

The	Beginner’s	Guide	to	Android
Game	Development

James	S.	Cho

Glasnevin	Publishing,	2nd	Floor,	13	Upper	Baggot	Street,	Dublin	4,	Ireland

www.glasnevinpublishing.com

This	edition	published	in	2014	by	Glasnevin	Publishing

©	James	S.	Cho	2014

All	 rights	 reserved.	No	part	of	 this	book	may	be	 reproduced	or	utilised	 in	any
form	or	by	any	means	electronic	or	mechanical	including	photography,	filming,
recording,	 video	 recording,	 photocopying,	 or	 by	 information	 storage	 and
retrieval	system	and	shall	not,	by	any	way	of	trade	or	otherwise,	be	lent,	resold
or	otherwise	circulated	in	any	form	of	binding	or	cover	other	than	that	in	which
it	is	published	without	prior	permission	in	writing	from	the	publisher.	The	moral
rights	of	the	author	have	been	asserted.

All	trademarks	that	appear	in	the	book	are	trademarks	of	their	respective	owners.
Rather	 than	 put	 a	 trademark	 symbol	 after	 every	 occurrence	 of	 a	 trademarked
name,	 we	 use	 names	 in	 an	 editorial	 fashion	 only,	 and	 to	 the	 benefit	 of	 the
trademark	 owner,	 with	 no	 intention	 of	 infringement	 of	 the	 trademark.	Where
such	designations	appear	in	this	book,	they	have	been	printed	with	initial	caps.

The	author	and	publisher	of	 this	book	have	used	 their	best	efforts	 in	preparing
this	 book.	 These	 efforts	 include	 the	 development,	 research	 and	 testing	 of	 the
theories	and	computational	models	given	in	the	book.	The	author	and	publisher
make	 no	warranty	 of	 any	 kind,	 expressed	 or	 implied,	with	 regard	 to	 any	 text,
models,	 program	 code	 or	 algorithms	 contained	 in	 this	 book.	 The	 author	 and
publisher	shall	not	be	liable	in	any	event	for	incidental	or	consequential	damages
in	connection	with,	or	arising	out	of,	the	furnishing,	performance,	or	use	of	this
text,	models,	program	code	or	algorithms.

ISBN:	978-1-908689-26-9

A	CIP	catalogue	record	for	this	book	is	available	from	the	British	Library

Cover	Design	by	Racheal	Reeves:	http://rachealreeves.com/

AndroidTM	and	Google	PlayTM	are	trademarks	of	Google	Inc.	The	Android	robot
is	 reproduced	 or	modified	 from	work	 created	 and	 shared	 by	Google	 and	 used

according	to	terms	described	in	the	Creative	Commons	3.0	Attribution	License.

JavaTM	is	a	registered	trademark	of	Oracle	and/or	its	affiliates

Chapter	1:	The	Fundamentals	of
Programming
Maybe	 you’ve	 picked	 up	 this	 book	 because	 you	 have	 a	 passion	 for	 building
things,	and	you	want	to	try	your	hand	at	developing	your	own	game.	Or	perhaps
locked	 inside	your	brain	are	 the	 ideas	 for	a	brilliant	game	 that	will	change	 the
world	as	we	know	it.

In	any	case,	you	will	not	make	it	very	far	without	becoming	a	programmer.	This
chapter	will	be	dedicated	to	building	much	of	the	basic	foundation	you	will	need
in	order	 to	grow	 into	a	 thoughtful,	 successful	 Java	programmer	who	can	build
great	 games	 while	 writing	 efficient	 code.	 As	 we	 will	 not	 be	 executing	 real
programs	until	Chapter	2,	you	do	not	need	your	computer	yet!

What	is	Programming?

At	the	basic	level,	to	program	is	to	instruct	the	computer	to	perform	a	series	of
tasks	provided	in	the	form	of	code.	Let’s	have	a	look	at	some	example	code	and
see	what	kind	of	 instructions	programmers	can	provide.	Don’t	worry	about	 the
meaning	 behind	 each	 symbol	 and	 line	 of	 code	 just	 yet.	We	will	 be	 revisiting
these	in	detail	throughout	this	book.	For	now,	aim	to	understand	the	logic.	Read
the	descriptive	green	 text	 that	precedes	each	 line	of	code	and	 try	 to	 follow	 the
following	code	from	top	to	bottom.

*****	Listing	1.01	*****

//	Instruct	the	computer	to	create	two	integer	variables	called	a	and	

//	b,	and	assign	values	5	and	6,	respectively.

int	a	=	5;

int	b	=	6;

//	Create	another	integer	variable	called	result	using	a	+	b.	

int	result	=	a	+	b;

//	Print	the	result	(Outputs	the	value	of	result	to	the	Console).

print("The	value	of	a	+	b	is	"	+	result);

Listing	1.01	shows	what	a	programmer	types	into	a	text	editor	such	as	Notepad
(Windows)	 or	 TextEdit	 (Mac).	 The	 output	 produced	 by	 the	 computer	 on	 the
console	display	is	shown	below:

The	value	of	a	+	b	is	11

Okay,	 we	 looked	 at	 a	 small	 example	 of	 some	 Java	 code.	 Here	 are	 some	 key
points	that	you	should	remember	before	we	proceed	further.

KEY	POINTS

Basic	rule	of	code	execution:
Code	is	executed	line	by	line	from	top	to	bottom.	This	is	a	simplification,	but	it
will	suit	our	purposes	for	now.	We	will	be	adding	to	this	rule	later.

Comments	(//)
In	Java,	any	line	of	code	that	follows	two	forward	slashes	is	a	comment.
Comments	are	written	specifically	for	humans	(and	in	this	case,	as	my	way	of
describing	code	to	you),	and	so	comments	will	not	be	executed	by	the	Java
Virtual	Machine	(more	on	the	JVM	later).

Line	numbers
We	can	refer	to	each	line	of	code	by	its	line	number.	You	must	count	both
comments	and	empty	lines	when	determining	line	numbers!	As	an	example,	in
listing	1.01,	the	following	code	appears	on	line	3:
int	a	=	5;

As	demonstrated	in	listing	1.01,	we	can	instruct	the	computer	to	store	values	(as
variables),	 and	 we	 can	 perform	 arithmetic	 and	 concatenation	 (combining	 text
with	 integers	 –	 see	 listing	 1.01	 line	 08)	 operations	 with	 them.	 We	 can	 even
display	 results	 of	 these	 operations	 to	 the	 console.	 This	 is	 just	 the	 tip	 of	 the
iceberg.	Before	long,	we	will	be	drawing	a	video	game	character	and	animating
its	walk	 cycle	 as	 it	moves	 across	 the	 screen,	 playing	 a	 footstep	 sound	 at	 each
step.	This	may	look	something	like	this	(remember	that	the	following	is	ONLY
an	example.	Several	chapters	into	this	book,	you	will	be	writing	your	own	code
like	this):

*****	Listing	1.02	*****

while	(mainCharacter.isAlive())	{

			mainCharacter.updatePosition();

			mainCharacter.animate(time);

			if	(mainCharacter.getFoot().collidesWith(ground))	{

						footstepSound.play(volume);

			}

			screen.render(mainCharacter);

}

Types	of	Data

Primitives

In	the	previous	examples,	we	saw	examples	of	data	types.	For	instance,	in	listing
1.01,	we	worked	with	integer	values	5	and	6,	both	examples	of	numerical	data.
Let’s	discuss	some	other	types	of	data,	starting	with	more	numerical	types.

Integers	can	be	represented	using	four	types,	each	of	which	has	a
different	size.	In	Java,	we	have	the	8-bit	byte,	the	16-bit	short,	the	32-
bit	int,	and	the	64-bit	long.	Each	of	these	four	types	can	hold	positive
and	negative	integer	values.
Decimal	values	(such	as	3.14159)	can	be	represented	in	one	of	two
types:	the	32-bit	float	and	the	64-bit	double.
We	can	represent	a	single	character	or	symbol	using	char.
To	represent	something	being	true	or	false,	we	use	the	boolean	type.

These	are	the	most	basic	data	types	in	Java,	and	we	refer	to	them	as	primitive
types,	or	primitives	for	short.	We	will	be	seeing	many	of	these	primitives	in
action	in	the	upcoming	chapters.

Strings

The	word	String	 refers	 to	a	string	of	characters.	As	 the	name	suggests,	we	can
use	 a	 String	 to	 hold	multiple	 characters	 together	 (the	 primitive	 type	 char	 can
only	hold	one):

char	firstInitial=	'J';

char	lastInitial	=	'C';

String	name	=	"James";

Notice	here	that	the	word	String	is	capitalized,	while	the	primitive	type	char	is
not	capitalized.	This	is	because	Strings	belong	to	a	category	called	objects,	not
primitives.	We	will	spend	a	lot	of	time	later	discussing	these	objects,	which	play
a	 huge	 role	 in	 Java	 programming.	 For	 the	 time	 being,	 however,	 we	will	 treat
Strings	as	if	they	were	primitives.

Declaring	and	Initializing	Variables

All	 primitives	 (and	 Strings)	 can	 be	 represented	 as	 variables.	 They	 are	 each
declared	(created)	using	the	same	basic	syntax.

When	creating	a	new	variable,	we	must	always	declare	two	things:	the	variable's
data	 type	 and	 the	variable	name.	 In	most	 cases,	we	will	 also	 assign	 a	 starting
value	for	 the	variable	using	 the	assignment	operator,	 the	equal	sign	(=).	There
are	two	ways	to	do	this.	The	first	way	is	to	assign	a	literal	value,	such	as	‘J’	as
shown	in	Figure	1-1.	The	second	way	is	to	assign	an	expression	that	evaluates	to
a	value,	such	as	35	+	52	also	shown	in	Figure	1-1	(the	expression	is	evaluated
before	the	value	is	assigned).

Figure	1-1	Examples	of	Variable	Declarations

The	assignment	operator	 (=)	does	NOT	declare	equality.	This	 is	 important.	As
the	name	suggests,	we	use	the	assignment	operator	to	assign	a	value	(on	the	right
side	 of	 the	 equal	 sign)	 to	 a	 variable	 (on	 the	 left	 side	 of	 the	 equal	 sign).	 For
example,	consider	the	following	two	lines	of	code:

int	a	=	5;

a	=	a	+	10;

In	this	case,	you	are	not	stating	a	contradictory	equality	of	a	and	a	+	10.	You	are
simply	 assigning	 the	 value	 of	 a	 +	 10	 to	 an	 existing	 variable	 a.	 A	 common
practice	to	help	make	this	distinction	is	to	read	the	equal	sign	as	“gets.”	Figure	1-
1	would	then	read	“int	num	gets	the	result	of	the	expression	35	+	52.”

As	an	exercise,	look	through	each	of	the	six	lines	of	code	in	the	listing	1.03	and
try	 to	 read	aloud	what	each	 line	says	and	what	each	 line	means.	Remember	 to
distinguish	between	 literal	 values	 and	 expressions	 (look	 back	 to	 Figure	 1-1	 if
you	do	not	remember	what	these	are).	Line	1	should	be	read	as,	“short	num	gets
15.”	 Remember	 that	 this	means,	 “Declare	 a	 new	 variable	 of	 type	 short	 called
num	and	assign	the	literal	value	of	15.”

*****	Listing	1.03	*****

1							short	numberOfLives	=	15;

2							long	highScore	=	21135315431	-	21542156;	//	uses	an	expression

3							float	pi	=	3.14159f;

4							char	letter	=	'J';

5							String	J	=	"James";

6							boolean	characterIsAlive	=	true;

Variable	Names	versus	Literals

Note	 that	 when	 we	 describe	 characters	 and	 Strings,	 we	 use	 ‘	 ‘	 and	 “	 ”	 to
distinguish	 literal	 values	 from	variables	 of	 the	 same	 name.	As	 an	 example,	 in
listing	 1.03,	 the	 variable	 name	 J	 refers	 to	 “James”	 and	 the	 literal	 ‘J’	 refers	 to
itself.

To	Initialize	or	Not	Initialize

In	each	of	the	above	examples,	we	 initialized	 the	variable	with	a	starting	value
during	declaration.	However,	as	I’ve	mentioned	at	the	beginning	of	this	section,
initialization	 (assigning	 a	 starting	 value)	 at	 declaration	 of	 a	 variable	 is	 not
obligatory,	per	se.	We	could,	for	example,	do	this:

int	a,	b,	c;

a	=	5;

b	=	6;

c	=	7;

The	first	line,	above,	declares	three	integers	names	a,	b	and	c.	No	starting	values
are	explicitly	assigned.	The	next	lines	initialize	the	three	integers	with	the	values
5,	6	and	7,	respectively.

Although	this	is	allowed,	we	will	typically	declare	variables	and	initialize	them
with	values	in	one	go,	as	we	did	previously	in	listing	1.03.

KEY	POINTS

Declaring	Variables
When	we	create	a	new	variable,	we	are	storing	a	value	into	our	computer’s
memory	for	later	use.	We	can	refer	to	this	value	by	its	variable	name.

An	analogy	is	to	think	of	a	variable	as	a	box.	When	we	type	int	a	=	5	we	are
telling	the	Java	Virtual	Machine	to	create	a	box	of	an	appropriate	size	and	to	fill
it	with	our	value.

Referencing	Variables
Once	a	variable	is	created,	we	should	not	state	its	type	when	referring	to	it.
Providing	the	name	of	the	variable	will	suffice.

Copying	Values
Consider	the	following	code:

int	x	=	5;	//	declare	a	new	integer	called	x

int	z	=	x;		//	assign	the	value	of	x	to	a	new	integer	z

z	=	z	+	5;		//	increment	z	by	5

[End	of	Program]

Can	you	tell	me	what	the	values	of	x	and	z	are	at	the	end	of	the	program?	If	you
said	5	and	10,	then	you	are	correct!

If	not,	don’t	worry!	Many	beginners	interpret	the	second	line	of	this	code
incorrectly.	In	line	2	of	this	code,	we	are	NOT	saying	that	int	x	and	int	z	refer
to	the	same	box	(variable).	Instead,	we	are	creating	a	new	box	called	int	z
giving	it	a	copy	of	int	x’s	contents.

What	does	this	mean	for	us?	It	means	that	when	we	increment	z	by	5	in	line	3,	z

becomes	10	but	x	remains	5.

It’s	All	About	the	Bits	(A	Brief	Discussion	of	Bits	and
Bytes)

Before	we	move	further,	 it’s	worth	elaborating	on	how	exactly	we	store	values
inside	variables.	 I	previously	mentioned	 that	different	primitives	have	different
bit	sizes.	As	an	example,	I	told	you	that	an	int	has	32-bits	and	that	a	long	has	64-
bits.	You	might	be	wondering,	what	are	bits,	exactly?

A	bit	simply	refers	to	a	binary	digit.	In	other	words,	if	you	have	a	binary	number
that	 only	 has	 0’s	 and	 1’s,	 each	 digit	 is	 one	 bit.	 Take	 eight	 of	 those	 bits,	 e.g.
(10101001),	and	you	have	a	byte.

What	you	have	to	remember	about	bits	is	this:	the	more	bits	you	have,	the	more
numbers	 you	 can	 represent.	 To	 illustrate	 this,	 let	 me	 ask	 this	 question.	 How
many	numbers	can	you	represent	with	one	decimal	digit?	Ten,	of	course	(0,	1,	2,
3,	4,	5,	6,	7,	8	and	9).	What	about	two	digits?	A	hundred	(00,	01	…	99).	We	see
that	each	additional	digit	allows	us	to	represent	ten	times	as	many	numbers.	This
is	the	same	with	binary	numbers,	except	that	the	addition	of	each	extra	bit	only
allows	2	times	as	many	numbers.

Bits	are	 important	 in	computing	because	 the	machines	we	work	with	are	made
up	 of	 tiny	 circuits	 that	 can	 either	 be	 on	 or	 off.	 The	 challenge	 of	 data
representation	arises	precisely	from	this.	We	can’t	directly	 represent	something
like	the	word	“hello”	using	these	circuits.	We	must	use	some	arbitrary	system	to
associate	the	word	“hello”	to	some	combination	of	on/off	circuits.

In	 the	 context	of	variables,	 this	 is	what	you	 should	know.	By	declaring	a	new
variable,	we	are	setting	aside	a	specified	number	of	bits	in	memory	(based	on	the
declared	type),	and	storing	a	binary	representation	of	some	data	that	we	want	to
keep	for	later	use.

Converting	between	data	types

It	is	possible	in	Java	to	convert	from	one	data	type	to	another.	For	example,	we
can	 take	 an	 int	 value	 and	 store	 it	 inside	 a	 long	 variable.	 This	 can	 happen
because	 the	long	variable,	which	holds	64-bits,	 can	easily	 fit	 all	 the	data	 from
the	smaller	type	int	(32-bit)	without	much	trouble.	But	what	happens	if	we	try

to	take	a	64	bit	long	number	and	try	to	stuff	it	into	a	32-bit	int	“container”?	We
risk	losing	precision.	32	of	those	64	bits	must	be	removed	before	we	can	place
the	number	into	our	int	variable.

The	takeaway	is	this:	if	you	are	converting	from	a	smaller	type	to	a	larger	type,
you	 are	 safe.	 If	 you	 are	 converting	 from	 a	 larger	 type	 to	 a	 smaller	 type,	 you
should	 be	 mindful	 so	 that	 you	 do	 not	 lose	 important	 data.	 We	 will	 see	 how
exactly	we	can	convert	from	one	type	to	another	later	in	this	book.

Operations

We’ve	 previously	 seen	 that	 variables	 can	 be	 used	 to	 store	 values	 and	 that
variables	can	also	be	used	as	operands	in	operations:

Figure	1-2:	Variables	can	be	used	to	both	store	values	and	be	operands.

Arithmetic	Operations

Below	are	the	five	arithmetic	operators	that	you	must	know.	As	you	look	through
the	examples,	keep	these	two	rules	in	mind:

Rule	#1

An	operation	involving	two	integers	will	always	yield	an	integer	result	(decimal
values	are	not	allowed	on	integer	variables).

Rule	#2

An	operation	involving	at	least	one	float	(decimal	values)	will	always	result	in	a
float.

Figure	1-3:	The	five	arithmetic	operators	that	you	must	know.

Order	of	Operations

When	 performing	 operations,	 the	 standard	 order	 of	 operations	 apply.	 The
computer	will	perform	operations	in	the	following	order:

1.	 Parentheses	(or	brackets)
2.	 Exponents
3.	 Multiplication/division/remainder
4.	 Addition/subtraction

The	following	examples	illustrate	the	importance	of	the	order	of	operations:

print(2	+	5	%	3	*	4);	-	outputs:	"10"
print((2	+	5)	%	3	*	4);	-	outputs:	"4"

Relational/Boolean	Operations

We	will	now	 look	at	 relational	operators	 that	are	used	 to	perform	comparisons
between	 two	values.	Note	 in	 the	 following	examples	 that	arithmetic	operations
are	 performed	before	 relational	 operations	 are.	All	 of	 the	 following	operations
yield	a	true	or	false	value	(boolean).

Figure	1-4:	The	relational	operators	are	used	to	determine	how	values
compare	to	one	another.

KEY	POINT

Assignment	vs	Comparison
Note	that	the	==	operator	is	not	the	same	as	the	=	operator.	The	former	(==)	is
used	for	comparing	two	values	and	outputs	a	true	or	false	value.	The	latter	(=)	is
used	to	assign	a	value	to	a	variable.

Listing	1.04	below	shows	some	additional	examples	of	these	relational	operators
in	 action.	 I	 have	 labeled	 each	 of	 the	 print	 statements,	 so	 that	 you	 can	 see	 the
corresponding	output.

*****	Listing	1.04	*****

01						print(1	==	2);	//	#1	(equal	to)

02						print(!(1	==	2));	//	#2	(inverse	of	print	#	1)

03

04						int	num	=	5;

05						print(num	<	5);	//	#3	(less	than)

06

07						boolean	hungry	=	true;

08						print(hungry);	//	#4	

09						print(hungry	==	true);	//	#5	(equivalent	to	print	#4)

10						print(hungry	==	false);	//	#6	

11						print(!hungry);	//	#7	(equivalent	to	print	#6)

The	output	from	listing	1.04	is	shown	below:

false

true

false

true

true

false

false

The	next	few	sections	will	assume	that	you	understand	how	relational	operators
work,	so	make	sure	you	understand	what	is	happening	on	each	printed	line.	Have
a	careful	look	at	the	examples	#5	and	#6	from	listing	1.04	and	understand	how
we	can	omit	the	==	operator.

Conditional	Operators

The	 two	 primary	 conditional	 operators	 are	 the	 ||	 (OR)	 and	 the	 &&	 (AND)
operators.	 The	 ||	 (OR)	 operator	 will	 evaluate	 to	 true	 if	 the	 boolean	 values	 on
EITHER	 side	 of	 the	 operator	 are	 true.	 The	 &&	 (AND)	 operator	 will	 only
evaluate	to	true	if	the	boolean	values	on	BOTH	sides	of	the	operator	are	true.

Let’s	say	we	want	to	determine	if	a	given	number	is	a	positive	even	number.	To
do	 so,	 we	 must	 check	 two	 conditions.	 Firstly,	 we	 must	 make	 sure	 that	 the
number	is	positive.	Secondly,	we	must	check	whether	the	number	is	divisible	by
two.	Listing	1.05	gives	an	example	of	some	code	we	might	write	to	do	this:

*****	Listing	1.05	*****

01						//	Remember	to	evaluate	the	RIGHT	side	of	the	=	operator	before	

02						//	assigning	the	result	to	the	variable.

03						int	number	=	1353;	

04						boolean	isPositive	=	number	>	0;	//	evaluates	to	true

05						boolean	isEven	=	number	%	2	==	0;	//	evaluates	to	false

06						print(isPositive	&&	isEven);	//	prints	false

07						print(isPositive	||	isEven);	//	prints	true

Functions	(better	known	in	Java	as	‘Methods’)

Let’s	 combine	 everything	 that	 we	 have	 learned	 so	 far	 and	 discuss	 a	 very
important	 aspect	 of	 programming:	 functions.	 A	 function	 is	 a	 set	 of	 rules.
Specifically,	a	function	should	accept	a	value	and	output	a	corresponding	result.
Take	a	mathematical	function	for	example:

We	can	define	a	very	similar	function	in	Java.	The	following	function	will	accept
a	 float	 input,	 assign	 the	 value	 to	 a	 variable	 x,	 and	 output	 the	 result	 of	 the
operation:	3*x	+	2.

*****	Listing	1.06	:	A	Java	Function*****

01							float	firstFunction	(float	x)	{

02															return	3*x	+	2;

03							}

Now,	let’s	take	a	closer	look	at	how	a	Java	function	–	also	called	a	method	for
reasons	we	will	discuss	in	the	next	chapter	–	is	written.	To	write	a	Java	function,
you	 begin	 by	 declaring	 the	 data	 type	 of	 the	 returned	 value.	You	 also	 give	 the
function	a	name,	 such	as	firstFunction.	Between	 the	parentheses	 that	 follow
the	function’s	name,	you	list	all	the	necessary	inputs.

The	opening	and	closing	curly	braces	{	}	will	denote	where	your	function	begins
and	where	 your	 function	 ends.	 If	 you	 have	 trouble	 visualizing	 this,	 it	 helps	 to
imagine	a	rectangle	around	each	function	by	using	the	curly	braces	as	opposite
corners,	as	shown	in	Figure	1-5.	This	helps	you	quickly	determine	where	each
function	begins	and	ends.

Figure	1-5:	An	in-depth	look	at	how	a	function	is	written.

Listing	 1.07	 shows	 how	 we	 can	 use	 functions	 inside	 our	 code.	 Note	 that	 we
assume	that	the	function	named	firstFunction	is	defined	elsewhere	in	the	code,
and	that	it	will	behave	exactly	as	described	in	listing	1.06.

*****	Listing	1.07	:	Using	a	Function*****

01						//	Step	1.	declare	a	new	float	called	input

02						float	input	=	3f;	

03						//	Step	2.	declare	a	new	float	called	result	and	initialize	it	with	the	

04						//	value	returned	from	firstFunction(input);

05						float	result	=	firstFunction(input);	

06						//	Step	3.	print	the	result

07						print(result);

Output	from	listing	1.07:

11.0

An	Overview	of	Function	Calls

There’s	 some	 kind	 of	magic	 going	 on	 in	 line	 05	 of	 listing	 1.07.	 Let’s	 discuss
what	 exactly	 happens	 here.	As	 always,	we	must	 evaluate	 the	 right	 side	 of	 the
assignment	 operator	 first.	 Evaluating	 this	 expression	 involves	 calling	 the
function	defined	in	listing	1.06.	When	firstFunction	is	called	(or	invoked),	our
program	 will	 enter	 the	 function’s	 definition	 in	 listing	 1.06,	 passing	 in	 the
argument	input.	In	firstFunction,	the	value	of	input	is	accepted	and	copied	into
a	temporary	local	variable	called	x,	and	the	function	returns	the	value	of	3*x	+	2
to	the	caller	(line	5).	This	returned	value	can	be	stored	as	a	variable,	as	we	have
done	using	result.	The	program	then	proceeds,	printing	the	returned	value.

More	on	Arguments

Functions	 may	 accept	 multiple	 inputs	 or	 even	 no	 inputs.	 In	 the	 function
definition,	 you	 must	 list	 all	 the	 inputs	 that	 you	 would	 like	 your	 function	 to
accept,	by	declaring	a	 temporary	 local	variable	 for	each	desired	 input.	Each	of
these	required	inputs	can	be	referred	to	as	parameters,	and	examples	are	shown
in	listing	1.08.

*****	Listing	1.08	:	Function	Declarations*****

01							//	Requires	three	integer	inputs.

02							int	getScore(int	rawScore,	int	multiplier,	int	bonusScore)	{

03										return	rawScore	*	multiplier	+	bonusScore;

04							}

05

06							//	Requires	no	inputs.

07							float	getPi()	{

08										return	3.141592f;

09							}	

Whenever	you	call	a	function,	you	must	pass	in	all	the	arguments	that	are	listed
in	between	the	parentheses.	The	function	getScore	in	listing	1.08,	for	example,
requires	three	integer	variables.	You	must	pass	in	the	appropriate	values	or	your
program	will	not	run.	Similarly,	the	function	getPi	will	only	work	if	you	do	not
pass	in	any	arguments.

As	 previously	 mentioned,	 when	 we	 pass	 in	 a	 variable	 as	 an	 argument	 for	 a
function,	only	 its	value	 is	made	available	 to	 the	 function	 (the	value	 is	copied).
This	means	that	the	following	two	listings	1.09	and	1.10	will	both	print	the	same
value,	15700	(from	the	formula	provided	on	line	3	of	listing	1.08).

*****	Listing	1.09	:	Calling	getScore	Using	Variables*****

01							int	num1	=	5000;

02							int	num2	=	3;

03							int	num3	=	700;

04							print(getScore(num1,	num2,	num3);

*****	Listing	1.10	:	Calling	getScore	Using	Hardcoded	Literal	Values*****

01							print(getScore(5000,	3,	700);

In	listing	1.09	we	call	 the	getScore	 function	using	variables.	Notice	 that	since
we	pass	arguments	by	value,	variable	names	of	our	arguments	do	NOT	matter.
They	do	NOT	have	to	match	the	names	of	the	local	variables	inside	the	function

definition.	 Listing	 1.10	 does	 not	 use	 variables	 and	 sends	 hardcoded	 values
directly.

Of	course,	in	most	of	the	games	that	we	write,	arguments	for	functions	such	as
getScore	will	change	depending	on	the	user’s	performance	and	play	style,	so	we
will	typically	refrain	from	hardcoding	literal	values.

Summary	of	Functions

To	summarize,	we	must	do	two	things	to	use	a	function:	firstly,	we	must	declare
its	 definition	 (as	 in	 listing	 1.06).	 Secondly,	 we	 must	 call	 the	 function	 (as	 in
listing	1.07).	When	we	want	our	function	to	have	access	to	some	outside	value,
we	pass	in	an	argument.	The	value	returned	by	a	function	has	a	type,	which	must
be	 explicitly	 stated	when	 the	 function	 definition	 is	 declared,	 and	we	 can	 store
this	value	using	the	appropriate	variable	type	and	the	assignment	operator.

Let’s	have	a	look	at	one	more	function:

*****	Listing	1.11	:	Still	Alive?*****

01						boolean	isAlive	(int	characterHealth)	{

02														return	characterHealth	>	0;

03						}

As	an	exercise,	please	 try	and	answer	 the	following	questions	(the	answers	are
given	below):

i.	 What	is	the	name	of	the	function	in	listing	1.11?
ii.	 The	function	in	listing	1.11	returns	a	value	of	what	type?
iii.	 How	many	inputs	does	the	function	in	listing	1.11	take?
iv.	 List	the	names	of	all	the	inputs	to	the	function
v.	 Does	isAlive(5)	evaualte	to	True	or	False?
vi.	 Does	isAlive(-5)	evaualte	to	True	or	False?
vii.	 Does	isAlive(0)	evaualte	to	True	or	False?

If	you	are	feeling	lost,	do	not	despair!	Functions	can	take	a	while	to	understand
fully.	If	functions	aren’t	fully	clear	yet,	they	will	make	much	more	sense	as	you
see	 more	 examples	 in	 this	 chapter	 and	 begin	 to	 write	 your	 own	 functions	 in
Chapter	2.

The	 answers	 to	 the	 questions	 above	 are:	 i:	 isAlive,	 ii:	 boolean,	 iii:	 one,	 iv:

characterHealth,	v:	true,	vi:	false	and	vii:	false.

Control	Flow	Part	1	–	If	and	Else	statements

We	will	now	turn	our	attention	to	control	flow	(also	known	as	“flow	control”),
which	refers	to	the	order	in	which	our	lines	of	code	will	execute.	Recall	the	basic
rule	of	code	execution,	which	says	that	code	is	executed	from	top	to	bottom.	In
the	 simplest	 programs,	 our	 code	will	 indeed	 execute	 from	 top	 to	 bottom	 in	 a
linear	fashion.	In	any	useful	program	however,	we	will	 likely	see	lines	of	code
that	are	skipped	or	even	repeated	based	on	some	condition.	Let’s	have	a	look	at
some	examples.

If-Else	Blocks

If-else	blocks	are	used	to	create	branches,	or	multiple	paths	in	our	code.	We	can
check	conditions	such	as	characterLevel	>	10	to	determine	a	character’s	title,
for	 example,	 as	 shown	 in	 Figure	 1-6.	 Depending	 on	 the	 value	 of
characterLevel,	our	game	will	execute	a	different	instruction.	You	can	see	the
three	paths	in	Figure	1-6	below.

Figure	1-6:	An	if-else	block	comprising	an	if	statement,	an	else-if
statement	and	an	else	statement

We	 can	 create	 if-else	 blocks	with	more	 or	 fewer	 branches	 than	 the	 one	 in	 the
example	above.	In	fact,	we	can	even	nest	if	statements	inside	other	if	statements
to	allow	“inner”	branching.

If,	Else-if	and	Else

Whenever	 you	 write	 the	 word	 if,	 you	 are	 beginning	 a	 new	 if-else	 block,	 as
shown	 in	 the	 example	 in	Figure	 1-6.	You	 could	write	 an	 if	 block	without	 any
else-if	or	else	statements.	That	is	perfectly	okay.

After	 you	 begin	 a	 new	 if-else	 block,	 each	 additional	 else-if	 indicates	 a	 new
branch.	 The	 else	 statement	 is	 your	 “I	 give	 up”	 branch	 and	 will	 handle	 all
remaining	cases	for	you.

You	may	only	take	one	branch	in	a	given	if-else	block.	In	Figure	1-6,	notice	that

if	 a	 character’s	 level	 is	 11,	 conditions	 in	 both	 the	 if	 and	 else-if	 statements
appear	 be	 satisfied.	 You	 might	 think	 that	 this	 would	 result	 in	 the
characterTitle	 becoming	 “King”	 then	 quickly	 changing	 to	 “Knight.”	 This,
however,	does	not	happen,	because	your	code	can	only	take	one	branch	inside	an
if-else	block,	as	shown	in	Figure	1-7.

Figure	1-7:	An	if-else	block	comprising	an	if	statement,	an	else-if
statement	and	an	else	statement

Functions	and	If-Else	Blocks

Functions	are	back!	It	turns	out	that	we	can	make	our	functions	more	powerful
by	using	if-else	blocks.	If-else	blocks	will	work	just	as	they	did	before,	but	now
that	 we	 are	 wrapping	 them	 inside	 functions,	 that	 means	 we	 have	 more	 curly
braces	to	worry	about.	See	if	you	can	look	at	the	example	functions	below	and
determine	which	opening	curly	brace	corresponds	to	which	closing	curly	brace.

*****	Example	1*****

String	theUltimateAnswer(boolean	inBinary)	{

			String	prefix	=	“The	answer	to	life	the	universe	and	everything:”;

			if	(inBinary)	{

						return	prefix	+	101010;

			}	else	{

						return	prefix	+	42;

			}

}

*****	Example	2*****

boolean	isLessThanTen(int	num)	{

			if	(num	<	10)	{

						return	true;

			}	else	{

						return	false;

			}

}

*****	Example	3*****

boolean	isEven(int	num)	{

			if	(num	%	2	==	0)	{

						return	true;

			}	else	{

						return	false;

			}

}

*****	Example	4*****

String	desertSecurity(boolean	hasGun,	boolean	hasRobots)	{

								if	(hasGun)	{

								return	"I've	got	a	bad	feeling	about	this.";

								}	else	if	(hasRobots)	{

																return	"These	are	NOT	the	droids	we	are	looking	for."

								}	else	{

																return	"Move	along."

								}

}

Nested	If-Else	blocks

Now	that	we	have	mastered	reading	curly	braces	to	determine	where	each	block
of	code	begins	and	ends,	 let’s	 take	this	a	step	further.	Suppose	that	we	want	 to
write	a	function	that	will	tell	us	if	a	person	can	watch	a	restricted	movie	(we	will
return	 true	 or	 false	 depending	 on	 eligibility).	 We	 will	 set	 the	 following
conditions:

If	a	person	has	a	fake	ID,	he	or	she	will	be	able	to	watch	the	movie
(regardless	of	age).
If	a	person	has	an	accompanying	parent,	he	or	she	will	be	able	to	watch	the
movie	(regardless	of	age).
If	a	person	does	not	have	a	fake	ID	or	an	accompanying	parent:

If	the	person	is	over	the	minimum	age	requirement,	he	or	she	will	be
able	to	watch	the	movie.
If	the	person	is	below	the	minimum	age	requirement,	he	or	she	will
NOT	be	able	to	watch	the	movie.

As	you	 can	 tell,	we	 are	 going	 to	 have	 to	nest	 if-else	 statements	 inside	 a	more
general	condition	in	order	to	handle	the	person	who	does	not	have	a	fake	ID	or
an	 accompanying	 parent.	 Let’s	 see	 this	 in	 code,	 starting	 with	 the	 three	 main
branches:

*****	Listing	1.12	:	Can	I	watch	the	movie?	(Incomplete)*****

01	boolean	canWatch(int	age,	int	minimumAge,	boolean	fakeID,	boolean	withParent)	{

02						if	(fakeID)	{

03									return	true;

04						}	else	if	(withParent)	{

05									return	true;

06						}	else	{

07									//	Nested	if	statements	go	here.

08						}

09	}

Now	 let’s	 add	 code	 for	 the	 two	 specific	 cases	 inside	 our	 3rd	 branch	 (the	 else
statement).

*****	Listing	1.13	:	Inner	Branches*****

if	(age	>=	minimumAge)	{

			return	true;

}	else	{

			return	false;

}

Now,	we	can	put	listing	1.12	and	listing	1.13	together	to	give	listing	1.14:

*****	Listing	1.14	:	Can	I	watch	the	movie?	(Complete)*****

01	boolean	canWatch(int	age,	int	minimumAge,	boolean	fakeID,	boolean	withParent)	{

02							if	(fakeID)	{		

03										return	true;

04							}	else	if	(withParent)	{

05										return	true;

06							}	else	{

07										if	(age	>=	minimumAge)	{

08													return	true;

09										}	else	{

10													return	false;

11										}						

12							}

13	}

Simplifying	boolean	statements

Although	the	code	in	listing	1.14	runs	perfectly	fine,	we	can	clean	it	up	a	little
bit	as	shown	in	listing	1.15.

*****	Listing	1.15	:	Can	I	watch	the	movie?	(Simplified	#1)*****

01	boolean	canWatch(int	age,	int	minimumAge,	boolean	fakeID,	boolean	withParent)	{

02						if	(fakeID	||	withParent)	{		//	Two	cases	were	combined	into	one	if	statement.

03									return	true;

04						}	else	{

05									if	(age	>=	minimumAge)	{

06												return	true;

07									}	else	{

08												return	false;

09									}						

10						}

11	}

Note	that	in	listing	1.15	we	have	combined	two	of	the	cases	into	one	if	statement
on	line	02	using	the	“OR”	operator	||.	We	can	continue	to	simplify	our	function
by	grouping	all	of	the	“true”	cases	together,	as	shown	in	listing	1.16

*****	Listing	1.16	:	Can	I	watch	the	movie?	(Simplified	#2)*****

01	boolean	canWatch(int	age,	int	minimumAge,	boolean	fakeID,	boolean	withParent)	{

02						if	(fakeID	||	withParent	||	age	>=	minimumAge)	{		

03									return	true;

04						}	else	{

05									return	false;

06						}

07	}	

Believe	it	or	not,	we	can	simplify	 this	even	further	by	getting	rid	of	 the	 if-else
block	 completely	 and	 just	 returning	 the	 value	 of	 (fakeID	 ||	 withParent	 ||
age	>=	minimumAge)	as	shown	in	listing	1.17.

*****	Listing	1.17	:	Can	I	watch	the	movie?	(Simplified	#3)*****

01	boolean	canWatch(int	age,	int	minimumAge,	boolean	fakeID,	boolean	withParent)	{

02						return	(fakeID	||	withParent	||	age	>=	minimumAge);		

03	}

Writing	clean	code	 like	 this	allows	you	 (and	your	collaborators)	 to	work	more
efficiently	without	working	complicated	 logic	such	as	 that	used	 in	 listing	1.14.
We	will	look	at	more	techniques	for	writing	clean	code	throughout	this	book.

Control	Flow	Part	2	–	While	and	For	loops

In	 the	previous	section,	we	 talked	about	using	 if	and	else	blocks	 to	branch	our
code.	We	will	now	be	examining	two	types	of	loops:	the	while	loop	and	the	for
loop.	Loops	allow	us	to	perform	repetitive	tasks.	Loops	are	especially	important
for	us	because	games	can’t	run	without	them!

While	loops

Suppose	that	we	want	to	write	a	function	that	will	print	all	positive	integers	up	to
a	given	input	n.	The	strategy	(algorithm)	to	solving	this	problem	is	as	follows:

1.	 Create	a	new	integer	and	initialize	it	at	1.
2.	 If	this	integer	is	less	than	or	equal	to	the	given	input	n,	print	its	value.
3.	 Increment	the	integer	by	1.
4.	 Repeat	steps	2	and	3.

We’ve	 already	 learned	 how	 to	 perform	 the	 first	 three	 steps	 of	 this	 algorithm
already.	Let’s	write	down	what	we	already	know:

*****	Listing	1.18	:	The	Counter	(Incomplete)*****

01	?????	countToN(int	n)	{

02			int	counter	=	1;	//	1.	Create	a	new	integer,	initialize	it	at	0.

03			if	(counter	<=	n)	{	//	2.	If	this	integer	is	less	than	or	equal	to	the	input

04						print(counter);	//	Print	the	value

05						counter	=	counter	+	1;	//	3.	Increment	the	integer	by	1

06			}

07	}				

We	must	address	two	issues	with	our	code.	Firstly,	what	should	be	our	function’s
return	type	(indicated	by	the	question	marks	on	line	1	of	listing	1.18)?	Should	it
be	an	int?	Actually,	 in	our	case,	we	do	not	even	have	a	 return	 statement;	 this
function	does	not	yield	any	result	that	we	could	use.	When	we	do	not	return	any
value,	as	in	the	previous	function,	we	say	the	return	type	is	void.

Secondly,	how	can	we	make	this	code	repeat	steps	2	and	3?	It’s	actually	pretty
simple.	We	use	a	while	loop	–	a	loop	that	runs	as	long	as	a	certain	condition	is
satisfied.	 In	our	case,	all	we	need	 to	do	 is	 replace	 the	word	“if”	with	 the	word
“while.”	The	completed	function	is	shown	in	listing	1.19:

*****	Listing	1.19	:	The	Counter	(Complete)*****

01	void	countToN(int	n)	{

02			int	counter	=	1;	//	1.	Create	a	new	integer,	initialize	it	at	0.

03			while	(counter	<=	n)	{	//	2.	If	this	integer	is	less	than	or	equal	to	the	input

04						print(counter);	//	Print	the	value

05						counter	=	counter	+	1;	//	3.	Increment	the	integer	by	1

06			}

07	}

Let’s	have	a	look	at	our	function	(listing	1.19)	line-by-line:

Line	1	declares	our	function	return	type	(void),	name	(countToN)	and	input
(n)
Line	2	declares	a	new	integer	named	counter	and	assigns	it	a	value	of	1.
Line	3	begins	a	while	loop	which	runs	as	long	as	the	condition	(counter	<=
n)	is	satisfied.
Line	4	prints	the	current	value	of	the	counter	variable
Line	5	increments	the	counter	by	1.

When	we	reach	the	end	of	line	5	(the	curly	brace	on	line	6	denotes	the	end	of	our
loop),	 our	 code	will	 execute	 line	 3	 again!	 This	 repeats	 until	 counter	 becomes
greater	 than	 n,	 at	 which	 point	we	 break	 out	 of	 our	while	 loop.	 To	 see	 this	 at
work,	let’s	call	this	function	from	elsewhere	in	the	code.

print(“Initiate	counting!”);

countToN(5);	//	Call	our	countToN()	function	with	the	argument	of	5.

print(“Counting	finished!”);

The	corresponding	output	is	shown	in	the	box	below:

Initiate	counting!

1

2

3

4

5

Counting	finished!

That’s	all	there	is	to	a	while	loop!	Just	take	an	if	statement	and	throw	the	word

“while”	in	there,	and	your	code	will	repeat	a	task!

KEY	POINTS

While	Loops
While	loops	will	continue	to	iterate	as	long	as	the	given	condition	evaluates	to
true.	If	we	have	a	condition	that	is	always	true,	such	as	while	(5	>	3)	…	,	our
while	loop	will	never	terminate.	This	is	called	an	infinite	loop.

For	Loops

The	counting	logic	described	in	 listing	1.19	is	so	frequently	used	that	 there’s	a
loop	designed	just	for	this	purpose.	It	is	called	the	for	loop.	The	for	loop	syntax
allows	 you	 to	 save	 lines	 of	 code,	 allowing	 for	 cleaner	 solutions	 to	 various
problems.	Here’s	what	it	looks	like:

Figure	1-8:	The	for	loop	has	three	main	components:	initialization,
termination	and	incrementation.

The	for	loop	requires	three	things.	You	must	initialize	the	counter	variable,	set	a
terminating	 condition	 then	 define	 an	 increment	 expression.	 The	 loop	 will
continue	to	iterate	(repeat)	until	 the	terminating	condition	evaluates	to	false	(in
the	 example	 above,	 this	 is	 until	 i	 is	 greater	 than	 6).	 After	 each	 iteration,	 i	 is
incremented	using	the	rule	given	in	 the	increment	expression.	Using	a	for	 loop
the	counter	in	listing	1.19	can	be	re-written	as	shown	in	listing	1.20.

*****	Listing	1.20	:	The	Counter	(for	loop	version)*****

01	void	countToN(int	n)	{

02			for	(int	i=1;	i<=n;	i++)	{

03						print(i);	

04			}

05	}

Once	you	get	the	syntax	down,	the	for	loop	is	much	faster	to	write	than	the	while
loop.	The	for	loop	will	soon	become	an	invaluable	tool	for	us	and	will	be	used	in
everything	from	moving	sprites	to	rendering	animations.

The	Training	Wheels	Are	Now	Off!

If	you’ve	made	it	this	far,	congratulations!	You’ve	taken	an	important	first	step
into	the	beautiful,	complex	and	occasionally	frustrating	world	of	programming.
But	you	can't	call	yourself	a	Java	programmer	until	you	have	written	some	Java
code,	so	grab	your	computer	and	join	me	in	Chapter	2,	where	we	will	build	some
Java	programs.

Chapter	2:	Beginning	Java
Chapter	 1	was	 all	 about	 preparing	 you	 to	 become	 a	 Java	 programmer.	 In	 this
chapter,	you	will	write	your	first	Java	programs	(including	a	simple	game)	and
learn	 about	 how	we	 can	 represent	 our	 games’	 characters,	 power-ups	 and	other
entities	as	Java	objects.

Object-Oriented	Programming

Java	 is	 an	 object-oriented	 programming	 language.	 In	 an	 object-oriented
paradigm,	 we	 represent	 data	 in	 the	 form	 of	 objects	 in	 order	 to	 help	 us
conceptualize	 and	 communicate	 ideas.	 For	 example,	 when	 building	 a	 video-
sharing	web	application,	we	might	represent	each	user	account	(and	all	its	data,
such	 as	 username,	 password,	 uploaded	 videos	 and	 etc.)	 by	 creating	 a	 User
object.	Each	uploaded	video	may	be	represented	using	a	Video	object,	many	of
which	can	be	grouped	together	inside	a	Playlist	object.

Object-oriented	 programming	 allows	 us	 to	 organize	 relevant	 data	 together,
allowing	 for	 clean,	 robust	 code	 that	 is	 easier	 to	 read	 and	 understand.	 To	 start
exploring	this	idea,	we	will	write	our	first	Java	program.

KEY	POINT

Visit	the	book’s	companion	site
All	of	the	code	examples	in	this	book,	documentation	on	errata,	and	additional
bonus	content	are	available	at	this	book’s	companion	site:	jamescho7.com

Java	installation	can	be	a	bit	tricky.	If	at	any	point	in	this	chapter	you	get	lost,
please	visit	the	companion	site.	There	are	video	guides	to	help	you	get	through
the	initial	Java	setup.

http://jamescho7.com

Setting	up	the	Development	Machine

Before	we	can	write	 simple	Java	programs	and	build	exciting	games,	we	must
install	 some	 software	 on	 our	machine.	Unfortunately,	 this	 is	 a	 bit	 tedious	 and
time	 consuming,	 but	 it	 will	 all	 be	 worth	 it	 once	 we	 have	 our	 first	 program
running!

Installing	Eclipse

We	 will	 be	 making	 use	 of	 an	 integrated	 development	 environment	 (IDE)	 for
writing	Java/Android	applications.	An	 IDE	 is	 just	a	 fancy	name	for	a	 tool	 that
helps	you	write,	build,	and	run	programs	with	ease.

The	IDE	that	we	will	be	using	is	called	Eclipse	and	 is	a	powerful	open	source
software.	 Rather	 than	 installing	 the	 pure	 Eclipse,	 however,	 we	 will	 be
downloading	Google’s	modified	 version:	 the	Android	Developer	 Tools	 (ADT)
Bundle.	Let	me	explain	what	all	of	these	terms	mean.

In	 order	 to	 build	 Android	 applications,	 you	 must	 install	 the	 Android	 SDK
(software	development	kit).	Typically	you	need	to	download	this	separately	from
Eclipse	 and	 integrate	 it	 using	 a	 plug-in	 (an	 add-on	 that	 provides	 additional
features	 to	 Eclipse);	 however,	Google	 has	made	 this	much	 easier	 by	 allowing
you	to	download	a	bundle	that	includes	Eclipse	and	the	Android	SDK	–	the	ADT
Bundle.	 Follow	 these	 steps	 to	 get	 your	 machine	 ready	 for	 Java/Android
development:

To	download	the	ADT	Bundle,	please	visit	the	following	site:
http://developer.android.com/sdk/index.html
You	should	see	a	page	similar	to	that	shown	in	Figure	2-1.

Figure	2-1	Android	SDK	Download	Page

http://developer.android.com/sdk/index.html

Once	you	are	at	this	page,	click	the	“Download	Eclipse	ADT”	button.	The	site
will	automatically	detect	your	operating	system	so	that	you	can	download	the
correct	version.

You	will	then	be	presented	with	the	following	screen:

Figure	2-2:	32-bit	or	64-bit

You	will	be	downloading	the	32-bit	or	64-bit	version	depending	on	your	OS
type.	Not	sure	what	version	you	have?	Here	is	how	you	can	find	out:

Checking	Operating	System	Type	on	Windows
On	Windows,	right	click	on	My	Computer	and	click	Properties.	Alternatively,
you	could	navigate	to	Control	Panel	and	search	for	System.	You	will	see	a
window	as	shown	in	Figure	2-3.
If	your	machine	is	32-bit,	you	will	see	32-bit	Operating	System	or	x86-based
processor.	Otherwise,	you	should	see	64-bit	Operating	System.	Take	note	of
this	version	and	download	the	appropriate	version	of	ADT.

Figure	2-3:	Windows	System	Information

Checking	Operating	System	Type	on	Mac	OS	X
To	check	whether	you	have	a	32-bit	or	64-bit	OS,	you	must	check	which	type	of
processor	you	have.	The	page	linked	below	will	tell	you	how	to	determine	and
interpret	this	information:
http://support.apple.com/kb/HT3696

Take	note	of	your	OS	version	and	download	the	appropriate	version	of	ADT.

The	download	will	be	pretty	large	.zip	file	(approximately	350	MB	at	the
time	of	writing).	You	will	simply	be	extracting	the	file	into	a	folder	that	is
most	convenient	for	you.	You	do	not	have	to	install	it.

Upon	extracting,	you	should	see	two	folders	and	a	file	called	SDK
Manager.	You	only	have	to	worry	about	the	eclipse	folder	for	now,	as	we
will	not	be	working	with	Android	until	the	later	chapters.

Installing	the	Java	Development	Kit

http://support.apple.com/kb/HT3696

Eclipse	is	built	using	Java.	This	means	that	you	need	to	install	a	Java	Runtime
Environment	(JRE)	on	your	computer	in	order	to	run	it	on	your	machine.	As	we
will	 be	 running	 Java	 programs	 AND	 developing	 Java	 programs,	 we	 will	 be
installing	the	JDK	(Java	Development	Kit),	which	bundles	a	JRE	and	developer
tools.

1.	 To	install	the	JDK,	navigate	to	the	following	page.
http://www.oracle.com/technetwork/java/javase/downloads/index.html

As	of	this	writing,	the	latest	version	of	the	JDK	is	JDK	8.	We	will	be	using
JDK	7	for	compatibility	reasons	so	that	we	do	not	run	into	issues	with
Android	development.

Scroll	down	until	you	see	Java	SE	7uNN,	where	NN	will	be	the	latest	2-
digit	update	number	for	Java	7.	In	Figure	2-4	shown	below,	the	current
version	is	Java	SE	7u55.	The	latest	version	will	vary	depending	on	when
you	are	reading	this	book.

Figure	2-4:	Java	SE	7	Downloads	Box

2.	 Click	the	DOWNLOAD	button	below	JDK.	You	should	be	directed	to	the
box	shown	in	Figure	2-5

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Figure	2-5:	JDK	7	Download	Page

3.	 Check	“Accept	License	Agreement”	and	download	the	corresponding
version	of	the	JDK	for	your	operating	system.	Here,	x86	refers	to	32-bit,
and	x64	refers	to	64-bit.	If	you	have	forgotten	this	information,	please	refer
to	step	3	in	the	previous	section.

4.	 Once	the	download	is	complete,	install	the	file	using	the	default	settings.

Opening	Eclipse

Now	that	we	have	downloaded	all	the	necessary	files,	navigate	to	the	extracted
ADT	Bundle	folder	and	open	the	eclipse	folder.	Once	inside	the	folder,	start	up
the	eclipse	application	(called	eclipse.exe	on	Windows).

If	 you	 see	 an	 error	 regarding	 an	 undefined	 PATH	 variable,	 this	 means	 that
Eclipse	is	unable	to	find	the	JRE.	To	resolve	this	issue,	visit	the	following	page:

http://docs.oracle.com/javase/tutorial/essential/environment/paths.html

If	you	have	no	errors,	 then	you	should	see	 the	dialog	box	shown	in	Figure	2-6

http://docs.oracle.com/javase/tutorial/essential/environment/paths.html

upon	opening	Eclipse.

Figure	2-6:	ADT	Workspace	Launcher

Figure	 2-6	 shows	 the	 dialog	 box	 asking	 you	 to	 set	 a	 workspace	 –	 the	 folder
where	you	will	 create	your	 Java	projects.	You	can	choose	or	 create	 any	 folder
you	wish	here,	and	Eclipse	will	use	it	to	manage	your	Java	projects.

Writing	Your	First	Program

Upon	 choosing	 your	 workspace,	 eclipse	 will	 open	 up	 and	 you	 will	 see	 the
welcome	screen	shown	in	Figure	2-7.

Figure	2-7:	Android	IDE	Welcome	Screen

Now	 that	 we	 have	 our	 IDE	 ready	 to	 go,	 we	 can	 begin	 writing	 our	 first	 Java
program.	As	we	will	not	be	building	any	Android	applications	just	yet,	we	can
safely	exit	out	of	this	tab.

Figure	2-8:	Exiting	the	Welcome	Screen

When	you	have	done	 so,	we	will	 gain	 access	 to	 a	 several	 different	views.	For
now,	you	only	have	to	worry	about	two	of	them:	the	Package	Explorer	and	the
Editor	Window.

Figure	2-9:	The	Package	Explorer	and	Editor	Window

Creating	a	New	Java	Project

We	can	finally	get	started	with	our	first	Java	program.	Java	programs	in	Eclipse
are	organized	into	Projects.	To	create	a	new	Project,	right	click	(Control	+	click
on	Mac)	 on	 the	 Package	 Explorer,	 click	New,	 then	 Java	 Project,	 as	 shown	 in
Figure	2-10.

Figure	2-10:	Creating	a	new	Java	Project

The	 dialog	 box	 shown	 in	 Figure	 2-11	 will	 now	 open,	 asking	 you	 to	 assign	 a
Project	name.	Let’s	call	 the	project	“Beginning	Java”.	You	can	 leave	 the	other
boxes	as	they	are.

Figure	2-11:	New	Java	Project	Dialog

Each	 Java	 project	 created	 in	 Eclipse	 will	 have	 two	 important	 components,	 as
shown	in	the	close-up	in	Figure	2-12:

1.	 The	src	folder	is	where	we	will	place	all	of	our	source	code	(our	Java
classes).	All	the	code	that	we	will	write	will	be	placed	inside	the	src	folder.

2.	 The	second	component,	the	JRE	System	Library,	contains	all	of	the

important	Java	libraries	that	we	can	make	use	of	in	our	own	Java	code.

Figure	2-12:	Java	Project	Structure

After	assigning	the	Project	name,	click	Finish.

Creating	a	Java	Class

Java	requires	us	to	write	our	code	inside	Java	classes.	You	can	create	and	modify
classes	 inside	 a	 text	 editor	 (such	 as	Notepad	 and	TextEdit),	 or	 you	 can	use	 an
integrated	development	environment	like	Eclipse,	as	we	will	be	doing.

To	write	our	first	program,	we	must	create	our	first	Java	class.	This	is	done	by
right	clicking	(Control	+	click	for	Mac)	on	the	src	 folder,	and	selecting	New	>
Class.

The	New	 Java	Class	 dialog	will	 open.	We	will	 just	 provide	 the	 class	 name	of
FirstProgram,	leave	all	the	other	settings	as	they	are,	and	click	Finish,	ignoring
the	warning	regarding	default	packages.

Figure	2-13:	The	New	Java	Class	Dialog

Our	FirstProgram	class	will	open	automatically	in	the	Editor	window.	If	it	does
not,	double	click	on	the	FirstProgram.java	file	in	the	Package	Explorer	to	the
left.

Figure	2-14:	Our	First	Class

Eclipse	will	generate	some	basic	code	for	us	–	as	shown	in	listing	2.01.	Note	that
I	 have	 added	 some	 additional	 comments	 to	 this	 code	 in	 order	 to	 explain	what
each	line	is	doing	–	these	will	not	appear	in	your	code	unless	you	manually	add
them!

*****	Listing	2.01	FirstProgram.java*****

01						public	class	FirstProgram	{		//	Denotes	beginning	of	the	class

02																						//	methods	go	here!

03						}	//	Denotes	the	end	of	the	class

Pay	 careful	 attention	 to	 the	 opening	 and	 closing	 curly	 braces:	 {	 and	 }.	 The
former	 denotes	 where	 the	 class	 FirstProgram	 begins,	 and	 the	 latter	 denotes
where	the	class	ends.	We	will	be	writing	our	code	in	between	these	curly	braces.
Curly	braces	cause	a	lot	of	headache	for	beginning	Java	programmers,	so	I	will
help	you	with	them	by	labeling	them	throughout	the	next	several	examples.	You
should	pay	attention	to	the	curly	braces,	and	get	used	to	seeing	the	relationships
between	opening	and	curly	braces.

Main	Method

A	Java	 program	begins	with	 the	main	method.	The	main	method	 is	 called	 the
starting	 point	 of	 a	 Java	 program.	 When	 you	 build	 and	 execute	 a	 program,
whatever	 instructions	you	provide	 in	 the	main	method	will	be	 the	first	 lines	of
code	executed.	Add	the	following	code	snippet	inside	the	FirstProgram	class	(in
between	the	curly	braces).

*****	Listing	2.02	The	Main	Method*****

								public	static	void	main(String[]	args)	{

																				//	This	is	the	starting	point	of	your	program.

								}	//	End	of	main								

The	words	public,	static,	String[]	 and	args	 cause	 a	 lot	 of	 confusion	 for
first	time	Java	programmers.	We	will	come	back	to	all	of	these	words	very	soon.
For	 now,	 focus	 on	 three	 things	 that	 we	 know:	 the	 name	 of	 the	 method,	 the
method	parameter	(input)	and	the	return	type.

Referring	to	the	code	in	Listing	2.02,	the	name	of	the	method,	as	you	might	have
guessed,	 is	 main.	 It	 receives	 one	 argument	 –	 a	 group	 of	 String	 objects	 –	 to
which	we	assign	the	name	args	(This	name	comes	from	convention.	If	it	makes
you	happy,	you	can	name	it	rabbits	instead!).	The	return	type,	as	indicated	by	the
keyword	 void,	 is	 none;	 we	 do	 not	 provide	 any	 result	 or	 output	 in	 the	 main
method.
Your	program	in	Eclipse	should	now	look	as	shown	in	Figure	2-15.

Figure	2-15:	Adding	the	Main	Method

If	you	are	having	trouble	at	this	point,	I	would	suggest	that	you	visit	the	book’s
companion	site	at	jamescho7.com.	There’s	a	video	guide	that	will	help	you	get
this	up	and	running	smoothly!

Saying	Hello

A	traditional	thing	to	do	when	learning	a	new	programming	language	is	to	print
the	 words	 “Hello,	 world”	 to	 the	 console.	 This	 is	 significant	 for	 two	 reasons.
Firstly,	if	you	are	able	to	do	this	successfully,	you	know	that	your	machine	has
been	 setup	 properly	 for	 development	 (that	 our	 IDE	 and	 Java	 installation	 is
running	 smoothly	 behind	 the	 scenes).	 Secondly,	 this	 means	 that	 you	 have
executed	your	first	line	of	code	in	a	new	environment,	and	you	are	ready	to	take
things	to	the	next	level!

http://jamescho7.com

In	Chapter	1,	you	 learned	 that	you	can	print	 things	by	using	a	print()	 function.
Unfortunately,	Java	does	not	have	such	a	simple	print	function	due	to	its	object-
oriented	 design	 (which	 we	 will	 explore	 soon).	 Instead,	 we	 have	 to	 use:
System.out.println(),	where	 the	 last	 two	 letters	 are	 lowercase	LN,	 short	 for
the	word	line

Add	 the	 following	 line	 of	 code	 to	 your	 main	 method	 (in	 between	 the	 curly
braces),	remembering	that	println()	is	spelled	with	an	LN	not	IN.

System.out.println(“Hello,	world!	I	am	now	a	Java	programmer”);

Your	completed	class	should	now	look	like	that	shown	in	listing	2.03.

*****	FirstProgram.java	–	Hello	World!	*****

01	public	class	FirstProgram	{		//	Denotes	beginning	of	the	class

02														

03						public	static	void	main(String[]	args)	{		//	Beginning	of	Main

04														System.out.println("Hello,	world!	I	am	now	a	Java	programmer");

05						}	//	End	of	Main

06

07	}	//	Denotes	the	end	of	the	class

Notice	 that	 we	 use	 indentations	 to	 represent	 a	 level	 of	 hierarchy.	 The
FirstProgram	class	contains	a	main	method,	which	is	indented	once.	In	turn,	the
main	 method	 contains	 our	 println	 statement,	 which	 is	 indented	 twice.	 Such
formatting	allows	us	to	quickly	determine	how	lines	of	code	form	structures	and
where	each	such	section	begins	and	ends.

Executing	Java	Programs

To	execute	 a	 program,	we	 simply	 right	 click	 (Control	+	 click	on	Mac)	 on	our
project’s	 src	 folder	 (or	 our	 FirstProgram	 class),	 click	 on	 Run	 As	 >	 Java
Application,	as	shown	in	Figure	2-16.

When	you	run	the	program	the	Console	should	pop	up	(as	shown	in	Figure	2-17)
and	display	 the	message	“Hello,	world!	 I	 am	now	a	 Java	Programmer”.	 If,	 for
any	reason,	the	console	doesn’t	appear	then	you	can	make	it	appear	by	clicking
on	 the	Window	 menu	 on	 the	 toolbar	 (top	 of	 the	 Eclipse	 window)	 and	 then
selecting	Show	View	>	Console.

Figure	2-16:	Running	a	Java	Application

Figure	2-17:	The	Console	displaying	the	output	from
FirstProgram.java

Success!	If	you	were	able	to	get	this	printed,	congratulations!	You	have	written
your	first	Java	program	successfully.

If	you	are	having	 trouble	getting	 this	message	 to	show,	please	visit	 this	book’s
companion	website	at	jamescho7.com.	There	is	a	video	guide	that	will	walk	you
through	the	steps	and	make	sure	you	are	able	to	do	this	without	any	issues.

Explaining	the	Magic	–	The	Compiler	and	the	JVM

Figure	2-18:	Java	Magic?

What	 happened	 between	 our	 clicking	 that	 run	 button	 and	 the	 appearance	 of
“Hello,	world…?”	Believe	it	or	not,	a	whole	lot	of	 things	happened	behind	the
scenes.	 When	 our	 source	 code	 was	 written,	 it	 was	 compiled	 by	 our	 Java
compiler,	meaning	that	the	code	was	checked	for	potential	errors	and	converted
into	a	 language	 that	only	a	machine	could	understand.	This	machine,	which	 is
called	JVM	(Java	Virtual	Machine)	executed	our	code,	printing	the	desired	text
to	the	console.

The	 JVM,	 as	 its	 name	 suggests,	 is	 a	 virtual	 machine.	 It	 runs	 on	 top	 of	 the
operating	system	and	is	capable	of	executing	Java	instructions.	The	advantage	of
using	such	a	virtual	machine	is	 that	you	can	write	cross-platform	Java	code	on
one	operating	system	(such	as	Windows	or	Mac)	that	runs	on	another.

Building	a	Simple	Calculator	Program

Now	that	we’ve	gotten	our	feet	wet,	 let’s	bring	back	some	of	the	concepts	that
we’ve	discussed	in	Chapter	1	and	build	a	simple	calculator	program.	Let	me	give
you	some	on-your-own	practice	with	setting	up	a	new	Java	program.	Remember
the	major	steps:

1.	 Create	a	new	Java	Project	(call	it	SecondProject).
2.	 Create	a	new	Class	inside	the	src	folder	(call	it	SimpleCalculator).
3.	 Create	a	main	method.

If	at	any	time	you	get	stuck,	you	should	refer	to	the	previous	sections.	Once	you
have	followed	the	steps	above,	you	should	have	something	that	looks	like	listing
2.04.

*****	Listing	2.04	The	SimpleCalcualtor	class	*****

public	class	SimpleCalculator	{

								

								public	static	void	main(String[]	args)	{

																

								}

}

The	 idea	 behind	 our	 calculator	 app	 will	 be	 simple.	 We	 will	 create	 two	 float
variables,	 representing	 our	 two	 operands.	 We	 will	 create	 a	 third	 variable	 to
represent	the	operation	that	we	wish	to	perform.

We	will	represent	our	operation	using	an	integer,	with	the	following	rules:

1.	 Addition
2.	 Subtraction
3.	 Multiplication
4.	 Division

Our	 source	 code	 will	 examine	 and	 use	 the	 values	 of	 our	 three	 variables	 to
produce	 the	arithmetic	 result	 that	 is	 requested.	Add	 the	following	code	 to	your
SimpleCalculator	class.	The	new	code	is	shown	on	lines	04	to	31.

*****	Listing	2.05	*****

01	public	class	SimpleCalculator	{

02						

03			public	static	void	main(String[]	args)	{

04						float	operand1	=	5;

05						float	operand2	=	10;

06						int	operation	=	1;

07

08						if	(operation	==	1)	{	

09

10														//	Addition

11														System.out.println(operand1	+	"	+	"	+	operand2	+	"	=");

12														System.out.println(operand1	+	operand2);

13

14						}	else	if	(operation	==	2)	{

15

16														//	Subtraction

17														System.out.println(operand1	+	"	-	"	+	operand2	+	"	=");

18														System.out.println(operand1	-	operand2);

19

20						}	else	if	(operation	==	3)	{

21

22														//	Multiplication

23														System.out.println(operand1	+	"	*	"	+	operand2	+	"	=");

24														System.out.println(operand1	*	operand2);

25

26						}	else	{

27

28														//	Division

29														System.out.println(operand1	+	"	/	"	+	operand2	+	"	=");

30														System.out.println(operand1	/	operand2);

31						}

32

33			}

34	}

Run	the	program!	You	should	get	the	following	output:

5.0	+	10.0	=

15.0

Take	a	moment	to	look	over	the	code.	Let’s	make	sure	we	can	step	through	our
code	line	by	line	and	describe	what	is	happening.

We	begin	by	declaring	 two	new	 float	 variables	 called	operand1	 and	operand2,
initializing	 them	with	 the	 values	 5	 and	 10.	We	 declare	 a	 third	 variable	 called

operation,	and	assign	a	value	of	1.

After	 that,	 we	 have	 a	 series	 of	 if-statements,	 which	 test	 the	 value	 of	 our
operation	 variable	 to	 determine	 the	 correct	 operation	 to	 perform.	When	 an	 if-
statement	 is	 satisfied,	 two	System.out.println()	 statements	 execute,	printing
the	result	that	we	see.	Notice	here	that	we	are	concatenating	(combining)	strings
with	float	values	by	using	the	addition	operator.

Now	what	do	we	have	to	modify	if	we	want	to	calculate	the	value	of	25	*	17?
We	simply	change	the	value	operand1	to	25,	operand2	to	17	and	operation	to	3,
as	shown	in	listing	2.06.

*****	Listing	2.06	The	Modified	SimpleCalcualtor	class		*****

public	class	SimpleCalculator	{

								

public	static	void	main(String[]	args)	{

																float	operand1	=	5;

																float	operand2	=	10;

																int	operation	=	1;

																float	operand1	=	25;

																float	operand2	=	17;

																int	operation	=	3;

																if	(operation	==	1)	{	

																								//	Addition

																								System.out.println(operand1	+	"	+	"	+	operand2	+	"	=");

																								System.out.println(operand1	+	operand2);	

																}	else	if	(operation	==	2)	{

																								//	Subtraction

																								System.out.println(operand1	+	"	-	"	+	operand2	+	"	=");

																								System.out.println(operand1	-	operand2);

																}	else	if	(operation	==	3)	{

																								//	Multiplication

																								System.out.println(operand1	+	"	*	"	+	operand2	+	"	=");

																								System.out.println(operand1	*	operand2);

																}	else	{

																								//	Division

																								System.out.println(operand1	+	"	/	"	+	operand2	+	"	=");

																								System.out.println(operand1	/	operand2);

																}

								}

}

Running	the	program	again,	we	should	see:

25.0	*	17.0	=

425.0

Our	SimpleCalculator	isn’t	very	useful	right	now.	It	requires	us	to	change	our
code	 every	 time	we	want	 to	 perform	 a	 simple	 calculation.	 The	 better	 solution
would	be	to	ask	the	user	of	the	program	to	provide	us	with	the	desired	values	for
operand1,	operand2	and	operation.	It	turns	out	that	Java	gives	us	a	way	to	do
that,	but	that	requires	us	to	understand	how	to	work	with	objects	first,	so	we	will
hold	off	on	that	discussion	for	now.

Building	a	Simple	Counting	Program

For	the	next	example,	we	will	make	use	of	the	for	loop	that	we	have	discussed	in
Chapter	1	to	print	all	the	even	numbers	between	the	numbers	5	and	12.	This	is	a
simple	toy	example,	but	mastering	the	tricky	for	loop	syntax	is	important.

Create	a	new	Java	project	called	CountingProject	and	create	a	new	class	called
EvenFinder	and	add	the	main	method	as	given	in	listing	2.07.

*****	Listing	2.07	The	EvenFinder	class	*****

01	public	class	EvenFinder	{

02

03						public	static	void	main(String[]	args)	{

04														int	startingNum	=	5;

05														int	endingNum	=	12;

06																						

07														for	(int	i	=	startingNum;	i	<	endingNum	+	1;	i++)	{

08																						

09																						//	Execute	following	code	if	i	<	endingNum	+	1

10														

11																						if	(i	%	2	==	0)	{

12																														System.out.println(i	+	"	is	an	even	number.");

13																						}	else	{

14																														System.out.println(i	+	"	is	an	odd	number.");

15																						}

16																														

17																						//	Repeat	for	loop

18														}

19						}

20	}

Running	the	program,	you	should	see	the	following	output:

5	is	an	odd	number.

6	is	an	even	number.

7	is	an	odd	number.

8	is	an	even	number.

9	is	an	odd	number.

10	is	an	even	number.

11	is	an	odd	number.

12	is	an	even	number.

Recall	that	a	for	loop	has	three	components.	We	first	initialize	a	counter	variable
i.	We	then	provide	a	terminating	condition,	which	says,	“run	this	loop	until	this
condition	is	no	longer	satisfied.”	Lastly,	we	provide	a	rule	for	incrementing	the
counter	variable.

In	the	previous	example,	the	counter	begins	with	the	value	of	5	and	increases	as
long	as	its	value	is	less	than	endingNum	+	1.	When	the	value	of	i	becomes	equal
to	 endingNum	 +	 1,	 the	 loop	 terminates	 (its	 body	 is	 not	 executed),	 and	 the
program	ends.

Try	walking	 yourself	 through	 this	 code,	 line	 by	 line,	mentally	 incrementing	 i
each	time	that	the	loop	“runs.”	Make	sure	that	you	understand	when	and	why	the
for	 loop	 terminates.	 If	 this	 is	difficult,	 it	may	be	helpful	 to	 review	Chapter	1’s
section	on	loops.

Basics	of	Objects

We’ve	applied	the	concepts	discussed	in	Chapter	1	 to	write	and	run	some	very
simple	Java	programs.	Next,	we	turn	our	attention	to	objects,	which	will	allow	us
to	write	more	complex	and	powerful	programs.

What	are	objects?	It	helps	to	think	of	Java	objects	in	the	same	way	you	envision
objects	in	the	real	world.	Objects	in	our	world	have	properties	that	we	call	state
and	behavior.

Let’s	take	your	phone	for	example.	Your	phone	has	state	–	it	may	have	a	black
color,	and	it	may	be	powered	on.	These	attributes	that	can	help	you	describe	your
phone	make	up	 its	state.	Your	phone	also	has	behavior.	 It	may	be	able	 to	play
music	 or	 respond	 to	 your	 touch.	 Often	 (but	 not	 always),	 these	 behaviors	 are
dependent	 on	 the	 phone’s	 state.	 For	 example,	 if	 your	 phone	 is	 powered	 off
(which	is	a	property	of	its	state),	your	phone	will	no	longer	be	able	to	perform
either	of	these	behaviors.

Java	objects	are	not	so	different.	They	also	have	both	state	and	behavior.	In	fact,
you’ve	 already	 been	 studying	 states	 and	 behaviors	 throughout	 this	 book.
Variables	are	often	used	to	describe	an	object’s	state.	Functions,	which	we	will
refer	to	as	methods,	describe	an	object’s	behavior.

Figure	 2-19	 shows	 an	 example	 of	 how	we	might	 design	 a	 Java	 Phone	 object
using	variables	and	methods.

Figure	2-19:	An	Outline	of	a	Phone	Object

Classes

How	does	an	object	outline	such	as	the	one	in	shown	Figure	2-19	translate	into
Java	 code?	We	make	 use	 of	 classes.	We’ve	 created	many	 classes	 already,	 but
we’ve	yet	to	discuss	what	a	class	is.
A	 class	 provides	 a	 template	 for	 creating	 a	 Java	 object.	 A	 common	 analogy
describes	a	class	as	a	blueprint.	Here	is	what	a	Phone	class	might	look	like:

*****	Listing	2.08	An	Example	Phone	Class	*****

01		public	class	Phone	{

02

03						//	These	variables	describe	the	Phone	object's	state

04						boolean	poweredOn;

05						boolean	playingMusic;

06						String	phoneManufacturer;

07						double	androidVersionNumber;

08

09						//	These	methods	are	the	Phone	object's	behaviors

10						void	togglePower()	{

11														if	(poweredOn)	{

12																						System.out.println("Powering	off!");

13																						poweredOn	=	false;

14																						playingMusic	=	false;

15														}	else	{

16																						System.out.println("Powering	on!");

17																						poweredOn	=	true;

18														}

19						}	//	ends	togglePower	method

20

21						void	playMusic()	{

22														if	(poweredOn)	{

23																						System.out.println("Playing	music!");

24																						playingMusic	=	true;

25														}

26						}	//	ends	playMusic	method

27						

28						void	upgrade(double	newVersion)	{

29														if	(newVersion	>	androidVersionNumber)	{

30																						androidVersionNumber	=	newVersion;

31											}	else	{

32																						System.out.println("Upgrade	failed!");

33										}

34						}	//	ends	upgrade	method

35

36		}	//	ends	class

This	Phone	class	shown	in	listing	2.8	is	a	blueprint	for	creating	individual	Phone
objects.	It	tells	us	what	properties	(state	and	behavior)	an	object	requires	in	order
to	be	a	Phone	object.	We	will	explore	what	 this	means	using	code,	and	discuss
the	implications	of	the	class-object	relationship	in	a	later	section.

KEY	POINT

Quick	note	on	naming	conventions
You	may	have	noticed	that	we	follow	some	conventions	when	naming	our
classes,	variables	and	methods.	These	are	agreed	upon	rules	that	you	should
learn	and	follow.	Let’s	go	over	them	in	detail.	Class	names,	variable	names	and
method	names	should	always	be	one	word	(multiple	words	are	combined	into
one).	When	naming	classes,	we	use	what’s	referred	to	as	UpperCamelCase,
where	we	capitalize	the	first	letter	of	every	word.	In	this	book,	names	of	classes
are	written	in	bold,	fixed-width	font.	The	following	are	proper	class	names
(notice	that	they	are	all	nouns):

Game				DragonKnight				SimpleCalculator				MathHelper

When	naming	variables	and	methods,	we	use	camelCase.	We	lowercase	the	first
word	of	the	name	and	capitalize	the	first	letter	of	every	subsequent	word.	In	this
book,	names	of	variables	and	methods	are	written	in	regular,	fixed-width	font.
The	following	are	proper	variable	and	method	names	(notice	that	variables
names	are	nouns	and	that	method	names	are	verbs):

versionNumber				drawCharacter()										addNum()				failingStudent

Working	with	Objects

We	 will	 now	 practice	 working	 with	 Java	 objects.	 Create	 a	 new	 Java	 project
called	BasicObjects.	Then,	create	a	new	class	called	World	and	give	it	a	simple
“Hello,	world!”	main	method,	as	shown	in	listing	2.09.

*****	Listing	2.09	-	World.java*****

public	class	World	{

								

								public	static	void	main(String[]	args)	{

																System.out.println(“Hello,	world!”);

								}

}

The	World	class	will	 represent	a	small	virtual	world	 that	we	can	populate	with
objects.	 It	will	also	be	 the	entry	point	 in	our	program	(the	class	 that	we	run	 to
begin	the	program),	and	hence	requires	the	main	method.

Inside	the	same	src	folder,	create	a	second	class	called	Phone,	as	shown	in	Figure
2-20.

Figure	2-20:	The	Class	Structure	for	BasicObjects

Copy	the	Phone	class	from	listing	2.08	into	the	Phone.java	 file	in	Eclipse.	The
Phone	class	should	NOT	have	a	main	method.	The	purpose	of	Phone	is	to	simply
hold	information	regarding	a	virtual	device;	it	is	a	representation	of	an	imaginary
phone,	 nothing	 more.	 The	 Phone	 and	 World	 classes	 together	 make	 up	 one
program,	and	in	this	book	our	programs	will	typically	have	just	one	main	method
–	meaning	that	there	will	only	be	one	way	to	start	them.

Can	you	predict	what	would	happen	if	we	were	 to	run	our	 two	class	program?
Will	the	code	from	the	World	class	run?	Will	 the	code	from	the	Phone	class	be
run?	 There’s	 only	 one	 way	 to	 find	 out.	 Start	 the	 program	 by	 right-clicking
(Control	 +	 click	 on	Mac)	 on	 the	 src	 folder	 and	 running	 the	 project	 as	 a	 Java

application.	You	should	see	the	following	output:

Hello,	world!

