and	should)	have	the	same	name.	That’s	perfectly	valid.	What	you	can’t	do
is	have	a	property	with	the	same	name	as	your	getter	or	setter.	That	would	be
invalid	and	create	a	lot	of	confusion.

For	example,	if	you	tried	to	make	a	setter	of	price,	it	would	trigger	an	infinite	call
stack.

classes/get/invalid.js

​ ​class​ Coupon {
​ ​constructor​(price, expiration) {
​ ​this​.price = price;
​ ​this​.expiration = expiration || ​'Two Weeks'​;
​ }

​
​ ​get​ price() {

http://media.pragprog.com/titles/es6tips/code/classes/get/set.js
http://media.pragprog.com/titles/es6tips/code/classes/get/invalid.js

​ ​return​ ​this​.price;
​ }

​
​ ​set​ price(price) {
​ ​this​.price = ​`$ ​${price}​`​;
​ }

​ }

​
​ ​const​ coupon = ​new​ Coupon(5);
​ ​// RangeError: Maximum call stack size exceeded​

The	solution	is	to	use	another	property	as	a	bridge	between	your	getter	and
setter.	You	don’t	want	users	or	other	developers	to	access	your	bridge	property.
You	want	it	to	be	for	internal	use	only.	In	most	languages,	you’d	use	a	private
property.	Because	you	don’t	have	those	currently	in	JavaScript,	you	must	rely	on
convention.

Developers	signal	that	a	method	or	property	is	private	by	prepending	it	with	an
underscore.	If	you	see	an	object	with	a	property	of	_price,	you	should	know	you
shouldn’t	access	it	directly.

After	you	set	an	intermediate	property,	you	can	use	getters	and	setters	with	the
same	name,	minus	the	underscore,	to	access	or	update	the	value.

You	now	have	the	tools	to	solve	your	problem	with	setting	a	non-integer	to	price.
Simply	change	the	property	this.price	to	this._price	in	the	constructor.	After	that,
create	a	getter	to	access	this._price	and	a	setter	that	will	replace	any	non-numeric
characters	with	nothing,	leaving	only	the	integers.	This	isn’t	perfect	because	it
would	strip	out	decimal	points,	but	it’s	good	for	this	demo.

classes/get/get.js

​ ​class​ Coupon {
​ ​constructor​(price, expiration) {
​ ​this​._price = price;
​ ​this​.expiration = expiration || ​'Two Weeks'​;
​ }

​
​ ​get​ priceText() {
​ ​return​ ​`$​${​this​._price}​`​;

http://media.pragprog.com/titles/es6tips/code/classes/get/get.js

​ }

​
​ ​get​ price() {
​ ​return​ ​this​._price;
​ }

​
​ ​set​ price(price) {
​ ​const​ newPrice = price
​ .toString()

​ .replace(​/​​[^\d]​​/g​, ​''​);
​ ​this​._price = newPrice;
​ }

​
​ ​get​ expirationMessage() {
​ ​return​ ​`This offer expires in ​${​this​.expiration}​`​;
​ }

​ }

​
​ ​const​ coupon = ​new​ Coupon(5);
​ coupon.price;

​ ​// 5​
​
​ coupon.price = ​'$10'​;
​
​ coupon.price;

​ ​// 10​
​
​ coupon.priceText;

​ ​// $ 10​
​ ​export​ ​default​ Coupon;

A	bonus	to	using	this	approach	is	you	don’t	need	to	refactor	any	existing	code.
All	code	that	currently	uses	coupon.price	will	work	as	intended.

The	big	advantage	with	getters	and	setters	is	that	you	hide	complexity.	The
downside	is	that	you	mask	your	intentions.	If	another	developer	is	writing	code
elsewhere,	they	may	think	they’re	setting	a	property	when	they’re	actually
calling	a	method.	Getters	and	setters	can	sometimes	be	very	hard	to	debug	and
hard	to	test.	As	always,	use	with	caution	and	make	sure	your	intentions	are	clear
with	plenty	of	tests	and	documentation.

In	the	next	tip,	you’ll	learn	another	technique	to	mask	complexity	by	turning

data	structures	into	iterables	with	generators.

Tip	41 Create	Iterable	Properties	with	Generators

In	this	tip,	you’ll	learn	how	to	convert	complex	data	structures	to	iterables	with
generators.

In	Tip	14,	​	Iterate	Over	Key-Value	Data	with	Map	and	the	Spread	Operator	​,	you
learned	how	simple	it	is	to	loop	over	maps	thanks	to	iterables.	And	once	you	can
iterate	over	a	collection,	you	have	access	to	the	spread	operator,	array	methods,
and	many	other	tools	to	transform	your	data.	Iterables	give	your	data	more
flexibility	by	allowing	you	to	access	each	piece	of	data	individually.

You	also	know	that	objects	don’t	have	a	built-in	iterator.	You	can’t	loop	over	an
object	directly—you	need	to	convert	part	of	it	to	an	array	first.	That	can	be	a
major	problem	when	you	want	the	structure	of	an	object	but	the	flexibility	of	an
iterable.

In	this	tip,	you’ll	learn	a	technique	that	can	make	complex	data	structures	as	easy
to	use	as	simple	arrays.	You’re	going	to	use	a	new	specialized	function	called	a
generator	to	return	data	one	piece	at	time.	In	the	process,	you’ll	see	how	you	can
convert	a	deeply	nested	object	into	a	simple	structure.

Generators	aren’t	exclusive	to	classes.	They’re	a	specialized	function.	At	the
same	time,	they’re	very	different	from	other	functions.	And	while	the	JavaScript
community	has	enthusiastically	embraced	most	new	features,	they	haven’t	quite
figured	out	what	to	do	with	generators.	In	late	2016,	a	poll	by	Kent	Dodds,	a
popular	JavaScript	developer,	found	that	81	percent	of	developers	rarely	or	never
used	generators.[40]

That’s	changing.	Developers	and	library	authors	are	discovering	how	to	use
generators.	One	of	the	best	use	cases	so	far	is	to	use	generators	to	transform
objects	into	iterables.

Finding	Real	Life	Use	Cases
Now	that	the	JavaScript	spec	is	updating	yearly,	you’ll	see	new	features	regularly.
Occasionally,	you’ll	come	across	new	syntax	and	have	no	idea	why	it	was

included	or	where	you	should	use	it.	Sometimes	it	takes	time	to	understand	how
to	incorporate	new	syntax.	When	you	find	yourself	stuck	with	new	syntax	that
you	don’t	understand,	you	should	spend	some	time	looking	for	real-life	use
cases.

The	best	way	to	find	use	cases	for	new	syntax	is	to	explore	open	source	libraries.
I	usually	have	a	few	large	projects—React,	Redux,	Lodash—that	I	search	for
syntax	examples.	All	you	need	to	do	is	go	to	GitHub,	Gitlab,	or	anywhere	the
project	is	hosted	and	search	for	the	syntax.	When	I	was	trying	to	learn	how	to
use	Map,	I	went	to	React	and	searched	for	new Map	and	found	a	few	good
examples.	I	discovered	this	generator	pattern	by	looking	through	Khan	Academy
on	github.

You’ll	quickly	see	a	lot	of	usage	patterns.	And	if	you	don’t	see	many	examples,
that’s	a	clue	that	the	syntax	may	not	be	very	valuable	or	at	least	not	widely
understood.

What	is	a	generator?	The	Mozilla	Developer	Network	explains	that	a	generator
is	a	function	that	doesn’t	fully	execute	its	body	immediately	when	called.[41]

This	is	different	from	a	higher-order	function,	which	fully	executes	but	returns	a
new	function.	A	generator	is	a	single	function	that	doesn’t	resolve	its	body
immediately.	What	that	means	is	that	a	generator	is	a	function	that	has	break
points	where	it	essentially	pauses	until	the	next	step.

To	make	a	generator,	you	add	an	asterisk	(*)	after	the	function	keyword.	You	then
have	access	to	a	special	method	called	next(),	which	returns	a	part	of	the
function.	Inside	the	function	body,	you	return	a	piece	of	information	with	the
keyword	yield.	When	executing	the	function,	use	the	next()	method	to	get	the
information	yielded	by	the	function.

When	you	call	next(),	you	get	an	object	containing	two	keys:	value	and	done.	The
item	you	declare	with	yield	is	the	value.	done	indicates	there	are	no	items	left.

For	example,	if	you	wanted	to	read	Nobel	Prize	winner	Naguib	Mahfouz’s	Cairo
Trilogy	but	you	only	wanted	to	know	the	titles	one	at	a	time,	you’d	write	a
function	that	would	return	the	yields	for	each	book	in	the	trilogy.	Each	time	you
called	yield(),	you’d	give	the	next	book	in	the	sequence.

To	use	the	trilogy	generator,	you’d	first	have	to	call	the	function	and	assign	it	to
a	variable.	You’d	then	call	next()	on	the	variable	each	time	you	wanted	a	new
book.

classes/generators/simple.js

​ ​function​* getCairoTrilogy() {
​ ​yield​ ​'Palace Walk'​;
​ ​yield​ ​'Palace of Desire'​;
​ ​yield​ ​'Sugar Street'​;
​ }

​
​ ​const​ trilogy = getCairoTrilogy();
​ trilogy.next();

​ ​// { value: 'Palace Walk', done: false }​
​ trilogy.next();

​ ​// { value: 'Palace of Desire', done: false }​
​ trilogy.next();

​ ​// { value: 'Sugar Street', done: false }​
​ trilogy.next();

​ ​// { value: undefined, done: true }​

Notice	how	interesting	that	is.	You	can	step	through	the	function	piece	by	piece.
This	is	useful	if	you	have	lots	of	information	and	want	to	access	it	in	parts.	You
could	pull	out	one	piece	of	information	and	pass	the	generator	somewhere	else	to
get	the	next	piece.	Like	a	higher-order	function,	you	can	use	it	in	different
places.

But	that	is	not	going	to	be	your	focus	for	this	tip.	Instead,	it	is	far	more
interesting	that	generators	turn	a	function	into	an	iterable.	Because	you	are
accessing	data	one	piece	at	a	time,	it	is	a	simple	step	to	turn	them	into	iterables.

When	you	use	a	generator	as	an	iterable,	you	don’t	need	to	use	the	next()	method.
Use	any	action	that	requires	an	iterable.	The	generator	will	go	through	the	parts
one	at	a	time	as	if	it	were	going	through	the	indexes	of	an	array	or	the	keys	of	a
map.

For	example,	if	you	want	the	Cairo	trilogy	in	the	form	of	an	array,	you’d	simply
use	the	spread	operator.

http://media.pragprog.com/titles/es6tips/code/classes/generators/simple.js

classes/generators/simple.js

​ [...getCairoTrilogy];

​ ​// ['Palace Walk', 'Palace of Desire', 'Sugar Street']​

If	you	want	to	add	all	the	books	to	your	reading	list,	all	you’d	need	is	a	simple
for...of	loop.

classes/generators/simple.js

​ ​const​ readingList = {
​ ​'Visit from the Goon Squad'​: ​true​,
​ ​'Manhattan Beach'​: ​false​,
​ };

​ ​for​ (​const​ book ​of​ getCairoTrilogy()) {
​ readingList[book] = ​false​;
​ }

​ readingList;

​ ​// {​
​ ​// 'Visit from the Goon Squad': true,​
​ ​// 'Manhattan Beach': false,​
​ ​// 'Palace Walk': false,​
​ ​// 'Palace of Desire': false,​
​ ​// 'Sugar Street': false​
​ ​// }​

How	does	this	fit	into	classes?	Generators	are	awesome	because,	like	getters	and
setters,	they	can	give	your	classes	a	simple	interface.	You	can	make	a	class	with
a	complex	data	structure	but	design	it	in	such	a	way	that	developers	using	it	will
be	able	to	access	the	data	as	if	it	were	a	simple	array.

Consider	a	simple	data	structure:	a	family	tree	with	a	single	branch.	A	person	in
a	family	tree	would	have	a	name	and	children.	And	each	child	would	have
children	of	their	own.

A	tree	data	structure	would	have	advantages	for	searches	and	lookups,	but
flattening	the	information	would	be	pretty	difficult.	You’d	have	to	make	a
method	to	create	an	empty	array	and	fill	it	with	family	members	before
returning.

classes/generators/problem.js

http://media.pragprog.com/titles/es6tips/code/classes/generators/simple.js
http://media.pragprog.com/titles/es6tips/code/classes/generators/simple.js
http://media.pragprog.com/titles/es6tips/code/classes/generators/problem.js

​ ​class​ FamilyTree {
​ ​constructor​() {
​ ​this​.family = {
​ name: ​'Dolores'​,
​ child: {

​ name: ​'Martha'​,
​ child: {

​ name: ​'Dyan'​,
​ child: {

​ name: ​'Bea'​,
​ },

​ },

​ },

​ };

​ }

​ getMembers() {

​ ​const​ family = [];
​ ​let​ node = ​this​.family;
​ ​while​ (node) {
​ family.push(node.name);

​ node = node.child;

​ }

​ ​return​ family;
​ }

​ }

​
​ ​const​ family = ​new​ FamilyTree();
​ family.getMembers();

​ ​// ['Dolores', 'Martha', 'Dyan', 'Bea'];​
​
​ ​export​ ​default​ FamilyTree;

With	a	generator,	you	can	return	the	data	directly	without	pushing	it	to	an	array.
As	a	bonus,	your	users	wouldn’t	need	to	look	up	a	method	name.	They	could
treat	the	property	holding	the	family	tree	as	if	it	were	holding	an	array.

Converting	the	method	to	a	generator	is	simple.	You’re	just	combining	ideas
from	the	method	with	ideas	from	your	getCairoTrilogy()	generator.

Start	off	by	changing	the	method	name	from	getMembers()	to	* [Symbol.iterator]().	It
looks	confusing,	but	here’s	what’s	happening.	First,	the	asterisk	signifies	that

you’re	creating	a	generator.	The	phrase	Symbol.iterator	is	attaching	the	generator
to	an	iterable	on	the	class.	This	is	similar	to	how	the	map	object	has	a	MapIterator.

Inside	the	body	of	the	method,	add	the	while	loop.	Unlike	your	getCairoTrilogy()

generator,	you	aren’t	going	to	yield	an	explicit	value.	Instead,	you’ll	yield	the
value	from	each	cycle	of	the	loop.	As	long	as	there’s	something	to	return,	the
generator	will	keep	going.

Instead	of	family.push(node.name);,	all	you	need	to	do	is	yield	the	result:	yield

node.name.	This	means	you	don’t	need	the	intermediate	array.	Delete	that.
Everything	else	is	the	same

Now	when	you	need	any	action	that	requires	an	iterable,	such	as	the	spread	or
the	for...of	loop,	you	can	call	it	directly	on	the	class	instance.

classes/generators/generators.js

​ ​class​ FamilyTree {
​ ​constructor​() {
​ ​this​.family = {
​ name: ​'Dolores'​,
​ child: {

​ name: ​'Martha'​,
​ child: {

​ name: ​'Dyan'​,
​ child: {

​ name: ​'Bea'​,
​ },

​ },

​ },

​ };

​ }

​ * [Symbol.iterator]() {

​ ​let​ node = ​this​.family;
​ ​while​ (node) {
​ ​yield​ node.name;
​ node = node.child;

​ }

​ }

​ }

​

http://media.pragprog.com/titles/es6tips/code/classes/generators/generators.js

​ ​const​ family = ​new​ FamilyTree();
​ [...family];

​ ​// ['Dolores', 'Martha', 'Dyan', 'Bea'];​

Is	the	extra	complexity	of	the	generator	worth	it?	It	depends	on	your	goals.	The
advantage	with	a	generator	is	that	other	developers	don’t	need	to	get	caught	up
in	the	implementation	details	of	your	class.	They	don’t	need	to	know	that	the
class	is	actually	using	a	tree	data	structure.	To	them,	the	class	contains	an
iterable.

Of	course,	sometimes	hiding	complexity	makes	debugging	more	difficult.	As
with	getters	and	setters,	be	careful	about	hiding	too	much	from	other	developers.
Still,	when	you	want	to	use	more	complicated	data	structures	but	you	don’t	want
to	burden	others	with	implementation	details,	generators	are	a	great	solution.

In	the	next	tip,	you’ll	see	how	context	problems	can	sneak	into	classes	and	how
you	can	solve	them	using	bind().

Tip	42 Resolve	Context	Problems	with	Bind()

In	this	tip,	you’ll	learn	how	to	solve	this	errors	with	bind().

In	Tip	36,	​	Prevent	Context	Confusion	with	Arrow	Functions	 ​,	you	saw	how
functions	create	a	new	context	and	how	a	new	context	can	give	you	results	you
aren’t	expecting.	Changing	context	can	create	confusion,	particularly	when
you’re	using	the	this	keyword	in	callbacks	or	array	methods.

Sadly,	the	problem	doesn’t	go	away	in	classes.	Earlier,	you	learned	how	you	can
use	arrow	functions	to	create	another	function	without	a	new	context.	In	this	tip,
you’ll	learn	more	techniques	for	preventing	context	problems.	The	techniques
you’re	about	to	learn	work	on	object	literals	and	classes,	but	they’re	much	more
common	in	class	syntax,	particularly	if	you’re	using	libraries	such	at	React	or
Angular.

Think	back	to	the	original	example,	a	validator.	Originally,	you	made	it	as	an
object	literal,	but	now	that	you	know	a	bit	about	classes,	you	can	make	it	a	class.
The	class	will	have	one	property,	a	message,	and	two	methods:
setInvalidMessage(),	which	returns	a	single	invalid	message	for	a	field,	and
setInvalidMessages(),	which	maps	an	array	of	fields	to	a	series	of	invalid	messages.

classes/bind/problem.js

​ ​class​ Validator {
​ ​constructor​() {
​ ​this​.message = ​'is invalid.'​;
​ }

​
​ setInvalidMessage(field) {

​ ​return​ ​`​${field}​ ​${​this​.message}​`​;
​ }

​
​ setInvalidMessages(...fields) {

​ ​return​ fields.map(​this​.setInvalidMessage);
​ }

​ }

http://media.pragprog.com/titles/es6tips/code/classes/bind/problem.js

All	you	did	was	translate	an	object	with	properties	and	methods	to	a	class	with
properties	and	methods.