Our	project	had	two	classes,	but	Eclipse	was	able	to	locate	the	class	containing
the	main	method	(World.java),	and	 run	 it.	Despite	having	a	 lot	of	code	 in	 the
Phone	 class,	 none	 of	 it	 had	 any	 impact	 on	 our	 output,	 because	 we	 had	 never
asked	 our	main	method	 to	 perform	 any	 behavior	 using	 the	 Phone	 class.	 Let’s
change	that.

Creating	New	Object	Variables

We	are	going	to	create	a	new	Phone	object	variable	using	the	Phone	class	as	our
blueprint.	To	do	this,	we	use	the	following	syntax:

Phone	myPhone	=	new	Phone();

Creating	an	object	variable	follows	the	same	pattern	that	we’ve	previously	used
to	create	primitive	variables.	We	begin	by	declaring	the	type	(Phone),	then	assign
a	name	(myPhone),	and	lastly	assign	the	value.

The	syntactic	difference	arises	 in	 this	 final	step.	To	create	a	new	Phone	object,
we	must	use	Java’s	built-in	keyword	new	and	declare	 the	blueprint	 that	we	are
using	to	create	our	Phone	object,	which	is	 the	Phone	class.	Let’s	add	the	above
line	of	code	into	our	main	method	as	shown	in	listing	2.10	on	line	05.

*****	Listing	2.10	-	World.java	(Updated)*****

01						public	class	World	{

02														

03														public	static	void	main(String[]	args)	{

04																						System.out.println("Hello,	world!");

05																						Phone	myPhone	=	new	Phone();

06														}

07						}

We	will	talk	about	the	effect	of	the	new	keyword	and	what	exactly	happens	when
we	declare	new	Phone()	later	on	in	the	book

Assigning	and	Accessing	an	Object’s	State

Now	we	have	access	to	a	Phone	object!	myPhone	represents	a	single	Phone	object
created	using	the	Phone	class.	 It	 is	an	independent	entity	from	any	other	Phone
objects	 that	may	be	created	using	our	blueprint	 (the	Phone	class)	 in	 the	future.
We	use	the	word	instance	to	describe	this	phenomenon.

To	elaborate,	let’s	think	about	what	happens	when	we	mass	produce	smartphones
inside	a	 factory.	We	use	 the	same	blueprint	 to	create	 thousands	of	devices,	yet
they	 are	 all	 independent.	 They	 each	 have	 their	 own	 properties	 and	 behaviors,
meaning	 that	 turning	off	one	device	won’t	 affect	 other	phones	made	using	 the
same	blueprint.	In	much	the	same	way,	each	object	created	from	a	single	class	is
an	 independent	 instance	of	 that	class,	and	receives	 its	own	copy	of	 the	various
variables	 that	 describe	 the	 object’s	 state.	 These	 variables	 are	 called	 instance
variables.

We	can	now	start	 to	modify	our	myPhone’s	 state	 and	 invoke	 its	behavior.	Let’s
first	assign	some	 initial	values	 for	our	single	Phone	 object’s	 state,	 as	 shown	 in
listing	2.11	(lines	06	through	09):

*****	Listing	2.11	-	World.java	(Updated	#2)*****

01		public	class	World	{

02														

03						public	static	void	main(String[]	args)	{

04														System.out.println("Hello,	world!");

05														Phone	myPhone	=	new	Phone();

06														myPhone.poweredOn	=	true;

07														myPhone.playingMusic	=	false;

08														myPhone.phoneManufacturer	=	"Samsung";

09														myPhone.androidVersionNumber	=	4.4;

10						}

11		}

Take	note	of	how	we	access	instance	variables	that	belong	to	our	Phone	object.
To	retrieve	a	specific	variable	from	an	object,	we	use	the	dot	operator.	The	dot
operator	is	used	to	indicate	ownership.	For	example,	myPhone.poweredOn	 refers
to	the	poweredOn	variable	that	belongs	to	the	myPhone	object.

Now	 that	 we’ve	 assigned	 some	 initial	 values	 to	 our	 Phone	 object’s	 variables,
myPhone	 is	a	bundle	of	descriptive	data.	 If	 someone	has	access	 to	our	myPhone

object,	he	or	she	will	know	exactly	what	myPhone’s	current	state	is	by	printing
their	values,	as	shown	in	listing	2.12	(lines	11	through	15):

*****	Listing	2.12	-	World.java	(Updated	#3)*****

01		public	class	World	{

02														

03						public	static	void	main(String[]	args)	{

04														System.out.println("Hello,	world!");

05														Phone	myPhone	=	new	Phone();

06														myPhone.poweredOn	=	true;

07														myPhone.playingMusic	=	false;

08														myPhone.phoneManufacturer	=	"Samsung";

09														myPhone.androidVersionNumber	=	4.4;

10														

11														System.out.println("myPhone's	state:");

12														System.out.println("Powered	on:	"	+	myPhone.poweredOn);

13														System.out.println("Playing	music:	"	+	myPhone.playingMusic);

14														System.out.println("Manufacturer:	"	+	myPhone.phoneManufacturer);

15														System.out.println("Version:	"	+	myPhone.androidVersionNumber);

16						}

17		}

Run	the	program	again.	You	should	see	the	following	output:

Hello,	world!

myPhone's	state:

Powered	on:	true

Playing	music:	false

Manufacturer:	Samsung

Version:	4.4

As	you	see,	we	were	able	to	group	together	meaningful	data	into	one	bundle	–	a
Phone	 object	 called	 myPhone.	 myPhone	 is	 now	 a	 complex	 collection	 of
information.	We	will	explore	how	this	can	be	useful	in	the	coming	sections.

Invoking	an	Object’s	Behavior

In	 the	 previous	 section,	 we	 discussed	 how	 to	 assign	 and	 access	 the	 state
(variables)	 of	 objects	 that	we	 create.	We	will	 next	 discuss	methods,	 and	 learn
how	to	invoke	the	object’s	behavior.

Invoking	 methods	 also	 requires	 us	 to	 use	 the	 dot	 operator.	 We	 use	 the	 dot
operator	to	reference	specific	methods	that	belong	to	a	particular	object.	Add	the
two	lines	of	code	at	the	bottom	of	the	main	method	shown	in	listing	2.12:

myphone.togglePower();

myphone.upgrade(4.5);

If	we	 refer	 back	 to	 our	Phone	 class,	we	will	 see	 that	 the	 togglePower	method
checks	the	current	value	of	the	boolean	poweredOn,	and	inverts	it	(true	becomes
false,	 false	 becomes	 true).	 Since	 myPhone	 was	 initially	 powered	 on	 when	 we
created	 the	object,	we	expect	 that	myPhone	will	now	be	powered	off.	We	also
can	predict	that	myPhone’s	androidVersionNumber	has	changed	to	4.5,	up	from
4.4.

To	 test	 this,	we	will	print	our	myPhone	object’s	 state	once	more,	adding	some
print	statements	to	the	bottom	of	the	main	method	as	shown	in	listing	2.13.

*****	Listing	2.13	-	Printing	myPhone’s	State*****

01		public	class	World	{

02														

03						public	static	void	main(String[]	args)	{

04														System.out.println("Hello,	world!");

05														Phone	myPhone	=	new	Phone();

06														myPhone.poweredOn	=	true;

07														myPhone.playingMusic	=	false;

08														myPhone.phoneManufacturer	=	"Samsung";

09														myPhone.androidVersionNumber	=	4.4;

10																						

11														System.out.println("myPhone's	state:");

12														System.out.println("Powered	on:	"	+	myPhone.poweredOn);

13														System.out.println("Playing	music:	"	+	myPhone.playingMusic);

14														System.out.println("Manufacturer:	"	+	myPhone.phoneManufacturer);

15														System.out.println("Version:	"	+	myPhone.androidVersionNumber);

16																						

17														myPhone.togglePower();

18														myPhone.upgrade(4.5);

19														

20														//	include	“\n”	to	skip	a	line	when	printing.

21														System.out.println("\nmyPhone's	NEW	state:");

22														System.out.println("Powered	on:	"	+	myPhone.poweredOn);

23														System.out.println("Playing	music:	"	+	myPhone.playingMusic);

24														System.out.println("Manufacturer:	"	+	myPhone.phoneManufacturer);

25														System.out.println("Version:	"	+	myPhone.androidVersionNumber);

26						}

27		}

The	corresponding	output	is:

Hello,	world!

myPhone's	state:

Powered	on:	true

Playing	music:	false

Manufacturer:	Samsung

Version:	4.4

Powering	off!

myPhone's	NEW	state:

Powered	on:	false

Playing	music:	false

Manufacturer:	Samsung

Version:	4.5

As	predicted,	our	phone	has	powered	off,	and	its	version	number	is	now	4.5.	We
were	 able	 to	 invoke	 our	 myPhone’s	 behavior	 to	 perform	 specific	 behavior	 to
modify	myPhone’s	state.

Hiding	Our	Variables

Notice	 that,	 thus	 far,	 we	were	 able	 to	modify	 our	 Phone	 object’s	 state	 in	 two
different	 ways.	 We	 were	 able	 to	 access	 its	 variables	 directly	 using	 the	 dot
operator	 and	assign	explicit	values,	 and	we	were	also	able	 to	use	 the	behavior
provided	by	the	Phone	object	to	indirectly	modify	our	Phone	object’s	state.

If	we	are	able	to	directly	reach	into	our	myPhone	object	and	pull	out	and	modify
its	 information,	we	say	 that	 the	object’s	variables	are	exposed.	From	this	point
on,	we	will	 refrain	from	exposing	our	variables,	as	 this	can	be	problematic	 for
many	reasons.

For	instance,	what	if	someone	tried	to	assign	an	 illegal	 (or	 illogical)	value	to	a
variable?	The	following	code	would	be	accepted	by	our	Java	program,	but	it	may
cause	 problems	 later	 on	 if	 we	 were	 to	 extend	 this	 program,	 and	 these	 values
actually	mattered	for	some	other	functionality.

myPhone.androidVersionNumber	=	-10;					//	Version	should	be	positive

myPhone.poweredOn	=	false;														//	This	is	fine

myPhone.playingMusic	=	true;												//	Shouldn’t	play	music	while	phone	is	off

Another	 reason	 that	 exposing	 variables	 can	 be	 problematic	 is	 that	we	may	 be
dealing	with	sensitive	information.	If	we	were	running	the	video-sharing	website
discussed	in	the	first	page	of	this	chapter,	we	would	not	want	people	to	be	able	to
access	 our	 User	 object’s	 password	 variable	 –	 it	 should	 always	 be	 hidden.
Security	is	an	issue	here.

The	 third	 reason	we	want	 to	 hide	 our	 variables	 is	 for	maintenance	 and	 scale.
When	we	 later	 have	more	 complex	programs	 and	games	with	 lots	 of	 different
types	 of	 objects	 interacting	 with	 each	 other,	 we	 want	 to	 reduce	 dependencies
(functionality	 that	 relies	 very	 heavily	 on	 specific	 interactions)	 as	 much	 as
possible.	We	need	 to	 keep	 in	mind	 that	 programs	 and	games	 can	 change.	You
may	choose	to	remove	classes	and	create	new	ones,	but	you	don’t	want	to	have
to	rewire	an	entire	application	to	handle	a	minor	change.

For	 example,	 let’s	 say	you	have	 an	Enemy	 class	 that	 interacts	very	well	with	 a
Player	 class	 and	 a	 GameLevel	 class.	 Later	 on,	 you	 decide	 that	 you	 want	 to

remove	the	Enemy	and	replace	it	with	a	SuperZombieOrangutan	class.	If	there	are
too	 many	 dependencies	 between	 the	 Enemy	 and	 the	 Player	 and	 GameLevel
classes,	 you	 may	 end	 up	 rewriting	 both	 of	 those	 classes	 to	 handle	 your	 new
enemy	 type	 –	 you’d	 be	 creating	 three	 new	 classes	 rather	 than	 one.	 This	 can
become	 a	 malicious	 pattern.	 If	 this	 were	 a	 time-consuming	 undertaking,	 you
might	 decide	 that	 the	 change	 isn’t	 worth	 the	 effort,	 which	 would	 mean	 your
game	would	have	one	fewer	zombie	orangutan.	That’s	never	a	good	thing.

In	short,	you	want	to	be	able	to	add	the	features	you	want	to	your	games	without
worrying	about	what	a	nightmare	it	would	be	to	modify	your	existing	code.	This
means	that	we	want	 to	keep	our	classes	as	 independent	as	possible,	and	hiding
our	variables	is	a	step	in	the	right	direction.	We	will	explore	this	concept	further
in	a	later	chapter.

Improving	Our	Program

Let’s	 keep	 the	 above	 principles	 in	mind	 and	 try	 to	 improve	 our	 program.	We
begin	 by	 adding	 the	 built-in	 Java	 keyword	 private	 as	 a	modifier	 to	 all	 of	 our
Phone	object’s	variables,	as	shown	in	listing	2.14,	lines	04	to	07.

*****	Listing	2.14	-	Hiding	the	variables	in	the	Phone	Class	*****

01		public	class	Phone	{

02

03						//	These	variables	describe	the	Phone	object's	state

04						private	boolean	poweredOn;

05						private	boolean	playingMusic;

06						private	String	phoneManufacturer;

07						private	double	androidVersionNumber;

08

09						//	These	methods	are	the	Phone	object's	behaviors

10						void	togglePower()	{

11														if	(poweredOn)	{

12																						System.out.println("Powering	off!");

13																						poweredOn	=	false;

14																						playingMusic	=	false;

15														}	else	{

16																						System.out.println("Powering	on!");

17																						poweredOn	=	true;

18														}

19						}	//	ends	togglePower	method

20

21						void	playMusic()	{

22														if	(poweredOn)	{

23																						System.out.println("Playing	music!");

24														}

25						}	//	ends	playMusic	method

26						

27						void	upgrade(double	newVersion)	{

28														if	(newVersion	>	androidVersionNumber)	{

29																						androidVersionNumber	=	newVersion;

30											}	else	{

31																						System.out.println("Upgrade	failed!");

32										}

33						}	//	ends	upgrade	method

34

35		}	//	ends	class

Making	our	variables	private	means	that	other	classes	will	no	longer	be	able	to

access	them	directly,	meaning	that	the	variables	are	no	longer	exposed.	Because
of	this,	you	will	see	errors	appear	in	your	World	class,	as	shown	in	Figure	2-21
(you	cannot	directly	refer	to	a	private	variable	from	a	different	class).

Your	program	currently	has	what	we	call	compile-time	errors	(errors	that	occur
during	 compilation	 of	 your	 code	 –	 review	 Figure	 2-18	 and	 the	 subsequent
discussion).	A	program	with	compile-time	errors	will	never	run.	The	JVM	won’t
even	accept	it.	Let’s	remove	all	of	the	lines	that	are	causing	errors	as	shown	in
listing	2.15	(remove	all	the	lines	that	have	a	line	through	them).

Figure	2-21:	A	Catastrophic	Error?

*****	Listing	2.15	-	World.java	–	Removing	the	Errors		*****

01		public	class	World	{

02														

03						public	static	void	main(String[]	args)	{

04														System.out.println("Hello,	world!");

05														Phone	myPhone	=	new	Phone();

06														myPhone.poweredOn	=	true;

07														myPhone.playingMusic	=	false;

08														myPhone.phoneManufacturer	=	"Samsung";

09														myPhone.androidVersionNumber	=	4.4;

10																						

11														System.out.println("myPhone's	state:");

12														System.out.println("Powered	on:	"	+	myPhone.poweredOn);

13														System.out.println("Playing	music:	"	+	myPhone.playingMusic);

14														System.out.println("Manufacturer:	"	+	myPhone.phoneManufacturer);

15														System.out.println("Version:	"	+	myPhone.androidVersionNumber);

16																						

17														myPhone.togglePower();

18														myPhone.upgrade(4.5);

19														

20														//	include	“\n”	to	skip	a	line	when	printing.

21														System.out.println("\nmyPhone's	NEW	state:");

22														System.out.println("Powered	on:	"	+	myPhone.poweredOn);

23														System.out.println("Playing	music:	"	+	myPhone.playingMusic);

24														System.out.println("Manufacturer:	"	+	myPhone.phoneManufacturer);

25														System.out.println("Version:	"	+	myPhone.androidVersionNumber);

26						}

27		}			

In	 performing	 this	 clean-up,	 we	 have	 just	 removed	 two	 features	 from	 our
program.	We	are	no	longer	able	to	assign	starting	values	for	our	Phone	objects’
variables,	and	we	are	no	longer	able	to	access	these	variables	to	print	them.	We
can	 bring	 these	 features	 back	 in	 a	 more	 efficient	 way	 by	 providing	 methods
inside	the	Phone	class	that	performs	these	tasks	for	us.

Let’s	add	two	new	methods	to	our	Phone	class	initialize()	and	describe(),
as	shown	in	listing	2.16,	and	provide	starting	values	for	our	playingMusic	and
androidVersionNumber	variables	(lines	05	and	07	of	listing	2.16):

*****	Listing	2.16	-	Phone.java	–	Updated	*****

01		public	class	Phone	{

02

03						//	These	variables	describe	the	Phone	object's	state

04						private	boolean	poweredOn;

05						private	boolean	playingMusic	=	false;

06						private	String	phoneManufacturer;

07						private	double	androidVersionNumber	=	4.4;

08

09						//	These	methods	are	the	Phone	object's	behaviors

10						void	initialize(boolean	poweredOn,	String	phoneManufacturer)	{

11														this.poweredOn	=	poweredOn;

12														this.phoneManufacturer	=	phoneManufacturer;

13						}

14

15						void	togglePower()	{

16														if	(poweredOn)	{

17																						System.out.println("Powering	off!");

18																						poweredOn	=	false;

19																						playingMusic	=	false;

20														}	else	{

21																						System.out.println("Powering	on!");

22																						poweredOn	=	true;

23														}

24						}	

25

26						void	playMusic()	{

27														if	(poweredOn)	{

28																						System.out.println("Playing	music!");

29														}

30						}	

31														

32						void	upgrade(double	newVersion)	{

33														if	(newVersion	>	androidVersionNumber)	{

34																						androidVersionNumber	=	newVersion;

35														}	else	{

36																						System.out.println("Upgrade	failed!");

37										}

38						}	

39														

40						void	describe()	{

41														System.out.println("\nPhone's	state:");

42														System.out.println("Powered	on:	"	+	poweredOn);

43														System.out.println("Playing	music:	"	+	playingMusic);

44														System.out.println("Manufacturer:	"	+	phoneManufacturer);

45														System.out.println("Version:	"	+	androidVersionNumber);

46						}

47

48		}	//	ends	class					

Let’s	discuss	the	describe	method	(lines	40	to	46	in	listing	2.16):	You	will	notice
that	it	performs	the	same	printing	behavior	that	we	were	previously	performing
inside	the	World	class.	This	time,	we	do	not	have	to	use	the	dot	operator,	because
the	variables	are	being	accessed	from	within	the	same	class.

In	some	cases,	however,	you	do	need	to	use	the	dot	operator.	Have	a	close	look
at	the	initialize()	method	(lines	10	to	13	in	listing	2.16):

void	initialize(boolean	poweredOn,	String	phoneManufacturer)	{

																this.poweredOn	=	poweredOn;

																this.phoneManufacturer	=	phoneManufacturer;

}

The	 initialize()	 method	 simply	 accepts	 two	 inputs:	 a	 boolean	 called
poweredOn	 and	 a	 String	 called	 phoneManufacturer.	 The	 only	 function	 of	 this
method	is	to	initialize	the	two	variables	that	we	have	not	provided	default	values
for:	poweredOn	 and	phoneManufacturer	 (recall	 that	we	 have	 provided	 starting
values	for	the	other	two	variables).

Notice	 that	we	do	 use	 the	 dot	 operator	 here.	 Using	 the	 this	 keyword	 lets	 our
program	know	that	we	are	 referring	 to	 this	 instance	of	 the	object	–	 the	current
Phone	object	 that	we	are	calling	the	initialize()	method	on.	This	 is	how	we
can	distinguish	between	 the	poweredOn	 variable	 that	 belongs	 to	 the	object	and
the	 poweredOn	 variable	 that	 belongs	 to	 the	 method	 (received	 from	 the
arguments).

Now	 that	 we’ve	 created	 two	 methods	 that	 will	 allow	 us	 to	 access	 our	 Phone
objects’	 private	 variables,	 let’s	 change	 our	 World	 class	 so	 that	 it	 calls	 these
methods	as	highlighted	on	lines	06,	07	and	10	of	listing	2.17.

Figure	2-22:	Same	Names	Different	Owners

*****	Listing	2.17	-	World.java	–	Calling	the	New	Methods		*****

01		public	class	World	{

02

03						public	static	void	main(String[]	args)	{

04														System.out.println("Hello,	world!");

05														Phone	myPhone	=	new	Phone();

06														myPhone.initialize(false,	"Samsung");

07														myPhone.describe();

08														myPhone.togglePower();

09														myPhone.upgrade(4.5);

10														myPhone.describe();

11						}

12		}			

The	corresponding	output	is:

Hello,	world!

Phone's	state:

Powered	on:	false

Playing	music:	false

Manufacturer:	Samsung

Version:	4.4

Powering	on!

Phone's	state:

Powered	on:	true

Playing	music:	false

Manufacturer:	Samsung

Version:	4.5

Distinguishing	Between	Classes	and	Objects

It	is	important	for	us	to	understand	the	difference	between	a	class	and	an	object,
so	let’s	review.	Objects	are	just	collections	of	data	–	they	comprise	a	set	of	bits
that	describe	a	relationship	of	variables	and	methods.	Classes	are	the	blueprints
used	for	creating	these	objects.

To	illustrate	this,	let’s	pretend	that	you	are	playing	with	Legos	(you	can	never	be
too	 old	 for	 Legos).	 You	 pull	 out	 an	 instructions	 manual	 and	 start	 building	 a
spaceship.	The	instruction	manual	includes	all	the	information	that	you	need	in
order	 to	 create	 your	 spaceship:	 the	 number	 of	 wings	 you	 need	 to	 build,	 the
number	of	cannons	to	add	and	so	on.	Every	Lego	model	that	you	build	using	this
manual	is	a	spaceship,	but	the	manual	itself	is	NOT	a	spaceship	–	it’s	a	blueprint.

A	similar	relationship	exists	between	classes	and	objects.	While	classes	describe
what	 an	 object’s	 state	 and	 behavior	 are	 (what	 properties	 you	 need	 in	 order	 to
have	an	object	of	that	type),	classes	are	NOT	objects	themselves.

Objects	Are	Independent

Let’s	review	the	concept	of	instances	and	object	independence.	Using	one	class,
you	may	create	as	many	objects	as	you	would	like.	For	example,	you	can	create
a	Spaceship	class	and	use	it	to	instantiate	(create	instances	of)	fifty	Spaceship
objects.	Each	of	these	Spaceship	objects	are	called	instances	of	the	Spaceship
class.	Instances	are	“tangible”	representations	of	the	more	“generic”	class,	much
like	 Lego	 sets	 are	 tangible	 representations	 of	 their	 respective	 instructions
manuals.

Figure	2-23:	Spaceships:	Class	vs.	Instances

Just	like	objects	in	real	life,	different	instances	of	the	same	class	are	independent
from	one	another.	Extending	the	fifty	Spaceships	example,	you	can	modify	one
instance	of	the	Spaceship	class	(a	single	Spaceship	object),	and	the	other	forty-
nine	will	NOT	be	affected.

Working	with	Objects	from	the	Java	API

Now	let’s	take	a	break	from	cooking	up	our	own	classes	and	enjoy	some	ready-
made	ones	that	ship	with	Java.	The	advantage	of	using	an	existing	programming
language	rather	 than	making	your	own	is	 that	you	gain	access	 to	existing	code
that	you	can	implement	into	your	own	projects.	Luckily	for	us,	Java	classes	ship
with	 extensive	 documentation	 regarding	 the	 variables	 they	 contain,	 how	 they
should	be	initialized	and	what	behavior	they	perform,	so	that	we	can	incorporate
these	into	our	programs	and	focus	on	the	important	problems	that	are	unique	to
our	projects.

You	can	access	the	full	Java	documentation	for	Java	SE	7	at	the	following	link:
http://http://docs.oracle.com/javase/7/docs/api/

http://http://docs.oracle.com/javase/7/docs/api/

Practice	with	Strings

Let’s	 practice	 using	 the	 Java	 documentation	 using	 a	 class	 that	we	 are	 familiar
with:	 String.	 Create	 a	 new	 Java	 project	 called	 FunWithStrings,	 and	 create	 a
new	class	called	StringTester	with	a	main	method,	as	shown	in	listing	2.18.

*****	Listing	2.18	-	StringTester.java	–	Empty		*****

01		public	class	StringTester	{

02

03						public	static	void	main(String[]	args)	{

04														

05						}

06

07		}

The	String	class	(which	is	hidden	from	us	deep	inside	the	Java	Library)	allows
you	 to	 create	String	 objects	 in	 our	 own	 code.	Let’s	 initialize	 a	String	 object
using	the	new	keyword	used	to	initialize	objects.	Add	the	following	to	the	main
method:

String	s	=	new	String(“this	is	a	string”);

Strings	 are	 so	 commonly	 used	 that	 Java	 provides	 a	 special	way	 of	 initializing
them.	Add	this	next	line	also:

String	s2	=	"this	is	also	a	string";

Listing	2.19	shows	the	updated	class:

*****	Listing	2.19	-	StringTester.java	–	Updated		*****

01		public	class	StringTester	{

02

03						public	static	void	main(String[]	args)	{

04														String	s	=	new	String("this	is	a	string");

05														String	s2	=	"this	is	also	a	string";	

06

07						}

08

09		}

Like	other	Java	objects,	Strings	have	state	and	behavior.	We	will	only	focus	on
the	behavior	of	Strings	in	this	book	–	the	state	is	not	useful	to	us.

Let’s	now	get	some	practice	with	the	Javadocs.	Search	for	the	Strings	class	and
scroll	down	to	the	Method	Summary.	You	will	find	a	list	of	methods	available	to
a	String	object.

Figure	2-24:	Partial	Method	Summary	of	the	String	Class

Individual	entries	in	this	table	tell	you	the	return	type	of	each	method,	along	with
the	method	name,	required	parameters	(input)	and	method	summary.
String	 has	 a	 method	 that	 retrieves	 a	 single	 character	 (of	 type	 char)	 from	 a
specified	position	(referred	to	as	an	index).	This	method	is	called	charAt(),	and
accepts	an	integer	value	representing	the	index	of	the	desired	character.
Index	values	in	Java	are	zero-based,	meaning	that	the	first	character	has	an	index
of	0.	Let’s	see	what	 this	means	in	our	code.	We	will	call	 the	charAt()	method
and	ask	for	the	3rd	character	in	the	String	s	(index	2),	as	shown	on	line	07	in
listing	2.20:

*****	Listing	2.20	-	Printing	Characters	from	a	String		*****

01		public	class	StringTester	{

02

03						public	static	void	main(String[]	args)	{

04														String	s	=	new	String("this	is	a	string");

05														String	s2	=	"this	is	also	a	string";	

06

07														char	ch	=	s.charAt(2);

08														System.out.println("The	third	character	is	"	+	ch);

09						}

10

11		}

The	corresponding	output	is:

The	third	character	is	i

Let’s	 practice	 using	 the	 Java	 documentation	 with	 one	 more	 example.	 Look
through	the	Method	Summary.	Can	you	find	a	method	that	returns	the	length	of
the	given	String?	Browsing	through	the	Method	Summary,	you	may	find	this:

Figure	2-25:	The	Summary	of	the	length()	Method

This	 table	 tells	 us	 all	 the	 information	 that	we	need	 in	order	 to	use	 the	length
method.	We	know	that	it	returns	an	integer	representing	the	length	of	the	String
invoking	 the	 method.	 The	 method	 takes	 no	 parameters.	 Let’s	 try	 finding	 the
length	 of	 both	 s	 and	 s2,	 and	 determine	 which	 one	 is	 longer!	 Change	 your
StringTester	class	so	that	it	is	the	same	as	listing	2.21;	the	new	code	is	on	lines
13	to	19.

*****	Listing	2.21	-	StringTester.java	(Updated)		*****

01		public	class	StringTester	{

02

03						public	static	void	main(String[]	args)	{

04														String	s	=	new	String("this	is	a	string");

05														String	s2	=	"this	is	also	a	string";	

06

07														char	ch	=	s.charAt(2);

08														System.out.println("The	third	character	is	"	+	ch);

09																						

10														int	sLen	=	s.length();

11														int	s2Len	=	s2.length();

12

13														if	(sLen	>	s2Len)	{

14																						System.out.println("s	is	longer	than	s2.");

15														}	else	if	(sLen	==	s2Len)	{

16																						System.out.println("They	have	the	same	length.");							

17														}	else	{

18																						System.out.println("s2	is	longer	than	s");

19																						}

20

21						}

22

23		}

Running	the	code	we	get	the	following	result:

The	third	character	is	i

s2	is	longer	than	s

I	encourage	you	to	experiment	with	some	of	the	other	methods	that	are	listed	in
the	 Javadocs.	Being	 able	 to	work	with	 Javadocs	 is	 an	 important	 skill	 to	 have.
Like	all	other	things	worth	doing,	you	only	get	better	by	practicing.	Remember
to	keep	the	following	in	mind:

1.	 The	return	type:	(this	determines	what	kind	of	variable	you	need	to	store	the
result	in).

2.	 The	method	name:	(you	must	spell	it	exactly	as	it	is	shown.	Method	names
are	case-sensitive).

3.	 The	inputs:	(you	must	always	provide	the	required	parameters	in	order	for	a
method	to	work.	This	involves	providing	the	correct	number	of	values	of
the	correct	type).

4.	 Some	of	the	methods	ask	for	an	input	of	type	CharSequence.	When	you
encounter	such	methods,	you	may	provide	a	String.	This	is	because	of	an
interesting	property	called	polymorphism	(i.e.	the	ability	of	an	object	to
take	many	forms)	that	we	will	be	discussing	in	detail	in	the	next	chapter.

More	practice	with	Objects	–	Simulating	a	dice

In	 our	 next	 project,	 we	 will	 simulate	 the	 roll	 of	 a	 six-sided	 dice.	 Dice	 make
appearances	 in	 many	 modern	 board	 games	 because	 they	 add	 an	 element	 of
unpredictability.	 In	 this	 section,	 I	 will	 show	 you	 how	 you	 can	 simulate
randomness	inside	a	Java	program.

Figure	2-26:	A	Standard	Dice

We	begin	by	creating	a	new	Java	project	called	“DiceProject.”	 Inside,	create	a
new	class	called	DiceMaker	and	give	it	a	main	method,	as	usual.

To	generate	a	random	number,	we	must	use	a	built-in	class	from	the	Java	Library
called	Random.	We	create	a	new	Random	object	using	the	familiar	object-creation
syntax	as	shown	on	line	4	of	listing	2.22.

*****	Listing	2.22	-		Dicemaker.java	*****

01		public	class	DiceMaker	{

02

03						public	static	void	main(String[]	args)	{

04														Random	r	=	new	Random();

05						}

06

07		}

You	 should	 notice	 that	 Eclipse	 informs	 you	 that	 there	 is	 an	 error	 on	 the	 line
which	creates	the	Random	object,	as	shown	in	Figure	2.27.

Figure	2-27:	Random	Cannot	be	Resolved	to	a	Type

Once	 you	 mouse	 over	 the	 word	 Random,	 the	 following	 error	 message	 will
appear:	"Random	cannot	be	resolved	to	a	 type".	This	 is	simply	telling	you	that
the	compiler	cannot	create	an	object	of	 type	Random,	because	 it	does	not	know
where	Random	is	located!

To	 fix	 this	 issue,	we	must	 let	 the	 compiler	 know	where	 it	 can	 find	Random	by
providing	the	full	address.	The	desired	Random	class	can	be	found	at	the	address
java.util.Random	 (this	 is	 in	 the	 form	 UnitedKingdom.London.221BBakerSt).
Let’s	import	this	class	as	shown	in	line	1	of	listing	2.23:

*****	Listing	2.23	-	Importing	java.util.Random	*****

01	import	java.util.Random;

02

03	public	class	DiceMaker	{

04

05							public	static	void	main(String[]	args)	{

06															Random	r	=	new	Random();

07							}

08

09	}

Now	that	we	have	informed	the	computer	where	the	Random	class	is	located,	we
are	able	 to	call	 its	methods.	The	method	we	are	 interested	 in	 is	 the	nextInt()
method,	which	accepts	an	integer	and	returns	a	value	between	0	(inclusive)	and
the	accepted	integer	(exclusive).

For	example:	r.nextInt(6)	would	randomly	generate	one	of	these	numbers:	0,

1,	2,	3,	4,	5.

If	we	wanted	to	generate	numbers	1	through	6	instead,	we	could	simply	add	one
to	the	result,	as	shown	in	lines	7	and	8	of	listing	2.24:

*****	Listing	2.24	-	Simulating	a	Dice	Roll	*****

01		import	java.util.Random;

02

03		public	class	DiceMaker	{

04

05						public	static	void	main(String[]	args)	{

06														Random	r	=	new	Random();

07														int	randNum	=	r.nextInt(6)	+	1;

08														System.out.println("You	have	rolled	a	"	+	randNum);

09						}

10

11		}

When	you	run	the	program,	you	will	see	ONE	of	the	following	results:

You	have	rolled	a	1
You	have	rolled	a	2
You	have	rolled	a	3
You	have	rolled	a	4
You	have	rolled	a	5
You	have	rolled	a	6

What	are	some	applications	of	the	Random	class?	You	may	choose	to	implement
a	 random	number	 generator	 in	 determining	what	 items	 drop	 once	 your	 heroes
slay	monsters.	You	may	also	use	a	 random	number	generator	 to	generate	your
map	in	a	game	resembling	Minecraft.	The	possibilities	are	truly	endless.

How	random	is	java.util.Random?

The	Random	class	we’ve	used	simulates	randomness,	but	it	does	not	achieve	true
randomness.	 Although	 it	 seems	 to	 generate	 numbers	 that	 are	 random,	 it	 is
actually	following	a	formula	that	generates	a	theoretically	predictable	outcome.
We	call	this	phenomenon	pseudo-random.	This	is	unlikely	to	have	any	effect	on
games	that	we	write,	but	 it	makes	for	an	interesting	discussion.	You	can	safely
expect	that	in	the	long	run,	the	random	number	generator	will	generate	a	uniform
distribution	of	all	 the	possible	numbers.	 If	you	would	 like	 to	 learn	more	about

true	randomness,	visit	Random.org	on	the	web!

More	on	importing

In	the	above	example,	we	had	to	import	from	java.util.Random.	This	is	the	full
name	of	the	Random	class	that	we	are	importing	from	the	Java	Library.
The	Java	Library	is	organized	into	packages,	which	contain	various	classes	that
you	can	use	in	your	own	code.	Whenever	you	want	to	use	a	class	from	the	Java
Library,	you	must	ask	for	it	by	telling	your	program	where	it	can	find	its	parent
package	(the	full	name).
Not	all	objects	require	imports.	String,	for	example,	belongs	to	the	java.lang
package,	 which	 is	 actually	 imported	 automatically	 due	 to	 its	 common	 usage.
Arrays,	 which	 we	 discuss	 in	 the	 next	 section,	 can	 also	 be	 created	 without
imports.

Grouping	objects	and	primitives

Java	allows	us	to	group	objects	and	primitives	together.	There	are	two	categories
of	objects	used	 for	 this	purpose	 that	you	will	 encounter	very	often:	arrays	and
lists.

Arrays

To	 denote	 an	 array	 (or	 group)	 of	 a	 certain	 type,	 we	 make	 use	 of	 the	 square
brackets.	For	example,	if	you	wanted	an	array	of	integers,	you	would	declare	it
like	so:

int[]	numbers	=	new	int[5];

The	number	5	in	the	above	example	indicates	how	large	the	array	called	numbers
should	be.	As	 it	 is	written,	numbers	will	have	room	for	five	 integer	values.	To
picture	what	an	array	looks	like,	we	can	draw	a	table:

Figure	2-28:	An	Array	of	Integers	(Default	Values)

Initially,	 our	 array	 will	 have	 default	 values	 (0	 when	 we	 create	 an	 array	 of
integers).	Java	allows	us	to	a	assign	number	directly	to	each	index	(or	position).
Array	indices	are	zero-based,	just	like	characters	in	a	String.	Here’s	the	syntax:

numbers[0]	=	5;

numbers[1]	=	10;

numbers[2]	=	15;

numbers[3]	=	20;

numbers[4]	=	25;	

The	numbers	array	will	now	look	like	this:

Figure	2-29:	An	Array	of	Integers	(Assigned	Values)

We	can	retrieve	values	from	the	array	with	the	exact	same	syntax.	For	example:

int	sum	=	numbers[0]	+	numbers[1]	+	numbers[2]	+	numbers[3]	+	numbers[4];

System.out.println(sum)																	//	will	print	75

	

Arrays	have	a	disadvantage.	One	you	have	created	an	array,	you	may	not	change
its	 size.	Why	 is	 this	 problematic?	 Imagine	 you	 are	 creating	 a	 shooting	 game,
where	each	time	the	player	clicks	the	left	mouse	button,	a	Bullet	object	is	added
into	an	array	(representing	all	the	bullets	that	have	been	fired).	We	do	not	know
how	 many	 Bullet's	 we	 will	 need	 ahead	 of	 time.	 Some	 players	 may	 use	 42
bullets.	Others	may	use	their	knives	and	grenades	and	complete	the	level	without
firing	 a	 single	 shot.	 In	 this	 situation,	 it	 is	 often	 better	 to	 use	 an	 ArrayList
instead,	which	will	dynamically	resize	as	you	put	in	more	objects.

ArrayLists

ArrayList's	are	much	more	commonly	used	than	arrays,	and	you	should	know
how	 to	use	 them	(and	how	 to	use	 them	well).	To	use	an	ArrayList,	you	must
first	import	it:

import	java.util.ArrayList

	

ArrayList's	are	created	like	any	other	objects

ArrayList	playerNames	=	new	ArrayList();

	

We	use	the	add()	method	to	insert	objects	inside	an	ArrayList	object:

playerNames.add(“Mario”);

playerNames.add(“Luigi”);

...

playerNames.add(“Yoshi”);

	

As	you	can	tell,	this	is	an	ArrayList	of	String	objects.	You	can	retrieve	an	object

(in	this	case	a	String)	from	an	ArrayList	using	its	zero-based	index	by	calling
the	get()	method	(square	brackets	from	arrays	[]	do	not	work	with	ArrayLists):

playerNames.get(2);					//	will	retrieve	“Luigi”	(kind-of);

	

Theoretically,	 we	 could	 place	 all	 kinds	 of	 objects	 inside	 a	 single	 ArrayList,
regardless	of	type;	however,	this	is	not	very	useful,	because	once	you	have	done
so,	you	may	not	know	what	specific	type	of	object	is	at,	say,	index	152.	If	you
don’t	know	what	kind	of	object	it	is,	you	do	not	know	what	methods	it	has.	Have
a	look	at	the	following	example:

someArrayList.get(152);									//	What	kind	of	object	is	this?	

	

We	 pulled	 out	 the	 153rd	 object	 (remember	 that	 indices	 are	 zero-based)	 from
someArrayList.	The	problem	is,	we	know	nothing	about	this	object.	It	might	be	a
delicious	Sushi	object	or	even	a	dangerous	Bomb.	 Imagine	 the	 consequences	 if
we	were	to	say:

Monster	hungryOne	=	new	Monster();

Object	unknown	=	someArrayList.get(152);								//	The	Object	is	actually	a	Bomb

hungryOne.eat(unknown);																									//	hungryOne	thinks	it’s	Sushi

//	Boom!

	

In	fact,	modern	Java	allows	us	to	limit	ArrayLists	to	hold	objects	of	exactly	one
type	by	adding	the	following	notation:	<Type>

ArrayList<String>	playerNames	=	new	ArrayList<String>();

playerNames.add(“Mario”);															//	Works!

Bomb	b	=	new	Bomb();

playerNames.add(b);													//	Gives	type-mismatch	error

	

Now	we	know	that	any	object	we	retrieve	from	playerNames	is	guaranteed	to	be
a	String,	and	we	can	call	String	methods	on	it:

//	Any	object	from	playerNames	will	always	be	a	String

String	nameZero	=	playerNames.get(0);	

System.out.println(nameZero.length());

	

Using	ArrayLists	with	Primitives

You	cannot	directly	insert	primitives	into	an	ArrayList.	In	fact,	the	following	is
NOT	allowed:

ArrayList<int>	numbers	=	new	ArrayList<int>();	//	not	allowed

	

To	 get	 around	 this	 limitation,	 you	 can	 simply	 use	 one	 of	 the	 built-in	wrapper
classes	–	object	versions	of	each	of	your	primitives.	These	include	Integer	 for
int,	Character	for	char,	and	so	on.	To	do	 this,	you	first	create	 the	ArrayList
and	declare	the	wrapper	class	as	the	type:

ArrayList<Integer>	numbers	=	new	ArrayList<Interger>();

	

This	initially	has	a	size	of	zero:

System.out.println(numbers.size());					//	Prints	zero

	

Next,	you	simply	call	the	add()	method	and	pass	in	the	int	values	that	you	want
inside	 the	ArrayList.	 These	will	 automatically	 be	wrapped	 inside	 an	Integer
object.

int	myNum	=	numbers.get(1);

System.out.println(myNum);						//	Prints	3

Using	ArrayLists	with	Loops

It’s	difficult	to	appreciate	how	powerful	ArrayLists	can	be	until	you	see	them	in

action,	so	let’s	try	an	example.
We	will	be	writing	a	simple	program	containing	two	classes.	The	first	class	will
be	 our	 entry	 point,	 where	 we	 will	 store	 our	 main	 method	 and	 create	 our
ArrayList.	The	second	class	will	be	a	custom	class	representing	a	person.
We	 begin	 by	 creating	 a	 new	 Java	 project	 called	 Groups.	 Inside,	 create	 a	 new
class	called	ListTester	and	give	it	a	main	method,	as	shown	in	listing	2.25.

*****	Listing	2.25	-	ListTester.java	*****

01		public	class	ListTester	{

02

03						public	static	void	main(String[]	args)	{

04														

05						}

06

07		}

Now,	 create	 a	 second	 class	 in	 the	 same	 project	 and	 name	 it	 Person.	 Add	 the
following	variables	and	methods	(listing	2.26):

*****	Listing	2.26	-	Person.java	*****

01		public	class	Person	{

02														

03						private	String	name;

04						private	int	age;

05

06						public	void	initialize(String	name,	int	age)	{

07														this.name	=	name;

08														this.age	=	age;

09						}

10

11						public	void	describe()	{

12														System.out.println("My	name	is	"	+	name);

13														System.out.println("I	am	"	+	age	+	"	years	old");	

14						}	

15

16		}

Our	Person	class	describes	a	blueprint	for	a	new	Person	object.	Specifically,	it
says	 that	 a	 Person	 object’s	 state	 will	 be	 described	 by	 two	 instance	 variables:
name	and	age.	We	do	not	give	default	values	for	name	and	age,	and	we	must	call
the	 initialize()	method	 to	 provide	 these	 values.	 Once	 our	 Person	 object	 has	 a
name	 and	 age,	 we	 can	 call	 the	 describe()	 method	 to	 print	 the	 information	 in
human-friendly,	 readable	 format.	 Let’s	 go	 back	 to	 our	 ListTester	 and	 make
sure	that	we	can	do	this.

*****	Listing	2.27	-	ListTester.java	(Updated)	*****

1		public	class	ListTester	{

2

3							public	static	void	main(String[]	args)	{

4															Person	p	=	new	Person();

5															p.initialize("Marty",	40);						

6															p.describe();

7							}

8

9		}

Let’s	walk	through	listing	2.27,	line	by	line:	We	begin	by	creating	a	new	instance
of	the	Person	class	named	p.	At	 this	point,	p	has	 two	instance	variables:	name
and	age.	These	variables	have	not	been	initialized	yet.
Next,	we	call	the	initialize()	method,	which	accepts	two	values:	a	String	and
an	 integer.	The	initialize()	method	will	 take	 the	value	of	each	of	 these	and
assign	them	to	the	instance	variables.	Now	that	our	two	instance	variables	have
been	 initialized,	we	 can	 ask	 our	Person	object	 to	 describe	 itself	 by	 calling	 the
describe()	method.	The	result	follows:

My	name	is	Marty

I	am	40	years	old

Now	 let’s	 create	 multiple	 Person	 objects	 and	 group	 them	 together	 inside	 an
ArrayList.	Change	the	ListTester	class	so	that	it	is	exactly	like	listing	2.28.

*****	Listing	2.28	-	Creating	the	ArrayList	and	Adding	the	First	Loop	*****

01		import	java.util.ArrayList;

02		import	java.util.Random;

03

04		public	class	ListTester	{

05

06						public	static	void	main(String[]	args)	{

07																						

08														ArrayList<Person>	people	=	new	ArrayList<Person>();

09														Random	r	=	new	Random();

10																						

11														for	(int	i	=	0;	i	<	5;	i++)	{

12																						Person	p	=	new	Person();

13																						p.initialize("Person		#"	+	i,	r.nextInt(50));

14																						people.add(p);

15														}

16						}

17

18		}

In	 the	 listing	 2.28,	we	 create	 a	 new	Person	 called	people,	 and	 a	 new	 Random
object	 called	r.	We	 then	 begin	 a	 for	 loop	which	will	 run	 five	 times.	On	 each
iteration	 (repetition)	 of	 the	 loop,	we	 create	 a	 new	 Person	 object	 called	 p.	We
initialize	the	instance	variables	for	that	person	with	an	appropriate	name	(Person
#i,	where	i	is	between	0	and	4)	and	a	randomly	generated	age.	Lastly,	we	add	the
newly	created	Person	object	to	our	Person	(line	14).	The	loop	repeats,	creating
an	entirely	new	Person,	initializing	it	and	adding	it	again.

Pay	careful	attention	to	the	following	line:

Person	p	=	new	Person();

Any	 variables	 that	 you	 create	 inside	 a	 loop	 are	 only	 valid	 within	 that	 same
iteration	 –	meaning	 that	 its	 existence	 is	 limited	 to	 the	 current	 iteration	 of	 the
loop.	Because	of	this,	we	can	reuse	the	variable	name	p	on	each	repetition	of	our
loop.
Each	 time	 that	 the	 above	 line	 is	 called,	 we	 are	 creating	 a	 new	 Person	 with
variable	name	p.	We	then	store	the	value	held	by	the	temporary	variable	p	inside
our	more	 permanent	 ArrayList	 called	 people,	 so	 that	 we	 have	 a	 reference	 to
each	of	these	newly	created	Person	objects	later	on	in	the	code	without	assigning
a	unique	variable	name	to	each	one	of	them.
To	see	how	this	works,	we	can	 try	 iterating	 through	the	 loop	again	and	calling
the	describe()	method,	as	demonstrated	in	listing	2.29	(lines	17	through	20).

*****	Listing	2.29	-	Adding	the	Second	Loop	*****

01		import	java.util.ArrayList;

02		import	java.util.Random;

03

04		public	class	ListTester	{

05

06						public	static	void	main(String[]	args)	{

07																						

08														ArrayList<Person>	people	=	new	ArrayList<Person>();

09														Random	r	=	new	Random();

10																						

11														for	(int	i	=	0;	i	<	5;	i++)	{

12																						Person	p	=	new	Person();

13																						p.initialize("Person		#"	+	i,	r.nextInt(50));

14																						people.add(p);

15														}

16																						

17														for	(int	i	=	0;	i	<	people.size();	i++)	{

18																						Person	p	=	people.get(i);

19																						p.describe();

20														}

21

22						}

23

24		}

The	resulting	output	is	(age	may	vary	due	to	random	generation):

My	name	is	Person		#0

I	am	29	years	old

My	name	is	Person		#1

I	am	1	years	old

My	name	is	Person		#2

I	am	4	years	old

My	name	is	Person		#3

I	am	21	years	old

My	name	is	Person		#4

I	am	47	years	old

You	may	be	wondering	why	we	run	this	second	loop	from	lines	17	through	20
people.size()	times,	rather	than	5	times.	The	two	values	are	identical	and	either
solution	 would	 produce	 the	 same	 outcome;	 however,	 the	 above	 example	 is	 a
more	flexible	loop,	because	we	do	not	need	to	hardcode	the	number	of	times	that
the	 loop	 runs.	Depending	on	 the	 size	of	 the	ArrayList	 people,	 our	 second	 for
loop	will	run	an	appropriate	number	of	times.	This	means	that	we	can	change	the
number	of	times	that	the	upper	loop	runs	(the	loop	that	adds	to	the	ArrayList)
from	 5	 to	 8,	 and	 the	 bottom	 loop	 will	 not	 need	 to	 be	 changed,	 because
people.size()	will	also	increase	to	8:

*****	Listing	2.30	-	Iterating	8	Times	*****

01						import	java.util.ArrayList;

02						import	java.util.Random;

03

04						public	class	ListTester	{

05

06														public	static	void	main(String[]	args)	{

07																						

08																						ArrayList<Person>	people	=	new	ArrayList<Person>();

09																						Random	r	=	new	Random();

10																						

11																						//for	(int	i	=	0;	i	<	5;	i++)	{

12																						for	(int	i	=	0;	i	<	8;	i++)	{								

13																														Person	p	=	new	Person();

14																														p.initialize("Person		#"	+	i,	r.nextInt(50));

15																														people.add(p);

16																						}

17																						//	people.size()	is	now	8!

18																						for	(int	i	=	0;	i	<	people.size();	i++)	{

19																														Person	p	=	people.get(i);

20																														p.describe();

21																						}

22

23														}

24

25						}

The	resulting	output	is	(age	may	vary	due	to	random	generation):

My	name	is	Person		#0

I	am	27	years	old

My	name	is	Person		#1

I	am	27	years	old

My	name	is	Person		#2

I	am	20	years	old

My	name	is	Person		#3

I	am	28	years	old

My	name	is	Person		#4

I	am	5	years	old

My	name	is	Person		#5

I	am	49	years	old

My	name	is	Person		#6

I	am	2	years	old

My	name	is	Person		#7

I	am	26	years	old

The	 above	 example	 demonstrated	 how	we	 can	 quickly	 create	multiple	 objects
using	a	loop	and	group	them	together	in	an	ArrayList.	We’ve	also	learned	that
we	 can	 iterate	 through	 a	 for	 loop	 to	 quickly	 retrieve	 all	 members	 of	 an
ArrayList	and	invoke	their	methods.

Summary	of	Chapter	2

In	 the	previous	examples,	our	programs	consisted	of	one	or	 two	small	 classes.
As	we	progress	through	this	book,	we	will	be	writing	programs	that	have	even
more	classes.	 In	 fact,	 some	of	our	games	will	easily	have	over	 ten	classes	 that
each	fulfill	some	role	in	the	game	architecture.	Study	the	previous	example	very
carefully,	and	 if	you	have	any	 lingering	questions,	visit	 the	companion	site	 for
the	book	at	 jamescho7.com.	 Post	 any	 questions	 you	 have	 regarding	 the	 book,
and	I	will	try	to	address	them.
We’ve	covered	a	lot	of	material	in	this	chapter,	and	all	of	these	concepts	will	be
reappearing	 throughout	 this	 book.	 It’s	 difficult	 to	 remember	 the	 syntax	 of	 this
new	language,	but	 the	key	is	practice.	Take	a	moment	now	to	study	the	source
code	 for	 the	 examples	 in	 this	 chapter	 (available	 on	 jamescho7.com),	 run	 the
programs,	 experiment	 creatively	 and	 most	 importantly,	 try	 to	 understand	 the
topics	that	we	have	discussed.	You	will	get	much	more	out	of	the	later	chapters	if
you	understand	the	core	concepts	from	this	one.	If	you	ever	get	stuck,	please	do
post	in	our	forums!	We	will	actively	monitor	them	and	answer	any	questions	you
may	have.
If	you	are	ready	to	move	on,	join	me	in	Chapter	3,	where	we	will	discuss	some
of	 Java’s	more	 advanced	 topics,	 including	 constructors,	 inheritance,	 interfaces,
graphics	and	threads	–	all	of	the	stuff	you	need	to	know	in	order	to	start	writing
Java	games!

Chapter	03:	Designing	Better	Objects
We’ve	studied	the	fundamentals	of	object-oriented	programming	and	learned	the
basic	Java	syntax	for	creating	and	using	objects.	In	this	chapter,	we	will	explore
some	 important	object	design	concepts	 that	will	 allow	us	 to	 create	meaningful
classes	 and	 to	 organize	 them	 in	 intuitive	 ways.	 This	 chapter	 will	 be	 dense,
covering	 a	 lot	 of	 tough	material	 in	 a	 very	 few	 pages.	 In	 fact,	 you	might	 find
yourself	not	remembering	the	details	of	the	syntax	behind	these	various	concepts
after	a	single	reading,	and	that’s	completely	okay.	What	is	important	is	that	you
read	 through	 the	 explanations	 and	 understand	 the	 corresponding	 code	 listings.
Later	on,	you	will	be	able	 to	 return	 to	 these	pages	 for	 reference	and	review	as
needed.

Constructors

We	will	ease	into	the	more	complex	topics	by	reviewing	an	important	idea	from
Chapter	2	 and	making	 some	small	 changes.	Begin	by	creating	a	project	 called
Constructors,	and	create	a	World	class	as	shown	in	Listing	3.01:

*****	Listing	3.01	-	World.java	*****

1		public	class	World	{

2

3							public	static	void	main(String[]	args)	{

4																							

5															

6							}

7

8		}

We	will	also	create	a	class	called	Coder	as	shown	in	Listing	3.02:

*****	Listing	3.02	-	Coder.java	*****

1		public	class	Coder	{

2							private	String	name;

3							private	int	age;

4	

5							public	void	initialize(String	name,	int	age)	{

6															this.name	=	name;

7															this.age	=	age;

8							}

9	

10						public	void	writeCode()	{

11														System.out.println(name	+	"	is	coding!");

12						}

13

14						public	void	describe()	{

15														System.out.println("I	am	a	coder");

16														System.out.println("My	name	is	"	+	name);

17														System.out.println("I	am	"	+	age	+	"	years	old");

18						}

19

20	}

Your	project	should	now	have	the	setup	as	shown	in	Figure	3-1.

Figure	3-1	The	Constructor	Project

Let’s	 make	 sure	 that	 we	 understand	 our	 Coder	 class	 before	 moving	 on.
Coder.java	is	a	blueprint	for	creating	Coder	objects.	In	this	blueprint,	we	have
declared	 that	 a	 Coder	 object	 should	 have	 two	 variables	 describing	 its	 state:	 a
String	representing	the	name	and	an	integer	representing	the	age.

Like	 other	 objects,	 our	 Coder	 object	 will	 have	 behavior.	 The	 initialize()
method	allows	us	to	initialize	our	Coder	object’s	instance	variables	with	values
that	 we	 provide.	 The	 writeCode()	 method	 will	 print	 text	 indicating	 that	 our
Coder	object	is	coding.	The	describe()	method	will	simply	list	the	values	of	all
the	instance	variables	in	human-friendly	form.

Variables	Receive	Default	Values

Return	to	the	World	class	and	create	an	instance	of	a	Coder	object,	and	tell	it	to
describe	itself.	Your	code	should	look	like	that	shown	in	Listing	3.03:

*****	Listing	3.03	-	World.java	(updated)	*****

1		public	class	World	{

2

3							public	static	void	main(String[]	args)	{

4															Coder	c	=	new	Coder();

5															c.describe();

6							}

7

8		}

When	we	first	declare	our	new	Coder	object,	its	instance	variables	have	not	been

initialized	 (meaning	 that	 they	 retain	 the	 default	 values	 for	 each	variable	 type).
Running	the	World	class,	we	get	the	following	output:

I	am	a	coder

My	name	is	null

I	am	0	years	old

As	shown	above,	the	default	value	for	an	int	is	zero.	An	empty	object	reference
variable	 (a	variable	 that	 points	 to	 an	object)	 defaults	 to	 a	value	of	null,	which
means	“nothing.”	This	simply	means	that	your	object	reference	variable	does	not
contain	any	values.

Figure	3-2	Empty	Object	Reference	Variable

Avoiding	Java	Exceptions

Before	we	move	on,	I	want	to	point	out	a	very	common	error	that	causes	a	lot	of
Java	 programs	 to	 terminate	 unexpectedly:	 the	 NullPointerException.	 This
runtime	error	(errors	that	occur	during	a	program’s	execution)	occurs	when	you
attempt	to	call	a	method	belonging	to	a	null	object	variable.	Have	a	look	at	the
following	example:

String	a;							//	Equivalent	to	String	a	=	null;

a.length();

If	 you	 were	 to	 run	 this	 code	 inside	 your	 main	 method,	 you	 would	 get	 the
following	 error	 (accompanied	 by	 the	 line	 number	 where	 everything	 went
wrong):

Exception	in	thread	"main"	java.lang.NullPointerException

Whenever	 you	 come	 across	 this	 error	 message,	 the	 solution	 is	 to	 find	 and
initialize	all	object	variables	with	a	value	of	null	that	are	still	in	use.

Initializing	Our	Coder	Object	Using	A	Method

To	 avoid	 any	 potential	 NullPointerExceptions,	 we	 will	 now	 initialize	 the
instance	variables	of	our	new	Coder	using	its	initialize()	method	(as	shown
on	Line	7	of	Listing	3.04).

*****	Listing	3.04	-	Initializing	the	Coder	and	Its	Instance	Variables	*****

1	public	class	World	{

2	

3							public	static	void	main(String[]	args)	{

4															Coder	c	=	new	Coder();	//	Initializes	the	variable	c

5															c.describe();

6															System.out.println("");									//	insert	empty	line	for	readability

7															c.initialize("Bill",	59);		//	Initializes	c’s	instance	variables

8															c.describe();

9							}

10

11	}

When	we	run	listing	3.4,	we	get	the	following	output:

I	am	a	coder

My	name	is	null

I	am	0	years	old

I	am	a	coder

My	name	is	Bill

I	am	59	years	old

Initializing	Our	Coder	Object	Using	A	Custom	Constructor

In	 the	 previous	 sections,	we’ve	 learned	 to	 use	 the	 following	 syntax	 for	 object
creation:

Coder	c	=	new	Coder();	

The	part	on	 the	 right	hand	side	of	 the	equals	 sign	 in	 the	above	 line	of	code	 is
how	we	invoke	what	we	call	the	default	constructor,	which	simply	creates	a	new
instance	of	a	Coder	object	for	us	to	use	inside	the	variable	c.	Java	also	allows	the
use	of	custom	constructors,	which,	like	methods,	can	accept	values	to	be	used	by
the	object.	To	see	this	in	action,	let’s	focus	on	these	two	lines	of	code:

Coder	c	=	new	Coder();	//	Uses	the	default	constructor		

...

c.initialize(“Bill”,	59);

Custom	constructors	allow	us	to	reduce	this	code	to	the	following:

Coder	c	=	new	Coder(“Bill”,	59);	

To	 do	 this,	 we	must	 first	 declare	 the	 desired	 custom	 constructor	 in	 the	 Coder
class	as	shown	below:

public	Coder(String	name,	int	age)	{

								this.name	=	name;

								this.age	=	age;

}

A	 constructor	 appears	 similar	 to	 a	 method,	 but	 it	 has	 some	 big	 differences.
Firstly,	 a	 constructor	 has	 no	 return	 type	 (not	 even	 void).	 Secondly,	 a
constructor’s	 name	must	 be	 identical	 to	 that	 of	 its	 surrounding	 class.	 Despite
these	differences,	notice	that	our	constructor	accepts	arguments	and	assigns	them
to	the	Coder	object’s	instance	variables	just	as	the	initialize()	method	did.	We
can	now	add	 this	constructor	 into	 the	body	of	our	Coder	 class	and	 remove	 the
initialize()	method	as	shown	below:

public	class	Coder	{

								private	String	name;

								private	int	age;

								public	Coder(String	name,	int	age)	{

																this.name	=	name;

																this.age	=	age;

								}

								public	void	initialize(String	name,	int	age)	{

																this.name	=	name;

																this.age	=	age;

								}

								public	void	writeCode()	{

																System.out.println(name	+	"	is	coding!");

								}

								public	void	describe()	{

																System.out.println("I	am	a	coder");

																System.out.println("My	name	is	"	+	name);

																System.out.println("I	am	"	+	age	+	"	years	old");

								}

}

You	can	think	of	constructors	as	a	requirement	–	a	rule	for	creating	that	object.	It
is	a	way	of	saying,	“If	you	want	to	make	my	object,	you	must	pass	me	the	inputs
I’m	asking	for!”

In	creating	your	own	constructor,	you	have	just	specified	that	a	Coder	object	can
only	be	created	if	values	for	its	name	and	age	are	provided.	Because	of	this,	we
can	no	longer	create	a	Coder	object	using	the	familiar	syntax:

Coder	c	=	new	Coder();		//	no	longer	works!		

Let’s	make	changes	to	our	World	class	to	reflect	this	change,	as	shown	in	listing
3.05.

*****	Listing	3.05	-	Calling	the	Custom	Constructor	*****

public	class	World	{

								public	static	void	main(String[]	args)	{

																Coder	c	=	new	Coder();

																c.describe();

																System.out.println("");	//	insert	empty	line	for	readability

																c.initialize("Bill",	59);

																Coder	c	=	new	Coder("Bill",	59);

																c.describe();

								}

}

Running	the	code	we	get:

I	am	a	coder

My	name	is	Bill

I	am	59	years	old

KEY	POINTS

Basic	rule	of	code	execution

Constructors	provide	a	means	of	initializing	instance	variables	in	your
objects	during	their	creation
The	constructor	is	used	with	the	new	keyword
Java	provides	a	default	constructor	if	you	choose	not	to	create	one.
All	constructors	must	be	named	after	the	class.
You	can	have	as	many	constructors	as	you	want,	but	they	each	must	have	a
unique	set	of	parameters.

Getters	and	Setters

A	constructor	allows	you	to	initialize	an	object’s	instance	variables	as	the	object
is	 being	 created,	 but	 it	 does	 little	 to	 help	 you	 retrieve	 or	modify	 these	 values
afterwards.	 Moreover,	 because	 we	 are	 using	 the	 private	 modifier	 to	 hide	 our
variables,	 we	 have	 no	 way	 of	 doing	 these	 two	 tasks	 directly.	 In	 fact,	 the
following	will	result	in	an	error:

...	

//	somewhere	inside	the	World	class...

Coder	c3	=	new	Coder(“Mark”,	30);

String	c3Name	=	c3.name;	//	cannot	reference	private	variable	from	another	class

c3.age	=	25;	//	cannot	modify	private	variable	from	another	class

...	

How	 can	 we	 get	 around	 these	 limitations?	 We	 could	 mark	 our	 Coder	 class’
instance	variables	public,	but	we	do	not	want	to	do	that	for	the	reasons	discussed
in	Chapter	 2.	 Instead,	we	 can	 create	 accessor	methods	 inside	 the	Coder	 class.
There	are	two	types	that	we	will	be	discussing:

1.	 A	getter	method	returns	a	COPY	of	the	value	of	a	requested	hidden	variable
(but	leaves	the	hidden	variable	alone).	By	doing	this,	we	can	keep	the
instance	variable	safe	from	unauthorized	changes	while	providing	access	to
the	variable’s	value

2.	 A	setter	method	allows	other	classes	to	modify	the	values	of	a	hidden
variable,	provided	that	they	follow	the	rules	you	prescribe	in	the	setter
method.

Let’s	see	 these	accessor	methods	 in	action.	Add	 the	following	getter	and	setter
methods	 to	 the	Coder	class:	getAge(),	setAge(),	getName()	 and	setName()
(as	shown	on	lines	26	to	48	in	listing	3.06).

*****	Listing	3.06	-	Adding	Getter	and	Setter	Methods	to	Coder.java	*****

01		public	class	Coder	{

02	

03						private	String	name;

04						private	int	age;

05	

06						public	Coder(String	name,	int	age)	{

07														this.name	=	name;

08														this.age	=	age;

09						}

10

11						public	void	writeCode()	{

12														System.out.println(name	+	"	is	coding!");

13						}

14

15						public	void	describe()	{

16														System.out.println("I	am	a	coder");

17														System.out.println("My	name	is	"	+	name);

18														System.out.println("I	am	"	+	age	+	"	years	old");

19						}

20

21						public	String	getName()	{

22														return	name;

23						}

24														

25						public	int	getAge()	{

26														return	age;

27						}

28														

29						public	void	setName(String	newName)	{

30														if	(newName	!=	null)	{

31																						name	=	newName;

32														}	else	{

33																						System.out.println("Invalid	name	provided!");

34														}

35						}

36														

37						public	void	setAge(int	newAge)	{

38														if	(newAge	>	0)	{

39																						age	=	newAge;

40														}	else	{

41																						System.out.println("Invalid	age	provided");

42														}

43						}

44		}

Our	two	getter	methods	return	the	values	of	name	and	age	variables	to	the	caller
of	 this	 method.	 This	 means	 that	 any	 class	 that	 has	 access	 (or	 reference)	 to	 a
Coder	 object	 can	call	 its	getter	methods	and	peek	at	 the	values	of	Coder’s	 the
instance	variables.	Values	is	the	key	word	here.	We	are	not	giving	access	to	the
original	copies	of	the	instance	variables,	but	to	the	values	stored	in	them.

Our	two	setter	methods	allow	other	classes	to	modify	the	Coder	objects’	instance
variables,	 but	 we	 can	 protect	 these	 instance	 variables	 from	 illegal	 or	 invalid
changes	by	providing	a	set	of	rules.	In	listing	3.06,	our	setters	reject	non-positive
age	values	and	null	name	values.

Let’s	 test	our	getters	and	setters	 in	our	World	class	by	calling	 them	in	 lines	08
and	09	as	shown	in	listing	3.7:	Calling	the	Getter	and	Setters	from	World.java

*****	Listing	3.07	*****

01		public	class	World	{

02						public	static	void	main(String[]	args)	{

03																						

04														Coder	c	=	new	Coder("Bill",	59);

05														c.describe();

06														System.out.println("");	//	empty	line	for	readability

07						

08														String	cName	=	c.getName();

09														int	cAge	=	c.getAge();

10

11														System.out.println(cName	+	",	"	+	cAge);

12														System.out.println("");	//	empty	line	for	readability

13														c.setName("Steve");

14														c.setAge(-5);	//	This	will	be	rejected	by	our	setter	method

15

16														c.describe();	

17						}

18

19		}

The	printed	result	is:

I	am	a	coder

My	name	is	Bill

I	am	59	years	old

Bill,	59

I	am	a	coder

My	name	is	Steve

Invalid	age	provided!

In	the	previous	example,	we	were	able	to	create	a	means	of	keeping	our	Coder
objects’	instance	variables	private	while	allowing	outside	access	to	retrieve	(get)

and	modify	 (set)	 these	 hidden	variables	 via	 our	 public	 accessor	methods.	This
allows	 us	 to	 keep	 the	 element	 of	 security	 obtained	 through	 the	 use	 of	 private
variables	and	also	allows	us	 to	access	and	modify	values	 that	we	need.	Notice
that	our	setter	method	can	reject	invalid	arguments,	as	we	were	able	to	prevent
the	World	class	from	changing	our	Coder	object’s	age	to	-5.

Interface

We	will	 next	 discuss	 a	 way	 to	 group	 objects	 together	 into	 various	 categories
using	 what	 we	 call	 an	 interface.	 An	 interface	 is	 an	 abstract	 category	 that
describes	 the	 essential	 components	 of	 objects	 that	 belong	 to	 this	 category.	 To
best	understand	this,	we	will	study	an	example.

An	interface	resembles	a	class,	but	it	has	some	notable	differences.	Here’s	what	a
Human	interface	may	look	like	(do	not	worry	about	following	along	in	Eclipse):

*****	Listing	3.08	-	The	Human	Interface	*****

public	interface	Human	{

								public	void	eat();

								

								public	void	walk();

								

								public	void	urinate(int	duration);

}

As	shown	in	listing	3.8,	an	interface	contains	various	abstract	methods	that	have
no	 method	 body.	 These	 disembodied	 abstract	 methods	 tell	 you	 what	 a	 Human
category	 of	 objects	 MUST	 be	 able	 to	 do,	 but	 they	 do	 not	 specify	 how	 these
actions	must	be	done.
To	 explore	what	 an	 interface	 really	 is,	 let’s	 step	 away	 from	 the	 code.	 In	 your
mind,	create	an	idea	of	what	it	means	to	be	a	human	being	(you	don’t	have	to	get
too	philosophical!).	Next,	 have	a	 look	at	 the	 following	 list	 and	 tell	me	 if	 each
person	 satisfies	 your	 idea	 of	 humanity:	 your	 neighbor,	 your	 best	 friend	 and
yourself.
You’ve	 probably	 answered	 yes	 to	 all	 of	 these	 people.	 This	 is	 because	when	 I
asked	you	to	form	an	idea	of	humanity,	you	did	not	perceive	of	one	individual
human	being.	Instead,	you	formed	some	kind	of	rule	–	an	idea	of	how	a	human
being	interacts	with	his	or	her	world	–	and	used	this	to	determine	the	humanity
of	various	people.
An	interface	is	much	the	same.	The	Human	interface	from	listing	3.08	is	not	used
to	create	an	individual	Human	object.	Instead,	 it	defines	a	pattern	of	interaction,
stating	how	a	Human	object	should	be	able	to	behave	in	your	program.	It	provides
a	 set	 of	 essential	 requirements	 that	 you	 must	 meet	 in	 order	 to	 create	 more
concrete	versions	of	type	Human	such	as	the	King	class,	which	is	shown	in	listing

3.09.

*****	Listing	3.09	-	The	Human	Interface	*****

public	class	King	implements	Human	{

								public	void	eat()	{

								System.out.println("The	King	eats.");

								}

								public	void	walk()	{

								System.out.println("The	King	walks.");

								}

								public	void	urinate(int	duration)	{

								System.out.println("The	King	urinates	for	"	+	duration	+	"	minutes.");

								}

								

								public	void	rule()	{

								System.out.println("The	King	reigns.");

								}

}

Study	the	relationship	between	the	King	class	and	the	Human	interface,	and	you
will	 notice	 three	 things.	 Firstly,	 the	 class	 declares	 that	 it	 implements	 Human,
which	is	how	we	as	programmers	specify	that	we	want	our	King	class	to	belong
to	 the	 Human	 category.	 Secondly,	 the	 King	 class	 declares	 all	 three	 of	 the
methods	 in	 the	 Human	 interface	 given	 in	 listing	 3.8,	 and	 it	 class	 provides	 a
concrete	method	body	for	each	of	these	previously	abstract	methods.	Thirdly,	the
King	class	has	an	additional	method	called	rule()	 that	distinguishes	 it	 from	the
generic	Human.

An	 interface	 is	 a	 binding	 contract.	 If	 an	 object	 chooses	 to	 implement	 an
interface,	 it	 is	 agreeing	 to	 implement	 each	 of	 the	 abstract	 methods	 from	 the
interface.	What	does	this	all	mean?	It	means	that	a	King	object,	no	matter	how
much	he	wishes	to	stay	away	from	the	privy,	must	implement	all	of	the	Human
interface’s	abstract	methods	including	urinate(),	because	a	king	is,	after	all,	only
human.	 If	 he	 foregoes	 this	 requirement,	 the	 angry	 JVM	 will	 shoot	 red	 error
messages	at	him.

Polymorphism

You	might	be	wondering	why	we	had	to	create	both	an	interface	and	a	class	to
define	a	single	King	class.	You	might	be	telling	yourself	 that,	at	 this	point,	 the
Human	interface	doesn’t	really	do	much,	and	you’d	be	absolutely	right.	Using	an
interface	allows	us	to	create	a	category	of	objects,	but	it’s	difficult	to	appreciate
what	this	means	for	our	program	until	we	study	polymorphism.	Have	a	look	at
the	following	method.

public	void	feed(Human	h)	{

								System.out.println("Feeding	Human!");

								h.eat();

}

The	method	can	accept	a	single	argument	of	type	Human.	In	fact,	it	can	accept
any	 object	 instance	 of	 a	 class	 that	 implements	 the	 Human	 interface.	 This	 is
useful	 because,	 in	 a	 single	 program,	 we	 could	 create	 multiple	 classes	 that	 all
extend	 the	 Human	 interface,	 such	 as	 Villain,	 Professor	 and	 SushiChef.	 This
means	that	the	following	examples	will	all	work:

//	Elsewhere	in	same	program

King	kong	=	new	King();

Villain	baddie	=	new	Villain();

Professor	x	=	new	Professor();

SushiChef	chef	=	new	SushiChef();

								

//	Any	Human	can	be	fed:

feed(kong);	//	A	King	is	Human

feed(baddie);	//	A	Villain	is	Human

feed(x);	//	A	Professor	is	Human

feed(chef);	//	A	SushiChef	is	Human

This	is	just	a	trivial	example	of	what	polymorphism	can	do,	which	is	just	a	fancy
way	 of	 describing	 a	 common	 method	 of	 interacting	 with	 multiple	 types	 of
objects.	 We	 will	 explore	 interfaces	 and	 polymorphism	 in	 more	 practical
situations	in	the	coming	chapters.

Inheritance

When	designing	categories	of	objects,	you	might	find	that	another	pattern	called
inheritance	 gives	 you	 more	 control.	 Inheritance	 describes	 a	 phenomenon	 in
which	 a	 one	 class	 inherits	 the	 variables	 and	methods	 from	 another.	 In	 such	 a
case,	the	inheritor	is	referred	to	as	the	subclass	(or	child	class),	and	the	ancestor
is	referred	to	as	the	superclass	(or	parent	class).

The	 advantage	 of	 inheritance	 over	 using	 an	 interface	 is	 the	 ability	 for	 you	 to
reuse	 code.	Recall	 that	 each	 class	 implementing	 an	 interface	MUST	provide	 a
full	 implementation	 for	 every	 one	 of	 the	 abstract	 methods	 declared	 in	 the
interface.	Using	the	example	from	the	previous	section,	this	means	that	the	King,
Villain,	Professor	and	SushiChef	classes	must	ALL	have	their	own	eat(),	walk()
and	 urinate()	 methods.	 Inheritance	 is	 powerful	 in	 such	 situations,	 because	 it
allows	 similar	 classes	 to	 share	 methods	 and	 variables.	 We	 will	 illustrate	 this
using	an	example	from	a	hypothetical	role-playing	game.
When	 creating	 an	 RPG,	 you	 might	 have	 a	 class	 called	 Hero	 representing	 the
player	character,	as	shown	in	listing	3.10.

*****	Listing	3.10	-	The	Hero	Class	*****

01	public	class	Hero	{

02						protected	int	health	=	10;	//	We	will	discuss	‘protected’	later	in	this	section

03						protected	int	power	=	5;

04						protected	int	armor	=	3;

05

06						public	void	drinkPotion(Potion	p)	{

07								health	+=	p.volume();	//	Equivalent	to	health	=	health	+	p.volume();

08						}

09										

10						public	void	takeDamage(int	damage)	{

11								int	realDamage	=	damage	-	armor;

12								if	(realDamage	>	0)	{

13												health	-=	realDamage;	//	Equivalent	to	health	=	health	–	realDamage.

14								}

15						}

16										

17						//more	methods

18

19	}

After	creating	the	Hero,	You	later	decide	that	your	RPG	would	distinguish	itself

from	 the	competition	by	 implementing	a	unique	class	 system	 in	which	players
would	choose	between	the	never-before-seen	Warrior,	Mage	and	Rogue	classes.

Next,	 as	 any	 respectable	 object-oriented	 programmer	 would,	 you	 create	 a
separate	 Java	 class	 for	 each	 of	 these	 character	 classes,	 because	 your	Warrior,
Mage	 and	Rogue	 should	 each	 have	 impossibly	 powerful	 unique	 abilities.	You
also	 decide	 that,	 since	 all	 of	 your	 character	 classes	 are	 first	 and	 foremost
extensions	of	a	generic	Hero	class,	they	should	each	have	all	of	the	variables	and
method	from	the	Hero	class	in	listing	3.10.	This	is	where	inheritance	comes	in.
Have	a	look	at	listings	3.11	through	3.13.

*****	Listing	3.11	-	The	Warrior	Class	*****

public	class	Warrior	extends	Hero	{

								

								//					other	variables	and	methods

								public	void	shieldBash()	{

															

								}

}

*****	Listing	3.12	-	The	Mage	Class	*****

public	class	Mage	extends	Hero	{

								

								//					other	variables	and	methods

								public	void	useMagic()	{

															

								}

}

*****	Listing	3.13	-	The	Rogue	Class	*****

public	class	Rogue	extends	Hero	{

								

								//					other	variables	and	methods

								public	void	pickPocket()	{

															

								}

}

Notice	 that	we	use	 the	extends	keyword	 to	 indicate	 inheritance.	This	 is	 fitting
because	 all	 three	 of	 these	 classes	 are	 extensions	 of	 the	 superclass	 Hero.	 In
inheritance,	each	of	the	subclasses	receive	their	own	copies	of	ALL	non-private
variables	and	methods	from	the	superclass	(the	protected	variables	from	listing
3.10	are	similar	 to	private	variables	 in	 that	 foreign	classes	cannot	access	 them;
however,	 unlike	 private	 variables,	 they	 ARE	 accessible	 by	 subclasses	 during

inheritance).
The	 benefits	 of	 inheritance	 are	 most	 apparent	 when	 we	 apply	 polymorphism,
which	allows	us	to	use	any	of	the	Hero’s	subclasses	in	methods	such	as	this	one:

//	Will	attack	any	Hero	regardless	of	Class

public	void	attackHero(Hero	h,	int	monsterDamage)	{

								h.takeDamage(monsterDamage);

}

Graphics

Text-based	programs	are	easy	to	build,	but	text-based	games	are	so	out	of	style.
In	this	section,	we	will	discuss	how	to	create	a	graphical	user	interface	(GUI)	by
using	classes	 from	the	Java	Class	Library	–	specifically	 from	the	javax.swing
package.	 You	 will	 find	 that	 while	 adding	 a	 simple	 user	 interface	 is	 straight-
forward;	GUI	is	a	massive	topic.	I	will	only	be	providing	a	quick	introduction	-
the	 bare	 essentials	 you	 need	 in	 order	 to	 create	 a	 window	 and	 display	 a	 Java-
based	 game.	 If	 you	 would	 like	 to	 learn	 more	 about	 Swing	 and	 creating
professional	applications,	visit	the	following	tutorial:

http://docs.oracle.com/javase/tutorial/uiswing/TOC.html

Introduction	to	JFrame

When	 developing	 a	 graphical	 application	 in	 Java,	 we	 begin	 by	 creating	 a
window	called	a	JFrame	object	(imported	from	javax.swing.JFrame).	Inside	this
window	is	a	content	pane	(think	window	pane),	to	which	we	can	add	various	UI
elements	such	as	buttons,	sliders	and	text	areas.