The	Validator	class	will	have	the	exact	same	context	problem	as	your	object.
When	you	call	setInvalidMessages(),	the	function	creates	a	this	binding	to	the	class.
Inside	the	method,	you	call	map()	on	an	array	and	pass	setInvalidMessage()	as	the
callback.	When	the	map()	method	invokes	setInvalidMessage(),	it	will	create	a	new
this	binding	in	the	context	of	the	array	method,	not	the	class.

classes/bind/bind.spec.js

​ ​const​ validator = ​new​ ValidatorProblem();
​ validator.setInvalidMessages(​'city'​);
​ ​// TypeError: Cannot read property 'message' of undefined​

Context	problems	are	common	in	the	React	community.	Nearly	every	class	has
some	form	of	binding	problem.	Cory	House	has	a	great	breakdown	of	different
ways	to	solve	the	binding	problem	in	React.[42]	You’ll	be	seeing	an	adaptation	of
most	of	those	solutions	in	a	more	generic	class.

The	first	way	to	solve	the	problem	is	the	same	as	the	solution	suggested	in	Tip
36,	​	Prevent	Context	Confusion	with	Arrow	Functions	​.	Convert	your	method	to
an	arrow	function.	The	arrow	function	won’t	create	a	new	this	binding	and	it
won’t	throw	an	error.

The	only	downside	to	this	approach	is	that	when	you’re	working	with	class
syntax,	you’ll	have	to	move	your	function	to	a	property	rather	than	a	method.	It’s
not	a	big	deal	on	objects	because	objects	and	properties	both	use	a	key-value
declaration.	In	classes,	you	have	to	set	properties	in	the	constructor	and	the
method	will	look	a	little	out	of	place.	Now	you’re	stuck	with	a	situation	where
some	methods	are	set	in	the	constructor	and	some	are	set	as	class	methods.

classes/bind/constructorArrow.js

​ ​class​ Validator {
​ ​constructor​() {
​ ​this​.message = ​'is invalid.'​;
​ ​this​.setInvalidMessage = field => ​`​${field}​ ​${​this​.message}​`​;

http://media.pragprog.com/titles/es6tips/code/classes/bind/bind.spec.js
http://media.pragprog.com/titles/es6tips/code/classes/bind/constructorArrow.js

​ }

​
​ setInvalidMessages(...fields) {

​ ​return​ fields.map(​this​.setInvalidMessage);
​ }

​ }

Moving	the	method	to	a	property	in	the	constructor	may	solve	your	context
problem,	but	it	creates	another.	Methods	are	defined	in	multiple	places.	And
depending	on	how	many	methods	you	create	this	way,	your	constructor	can	get
large	quickly.

A	better	solution	is	to	use	the	bind()	method.	This	method	exists	on	all	functions
and	lets	you	state	your	context	explicitly.	You’ll	always	know	what	this	refers	to
because	you	tell	the	function	exactly	where	to	bind.

As	an	example,	suppose	you	have	a	function	that	refers	to	a	property	on	this.	The
function	doesn’t	actually	have	that	property.	The	property	this	refers	to	may	not
yet	exist.	There’s	no	rule	that	says	properties	must	exist	when	you	declare	a
function.	But	they	do	need	to	exist	at	runtime	when	you	call	a	function	or	else
you’ll	get	undefined.	With	this	function,	you	can	explicitly	set	this	to	a	specific
object	using	bind.

classes/bind/bind.js

​ ​function​ sayMessage() {
​ ​return​ ​this​.message;
​ }

​
​ ​const​ alert = {
​ message: ​'Danger!'​,
​ };

​
​ ​const​ sayAlert = sayMessage.bind(alert);
​
​ sayAlert();

​ ​// Danger!​

Whenever	the	function	uses	this,	it	will	lock	in	the	object	you	bound	to	it.	Kyle
Simpson	calls	this	explicit	binding	because	you’re	declaring	the	context	and	not

http://media.pragprog.com/titles/es6tips/code/classes/bind/bind.js

relying	on	the	engine	to	set	it	at	runtime.[43]

In	the	preceding	example,	you’re	binding	the	sayMessage()	function	explicitly	to
an	object	that	has	the	message	property.

Now	it’s	time	for	things	to	get	a	little	confusing.	You	can	also	bind	a	function	to
the	current	context	by	binding	it	to	this.	It	may	seem	odd	to	bind	a	this	to,	well,
this,	but	all	you’re	doing	is	telling	the	function	to	use	the	current	context	rather
than	creating	a	new	one.	Unlike	an	arrow	function,	the	function	is	still	creating	a
this	binding—it’s	just	using	the	current	binding	rather	than	building	a	new	one.

In	your	Validator	class,	you	can	bind	the	function	to	the	current	context	before
you	pass	it	to	the	map()	method.

classes/bind/bind.js

​ ​class​ Validator {
​ ​constructor​() {
​ ​this​.message = ​'is invalid.'​;
​ }

​
​ setInvalidMessage(field) {

​ ​return​ ​`​${field}​ ​${​this​.message}​`​;
​ }

​
​ setInvalidMessages(...fields) {

​ ​return​ fields.map(​this​.setInvalidMessage.bind(​this​));
​ }

​ }

That’s	a	fine	approach.	The	only	downside	is	if	you	use	the	function	in	another
method,	you’ll	have	to	bind	it	again.	A	lot	of	developers	avoid	multiple	binds	by
setting	a	bound	method	to	a	property	of	the	same	name	in	the	constructor.

This	is	very	similar	to	creating	an	arrow	function	in	the	constructor.	The
advantage	is	that	your	methods	are	still	defined	in	the	same	place.	They’re
merely	bound	in	the	constructor.	Now	you	define	all	your	methods	in	one	place,
the	body.	You	declare	your	properties	in	another	place,	the	constructor.	And	you
set	your	context	in	one	place,	also	the	constructor.

http://media.pragprog.com/titles/es6tips/code/classes/bind/bind.js

classes/bind/constructor.js

​ ​class​ Validator {
​ ​constructor​() {
​ ​this​.message = ​'is invalid.'​;
​ ​this​.setInvalidMessage = ​this​.setInvalidMessage.bind(​this​);
​ }

​
​ setInvalidMessage(field) {

​ ​return​ ​`​${field}​ ​${​this​.message}​`​;
​ }

​
​ setInvalidMessages(...fields) {

​ ​return​ fields.map(​this​.setInvalidMessage);
​ }

​ }

Both	approaches—using	arrow	functions	and	binding	a	function	to	this—	work
with	the	current	spec.	In	a	future	spec,	you’ll	be	able	to	set	class	properties
outside	of	the	constructor.	With	the	new	spec,	you	assign	arrow	functions	to
properties	alongside	other	method	definitions.	It’s	the	best	of	both	worlds.

classes/bind/properties.js

​ ​class​ Validator {
​ message = ​'is invalid.'​;
​
​ setMessage = field => ​`​${field}​ ​${​this​.message}​`​;
​
​ setInvalidMessages(...fields) {

​ ​return​ fields.map(​this​.setMessage);
​ }

​ }

As	with	other	proposed	specs,	you	can	use	this	feature	right	now	with	the	proper
Babel	plugin.	This	particular	feature	isn’t	currently	supported	in	any	version	of
Node.js,	so	you	won’t	be	able	to	try	it	out	in	the	REPL.

As	with	other	context	problems,	try	not	to	get	too	hung	up	on	the	details.
Binding	will	make	more	sense	when	you	see	it	organically.	Just	remember:	If
you’re	encountering	unexpected	behaviors	or	weird	errors	when	using	this,	you

http://media.pragprog.com/titles/es6tips/code/classes/bind/constructor.js
http://media.pragprog.com/titles/es6tips/code/classes/bind/properties.js

[37]

[38]

[39]

[40]

[41]

[42]

[43]

might	want	to	explicitly	bind	the	context.	Until	that	point,	don’t	worry.	Binding
can	be	expensive,	and	you	really	should	only	use	it	when	you	need	to	solve	a
specific	problem.

At	this	point,	you	should	be	able	to	create	and	extend	classes	with	ease.	Despite
the	controversy,	it	makes	writing	JavaScript	a	lot	more	intuitive	for	those	outside
the	language	and	more	succinct	for	those	who’ve	been	developing	JavaScript	for
years.

In	the	next	chapter,	you’ll	learn	how	to	work	with	data	outside	your	code	by
exploring	promises,	fetch	methods,	and	asynchronous	functions.

Footnotes

https://github.com/getify/You-Dont-Know-
JS/blob/master/this%20%26%20object%20prototypes/ch4.md

https://medium.com/javascript-scene/master-the-javascript-interview-what-s-the-difference-between-
class-prototypal-inheritance-e4cd0a7562e9

https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Classes#Sub_classing_with_extends

https://twitter.com/kentcdodds/status/775447130391535616

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*

https://medium.freecodecamp.org/react-binding-patterns-5-approaches-for-handling-this-
92c651b5af56

https://github.com/getify/You-Dont-Know-
JS/blob/master/this%20%26%20object%20prototypes/ch2.md#explicit-binding

Copyright	©	2018,	The	Pragmatic	Bookshelf.

https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch4.md
https://medium.com/javascript-scene/master-the-javascript-interview-what-s-the-difference-between-class-prototypal-inheritance-e4cd0a7562e9
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes#Sub_classing_with_extends
https://twitter.com/kentcdodds/status/775447130391535616
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*
https://medium.freecodecamp.org/react-binding-patterns-5-approaches-for-handling-this-92c651b5af56
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch2.md#explicit-binding

Chapter	9

Access	External	Data
	

In	the	19th	century,	an	international	team	of	engineers	embarked	on	one	of	the
greatest	engineering	challenges	of	their	day:	laying	a	telegraph	cable	across	the
Atlantic	Ocean.	The	project	took	several	failed	attempts	and	plenty	of	money
and	hours	before	it	succeeded.	In	the	end,	you	could	send	a	message	from
Europe	to	the	United	States	in	an	impressive	17	hours—much	faster	than	the
nearly	two-week	boat	trip	it	used	to	take.

Fast	communication	can	mean	the	difference	between	success	and	failure.
JavaScript’s	resurgence	is	partially	due	to	the	fact	that	you	can	load	a	page	once
and	then	use	JavaScript	for	all	future	communications	to	and	from	servers.
Suddenly,	you	could	experience	websites	as	actual	software	instead	of	a	series	of
discrete	pages.	When	you	skip	page	loads,	you	save	time	and	resources	for	your
users.	They	don’t	have	to	reload	new	images	and	other	assets.	They	have	less
latency,	and	their	experience	is	greatly	improved.	Accessing	external	data	is
crucial	to	so-called	Single	Page	web	applications.

In	this	chapter,	you’ll	learn	how	to	access	external	data	and	how	to	use	the	data
you	receive.	JavaScript	is	an	asynchronous	language,	which	means	it	won’t
block	code	execution	while	waiting	for	requested	data.	JavaScript	can	give	you
speedy	websites,	but	asynchronous	requests	can	be	a	little	confusing	to	work
with.

We’ll	start	off	by	exploring	how	to	use	fetch()	to	access	remote	data.	Next,	we’ll
take	a	deep	dive	into	promises,	the	JavaScript	method	for	handling	asynchronous
requests.	Then	we’ll	use	the	new	async/await	syntax	to	make	working	with

promises	even	more	clear.	Finally,	you’ll	learn	to	store	data	on	the	browser	so
you	can	keep	a	user’s	state	without	any	server	access.

You’ll	never	experience	performance	gains	on	the	level	of	the	transatlantic	cable,
but	every	second	counts.	Don’t	be	surprised	when	a	mobile	user	leaves	a	site	that
requires	a	new	page	render	on	every	action.	You	can’t	remove	the	server	entirely,
but	you	can	give	your	users	experiences	that	make	the	server	requests	as	painless
as	possible.

Tip	43 Retrieve	Data	Asynchronously	with	Promises

In	this	tip,	you’ll	learn	how	to	work	with	delayed	data	responses	using	promises.

JavaScript	is	an	asynchronous	language.	That’s	a	big	word	for	a	simple	concept.
An	asynchronous	language	is	merely	a	language	that	can	execute	subsequent
lines	of	code	when	previous	lines	of	code	aren’t	fully	resolved.

All	right.	Maybe	that	explanation	wasn’t	any	more	clear.	Think	about	reasons
why	code	may	be	blocked.	You	may	be	getting	data	from	an	API.	You	might	be
pulling	data	from	the	DOM	or	other	source.	You	might	be	waiting	for	a	user
response.	The	common	thread	is	you	need	some	information	to	proceed,	and	it
may	take	time	to	get	it.	If	you	want	more	examples,	Peter	Olson	has	a	great
breakdown	of	the	differences	between	asynchronous	and	synchronous	code.[44]

The	value	of	asynchronous	languages	is	that	if	there	are	parts	of	your	code	that
don’t	require	the	delayed	information,	you	can	run	the	code	while	the	other	code
is	waiting.	If	you’re	waiting	for	an	API	response,	you	can	still	respond	to	click
methods	on	other	elements	or	calculate	values	of	other	data	sources.	Your	code
doesn’t	grind	to	a	halt	while	waiting.

In	later	tips,	you’ll	work	with	API	data	specifically.	In	this	tip,	you’ll	explore	a
reusable	technique	for	working	with	asynchronous	data:	promises.

Before	promises,	developers	used	callbacks	to	handle	asynchronous	actions.	If
you	requested	expenses	from	a	data	source,	you’d	pass	a	callback	function	as	an
argument.	After	the	asynchronous	data	is	returned—or	resolved	as	it	is	often
called—the	function	would	execute	the	callback.	The	traditional	example	is	a
setTimeout()	function	that	takes	a	callback	and	executes	it	after	a	certain	number
of	milliseconds.

Use	setTimeout()	as	a	place	holder	for	any	action	that	doesn’t	immediately
resolve.	For	example,	think	about	a	function	called	getUserPreferences(),	which
would	fetch	data	from	an	API	and	then	pass	that	data	to	a	callback.

Because	Javascript	is	asynchronous,	you	can	call	other	functions	before	and	after
the	call	to	getUserPreferences()	and	they’d	both	resolve	before	getUserPreferences()

executes	the	callback.

externalData/promises/problem.js

​ ​function​ getUserPreferences(cb) {
​ setTimeout(() => {

​ cb({

​ theme: ​'dusk'​,
​ });

​ }, 1000);

​ }

​
​ ​function​ log(value) {
​ ​return​ console.log(value);
​ }

​
​ log(​'starting'​);
​ ​// starting​
​
​ getUserPreferences(preferences => {

​ ​return​ log(preferences.theme.toUpperCase());
​ });

​
​ log(​'ending?'​);
​ ​// ending​
​
​ ​// DUSK​

Callbacks	are	a	fine	way	to	handle	asynchronous	data.	And	they	were	a	standard
tool	for	a	long	time.	The	problem	is	that	you	may	have	asynchronous	functions
that	call	asynchronous	functions,	that	call	asynchronous…	Eventually	you	have
so	many	nested	callbacks,	you	find	yourself	in	what	became	known	as	“callback
hell.”

What	if	you	wanted	to	get	a	music	selection	based	on	a	user’s	preference?	The
callback	function,	getMusic(),	also	needs	to	hit	an	API	and	also	needs	a	callback
based	on	the	API	response.	You	encounter	this	situation	all	the	time.	Here’s	your
getMusic()	function:

http://media.pragprog.com/titles/es6tips/code/externalData/promises/problem.js

externalData/promises/problem.js

​ ​function​ getMusic(theme, cb) {
​ setTimeout(() => {

​ ​if​ (theme === ​'dusk'​) {
​ ​return​ cb({
​ album: ​'music for airports'​,
​ });

​ }

​ ​return​ cb({
​ album: ​'kind of blue'​,
​ });

​ }, 1000);

​ }

Now	you	need	to	get	the	preference	and	then	get	an	album.	First,	you’d	make	a
call	to	getUserPreferences()	and	you’d	pass	getMusic()	as	a	callback.	getMusic()	takes
a	theme	preference	and	a	callback.	This	function	is	only	nested	two	deep,	and	it’s
already	getting	hard	to	read.

externalData/promises/problem.js

​ getUserPreferences(preferences => {

​ ​return​ getMusic(preferences.theme, music => {
​ console.log(music.album);

​ });

​ });

As	if	that	weren’t	enough,	many	asynchronous	functions	took	two	callbacks:	a
callback	for	a	successful	response	and	a	callback	for	an	error.	Things	got
complicated	fast.

Promises	solve	the	callback	problem	twice	over.	Instead	of	taking	callback
functions	as	arguments,	promises	have	methods	for	success	and	failure.	This
keeps	things	visually	flat.	In	addition,	you	can	chain	together	asynchronous
promises	instead	of	nesting	them.	This	means	that	you	can	neatly	stack	all	of
your	actions.

How	does	it	work?	A	promise	is	an	object	that	takes	asynchronous	action	and
calls	one	of	two	methods	based	on	the	response.	If	the	asynchronous	action	is

http://media.pragprog.com/titles/es6tips/code/externalData/promises/problem.js
http://media.pragprog.com/titles/es6tips/code/externalData/promises/problem.js

successful,	or	fulfilled,	the	promise	passes	the	results	to	a	then()	method.	If	the
action	fails,	or	is	rejected,	the	promise	calls	the	catch()	method.	Both	then()	and
catch()	take	a	function	as	an	argument,	and	that	can	only	take	a	single	response
argument.