The	 content	 pane’s	 default	 layout	 is	 called	 BorderLayout.	 This	 allows	 you	 to
place	UI	elements	into	one	of	five	regions	as	shown	in	Figure	3-3.

http://docs.oracle.com/javase/tutorial/uiswing/TOC.html

Figure	3-3	A	JFrame	on	Windows	8	and	its	Content	Pane

Each	of	 the	five	regions	shown	in	 the	content	pane	in	Figure	3-3	can	hold	just
one	 UI	 element,	 meaning	 that	 the	 BorderLayout	 only	 supports	 five	 elements;
however,	this	is	not	an	issue	for	us,	as	we	really	only	need	one	element	called	a
JPanel.

A	 JPanel	 object	 is	 a	 simple,	 empty	 container	 that	 can	 be	 added	 to	 one	 of	 the
regions	of	a	BorderLayout.	We	can	draw	everything	that	our	players	should	see
onto	a	single	JPanel	object,	much	as	we	might	draw	on	a	canvas.	As	an	example,
consider	 the	 screenshot	 shown	 in	 Figure	 3-4.	 This	 screenshot	 is	 taken	 from	 a
development	version	of	 the	TUMBL	game	–	which	was	one	of	 the	first	games
that	 I	 developed.	 Everything	 that	 you	 see	 from	 the	 player’s	 score	 and	 pause
button	to	the	character	and	power-up	has	been	drawn	onto	a	single	JPanel.

Figure	3-4	Screenshot	from	an	Early	Build	of	TUMBL

Explaining	the	Coordinate	System

When	we	 deal	 with	 graphics	 on	 a	 computer,	 we	 will	 use	 a	 pixel-based	 X,	 Y
coordinate	system.	In	addition,	we	will	also	treat	the	top-left	pixel	as	our	origin
(0,	 0).	 This	means	 that	 on	 a	 screen	with	 a	 resolution	 of	 1920	 pixels	 by	 1080
pixels,	the	bottom-right	pixel	will	have	the	coordinates	(1919,	1079).

Creating	a	JFrame

Now	 that	 we	 have	 discussed	 everything	 that	 we	 need	 in	 order	 to	 build	 a
graphical	application.	It’s	time	to	get	our	hands	dirty.
Create	 a	 new	 Java	 Project	 called	 FirstGraphics	 and	 create	 a	 class	 called
FirstFrame,	complete	with	a	main	method.	We	will	then	create	a	JFrame	object
by	adding	the	following	lines	of	code	to	the	main	method	(make	sure	to	import
javax.swing.JFrame):

JFrame	frame	=	new	JFrame("My	First	Window");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setSize(480,	270);

frame.setVisible(true);

At	this	point	your	FirstFrame	class	should	look	like	that	shown	in	listing	3.14.

*****	Listing	3.14	-	The	FirstFrame	Class	*****

01	import	javax.swing.JFrame;

02

03	public	class	FirstFrame	{	

04														

05						public	static	void	main(String[]	args)	{

06														JFrame	frame	=	new	JFrame("My	First	Window");

07														frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

08														frame.setSize(480,	270);

09														frame.setVisible(true);

10						}

11

12	}

Run	the	FirstFrame	class	and	you	should	see	something	similar	to	Figure	3-5.

Figure	3-5	My	First	Window

Notice	that	a	window	has	appeared	with	the	title	“My	First	Window.”	It	is	clear
that	the	content	pane	(grey	area	in	Figure	3-5)	is	currently	empty.

In	the	non-graphical	examples	from	previous	sections,	our	programs	terminated
as	 soon	 as	 their	 last	 lines	 of	 code	 was	 executed	 by	 the	 JVM.	 Graphical
applications	do	not	behave	this	way.	A	JFrame	will	persist	even	after	the	last	line
of	code,	as	indicated	by	the	presence	of	the	window.	Let’s	terminate	the	program

by	clicking	the	exit	button.

Let’s	make	sure	that	we	understand	what	is	going	on	in	these	four	lines	of	code
that	define	the	JFrame	(lines	06	to	09	in	listing	3.14).	In	line	06,	we	create	a	new
JFrame	object	called	frame	by	using	a	custom	constructor.	This	allows	us	to	set
the	title	of	our	window.

Next	on	line	07,	we	specify	what	should	happen	when	our	window	is	closed.	We
want	 the	 entire	 program	 to	 terminate	when	 the	 user	 closes	 the	window,	 so	we
pass	 in	 a	 public	 int	 called	 EXIT_ON_CLOSE	 from	 the	 JFrame	 class	 to	 the
setDefaultCloseOperation()	method	 (remember	 that	 the	 dot	 operator	 is	 used	 to
access	public	methods	and	variables	from	another	class).

Line	08	simply	tells	the	window	to	resize	itself	so	that	it	is	480	pixels	wide	and
270	pixels	tall.	Once	this	is	finished,	we	call	the	setVisible()	method	on	line	09
to	make	the	frame	appear	on	our	screen.

Adding	a	JPanel

Now	that	we	have	a	JFrame,	it’s	time	to	add	to	its	content	pane.	To	do	this,	we
will	create	a	new	class	called	MyPanel.	This	class	will	be	a	customized	version
of	 JPanel	 created	 by	 using	 inheritance,	 so	 we	 must	 extend	 JPanel,	 importing
java.swing.JPanel.

Copy	the	code	shown	in	listing	3.15	into	your	MyPanel	class.	We	will	discuss	it
once	we	have	run	the	program!	Don’t	forget	to	add	the	proper	imports	as	shown
in	lines	01,	02	and	04.

*****	Listing	3.15	-	The	MyPanel	Class	*****

01	import	java.awt.Color;

02	import	java.awt.Graphics;

03

04	import	javax.swing.JPanel;

05

06	public	class	MyPanel	extends	JPanel	{

07

08						@Override

09						public	void	paintComponent(Graphics	g){

10														g.setColor(Color.BLUE);

11														g.fillRect(0,	0,	100,	100);

12														

13														g.setColor(Color.GREEN);

14														g.drawRect(50,	50,	100,	100);

15																						

16														g.setColor(Color.RED);

17														g.drawString("Hello,	World	of	GUI",	200,	200);

18																						

19														g.setColor(Color.BLACK);

20														g.fillOval(250,	40,	100,	30);

21						}

22						

23	}

Now	we	must	go	back	to	our	FirstFrame	class,	construct	an	instance	of	MyPanel,
and	 add	 it	 to	 one	of	 the	 regions	 of	 our	 content	 pane.	This	 is	 accomplished	by
adding	the	following	lines	of	code	to	the	bottom	of	our	main	method:

MyPanel	panel	=	new	MyPanel();	//	Creates	new	MyPanel	object.

frame.add(BorderLayout.CENTER,	panel);	//	Adds	panel	to	CENTER	region.

The	 updated	 FirstFrame	 class	 should	 look	 exactly	 like	 listing	 3.16	 (notice	 the
import	statement	on	line	01):

*****	Listing	3.15	-	The	MyPanel	Class	*****

01	import	java.awt.BorderLayout;

02

03	import	javax.swing.JFrame;

04

05	public	class	FirstFrame	{

06														

07						public	static	void	main(String[]	args)	{

08														JFrame	frame	=	new	JFrame("My	First	Window");

09														frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

10														frame.setSize(480,	270);

11														frame.setVisible(true);

12																						

13														MyPanel	panel	=	new	MyPanel();		//	Creates	new	MyPanel	Object

14														frame.add(BorderLayout.CENTER,	panel);		//	adds	panel	to	CENTER	region

15						}

16

17	}

Run	FirstFrame	and	you	will	see	a	screen	similar	to	that	shown	in	Figure	3-6.

Figure	3-6	Output	from	the	Updated	FirstFrame	Class

Explaining	the	Terms

Before	we	 discuss	what	 happened,	 we	 first	 need	 to	 clarify	 some	 terminology.
Recall	that	we	can	add	various	graphical	elements	to	the	regions	of	our	JFrame’s
content	pane.	These	graphical	elements	are	also	called	widgets,	and	they	belong
to	 a	 category	 of	 generic	 objects	 called	 JComponent.	 This	 means	 that	 JPanel,
along	with	other	graphical	elements	used	in	Swing-based	graphical	applications,
is	a	type	of	component.

Understanding	the	MyPanel

I	 will	 now	 explain	 what	 happened	 when	 we	 ran	 our	 program,	 beginning	 by
explaining	the	MyPanel	class.	Refer	to	listing	3.15,	and	you	will	remember	that
MyPanel	 extends	 JPanel	 (line	 06	 of	 listing	 3.15).	This	 says	 that	MyPanel	 is	 a
subclass	 of	 JPanel;	 in	 other	 words,	 it	 is	 a	 more	 specific	 version	 of	 a	 generic
JPanel	 class.	 It	 follows	 that	 MyPanel	 inherits	 all	 of	 the	 public	 methods	 that
belong	to	JPanel	(since	MyPanel	IS-A	specific	type	of	JPanel	by	inheritance).

One	 of	 the	 inherited	methods	 is	 called	 paintComponent().	 It	 is	 a	method	 that
describes	 how	 a	 component	 should	 be	 rendered	 (or	 drawn).	We	 want	 to	 take
control	 of	 this	method	 so	 that	we	 can	 tell	 our	program	how	a	MyPanel	object
should	 appear.	 To	 do	 so,	 we	 declare	 the	 paintComponent()	 method	 in	 our
MyPanel	 class	 and	 add	 an	@Override	modifier	 (line	 08),	which	 is	 our	way	 of
letting	 the	 compiler	 know	 that	we	 are	 replacing	 an	 existing	 paintComponent()
method	with	our	own.

Inside	this	paintComponent()	method,	we	call	eight	methods	using	the	provided
Graphics	object	g	(lines	10	to	20	in	listing	3.15).

The	Graphics	object	can	draw	one	thing	at	a	time,	and	it	works	like	a	paintbrush.
You	first	select	a	color	using	the	setColor()	method	and	tell	the	Graphics	object
what	to	draw	using	one	of	several	draw	and	fill	methods.

The	setColor()	method	accepts	a	Color	object,	which	we	can	 retrieve	 from	 the
Color	class	(this	class	holds	many	Color	objects	as	public	variables	that	you	can
reference	 using	 the	 dot	 operator).	 Note	 that	 there	 are	 two	 variables	 for	 each
color,	one	named	in	all	uppercase	and	the	other	 in	all	 lowercase.	These	always
return	the	same	color	to	you.

As	a	general	rule,	a	method	that	begins	with	the	word	draw	will	only	draw	the
outline	of	the	desired	shape.	Methods	that	begin	with	the	word	fill,	on	the	other
hand,	will	 fill	 that	entire	 shape.	As	an	example,	g.drawRect(50,	50,	100,	100);
will	draw	a	square	outline	that	has	its	top	left	corner	is	anchored	at	(50,	50)	and
also	has	a	side	length	of	100.

Refer	 to	 the	Method	Summary	 for	 the	Graphics	 class	 for	more	 information	on
the	methods	 called	 in	 our	 paintComponent()	method	 and	what	 the	 parameters
mean	at	the	following	link:

http://docs.oracle.com/javase/7/docs/api/java/awt/Graphics.html

Back	to	FirstFrame

Now	that	I	have	explained	what	 is	going	on	in	MyFrame,	 let’s	discuss	 the	 two
lines	that	we	have	added	in	listing	3.16	to	our	FirstFrame	class.

MyPanel	panel	=	new	MyPanel();	//	Creates	new	MyPanel	object.

frame.add(BorderLayout.CENTER,	panel);	//	Adds	panel	to	CENTER	region.

The	 first	 line	 of	 code	 simply	 creates	 a	 new	MyPanel	 object	 using	 the	 familiar
syntax.	The	 second	 line	 then	 adds	 it	 to	 the	 center	 region	 from	 those	 shown	 in
Figure	3-3.	Note	that	empty	regions	take	up	no	space.

Once	 our	MyPanel	 object	 has	 been	 added	 to	 the	 JFrame,	 its	 paintComponent

http://docs.oracle.com/javase/7/docs/api/java/awt/Graphics.html

method	 is	 AUTOMATICALLY	 called.	 This	 means	 that	 we	 do	 not	 have	 to
explicitly	ask	our	panel	to	paint	itself.	This	is	why	we	are	able	to	see	the	various
graphics	shown	in	Figure	3-6.

Make	 sure	 that	you	walk	yourself	 through	 the	code	again	and	understand	how
we	were	able	to	produce	the	amazing	artwork	that	even	Picasso	would	have	been
proud	of.

A	Milestone

With	that	example,	we	wrap	up	Chapter	3	and	Unit	1.	If	you’ve	stuck	with	me
this	 far,	 you	 have	 learned	 about	 the	 fundamentals	 of	 programming,	 mastered
basic	 Java	 and	 studied	 advanced	 object-oriented	 design	 concepts.	 Java	 Game
Development	 lies	 ahead,	 and	 it	 promises	 great	 challenges	 and	 even	 greater
excitements.

Before	we	move	on,	I’d	like	to	remind	you	that	Java	is	an	immense	programing
language.	While	I’ve	 tried	to	 introduce	you	to	all	of	 the	concepts	 that	you	will
likely	come	across	as	you	develop	Java	and	Android	games,	I	have	by	no	means
done	the	language	justice.	If	you	are	interested	in	learning	more	about	Java	and
exploring	all	of	these	concepts	in	much	greater	detail,	you	owe	it	to	yourself	to
find	a	good	book	dedicated	solely	to	Java	alone.	My	favorite	such	book	is	Head
First	Java	by	Kathy	Sierra	and	Bert	Bates.

Secondly,	 I’d	 like	 to	 offer	 another	 reminder	 that	 you	 are	 not	 in	 this	 journey
alone.	If	you	are	struggling	with	any	concepts,	want	to	learn	more	or	just	want	to
talk,	please	feel	free	to	visit	the	book’s	companion	site	at	jamescho7.com.	I’d	be
happy	to	discuss	any	questions	or	concerns	you	may	have.

Now	 take	 a	 deep	 breath.	 It’s	 time	 to	 dive	 into	 the	 world	 of	 Java	 Game
Development.....

Chapter	04:	Laying	the	Foundations
We’ve	spent	much	 time	discussing	Java	syntax	and	object-oriented	design,	but
we’ve	 yet	 to	 see	 how	 these	 concepts	 translate	 into	 dynamic	 games.	 In	 this
chapter,	 we	 will	 be	 putting	 our	 knowledge	 to	 use	 by	 building	 a	 game
development	 framework.	 This	will	 serve	 as	 the	 foundation	 for	 our	 first	 game,
which	we	will	be	building	in	Chapter	5.

Coding	a	game	seems	daunting;	you	may	spend	months	learning	about	Java	and
still	 have	 no	 idea	 where	 to	 even	 begin,	 because	 there	 seems	 to	 be	 this
unbridgeable	 gap	 between	 calling	 basic	 functions	 and	 building	 an	 interactive
game	 application.	 This	 chapter	will	 teach	 you	 exactly	 how	 to	 bridge	 this	 gap.
Once	you	realize	that	a	Java	game	is	made	up	of	classes	just	like	any	other	Java
program,	you	will	realize	that	it	is	not	a	difficult	endeavor.

Figure	4-1	The	Unbridgeable	Gap

Java	Game	Development	–	An	Overview

It	helps	to	think	of	a	Java	game	in	terms	of	its	three	components:

Game	Development	Framework:	a	a	collection	of	game-independent	classes
that	will	help	you	perform	tasks	that	every	game	needs	to	perform,	such	as
implementing	a	game	screen	and	handling	player	input.
Game-specific	Classes:	Java	classes	representing	characters,	power-ups,
levels	and	much	more.
Resources:	images	and	sound	files	that	are	used	throughout	the	game.

Figure	4-2	The	Three	Components	of	a	Java	Game

Learning	to	Build	Games

Before	we	get	started,	I	think	it	is	important	for	you	to	understand	my	goals	in
writing	Unit	2	(Chapters	4,	5	and	6),	so	that	you	know	exactly	what	to	expect.

Firstly,	 I	aim	 to	 teach	you	how	to	build	a	Java	game	from	scratch.	 I	will	walk
you	through	the	thought	process	behind	creating	a	game	development	framework
and	 writing	 game-specific	 classes,	 while	 sharing	 some	 tips	 on	 preparing
resources.

Secondly,	 I	 hope	 to	 solidify	 your	 understanding	 of	 object-oriented	 design	 and
programming.	Specifically,	 I	want	 you	 to	walk	 away	 from	Unit	 2	with	 a	 clear
understanding	 of	 how	 modular	 classes	 come	 together	 to	 form	 one	 coherent
application.	This	will	prepare	you	for	building	Android	applications	and	games
in	Unit	3.

There’s	one	additional	skill	that	I	hope	you	will	develop	from	this	unit.	You	may
find	that	in	many	cases,	to	make	the	best	game	possible,	it’s	easiest	to	work	with
an	existing	game	development	framework	rather	than	building	your	own.	This	is
because	 there	 are	many	 open-source	 game	 development	 frameworks	 out	 there
that	you	can	incorporate	into	your	project	to	build	more	impressive	games	in	less
time.	Therefore,	my	hope	is	that	you	will	learn	how	to	go	about	working	with	an
existing	game	development	framework	to	build	the	games	you	want.

Building	a	Game	Development	Framework

The	Purpose	of	a	Game	Development	Framework

There	are	many	tasks	that	EVERY	game	must	be	able	to	perform.	For	example,
every	 game	 should	 be	 able	 to	 load	 images	 and	 draw	 them	 to	 a	 screen.	 In
addition,	every	game	needs	to	allow	some	kind	of	user	interaction.

The	 role	of	a	game	development	 framework	 is	 to	provide	 reusable	classes	 that
perform	such	tasks,	so	that	you,	as	a	game	programmer,	can	focus	on	writing	the
game-specific	code	that	will	make	or	break	your	game.

As	such,	we	will	begin	by	creating	a	simple	game	development	framework	that
will	 serve	 as	 the	 starting	point	 for	 each	 Java	game	 that	we	build	 in	 this	 book.
This	game	development	framework,	with	a	few	modifications,	will	even	serve	as
a	starting	point	for	the	Android	games	that	we	will	build	in	Unit	3.

What	Makes	a	Good	Game	Development	Framework?

There	 is	 no	 correct	 way	 to	 create	 a	 game	 development	 framework.	 Some
frameworks,	 such	 as	 the	 one	we	 are	 building	 in	 this	 chapter,	 are	written	with
fewer	 than	 ten	 classes.	Others,	 such	 as	 the	 ever-growing,	 community-powered
libGDX,	 provide	 hundreds	 of	 classes.	 As	 a	 solo	 developer,	 you	 will	 likely
develop	 a	 small	 game	development	 framework	 and	 add	 to	 it	 over	 time	 (as	we
will	do	in	Chapters	5	and	6),	as	you	find	yourself	needing	the	same	features	over
and	over	again.

Despite	there	being	no	correct	way	to	make	a	game	development	framework,	a
good	 game	development	 framework	 should	 be	 flexible.	You	 should	 be	 able	 to
build	 turn-based	 puzzle	 games	 and	 real-time	 action	 games	 in	 different
perspectives	 without	 making	 heavy	 modifications	 to	 the	 framework	 or
sacrificing	performance.

Essential	Terminology

Before	we	can	build	our	game,	 there	are	some	terms	that	you	must	be	familiar
with.

One	thing	that	distinguishes	a	game	from	a	regular	Java	program	is	the	use
of	a	game	loop.	A	game	loop	is	a	block	of	code	that	runs	continuously
throughout	the	lifetime	of	a	game,	performing	two	important	tasks	on	every
iteration.	It	first	updates	the	game	logic,	moving	characters,	handling
collisions,	and	much	more.	Secondly,	it	takes	those	updates	and	renders
(draws)	images	to	the	screen.
FPS	(frames-per-second)	refers	to	the	rate	at	which	images	on	your	screen
are	replaced	to	create	an	illusion	of	motion.	This	is	directly	related	to	the
game	loop,	as	the	frequency	of	the	render	calls	is	our	game’s	FPS.

Designing	Our	Framwork

The	framework	we	are	going	to	build	in	this	chapter	will	be	very	simple.	We	will
be	 creating	 seven	 classes	 that	 belong	 to	 three	 categories.	 Read	 the	 basic
overview	 for	 these	 classes,	 which	 is	 provided	 in	 Figure	 4-3.	 If	 some	 of	 the
explanations	 are	 unclear,	 return	 to	 them	 as	we	 build	 our	 framework,	 and	 they
should	make	more	sense.

Figure	4-3	Outline	of	the	Game	Framework

Downloading	the	Source	Code

The	 full	 source	 code	 (with	 comments)	 is	 available	 for	 you	 to	 download	 at
jamescho7.com.	 If	 you	 are	having	 trouble	with	your	 code	 at	 any	point	 in	 this
section,	I	recommend	downloading	the	full	code	and	comparing	your	classes.

Starting	the	Framework

Enough	talk	—	it’s	time	to	start	coding!	Open	up	Eclipse	and	create	a	new	Java
Project	called	SimpleJavaGDF.

Next,	we	will	create	groups	of	classes	called	packages	by	right-clicking	(Ctrl	+
click	 on	Mac)	 on	 our	 src	 folder	 and	 choosing	 New	 ->	 Package	 as	 shown	 in
Figure	4-4.

Figure	4-4	Creating	a	New	Package

In	the	New	Java	Package	dialog’s	Name	field,	enter	the	following:

com.jamescho.game.main

Your	dialog	should	look	like	that	shown	in	Figure	4-5.

Figure	4-5	Adding	a	Package	Name

Click	 Finish,	 and	 your	 new	 package	 should	 appear	 under	 src	 in	 your	 Package
Explorer.	 Repeat	 these	 steps	 to	 create	 four	more	 packages	 with	 the	 following
names:

1.	 com.jamescho.game.model
2.	 com.jamescho.game.state
3.	 com.jamescho.framework.util
4.	 resources

One	you	are	done,	your	project	should	now	look	like	Figure	4-6.

Figure	4-6	Our	Five	Packages

A	Discussion	of	Packages

A	Java	package	is	a	folder	containing	related	files.	For	example,	com.jamescho.
framework.util	 refers	 to	 a	 folder	 inside	 our	 project’s	 main	 src	 folder	 at
…/com/jamescho/framework/util.

The	classes	we	have	discussed	in	Figure	4-3	will	be	added	to	these	packages	as
follows:

The	com.jamescho.framework.util	package	will	contain	our	Utility	class.
The	com.jamescho.game.main	package	will	contain	our	Main	classes.
The	com.jamescho.game.state	package	will	contain	our	State	classes.

Two	of	our	packages	are	specific	to	each	game.

The	com.jamescho.game.model	package	will	contain	classes	that	will
represent	various	objects	in	our	game.	We	will	keep	this	package	empty
until	the	next	section,	in	which	we	will	build	a	game	using	our	framework.
The	resources	package	will	contain	images	and	sound	files	that	we	will
use	in	our	game.

Creating	Our	Classes

Now	 that	our	packages	are	 setup,	we	will	begin	creating	our	classes.	 If	 at	 any
point	you	get	lost	while	following	my	explanations,	read	on.	I	will	include	a	full
code	listing	showing	the	most	recent	state	of	each	class	that	we	modify.

Our	plan	is	to	create	a	GameMain	class,	instantiate	a	JFrame	object	and	populate
its	content	pane	with	an	instance	of	Game	(which	will	 inherit	JPanel).	Refer	to
Figure	 4-7	 if	 you	need	 a	 refresher	 on	 these	 terms.	 If	 you	need	more	 review,	 I
recommend	re-reading	Chapter	3’s	sections	on	Inheritance	and	Graphics	before

moving	on.

Figure	4-7	A	Jframe	and	it's	Content	Pane

Now,	 create	 two	 classes	 in	 com.jamescho.game.main,	 as	 shown	 in	 Figure	 4-8.
The	first	will	be	called	GameMain,	and	the	second	will	be	called	Game.

Figure	4-8	Adding	GameMain	and	Game	to	the
com.jamescho.game.main	package.

Creating	a	JFrame	in	GameMain

We	will	 now	 open	 up	 our	 GameMain	 class,	 add	 a	main	method,	 create	 some
variables	and	initialize	a	new	JFrame	object	representing	our	game’s	window	as
shown	in	listing	4.01.

Warning!:
From	this	point	on,	the	book	may	not	explicitly	tell	you	to	import	a	new	class,
such	as	javax.swing.JFrame	shown	in	line	03	of	Listing	4.01.	If	you	get	errors
while	trying	to	use	a	class,	double	check	your	import	statements	by	comparing
them	to	the	provided	code	listings.
Also	take	note	that	line	06	in	the	same	listing	has	been	wrapped	into	two	lines	in
this	book.	When	entering	the	code	on	your	machine,	you	should	enter	such	lines
in	one	line

*****	Listing	4.01	GameMain.java	(incomplete)	*****

01	package	com.jamescho.game.main;

02

03	import	javax.swing.JFrame;

04

05	public	class	GameMain	{

06						private	static	final	String	GAME_TITLE	=	"Java	Game	Development	Framework	(Chapter	4)";

07						public	static	final	int	GAME_WIDTH	=	800;

08						public	static	final	int	GAME_HEIGHT	=	450;

09						public	static	Game	sGame;

10

11						public	static	void	main(String[]	args)	{

12														JFrame	frame	=	new	JFrame(GAME_TITLE);

13														frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

14														frame.setResizable(false);	//	Prevents	manual	resizing	of	window

15														frame.setVisible(true);

16						}

17

18	}

Before	we	discuss	 the	 code,	 let’s	 run	 the	program	 to	make	 sure	 it	works.	You
should	get	a	window	that	looks	like	this	(with	minor	differences	based	on	OS):

Figure	4-9	An	Empty	JFrame	Window	(in	Windows	8)

Our	JFrame	currently	looks	tiny,	but	once	we	start	adding	to	its	content	pane,	it
should	 resize	 properly.	 Let’s	 close	 out	 of	 our	 JFrame	 for	 now	 and	 discuss	 the
code.	Looking	at	listing	4.01	again,	you	will	find	that	all	of	the	methods	called	in
the	main	method	are	self-explanatory.	(Refer	to	listing	3.16	if	you	have	forgotten
what	 some	 of	 these	 methods	 do).	 Let’s	 spend	 some	 time	 talking	 about	 the
variables.

The	Static	Keyword

Notice	 that	 in	 listing	 4.01	 that	 all	 of	GameMain’s	 variables	 are	marked	 static.
The	word	static	denotes	that	these	variables	are	NOT	instance	variables	but	class
variables.	 This	 means	 that	 these	 variables	 do	 NOT	 belong	 to	 any	 particular
instance;	they	belong	to	the	class,	and	thus	can	be	accessed	without	instantiating
GameMain.	To	learn	more	about	the	static	keyword,	refer	to	Appendix	A.

The	Final	Keyword

Some	 variables	 shouldn’t	 change	 throughout	 the	 course	 of	 our	 game.	 The
following	variables	from	listing	4.01	are	all	constants:

private	static	final	String	GAME_TITLE	=	"Java	Game	Development	Framework	(Chapter	4)";

public	static	final	int	GAME_WIDTH	=	800;

public	static	final	int	GAME_HEIGHT	=	450;

To	 make	 this	 clear,	 we	 first	 add	 the	 keyword	 final	 which	 prevents	 us	 from
changing	 the	 values	 of	 these	 variables.	 We	 also	 use	 all	 uppercase	 letters	 in
naming	constant	variables	(the	word	variable	still	applies	 to	constants,	because
variable	just	means	something	that	stands	in	the	place	of	another.	In	this	case,	for
instance,	GAME_WIDTH	is	a	variable	that	stands	in	the	place	of	an	unchanging
constant	value	of	800).

KEY	POINT

Static	Does	NOT	Mean	Constant:	To	create	constants,	we	use	the	final
keyword.

Creating	a	Constructor	for	Game.java

Now,	open	up	the	Game	class	and	extend	JPanel	(importing	javax.swing.JPanel)
as	shown	in	listing	4.02.

*****	Listing	4.02	The	Game	Class	(incomplete)	*****

01	package	com.jamescho.game.main;

02

03	import	javax.swing.JPanel;

04

05	@SuppressWarnings("serial")

06

07	public	class	Game	extends	JPanel	{

08

09	}

By	extending	JPanel,	Game	becomes	a	type	of	JPanel.	Our	Game	class	can	now
be	added	to	the	content	pane	of	the	JFrame	in	GameMain.

Note
The	 line:	@SuppressWarnings("serial")	 tells	Eclipse	not	 to	give	us	warnings
regarding	what	is	called	a	serial	version	ID,	which	is	used	when	saving	an	object
through	a	process	called	serialization.	Serialization	 is	beyond	 the	scope	of	 this
book,	 so	we	will	 just	 ignore	 the	warning.	Don’t	worry,	 it	will	NOT	affect	 our
games!

Next,	we	will	create	several	instance	variables	and	provide	a	constructor	we	will
use	to	initialize	them.	Add	the	following	code	to	your	Game	class	so	that	it	looks
like	 listing	4.03	(practice	checking	for	new	import	statements	 to	prevent	errors
whenever	we	use	a	new	type	of	class):

*****	Listing	4.03	The	Game	Class	(incomplete)	*****

01	package	com.jamescho.game.main;

02

03	import	java.awt.Color;

04	import	java.awt.Dimension;

05	import	java.awt.Image;

06

07	import	javax.swing.JPanel;

08

09	@SuppressWarnings("serial")

10

11	public	class	Game	extends	JPanel{

12						private	int	gameWidth;

13						private	int	gameHeight;

14						private	Image	gameImage;

15

16						private	Thread	gameThread;

17						private	volatile	boolean	running;

18

19						public	Game(int	gameWidth,	int	gameHeight)	{

20														this.gameWidth	=	gameWidth;

21														this.gameHeight	=	gameHeight;

22														setPreferredSize(new	Dimension(gameWidth,	gameHeight));

23														setBackground(Color.BLACK);

24														setFocusable(true);

25														requestFocus();

26						}

27

28	}

Look	at	the	five	instance	variables	(lines	12	to	17	in	listing	4.03)	and	you	might
see	 some	unfamiliar	 terms.	We	have	never	 encountered	 the	 Image	 and	Thread
types	before,	nor	have	we	seen	the	keyword	volatile.	We	will	be	discussing	these
shortly.	Let’s	skip	over	them	for	the	time	being	and	move	on	to	the	constructor.

Recall	 that	 when	 an	 object	 is	 first	 created,	 its	 constructor	 is	 called.	 Game’s
constructor	 asks	 for	 two	 values:	 integers	 called	 gameWidth	 and	 gameHeight.
These	values	will	be	the	width	and	height	in	pixels	of	our	Java	game	window’s
content.	In	the	first	two	lines	of	the	constructor,	we	use	these	values	to	initialize
two	instance	variables	of	the	same	name	(we	will	need	these	values	later).

Next,	we	call	four	methods	that	belong	to	JPanel	(available	to	us	by	inheritance)
as	shown	on	lines	22	to	25	of	listing	4.03.

The	 first	 of	 these	 methods	 requests	 that	 our	 Game	 object	 be	 resized	 to	 the
dimensions	given	by	gameWidth	x	gameHeight.	We	call	 the	 setPreferredSize()
method	by	passing	 in	a	new	Dimension	object	as	 required	by	 the	method	(line
22).	 This	 Dimension	 object	 simply	 holds	 our	 width	 and	 height	 values	 in	 one
place.

Secondly,	 we	 set	 the	 background	 color	 of	 our	 Game	 to	 black,	 by	 using	 the
BLACK	constant	from	the	Color	class	(line	23).

Lines	24	and	25	allow	us	to	start	receiving	user	input	(in	the	form	of	keyboard
and	mouse	events).	We	first	flag	our	Game	as	being	focusable,	and	then	ask	for
focus.	This	just	means	that	keyboard	events	and	buttons	will	now	be	available	to
our	Game	object.

Adding	the	Game	to	the	JFrame

Now	it’s	time	to	add	an	instance	of	Game	to	our	JFrame.	Return	to	GameMain,
initialize	 sGame	 with	 a	 new	 instance	 of	 Game,	 then	 add	 it	 to	 our	 frame	 by
adding	 the	 following	 lines	of	code	shown	 in	bold	 to	 the	main	method	(the	 full

class	listing	is	shown	in	listing	4.04):

public	static	void	main(String[]	args)	{

																...

																sGame	=	new	Game(GAME_WIDTH,	GAME_HEIGHT);

																frame.add(sGame);

																frame.pack();											

																

																frame.setVisible(true);

								}

Run	the	code,	and	you	will	see	that	our	JFrame	now	has	a	proper	size,	as	shown
in	Figure	4-10.

Figure	4-10	JFrame	with	an	Instance	of	Game	Attached

Let’s	discuss	the	changes	we	made.	frame.add(sGame)	is	another	way	of	saying
frame.add(BorderLayout.CENTER,	 sGame),	 which	 we	 have	 discussed	 in
Chapter	 3.	 frame.pack()	 tells	 our	 JFrame	 object	 to	 resize	 to	 accommodate	 the
preferred	size	of	its	contents	(which	is	set	using	the	method	setPreferredSize()	in
each	component).

Exit	out	of	the	program	by	closing	the	window.	We	are	now	nearly	done	with	the
GameMain	class.	The	full	class	is	reproduced	in	listing	4.04:

*****	Listing	4.04	The	GameMain	Class	(updated)	*****

01	package	com.jamescho.game.main;

02

03	import	java.awt.BorderLayout;

04

05	import	javax.swing.JFrame;

06

07	public	class	GameMain	{

08						private	static	final	String	GAME_TITLE	=	"Java	Game	Development	Framework	(Chapter	4)";

09						public	static	final	int	GAME_WIDTH	=	800;

10						public	static	final	int	GAME_HEIGHT	=	450;

11						public	static	Game	sGame;

12

13						public	static	void	main(String[]	args)	{

14														JFrame	frame	=	new	JFrame(GAME_TITLE);

15														frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

16														frame.setResizable(false);	

17														sGame	=	new	Game(GAME_WIDTH,	GAME_HEIGHT);

18														frame.add(sGame);

19														frame.pack();											

20														frame.setVisible(true);

21						}

22

23	}

Adding	Image	Files	to	Our	Project

We	will	now	take	a	break	from	our	code	and	add	a	few	image	files	to	our	project.
Go	to	jamescho7.com/book/chapter7/	on	your	web	browser,	and	download	the
following	image	files	to	any	folder	outside	your	project	(alternatively,	create	two
images	of	your	own	with	the	provided	names	and	sizes):

iconimage.png	(20px	x	20px)	–	to	be	used	as	icon	image	for	JFrame

welcome.png	(800px	x	450px)	–	to	be	used	as	welcome	screen	for
framework

We	will	be	adding	these	image	files	to	our	resources	package.	To	do	so,	simply
open	 the	 folder	 containing	 the	 two	 files	 and	 drag	 the	 files	 into	 the	 resources
package	 in	 the	 Package	Explorer.	You	will	 see	 a	 File	Operation	 dialog.	Make
sure	 that	 you	 select	 Copy	 files,	 as	 shown	 in	 Figure	 4-11,	 and	 press	OK.	 This
ensures	 that	 our	 project	 has	 access	 to	 these	 images	 even	 if	 they	 are	 removed
from	the	original	location.

Figure	4-11	Copying	Files	into	Our	Project

Your	project	should	now	contain	our	two	image	files,	as	shown	in	Figure	4-12.

Figure	4-12	Resources	Package	with	Images	Added

Creating	the	Resources	class

Now	that	we	have	some	resources,	we	need	a	class	that	will	manage	them.	We
will	create	a	Resources	class	that	will	allow	us	to	quickly	load	image	and	sound
files	from	the	resources	package	and	store	them	as	public	variables	that	can	be
accessed	 by	 other	 classes	 in	 our	 game.	 Create	 this	 class	 inside	 the
com.jamescho.game.main	package,	as	shown	in	Figure	4-13.

Figure	4-13	Creating	the	Resources	Class

Our	Resources	class	will	have	three	methods.	The	first	method,	load(),	will	be	a
public	method	that	will	load	all	the	resources	in	the	game.	To	accomplish	this,	it
will	make	use	of	two	private	helper	methods:	loadSound()	and	loadImage().
Add	 the	 three	methods	 as	 given	 in	 listing	 4.05,	 paying	 attention	 to	 the	 import
statements	to	prevent	errors.

*****	Listing	4.05	The	Resources	Class	*****

01	package	com.jamescho.game.main;

02

03	import	java.applet.Applet;

04	import	java.applet.AudioClip;

05	import	java.awt.image.BufferedImage;

06	import	java.net.URL;

07

08	import	javax.imageio.ImageIO;

09

10	public	class	Resources	{

11						public	static	void	load()	{

12														//	To-do

13						}

14

15						private	static	AudioClip	loadSound(String	filename)	{

16														URL	fileURL	=	Resources.class.getResource("/resources/"	+	filename);

17														return	Applet.newAudioClip(fileURL);

18						}

19

20						private	static	BufferedImage	loadImage(String	filename)	{

21														BufferedImage	img	=	null;

22														img	=	ImageIO.read(Resources.class.getResourceAsStream("/resources/"	+	filename));

23														return	img;

24						}

25

26	}

You	will	 see	 an	 error	 in	 loadImage()	 as	 shown	 in	Figure	 4-14.	 Ignore	 this	 for
now.	We	will	be	fixing	this	shortly.

Figure	4-14	An	Error	in	loadImage()

The	 loadSound()	 and	 loadImage()	 methods	 both	 receive	 a	 String	 parameter
representing	the	name	of	the	file	you	want	to	load	from	the	resources	package.
These	make	use	of	two	built-in	methods	for	loading	sound	and	image	files	that
we	will	not	discuss	in-depth	here.

These	two	methods	will	search	the	resources	package	for	the	requested	file,	and
return	it	as	either	an	AudioClip	or	BufferedImage,	which	are	examples	of	Java
object	representations	of	image	and	sound	files.

Try/Catch	Block

Now	 let’s	 go	 about	 fixing	 that	 error	 in	 Figure	 4-14.	 Put	 your	mouse	 over	 the
error	message,	and	you	will	see	an	explanation	of	the	error.

Figure	4-15	Error	is	due	to	an	Unhandled	Exception

Our	compiler	is	telling	us	that	the	ImageIO.read(…)	may	throw	an	Exception	(an
error)	and	that	we	must	provide	a	way	of	handling	the	error.	To	do	so,	we	will
choose	the	Surround	with	try/catch	option.	Your	method	should	update	as	shown
below,	 you	 may	 see	 an	 IOException	 rather	 than	 an	 Exception,	 but	 that	 is
perfectly	okay!	Either	choice	is	fine	here:

private	static	BufferedImage	loadImage(String	filename)	{

								BufferedImage	img	=	null;

								try	{

																img	=	ImageIO.read(Resources.class

																																.getResourceAsStream("/resources/"	+	filename));

								}	catch	(Exception	e)	{

																//	TODO	Auto-generated	catch	block

																e.printStackTrace();

								}

								return	img;

}

Whenever	we	 call	 a	method	 that	 is	 likely	 to	 fail	 (such	 as	 ImageIO.read()),	we
must	surround	it	with	a	try/catch	block,	placing	the	risky	method	inside	the	try
block	 and	 handling	 the	 error	 inside	 the	 catch	 block.	 We	 will	 keep	 the
e.printStackTrace(),	which	will	tell	us	what	error	occurred	and	where	in	our	code
it	occurred.

A	 common	 exception	 in	 this	 case	 occurs	 when	 our	 game	 is	 unable	 to	 find	 a
requested	 file,	 so	 let’s	 add	 an	 appropriate	 error	 message	 to	 our	 catch	 block,
replacing	 the	 //TODO	 line	with	 the	 following	 line,	 so	 that	 it	 is	 easy	 for	 us	 to
identify	the	problematic	file:

System.out.println(“Error	while	reading:	“	+	filename);

Our	Resource	class	should	now	look	like	listing	4.06.

*****	Listing	4.06	The	Resources	Class	(Updated	with	Try/Catch	Block)	*****

01	package	com.jamescho.game.main;

02

03	import	java.applet.Applet;

04	import	java.applet.AudioClip;

05	import	java.awt.image.BufferedImage;

06	import	java.net.URL;

07	

08

09	import	javax.imageio.ImageIO;

10

11	public	class	Resources	{

12						public	static	void	load()	{

13														//	To-do

14						}

15

16						private	static	AudioClip	loadSound(String	filename)	{

17														URL	fileURL	=	Resources.class.getResource("/resources/"	+	filename);

18														return	Applet.newAudioClip(fileURL);

19						}

20

21						private	static	BufferedImage	loadImage(String	filename)	{

22														BufferedImage	img	=	null;

23														try	{

24																						img	=	ImageIO.read(Resources.class.getResourceAsStream("/resources/"	+	filename));

25														}	catch	(Exception	e)	{

26																						System.out.println("Error	while	reading:	"	+	filename);

27																						e.printStackTrace();

28														}

29														return	img;

30						}

31	}

Loading	Image	Files	from	the	resources	Package

We	 will	 now	 go	 about	 loading	 the	 two	 image	 files	 welcome.png	 and
iconimage.png	into	our	project.	This	just	requires	two	simple	steps.

We	 first	 create	 appropriate	 public	 static	 variable	 for	 each	 file.	 Since	 we	 are
working	with	image	files,	we	will	create	two	BufferedImage	variables	as	shown
in	bold	in	the	following	example.	Note	that	we	are	using	the	comma	to	declare
multiple	variables	of	the	same	type	in	one	line.

....

	public	class	Resources	{

								public	static	BufferedImage	welcome,	iconimage;

								public	static	void	load()	{

																//	To-do

								}

....

Secondly,	 we	 must	 initialize	 these	 two	 variables	 inside	 the	 load()	 method	 by
calling	 the	 appropriate	 helper	method	with	 the	 desired	 file	 name	 as	 shown	 in
bold	in	the	example	below:

....

	public	class	Resources	{

								public	static	BufferedImage	welcome,	iconimage;

								public	static	void	load()	{

																welcome	=	loadImage("welcome.png");

																iconimage	=	loadImage("iconimage.png");

								}

....

Take	care	to	ensure	that	each	String	argument	matches	the	name	of	the	desired
file	exactly.	Your	completed	class	should	look	like	listing	4.07:

*****	Listing	4.07	The	Resources	Class	(Complete)	*****

01	package	com.jamescho.game.main;

02

03	import	java.applet.Applet;

04	import	java.applet.AudioClip;

05	import	java.awt.image.BufferedImage;

06	import	java.net.URL;

07	

08

09	import	javax.imageio.ImageIO;

10

11	public	class	Resources	{

12														

13						public	static	BufferedImage	welcome,	iconimage;

14														

15						public	static	void	load()	{

16														welcome	=	loadImage("welcome.png");

17														iconimage	=	loadImage("iconimage.png");

18						}

19

20						private	static	AudioClip	loadSound(String	filename)	{

21														URL	fileURL	=	Resources.class.getResource("/resources/"	+	filename);

22														return	Applet.newAudioClip(fileURL);

23						}

24

25						private	static	BufferedImage	loadImage(String	filename)	{

26														BufferedImage	img	=	null;

27														try	{

28																						img	=	ImageIO.read(Resources.class.getResourceAsStream("/resources/"	+	filename));

29														}	catch	(Exception	e)	{

30																						System.out.println("Error	while	reading:	"	+	filename);

31																						e.printStackTrace();

32														}

33														return	img;

34						}

35

36	}

We	will	be	testing	this	class	at	a	later	time.

Checkpoint	#1

Let’s	see	what	we	have	currently	completed	thus	far	within	our	framework.	It’s
important	for	us	to	do	this	so	that	we	don’t	get	lost	in	our	own	code.	Figure	4-16
shows	our	progress	so	far.

Note	 If	you	are	having	problems	with	any	of	 the	classes	at	 this	point,	you	can
download	the	source	code	at	jamescho7.com/book/chapter4/checkpoint1.

Figure	4-16	List	of	Classes	and	Notes

We	have	made	a	lot	of	progress	with	the	main	classes.	In	the	next	several	pages,
we	will	begin	and	complete	the	state	classes.

Defining	‘State’

Throughout	 a	 game	 session,	 the	player	passes	 through	multiple	 screens.	He	or
she	may	start	 in	 the	main	menu	screen,	go	 to	 the	 settings	 screen,	 return	 to	 the
menu	screen	and	then	enter	the	gameplay	screen.

To	 incorporate	 this	 feature	 into	our	 framework,	we	will	 create	a	 Java	class	 for
each	screen	in	the	game.	We	will	be	naming	these	classes	states.	(Following	this
idea,	the	menu	screen	will	be	represented	by	the	MenuState	class,	the	gameplay
screen	will	be	represented	by	the	PlayState	class,	and	so	on).

Figure	4-17	Representing	States

Creating	State	Class

Inside	 the	 package	 com.jamescho.game.state,	 create	 a	 class	 called	 State.	 This
class	will	 serve	as	a	generic	 template	 (i.e.	 a	 super-class)	when	we	create	other
state	classes	(sub-classes).	As	such,	State	will	NOT	represent	an	actual	screen	in
our	game.

To	 indicate	 this	 vicarious	 role,	we	will	mark	 this	 class	 as	 an	 abstract	 class	 by
adding	the	abstract	keyword	in	the	class	declaration	as	shown	in	listing	4.08.

*****	Listing	4.08	Adding	the	abstract	Keyword	*****

01	package	com.jamescho.game.state;

02	

03	public	abstract	class	State	{

04	

05	}

More	on	Abstract	Classes

An	 abstract	 class	 is	 very	 similar	 to	 an	 interface.	 It	 contains	 abstract	 methods
(methods	 with	 no	 method	 bodies)	 that	 must	 be	 implemented	 by	 any	 class
inheriting	 from	 the	 abstract	 class.	 This	 means	 that	 the	 abstract	 State	 class
(superclass)	can	declare	abstract	methods	to	provide	a	common	structure	for	all
state	objects	(subclasses)	that	we	will	create.

Let’s	see	how	this	works	by	adding	the	six	abstract	methods	that	we	will	need	to
implement	in	each	of	our	state	objects.	Add	the	code	shown	in	lines	9	through	19
of	listing	4.09	into	State	(pay	attention	to	the	import	statements).

*****	Listing	4.09	Adding	Abstract	Methods	to	the	State	Class	*****

01	package	com.jamescho.game.state;

02

03	import	java.awt.Graphics;

04	import	java.awt.event.KeyEvent;

05	import	java.awt.event.MouseEvent;

06

07	public	abstract	class	State	{

08														

09						public	abstract	void	init();

10

11						public	abstract	void	update();

12

13						public	abstract	void	render(Graphics	g);

14

15						public	abstract	void	onClick(MouseEvent	e);

16

17						public	abstract	void	onKeyPress(KeyEvent	e);

18

19						public	abstract	void	onKeyRelease(KeyEvent	e);

20

21	}

Each	 of	 these	 six	 methods	 will	 be	 called	 at	 very	 specific	 moments	 during
gameplay.

The	init()	method	will	be	called	when	a	we	transition	into	to	a	new	game
state.	It	is	a	great	place	to	initialize	any	game	objects	that	will	be	used
throughout	the	game	state.
The	update()	method	of	the	current	state	will	be	called	by	the	game	loop	on
every	frame.	We	use	it	to	update	every	game	object	inside	the	game	state.
The	render()	method	of	the	current	state	will	be	called	by	the	game	loop	on
every	frame.	We	use	it	to	render	game	images	to	the	screen.
The	onClick()	method	of	the	current	state	will	be	called	when	the	player
makes	a	mouse	click.	It	receives	information	regarding	this	mouse	event	as
a	parameter.
The	onKeyPress()	method	of	the	current	state	will	be	called	when	the	player
presses	a	keyboard	button.	It	receives	information	regarding	the	key	event,
such	as	the	identity	of	the	key	that	was	pressed.	We	use	this	method	to
make	changes	to	our	game	(such	as	moving	the	character).
The	onKeyRelease()	method	of	the	current	state	will	be	called	when	the
player	releases	a	keyboard	button.	It	receives	information	regarding	the	key
event,	such	as	the	identity	of	the	key	was	released.	We	use	this	method	to
make	changes	to	our	game	(such	as	stopping	a	moving	character).

Why	We	Use	an	Abstract	Class

An	 abstract	 class,	 unlike	 an	 interface,	 allows	 us	 to	 declare	 concrete	 methods
alongside	its	abstract	methods	to	 implement	behavior	 that	will	be	shared	by	its
subclasses.	 In	other	words,	an	abstract	class	allows	you	to	combine	features	of
inheritance	and	interface!
In	our	framework,	State	has	to	be	an	abstract	class	rather	than	a	simple	interface,
because	 we	 will	 later	 implement	 some	 concrete	 methods	 to	 perform	 shared
behavior	such	as	transitioning	to	another	screen.	This	will	make	more	sense	later
in	this	chapter.

Creating	the	LoadState	Class

Let’s	put	our	State	to	use	by	using	it	as	a	template	to	create	the	LoadState	class.
This	class	will	represent	the	loading	screen	of	our	game,	where	we	will	ask	our
Resources	class	to	load	all	of	our	game	resources.
Create	 the	 LoadState	 class	 inside	 the	 package	 com.jamescho.game.state,	 and

extend	State	as	shown	in	Figure	4-18.

Figure	4-18	Extending	State

Just	 as	 when	 implementing	 an	 interface,	 you	 must	 implement	 ALL	 abstract
methods	of	an	inherited	abstract	class.	Select	the	add	“unimplemented	methods”
quick-fix,	and	your	code	should	then	look	like	that	shown	in	listing	4.10.

*****	Listing	4.10	The	LoadState	Class	After	Adding	Unimplemented	Methdos	*****

01	package	com.jamescho.game.state;

02

03	import	java.awt.Graphics;

04	import	java.awt.event.KeyEvent;

05	import	java.awt.event.MouseEvent;

06

07	public	class	LoadState	extends	State	{

08

09						@Override

10						public	void	init()	{

11														//	TODO	Auto-generated	method	stub

12						}

13

14						@Override

15						public	void	update()	{

16														//	TODO	Auto-generated	method	stub

17						}

18

19						@Override

20						public	void	render(Graphics	g)	{

21														//	TODO	Auto-generated	method	stub

22						}

23

24						@Override

25						public	void	onClick(MouseEvent	e)	{

26														//	TODO	Auto-generated	method	stub

27						}

28

29						@Override

30						public	void	onKeyPress(KeyEvent	e)	{

31														//	TODO	Auto-generated	method	stub

32						}

33

34						@Override

35						public	void	onKeyRelease(KeyEvent	e)	{

36														//	TODO	Auto-generated	method	stub

37						}

38

39	}

Now	that	we	have	created	our	class	and	extended	our	template,	we	need	to	start
implementing	the	class’s	behavior.
In	the	init()	method	of	the	LoadState,	we	will	ask	our	Resources	class	to	load	all
of	our	game’s	 resources.	Add	 the	 following	 lines	of	 code	 to	 the	 init()	method,
importing	com.jamescho.game.main.Resources:

Resources.load();

System.out.println(“Loaded	Successfully”);

You	can	leave	the	other	methods	empty.	We	will	not	be	performing	any	updates
or	 rendering	 any	 images	 inside	 the	 LoadState,	 and	 we	 will	 ignore	 any	 user
interaction	that	happens	via	the	keyboard	or	the	mouse.	Your	LoadState	should
now	look	like	that	shown	in	listing	4.11.

*****	Listing	4.11	The	LoadState.java	*****

01	package	com.jamescho.game.state;

02

03	import	java.awt.Graphics;

04	import	java.awt.event.KeyEvent;

05	import	java.awt.event.MouseEvent;

06

07	import	com.jamescho.game.main.Resources;

08

09	public	class	LoadState	extends	State{

10

11						@Override

12						public	void	init()	{

13														Resources.load();

14														System.out.println("Loaded	Successfully");

15						}

16

17						@Override

18						public	void	update()	{

19														//	TODO	Auto-generated	method	stub

20						}

21

22						@Override

23						public	void	render(Graphics	g)	{

24														//	TODO	Auto-generated	method	stub						

25						}

26

27						@Override

28						public	void	onClick(MouseEvent	e)	{

29														//	TODO	Auto-generated	method	stub

30						}

31

32						@Override

33						public	void	onKeyPress(KeyEvent	e)	{

34														//	TODO	Auto-generated	method	stub

35						}

36

37						@Override

38						public	void	onKeyRelease(KeyEvent	e)	{

39														//	TODO	Auto-generated	method	stub

40						}

41

42	}

This	is	all	we	need	to	do	for	now!	Next,	we	will	go	to	our	Game	class	and	set	the
LoadState	as	the	initial	state	of	our	game.

Setting	the	Current	State

Open	 the	 Game	 class,	 and	 declare	 the	 following	 instance	 variable	 (importing
com.jamescho.game.state.State):

private	volatile	State	currentState;

Our	game	will	show	one	game	state	at	a	time.	The	variable	currentState	will	be
our	 framework’s	 way	 of	 tracking	 this	 current	 game	 state.	We	will	 now	 add	 a
method	that	accepts	any	State	object	(such	as	 loadState),	calls	 its	 init()	method

and	sets	it	as	the	currentState.	Add	setCurrentState()	as	given	in	listing	4.12.

*****	Listing	4.12	Adding	the	setCurrentState()	method.	*****

public	void	setCurrentState(State	newState){

																System.gc();

																newState.init();

																currentState	=	newState;

}

Note:	 System.gc()	 is	 called	 to	 clean	 up	 any	 unused	 objects	 that	 are	 taking	 up
valuable	 space	 in	 memory.	 The	 gc	 stands	 for	 “garbage	 collector”.	 We	 will
discuss	the	significance	of	this	in	more	detail	later	on	in	this	book.

Now	we	can	create	as	many	State	objects	as	we	want,	and	simply	pass	it	into	our
Game	object’s	setCurrentState()	method	to	transition	into	it.
When	our	game	begins,	we	want	the	initial	game	state	to	be	the	LoadState.	Let’s
set	 this	 inside	a	new	addNotify()	method	as	shown	on	 lines	38	 to	42	 in	 listing
4.13	(import	accordingly):

*****	Listing	4.13	Setting	the	Initial	Game	State.	*****

01	package	com.jamescho.game.main;

02

03	import	java.awt.Color;

04	import	java.awt.Dimension;

05	import	java.awt.Image;

06

07	import	javax.swing.JPanel;

08

09	import	com.jamescho.game.state.LoadState;

10	import	com.jamescho.game.state.State;

11

12	@SuppressWarnings("serial")

13

14	public	class	Game	extends	JPanel	{

15						private	int	gameWidth;

16						private	int	gameHeight;

17						private	Image	gameImage;

18

19						private	Thread	gameThread;

20						private	volatile	boolean	running;

21						private	volatile	State	currentState;

22

23						public	Game(int	gameWidth,	int	gameHeight)	{

24														this.gameWidth	=	gameWidth;

25														this.gameHeight	=	gameHeight;

26														setPreferredSize(new	Dimension(gameWidth,	gameHeight));

27														setBackground(Color.BLACK);

28														setFocusable(true);

29														requestFocus();

30						}

31														

32						public	void	setCurrentState(State	newState)	{

33														System.gc();

34														newState.init();

35														currentState	=	newState;

36						}

37														

38						@Override

39						public	void	addNotify()	{

40														super.addNotify();

41														setCurrentState(new	LoadState());

42						}

43

44	}

Notice	 that	 I	 have	 added	 the	 @Override	 annotation	 above	 the	 addNotify()
method.	 This	 is	 because	 addNotify()	 is	 an	 existing	 method	 that	 has	 been
inherited	 by	 the	 Game	 class.	 The	 method	 addNotify()	 is	 called	 automatically
when	 our	 Game	 object	 has	 been	 successfully	 added	 to	 the	 JFrame	 inside
GameMain.	 It	 is	 a	 safe	 place	 to	 start	 setting	 up	 graphics,	 game	 state	 and	 user
input.

Note	that	super	(from	line	40	of	4.13)	refers	to	the	superclass.	super.addNotify(),
then,	 calls	 JPanel's	 addNotify()	 method.	 You	 will	 often	 see	 the	 superclass's
methods	 being	 called	 inside	 an	 overriding	 subclass	 method.	 This	 means	 that
when	Game.addNotify()	is	called,	JPanel.addNotify()	will	also	be	called.

We	usually	do	this	when	a	superclass's	original	method	performs	important	tasks
behind-the-scenes	 that	would	otherwise	not	be	called	 if	we	were	 to	replace	 the
method	with	an	overriding	subclass	method.

Now	run	your	program!	When	our	Game	 instance	 is	added	 to	our	JFrame,	our
LoadState	 object	 is	 initialized	 as	 the	 currentState.	 At	 this	 point,	 LoadState’s
init()	method	is	called,	meaning	our	resources	will	be	loaded,	as	indicated	by	the
friendly	message	that	displays	on	the	console,	as	shown	in	Figure	4-19.

Figure	4-19	Loaded	Successfully

Transitioning	to	MenuState

Our	program	claims	that	our	resources	have	loaded,	but	we	don’t	know	this	for
sure	until	we	have	displayed	some	images.	Let’s	ask	our	LoadState	to	transition
to	 a	 new	 state	 called	 MenuState	 upon	 loading	 the	 resources,	 where	 we	 will
display	an	image	to	the	screen.

We	first	need	to	give	our	LoadState	a	way	of	transitioning	to	another	state.	We
could	 implement	 a	 new	 method	 inside	 LoadState	 that	 accomplishes	 the	 state
change	 by	 calling	 the	 Game	 object’s	 setCurrentState()	 method.	 The	 problem
with	 this	 approach	 is	 that	 every	 state	 class	 needs	 to	 be	 able	 to	 transition	 into
another	state	class,	so	we	must	search	for	a	more	efficient	solution.

Open	the	State	class	once	more,	and	define	the	following	concrete	method	that
will	be	available	via	inheritance	to	any	subclass	of	this	abstract	superclass	(lines
23	to	25	of	listing	4.14,	checking	for	new	import	statements	as	always--hint:	line
07):

*****	Listing	4.14	Adding	the	setCurrentState()	method	to	State.java	*****

01						package	com.jamescho.game.state;

02

03						import	java.awt.Graphics;

04						import	java.awt.event.KeyEvent;

05						import	java.awt.event.MouseEvent;

06

07						import	com.jamescho.game.main.GameMain;

08

09						public	abstract	class	State	{

10														

11														public	abstract	void	init();

12

13														public	abstract	void	update();

14

15														public	abstract	void	render(Graphics	g);

16

17														public	abstract	void	onClick(MouseEvent	e);

18

19														public	abstract	void	onKeyPress(KeyEvent	e);

20

21														public	abstract	void	onKeyRelease(KeyEvent	e);

22														

23														public	void	setCurrentState(State	newState)	{

24																						GameMain.sGame.setCurrentState(newState);

25														}

26

27						}

The	setCurrentState()	method	accepts	a	target	State	object	and	passes	it	into	the
setCurrentState()	method	 of	 our	 Game	 object	 (which	 is	 stored	 as	 the	 variable
sGame	 inside	 our	 GameMain	 class).	We	 can	 call	 this	 method	 from	 any	 state
class,	such	as	LoadState,	whenever	we	desire	to	transition	to	a	new	state.

Let’s	 test	 this	 first	 by	 creating	 our	 MenuState	 class	 inside
com.jamescho.game.state.	 Once	 you	 have	 created	 the	 new	 class	 and	 extended
State	 (see	 Figure	 4-18	 if	 you	 don't	 remember	 how	 to	 do	 this),	 implement	 the
init()	and	render()	methods	as	shown	in	listing	4.15.	Make	sure	you	pay	attention
to	 the	 import	statements.	Care	should	be	 taken	 to	 import	 the	correct	Resources
class.

*****	Listing	4.15	The	full	MenuState	Class	*****

01	package	com.jamescho.game.state;

02

03	import	java.awt.Graphics;

04	import	java.awt.event.KeyEvent;

05	import	java.awt.event.MouseEvent;

06

07	import	com.jamescho.game.main.Resources;

08

09	public	class	MenuState	extends	State	{

10

11						@Override

12						public	void	init()	{

13														System.out.println("Entered	MenuState");																

14						}

15

16						@Override

17						public	void	update()	{

18														//	Do	Nothing

19						}

20

21						@Override

22						public	void	render(Graphics	g)	{

23														//	Draws	Resources.welcome	to	the	screen	at	x	=	0,	y	=	0

24														g.drawImage(Resources.welcome,	0,	0,	null);													

25						}

26

27						@Override

28						public	void	onClick(MouseEvent	e)	{

29														//	To	do

30						}

31

32						@Override

33						public	void	onKeyPress(KeyEvent	e)	{

34														//	Intentionally	ignored

35						}

36

37						@Override

38						public	void	onKeyRelease(KeyEvent	e)	{

39														//	Intentionally	ignored

40						}

41

42	}

We	will	discuss	 the	g.drawImage(...)	method	 in	detail	at	a	 later	 time.	For	now,
return	 to	 the	 LoadState	 class.	 We	 will	 add	 one	 statement	 inside	 the	 update()
method	to	transition	into	the	new	MenuState,	as	shown	below:

....

public	class	LoadState	extends	State	{

....

								@Override

								public	void	update()	{

																setCurrentState(new	MenuState());				//	This	is	the	new	line!

								}

....

This	will	allow	us	 to	 transition	from	the	LoadState	 to	 the	MenuState	when	 the
LoadState.update()	method	is	called.

Now,	you	may	be	wondering	why	our	program	still	doesn’t	display	the	welcome
image	 even	 though	 in	 the	 render()	method	of	 our	MenuState,	we	 are	 calling	 a
function	to	draw	an	image.

The	reason	for	this	is	that	we	never	called	the	render()	method	in	our	Game	class
(nor	the	update(),	onClick(),	onKeyPress()	and	onKeyReleased()	for	that	matter).
To	call	the	render()	method,	we	need	to	add	the	heart	of	the	game	into	the	Game
class:	the	game	loop.	We	will	be	doing	this	after	the	following	checkpoint.

Checkpoint	#2

Let’s	 take	 a	 second	 look	 at	 our	 progress.	 Figure	 4-20	 follows	 the	 same	 rules
given	for	Figure	4-16.

Figure	4-20	List	of	Classes	and	Changes	Since	Checkpoint	#1

Remember:	If	you	are	having	problems	with	any	of	the	classes	at	this	point,	you
can	download	the	source	code	at	jamescho7.com/book/chapter4/checkpoint2.

We	are	nearly	there!	Let’s	return	once	again	to	Game,	where	we	will	implement
the	game	loop	and	hook	up	a	new	InputHandler	object.	We	will	then	add	a	cool
icon	 to	our	JFrame	 in	GameMain,	and	we	will	be	 ready	 to	build	our	very	 first
graphical	game.

The	Need	to	Multi-Task

You’ve	 probably	 heard	 of	 multi-core	 processors.	 Chances	 are	 you	 have	 one
inside	your	own	computer.	Having	multiple	cores	allows	you	to	execute	various
tasks	simultaneously.

As	our	game	needs	 to	perform	all	 kinds	of	behavior	 simultaneously	 (we	don’t
want	player	input	to	be	ignored	while	the	game	is	rendering),	our	game	will	need
to	multi-task	as	well.	But	we	don’t	have	to	worry	about	whether	our	player	runs
an	Intel	i7	Processor	Extreme	Edition	or	a	good	old	Pentium	4.	Java	allows	us	to
accomplish	multi-tasking	even	without	multiple	cores	when	we	use	threads.

Threads

Think	of	a	thread	as	a	process	that	executes	instructions	from	a	list.	If	we	were	to
chronologically	list	every	method	that	is	called	when	we	run	our	framework,	we
would	have	the	list	of	the	instructions	that	are	being	called	by	our	default	thread
(called	the	main	thread).	This	list	is	called	the	call	stack.

Figure	4-21	Threads	/	Game

Until	now,	we	have	been	providing	a	single	call	stack	for	 the	JVM	to	execute;
however,	 creating	multiple	 stacks	 is	 easy.	For	 starters,	we	 can	 create	 a	 second
thread	and	provide	 it	with	a	 list	of	 instructions	 to	perform.	When	our	program
executes,	our	two	threads	will	execute	their	call	stacks	“simultaneously”	(this	is
a	simplification,	but	we	will	assume	this).	In	the	context	of	our	framework,	this
would	mean	that	one	 thread	(the	game	thread)	can	handle	 the	execution	of	our
game	 loop,	 while	 the	 main	 thread	 can	 handle	 the	 rest!	 We	 will	 now	 be
implementing	this	second	thread	into	our	game.

Adding	the	Game	Thread

Creating	a	new	call	stack	requires	three	steps.	Firstly,	you	create	the	new	thread.
Secondly,	you	give	it	some	instructions	to	perform.	Thirdly,	you	tell	our	program
to	 start	 executing	 these	 instructions.	We	will	 be	 performing	 all	 three	 of	 these
steps	to	create	our	game	thread.

Open	the	Game	class.	Back	in	listing	4.03,	we	added	three	instance	variables	that
we	have	ignored	until	this	point:	gameImage,	gameThread	and	running.	We	will
be	making	use	of	the	Thread	and	boolean	variables	to	implement	a	game	loop.
Add	the	initGame()	method	shown	in	bold	below	to	Game	(ignore	the	errors	for
now).	Then,	call	this	new	method	inside	addNotify()	(also	shown	in	bold).

....

@Override

public	void	addNotify()	{

								super.addNotify();

								setCurrentState(new	LoadState());

								initGame();

}

private	void	initGame()	{

								running	=	true;

								gameThread	=	new	Thread(this,	"Game	Thread");

								gameThread.start();

}

....

initGame()	initializes	our	running	as	true	(we	will	be	discussing	volatile	shortly).
Then,	we	initialize	our	gameThread	variable	using	a	constructor	that	accepts	two
arguments.	 The	 first	 argument	 is	 a	 task	 for	 the	 new	 Thread	 to	 complete.	 The
second	 argument	 is	 the	 name	of	 the	 new	Thread.	At	 the	moment,	we	 have	 an
error	in	our	code,	as	shown	in	Figure	4-22.

Figure	4-22	Error	in	the	Thread	Constructor

Mousing	over	the	red	lines,	we	see	the	error	shown	in	Figure	4-23,	along	with	a
list	of	suggested	quick-fixes.

Figure	4-23	Give	Me	a	Runnable!

The	quick-fixes	seem	to	suggest	that	the	first	argument	of	this	constructor	should
be	a	variable	of	type	Runnable,	not	Game	(remember	that	the	keyword	this	refers
to	the	instance	of	Game	that	is	calling	the	Thread	constructor).	Indeed,	the	Java
Documentation	describes	the	following	constructor	for	Thread:

Thread	(Runnable	target,	String	name)

To	solve	this	issue,	we	need	to	understand	what	a	Runnable	object	is.	Recall	that
a	 thread	needs	a	 list	of	 instructions	 to	execute.	This	 list	can	be	provided	in	 the
form	of	a	Runnable	object.

Now	where	do	we	get	this	Runnable	object?	It	turns	out	that	Runnable	is	a	built-
in	 Java	 interface.	 This	 means	 that	 we	 can	 implement	 Runnable	 in	 our	 Game
class,	 and	 this	 will	 allow	 us	 to	 pass	 in	 the	 instance	 of	 our	 Game	 (using	 the
keyword	this)	to	the	constructor	for	the	Game	Thread	as	shown	in	Figure	4-22.
Let’s	do	 this	by	adding	 the	 implements…	declaration	 shown	 in	Figure	4-24	 to
our	Game	class:

Figure	4-24	Game	implements	the	Runnable	Interface

As	 we	 are	 implementing	 an	 interface,	 we	 must	 implement	 all	 of	 its	 abstract
methods.	Select	Add	unimplemented	methods.
This	 will	 automatically	 add	 the	 run()	method	 as	 shown	 in	 listing	 4.16,	 which
shows	what	your	Game	class	should	look	like	at	this	point.

*****	Listing	4.16	Implementing	the	run()	method	*****

01	package	com.jamescho.game.main;

02

03	import	java.awt.Color;

04	import	java.awt.Dimension;

05	import	java.awt.Image;

06

07	import	javax.swing.JPanel;

08

09	import	com.jamescho.game.state.LoadState;

10	import	com.jamescho.game.state.State;

11

12	@SuppressWarnings("serial")

13

14	public	class	Game	extends	JPanel	implements	Runnable	{

15						private	int	gameWidth;

16						private	int	gameHeight;

17						private	Image	gameImage;

18

19						private	Thread	gameThread;

20						private	volatile	boolean	running;

21						private	volatile	State	currentState;

22

23						public	Game(int	gameWidth,	int	gameHeight)	{

24														this.gameWidth	=	gameWidth;

25														this.gameHeight	=	gameHeight;

26														setPreferredSize(new	Dimension(gameWidth,	gameHeight));

27														setBackground(Color.BLACK);

28														setFocusable(true);

29														requestFocus();

30						}

31														

32						public	void	setCurrentState(State	newState)	{

33														System.gc();

34														newState.init();

35														currentState	=	newState;

36						}

37						

38						@Override

39						public	void	addNotify()	{

40														super.addNotify();

41														setCurrentState(new	LoadState());

42														initGame();

43						}

44														

45						private	void	initGame()	{

46														running	=	true;

47														gameThread	=	new	Thread(this,	"Game	Thread");

48														gameThread.start();

49						}

50

51						@Override

52						public	void	run()	{

53														//	TODO	Auto-generated	method	stub

54						}

55														

56	}

Implementing	Runnable	and	its	abstract	run()	method	makes	Game	eligible	to	be
used	as	a	Runnable	object.	Thus,	our	error	in	the	initGame()	method	is	gone,	as
shown	in	Figure	4-25.

Figure	4-25	Game	as	Runnable

Based	on	this,	you	can	probably	guess	that	Game’s	run()	method	has	something
to	do	with	our	gameThread,	and	you	would	be	exactly	right.

The	 gameThread	 needs	 a	 task	 to	 complete,	 and	 the	 run()	method	 is	 that	 task.
When	we	 call	 gameThread.start()	 as	 shown	 in	 Figure	 4-25,	we	 are	 asking	 our
gameThread	to	perform	our	run()	method.	Since	gameThread	is	a	separate	thread
that	 exists	 independently	 from	 our	 default	 main	 thread,	 we	 are	 letting	 our
program	multi-task.

Now	 when	 our	 Game’s	 addNotify()	 method	 is	 called,	 the	 initGame()	 will	 be
called,	starting	the	run()	method	in	the	gameThread.	You	can	test	this	by	adding
a	print	 statement	 to	 the	 run()	method	and	 running	 the	program.	You	should	be
able	to	see	your	message	once	LoadState	becomes	the	current	state.

Note:	You	have	probably	been	wondering	what	the	keyword	'volatile'	means	and
how	 it	 effects	 a	 variable.	 This	 is	 a	 quite	 advanced	 topic	 (Google:	 Java
Concurrency).	To	understand	this,	you	must	first	know	that	when	two	threads	are
sharing	a	variable	(modifying	or	accessing	 the	same	variable),	 they	may	create
their	own	copy	of	the	shared	variable	before	using	it.	To	put	simply,	this	means
that	changing	 the	value	of	a	 shared	variable	 in	one	 thread	may	not	change	 the
copy	of	that	variable	in	another,	leading	to	inconsistent	values.
What	implications	does	this	have?	For	one,	the	value	of	our	boolean	running	can
be	true	on	one	thread	and	false	on	another.	Will	our	game	continue	or	stop?	We
want	to	avoid	ambiguous	questions	like	this	by	marking	the	variable	as	volatile.
We	 also	 want	 currentState	 to	 be	 volatile,	 as	 there	 should	 only	 be	 one	 current
state.	Our	game	should	not	be	stuck	in	limbo	between	one	state	and	another.

Implementing	the	Game	Loop

Now	that	we	have	added	our	game	thread,	it	is	time	to	add	the	game	loop	to	it.
We	will	be	focusing	on	just	the	run()	method	for	now.

Inside	the	run()	method,	add	a	while	loop	as	shown	below	in	bold,	along	with	an
exit	 command	 (also	 shown).	 As	 you	 can	 see,	 when	 the	 game	 loop	 ends,	 our
game	should	also	terminate.

....				

								@Override

								public	void	run()	{

																while	(running)	{

																								

																}

																//	End	game	immediately	when	running	becomes	false.

																System.exit(0);

								}

....

Our	 game	 loop	 terminates	 when	 running	 becomes	 false,	 meaning	 that,	 to
terminate	our	game,	we	would	need	to	change	the	value	of	running	to	false,	but
more	on	that	later.

Inside	the	body	of	the	game	loop,	we	will	perform	two	tasks:	update	and	render.
Updating	will	be	simple.	We	just	need	to	ask	our	currentState	to	call	its	update()
method.	Rendering,	however,	will	be	more	drawn	out,	and	will	take	three	steps
to	complete.

To	render	our	game,	we	will	rely	on	a	technique	called	double	buffering.	Rather
than	drawing	our	images	directly	to	the	screen	one	at	a	time,	we	will	prepare	an
off-screen	empty	image	and	draw	all	of	our	images	onto	that,	before	we	finally
draw	the	completed	scene	onto	the	screen	once	per	frame.	So,	the	three	steps	we
must	complete	are	as	follows:

1.	 Prepare	an	off-screen	empty	image.
2.	 Render	the	currentState’s	scene	(all	the	game	objects	in	the	currentState)	to

this	game	image.
3.	 Draw	the	completed	off-screen	image	onto	the	screen.

Double	buffering	allows	us	to	reduce	unwanted	graphical	tearing	and	flickering.
We	won’t	get	into	the	details	of	that	here.	Suffice	it	to	say	that	double	buffering,
although	it	will	take	more	time	to	code,	improves	the	gameplay	experience.

It’s	 time	to	add	our	code.	Add	the	four	 lines	in	bold	inside	the	game	loop,	and
define	 a	 new	method	 called	 prepareGameImage()	 as	 shown	 below	 (importing
Graphics):

....				

								@Override

								public	void	run()	{

																while	(running)	{

																								currentState.update();

																								prepareGameImage();

																								currentState.render(gameImage.getGraphics());

																								repaint();																						

																}

																//	End	game	immediately	when	running	becomes	false.

																System.exit(0);

								}

								private	void	prepareGameImage()	{

																if	(gameImage	==	null)	{

																								gameImage	=	createImage(gameWidth,	gameHeight);

																}

																Graphics	g	=	gameImage.getGraphics();

																g.clearRect(0,	0,	gameWidth,	gameHeight);

								}

....

In	the	four	lines	of	code	that	we	have	added	inside	the	game	loop,	we	update	the
currentState	 and	 then	 call	 three	 methods	 to	 handle	 the	 steps	 required	 for
rendering.	 In	prepareGameImage()	we	prepare	an	off-screen	 image	by	creating
and	initializing	the	gameImage	variable	with	a	width	of	gameWidth	and	a	height
of	gameHeight.	Next,	on	every	frame,	we	clear	this	 image	using	a	rectangle	of
equal	size	to	clear	all	images	that	have	been	drawn	to	the	screen	in	the	previous
frame.	This	ensures	 that	 images	 from	 the	previous	 frame	do	not	bleed	 into	 the
current	frame.	Every	frame	starts	anew.

Frames	per	Second	and	the	Timing	Mechanism

Games	rely	on	rapidly-switching	static	images	(or	frames)	to	provide	an	illusion
of	 animation.	As	 such,	game	performance	 is	 often	measured	 in	FPS	or	 frames
per	 second.	 Typically,	 the	 higher	 the	 FPS,	 the	 smoother	 the	 graphics	 and
gameplay.
FPS,	 in	our	 framework,	 is	 equivalent	 to	our	game	 loop’s	 iterations	 (repetition)
per	 second.	 This	 is	 because	 in	 each	 iteration,	we	 update	 and	 render	 our	 game
once,	refreshing	the	screen	one	time.	So,	the	following	equation	is	a	great	way	to
think	about	our	game.

update	+	render	=	one	iteration	of	game	loop	=	one	frame

Our	framework	will	aim	for	about	60	FPS.	This	should	be	more	than	enough	to
ensure	smooth	gameplay.	Therefore,	we	want	our	game	loop	to	iterate	about	60
times	a	second,	which	would	mean	 that	each	 iteration	should	 take	about	0.017
seconds	(17	milliseconds)	to	execute.	There	are	sophisticated	ways	of	handling
this	that	we	will	discuss	later,	but	we	will	keep	it	extremely	simple	for	now.