A	promise	takes	two	arguments:	resolve()	and	reject().	resolve()	is	what	happens
when	things	go	as	planned.	When	resolve()	is	called,	the	code	will	execute	the
function	passed	to	the	then()	method.	When	you	define	your	getUserPreferences()

function,	you’ll	return	the	promise.	When	you	actually	call	getUserPreferences(),
you’ll	call	either	the	then()	or	the	catch()	method.

externalData/promises/promises.js

​ ​function​ getUserPreferences() {
​ ​const​ preferences = ​new​ Promise((resolve, reject) => {
​ resolve({

​ theme: ​'dusk'​,
​ });

​ });

​ ​return​ preferences;
​ }

Here’s	an	example	of	calling	a	code	and	running	a	function	on	successful
resolution	using	the	then()	method.

externalData/promises/promises.js

​ getUserPreferences()

​ .then(preferences => {

​ console.log(preferences.theme);

​ });

​ ​// 'dusk'​

In	this	case,	things	went	well,	but	you	should	always	have	a	backup	plan.
Whenever	you	set	up	a	promise,	you	can	have	both	a	then()	and	a	catch()	method.
The	then()	method	will	handle	the	resolutions.	The	catch()	method	will	handle	the
rejections.

Here’s	a	failing	promise.	Note	that	it’s	calling	the	reject()	argument.

http://media.pragprog.com/titles/es6tips/code/externalData/promises/promises.js
http://media.pragprog.com/titles/es6tips/code/externalData/promises/promises.js

externalData/promises/promises.js

​ ​function​ failUserPreference() {
​ ​const​ finder = ​new​ Promise((resolve, reject) => {
​ reject({

​ type: ​'Access Denied'​,
​ });

​ });

​ ​return​ finder;
​ }

When	you	call	a	promise,	you	can	add	attach	the	then()	method	and	the	catch()

using	chaining.

externalData/promises/promises.js

​ failUserPreference()

​ .then(preferences => {

​ ​// This won't execute​
​ console.log(preferences.theme);

​ })

​ .​catch​(error => {
​ console.error(​`Fail: ​${error.type}​`​);
​ });

​ ​// Fail: Access Denied​

This	code	should	already	look	more	clean.	The	fun	really	begins	when	you	chain
multiple	promises	together.

Remember	your	getMusic()	function?	Try	converting	that	to	a	promise.

externalData/promises/promises.js

​ ​function​ getMusic(theme) {
​ ​if​ (theme === ​'dusk'​) {
​ ​return​ Promise.resolve({
​ album: ​'music for airports'​,
​ });

​ }

​ ​return​ Promise.resolve({
​ album: ​'kind of blue'​,
​ });

​ }

http://media.pragprog.com/titles/es6tips/code/externalData/promises/promises.js
http://media.pragprog.com/titles/es6tips/code/externalData/promises/promises.js
http://media.pragprog.com/titles/es6tips/code/externalData/promises/promises.js

After	you	do,	you	can	call	and	return	it	in	the	then()	method	of
getUserPreferences().	After	you	do	that,	you	can	call	another	then()	method,	which
will	call	a	function	using	the	results	from	getMusic().

externalData/promises/promises.js

​ getUserPreferences()

​ .then(preference => {

​ ​return​ getMusic(preference.theme);
​ })

​ .then(music => {

​ console.log(music.album);

​ });

​ ​// music for airports​

See	what’s	happening?	Instead	of	passing	data	into	a	series	of	nested	callbacks,
you’re	passing	data	down	through	a	series	of	then()	methods.

And,	of	course,	because	you’re	returning	promises,	you	can	convert	everything
to	single-line	arrow	functions	with	an	implicit	return.

externalData/promises/promises.js

​ getUserPreferences()

​ .then(preference => getMusic(preference.theme))

​ .then(music => { console.log(music.album); });

Finally,	as	if	that	weren’t	enough,	if	you’re	chaining	promises	together,	you
don’t	need	to	add	a	catch()	method	to	each	one.	You	can	define	a	single	catch()

method	to	handle	a	case	where	any	promise	is	rejected.

To	see	a	chained	catch()	in	action,	create	another	promise	that	returns	the	artist
for	an	album.

externalData/promises/promises.js

​ ​function​ getArtist(album) {
​ ​return​ Promise.resolve({
​ artist: ​'Brian Eno'​,
​ });

​ }

http://media.pragprog.com/titles/es6tips/code/externalData/promises/promises.js
http://media.pragprog.com/titles/es6tips/code/externalData/promises/promises.js
http://media.pragprog.com/titles/es6tips/code/externalData/promises/promises.js

Unfortunately,	you	won’t	get	to	use	getArtists()	because	getMusic()	is	going	to	be
rejected.	Don’t	worry—it	won’t	kill	your	code.	Your	code	will	execute	the	catch()

at	the	bottom	of	the	group	even	though	it	was	defined	after	another	then()

method.

externalData/promises/promises.js

​ ​function​ failMusic(theme) {
​ ​return​ Promise.reject({
​ type: ​'Network error'​,
​ });

​ }

​
​ getUserPreferences()

​ .then(preference => failMusic(preference.theme))

​ .then(music => getArtist(music.album))

​ .​catch​(e => {
​ console.log(e);

​ });

As	you	can	see,	promises	can	handle	a	lot	of	situations	with	a	very	simple
interface.	There’s	even	a	method	called	Promise.all	that	takes	an	array	of	promises
and	returns	either	a	resolve	or	a	reject	when	they	all	finish.[45]

Promises	took	the	JavaScript	world	by	storm.	They’re	an	amazing	tool	that	can
help	you	make	otherwise	ugly	code	gorgeous	and	easy	to	read.

Of	course,	things	can	always	get	better.	In	ES2017,	the	TC39	committee
approved	a	new	method	for	handling	asynchronous	functions.	Well,	it’s	actually
a	two-step	process	called	async/await	and	it	takes	asynchronous	data	in	an
interesting	new	direction.

In	the	next	tip,	you’ll	explore	async/await	and	see	how	you	can	make	your
asynchronous	code	even	more	readable.

http://media.pragprog.com/titles/es6tips/code/externalData/promises/promises.js

Tip	44 Create	Clean	Functions	with	Async/Await

In	this	tip,	you’ll	learn	how	to	streamline	promises	with	async/await.

In	the	previous	tip,	you	saw	that	promises	are	awesome.	They’re	a	vast
improvement	over	callbacks,	but	their	interfaces	are	still	a	little	clunky.	You’re
still	working	with	callbacks	in	methods.	Fortunately,	the	language	continues	to
improve.	You	can	now	avoid	callbacks	entirely	by	adding	asynchronous	promise
data	to	a	variable	in	a	single	function.

Developers	usually	talk	about	the	new	syntax,	async/await,	as	a	group,	but	it’s
really	two	separate	actions.	You	use	the	async	keyword	to	declare	that	an
encapsulating	function	will	be	using	asynchronous	data.	Inside	the	asynchronous
function,	you	can	use	the	await	keyword	to	pause	the	function	until	a	value	is
returned.

Before	you	begin,	there	are	a	couple	things	to	note.	First,	this	doesn’t	replace
promises.	You’re	merely	wrapping	promises	in	a	better	syntax.	Second,	it	isn’t
well	supported,	and	the	compiled	code	is	a	little	buggy.	It’s	safe	to	use	on	server-
side	JavaScript,	but	you	may	have	problems	in	browsers.

To	see	async/await	in	action,	refactor	some	of	your	code	from	the	previous	tip.	As
a	reminder,	you	pass	a	function	to	the	then()	method	on	the	getUserPreferences()

function.

externalData/promises/promises.js

​ getUserPreferences()

​ .then(preferences => {

​ console.log(preferences.theme);

​ });

​ ​// 'dusk'​

First,	you’ll	need	to	wrap	the	call	to	getUserPreferences()	in	another	function.
Write	a	new	function	called	getTheme().	This	will	hold	all	of	your	calls	to
asynchronous	functions.	To	indicate	that	you’ll	be	calling	asynchronous

http://media.pragprog.com/titles/es6tips/code/externalData/promises/promises.js

functions,	add	the	async	keyword	right	before	the	function	keyword.

Inside	your	getTheme()	function,	you	can	call	getUserPreferences().	Before	you	call
the	function,	though,	add	the	await	keyword	to	signal	that	getUserPreferences()	will
return	a	promise.	This	allows	you	to	assign	the	resolved	promise	to	a	new
variable.

externalData/async/async.js

​ ​async​ ​function​ getTheme() {
​ ​const​ { theme } = ​await​ getUserPreferences();
​ ​return​ theme;
​ }

The	trick	with	an	asynchronous	function	is	that	it’s	transformed	into	a	promise.
In	other	words,	when	you	call	getTheme(),	you’ll	still	need	a	then()	method.

externalData/async/async.js

​ getTheme()

​ .then(theme => {

​ console.log(theme);

​ });

You	cleaned	things	up	a	little,	but	honestly,	not	much.	async	functions	really
shine	when	you’re	working	with	multiple	promises.

Think	about	the	previous	tip	when	you	chained	multiple	promises	together.	With
async/await,	you	can	assign	each	return	statement	to	a	variable	before	passing	the
variable	to	the	next	function.	In	other	words,	you	can	transform	your	chained
promises	into	a	series	of	function	calls	in	a	single	wrapping	function.	Try
creating	a	new	function	called	getArtistsByPreference()	where	you	call	a	series	of
asynchronous	functions	passing	the	data	from	the	previous	function	as	an
argument	to	the	next.

externalData/async/async.js

​ ​async​ ​function​ getArtistByPreference() {
​ ​const​ { theme } = ​await​ getUserPreferences();

http://media.pragprog.com/titles/es6tips/code/externalData/async/async.js
http://media.pragprog.com/titles/es6tips/code/externalData/async/async.js
http://media.pragprog.com/titles/es6tips/code/externalData/async/async.js

​ ​const​ { album } = ​await​ getMusic(theme);
​ ​const​ { artist } = ​await​ getArtist(album);
​ ​return​ artist;
​ }

​
​ getArtistByPreference()

​ .then(artist => {

​ console.log(artist);

​ });

That’s	a	vast	improvement	over	a	long	method	chain.

All	that’s	left	is	handling	errors.	In	this	case,	you’ll	need	to	move	error	handling
outside	the	wrapping	function.	Instead,	you	still	use	the	catch	method	when
you’re	invoking	getArtistsByPreference().	Because	getArtistsByPreference()	returns	a
promise,	you	need	to	add	a	catch()	method	in	case	any	of	your	internal
asynchronous	functions	return	an	error.

externalData/async/catch.js

​ ​async​ ​function​ getArtistByPreference() {
​ ​const​ { theme } = ​await​ getUserPreferences();
​ ​const​ { album } = ​await​ failMusic(theme);
​ ​const​ { artist } = ​await​ getArtist(album);
​ ​return​ artist;
​ }

​
​ getArtistByPreference()

​ .then(artist => {

​ console.log(artist);

​ })

​ .​catch​(e => {
​ console.error(e);

​ });

async/await	functions	can	clean	up	your	code,	but	again,	use	them	with	caution,
particularly	when	you’re	compiling	your	code	to	earlier	versions	of	JavaScript.

At	this	point,	you	have	a	few	tools	for	handling	asynchronous	actions,	but	you’re
probably	wondering	when	you’ll	actually	use	them.	You	use	promises	in	many
situations,	but	the	most	common	is	when	you’re	fetching	data	from	an	API.

http://media.pragprog.com/titles/es6tips/code/externalData/async/catch.js

In	the	next	tip,	you’ll	learn	how	to	access	data	from	an	endpoint	using	fetch.

Tip	45 Make	Simple	AJAX	Calls	with	Fetch

In	this	tip,	you’ll	learn	how	to	retrieve	remote	data	using	fetch().

If	you	do	any	significant	JavaScript	app	development,	you’ll	have	to	interact
with	APIs.	With	APIs,	you	can	get	current	information	and	update	single
elements	without	a	page	refresh.	In	short,	you	can	create	very	fast	applications
that	behave	like	native	software.

Single-page	web	apps	are	part	of	the	reason	why	JavaScript	is	so	popular,	but
getting	data	with	AJAX—Asynchronous	JavaScript	And	XML—used	to	be	a
hassle.	It	was	such	a	hassle	that	most	developers	used	a	library,	usually	jQuery,
to	to	reduce	the	complexity.	You	can	see	the	documentation	on	the	Mozilla
Developer	Network.[46]	It’s	not	easy	stuff.

Now,	there’s	a	much	simpler	tool	for	AJAX	calls:	fetch().	This	tip	is	a	little
different	than	the	others.	fetch()	isn’t	part	of	the	JavaScript	spec.	The	fetch	spec	is
defined	by	the	Web	Hypertext	Application	Technology	Working	Group	or
WHATWG.[47]	That	means	you’ll	be	able	to	find	it	in	most	major	browsers,	but	it
isn’t	natively	supported	in	Node.js.	If	you	want	to	use	it	in	Node.js,	you’ll	need
to	use	the	node-fetch	package.[48]

Enough	trivia.	How	does	it	work?

To	start,	you	need	an	endpoint.	The	good	folks	at	typicode	have	an	API	for	fake
blog	data	at	https://jsonplaceholder.typicode.com/.	They	also	make	an	amazing
tool	called	JSON	Server	that	enables	you	to	mock	APIs	locally.[49]	JSON	Server
is	a	great	way	to	mock	APIs	that	are	in	development	or	slow,	require
authentication,	or	cost	money	for	each	call.	You	should	use	it.

Now	that	you	have	an	endpoint,	it’s	time	to	make	some	requests.

The	first	request	you’ll	make	is	a	simple	GET	request.	If	all	you’re	doing	is
asking	for	data,	the	fetch()	call	is	simple.	Call	fetch()	with	the	endpoint	URL	as
the	argument:

https://jsonplaceholder.typicode.com/

externalData/fetch/fetch.js

​ fetch(​'https://jsonplaceholder.typicode.com/posts/1'​);

The	response	body	for	this	endpoint	will	be	information	about	a	blog	post:

externalData/fetch/fetch.js

​ {

​ userId: 1,

​ id: 1,

​ title: ​'First Post'​,
​ body: ​'This is my first post...'​,
​ };

You	can’t	get	much	easier	than	that.	After	you	make	the	request,	fetch()	will
return	a	promise	that	resolves	with	a	response.	The	next	thing	you’ll	need	to	do
is	add	a	callback	function	to	the	then()	method	to	handle	the	response.

Ultimately,	you	want	to	get	the	response	body.	But	the	response	object	contains
quite	a	bit	of	information	beyond	the	body,	including	the	status	code,	headers,
and	more.	You’ll	see	more	about	the	response	in	a	moment.

The	response	body	isn’t	always	in	a	usable	format.	You	may	need	to	convert	it	to
a	format	JavaScript	can	handle.	Fortunately,	fetch()	contains	a	number	of	mixins
that	will	automatically	convert	the	response	body	data.	In	this	case,	because	you
know	you’re	getting	JSON,	you	can	convert	the	body	to	JSON	by	calling	json()

on	the	response.	The	method	also	returns	a	promise,	so	you’ll	need	another	then()

method.	After	that,	you	can	do	something	with	the	parsed	data.	For	example,	if
you	want	the	title	only,	you	can	pull	it	out.

externalData/fetch/fetch.js

​ fetch(​'https://jsonplaceholder.typicode.com/posts/1'​)
​ .then(data => {

​ ​return​ data.json();
​ })

​ .then(post => {

​ console.log(post.title);

​ });

http://media.pragprog.com/titles/es6tips/code/externalData/fetch/fetch.js
http://media.pragprog.com/titles/es6tips/code/externalData/fetch/fetch.js
http://media.pragprog.com/titles/es6tips/code/externalData/fetch/fetch.js

Of	course,	nothing	is	ever	easy.	The	fetch()	promise	will	resolve	even	if	you	get	a
failing	status	code,	such	as	a	404	response.	In	other	words,	you	can’t	rely	on	a
catch()	method	on	the	promise	to	handle	failed	requests.

The	response	does	include	a	field	called	ok	that’s	set	to	true	if	the	response	code
is	in	the	200–299	range.	You	can	check	for	that	response	and	throw	an	error	if
there’s	a	problem.	Unfortunately,	Internet	Explorer	doesn’t	include	ok,	but	Edge
does.	If	you	need	to	support	older	versions	of	Internet	Explorer,	you	can	check
response.status	to	see	if	the	value	is	between	200	and	299.

externalData/fetch/fetch.js

​ fetch(​'https://jsonplaceholder.typicode.com/pots/1'​)
​ .then(data => {

​ ​if​ (!data.ok) {
​ ​throw​ Error(data.status);
​ }

​ ​return​ data.json();
​ })

​ .then(post => {

​ console.log(post.title);

​ })

​ .​catch​(e => {
​ console.log(e);

​ });

Most	of	your	requests	will	be	simple	GET	requests.	But	you’ll	eventually	need
to	make	more	complex	requests.	What	if	you	wanted	to	add	a	new	blog	post?
Easy,	make	a	POST	request	to	https://jsonplaceholder.typicode.com/posts.

Once	you	move	beyond	GET	requests,	you’ll	need	to	set	a	few	more	options.	So
far,	you’ve	only	supplied	a	single	argument	to	fetch()—the	URL	endpoint.	Now
you’ll	need	to	pass	an	object	of	configuration	options	as	a	second	argument.	The
optional	object	can	take	a	lot	of	different	details.	In	this	case,	include	only	the
most	necessary	information.

Because	you’re	sending	a	POST	request,	you’ll	need	to	declare	that	you’re	using
the	POST	method.	In	addition,	you’ll	need	to	pass	some	JSON	data	to	actually

http://media.pragprog.com/titles/es6tips/code/externalData/fetch/fetch.js

create	the	new	blog	post.	Because	you’re	sending	JSON	data,	you’ll	need	to	set	a
header	of	Content-Type	set	to	application/json.	Finally,	you’ll	need	the	body,	which
will	be	a	single	string	of	JSON	data.

The	final	request	is	nearly	identical	to	your	other	request,	except	you	pass	in	the
special	options	as	the	second	argument.

externalData/fetch/fetch.js

​ ​const​ update = {
​ title: ​'Clarence White Techniques'​,
​ body: ​'Amazing'​,
​ userId: 1,

​ };

​
​ ​const​ options = {
​ method: ​'POST'​,
​ headers: {

​ ​'Content-Type'​: ​'application/json'​,
​ },

​ body: JSON.stringify(update),

​ };

​ fetch(​'https://jsonplaceholder.typicode.com/posts'​, options).then(data => {
​ ​if​ (!data.ok) {
​ ​throw​ Error(data.status);
​ }

​ ​return​ data.json();
​ }).then(update => {

​ console.log(update);

​ ​// {​
​ ​// title: 'Clarence White Techniques',​
​ ​// body: 'Amazing',​
​ ​// userId: 1,​
​ ​// id: 101​
​ ​// };​
​ }).​catch​(e => {
​ console.log(e);

​ });

If	your	request	is	successful,	you’ll	get	a	response	body	containing	the	blog	post
object	along	with	a	new	ID.	The	response	will	vary	depending	on	how	the	API	is

http://media.pragprog.com/titles/es6tips/code/externalData/fetch/fetch.js

set	up.

While	JSON	data	is	probably	the	most	common	request	body,	there	are	other
options,	such	as	FormData.	Beyond	that,	there	are	even	more	methods	for
customizing	your	request.	You	can	set	a	mode,	a	cache	method,	and	so	on.	Most
of	these	are	specialized,	but	you’ll	need	them	at	some	point.	As	always,	the	best
place	to	find	out	more	is	the	Mozilla	Developer	Network.[50]

Finally,	you	should	be	careful	about	where	you	place	your	AJAX	requests	in
your	code.	Remember	that	fetch	will	most	likely	need	an	Internet	connection,
and	endpoints	may	change	during	the	project.	It’s	good	practice	to	keep	all	your
fetch	actions	in	one	location.	This	will	make	them	easier	to	update	and	easier	to
test.	Check	out	the	code	for	the	book	to	see	how	you	can	create	a	services
directory	to	store	your	fetch	functions	and	how	you	can	use	them	in	other
functions.

In	the	next	tip,	you’ll	learn	how	to	preserve	user	data	with	localStorage.

Tip	46 Maintain	State	Over	Time	with	LocalStorage

In	this	tip,	you’ll	learn	how	to	save	user	data	with	localStorage.

Users	love	to	personalize	applications.	Conversely,	they	hate	entering	the	same
data	every	time	they	visit	an	app	or	a	page.	When	you’re	working	with	front-end
JavaScript,	you’re	in	a	bit	of	a	bind.	How	do	you	preserve	user	data	with
minimal	interference?

An	obvious	solution	is	to	create	a	login.	The	problem	is	that	many	users	will
abandon	a	site	if	they’re	forced	to	log	in.	A	better,	albeit	imperfect,	solution	is	to
store	data	locally.	When	you	save	data	locally,	you	can	preserve	information	on	a
particular	browser	on	a	particular	device.

Of	course,	everyone	uses	multiple	devices.	So	saving	data	to	a	browser	won’t
help	a	user	who	works	across	multiple	devices.	Still,	it’s	far	less	intrusive	than
demanding	a	user	make	yet	another	account.

You	can	easily	save	user	information	with	localStorage.	localStorage	is	like	a	tiny
database	that	exists	only	in	your	browser.	You	can	add	and	retrieve	information
from	it,	but	it	isn’t	accessible	by	JavaScript	in	the	browser.

Think	back	to	your	pet	adoption	site	from	Tip	13,	​	Update	Key-Value	Data
Clearly	with	Maps	​.	You	set	up	a	series	of	filters	to	show	only	relevant	pets.
Because	pet	owners	tend	to	prefer	certain	types	of	animals—lovers	of	labradors
probably	won’t	look	for	tiny	dogs—you	could	do	them	a	favor	if	you	save	their
searches	between	sessions.

Start	by	saving	a	breed	preference.	To	save	a	breed,	you	just	need	to	set	the	value
on	the	localStorage	object	using	the	setItem()	method.	You	pass	the	key	as	the
first	argument	and	the	value	as	the	second.	The	syntax	should	look	familiar.	It’s
nearly	identical	to	the	method	for	setting	data	on	a	map.

externalData/local/local.js

​ ​function​ saveBreed(breed) {

http://media.pragprog.com/titles/es6tips/code/externalData/local/local.js

​ localStorage.setItem(​'breed'​, breed);
​ }

When	the	user	leaves	and	then	returns	to	the	page	later,	you	can	pull	out	the	data
with	a	similar	command.

externalData/local/local.js

​ ​function​ getSavedBreed() {
​ ​return​ localStorage.getItem(​'breed'​);
​ }

And	if	you	want	to	remove	an	item,	you	can	do	that,	too.

externalData/local/local.js

​ ​function​ removeBreed() {
​ ​return​ localStorage.removeItem(​'breed'​);
​ }

Now	think	about	why	this	is	so	powerful.	You	can	save	user	data	without
requiring	any	extra	effort	from	the	user.	That	means	that	when	they	return	to	the
page	or	even	refresh	the	page,	you	can	set	the	application	exactly	as	they	left	it.

For	example,	when	you	initialize	your	filters,	you	can	add	in	the	breed
information	from	localStorage	if	it	exists.

externalData/local/local.js

​ ​function​ applyBreedPreference(filters) {
​ ​const​ breed = getSavedBreed();
​ ​if​ (breed) {
​ filters.​set​(​'breed'​, breed);
​ }

​ ​return​ filters;
​ }

Like	any	object,	you	can	have	as	many	keys	as	you	want.	If	you	wanted	to	save
all	your	user’s	filters,	you	could	save	each	item	individually,	but	it’s	much	easier
to	save	the	whole	group.	It’s	already	structured	data,	so	why	spend	time	taking	it
apart?

http://media.pragprog.com/titles/es6tips/code/externalData/local/local.js
http://media.pragprog.com/titles/es6tips/code/externalData/local/local.js
http://media.pragprog.com/titles/es6tips/code/externalData/local/local.js

The	only	downside	to	localStorage	is	that	your	value	must	be	a	string.	You	can’t
save	an	array	or	an	object	in	localStorage.	Fortunately,	the	fix	is	simple.	Just	use
JSON.stringify()	to	convert	your	data	to	a	string	and	JSON.parse	to	convert	it	back	to
a	JavaScript	object.

If	you	wanted	to	save	all	of	your	user’s	search,	you	can	convert	all	the	filters	to	a
string.	Remember	that	because	you	were	using	a	map,	you’ll	need	to	spread	it
into	an	array	first.

externalData/local/local.js

​ ​function​ savePreferences(filters) {
​ ​const​ filterString = JSON.stringify([...filters]);
​ localStorage.setItem(​'preferences'​, filterString);
​ }

When	you	want	to	use	it,	you’ll	just	need	to	pull	the	data	from	localStorage	and
convert	it	back	into	a	map.	Of	course,	if	you’re	saving	objects	or	arrays,	all	you
need	to	do	is	parse	the	string.

externalData/local/local.js

​ ​function​ retrievePreferences() {
​ ​const​ preferences = JSON.parse(localStorage.getItem(​'preferences'​));
​ ​return​ ​new​ Map(preferences);
​ }

And,	on	occasion,	you	may	just	want	to	get	back	to	a	clean	slate.	In	that	case,
you	can	remove	all	key-values	with	clear().

externalData/local/local.js

​ ​function​ clearPreferences() {
​ localStorage.clear();

​ }

localStorage	is	one	of	those	tools	that’s	simple	but	incredibly	powerful.	It	will
make	you	users	happy	and	it’s	simple	to	use.	The	data	won’t	persist	across
devices,	but	the	benefit	of	avoiding	a	login	far	outweighs	this	downside.

http://media.pragprog.com/titles/es6tips/code/externalData/local/local.js
http://media.pragprog.com/titles/es6tips/code/externalData/local/local.js
http://media.pragprog.com/titles/es6tips/code/externalData/local/local.js

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

In	addition,	you	can	also	temporarily	save	data	with	sessionStorage.[51]	The	usage
is	identical	except	sessionStorage	doesn’t	persist	after	a	tab	is	closed.	This	is	a
great	tool	when	you	have	a	project	that	mixes	server-side	rendering	and	client-
side	functionality.	You	can	save	preferences	between	page	refreshes	while	also
ensuring	that	the	user	will	have	fresh	state	when	they	return.

You	now	have	the	tools	to	make	fully	integrated	single	page	applications.
Between	locally	saved	information	and	API	access,	you	only	need	servers	to
render	the	page	once.	fetch()	and	localStorage	are	incredibly	simple,	but	they	open
the	door	to	limitless	opportunities	to	create	powerful	software	in	the	browser.

In	the	next	chapter,	you’ll	take	a	step	back	and	look	at	how	to	architect	and
organize	your	code	when	building	applications	longer	than	a	few	lines	of	code.

Footnotes

https://www.pluralsight.com/guides/front-end-javascript/introduction-to-asynchronous-javascript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all

https://developer.mozilla.org/en-US/docs/AJAX/Getting_Started

https://fetch.spec.whatwg.org/

https://www.npmjs.com/package/node-fetch

https://github.com/typicode/json-server

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage

Copyright	©	2018,	The	Pragmatic	Bookshelf.

https://www.pluralsight.com/guides/front-end-javascript/introduction-to-asynchronous-javascript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/AJAX/Getting_Started
https://fetch.spec.whatwg.org/
https://www.npmjs.com/package/node-fetch
https://github.com/typicode/json-server
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage

Chapter	10

Gather	Related	Files	with
Component	Architecture

	

In	chess,	there’s	a	distinction	between	tactics	and	strategy.	Tactics	are	a	series	or
combination	of	moves	to	achieve	a	goal.	It’s	short	term	and	fairly	easy	to	define
and	teach.	Strategy,	by	contrast,	is	an	abstract	conception	of	which	side	has	more
influence	in	a	particular	part	of	the	board.	Tactics	solve	problems	at	hand.
Strategy	allocates	resources	in	anticipation	of	future	problems.

Most	coding	books,	including	this	one,	are	about	tactics.	How	do	you	transform
an	array?	How	do	you	write	a	function	that	consumes	asynchronous	data?

Now	you’re	going	to	learn	strategy.	In	the	software	development	world,
organizing	code	in	a	way	that	makes	it	extendable,	reusable,	and	manageable	is
called	architecture.	Instead	of	solving	clear	problems,	you’re	going	to	learn	to
split	and	organize	code	to	make	future	problems—extending	classes,	handling
edge	cases,	finding	bugs—easier	to	solve.	You	got	a	taste	of	code	architecture
when	you	learned	about	dependency	injection	in	Tip	32,	​Write	Functions	for
Testability	​.	That	was	the	first	time	you	saw	how	code	could	be	split	to	keep	one
function	focused	and	flexible.

Most	books	avoid	discussing	architecture	because	it’s	messy.	The	solutions
aren’t	clear,	and	you	can	usually	only	recognize	a	mistake	months	later	when	it’s
too	late	and	too	expensive	to	change	the	structure	of	a	codebase.	In	this	chapter,
you’ll	see	how	to	structure	a	project	from	the	ground	up.	You’ll	learn	how	to
incorporate	modern	JavaScript	tooling	to	pull	the	pieces	together	into	a	final

product.

You’ll	start	off	by	learning	how	you	can	separate	code	into	different	files	using
import	and	export.	Next,	you’ll	learn	how	to	incorporate	third-party	code	with
npm.	Then,	you’ll	learn	how	to	break	an	application	into	well-designed	pieces
using	the	component	architecture	pattern.	This	isn’t	the	only	architecture	pattern,
but	it’s	the	most	popular	one	now,	and	it’s	very	different	from	most	server-side
patterns.

Next,	you’ll	combine	the	pieces	into	a	final,	usable	asset	with	build	tools.	And
you’ll	finish	up	by	learning	how	to	use	CSS	to	handle	animations	that	used	to	be
the	responsibility	of	JavaScript.

This	chapter	will	be	a	little	more	difficult.	There	are	more	moving	pieces,	and
the	examples	are	more	complex,	even	as	they’re	still	extremely	simplified
compared	to	anything	you’ll	see	in	production.	But	if	you	come	away
understanding	that	clean	architecture	is	just	as	important—and	just	as	achievable
—as	clean	code,	I	guarantee	your	projects	will	benefit.

The	first	step	in	creating	a	clean	architecture	is	breaking	code	into	reusable	and
shareable	pieces	with	import	and	export.

Tip	47 Isolate	Functionality	with	Import	and	Export

In	this	tip,	you’ll	learn	how	to	share	code	between	files.

In	the	bad	old	days	of	JavaScript,	you	kept	all	code	in	a	single	file.	Even	worse,
developers	would	put	all	their	JavaScript	code	in	the	DOM	under	a	single	<script>

tag.

Things	got	better	slowly.	First,	someone	created	code	to	minify	and	concatenate
files	so	at	least	you	had	only	one	small	import	statement.	Then	projects	such	as
Require.js	and	CommonJS	gave	developers	a	way	to	share	code	between	files
using	modules.	With	the	module	system,	JavaScript	developers	were	finally	able
to	easily	reuse	code	in	a	project.

Modules	have	been	simplified	and	are	now	simple	import	and	export	statements.
And	with	this	simple	interface,	not	only	can	you	share	code	between	files	in	a
project,	but	you	can	also	use	community	code	with	nearly	identical	syntax.
You’ll	see	more	about	community	code	in	the	next	tip.	For	now,	let’s	look	at	how
to	import	and	export	code.

This	code	won’t	work	out-of-the	box.	It’s	still	a	good	idea	to	combine	and	minify
your	code	to	a	single	file.	Eventually,	browsers	will	be	able	to	dynamically
import	code,	but	for	now,	you	still	need	to	create	single	files,	often	called
bundles	or	packages.	You’ll	see	how	in	Tip	50,	​	Use	Build	Tools	to	Combine
Components	 ​.

You’ve	actually	been	using	exported	code	throughout	the	book.	You	wouldn’t
know	unless	you	looked	at	the	book’s	source	code	because	the	examples	hid	the
code	export.	Importing	and	exporting	is	just	that	simple.	You	export	any	existing
code	with	a	single	statement.

Here’s	some	code	from	Tip	36,	​	Prevent	Context	Confusion	with	Arrow
Functions	​:

functions/context/method.js

http://media.pragprog.com/titles/es6tips/code/functions/context/method.js

​ ​const​ validator = {
​ message: ​'is invalid.'​,
​ setInvalidMessage: field => ​`​${field}​ ​${​this​.message}​`​,
​ };

If	you	want	to	share	the	code,	you	just	need	to	add	a	simple	export	statement.

functions/context/method.js

​ ​const​ validator = {
​ message: ​'is invalid.'​,
​ setInvalidMessage: field => ​`​${field}​ ​${​this​.message}​`​,
​ };

​
​ ​export​ { validator };

How	does	it	work?	At	the	most	basic	level,	all	you	need	to	do	is	export	an	object
containing	the	data	you	want	to	share.	That	means	you	can	export	functions,
variables,	and	classes.	And	you	don’t	need	to	export	anything.	If	you	choose	to
export	some	functions	and	not	others,	you’ve	essentially	created	public	and
private	functions.

In	the	preceding	example,	you	exported	a	single	function.	In	other	situations,
you	may	have	a	function	you	don’t	want	to	share	essentially	making	it	private.	In
that	situation,	export	all	the	functions	you’re	willing	to	share.

Here’s	how	it	would	look	if	you	wanted	to	share	two	functions	while	hiding	one:

architecture/import/single/util.js

​ ​function​ getPower(decimalPlaces) {
​ ​return​ 10 ** decimalPlaces;
​ }

​
​ ​function​ capitalize(word) {
​ ​return​ word[0].toUpperCase() + word.slice(1);
​ }

​
​ ​function​ roundToDecimalPlace(number, decimalPlaces = 2) {
​ ​const​ round = getPower(decimalPlaces);
​ ​return​ Math.round(number * round) / round;
​ }

http://media.pragprog.com/titles/es6tips/code/functions/context/method.js
http://media.pragprog.com/titles/es6tips/code/architecture/import/single/util.js

​
​ ​export​ { capitalize, roundToDecimalPlace };

Now	that	you’ve	exported	the	functions,	you’ll	probably	want	to	use	them.	To
use	a	function	in	another	file,	use	the	import	keyword	and	the	functions	you’d
like	to	import	to	curly	braces.	After	you	declare	what	you’re	importing,	give	the
path	relative	to	the	file	you’re	in.

You	can	also	import	library	code	and	you’ll	see	how	in	the	next	tip.	For	now,
you’re	only	importing	code	from	other	files	you	own.	Try	importing	some	utility
functions	into	a	new	file.	It	would	look	like	this:

architecture/import/single/bill.js

​ ​import​ { capitalize, roundToDecimalPlace } ​from​ ​'./util'​;
​
​ ​function​ giveTotal(name, total) {
​ ​return​ ​`​${capitalize(name)}​, your total is: ​${roundToDecimalPlace(total)}​`​;
​ }

​
​ giveTotal(​'sara'​, 10.3333333);
​ ​// "Sara, your total is: 10.33"​
​
​ ​export​ { giveTotal };

You	don’t	have	to	import	everything.	If	you	want	only	a	single	item,	that’s	fine.

architecture/import/single/name.js

​ ​import​ { capitalize } ​from​ ​'./util'​;
​
​ ​function​ greet(name) {
​ ​return​ ​`Hello, ​${capitalize(name)}​!`​;
​ }

​
​ greet(​'ashley'​);
​ ​// Hello, Ashley!​
​
​ ​export​ { greet };

And	you	don’t	have	to	limit	yourself	to	functions.	You	can	also	export	variables
and	classes.

http://media.pragprog.com/titles/es6tips/code/architecture/import/single/bill.js
http://media.pragprog.com/titles/es6tips/code/architecture/import/single/name.js

architecture/import/single/math.js

​ ​const​ PI = 3.14;
​ ​const​ E = 2.71828;
​
​ ​export​ { E, PI };

This	probably	looks	familiar.	Exporting	and	importing	use	nearly	the	same
syntax	as	destructuring.	In	fact,	if	you	want	you	keep	all	your	imports	as
properties	on	an	object,	you	simply	import	everything	to	a	variable	name.