We	build	upon	the	assumption	that,	for	most	games	we	build	on	this	framework,
updating	 and	 rendering	 will	 complete	 in	 a	 very	 small	 amount	 of	 time	 (2-3
milliseconds).	Of	course,	this	will	vary	from	system	to	system	and	from	game	to
game,	which	is	the	reason	that	we	will	discuss	a	better	timing	mechanism	in	the
future.	 For	 now,	 after	 each	 update	 and	 render,	 we	 are	 going	 to	 ask	 our	 game
thread	 to	 sleep	 for	 14	 milliseconds.	 When	 added	 to	 the	 2-3	 milliseconds	 of
updating	and	rendering,	each	iteration	will	thus	take	about	17	milliseconds	total.

Note:	Since	our	game	 loop	 is	unending	 (it	 runs	until	we	 tell	 it	 to	 terminate	by
setting	running	to	false),	our	game	thread	will	hog	much	of	our	computer’s	CPU
time.	 Asking	 our	 game	 thread	 to	 sleep	 will	 allow	 our	 CPU	 to	 spend	 time
performing	other	tasks,	such	as	taking	user	input.

To	 implement	 our	 sleep-driven	 timing	mechanism,	we	 simply	 have	 to	 add	 the
following	lines	of	code	(shown	in	blue	text)	to	our	run()	method.

...

@Override

public	void	run()	{

while	(running)	{

																currentState.update();

																prepareGameImage();

																currentState.render(gameImage.getGraphics());

																repaint();																						

																try	{

																								Thread.sleep(14);

																}	catch	(InterruptedException	e)	{

																								e.printStackTrace();

																}

								}

								System.exit(0);

}

...

Note	 that	we	 just	 call	 a	 simple	 static	method	 called	 Thread.sleep()	 to	 ask	 our
Game	Thread	to	sleep	for	14	milliseconds.	We	must	surround	this	in	a	try-catch
as	it	may	throw	an	exception	(specifically	of	type	InterruptedException,	a	form
of	Exception.	See	Figure	4‐15	and	the	following	discussion	on	try/catch	block	if
it	is	unfamiliar).

Our	 game	 loop	 is	 finished,	 and	 it	 should	 run	 approximately	 every	 17
milliseconds.	As	you	can	tell,	this	timing	mechanism	is	very	limited	and	we	will
be	modifying	it	soon	in	the	coming	chapters.

Exiting	the	Game

Our	Game	class	is	nearly	finished.	We	will	just	be	adding	a	few	more	methods.
The	first	 is	 trivial.	 It	 is	a	simple	method	 that	will	be	called	when	we	want	our
game	 to	exit.	 It	will	 set	 the	value	of	our	boolean	 running	 to	 false,	making	our
game	loop	terminate.	Add	the	following	method	to	Game	class:

public	void	exit()	{

								running	=	false;

}

Fixing	Paint

Recall	 that	 we	 must	 perform	 three	 steps	 to	 render	 our	 game.	 We	 have
successfully	created	an	empty	off-screen	 image	called	gameImage	and	 filled	 it
with	our	images,	but	now	we	have	to	draw	this	image	to	our	screen.

To	 accomplish	 this,	we	 have	 called	 repaint()	 inside	 our	 game	 loop,	 but	 this	 is
simply	 a	 request	 for	 the	 program	 to	 call	 the	 paintComponent()	method	 of	 our
Game	object,	which	 is	a	JPanel	(see	Understanding	the	MyPanel	from	Chapter
3).

At	 the	 moment,	 Game	 does	 not	 have	 a	 custom	 paintComponent()	 method,	 in
which	we	must	 actually	perform	 the	drawing	of	our	gameImage	 to	 the	 screen.
Let’s	override	it	as	shown	below:

@Override

protected	void	paintComponent(Graphics	g)	{

								super.paintComponent(g);

								if	(gameImage	==	null)	{

																return;

								}

								g.drawImage(gameImage,	0,	0,	null);

}

In	 our	 paintComponent()	 method,	 we	 first	 check	 if	 our	 gameImage	 is	 null,
because	we	do	not	want	 to	 draw	 it	 if	 it	 does	 not	 exist.	 If	 it	 is,	we	 call	 return,
which,	 inside	 a	 void	 method,	 simply	 ends	 the	 method.	 The	 next	 time
prepareGameImage()	 and	 repaint()	 are	 called,	 this	 gameImage	 should	 not	 be
null.

The	parameter	for	paintComponent()	is	a	reference	to	a	Graphics	object	called	g,
which	you	can	think	of	as	a	canvas	on	our	device’s	screen.	We	will	 take	g	and
draw	our	off-screen	gameImage	onto	it	at	the	coordinates	x	=	0,	y	=	0	(top-left
corner	of	game	window).

Note:	 The	 third	 argument	 for	 g.drawImage(…)	 is	 an	 ImageObserver	 object
which	allows	you	to	determine	if	an	image	has	been	fully	loaded.	We	will	not	be
using	this	in	our	framework,	so	we	can	safely	pass	in	null.

The	updated	Game	class	is	given	in	listing	4.17.

*****	Listing	4.17	The	Game	class	(Updated)	*****

01	package	com.jamescho.game.main;

02

03	import	java.awt.Color;

04	import	java.awt.Dimension;

05	import	java.awt.Graphics;

06	import	java.awt.Image;

07

08	import	javax.swing.JPanel;

09

10	import	com.jamescho.game.state.LoadState;

11	import	com.jamescho.game.state.State;

12

13	@SuppressWarnings("serial")

14

15	public	class	Game	extends	JPanel	implements	Runnable	{

16						private	int	gameWidth;

17						private	int	gameHeight;

18						private	Image	gameImage;

19

20						private	Thread	gameThread;

21						private	volatile	boolean	running;

22						private	volatile	State	currentState;

23

24						public	Game(int	gameWidth,	int	gameHeight)	{

25														this.gameWidth	=	gameWidth;

26														this.gameHeight	=	gameHeight;

27														setPreferredSize(new	Dimension(gameWidth,	gameHeight));

28														setBackground(Color.BLACK);

29														setFocusable(true);

30														requestFocus();

31						}

32														

33						public	void	setCurrentState(State	newState)	{

34														System.gc();

35														newState.init();

36														currentState	=	newState;

37						}

38														

39						@Override

40						public	void	addNotify()	{

41														super.addNotify();

42														setCurrentState(new	LoadState());

43														initGame();

44						}

45														

46						private	void	initGame()	{

47														running	=	true;

48														gameThread	=	new	Thread(this,	"Game	Thread");

49														gameThread.start();

50						}

51

52						@Override

53						public	void	run()	{

54														while	(running)	{

55																						currentState.update();

56																						prepareGameImage();

57																						currentState.render(gameImage.getGraphics());

58																						repaint();																						

59														

60																						try	{

61																														Thread.sleep(14);

62																						}	catch	(InterruptedException	e)	{

63																														e.printStackTrace();

64																						}

65														}

66														System.exit(0);

67						}

68														

69						private	void	prepareGameImage()	{

70														if	(gameImage	==	null)	{

71														gameImage	=	createImage(gameWidth,	gameHeight);

72														}

73														Graphics	g	=	gameImage.getGraphics();

74														g.clearRect(0,	0,	gameWidth,	gameHeight);

75						}

76						

77						public	void	exit()	{

78														running	=	false;

79						}							

80

81						@Override

82						protected	void	paintComponent(Graphics	g)	{

83														super.paintComponent(g);

84														if	(gameImage	==	null)	{

85																						return;

86														}

87														g.drawImage(gameImage,	0,	0,	null);

88						}

89	}

Figure	4-26	Our	First	Image!

Run	your	code	and	you	should	see	the	image	as	shown	in	Figure	4-26.	We	have
finally	 gotten	 some	graphics	 to	 display.	There	 is	 one	 last	 thing	we	must	 do	 to
complete	our	framework,	and	that	is	to	add	the	ability	to	respond	to	user	input.

Handling	Player	Input

Recall	that	each	of	our	state	classes	implements	methods	to	handle	keyboard	and
mouse	 input;	 however,	 adding	code	 to	our	 states’	onClick(),	 onKeyPress()	 and
onRelease()	methods	will	not	have	any	effect	at	the	moment.	As	with	the	init(),
update()	and	 render()	methods,	 these	methods	are	not	called	automatically.	We
must	 ask	 that	 the	 currentState’s	 input	 methods	 be	 called	 when	 the	 player
interacts	with	our	game,	and	that	is	where	the	InputHandler	class	comes	in.

Inside	 com.jamescho.framework.util,	 create	 a	 new	 class	 called	 InputHandler,
which	we	will	designate	to	be	notified	when	the	player	interacts	with	the	game.
For	this	to	happen,	we	must	implement	two	built-in	Java	interfaces	KeyListener
and	MouseListener	in	this	class,	and	attach	an	instance	of	the	class	to	Game.

Update	 our	 class	 declaration	 as	 shown	 in	 listing	 4.18	 to	 begin	 the	 first	 step,
paying	attention	to	the	implements	and	import	statements:

*****	Listing	4.18	Implementing	KeyListener	and	MouseListener		*****

01	package	com.jamescho.framework.util;

02	

03	import	java.awt.event.KeyListener;

04	import	java.awt.event.MouseListener;

05	

06	public	class	InputHandler	implements	KeyListener,	MouseListener	{

07	

08	}

Put	 your	mouse	 over	 the	 error	 in	 the	 class	 declaration	 (shown	 in	Figure	 4-27)
and	select	Add	unimplemented	methods).

Figure	4-27	Implementing	Abstract	Methods

This	 will	 automatically	 add	 the	 mouseClicked(),	 mouseEntered(),
mouseExited(),	mousePressed(),	mouseReleased(),	 keyPressed(),	 keyReleased()
and	 keyTyped()	 methods	 to	 your	 class.	 We	 only	 care	 about	 three	 of	 them:
mouseClicked(),	 keyPressed()	 and	 keyReleased(),	 as	 these	 are	 enough	 to
implement	any	kind	of	user	interaction	that	we	want	in	our	games.

As	 their	 names	 indicate,	 the	 methods	 mouseClicked(),	 keyPressed()	 and
keyReleased()	are	called	when	the	player	clicks	a	mouse	button,	presses	a	key,	or
releases	 a	 key,	 respectively.	 When	 these	 methods	 are	 called,	 the	 role	 of	 our
InputHandler	is	 to	ask	the	currentScreen	of	the	game	to	call	 its	own	onClick(),
onKeyPress()	 and	 onKeyRelease()	 methods.	 This	 relationship	 is	 elaborated	 in
Figure	4-28.

Note:
You	 can	 find	more	 information	 on	when	 the	 interfaces’	methods	 are	 called	 by
reading	 the	 Java	 Documentation	 for	 the	 KeyListener	 and	 MouseListener
interfaces:
KeyListener:

http://docs.oracle.com/javase/7/docs/api/java/awt/event/KeyListener.html
MouseListener:
http://docs.oracle.com/javase/7/docs/api/java/awt/event/MouseListener.html

http://docs.oracle.com/javase/7/docs/api/java/awt/event/KeyListener.html
http://docs.oracle.com/javase/7/docs/api/java/awt/event/MouseListener.html

Figure	4-28	Input	Handling	Model

InputHandler	needs	to	know	what	the	currentState	of	the	game	is	in	order	to	call
its	input-related	methods,	so	we	will	create	a	new	instance	variable	that	will	be
updated	whenever	the	game’s	state	changes.	Add	the	following	instance	variable
to	the	InputHandler	class,	making	sure	to	import	com.jamescho.game.state.State.

private	State	currentState;

Create	a	corresponding	setter	method	as	shown	below:

public	void	setCurrentState(State	currentState)	{

								this.currentState	=	currentState;

}

Let’s	 now	 add	 some	 code	 to	 the	 mouseClicked(),	 keyPressed()	 and
keyReleased()	methods.	Specifically,	we	will	be	asking	 the	currentState	of	our
game	to	call	their	versions	of	the	three	methods	of	the	same	name,	as	shown	on
lines	 20,	 45	 and	 50	 of	 listing	 4.19,	 which	 reflects	 the	 final	 version	 of
InputHandler.

*****	Listing	4.19	The	InputHandler	Class		*****

01	package	com.jamescho.framework.util;

02

03	import	java.awt.event.KeyEvent;

04	import	java.awt.event.KeyListener;

05	import	java.awt.event.MouseEvent;

06	import	java.awt.event.MouseListener;

07

08	import	com.jamescho.game.state.State;

09

10	public	class	InputHandler	implements	KeyListener,	MouseListener	{

11

12						private	State	currentState;

13														

14						public	void	setCurrentState(State	currentState)	{

15														this.currentState	=	currentState;

16						}

17														

18						@Override

19						public	void	mouseClicked(MouseEvent	e)	{

20														currentState.onClick(e);

21						}

22

23						@Override

24						public	void	mouseEntered(MouseEvent	e)	{

25														//	Do	Nothing

26						}

27

28						@Override

29						public	void	mouseExited(MouseEvent	e)	{

30														//	Do	Nothing																			

31						}

32

33						@Override

34						public	void	mousePressed(MouseEvent	e)	{

35														//	Do	Nothing

36						}

37

38						@Override

39						public	void	mouseReleased(MouseEvent	e)	{

40														//	Do	Nothing

41						}

42

43						@Override

44						public	void	keyPressed(KeyEvent	e)	{

45														currentState.onKeyPress(e);

46						}

47

48						@Override

49						public	void	keyReleased(KeyEvent	e)	{

50														currentState.onKeyRelease(e);

51						}

52

53						@Override

54						public	void	keyTyped(KeyEvent	arg0)	{

55														//	Do	Nothing

56						}

57

58	}

Our	work	on	the	InputHandler	class	is	finished.	Next,	we	will	attach	an	instance
of	InputHandler	to	our	game.

Attaching	the	InputHandler

Being	a	JPanel	subclass,	Game	inherits	two	methods	that	will	allow	us	to	listen
to	 user	 input.	 These	 are	 addKeyListener(KeyListener	 l)	 and
addMouseListener(Mouse	Listener	l).	These	two	methods	accept	any	instance	of
a	 class	 that	 implements	 the	 KeyListener	 and	 MouseListener	 interfaces,
respectively.	We	already	have	a	class	that	does	both	(InputHandler),	so	this	will
be	easy!

When	 addKeyListener()	 and	 addMouseListener()	 are	 called	 in	 Game,	 we	 will
pass	in	an	instance	of	InputHandler	as	the	argument.	This	object	will	then	be	set
as	the	key	and	mouse	listener	for	our	JPanel,	and	will	hence	be	notified	(in	the
form	of	its	methods	being	called)	when	the	player	interacts	with	our	game.

Open	 the	 Game	 class	 and	 add	 the	 following	 instance	 variable	 (remember	 to
import	com.jamescho.framework.util.InputHandler):

*****	Listing	4.17	The	Game	class	(Updated)	*****

private	InputHandler	inputHandler;

Initialize	 it	 in	 a	 new	 method	 called	 initInput(),	 which	 should	 be	 defined	 as
follows:

private	void	initInput()	{

								inputHandler	=	new	InputHandler();

								addKeyListener(inputHandler);

								addMouseListener(inputHandler);

}

Next,	we	will	 simply	 call	 this	method	 in	 our	 addNotify()	method	 as	 shown	 in
bold	below.	This	will	initialize	our	inputHandler	and	set	it	as	the	key	and	mouse
listener	for	our	Game:

@Override

public	void	addNotify()	{

								super.addNotify();

								initInput();		//	This	is	the	new	line!

								setCurrentState(new	LoadState());

								initGame();

}

Finally,	 we	 will	 add	 a	 line	 of	 code	 to	 set	 the	 currentState	 variable	 for	 our
inputHandler	inside	the	setCurrentState()	method	as	shown	in	bold:

public	void	setCurrentState(State	newState){

								System.gc();

								currentState	=	newState;

								newState.init();

								inputHandler.setCurrentState(currentState);				//	This	is	the	new	line!

}

That	finishes	our	input	handling	and	our	Game	class,	which	should	now	look	as
shown	in	listing	4.20:

*****	Listing	4.20	The	Completed	Game	Class		*****

001	package	com.jamescho.game.main;

002

003	import	java.awt.Color;

004	import	java.awt.Dimension;

005	import	java.awt.Graphics;

006	import	java.awt.Image;

007

008	import	javax.swing.JPanel;

009

010	import	com.jamescho.framework.util.InputHandler;

011	import	com.jamescho.game.state.LoadState;

012	import	com.jamescho.game.state.State;

013

014	@SuppressWarnings("serial")

015

016	public	class	Game	extends	JPanel	implements	Runnable	{

017					private	int	gameWidth;

018					private	int	gameHeight;

019					private	Image	gameImage;

020

021					private	Thread	gameThread;

022					private	volatile	boolean	running;

023					private	volatile	State	currentState;

024													

025					private	InputHandler	inputHandler;

026

027					public	Game(int	gameWidth,	int	gameHeight){

028													this.gameWidth	=	gameWidth;

029													this.gameHeight	=	gameHeight;

030													setPreferredSize(new	Dimension(gameWidth,	gameHeight));

031													setBackground(Color.BLACK);

032													setFocusable(true);

033													requestFocus();																									

034					}

035

036					public	void	setCurrentState(State	newState){

037													System.gc();

038													newState.init();

039													currentState	=	newState;

040													inputHandler.setCurrentState(currentState);

041					}

042

043					@Override

044					public	void	addNotify()	{

045													super.addNotify();

046													initInput();

047													setCurrentState(new	LoadState());

048													initGame();

049					}

050													

051					private	void	initInput()	{

052													inputHandler	=	new	InputHandler();

053													addKeyListener(inputHandler);

054													addMouseListener(inputHandler);

055					}

056													

057					private	void	initGame()	{

058													running	=	true;

059													gameThread	=	new	Thread(this,	"Game	Thread");

060													gameThread.start();

061					}

062

063					@Override

064					public	void	run()	{

065													while	(running)	{

066																					currentState.update();

067																					prepareGameImage();

068																					currentState.render(gameImage.getGraphics());

069																					repaint();

070													

071																					try	{			

072																													Thread.sleep(14);

073																					}	catch	(InterruptedException	e)	{

074																													e.printStackTrace();

075																					}							

076													

077													}							

078													//	End	game	immediatly	when	running	becomes	fales

079													System.exit(0);

080					}

081

082					private	void	prepareGameImage()	{

083													if	(gameImage	==	null)	{

084																					gameImage	=	createImage(gameWidth,	gameHeight);

085													}

086													Graphics	g	=	gameImage.getGraphics();

087													g.fillRect(0,	0,	gameWidth,	gameHeight);

088					}

089

090					public	void	exit()	{

091													running	=	false;

092					}

093

094					@Override

095					protected	void	paintComponent(Graphics	g)	{

096													super.paintComponent(g);

097													if	(gameImage	==	null)	{

098																					return;

099													}

100													g.drawImage(gameImage,	0,	0,	null);

101					}

102

103	}

Now,	 try	 adding	 some	 print	 statements	 to	 the	 MenuState	 class’s	 onClick(),
onKeyPress()	and	onKeyRelease()	methods,	and	you	should	be	able	to	see	them
appear	when	you	 run	 the	program	and	 interact	with	 the	welcome	 screen	using
your	keyboard	and	mouse	as	shown	in	Figure	4-29!

Figure	4-29	Interacting	with	the	Game

Checkpoint	#3

We	 are	 one	 small	 change	 away	 from	 finishing	 our	 framework.	 Figure	 4-30
follows	the	same	rules	given	for	Figure	4-16.

Figure	4-30	List	of	Classes	and	Changes	Since	Checkpoint	#2

Note:	If	you	are	having	problems	with	any	of	the	classes	at	this	point,	you	can
download	the	source	code	at	jamescho7.com/book/chapter4/checkpoint3.

The	last	change	we	need	to	make	is	to	make	use	of	the	iconimage.png	file	that
has	 been	 sitting	 inside	 the	 resources	 package	 by	 setting	 it	 equal	 to	 the
framework’s	 launch	 icon!	To	 do	 so,	 open	GameMain	 and	 add	 a	 single	 line	 of
code	as	shown	in	bold	below:

....

public	static	void	main(String[]	args)	{

								JFrame	frame	=	new	JFrame(GAME_TITLE);

								frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

								frame.setResizable(false);	//	Prevents	manual	resizing	of	window

								sGame	=	new	Game(GAME_WIDTH,	GAME_HEIGHT);

								frame.add(sGame);

								frame.pack();

								frame.setVisible(true);

								frame.setIconImage(Resources.iconimage);	//	This	is	the	new	line!

}

....

Next,	run	the	framework,	and	you	should	see	your	icon	(Figure	4-31	shows	the
effect	on	Windows	8).

Figure	4-31	Setting	the	Icon	Image

Note:	 The	 completed	 framework	 for	 Chapter	 4	 can	 be	 downloaded	 at
jamescho7.com/book/chapter4/complete.

And,	we’re	done!	We	will	be	making	some	improvements	 to	 the	framework	 in
the	 coming	chapters,	 but	 for	 now,	 it’s	 time	 to	build	 a	game.	Skim	 through	 the
note	on	license	information	that	follows,	and	join	me	in	the	next	section.

A	Note	on	Licenses	and	Code	Reuse

This	framework	 is	provided	 to	you	to	use	as	you	wish	without	restriction.	You
may	 modify	 the	 framework,	 redistribute	 the	 code	 and	 even	 build	 commercial
games	without	permission	 from	me	or	 the	publisher.	You	only	have	 to	 include
the	 following	 license	 by	 creating	 a	 text	 file	 called	 LICENSE.txt	 in	 every
distribution	(available	for	download	at	jamescho7.com/book/license).

The	MIT	License	(MIT)

Copyright	(c)	2014	James	S.	Cho

Permission	is	hereby	granted,	free	of	charge,	to	any	person

obtaining	a	copy	of	this	software	and	associated	documentation

files	(the	"Software"),	to	deal	in	the	Software	without

restriction,	including	without	limitation	the	rights	to	use,	copy,

modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies

of	the	Software,	and	to	permit	persons	to	whom	the	Software	is

furnished	to	do	so,	subject	to	the	following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be

included	in	all	copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY	KIND,

EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE	WARRANTIES	OF

MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR	PURPOSE	AND

NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE	AUTHORS	OR	COPYRIGHT	HOLDERS

BE	LIABLE	FOR	ANY	CLAIM,	DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN

ACTION	OF	CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN

CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER	DEALINGS	IN	THE

SOFTWARE.

It	All	Starts	Here

This	 long	 chapter	 has	 walked	 you	 through	 the	 design	 and	 development	 of	 a
simple	 game	development	 framework	 that	will	 serve	 as	 the	 foundation	 for	 the
games	 that	we	will	 be	building	 in	 the	next	 several	 chapters.	This	was	 the	 first
serious	application	that	we	have	built	in	this	book,	and	we	were	able	to	see	many
Java	concepts	in	practical	situations.

Now	that	we	have	our	initial	game	development	framework,	it’s	time	to	build	a
game.	Join	me	in	Chapter	5,	where	we	will	take	this	framework	for	a	spin.	It’s
going	to	be	a	fun	ride.

Chapter	5:	Keeping	It	Simple
A	common	pitfall	in	getting	started	with	game	development	is	being	too	specific
about	what	you	want	 to	build.	Aspiring	developers	want	 to	make	a	great	game
with	an	immersive	story	that	they	think	everyone	will	enjoy.	They	have	an	idea
of	what	their	character	will	look	like,	what	he	will	do,	whom	he	will	fight,	where
and	 when	 the	 game	 will	 take	 place,	 and	 so	 on.	 They	 learn	 a	 programming
language	and	rush	head-on	into	the	challenge	of	game	development,	only	to	find
themselves	realizing	their	ambitions	were	too	great	too	soon.

This	chapter	is	all	about	starting	small.	I	won’t	be	teaching	you	how	to	build	the
games	of	your	dreams,	but	I	will	be	teaching	you	how	to	work	with	an	existing
game	development	framework	to	build	a	simple	game.	I	will	guide	you	through
the	design	and	implementation	of	each	game	object	in	order	to	help	you	become
a	better	programmer.	By	the	end	of	this	chapter,	you	may	realize	that	there	is	still
a	long	way	to	go	before	you	release	a	groundbreaking	title,	but	you	will	have	a
much	greater	understanding	of	the	development	process,	and	you	will	have	made
your	first	game	from	scratch.

Game	Development:	A	High-Level	Overview

Our	game	will	be	a	clone	of	Pong	called	LoneBall,	and	it	will	challenge	players
to	keep	a	ball	bouncing	left	and	right	for	as	long	as	possible	by	pressing	the	up
and	 down	 arrow	 keys	 to	 control	 both	 paddles,	 as	 the	 ball	 speeds	 up	 or	 slows
down	 randomly.	The	player	earns	1	point	 for	each	successful	 save	and	 loses	3
points	for	each	miss!	The	twist	is	that	the	paddles	will	always	move	in	opposite
directions,	 meaning	 that	 the	 paddle	 on	 the	 right	 will	 travel	 in	 the	 opposite
direction	of	the	arrow	key	you	press.	A	screenshot	of	the	final	product	is	shown
in	Figure	5-1.

Figure	5-1	Screenshot	of	LoneBall

Despite	our	game’s	 simplicity,	 it	will	 capture	many	 important	 aspects	of	game
development.	 You	 will	 learn	 how	 to	 write	 classes	 in	 order	 to	 represent	 game
objects,	how	to	detect	and	handle	collision,	how	to	update	objects	in	response	to
player	input,	how	to	render	them	on	the	screen	and	more.	These	skills	will	likely
be	used	in	every	game	you	build,	and	it	is	important	that	you	learn	them	without
the	distractions	of	fancy	graphics	and	peripheral	features.

The	Classes

We	will	represent	our	paddles	by	creating	a	Paddle	class	and	instantiating	it	two
times.	We	will	 also	 create	 an	 instance	 of	 a	 Ball	 class	 to	 represent	 our	 square
“ball,”	which	will	 encapsulate	all	of	 the	 logic	needed	 to	move	and	bounce	 the
ball	around	 the	screen.	Each	of	 these	objects	will	exist	and	 interact	on	a	game
state	that	we	will	name	PlayState,	whose	job	is	to	update	and	render	the	objects
while	handling	player	keyboard	input.
One	 of	 the	 advantages	 of	 object-oriented	 programming	 is	 its	 extensibility.	We
can	easily	add	new	classes	and	features	without	affecting	our	entire	application.
As	we	 build	 our	 game,	we	might	 find	 that	 our	 framework	 is	missing	 a	 useful
feature	or	two	that	might	come	in	handy	in	our	game	development	process	(such
as	easy	random	number	generation),	and	we	will	add	these	features	as	necessary.
Now	that	you’ve	read	the	overview,	it’s	time	to	start	building.

Preparing	the	LoneBall	Project

Copying	the	Framework

In	all	of	our	game	development	projects,	we	will	always	start	by	making	a	copy
of	our	game	development	framework.	This	allows	us	to	start	building	our	game
immediately,	without	worrying	about	rewriting	the	game-independent	code	that
we	wrote	in	Chapter	4.

Open	up	Eclipse.	If	you	have	access	to	the	game	development	framework	from
the	end	of	Chapter	4,	make	a	copy	of	it	by	right-clicking	on	it	(Ctrl	+	Click	on
Mac),	pressing	Copy,	and	pasting	it	back	into	the	Package	Explorer	with	the	new
name	of	LoneBall.	Once	you	have	done	so,	and	you	have	all	the	classes	shown
in	Figure	5-2	inside	your	project,	and	you	will	be	good	to	go.

Figure	5-2	The	LoneBall	Project

Note:	 If	 you	 do	 not	 have	 access	 to	 the	 framework	 on	 your	 computer,	 the
appropriate	 version	 can	 be	 downloaded	 in	 .zip	 format	 at:
jamescho7.com/book/chapter4/complete.	 To	 import	 the	 downloaded
framework	into	your	workspace,	extract	the	.zip	file	to	a	convenient	folder.	Next,
right	click	 (Ctrl	+	click	on	Mac)	on	 the	Package	Explorer,	 click	 Import,	 select
Existing	Projects	into	Workspace	under	General	as	your	import	source,	Browse

to	the	folder	containing	the	extracted	files,	Select	All	projects	and	press	Finish.
Your	 Package	 Explorer	 should	 now	 show	 the	 game	 development	 framework’s
project.	If	you	have	trouble	with	any	of	these	steps,	please	post	on	the	forums	at
jamescho7.com	for	help!

Now	 that	 our	game	development	 framework	 is	 ready,	 our	next	 step	 is	 to	 open
GameMain	and	change	the	name	of	the	JFrame	window	to	LoneBall	(Chapter	5).
This	is	accomplished	by	modifying	the	value	of	the	GAME_TITLE	constant	as
shown	in	listing	5.01.

*****	Listing	5.01	The	GameMain	class	*****

package	com.jamescho.game.main;

import	javax.swing.JFrame;

public	class	GameMain	{

				public	static	final	String	GAME_TITLE	=	"Java	Game	Development	Framework	(Chapter	4)";

				public	static	final	String	GAME_TITLE	=	"LoneBall	(Chapter	5)";

				public	static	final	int	GAME_WIDTH	=	800;

				public	static	final	int	GAME_HEIGHT	=	450;

				public	static	Game	sGame;

																

								public	static	void	main(String[]	args)	{

																JFrame	frame	=	new	JFrame(GAME_TITLE);

																frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

																frame.setResizable(false);

																sGame	=	new	Game(GAME_WIDTH,	GAME_HEIGHT);

																frame.add(sGame);

																frame.pack();

																frame.setVisible(true);

																frame.setIconImage(Resources.iconimage);

								}

								

}

Let’s	make	 sure	 that	 our	 framework	 has	 been	 successfully	 copied	 and	 that	 its
name	has	been	changed.	Run	 the	project	as	a	Java	application.	You	should	see
the	window	shown	in	Figure	5-3	(note	the	title	of	the	window):

Figure	5-3	LoneBall	JFrame

Adding	and	Loading	Resources

We	are	ready	to	start	adding	some	content.	The	first	thing	we	will	do	is	add	all	of
the	resources	that	we	will	need	throughout	the	development	process.	Having	all
of	 the	 assets	 ready	 prior	 to	 writing	 code	 will	 make	 it	 easy	 for	 us	 to	 quickly
develop	our	game	without	 jumping	back	and	forth	between	our	graphics/sound
editing	programs	and	the	Eclipse	IDE.

I	have	created	LoneBall’s	assets	and	uploaded	them	onto	the	book’s	companion
site.	You	will	now	be	able	downloading	these	into	your	project	and	loading	the
new	resources	into	the	Resources	class.

The	 following	 resources	 (images	 and	 sound	 files)	 are	 available	 for	 you	 to
download	 at	 jamescho7.com/book/chapter5.	 You	 may	 also	 use	 your	 own	 by
creating	images	and	sound	files	of	the	appropriate	dimensions	and	type.

bounce.wav	(Duration:	<1	sec)	–	to	be	played	when	the	ball	bounces
off	of	a	paddle

hit.wav	(Duration:	<1	sec)	–	to	be	played	when	the	ball	bounces	off	of
a	wall

iconimage.png	(32px	x	32px)	–	to	be	used	as	the	icon	image	for
JFrame

welcome.png	(800px	x	450px)	–	to	be	used	as	the	new	welcome	screen
for	LoneBall.

line.png	(4px	x	450px)	–	to	be	used	as	the	divider	between	the	two

background	colors

Download	 the	 five	 files	 and	 add	 them	 into	 your	 project’s	 resources	 package,
overwriting	any	existing	files.	Your	resources	package	should	now	be	 identical
to	that	shown	in	Figure	5-4.

Figure	5-4	Adding	the	Resource	Files

Note:	 If	you	want	 to	work	with	your	own	assets,	 I	 recommend	using	GIMP	or
Photoshop	to	prepare	your	game’s	images.	The	sound	files	used	here	have	been
created	using	a	free	online	tool	at	www.bfxr.net	(you	have	full	rights	to	anything
you	produce	using	bfxr,	so	there	are	no	licensing	issues	to	worry	about).

Next,	we	will	load	the	new	resource	files	into	our	Resources	class.	This	is	done
in	 two	 steps.	 Firstly,	 declare	 the	 following	 static	 variables	 (welcome	 and
iconimage	may	already	be	declared	for	you):

public	static	BufferedImage	welcome,	iconimage,	line;

public	static	AudioClip	hit,	bounce;

Next,	 initialize	 the	 newly	 created	 variables	 inside	 the	 load()	method	 as	 shown
below.	We	use	loadImage()	for	image	files	and	loadSound()	for	sound	files:

....

public	static	void	load()	{

								welcome	=	loadImage("welcome.png");

								iconimage	=	loadImage("iconimage.png");

								line	=	loadImage("line.png");

								hit	=	loadSound("hit.wav");

								bounce	=	loadSound("bounce.wav");

}

....

We	will	also	create	two	static	Color	objects	to	represent	our	blue	(RGB:	25,	83,

105)	and	red	(RGB:	105,	13,	13)	background	colors,	and	 these	will	be	used	 in
our	 other	 classes.	Add	 the	 corresponding	 static	 variables	 as	 shown	 (importing
java.awt.Color):

public	static	Color	darkBlue,	darkRed;

Initialize	them	inside	the	load()	method	as	shown:

....

public	static	void	load()	{

								welcome	=	loadImage("welcome.png");

								iconimage	=	loadImage("iconimage.png");

								line	=	loadImage("line.png");

								hit	=	loadSound("hit.wav");

								bounce	=	loadSound("bounce.wav");

								darkBlue	=	new	Color(25,	83,	105);	//	Constructor	accepts	RGB

								darkRed	=	new	Color(105,	13,	13);	//	Constructor	accepts	RGB

}

....

The	 completed	 Resources	 class	 is	 shown	 in	 listing	 5.02	 (check	 your	 import
statements):

*****	Listing	5.02	The	Completed	Resources	Class	*****

01	package	com.jamescho.game.main;

02

03	import	java.applet.Applet;

04	import	java.applet.AudioClip;

05	import	java.awt.Color;

06	import	java.awt.image.BufferedImage;

07	import	java.net.URL;

08

09	import	javax.imageio.ImageIO;

10

11	public	class	Resources	{

12						public	static	BufferedImage	welcome,	iconimage,	line;

13						public	static	AudioClip	hit,	bounce;

14

15						public	static	Color	darkBlue,	darkRed;

16														

17						public	static	void	load()	{

18														welcome	=	loadImage("welcome.png");

19														iconimage	=	loadImage("iconimage.png");

20														line	=	loadImage("line.png");

21														hit	=	loadSound("hit.wav");

22														bounce	=	loadSound("bounce.wav");

23														darkBlue	=	new	Color(25,	83,	105);	

24														darkRed	=	new	Color(105,	13,	13);	

25						}

26														

27						public	static	AudioClip	loadSound(String	filename){

28														URL	fileURL	=	Resources.class.getResource("/resources/"	+	filename);

29														return	Applet.newAudioClip(fileURL);

30						}

31														

32						public	static	BufferedImage	loadImage(String	filename){

33									BufferedImage	img	=	null;

34										try	{

35														img	=	ImageIO.read(Resources.class.getResource("/resources/"	+	filename));

36									}	catch	(Exception	e)	{

37														System.out.println("Error	while	reading:	"	+	filename);

38														e.printStackTrace();

39									}

40									return	img;

41						}

42	}

Now	that	our	resources	have	been	 loaded,	 let’s	 run	 the	game	once	more	 to	see
the	changes	(note	the	new	welcome	screen	and	icon	image):

Figure	5-5	LoneBall	Welcome	Screen

Implementing	the	Gameplay	Screen

Adding	the	PlayState

Our	resources	are	all	ready,	and	it’s	time	to	add	the	PlayState	class,	which	will
act	 as	 the	 gameplay	 screen	 for	 LoneBall.	 Create	 this	 class	 inside
com.jamescho.game.state,	 and	 extend	 State	 (we	 must	 do	 this	 for	 every	 new
screen	 of	 our	 game).	 Eclipse	 will	 immediately	 get	 angry	 (show	 an	 error
message)	and	ask	you	 to	Add	unimplemented	methods.	Perform	this	quick-fix,
and	your	class	should	match	that	shown	in	listing	5.03:

*****	Listing	5.03	The	PlayState	Class	(Initial)	*****

package	com.jamescho.game.state;

import	java.awt.Graphics;

import	java.awt.event.KeyEvent;

import	java.awt.event.MouseEvent;

public	class	PlayState	extends	State{

								@Override

								public	void	init()	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	update()	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	render(Graphics	g)	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	onClick(MouseEvent	e)	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	onKeyPress(KeyEvent	e)	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	onKeyRelease(KeyEvent	e)	{

																//	TODO	Auto-generated	method	stub						

								}

}

The	first	thing	we	will	do	in	our	new	state	is	add	code	to	render	the	background
(see	Figure	5-1	for	a	reference).	Recall	that	rendering	is	similar	to	painting	with
a	brush.	You	must	select	a	color	before	you	draw	any	shapes,	and	whatever	you
draw	first	will	appear	below	anything	else	you	paint	over	it	later.	This	means	that
the	background	must	be	drawn	before	anything	else,	as	we	want	it	to	be	below
the	ball	and	the	paddles.

To	draw	the	background	for	LoneBall,	we	will	first	fill	the	screen	with	our	dark
blue	color,	and	then	draw	a	red	rectangle	that	covers	the	right	half	of	the	screen
(order	is	important).	Lastly,	we	will	draw	line.png	in	the	center	of	the	screen	to
accomplish	the	dotted	line	effect	(see	Figure	5-1)	with	ease.

Note:	To	draw	our	 dotted	 line,	we	 could	 also	 render	multiple	white	 rectangles
instead	 of	 rendering	 a	 .png	 file.	 This	 alternative	 approach	 may	 save	 a	 bit	 of
memory	for	us,	as	we	have	one	fewer	 image	to	worry	about,	but	 it	would	take
more	 code.	 Such	 trade-offs	 are	 common	 in	 game	programming,	 and	 you	must
seek	a	balance	between	optimization	(a	 faster	program)	and	work	efficiency	(a
faster	 programmer).	 The	 general	 rule	 of	 thumb	 is	 to	 optimize	 only	 when
necessary	by	identifying	bottlenecks	in	your	program	and	improving	them.

Add	 the	 code	 shown	 below	 to	 the	 PlayState’s	 render()	 method,	 importing
com.jamescho.game.main.GameMain	and	com.jamescho.game.main.Resources:

....

import	java.awt.event.MouseEvent;

import	com.jamescho.game.main.GameMain;

import	com.jamescho.game.main.Resources;

....

@Override

public	void	render(Graphics	g)	{

								//	Draw	Background

								g.setColor(Resources.darkBlue);

								g.fillRect(0,	0,	GameMain.GAME_WIDTH,	GameMain.GAME_HEIGHT);

								g.setColor(Resources.darkRed);

								g.fillRect(GameMain.GAME_WIDTH	/	2,	0,	GameMain.GAME_WIDTH	/	2,

																								GameMain.GAME_HEIGHT);

								//	Draw	Separator	Line

								g.drawImage(Resources.line,	(GameMain.GAME_WIDTH	/	2)	-	2,	0,	null);

}

....

This	code	is	self-explanatory,	so	I	will	let	you	review	the	additions	by	yourself.
Keep	in	mind	that	when	drawing	graphics,	the	origin	of	the	screen	(0,	0)	is	at	the
top-left	corner	of	the	screen.

If	you	get	stuck,	remember	that	the	four	arguments	used	for	drawing	rectangles
are	x,	y,	width	and	height,	where	(x,	y)	are	the	coordinates	of	the	top-left	corner
of	 the	 image	or	rectangle	 to	be	drawn.	In	 the	case	of	drawing	 images,	 the	first
argument	is	the	image	to	be	drawn,	and	the	next	two	arguments	are	the	x	and	y
values.	The	final	argument	will	always	be	null	in	this	book.	(As	a	final	hint,	the
width	of	Resources.Line	is	4px,	and	this	has	something	to	do	with	subtracting	2
from	the	x	coordinate).

Note:	 We	 have	 access	 to	 the	 game’s	 width	 and	 height	 through	 the
GameMain.GAME_WIDTH	and	GameMain.GAME_HEIGHT	variables.

Transitioning	into	PlayState

Now	that	we	have	a	PlayState	that	renders	the	background,	let’s	make	sure	that	it
works	 by	 opening	 the	 MenuState	 and	 asking	 it	 to	 transition	 to	 the	 PlayState
when	the	mouse	is	clicked.	This	requires	just	one	line	of	code	to	be	added	to	the
onClick()	method,	as	shown	in	line	28	of	listing	5.04.

*****	Listing	5.04	From	MenuState	to	PlayState		*****

01	package	com.jamescho.game.state;

02

03	import	java.awt.Graphics;

04	import	java.awt.event.KeyEvent;

05	import	java.awt.event.MouseEvent;

06

07	import	com.jamescho.game.main.Resources;

08

09	public	class	MenuState	extends	State{

10

11						@Override

12						public	void	init()	{

13														System.out.println("Entered	MenuState");

14						}

15

16						@Override

17						public	void	update()	{

18														

19						}

20

21						@Override

22						public	void	render(Graphics	g)	{

23														g.drawImage(Resources.welcome,	0,	0,	null);					

24						}

25

26						@Override

27						public	void	onClick(MouseEvent	e)	{

28														setCurrentState(new	PlayState());

29						}

30

31						@Override

32						public	void	onKeyPress(KeyEvent	e)	{

33														

34						}

35

36						@Override

37						public	void	onKeyRelease(KeyEvent	e)	{

38																						

39						}

40

41	}

Run	the	program.	Once	you	see	the	menu	screen,	click	a	button	on	your	mouse.
The	 game	 should	 then	 transition	 to	 the	 gameplay	 screen,	 which	 renders	 the
beautiful	 blue	 and	 red	 background	 as	 shown	 in	 Figure	 5-6,	 complete	 with	 a
dotted	line	effect.

Figure	5-6	MenuState	to	PlayState

Designing	the	Paddles

A	game,	even	one	as	simple	as	LoneBall,	must	have	something	for	the	player	to
control	 (a	 video	 game	 minus	 player	 interaction	 is	 a	 video)!	 We	 will	 next
implement	the	controllable	paddles	into	the	game.

The	blueprint	(class)	for	these	paddles	will	be	called	Paddle.	Having	such	a	class
allows	us	to	easily	create	a	Paddle	object,	which	will	store	all	of	the	information
and	behavior	needed	to	represent	a	paddle	in	our	game.

Key	Point

Advantages	of	Object-Oriented	Programming	in	Game	Development
Creating	game	objects	demonstrates	the	benefits	of	object-oriented	programing.
Each	object,	created	using	a	class,	represents	an	actual	entity	on	the	screen,	and
this	makes	 it	 very	 easy	 for	 a	 programmer	 to	wrap	 his	 or	 her	mind	 around	 the
project.	 Behind	 each	 character,	 wall	 or	 background	 element	 in	 any	 game	 we
build,	there	will	be	an	object	and	thus	a	class	responsible	for	its	representation.

Before	we	create	the	Paddle	class,	let’s	outline	its	variables	and	methods.

The	Variables	in	Paddle

When	 creating	 variables	 for	 a	 new	 game	 object,	 you	 should	 ask	 yourself	 the
following	question:	what	information	do	I	need	to	store	inside	each	of	my	game
objects?

In	the	case	of	each	paddle,	we	will	need	to	know	where	it	is	and	how	big	it	is.
We	also	need	 to	know	how	fast	 it	 is	moving	and	which	direction	 it	 is	moving.
These	requirements	can	help	us	determine	what	variables	we	will	need	to	create
for	our	Paddle	class,	as	listed	below.

Coordinates	and	Dimensions:	We	will	create	four	variables	to	allow	us	to	locate
each	paddle	and	draw	it	in	our	coordinate	plane.	These	are	x,	y,	width	and	height.
The	purpose	of	these	four	values	are	shown	in	Figure	5-7.

Figure	5-7	Overview	of	a	Paddle

Bounding	 Box:	 Rectangle	 is	 a	 built	 in	 Java	 class	 that	 represents	 a	 simple
quadrilateral.	This	class	has	a	built-in	method	 that	allows	us	 to	easily	check	 if
two	Rectangle	objects	are	overlapping.	Have	a	look	at	the	example	below:

Rectangle	r	=	new	Rectangle(0,	0,	10,	10);

Rectangle	r2	=	new	Rectangle(5,	5,	10,	10);

System.out.println(r.intersects(r2));

To	figure	out	what	the	result	would	be,	let’s	draw	it	out.	Take	a	look	at	Figure	5-
8,	 where	 the	 origin	 is	 at	 the	 top-left.	 The	 two	 rectangles	 overlap,	 and	 so
r.intersects(r2)	returns	true.

We	 will	 make	 use	 of	 this	 simple	 intersection	 check	 to	 determine	 whether	 a
collision	 occurred	 between	 our	 ball	 and	 the	 paddles.	 This	 can	 be	 done	 by
creating	an	instance	of	Rectangle	as	a	bounding	box	for	each	of	these	objects	and
checking	for	overlaps	on	every	frame.

Velocity:	Our	paddles	will	move	up	and	down,	so	we	will	create	a	variable	called
velY	to	store	information	regarding	each	paddle’s	current	movement	speed	and
direction.	 This	 variable	 represents	 the	 number	 of	 pixels	 that	 a	 paddle	 should
traverse	in	one	frame.	Therefore,	adding	velY	to	a	paddle’s	y-coordinate	in	one
frame	allows	us	to	calculate	the	y-coordinate	of	the	next	frame.	This	means	that
a	positive	velY	value	 indicates	 that	a	paddle	 is	moving	downwards	 (remember
that	 y	 increases	 downwards	 in	 our	 coordinate	 plane)	 and	 that	 a	 negative	 velY
value	indicates	that	a	paddle	is	moving	upwards.

Figure	5-8	Do	They	Overlap?

Note:	If	the	above	discussion	is	confusing	to	you	or	you	just	want	to	review	the
simple	laws	of	physics	that	will	govern	our	game,	please	see	Appendix	B.

The	Methods

As	with	 creating	 variables,	 asking	 yourself	 a	 question	 can	 help	 you	 determine
what	methods	you	need	 to	create	 for	your	game	object:	what	 should	my	game

object	be	able	to	do?

Each	paddle	needs	 to	be	able	 to	 increase	velocity,	decrease	velocity,	update	 its
position,	and	update	its	bounding	box.	We	will	be	creating	methods	to	perform
these	behaviors	as	outlined	below.

Acceleration/Deceleration	Methods:	To	change	 the	velocity	of	each	paddle,	we
will	 implement	 accelUp(),	 accelDown()	 and	 stop().	These	methods	will	 update
the	y-velocity	of	our	paddle	appropriately	(making	it	negative,	positive	and	zero,
respectively).

Update	Methods:	The	update()	method	will	 determine	 a	new	position	 for	 each
paddle	 given	 its	 current	 position	 and	 velocity	 .	We	will	 also	 create	 a	 method
called	 updateRect(),	 which	 will	 simply	 move	 our	 bounding	 box	 to	 keep	 it
aligned	with	our	paddle	objects.

Creating	the	Paddle	Class

We	have	outlined	the	Paddle	class	in	the	previous	section,	now	let’s	write	some
code.

Adding	the	Variables

Inside	 the	 package	 com.jamescho.game.model,	 create	 the	 Paddle	 class.	 Then,
create	 the	 instance	 variables	 and	 constructor	 shown	 below,	 making	 sure	 to
import	java.awt.Rectangle:

package	com.jamescho.game.model;

import	java.awt.Rectangle;

public	class	Paddle	{

								private	int	x,	y,	width,	height,	velY;

								private	Rectangle	rect;

								public	Paddle(int	x,	int	y,	int	width,	int	height)	{

																this.x	=	x;

																this.y	=	y;

																this.width	=	width;

																this.height	=	height;

																rect	=	new	Rectangle(x,	y,	width,	height);

																velY	=	0;

								}

}

Our	 constructor	 will	 accept	 the	 x,	 y,	 width	 and	 height	 values	 to	 initialize	 our
Paddle’s	coordinates	and	dimensions,	and	also	create	a	new	bounding	box	with
the	same	coordinates	and	dimensions.	We	will	lastly	set	the	initial	y-velocity	as
zero.

Adding	the	Methods

Add	the	update(),	updateRect(),	accelUp(),	accelDown()	and	stop()	methods	into
Paddle	as	shown	in	listing	5.05	(lines	18	through	37).

*****	Listing	5.05	The	Paddle	Class	with	Five	Methods	*****

01	package	com.jamescho.game.model;

02

03	import	java.awt.Rectangle;

04

05	public	class	Paddle	{

06						private	int	x,	y,	width,	height,	velY;

07						private	Rectangle	rect;

08

09						public	Paddle(int	x,	int	y,	int	width,	int	height)	{

10														this.x	=	x;

11														this.y	=	y;

12														this.width	=	width;

13														this.height	=	height;

14														rect	=	new	Rectangle(x,	y,	width,	height);

15														velY	=	0;

16						}

17														

18						public	void	update()	{

19														y	+=	velY;

20														updateRect();

21						}

22

23						private	void	updateRect()	{

24														rect.setBounds(x,	y,	width,	height);

25						}

26

27						public	void	accelUp()	{

28														velY	=	-5;

29						}

30

31						public	void	accelDown()	{

32														velY	=	5;

33						}

34

35						public	void	stop()	{

36														velY	=	0;

37						}

38

39	}

Note:	 Always	 keep	 methods	 public	 if	 they	 will	 be	 called	 by	 other	 classes.
Otherwise,	keep	 them	private.	 In	 the	example	above,	updateRect()	 is	a	method
that	 will	 only	 be	 called	 inside	 the	 update()	 method	 in	 the	 same	 class,	 so	 it
remains	private.

The	code	in	the	five	methods	is	pretty	simple.	Our	update()	method	simply	adds
velY	to	 the	y	once	per	frame.	This	has	 the	effect	of	moving	 the	paddle	 to	a	y-
position	 of	 y	 +	 velY	 (if	 you	 need	 elaboration	 on	 this,	 see	 Appendix	 B).	 The
update()	 method	 also	 calls	 the	 updateRect()	 method,	 which	 takes	 the	 updated
coordinates	of	the	paddle	and	moves	the	bounding	box	to	the	same	position.

The	three	acceleration/deceleration	methods,	accelUp(),	accelDown()	and	stop(),
simply	change	velY	to	an	appropriate	value:	-5,	5	and	zero,	respectively.

Notice	here	that	the	movement	speed	will	be	5	or	-5	pixels	per	frame,	depending
on	direction	(or	zero	if	the	paddle	is	not	moving).	What	if	we	wanted	to	change
the	movement	speed	to	be	4	or	-4?	Then	we	would	have	to	make	changes	to	two
places	in	code	(inside	the	accelUp()	and	accelDown()	methods).	This	is	easy	in
LoneBall;	however,	in	more	complex	game	classes,	a	simple	change	such	as	this
one	might	require	you	to	modify	10	lines	of	code	(or	more).	If	you	were	making
such	a	game	class,	you	might	decide	that	a	change	is	simply	not	worth	it.	This	is
bad.	Your	code	should	help	you	realize	your	vision	of	the	game,	not	restrict	 it!
Let’s	explore	how	we	can	reduce	dependencies,	so	that	we	can	avoid	this	trap	in
the	future.

Reducing	Dependencies	with	Constants

Create	 a	 new	 constant	 in	 Paddle	 by	 declaring	 the	 final	 static	 variable	 shown
below:

....

public	class	Paddle	{

								private	int	x,	y,	width,	height,	velY;

								private	Rectangle	rect;

								private	final	static	int	MOVE_SPEED_Y	=	4;			//	This	is	the	new	line

....

Next,	change	the	implementation	of	the	accelUp()	and	accelDown()	methods	to
make	use	of	 this	constant	 rather	 than	hardcoded	 integer	values	 (shown	in	 lines
29	and	34	of	listing	5.06):

*****	Listing	5.06	Making	Use	of	Constants	*****

01	package	com.jamescho.game.model;

02

03	import	java.awt.Rectangle;

04

05	public	class	Paddle	{

06						private	int	x,	y,	width,	height,	velY;

07						private	Rectangle	rect;

08						private	final	static	int	MOVE_SPEED_Y	=	4;

09

10						public	Paddle(int	x,	int	y,	int	width,	int	height)	{

11														this.x	=	x;

12														this.y	=	y;

13														this.width	=	width;

14														this.height	=	height;

15														rect	=	new	Rectangle(x,	y,	width,	height);

16														velY	=	0;

17						}

18						public	void	update()	{

19														y	+=	velY;

20														updateRect();

21						}

22

23						private	void	updateRect()	{

24														rect.setBounds(x,	y,	width,	height);

25						}

26

27						public	void	accelUp()	{

28														velY	=	-5;

29														velY	=	-MOVE_SPEED_Y;

30						}

31

32						public	void	accelDown()	{

33														velY	=	5;

34														velY	=	MOVE_SPEED_Y;

35						}

36

37						public	void	stop()	{

38														velY	=	0;

39						}

40

41	}

Now,	if	I	want	to	modify	our	paddles’	movement	speeds,	all	I	would	have	to	do
is	 change	 the	 value	 of	 the	 constant	 MOVE_SPEED_Y	 to	 the	 desired	 value,
because	the	methods	accelUp()	and	accelDown()	will	automatically	receive	the
changed	value!	By	adding	MOVE_SPEED_Y	to	the	class,	we	have	reduced	the
number	of	lines	of	code	dependent	on	the	value	of	our	movement	speed.

This	 change	 may	 seem	 insignificant	 now,	 but	 making	 an	 effort	 to	 reduce
dependencies	whenever	possible	makes	it	much	more	pleasant	to	maintain	your
code.	With	 this	 change,	 determining	what	 values	 you	must	modify	 in	 order	 to
make	your	paddles	go	faster	is	easy,	because	a	quick	glance	reveals	that	there	is
a	constant	called	MOVE_SPEED_Y.

Benefits	such	as	these	mean	that	if	you	were	to	take	a	vacation	and	return	to	your
code	weeks	later,	you	wouldn’t	have	to	reason	through	your	own	code	to	figure
out	how	 to	make	simple	changes.	Naturally,	 in	a	 team-based	environment,	 this
means	that	others	can	look	through	your	code	and	readily	add,	modify	or	remove
features	without	 needing	 to	 know	 inconvenient	 details	 such	 as	which	methods
must	always	change	together.

Adding	the	Getters

Our	 Paddle	 class’s	 instance	 variables	 are	 all	 private.	 This	 means	 that	 other
classes	 cannot,	 for	 instance,	modify	our	paddles’	x	 and	y	positions	 illegally	 (x
should	 not	 change,	 and	 y	 should	 only	 change	 inside	 the	 Paddle’s	 update()
method).	This	protects	our	variables,	but	 this	also	means	 that	PlayState	cannot
access	the	x	and	y	values	to	render	the	Paddle	objects	in	the	correct	position	with
the	correct	dimensions.

We	will	finish	up	our	Paddle	class	by	creating	five	getter	methods	so	that	other
classes	can	peek	at	our	Paddle	objects’	instance	variables,	but	not	modify	them.
The	five	getters	are	shown	below:

package	com.jamescho.game.model;

import	java.awt.Rectangle;

public	class	Paddle	{

							

								public	void	stop()	{

																velY	=	0;

								}

								public	int	getX()	{

																return	x;

								}

								public	int	getY()	{

																return	y;

								}

								public	int	getWidth()	{

																return	width;

								}

								public	int	getHeight()	{

																return	height;

								}

								

public	Rectangle	getRect()	{

																return	rect;

								}

}

Our	 Paddle	 class	 is	 now	 complete!	We	 can	 now	 instantiate	 the	 class	 to	make
Paddle	objects	as	necessary.

Implementing	the	Paddle	Objects	inside	PlayState

Our	game,	as	shown	in	Figure	5-1,	needs	two	paddle	objects.	Open	the	PlayState
class	and	declare	the	following	variables	(importing	com.game.model.Paddle):

private	Paddle	paddleLeft,	paddleRight;

private	static	final	int	PADDLE_WIDTH	=	15;

private	static	final	int	PADDLE_HEIGHT	=	60;

Inside	the	init()	method,	initialize	our	two	new	Paddle	variables	as	shown	below:

@Override

public	void	init()	{

								paddleLeft	=	new	Paddle(0,	195,	PADDLE_WIDTH,	PADDLE_HEIGHT);

								paddleRight	=	new	Paddle(785,	195,	PADDLE_WIDTH,	PADDLE_HEIGHT);

}

The	two	paddles	should	be	created	at	the	coordinates	(x	=	0,	y	=	195)	and	(x	=
785,	y	=	195).	The	provided	x	positions	place	paddleLeft	on	the	left	side	of	the
screen,	and	place	paddleRight	on	the	right	side	of	the	screen.

The	given	y	values	indicate	where	the	top-left	corner	of	each	paddle	should	be
located	 in	 order	 to	 keep	 them	 vertically	 centered.	 These	 values	 are	 simply
calculated	 by	 taking	 225	 (the	 vertical	 center)	 and	 subtracting	 30	 (half	 of	 a
paddle’s	height).

Note:	 At	 the	 moment,	 our	 two	 paddles	 will	 only	 be	 centered	 if	 the	 game’s
resolution	remains	800	x	450	(this	is	set	in	GameMain).	We	could	eliminate	this
dependency	 on	 screen	 resolution	 by	 deriving	 the	 x	 and	 y	 coordinates	 using
GameMain’s	GAME_WIDTH	and	GAME_HEIGHT	constants,	but	we	will	keep
things	simple	by	leaving	the	hardcoded	values	for	now.

Rendering	the	Paddles

To	make	sure	that	we	have	initialized	our	two	paddles	at	the	correct	coordinates,
let’s	 draw	 them	 on	 our	 screen.	 Add	 the	 lines	 of	 code	 shown	 below	 to	 your

render()	method	in	PlayState	(import	java.awt.Color	accordingly):

@Override

public	void	render(Graphics	g)	{

								//	Draw	Background

								g.setColor(Resources.darkBlue);

								g.fillRect(0,	0,	GameMain.GAME_WIDTH,	GameMain.GAME_HEIGHT);

								g.setColor(Resources.darkRed);

								g.fillRect(GameMain.GAME_WIDTH	/	2,	0,	GameMain.GAME_WIDTH	/	2,

																								GameMain.GAME_HEIGHT);

								//	Draw	Separator	Line

								g.drawImage(Resources.line,	398,	0,	null);

								//	Draw	Paddles

								g.setColor(Color.white);

								g.fillRect(paddleLeft.getX(),	paddleLeft.getY(),	paddleLeft.getWidth(),

																								paddleLeft.getHeight());

								g.fillRect(paddleRight.getX(),	paddleRight.getY(),	paddleRight.getWidth(),

																								paddleRight.getHeight());

}

These	three	lines	simply	draw	two	white	rectangles	at	the	coordinates	stored	by
each	of	the	paddles.	These	draw	calls	are	at	the	bottom	of	the	render	method,	so
that	the	paddles	are	drawn	after	(thus	on	top	of)	the	background.

Try	running	the	game.	You	should	see	 two	vertically-centered	paddles	hugging
the	left	and	right	sides	of	the	window	as	shown	in	Figure	5-9.

Figure	5-9	Rendering	the	Padels

Handling	Player	Input

We	want	our	paddles	 to	move	when	the	player	presses	 the	up	and	down	arrow
keys.	 We	 can	 implement	 this	 with	 ease	 using	 the	 onKeyPress()	 and
onKeyRelease()	methods,	thanks	to	our	framework.

Our	two	input-related	methods	are	called	automatically	(and	accordingly)	when
the	 game	 detects	 a	 key	 press	 or	 release.	 Notice	 these	methods	 have	 the	 same
parameter:	 (KeyEvent	 e).	 This	 passed	 in	 KeyEvent	 object	 stores	 information
regarding	 the	 key	 that	 has	 triggered	 the	 method,	 and	 you	 can	 retrieve	 this
information	by	calling	its	getKeyCode()	method.

This	means	that,	 in	order	 to	determine	which	key	was	pressed	or	released,	you
compare	 the	value	of	e.getKeyCode()	with	various	constants	 representing	each
keyboard	 button	 (these	 are	 defined	within	 the	 KeyEvent	 class	 with	 the	 prefix
VK_...).

As	with	other	explanations,	this	will	make	much	more	sense	when	you	see	it	in
action.	Update	your	onKeyPress()	and	onKeyRelease()	methods	in	PlayState	by
adding	the	lines	shown	below:

....

@Override

public	void	onKeyPress(KeyEvent	e)	{

								if	(e.getKeyCode()	==	KeyEvent.VK_UP)	{

																paddleLeft.accelUp();

																paddleRight.accelDown();

								}	else	if	(e.getKeyCode()	==	KeyEvent.VK_DOWN)	{

																paddleLeft.accelDown();

																paddleRight.accelUp();

								}

}

@Override

public	void	onKeyRelease(KeyEvent	e)	{

								if	(e.getKeyCode()	==	KeyEvent.VK_UP	||	

																								e.getKeyCode()	==	KeyEvent.VK_DOWN)	{

																paddleLeft.stop();

																paddleRight.stop();

								}

}

....				

Our	 onKeyPress()	 method	 only	 cares	 about	 two	 keys:	 VK_UP	 (the	 up	 arrow
key)	and	VK_DOWN	(the	down	arrow	key).	If	either	of	these	keys	is	pressed,	it
calls	the	accelUp()	and	accelDown()	methods	of	the	two	paddles	as	appropriate.
Note	 that	 we	 send	 paddleLeft	 in	 the	 direction	 of	 the	 arrow	 key	 pressed	 and
paddleRight	in	the	opposite	direction.

The	 onKeyRelease()	method	 only	 cares	 about	 the	 same	 keys.	 In	 this	 opposite
case,	whether	the	key	released	is	VK_UP	or	VK_DOWN,	it	reacts	by	stopping
both	paddles.

Try	running	your	code	and	pressing	the	up	and	down	arrow	keys.	Nothing	will
happen!	 This	 is	 because	 although	we	 are	 changing	 the	 velY	 property	 of	 each
paddle,	we	are	not	allowing	the	paddles	to	update.	Let’s	change	that.

Updating	the	Paddles	by	Delegation

Ask	each	paddle	 to	update	 itself	 inside	PlayState’s	 update()	method,	 as	 shown
below:

@Override

public	void	update()	{

								paddleLeft.update();

								paddleRight.update();

}

Notice	that	our	update()	method	delegates	two	other	objects	to	update().	It	does
very	little	work	on	its	own.	This	pattern	is	called	delegation,	and	you	will	find
that	 it	 is	 very	 useful	 in	 maintaining	 a	 hierarchy	 of	 objects.	 In	 this	 example,
PlayState	 represents	 an	 entire	 gameplay	 screen	 and	 contains	 various	 objects,
including	 paddleLeft	 and	 paddleRight.	 You	 update	 PlayState,	 and	 everything
inside	 PlayState	 updates	 as	 well.	 Every	 object	 inside	 the	 PlayState	 behaves
together.	 This	 is	 a	 powerful	 pattern.	With	 that	 change,	 your	 PlayState	 should
currently	look	like	listing	5.07:

XYZ

*****	Listing	5.07	PlayState	(Updated)	*****

01	package	com.jamescho.game.state;

02

03	import	java.awt.Color;

04	import	java.awt.Graphics;

05	import	java.awt.event.KeyEvent;

06	import	java.awt.event.MouseEvent;

07

08	import	com.jamescho.game.main.GameMain;

09	import	com.jamescho.game.main.Resources;

10	import	com.jamescho.game.model.Paddle;

11

12	public	class	PlayState	extends	State{

13

14						private	Paddle	paddleLeft,	paddleRight;

15						private	static	final	int	PADDLE_WIDTH	=	15;

16						private	static	final	int	PADDLE_HEIGHT	=	60;

17														

18						@Override

19						public	void	init()	{

20														paddleLeft	=	new	Paddle(0,	195,	PADDLE_WIDTH,	PADDLE_HEIGHT);

21														paddleRight	=	new	Paddle(785,	195,	PADDLE_WIDTH,	PADDLE_HEIGHT);

22						}

23

24						@Override

25						public	void	update()	{

26														paddleLeft.update();

27														paddleRight.update();

28						}

29

30						@Override

31						public	void	render(Graphics	g)	{

32														//	Draw	Background

33														g.setColor(Resources.darkBlue);

34														g.fillRect(0,	0,	GameMain.GAME_WIDTH,	GameMain.GAME_HEIGHT);

35														g.setColor(Resources.darkRed);

36														g.fillRect(GameMain.GAME_WIDTH	/	2,	0,	GameMain.GAME_WIDTH	/	2,

37																														GameMain.GAME_HEIGHT);

38														//	Draw	Separator	Line

39														g.drawImage(Resources.line,	(GameMain.GAME_WIDTH	/	2)	-	2,	0,	null);

40														//	Draw	Paddles

41														g.setColor(Color.white);

42														g.fillRect(paddleLeft.getX(),	paddleLeft.getY(),	paddleLeft.getWidth(),

43																														paddleLeft.getHeight());

44														g.fillRect(paddleRight.getX(),	paddleRight.getY(),	paddleRight.getWidth(),

45																																						paddleRight.getHeight());

46

47						}

48

49						@Override

50						public	void	onClick(MouseEvent	e)	{

51														//	TODO	Auto-generated	method	stub

52						}

53

54						@Override

55						public	void	onKeyPress(KeyEvent	e)	{

56														if	(e.getKeyCode()	==	KeyEvent.VK_UP)	{

57																						paddleLeft.accelUp();

58																						paddleRight.accelDown();

59														}	else	if	(e.getKeyCode()	==	KeyEvent.VK_DOWN)	{

60																						paddleLeft.accelDown();

61																						paddleRight.accelUp();

62														}

63

64						}

65

66						@Override

67						public	void	onKeyRelease(KeyEvent	e)	{

68														if	(e.getKeyCode()	==	KeyEvent.VK_UP	||	

69																														e.getKeyCode()	==	KeyEvent.VK_DOWN)	{

70																						paddleLeft.stop();

71																						paddleRight.stop();

72														}

73														

74						}

75

76	}

Try	 running	 the	 code	 once	more.	 If	 you	 press	 the	 up	 and	 down	 arrows,	 your
paddles	should	begin	to	move	in	opposite	directions!	There	is	one	bug,	however.
Once	 you	 reach	 the	 top	 or	 bottom	 of	 the	 screen,	 the	 paddles	 will	 go	 straight
through	the	window	as	shown	in	Figure	5-10.

Figure	5-10	Our	First	Bug!

Fixing	the	Bug

This	is	actually	not,	strictly	speaking,	a	bug.	We	never	told	the	paddles	that	they
should	never	leave	the	screen.	To	do	so,	we	need	to	make	a	small	change	to	our
update()	 method	 inside	 the	 Paddle	 class,	 as	 shown	 in	 bold	 below	 (import
GameMain	as	needed):

public	void	update()	{

								y	+=	velY;

								

								if	(y	<	0)	{

																y	=	0;

								}	else	if	(y	+	height	>	GameMain.GAME_HEIGHT)	{

																y	=	GameMain.GAME_HEIGHT	-	height;

								}

								

								updateRect();

}	

What	 does	 this	 change	 do?	 After	 updating	 our	 paddle’s	 y-position,	 we	 now
check	 if	 our	 paddle	 has	 left	 the	 screen.	This	 can	 happen	 either	when	 y	 is	 less
than	zero	(meaning	 that	 the	 top	of	 the	paddle	has	 left	 the	 top	of	 the	screen)	or
when	y	+	height	is	greater	than	the	game	height	(meaning	that	the	bottom	of	the
paddle	has	left	the	bottom	of	the	screen).	Once	we	have	detected	that	our	paddle
has	moved	outside	of	our	window,	we	simply	correct	its	y-position	in	the	same
frame	(before	update()	ends).

We	 correct	 collision	 in	 the	 same	 frame	 for	 an	 important	 reason.	 The	 render()
method	will	never	be	called	before	the	update()	method	is	finished.	This	means
that	 by	 resolving	 collisions	 at	 the	 end	of	 each	 iteration	of	 update(),	we	 ensure
that	 the	 player	will	 never	 see	 a	 paddle	 leave	 the	 screen	 (even	 if	 its	 y-position
temporarily	leaves	the	window)!

Run	the	game	once	more,	and	your	paddles	will	remain	on	the	screen	no	matter
how	hard	you	push	down	on	your	arrow	keys.

Note:
The	above	technique	is	applied	in	resolving	collision	between	two	game	objects
as	well.

At	 this	 point,	 we	 have	 implemented	 our	 two	 paddles,	 and	 now	 we	 must
implement	a	scoring	system	and	the	ball.

Implementing	a	Score	System

We	will	implement	the	score	system	by	creating	an	integer	to	represent	the	score
and	 then	using	 the	g.drawString()	method	from	Chapter	3	 to	draw	 the	score	 to
the	 screen.	 Declare	 the	 following	 instance	 variables	 for	 PlayState	 (import
java.awt.Font	as	needed):

private	int	playerScore	=	0;

private	Font	scoreFont;

The	variable	scoreFont	is	an	instance	of	Font—a	built-in	Java	class	that	allows
you	to	customize	the	appearance	of	Strings	that	you	draw.	Initialize	it	inside	the
init()	method	as	shown	in	bold	below:

@Override

public	void	init()	{

								paddleLeft	=	new	Paddle(0,	195,	PADDLE_WIDTH,	PADDLE_HEIGHT);

								paddleRight	=	new	Paddle(785,	195,	PADDLE_WIDTH,	PADDLE_HEIGHT);

								scoreFont	=	new	Font("SansSerif",	Font.BOLD,	25);

}

This	creates	a	new	bold,	sans-serif	Font	object	with	a	size	of	25.

Working	with	fonts	is	similar	to	working	with	Colors.	In	the	render()	method,	we
will	first	set	scoreFont	as	the	current	font	for	our	Graphics	object	and	then	draw
text	to	the	screen.	Add	the	following	lines	at	the	END	of	the	render()	method:

//	Draw	UI

g.setFont(scoreFont);	//	Sets	scoreFont	as	current	font

g.drawString(playerScore,	350,	40);	//	Draws	String	using	current	font

The	second	line	will	produce	the	following	error:

The	method	drawString(String,	int,	int)	in	the	type	Graphics	is	not	applicable	for	the	arguments	(int,	int,	int)	

This	 is	saying	that	 the	drawString()	method	expects	arguments	of	 types	String,
int	and	int,	but	you	have	provided	int,	int	and	int	instead.	This	error	is	expected,
because	 the	 method	 name	 is	 drawString()	 not	 drawInt().	 The	 solution	 is	 to
convert	our	playerScore	into	a	String	before	we	ask	it	to	be	drawn.	One	way	to
do	so	is	to	call	the	following	method:

String	playerScoreStr	=	String.valueOf(playerScore);

The	 above	 static	 method	 of	 the	 String	 class	 accepts	 an	 integer	 and	 returns	 a
String	copy	of	 it.	 I	personally	don’t	 like	 it.	The	fancier	way	of	doing	 the	same
thing	involves	a	simple	concatenation:

String	playerScoreStr	=	""	+	playerScore;

This	 approach	 appends	 an	 integer	 to	 the	 end	 of	 an	 empty	 string	 and	 thus
produces	 the	 String	 version	 of	 the	 integer.	 This	 is	 quicker	 and	 easier	 to
remember.	Add	this	fix	into	your	method	as	shown	below:

@Override

public	void	render(Graphics	g)	{

								//	Draw	Background

								g.setColor(Resources.darkBlue);

								g.fillRect(0,	0,	GameMain.GAME_WIDTH,	GameMain.GAME_HEIGHT);

								g.setColor(Resources.darkRed);

								g.fillRect(GameMain.GAME_WIDTH	/	2,	0,	GameMain.GAME_WIDTH	/	2,

																								GameMain.GAME_HEIGHT);

								//	Draw	Separator	Line

								g.drawImage(Resources.line,	398,	0,	null);

								//	Draw	Paddles

								g.setColor(Color.white);

								g.fillRect(paddleLeft.getX(),	paddleLeft.getY(),	paddleLeft.getWidth(),

																								paddleLeft.getHeight());

								g.fillRect(paddleRight.getX(),	paddleRight.getY(),

																								paddleRight.getWidth(),	paddleRight.getHeight());

								//	Draw	UI

								g.setFont(scoreFont);

								g.drawString(playerScore,	350,	40);

								g.drawString(""	+	playerScore,	350,	40);

}

Run	the	program	once	more,	and	you	should	see	the	score	rendered	as	shown	in
Figure	5-1.	As	we	have	not	started	incrementing	it	yet,	it	will	remain	zero.

Implementing	the	RandomNumberGenerator	Class

Before	 we	 create	 the	 Ball	 class,	 we	 are	 going	 to	 add	 a	 new	 class	 which	 will
allow	us	to	quickly	generate	random	numbers.	Review	pages	62	through	64,	you
will	remember	that	we	had	to	perform	the	following	steps	to	generate	a	random
number:

Create	a	new	Random	object.
Import	java.util.Random
Call	the	nextInt(int	n)	method,	which	generates	a	random	number
between	0	(inclusive)	and	n	(exclusive).

The	 problem	with	 this	 approach	 is	 that	we	must	 create	 a	 new	Random	 object
before	 generating	 a	 random	 number,	 and	 creating	 a	 new	Random	 object	 costs
memory.	Making	 ten	 or	 even	 a	 hundred	Random	objects	 is	 perfectly	 fine,	 but
recall	 that	 every	 line	 of	 code	 that	we	write	 is	 being	 executed	 inside	 the	 game
loop	(at	~60	times	per	second).	That	means	that	if	we	were	to	create	a	Random
object	 inside	 our	 Paddle’s	 update()	 method,	 we	 would	 get	 60	 new	 Random
objects	 every	 second.	 Sure,	 there	 are	 ways	 of	 getting	 around	 this	 problem	 by
creating	the	Random	object	inside	methods	that	are	only	called	when	necessary
(init(),	for	example),	but	that	does	not	solve	the	problem	of	needing	to	create	a
new	Random	object	for	every	object	that	wants	access	to	a	random	number	once
in	a	while.

It	would	be	extremely	convenient	if	our	framework	provided	a	way	of	generating
a	random	number	without	requiring	a	new	Random	object	every	time.	It	would
also	be	awesome	if	we	could	generate	a	number	between	two	arbitrary	numbers,
not	just	0	and	n.	Wait.	You	are	a	programmer,	so	you	can	add	this	feature!	Inside
com.jamescho.framework.util,	 create	 a	 class	 named	RandomNumberGenerator,
and	implement	it	as	shown	in	listing	5.08:

*****	Listing	5.08	The	RandomNumberGenerator	Class	*****

01	package	com.jamescho.framework.util;

02

03	import	java.util.Random;

04

05	public	class	RandomNumberGenerator	{

06

07						private	static	Random	rand	=	new	Random();

08

09						public	static	int	getRandIntBetween(int	lowerBound,	int	upperBound)	{

10														return	rand.nextInt(upperBound	-	lowerBound)	+	lowerBound;

11						}

12

13						public	static	int	getRandInt(int	upperBound)	{

14														return	rand.nextInt(upperBound);

15						}

16	}

The	 class	 has	 a	 single,	 static	 Random	 object	 called	 rand	 that	 will	 be	 shared
across	the	entire	application.	rand	is	used	in	the	class’s	two	methods	to	generate
a	random	number	(see	Appendix	A	if	you	need	help	with	static).	 I	will	 let	you
work	out	the	logic,	reviewing	pages	62	through	64	if	necessary.

Note	that	both	of	these	methods	are	public	and	static,	meaning	that	they	can	be
accessed	 by	 other	 classes	 within	 the	 framework	 without	 instantiating	 a	 new
Random	object	or	a	new	RandomNumberGenerator	object!	In	other	words,	you
can	generate	a	random	number	with	ease	as	shown	below:

....	//	Elsewhere	in	the	framework

import	com.jamescho.framework.util.RandomNumberGenerator;

....

System.out.println(RandomNumberGenerator.getRandIntBetween(-10,	11));

....

The	 line	 of	 code	 shown	 in	 bold	 in	 the	 example	 above	will	 generate	 a	 random
integer	between	 -10	 (inclusive)	and	11	 (exclusive),	 and	 it	doesn’t	 even	 require
you	 to	 create	 a	 new	 Random	 object.	 We	 will	 make	 use	 of
RandomNumberGenerator	throughout	the	Ball	class	and	in	our	future	games.

Designing	the	Ball

We	can	push	up	paddles	all	day	long,	but	where’s	the	fun	in	that?	Let’s	add	some
bounce	to	our	game	by	adding	a	ball.	As	with	our	paddles,	we	begin	by	outlining
the	class	that	we	will	be	creating.	(Note	the	similarities	to	the	Paddle	class)!

The	Variables	in	the	Ball	Class

Coordinates	 and	Dimensions:	We	 will	 create	 x,	 y,	 width	 and	 height	 variables
analogous	to	those	in	the	Paddle	class.

Bounding	 Box:	 Our	 ball	 will	 also	 have	 a	 bounding	 box	 created	 using	 the
Rectangle	class.	This	allows	us	to	check	for	collision	with	the	two	paddles.

Velocity:	The	ball	also	has	a	velY	variable	 like	 the	paddles;	but	 it	will	also	be
moving	horizontally.	This	requires	that	we	add	a	second	velocity	variable	called
velX.

The	Methods	in	the	Ball	Class

Update	Methods:	As	with	the	Paddle	class,	the	Ball	class	will	have	the	update()
and	updateRect()	methods	used	 to	calculate	a	new	position	 for	 the	ball	 and	 its
bounding	 box.	 The	 update()	method	will	make	 use	 of	 a	 helper	method	 called
correctYCollisions()	which	will	check	for	and	resolve	collisions	with	the	top	and
bottom	of	the	screen	(recall	that	this	same	functionality	was	added	directly	into
the	update()	method	in	the	Paddle	class).