The	syntax	is	a	little	different	from	destructuring.	Declare	that	you’re	importing
all	functions	using	the	asterisks	and	then	give	the	variable	name.	You	can	now
call	the	functions	as	if	they	were	on	an	object.

architecture/import/each/name.js

​ ​import​ * ​as​ utils ​from​ ​'./util'​;
​
​ ​function​ greet(name) {
​ ​return​ ​`Hello, ​${utils.capitalize(name)}​!`​;
​ }

​
​ greet(​'ashley'​);
​ ​// Hello, Ashley!​
​
​ ​export​ { greet };

As	with	destructuring,	you	can	also	rename	functions	or	data	you	import.	The
syntax	is	slightly	different.	Instead	of	a	colon,	like	you’d	use	in	destructuring,
you	use	the	keyword	as	to	assign	the	data	to	a	new	variable.

Exports	are	already	simple,	but	there	are	a	few	shortcuts	that	make	things	even
easier.

Instead	of	declaring	an	object	and	adding	each	piece	of	data	at	the	end,	you	can
add	the	export	keyword	before	each	function.	This	makes	your	code	even	easier
because	you	don’t	need	an	object	at	the	bottom	of	the	file.

architecture/import/each/util.js

http://media.pragprog.com/titles/es6tips/code/architecture/import/single/math.js
http://media.pragprog.com/titles/es6tips/code/architecture/import/each/name.js
http://media.pragprog.com/titles/es6tips/code/architecture/import/each/util.js

​ ​function​ getPower(decimalPlaces) {
​ ​return​ 10 ** decimalPlaces;
​ }

​ ​export​ ​function​ capitalize(word) {
​ ​return​ word[0].toUpperCase() + word.slice(1);
​ }

​ ​export​ ​function​ roundToDecimalPlace(number, decimalPlaces = 2) {
​ ​const​ round = getPower(decimalPlaces);
​ ​return​ Math.round(number * round) / round;
​ }

Exporting	functions	one	at	a	time	doesn’t	change	how	you	import.	You	can	use
any	of	the	techniques	mentioned.

As	you	start	to	separate	out	your	code,	you’ll	often	have	files	that	contain	a
single	entry	point.	Or	you	may	have	a	function	that’s	more	important.	In	those
situations,	you	can	declare	a	default	export.	This	will	make	the	import	process	a
little	shorter.

Consider	a	file	that	converts	an	address	object	to	a	string.	The	main	goal	of	the
utility	is	to	convert	an	object.	There’s	a	clear	default	export.	But	you	may	still
want	to	share	some	helper	functions.

Add	the	keyword	default	after	the	export	keyword	on	normalize()	to	make	it	the
main	export.	Add	export	to	any	remaining	functions.

architecture/import/default/address.js

​ ​import​ { capitalize } ​from​ ​'../single/util'​;
​
​ ​export​ ​function​ parseRegion(address) {
​ ​const​ region = address.state || address.providence || ​''​;
​ ​return​ region.toUpperCase();
​ }

​ ​export​ ​function​ parseStreet({ street }) {
​ ​return​ street.split(​' '​)
​ .map(part => capitalize(part))

​ .join(​' '​);
​ }

​ ​export​ ​default​ ​function​ normalize(address) {
​ ​const​ street = parseStreet(address);

http://media.pragprog.com/titles/es6tips/code/architecture/import/default/address.js

​ ​const​ city = address.city;
​ ​const​ region = parseRegion(address);
​ ​return​ ​`​${street}​ ​${city}​, ​${region}​`​;
​ }

Now	when	you	want	to	import	normalize(),	you	use	the	same	syntax	but	without
the	curly	braces.	If	you	don’t	use	curly	braces,	you’ll	get	the	default	export	and
nothing	else.	You	don’t	need	to	use	the	exact	function	name—you	can	import	the
default	to	any	variable	name	you	want—but	it’s	a	good	idea	to	use	the	same
name	as	the	default	to	keep	things	readable.

architecture/import/default/mail.js

​ ​import​ normalize ​from​ ​'./address'​;
​
​ ​function​ getAddress(user) {
​ ​return​ normalize(user.address);
​ }

​
​ ​export​ ​default​ getAddress;

If	you	want	to	import	the	default	function	along	with	some	other	functions,	you
can	mix	and	match	import	statements.	Separate	the	default	and	the	curly	brace
import	using	a	comma.

architecture/import/default/list.js

​ ​import​ normalize, { parseRegion } ​from​ ​'./address'​;
​
​ ​function​ getAddress(user) {
​ ​return​ normalize(user.address);
​ }

​
​ ​export​ ​function​ getAddressByRegion(users) {
​ ​return​ users.reduce((regions, user) => {
​ ​const​ { address } = user;
​ ​const​ region = parseRegion(address);
​ ​const​ addresses = regions[region] || [];
​ regions[region] = [...addresses, normalize(address)];

​ ​return​ regions;
​ }, {});

​ }

http://media.pragprog.com/titles/es6tips/code/architecture/import/default/mail.js
http://media.pragprog.com/titles/es6tips/code/architecture/import/default/list.js

​
​ ​const​ bars = [
​ {

​ name: ​'Saint Vitus'​,
​ address: {

​ street: ​'1120 manhattan ave'​,
​ city: ​'Brooklyn'​,
​ state: ​'NY'​,
​ },

​ },

​];

​ getAddressByRegion(bars);

​ ​// {​
​ ​// NY: ["1120 Manhattan Ave Brooklyn, NY"]​
​ ​// }​

Default	imports	are	particularly	useful	on	classes	because	there	should	be	only
one	class	per	file,	so	there’s	no	reason	to	export	other	code.

architecture/import/class/address.js

​ ​import​ { capitalize } ​from​ ​'../single/util'​;
​
​ ​export​ ​default​ ​class​ Address {
​ ​constructor​(address) {
​ ​this​.address = address;
​ }

​
​ normalize() {

​ ​const​ street = ​this​.parseStreet(​this​.address);
​ ​const​ city = ​this​.address.city;
​ ​const​ region = ​this​.parseRegion(​this​.address);
​ ​return​ ​`​${street}​ ​${city}​, ​${region}​`​;
​ }

​
​ parseStreet({ street }) {

​ ​return​ street.split(​' '​)
​ .map(part => capitalize(part))

​ .join(​' '​);
​ }

​
​ parseRegion(address) {

​ ​const​ region = address.state || address.providence || ​''​;
​ ​return​ region.toUpperCase();

http://media.pragprog.com/titles/es6tips/code/architecture/import/class/address.js

​ }

​ }

As	you	can	see,	imports	and	exports	are	so	intuitive	there’s	not	really	much	to
say.	But	there	is	one	slight	problem—because	you	can	split	code	easily,	your
projects	will	start	to	grow.	Don’t	worry,	though.	As	your	project	grows,	you	can
split	code	into	different	files.	This	will	let	you	organize	code	more	efficiently
and	logically.	In	Tip	49,	​	Build	Applications	with	Component	Architecture	​,
you’ll	learn	one	way	to	organize	code.	But	before	you	get	to	that	point,	you’ll
almost	certainly	want	to	use	code	outside	your	own	codebase.	Fortunately,	that’s
easier	than	ever.

In	the	next	tip,	you’ll	learn	how	to	use	community	code	with	npm.

Tip	48 Leverage	Community	Knowledge	with	npm

In	this	tip,	you’ll	learn	how	to	import	external	code	with	npm.

In	the	previous	tip,	you	learned	how	to	use	code	from	different	files.	In	this	tip,
you’ll	learn	how	to	use	community	code	created	by	developers	all	over	the
world.

Not	many	years	ago,	if	you	wanted	to	use	an	open	source	library,	you	were
forced	to	either	copy-paste	code	locally,	download	a	library	to	your	project,	or
include	an	external	dependency	using	a	<script>	tag	in	your	markup.

You’d	get	your	code—unless	an	external	source	went	down—but	it	was	hard	to
keep	dependencies	up	to	date,	particularly	if	you	were	storing	them	locally.	Not
only	was	it	hard	to	maintain,	but	you	also	had	to	write	your	custom	code
assuming	the	library	would	be	there.	This	made	code	really	hard	to	read	and	test
because	you	never	explicitly	included	anything.

Those	days	are	gone.	You	can	now	download	code	directly	to	your	project,
control	versions,	and	import	code	into	individual	files	using	familiar
conventions.

You	manage	all	this	with	a	tool	called	the	node	package	manager,	or	npm.	There
are	a	few	alternatives,	such	as	Facebook’s	yarn	project,	but	they	work	in	mostly
the	same	way,	so	don’t	worry	too	much	about	the	differences.

npm	is	an	important	project,	and	you’ll	mostly	use	it	for	importing	code,	but	it
can	do	a	lot	more.	With	npm,	you	can	set	your	project’s	metadata	and
configuration	information,	run	command-line	scripts,	and	even	publish	your
project	for	others	to	use.

Before	you	begin,	you’ll	need	to	have	Node.js	installed.	But	after	that,	you’re
ready	to	go.	When	you	install	Node.js,	you	also	install	npm.

After	Node.js	and	npm	are	installed,	you	need	to	initialize	a	project.	Open	up	a

terminal,	go	to	the	root	of	your	project,	and	type	npm init.	This	will	start	up	a
configuration	tool	that	will	create	a	package.json	file	for	you.

This	package.json	file	will	contain	metadata	information	for	your	project,	such	as
name,	description,	license,	and	so	on.	It	will	eventually	contain	all	the	external
code	dependencies.	It’s	important	to	note	that	npm init	only	creates	the
package.json	file.	It	doesn’t	set	any	other	hidden	files	or	directories.	You	don’t
need	to	worry	about	cluttering	your	file	system.

If	you	aren’t	sure	what	you	want,	don’t	worry.	You	can	change	all	of	that
information	later.	Go	with	the	defaults	at	first	if	you	have	any	doubts.	When	you
finish,	you’ll	have	a	file	that	looks	like	this:

architecture/npm/defaults/package.json

​ {

​ ​"name"​: ​"test"​,
​ ​"version"​: ​"1.0.0"​,
​ ​"description"​: ​""​,
​ ​"main"​: ​"index.js"​,
​ ​"scripts"​: {
​ ​"test"​: ​"echo ​​\"​​Error: no test specified​​\"​​ && exit 1"​
​ },

​ ​"author"​: ​""​,
​ ​"license"​: ​"ISC"​
​ }

Pretty	simple.	It’s	just	an	object	containing	most	of	the	information	you	just
entered.	The	only	surprise	is	the	scripts	field.	This	is	where	you’d	add	command-
line	scripts.	You’ll	see	some	more	of	this	in	a	bit.

Don’t	let	the	slimness	of	the	file	fool	you.	This	is	the	most	important	entry	point
for	a	large	JavaScript	application.	It’s	also	where	you	store	information	about
external	dependencies.

Let’s	say	you’re	building	a	collection	with	maps	and	you	wanted	to	convert	an
object	to	a	map.	You	could	write	some	code	to	convert	the	object	to	a	map,	but
you	really	just	want	a	quick	solution.	With	some	research,	you’d	likely	come

http://media.pragprog.com/titles/es6tips/code/architecture/npm/defaults/package.json

across	Lodash—a	suite	of	tools	for	converting	data.[52]	How	do	you	get	the	code
into	your	project?

In	addition	to	structuring	your	project,	npm	is	also	a	resource	for	sharing	code.
Better	still,	npm	tracks	data	such	as	number	of	downloads,	number	of	open	bugs,
versions,	and	so	on.

If	you	open	the	npm	page	for	the	Lodash	package,[53]	you’ll	see	that	it’s	been
downloaded	about	50	million	times	per	month.	In	essence,	50	million	projects
are	giving	Lodash	a	stamp	of	approval.

The	data	collected	by	npm	is	a	tacit	endorsement	by	the	greater	JavaScript
community.	You	don’t	need	to	avoid	code	from	rarely	used	projects,	but	you	may
want	to	investigate	the	code	before	bringing	it	into	your	codebase.	Fortunately,
there’s	always	a	link	to	the	code	base,	so	you	can	check	it	out	yourself	if	you
aren’t	sure.

Evaluating	Open	Source	Code
There’s	a	lot	of	open	source	code	in	the	world.	But	not	all	code	is	equal.	npm
doesn’t	approve	code	before	it’s	published	(although	npm	will	remove	malicious
code)	so	you’re	responsible	for	evaluating	code	you	want	to	include	in	your
project.

The	best	place	to	start	is	the	download	count.	If	there’s	a	large	number	of
monthly	downloads,	it’s	probably	safe	code.	Trust	the	community	to	do	some	of
the	vetting	for	you.

Next,	look	at	the	issue	count.	If	there	are	lots	of	issues,	that’s	a	sign	the	project
is	poorly	maintained.	Keep	bugs	in	context,	though.	A	large	project	with	lots	of
downloads	will	probably	have	more	bugs	due	to	sheer	volume.

After	that,	dive	into	the	open	source	code	directly.	npm	will	always	have	a	link	to
the	codebase.	The	code	is	usually	on	github,	but	you’ll	also	see	gitlab	and
bitbucket.	Head	over	there	and	look	through	the	project.	The	two	most	important
things	you’ll	see	are	the	latest	commit	date	and	the	pull	requests.

If	the	code	doesn’t	have	a	commit	in	the	last	six	months,	you	should	probably
move	on.	It	may	be	abandoned.

A	pull	request	is	when	someone	submits	a	code	update.	These	must	be	approved
by	the	maintainer	before	it’s	included.	If	there	are	stale	merge	requests,	it’s

another	clue	that	the	code	isn’t	well	managed.	Nothing	is	more	frustrating	than
submitting	a	merge	request	and	watching	it	linger	for	months	or	even	years.

Finally,	when	in	doubt,	look	at	the	actual	code.	Sometimes	it’s	hard	to	find	your
way	around,	but	it’s	a	good	exercise,	and	you	can	usually	tell	at	a	glance	if	the
code	is	well-structured.	If	things	are	neat	and	organized,	and	follow	standard
conventions,	then	you’re	probably	safe.	If	the	code	is	cluttered	with	syntax
errors,	you	should	run	away	screaming.	If	you	wouldn’t	accept	the	code	in	your
own	code	base,	don’t	include	the	project.	After	all,	when	you	import	the	code,
you	are	accepting	it	into	your	code	base.

Trust	your	intuition.	It’s	better	to	look	for	other	projects	or	pull	out	parts	of	an
open	source	library	with	good	old	copy-paste	than	to	include	a	project	that	may
be	bloated	or	buggy.

Once	you’re	satisfied	that	code	is	worth	using,	you	can	install	it	in	your	project
by	running	npm install --save lodash.	It’s	not	strictly	necessary	to	use	the	--save	flag,
but	it’s	a	good	habit	because	there	are	two	types	of	code	you’ll	install.	More	on
that	in	a	bit.

The	npm install	command	does	a	few	things.	If	there	isn’t	a	node_modules

directory,	the	command	will	create	one	and	copy	down	the	package.	Next,	it
updates	your	package.json	to	include	the	version	number	of	the	code	you’re
importing.	Finally,	it	will	create	a	package-lock.json	file	that	includes	detailed
information	about	the	version	of	the	installed	code	along	with	any	other	libraries
that	the	code	requires.

When	you	install	one	package,	you	may	actually	install	several	packages.
They’ll	all	be	in	your	package-lock.json	or	your	node_modules/	directory.	The
original	code	you	installed,	lodash,	will	be	the	only	code	to	appear	in	your
package.json	file.	This	is	so	other	developers	can	see	what	top-level	projects	you
need	without	getting	stuck	in	the	details	of	dependencies.

Here’s	your	updated	package.json	file.	Note	that	it	now	has	a	dependencies	field.

architecture/npm/save/package.json

​ {

http://media.pragprog.com/titles/es6tips/code/architecture/npm/save/package.json

​ ​"name"​: ​"test"​,
​ ​"version"​: ​"1.0.0"​,
​ ​"description"​: ​""​,
​ ​"main"​: ​"index.js"​,
​ ​"scripts"​: {
​ ​"test"​: ​"echo ​​\"​​Error: no test specified​​\"​​ && exit 1"​
​ },

​ ​"author"​: ​""​,
​ ​"license"​: ​"ISC"​,
​ ​"dependencies"​: {
​ ​"lodash"​: ​"^4.17.4"​
​ }

​ }

Now	that	you	have	your	code,	it’s	time	to	use	it.	Importing	the	code	is	simple.
You	use	the	same	import	command	from	the	previous	tip,	but	because	you’re
installing	a	library,	you	don’t	need	to	give	a	path.

Here’s	how	you’d	import	lodash.	You	can	either	import	an	individual	function,
such	as	fromPairs(),	or	you	can	import	the	default	object.	The	default	lodash
import	actually	contains	fromPairs(),	but	some	libraries	split	things	out.

architecture/npm/utils/merge.js

​ ​import​ lodash, { fromPairs } ​from​ ​'lodash'​;
​
​ ​export​ ​function​ mapToObject(map) {
​ ​return​ fromPairs([...map]);
​ }

​
​ ​export​ ​function​ objectToMap(object) {
​ ​const​ pairs = lodash.toPairs(object);
​ ​return​ ​new​ Map(pairs);
​ }

Looks	pretty	familiar,	huh?	The	nice	part	is	that	no	matter	where	you	import	the
code,	you	use	the	same	syntax.	And	when	you’re	reading	the	code,	it’s	easy	to
see	what	functions	are	from	outside	the	code	base.	Anything	that	doesn’t	use	a
relative	import	must	be	external	code.

If	npm	only	tracked	dependencies,	it	would	be	a	great	project,	but	it	does	more.

http://media.pragprog.com/titles/es6tips/code/architecture/npm/utils/merge.js

You’ll	often	need	code	that	does	work	on	the	codebase	but	isn’t	part	of	the
production	build.

For	example,	you’ll	want	a	test	runner,	but	you	don’t	need	the	test	runner	to	be	in
your	production	code.	npm	will	handle	the	development	dependencies	and	give
you	clean	interface	for	running	them.

Say	you	wanted	to	add	prettier[54]	to	your	project.	Prettier	is	a	tool	for	formatting
your	code	to	match	style	guides.	It’s	a	tool	for	development,	not	a	production
dependency.

Because	you	don’t	need	it	in	production,	you’d	install	it	with	the	npm install --save-

dev prettier	flag.	Notice	that	you’re	using	the	--save-dev	flag.	This	will	also	update
your	package.json	file,	but	it	will	put	the	dependency	under	a	different	key.

architecture/npm/saveDev/package.json

​ {

​ ​"name"​: ​"test"​,
​ ​"version"​: ​"1.0.0"​,
​ ​"description"​: ​""​,
​ ​"main"​: ​"index.js"​,
​ ​"scripts"​: {
​ ​"test"​: ​"echo ​​\"​​Error: no test specified​​\"​​ && exit 1"​
​ },

​ ​"author"​: ​""​,
​ ​"license"​: ​"ISC"​,
​ ​"dependencies"​: {
​ ​"lodash"​: ​"^4.17.4"​
​ },

​ ​"devDependencies"​: {
​ ​"prettier"​: ​"^1.8.2"​
​ }

​ }

Of	course,	now	you	probably	want	to	use	it.	Prettier	is	installed	in	your
node_modules	directory,	which	means	you	can’t	access	it	on	the	command	line
directly.	Let’s	say	you	wanted	to	make	sure	all	tabs	have	a	width	of	four	spaces.
The	documentation	says	you	can	convert	code	by	running	this	command:	prettier

http://media.pragprog.com/titles/es6tips/code/architecture/npm/saveDev/package.json

--tab-width=4 --write ./code/*.js.

The	command	won’t	work	if	you	installed	the	code	locally.	If	you	installed	the
package	globally—npm install -g prettier—then	you’d	be	able	to	run	the	command,
but	then	the	package	wouldn’t	live	specifically	in	your	project.	You’d	have	to
somehow	communicate	to	other	developers	the	project	has	a	global	dependency.

You	can	solve	the	problem	using	npm	scripts.	With	an	npm	script,	you	run	the
exact	same	command,	but	the	script	looks	in	the	node_modules	directory.	To	run
the	command,	add	it	to	the	script	object	of	your	package.json	file.	Change	the
scripts	object	to	include	a	key	of	clean	with	a	value	of	prettier --tab-width=4 --

write./code/*.js.

Now,	when	you’re	in	the	same	directory	as	your	package.json	file,	you	can	run
npm run clean	and	npm	will	execute	the	command	using	the	locally	installed
prettier	package.

architecture/npm/script/package.json

​ {

​ ​"name"​: ​"test"​,
​ ​"version"​: ​"1.0.0"​,
​ ​"description"​: ​""​,
​ ​"main"​: ​"index.js"​,
​ ​"scripts"​: {
​ ​"clean"​: ​"prettier --tab-width=4 --write ./code/*.js"​
​ },

​ ​"author"​: ​""​,
​ ​"license"​: ​"ISC"​,
​ ​"dependencies"​: {
​ ​"lodash"​: ​"^4.17.4"​
​ },

​ ​"devDependencies"​: {
​ ​"prettier"​: ​"^1.8.2"​
​ }

​ }

Try	it	out.	Clone	the	code	for	this	book;	then	navigate	to	architecture/npm/script,
and	run	npm install	and	then	npm run clean,	and	prettier	will	update	the	code	to

http://media.pragprog.com/titles/es6tips/code/architecture/npm/script/package.json

have	a	tab-width	of	four	spaces.

Not	only	is	the	dependency	scoped	to	your	local	project,	but	other	developers
can	see	your	build	process,	dependencies,	and	package	information	in	a	single
file.

It’s	hard	to	overstate	how	valuable	npm	is	for	JavaScript	development.	If	you
ever	start	looking	through	a	new	project,	you	should	begin	by	skimming	the
package.json	file.

Now	that	you	have	the	tools	to	combine	multiple	files	and	code	from	open
source	projects,	it’s	time	to	think	about	how	to	organize	your	code.

In	the	next	tip,	you’ll	learn	how	to	organize	project	assets	in	a	single	directory
with	component	architecture.

Tip	49 Build	Applications	with	Component	Architecture

In	this	tip,	you’ll	learn	how	to	gather	related	HTML,	JavaScript,	and	CSS
together	using	component	architecture.

Organizing	files	can	be	a	challenge.	Front-end	code—HTML,	CSS,	JavaScript—
can	be	particularly	challenging	because	the	code	is	made	of	different	languages
and	file	types.

Do	you	arrange	code	by	file	type?	What	about	when	CSS	is	tied	to	a	single
HTML	file?	Do	you	keep	them	in	different	directories	but	with	similar	file
names?

For	a	long	time,	developers	would	keep	files	separated	by	type.	The	root
directory	would	contain	a	css	directory,	a	js	directory,	an	img	directory,	and	so	on.

Organizing	files	like	this	showed	good	intentions.	Everyone	wanted	to	keep
different	areas	of	concern	separate.	The	HTML	markup	(what	a	site	contains)	is
different	from	the	CSS	(how	a	site	looks),	which	is	different	from	the	JavaScript
(how	a	site	responds).	It	seemed	like	they	should	be	in	separate	directories.

The	problem	was	that	the	pieces	aren’t	really	separate	concerns.	Except	for	a	few
global	styles,	CSS	is	built	to	work	with	specific	markup.	What	happens	when
that	markup	is	removed?	If	you	have	disciplined	developers,	they’d	remove	the
relevant	CSS.	But	most	of	the	time,	it	stayed.	It	was	never	used—it	just	took	up
space.

As	developer	tools	improved,	a	new	pattern	emerged.	The	new	pattern	is
component	architecture.	A	component	is	the	combination	of	all	relevant	code
into	a	single	directory.	You	then	build	a	web	page	or	application	by	adding
pieces	one	at	a	time—a	button	is	in	a	sidebar,	which	is	in	a	page—until	you	have
your	working	application.

Component	architecture	isn’t	without	problems.	The	biggest	problem	with
component	architecture	is	that	it	depends	on	build	tools	and,	to	a	lesser	extent,

frameworks.	In	this	tip,	you’ll	be	working	with	React	code.	You’re	going	to	use
scaffolding	developed	by	create-react-app.[55]	This	means	you	don’t	have	to
worry	about	setting	up	the	build	system.	You’ll	explore	that	a	little	in	the	next
tip.

It’s	important	to	understand,	however,	that	component	architecture	is	not	React
specific.	You	can	apply	the	idea	in	a	variety	of	frameworks.	Cody	Lindley	wrote
a	great	article	on	the	subject.[56]	Still,	a	framework	saves	some	of	the	trouble	of
laying	a	foundation.

To	see	component	architecture	at	work,	build	a	basic	component:	a	copyright
statement.	A	copyright	statement	contains	the	current	year,	a	declaration	of
copyright,	and	some	styling.	With	component	architecture,	you	combine
everything	into	a	simple	package.	Here’s	an	example:

architecture/component/simplifying-js-component/src/components/Copyright/Copyright.js

​ ​import​ React ​from​ ​'react'​;
​ ​import​ ​'./Copyright.css'​;
​
​ ​export​ ​default​ ​function​ CopyrightStatement() {
​ ​const​ year = ​new​ Date().getFullYear();
​ ​return​ (
​ <div className=​"copyright"​>
​ Copyright {year}

​ <​/div​​>​
​);

​ }

To	start	off,	notice	that	the	markup	is	in	a	return	statement,	and	the	CSS	class	is
called	className.	Don’t	worry	about	that.	The	specialized	markup	is	called	JSX
and	it’s	part	of	the	React	framework.	You	can	pretend	that	the	HTML	is	a
separate	thing.	It	effectively	is	separate.	For	purposes	of	this	tip,	it’s	just	markup
that	happens	to	live	inside	a	JavaScript	function.

Next,	notice	the	path	to	the	code	at	the	top	of	the	sample.	Most	of	the	time,	you
can	ignore	it,	but	in	this	case,	it’s	relevant.	simplifying-js-component	is	the	root	of
the	project.	The	code	lives	inside	the	src/components	directory.	There’s	also	a

http://media.pragprog.com/titles/es6tips/code/architecture/component/simplifying-js-component/src/components/Copyright/Copyright.js

public	directory	that	will	eventually	contain	the	compiled	code.	A	browser	can’t
handle	components,	so	everything	will	eventually	combine	to	simpler
components.

The	components	directory	contains	every	component	you	work	with.	Each
component	will	then	have	its	own	separate	directory.	In	this	case,	there’s	a
directory	called	Copyright	that	contains	Copyright.css,	Copyright.js,	and
Copyright.spec.js.	The	capitalized	names	are	also	a	React	convention.

The	Copyright	directory	contains	everything	the	copyright	component	will	need.
If	you	wanted	to	share	the	component,	you	could	put	it	in	a	separate	repo	or	just
copy	and	paste	it	in	another	project.	If	you	decide	you	don’t	want	the	copyright
anymore,	you	can	delete	the	whole	directory.	You	wouldn’t	need	to	worry	that
dead	CSS	lives	somewhere	else.	Everything	is	together.

Speaking	of	CSS,	notice	how	this	file	imports	the	CSS	directly.	Because	you
aren’t	importing	an	object	from	the	CSS,	you	merely	include	the	whole	file.	The
build	tools	will	know	what	to	do	with	it.	The	CSS	file	for	this	example	is	very
short.	All	it	contains	is	the	font-size,	margin,	and	float.

architecture/component/simplifying-js-component/src/components/Copyright/Copyright.css

​ .copyright {

​ font-size: 10px;

​ margin: 1em 1em 1em 0;

​ float: left;

​ }

In	the	JavaScript	file,	you	get	the	current	year	and	add	it	to	the	markup.	Notice
how	simple	this	is.	Everything	you	need	to	know	about	that	copyright	statement
is	in	a	single	place.	You	don’t	need	to	guess	if	the	year	is	calculated	or	hard
coded.	It’s	right	there	with	the	markup.	You	don’t	need	to	search	for	the	CSS	if
you	need	to	change	a	margin.	It’s	in	the	same	directory.

How	about	a	slightly	more	complicated	component?	Think	about	a	button	that
has	an	icon.	The	button	will	need	styling	and	markup,	but	it	will	also	need	the
image	asset	and	a	click	action.

http://media.pragprog.com/titles/es6tips/code/architecture/component/simplifying-js-component/src/components/Copyright/Copyright.css

This	time,	you	also	want	to	make	the	component	reusable.	That	means	you
should	hard	code	as	few	options	as	you	can.	Don’t	explicitly	say	what	happens
on	click.	Instead,	inject	the	click	action	into	a	component.	Passing	in	actions	or
assets	to	a	component	is	another	form	of	dependency	injection	that	you	explored
in	Tip	32,	​Write	Functions	for	Testability	​.	It	keeps	things	flexible	and	reusable.

architecture/component/simplifying-js-
component/src/components/IdeaButton/IdeaButton.js

​ ​import​ React ​from​ ​'react'​;
​ ​import​ ​'./IdeaButton.css'​;
​ ​import​ idea ​from​ ​'./idea.svg'​;
​
​ ​export​ ​default​ ​function​ IdeaButton({ handleClick, message }) {
​ ​return​ (
​ <button

​ className=​"idea-button"​
​ onClick={handleClick}

​ >

​ <img

​ className=​"idea-button__icon"​
​ src={idea}

​ alt=​"idea icon"​
​ />

​ { message }

​ <​/button​​>​
​);

​ }

In	React,	you	can	access	the	injected	dependencies	in	the	arguments	of	a
function.	And	you	can	pull	them	apart	using	destructuring.	The	message	will
change	depending	on	what’s	injected.	The	curly	braces	are	a	templating
language,	and	they	surround	variable	information.	In	other	words,	the	button	will
contain	the	value	of	the	message	variable.

Notice	also	that	you’re	importing	an	image.	Unlike	when	you	import	the	CSS
without	ever	using	it,	in	this	case,	you’re	importing	the	image	to	a	variable.	The
variable	contains	the	path	of	the	image,	so	set	the	src	to	the	variable	using	the
curly	braces.

http://media.pragprog.com/titles/es6tips/code/architecture/component/simplifying-js-component/src/components/IdeaButton/IdeaButton.js

Now	that	you	have	the	pieces,	you	can	start	building	a	page.	In	this	case,	the
page	is	just	another	component!	This	page	will	contain	the	idea	button	and	the
copyright	notice	in	a	footer.	You’re	still	in	React	territory,	so	you	inject	the
message	as	a	special	HTML	attribute.	Other	frameworks	use	different
conventions	to	inject	data.	But	they	all	allow	you	to	pass	in	some	information—
this	is	what	makes	components	so	powerful.

architecture/component/simplifying-js-component/src/App.js

​ ​import​ React ​from​ ​'react'​;
​
​ ​import​ ​'./App.css'​;
​ ​import​ IdeaButton ​from​ ​'./components/IdeaButton/IdeaButton'​;
​ ​import​ Copyright ​from​ ​'./components/Copyright/Copyright'​;
​
​ ​function​ logIdea() {
​ console.log(​'Someone had an idea!'​);
​ }

​ ​export​ ​default​ ​function​ App() {
​ ​return​ (
​ <div className=​"main"​>
​ <div className=​"app"​>
​ <IdeaButton

​ message=​"I have an idea!"​
​ handleClick={logIdea}

​ ​/​​>​
​ <​/div​​>​
​ <footer>

​ <Copyright />

​ <IdeaButton

​ message=​"Footer idea!"​
​ handleClick={logIdea}

​ ​/​​>​
​ <​/footer​​>​
​ <​/div​​>​
​);

​ }

Because	App.js	is	the	main	component,	it	lives	at	the	root	of	the	source	code.
Otherwise,	it’s	the	same.	It	imports	code,	it	contains	all	the	pieces,	and	it
combines	them	together.	In	this	case,	you’re	reusing	the	button	component	twice.
Each	one	will	have	a	different	message.	As	you	can	see	in	the	following	figure,

http://media.pragprog.com/titles/es6tips/code/architecture/component/simplifying-js-component/src/App.js

the	result	isn’t	stunning,	but	it	does	show	each	piece.

Download	the	source	code	and	try	it	out.	The	code	contains	a	README.md,	which
will	get	you	up	and	running	with	only	two	commands.	After	that,	try	changing
some	CSS.	Try	adding	a	new	image.	You’ll	see	how	simple	it	is	to	work	with
components	when	everything	is	in	one	logical	place.

If	you	inspected	the	page,	you’d	notice	something	interesting.	You	combined	the
separate	CSS	files	into	a	single	file	and	moved	that	file	to	a	separate	css

directory.	The	same	thing	happened	to	images.	In	this	case,	the	build	tools	still
separate	out	the	pieces	into	different	directories.	That’s	great!	There’s	nothing
wrong	with	having	pieces	separate	at	the	user	level.	The	goal	is	to	make
development	easier.

Intuitively,	component	architecture	probably	makes	sense.	Keep	like	things
together.	The	only	downside	is	that	wiring	everything	together	isn’t	easy.	The
only	reason	component	architecture	works	is	because	you	can	use	great	tools	that
intelligently	combine	code.

In	the	next	tip,	you’ll	learn	how	to	compile	front-end	code	with	build	tools.

Tip	50 Use	Build	Tools	to	Combine	Components

In	this	tip,	you’ll	learn	how	to	compile	JavaScript	code	and	assets	with	build
tools.

In	the	previous	tip,	you	saw	the	advantages	of	the	component	architecture.	You
also	learned	about	the	one	big	problem	with	component	architecture:	It	won’t
work	natively	in	browsers.

Also	in	the	previous	tip,	you	used	the	tools	provided	by	create-react-app[57]	to	get
your	project	compiled	and	running.	That’s	great.	You	should	always	take
advantage	of	predesigned	build	tools.	Every	project	has	one.	Sometimes	there
are	official	projects—angular-cli	and	EmberCLI	are	examples—and	if	there	are
no	official	projects,	search	code	repos	such	as	github	for	Starter	Packs.
Eventually,	however,	you’ll	need	to	customize	your	build.

In	this	tip,	you’re	going	to	make	a	basic	build	process.	Build	tools	can	be
exhausting,	and	it	can	be	difficult	to	keep	up	with	the	latest	trends	and	tools.
Don’t	get	discouraged.	A	build	tool	is	merely	a	way	for	you	to	process	the	code
one	piece	at	a	time.

To	begin,	take	a	simplified	version	of	your	components	from	the	previous	tip.
Start	by	removing	everything	except	for	some	HTML,	in	the	form	of	React	JSX,
and	some	JavaScript.	It’ll	be	easier	to	make	build	tools	when	you	have	fewer
assets.	Here’s	a	basic	container	component:

architecture/build/initial/src/App.js

​ ​import​ React ​from​ ​'react'​;
​
​ ​import​ Copyright ​from​ ​'./components/Copyright/Copyright'​;
​
​ ​export​ ​default​ ​function​ App() {
​ ​return​ (
​ <div className=​"main"​>
​ <footer>

​ <Copyright />

http://media.pragprog.com/titles/es6tips/code/architecture/build/initial/src/App.js

​ <​/footer​​>​
​ <​/div​​>​
​);

​ }

Here’s	a	stripped	down	version	of	your	copyright	component:

architecture/build/initial/src/components/Copyright/Copyright.js

​ ​import​ React ​from​ ​'react'​;
​
​ ​export​ ​default​ ​function​ CopyrightStatement() {
​ ​const​ year = ​new​ Date().getFullYear();
​ ​return​ (
​ <div className=​"copyright"​>
​ Copyright {year}

​ <​/div​​>​
​);

​ }

Even	though	these	files	are	simple,	you	couldn’t	run	them	in	a	browser.	And
even	if	you	could,	you	certainly	wouldn’t	be	able	to	run	them	in	older	browsers.
You	need	a	tool	to	convert	ES6	syntax—import	and	export—	and	JSX	into
compatible	code.

Fortunately,	there’s	an	amazing	tool	called	Babel[58]	that	can	convert	bleeding-
edge	JavaScript	to	browser-friendly	code.	Babel	is	the	single-most	important	tool
you	have	for	working	with	modern	JavaScript.	Not	only	does	it	convert	your
ES6+	JavaScript,	but	you	can	even	configure	Babel	to	use	syntax	that’s	still	in
committee.