Miscellaneous	Methods:	 The	 Ball	 class	will	 feature	 three	 public	methods	 that
will	notify	our	PlayState	when	certain	events	occur	and	allow	the	state	to	react
accordingly.	 For	 instance,	 we	 will	 have	 a	 method	 called	 isDead()	 which	 will
return	true	if	the	ball	has	hit	the	left	or	right	side	of	the	game’s	screen.	Once	this
occurs,	our	ball	 is	 considered	dead.	The	player	will	 lose	3	points,	 and	 the	ball
will	reset.	To	make	this	happen,	we	will	implement	a	reset()	method,	which	will
return	the	ball	to	the	center	of	the	screen.	We	will	also	add	an	onCollideWith()
method	that	is	triggered	when	our	ball	collides	with	a	paddle.

Creating	the	Ball	Class

We	know	what	variables	and	methods	we	need	 to	create,	 so	 let’s	start	creating
the	 class	 inside	 Eclipse.	 Much	 of	 this	 will	 be	 similar	 to	 the	 procedure	 for
creating	the	Paddle	class,	so	we	will	move	more	quickly.

Adding	the	Variables

Create	a	new	Ball	class	inside	the	package	com.jamescho.game.model.	Declare
the	following	variables:

private	int	x,	y,	width,	height,	velX,	velY;

private	Rectangle	rect;

Initialize	them	by	adding	the	following	constructor:

public	Ball(int	x,	int	y,	int	width,	int	height)	{

																this.x	=	x;

																this.y	=	y;

																this.width	=	width;

																this.height	=	height;

																velX	=	5;

																velY	=	RandomNumberGenerator.getRandIntBetween(-4,	5);

																rect	=	new	Rectangle(x,	y,	width,	height);

								}

Take	 note	 that	 we	 are	 putting	 our	 RandomNumberGenerator	 class	 to	 use	 by
calling	 its	 getRandIntBetween()	method	 to	 generate	 a	 random	 velY.	 Since	 the
class	 is	 in	 a	 different	 package,	 we	 must	 import
com.jamescho.framework.util.RandomNumberGenerator.	 Make	 sure	 to	 import
Rectangle	as	well.

Adding	the	Update	Methods

Next,	 add	 the	 update()	 method	 and	 its	 two	 helpers	 (import	 GameMain	 and
Resources	accordingly):

public	void	update()	{

																x	+=	velX;

																y	+=	velY;

																correctYCollisions();

																updateRect();

								}

								private	void	correctYCollisions()	{

																if	(y	<	0)	{

																								y	=	0;

																}	else	if	(y	+	height	>	GameMain.GAME_HEIGHT)	{

																								y	=	GameMain.GAME_HEIGHT	-	height;

																}	else	{

																								return;

																}

																velY	=	-velY;

																Resources.bounce.play();

								}

								private	void	updateRect()	{

																rect.setBounds(x,	y,	width,	height);

								}

You’ve	seen	most	of	what	happens	 in	 these	 three	methods	 in	 the	Paddle	class,
but	some	things	are	worth	discussing:

As	expected,	our	update()	method	will	update	both	the	x	and	y	values	using
the	two	velocity	variables.
The	logic	for	correctYCollisions()	follows	an	interesting	pattern.	We	first
check	if	the	ball	has	gone	past	the	top	or	bottom	of	the	screen	and	correct	it.
If	it	turns	out	that	the	ball	has	not	left	the	window,	we	simply	call	return	to
end	the	method	there.	This	means	that	the	following	two	lines	are	only
called	if	the	ball	HAS	gone	outside	of	the	window	(this	indicates	a	collision
with	the	top	or	bottom	wall,	so	we	deflect	the	ball	and	play	a	bounce
sound).

velY	=	-velY;

Resources.bounce.play();

Adding	the	Misc.	Methods

Declare	three	more	methods	inside	the	Ball	class,	as	shown	below

public	void	onCollideWith(Paddle	p)	{

																if	(x	<	GameMain.GAME_WIDTH	/	2)	{

																								x	=	p.getX()	+	p.getWidth();

																}	else	{

																								x	=	p.getX()	-	width;

																}

																velX	=	-velX;

																velY	+=	RandomNumberGenerator.getRandIntBetween(-2,	3);

								}

								public	boolean	isDead()	{

																return	(x	<	0	||	x	+	width	>	GameMain.GAME_WIDTH);

								}

								public	void	reset()	{

																x	=	300;

																y	=	200;

																velX	=	5;

																velY	=	RandomNumberGenerator.getRandIntBetween(-4,	5);

								}

The	onCollideWith()	method	 is	 called	when	 the	 game	determines	 that	 the	 ball
has	collided	with	one	of	the	two	paddles.	Just	as	with	the	onKeyPress()	method
from	PlayState,	 the	onCollideWith()	method	 receives	a	 reference	 to	 the	paddle
object	that	has	triggered	it.

Inside	 onCollideWith(),	we	 can	 check	whether	 the	 ball	 is	 currently	 on	 the	 left
side	of	the	screen	or	the	right	side	of	the	screen	to	determine	whether	it	hit	the
paddle	 on	 the	 left	 or	 the	 paddle	 on	 the	 right.	We	 then	 use	 this	 information	 to
resolve	 the	 collision	 by	moving	 the	 ball	 outside	 of	 the	 paddle’s	 bounding	 box
(which	is	either	the	right	side	of	the	left	paddle	and	left	side	of	the	right	paddle).
Once	 collision	 has	 been	 resolved,	 we	 send	 the	 ball	 on	 its	 way,	 deflecting	 it
horizontally	and	randomly	modifying	velY.

The	isDead()	method	checks	two	conditions:	whether	the	ball	has	hit	the	left	side
of	the	screen	or	the	right	side	of	the	screen.	If	either	of	these	events	occurred,	the
method	returns	true	to	the	caller.	We	will	be	calling	this	method	inside	PlayState

to	determine	when	our	ball	is	out	of	play	and	react	accordingly.

The	reset()	method	will	be	called	by	the	PlayState	in	response	to	the	death	of	the
ball.	It	simply	moves	the	ball	to	its	initial	position	and	gives	it	a	random	velocity.

Adding	the	Getter	Methods

We	will	be	creating	the	same	getter	methods	that	Paddle	has	for	our	Ball	class	as
shown:

public	int	getX()	{

																return	x;

								}

								public	int	getY()	{

																return	y;

								}

								public	int	getWidth()	{

																return	width;

								}

								public	int	getHeight()	{

																return	height;

								}

								public	Rectangle	getRect()	{

																return	rect;

								}

Our	Ball	 class	 is	 now	 finished.	 If	 you	 have	 errors,	 compare	 it	 to	 listing	 5.09,
which	shows	the	full	class.

*****	Listing	5.09	The	Ball	Class	(Completed)	*****

01						package	com.jamescho.game.model;

02

03						import	java.awt.Rectangle;

04

05						import	com.jamescho.framework.util.RandomNumberGenerator;

06						import	com.jamescho.game.main.GameMain;

07						import	com.jamescho.game.main.Resources;

08

09						public	class	Ball	{

10														private	int	x,	y,	width,	height,	velX,	velY;

11														private	Rectangle	rect;

12														

13														public	Ball(int	x,	int	y,	int	width,	int	height)	{

14																						this.x	=	x;

15																						this.y	=	y;

16																						this.width	=	width;

17																						this.height	=	height;

18																						velX	=	5;

19																						velY	=	RandomNumberGenerator.getRandIntBetween(-4,	5);

20																						rect	=	new	Rectangle(x,	y,	width,	height);

21														}

22														

23														public	void	update()	{

24																						x	+=	velX;

25																						y	+=	velY;

26																						correctYCollisions();

27																						updateRect();

28														}

29

30														private	void	correctYCollisions()	{

31																						if	(y	<	0)	{

32																														y	=	0;

33																						}	else	if	(y	+	height	>	GameMain.GAME_HEIGHT)	{

34																														y	=	GameMain.GAME_HEIGHT	-	height;

35																						}	else	{

36																														return;

37																						}

38

39																						velY	=	-velY;

40																						Resources.bounce.play();

41														}

42

43														private	void	updateRect()	{

44																						rect.setBounds(x,	y,	width,	height);

45														}

46

47														public	void	onCollideWith(Paddle	p)	{

48																						if	(x	<	GameMain.GAME_WIDTH	/	2)	{

49																														x	=	p.getX()	+	p.getWidth();

50																						}	else	{

51																														x	=	p.getX()	-	width;

52																						}

53																						velX	=	-velX;

54																						velY	+=	RandomNumberGenerator.getRandIntBetween(-2,	3);

55														}

56

57														public	boolean	isDead()	{

58																						return	(x	<	0	||	x	+	width	>	GameMain.GAME_WIDTH);

59														}

60

61														public	void	reset()	{

62																						x	=	300;

63																						y	=	200;

64																						velX	=	5;

65																						velY	=	RandomNumberGenerator.getRandIntBetween(-4,	5);

66														}

67

68														public	int	getX()	{

69																						return	x;

70														}

71

72														public	int	getY()	{

73																						return	y;

74														}

75

76														public	int	getWidth()	{

77																						return	width;

78														}

79

80														public	int	getHeight()	{

81																						return	height;

82														}

83

84														public	Rectangle	getRect()	{

85																						return	rect;

86														}

87						}

Implementing	the	Ball	Object	inside	PlayState

Adding	the	ball	will	require	the	same	basic	steps	as	adding	the	paddles.	We	will
declare	and	initialize	it,	ask	it	to	update,	and	then	render	it.

Declaring	and	Initializing	the	Ball

Begin	by	declaring	 the	new	ball	 as	an	 instance	variable,	 along	with	a	constant
representing	its	diameter	(don’t	forget	the	import	statement	com.jamescho.game.
model.Ball).	The	changes	to	PlayState	class	are	shown	below	in	bold:

....

import	com.jamescho.game.model.Ball;

import	com.jamescho.game.model.Paddle;

public	class	PlayState	extends	State	{

private	Paddle	paddleLeft,	paddleRight;

								private	static	final	int	PADDLE_WIDTH	=	15;

								private	static	final	int	PADDLE_HEIGHT	=	60;

								private	Ball	ball;

								private	static	final	int	BALL_DIAMETER	=	20;

....	

Next,	initialize	the	ball	variable	inside	the	init()	method:

@Override

public	void	init()	{

							paddleLeft	=	new	Paddle(0,	195,	PADDLE_WIDTH,	PADDLE_HEIGHT);

							paddleRight	=	new	Paddle(785,	195,	PADDLE_WIDTH,	PADDLE_HEIGHT);

							scoreFont	=	new	Font("SansSerif",	Font.BOLD,	25);

							ball	=	new	Ball(300,	200,	BALL_DIAMETER,	BALL_DIAMETER);

}

This	places	the	ball	at	an	arbitrary	initial	position	of	(300,	200)	with	a	width	and
height	equal	to	the	value	of	the	BALL_DIAMETER	constant	(remember	that	our
ball	really	is	a	square).

Updating	the	Ball

Next,	we	will	 be	delegating	once	more	by	asking	 the	ball	 to	update	 inside	 the
PlayState’s	update()	method.

@Override

public	void	update()	{

										paddleLeft.update();

										paddleRight.update();

										ball.update();

}

Rendering	the	Ball

Finally,	 draw	 the	 ball	 inside	 the	 render()	 method	 by	 adding	 the	 line	 of	 code
shown	below	in	bold:

@Override

public	void	render(Graphics	g)	{

								//	Draw	Background

								g.setColor(Resources.darkBlue);

								g.fillRect(0,	0,	GameMain.GAME_WIDTH,	GameMain.GAME_HEIGHT);

								g.setColor(Resources.darkRed);

								g.fillRect(GameMain.GAME_WIDTH	/	2,	0,	GameMain.GAME_WIDTH	/	2,	GameMain.GAME_HEIGHT);

								//	Draw	Separator	Line

								g.drawImage(Resources.line,	398,	0,	null);

								//	Draw	Paddles

								g.setColor(Color.white);

								g.fillRect(paddleLeft.getX(),	paddleLeft.getY(),	paddleLeft.getWidth(),	paddleLeft.getHeight());

								g.fillRect(paddleRight.getX(),	paddleRight.getY(),	paddleRight.getWidth(),	paddleRight.getHeight());

								//	Draw	Ball

								g.drawRect(ball.getX(),	ball.getY(),	ball.getWidth(),	ball.getHeight());

								//	Draw	UI

								g.setFont(scoreFont);

								g.drawString(""	+	playerScore,	350,	40);

}

Note	that	we	draw	the	ball	on	top	of	the	paddles,	but	this	is	arbitrary,	as	the	ball
and	paddles	should	never	visibly	overlap.
With	those	changes,	your	PlayState	should	match	that	shown	in	listing	5.10.

*****	Listing	5.10	The	PlayState	Class	(Updated)		*****

01	package	com.jamescho.game.state;

02

03	import	java.awt.Color;

04	import	java.awt.Font;

05	import	java.awt.Graphics;

06	import	java.awt.event.KeyEvent;

07	import	java.awt.event.MouseEvent;

08

09	import	com.jamescho.game.main.GameMain;

10	import	com.jamescho.game.main.Resources;

11	import	com.jamescho.game.model.Ball;

12	import	com.jamescho.game.model.Paddle;

13

14	public	class	PlayState	extends	State{

15

16						private	Paddle	paddleLeft,	paddleRight;

17						private	static	final	int	PADDLE_WIDTH	=	15;

18						private	static	final	int	PADDLE_HEIGHT	=	60;

19						

20						private	Ball	ball;	

21						private	static	final	int	BALL_DIAMETER	=	20;	

22

23						private	int	playerScore	=	0;

24						private	Font	scoreFont;

25														

26						@Override

27						public	void	init()	{

28														paddleLeft	=	new	Paddle(0,	195,	PADDLE_WIDTH,	PADDLE_HEIGHT);

29														paddleRight	=	new	Paddle(785,	195,	PADDLE_WIDTH,	PADDLE_HEIGHT);

30														scoreFont	=	new	Font("SansSerif",	Font.BOLD,	25);

31														ball	=	new	Ball(300,	200,	BALL_DIAMETER,	BALL_DIAMETER);

32						}

33

34						@Override

35						public	void	update()	{

36														paddleLeft.update();

37														paddleRight.update();

38														ball.update();

39						}

40

41						@Override

42						public	void	render(Graphics	g)	{

43														//	Draw	Background

44														g.setColor(Resources.darkBlue);

45														g.fillRect(0,	0,	GameMain.GAME_WIDTH,	GameMain.GAME_HEIGHT);

46														g.setColor(Resources.darkRed);

47														g.fillRect(GameMain.GAME_WIDTH	/	2,	0,	GameMain.GAME_WIDTH	/	2,

48																																						GameMain.GAME_HEIGHT);

49																						

50														//	Draw	Separator	Line

51														g.drawImage(Resources.line,	(GameMain.GAME_WIDTH	/	2)	-	2,	0,	null);

52																						

53														//	Draw	Paddles

54														g.setColor(Color.white);

55														g.fillRect(paddleLeft.getX(),	paddleLeft.getY(),	paddleLeft.getWidth(),

56																														paddleLeft.getHeight());

57														g.fillRect(paddleRight.getX(),	paddleRight.getY(),	paddleRight.getWidth(),

58																														paddleRight.getHeight());

59																						

60														//	Draw	Ball

61														g.drawRect(ball.getX(),	ball.getY(),	ball.getWidth(),	ball.getHeight());

62

63														//	Draw	UI

64														g.setFont(scoreFont);	//	Sets	scoreFont	as	current	font

65														g.drawString(""	+	playerScore,	350,	40);

66

67						}

68

69						@Override

70						public	void	onClick(MouseEvent	e)	{

71														//	TODO	Auto-generated	method	stub

72						}

73

74						@Override

75						public	void	onKeyPress(KeyEvent	e)	{

76														if	(e.getKeyCode()	==	KeyEvent.VK_UP)	{

77																						paddleLeft.accelUp();

78																						paddleRight.accelDown();

79														}	else	if	(e.getKeyCode()	==	KeyEvent.VK_DOWN)	{

80																						paddleLeft.accelDown();

81																						paddleRight.accelUp();

82														}

83

84						}

85

86						@Override

87						public	void	onKeyRelease(KeyEvent	e)	{

88														if	(e.getKeyCode()	==	KeyEvent.VK_UP	||	

89																														e.getKeyCode()	==	KeyEvent.VK_DOWN)	{

90																						paddleLeft.stop();

91																						paddleRight.stop();

92														}

93														

94						}

95

96	}

Unfortunately,	our	game	still	isn’t	finished.	Run	the	code,	and	you	will	see	that
the	 ball	 never	 collides	 with	 the	 paddles	 and	 that	 it	 disappears	 into	 the	 void
(through	the	side	of	the	window).	Let’s	fix	this.

Handling	Collision:	Ball	 vs.	 Paddles	 and	Ball	 vs.	 the
Void

To	complete	our	game,	we	must	do	three	things:

Check	if	the	ball	collides	with	the	left	paddle	and	react	accordingly.
Check	if	the	ball	collides	with	the	right	paddle	and	react	accordingly.
Check	if	the	ball	collides	with	the	left	or	right	sides	of	the	screen	and	react
accordingly.

The	 third	case	can	be	checked	by	calling	ball.isDead().	To	handle	 the	first	 two
cases,	declare	this	new	method	inside	PlayState:

private	boolean	ballCollides(Paddle	p)	{

								return	ball.getRect().intersects(p.getRect());

}

This	 helper	 method	 checks	 whether	 the	 ball	 and	 a	 given	 paddle	 collide	 by
determining	whether	the	bounding	boxes	of	the	ball	and	the	paddle	intersect.

Next,	let’s	handle	the	three	cases	of	collision	by	make	the	changes	shown	in	bold
to	 the	update()	method	in	PlayState.	Note	 that	we	call	ballCollides()	 two	times
and	ball.isDead()	once:

@Override

public	void	update()	{

								paddleLeft.update();

								paddleRight.update();

								ball.update();

								if	(ballCollides(paddleLeft))	{

																playerScore++;

																ball.onCollideWith(paddleLeft);

																Resources.hit.play();

								}	else	if	(ballCollides(paddleRight))	{

																playerScore++;

																ball.onCollideWith(paddleRight);

																Resources.hit.play();

								}	else	if	(ball.isDead())	{

																playerScore	-=	3;

																ball.reset();

								}

}

Let’s	discuss	the	changes	we	made	to	the	update()	method.	If	the	ball	hits	either
paddle,	we	now	call	ball.onCollideWith(),	which	will	handle	the	deflection	of	the
ball.	We	 also	 increment	 the	 score	 by	 1	 using	 the	 post-increment	 ++	 operator
(remember	that	playerScore++	is	equivalent	to	playerScore	=	playerScore	+	1),
and	play	hit.wav.

If	 the	ball	hits	 the	left	or	right	sides	of	 the	screen,	we	now	subtract	3	from	the
score	and	reset	the	ball	at	its	initial	position,	so	that	the	gameplay	continues	over
and	over	(and	over	and	over…)	again.

Running	the	Final	Product

That	 completes	 the	PlayState	 class,	 and	LoneBall	 has	been	 implemented	 in	 its
entirety.	Run	the	game	and	make	sure	everything	is	working!	If	you	are	having
trouble	 with	 your	 code,	 the	 full	 source	 code	 can	 be	 found	 at:
jamescho7.com/book/chapter5/complete.

Exporting	the	Game

Before	I	let	you	enjoy	your	game,	I	will	teach	you	how	to	perform	one	more	task
with	Eclipse.	You	want	 people	 to	 be	 able	 to	 enjoy	 your	 game	without	 having
access	 to	 the	 source	 code	 or	 having	 an	 IDE.	 The	 easiest	way	 to	 do	 that	 is	 to
export	your	project	as	a	*.jar	file,	which	can	be	executed	by	most	machines	with
Java	7	or	8	installed.

Exporting	 the	 project	 as	 a	 runnable	 .jar	 file	 is	 easy.	 Simply	 right	 click	 on	 the
project	in	the	Package	Explorer	and	select	Export.	The	Export	window	will	pop
up,	at	which	time	you	will	select	Runnable	JAR	file	under	the	Java	category	as
shown	in	Figure	5-11.

Figure	5-11	Exporting	as	a	Runnable	JAR

Click	Next	>,	and	you	will	see	the	screen	shown	in	Figure	5-12:

Figure	5-12	Choosing	a	Destination	for	the	JAR	file

Make	sure	that	the	Launch	configuration	is	set	to	run	the	GameMain	class	inside
the	 LoneBall	 project,	 choose	 an	 export	 destination	 (copy	 the	 destination	 into
your	clipboard),	and	press	Finish.	This	should	create	a	runnable	 .jar	file	in	that
directory.

Note:
The	number	(7)	shown	in	the	Launch	configuration	box	in	Figure	5-12	may	be
different	on	your	machine.	That	number	 indicates	 that	 this	GameMain	class	of

project	LoneBall	was	 the	 seventh	of	 its	 name	of	 those	 that	have	been	 recently
run	 on	 my	 computer.	 Yours	 may	 be	 as	 low	 as	 (2)	 or	 just	 say	 GameMain	 -
LoneBall

Executing	the	Game

Exit	out	of	Eclipse.	We	won’t	be	needing	 it	 to	execute	our	game	anymore.	To
execute	the	newly-created	.jar	file,	open	a	command-line	interpreter	(Command
Prompt	on	Windows,	Terminal	on	Mac)	and	type	the	following	command:

java	-version

This	should	show	you	a	screen	similar	 to	 that	 in	Figure	5-13,	 telling	you	what
version	of	Java	is	installed	on	your	computer	(mine	says	1.7.0_55,	meaning	Java
7	update	55).

Figure	5-13	Java	Version	Command

Note:
If	you	get	an	error	saying	java:	Command	not	found,	your	terminal	is	unable	to
find	 your	 installation	 of	 Java.	 To	 fix	 this,	 follow	 the	 instructions	 at	 the	 link
below:	http://docs.oracle.com/javase/tutorial/essential/environment/paths.html

The	 next	 step	 is	 easy,	 provided	 that	 you	 have	 copied	 your	 JAR	 file’s	 export

http://docs.oracle.com/javase/tutorial/essential/environment/paths.html

destination	in	the	previous	section.	If	you	haven’t,	that’s	perfectly	okay.	It’s	still
easy.
Type	the	java	–jar	command	into	your	command-line,	followed	by	your	export
destination	(you	can	paste	by	right-clicking	and	selecting	Paste	on	Windows):

java	-jar	INSERT_YOUR_EXPORT_DESTINATION_HERE

(e.g.	java	-jar	C:\Users\James\Desktop\LoneBall.jar)

If	you	do	not	have	the	export	destination	copied,	simply	locate	your	JAR	file	in
Explorer	or	Finder	and	drag	it	into	your	terminal	after	typing	the	same	command
(don’t	 forget	 the	whitespace	after	–jar).	This	 should	automatically	print	 its	 full
path.

Once	you	execute	the	command,	you	should	see	LoneBall’s	window	pop	open	as
shown	 in	 Figure	 5-14!	 It	 will	 run	 just	 like	 it	 used	 to	 on	 Eclipse,	 but	 it	 now
executes	from	a	packaged,	sharable	.jar	file.

Figure	5-14	Loneball	is	Running!

Before	Moving	Forward

Before	you	move	on	 to	Chapter	6,	 here	 are	 a	 couple	of	 things	you	 should	do:
Firstly,	play	your	new	game	to	your	heart’s	content,	and	review	the	code	that	you
have	written	in	the	past	two	chapters.	Make	sure	that	you	understand	how	each
class	was	written	and	why	each	class	was	written,	and	 then	draw	a	diagram	of
how	classes	interact	with	each	other.

Next,	study	some	of	the	example	game	projects	posted	on	the	book’s	companion
site	 at	 jamescho7.com/book/samples/.	 Play	 the	 games	 and	 dissect	 its	 classes
and	methods.	Reading	code	is	a	great	way	to	improve,	especially	if	you	take	the
time	to	analyze	and	understand.

Finally,	try	your	hand	at	making	your	own	simple	game.	You	can	start	by	making
simple	modifications	 to	LoneBall,	 and	 then	build	a	game	on	your	own.	 If	you
need	help,	post	on	the	forums	at	the	book’s	companion	site.	If	you’ve	created	a
game	 and	 want	 feedback,	 upload	 your	 .JAR	 file	 (and	 optionally	 your	 source
code)	and	share	it	with	us!	The	important	thing	is	that	you	start	coding	without
the	 help	 of	 this	 book.	 Reading	 code	 can	 only	 take	 you	 so	 far.	 Remember:
practice	makes	 perfect,	 and	 there	 is	much	material	 to	 practice	 and	 experiment
with	in	this	chapter.

The	Next	Level

In	Chapter	6,	 the	 final	chapter	of	Unit	2,	we	will	be	adding	 fancier	 (and	more
complicated)	features	to	our	framework	such	as	animation.	Using	this	upgraded
framework,	we	will	build	an	infinite-runner	complete	with	an	animated	character
and	 scrolling	 obstacles.	 This	 one	 final	 challenge	 stands	 between	 you	 and
Android	game	development.	Take	a	well-deserved	break,	thinking	about	all	that
you’ve	learned	so	far.	When	you	are	ready	for	the	next	level,	join	me	in	Chapter
6.

Chapter	6:	The	Next	Level
You	may	have	thought	that	LoneBall	was	fun,	but	 it	sure	 is	no	Flappy	Bird.	 In
this	chapter,	we	will	be	making	a	 frustratingly	challenging	 infinite	 runner	 type
game	in	which	you	take	control	of	an	alien	named	Ellio,	who	is	trying	to	adjust
to	 gravity	 on	 our	 little	 blue	 planet	with	 the	 help	 of	 his	 toy	 blocks	 (which	 can
float	above	the	ground).	The	game	will	look	as	shown	in	Figure	6-1.

Figure	6-1	Ellio:	An	Infinite	Runner

In	 the	 game	Ellio,	 the	 character	 will	 run	 infinitely	 without	 player	 control.	 As
blocks	 scroll	 from	 the	 right	 side	 of	 the	 screen,	 the	 player	 will	 need	 to	 react
accordingly	by	sliding	and	jumping	to	avoid	them.	Each	time	the	player	is	hit	by
a	 set	 of	 blocks,	Ellio	will	 be	pushed	 slightly	 left.	Once	Ellio	 has	 been	pushed
completely	off	the	screen,	the	game	will	end.

The	Framework	Needs	an	Update

Before	we	get	started	with	developing	Ellio,	we	need	to	update	our	framework.
As	with	 LonePong,	 we	will	 be	 using	 the	 game	 development	 framework	 from
Chapter	4	as	a	starting	point;	however,	the	current	version	of	the	framework	has
some	limitations	that	require	our	attention.

Framerate-Dependent	vs.	Framerate-Independent	Movement

The	core	problem	with	our	framework	is	in	our	game	loop,	which	is	reproduced
below:

@Override

public	void	run()	{

								while	(running)	{

																currentState.update();

																prepareGameImage();

																currentState.render(gameImage.getGraphics());

																repaint();

																try	{

																								Thread.sleep(14);

																}	catch	(InterruptedException	e)	{

																								e.printStackTrace();

																}

								}

								System.exit(0);

}	

We’ve	previously	assumed	that	each	iteration	of	our	game	loop	will	take	about
17	milliseconds	(3	milliseconds	of	update/render	and	14	milliseconds	of	sleep).
While	this	assumption	served	us	well	in	LoneBall,	this	is	not	a	valid	assumption
to	make.	The	update	and	render	steps	can	take	much	longer	or	much	fewer	than
3	 milliseconds.	 This	 means	 that	 the	 game	 loop	 will	 not	 be	 iterating	 at	 a
consistent	 rate.	This	can	 lead	 to	problems	 in	games	where	 timing	 is	 important,
especially	when	a	game	fails	to	take	framerate	into	account	when	calculating	its
physics	 (movement,	collision,	etc.).	To	understand	why,	consider	 the	following
scenario:

Let’s	 say	 that	we	were	 to	create	a	 side-scrolling	game	where	 the	Player	object
moves	3	pixels	 to	 the	 right	 in	 every	 iteration	of	 its	 update()	method	 (which	 is
called	once	per	 frame).	Assuming	 that	 the	game	runs	smoothly	at	60	FPS,	 this
translates	 to	 180	 pixels	 per	 second.	What	 happens	 if	 our	 game	 were	 to	 slow
down	 as	 the	 game	 progresses	 because	 we	 introduce	 more	 enemy	 types	 and
special	 effects?	Our	 FPS	might	 drop;	 the	 game	 loop	will	 slow	down	 and	 thus
update()	 will	 be	 called	 less	 frequently.	 Assuming	 a	 new	 FPS	 of	 50,	 the
movement	speed	will	have	decreased	to	150	pixels	per	second.

If	 a	 game	 behaves	 as	 discussed	 above,	 we	 say	 that	 the	 game	 has	 framerate-
dependent	 movement,	 because	 movement	 speed	 directly	 correlates	 with	 the
framerate.	 This	means	 that	 as	 framerate	 changes,	 the	 game	will	 appear	 to	 run
slower	or	faster.	In	most	cases,	this	does	not	result	in	a	fun	gaming	experience.

In	 games	 such	 as	 Flappy	 Bird	 or	 Megaman,	 precise	 timing	 of	 jumps	 and
movement	is	crucial	to	staying	alive.	As	such,	these	games	require	what	is	called
framerate-independent	movement,	in	which	movement	speed	does	NOT	change
with	 framerate.	 Instead,	 these	 games	 calculate	 the	 amount	 of	 time	 spent	 per
frame	and	scales	the	velocity	of	their	objects	with	this	value,	so	that	movement
speed	is	affected	by	change	in	time,	not	change	in	framerate.

To	 visualize	 framerate-independent	 movement,	 imagine	 that	 you’ve	 built	 the
same	 side-scrolling	 game	 described	 previously,	 except	 that	 the	 Player	 object’s
movement	speed	inside	update()	is	no	longer	3	but	the	product	of	180	and	delta,
where	 delta	 is	 the	 number	 of	 seconds	 elapsed	 since	 the	 previous	 iteration	 of
update().	 This	 has	 the	 effect	 of	 creating	 a	 constant	 speed	 independent	 of
framerate.	If	framerate	were	to	decrease,	delta	will	increase,	as	will	velocity.	In
this	scenario,	the	Player	will	always	move	at	180	pixels	per	second.

Ellio	will	require	players	to	be	precise	with	their	movement.	As	such,	we	will	be
improving	our	framework	by	adding	framerate-independent	movement.

Animation

A	 second	 limitation	 of	 our	 framework	 is	 its	 inability	 to	 create	 and	 display
animations.	We	were	able	to	get	away	with	having	static	images	as	our	ball	and
paddles	in	LoneBall,	but	in	our	infinite	runner,	even	an	alien	like	Ellio	will	need
to	appear	as	if	he’s	actually	running.	We	will	be	creating	a	set	of	classes	in	order
to	implement	this	new	feature.

Planning	the	Changes:	A	High-Level	Overview

The	game	loop:	We	will	be	modifying	our	game	loop	to	add	time-
measuring	functionality	for	the	following	reasons:

o	Measuring	the	duration	of	the	update	and	render	steps	allows	us	to
calculate	how	much	our	game	should	sleep	in	order	to	maintain	a
constant	framerate.
Having	a	measurement	of	time	allows	our	state	classes	to	implement
framerate-independent	movement,	so	that—in	the	event	the	FPS	does
drop—we	can	keep	the	game	speed	constant.
An	animation	needs	to	know	how	much	time	has	elapsed	in	the	current
frame	to	determine	when	to	transition	to	the	next	frame.

The	state	classes:	We	must	modify	the	update()	method	of	the	state	classes
so	that	they	can	receive	information	regarding	the	amount	of	time	elapsed
since	the	previous	frame	and	thus	implement	framerate-independent
movement.
Animation:	Our	game	will	incorporate	animations.	We	will	be	creating	a
Frame	class	and	an	Animation	class	to	make	this	happen.

Methods	to	Know	Before	Getting	Started

Math.max()

The	Math.max()	is	a	method	that	belongs	to	the	Math	class	(note	that	it	is	static).
It	determines	and	 returns	 the	greater	value	of	 two	numbers	 that	you	pass	 in	as
arguments.	For	example,	if	you	were	to	call:

System.out.println(Math.max(-1,	5));

...the	resulting	value	will	be	5.

Why	 is	 this	method	static?	This	 is	because	 the	behavior	of	Math.max()	 should
NOT	 change	 across	 instances	 of	 Math—all	 Math	 objects	 should	 perform	 the
max()	method	the	exact	same	way	(in	fact	all	methods	inside	Math	are	static,	and
you	cannot	instantiate	the	class).	See	Appendix	A	for	more	information	on	static
methods.

System.nanoTime()

In	 order	 to	 accomplish	 animation	 and	 framerate-independent	 movement,	 we
need	a	way	of	measuring	the	amount	of	time	that	passes	between	each	iteration
of	 the	 game	 loop.	This	 functionality	 can	 be	 implemented	 using	 Java’s	 built-in
method	 called	 System.nanoTime().	 Before	 we	 discuss	 what	 this	method	 does,
let’s	first	learn	how	it	may	be	used:

long	before	=	System.nanoTime();

for	(int	i	=	0;	i	<	100;	i++)	{

				System.out.println(i);

}

long	after	=	System.nanoTime();

System.out.println("The	loop	took	"	+	(after	-	before)	+	"	nanoseconds	to	run!");

In	 the	 above	 example,	 the	 System.nanoTime()	 method	 helps	 us	 measures	 the
amount	of	 time	 that	 it	 takes	 for	a	 for	 loop	 to	print	one	hundred	numbers.	This

works	 because	 the	 System.nanoTime()	 method	 returns	 the	 number	 of
nanoseconds	 (one	 billionth	 of	 a	 second)	 that	 has	 passed	 since	 some	 arbitrary
fixed	 point	 in	 time.	 Since	 this	 point	 in	 time	 is	 fixed,	 any	 subsequent	 call	 of
System.nanoTime()	is	guaranteed	to	return	a	value	greater	than	the	previous	call
by	the	number	of	nanoseconds	that	have	elapsed	between	the	two	calls.	As	such,
subtracting	long	after	by	long	before	gives	us	an	accurate	measure	of	time.

Note:
One	caveat	regarding	System.nanoTime()	is	the	fact	that	the	fixed	point	in	time
used	as	the	reference	point	is	arbitrary	and	can	vary.	As	such,	it	cannot	be	used
to	measure	current	time.	If	you	are	interested	in	determining	the	current	time	in
your	program,	look	into	the	method	System.currentTimeMillis().

Updating	the	Game	Loop

Now	that	we	have	planned	the	changes	and	studied	the	methods	that	we	will	be
using,	let’s	begin	coding.

Note:
If	you	get	lost	while	making	changes	to	the	Game	class,	see	listing	6.01	on	page
199.	 You	 can	 also	 visit	 the	 book’s	 companion	 site	 at
jamescho7.com/book/chapter6/

Fixing	the	Timing	Mechanism

As	mentioned,	the	current	version	of	the	game	loop	iterates	at	varying	intervals.
Some	iterations	take	15	milliseconds	while	others	take	17	or	19.	We	are	going	to
make	 this	 interval	 consistent,	 fixing	 it	 at	 17	 milliseconds.	 To	 understand	 the
specific	 changes	 that	we	will	be	making,	 let’s	 first	break	down	our	game	 loop
into	a	series	of	stages	for	simplicity:

Our	Game	Loop	(Simplified):

Update
Render
Sleep
Repeat

As	 the	 goal	 is	 to	 have	 the	 game	 loop	 iterate	 every	 17	milliseconds,	 the	 steps
update,	render	and	sleep	should	collectively	take	17	milliseconds	in	total.

We	cannot	modify	 the	number	of	milliseconds	 that	 the	update	and	render	calls
take	to	complete	(this	value	will	vary	depending	on	the	number	of	objects	in	our
game	and	the	whims	of	our	OS);	however,	we	can	modify	the	duration	of	sleep.
For	 example,	 if	 our	 update	 and	 render	 steps	 were	 to	 take	 15	 milliseconds	 to
complete,	we	can	sleep	for	2	milliseconds	(for	a	total	of	17).	On	the	other	hand,
if	our	update	and	render	steps	were	to	take	3	milliseconds	to	complete,	we	can
sleep	for	14	milliseconds	(also	for	a	total	of	17).

We	now	know	 that	 to	 fix	our	 timing	mechanism,	we	must	know	how	 long	 the
update	and	render	methods	take	to	execute.	Open	the	Game	class	of	your	game

development	 framework	 project	 (optionally	 make	 a	 new	 copy	 of	 it	 called
SimpleJavaGDF2),	and	make	the	changes	shown	below:

@Override

public	void	run()	{

			//	These	variables	should	sum	up	to	17	on	every	iteration

			long	updateDurationMillis	=	0;	//	Measures	both	update	AND	render

			long	sleepDurationMillis	=	0;	//	Measures	sleep

while	(running)	{

								long	beforeUpdateRender	=	System.nanoTime();

								currentState.update();

								prepareGameImage();

								currentState.render(gameImage.getGraphics());

								repaint();

								updateDurationMillis	=	(System.nanoTime()	-	beforeUpdateRender)	/	1000000L;

								sleepDurationMillis	=	Math.max(2,	17	-	updateDurationMillis);

								try	{

																Thread.sleep(14);

																Thread.sleep(sleepDurationMillis);

								}	catch	(InterruptedException	e)	{

																e.printStackTrace();

								}

			}

			System.exit(0);

}

Wrapping	your	mind	around	timing	lines	of	code	executing	inside	loops	can	be	a
little	confusing	because	a	loop	jumps	from	place	to	place,	but	bear	with	me!	It
will	make	sense	in	time.

Let’s	 discuss	 the	 changes.	 We	 start	 by	 creating	 two	 variables	 of	 type	 long
(updateDurationMillis,	used	for	measuring	duration	of	update	AND	render,	and
sleepDurationMillis,	for	measuring	sleep	duration).	Note	that	these	two	variables
are	both	declared	OUTSIDE	of	the	loop,	for	reasons	we	will	discuss	later.

Before	calling	the	series	of	update	and	render	methods,	we	check	the	time	and
store	 it	 inside	 the	 variable	 beforeUpdateRender.	 Once	 the	 update	 and	 render

methods	finish	executing,	we	calculate	the	duration	of	the	two	steps	by	checking
the	 time	 once	 more	 (System.nanoTime())	 and	 subtracting	 the	 original	 time
(beforeUpdateRender).	 This	 result	 in	 nanoseconds	 is	 divided	 by	 a	 million	 to
convert	 it	 into	 the	 same	 result	milliseconds	 (a	 nanosecond	 is	 a	millionth	 of	 a
millisecond).

Finally,	we	calculate	 the	amount	of	sleeping	time	as	17	-	updateDurationMillis
and	 ask	 our	 thread	 to	 sleep	 by	 this	 amount.	 This	 value	 can	 be	 negative	 if
updateDurationMillis	is	greater	than	17,	and	so	we	use	the	Math.max()	method
to	 enforce	 a	 minimum	 of	 2	 seconds	 as	 the	 sleep	 time.	 If	 this	 is	 confusing,
consider	the	following	block	of	code:

for	(int	updateTime	=	0;	updateTime	<	20;	updateTime++)	{

				long	sleepTime	=	Math.max(2,	17	-	updateTime);						

				System.out.println(sleepTime);

}

This	 simulates	what	would	 happen	 to	 sleepTime	 if	 updateTime	were	 to	 range
from	0	 to	 20	 (a	 value	 greater	 than	 17).	Write	 down	 the	 values	 that	 sleepTime
would	 take	 on	 each	 iteration	 of	 the	 loop,	 and	 the	 purpose	 of	 calling	 the
Math.max()	method	in	this	situation	will	become	clear.

Calculating	Delta

Now	that	we	have	a	timing	mechanism	in	place,	we	can	calculate	the	duration	of
each	 iteration	of	 the	game	 loop.	This	value,	which	we	will	 refer	 to	as	delta,	 is
simply	the	sum	of	updateDurationMillis	and	sleepDurationMillis.	Delta	will	be
passed	into	our	currentState’s	update	method	for	the	purposes	of	animation	and
framerate-independent	movement.

Add	the	line	of	code	shown	below	to	your	game	loop:

@Override

public	void	run()	{

			long	updateDurationMillis	=	0;

			long	sleepDurationMillis	=	0;

			while	(running)	{

								long	beforeUpdateRender	=	System.nanoTime();

								long	deltaMillis	=	updateDurationMillis	+	sleepDurationMillis;		//	New	line!

								

								currentState.update();

								prepareGameImage();

								currentState.render(gameImage.getGraphics());

								repaint();

								updateDurationMillis	=	(System.nanoTime()	-	beforeUpdateRender)	/	1000000L;

								sleepDurationMillis	=	Math.max(2,	17	-	updateDurationMillis);

								try	{

																Thread.sleep(sleepDurationMillis);

								}	catch	(InterruptedException	e)	{

																e.printStackTrace();

								}

			}

			System.exit(0);

}

The	 value	 of	 the	 newly-created	 deltaMillis	 should	 be	 17	milliseconds	 in	most
cases,	 but	 if	 updateDurationMillis	 were	 to	 take	 an	 abnormally	 long	 time,	 this
number	can	be	higher.

Allowing	Framerate-Independent	Movement

We	 have	 our	 deltaMillis	 value,	 and	 now	 we	 must	 use	 it	 to	 allow	 frame-rate
independent	movement.	But	first,	we	are	going	to	clean	up	our	game	loop	a	little
bit.	It	is	a	bit	messy

We	 will	 “refactor”	 our	 code	 (restructure	 how	 the	 code	 is	 written	 without
modifying	 its	 behavior)	 by	 creating	 a	 new	 method.	 Select	 the	 following	 four
lines	of	code	inside	the	loop	using	your	mouse:

currentState.update();

prepareGameImage();

currentState.render(gameImage.getGraphics());

repaint();

We	 could	 manually	 create	 a	 new	method,	 copy	 these	 four	 lines	 into	 the	 new
method,	and	replace	the	original	four	lines	with	a	call	to	that	method,	but	there	is

an	easier	(and	faster)	way

Right-click	on	the	four	selected	lines	(Ctrl	+	Click	on	Mac),	and	choose	Refactor
>	Extract	Method,	as	shown	in	Figure	6-2.

Figure	6-2	Refactoring	by	Extraction

Enter	 the	name	updateAndRender	 for	 the	new	method	as	shown	in	Figure	6-3.
Keep	the	access	as	private.	We	will	only	be	calling	the	method	inside	the	game
loop.

Figure	6-3	The	New	Method	Name

Once	you	click	OK,	Eclipse	will	automatically	 refactor	your	code	as	shown	 in
Figure	6-4!

Figure	6-4	Refactored	Code

We	are	not	finished	yet.	The	code	inside	the	two	orange	rectangles	above	must
be	 slightly	modified.	Firstly,	we	need	 to	 pass	 in	 the	value	of	 deltaMillis	 as	 an
argument	for	the	method	updateAndRender(),	as	shown	below:

updateAndRender();

updateAndRender(deltaMillis);

Next,	 the	 updateAndRender()	method	 needs	 to	 be	 changed	 to	 accept	 this	 new
argument,	 and	 we	 must	 pass	 on	 the	 argument	 into	 the	 currentState.update()
method!	By	doing	so,	each	of	our	states’	update()	methods	will	have	access	 to
the	time	it	has	taken	since	the	previous	iteration	of	update(),	for	reasons	we	have
discussed.	I	prefer	to	have	this	value	be	in	seconds,	so	we	will	divide	by	1000f
(this	allows	us	to	denote	movement	later	in	pixels	per	second,	rather	than	pixels
per	millisecond).	The	changes	you	must	make	are	shown	below:

private	void	updateAndRender(long	deltaMillis)	{

currentState.update(deltaMillis	/	1000f);

								prepareGameImage();

								currentState.render(gameImage.getGraphics());

								repaint();						

}

You	will	see	an	error	inside	the	updated	method,	as	shown	in	Figure	6-5:

Figure	6-5	An	Error	in	updateAndRender()

This	error	 is	 telling	us	 that	 the	update()	method	 inside	 the	State	class	does	not
accept	a	numerical	argument.	We	will	be	fixing	this	soon.

Declaring	Variables	outside	of	a	Loop

Now	that	we	have	the	delta	calculation	in	place,	we	can	discuss	the	reason	why
we	 previously	 declared	 updateDurationMillis	 and	 sleepDurationMillis	 outside
the	game	loop.

To	 understand	 this,	 you	 should	 know	 that	 variables	 declared	 inside	 a	 loop	 are
only	 accessible	 within	 that	 current	 iteration	 only.	 Their	 values	 cannot	 be
accessed	 in	 the	next	 iteration.	Since	 the	concept	of	delta	 is	 the	amount	of	 time
that	has	passed	since	the	previous	iteration	of	the	game	loop,	we	need	access	to
the	 updateDurationMillis	 and	 sleepDurationMillis	 of	 the	 previous	 iteration	 to
calculate	delta.	This	is	why	we	have	declared	the	two	long	variables	outside	of
the	loop.	Keeping	this	in	mind,	have	a	look	at	the	game	loop	again.	The	timing
variables	will	make	much	more	sense.

Switching	to	Active	Rendering

At	 the	 moment,	 we	 are	 taking	 three	 steps	 to	 perform	 our	 rendering.	We	 first
prepare	a	blank	game	image,	fill	 it	with	content	from	the	currentState	and	then
draw	 the	 image	 to	 the	 screen	 using	 repaint()	 (which	 requests	 that	 the	method
paintComponent()	be	called).

Of	 the	 above	 steps,	 the	 third	 step	 is	 passive.	 Again,	 we	 request	 that
paintComponent()	be	called,	but	the	JVM	does	not	have	to	listen	to	us—there	is
no	guarantee	that	paintComponent()	will	be	called

This	is	problematic	because	the	variable	deltaMillis	should	represent	the	amount
of	 time	 that	 has	 passed	 since	 the	 previous	 update	 and	 render,	 but	we	 have	 no
guarantee	 that	 the	 render	method	 actually	was	 called	 in	 the	 previous	 iteration.
When	we	have	animations,	precisely-timed	drawing	is	important,	so	we	must	fix
this.

We	will	be	employing	something	called	active	rendering	which	will	improve	our
game’s	 performance	 and	 make	 its	 rendering	 more	 predictable.	When	 actively
rendering,	we	do	not	 just	 request	 for	 the	game	 to	 render—we	tell	 it	 to.	This	 is
actually	 easy.	 Rather	 than	 calling	 repaint(),	 which	 will	 sometimes	 call
paintComponent(),	we	will	create	a	new	method	that	will	always	be	called.	This
method	will	be	nearly	identical	to	paintComponent(),	as	shown	below.

private	void	renderGameImage(Graphics	g)	{

								if	(gameImage	!=	null)	{

																g.drawImage(gameImage,	0,	0,	null);

								}

								g.dispose();

}

Add	 this	 new	 method	 into	 your	 Game	 class,	 and	 REMOVE	 the	 existing
paintComponent()	method.
Next,	we	simply	replace	the	call	to	repaint()	inside	updateAndRender()	as	shown
in	bold	below:

private	void	updateAndRender(long	deltaMillis)	{

								currentState.update(deltaMillis	/	1000f);

								prepareGameImage();

								currentState.render(gameImage.getGraphics());

								repaint();

								renderGameImage(getGraphics());

}

The	getGraphics()	method	returns	the	Graphics	object	of	our	JPanel	(remember
that	 the	Game	class	 inherits	 from	JPanel),	and	having	access	 to	 it	allows	us	 to
draw	on	the	JPanel.	We	give	this	to	our	renderGameImage()	method	by	passing
it	in	as	an	argument.

Whenever	 we	 finish	 working	 with	 a	 Graphics	 object	 that	 we’ve	 request
ourselves,	it	 is	recommended	that	we	manually	dispose	of	this	object	as	shown
inside	the	renderGameImage()	method	from	earlier.

Reviewing	the	Code

We	have	made	all	the	adjustments	that	we	need	in	the	Game	class,	incorporating
timing,	delta	calculation	and	active	rendering.	You	should	still	have	an	error	on
the	line:

currentState.update(deltaMillis	/	1000f);

We	will	 be	 fixing	 this	 error	next.	The	 full	Game	class	 is	 reproduced	 in	 listing
6.01	for	reference:

*****	Listing	6.01	The	Game	class	(Completed)	*****

001	package	com.jamescho.game.main;

002

003	import	java.awt.Color;

004	import	java.awt.Dimension;

005	import	java.awt.Graphics;

006	import	java.awt.Image;

007

008	import	javax.swing.JPanel;

009

010	import	com.jamescho.framework.util.InputHandler;

011	import	com.jamescho.game.state.LoadState;

012	import	com.jamescho.game.state.State;

013

014	@SuppressWarnings("serial")

015

016	public	class	Game	extends	JPanel	implements	Runnable{

017					private	int	gameWidth;

018					private	int	gameHeight;

019					private	Image	gameImage;

020

021					private	Thread	gameThread;

022					private	volatile	boolean	running;

023					private	volatile	State	currentState;	

024													

025					private	InputHandler	inputHandler;

026													

027					public	Game(int	gameWidth,	int	gameHeight){

028													this.gameWidth	=	gameWidth;

029													this.gameHeight	=	gameHeight;

030													setPreferredSize(new	Dimension(gameWidth,	gameHeight));

031													setBackground(Color.BLACK);

032													setFocusable(true);

033													requestFocus();

034					}

035													

036					public	void	setCurrentState(State	newState)	{

037													System.gc();

038													newState.init();

039													currentState	=	newState;

040													inputHandler.setCurrentState(currentState);

041					}

042													

043					@Override

044					public	void	addNotify()	{

045													super.addNotify();

046													initInput();

047													setCurrentState(new	LoadState());

048													initGame();

049					}

050													

051					private	void	initInput()	{

052													inputHandler	=	new	InputHandler();

053													addKeyListener(inputHandler);

054													addMouseListener(inputHandler);

055					}

056					

057					private	void	initGame()	{

058													running	=	true;

059													gameThread	=	new	Thread(this,	"Game	Thread");

060													gameThread.start();

061					}

062

063					@Override

064					public	void	run()	{

065													

066								long	updateDurationMillis	=	0;	//	Measures	both	update	AND	render

067								long	sleepDurationMillis	=	0;	//	Measures	sleep

068

069													while	(running){

070																					long	beforeUpdateRender	=	System.nanoTime();

071																					long	deltaMillis	=	updateDurationMillis	+	sleepDurationMillis;

072																													

073																					updateAndRender(deltaMillis);

074

075																					updateDurationMillis	=	(System.nanoTime()	-	beforeUpdateRender)	/	

1000000L;

076																					sleepDurationMillis	=	Math.max(2,	17	-	updateDurationMillis);

077																													

078																					try	{

079																													Thread.sleep(sleepDurationMillis);

080																					}	catch	(InterruptedException	e)	{

081																													e.printStackTrace();

082																					}

083													}

084													System.exit(0);

085					}

086

087					private	void	updateAndRender(long	deltaMillis)	{

088													currentState.update(deltaMillis	/	1000f);

089													prepareGameImage();

090													currentState.render(gameImage.getGraphics());

091													renderGameImage(getGraphics());

092					}

093													

094					private	void	prepareGameImage()	{

095													if	(gameImage	==	null)	{

096																					gameImage	=	createImage(gameWidth,	gameHeight);

097													}

098													Graphics	g	=	gameImage.getGraphics();

099													g.fillRect(0,	0,	gameWidth,	gameHeight);

100					}

101													

102					public	void	exit()	{

103													running	=	false;

104					}

105					

106					private	void	renderGameImage(Graphics	g)	{

107													if	(gameImage	!=	null)	{

108																					g.drawImage(gameImage,	0,	0,	null);

109													}

110													g.dispose();

111					}

112													

113	}

Updating	the	State	Classes

We	 must	 make	 some	 minor	 changes	 to	 the	 State	 classes	 in	 order	 to	 take
advantage	of	 the	 delta	 calculation	 from	 the	 game	 class.	This	will	 fix	 the	 error
inside	 our	 updateAndRender()	method	 and	 allow	 us	 to	 do	 perform	 animations
later	on!	Open	your	State	class,	and	make	the	change	shown	in	Listing	6.02	to
your	update()	method:

*****	Listing	6.02	The	State	Class	(Updated)	*****

package	com.jamescho.game.state;

import	java.awt.Graphics;

import	java.awt.event.KeyEvent;

import	java.awt.event.MouseEvent;

import	com.jamescho.game.main.GameMain;

public	abstract	class	State	{

																

								public	abstract	void	init();

								public	abstract	void	update();

								public	abstract	void	update(float	delta);

								public	abstract	void	render(Graphics	g);

								public	abstract	void	onClick(MouseEvent	e);

								public	abstract	void	onKeyPress(KeyEvent	e);

								public	abstract	void	onKeyRelease(KeyEvent	e);

								

								public	void	setCurrentState(State	newState)	{

																GameMain.sGame.setCurrentState(newState);

								}

}

Now	update()	will	receive	a	float	value	called	delta,	representing	the	amount	of
time	 that	 has	 passed	 since	 the	 previous	 iteration	 of	 update.	 This	 value	 will
typically	be	.017	(17	milliseconds	in	60	FPS).

That	rids	us	of	the	error	in	the	Game	class,	as	State	now	has	an	update()	method

that	is	capable	of	receiving	a	numerical	value;	however,	since	we	have	changed
this	 method	 inside	 an	 abstract	 superclass	 (remember	 that	 LoadState	 and
MenuState	both	inherit	from	State),	we	must	make	changes	to	our	subclasses	as
well.	 Make	 the	 changes	 to	 LoadState’s	 and	MenuState’s	 update()	 methods	 as
shown	in	listings	6.03	and	6.04.

*****	Listing	6.03	The	LoadState	Class	(Updated)	*****

package	com.jamescho.game.state;

import	java.awt.Graphics;

import	java.awt.event.KeyEvent;

import	java.awt.event.MouseEvent;

import	com.jamescho.game.main.Resources;

public	class	LoadState	extends	State	{

								@Override

								public	void	init()	{

																Resources.load();

																System.out.println("Loaded	Successfully");														

								}

								@Override

								public	void	update()	{

								public	void	update(float	delta){								

																setCurrentState(new	MenuState());

								}

								@Override

								public	void	render(Graphics	g)	{

																//	TODO	Auto-generated	method	stub						

								}

								@Override

								public	void	onClick(MouseEvent	e)	{

																//	TODO	Auto-generated	method	stub						

								}

								@Override

								public	void	onKeyPress(KeyEvent	e)	{

																//	TODO	Auto-generated	method	stub						

								}

								@Override

								public	void	onKeyRelease(KeyEvent	e)	{

																//	TODO	Auto-generated	method	stub

								}

}

*****	Listing	6.04	The	MenuState	Class	(Updated)	*****

package	com.jamescho.game.state;

import	java.awt.Graphics;

import	java.awt.event.KeyEvent;

import	java.awt.event.MouseEvent;

import	com.jamescho.game.main.Resources;

public	class	MenuState	extends	State{

								@Override

								public	void	init()	{

																System.out.println("Entered	MenuState");

																

								}

								@Override

								public	void	update(float	delta){

																

								}

								@Override

								public	void	render(Graphics	g)	{

																g.drawImage(Resources.welcome,	0,	0,	null);					

								}

								@Override

								public	void	onClick(MouseEvent	e)	{

																

								}

								@Override

								public	void	onKeyPress(KeyEvent	e)	{

																

								}

								@Override

								public	void	onKeyRelease(KeyEvent	e)	{

																

								}

}

With	those	changes,	all	the	errors	should	be	gone	from	our	project.

Adding	RandomNumberGenerator

Before	 moving	 on,	 our	 framework	 should	 have	 a	 copy	 of	 the
RandomNumberGenerator	 class	 from	 Chapter	 5.	 Check	 your
com.jamescho.framework.util	package	to	see	if	you	have	it.	If	not,	the	class	can
be	found	in	listing	5.08.	Add	this	to	your	com.jamescho.framework.util	package
prior	 to	 proceeding.	 After	 that	 change,	 your	 current	 project	 structure	 should
match	that	shown	in	Figure	6-6:

Figure	6-6	Ellio:	Project	Structure,	Checkpoint	1

Note:
If	 you	 are	 having	 problems	 with	 any	 of	 the	 classes	 at	 this	 point,	 you	 can
download	the	source	code	at	jamescho7.com/book/chapter6/checkpoint1.

Adding	Animation

Now	that	our	State	classes	have	access	 to	 the	delta	values,	we	can	 incorporate
animation	 into	our	 framework.	Before	we	 can	 start	writing	 classes	 though,	we
first	need	to	understand	what	an	animation	is.

As	I’m	sure	you’ve	heard	many	times,	an	animation	is	an	illusion.	It	is	a	series	of
still	 images	 drawn	 in	 quick	 succession	 in	 order	 to	 trick	 our	 brains	 into	 seeing
motion.	Each	of	these	images	is	called	a	frame,	and	each	frame	lasts	for	a	certain
amount	of	time.	We	will	use	this	idea	to	create	an	Animation	class	and	a	Frame
class.

Designing	and	Implementing	the	Frame	Class

Our	Frame	object	should	be	a	simple	class	containing	one	image	and	its	duration
(the	 time	 it	 should	be	 displayed	 for).	As	 such,	Frame	 should	 have	 an	 instance
variable	 for	 each	of	 these	properties.	We	will	 keep	 these	 two	variables	private
and	provide	public	getters	for	access.

Create	 a	 new	 package	 called	 com.jamescho.framework.animation,	 which	 will
soon	contain	our	Animation	and	Frame	classes.	Create	the	Frame	class	inside	the
package,	and	implement	it	as	shown	in	listing	6.05.

*****	Listing	6.05	The	Frame	class	(Completed)	*****

package	com.jamescho.framework.animation;

import	java.awt.Image;

public	class	Frame	{

								private	Image	image;

								private	double	duration;

								

								public	Frame(Image	image,	double	duration)	{

																this.image	=	image;

																this.duration	=	duration;

								}

								

								public	double	getDuration()	{

																return	duration;

								}

								

								public	Image	getImage()	{

																return	image;

								}

}

The	Frame	class	 is	a	very	simple.	As	 there	 is	nothing	new	 to	discuss	here,	we
will	move	on	to	the	harder	part.

Designing	the	Animation	Class

The	Animation	 class	 is	 a	 collection	 of	 associated	 frames.	 For	 example,	 if	 we
needed	seven	frames	to	animate	a	walk	cycle,	where	each	frame	has	a	duration
of	.1	seconds,	we	might	diagram	it	as	shown	in	Figure	6-7.

Figure	6-7	A	Walk	Animation

Study	the	diagram	and	its	five	variables	for	three	minutes.	You	might	be	able	to
glean	our	animation	strategy.	If	you	want	to	check	your	predictions,	read	on!

For	each	animation,	we	will	create	an	array	that	holds	multiple	frames	(images
and	 corresponding	 durations).	 Using	 each	 frame’s	 duration	 value,	 we	 can
determine	 when	 we	 should	 switch	 from	 one	 frame	 to	 another.	 For	 example,
frame	0	should	finish	at	a	currentTime	of	.1	seconds,	frame	1	should	finish	at	.2,
and	 so	 on.	These	 end	 time	 values	 are	 stored	 in	 a	 second,	 parallel	 array	 called
frameEndTimes.	 Make	 sure	 that	 you	 can	 see	 this	 relationship	 in	 Figure	 5-7
before	moving	on.

Note:
The	 term	 parallel	 array	 indicates	 that	 there	 is	 some	 relationship	 between
elements	 in	 the	 two	 arrays,	 such	 as	 between	 the	 element	 at	 frame[5]	 and	 the

element	 at	 frameEndTimes[5].	 In	 this	 case,	 frame[5]	 should	 END	 at	 the	 time
given	in	frameEndTimes[5],	at	which	point	frame[6]	will	become	current.

In	 our	 implementation,	 we	 will	 create	 an	 Animation	 object	 for	 each	 desired
animation,	 such	 as	 the	 one	 for	 walking.	 Next,	 we	 will	 update	 this	 animation
using	 the	delta	value	 from	 the	game	 loop,	 so	 that	 the	 animation’s	 currentTime
variable	 increases	 every	 frame	 by	 the	 correct	 number	 of	 seconds.	 Using
currentTime	to	determine	currentFrameIndex	(the	index	of	the	frame	that	should
be	 being	 displayed),	 our	 Animation	 will	 be	 able	 to	 render	 itself	 using
g.drawImage(...).

Implementing	the	Animation	Class

Now	 that	 we	 have	 discussed	 the	 logic	 for	 our	 Animation	 class,	 let’s	 begin
implementing	 it,	 starting	with	 the	 variables.	Create	 the	Animation	 class	 in	 the
com.jamescho.	 framework.animation	 package,	 and	 declare	 the	 following
instance	variables:

private	Frame[]	frames;

private	double[]	frameEndTimes;

private	int	currentFrameIndex	=	0;

private	double	totalDuration	=	0;

private	double	currentTime	=	0;

We	will	be	creating	a	constructor	 to	receive	an	array	of	Frame	objects,	and	we
will	use	this	array	to	create	the	parallel	frameEndTimes	array.	totalDuration	can
also	 be	 determined	 by	 iterating	 through	 frames,	 while	 currentTime	 and
currentFrame	index	will	be	incremented	inside	the	update()	method	later.

Add	the	constructor	as	shown	below:

public	Animation(Frame...	frames)	{

								this.frames	=	frames;

								frameEndTimes	=	new	double[frames.length];

								for	(int	i	=	0;	i	<	frames.length;	i++)	{

																Frame	f	=	frames[i];

																totalDuration	+=	f.getDuration();

																frameEndTimes[i]	=	totalDuration;

								}

}

You	will	notice	that	this	constructor	has	a	single	parameter	of	type	Frame...;	this
is	not	a	typo.	The	...	is	how	you	can	specify	a	variable	number	of	arguments	in
Java.	This	means	that	our	constructor	can	accept	any	number	of	Frame	objects,
as	shown	below	(this	is	just	an	example.	Do	NOT	add	the	following	to	your	own
code).	:

Frame	f1	=	new	Frame(...);	//	Constructor	call	simplified

Frame	f2	=	new	Frame(...);

Frame	f3	=	new	Frame(...);

Frame	f4	=	new	Frame(...);

Frame	f5	=	new	Frame(...);

Animation	anim	=	new	Animation(f1,	f2,	f3);

Animation	anim2	=	new	Animation(f4,	f5);

Refer	 to	 the	 Animation	 constructor	 one	 more	 time.	 Notice	 that	 when	 the
constructor	 receives	 this	 variable	 number	 of	 Frame	 objects,	 the	 frames	 are
bundled	together	into	a	single	array	for	ease	of	use.	We	will	assign	this	array	as
the	value	of	the	frames	variable.

Inside	 the	 constrcutor,	 we	 also	 create	 a	 new	 array	 of	 doubles	 called
frameEndTimes.	As	this	array	should	be	parallel	to	the	array	frames,	we	give	it
an	 identical	 length.	Then	we	use	a	for	 loop	 to	determine	 the	end	 time	for	each
frame	and	 the	 totalDuration	of	all	 the	 frames.	 If	 this	 logic	 is	confusing,	please
refer	to	Figure	6-7,	and	walk	yourself	through	the	constructor	using	the	diagram
as	a	reference.

The	 variables	 are	 ready	 and	 initialized.	Next,	 all	 we	 have	 to	 add	 are	 the	 four
methods:	update(),	wrapAnimation(),	 render()	and	a	 second	 render(),	 as	 shown
below	(import	accordingly	to	remove	errors):

public	synchronized	void	update(float	increment)	{

								currentTime	+=	increment;

								if	(currentTime	>	totalDuration)	{

																wrapAnimation();

								}

								while	(currentTime	>	frameEndTimes[currentFrameIndex])	{

																currentFrameIndex++;

								}

}

private	synchronized	void	wrapAnimation()	{

								currentFrameIndex	=	0;

								currentTime	%=	totalDuration;	//	equal	to	cT	=	cT	%	tD

}

public	synchronized	void	render(Graphics	g,	int	x,	int	y)	{

								g.drawImage(frames[currentFrameIndex].getImage(),	x,	y,	null);

}

public	synchronized	void	render(Graphics	g,	int	x,	int	y,	int	width,	int	height)	{

								g.drawImage(frames[currentFrameIndex].getImage(),	x,	y,	width,	height,	null);

}

Note:
The	 synchronized	 keyword	 is	 used	 to	 ensure	 that	 animations	 will	 update
accurately	 in	 a	multi-threaded	environment.	 It	 is	 used	 to	denote	 that	 a	method
should	be	executed	in	its	entirety.	This	also	is	an	advanced	topic	that	we	will	not
get	into	in	this	book

We	have	 two	 render	methods	with	 the	 same	name	but	different	parameters.	 In
Java,	this	is	called	overloading	a	method.	Typically,	methods	of	the	same	name
allow	you	to	perform	the	same	behavior	in	different	ways.	In	our	example,	our
render(Graphics	 g,	 int	 x,	 int	 y)	 method	 allows	 you	 to	 draw	 an	 animation’s
current	 frame	 image	 at	 x	 and	 y,	 but	 it	 does	 not	 let	 you	 specify	 how	 large	 the
image	should	be.	In	contrast,	render(Graphics	g,	int	x,	int	y,	int	width,	int	height)
does	allow	you	to	specify	an	image	size.

The	 update()	method	 is	where	 the	 important	 action	 happens.	 This	method	 has
two	 responsibilities.	 Firstly,	 it	 keeps	 track	 of	 currentTime	 (how	 long	 the
animation	 has	 been	 running	 for)	 and	 handles	 irregularities.	 Secondly	 it
determines	the	currentFrameIndex	by	comparing	the	updated	currentTime	value
to	the	frameEndTimes	array.

To	 make	 these	 steps	 happen,	 the	 method	 receives	 a	 parameter—a	 float	 value

called	 increment.	 This	 will	 be	 the	 delta	 value	 from	 the	 game	 loop.	 The
currentTime	is	 then	 incremented	with	 this	value.	 If	 the	value	of	currentTime	is
greater	than	that	of	totalDuration,	we	know	that	the	animation	has	completed.	In
this	situation,	our	Animation	class	chooses	to	repeat	the	animation	by	calling	the
wrapAnimation()	method.

The	 wrapAnimation()	 method,	 called	 when	 currentTime	 has	 exceeded	 the
totalDuration,	 resets	 the	 currentFrameIndex	 at	 zero	 and	 calculate	 a	 new
currentTime	as	currentTime	%	totalDuration.	The	modulus	(%)	operator	has	the
effect	 of	 calculating	 overflow,	 or	 how	 many	 seconds	 PAST	 the	 end	 of	 the
animation	we	were	at	before	resetting	the	animation.

The	Animation	and	Frame	classes	are	now	complete.	The	full	Animation	class	is
reproduced	below	in	listing	6.06.

*****	Listing	6.06	The	Animation	Class	(Completed)		*****

01	package	com.jamescho.framework.animation;

02

03	import	java.awt.Graphics;

04

05	public	class	Animation	{

06						private	Frame[]	frames;

07						private	double[]	frameEndTimes;

08						private	int	currentFrameIndex	=	0;

09

10						private	double	totalDuration	=	0;

11						private	double	currentTime	=	0;

12						public	Animation(Frame...	frames)	{

13														this.frames	=	frames;

14														frameEndTimes	=	new	double[frames.length];

15

16														for	(int	i	=	0;	i	<	frames.length;	i++)	{

17																						Frame	f	=	frames[i];

18																						totalDuration	+=	f.getDuration();

19																						frameEndTimes[i]	=	totalDuration;

20														}

21						}

22

23						public	synchronized	void	update(float	increment)	{

24														currentTime	+=	increment;

25

26														if	(currentTime	>	totalDuration)	{

27																						wrapAnimation();

28														}

29

30														while	(currentTime	>	frameEndTimes[currentFrameIndex])	{

31																						currentFrameIndex++;

32														}

33						}

34

35						private	synchronized	void	wrapAnimation()	{

36														currentFrameIndex	=	0;

37														currentTime	%=	totalDuration;	//	equal	to	cT	=	cT	%	tD

38						}

39

40						public	synchronized	void	render(Graphics	g,	int	x,	int	y)	{

41														g.drawImage(frames[currentFrameIndex].getImage(),	x,	y,	null);

42						}

43

44						public	synchronized	void	render(Graphics	g,	int	x,	int	y,	int	width,	int	height)	{

45						g.drawImage(frames[currentFrameIndex].getImage(),	x,	y,	width,	height,null);

46						}

47

48	}

Our	framework	is	now	in	a	much	better	state	than	it	was	in	Chapter	5.	Let’s	start
building	Ellio.

Note:	If	you	are	having	problems	with	any	of	the	classes	at	this	point,	you	can
download	the	source	code	at	jamescho7.com/book/chapter6/checkpoint2.

Ellio:	Optimization	Matters

Ellio	 is	 a	 simple	 two-button	 game,	 but	 the	 nature	 of	 this	 infinite	 runner
necessitates	a	discussion	of	optimization.

The	Issue	of	Memory	Management

Until	now,	we’ve	largely	ignored	memory	usage;	we’ve	created	objects	at	will,
assuming	that	our	machine	will	always	have	plenty	of	memory	(RAM)	to	store
these	as	variables	for	as	long	as	we	need.	When	we	start	developing	for	Android,
this	 assumption	 may	 not	 always	 hold.	 Mobile	 devices	 tend	 to	 have	 smaller
amounts	 of	 memory	 than	 do	 computers,	 and	 this	 memory	 tends	 to	 be	 shared
across	multiple	 applications	 simultaneously.	 This	makes	memory	management
an	important	issue	that	you	should	actively	think	about	when	developing	games,
and	we	will	start	this	process	with	Ellio.

If	you	look	again	at	Figure	6-1,	you	will	notice	that	Ellio	has	to	avoid	a	series	of
yellow	blocks	coming	from	the	right.	Let	me	ask	you	this	question.	What	should
we	 do	with	 the	 yellow	 blocks	 that	 have	 gone	 past	 the	 left	 side	 of	 the	 screen?
These	blocks	are	no	longer	visible,	so	keeping	them	around	means	that	they	will
take	up	memory	for	no	reason.	Continuing	to	waste	processing	power	to	update
them	and	render	them	will	mean	that	our	game	will	slow	down	with	time.

You	may	have	answered	the	question	by	saying,	“We	should	destroy	the	unused
blocks.”	While	that	may	sound	like	a	great	idea,	that	would	mean	we	must	create
a	new	 set	 of	 blocks	 to	 replace	 the	destroyed	ones.	This	 is	 bad	 for	 a	 couple	of
reasons.	To	understand	why,	 let’s	 talk	about	some	optimization	 techniques	 that
will	make	our	game	run	faster.

Optimizing	Techniques

Minimize	the	CPU’s	workload:	As	you	increase	the	number	of	operations
that	your	CPU	must	perform	on	every	frame,	you	risk	decreasing	the
game’s	framerate.	This	usually	results	in	a	poorer	gameplay	experience.
Aim	to	minimize	your	CPU’s	workload,	only	performing	calculations	that
are	absolutely	necessary.	For	example,	only	check	for	collision	(which
involves	many	operations	and	if-statements)	when	there	is	a	CHANCE	for

collision	in	the	first	place.	If	an	object	is	halfway	across	the	screen	from
your	character,	there	is	no	need	to	perform	expensive	calculations	to	check
if	the	character’s	left	foot,	right	foot,	head,	left	hand,	right	hand	(and	so	on)
collide	with	the	object.
Avoid	object	creation:	One	of	the	most	important	things	you	can	do	is	to
avoid	creating	new	objects	inside	a	loop.	In	fact,	you	should	only	use	the
new	keyword	when	absolutely	necessary!	Remember	that	our	update	and
render	methods	are	called	inside	the	game	loop,	meaning	that	if	you	were	to
create	a	new	object	on	every	iteration	of	the	update	method,	you	would	get
60	new	objects	every	second.	This	would	fill	up	your	memory	really	fast.
What	happens	if	your	machine	runs	out	of	memory,	you	ask?	Garbage
collection.

Meet	the	Garbage	Collector

Have	a	look	at	the	following	loop:

for	(int	i	=	0;	i	<	1000000;	i++)	{

								Random	r	=	new	Random();

								System.out.println(r.nextInt(5));

}

The	above	loop	demonstrates	wasteful	object	creation.	In	every	iteration	of	 the
loop,	we	create	a	new	Random	object	and	assign	it	to	the	variable	r.	As	the	loop
iterates,	we	lose	access	to	the	Random	r	object	from	the	previous	iteration.	These
lost	r	objects	sit	inside	RAM	taking	up	valuable	space,	and	you	have	no	way	of
getting	them	back.	They	are	completely	useless.

When	the	JVM	realizes	that	you	are	beginning	to	run	out	of	memory,	it	will	call
the	garbage	collector	 into	action.	Without	being	 too	anthropomorphic,	you	can
think	 of	 the	 garbage	 collector	 as	 an	 autonomous	 “entity”	 that	 will	 determine
which	 objects	 inside	 memory	 are	 still	 useable	 (it	 is	 autonomous	 because	 you
have	no	control	over	 this	process).	Objects	 that	are	no	 longer	useable	 (such	as
the	 Random	 objects	 from	 the	 loop	 shown	 above)	 are	 discarded,	 creating	 new
memory	space	for	new	objects.

Fear	the	Garbage	Collector

The	 garbage	 collector	 is	 a	 great	 tool.	 It	 automatically	 does	 the	 hard	 work	 of
managing	memory	 for	 you;	 however,	 autonomous	 garbage	 collection	 can	 be	 a
curse.	 Every	 time	 the	 garbage	 collector	 runs,	 your	 machine	 will	 devote	 its
processing	 power	 to	 performing	 garbage	 collection	 tasks	 (identifying	 and
removing	unnecessary	objects).

What	happens	 if	your	player	 is	 about	 to	make	an	 important	 jump	and	garbage
collection	kicks	 in?	The	FPS	drops,	 the	gameplay	stutters	and	slows,	and	your
player	dies	without	any	fault	of	his	own.	Protect	your	player	 from	the	garbage
collector	by	avoiding	object	creation!

Memory	Management	and	Ellio

Let’s	go	back	to	the	question,	“What	should	we	do	with	yellow	blocks	that	have
gone	past	 the	left	side	of	 the	screen?”	The	answer	is	 to	reuse	them.	Send	them
back	over	to	the	right	side	and	let	them	try	to	hit	Ellio	again.	In	Ellio,	this	means
that	we	can	create	five	sets	of	blocks	and	use	them	infinitely,	rather	than	create	a
new	set	of	blocks	every	few	frames.

Ellio:	A	High-Level	Overview

We’ve	discussed	some	issues	you	need	to	be	aware	of	in	order	to	make	Ellio	run
as	smoothly	as	possible.	Let’s	apply	these	principles	to	create	our	game.

The	Classes

Main	 Classes:	 Our	 game	 development	 framework	 allows	 us	 to	 create	 Ellio
simply	by	creating	new	model	 classes	 and	 state	 classes.	For	 the	most	part,	we
can	stay	outside	of	our	 framework!	We	only	need	 to	make	a	 simple	change	 to
GameMain	to	configure	the	title	of	the	game,	and	load	our	new	resources	inside
the	Resources	class.

State	Classes:	We	will	be	modifying	MenuState	to	display	selections	as	shown	in
Figure	 6-8.	 The	 two	 state	 classes	 we	 will	 create	 anew	 are	 PlayState	 and
GameOverState.	The	PlayState	will	handle	the	gameplay.	Once	the	player	loses
(everyone	 loses	 in	 an	 infinite	 runner	 eventually),	 we	 will	 transition	 to	 the
GameOverState	to	display	the	score.

Model	 Classes:	 The	 three	model	 classes	 we	will	 create	 are	 Cloud,	 Block	 and
Player.	Each	Cloud	object	will	represent	the	Cloud	images	that	scroll	in	the	sky
(see	Figure	 6-1),	 as	 each	Block	 object	will	 represent	 a	 stack	 of	 yellow	blocks
that	 can	 be	 avoided	 by	 jumping	 or	 ducking.	 The	 single	 Player	 instance	 will
represent	Ellio	the	alien.

Figure	6-8	Ellio:	MenuState	Screenshot

Preparing	the	Ellio	Project

Copying	the	Framework

Open	up	Eclipse,	and	make	a	copy	of	the	game	development	framework	project
(with	all	of	 the	changes	 that	we	have	made	 in	 this	chapter).	Give	 the	copy	 the
name	Ellio.	Your	project	 should	appear	 in	your	Package	Explorer	 as	 shown	 in
Figure	6-9:

Figure	6-8	Ellio:	Package	Explorer

Note:
If	you	do	not	have	access	 to	 the	 framework	on	your	computer,	 the	appropriate
version	 can	 be	 downloaded	 in	 .zip	 format	 at
jamescho7.com/book/chapter6/checkpoint2.	 To	 import	 the	 downloaded
framework	 into	 your	 workspace,	 follow	 the	 instructions	 provided	 at	 the
beginning	of	chapter	5.

The	very	 first	 thing	 that	we	will	do	 is	change	 the	name	of	our	game.	Open	up
GameMain	and	change	the	name	of	the	JFrame	window	to	Ellio	(Chapter	6)	by
modifying	the	value	of	GAME_TITLE	as	shown	in	listing	6.07.

*****	Listing	6.07	The	GameMain	Class	*****

package	com.jamescho.game.main;

import	javax.swing.JFrame;

public	class	GameMain	{

			public	static	final	String	GAME_TITLE	=	"Java	Game	Development	Framework	(Chapter	4)";

			public	static	final	String	GAME_TITLE	=	"Ellio	(Chapter	6)";

			public	static	final	int	GAME_WIDTH	=	800;

			public	static	final	int	GAME_HEIGHT	=	450;

			public	static	Game	sGame;

			public	static	void	main(String[]	args)	{

																JFrame	frame	=	new	JFrame(GAME_TITLE);

																frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

																frame.setResizable(false);

																sGame	=	new	Game(GAME_WIDTH,	GAME_HEIGHT);

																frame.add(sGame);

																frame.pack();

																frame.setVisible(true);

																frame.setIconImage(Resources.iconimage);

			}

								

}

Run	the	program,	and	check	that	Ellio	(Chapter	6)	displays	properly	as	the	title
of	the	JFrame	window.