To	get	started,	you	need	to	install	the	Babel	command-line	interface	(cli)	along
with	the	preset-env	to	convert	ES6+	and	babel-present-react	to	convert	react	code.

The	installation	command	should	look	familiar.	This	time,	you’re	installing	three
packages	with	a	single	command.

npm install --save-dev babel-cli babel-preset-env babel-preset-react

The	next	thing	you	need	to	do	is	set	up	a	.babelrc	file	to	hold	your	configuration

http://media.pragprog.com/titles/es6tips/code/architecture/build/initial/src/components/Copyright/Copyright.js

information.	This	file	tells	Babel	what	kind	of	code	you	have	and	how	Babel	will
need	to	convert	it.	In	this	case,	you	have	ES6	code—signified	with	env—and
react	code.

architecture/build/initial/.babelrc

​ { "presets": ["env", "react"] }

Now	add	a	script	to	your	package.json	file	and	you’ll	be	ready	to	compile.	Notice
that	you’re	outputting	the	compiled	information	to	a	single	file,	bundle.js,	in	the
build	directory.	Here’s	your	final	package.json.

architecture/build/initial/package.json

​ {

​ ​"name"​: ​"initial"​,
​ ​"version"​: ​"1.0.0"​,
​ ​"description"​: ​""​,
​ ​"main"​: ​"index.js"​,
​ ​"scripts"​: {
​ ​"build"​: ​"babel src/index.js -o build/bundle.js"​
​ },

​ ​"keywords"​: [],
​ ​"author"​: ​""​,
​ ​"license"​: ​"ISC"​,
​ ​"devDependencies"​: {
​ ​"babel-cli"​: ​"^6.26.0"​,
​ ​"babel-preset-env"​: ​"^1.6.1"​,
​ ​"babel-preset-react"​: ​"^6.24.1"​
​ },

​ ​"dependencies"​: {
​ ​"react"​: ​"^16.1.1"​,
​ ​"react-dom"​: ​"^16.1.1"​
​ }

​ }

Finally,	update	your	index.html	to	use	the	compiled	code:

architecture/build/initial/index.html

​ ​<!DOCTYPE html>​
​ <html lang=​"en"​>

http://media.pragprog.com/titles/es6tips/code/architecture/build/initial/.babelrc
http://media.pragprog.com/titles/es6tips/code/architecture/build/initial/package.json
http://media.pragprog.com/titles/es6tips/code/architecture/build/initial/index.html

​ <head>

​ <title>Sample</title>

​ </head>

​ <body>

​ <div id=​"root"​>
​ </div>

​ <script src=​"./build/bundle.js"​></script>
​ </body>

​
​ </html>

If	you	try	to	open	that	file	in	a	browser,	you’ll	encounter	a	problem.	The	console
will	display	an	error:	Uncaught ReferenceError: require isn’t defined.

Babel	converts	the	code,	but	it	doesn’t	include	a	module	loader,	which	handles
the	compiled	imports	and	exports.	You	have	a	few	options	for	module	loaders.
Currently,	the	most	popular	module	loaders	are	webpack[59]	and	rollup.js.[60]	In
this	example,	you’ll	use	webpack.

Webpack	is	a	project	that	can	handle	everything	from	combining	your
JavaScript,	to	processing	your	CSS	or	SASS,	to	image	conversion.	Webpack	can
handle	so	many	file	types	because	you	declare	different	actions—referred	to	as
loaders	in	webpack—based	on	file	extension.

To	get	webpack	working,	you’ll	need	to	install	it.	You’ll	also	need	to	install	a
loader	for	Babel.	The	webpack	documentation	encourages	you	to	think	of
loaders	as	a	task	in	another	build	tool.[61]	Because	compiling	the	code	with	Babel
is	just	a	step	in	getting	usable	JavaScript,	you’ll	need	the	babel-loader.	You	can
install	them	both	in	the	same	command:	npm install --save-dev babel-loader webpack.

You’ll	also	need	to	create	a	webpack.config.js	file.	Inside	the	file,	declare	an	entry
point	and	an	output	path.	After	that,	you	need	to	tell	webpack	what	to	do	with
the	code	it	encounters.	This	is	where	the	loaders	come	in.

At	this	point,	you’re	probably	getting	overwhelmed.	So	remember:	Don’t	think
of	the	whole	system—just	think	about	each	step.	You	first	needed	to	convert	ES6
and	React	code,	so	you	installed	Babel.	Next,	you	wanted	to	combine	everything
together,	so	you	installed	webpack.	Now,	you	need	to	declare	what	you	want

webpack	to	do	with	JavaScript	specifically.	Next,	you’ll	make	similar
declarations	for	style	and	assets.

Webpack	uses	regular	expressions	to	decide	which	loader	to	use	on	each	file.
Because	you’re	working	with	JavaScript,	you	only	want	files	that	match	.js.
When	webpack	encounters	a	file	with	a	.js	extension—such	as	Copyright.js—you
need	to	tell	it	which	loader	to	use.	In	this	case,	it	needs	to	run	the	babel-loader.

architecture/build/webpack/webpack.config.js

​ ​const​ path = require(​'path'​);
​
​ module.exports = {

​ entry: ​'./src/index.js'​,
​ module: {

​ loaders: [

​ {

​ test: ​/​​\.​​js​​?​​/​,
​ use: ​'babel-loader'​,
​ },

​],

​ },

​ output: {

​ filename: ​'build/bundle.js'​,
​ path: path.resolve(__dirname),

​ },

​ };

The	last	step	is	to	update	your	package.json	script	to	call	webpack.	Webpack	will
look	for	your	config	file,	so	you	don’t	need	any	other	flags	or	arguments.	All	you
need	to	do	is	change

​ ​"scripts"​: {
​ ​"build"​: ​"babel src/index.js -o build/bundle.js"​
​ }

to:

​ ​"scripts"​: {
​ ​"build"​: ​"webpack"​
​ }

http://media.pragprog.com/titles/es6tips/code/architecture/build/webpack/webpack.config.js

If	you	run	this,	you’ll	finally	be	able	to	see	your	code	in	the	browser.	Try	it	out.

Now	that	you	have	the	JavaScript	working,	it’s	time	for	things	to	get	interesting.
Remember,	the	goal	is	to	have	components	that	import	all	their	dependencies.
You	need	webpack	to	compile	your	JavaScript,	but	also	to	compile	your	CSS	and
load	your	images.

Start	with	CSS.	Go	back	to	your	Copyright.js	file	and	import	your	CSS.	It	should
look	exactly	like	it	did	in	the	previous	tip.

architecture/build/css/src/components/Copyright/Copyright.js

​ ​import​ React ​from​ ​'react'​;
​ ​import​ ​'./Copyright.css'​;
​
​ ​export​ ​default​ ​function​ CopyrightStatement() {
​ ​const​ year = ​new​ Date().getFullYear();
​ ​return​ (
​ <div className=​"copyright"​>
​ Copyright {year}

​ <​/div​​>​
​);

​ }

Now	you’ll	need	to	install	a	CSS	loader	and	update	your	webpack.config.js	file.
There	are	lots	of	tools	for	handling	CSS,	but	in	this	case,	keep	it	simple.	Install
and	add	two	loaders—a	CSS	loader	to	interpret	the	CSS	file	and	a	style	loader	to
inject	the	styles	into	the	<head>	element	on	your	page.

npm install --save-dev css-loader style-loader.

Now	that	you’ve	installed	your	loaders,	update	your	webpack	config	by	adding	a
test	for	files	that	end	in	css.	This	time,	you	won’t	use	a	single	loader.	You’ll	use
two	loaders—css-loader	and	style-loader—so	you’ll	need	an	array	of	strings
instead	of	a	single	string.	Add	the	style-loader	first	and	then	the	css-loader.

architecture/build/css/webpack.config.js

​ module: {

http://media.pragprog.com/titles/es6tips/code/architecture/build/css/src/components/Copyright/Copyright.js
http://media.pragprog.com/titles/es6tips/code/architecture/build/css/webpack.config.js

​ loaders: [

​ {

​ test: ​/​​\.​​css$/​,
​ use: [

​ ​'style-loader'​,
​ ​'css-loader'​,
​],

​ },

​ {

​ test: ​/​​\.​​js​​?​​/​,
​ use: ​'babel-loader'​,
​ },

​],

​ },

When	you	run	the	build	script	and	open	index.html,	your	components	will	have
the	correct	styles.

Impressive,	huh?	This	is	why	developers	fell	in	love	with	webpack.	You	can
keep	all	your	assets	batched	together	and	you	can	call	different	actions,	or	series
of	actions,	on	each	file	type.

The	final	step	is	to	handle	your	image.	This	time	you	aren’t	compiling	an	image.
Instead,	you’re	going	to	use	webpack	to	move	the	file	and	rename	it	to	a	unique
name.	Webpack	will	automatically	update	the	src	link	in	your	markup.

As	a	reminder,	here’s	your	component	with	an	imported	image:

architecture/build/img/src/components/IdeaButton/IdeaButton.js

​ ​import​ React ​from​ ​'react'​;
​ ​import​ ​'./IdeaButton.css'​;
​ ​import​ idea ​from​ ​'./idea.svg'​;
​
​ ​export​ ​default​ ​function​ IdeaButton({ handleClick, message }) {
​ ​return​ (
​ <button

​ className=​"idea-button"​
​ onClick={handleClick}

​ >

​ <img

​ className=​"idea-button__icon"​

http://media.pragprog.com/titles/es6tips/code/architecture/build/img/src/components/IdeaButton/IdeaButton.js

​ src={idea}

​ alt=​"idea icon"​
​ />

​ { message }

​ <​/button​​>​
​);

​ }

Because	you	aren’t	doing	any	specific	image	manipulation,	use	file-loader	to
move	and	update	your	src	path.	In	your	webpack	config,	you’ll	test	to	see	if	the
file	is	an	SVG.

This	time,	you	aren’t	just	declaring	a	loader;	you’re	also	passing	options	to	the
loader.	This	means	you’ll	pass	an	array	containing	a	single	object.	The	object
will	include	your	loader	and	configuration	options.	The	only	option	you	need	to
pass	is	the	directory	for	your	images.	This	directory	will	be	where	the	browser
looks	for	images,	so	it’s	best	to	reuse	your	build	directory.

Set	the	outputPath	to	the	build	directory:

architecture/build/img/webpack.config.js

​ module: {

​ loaders: [

​ {

​ test: ​/​​\.​​svg​​?​​/​,
​ use: [

​ {

​ loader: ​'file-loader'​,
​ options: {

​ outputPath: ​'build/'​,
​ },

​ },

​],

​ },

​ {

​ test: ​/​​\.​​css$/​,
​ use: [

​ ​'style-loader'​,
​ ​'css-loader'​,
​],

​ },

http://media.pragprog.com/titles/es6tips/code/architecture/build/img/webpack.config.js

​ {

​ test: ​/​​\.​​js​​?​​/​,
​ use: ​'babel-loader'​,
​ },

​],

​ },

Run	the	build	script.	Open	up	index.html	and	you	have	your	components.

See	that	wasn’t	so	bad!	Of	course,	if	this	were	an	enterprise	application,	you’d
want	a	server.	You’ll	probably	have	more	images	than	just	SVGs.	You	might
want	the	CSS	to	go	to	a	style	sheet	instead	of	<style>	tags.	Build	tools	can	handle
all	that	for	you.

The	key	is	to	take	it	slow	and	add	one	piece	at	a	time.	It’s	much	harder	to	add	a
configuration	to	a	large	project	than	it	is	to	add	it	piece	by	piece.	Webpack	and
rollup.js	can	be	complex	projects.	Webpack	has	put	a	lot	of	work	into	updating
its	documentation,[62]	and	it’s	worth	reading	as	you	explore	more	on	your	own.

At	this	point,	you	have	all	the	tools	you	need	to	write	modern	JavaScript
applications.	The	final	tip	is	a	little	different.	CSS	and	HTML	are	also	growing
and	evolving—actions	that	used	to	require	JavaScript	can	now	be	handled	by
CSS.	In	this	case,	you	should	happily	abandon	JavaScript	and	use	other	tools.

In	the	next	tip,	you’ll	see	how	to	animate	page	elements	with	CSS.

Tip	51 Leverage	CSS	for	Animations

In	this	tip,	you’ll	learn	how	to	use	CSS	for	animations.

The	last	tip	isn’t	even	a	JavaScript	tip.	Instead,	it’s	a	tip	about	when	to	stop	using
JavaScript.

The	key	to	writing	readable	code	is	to	use	the	best	tool	for	the	job.	JavaScript
used	to	be	the	best	tool	for	animations.	In	fact,	there	were	entire	libraries
dedicated	to	using	JavaScript	to	create	drop-down	menus	or	to	animate	slide-in
elements.

It’s	much	easier	now.	CSS	is	replacing	JavaScript	for	simple	animations.	That’s
great.	Now	you	don’t	have	to	worry	about	using	the	right	timeouts	or	calculating
odd-size	constraints.	CSS	will	take	care	of	all	that	for	you.	You’ll	still	need
JavaScript	for	more	complicated	animations,	but	for	most	common	tasks,	CSS
works	great.

Start	by	creating	a	simple	page	that	has	a	menu	on	the	right.	The	markup	is	very
simple.	You	need	some	text,	a	button	to	toggle	the	side	menu,	and	the	menu
itself.

architecture/css/initial/index-truncated.html

​ ​<!doctype html>​
​ <html lang=​"en"​>
​ <head>

​ <link href=​"main.css"​ rel=​"stylesheet"​>
​ </head>

​ <body>

​ <div class=​"main"​>
​ <h1>Moby Dick</h1>

​ <button id=​"show"​>See More</button>
​ <section class=​"menu"​ id=​"sidebar"​>
​ <h2>Other Works</h2>

​

​ Bartleby, the Scrivener

​ Billy Budd

​

http://media.pragprog.com/titles/es6tips/code/architecture/css/initial/index-truncated.html

​ </section>

​ <section class=​"content"​>
​ <p>

​ Call me Ishmael.

​ ​<!-- More content -->​
​ </p>

​ </section>

​ </div>

​ </body>

​ </html>

Start	with	simple	CSS	to	place	the	menu	on	top	of	the	text.

architecture/css/initial/main.css

​ .main {

​ width: 1000px;

​ margin: 0 auto;

​ overflow: hidden;

​ position: relative;

​ }

​
​ button {

​ border: black solid 1px;

​ background: #ffffff;

​ }

​
​ .menu {

​ width: 300px;

​ padding: 0 2em;

​ float: right;

​ border: black solid 1px;

​ position: absolute;

​ top: 0;

​ right: 0;

​ height: calc(100% - 2px);

​ background: #ffffff;

​ }

As	you	see	in	the	figure,	when	the	menu	is	fully	opened,	it	will	cover	a	portion
of	the	words.	You’ll	change	that	in	a	moment.

http://media.pragprog.com/titles/es6tips/code/architecture/css/initial/main.css

Now	that	you	have	the	page	set	up,	you’re	going	to	add	some	CSS	animations	to
slide	the	menu	on	and	off	the	page.

The	first	step	is	hiding	the	side	menu.	Add	the	following	property	to	your	.menu

class.

transform: translateX(calc(300px + 4em + 2px));

This	property	and	value—transform: translateX—will	move	the	page	outside	the
container	div,	making	it	appear	invisible.	The	calculation	is	the	width	of	the
menu,	plus	the	padding,	plus	the	border.

With	the	menu	hidden,	it’s	time	to	add	a	transition.	A	CSS	transition	is	an
animation	of	a	changing	property.	In	other	words,	an	animation	is	just	a	visual
transition	between	two	properties	of	the	same	name.

That’s	fine,	but	how	do	you	change	a	property?	Turns	out,	you’ll	need	a	little
JavaScript	after	all.	Add	a	click	event	listener	to	the	button.	The	callback
function	for	the	button	will	toggle	the	.display	class	on	the	menu.	The	first	time

you	click	the	button,	it	will	add	the	class.	The	second	time	you	click	the	button,
it	will	remove	the	class.

architecture/css/middle/open.js

​ ​const​ sidebar = document.getElementById(​'sidebar'​);
​ document.getElementById(​'show'​)
​ .addEventListener(​'click'​, () => {
​ sidebar.classList.toggle(​'display'​);
​ });

Next,	you	need	to	update	your	stylesheet	to	include	styles	for	a	.menu.display

architecture/css/middle/main.css

​ .menu {

​ ​/* Other styles from before */​
​ transform: translateX(calc(300px ​+​ 4em ​+​ 2px));
​ }

​ .menu.display {

​ transform: translateX(0);

​ }

When	you	add	the	class,	you	move	from	a	transform	of	calc(300px + 4em + 2px)	to	a
transform	of	0.	Because	the	browser	knows	that	property	is	changing,	it	can
trigger	an	animation.	All	that’s	left	is	to	tell	the	element	how	to	respond	to	the
changing	property.

A	CSS	transition	is	a	set	of	instructions	telling	the	page	what	to	do	when	moving
from	an	initial	property	value	to	the	final	property	value.	Check	out	the	Mozilla
Developer	Network	documentation	for	different	options.[63]

First,	declare	the	property	that	will	need	a	transition	with	transition-property.	In
this	case,	you	only	want	to	animate	the	transform,	so	set	the	value	to	transform.
Next,	set	the	length	of	the	durations	with	transition-duration.

The	transition	time	will	seem	very	quick	or	very	slow	depending	on	how	radical
the	transition	is.	Going	from	0px	to	10px	in	one	second	will	seem	much	slower
than	going	from	0	to	100px.	In	this	case,	set	it	for	600ms.

http://media.pragprog.com/titles/es6tips/code/architecture/css/middle/open.js
http://media.pragprog.com/titles/es6tips/code/architecture/css/middle/main.css

Finally,	you	need	to	say	how	the	transition	should	act	with	the	transition-timing-

function	property.	This	one	is	a	little	more	tricky.	It	can	make	the	transition	move
faster	at	the	beginning,	faster	at	the	ending,	or	the	same	speed	throughout.[64]	Set
the	value	to	linear	to	keep	a	nice	smooth	slide	throughout.