Adding	and	Loading	Resources

For	Ellio’s	artwork,	we	will	be	using	some	beautiful	public	domain	images	that
can	be	used	without	restriction.	With	the	exception	of	a	few	images	that	I	have
created	or	modified,	these	images	have	all	been	created	by	Kenney,	an	awesome
programmer	and	artist	who	has	made	 thousands	of	 assets	 (images,	 sounds	 and
fonts)	 available	 for	 free!	 Feel	 free	 to	 use	 these	 assets	 as	 you	 would	 like.
Attribution	 is	optional,	 but	 I’d	 like	 to	 ask	you	 include	Kenney’s	name	 in	your
project	and	share	his	amazing	work	with	others.

Note:
If	 you	would	 like	 to	 see	more	of	Kenney’s	 free	 assets,	 visit	 his	website	 at	 the
following	 link:	 http://www.kenney.nl/assets.	 If	 you	 want	 to	 support	 Kenney’s
work,	make	a	donation!	You	will	get	access/updates	to	all	of	his	work.	For	more
information,	see	http://kenney.itch.io/kenney-donation.

The	 following	 resources	 (images	 and	 sound	 files)	 are	 available	 for	 you	 to
download	 at	 jamescho7.com/book/chapter6.	 You	 may	 also	 use	 your	 own	 by
creating	images	and	sound	files	of	the	appropriate	dimensions	and	type.

iconimage.png	(32px	x	32px)	–	to	be	used	as	the	icon	image	for
JFrame.

welcome.png	(800px	x	450px)	–	to	be	used	as	the	new	welcome	screen
for	Ellio.

selector.png	(25px	x	45px)	–	to	be	used	as	a	selection	arrow	in
MenuState.

cloud1.png	(128px	x	71px)	–	to	be	used	in	the	background.

cloud2.png	(128px	x	71px)	–	to	be	used	in	the	background.

runanim1.png	(72px	x	97px)	–	used	as	part	of	running	animation	for
Ellio.

runanim2.png	(72px	x	97px)	–	used	as	part	of	running	animation	for
Ellio.

runanim3.png	(72px	x	97px)	–	used	as	part	of	running	animation	for
Ellio.

runanim4.png	(72px	x	97px)	–	used	as	part	of	running	animation	for
Ellio.

runanim5.png	(72px	x	97px)	–	used	as	part	of	running	animation	for
Ellio.

duck.jpg	(72px	x	97px)	–	used	to	show	a	ducking	Ellio.

jump.png	(72px	x	97px)	–	used	to	show	a	jumping	Ellio.

grass.png	(800px	x	45px)	–	used	to	draw	the	grass	in	PlayState.

block.png	(20px	x	50px)	–	used	to	draw	obstacles	in	PlayState.

onjump.wav	(Duration:	<1	sec)	–	to	be	played	when	Ellio	jumps.
Created	using	bfxr.

hit.wav	(Duration:	<1	sec)	–	to	be	played	when	the	player	gets	hit	by
the	blocks.	Created	using	bfxr.

Download	(or	create)	the	sixteen	files	and	add	them	into	your	project’s	resources
package,	 overwriting	 any	 existing	 files.	 Your	 resources	 package	 should	 be
identical	to	that	shown	in	Figure	6-10.

Figure	6-1	Adding	the	Resources	Files	to	the	Ellio	Project

Next,	we	will	load	the	new	resource	files	into	our	Resources	class.	This	is	done
in	 two	 steps.	 Firstly,	 declare	 the	 following	 static	 variables	 (welcome	 and
iconimage	may	already	be	declared	for	you):

public	static	BufferedImage	welcome,	iconimage,	block,	cloud1,	cloud2,

																duck,	grass,	jump,	run1,	run2,	run3,	run4,	run5,	selector;

public	static	AudioClip	hit,	onjump;

Next,	 initialize	 the	 newly	 created	 variables	 inside	 the	 load()	method	 as	 shown
below.	We	use	loadImage()	for	image	files	and	loadSound()	for	sound	files.

....

public	static	void	load()	{

								welcome	=	loadImage("welcome.png");

								iconimage	=	loadImage("iconimage.png");

								block	=	loadImage("block.png");

								cloud1	=	loadImage("cloud1.png");

								cloud2	=	loadImage("cloud2.png");

								duck	=	loadImage("duck.png");

								grass	=	loadImage("grass.png");

								jump	=	loadImage("jump.png");

								run1	=	loadImage("run_anim1.png");

								run2	=	loadImage("run_anim2.png");

								run3	=	loadImage("run_anim3.png");

								run4	=	loadImage("run_anim4.png");

								run5	=	loadImage("run_anim5.png");

								selector	=	loadImage("selector.png");

								hit	=	loadSound("hit.wav");

								onjump	=	loadSound("onjump.wav");

}

....

Note:
Variable	names	do	not	 always	match	 the	 corresponding	 file	 names.	Make	 sure
you	double	check	both	to	avoid	errors!

We	will	also	create	a	static	Color	object	to	represent	our	sky	color	(RGB:	25,	83,
105).	 Add	 the	 corresponding	 static	 variable	 as	 shown	 (importing
java.awt.Color):

public	static	Color	skyBlue;

Initialize	skyBlue	inside	the	load()	method	as	shown	in	bold:

....

public	static	void	load()	{

								welcome	=	loadImage("welcome.png");

								iconimage	=	loadImage("iconimage.png");

								block	=	loadImage("block.png");

								cloud1	=	loadImage("cloud1.png");

								cloud2	=	loadImage("cloud2.png");

								duck	=	loadImage("duck.png");

								grass	=	loadImage("grass.png");

								jump	=	loadImage("jump.png");

								run1	=	loadImage("run_anim1.png");

								run2	=	loadImage("run_anim2.png");

								run3	=	loadImage("run_anim3.png");

								run4	=	loadImage("run_anim4.png");

								run5	=	loadImage("run_anim5.png");

								selector	=	loadImage("selector.png");

								hit	=	loadSound("hit.wav");

								onjump	=	loadSound("onjump.wav");

								skyBlue	=	new	Color(208,	244,	247);

}

....

The	last	 thing	we	need	to	do	is	create	our	running	animation.	First,	declare	the
static	variable	as	shown	(importing	com.jamescho.framework.animation):

public	static	Animation	runAnim;

We	will	initialize	runAnim	using	the	constructor	for	the	Animation	class,	which
accepts	any	number	of	Frame	arguments.	To	achieve	 the	deired	running	effect,
we	 will	 add	 run1,	 run2,	 run3,	 run4,	 run5,	 run3	 (repeated)	 and	 run2	 (also
repeated)	in	that	order	as	Frame	objects	with	duration	of	.1	seconds	each.

To	do	as	described,	begin	by	importing	our	Frame	class	(make	sure	you	import
com.jamescho.framework.animation.Frame,	 not	 java.awt.Frame),	 and	 add	 the
following	to	the	bottom	of	the	load()	method:

Frame	f1	=	new	Frame(run1,	.1f);

Frame	f2	=	new	Frame(run2,	.1f);

Frame	f3	=	new	Frame(run3,	.1f);

Frame	f4	=	new	Frame(run4,	.1f);

Frame	f5	=	new	Frame(run5,	.1f);

runAnim	=	new	Animation(f1,	f2,	f3,	f4,	f5,	f3,	f2);

The	 completed	Resources	 class	 is	 provided	 in	 listing	 6.08	 (double-check	 your
imports,	making	 sure	 that	 the	 imported	 Frame	 class	 is	 from	OUR	 framework,
NOT	from	Java’s	AWT	package):

*****	Listing	6.08	The	Resources	Class	(Completed)		*****

01	package	com.jamescho.game.main;

02

03	import	java.applet.Applet;

04	import	java.applet.AudioClip;

05	import	java.awt.Color;

06	import	java.awt.image.BufferedImage;

07	import	java.net.URL;

08

09	import	javax.imageio.ImageIO;

10

11	import	com.jamescho.framework.animation.Animation;

12	import	com.jamescho.framework.animation.Frame;

13

14	public	class	Resources	{

15						public	static	BufferedImage	welcome,	iconimage,	block,	cloud1,	cloud2,

16																														duck,	grass,	jump,	run1,	run2,	run3,	run4,	run5,	selector;

17						public	static	AudioClip	hit,	onjump;

18						public	static	Color	skyBlue;

19						public	static	Animation	runAnim;

20														

21						public	static	void	load()	{

22														welcome	=	loadImage("welcome.png");

23														iconimage	=	loadImage("iconimage.png");

24														block	=	loadImage("block.png");

25														cloud1	=	loadImage("cloud1.png");

26														cloud2	=	loadImage("cloud2.png");

27														duck	=	loadImage("duck.png");

28														grass	=	loadImage("grass.png");

29														jump	=	loadImage("jump.png");

30														run1	=	loadImage("run_anim1.png");

31														run2	=	loadImage("run_anim2.png");

32														run3	=	loadImage("run_anim3.png");

33														run4	=	loadImage("run_anim4.png");

34														run5	=	loadImage("run_anim5.png");

35														selector	=	loadImage("selector.png");

36														hit	=	loadSound("hit.wav");

37														onjump	=	loadSound("onjump.wav");

38														skyBlue	=	new	Color(208,	244,	247);

39																						

40														Frame	f1	=	new	Frame(run1,	.1f);

41														Frame	f2	=	new	Frame(run2,	.1f);

42														Frame	f3	=	new	Frame(run3,	.1f);

43														Frame	f4	=	new	Frame(run4,	.1f);

44														Frame	f5	=	new	Frame(run5,	.1f);

45														runAnim	=	new	Animation(f1,	f2,	f3,	f4,	f5,	f3,	f2);

46						}

47														

48						public	static	AudioClip	loadSound(String	filename){

49														URL	fileURL	=	Resources.class.getResource("/resources/"	+	filename);

50														return	Applet.newAudioClip(fileURL);

51						}

52														

53						public	static	BufferedImage	loadImage(String	filename){

54									BufferedImage	img	=	null;

55									try	{

56														img	=	ImageIO.read(Resources.class.getResource("/resources/"	+	filename));

57									}	catch	(Exception	e)	{

58														System.out.println("Error	while	reading:	"	+	filename);

59														e.printStackTrace();

60									}

61									return	img;

62						}

63	}

Now	that	our	resources	have	been	 loaded,	 let’s	 run	 the	game	once	more	 to	see
the	changes	(note	the	new	welcome	screen	and	icon	image):

Figure	6-11	Ellio	Welcome	Screen

We’ve	 finished	 setting	 up	 our	 framework!	 Now,	 it’s	 time	 to	 start	 adding	 our
game’s	 three	 model	 classes.	 I	 will	 be	 repeating	 much	 of	 the	 design	 and
implementation	 process	 from	 Chapter	 5.	 I	 will	 only	 be	 going	 into	 depth	 to
explain	important	and	novel	concepts,	with	the	assumption	that	you	are	familiar
with	the	overall	process	for	creating	model	classes.

Designing	and	Implementing	the	Player

We	 will	 get	 started	 right	 away	 by	 designing	 and	 implementing	 the	 most
important	class	in	Ellio:	the	Player	class.	Before	we	write	any	code,	it’s	best	if
we	understand	exactly	what	we	want	the	Player	object	to	do.	As	you	read	these
descriptions,	 try	 to	 predict	 which	 variables	 and	 methods	 we	 will	 be	 creating
(some	have	been	written	for	you).

Describing	the	Properties	and	Behavior

Basics:	We	want	the	player	to	have	a	position	(x	and	y)	and	dimensions	(width
and	height).

Jumping:	When	the	spacebar	is	pressed,	we	want	our	Player	object	to	jump.	This
requires	that	we	have	a	velY	variable	that	will	be	changed	to	a	negative	value	(to
go	upwards)	when	a	spacebar	press	is	detected.

Ducking:	When	 the	 down	 arrow	key	 is	 pressed,	we	want	 our	 Player	 object	 to
duck.	 In	Ellio,	ducking	 is	 limited	 to	a	certain	duration	 to	emphasis	 the	precise
timing	of	jumps	and	ducks.

Collision:	Upon	getting	hit	by	a	block,	the	player	should	get	knocked	back.	Once
the	player	is	no	longer	visible,	the	game	is	considered	to	be	over.

To	check	for	collisions	in	Chapter	5,	we	created	a	single	bounding	rectangle	for
each	 object	 on	 the	 screen.	 This	 time,	 we	 will	 be	 making	 two	 different	 sized
rectangles	as	shown	in	Figure	6-12.

Figure	6-12	Primary	Rectangle	and	Duck	Rectangle

The	 proposed	 use	 of	 the	 two	 rectangles	 is	 due	 to	 the	 fact	 that	 our	 character’s
dimensions	 change	 as	 he	 jumps	 and	ducks.	Rather	 than	 creating	one	 rectangle
and	constantly	changing	its	width	and	height,	we	will	implement	two	rectangles.
The	 blue	 primary	 rectangle	 shown	 in	 Figure	 6-12	 will	 be	 used	 to	 check	 for
collision	 when	 the	 player	 is	 standing	 still	 (running)	 or	 jumping.	 The	 red
rectangle	will	be	used	to	check	for	collision	when	the	player	is	ducking.

Update:	Our	Player	object’s	update()	method	has	many	responsibilities.	Two	of
these	may	be	of	interest.

As	mentioned	before,	we	want	Ellio	to	duck	for	a	limited	duration	before
standing	up	again.	This	behavior	will	be	implemented	inside	the	update()
method.
Since	Ellio	can	jump,	we	need	to	have	some	sort	of	gravity	to	bring	Ellio
back	to	the	ground.	This	will	also	be	implemented	inside	the	update()
method.

Creating	the	Player	Class	and	Its	Variables

Inside	 the	package	com.jamescho.game.model,	 create	 the	Player	class.	Declare
the	 variables	 that	 we	 will	 be	 using,	 and	 initialize	 the	 variables	 inside	 the
constructor	as	shown	in	listing	6.09	(remember	to	import	any	classes	you	use):

*****	Listing	6.09	The	Player	Class	(Variables	and	Constructor)	*****

01						package	com.jamescho.game.model;

02

03						import	java.awt.Rectangle;

04

05						public	class	Player	{

06														private	float	x,	y;

07														private	int	width,	height,	velY;

08														private	Rectangle	rect,	duckRect,	ground;

09

10														private	boolean	isAlive;

11														private	boolean	isDucked;

12														private	float	duckDuration	=	.6f;

13

14														private	static	final	int	JUMP_VELOCITY	=	-600;

15														private	static	final	int	ACCEL_GRAVITY	=	1800;

16

17														public	Player(float	x,	float	y,	int	width,	int	height)	{

18																						this.x	=	x;

19																						this.y	=	y;

20																						this.width	=	width;

21																						this.height	=	height;

22

23																						ground	=	new	Rectangle(0,	405,	800,	45);

24																						rect	=	new	Rectangle();

25																						duckRect	=	new	Rectangle();													

26																						isAlive	=	true;

27																						isDucked	=	false;

28																						updateRects();	//	This	will	give	an	error.

29														}

30

31														//	More	Methods

32

33						}

Note:
Once	 you	 have	 created	 the	 class	 as	 shown,	 you	 will	 get	 an	 error	 regarding
updateRects().	 Ignore	 this	 for	 now.	We	will	 soon	 create	 this	method	 to	 set	 the
initial	positions	for	rect	and	duckRect.

You’ve	encountered	most	of	Player’s	variables	before.	The	variables	x,	y,	width,
height	and	velY	handle	the	player’s	position	and	movement.	We	declare	x	and	y
to	be	floats	here,	so	that	we	can	allow	the	player	to	have	a	decimal	value	as	its
velocity.	This	 is	 important	 because	we	will	 soon	be	 scaling	our	 velocity	 value
with	the	delta	value	to	accomplish	framerate-independent	movement.

The	 Rectangle	 objects	 rect	 and	 duckRect	 represent	 the	 primary	 and	 duck
rectangles	from	Figure	6-12.	For	later	convenience,	we	create	a	third	Rectangle
called	ground,	which	 represents	 the	bounding	 rectangle	 for	 the	grass,	which	 is
located	at	 (x=	0,	y	=	405)	with	a	width	and	height	of	800	and	45,	 respectively
(see	Figure	6-1).	By	creating	this	third	Rectangle,	we	can	easily	determine	if	the
player	 is	 standing	 on	 the	 ground.	 This	 tells	 us	 if	 the	 player	 should	 be	 able	 to
jump	(or	duck).

As	its	name	suggests,	the	isAlive	boolean	will	keep	track	of	whether	the	player
is	 alive.	Once	 this	value	becomes	 false,	 the	PlayState	will	 act	by	 finishing	 the
game	and	transitioning	to	the	GameOverState.

The	 isDucked	 boolean	 works	 in	 conjunction	 with	 the	 duckDuration	 variable.
When	 the	player	presses	 the	down	arrow	key,	 isDucked	will	become	 true,	 and
duckDuration	 (which	 is	 .6	 seconds),	 will	 begin	 to	 decrement	 in	 every	 frame.
Once	 .6	 seconds	 have	 passed	 (when	 duckDuration	 is	 zero),	 we	 reset
duckDuration	to	.6,	and	we	tell	the	player	to	stand	up	by	setting	isDucked	back
to	false.

To	handle	jumping,	we	employ	a	simple	technique.	When	the	player	presses	the
spacebar,	we	send	the	player	upwards	by	setting	the	velY	to	a	negative	value.	To
apply	gravity,	we	accelerate	velY	(make	its	value	more	positive)	on	every	frame.
This	 results	 in	 the	 player	 moving	 up	 quickly,	 slowing	 down	 and	 falling	 back
down	again.

The	two	constants	JUMP_VELOCITY	and	ACCEL_GRAVITY	will	be	used	to
determine	how	high	 the	player	 jumps	and	how	 fast	 the	player	 falls	down.	The
ACCEL_GRAVITY	 is	 the	 amount	 by	 which	 the	 JUMP_VELOCITY	 will	 be
increased	 in	 every	 second.	 The	 values	 -600	 and	 1800	 have	 been	 determined
experimentally.	Feel	free	to	do	your	own	experimenting	with	these	values	later
until	the	game	feels	right	for	you!

Adding	the	Methods

The	Player	class	needs	methods	for	updating	the	Player’s	position,	updating	the
position	of	the	rectangles,	performing	a	jump,	performing	a	duck,	and	handling
collision.	The	methods	shown	below	will	implement	these	behaviors.	Add	them
to	the	Player	class:

public	void	update(float	delta)	{

								if	(duckDuration	>	0	&&	isDucked)	{

																duckDuration	-=	delta;

								}	else	{

																isDucked	=	false;

																duckDuration	=	.6f;

								}

								if	(!isGrounded())	{

																velY	+=	ACCEL_GRAVITY	*	delta;

								}	else	{

																y	=	406	-	height;

																velY	=	0;

								}

								y	+=	velY	*	delta;

								updateRects();

}

public	void	updateRects()	{

								rect.setBounds(x	+	10,	y,	width	-	20,	height);	//	Should	have	an	error

								duckRect.setBounds(x,	y	+	20,	width,	height	-	20);	//	Should	have	an	error

}

public	void	jump()	{

								if	(isGrounded())	{

																Resources.onjump.play();

																isDucked	=	false;

																duckDuration	=	.6f;

																y	-=	10;

																velY	=	JUMP_VELOCITY;

																updateRects();

								}

}

public	void	duck()	{

								if	(isGrounded())	{

																isDucked	=	true;

								}

}

public	void	pushBack(int	dX)	{

Resources.hit.play();

								x	-=	dX;

								if	(x	<	-width	/	2)	{

																isAlive	=	false;

								}

								rect.setBounds((int)	x,	(int)	y,	width,	height);

}

public	boolean	isGrounded()	{

								return	rect.intersects(ground);

}

When	the	five	methods	have	been	added	as	shown	above,	you	will	have	an	error
inside	your	updateRects()	method	as	shown	in	Figure	6-13.	Ignore	this,	and	we
will	discuss	it	later.

Figure	6-13	Error	in	updateRects()

Discussing	the	update()	and	isGrounded()methods:

You	 may	 notice	 that	 the	 update()	 method	 is	 different	 from	 those	 found	 in
Chapters	5.	This	is	because	it	has	accepts	parameter	called	delta,	which	it	will	be
receiving	 from	 the	 PlayState	 class.	 In	 the	 first	 if-statement	 of	 the	 update()
method,	 we	 check	 if	 the	 player	 is	 ducked	 and	 decrement	 duckDuration	 if
necessary.

Next,	we	check	if	the	player	is	in	the	middle	of	a	jump	by	checking	if	the	value
of	isGrounded()	returns	false	(the	isGrounded()	method,	as	shown,	returns	true	if
the	primary	rectangle	rect	collides	with	the	ground	rectangle)!	If	the	player	is	in
the	air—i.e.	not	grounded—we	apply	gravity.

With	 velocity	 updated,	 we	 update	 our	 player’s	 y-position.	 Note	 that	 we	 must
scale	velY	by	delta	 in	order	 to	calculate	 the	 true	velocity	as	determined	by	 the
amount	of	 time	that	has	passed	since	the	previous	iteration	of	update().	This	 is
how	 we	 are	 able	 to	 implement	 framerate-independent	 movement	 for	 our
character!

Discussing	the	updateRects()	Method:

At	the	end	of	update()—more	generally,	whenever	the	player’s	position	variables
have	 been	 modified,	 we	 must	 call	 the	 updateRects()	 method	 to	 update	 the
position	of	our	bounding	rectangles.

Refer	 to	 the	 error	message	 shown	 in	 Figure	 6-13.	 Right	 now,	 the	 compiler	 is
getting	 angry	 because	 the	 setBounds()	 method	 inside	 the	 Rectangle	 class
requests	four	 integer	values,	but	you	have	allegedly	provided	a	combination	of
floats	and	integers.

Casting	a	Value

As	we’ve	learned	in	Chapter	1,	adding	an	integer	to	a	float	results	in	a	float.	As
such,	 x	 +	 10	 is	 not	 a	 valid	 integer	 input.	 There	 are	 a	 couple	 of	 ways	 of
converting	a	float	into	an	integer,	and	the	simplest	way	is	shown	in	bold	in	the
following	example:

rect.setBounds((int)	x	+	10,	(int)	y,	width	-	20,	height);

The	addition	of	(int)	in	front	of	a	float	value	or	variable	allows	you	to	convert	it
into	an	 integer.	This	process	 is	called	casting	and	has	 the	effect	of	 flooring	(or
rounding	down)	a	float	value	to	the	nearest	lesser	integer	value.

As	 a	 rule,	 casting	 is	 necessary	when	you	have	 a	 chance	of	 losing	precision	or
information.	In	the	case	of	converting	a	float—say	3.14—into	the	integer	3,	you
would	lose	two	decimal	points	of	precision.	You	must	acknowledge	this	risk	by
explicitly	 adding	 (int).	When	 converting	 from	 an	 integer	 to	 a	 float,	 however,
casting	is	not	necessary.	Converting	from	the	integer	3	to	the	float	3.00	does	not
result	in	a	loss	of	precision,	so	you	are	safe	from	data	loss.	You	do	not	have	to
add	(float).

Now	that	you	know	how	to	cast	a	float	into	an	integer,	fix	the	errors	inside	your
updateRects()	method.	 If	 you	 get	 stuck,	 the	 solution	 is	 shown	below,	with	 the
changes	in	bold:

public	void	updateRects()	{

								rect.setBounds((int)	x	+	10,	(int)	y,	width	-	20,	height);

								duckRect.setBounds((int)	x,	(int)	y	+	20,	width,	height	-	20);

}

Note:
Casting	a	variable	does	not	change	the	variable’s	original	value;	it	simply	creates
a	new,	modified	copy.	Consider	the	following:	float	pi	=	3.14f;
int	rottenPi	=	(int)	pi;

If	 you	were	 to	 execute	 those	 two	 lines	 of	 code,	 the	 value	 of	 pi	would	 remain
3.14f.	 The	 value	 of	 rottenPi	 would	 be	 3	 (casting	 always	 rounds	 down	 to	 the
nearest	lesser	integer	value).

Discussing	the	duck(),	jump()	and	pushBack()	Methods

Let’s	 finish	 up	 our	 discussion	 of	 the	methods	 by	 talking	 about	 the	 remaining
methods.	 The	 duck()	 method	 is	 very	 simple.	 It	 checks	 if	 Ellio	 is	 currently
grounded.	If	he’s	not	grounded,	this	means	that	he	is	in	a	state	of	jump,	thus	we
do	nothing.	If	he	is	grounded,	we	set	the	boolean	isDucked	to	true.	Throughout
gameplay	PlayState	will	access	this	value	to	determine	which	image	to	draw	for
our	Player	(ducked,	running	or	jumping).

The	method	jump()	will	be	called	when	the	player	presses	the	spacebar.	To	make
Ellio	 jump,	 the	 method	 first	 checks	 if	 Ellio	 isGrounded()	 before	 sending	 him
upwards.	 When	 jumping,	 we	 change	 isDucked	 to	 false	 and	 reset	 the
duckDuration	to	indicate	that	the	player	is	no	longer	ducking.

The	 pushBack()	 method,	 called	 when	 Ellio	 collides	 with	 a	 block,	 accepts	 a
parameter	called	dX.	This	dX	value	is	the	amount	of	pixels	by	which	the	player
should	get	knocked	back	on	collision.	After	the	knockback,	if	we	determine	that
more	than	half	of	the	player	is	off	of	the	screen,	we	set	isAlive	to	false,	signaling
to	the	PlayState	that	the	game	is	over.

Adding	the	Getters

To	finish	the	Player	class,	we	just	have	to	provide	public	getter	methods	so	that
our	PlayState	can	access	our	Player	object’s	variables	for	rendering	and	collision
detection,	among	other	 tasks.	Add	 the	 following	getter	methods	 to	your	Player
class:

public	boolean	isDucked()	{

								return	isDucked;

}

public	float	getX()	{

								return	x;

}

public	float	getY()	{

								return	y;

}

public	int	getWidth()	{

								return	width;

}

public	int	getHeight()	{

								return	height;

}

public	int	getVelY()	{

								return	velY;

}

public	Rectangle	getRect()	{

								return	rect;

}

public	Rectangle	getDuckRect()	{

								return	duckRect;

}

public	Rectangle	getGround()	{

								return	ground;

}

public	boolean	isAlive()	{

								return	isAlive;

}

public	float	getDuckDuration()	{

								return	duckDuration;

}

The	completed	Player	class	is	provided	in	listing	6.10.

*****	Listing	6.10	The	Player	Class	(Completed)		*****

001	package	com.jamescho.game.model;

002

003	import	java.awt.Rectangle;

004

005	public	class	Player	{

006					private	float	x,	y;

007					private	int	width,	height,	velY;

008					private	Rectangle	rect,	duckRect,	ground;

009

010					private	boolean	isAlive;

011					private	boolean	isDucked;

012					private	float	duckDuration	=	.6f;

013

014					private	static	final	int	JUMP_VELOCITY	=	-600;

015					private	static	final	int	ACCEL_GRAVITY	=	1800;

016

017					public	Player(float	x,	float	y,	int	width,	int	height)	{

018													this.x	=	x;

019													this.y	=	y;

020													this.width	=	width;

021													this.height	=	height;

022

023													ground	=	new	Rectangle(0,	405,	800,	45);

024													rect	=	new	Rectangle();

025													duckRect	=	new	Rectangle();													

026													isAlive	=	true;

027													isDucked	=	false;

028													updateRects();	

029					}

030

031					public	void	update(float	delta)	{

032

033													if	(duckDuration	>	0	&&	isDucked)	{

034																					duckDuration	-=	delta;

035													}	else	{

036																					isDucked	=	false;

037																					duckDuration	=	.6f;

038													}

039

040													if	(!isGrounded())	{

041																					velY	+=	ACCEL_GRAVITY	*	delta;

042													}	else	{

043																					y	=	406	-	height;

044																					velY	=	0;

045													}

046

047													y	+=	velY	*	delta;

048													updateRects();

049					}

050

051					public	void	updateRects()	{

052													rect.setBounds((int)x	+	10,	(int)y,	width	-	20,	height);	

053													duckRect.setBounds((int)x,	(int)y	+	20,	width,	height	-	20);	

054					}

055

056					public	void	jump()	{

057													if	(isGrounded())	{

058																					Resources.onjump.play();

059																					isDucked	=	false;

060																					duckDuration	=	.6f;

061																					y	-=	10;

062																					velY	=	JUMP_VELOCITY;

063																					updateRects();

064													}

065					}

066

067					public	void	duck()	{

068													if	(isGrounded())	{

069																					isDucked	=	true;

070													}

071					}

072

073					public	void	pushBack(int	dX)	{

074													Resources.hit.play();

075													x	-=	dX;

076													if	(x	<	-width	/	2)	{

077																					isAlive	=	false;

078													}

079													rect.setBounds((int)	x,	(int)	y,	width,	height);

080					}

081

082					public	boolean	isGrounded()	{

083													return	rect.intersects(ground);

084					}

085

086					public	boolean	isDucked()	{

087													return	isDucked;

088					}

089

090					public	float	getX()	{

091													return	x;

092					}

093

094					public	float	getY()	{

095													return	y;

096					}

097

098					public	int	getWidth()	{

099													return	width;

100					}

101

102					public	int	getHeight()	{

103													return	height;

104					}

105

106					public	int	getVelY()	{

107													return	velY;

108					}

109

110					public	Rectangle	getRect()	{

111													return	rect;

112					}

113

114					public	Rectangle	getDuckRect()	{

115													return	duckRect;

116					}

117

118					public	Rectangle	getGround()	{

119													return	ground;

120					}

121

122					public	boolean	isAlive()	{

123													return	isAlive;

124					}

125

126					public	float	getDuckDuration()	{

127													return	duckDuration;

128					}							

129	}

Designing	and	Implementing	the	Cloud

Refer	 to	 Figure	 6-1,	 and	 you	 will	 notice	 two	 beautiful	 cloud	 images	 in	 the
background.	These	are	there	to	help	create	a	sense	of	depth	in	our	game	(and	for
aesthetic	purposes).	When	coupled	with	the	unmoving	sun	(also	shown	in	Figure
6-1),	the	slow-moving	clouds	will	add	a	layer	of	immersion.

Note:
This	is	a	simple	implementation	of	parallax	scrolling,	which	creates	an	illusion
of	depth	in	a	2D	game	by	scrolling	objects	closer	to	the	camera	at	a	faster	speed
than	objects	farther	away.

These	 clouds	 will	 need	 to	 be	 represented	 at	 some	 position	 and	 will	 also	 be
moving	 left	 (you	 should	 be	 thinking	 about	 the	 variables	we	will	 be	 creating).
When	the	clouds	have	scrolled	off	of	the	screen,	we	will	reset	their	positions	to
the	right,	so	that	they	can	scroll	back	onto	the	screen.

Following	this	description,	the	implementation	of	the	Cloud	class	is	very	simple.
Create	 the	Cloud	 class	 inside	 com.jamescho.game.model,	 and	 implement	 it	 as
shown	in	Listing	6.11	(paying	attention	to	the	import	statement).

*****	Listing	6.11	The	Cloud	class	(Completed)	*****

package	com.jamescho.game.model;

import	com.jamescho.framework.util.RandomNumberGenerator;

public	class	Cloud	{

								private	float	x,	y;

								private	static	final	int	VEL_X	=	-15;

								public	Cloud(float	x,	float	y)	{

																this.x	=	x;

																this.y	=	y;

								}

								public	void	update(float	delta)	{

																x	+=	VEL_X	*	delta;

																if	(x	<=	-200)	{

																								//	Reset	to	the	right

																								x	+=	1000;

																								y	=	RandomNumberGenerator.getRandIntBetween(20,	100);

																}

								}

								public	float	getX()	{

																return	x;

								}

								public	float	getY()	{

																return	y;

								}

}

The	 Cloud	 class’s	 update()	 method	 accepts	 a	 delta	 value,	 as	 did	 the	 update()
method	 inside	 Player.	 This	 allows	 us	 to	 incorporate	 framerate-independent
movement	for	our	clouds.	This	may	seem	pointless	(the	game	won’t	break	if	the
cloud	speed	is	dependent	on	framerate),	but	people	do	notice	these	details	when
playing	games,	and	you	should	always	provide	care	even	for	the	small	details.

Note	 that	 when	 the	 cloud	 is	 no	 longer	 visible,	 we	 reset	 it	 by	 sending	 it	 an
arbitrary	1000	pixels	to	the	right	and	giving	a	random	y-position.	Once	reset,	the
cloud	will	continue	to	scroll	left,	appearing	on	the	screen	again	as	a	“new”	cloud
and	disappearing	to	the	left	to	repeat	this	process.	This	is	object-reuse	at	work.

Designing	and	Implementing	the	Block	Class

The	 logic	 behind	 the	 Block	 class	 will	 be	 slightly	 more	 complicated	 than	 that
behind	 the	Cloud	class,	but	not	by	much.	Block	will	 share	many	properties	of
Cloud,	 such	 as	position.	Each	Block	object	will	 behave	 similarly	 to	 the	Cloud
objects,	scrolling	to	the	left	and	resetting	to	the	right.	Upon	resetting,	we	will	use
our	RandomNumberGenerator	 class	 to	determine	whether	 the	Block	 should	be
an	upper	block	(to	be	avoided	by	ducking)	or	a	 lower	block	(to	be	avoided	by
jumping).

One	thing	that	a	Block	object	can	do	that	a	Cloud	object	cannot	do,	however,	is
collide	with	the	player.	We	will	create	a	bounding	rectangle	(just	like	we	did	for
our	 Ball	 in	 LoneBall),	 and	 use	 this	 to	 check	 for	 collision	 with	 the	 bounding
rectangle	of	the	Player.	This	logic	will	be	handled	inside	the	PlayState.

In	our	game,	it	is	very	important	that	all	of	the	Block	objects	work	together.	As
such,	the	velocity	value	used	inside	the	update()	method	will	be	passed	in	from
the	PlayState	 to	ensure	 that	every	Block	object	has	 the	same	speed.	Create	 the
Block	class	inside	com.jamescho.game.model	as	shown	in	listing	6.12.

*****	Listing	6.12	The	Block	class	(Completed)	*****

01	package	com.jamescho.game.model;

02

03	import	java.awt.Rectangle;

04

05	import	com.jamescho.framework.util.RandomNumberGenerator;

06

07	public	class	Block	{

08						private	float	x,	y;

09						private	int	width,	height;

10						private	Rectangle	rect;

11						private	boolean	visible;

12

13						private	static	final	int	UPPER_Y	=	275;

14						private	static	final	int	LOWER_Y	=	355;

15

16						public	Block(float	x,	float	y,	int	width,	int	height)	{

17														this.x	=	x;

18														this.y	=	y;

19														this.width	=	width;

20														this.height	=	height;

21														rect	=	new	Rectangle((int)	x,	(int)	y,	width,	height);

22														visible	=	false;

23						}

24

25						//	Note:	Velocity	value	will	be	passed	in	from	PlayState!

26						public	void	update(float	delta,	float	velX)	{

27														x	+=	velX	*	delta;

28														if	(x	<=	-50)	{

29																						reset();

30														}

31														updateRect();

32						}

33

34						public	void	updateRect()	{

35														rect.setBounds((int)	x,	(int)	y,	width,	height);

36						}

37

38						public	void	reset()	{

39														visible	=	true;

40														//	1	in	3	chance	of	becoming	an	Upper	Block

41														if	(RandomNumberGenerator.getRandInt(3)	==	0)	{

42																						y	=	UPPER_Y;

43														}	else	{

44																						y	=	LOWER_Y;

45														}

46

47																						x	+=	1000;

48						}

49

50						public	void	onCollide(Player	p)	{

51														visible	=	false;

52														p.pushBack(30);

53						}

54

55						public	float	getX()	{

56														return	x;

57						}

58

59						public	float	getY()	{

60														return	y;

61						}

62

63						public	boolean	isVisible()	{

64														return	visible;

65						}

66

67						public	Rectangle	getRect()	{

68														return	rect;

69						}

70

71	}

The	Block	class	in	listing	6.12	represents	a	standard	game	object	with	a	position
and	 dimensions.	 There	 are	 not	 many	 surprises	 here,	 but	 I	 will	 make	 a	 few
comments	regarding	the	details	of	the	implementation.

Resetting:	As	we’ve	done	with	Cloud,	we	incorporate	delta	 inside	our	update()
method	 and	 reset	when	 our	 block	 leaves	 the	 screen,	which	we	 consider	 to	 be
when	x	<=	-50.	This	value	ensures	that,	in	the	case	the	player	is	hanging	on	for
dear	 life	 at	 edge	 of	 the	 left	 side	 of	 the	 screen	 like	 shown	 in	 Figure	 6-14,	 the
block	does	not	reset	too	early	after	leaving	the	screen	and	make	dodging	easier
for	the	player.

Figure	6-14	Don't	Reset	too	Early!

Each	 block	 is	 reset	 by	moving	 a	 1000	 pixels	 to	 the	 right.	 This	 value	 is	NOT
arbitrary.	 In	Ellio,	we	will	create	 five	Block	objects	 that	are	evenly	spaced	out
(each	Block	object	will	be	200	pixels	away	from	another,	as	shown	in	Figure	6-
15).

Figure	6-15	Block	Objects	are	Evenly	Spaced	(200px)

Once	a	block	is	no	longer	visible,	it	will	be	recycled	by	being	sent	to	the	right,
creating	the	illusion	that	there	is	an	endless	chain	of	blocks.	This	means	that	to
maintain	this	even	spacing,	each	block	has	to	reset	1000	pixels	to	the	right	of	its
current	position	once	 it	 leaves	 the	 left	 side	of	 the	 screen.	 (If	block	1	 is	at	 -50,
block	2	is	at	150,	block	3	is	at	350,	block	4	is	at	550	and	block	5	is	at	750.	This
means	that	block	1	should	reset	at	950	(+1000)	to	set	a	200	pixel	gap	with	block
5).

Colliding:	When	the	player	collides	with	a	block,	the	player	should	get	knocked
back	 30	 pixels.	 We	 do	 this	 by	 calling	 the	 pushBack()	 method	 of	 the	 Player
object.	 Once	 this	 happens,	 the	 block	 that	 has	 sent	 the	 player	 away	 should
probably	not	collide	with	the	player	again.

There	are	many	ways	of	implementing	this	behavior.	One	way	would	be	to	take
the	 traditional	 approach	 found	 in	many	old	platformers:	make	 the	player	blink
and	become	 immune	 to	damage	 for	a	 short	period	of	 time.	The	way	Ellio	will
handle	this	is	by	making	the	block	invisible	(so	that	it	cannot	damage	the	player
multiple	 times).	 For	 this	 purpose,	 we	 have	 created	 a	 boolean	 variable	 called
visible,	which	will	become	false	on	collision	and	true	on	reset.

Our	three	model	classes	have	been	designed	and	fully	implemented!	All	that	is
left	is	for	us	to	implement	the	state	classes.

Note:	If	you	are	having	problems	with	any	of	the	classes	at	this	point,	you	can
download	the	source	code	at	jamescho7.com/book/chapter6/checkpoint3.

Designing	 and	 Implementing	 the	 Supporting	 State
Classes

The	GameOverState

We	will	design	and	implement	the	easiest	state	first.	The	GameOverState	will	be
a	simple	score	screen,	as	shown	in	Figure	6-16.

Figure	6-16	Screenshot	of	GameOverState

The	GameOverState	will	be	created	 inside	 the	PlayState	when	 the	player	 loses
the	game.	As	such,	we	are	able	to	create	a	custom	constructor	for	it	and	pass	in
the	 player’s	 score	 during	 the	 transition.	 This	 is	 how	 we	 can	 access	 a	 value
created	in	one	state	from	another	state!

Create	 the	 GameOverState	 class	 inside	 the	 com.jamescho.game.state	 package.
Extend	 State	 (com.jamescho.game.state.State),	 and	 add	 the	 unimplemented
methods.	Your	GameOverState	should	now	look	like	this:

package	com.jamescho.game.state;

import	java.awt.Graphics;

import	java.awt.event.KeyEvent;

import	java.awt.event.MouseEvent;

public	class	GameOverState	extends	State	{

								@Override

								public	void	init()	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	update(float	delta)	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	render(Graphics	g)	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	onClick(MouseEvent	e)	{

																//	TODO	Auto-generated	method	stub						

								}

								@Override

								public	void	onKeyPress(KeyEvent	e)	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	onKeyRelease(KeyEvent	e)	{

																//	TODO	Auto-generated	method	stub

								}

}

We	will	need	to	create	two	new	variables:	one	for	the	score	and	one	for	the	font.
Declare	them	as	shown,	importing	java.awt.Font:

private	String	playerScore;

private	Font	font;

Initialize	 these	 in	 a	 custom	 constructor	 as	 shown	 below.	 Notice	 that	 the
following	constructor	accepts	a	playerScore	integer.	As	mentioned,	This	will	be
passed	in	from	the	PlayState	as	GameOverState	is	constructed.

public	GameOverState(int	playerScore)	{

								this.playerScore	=	playerScore	+	"";	//	Convert	int	to	String

								font	=	new	Font("SansSerif",	Font.BOLD,	50);

}

Next,	we	will	use	 these	 two	variables	 to	display	 the	 score	 to	 the	 screen,	along
with	some	additional	 information.	Add	 the	code	shown	below	 to	your	 render()
method	(importing	java.awt.Color	and	com.jamescho.game.main.GameMain):

@Override

public	void	render(Graphics	g)	{

								g.setColor(Color.ORANGE);

								g.fillRect(0,	0,	GameMain.GAME_WIDTH,	GameMain.GAME_HEIGHT);

								g.setColor(Color.DARK_GRAY);

								g.setFont(font);

								g.drawString("GAME	OVER",	257,	175);

								g.drawString(playerScore,	385,	250);

								g.drawString("Press	any	key.",	240,	350);

}

Finally,	we	update	the	onKeyPress()	method,	so	that	any	key	press	will	take	us	to
the	MenuState:

@Override

public	void	onKeyPress(KeyEvent	e)	{

								setCurrentState(new	MenuState());

}

The	completed	GameOverState	class	is	shown	in	listing	6.13.

*****	Listing	6.13	The	GameOverState	Class	(Completed)	*****

01	package	com.jamescho.game.state;

02

03	import	java.awt.Color;

04	import	java.awt.Font;

05	import	java.awt.Graphics;

06	import	java.awt.event.KeyEvent;

07	import	java.awt.event.MouseEvent;

08

09	import	com.jamescho.game.main.GameMain;

10

11	public	class	GameOverState	extends	State	{

12

13						private	String	playerScore;

14						private	Font	font;

15

16						public	GameOverState(int	playerScore)	{

17														this.playerScore	=	playerScore	+	"";	//	Convert	int	to	String

18														font	=	new	Font("SansSerif",	Font.BOLD,	50);

19						}

20														

21						@Override

22						public	void	init()	{

23														//	TODO	Auto-generated	method	stub

24						}

25

26						@Override

27						public	void	update(float	delta)	{

28														//	TODO	Auto-generated	method	stub

29						}

30

31						@Override

32						public	void	render(Graphics	g)	{

33														g.setColor(Color.ORANGE);

34														g.fillRect(0,	0,	GameMain.GAME_WIDTH,	GameMain.GAME_HEIGHT);

35														g.setColor(Color.DARK_GRAY);

36														g.setFont(font);

37														g.drawString("GAME	OVER",	257,	175);

38														g.drawString(playerScore,	385,	250);

39														g.drawString("Press	any	key.",	240,	350);

40						}

41

42						@Override

43						public	void	onClick(MouseEvent	e)	{

44														//	TODO	Auto-generated	method	stub						

45						}

46

47						@Override

48						public	void	onKeyPress(KeyEvent	e)	{

49														setCurrentState(new	MenuState());

50						}

51

52						@Override

53						public	void	onKeyRelease(KeyEvent	e)	{

54														//	TODO	Auto-generated	method	stub

55						}

56

57	}

The	MenuState

As	shown	in	Figure	6-8,	we	will	be	implementing	a	selection	arrow	in	our	menu
screen	 to	allow	the	player	 to	either	play	 the	game	or	exit.	This	creates	a	 fancy
effect,	but	the	code	behind	it	is	pretty	simple.

To	 represent	 the	 currently	 selected	 option	 (PLAY	or	EXIT),	we	will	 create	 an
integer	 called	 currentSelection	 and	 initialize	 it	with	 a	value	of	 zero.	When	 the
player	presses	 the	up	 and	down	arrow	keys,	 the	value	of	 currentSelection	will
move	between	0	and	1	(0	for	up,	1	for	down).

The	 value	 of	 currentSelection	 will	 be	 used	 to	 determine	 where	 the	 selection
arrow	 image	will	 be	 drawn	on	 every	 frame.	 If	 currentSelection	has	 a	 value	 of
zero,	we	will	 draw	 the	 arrow	next	 to	 the	PLAY	button.	 If	 the	 currentSelection
has	a	value	of	one,	we	will	draw	the	arrow	next	to	the	EXIT	button.

When	 the	 player	 presses	 the	 spacebar	 or	 the	 enter	 key,	 we	 will	 check	 the
currentSelection	 to	 perform	 the	 selected	 action.	 For	 PLAY	 this	 will	 involve
transitioning	 to	 the	 soon-to-be-created	 PlayState.	 For	EXIT	we	will	 be	 calling
our	Game’s	exit()	method	to	terminate	the	game	loop	and	the	JFrame.

Open	 your	MenuState	 class	 inside	 com.jamescho.game.state,	 and	modify	 it	 as
shown	 in	 in	 listing	 6.14	 to	 fully	 implement	 the	 behavior	 described.	 Changes
should	be	made	 to	 the	 import	 statements,	 the	 init(),	 render()	 and	onKeyPress()
methods.

*****	Listing	6.14	The	MenuState	Class	(Completed)	*****

01	package	com.jamescho.game.state;

02

03	import	java.awt.Graphics;

04	import	java.awt.event.KeyEvent;

05	import	java.awt.event.MouseEvent;

06

07	import	com.jamescho.game.main.GameMain;

08	import	com.jamescho.game.main.Resources;

09

10	public	class	MenuState	extends	State{

11

12						private	int	currentSelection	=	0;

13														

14						@Override

15						public	void	init()	{

16														//	Do	Nothing											

17						}

18

19						@Override

20						public	void	update(float	delta){

21														//	Do	Nothing

22						}

23

24						@Override

25						public	void	render(Graphics	g)	{

26														g.drawImage(Resources.welcome,	0,	0,	null);					

27														if	(currentSelection	==	0)	{

28																						g.drawImage(Resources.selector,	335,	241,	null);

29														}	else	{

30																						g.drawImage(Resources.selector,	335,	291,	null);

31														}

32						}

33

34						@Override

35						public	void	onClick(MouseEvent	e)	{

36														//	Do	Nothing

37						}

38

39						@Override

40						public	void	onKeyPress(KeyEvent	e)	{

41														int	key	=	e.getKeyCode();

42																						

43														if	(key	==	KeyEvent.VK_SPACE	||	key	==	KeyEvent.VK_ENTER)	{

44																						if	(currentSelection	==	0)	{

45																														setCurrentState(new	PlayState());

46																						}	else	if	(currentSelection	==	1)	{

47																														GameMain.sGame.exit();

48																						}

49														}	else	if	(key	==	KeyEvent.VK_UP)	{

50																						currentSelection	=	0;

51														}	else	if	(key	==	KeyEvent.VK_DOWN)	{

52																						currentSelection	=	1;

53														}

54

55						}

56

57						@Override

58						public	void	onKeyRelease(KeyEvent	e)	{

59														//	Do	Nothing

60						}

61

62	}

Designing	and	Implementing	the	PlayState

We	have	an	error	 inside	onKeyPress()	of	 the	MenuState	because	 the	PlayState
class	 has	 not	 been	 created	 yet.	 Create	 this	 class	 inside	 the
com.jamescho.game.state	 package.	 Extend	 State
(com.jamescho.game.state.State),	 and	 add	 the	 unimplemented	 methods.	 Your
PlayState	should	look	as	shown	below:

package	com.jamescho.game.state;

import	java.awt.Graphics;

import	java.awt.event.KeyEvent;

import	java.awt.event.MouseEvent;

public	class	PlayState	extends	State{

								@Override

								public	void	init()	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	update(float	delta)	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	render(Graphics	g)	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	onClick(MouseEvent	e)	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	onKeyPress(KeyEvent	e)	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	onKeyRelease(KeyEvent	e)	{

																//	TODO	Auto-generated	method	stub

								}

}

The	Variables	of	PlayState

Being	the	game’s	core	state,	the	PlayState	needs	to	have	many	variables.	Declare
them	 as	 shown	 below	 (I	 will	 not	 explicitly	 tell	 you	 what	 classes	 to	 import
throughout	this	section!	Practice	doing	this	on	your	own):

private	Player	player;

private	ArrayList<Block>	blocks;

private	Cloud	cloud,	cloud2;

private	Font	scoreFont;

private	int	playerScore	=	0;

private	static	final	int	BLOCK_HEIGHT	=	50;

private	static	final	int	BLOCK_WIDTH	=	20;

private	int	blockSpeed	=	-200;

private	static	final	int	PLAYER_WIDTH	=	66;

private	static	final	int	PLAYER_HEIGHT	=	92;

The	 purpose	 of	 these	 variables	 are	 indicated	 by	 their	 nomenclature.	 Study	 it
carefully.	 Note	 that	 we	 have	 an	 ArrayList	 of	 Blocks	 rather	 than	 five	 Block
variables.	 If	 you	 need	 a	 refresher	 on	 ArrayLists,	 please	 see	 Chapter	 2’s
discussion	(page	66)!

Note:
A	 game’s	 difficulty	 should	 not	 be	 static.	 By	 making	 the	 blockSpeed	 faster
(making	it	more	negative),	we	will	be	making	our	game	harder	with	time.	Rather
than	 having	 some	 kind	 of	 timer,	 however,	 we	 will	 simply	 increment	 the
playerScore	 variable	 by	 1	 on	 every	 frame	 and	 use	 this	 value	 to	 determine	 the
difficulty.	Every	500	frames	(that	is,	when	playerScore	is	divisible	by	500),	we
will	make	the	blocks	move	faster.

Initializing	the	Variables

Initialize	 the	newly-created	variables	by	making	 the	following	changes	 to	your
init()	method:

@Override

public	void	init()	{

								player	=	new	Player(160,	GameMain.GAME_HEIGHT	-	45	-	PLAYER_HEIGHT,

																																PLAYER_WIDTH,	PLAYER_HEIGHT);

								blocks	=	new	ArrayList<Block>();

								cloud	=	new	Cloud(100,	100);

								cloud2	=	new	Cloud(500,	50);

								scoreFont	=	new	Font("SansSerif",	Font.BOLD,	25);

								for	(int	i	=	0;	i	<	5;	i++)	{

																Block	b	=	new	Block(i	*	200,	GameMain.GAME_HEIGHT	-	95,

																																								BLOCK_WIDTH,	BLOCK_HEIGHT);

																blocks.add(b);

								}

	}

The	initialization	of	the	variables	is	straightforward,	so	I	will	leave	you	to	study
the	 method	 on	 your	 own.	 Note	 that	 the	 (x,	 y)	 coordinates	 have	 been
experimentally	determined.	 If	you	get	stuck	with	 the	for	 loop,	 try	 to	figure	out
how	 many	 times	 the	 for	 loop	 would	 run,	 and	 determine	 what	 the	 (x,	 y)
coordinates	of	each	new	Block	object	will	be.	You	should	see	a	pattern	in	the	x
values.	(Hint	see	Figure	6-15).

Adding	User	Input

Recall	 that	 Ellio	 will	 feature	 a	 2-button	 control	 scheme.	 This	 is	 easy	 to	 add!
Change	your	onKeyPress()	method,	so	that	it	looks	like	this:

@Override

public	void	onKeyPress(KeyEvent	e)	{

								if	(e.getKeyCode()	==	KeyEvent.VK_SPACE)	{

																player.jump();

								}	else	if	(e.getKeyCode()	==	KeyEvent.VK_DOWN)	{

																player.duck();

								}

}

Updating	the	PlayState

Now	that	we	have	initialized	our	variables,	we	must	update	them	in	every	frame.
Look	at	the	code	below,	and	make	the	changes	shown	to	your	update()	method:

@Override

public	void	update(float	delta)	{

								if	(!player.isAlive())	{

																setCurrentState(new	GameOverState(playerScore	/	100));

								}

								playerScore	+=	1;

								if	(playerScore	%	500	==	0	&&	blockSpeed	>	-280)	{

																blockSpeed	-=	10;

								}

								cloud.update(delta);

								cloud2.update(delta);

								Resources.runAnim.update(delta);

								player.update(delta);

								updateBlocks(delta);	//	Should	give	an	error

}

Ignore	 the	 error	 regarding	 updateBlocks()	 for	 now.	 You	 will	 find	 that	 the
update()	method	 is	very	 simple.	We	check	 if	 the	player	 is	dead,	 increment	 the
score,	make	 the	blockSpeed	faster	 (given	some	conditions	are	met)	and	update
the	game	objects.

One	 thing	 you	 are	 seeing	 for	 the	 first	 time	 is	 the	 Animation
(Resources.runAnim)	 being	 updated.	 By	 passing	 in	 delta	 into	 the	 animation’s
update()	method,	it	begins	to	iterate	through	its	frames.	If	we	call	this	method	on
every	 frame,	 requesting	 Resources.runAnim	 to	 render	 will	 draw	 the	 correct
frame	later	on.

We	will	 create	 a	 separate	 updateBlocks()	method,	 because	 it	 requires	multiple
steps.	Add	this	method	to	your	code:

private	void	updateBlocks(float	delta)	{

			for	(Block	b	:	blocks)	{

b.update(delta,	blockSpeed);

								if	(b.isVisible())	{

											if	(player.isDucked()	&&	b.getRect().intersects(player.getDuckRect()))	{

																								b.onCollide(player);

											}	else	if	(!player.isDucked()	&&	b.getRect().intersects(player.getRect()))	{

																								b.onCollide(player);

											}

								}

			}

}

Note:
The	syntax	shown	in	the	previous	example	is	called	a	foreach	loop:

for	(Blocks	b:	blocks)	{

			

}

It	iterates	through	every	element	inside	block	one	at	a	time.	It	is	equivalent	to	the
following:

for	(int	i	=	0;	i	<	blocks.size();	i++)	{

				Block	b	=	blocks.get(i);

			

}

Inside	the	updateBlocks()	method,	we	use	a	foreach	loop	to	iterate	through	every
Block	object	inside	the	ArrayList	blocks.	Each	Block	is	thus	updated.	Note	that
we	 pass	 in	 the	 same	 blockSpeed	 to	 every	 Block	 object	 for	 reasons	 discussed
during	its	implementation.

After	 updating	 the	 blocks,	 we	 check	 if	 any	 of	 them	 collide	 with	 the	 player.
Collision	is	only	possible	in	one	of	two	conditions,	given	that	the	block	is	visible
(Start	with	this	general	case.	There	is	no	need	to	check	for	collision	if	the	block
is	invisible.	Doing	this	minimizes	the	CPU’s	workload	as	per	our	discussion	on
optimization!):

If	the	player	is	ducked	and	his	Rectangle	duckRect	intersects	the	block.
o	If	the	player	is	not	ducked	and	his	Rectangle	rect	intersects	the	block.

If	collision	is	detected,	we	simply	call	b.onCollide(player).

Rendering	the	PlayState

After	 updating	 every	 game	 object,	 we	 must	 render	 them	 to	 the	 screen	 at	 the
appropriate	location.	Add	the	following	code	to	render():

@Override

public	void	render(Graphics	g)	{

								g.setColor(Resources.skyBlue);

								g.fillRect(0,	0,	GameMain.GAME_WIDTH,	GameMain.GAME_HEIGHT);

								renderPlayer(g);

								renderBlocks(g);

								renderSun(g);

								renderClouds(g);

								g.drawImage(Resources.grass,	0,	405,	null);

								renderScore(g);

}

Rather	than	calling	all	of	the	individual	render	and	draw	calls	inside	one	method,
we	split	things	into	smaller	chunks.	Add	these	new	methods	below	your	render
method:

private	void	renderScore(Graphics	g)	{

			g.setFont(scoreFont);

			g.setColor(Color.GRAY);

			g.drawString(""	+	playerScore	/	100,	20,	30);

}

private	void	renderPlayer(Graphics	g)	{

			if	(player.isGrounded())	{

					if	(player.isDucked())	{

									g.drawImage(Resources.duck,	(int)	player.getX(),(int)	player.getY(),	null);

					}	else	{

									Resources.runAnim.render(g,	(int)	player.getX(),(int)	player.getY(),	

									player.getWidth(),player.getHeight());

					}

			}	else	{

								g.drawImage(Resources.jump,	(int)	player.getX(),

																(int)	player.getY(),	player.getWidth(),	player.getHeight(),null);

			}

}

private	void	renderBlocks(Graphics	g)	{

			for	(Block	b	:	blocks)	{

								if	(b.isVisible())	{

																g.drawImage(Resources.block,	(int)	b.getX(),	(int)	b.getY(),BLOCK_WIDTH,	

																BLOCK_HEIGHT,	null);

								}

			}

}

private	void	renderSun(Graphics	g)	{

			g.setColor(Color.orange);

			g.fillOval(715,	-85,	170,	170);

			g.setColor(Color.yellow);

			g.fillOval(725,	-75,	150,	150);

}

private	void	renderClouds(Graphics	g)	{

			g.drawImage(Resources.cloud1,	(int)	cloud.getX(),	(int)	cloud.getY(),100,	60,	null);

			g.drawImage(Resources.cloud2,	(int)	cloud2.getX(),	(int)	cloud2.getY(),100,	60,	null);

}

The	 full	 source	 code	 for	 PlayState	 is	 shown	 in	 listing	 6.15.	 Walk	 yourself
through	 the	 primary	 render()	 method	 and	 the	 secondary	 methods	 called	 by
render().	You	have	called	a	vast	majority	of	the	same	draw	calls	before,	so	it	will
be	 easy	 to	 understand.	 If	 you	 get	 stuck,	 Figure	 6-1	 might	 help	 answer	 some
questions.	 Remember	 that	 most	 of	 the	 (x,	 y)	 coordinates	 have	 been
experimentally	or	mathematically	determined.

*****	Listing	6.15	The	PlayState	Class	(Completed)		*****

001	package	com.jamescho.game.state;

002

003	import	java.awt.Color;

004	import	java.awt.Font;

005	import	java.awt.Graphics;

006	import	java.awt.event.KeyEvent;

007	import	java.awt.event.MouseEvent;

008	import	java.util.ArrayList;

009

010	import	com.jamescho.game.main.GameMain;

011	import	com.jamescho.game.main.Resources;

012	import	com.jamescho.game.model.Block;

013	import	com.jamescho.game.model.Cloud;

014	import	com.jamescho.game.model.Player;

015

016	public	class	PlayState	extends	State	{

017

018					private	Player	player;

019					private	ArrayList<Block>	blocks;

020					private	Cloud	cloud,	cloud2;

021					private	Font	scoreFont;

022					private	int	playerScore	=	0;

023					private	static	final	int	BLOCK_HEIGHT	=	50;

024					private	static	final	int	BLOCK_WIDTH	=	20;

025					private	int	blockSpeed	=	-200;

026					private	static	final	int	PLAYER_WIDTH	=	66;

027					private	static	final	int	PLAYER_HEIGHT	=	92;

028

029					@Override

030					public	void	init()	{

031													player	=	new	Player(160,	GameMain.GAME_HEIGHT	-	45	-	PLAYER_HEIGHT,	PLAYER_WIDTH,	PLAYER_HEIGHT);

032													blocks	=	new	ArrayList<Block>();

033													cloud	=	new	Cloud(100,	100);

034													cloud2	=	new	Cloud(500,	50);

035													scoreFont	=	new	Font("SansSerif",	Font.BOLD,	25);

036													for	(int	i	=	0;	i	<	5;	i++)	{

037																					Block	b	=	new	Block(i	*	200,	GameMain.GAME_HEIGHT	-	95,	BLOCK_WIDTH,	BLOCK_HEIGHT);

038																					blocks.add(b);

039													}

040					}

041

042					@Override

043					public	void	update(float	delta)	{

044													if	(!player.isAlive())	{

045																					setCurrentState(new	GameOverState(playerScore	/	100));

046													}

047													playerScore	+=	1;

048													if	(playerScore	%	500	==	0	&&	blockSpeed	>	-280)	{

049																					blockSpeed	-=	10;

050													}

051													cloud.update(delta);

052													cloud2.update(delta);

053													Resources.runAnim.update(delta);

054													player.update(delta);

055													updateBlocks(delta);

056					}

057

058					private	void	updateBlocks(float	delta)	{

059													for	(Block	b	:	blocks)	{

060																					b.update(delta,	blockSpeed);

061																					if	(b.isVisible())	{

062																													if	(player.isDucked()	&&	b.getRect().intersects(player.getDuckRect()))	{

063																																	b.onCollide(player);

064																													}	else	if	(!player.isDucked()	&&	b.getRect().intersects(player.getRect()))	{

065																																	b.onCollide(player);

066																													}

067																					}

068													}

069					}

070

071					@Override

072					public	void	render(Graphics	g)	{

073													g.setColor(Resources.skyBlue);

074													g.fillRect(0,	0,	GameMain.GAME_WIDTH,	GameMain.GAME_HEIGHT);

075													renderPlayer(g);

076													renderBlocks(g);

077													renderSun(g);

078													renderClouds(g);

079													g.drawImage(Resources.grass,	0,	405,	null);

080													renderScore(g);

081					}

082

083					private	void	renderScore(Graphics	g)	{

084													g.setFont(scoreFont);

085													g.setColor(Color.GRAY);

086													g.drawString(""	+	playerScore	/	100,	20,	30);

087					}

088

089					private	void	renderPlayer(Graphics	g)	{

090													if	(player.isGrounded())	{

091																					if	(player.isDucked())	{

092																										g.drawImage(Resources.duck,	(int)	player.getX(),	(int)	player.getY(),	null);

093																					}	else	{

094																										Resources.runAnim.render(g,	(int)	player.getX(),	(int)	player.getY(),	player.getWidth(),	player.getHeight());

095																													}

096													}	else	{

097																					g.drawImage(Resources.jump,	(int)	player.getX(),	(int)	player.getY(),	player.getWidth(),	player.getHeight(),	null);

098													}

099					}

100

101					private	void	renderBlocks(Graphics	g)	{

102													for	(Block	b	:	blocks)	{

103																					if	(b.isVisible())	{

104																													g.drawImage(Resources.block,	(int)	b.getX(),	(int)	b.getY(),	BLOCK_WIDTH,	BLOCK_HEIGHT,	null);

105																					}

106													}

107					}

108

109					private	void	renderSun(Graphics	g)	{

110													g.setColor(Color.orange);

111													g.fillOval(715,	-85,	170,	170);

112													g.setColor(Color.yellow);

113													g.fillOval(725,	-75,	150,	150);

114					}

115

116					private	void	renderClouds(Graphics	g)	{

117													g.drawImage(Resources.cloud1,	(int)	cloud.getX(),	(int)	cloud.getY(),	100,	60,	null);

118													g.drawImage(Resources.cloud2,	(int)	cloud2.getX(),	(int)	cloud2.getY(),	100,	60,	null);

119					}

120

121					@Override

122					public	void	onClick(MouseEvent	e)	{

123

124					}

125

126					@Override

127					public	void	onKeyPress(KeyEvent	e)	{

128													if	(e.getKeyCode()	==	KeyEvent.VK_SPACE)	{

129																					player.jump();

130													}	else	if	(e.getKeyCode()	==	KeyEvent.VK_DOWN)	{

131																					player.duck();

132													}

133					}

134

135					@Override

136					public	void	onKeyRelease(KeyEvent	e)	{

137

138					}

139

140	}

Running	the	Game

With	the	final	state	in	place,	our	game	is	now	finished.	Try	running	your	project!
If	 you	 experience	 errors,	 try	 to	 identify	 the	 problem	 by	 reading	 the	 error
messages.	They	should	tell	you	what	went	wrong	in	what	line	in	what	class.	If
you	 need	 help	 resolving	 errors,	 please	 post	 in	 the	 forums	 on	 the	 book’s
companion	site.

Note:
If	 you	 are	 having	 problems	 with	 any	 of	 the	 classes	 at	 this	 point,	 you	 can
download	the	source	code	at	jamescho7.com/book/chapter6/complete.

Another	Journey	Begins

Congratulations!	 You’ve	 reached	 the	 end	 of	 Unit	 2.	 At	 this	 point,	 you	 are
probably	 feeling	 a	 lot	 more	 comfortable	 with	 Java	 and	 object-oriented
programming.	With	two	games	and	a	game	development	framework	under	your
belt,	I	hope	that	you	are	getting	some	of	your	questions	answered	and	beginning
to	see	where	this	path	leads.

You	are	now	ready	to	begin	Android	Development.	Entering	this	new	world,	you
may	feel	a	bit	like	Ellio	on	his	first	trip	to	Earth;	you	will	be	introduced	to	a	new
set	of	topics,	some	confusing	Android	vocabulary	and	lots	of	code	that	makes	no
sense	at	first	sight.	However,	after	a	little	bit	of	practice	with	this	book	as	your
guide,	you	will	easily	navigate	these	obstacles	and	become	a	successful	Android
game	developer.	So	grab	the	nearest	Android	device	(if	you	have	one),	and	turn
the	page!	Let’s	have	some	fun	with	the	green	robot.

Chapter	 7:	 Beginning	 Android
Development
In	the	previous	two	units,	you’ve	studied	Java	and	its	applications.	Now,	it’s	time
to	 jump	 into	 the	 world	 of	 mobile	 application	 development.	 This	 chapter
introduces	 you	 to	 Android—the	most	 popular	 mobile	 operating	 system	 in	 the
world	(and	perhaps	the	very	reason	you	are	reading	this	book).	We	will	be	taking
a	 break	 from	 game	 development	 to	 build	 an	 Android	 application,	 study	 its
structure	and	 learn	about	 its	 fundamental	components.	This	will	prepare	us	 for
Chapters	8	and	9,	in	which	we	will	apply	everything	that	we	have	discussed	so
far	to	build	a	game	on	the	Android	platform.

Android:	Same	Language	in	a	New	World

Android	 provides	 hundreds	 of	 classes	 in	 its	 API	 (Application	 Programming
Interface),	allowing	developers	to	quickly	build	powerful,	feature-rich	and	user-
friendly	applications	using	the	Java	programming	language.	This	means	that	you
will	 feel	 right	 at	 home	 in	 this	 new	 world,	 as	 there’s	 no	 need	 to	 learn	 a	 new
programming	 language	 or	 get	 acquainted	 to	 an	 unfamiliar	 IDE;	 however,	 you
will	 find	 that	 Android	 development	 is,	 well,	 quite	 different	 from	 Java
development.

The	Challenges	of	Android	Development

Being	 an	 Android	 developer	 means	 that	 you	 have	 a	 few	 additional	 things	 to
worry	 about,	 and	 most	 of	 these	 concerns	 revolve	 around	 the	 issue	 of
compatibility.
Building	 an	 Android	 application	 or	 game,	 you	 must	 consider	 the	 fact	 that
Android	 runs	 on	 everything	 from	 cars	 and	 smartwatches	 to	 tablets	 and
refrigerators	 (really)!	 To	 make	 matters	 more	 complicated,	 devices	 in	 each	 of
these	categories	come	in	various	shapes	and	sizes;	under	the	hood,	they	cover	the
whole	spectrum	of	tech	specs.

Compatibility	issues	don’t	end	there.	Despite	the	fact	that	Google	releases	timely
updates	for	its	OS,	Android’s	open	source	nature	and	customizability	means	that
device	manufacturers	and	mobile	network	providers	have	 the	ability	 to	heavily
modify	the	operating	system	before	it	ends	up	in	the	hands	of	consumers	(often
infused	 with	 clunky	 bloatware	 amounting	 to	 a	 watered-down	 Android
experience).	As	a	developer,	 these	challenges	mean	 that	 that	you	have	 to	write
code	that	will	run	well	both	on	older	versions	of	Android	and	the	new.

In	recent	history,	Google	has	been	making	an	effort	to	combat	fragmentation	by
making	 the	 latest	 versions	 of	Android	more	 friendly	 for	 older	 devices,	 so	 the
future	 of	 Android	 development	 seems	 brighter.	 Still,	 the	 fact	 that	 device
manufacturers	spend	their	resources	on	building	the	latest	devices	rather	than	on
keeping	 their	older	devices	updated	means	 that,	 for	 the	 foreseeable	 future,	you
will	 need	 to	 take	 your	 target	 devices’	 version	 limitations	 into	 account	 when
building	an	Android	application.

Note:	 To	 learn	 more	 about	 Android’s	 fragmentation	 and	 the	 distribution	 of
devices	 by	 version	 number	 and	 screen	 size	 &	 density,	 please	 see	 Android’s
dashboards	 at	 the	 following	 URL:
https://developer.android.com/about/dashboards/index.html

The	Joys	of	Android	Development

I	hope	I	didn’t	scare	you	away	from	Android	development	because,	as	you	will
soon	experience,	its	joys	far	outweigh	the	challenges	(and	it’s	extremely	fun).

The	 Android	 platform	 is	 flexible	 and	 versatile,	 and	 its	 apps	 are	 delightfully
interactive—just	as	you	would	expect	 from	an	operating	system	 that	names	 its
major	releases	after	confections	like	ice	cream	sandwich.	Android	developers	get
to	build	event-driven	applications	to	provide	or	enrich	some	experience	for	their
users,	 who	 will	 tap	 and	 drag	 away	 with	 smiles	 on	 their	 faces	 when	 using	 an
application	that	does	something	beneficial.

In	addition,	Android	development	has	a	low	barrier	to	entry.	As	of	this	writing,
all	 it	 takes	 is	 a	 one-time	 $25	 USD	 fee	 to	 register	 a	 developer	 account	 with
Google	Play	to	begin	sharing	your	work	with	the	world!	This	means	that	those
who	 are	 serious	 about	 building	 and	 sharing	 useful	 apps	will	 be	 able	 to	 do	 so
without	 breaking	 the	 bank.	 There	 are	 few	 things	 that	 are	 better	 than	 seeing	 a
stranger	holding	a	smartphone	playing	a	game	that	you	made.	With	Android,	that
is	a	real	possibility.

https://developer.android.com/about/dashboards/index.html

Hello,	Android:	Your	First	Android	App

Now	that	you	have	been	introduced	to	Android,	let’s	build	our	first	application.

Creating	a	New	Android	Application

In	Chapter	2,	we	downloaded	the	ADT	Bundle,	which	included	both	Eclipse	and
the	 Android	 SDK.	 Until	 now,	 we	 have	 completely	 ignored	 the	 Android-
components	of	our	bundle,	but	no	longer.	Right	click	(Ctrl	+	Click	on	Mac)	your
Package	 Explorer,	 select	New	>	Other.	 This	 should	 open	 the	 dialog	 shown	 in
Figure	7-1.

Figure	7-1	New	Project	Wizard

Under	the	Android	group,	select	Android	Application	Project	and	click	Next.

Note:
As	new	releases	of	Android	become	available,	the	following	steps	may	change.
If	 you	 are	 unable	 to	 follow	 along	 due	 to	major	 differences,	 please	 consult	 the
book’s	 companion	 site,	 which	 will	 have	 the	 latest	 information:
http://jamescho7.com	/book/chapter7/

Before	we	 fill	 in	 the	 values	 of	 the	New	Android	Application	 dialog,	 let’s	 talk
about	what	they	mean	first.

Application	Name	refers	to	the	name	that	will	be	shown	when	you	upload
your	project	onto	the	Google	Play	Store.
The	Project	Name	will	be	shown	in	the	Package	Explorer	for	this
application
Package	Name	should	be	a	unique	identifier	(two	applications	with	the
same	Package	Name	cannot	be	uploaded	on	the	Play	Store).	The	convention
is	to	use	reverse	domain	name	notation.	If	you	have	a	website	at
example.com,	your	package	name	should	be	com.example.firstapp.	If	you
do	not	have	a	website,	just	use	your	name	or	an	alias
Minimum	Required	SDK	specifies	the	minimum	version	of	Android	that	a
user	must	have	in	order	to	install	your	application.	This	is	used	as	a	filter	in
the	Play	Store	(i.e.	an	app	with	a	Minimum	Required	SDK	of	2.3	will	not
appear	on	devices	that	run	2.2	or	below).
Target	SDK	should	specify	the	latest	version	of	Android	that	your	app	is
known	to	work	with.	This	should	be	the	most	recent	version.
The	Compile	With	option	allows	you	to	select	the	version	of	Android	that
you	will	use	in	Eclipse	when	writing	your	code.	Each	version	of	Android
adds	or	removes	methods	and	classes,	so	using	the	latest	version	is
recommended.

Now	that	we	know	what	each	field	is	about,	fill	in	the	information	as	shown	in
Figure	7-2.

Figure	7-2	New	Android	Application

Note:
Choose	the	latest	version	of	the	API	for	Target	SDK	and	Compile	With.	At	the
time	of	writing,	this	is	4.4.	You	may	have	a	more	recent	version.

Click	Next.	This	should	bring	you	to	the	project	configuration	screen	(Figure	7-
3)

Figure	7-3	Configuring	the	Android	Project

Uncheck	the	option	for	Create	custom	launcher	icon	(I	will	not	be	showing	you
how	to	make	an	icon	using	this	wizard,	but	if	you	are	feeling	adventurous,	feel
free	 to	 experiment).	 The	 other	 options	 can	 remain	 unchanged,	 as	 shown	 in
Figure	7-3.	Click	Next	 again,	 and	choose	 the	Blank	Activity	option	 (shown	 in
Figure	7-4).

Figure	7-4	Creating	a	Blank	Activity

Hit	Next	one	last	time.	You	should	see	the	dialog	shown	in	Figure	7-5.

Figure	7-5	Naming	the	Activity	and	Layout

Make	sure	that	you	have	the	same	values	for	the	two	boxes:	Activity	Name	and
Layout	Name	 as	 those	 shown	 in	 Figure	 7-5.	We	will	 talk	 about	what	 each	 of
these	terms	mean	later!

Click	Finish,	and	you	should	see	the	newly-created	Android	project	inside	your
Package	Explorer	along	with	a	project	named	appcompat.	Your	editor	might	also
display	a	“Hello	World!”	application,	as	shown	in	Figure	7-6.

Figure	7-6	FirstApp	has	been	Created

Exit	out	of	any	editor	windows	like	MainActivity.java	and	activity_main.xml.	As
you	can	see,	a	“Hello	world!”	application	has	been	created	automatically	for	us,
but	that’s	no	fun.	We	will	be	creating	a	“Hello,	Android”	app	ourselves!

Before	I	teach	you	how	you	can	print	those	ubiquitous	words	onto	your	Android
device,	 spend	 some	 time	 looking	 through	 the	 project	 you	 have	 just	 created.	 It
contains	lots	of	directories	and	files.	Study	the	icons	for	each	of	these	directories
and	files,	and	try	opening	your	Android	4.4.2	hierarchy	(version	may	vary)	and
the	android.jar	within.	Look	inside	the	res/values	folder	and	see	if	you	can	make
sense	of	its	contents.	Finally,	compare	this	project	to	a	regular	Java	project	and
ask	yourself,	what	is	the	same?	What	is	different?

Navigating	Around	an	Android	Application	Project

Let’s	 quickly	 talk	 about	 how	 an	 Android	 Application	 Project	 is	 structured.
Figure	 7-7	 shows	 all	 of	 our	 new	 app’s	 primary	 directories	 along	 with	 some
supporting	files.

Figure	7-7	FirstApp’s	File	Structure

The	Android	Developer	Tools	includes	many	files	by	default	when	you	create	a
new	Android	project,	but	you	will	be	working	with	just	a	handful	of	them.	Some
files	can	be	completely	ignored,	as	they	are	managed	automatically	for	you.

The	Important	Stuff

In	 nearly	 every	 Android	 application,	 you	 will	 be	 working	 with	 the	 following
components:

The	 src	 folder	 is	 where	 all	 of	 your	 source	 code	 goes,	 just	 like	with	 our	 Java
projects.	You	will	spend	most	of	your	time	developing	Android	apps	in	the	src
folder,	creating	classes	to	represent	screens	and	data.

The	 assets	 folder	 is	 primarily	 used	 to	 store	 files	 that	 you	 want	 access	 to
throughout	your	application.	Later	on,	we	will	be	storing	our	games’	images	and
sounds	inside	this	folder.

The	res	 folder	 is	 the	 resources	 folder.	You	 can	 store	 anything	 from	 images	 to
pre-defined	GUI	layouts	inside	it	to	control	how	your	application	looks.	The	res

folder	allows	you	to	include	multiple	versions	of	the	same	file.	For	example,	you
can	provide	text	data	in	multiple	languages,	and	Android	will	utilize	the	correct
one	depending	on	the	user	device’s	language	settings!

The	 AndroidManifest.xml	 is	 an	 essential	 configuration	 file	 that	 allows	 the
Android	operating	system	to	know	key	details	about	your	application.	Here,	you
can	 choose	 which	 image	 to	 display	 as	 your	 app’s	 icon,	 which	 permissions	 to
request	during	installation	(such	as	the	ability	to	send	text	messages	or	access	the
internet),	and	so	on.

The	Other	Important	Stuff

Many	of	the	files	and	folders	inside	your	application’s	project	do	not	need	to	be
touched.	For	the	most	part,	they	can	be	ignored.	Even	so,	it	is	best	if	you	have	a
basic	 understanding	 of	 the	 roles	 these	 files	 play	 (if	 only	 to	 know	 not	 to	mess
around	with	them).

First	up	 is	 the	gen	 folder,	which	contains	 automatically	generated	 Java	classes
that	all	echo	the	same	warning:

/*	AUTO-GENERATED	FILE.		DO	NOT	MODIFY.

....

*/

These	 Java	 files	 are	 generated	 automatically	 as	 you	 add	 resources	 into	 the	 res
folder.	 If	 you	 look	 in	 the	 R.java	 file	 under	 com.jamescho.firstapp	 (without
modifying	 it,	 of	 course),	 you	will	 see	 that	 it	 has	 hundreds	 of	 constants.	These
come	into	use	when	you	are	coding	and	you	want	to	access,	for	example,	a	file
called	 image.png	from	the	res	folder.	When	the	 image.png	file	 is	added	to	res,
R.java	 will	 automatically	 create	 a	 variable	 you	 can	 use	 to	 reference	 that	 new
image!

In	Unit	 2,	we	made	 an	 extensive	 use	 of	 the	 Java	API,	 importing	 various	 pre-
written	 classes	 and	 calling	 their	 methods.	 To	 use	 Android’s	 API	 in	 our
application,	 we	 need	 to	 make	 Android’s	 classes	 available	 to	 our	 app.
Conveniently,	 this	 is	 done	 automatically	 for	 us	 in	 the	 form	 of	 the	 included
library,	which	in	Figure	7-7	is	Android	4.4.2	(you	may	have	a	different	version
of	Android	installed	on	your	machine).	Inside	you	will	 find	the	android.jar	file

(shown	 in	 Figure	 7-8),	which	 contains	many	 packages	 full	 of	Android-related
Java	classes	with	extensive	documentation.

Figure	7-8	The	Android	Library

To	 learn	 more	 about	 the	 Android	 APIs,	 visit	 the	 following	 site:
http://developer.android.com/reference/packages.html

The	Android	Dependencies	lists	JAR	files	that	our	project	needs	in	order	for	it
to	 work.	 As	 shown	 in	 Figure	 7-9,	 our	 project	 relies	 on	 the	 JAR	 file
appcompat_v7.jar.	This	can	be	found	inside	the	appcompat_v7	project,	which	is
a	 supplementary	 project	 that	 includes	 some	 classes	 that	 allows	 you	 to	 write
backwards-compatible	 code.	 Importing	 this	 JAR	means	 that	 your	 app	can	 take
advantage	of	newly-added	features	on	older	versions	of	Android.

Figure	7-9	Android	Dependencies

Note:	Version	numbers,	such	as	appcompat_v7,	may	vary.

When	 you	 add	 JAR	 files	 to	 the	 libs	 folder,	 the	Android	 Private	Libraries	will

http://developer.android.com/reference/packages.html

automatically	update	and	allow	you	 to	use	 the	JAR’s	contents	 throughout	your
application.

As	shown	in	Figure	7-10,	expanding	each	of	these	JAR	files	reveals	packages	of
Java	 classes	 that	 you	 could	 import	 from.	 (The	 name	 android.support	 suggests
that	the	packages	inside	our	Private	Libraries	folder	are	used	to	provide	support
for	older	devices).

Figure	7-10	Android	Private	Libraries

Android	 makes	 use	 of	 a	 tool	 called	 ProGuard	 to	 optimize	 your	 code.	 It	 also
obfuscates	your	code,	making	your	code	more	difficult	to	reverse	engineer.	The
proguard-project.txt	 file	 provides	 information	 on	 enabling	 and	 configuring
ProGuard.	 To	 enable	 ProGuard,	 you	must	 open	 the	 project.properties	 file	 and
follow	the	provided	instructions.

The	bin	folder’s	contents	are	generated	by	your	compiler,	and	these	files	are	used
when	building	your	app’s	.apk	(Android	application	package	file—the	file	that	is
installed	on	 the	Android	device).	Everything	 inside	 the	bin	 folder	 is	 generated
automatically.

Fundamental	Android	Concepts

You	must	be	itching	to	write	some	code!	We	are	almost	there.	Let’s	talk	about	a
few	important	Android	concepts,	and	we	will	be	on	our	way.

Activities

Android	applications	are	built	one	Activity	at	a	time.	An	Activity	is	a	screen—a
single	 page	 inside	 your	 application.	 Each	 Activity	 has	 a	 Java	 class	 behind	 it,
which	allows	you	to	write	code	to	respond	to	events	that	occur	throughout	that
activity’s	life.

XML

As	you	develop	Android	applications	and	games,	you	will	come	across	various
XML	files.	XML	stands	for	extensible	markup	language,	and	it	is	used	to	store
information.	Although	you	do	not	need	a	degree	in	XML	to	write	Android	apps,
it	 helps	 to	 know	 how	 to	 read	 and	write	 in	XML	 (it’s	 very	 easy	 to	 learn).	We
won’t	 discuss	 the	XML	syntax	 in	much	depth	here,	 but	 there	 are	 a	 few	 things
you	should	know	that	will	help	you	get	by.

An	 XML	 file	 comprises	 elements,	 denoted	 with	 the	 symbols	 <	 and	 >.	 For
example,	if	I	were	writing	an	XML	file	detailing	a	smartphone	item	being	sold	at
an	 electronics	 store,	 I	 would	 create	 the	 tags	 <smartphone>	 </smartphone>	 as
shown.

<smartphone>

</smartphone>

The	first	 tag	denotes	 the	beginning	of	 the	smartphone	element,	and	 the	second
tag	denotes	the	end,	closing	the	element.	In	between	the	two,	I	can	nest	smaller
elements,	as	shown	below:

<smartphone>

								<screen	name	=	"super	screen	HD	powered	by	A.W.E.S.O.M.E.	technology"/>

								<processor	

																name	=	"quad-core	beast:	even-more-extreme	edition"

																speed	=	"3.5	ghz"	/>

</smartphone>

Notice	 that	 an	 XML	 element	 can	 have	 attributes.	 For	 instance,	 the	 processor
element	has	the	name	and	speed	attributes.	Also	note	that	you	can	close	elements
using	 the	 following	 syntax,	 provided	 that	 the	 elements	 do	 not	 contain	 more
elements:

<element......../>

Layouts

To	 create	 a	 GUI	 (graphical	 user	 interface)	 representation	 for	 an	 Activity,	 we
create	what	is	called	a	layout.	These	layout	files	are	created	using	XML	files	that
explicitly	 state	what	GUI	 elements	 should	 be	 present	 inside	 your	Activity	 and
how	they	should	behave.	Layout	XML	files	look	something	like	this:

In	 the	 example	 layout	 above,	 we	 have	 a	 LinearLayout,	 a	 type	 of	 layout	 that
arranges	 its	contents	 in	vertical,	 linear	order.	 Inside	 the	LinearLayout,	we	have

two	TextView	elements,	GUI	components	that	display	text.

Using	 XML	 layout	 files	 such	 as	 this	 one,	 the	 Android	 operating	 system	 will
create	 a	 layout	 as	 specified	 for	 each	 Activity,	 creating	 each	 element	 on	 the
screen.	Have	a	 look	at	 the	 location	of	 the	symbols	<	and	>	above,	 try	 to	guess
what	each	attribute	is	doing	to	modify	the	element,	and	try	to	envision	the	entire
layout	might	look	like	on	an	Android	screen.	Pay	special	attention	to	the	width
of	each	element.	The	correct	answer	is	shown	in	Figure	7-11.

Figure	7-11	Example	Layout	Solution

Let’s	 explain	 the	 solution.	 Every	 GUI	 element	 needs	 a	 width	 and	 a	 height
(specified	using	the	attributes	android:layout_width	and	android:layout_height),
and	there	are	two	permitted	values:	match_parent	and	wrap_content.	The	former,
as	the	name	suggests,	makes	the	element’s	width	equal	to	its	container’s	width.
The	 latter	 will	 make	 the	 element	 only	 as	 wide	 as	 it	 needs	 to	 be	 to	 wrap	 the
content.

Note:
The	 width	 and	 height	 describe	 how	 much	 space	 that	 element	 should	 take	 up
inside	the	layout	without	changing	the	size	of	the	content!

Our	 primary	 container,	 the	 LinearLayout,	matches	 the	width	 and	 height	 of	 its
parent,	which	is	the	entire	screen	(minus	some	UI	elements	such	as	the	title	and
notification	bar).	This	is	shown	by	all	the	areas	colored	black	in	Figure	7-11.	The
first	 TextView’s	width	 and	 height	 are	 both	wrap_content,	meaning	 that	 it	 will
only	 take	 up	 as	much	 area	 as	 it	 needs	 to	 display	 its	 content,	 no	more.	This	 is
made	apparent	by	the	white	region	in	Figure	7-11.	The	second	TextView’s	width,
on	 the	 other	 hand,	 is	 match_parent,	 so	 it	 will	 take	 up	 the	 entire	 width	 of	 its
parent	 (the	 LinearLayout).	 This	 is	 demonstrated	 by	 the	 dark	 gray	 region	 also
shown	in	Figure	7-11.

Note:
In	older	versions	of	Android,	fill_parent	was	used	instead	of	match_parent.	You
may	 occasionally	 come	 across	 this	 value	 as	 you	 read	 other	 people’s	 example
code.

Fragments

Fragments	were	 introduced	in	Honeycomb	(Android	3.0),	and	they	allow	more
flexibility	when	building	your	application’s	GUI.	Prior	to	Fragments,	you	could
only	have	 a	 single	XML	 layout	 per	Activity.	With	Fragments,	 you	 could	have
multiple,	 swappable	 layouts	 or	 even	 display	 multiple	 columns.	 Figure	 7-12
shows	some	examples.

Building	 Fragments	 is	 a	 slightly	 more	 advanced	 topic.	 As	 we	 will	 not	 need
Fragments	inside	our	games,	we	will	not	be	discussing	them	here.	If	you’d	like
to	 learn	more	about	Fragments,	 I	 recommend	 the	book	Android	Programming:
The	Big	Nerd	Ranch	Guide	by	Bill	Phillips	and	Brian	Hardy.

Figure	7-12	Fragment	Examples	(Reproduced	without	modification
from	http://developer.android.com/guide/components/fragments.html
and	used	according	to	terms	described	in	the	Creative	Commons	2.5

Attribution	License.)

AndroidManifest.xml

Recall	 that	 the	 AndroidManifest.xml	 file	 is	 a	 configuration	 file	 that	 reveals
essential	 information	 about	 the	 application	 to	 the	 system.	 The	 Manifest	 for
FirstApp	is	reproduced	in	listing	7.01	below:

*****	Listing	7.01	FirstApp:	AndroidManifest.xml		*****

<?xml	version="1.0"	encoding="utf-8"?>

<manifest	xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.jamescho.firstapp"

				android:versionCode="1"

				android:versionName="1.0"	>

				<uses-sdk

								android:minSdkVersion="9"

								android:targetSdkVersion="21"	/>

				<application

								android:allowBackup="true"

								android:icon="@drawable/ic_launcher"

								android:label="@string/app_name"

								android:theme="@style/AppTheme"	>

								<activity

												android:name="com.jamescho.firstapp.MainActivity"

												android:label="@string/app_name"	>

												<intent-filter>

																<action	android:name="android.intent.action.MAIN"	/>

																<category	android:name="android.intent.category.LAUNCHER"	/>

												</intent-filter>

								</activity>

				</application>

</manifest>

Let’s	discuss	some	of	the	tags	inside	the	AndroidManifest.	The	largest	element,
the	Manifest	element,	has	the	attribute	xmlns:android…	that	specifies	the	XML
namespace	 for	 the	document.	Think	of	 this	 as	 an	 import	 statement	 that	 allows
you	to	use	Android-related	terms	throughout	the	XML	document.	The	Manifest
element	allows	you	to	set	three	important	properties:

The	package	attribute	is	used	to	specify	the	name	of	the	primary	package
(inside	src).
The	android:versionCode	should	be	incremented	by	one	(by	you)	whenever
you	make	an	update	to	your	app	and	want	to	upload	it	to	the	Play	Store
(regardless	of	magnitude	of	update).	The	initial	version	should	take
versionCode	1,	the	second	release	should	have	versionCode	2	and	so	on.
This	value	is	used	to	by	the	system	for	update	purposes.
The	android:versionName	can	follow	any	rule	that	you	wish.	This	value	is
shown	to	the	user	but	not	used	by	the	system	for	any	other	purpose.

The	Manifest	element	contains	a	uses-sdk	element,	which	allows	you	to	change
the	minimum	SDK	version	and	the	target	SDK	version	(see	Figure	7-2	and	the
preceding	discussion	for	a	refresher	on	these	terms).

Figure	7-13	The	res	Folder

The	core	of	the	AndroidManifest	is	the	application	element,	which	allows	you	to
configure	 your	 application’s	 icon,	 theme,	 label	 (displayed	 name)	 and	 other
properties.	 Notice	 in	 our	 example—reproduced	 below—that	 we	 use	 the	 @
symbol	to	specify	some	of	the	attributes’	values:

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme"

The	@	 indicates	 that	 each	 of	 these	 attributes	 are	 referencing	 a	 value	 from	 an
existing	file	or	folder	inside	the	res	folder.	The	file	ic_launcher	is	an	image	file
inside	the	drawable	folder	(ignore	the	multiple	drawable	folders	for	now),	while
app_name	and	AppTheme	are	 two	entries	 inside	 the	XML	files	 string.xml	and
styles.xml,	respectively.	The	relevant	files	are	shown	in	Figure	7-13.

The	application	element	contains	all	the	Activities	that	make	up	our	application.
Any	 time	we	create	a	new	Activity	 to	be	used	 inside	our	application,	we	must
declare	 it	 inside	 the	 application	 element.	As	we	only	 have	 one	Activity	 inside
our	application	for	now,	we	have	one	activity	element:

The	 android:name	 attribute	 requires	 you	 to	 specify	where	 the	Activity	 can	 be
found	 (in	 this	 case	 it	 can	 be	 found	 at	 the	 MainActivity	 class	 inside
com.jamescho.firstapp).	 The	 android:label	 allows	 you	 to	 choose	 a	 name	 to	 be
displayed	in	the	Title	Bar.	You	can	keep	this	consistent	throughout	your	app	or
vary	it	with	each	Activity.

The	intent-filter	element	and	its	content	elements	action	and	category	are	used	to
denote	which	Activity	should	launch	when	the	user	taps	the	app’s	icon	from	the
App	 Drawer.	 This	 is	 a	 required	 element	 even	 when	 you	 only	 have	 a	 single
Activity,	 and	 is	 needed	 to	 specify	 the	 starting	 Activity	 in	 a	 multi-activity
application.

Note:
For	 details	 on	 various	 tags	 used	 inside	 the	 Manifest,	 please	 see	 the	 official
Android	 API	 Guides	 at:
http://developer.android.com/guide/topics/manifest/manifest-intro.html

Rewriting	Hello,	World

We’ve	covered	the	essentials,	so	let’s	write	some	code.	Recall	that	when	creating
FirstApp,	we	created	a	Blank	Activity	 (see	Figures	7-3	and	7-4).	 In	 the	dialog
shown	 in	 Figure	 7-5,	 we	 gave	 this	 Activity	 and	 its	 layout	 the	 names
MainActivity	and	activity_main,	respectively.

We	will	be	deleting	both	of	these	files	and	recreating	the	Activity	and	its	layout
manually.

Figure	7-14	Files	to	Delete

Creating	MainActivity

Go	to	the	src	folder,	open	the	package	for	your	app	(com.jamescho.firstapp)	and
delete	 MainActivity.java	 by	 right	 clicking	 on	 it	 (Ctrl	 +	 click	 on	 Mac)	 and
selecting	Delete.	Also	open	the	folder	res/layout	and	delete	activity_main.xml.

Now	 that	we	 have	 a	 blank	 slate,	 let’s	 recreate	 our	 “Hello,	World”	 application.
Start	 by	 creating	 a	 new	 Java	 class	 called	 MainActivity	 (inside
com.jamescho.firstapp).	 To	 make	 this	 class	 an	 Activity,	 we	 must	 extend	 the
Activity	class	as	shown	below,	importing	android.app.Activity.

package	com.jamescho.firstapp;

import	android.app.Activity;

public	class	MainActivity	extends	Activity	{

}

Note:
Although	we	usually	would	need	to	add	a	new	activity	element	to	our	Manifest
whenever	we	create	a	new	Activity,	we	do	not	have	to	do	that	for	MainActivity
because	 we	 never	 removed	 the	 existing	 reference	 to	 MainActivity	 from	 the
Manifest—see	listing	7.01.

By	 extending	Activity	 and	 registering	 the	 class	 inside	 the	Manifest,	 we	 allow
MainActivity	 to	 interact	 with	 the	 Android	 system	 in	 interesting	 ways.	 For
example,	 because	 of	 the	 action	 and	 category	 tags	 previously	 mentioned,
MainActivity	 will	 be	 the	 first	 screen	 launched	 when	 the	 user	 starts	 our
application.	In	addition,	when	MainActivity	is	created,	the	Android	system	will
automatically	call	a	method	inside	our	Activity	called	onCreate(),	which	we	can
treat	as	the	“main	method”	of	our	MainActivity.

Adding	onCreate()

You	might	 look	 at	 our	MainActivity	 class	 and	 say,	 “There	 is	 no	onCreate()	 in
here!”	On	 the	 contrary,	 there	 is!	 The	 onCreate()	method	 is	 inherited	 from	 the
Activity	class	(remember	 that	MainActivity	extends	Activity).	Even	though	we
can’t	 see	 it,	 MainActivity	 has	 one	 via	 its	 superclass	 (who	 has	 the	 action
implementation	of	onCreate()).	To	add	custom	functionality	to	this	method,	we
can	override	it	inside	the	subclass	as	shown:

package	com.jamescho.firstapp;

import	android.app.Activity;

import	android.os.Bundle;

public	class	MainActivity	extends	Activity{

								@Override

								protected	void	onCreate(Bundle	savedInstanceState)	{

																super.onCreate(savedInstanceState);

																//	Your	own	code	here.		

								}

}

As	mentioned	before,	 this	method	will	be	called	automatically	by	 the	Android
system	when	MainActivity	 is	 first	 created;	we	override	 the	method	 so	 that	we
can	 provide	 some	 kind	 of	 initialization	 for	 our	Activity.	 onCreate()	 receives	 a
parameter	 of	 type	 Bundle	 (thus	 we	 import	 android.os.Bundle),	 which	 can	 be
used	to	retain	stored	variable	values	when	the	Activity	is	recreated	(for	example
when	we	rotate	the	screen).	You	do	not	have	to	understand	what	Bundle	does.

Notice	that	we	call	super.onCreate(...)	inside	the	method	body,	which	goes	to	the
superclass	and	calls	its	implementation	of	onCreate().	This	mandatory	call	takes
care	of	some	system-related	tasks	behind-the-scenes.

Creating	the	Layout

Inside	 the	 onCreate()	 method,	 we	 have	 to	 call	 a	 method	 called
setContentView(int	 layoutResId)	 to	 attach	 an	 XML	 layout	 to	 our	 Activity.	 In
order	for	us	to	do	so,	we	must	first	create	a	layout.

Right-click	 (Ctrl	 +	 click	 on	Mac)	 on	 the	 res/layout	 folder,	 and	 select	 New	 >
Other.	Choose	Android	XML	Layout	File	under	the	Android	category,	as	shown
in	Figure	7-15,	and	press	next.

Figure	7-15	Creating	an	Android	XML	Layout	File

In	the	next	dialog	box,	enter	the	file	name	activity_main,	select	LinearLayout	as
the	root	element	(as	shown	in	Figure	7-16)	and	hit	finish.

Figure	7-16	Creating	a	Linear	Layout

Once	you	have	done	 this,	 you	will	 be	presented	with	 the	XML	 layout’s	 editor
window.	Looking	at	the	bottom	left	corner	of	this	window,	you	will	notice	that
you	 are	 currently	 in	 the	 Graphical	 Layout	 tab	 (see	 Figure	 7-17).	 This	 mode
shows	 you	 a	 graphical	 preview	 of	 the	 XML	 layout	 you	 are	 currently	 editing,
which	is	accessible	via	the	activity_main.xml	tab	(also	shown	in	Figure	7-17).

Figure	7-17	Switching	Between	Graphical	Layout	and	XML	View.

Before	 we	 add	 anything	 to	 our	 blank	 layout,	 let’s	 see	 its	 XML	 contents	 by
selecting	 the	activity_main.xml	 tab.	You	should	see	 the	standard	editor	display
the	following	XML	document:

*****	Listing	7.02	activity_main.xml	(with	a	vertical	LinearLayout	as	the	root	element)	*****

<?xml	version="1.0"	encoding="utf-8"?>

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:orientation="vertical"	>

				

</LinearLayout>

Notice	 that	 activity_main.xml	 contains	 a	 LinearLayout	 element,	 which	 we’ve
previously	selected	as	the	root	element	for	our	new	XML	layout.

Adding	Widgets

Return	to	the	Graphical	Layout.	On	the	left	side	of	the	screen,	you	will	find	the
Palette.	 Inside,	 you	will	 find	 tens	of	widgets	you	can	play	 around	with	on	 the
screen!	To	add	one	 into	your	 layout	 (and	 thus	your	Activity),	you	simply	drag
and	drop	into	your	layout’s	preview.

The	widget	that	we	are	interested	in	is	called	TextView.	Select	this,	drag	it	over
to	 the	 layout	preview	screen	and	snap	 it	onto	 the	 top-left	corner	of	 the	screen.
Your	preview	should	look	like	that	shown	in	Figure	7-18.

Note:
If	 you	make	 a	mistake	 following	 these	 steps,	 simply	 click	 on	 the	 problematic
widget	and	hit	the	Delete/Backspace	key	before	trying	again.

Figure	7-18	LinearLayout	+	TextView

Dragging	on	 the	TextView	automatically	modified	 the	XML	layout.	To	see	 the
changes,	 return	 to	 the	activity_main.xml	 tab	shown	in	Figure	7-17.	Your	XML
listing	should	now	look	like	that	shown	in	listing	7.03:

*****	Listing	7.03	activity_main.xml	(with	TextView	Added)	*****

<?xml	version="1.0"	encoding="utf-8"?>

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:orientation="vertical"	>

								<TextView

																android:id="@+id/textView1"

																android:layout_width="wrap_content"

																android:layout_height="wrap_content"

																android:text="TextView"	/>

				

</LinearLayout>

Compare	 the	 XML	 contents	 of	 listings	 7.02	 and	 7.03.	 You	 will	 see	 that	 a
TextView	 element	 has	 been	 added	 inside	 of	 the	 existing	 LinearLayout	 root
element.	 Now	 here’s	 your	 challenge.	 Try	 to	 make	 our	 XML	 layout	 display
“Hello,	Android!”	by	modifying	one	line	inside	activity_main.xml.	The	solution
is	shown	in	Listing	7.04.

*****	Listing	7.04	Hello	Android!	*****

<?xml	version="1.0"	encoding="utf-8"?>

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:orientation="vertical"	>

								<TextView

																android:id="@+id/textView1"

																android:layout_width="wrap_content"

																android:layout_height="wrap_content"

																																android:text="Hello,	Android!"

																android:text="TextView"	/>

				

</LinearLayout>

We	 have	 created	 the	 MainActivity	 class	 and	 a	 simple	 XML	 layout.	 Can	 you
predict	what	would	happen	if	we	were	to	run	our	application	now?	It	 turns	out
that	we	would	 just	 get	 a	 blank	 screen	 representing	 our	MainActivity	 class,	 as
shown	in	Figure	7-19.

Figure	7-19	Why	is	it	Blank?

We	 get	 this	 result	 because	 we	 never	 populated	 our	 MainActivity	 with	 the
contents	 of	 activity_main.xml!	 As	 mentioned	 before,	 MainActivity	 is	 just	 an
empty	Java	class	until	we	call	setContentView(...).

The	setContentView(...)	Method

The	setContentView(...)	method	allows	us	to	add	content	to	our	view.	It	accepts	a
single	argument—a	reference	to	an	XML	layout.	The	trouble	is,	the	XML	layout
is	not	a	Java	file.	We	can’t	 instantiate	 it	 like	we	can	a	Java	class	and	pass	 in	a
reference	to	setContentView().	Instead,	we	must	retrieve	the	layout	using	its	ID.

Recall	 that	 the	 R.java	 file	 inside	 the	 gen	 folder	 automatically	 creates	 a	 Java
variable	 for	 resources	added	 to	 the	 res	 folder.	 In	our	case,	R	has	automatically
created	 an	 ID	 called	 R.layout.activity_main.	 This	 can	 be	 used	 to	 retrieve	 our

XML	layout!

Note:
When	Eclipse	is	first	starting	up,	it	will	take	some	time	for	it	to	completely	load
up	 your	 Android	 Application	 Project.	 There	 will	 be	 errors	 as	 Eclipse	 tries	 to
build	the	application	and	find	the	required	libraries.	Some	people	get	impatient
and	 try	 to	 import	 android.R	 to	make	 some	of	 the	errors	go	away,	but	 this	will
cause	 compiler	 errors	 until	 the	 import	 statement	 is	 removed!	Always	wait	 for
everything	 to	 fully	 load,	 and	NEVER	add	 the	 statement	 import	 android.R	 into
your	class	declaration!

Call	setContentView()inside	the	onCreate()	method	as	shown	in	Listing	7.05.

*****	Listing	7.05	MainActivity	+	R.layout.activity_main	*****

package	com.jamescho.firstapp;

import	android.app.Activity;

import	android.os.Bundle;

public	class	MainActivity	extends	Activity{

								@Override

								protected	void	onCreate(Bundle	savedInstanceState)	{

																super.onCreate(savedInstanceState);

																setContentView(R.layout.activity_main);	

								}

}

Our	“Hello,	Android!”	application	is	now	finished.	Let’s	run	it!

Running	an	Android	Application

Using	the	Emulator

The	ADT	 comes	with	 a	 built-in	 emulator	 that	 is	 useful	 for	 testing	 apps	while
varying	screen	size,	RAM	and	etc.	To	test	our	application	on	the	emulator,	right-
click	 (Ctrl	 +	 click	 on	 Mac)	 on	 the	 FirstApp	 Android	 Project	 in	 the	 Package
Explorer,	and	click	Run	As	>	1	Android	Application.

If	you	don’t	have	any	development	devices	setup	on	your	computer,	a	dialog	will
appear	 saying,	 “No	compatible	 targets	were	 found.	Do	you	wish	 to	add	a	new
Android	Virtual	Device?”	Select	Yes,	and	a	new	dialog	will	appear	as	shown	in
Figure	7-20.

Figure	7-20	Android	Device	Chooser

Select	 the	 Launch	 a	 new	 Android	 Virtual	 Device	 radio	 button	 and	 click	 the
Manager…	button.	Both	of	these	options	are	highlighted	in	Figure	7-21.

Figure	7-21	Launching	a	new	Android	Virtual	Device

When	 the	Android	Virtual	Device	Manager	 dialog	 appears,	 switch	 over	 to	 the
Device	Definitions	tab,	select	Galaxy	Nexus	and	click	Create	AVD...	as	shown
in	 Figure	 7-22.	 This	 will	 allow	 us	 to	 create	 a	 virtual	 device	 that	 emulates
Google’s	old	flagship	device.

Figure	7-22	Launching	a	new	Android	Virtual	Device

Once	the	Create	new	AVD	dialog	appears,	the	Skin	option	should	be	switched	to
HVGA	(as	shown	in	Figure	7-23).	Keep	the	rest	of	the	settings	as	they	are,	and
select	OK.

Figure	7-23	Creating	a	new	AVD

Note:
If	 you	 get	 an	 error	message	 saying	 'No	 system	 images	 installed...',	 please	 see
'Known	Issues'	at:	http://jamescho7.com/book/chapter7

Our	virtual	Galaxy	Nexus	is	now	ready!	Return	to	the	Android	Device	Chooser
(Figure	7-20)	and	hit	Refresh.	Your	new	AVD	will	now	be	available	for	you	to
launch	your	applications	on,	as	shown	in	Figure	7-24.	Select	the	device	and	hit
OK.

Figure	7-24	Launching	the	Application

You	will	begin	to	see	a	series	of	messages	in	the	Console	similar	to	those	shown
below:

[Chapter	7	-	FirstApp]	------------------------------

[Chapter	7	-	FirstApp]	Android	Launch!

[Chapter	7	-	FirstApp]	adb	is	running	normally.

[Chapter	7	-	FirstApp]	Performing	com.jamescho.firstapp.MainActivity	activity	launch

[Chapter	7	-	FirstApp]	Automatic	Target	Mode:	launching	new	emulator	with	compatible	AVD	'AVD_for_Galaxy_Nexus_by_Google'

[Chapter	7	-	FirstApp]	Launching	a	new	emulator	with	Virtual	Device	'AVD_for_Galaxy_Nexus_by_Google'

[Chapter	7	-	FirstApp]	New	emulator	found:	emulator-5554

[Chapter	7	-	FirstApp]	Waiting	for	HOME	('android.process.acore')	to	be	launched...

[Chapter	7	-	FirstApp]	HOME	is	up	on	device	'emulator-5554'

[Chapter	7	-	FirstApp]	Uploading	Chapter	7	-	FirstApp.apk	onto	device	'emulator-5554'

[Chapter	7	-	FirstApp]	Installing	Chapter	7	-	FirstApp.apk...

The	emulator	will	also	launch	and	display	the	boot	animation	shown	in	Figure	7-
25:

Figure	7-25	The	Dreaded	Boot	Animation

Now	step	away	from	your	computer,	make	yourself	some	coffee	and	check	back
in	ten	minutes.	This	booting	process	can	take	quite	a	long	time.

Note:
If	you	do	not	have	a	physical	Android	device	and	would	like	to	reduce	the	boot
time,	I	recommend	studying	the	emulator	snapshot	feature	at	the	following	link:
http://tools.android.com/recent/emulatorsnapshots

Once	booting	 is	complete,	you	should	be	able	 to	 find	FirstApp	 inside	 the	App
Drawer	as	shown	in	Figure	7-26.

Figure	7-26	Opening	FirstApp

Open	 up	 the	 FirstApp.	 If	 you	 see	 the	 screen	 shown	 in	 Figure	 7-27,
congratulations!	You	 have	 just	 created	 your	 own	 “Hello,	Android”	 application
with	minimal	help	from	the	Android	Development	Tools.

Note:
If	you	are	having	problems	with	any	of	the	classes	or	.xml	files	at	this	point,	you
can	download	the	source	code	at	jamescho7.com/book/chapter7/checkpoint1.

Debugging	FirstApp

If	you	are	having	issues,	follow	the	steps	listed	below	in	order	to	diagnose	your
issue.

Check	that	you	have	the	MainActivity	class	inside	com.jamescho.firstapp,
and	compare	it	carefully	to	listing	7.05.	There	should	be	no	errors	in	your
code.
Make	sure	that	activity_main.xml	is	inside	res/layout	and	that	its	contents
match	that	of	listing	7.04.

Double	check	your	AndroidManifest.xml,	comparing	it	carefully	to	listing
7.01.
If	you	have	any	lingering	errors,	look	for	any	red	error	messages	and	search
for	a	solution	on	your	favorite	search	engine.
Post	your	issue	on	the	forums	at	the	book’s	companion	site.
If	all	else	fails,	download	the	source	code	at	the	link	provided	above	before
moving	on.

Figure	7-27	Hello,	Android!

Using	a	Physical	Device

If	you	have	an	Android	device	available	then	testing	applications	will	be	much
easier.	Follow	the	steps	listed	below	in	order	to	setup	your	device	for	testing.

1.	 Unplug	your	device	from	your	computer.
2.	 Download	the	latest	USB	drivers	for	your	device.	In	order	to	do	this,

consult	the	forums	at	xda-developers.com	or	refer	to	your	hardware

manufacturer’s	website.
3.	 Check	the	version	of	Android	installed	on	your	device.	On	most	devices,

this	information	can	be	accessed	inside	the	Settings	app	under	About	phone,
as	shown	in	Figure	7-28.

4.	 Enable	USB	Debugging	on	your	device,	following	the	instructions	provided
for	your	device’s	Android	version.

If	you	have	Android	4.2	or	newer,	tap	on	Build	number	(highlighted	in
Figure	7-28)	seven	times.	Developer	options	will	now	become	enabled
on	your	device.	Return	to	the	main	settings,	select	Developer	options
and	enable	USB	debugging.
If	you	have	Android	4.0.x	to	4.1.x,	follow	the	same	steps	as	above,
skipping	the	Build	number	tapping	step.
On	older	versions	of	Android,	open	Settings,	select	Applications	and
check	the	Development	settings	to	enable	USB	Debugging.

5.	 Plug	in	your	device	into	your	computer.	If	a	dialog	on	your	device	asks	you
to	Allow	USB	debugging,	select	“Always	allow	from	this	computer”	and
hit	OK.

Figure	7-28	Checking	your	Android	Version

Your	 device	 is	 ready!	 Return	 to	 Eclipse	 and	 run	 your	 project	 as	 an	 Android
Application.	The	Android	Device	Chooser	will	appear,	as	shown	in	Figure	7-29.
Select	the	connected	device,	and	hit	OK.	Your	app	should	begin	to	run	on	your
device	 (if	 any	 security	 dialogs	 appear	 on	 your	 device,	 read	 them	 and	 grant
permissions	as	necessary).

From	now	on,	your	device	will	be	recognized	by	your	computer.	As	you	make
changes	 to	 your	 application	 or	 create	 new	 ones,	 simply	 run	 the	 project	 as	 an
Android	Application	to	use	your	device	for	testing.	The	Android	Device	Chooser
will	appear	and	allow	you	to	launch	the	app	on	your	device.

Note:
You	can	enable	the	“Use	same	device	for	future	launches”	option	in	the	Android
Device	Chooser	to	speed	up	this	process.

Figure	7-29	Android	Device	Chooser

The	Activity	Lifecycle

Activities	are	the	building	blocks	of	Android	Applications.	As	the	user	interacts
with	Activities,	transitioning	from	screen	to	screen,	they	will	be	created,	hidden,
paused	or	destroyed	appropriately.	This	transition	from	one	state	to	another	can
be	understood	by	studying	 the	Activity	Lifecycle,	which	 is	shown	in	Figure	7-
30.

You	do	not	have	 to	memorize	 the	Activity	Lifecycle.	All	you	need	 to	know	 is
that	 an	 Activity	 passes	 through	 various	 stages	 and	 that	 you	 can	 choose	 to	 be
notified	when	it	enters	a	specific	state.	For	example,	if	you	want	to	be	notified
when	your	Activity	is	about	to	pause,	you	override	the	onPause()	method.	If	you
want	 to	know	when	an	Activity	 is	 resuming	 from	a	paused	state,	you	override
the	onResume()	method.

Note:
Remember	that	the	word	override	is	used	when	we	are	inheriting	a	method	from
a	superclass	and	changing	its	behavior.

Why	the	Activity	Lifecycle	Matters

The	reason	we	want	to	be	notified	when	our	Activity	enters	certain	states	has	to
do	 with	 Android’s	 multitasking	 capabilities.	 Android	 users	 switch	 from
application	 to	application	all	 the	 time	for	various	reasons.	When	these	changes
happen,	it’s	best	if	your	application	is	notified,	so	that	it	can	decide	when	to	get
out	of	the	way,	when	to	save	data,	and	when	to	shine.

Figure	7-30	The	Activity	Lifecycle

For	 instance,	 if	 someone	 is	 playing	 our	 game	 and	 receives	 a	 phone	 call,	 we
probably	 want	 our	 game	 to	 pause.	 So,	 we	 would	 override	 the	 onPause()	 or
onStop()	 method	 and	 put	 our	 game	 on	 hold.	 When	 the	 player	 returns	 to	 the
game,	 onResume()	 or	 onRestart()	 is	 called	 by	 the	Android	 system.	Overriding
these	methods	allows	us	to	resume	the	game	right	away.

Before	moving	on,	study	the	Activity	Lifecycle,	following	the	arrows	starting	at
the	 oval	 labeled	Activity	 is	 launched.	 Try	 to	move	 your	 finger	 over	 the	 lines,

drawing	 some	 possible	 sequences	 of	 states	 that	 an	Activity	may	 pass	 through
during	its	typical	use.	Whenever	you	reach	an	orange	oval	(App	process	killed	or
Activity	shut	down),	you	must	start	over	from	the	top.

From	this	exercise,	you	will	realize	that	some	methods	are	not	guaranteed	to	be
called	even	when	your	Activity	enters	a	certain	 state.	For	example,	when	your
Activity’s	 process	 is	 killed	 due	 to	 lack	 of	 memory,	 onDestroy()	 will	 not	 be
called.	Saving	user	progress,	then,	shouldn’t	occur	inside	onDestroy()	to	prevent
loss	of	data	occurring	with	a	forced	termination	of	our	application.	We	need	to
keep	these	things	in	mind	when	designing	our	game.

Views

View	 objects	 are	 interactive,	 visual	 components	 used	 to	 build	 your	 app’s	 user
interface.	 You’ve	 seen	 some	 examples	 of	 View	 objects	 before.	 In
activity_main.xml	 from	FirstApp,	we	 created	 a	 LinearLayout,	 a	 type	 of	View.
This	was	the	parent	of	another	View—the	TextView.

When	 calling	 the	 method	 setContentView()	 inside	 an	 Activity,	 we	 pass	 in	 a
reference	 to	 a	View	 object—typically	 a	 layout.	 Inside	 this	 layout,	we	 can	 add
various	Views	 such	 as	Button	 and	 ImageView.	Each	 of	 these	Views	 has	 some
unique	characteristic	that	sets	it	apart	from	the	others.

Event	Handling

Views	can	respond	to	events	in	various	ways.	For	example,	a	Button	can	react	to
a	 touch	event	and	make	something	happen.	A	TextView	can	perform	an	action
when	its	contents	are	changed	by	the	user.

Drawing	Views

A	View	needs	to	be	visible	(after	all,	it’s	called	“View”	not	“Hide”).	Every	View
we	deal	with	will	have	a	method	called	onDraw(),	which	will	be	called	by	 the
Android	system	to	render	that	particular	view.

Responding	to	Events	and	Starting	a	Second	Activity

Now	that	you	know	all	about	Activities	and	Views,	let’s	add	a	second	Activity	to
our	FirstApp.	To	do	so,	we	will	follow	these	steps:

1.	 Create	a	new	Activity	class	and	register	it	with	the	AndroidManifest.
2.	 Provide	a	Content	View	for	the	newly-created	Activity.
3.	 Create	a	Button	inside	MainActivity	that	will	take	us	to	the	new	Activity.

Note:
We	are	adding	to	the	FirstApp	project	created	in	the	previous	sections.	If	you	do
not	have	a	working	version,	you	can	download	a	copy	at	jamescho7.com/book/
chapter7/checkpoint1	prior	to	continuing.

Creating	the	SecondActivity	Class

Our	 very	 first	 task	 is	 to	 create	 a	 simple	 second	 Activity	 that	 displays	 a	 blue
background	 and	 a	 rather	 clingy	 magenta	 square.	 A	 screenshot	 of	 Activity	 is
shown	in	Figure	7-31:

Figure	7-31	SecondActivity	displays	a	square	on	a	blue	background

Begin	 by	 creating	 a	 class	 called	 SecondActivity	 inside	 the
com.jamescho.firstapp	 package	 of	 FirstApp.	 Next,	 extend	 Activity	 (importing
android.app.Activity)	 and	 override	 the	 onCreate()	 method	 (importing
android.os.Bundle)	as	shown	in	listing	7.06.

*****	Listing	7.06	SecondActivity	*****

package	com.jamescho.firstapp;

import	android.app.Activity;

import	android.os.Bundle;

public	class	SecondActivity	extends	Activity	{

								@Override

								protected	void	onCreate(Bundle	savedInstanceState)	{

																super.onCreate(savedInstanceState);

								}

}

Whenever	we	create	a	new	Activity	in	an	Android	application,	we	must	register
it	 with	 the	 AndroidManifest.	 Open	 up	 AndroidManifest.xml,	 and	 add	 the
following	element	inside	your	application	element:

<activity

								android:name="com.jamescho.firstapp.SecondActivity"

								android:label="SecondActivity"

								android:screenOrientation="landscape"	>

</activity>

Once	this	step	is	complete	your	Manifest	should	match	that	shown	in	listing	7.07
(note:	your	API	numbers	may	vary):

*****	Listing	7.07	Registering	SecondActivity	in	the	Manifest		*****

Note	that	we’ve	requested	the	newly-added	Activity	to	be	displayed	in	landscape
mode	(as	opposed	to	the	default	portrait	mode	on	smartphone	devices).	We	also
provide	a	name	for	the	Activity	independent	from	the	application	name	via	the
android:label	attribute.

Creating	a	Content	View

Now	that	SecondActivity	has	been	created	and	registered,	let’s	provide	it	with	a
Content	View.	To	do	so,	we	will	be	creating	a	custom	View	object	that	will	fill
up	the	entire	screen	and	make	a	square	follow	your	fingertip.

Inside	 the	 com.jamescho.firstapp	 package,	 create	 a	 class	 called	 CustomView,
extending	View	 (import	 android.view.View).	Once	you	have	done	 so,	 you	will
see	the	error	shown	in	Figure	7-32:

Figure	7-32	Constructor	Required!

Our	problem	is	that,	for	CustomView	to	be	instantiated,	we	must	instantiate	its
parent	 also—the	 View	 class	 (by	 inheritance,	 CustomView	 IS-A	 View).	 To
complicate	matters,	 the	View	class	 can	only	be	 instantiated	using	one	of	 three
allowed	custom	constructors,	so	we	must	provide	an	explicit	constructor	 inside
CustomView	will	construct	the	View	superclass.	The	constructor	that	we	will	be
calling	 has	 the	 signature	 View(Context).	 Add	 the	 following	 constructor	 for
CustomView	into	your	class,	importing	android.content.Context.

public	CustomView(Context	context)	{

								super(context);	//	Calls	View(Context)

}

Note	that	this	constructor	calls	super(context);	this	is	the	syntax	used	to	call	the
constructor	of	a	superclass.	This	means	that—when	CustomView	is	instantiated
using	the	above	constructor—it	will	automatically	instantiates	itself	as	a	subclass
of	View	by	calling	one	of	View’s	constructors.

The	 single	 parameter	 of	 this	 constructor,	 a	 Context	 object,	 stores	 information
regarding	 the	 application.	When	 passed	 into	 the	 View	 class’s	 constructor,	 the
newly-created	View	 instance	will	know	 important	details	 about	 the	 application
(such	as	its	Target	SDK	Version).

Adding	the	Variables	to	CustomView

Our	CustomView	will	draw	a	clingy	square	to	follow	the	user’s	finger.	In	order
for	us	to	represent	this	square,	we	will	create	a	Rect	object	(a	built-in	rectangle
object	that	stores	x,	y,	width	and	height	values	as	left,	top,	right	and	bottom).	To
give	this	Rect	object	a	color,	we	will	create	a	Paint	object,	which	is	used	to	style
elements	drawn	to	the	screen.

Add	the	following	import	statements	to	your	class:

import	android.graphics.Color;

import	android.graphics.Paint;

import	android.graphics.Rect;

Next,	declare	the	following	variables:

private	Rect	myRect;

private	Paint	myPaint;

private	static	final	int	SQUARE_SIDE_LENGTH	=	200;

We	now	initialize	the	Rect	and	Paint	objects	inside	the	constructor	as	shown	in
bold	below:

myRect	=	new	Rect(30,	30,	SQUARE_SIDE_LENGTH,	SQUARE_SIDE_LENGTH);

myPaint	=	new	Paint();

myPaint.setColor(Color.MAGENTA);

At	this	point,	your	CustomView	should	match	that	shown	in	listing	7.08.

*****	Listing	7.08	The	CustomView	Class	(Updated)	*****

package	com.jamescho.firstapp;

import	android.content.Context;

import	android.view.View;

import	android.graphics.Color;

import	android.graphics.Paint;

import	android.graphics.Rect;

public	class	CustomView	extends	View{

								

								private	Rect	myRect;

								private	Paint	myPaint;

								private	static	final	int	SQUARE_SIDE_LENGTH	=	200;

								

								public	CustomView(Context	context)	{

																super(context);	

																myRect	=	new	Rect(30,	30,	SQUARE_SIDE_LENGTH,	SQUARE_SIDE_LENGTH);

																myPaint	=	new	Paint();

																myPaint.setColor(Color.MAGENTA);

								}

}

Drawing	the	CustomView

To	 define	 how	 our	 CustomView	 should	 draw	 itself,	 we	 must	 override	 the
onDraw(Canvas)	 method	 from	 Activity.	 Add	 the	 following	 method	 to	 your
CustomView	class	(importing	android.graphics.Canvas):

@Override

protected	void	onDraw(Canvas	canvas)	{

								canvas.drawRGB(39,	111,	184);

								canvas.drawRect(myRect,	myPaint);

}

The	 overridden	 onDraw()	 method	 simply	 fills	 the	 Canvas	 (the	 area	 of	 our
application	that	can	be	drawn	on)	with	the	color	(R	=	39,	G	=	111,	B	=	184)—a
simple	 blue	 color.	 It	 then	 calls	 canvas.drawRect(...),	 which	 will	 reference
myRect’s	 coordinates	 and	 dimensions	 to	 draw	 it	 at	 the	 correct	 location	 on	 the
Canvas	(using	the	style	specified	in	myPaint).

Handling	Touch	Events

To	specify	what	should	happen	when	a	touch	event	is	detected,	we	must	override
the	 onTouchEvent(MotionEvent)	 method.	 Add	 the	 following	 method	 to	 your
CustomView	class	(importing	android.view.MotionEvent):

@Override

public	boolean	onTouchEvent(MotionEvent	event)	{

								myRect.left	=	(int)	event.getX()	-	(SQUARE_SIDE_LENGTH	/	2);

								myRect.top	=	(int)	event.getY()	-	(SQUARE_SIDE_LENGTH	/	2);

								myRect.right	=	myRect.left	+	SQUARE_SIDE_LENGTH;

								myRect.bottom	=	myRect.top	+	SQUARE_SIDE_LENGTH;

								invalidate();

								return	true;	//	Indicates	that	a	touch	event	was	handled.

}

The	 onTouchEvent()	 method	 receives	 a	 MotionEvent	 object,	 which	 reveals
information	 about	 the	 touch	event	 that	 has	 triggered	 this	method.	As	 such,	we
can	determine	the	X	and	Y	of	the	player’s	touch	using	the	methods	event.getX()
and	event.getY().	Using	these	two	values,	we	update	the	position	of	our	myRect
so	that	it	is	centered	at	the	player’s	touch	location.

The	purpose	of	the	invalidate()	call	is	to	let	the	Android	system	know	that	there
has	been	a	change	in	our	CustomView,	and	that	its	onDraw()	method	should	be
called	again.	This	has	the	effect	of	refreshing	the	screen	after	myRect	has	been
updated	to	a	new	position.

With	 the	 onDraw()	 and	 onTouchEvent()	 methods	 added,	 the	 CustomView	 is
complete.	The	full	class	code	is	shown	in	listing	7.09.

*****	Listing	7.09	The	CustomView	Class	(Completed)	*****

package	com.jamescho.firstapp;

import	android.content.Context;

import	android.view.MotionEvent;

import	android.view.View;

import	android.graphics.Canvas;

import	android.graphics.Color;

import	android.graphics.Paint;

import	android.graphics.Rect;

public	class	CustomView	extends	View{

								

								private	Rect	myRect;

								private	Paint	myPaint;

								private	static	final	int	SQUARE_SIDE_LENGTH	=	200;

								

								public	CustomView(Context	context)	{

																super(context);	

																myRect	=	new	Rect(30,	30,	SQUARE_SIDE_LENGTH,	SQUARE_SIDE_LENGTH);

																myPaint	=	new	Paint();

																myPaint.setColor(Color.MAGENTA);

								}

								

								@Override

								protected	void	onDraw(Canvas	canvas)	{

																canvas.drawRGB(39,	111,	184);

																canvas.drawRect(myRect,	myPaint);

								}

								@Override

								public	boolean	onTouchEvent(MotionEvent	event)	{

																myRect.left	=	(int)	event.getX()	-	(SQUARE_SIDE_LENGTH	/	2);

																myRect.top	=	(int)	event.getY()	-	(SQUARE_SIDE_LENGTH	/	2);

																myRect.right	=	myRect.left	+	SQUARE_SIDE_LENGTH;

																myRect.bottom	=	myRect.top	+	SQUARE_SIDE_LENGTH;

																invalidate();

																return	true;	

								}	

}

Setting	the	New	CustomView

Now	we	must	return	to	SecondActivity	and	set	 the	CustomView	as	 its	Content
View.	 To	 do	 so,	 we	 simply	 call	 setContentView(),	 passing	 in	 an	 instance	 of
CustomView	 rather	 than	 a	 layout	 ID.	 The	 completed	 SecondActivity	 class	 is
provided	in	listing	7.10.

*****	Listing	7.10	SecondActivity	(Completed)	*****

package	com.jamescho.firstapp;

import	android.app.Activity;

import	android.os.Bundle;

public	class	SecondActivity	extends	Activity	{

								@Override

								protected	void	onCreate(Bundle	savedInstanceState)	{

																super.onCreate(savedInstanceState);

																setContentView(new	CustomView(this));

								}

}

Note	 that	 we	 pass	 in	 this	 (the	 current	 instance	 of	 SecondActivity)	 as	 the
argument	for	the	CustomView(Context)	constructor.	This	is	allowed	because	an
Activity	 is	 a	 subclass	 of	 Context,	 and	 thus	 stores	 information	 regarding	 the
application	needed	by	the	newly-instantiated	CustomView.

Creating	a	Button

As	we	have	told	our	Manifest,	our	application	has	two	Activities:	MainActivity
and	SecondActivity.	At	the	moment,	we	have	asked	MainActivity	to	be	launched
when	the	user	starts	the	application	(see	the	action	and	category	elements	inside
the	Manifest).	Once	MainActivity	is	running,	however,	it	has	no	way	of	starting
SecondActivity	 and	 letting	 it	 take	 over.	To	 resolve	 this	 issue,	we	will	 create	 a
new	Button	(which	is	a	View)	inside	MainActivity.

Open	 activity_main.xml	 in	 the	 editor	 interface	 and	 add	 the	 following	 Button
element	below	the	existing	TextView	element:

<Button

								android:id="@+id/button1"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:text="Take	me	away!"	/>>

Listing	7.11	shows	the	updated	activity_main.xml	file.

*****	Listing	7.11	activity_main.xml	(updated)	*****

<?xml	version="1.0"	encoding="utf-8"?>

<LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

				android:layout_width="match_parent"

				android:layout_height="match_parent"

				android:orientation="vertical"	>

				<TextView

								android:id="@+id/textView1"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:text="Hello,	Android"	/>

				<Button

								android:id="@+id/button1"

								android:layout_width="wrap_content"

								android:layout_height="wrap_content"

								android:text="Take	me	away!"	/>

</LinearLayout>

Note	 that	we	 have	 created	 a	 new	Button	with	 the	 id	 of	 button1.	We	 can	 now
preview	the	changes	by	switching	to	the	Graphical	Layout	tab	(shown	in	Figure
7-33).

Figure	7-33	Graphical	Layout	of	activity_main.xml	showing	the
Button

Our	 Button	 is	 now	 on	 the	 screen,	 but	 as	 of	 now,	 it	 does	 nothing!	 To	 provide
some	kind	of	action,	we	must	reference	the	Button	inside	our	MainActivity	class,
and	attach	what	is	called	an	OnClickListener.

Setting	a	Button’s	OnClickListener

An	Activity	has	a	method	called	findViewById(int	id),	which	will	return	a	View
object	 whose	 ID	 matches	 the	 int	 argument	 passed	 into	 the	 method.	 When
creating	 our	Button,	we’ve	 assigned	 the	 ID	of	 button1,	 so	we	 can	 reference	 it
inside	 our	 MainActivity	 as	 shown	 in	 bold	 below	 (don’t	 forget	 the	 import
statement):

package	com.jamescho.firstapp;

import	android.app.Activity;

import	android.os.Bundle;

import	android.widget.Button;

public	class	MainActivity	extends	Activity{

								@Override

								protected	void	onCreate(Bundle	savedInstanceState)	{

																super.onCreate(savedInstanceState);

																setContentView(R.layout.activity_main);	

																Button	button1	=	(Button)	findViewById(R.id.button1);

								}

}

Note	that	we	must	cast	the	returned	View	object	as	a	Button	in	order	to	store	it	as
a	Button	object	rather	than	a	generic	View	object.

Once	we	have	access	to	the	Button,	we	must	provide	it	with	an	OnClickListener.
Implement	an	OnClickListener	by	adding	the	changes	shown	underlined	below
to	your	MainActivity	(keep	an	eye	out	for	the	new	import	statements):

package	com.jamescho.firstapp;

import	android.app.Activity;

import	android.os.Bundle;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.widget.Button;

public	class	MainActivity	extends	Activity	implements	OnClickListener{

								@Override

								protected	void	onCreate(Bundle	savedInstanceState)	{

																super.onCreate(savedInstanceState);

																setContentView(R.layout.activity_main);	

																Button	button1	=	(Button)	findViewById(R.id.button1);

																button1.setOnClickListener(this);

								}

								@Override

								public	void	onClick(View	v)	{

																																

								}

}

As	 you	 can	 see,	 OnClickListener	 is	 an	 interface	 with	 one	method:	 onClick().
When	you	register	an	 instance	of	OnClickListener	as	 the	OnClickListener	of	a
button,	 that	 instance’s	 onClick()	method	will	 be	 called	whenever	 the	 button	 is
clicked.

Optional:	The	Anonymous	Inner	Class

Without	changing	your	own	code,	have	a	look	at	the	following	example,	which
demonstrates	an	alternate	solution	for	implementing	an	OnClickListener:

*****	Listing	7.12	Alternative	Syntax	for	OnClickListener	(Example	Only!)		*****

package	com.jamescho.firstapp;

import	android.app.Activity;

import	android.os.Bundle;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.widget.Button;

public	class	ExampleActivity	extends	Activity	{

								@Override

								protected	void	onCreate(Bundle	savedInstanceState)	{

																super.onCreate(savedInstanceState);

																setContentView(R.layout.activity_main);

																Button	button1	=	(Button)	findViewById(R.id.button1);

																button1.setOnClickListener(new	OnClickListener()	{

																								@Override

																								public	void	onClick(View	v)	{

																								}

																});

								}

}

You	may	come	across	the	syntax	shown	in	listing	7.12	as	you	develop	Android
apps.	Figure	7-34	is	provided	to	help	you	see	the	individual	components	of	the
bizarre	multi-line	statement	inside	onCreate().

Figure	7-34	Anonymous	Inner	Class

Look	 at	 Figure	 7-34	 and	 focus	 just	 on	 just	 the	white	 portion	 of	 the	multi-line
block.	 You	will	 notice	 that	 you	 are	 just	 looking	 at	 a	 simple	 single	 statement:
button1.setOnClickListener(…).

Everything	in	between	the	parentheses	(colored	pink,	green	and	orange)	form	the
single	parameter	required	by	the	aforementioned	statement.	In	other	words,	 the
parameter	 is	 a	 single	 OnClickListener	 object	 required	 by
button1.setOnClickListener().

Listing	7.12	and	Figure	7-34	demonstrate	the	syntax	for	creating	an	anonymous
inner	 class:	 an	 in-line	 implementation	 of	 an	 interface.	Rather	 than	 declaring	 a
full	class	and	implementing	an	interface,	we	can	instantiate	an	interface	directly
as	an	anonymous	inner	class	(the	green	and	orange	portions	of	Figure	7-34).

Starting	a	New	Activity

The	newly-created	onClick()	method	will	be	called	when	our	Button	is	pressed.
We	will	use	this	to	transition	to	a	new	screen.	Implement	onClick()	as	shown	in
listing	7.13,	importing	android.content.Intent.

*****	Listing	7.13	MainActivity	(Completed)	*****

package	com.jamescho.firstapp;

import	android.app.Activity;

import	android.content.Intent;

import	android.os.Bundle;

import	android.view.View;

import	android.view.View.OnClickListener;

import	android.widget.Button;

public	class	MainActivity	extends	Activity	implements	OnClickListener{

								@Override

								protected	void	onCreate(Bundle	savedInstanceState)	{

																super.onCreate(savedInstanceState);

																setContentView(R.layout.activity_main);	

																Button	button1	=	(Button)	findViewById(R.id.button1);

																button1.setOnClickListener(this);

								}

								@Override

								public	void	onClick(View	v)	{

																Intent	intent	=	new	Intent(MainActivity.this,	SecondActivity.class);

																startActivity(intent);		

								}

}

In	Android,	an	 Intent	object	 is	used	 to	switch	 from	one	Activity	 to	another.	 In
our	example,	we	instantiate	a	new	Intent	object,	passing	in	the	current	instance
of	 MainActivity	 (the	 source)	 and	 the	 desired	 target	 SecondActivity	 into	 the
constructor.	Once	we	pass	in	the	Intent	into	startActivity(),	SecondActivity	will
be	instantiated	and	set	as	the	current	activity!	Run	your	application,	and	it	should
behave	as	shown	in	Figure	7-35.

Figure	7-35	Calling	startActivity()

Note:	 If	 you	 are	 having	 problems	with	 any	 of	 the	 classes	 or	 .xml	 files	 at	 this
point,	 you	 can	 download	 the	 source	 code	 at
jamescho7.com/book/chapter7/complete.

LogCat:	Basics	of	Debugging

As	you	develop	Android	applications	and	games,	you	will	no	doubt	encounter
the	dialog	box	shown	in	Figure	7-36	many	times.	The	error	message	shown	in
Figure	7-36	indicates	that	something	wrong	has	happened	to	your	application.	To
see	detailed	log	messages	regarding	this	fatal	error,	we	use	a	tool	called	LogCat.

To	make	LogCat	visible	in	Eclipse,	click	Window	>	Show	View	>	Other.	When
the	 Show	 View	 dialog	 box	 opens,	 search	 for	 LogCat	 and	 select	 the	 non-
deprecated	version	(as	shown	in	Figure	7-37).

Figure	7-36	Unfortunately....

You	should	notice	LogCat	 is	now	docked	to	 the	bottom	of	your	Eclipse	screen
near	 the	 console.	 Clicking	 on	 the	 LogCat	 tab	 opens	 up	 LogCat	 and	 it	 can	 be
maximised	for	easier	viewing,	as	shown	in	Figure	7-38.

The	next	time	your	application	crashes,	switch	to	the	LogCat	line	and	see	if	you
can	find	an	error	message	 that	describes	 the	 issue.	 In	Figure	7-38,	you	can	see
that	 my	 app	 has	 crashed	 and	 LogCat	 is	 printing	 out	 a	 bunch	 of	 red	 error
messages.

Figure	7-37	Showing	LogCat

Figure	7-38	The	LogCat	Tab	(Maximised)

Looking	 through	 some	 of	 the	 error	 messages	 in	 Figure	 7-38,	 we	 can	 see	 the
following:

android.content.ActivityNotFoundException:	Unable	to	find	explicit	activity	class	{com.jamescho.firstapp/com.jamescho.firstapp.SecondActivity};	have	you	declared	this	activity	in	your	AndroidManifest.xml?

The	error	message	makes	 it	apparent	 that	 I	have	not	 registered	SecondActivity
with	the	Manifest	yet.	After	fixing	this	error,	my	application	runs	perfectly.	Error
messages	such	as	 this	one	can	help	you	debug	your	code	and	fix	broken	code.
We	will	talk	about	LogCat	in	more	detail	at	a	later	time.

Onward	to	Android	Game	Development

We’ve	 taken	 an	 Android	 application	 apart,	 studied	 its	 building	 blocks	 and
created	our	 own	 application	 complete	with	 user	 interaction.	Next,	we	 turn	 our
attention	to	Android	Game	Development.	As	we	did	with	Java,	we	will	build	an
Android	Game	Development	 Framework	 that	 will	 serve	 as	 the	 foundation	 for
our	future	games.	Before	long,	you	will	be	playing	your	own	Android	games	on
your	smartphone	and	sharing	your	creations	with	the	world!

XYZ

Chapter	 8:	 The	 Android	 Game
Framework
This	 is	where	the	fun	begins.	This	chapter	will	combine	the	knowledge	you’ve
gained	 from	 building	 a	 Java	 game	 development	 framework	 and	 a	 simple
Android	application	and	walk	you	through	the	design	and	implementation	of	an
Android	game	development	framework.

Think	 back	 to	 the	 overarching	 architecture	 of	 our	 Java	 game	 development
framework.	You	will	 recall	 that	our	 framework	was	constructed	one	block	at	a
time—we	 started	 with	 a	 JFrame,	 added	 a	 JPanel,	 implemented	 a	 game	 loop,
attached	 an	 input	 handler	 and	 so	 on.	 You	 will	 find	 parallels	 to	 all	 of	 these
components	 in	our	Android	game	development	 framework.	 In	 fact,	with	minor
changes,	most	of	the	classes	that	we	have	written	for	our	Java	game	development
framework	will	translate	directly	into	our	new	game	development	framework.

In	reading	this	chapter,	you	will	learn	a	lot	more	than	just	how	to	put	together	an
Android	 game	 development	 framework.	 You	 will	 begin	 to	 appreciate	 the
modularity,	scalability	and	reusability	of	Java	classes	and	truly	understand	why
we	use	object-oriented	programming.

Understanding	the	General	Principles

As	we	create	our	Android	game	development	framework,	these	are	the	principles
that	we	will	be	following.

1.	 The	goal	of	this	chapter	is	to	create	an	Android	game	development
framework	that	provides	all	of	the	features	implemented	in	the	Java	game
development	framework	from	Unit	2.	We	will	be	focusing	on	simplicity	and
ease	of	use.

2.	 The	core	architecture	of	our	framework	will	not	change	from	the	Java	game
development	framework,	but	specific	implementations	may	change	as	many
Java-based	classes	are	not	available	to	us	in	Android.

3.	 As	we	are	developing	for	a	mobile	platform,	we	will	emphasize
performance	by	minimizing	memory	usage.	We	will	only	instantiate	new
objects	when	absolutely	necessary,	reusing	existing	objects	whenever
possible.

Building	the	Android	Game	Framework

Designing	Our	Framework

As	 previously	mentioned,	 we	 will	 be	maintaining	 the	 core	 architecture	 of	 the
Java	 game	 development	 framework.	 The	 outline	 of	 the	Android	 framework	 is
provided	in	Figure	8-1.	As	you	read	through	this,	compare	it	with	Figure	4-3	to
see	the	parallels.

Figure	8-1	Outline	of	the	Android	Framework

Explaining	the	Changes

Despite	 the	fact	 that	we	will	be	using	 the	Java	programming	language	 to	build
this	 framework,	 many	 Java	 classes	 are	 not	 available	 to	 us	 in	 Android.	 The
packages	java.awt	and	javax.swing,	for	example,	which	previously	handled	our
graphics	and	input,	are	not	included	as	part	of	the	Android	library.	As	such,	we

must	rely	on	Android-specific	code	to	implement	these	things.	This	requires	us
to	modify	all	classes	that	were	previously	dependent	on	such	packages.

Note:	The	full	source	code	for	the	framework	built-in	this	chapter	can	be	found
at	the	following	link:	jamescho7.com/book/chapter8/complete.	If	you	get	stuck,
you	might	find	it	helpful	to	download	the	full	source	and	see	how	a	specific
component	fits	into	the	overall	framework.	The	architecture	of	this	framework	is
very	similar	that	that	of	Unit	2’s	framework,	so	you	will	find	it	easy	to
understand.

Creating	the	Project

We	begin	by	creating	an	Android	application	named	SimpleAndroidGDF.	Inside
Eclipse,	right-click	on	your	Package	Explorer	(Ctrl	+	Click	on	Mac)	and	select
New	>	Android	Application	Project.

In	 the	New	Android	Application	dialog,	 enter	 the	names	 shown	 in	Figure	8-2.
Set	your	Minimum	Required	SDK	to	API	9,	and	choose	the	latest	version	of	the
SDK	available	for	Target	SDK	and	Compile	With	options.	As	of	this	writing,	the
latest	 version	of	 the	SDK	was	API	21.	Yours	may	be	newer.	Keep	 the	Theme
option	as	None	and	click	Next.

Figure	8-2	New	Android	Application

Uncheck	 “Create	 custom	 launcher	 icon”	 and	 “Create	 activity”	 as	 shown	 in
Figure	8-3.	We	will	be	providing	our	own	icon	and	Activity.	Keep	the	rest	of	the
settings	as	they	are	(as	shown	in	Figure	8-3).	Your	workspace	location	will	differ
depending	on	your	setup.

Creating	the	GameMainActivity

Now	that	our	project	has	been	created,	we	must	create	our	GameMainActivity—
the	 starting	point	 of	 our	Android	 application.	GameMainActivity	will	 serve	 as
the	screen	on	which	our	game	is	drawn,	hosting	a	custom	SurfaceView	as	we’ve
seen	in	Chapter	7.

Create	a	new	package	called	com.jamescho.simpleandroidgdf	 (this	matches	 the
package	 name	 shown	 in	 Figure	 8-2)	 and	 add	 a	 new	 class	 called

GameMainActivity	as	shown	in	Figure	8-4.

Inside	GameMainActivity,	extend	Activity	and	override	an	onCreate()	method	as
shown	in	listing	8.01.

Figure	8-3	Continuing	to	Create	the	New	Android	Application

Figure	8-4	Creating	GameMainActivity

*****	Listing	8.01	GameMainActivity	*****

package	com.jamescho.simpleandroidgdf;

import	android.app.Activity;

import	android.os.Bundle;

public	class	GameMainActivity	extends	Activity	{

								@Override

								protected	void	onCreate(Bundle	savedInstanceState)	{

																super.onCreate(savedInstanceState);

								}

}

Registering	the	Activity

Now	 that	 our	 Activity	 has	 been	 created,	 we	 must	 declare	 it	 inside	 the
AndroidManifest.	 Open	AndroidManifest.xml,	 switch	 to	 the	 editor	 tab	 labeled
AndroidManifest.xml,	 and	 declare	 your	 new	 Activity	 as	 shown	 below	 (note:
your	SDK	versions	may	differ):

<manifest	xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.example.simpleandroidgdf"

				android:versionCode="1"

				android:versionName="1.0"	>

				<uses-sdk

								android:minSdkVersion="9"

								android:targetSdkVersion="21"	/>

				<application

								android:allowBackup="true"

								android:icon="@drawable/ic_launcher"

								android:label="@string/app_name"

								android:theme="@style/AppTheme"	>

								

							<activity	

												android:screenOrientation="sensorLandscape"

												android:name="com.jamescho.simpleandroidgdf.GameMainActivity"

												android:label="@string/app_name"

												android:theme="@android:style/Theme.NoTitleBar.Fullscreen"	>

												<intent-filter>

																<action	android:name="android.intent.action.MAIN"	/>

																<category	android:name="android.intent.category.LAUNCHER"	/>

												</intent-filter>

								</activity>

								

				</application>

</manifest>

In	our	Manifest,	we	set	our	new	GameMainActivity	as	the	launcher	Activity,	so
that	 it	 becomes	 the	 starting	 point	 of	 our	 application.	 Note	 that	 we	 set
android:screenOrientation	 as	 “sensorLandscape”,	 which	 allows	 the	 player	 to
hold	the	phone	horizontally	and	use	it	in	with	either	the	left	side	or	the	right	side
facing	up.	Note	also	that	we	use	the	android:theme	attribute	to	remove	the	title
bar	 and	 set	 our	 application	 to	 full	 screen	 using	 the	 built	 in	 style
@android:style/Theme.NoTitleBar.Fullscreen.	 This	 has	 the	 effect	 of	 removing
the	 regions	colored	 red	 in	Figure	8-5,	providing	us	with	valuable	 screen	estate
we	can	use	to	display	more	of	our	game.

Figure	8-5	The	Title	Bar	and	Notification	Bar

Running	your	Application

Now	try	 running	your	application	by	 right-clicking	 (Ctrl+click	on	Mac)	on	 the
SimpleAndroidGDF	project	and	selecting	Run	As	>	1	Android	Application.	You
can	run	this	either	on	an	emulator	or	a	physical	device	(refer	to	Chapter	7	if	you
need	help	with	either	option).	Once	your	application	is	running,	you	should	see	a
totally	 blank	 screen!	 Don’t	 panic.	 This	 is	 the	 correct	 behavior,	 and	 you	 are
looking	at	the	emptiness	of	the	GameMainActivity.

A	Single	Activity	Game

As	 you	 know,	 Android	 applications	 typically	 use	 multiple	 Activities,
transitioning	 from	 one	 screen	 to	 the	 next	 via	 the	 use	 of	 Intents.	 In	 our	 game
development	 framework,	 however,	 we	 will	 only	 have	 a	 single	 Activity
(GameMainActivity)	and	will	rely	on	a	dynamic	SurfaceView	which	will	display
the	currently	selected	state	(LoadState,	PlayState	and	so	on).	This	is	identical	to
the	pattern	we’ve	used	with	our	Java	game	development	framework.

Working	with	a	single	Activity	keeps	our	game’s	footprint	small	and	provides	us
with	the	maximum	control	over	our	game’s	behavior	in	the	Android	ecosystem,
which	 consists	 of	 multiple	 Activities	 running	 simultaneously.	 Using	 a
SurfaceView	grants	 us	 flexibility	when	 drawing	graphics,	 allowing	 us	 to	 draw

pixel-perfect	art	just	like	we	did	with	a	JPanel.

Creating	the	GameView

We	will	now	create	a	custom	SurfaceView	and	attach	it	to	our	Activity.	Create	a
new	class	called	GameView	inside	com.jamescho.simpleandroid.gdf	as	shown	in
listing	8.02.

*****	Listing	8.02	GameView	(Incomplete)	*****

package	com.jamescho.simpleandroidgdf;

import	android.content.Context;

import	android.view.SurfaceView;

public	class	GameView	extends	SurfaceView	{

								public	GameView(Context	context,	int	gameWidth,	int	gameHeight)	{

																super(context);

								}

}

We	will	make	use	of	the	gameWidth	and	gameHeight	values	at	a	later	time,	so
leave	them	alone	for	now.

Once	the	GameView	has	been	created,	you	may	(or	may	not)	see	the	error	shown
in	Figure	8-6:

Figure	8-6	Missing	Constructor

The	warning	in	Figure	8-6	says	that	the	Android	developer	tools	uses	one	of	the
following	 constructors	 with	 every	 custom	 view:	 (Context)	 or	 (Context,
AttributeSet)	 or	 (Context,	 AttributeSet,	 int).	 As	 our	 GameView	 only	 has	 a

(Context,	int,	int)	constructor,	we	will	need	to	provide	the	following	constructor
to	make	this	warning	disappear:

package	com.jamescho.simpleandroidgdf;

import	android.content.Context;

import	android.view.SurfaceView;

public	class	GameView	extends	SurfaceView	{

								public	GameView(Context	context,	int	gameWidth,	int	gameHeight)	{

																super(context);

								}

								

								public	GameView(Context	context)	{						//	The	new	Constructor!

																super(context);

								}

}

This	newly-added	constructor	is	purely	for	our	tools	and	will	not	affect	our	code.

Setting	the	GameView	as	the	Content	View

Now	 that	we	 have	 a	 custom	SurfaceView,	we	will	 set	 it	 as	 the	 content	 of	 our
Activity.	 Start	 by	 navigating	 to	 the	 GameMainActivity	 and	 declaring	 the
following	class	variables,	importing	android.content.res.AssetManager:

public	static	final	int	GAME_WIDTH	=	800;

public	static	final	int	GAME_HEIGHT	=	450;

public	static	GameView	sGame;

public	static	AssetManager	assets;

The	 variables	 GAME_WIDTH,	 GAME_HEIGHT,	 and	 sGame	 will	 serve	 the
same	purpose	that	they’ve	served	in	the	Java	game	development	framework.	The
newly-added	AssetManager	will	be	used	 to	 load	 files	 from	the	assets	 folder	of
our	 Android	 project.	 This	 object	 will	 be	 accessed	 from	 other	 classes	 when
loading	images	and	sounds.

Inside	the	Activity’s	onCreate()	method,	we	now	initialize	the	variables	sGame

and	 assets	 then	 call	 setContentView(sGame)	 to	 set	 our	 new	GameView	 as	 the
content	view	of	our	Activity.	This	 is	 shown	 in	 listing	8.03,	which	contains	 the
full	GameMainActivity	class.

*****	Listing	8.03	GameMainActivity	Class	*****

package	com.jamescho.simpleandroidgdf;

import	android.app.Activity;

import	android.content.res.AssetManager;

import	android.os.Bundle;

public	class	GameMainActivity	extends	Activity	{

								

								public	static	final	int	GAME_WIDTH	=	800;

								public	static	final	int	GAME_HEIGHT	=	450;

								public	static	GameView	sGame;

								public	static	AssetManager	assets;	

								

								@Override

								protected	void	onCreate(Bundle	savedInstanceState)	{

																super.onCreate(savedInstanceState);

																assets	=	getAssets();

																sGame	=	new	GameView(this,	GAME_WIDTH,	GAME_HEIGHT);

																setContentView(sGame);

								}

}

Note:	If	you	are	having	problems	with	any	of	the	classes	at	this	point,	you	can
download	the	source	code	at	jamescho7.com/book/chapter8/checkpoint1.

Discussing	the	GameView’s	Components

At	the	moment,	our	GameView	is	nothing	more	than	a	blank	Canvas.	Before	we
start	 building	 the	 GameView,	 let’s	 first	 discuss	 what	 its	 role	 would	 be	 in	 our
game	development	framework.

The	GameView,	like	its	Unit	2	counterpart	Game,	will	contain	our	game	loop.	In
this	 game	 loop,	 GameView	 will	 do	 the	 following:	 accept	 the	 player’s	 input,
update	the	current	state	and	render	the	current	state.	To	accomplish	these	tasks,
GameView	will	require	some	helper	classes.

Current	State

As	mentioned	previously,	GameView	will	manage	a	series	of	state	classes.	This
remains	virtually	unchanged	from	the	Game	class’s	implementation.

Handling	Input

As	we	are	working	with	Android	devices,	our	GameView	will	need	to	respond	to
touch	events.	To	make	this	happen,	we	must	provide	it	with	an	OnTouchListener
(rather	than	a	key	or	mouse	listener).	This	will	involve	the	following	steps:

1.	 Create	an	InputHandler	class.
2.	 Implement	the	OnTouchListener	interface.
3.	 Set	an	instance	of	InputHandler	as	the	GameView’s	OnTouchListener

The	InputHandler	will	then	be	notified	whenever	the	player	touches	the
GameView.

Handling	Drawing

Recall	 that	 in	 Java,	 drawing	 is	 handled	 by	 the	Graphics	 class.	 If	 you	want	 to
draw	 images	 onto	 an	 Image	 object,	 you	 must	 retrieve	 that	 Image	 object’s
Graphics	object	and	call	its	drawing	methods.

In	 Unit	 2,	 to	 get	 images	 onto	 our	 screen	 in	 our	 Java	 game	 development
framework,	we	created	an	empty,	off-screen	Image	called	gameImage.	On	every

frame,	we	passed	 this	gameImage’s	Graphics	object	 to	 the	current	 state,	which
asked	 the	Graphics	object	 to	draw	 the	 appropriate	 images.	Lastly,	we	 took	 the
prepared	gameImage	and	drew	it	to	the	screen.

In	 Android,	 we	 follow	 the	 same	 pattern	 with	 minor	 differences.	 We	 use	 the
Bitmap	class	instead	of	an	Image	class,	and	replace	the	Graphics	class	with	the
Canvas	class.

To	 perform	 our	 drawing,	 we	 will	 create	 an	 empty,	 off-screen	 Bitmap	 called
gameImage.	On	every	frame,	we	will	provide	the	gameImage’s	Canvas	object	to
the	 current	 state,	 which	 will	 tell	 the	 received	 Canvas	 to	 draw	 the	 appropriate
graphics.	Once	our	gameImage	is	ready,	we	will	draw	it	to	the	screen	(or	more
accurately,	to	the	Canvas	object	of	our	GameView,	which	is	later	drawn	onto	the
screen).

Canvas	and	Memory	Management

The	Canvas	class	provides	many	drawing	methods	 that	 are	parallel	 to	 those	 in
the	Graphics	class.	For	example,	 the	Canvas	class	has	a	drawBitmap()	method
that	draws	an	image	(Graphics	has	a	similar	drawImage()	method).

Despite	 the	 similarities	 to	 Graphics,	 Canvas	 has	 a	 limitation:	 many	 of	 its
drawing	 calls	 require	 a	 Rectangle	 object	 as	 an	 argument,	 rather	 than	 integer
position	and	dimension	values.	This	means	 that	 if	you	wanted	 to	draw	a	game
object	based	on	its	x	and	y	positions	with	its	width	and	height,	you	would	have
to	wrap	those	values	inside	a	Rectangle	object	and	pass	it	into	the	Canvas.

Given	 limitation,	 there	 are	 two	 routes	 we	 could	 take	 directly	 to	 implement
graphics	for	our	game:

1.	 We	could	create	a	new	Rectangle	object	inside	the	render	call	of	each	game
object	using	the	game	object’s	x,	y,	width	and	height	values	and	pass	it	into
the	Canvas’s	drawing	methods.

2.	 We	could	create	a	single	Rectangle	object	for	each	game	object	and	reuse	it
on	every	frame	by	updating	its	x,	y,	width	and	height	values	and	passing	it
to	the	Canvas’s	drawing	methods.