Here’s	the	updated	CSS	for	.menu.display:

architecture/css/animate/main.css

​ .menu.display {

​ ​/* Other styles */​
​ transform: translateX(0);

​ transition-property: transform;

​ transition-duration: 600ms;

​ transition-timing-function: linear;

​ }

When	you	click	the	button,	you	should	see	the	menu	slide	into	place.	But	when
you	click	it	again,	the	menu	will	just	instantly	disappear.	The	problem	is	that	you
only	declared	the	transition	for	when	you	add	the	.display	class.	There’s	no
transition	for	when	you	remove	the	.display.

No	problem—all	you	need	to	do	is	add	a	transition	to	the	base	.menu	styles.	This
time,	though,	you	can	shorten	things	up.	You	can	add	all	three	properties
—transition-property,	transition-duration,	and	transition-timing-function—to	a	single
property	called	transition.	You	also	have	the	option	to	apply	the	transition	to	any
changing	property	by	setting	the	transition	to	all.

Once	you	update	the	stylesheet,	you’ll	have	a	menu	that	slides	in	on	button	click
and	slides	out	on	button	click	with	very	minimal	JavaScript.

architecture/css/animate/main.css

​ .menu {

​ ​/* Other styles */​
​ transform: translateX(calc(300px ​+​ 4em ​+​ 2px));
​ transition: all 600ms linear;

​ }

http://media.pragprog.com/titles/es6tips/code/architecture/css/animate/main.css
http://media.pragprog.com/titles/es6tips/code/architecture/css/animate/main.css

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Honestly,	you	only	need	the	transition	on	the	.menu	class,	unless	you	want	the
slide	in	and	slide	out	to	be	different.	Transitions	are	like	any	other	property.
They’ll	bubble	up	to	all	elements	unless	you	override	them	with	a	more	specific
selector.

This	simple	slide-in	used	to	require	a	lot	of	JavaScript	code.	Now	it	only	takes	a
single	line	of	CSS	and	a	simple	class	toggle.	Part	of	what	makes	web
development	such	a	delight	is	the	tool	set	is	steadily	improving.	HTML	is	more
semantic.	Styles	are	more	flexible.	JavaScript	is	simpler	and	easier	to	read.

JavaScript	is	a	great	language,	and	I	hope	you	learned	to	love	it.	It’s	simple,
expressive,	and	very	elegant.	And	the	best	part	is	it’s	getting	better	all	the	time.
You	have	everything	you	need	to	start	writing	JavaScript	that	you	can	be	proud
of.	Now	all	you	need	to	do	is	start	building.	Have	fun.

Footnotes

https://lodash.com/

https://www.npmjs.com/package/lodash

https://prettier.io

https://github.com/facebookincubator/create-react-app

https://developer.telerik.com/featured/front-end-application-frameworks-component-architectures/

https://github.com/facebookincubator/create-react-app

https://babeljs.io/

https://webpack.js.org

https://rollupjs.org/

https://webpack.js.org/concepts/#loaders

https://webpack.js.org/concepts/

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Transitions/Using_CSS_transitions

https://developer.mozilla.org/en-US/docs/Web/CSS/transition-timing-function

https://lodash.com/
https://www.npmjs.com/package/lodash
https://prettier.io
https://github.com/facebookincubator/create-react-app
https://developer.telerik.com/featured/front-end-application-frameworks-component-architectures/
https://github.com/facebookincubator/create-react-app
https://babeljs.io/
https://webpack.js.org
https://rollupjs.org/
https://webpack.js.org/concepts/#loaders
https://webpack.js.org/concepts/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Transitions/Using_CSS_transitions
https://developer.mozilla.org/en-US/docs/Web/CSS/transition-timing-function

Copyright	©	2018,	The	Pragmatic	Bookshelf.

[Fog13]

[Sim14]

[Sub16]

Thank	you!
How	did	you	enjoy	this	book?	Please	let	us	know.	Take	a	moment	and	email	us	at
support@pragprog.com	with	your	feedback.	Tell	us	your	story	and	you	could	win
free	ebooks.	Please	use	the	subject	line	“Book	Feedback.”

Ready	for	your	next	great	Pragmatic	Bookshelf	book?	Come	on	over	to
https://pragprog.com	and	use	the	coupon	code	BUYANOTHER2018	to	save	30%	on
your	next	ebook.

Void	where	prohibited,	restricted,	or	otherwise	unwelcome.	Do	not	use	ebooks	near
water.	If	rash	persists,	see	a	doctor.	Doesn’t	apply	to	The	Pragmatic	Programmer
ebook	because	it’s	older	than	the	Pragmatic	Bookshelf	itself.	Side	effects	may
include	increased	knowledge	and	skill,	increased	marketability,	and	deep	satisfaction.
Increase	dosage	regularly.

And	thank	you	for	your	continued	support,

Andy	Hunt,	Publisher

Bibliography
	

Michael	Fogus.	Functional	JavaScript.	O’Reilly	&	Associates,
Inc.,	Sebastopol,	CA,	2013.
Kyle	Simpson.	You	Don’t	Know	JS:	this	Object	Prototypes.
O’Reilly	&	Associates,	Inc.,	Sebastopol,	CA,	2014.
Venkat	Subramaniam.	Test-Driving	JavaScript	Applications.	The
Pragmatic	Bookshelf,	Raleigh,	NC,	2016.

Copyright	©	2018,	The	Pragmatic	Bookshelf.

https://pragprog.com

Secure	Your	Node.js	Web	Application
Cyber-criminals	have	your	web	applications	in	their
crosshairs.	They	search	for	and	exploit	common	security
mistakes	in	your	web	application	to	steal	user	data.
Learn	how	you	can	secure	your	Node.js	applications,
database	and	web	server	to	avoid	these	security	holes.
Discover	the	primary	attack	vectors	against	web
applications,	and	implement	security	best	practices	and

effective	countermeasures.	Coding	securely	will	make	you	a	stronger	web
developer	and	analyst,	and	you’ll	protect	your	users.

Karl	Düüna

(230	pages)	ISBN:	9781680500851	$36

The	Way	of	the	Web	Tester
This	book	is	for	everyone	who	needs	to	test	the	web.	As
a	tester,	you’ll	automate	your	tests.	As	a	developer,
you’ll	build	more	robust	solutions.	And	as	a	team,	you’ll
gain	a	vocabulary	and	a	means	to	coordinate	how	to
write	and	organize	automated	tests	for	the	web.	Follow
the	testing	pyramid	and	level	up	your	skills	in	user
interface	testing,	integration	testing,	and	unit	testing.

Your	new	skills	will	free	you	up	to	do	other,	more	important	things	while
letting	the	computer	do	the	one	thing	it’s	really	good	at:	quickly	running
thousands	of	repetitive	tasks.

You	May	Be	Interested	In…
Select	a	cover	for	more	information

http://pragmaticprogrammer.com/titles/kdnodesec
http://pragmaticprogrammer.com/titles/jrtest

Jonathan	Rasmusson

(256	pages)	ISBN:	9781680501834	$29

A	Common-Sense	Guide	to	Data	Structures	and	Algorithms
If	you	last	saw	algorithms	in	a	university	course	or	at	a
job	interview,	you’re	missing	out	on	what	they	can	do
for	your	code.	Learn	different	sorting	and	searching
techniques,	and	when	to	use	each.	Find	out	how	to	use
recursion	effectively.	Discover	structures	for	specialized
applications,	such	as	trees	and	graphs.	Use	Big	O
notation	to	decide	which	algorithms	are	best	for	your

production	environment.	Beginners	will	learn	how	to	use	these	techniques
from	the	start,	and	experienced	developers	will	rediscover	approaches	they
may	have	forgotten.

Jay	Wengrow

(218	pages)	ISBN:	9781680502442	$45.95

Design	It!
Don’t	engineer	by	coincidence—design	it	like	you	mean
it!	Grounded	by	fundamentals	and	filled	with	practical
design	methods,	this	is	the	perfect	introduction	to
software	architecture	for	programmers	who	are	ready	to
grow	their	design	skills.	Ask	the	right	stakeholders	the
right	questions,	explore	design	options,	share	your
design	decisions,	and	facilitate	collaborative	workshops

that	are	fast,	effective,	and	fun.	Become	a	better	programmer,	leader,	and
designer.	Use	your	new	skills	to	lead	your	team	in	implementing	software
with	the	right	capabilities—and	develop	awesome	software!

http://pragmaticprogrammer.com/titles/jwdsal
http://pragmaticprogrammer.com/titles/mkdsa

Michael	Keeling

(358	pages)	ISBN:	9781680502091	$41.95

tmux	2
Your	mouse	is	slowing	you	down.	The	time	you	spend
context	switching	between	your	editor	and	your	consoles
eats	away	at	your	productivity.	Take	control	of	your
environment	with	tmux,	a	terminal	multiplexer	that	you
can	tailor	to	your	workflow.	With	this	updated	second
edition	for	tmux	2.3,	you’ll	customize,	script,	and
leverage	tmux’s	unique	abilities	to	craft	a	productive

terminal	environment	that	lets	you	keep	your	fingers	on	your	keyboard’s	home
row.

Brian	P.	Hogan

(102	pages)	ISBN:	9781680502213	$21.95

Modern	Vim
Turn	Vim	into	a	full-blown	development	environment
using	Vim	8’s	new	features	and	this	sequel	to	the
beloved	bestseller	Practical	Vim.	Integrate	your	editor
with	tools	for	building,	testing,	linting,	indexing,	and
searching	your	codebase.	Discover	the	future	of	Vim
with	Neovim:	a	fork	of	Vim	that	includes	a	built-in
terminal	emulator	that	will	transform	your	workflow.

Whether	you	choose	to	switch	to	Neovim	or	stick	with	Vim	8,	you’ll	be	a
better	developer.

Drew	Neil

http://pragmaticprogrammer.com/titles/bhtmux2
http://pragmaticprogrammer.com/titles/modvim

(190	pages)	ISBN:	9781680502626	$39.95

Software	Design	X-Rays
Are	you	working	on	a	codebase	where	cost	overruns,
death	marches,	and	heroic	fights	with	legacy	code
monsters	are	the	norm?	Battle	these	adversaries	with
novel	ways	to	identify	and	prioritize	technical	debt,
based	on	behavioral	data	from	how	developers	work
with	code.	And	that’s	just	for	starters.	Because	good
code	involves	social	design,	as	well	as	technical	design,

you	can	find	surprising	dependencies	between	people	and	code	to	resolve
coordination	bottlenecks	among	teams.	Best	of	all,	the	techniques	build	on
behavioral	data	that	you	already	have:	your	version-control	system.	Join	the
fight	for	better	code!

Adam	Tornhill

(274	pages)	ISBN:	9781680502725	$45.95

Release	It!	Second	Edition
A	single	dramatic	software	failure	can	cost	a	company
millions	of	dollars—but	can	be	avoided	with	simple
changes	to	design	and	architecture.	This	new	edition	of
the	best-selling	industry	standard	shows	you	how	to
create	systems	that	run	longer,	with	fewer	failures,	and
recover	better	when	bad	things	happen.	New	coverage
includes	DevOps,	microservices,	and	cloud-native

architecture.	Stability	antipatterns	have	grown	to	include	systemic	problems	in
large-scale	systems.	This	is	a	must-have	pragmatic	guide	to	engineering	for
production	systems.

http://pragmaticprogrammer.com/titles/atevol
http://pragmaticprogrammer.com/titles/mnee2

Michael	Nygard

(376	pages)	ISBN:	9781680502398	$47.95

Data	Science	Essentials	in	Python
Go	from	messy,	unstructured	artifacts	stored	in	SQL	and
NoSQL	databases	to	a	neat,	well-organized	dataset	with
this	quick	reference	for	the	busy	data	scientist.
Understand	text	mining,	machine	learning,	and	network
analysis;	process	numeric	data	with	the	NumPy	and
Pandas	modules;	describe	and	analyze	data	using
statistical	and	network-theoretical	methods;	and	see

actual	examples	of	data	analysis	at	work.	This	one-stop	solution	covers	the
essential	data	science	you	need	in	Python.

Dmitry	Zinoviev

(224	pages)	ISBN:	9781680501841	$29

Practical	Programming,	Third	Edition
Classroom-tested	by	tens	of	thousands	of	students,	this
new	edition	of	the	best-selling	intro	to	programming
book	is	for	anyone	who	wants	to	understand	computer
science.	Learn	about	design,	algorithms,	testing,	and
debugging.	Discover	the	fundamentals	of	programming
with	Python	3.6—a	language	that’s	used	in	millions	of
devices.	Write	programs	to	solve	real-world	problems,

and	come	away	with	everything	you	need	to	produce	quality	code.	This
edition	has	been	updated	to	use	the	new	language	features	in	Python	3.6.

Paul	Gries,	Jennifer	Campbell,	Jason	Montojo

http://pragmaticprogrammer.com/titles/dzpyds
http://pragmaticprogrammer.com/titles/gwpy3

(410	pages)	ISBN:	9781680502688	$49.95

Functional	Web	Development	with	Elixir,	OTP,	and	Phoenix
Elixir	and	Phoenix	are	generating	tremendous
excitement	as	an	unbeatable	platform	for	building
modern	web	applications.	For	decades	OTP	has	helped
developers	create	incredibly	robust,	scalable	applications
with	unparalleled	uptime.	Make	the	most	of	them	as	you
build	a	stateful	web	app	with	Elixir,	OTP,	and	Phoenix.
Model	domain	entities	without	an	ORM	or	a	database.

Manage	server	state	and	keep	your	code	clean	with	OTP	Behaviours.	Layer	on
a	Phoenix	web	interface	without	coupling	it	to	the	business	logic.	Open	doors
to	powerful	new	techniques	that	will	get	you	thinking	about	web	development
in	fundamentally	new	ways.

Lance	Halvorsen

(218	pages)	ISBN:	9781680502435	$45.95

Programming	Elm
Elm	brings	the	safety	and	stability	of	functional
programing	to	front-end	development,	making	it	one	of
the	most	popular	new	languages.	Elm’s	functional	nature
and	static	typing	means	that	run-time	errors	are	nearly
impossible,	and	it	compiles	to	JavaScript	for	easy	web
deployment.	This	book	helps	you	take	advantage	of	this
new	language	in	your	web	site	development.	Learn	how

the	Elm	Architecture	will	help	you	create	fast	applications.	Discover	how	to
integrate	Elm	with	JavaScript	so	you	can	update	legacy	applications.	See	how
Elm	tooling	makes	deployment	quicker	and	easier.

http://pragmaticprogrammer.com/titles/lhelph
http://pragmaticprogrammer.com/titles/jfelm

Jeremy	Fairbank

(250	pages)	ISBN:	9781680502855	$40.95

	Introduction
	How To Use This Book
	Whom This Book Is For
	Online Resources
	Acknowledgments

	1. Signal Intention with Variable Assignment
	Tip 1. Signal Unchanging Values with const
	Tip 2. Reduce Scope Conflicts with let and const
	Tip 3. Isolate Information with Block Scoped Variables
	Tip 4. Convert Variables to Readable Strings with Template Literals

	2. Manage Data Collections with Arrays
	Tip 5. Create Flexible Collections with Arrays
	Tip 6. Check Existence in an Array with Includes()
	Tip 7. Mold Arrays with the Spread Operator
	Tip 8. Avoid Push Mutations with the Spread Operator
	Tip 9. Avoid Sort Confusion with the Spread Operator

	3. Maximize Code Clarity with Special Collections
	Tip 10. Use Objects for Static Key-Value Lookups
	Tip 11. Create Objects Without Mutations Using Object.assign()
	Tip 12. Update Information with Object Spread
	Tip 13. Update Key-Value Data Clearly with Maps
	Tip 14. Iterate Over Key-Value Data with Map and the Spread Operator
	Tip 15. Create Maps Without Side Effects
	Tip 16. Keep Unique Values with Set

	4. Write Clear Conditionals
	Tip 17. Shorten Conditionals with Falsy Values
	Tip 18. Check Data Quickly with the Ternary Operator
	Tip 19. Maximize Efficiency with Short Circuiting

	5. Simplify Loops
	Tip 20. Simplify Looping with Arrow Functions
	Tip 21. Write Shorter Loops with Array Methods
	Tip 22. Create Arrays of a Similar Size with map()
	Tip 23. Pull Out Subsets of Data with filter() and find()
	Tip 24. Apply Consistent Actions with forEach()
	Tip 25. Combine Methods with Chaining
	Tip 26. Transform Array Data with reduce()
	Tip 27. Reduce Loop Clutter with for...in and for...each

	6. Clean Up Parameters and Return Statements
	Tip 28. Create Default Parameters
	Tip 29. Access Object Properties with Destructuring
	Tip 30. Simplify Key-Value Assignment
	Tip 31. Pass a Variable Number of Arguments with the Rest Operator

	7. Build Flexible Functions
	Tip 32. Write Functions for Testability
	Tip 33. Reduce Complexity with Arrow Functions
	Tip 34. Maintain Single Responsibility Parameters with Partially Applied Functions
	Tip 35. Combine Currying and Array Methods for Partial Application
	Tip 36. Prevent Context Confusion with Arrow Functions

	8. Keep Interfaces Clear with Classes
	Tip 37. Build Readable Classes
	Tip 38. Share Methods with Inheritance
	Tip 39. Extend Existing Prototypes with Class
	Tip 40. Simplify Interfaces with get and set
	Tip 41. Create Iterable Properties with Generators
	Tip 42. Resolve Context Problems with Bind()

	9. Access External Data
	Tip 43. Retrieve Data Asynchronously with Promises
	Tip 44. Create Clean Functions with Async/Await
	Tip 45. Make Simple AJAX Calls with Fetch
	Tip 46. Maintain State Over Time with LocalStorage

	10. Gather Related Files with Component Architecture
	Tip 47. Isolate Functionality with Import and Export
	Tip 48. Leverage Community Knowledge with npm
	Tip 49. Build Applications with Component Architecture
	Tip 50. Use Build Tools to Combine Components
	Tip 51. Leverage CSS for Animations

	Bibliography