The	 first	 approach	 is	 great—if	 you	 enjoy	 playing	 games	 with	 lag.	 Excessive
object	 allocation	 is	 your	 worst	 enemy.	 If	 we	 were	 to	 create	 a	 new	 Rectangle

object	on	every	render	call	(i.e.	every	frame)	of	each	rendered	game	object,	we
would	have	60	new	Rectangle	objects	per	second	per	game	object	(assuming	60
FPS).	When	working	with	 an	Android	device	with	 a	 limited	 amount	of	RAM,
this	would	quickly	fill	up	the	heap	(the	location	in	memory	where	new	objects
are	 stored),	 causing	 the	Garbage	Collector	 to	 come	 in	 frequently	 and	 clean	up
any	 useless	 Rectangle	 objects	 to	 free	memory.	 Every	 time	 this	 happens,	 your
game	 will	 stutter.	 This	 results	 in	 a	 poor	 performance	 and	 a	 poor	 gameplay
experience.

The	 second	 approach	 is	 better—we	 limit	 the	 number	 of	 Rectangles	 that	 are
created.	Assuming	we	have	about	10-50	game	objects,	this	means	we	would	only
need	 a	 couple	 dozen	 Rectangle	 objects,	 which	 likely	 will	 not	 merit	 garbage
collection	by	themselves.	In	many	games,	this	would	work	perfectly—especially
if	 your	 game	 objects’	 bounding	 rectangles	 match	 the	 x,	 y,	 width	 and	 height
values	 used	 to	 draw	 the	 its	 image,	 in	 which	 case	 you	 can	 use	 the	 bounding
rectangles	to	check	for	collision	and	draw	images.	In	games	where	the	bounding
box	 and	 the	 game	 objects’	 graphics	 are	 not	 perfectly	 aligned	 (such	 as	 Ellio),
however,	we	would	have	to	manually	go	into	each	class,	create	a	new	Rectangle
and	update	 it	whenever	 the	position	or	width	of	 the	game	object	changes.	This
reduces	the	programmer’s	efficiency,	because	you	need	to	do	more	work.

The	best	approach	is	an	indirect	one:	to	create	a	middleman	class	between	your
state	and	the	gameImage’s	Canvas	object.	This	class,	which	we	will	call	Painter,
will	make	the	Canvas	behave	more	like	a	Graphics	object	by	doing	the	work	of
creating	 and	 updating	 the	 Rectangles	 on	 behalf	 of	 the	 states	 and	 their	 game
objects.	This	will	make	much	more	sense	when	you	see	it	in	action.

Screen	Resolution	vs.	Game	Resolution

It	 is	 important	we	distinguish	 the	 terms	screen	 resolution	and	game	resolution.
Screen	resolution	describes	the	width	and	height	in	pixels	of	a	physical	device.
Game	resolution,	on	the	other	hand,	describes	the	width	and	height	of	the	game.

In	 the	 Java	game	development	 framework,	our	 screen	 resolution	and	 the	game
resolution	were	identical.	We	created	a	game	image	of	size	800	x	450	and	filled
a	 window	 of	 equal	 size.	 When	 developing	 for	 Android,	 however,	 the	 two
resolutions	may	not	be	the	same,	as	different	devices	have	different	screen	sizes
and	screen	resolutions.

In	 Chapters	 8	 and	 9,	 rather	 than	 matching	 our	 game	 resolution	 to	 the	 screen
resolution,	we	will	 set	a	 fixed	game	resolution	of	800	x	450	 (this	was	done	 in
GameMainActivity).	When	performing	rendering,	we	will	create	a	game	image
of	size	800	x	450	and	scale	it	appropriately	(up	for	higher	screen	resolutions	and
down	for	lower	screen	resolutions).

This	method	has	both	pros	and	cons.	An	advantage	is	that	we	can	pretend	that	all
Android	devices	have	the	same	screen	resolution	of	800	x	450.	We	can	build	our
game	 using	 this	 assumption	 and	 the	 game	 will	 behave	 identically	 on	 every
device.

The	 obvious	 disadvantage	 is	 that	 not	 all	 Android	 devices	 actually	 have	 the
screen	resolution	of	800	x	450.	This	means	that,	while	the	game	will	behave	the
same	on	every	screen	resolution,	it	may	not	look	the	same.	The	game	will	look
pixel-perfect	on	800	x	450	screens,	lose	detail	on	1600	x	900	screens,	and	so	on.
If	a	device’s	screen	has	a	completely	different	aspect	ratio	(the	ratio	of	width	and
height—16:9	for	our	game)	than	our	game,	the	game	will	stretch	unevenly.

For	most	cases,	I’ve	found	that	the	pros	outweigh	the	cons.	Games	built	with	the
aforementioned	approach	look	good	on	many	devices.	In	Appendix	C,	you	will
find	a	link	to	sample	projects	that	show	a	more	flexible	solution.

Building	the	State,	InputHandler	and	Painter	Classes

Now	that	we	have	discussed	the	GameView	in	great	detail,	let’s	start	building	its
individual	components.

Painter

Create	 a	 new	 package	 called	 com.jamescho.framework.util	 and	 create	 a	 new
Painter	class	as	shown	in	listing	8.04.

*****	Listing	8.04	Painter	Class	(Completed)	*****

01	package	com.jamescho.framework.util;

02

03	import	android.graphics.Bitmap;

04	import	android.graphics.Canvas;

05	import	android.graphics.Paint;

06	import	android.graphics.Rect;								

07	import	android.graphics.RectF;

08	import	android.graphics.Typeface;

09

10	public	class	Painter	{

11

12						private	Canvas	canvas;

13						private	Paint	paint;

14						private	Rect	srcRect;

15						private	Rect	dstRect;

16						private	RectF	dstRectF;

17

18						public	Painter(Canvas	canvas)	{

19														this.canvas	=	canvas;

20														paint	=	new	Paint();

21														srcRect	=	new	Rect();

22														dstRect	=	new	Rect();

23														dstRectF	=	new	RectF();

24						}

25

26						public	void	setColor(int	color)	{

27														paint.setColor(color);

28						}

29

30						public	void	setFont(Typeface	typeface,	float	textSize)	{

31														paint.setTypeface(typeface);

32														paint.setTextSize(textSize);

33						}

34

35						public	void	drawString(String	str,	int	x,	int	y)	{

36														canvas.drawText(str,	x,	y,	paint);

37						}

38

39						public	void	fillRect(int	x,	int	y,	int	width,	int	height)	{

40														dstRect.set(x,	y,	x	+	width,	y	+	height);

41														paint.setStyle(Paint.Style.FILL);

42														canvas.drawRect(dstRect,	paint);

43						}

44

45						public	void	drawImage(Bitmap	bitmap,	int	x,	int	y)	{

46														canvas.drawBitmap(bitmap,	x,	y,	paint);

47						}

48

49						public	void	drawImage(Bitmap	bitmap,	int	x,	int	y,	int	width,	int	height)	{

50														srcRect.set(0,	0,	bitmap.getWidth(),	bitmap.getHeight());

51														dstRect.set(x,	y,	x	+	width,	y	+	height);

52														canvas.drawBitmap(bitmap,	srcRect,	dstRect,	paint);

53						}

54

55						public	void	fillOval(int	x,	int	y,	int	width,	int	height)	{

56														paint.setStyle(Paint.Style.FILL);

57														dstRectF.set(x,	y,	x	+	width,	y	+	height);

58														canvas.drawOval(dstRectF,	paint);

59						}

60	}

The	 purpose	 of	 this	 class	 is	 to	 make	 the	 rendering	 process	 in	 our	 Android
framework	 resemble	 that	 from	 our	 Java	 framework.	 Notice	 that	 our	 Painter
class’s	methods	are	very	similar	to	the	ones	we	are	familiar	with	from	the	Java
Graphics	class.	This	means	that	a	Painter	object	can	be	used	like	a	Java	Graphics
object,	and	it	will	do	the	work	of	 translating	your	draw	calls	 into	Canvas	draw
calls.

The	Canvas	 object	 inside	 our	 Painter	 class	will	 belong	 to	 the	 gameImage.	 To
render	 images	onto	our	gameImage,	we	simply	ask	our	Painter	 to	draw.	 In	 the
GameView,	this	gameImage	will	be	drawn	to	the	screen.

The	Paint	object	is	used	for	various	styling	options.	We	use	it	to	set	the	TypeFace
(font),	font	size,	color	of	drawn	polygons,	and	etc.	For	more	information	on	the
Paint	class,	please	see	the	Android	API	Reference	for	the	Paint	class:

http://developer.android.com/reference/android/graphics/Paint.html

Notice	 that	 the	Rectangle	 class	 from	 Java	AWT	 (java.awt.Rectangle)	 has	 been
replaced	 with	 the	 Android	 equivalent	 Rect	 (android.graphics.Rect)	 and	 RectF
(android.graphics.RectF	which	is	used	to	store	float-based	positions	rather	than
integer-based	positions).

Note:
The	constructors	for	android.graphics.Rect	and	android.graphics.RectF	are
different	from	that	of	java.awt.Rectangle.
The	java.awt.Rectangle	is	created	using	the	parameters:	(int	x,	int	y,	int	width,
int	height).
The	Android	Rect	objects	are	created	using	the	parameters:	(int	left,	int	top,	int
right,	int	bottom).
The	Rect.set(...)	and	RectF.set(...)	use	the	same	conventions	to	change	the
position	of	an	existing	Rect	object.

I	will	not	go	into	individual	Canvas	drawing	calls	here,	as	they	are	mostly	self-
explanatory.	For	a	complete	discussion	of	all	the	methods	used,	please	visit	the
Android	API	Reference	for	the	Canvas	class:

http://developer.android.com/reference/android/graphics/Canvas.html

State

Create	 a	new	package	 called	 com.jamescho.game.state,	 and	 create	 a	new	class
called	State	as	shown	in	Listing	8.05.

*****	Listing	8.05	State	(Completed)	*****

package	com.jamescho.game.state;

import	android.view.MotionEvent;

import	com.jamescho.framework.util.Painter;

import	com.jamescho.simpleandroidgdf.GameMainActivity;

public	abstract	class	State	{

								public	void	setCurrentState(State	newState)	{

																GameMainActivity.sGame.setCurrentState(newState);

								}

http://developer.android.com/reference/android/graphics/Paint.html
http://developer.android.com/reference/android/graphics/Canvas.html

								public	abstract	void	init();

								public	abstract	void	update(float	delta);

								public	abstract	void	render(Painter	g);

								public	abstract	boolean	onTouch(MotionEvent	e,	int	scaledX,	int	scaledY);

}

After	doing	this	you	will	have	the	error	shown	in	Figure	8-7.	Choose	the	option
“Create	 method	 ‘setCurrentState(State)’	 in	 type	 ‘GameView’.”	 This	 will
automatically	create	the	method	shown	in	Figure	8-8	inside	GameView.

Import	 State,	 making	 sure	 you	 choose	 the	 correct	 one:
(com.jamescho.game.state).	At	this	point,	our	GameView	class	should	look	that
shown	 in	 listing	8.06.	Leave	 the	class	 alone	 for	now.	We	will	 come	back	 to	 it
later.

Figure	8-7	Method	Undefined

Figure	8-8	setCurrentState()

*****	Listing	8.06	GameView	(Updated)	*****

package	com.jamescho.simpleandroidgdf;

import	com.jamescho.game.state.State;

import	android.content.Context;

import	android.view.SurfaceView;

public	class	GameView	extends	SurfaceView	{

								public	GameView(Context	context,	int	gameWidth,	int	gameHeight)	{

																super(context);

								}

								

								public	GameView(Context	context)	{		

																super(context);

								}

								public	void	setCurrentState(State	newState)	{

																//	TODO	Auto-generated	method	stub

																

								}

}

Let’s	go	back	to	State	class	from	listing	8.05.	All	the	errors	should	now	be	gone.
Notice	that	the	State	class	is	virtually	identical	to	its	Unit	2	counterpart	with	the
exception	of	the	following	changes.

The	Graphics	parameter	of	render()	has	been	updated	to	a	Painter.
All	of	the	keyboard	and	mouse	input	methods	have	been	removed	and
replaced	with	onTouch().	This	method	will	be	implemented	inside	each
individual	state	class,	and	will	be	called	by	InputHandler	when	the	player
touches	the	screen.

The	 MotionEvent	 parameter	 of	 the	 onTouch()	 method	 provides	 information
regarding	the	touch	that	has	triggered	the	method	to	be	called	(such	as	whether
the	 touch	was	a	drag,	a	 tap	or	a	 release).	The	parameters	scaledX	and	scaledY
will	be	described	in	detail	with	the	InputHandler	class.

InputHandler

Inside	 the	package	com.jamescho.framework.util,	create	 the	InputHandler	class
as	shown	in	listing	8.07.

*****	Listing	8.07	InputHandler	*****

package	com.jamescho.framework.util;

import	android.view.MotionEvent;

import	android.view.View;

import	android.view.View.OnTouchListener;

import	com.jamescho.game.state.State;

import	com.jamescho.simpleandroidgdf.GameMainActivity;

public	class	InputHandler	implements	OnTouchListener	{

								private	State	currentState;

								public	void	setCurrentState(State	currentState)	{

																this.currentState	=	currentState;

								}

								@Override

								public	boolean	onTouch(View	v,	MotionEvent	event)	{

																int	scaledX	=	(int)	((event.getX()	/	v.getWidth())	*	GameMainActivity.GAME_WIDTH);

																int	scaledY	=	(int)	((event.getY()	/	v.getHeight())	*	GameMainActivity.GAME_HEIGHT);

																return	currentState.onTouch(event,	scaledX,	scaledY);

								}

}

The	 InputHandler’s	 role	 remains	 unchanged	 since	 Unit	 2.	 Instead	 of
implementing	 a	 KeyListener	 or	 a	MouseListener,	 however,	 we	 implement	 the
OnTouchListener	by	implementing	the	following	method:

public	boolean	onTouch(View	v,	MotionEvent	event)...

This	allows	us	to	set	an	instance	of	InputHandler	as	the	OnTouchListener	of	our
GameView	 (we	 will	 do	 this	 later).	 From	 that	 point	 on,	 our	 InputHandler’s
onTouch()	method	will	 be	 called	whenever	 the	 player	 touches	 the	 screen.	We
return	true	if	we	responded	to	the	touch	event,	false	otherwise.

When	onTouch()	is	called,	it	receives	two	parameters	from	the	Android	system:
the	View	that	the	player	has	interacted	with	and	the	MotionEvent	that	represents
the	touch	that	triggered	onTouch().

The	x	and	y	coordinates	 retrieved	using	event.getX()	and	event.getY()	 tell	you
the	 coordinates	 of	 the	 touch	 with	 respect	 to	 the	 screen	 resolution.	 For	 our
framework,	we	want	these	values	scaled	with	respect	to	the	the	game	resolution.
This	is	accomplished	inside	onTouch()	by	dividing	the	event	coordinates	by	the
screen’s	 dimensions	 (v.getWidth()	 and	 v.getHeight())	 and	 multiplying	 by	 the
game’s	 dimensions	 (GameMainActivity.GAME_WIDTH	 and
GameMainActivity.GAME_HEIGHT).

Note:
If	 you	 are	 having	 problems	 with	 any	 of	 the	 classes	 at	 this	 point,	 you	 can
download	the	source	code	at	jamescho7.com/book/chapter8/checkpoint2.

Adding	the	Assets

The	res	Folder

Let’s	take	a	short	break	from	coding	and	start	adding	some	images	that	we	will
need	 in	 order	 to	 complete	 our	 game	 development	 framework.	 Open	 your	 res
folder	inside	your	Android	project,	as	shown	in	Figure	8-9.

Figure	8-9	The	res	folder

You	will	notice	 that	you	have	 four	 folders	named	drawable	each	with	a	suffix.
Ldpi,	 mdpi,	 hdpi,	 xhdpi	 stand	 for	 low,	 medium,	 high	 and	 extra	 high	 density,
respectively.	 These	 folders	 allow	 you	 to	 create	 multiple	 versions	 of	 the	 same
images	 to	cater	 to	various	screen	 types.	Depending	on	the	device	running	your
application,	the	Android	system	will	determine	the	optimal	resource	to	use.	We
will	make	use	of	this	feature	to	provide	an	icon	image	that	looks	good	on	a	range
of	screens.

Note:	For	more	information	on	multiple	screen	sizes,	please	visit	the	following
page:	http://developer.android.com/guide/practices/screens_support.html

Downloading	the	Image	Files

Go	to	jamescho7.com/book/chapter8/	on	your	web	browser,	and	download	the
following	 image	 files	 to	 any	 folder	 outside	 your	 project	 (alternatively,	 create
images	of	your	own	with	the	provided	names	and	sizes):

Adding	the	Icon	Images

Copy	the	four	icon	images	into	your	drawable	folders,	as	shown	in	Figure	8-10.
You	should	put	the	36	x	36	image	inside	the	ldpi	folder,	48	x	48	image	inside	the
mdpi	folder,	and	so	on.

Figure	8-10	Adding	the	Icon	Images

Figure	8-11	After	Removing	the	Original	ic_launcher	images

Now	rename	all	four	files	as	ic_launcher.png	as	shown	in	Figure	8-12	(this	is	the
name	we	specified	for	our	icon	inside	our	Manifest	earlier	on).

Figure	8-12	Renaming	the	Icon	Images

And	 now	 our	 icons	 are	 ready!	 After	 running	 your	 application	 on	 your	 device
(sending	over	the	latest	build),	your	application’s	icon	will	change	as	shown	in
Figure	8-13.	Of	course,	the	application	will	still	not	do	anything.

Figure	8-13	Updated	App	Icon

Adding	the	Welcome	Image

All	game-related	images	and	sound	files	used	inside	our	game	will	go	inside	of
the	assets	folder.	Copy	the	downloaded	(or	created)	welcome.png	image	into	the
assets	folder	as	shown	in	Figure	8-14.

Figure	8-14	Place	the	welcome.png	image	in	the	assets	folder.

Creating	the	Assets	Class

Inside	 the	 package	 com.jamescho.simpleandroidgdf,	 create	 the	Assets	 class	 as
shown	in	listing	8.08.	We	will	discuss	it	afterwards.

*****	Listing	8.08		Assets	(Completed)	*****

01	package	com.jamescho.simpleandroidgdf

02

03	import	java.io.IOException;

04	import	java.io.InputStream;

05

06	import	android.graphics.Bitmap;

07	import	android.graphics.Bitmap.Config;

08	import	android.graphics.BitmapFactory;

09	import	android.graphics.BitmapFactory.Options;

10	import	android.media.AudioManager;

11	import	android.media.SoundPool;

12

13	public	class	Assets	{

14

15						private	static	SoundPool	soundPool;

16						public	static	Bitmap	welcome;

17

18						public	static	void	load()	{

19														welcome	=	loadBitmap("welcome.png",	false);

20						}

21

22						private	static	Bitmap	loadBitmap(String	filename,	boolean	transparency)	{

23														InputStream	inputStream	=	null;

24														try	{

25																						inputStream	=	GameMainActivity.assets.open(filename);

26														}	catch	(IOException	e)	{

27																						e.printStackTrace();

28														}

29														Options	options	=	new	Options();

30														if	(transparency)	{

31																						options.inPreferredConfig	=	Config.ARGB_8888;

32														}	else	{

33																						options.inPreferredConfig	=	Config.RGB_565;

34														}

35														Bitmap	bitmap	=	BitmapFactory.decodeStream(inputStream,	null,

36																														new	Options());

37														return	bitmap;

38						}

39

40						private	static	int	loadSound(String	filename)	{

41														int	soundID	=	0;

42														if	(soundPool	==	null)	{

43																						soundPool	=	new	SoundPool(25,	AudioManager.STREAM_MUSIC,	0);

44														}

45														try	{

46																		soundID	=	soundPool.load(GameMainActivity.assets.openFd(filename),1);

47														}	catch	(IOException	e)	{

48																						e.printStackTrace();

49														}

50														return	soundID;

51						}

52

53						public	static	void	playSound(int	soundID)	{

54														soundPool.play(soundID,	1,	1,	1,	0,	1);

55						}

56

57	}

Review	the	code	in	listing	8.08.	You	will	find	that	much	of	it	is	self-explanatory.
I	will	not	discuss	individual	built-in	method	calls	here,	as	many	of	these	really
need	 to	 be	 studied	 and	 memorized,	 not	 just	 described.	 For	 information	 on
specific	 methods	 and	 arguments,	 please	 see	 the	 Android	 API	 Reference	 as
needed	at	the	following	page:

http://developer.android.com/reference/packages.html

The	Assets	class	in	lising	8.08	replaces	the	Resources	class	from	Unit	2.	It	still
performs	 the	 same	 functions,	 allowing	 us	 to	 load	 images	 and	 sounds	 into
memory	 to	 be	 used	 throughout	 the	 game.	 We	 can	 no	 longer	 use	 the	 same
methods	for	file	 loading,	however,	as	Android	handles	file	management	a	 little

http://developer.android.com/reference/packages.html

differently.

Memory	vs.	File	System

Memory	management	in	game	development	is	similar	to	being	hungry	at	a	buffet
—you	 want	 to	 maximize	 the	 amount	 of	 time	 spent	 eating	 and	 minimize	 the
amount	of	time	spent	retrieving	food.

Think	of	RAM	as	a	plate	of	food	on	your	dining	table.	You	have	easy	access	to	it
and	can	grab	things	from	it	immediately	if	needed.	The	file	system,	on	the	other
hand,	is	more	like	the	buffet	table	across	the	room	with	a	long	line	of	people	who
don’t	share	your	sense	of	urgency.

When	our	Android	game	starts	for	the	first	time,	all	of	our	assets	will	initially	be
stored	 in	 the	 file	 system.	For	 easy	 access	 to	 these	 assets	 during	 gameplay,	we
must	 retrieve	 these	 assets	 from	 the	 file	 system	 and	 load	 them	 into	 our	 RAM,
much	as	we	would	grab	a	plate	of	food	from	the	buffet	table	to	bring	back	to	our
dining	table.

RAM	is	limited,	and	you	must	be	careful	in	order	to	avoid	running	out	of	space.
Rather	 than	 choosing	 to	 load	 one	 high	 quality	 image,	 you	 may	 opt	 for	 two
medium	 quality	 images.	 Rather	 than	 loading	 every	 asset	 into	 the	 memory	 at
once,	you	may	choose	to	only	keep	the	most	frequently	needed	assets	in	memory
and	make	a	trip	to	the	file	system	for	the	less	frequently	needed	files.

Loading	Images	from	assets	Folder

Have	a	look	at	the	loadBitmap()	method,	which	performs	an	image	load	in	three
steps.	It	first	creates	an	InputStream	object	(used	to	read	data	from	the	device’s
file	system)	by	opening	an	 image	file	 from	the	assets	 folder.	 It	 then	creates	an
Options	object	 that	 specifies	how	 that	 image	 should	be	 stored	 in	memory,	 and
finally	 creates	 a	 new	 Bitmap	 using	 the	 BitmapFactory	 class,	 passing	 in	 the
InputStream	and	the	Options	objects	as	argumetns.

Let’s	 talk	 a	 little	 more	 about	 the	 Options	 object.	 When	 loading	 a	 Bitmap	 in
Android,	you	need	 to	be	aware	of	 its	memory	 footprint—i.e.	how	much	RAM
that	 Bitmap	 will	 take	 up.	 Memory	 usage	 increases	 with	 an	 image’s	 size	 and
quality.	 Supporting	 transparency	 for	 your	 image	 also	 increases	 memory
consumption.

When	 loading	an	 image	 into	memory,	we	simply	create	a	Bitmap	variable	and
call	 the	 loadBitmap()	method,	 passing	 in	 the	 name	of	 the	 image	 to	 be	 loaded.
The	 loadBitmap()	 method	 accepts	 boolean	 argument,	 which	 allows	 you	 to
specify	whether	you	want	 transparency	or	not.	This	value	 is	used	 to	determine
whether	 the	 Bitmap	 configuration	 should	 be	 RGB_565	 (no	 transparency,	 less
memory	 consumption)	 or	 ARGB_8888	 (transparent	 images,	 greater	 memory
consumption).

For	more	on	Bitmap	configurations	and	to	learn	how	to	calculate	the	amount	of
memory	each	Bitmap	will	take	up	at	runtime,	please	see	the	following	page:

http://developer.android.com/reference/android/graphics/Bitmap.Config.html

Loading	Sounds	from	assets	Folder

Short	 sound	 files	 should	 be	 loaded	 into	 the	 RAM.	 This	 allows	 you	 to	 access
them	quickly	so	that	you	can	play	sound	effects	without	waiting	for	the	sound	to
be	retrieved	from	the	file	system.

To	 make	 this	 happen,	 we	 create	 a	 single	 SoundPool	 object	 that	 will	 act	 as	 a
manager	of	every	sound	file	loaded	into	memory.	The	Assets	class’s	loadSound()
method	will	accept	a	filename,	open	the	requested	sound	file	and	load	it	into	the
SoundPool.	At	this	point,	the	requested	sound	file	receives	an	integer	ID	which
we	can	use	to	play	that	sound	using	the	playSound()	method	in	the	Assets	class.
You	will	see	an	example	of	this	in	the	next	chapter.

For	more	information	about	the	SoundPool	and	the	various	arguments	that	I	have
provided	when	calling	its	methods,	please	see:

http://developer.android.com/reference/android/media/SoundPool.html

Note:	Larger	 sound	 files,	which	 tend	 to	be	music	 files,	may	 take	up	 too	much
space	 in	RAM	 and	 should	 be	 streamed	 directly	 from	 the	 file	 system.	We	will
discuss	how	to	implement	this	in	Unit	4.

http://developer.android.com/reference/android/graphics/Bitmap.Config.html
http://developer.android.com/reference/android/media/SoundPool.html

Creating	the	State	Classes

Now	that	we	have	our	welcome	image	 loaded,	we	can	begin	creating	our	state
classes.	Begin	by	creating	the	LoadState	class	 inside	com.jamescho.game.state,
extending	 the	 State	 class	 (com.jamescho.game.State)	 and	 adding	 the
unimplemented	methods,	as	shown	in	Figure	8-15.

Figure	8-15	Creating	the	LoadState	Class

Then,	 fill	 in	 the	method	 bodies	 as	 shown	 in	 listing	 8.09,	 double-checking	 the
import	statements.

*****	Listing	8.09		LoadState	(Completed)	*****

package	com.jamescho.game.state;

import	android.view.MotionEvent;

import	com.jamescho.framework.util.Painter;

import	com.jamescho.simpleandroidgdf.Assets;

public	class	LoadState	extends	State	{

								@Override

								public	void	init()	{

																Assets.load();

								}

								@Override

								public	void	update(float	delta)	{

																setCurrentState(new	MenuState());

								}

								@Override

								public	void	render(Painter	g)	{

								}

								@Override

								public	boolean	onTouch(MotionEvent	e,	int	scaledX,	int	scaledY)	{

																return	false;

								}

}

The	LoadState	asks	the	Assets	class	to	load	our	assets,	and	sets	the	current	state
to	MenuState,	which	we	will	create	next.

Following	 the	 same	 steps	 as	 before,	 create	 the	 MenuState	 class	 inside
com.jamescho.game.state,	 extending	State,	 adding	 the	unimplemented	methods
and	filling	in	the	render()	method	as	shown	in	listing	8.10:

*****	Listing	8.10		MenuState	(Completed)	*****

package	com.jamescho.game.state;

import	android.view.MotionEvent;

import	com.jamescho.framework.util.Painter;

import	com.jamescho.simpleandroidgdf.Assets;

public	class	MenuState	extends	State	{

								@Override

								public	void	init()	{

								}

								@Override

								public	void	update(float	delta)	{

								}

								@Override

								public	void	render(Painter	g)	{

																g.drawImage(Assets.welcome,	0,	0);

								}

								@Override

								public	boolean	onTouch(MotionEvent	e,	int	scaledX,	int	scaledY)	{

																return	false;

								}

}

The	MenuState	simply	displays	the	Assets.welcome	image	for	now.

Note:	If	you	are	having	problems	with	any	of	the	classes	at	this	point,	you	can
download	the	source	code	at	jamescho7.com/book/chapter8/checkpoint3.

Creating	the	GameView	Class

All	of	our	individual	components	are	ready,	and	we	can	now	start	implementing
our	GameView.	This	class	will	be	very	similar	 to	 the	Game	class	 from	Unit	2,
except	for	the	inclusion	of	some	Android-specific	code.

Declaring	the	Variables

Start	by	declaring	the	following	variables:

private	Bitmap	gameImage;

private	Rect	gameImageSrc;

private	Rect	gameImageDst;

private	Canvas	gameCanvas;

private	Painter	graphics;

private	Thread	gameThread;

private	volatile	boolean	running	=	false;

private	volatile	State	currentState;

private	InputHandler	inputHandler;

Update	your	import	statements	as	shown	below:

import	android.content.Context;

import	android.graphics.Bitmap;

import	android.graphics.Canvas;

import	android.graphics.Rect;

import	android.view.SurfaceView;

import	com.jamescho.framework.util.InputHandler;

import	com.jamescho.framework.util.Painter;

import	com.jamescho.game.state.State;

You	have	seen	most	of	these	variables	before	from	our	Java	game	development
framework,	 but	 a	 few	 additions	 and	 changes	 are	 noteworthy.	 Recall	 that	 our
drawing	strategy	is	to	create	an	off-screen	image	and	render	it	to	the	screen	when
ready.	For	this	purpose,	gameImage	makes	a	return,	this	time	as	type	Bitmap.	We

also	create	a	variable	that	will	represent	this	gameImage’s	Canvas	object,	which
we	 will	 pass	 on	 to	 our	 Painter	 called	 graphics.	 The	 Painter	 will	 handle	 the
currentState’s	draw	calls	by	drawing	the	requested	images	to	the	gameCanvas.	I
elaborate	on	this	process	later.

Initializing	the	Graphics	Variables

Inside	 our	 constructor,	 initialize	 the	 five	 graphics-related	 variables	 as	 shown
below:

...

public	GameView(Context	context,	int	gameWidth,	int	gameHeight)	{

								super(context);

								gameImage	=	Bitmap.createBitmap(gameWidth,	gameHeight,	Bitmap.Config.RGB_565);

								gameImageSrc	=	new	Rect(0,	0,	gameImage.getWidth(),	gameImage.getHeight());

								gameImageDst	=	new	Rect();

								gameCanvas	=	new	Canvas(gameImage);

								graphics	=	new	Painter(gameCanvas);

}

...

The	 gameImage	 is	 initialized	 using	 the	 Bitmap	 class’s	 createBitmap	 method,
which	accepts	an	 image	width,	height	and	configuration.	We	set	 the	width	and
height	 equal	 to	 the	 gameWidth	 and	 gameHeight	 variables	 and	 configure	 the
image	as	RGB_565.	gameImage	will	cover	the	entire	screen	and	will	not	need	to
be	transparent.

The	Rect	gameImageSrc	will	be	used	to	specify	which	region	of	the	gameImage
should	 be	 drawn	 to	 the	 screen.	 In	 our	 case,	 we	 want	 the	 entire	 gameImage
drawn,	so	we	pass	in	the	appropriate	arguments.

The	Rect	gameImageDst	will	be	used	to	specify	how	the	gameImage	should	be
scaled	when	drawn	to	the	screen.	We	will	come	back	to	modify	this	value	later.

The	Canvas	 gameCanvas	 is	 the	Canvas	 of	 our	 gameImage.	To	draw	 an	 image
onto	 our	 gameImage,	 we	 must	 draw	 onto	 its	 Canvas.	 Rather	 than	 doing	 this
directly,	we	go	through	the	Painter	class,	who	will	accept	 the	gameCanvas	and
perform	drawing	calls	as	requested	by	the	current	state.

At	this	point,	your	GameView	class	should	match	that	shown	in	listing	8.11.

*****	Listing	8.11		GameView	(Incomplete)	*****

package	com.jamescho.simpleandroidgdf;

import	android.content.Context;

import	android.graphics.Bitmap;

import	android.graphics.Canvas;

import	android.graphics.Rect;

import	android.view.SurfaceView;

import	com.jamescho.framework.util.InputHandler;

import	com.jamescho.framework.util.Painter;

import	com.jamescho.game.state.State;

public	class	GameView	extends	SurfaceView	{

								

		private	Bitmap	gameImage;

		private	Rect	gameImageSrc;

		private	Rect	gameImageDst;

		private	Canvas	gameCanvas;

		private	Painter	graphics;

		private	Thread	gameThread;

		private	volatile	boolean	running	=	false;

		private	volatile	State	currentState;

		private	InputHandler	inputHandler;	

								

		public	GameView(Context	context,	int	gameWidth,	int	gameHeight)	{

								super(context);

								gameImage	=	Bitmap.createBitmap(gameWidth,	gameHeight,	Bitmap.Config.RGB_565);

								gameImageSrc	=	new	Rect(0,	0,	gameImage.getWidth(),	gameImage.getHeight());

								gameImageDst	=	new	Rect();

								gameCanvas	=	new	Canvas(gameImage);

								graphics	=	new	Painter(gameCanvas);

		}

								

		public	GameView(Context	context)	{		

								super(context);

		}

		public	void	setCurrentState(State	newState)	{

								//	TODO	Auto-generated	method	stub

								

		}

}

Adding	the	SurfaceHolder	Callback

When	working	with	a	 surface	 such	as	SurfaceView,	we	must	be	careful	not	 to
start	 rendering	 too	 early	 and	 stop	 rendering	 too	 late.	 An	 Android	 application
switches	 from	 one	Activity	 to	 another,	meaning	 that	 our	 SurfaceView	may	 be
created	and	destroyed	at	our	player’s	whim.

We	can	choose	to	be	informed	when	the	surface	has	been	created	and	when	the
surface	 has	 been	 destroyed	 by	 implementing	 a	SurfaceHolder	Callback.	To	 do
so,	we	must	first	update	our	import	statements	by	adding	the	lines	shown	below:

import	android.util.Log;

import	android.view.SurfaceHolder;

import	android.view.SurfaceHolder.Callback;

Next,	 add	 the	 lines	 of	 code	 shown	 below	 in	 bold	 at	 the	 bottom	 of	 your
constructor:

public	GameView(Context	context,	int	gameWidth,	int	gameHeight)	{

																super(context);

																...

																graphics	=	new	Painter(gameCanvas);

																

																SurfaceHolder	holder	=	getHolder();

																holder.addCallback(new	Callback()	{

																});

}

This	retrieves	the	SurfaceHolder	of	our	SurfaceView	(an	interface	that	grants	us
access	to	the	SurfaceView’s	surface)	and	attaches	a	new	instance	of	Callback	to
it.

Note:	 The	 lines	 of	 code	 underlined	 above	make	 up	 an	 anonymous	 inner	 class
implementing	the	Callback	Interface.	This	is	the	same	syntax	we	used	in	Chapter

7	to	implement	an	OnClickListener	for	our	buttons.

As	Callback	is	an	interface,	we	must	add	its	unimplemented	methods	as	shown
in	Figure	8-16.

Figure	8-16	Implementing	the	Callback	Interface

Let’s	 see	 if	 our	Callbacks	 are	working	 properly.	 Fill	 in	 the	method	 bodies	 for
surfaceCreated()	and	surfaceDestroyed()	as	shown	below:

SurfaceHolder	holder	=	getHolder();

holder.addCallback(new	Callback()	{

								@Override

								public	void	surfaceCreated(SurfaceHolder	holder)	{

																Log.d("GameView",	"Surface	Created");

								}

								@Override

								public	void	surfaceChanged(SurfaceHolder	holder,	int	format,

																int	width,	int	height)	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	surfaceDestroyed(SurfaceHolder	holder)	{

																Log.d("GameView",	"Surface	Destroyed");

								}

});

Note:	 Log.d()	 is	 used	 for	 printing	 debug	messages	 to	LogCat.	By	 convention,

you	pass	in	the	name	of	the	class	calling	the	method	and	a	String	message.	The
method	behaves	like	System.out.println().

If	 you	 are	 having	 any	 errors	 in	 GameView,	 compare	 your	 import	 statements,
variable	names	and	methods	to	listing	8.12.

*****	Listing	8.12		GameView	(Incomplete)	*****

01	package	com.jamescho.simpleandroidgdf;

02

03	import	android.content.Context;

04	import	android.graphics.Bitmap;

05	import	android.graphics.Canvas;

06	import	android.graphics.Rect;

07	import	android.view.SurfaceView;

08	import	android.util.Log;

09	import	android.view.SurfaceHolder;

10	import	android.view.SurfaceHolder.Callback;

11

12	import	com.jamescho.framework.util.InputHandler;

13	import	com.jamescho.framework.util.Painter;

14	import	com.jamescho.game.state.State;

15

16	public	class	GameView	extends	SurfaceView	{

17														

18						private	Bitmap	gameImage;

19						private	Rect	gameImageSrc;

20						private	Rect	gameImageDst;

21						private	Canvas	gameCanvas;

22						private	Painter	graphics;

23

24						private	Thread	gameThread;

25						private	volatile	boolean	running	=	false;

26						private	volatile	State	currentState;

27

28						private	InputHandler	inputHandler;	

29														

30						public	GameView(Context	context,	int	gameWidth,	int	gameHeight)	{

31									super(context);

32									gameImage	=	Bitmap.createBitmap(gameWidth,	gameHeight,	Bitmap.Config.RGB_565);

33									gameImageSrc	=	new	Rect(0,	0,	gameImage.getWidth(),	gameImage.getHeight());

34									gameImageDst	=	new	Rect();

35									gameCanvas	=	new	Canvas(gameImage);

36									graphics	=	new	Painter(gameCanvas);

37																						

38									SurfaceHolder	holder	=	getHolder();

39									holder.addCallback(new	Callback()	{

40

41														@Override

42														public	void	surfaceCreated(SurfaceHolder	holder)	{

43																						Log.d("GameView",	"Surface	Created");

44														}

45

46														@Override

47														public	void	surfaceChanged(SurfaceHolder	holder,	int	format,

																																								int	width,	int	height)	{

48														//	TODO	Auto-generated	method	stub

49														}

50

51														@Override

52														public	void	surfaceDestroyed(SurfaceHolder	holder)	{

53																						Log.d("GameView",	"Surface	Destroyed");

54														}

55

56									});

57

58						}

59														

60						public	GameView(Context	context)	{		

61														super(context);

62						}

63

64						public	void	setCurrentState(State	newState)	{

65														//	TODO	Auto-generated	method	stub

66						}

67

68	}

Testing	the	Application	in	DDMS	Perspective

We	will	now	switch	to	a	new	Eclipse	Perspective—a	pre-configured	set	of	view
tabs	 that	 helps	 you	 accomplish	 a	 certain	 task.	 Thus	 far,	 we’ve	 been	 working
exclusively	from	the	Java	perspective,	as	indicated	in	the	top-right	corner	of	the
application	(shown	in	Figure	8-17).

Figure	8-17	The	Current	Perspective	(Top	Right	Corner	of	Eclipse
Window)

To	 switch	 into	 the	 DDMS	 perspective,	 click	 the	 DDMS	 button	 in	 shown	 in
Figure	8-17.	If	this	button	is	not	present,	click	the	Open	Perspective	Button	(The
button	shown	 to	 the	 left	of	 the	“Java”	perspective	 in	Figure	8-17).	You	should
see	the	window	shown	in	Figure	8-18	appear:

Figure	8-18	The	Open	Perspective	Window

Select	 the	DDMS	option,	 and	 hit	OK.	You	will	 see	 the	DDMS	Perspective	 as
shown	in	Figure	8-19.

Figure	8-19	The	DDMS	Perspective

Now	connect	a	physical	Android	device	or	run	an	emulator.	You	should	see	your
device	listed	as	Online	in	the	Devices	window	to	the	top-left,	as	shown	in	Figure
8-20.

Figure	8-20	Devices	View

Note:	If	your	physical	device	says	Offline,	try	reconnecting	the	phone	and	verify
that	you	have	the	latest	USB	drivers	installed	for	the	device.	If	an	emulator	says

Offline,	let	it	boot	completely	and	check	again.

Now	run	your	application.	Your	Devices	view	will	update,	listing	the	application
under	your	device	as	shown	in	Figure	8-21.

Figure	8-21	Application	Running

You	will	notice	that	your	LogCat	view	to	the	bottom	of	the	screen	will	begin	to
update,	 listing	various	events	 that	are	happening	on	your	device.	This	can	be	a
bit	 overwhelming,	 because	 a	 lot	 of	 things	 are	 happening	behind	 the	 scenes	on
your	device.

As	we	only	care	about	our	application	at	the	moment,	let’s	add	a	filter.	Click	the
+	button	next	to	Saved	Filters	in	your	LogCat	view,	as	shown	in	Figure	8-22.

Figure	8-22	Creating	a	Filter

Choose	a	Filter	Name	and	enter	the	Application	Name	as	shown	in	Figure	8-23.
This	should	match	the	application	listed	under	your	Devices	view.

Figure	8-23	Logcat	Filter	Settings

Once	 you	 have	 created	 and	 selected	 the	 filter,	 LogCat	 will	 display	 all	 of	 the
messages	that	are	arising	from	your	application.	Look	for	the	message	“Surface
Created”	with	 the	 tag	“GameView”	as	 shown	 in	Figure	8-24	 (this	 should	have
appeared	when	your	application	was	executed	for	the	first	time).

Figure	8-24	Logcat	(Filtered)

As	 you	 switch	 in	 and	 out	 of	 the	 application,	 you	 will	 notice	 the	 following
messages	appear	accordingly:

This	 verifies	 that	 our	 SurfaceHolder	 Callback	 is	 indeed	 working,	 and	 the
messages	 tells	 us	 that	whenever	we	 switch	 out	 of	 our	 application,	 our	 surface
will	be	destroyed.	On	the	other	hand,	when	we	open	our	application	for	the	first
time	or	switch	back	into	our	application,	our	surface	will	be	created.	We	will	use
this	knowledge	to	continue	building	our	GameView.

Note:	You	 can	 use	 the	DDMS	perspective	 to	 take	 screenshots	 of	 your	 device,
simulate	phone	calls	or	even	check	its	memory	usage.	For	more	information	on
the	DDMS	perspective,	please	see	the	official	documentation:
http://developer.android.com/tools/debugging/ddms.html

Setting	up	Input

Let’s	 now	 attach	 an	 instance	 of	 InputHandler	 as	 the	 GameView’s
OnTouchListener.	Return	to	the	Java	perspective	and	add	the	following	method
into	your	GameView	class:

private	void	initInput()	{

								if	(inputHandler	==	null)	{

																inputHandler	=	new	InputHandler();

								}

								setOnTouchListener(inputHandler);

}

The	 initInput()	 method	 first	 checks	 if	 inputHandler	 is	 null	 and	 creates	 one	 if
necessary	(this	step	is	necessary	because	initInput()	will	be	called	every	time	our
surface	 is	 created—i.e.	when	 the	 app	 is	 running	 for	 the	 first	 time	or	 resuming
after	being	paused.	See	next	paragraph).	The	method	then	sets	the	inputHandler
as	the	OnTouchListener	of	the	GameView.

Call	 the	 newly-created	 method	 inside	 the	 surfaceCreated()	 method	 of	 our
SurfaceHolder’s	Callback,	as	shown	below:

holder.addCallback(new	Callback()	{

								@Override

								public	void	surfaceCreated(SurfaceHolder	holder)	{

																Log.d("GameView",	"Surface	Created");

																initInput();

								}

								@Override

								public	void	surfaceChanged(SurfaceHolder	holder,	int	format,

																int	width,	int	height)	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	surfaceDestroyed(SurfaceHolder	holder)	{

																Log.d("GameView",	"Surface	Destroyed");

								}

});

Note:	In	the	Android	game	framework,	the	surfaceCreated()	method	will	behave
as	the	addNotify()	method	from	the	Game	class	in	Unit	2.

Setting	the	Initial	State

Next,	complete	the	empty	setCurrentState()	method	as	shown	below:

public	void	setCurrentState(State	newState)	{

								System.gc();

								newState.init();

								currentState	=	newState;

								inputHandler.setCurrentState(currentState);

}

We	will	call	 this	method	after	 initializing	the	input.	Import	 the	LoadState	class
(com.jamescho.game.state.LoadState),	 and	 add	 the	 lines	 shown	 in	 bold	 to	 the
surfaceCreated()	method	in	callback.

public	void	surfaceCreated(SurfaceHolder	holder)	{

								initInput();

								if	(currentState	==	null)	{

																setCurrentState(new	LoadState());

								}

}

As	with	 inputHandler,	we	 first	make	sure	currentState	 is	null	before	creating	a
new	LoadState.	This	has	 the	effect	of	 retaining	 the	currentState	even	when	 the
application	 is	 paused.	For	 example,	 if	 the	user	 switches	out	 of	 our	 application
during	 the	 PlayState	 and	 returns	 to	 the	 application	 later,	 the	 currentState	 will
remain	as	PlayState.

Implementing	the	Game	Loop	Thread

We	 will	 now	 setup	 our	 game	 loop	 using	 the	 same	 pattern	 from	 Unit	 2.	 This
means	 that	 we	 will	 be	 executing	 the	 game	 loop	 in	 a	 separate	 Thread
(gameThread).	Let’s	take	this	one	step	at	a	time.

1.	 Implement	the	Runnable	interface.	Your	class	declaration	should	change	to
include	“implements	Runnable”	as	shown	below:
public	class	GameView	extends	SurfaceView	implements	Runnable	{

2.	 Add	the	unimplemented	run()	method.
3.	 Create	the	methods	initGame()	and	pauseGame()	as	shown	below:

private	void	initGame()	{

								running	=	true;

								gameThread	=	new	Thread(this,	"Game	Thread");

								gameThread.start();

}

private	void	pauseGame()	{

								running	=	false;

								while	(gameThread.isAlive())	{

																try	{

																								gameThread.join();

																								break;

																}	catch	(InterruptedException	e)	{

																}

								}

}

The	initGame()	method	remains	unchanged	from	the	Java	game
development	framework.	The	pauseGame()	method	is	a	new	addition.

Inside	it,	the	Thread.join()	method	is	used	to	tell	gameThread	to	stop
executing	when	the	application	should	pause.	We	will	call	this	method
when	our	game	is	about	to	pause—specifically	inside	the
surfaceDestroyed()	method	of	the	Callback.

4.	 Call	the	initGame()	and	pauseGame()	methods	as	shown	in
surfaceCreated()	and	surfaceDestroyed()	in	the	following	example,
removing	the	Log.d(...)	statements	and	importing
com.jamescho.game.state.LoadState.

...

SurfaceHolder	holder	=	getHolder();

								holder.addCallback(new	Callback()	{

											@Override

											public	void	surfaceCreated(SurfaceHolder	holder)	{

																initInput();

																if	(currentState	==	null)	{

																								setCurrentState(new	LoadState());

																}

																initGame();

											}

											@Override

			public	void	surfaceChanged(SurfaceHolder	holder,	int	format,int	width,

																								int	height)	{

																//	TODO	Auto-generated	method	stub

											}

											@Override

											public	void	surfaceDestroyed(SurfaceHolder	holder)	{

																pauseGame();

											}

								});

...

Before	we	implement	the	run()	method,	let’s	add	the	methods	to	update	and
render	the	current	state	and	draw	the	gameImage	to	the	screen

5.	 Add	the	following	methods	to	your	class:

private	void	updateAndRender(long	delta)	{

																currentState.update(delta	/	1000f);

																currentState.render(graphics);

																renderGameImage();

								}

								private	void	renderGameImage()	{

																Canvas	screen	=	getHolder().lockCanvas();

																if	(screen	!=	null)	{

																								screen.getClipBounds(gameImageDst);

																								screen.drawBitmap(gameImage,	gameImageSrc,	gameImageDst,	null);

																								getHolder().unlockCanvasAndPost(screen);

																}

								}

The	updateAndRender()	method	remains	unchanged	from	the	Java	game
framework,	except	for	the	fact	that	we	no	longer	call	prepareGameImage()
in	every	frame.	The	renderGameImage()	method	has	some	significant
changes,	but	serves	the	same	function.	Let’s	talk	about	renderGameImage()
in	more	detail.
All	Canvas	drawing	should	occur	between	the	following	methods:

Canvas	screen	=	getHolder().lockCanvas();

//	Draw	Here

getHolder().unlockCanvasAndPost(screen);

The	getHolder().lockCanvas()	method	locks	the	Canvas	for	drawing.	This
allows	only	one	Thread	to	draw	at	a	time.	The	method	getHolder().unlock
CanvasAndPost(screen)	will	unlock	the	Canvas	and	end	the	drawing.
In	between	these	two	methods,	we	verify	that	the	Canvas	screen	is	not	null.
We	then	check	the	boundaries	of	the	screen	using	the	method
screen.getClipBounds(),	passing	in	gameImageDst,	a	Rect	object	we
created	earlier.	This	informs	the	Rect	object	how	big	the	screen	is
(gameImageDst’s	left,	top,	right	and	bottom	values	are	updated	to	match	the
screen’s).	With	this	information,	we	draw	the	gameImage	to	the	screen
(using	gameImageSrc	to	retrieve	the	entire	gameImage	and	using
gameImageDst	to	scale	it	to	fit	the	screen—see	the	Painter	class	for	a
reminder	on	how	this	is	handled).

6.	 Update	the	run()	method	as	shown	below.	It	remains	unchanged	from	Unit
2	with	the	exception	of	the	omission	of	the	System.exit(0)	call:

@Override

								public	void	run()	{

											long	updateDurationMillis	=	0;

											long	sleepDurationMillis	=	0;

											while	(running)	{

							long	beforeUpdateRender	=	System.nanoTime();

															long	deltaMillis	=	sleepDurationMillis	+	updateDurationMillis;

															updateAndRender(deltaMillis);

															updateDurationMillis	=	(System.nanoTime()	-	beforeUpdateRender)	/	1000000L;

															sleepDurationMillis	=	Math.max(2,	17	-	updateDurationMillis);

															try	{

																								Thread.sleep(sleepDurationMillis);

															}	catch	(Exception	e)	{

																								e.printStackTrace();

															}

											}

								}

And	now	our	game	loop	is	finished,	and	our	GameView	is	fully	implemented.	If
you	have	errors,	compare	your	class	to	the	full	class	provided	in	listing	8.13.

*****	Listing	8.13	GameView(Completed)	*****

001	package	com.jamescho.simpleandroidgdf;

002

003	import	android.content.Context;

004	import	android.graphics.Bitmap;

005	import	android.graphics.Canvas;

006	import	android.graphics.Rect;

007	import	android.view.SurfaceView;

008	import	android.view.SurfaceHolder;

009	import	android.view.SurfaceHolder.Callback;

010

011	import	com.jamescho.framework.util.InputHandler;

012	import	com.jamescho.framework.util.Painter;

013	import	com.jamescho.game.state.LoadState;

014	import	com.jamescho.game.state.State;

015

016	public	class	GameView	extends	SurfaceView	implements	Runnable	{

017													

018			private	Bitmap	gameImage;

019			private	Rect	gameImageSrc;

020			private	Rect	gameImageDst;

021			private	Canvas	gameCanvas;

022			private	Painter	graphics;

023

024			private	Thread	gameThread;

025			private	volatile	boolean	running	=	false;

026			private	volatile	State	currentState;

027

028			private	InputHandler	inputHandler;	

029													

030			public	GameView(Context	context,	int	gameWidth,	int	gameHeight)	{

031					super(context);

032					gameImage	=	Bitmap.createBitmap(gameWidth,	gameHeight,	Bitmap.Config.RGB_565);

033					gameImageSrc	=	new	Rect(0,	0,	gameImage.getWidth(),	gameImage.getHeight());

034					gameImageDst	=	new	Rect();

035					gameCanvas	=	new	Canvas(gameImage);

036					graphics	=	new	Painter(gameCanvas);

037																					

038					SurfaceHolder	holder	=	getHolder();

039					holder.addCallback(new	Callback()	{

040

041													@Override

042													public	void	surfaceCreated(SurfaceHolder	holder)	{

043																					initInput();

044																					if	(currentState	==	null)	{

045																													setCurrentState(new	LoadState());

046																					}

047																					initGame();

048													}

049

050													@Override

051													public	void	surfaceChanged(SurfaceHolder	holder,	int	format,int	width,	

int	height)	{

052																					//	TODO	Auto-generated	method	stub

053													}

054

055													@Override

056													public	void	surfaceDestroyed(SurfaceHolder	holder)	{

057																					pauseGame();

058													}

059

060					});

061

062			}

063													

064			public	GameView(Context	context)	{		

065					super(context);

066			}

067

068			public	void	setCurrentState(State	newState)	{

069					System.gc();

070					newState.init();

071					currentState	=	newState;

072					inputHandler.setCurrentState(currentState);

073			}

074													

075			private	void	initInput()	{

076					if	(inputHandler	==	null)	{

077													inputHandler	=	new	InputHandler();

078					}

079					setOnTouchListener(inputHandler);

080			}

081

082			private	void	initGame()	{

083					running	=	true;

084					gameThread	=	new	Thread(this,	"Game	Thread");

085					gameThread.start();

086			}

087

088			private	void	pauseGame()	{

089					running	=	false;

090					while	(gameThread.isAlive())	{

091													try	{

092																					gameThread.join();

093																					break;

094													}	catch	(InterruptedException	e)	{

095													}

096					}

097			}

098

099			private	void	updateAndRender(long	delta)	{

100					currentState.update(delta	/	1000f);

101					currentState.render(graphics);

102					renderGameImage();

103			}

104

105			private	void	renderGameImage()	{

106					Canvas	screen	=	getHolder().lockCanvas();

107					if	(screen	!=	null)	{

108													screen.getClipBounds(gameImageDst);

109													screen.drawBitmap(gameImage,	gameImageSrc,	gameImageDst,	null);

110													getHolder().unlockCanvasAndPost(screen);

111					}

112			}

113

114			@Override

115			public	void	run()	{

116					long	updateDurationMillis	=	0;

117					long	sleepDurationMillis	=	0;

118

119					while	(running)	{

120										long	beforeUpdateRender	=	System.nanoTime();

121										long	deltaMillis	=	sleepDurationMillis	+	updateDurationMillis;

122										updateAndRender(deltaMillis);

123

124										updateDurationMillis	=	(System.nanoTime()	-	beforeUpdateRender)	/	1000000L;

125										sleepDurationMillis	=	Math.max(2,	17	-	updateDurationMillis);

126

127										try	{

128													Thread.sleep(sleepDurationMillis);

129										}	catch	(Exception	e)	{

130													e.printStackTrace();

131										}

132					}

133			}

134

135	}

Create	Animation,	Frame,	RandomNumberGenerator	Classes

To	complete	our	framework,	we	need	to	bring	in	the	utility	and	animation	classes
from	the	Java	framework.	Listings	8.14	through	8.16	contain	the	full	source	for
the	 Animation,	 Frame	 and	 RandomNumberGenerator	 classes.	 The	 Animation
and	 Frame	 classes	 should	 be	 added	 to	 the	 package
com.jamescho.framework.animation.	 The	 RandomNumberGener-ator	 class
should	be	added	to	the	com.jamescho.framework.util	package.

*****	Listing	8.14	The	Animation	class	(Completed)	*****

package	com.jamescho.framework.animation;

import	com.jamescho.framework.util.Painter;

public	class	Animation	{

								private	Frame[]	frames;

								private	double[]	frameEndTimes;

								private	int	currentFrameIndex	=	0;

								private	double	totalDuration	=	0;

								private	double	currentTime	=	0;

								public	Animation(Frame...	frames)	{

																this.frames	=	frames;

																frameEndTimes	=	new	double[frames.length];

																for	(int	i	=	0;	i	<	frames.length;	i++)	{

																								Frame	f	=	frames[i];

																								totalDuration	+=	f.getDuration();

																								frameEndTimes[i]	=	totalDuration;

																}

								}

								public	synchronized	void	update(float	increment)	{

																currentTime	+=	increment;

																if	(currentTime	>	totalDuration)	{

																								wrapAnimation();

																}

																while	(currentTime	>	frameEndTimes[currentFrameIndex])	{

																								currentFrameIndex++;

																}

								}

								private	synchronized	void	wrapAnimation()	{

																currentFrameIndex	=	0;

																currentTime	%=	totalDuration;

								}

								public	synchronized	void	render(Painter	g,	int	x,	int	y)	{

																g.drawImage(frames[currentFrameIndex].getImage(),	x,	y);

								}

								public	synchronized	void	render(Painter	g,	int	x,	int	y,	int	width,

																								int	height)	{

																g.drawImage(frames[currentFrameIndex].getImage(),	x,	y,	width,	height);

								}

}

The	Animation	class	requires	minor	adjustments	to	its	two	render()	methods.	We
no	 longer	 use	 the	 java.awt.Graphics	 object.	 Instead,	we	 use	 the	 Painter	 object
that	we	have	created	earlier.

*****	Listing	8.15	The	Frame	class	(Completed)	*****

package	com.jamescho.framework.animation;

import	android.graphics.Bitmap;

public	class	Frame	{

								private	Bitmap	image;

								private	double	duration;

								

								public	Frame(Bitmap	image,	double	duration)	{

																this.image	=	image;

																this.duration	=	duration;

								}

								

								public	double	getDuration()	{

																return	duration;

								}

								

								public	Bitmap	getImage()	{

																return	image;

								}

}

Frame	no	longer	stores	an	Image.	Instead,	we	store	an	Android-specific	Bitmap.
No	other	changes	are	required.

*****	Listing	8.16	RandomNumberGenerator	(Completed)	*****

package	com.jamescho.framework.util;

import	java.util.Random;

public	class	RandomNumberGenerator	{

								private	static	Random	rand	=	new	Random();

								public	static	int	getRandIntBetween(int	lowerBound,	int	upperBound)	{

																return	rand.nextInt(upperBound	-	lowerBound)	+	lowerBound;

								}

								public	static	int	getRandInt(int	upperBound)	{

																return	rand.nextInt(upperBound);

								}

}

No	changes	to	the	RandomNumberGenerator	are	required.

Wrapping	Up

Our	Android	game	development	 framework	 is	 almost	 finished!	 It	 now	has	 the
same	features	that	our	Java	game	development	framework	had.	Before	we	move
on	to	Chapter	9,	we	will	make	one	final	addition	to	our	code.

By	default,	an	Android	device	turns	off	its	screen	when	it	has	not	been	touched
for	 several	 seconds.	 Certain	 applications,	 such	 as	 video	 players	 and	 games
should	not	behave	this	way—they	should	keep	the	screen	on	at	all	times,	because
the	user	may	be	actively	consuming	media	without	touching	the	screen.	To	add
this	 feature	 to	 our	 framework,	 we	 make	 a	 simple	 change	 to	 our
GameMainActivity	 as	 shown	 underlined	 below	 (importing
android.view.WindowManager):

package	com.jamescho.simpleandroidgdf;

import	android.app.Activity;

import	android.content.res.AssetManager;

import	android.os.Bundle;

import	android.view.WindowManager;

public	class	GameMainActivity	extends	Activity	{

								

								public	static	final	int	GAME_WIDTH	=	800;

								public	static	final	int	GAME_HEIGHT	=	450;

								public	static	GameView	sGame;

								public	static	AssetManager	assets;	

								

								@Override

								protected	void	onCreate(Bundle	savedInstanceState)	{

																super.onCreate(savedInstanceState);

																assets	=	getAssets();

																sGame	=	new	GameView(this,	GAME_WIDTH,	GAME_HEIGHT);

																setContentView(sGame);

																getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);

								}

}

Note:	If	you	are	having	problems	with	any	of	the	classes	at	this	point,	you	can

download	the	source	code	at	jamescho7.com/book/chapter8/complete.

In	this	chapter,	you’ve	applied	your	knowledge	of	Java	game	development	and
Android	 application	 development	 to	 build	 an	 Android	 game	 framework	 from
scratch.	You	 are	 another	 step	 closer	 to	 becoming	 an	Android	 game	 developer.
Join	me	in	Chapter	9,	where	we	will	put	this	framework	to	the	test	by	building	a
full	Android	game.

Chapter	9:	Building	the	Game
Our	Android	game	development	framework	is	ready,	and	you	are	one	step	closer
to	bringing	your	ideas	to	the	market	for	the	masses	to	enjoy.	This	chapter	is	all
about	 creating	 an	 Android	 game,	 exploring	 principles	 of	 optimization	 and
getting	your	application	ready	for	publication.

We	will	begin	the	chapter	by	porting	to	Android	an	existing	Java	game—Ellio.
As	 our	Android	 game	 framework	 is	modeled	 after	 our	 Java	 game	 framework,
you	 will	 find	 this	 process	 to	 be	 very	 straightforward.	 In	 many	 of	 our	 game-
specific	classes,	you	will	only	be	changing	a	few	lines	of	code,	typically	lines	of
code	that	make	use	of	classes	that	do	not	exist	inside	the	Android	libraries.

In	the	middle	portion	of	the	chapter,	we	will	learn	about	some	pitfalls	of	Android
game	 development	 and	 discuss	 principles	 to	 follow	 in	 order	 to	 optimize	 our
game.	At	 the	end	of	 this	discussion,	you	will	be	better	equipped	 to	make	your
own	games	and	ensure	that	they	run	well	on	a	variety	of	Android	devices.

To	wrap	up	our	discussion	of	Android	game	development,	we	will	learn	how	we
can	implement	features	such	as	a	high	score	system	to	keep	your	players	coming
back	to	your	game.

Preparing	the	Project

Copying	the	Framework

Let’s	make	 a	 copy	 of	 the	Android	 game	 framework	 from	Chapter	 8.	Give	 the
copy	 the	 name	 EllioAndroid.	 Your	 project	 should	 appear	 in	 your	 Package
Explorer	as	shown	in	Figure	9-1.

Figure	9-1	EllioAndroid	Project	Structure

Note:	 If	 you	 do	 not	 have	 access	 to	 the	 framework	 on	 your	 computer,	 the
appropriate	 version	 can	 be	 downloaded	 in	 .zip	 format	 at
jamescho7.com/book/chapter8/complete.	To	 import	 the	downloaded	 framework
into	your	workspace,	follow	the	instructions	provided	on	page	148.

Let’s	change	the	name	that	our	application	will	be	displayed	with	on	an	Android

device.	To	do	so,	open	up	the	AndroidManifest.

Under	the	application	tag,	you	will	see	the	android:label	option,	which	currently
has	 the	 value	 “@string/app_name”	 (this	 references	 an	 existing	 String	 literal
inside	res/values/string.xml).	This	is	the	value	that	we	need	to	modify	in	order	to
change	the	name	of	our	application.	The	fastest	way	to	do	this	is	to	enter	a	String
literal	such	as	“Ellio”	in	place	of	“@string/app_name”,	but	this	is	discouraged	by
Android.	The	better	way	 to	do	 this	 is	 to	go	 inside	 the	values	 folder	 inside	our
project’s	 res	 folder	 and	 modify	 the	 value	 of	 the	 element	 app_name	 inside
strings.xml.

Open	up	 res/values/string.xml,	 and	 switch	 to	 the	 text-based	editor	by	 selecting
the	strings.xml	tab	(shown	in	Figure	9-2).

Figure	9-2	Editing	strings.xml

Now	replace	the	text	SimpleAndroidGDF	with	Ellio,	as	shown	in	listing	9.01.

*****	Listing	9.01	Editing	strings.xml	(Updated)	*****

<resources>

				<string	name="app_name">SimpleAndroidGDF</string>

				<string	name="app_name">Ellio</string>

</resources>

This	may	seem	like	a	roundabout	way	of	changing	the	app	name.	Why	not	just
change	it	to	“Ellio”	inside	the	AndroidManifest?	The	answer	is	two-fold.

The	first	reason	has	to	do	with	localization.	As	mentioned	earlier	in	Unit	3,	the
res	 folder	 allows	us	 to	 provide	multiple	 versions	 of	 the	 same	 file.	This	means
that	we	can	provide	a	second	strings.xml	for	a	different	language	and	display	the
name	of	our	game	in	the	default	language	of	our	user.

Note:	For	more	on	localization	in	Android,	please	see:
http://developer.android.com/guide/topics/resources/localization.html

The	 second	 reason	 is	 for	 reducing	 dependencies.	 Let’s	 say	 that	 you	 are	 very
proud	 of	 your	 app	 name,	 and	 you	 display	 it	 everywhere	 inside	 of	 your
application	 (and	 even	 use	 it	 inside	 of	 your	 source	 code).	 A	 week	 later,	 you
discover	 that	 your	 app	name	 is	 someone	 else’s	 trademark	 and	 realize	 that	 you
must	change	the	name.

If	 you’ve	 used	 a	 String	 literal	 of	 your	 name	 across	 your	 application,	 you	will
have	 to	 track	 down	 each	 usage	 and	modify	 it	 to	 reflect	 the	 new	 app	 name.	 If
instead	you	chose	to	use	@string/app_name,	you	only	have	to	change	one	line	of
XML	inside	a	single	file—strings.xml.

Download	and	Setting	the	Icons

We	will	be	using	a	custom	icon	for	Ellio	on	Android.	Download	the	following
images	available	at	jamescho7.com/book/chapter9.

Place	 the	 downloaded	 icons	 into	 the	 appropriate	 drawable	 folder	 folders.	 You
must	 rename	 all	 of	 the	 downloaded	 files	 to	 ic_launcher.png	 (without	 a	 size
suffix).	Refer	to	Figure	8-10	through	8-12	if	you	need	help	with	this	process.	At
the	end	of	the	process,	you	should	have	the	following:

An	image	named	ic_launcher.png	with	a	width	and	height	of	36px	inside
drawable-ldpi.
An	image	named	ic_launcher.png	with	a	width	and	height	of	48px	inside
drawable-mdpi.
An	image	named	ic_launcher.png	with	a	width	and	height	of	72px	inside
drawable-hdpi.
An	image	named	ic_launcher.png	with	a	width	and	height	of	96px	inside
drawable-xhdpi.

Download	the	Assets

We	will	 be	 reusing	many	 of	 the	 assets	 from	Chapter	 6	 and	 adding	 some	 new
ones.	 Download	 the	 following	 assets	 (images	 and	 sound	 files)	 available	 at
jamescho7.com/book/chapter9.	You	may	also	use	your	own	by	creating	 images
and	sound	files	of	the	appropriate	dimensions	and	type.

Place	these	assets	into	your	assets	folder,	overwriting	any	existing	files	(such	as
welcome.png).	 At	 the	 end	 of	 this	 step,	 your	 assets	 folder	 should	 match	 that
shown	in	Figure	9-3.

Figure	9-3	Adding	the	Assets

Loading	the	Assets

Now	that	our	assets	are	downloaded	and	ready,	 let’s	open	up	our	Assets	folder
and	start	 loading	them	into	our	game.	In	the	Assets	class	declare	the	following
static	variables	to	represent	our	image	files:

public	static	Bitmap	welcome,	block,	cloud1,	cloud2,	duck,	grass,	jump,	run1,	run2,	run3,	

								run4,	run5,	scoreDown,	score,	startDown,	start;

We	will	 also	 need	 the	 following	 variable	 for	 our	 run	 animation	 (make	 sure	 to
import	com.jamescho.framework.animation):

public	static	Animation	runAnim;

Loading	sound	files	will	work	a	little	bit	differently	in	our	Android	framework.
Rather	than	creating	Java’s	AudioClip	objects,	we	will	register	sound	files	with
our	SoundPool	object,	and	ask	it	to	play	a	sound	using	an	integer	ID.	Declare	the
following	static	variables	for	our	sound	files:

public	static	int	hitID,	onJumpID;

Now	 initialize	 these	 variables	 inside	 the	 load()	 method	 as	 shown	 below,
importing	com.jamescho.framework.animation.Frame.	Note	that	we	only	enable
transparency	when	necessary:

public	static	void	load()	{

								welcome	=	loadBitmap("welcome.png",	false);

								block	=	loadBitmap("block.png",	false);

								cloud1	=	loadBitmap("cloud1.png",	true);

								cloud2	=	loadBitmap("cloud2.png",	true);

								duck	=	loadBitmap("duck.png",	true);

								grass	=	loadBitmap("grass.png",	false);

								jump	=	loadBitmap("jump.png",	true);

								run1	=	loadBitmap("run_anim1.png",	true);

								run2	=	loadBitmap("run_anim2.png",	true);

								run3	=	loadBitmap("run_anim3.png",	true);

								run4	=	loadBitmap("run_anim4.png",	true);

								run5	=	loadBitmap("run_anim5.png",	true);

								scoreDown	=	loadBitmap("score_button_down.png",	true);

								score	=	loadBitmap("score_button.png",	true);

								startDown	=	loadBitmap("start_button_down.png",	true);

								start	=	loadBitmap("start_button.png",	true);

								Frame	f1	=	new	Frame(run1,	.1f);

								Frame	f2	=	new	Frame(run2,	.1f);

								Frame	f3	=	new	Frame(run3,	.1f);

								Frame	f4	=	new	Frame(run4,	.1f);

								Frame	f5	=	new	Frame(run5,	.1f);

								runAnim	=	new	Animation(f1,	f2,	f3,	f4,	f5,	f3,	f2);

																

								hitID	=	loadSound("hit.wav");

								onJumpID	=	loadSound("onjump.wav");

}							

Double	check	your	code	for	any	typos,	and	run	your	project	by	right	clicking	on
SimpleAndroidGDF	 and	 running	 it	 as	 an	 Android	 Application.	 You	 will	 be
greeted	by	the	Ellio	welcome	screen!

Figure	9-4	Welcome	to	Ellio!

Our	project	is	setup	properly,	and	we	can	now	start	implementing	our	game.

Note:
If	 you	 are	 having	 problems	 with	 any	 of	 the	 classes	 at	 this	 point,	 you	 can
download	the	source	code	at	jamescho7.com/book/chapter9/checkpoint1.

Implementing	the	Model	Classes

Let’s	 start	 implementing	Ellio’s	 three	model	 classes:	Block,	Cloud	 and	Player.
Because	of	the	way	we’ve	designed	our	game’s	architecture,	our	model	classes
can	be	 reused	without	 any	 substantial	modifications.	The	one	 change	we	must
make	is	to	replace	all	usage	of	the	java.awt.Rectangle	with	Android’s	own	Rect
class	(updating	some	logic	in	the	process).

Add	 a	 new	 package	 called	 com.jamescho.game.model	 into	 your	 project,	 and
create	the	classes	Block,	Cloud	and	Player.	We	will	be	implementing	these	one	at
a	time.

Implementing	the	Cloud	Class

The	 Cloud	 class	 can	 be	 reused	 without	 any	 changes	 from	 the	 Java	 version.
Implement	it	as	shown	in	listing	9.02.

*****	Listing	9.02	The	Cloud	Class	(unchanged)	*****

package	com.jamescho.game.model;

import	com.jamescho.framework.util.RandomNumberGenerator;

public	class	Cloud	{

								

								private	float	x,y;

																private	static	final	int	VEL_X	=	-15;

								public	Cloud(float	x,	float	y)	{

																this.x	=	x;

																this.y	=	y;

								}

								public	void	update(float	delta)	{

																x	+=	VEL_X	*	delta;

																if	(x	<=	-200)	{

																								//	Reset	to	the	right

																								x	+=	1000;

																								y	=	RandomNumberGenerator.getRandIntBetween(20,	100);

																}

								}

								public	float	getX()	{

																return	x;

								}

								public	float	getY()	{

																return	y;

								}

}

Implementing	the	Block	Class

The	 Block	 class	 makes	 use	 of	 the	 java.awt.Rectangle,	 so	 a	 few	 changes	 are
made.	Listing	9.03	shows	you	which	lines	of	code	need	to	be	modified	from	the
original:

*****	Listing	9.03	The	Block	Class	(Updated)	*****

package	com.jamescho.game.model;

import	java.awt.Rectangle;

import	android.graphics.Rect;

import	com.jamescho.framework.util.RandomNumberGenerator;

public	class	Block	{

								private	float	x,	y;

								private	int	width,	height;

								private	Rectangle	rect;

								private	Rect	rect;

								private	boolean	visible;

								private	static	final	int	UPPER_Y	=	275;

								private	static	final	int	LOWER_Y	=	355;

								public	Block(float	x,	float	y,	int	width,	int	height)	{

																this.x	=	x;

																this.y	=	y;

																this.width	=	width;

																this.height	=	height;

																rect	=	new	Rectangle((int)	x,	(int)	y,	width,	height);

																rect	=	new	Rect((int)	x,	(int)	y,	(int)	x	+	width,	(int)	y	+	height);

																visible	=	false;

								}

								public	void	update(float	delta,	float	velX)	{

																x	+=	velX	*	delta;

																updateRect();

																if	(x	<=	-50)	{

																								reset();

																}

								}

								public	void	updateRect()	{

																rect.setBounds((int)	x,	(int)	y,	width,	height);

																rect.set((int)	x,	(int)	y,	(int)	x	+	width,	(int)	y	+	height);

								}

								public	void	reset()	{

																visible	=	true;

																//	1	in	3	chance	of	becoming	an	Upper	Block

																if	(RandomNumberGenerator.getRandInt(3)	==	0)	{

																								y	=	UPPER_Y;

																}	else	{

																								y	=	LOWER_Y;

																}

																x	+=	1000;

																updateRect();

								}

								public	void	onCollide(Player	p)	{

																visible	=	false;

																p.pushBack(30);

								}

								public	float	getX()	{

																return	x;

								}

								public	float	getY()	{

																return	y;

								}

								public	boolean	isVisible()	{

																return	visible;

								}

								public	Rectangle	getRect()	{

								public	Rect	getRect()	{

																return	rect;

								}

}

With	those	few	changes,	our	Block	class	will	behave	exactly	as	it	did	in	Chapter
6.

Implementing	the	Player	Class

The	Player	class	also	makes	use	of	java.awt.Rectangle	and	requires	the	same	set
of	changes.	Listing	9.04	shows	the	updated	Player	class.

*****	Listing	9.04	The	Player	Class	(Updated)	*****

package	com.jamescho.game.model;

import	com.jamescho.simpleandroidgdf.Assets;

import	android.graphics.Rect;

public	class	Player	{

								private	float	x,	y;

								private	int	width,	height,	velY;

								private	Rect	rect,	duckRect,	ground;

								private	boolean	isAlive;

								private	boolean	isDucked;

								private	float	duckDuration	=	.6f;

								private	static	final	int	JUMP_VELOCITY	=	-600;

								private	static	final	int	ACCEL_GRAVITY	=	1800;

								public	Player(float	x,	float	y,	int	width,	int	height)	{

																this.x	=	x;

																this.y	=	y;

																this.width	=	width;

																this.height	=	height;

																ground	=	new	Rect(0,	405,	0	+	800,	405	+	45);

																rect	=	new	Rect();

																duckRect	=	new	Rect();

																isAlive	=	true;

																isDucked	=	false;

								}

								public	void	update(float	delta)	{

																if	(duckDuration	>	0	&&	isDucked)	{

																								duckDuration	-=	delta;

																}	else	{

																								isDucked	=	false;

																								duckDuration	=	.6f;

																}

																if	(!isGrounded())	{

																								velY	+=	ACCEL_GRAVITY	*	delta;

																}	else	{

																								y	=	406	-	height;

																								velY	=	0;

																}

																y	+=	velY	*	delta;

																updateRects();

								}

								public	void	updateRects()	{

																rect.set((int)	x	+	10,	(int)	y,	(int)	x	+	(width	-	20),	(int)	y

																																+	height);

																duckRect.set((int)	x,	(int)	y	+	20,	(int)	x	+	width,	(int)	y	+	20

																																+	(height	-	20));

								}

								public	void	jump()	{

																if	(isGrounded())	{

																								Assets.playSound(Assets.onJumpID);

																								isDucked	=	false;

																								duckDuration	=	.6f;

																								y	-=	10;

																								velY	=	JUMP_VELOCITY;

																								updateRects();

																}

								}

								public	void	duck()	{

																if	(isGrounded())	{

																								isDucked	=	true;

																}

								}

								public	void	pushBack(int	dX)	{

																x	-=	dX;

																Assets.playSound(Assets.hitID);

																if	(x	<	-width	/	2)	{

																								isAlive	=	false;

																}

																rect.set((int)	x,	(int)	y,	(int)	x	+	width,	(int)	y	+	height);

								}

								public	boolean	isGrounded()	{

																return	Rect.intersects(rect,	ground);

								}

								public	boolean	isDucked()	{

																return	isDucked;

								}

								public	float	getX()	{

																return	x;

								}

								public	float	getY()	{

																return	y;

								}

								public	int	getWidth()	{

																return	width;

								}

								public	int	getHeight()	{

																return	height;

								}

								public	int	getVelY()	{

																return	velY;

								}

								public	Rect	getRect()	{

																return	rect;

								}

								public	Rect	getDuckRect()	{

																return	duckRect;

								}

								public	Rect	getGround()	{

																return	ground;

								}

								public	boolean	isAlive()	{

																return	isAlive;

								}

								public	float	getDuckDuration()	{

																return	duckDuration;

								}

}

One	 notable	 change	 is	 the	 implementation	 for	 isGrounded().	 The	method	 still
performs	 the	same	 task,	but	now	uses	 the	static	Rect.intersects(Rect	a,	Rect	b)
method	for	the	intersection	logic.	Note	also	that	we	play	sound	files	from	Assets
using	sound	IDs.	Refer	to	Assets.playSound()	if	necessary.

That’s	it!	Porting	our	model	classes	from	Java	to	Android	is	that	easy.	Now,	we
can	start	implementing	our	state	classes,	which	will	require	a	little	more	change.

Note:
If	 you	 are	 having	 problems	 with	 any	 of	 the	 classes	 at	 this	 point,	 you	 can
download	the	source	code	at	jamescho7.com/book/chapter9/checkpoint2.

Implementing	the	State	Classes

Our	state	classes	can	be	mostly	reused,	but	do	require	a	few	changes.	The	Java
version	 of	 Ellio	 allowed	 players	 to	 navigate	 and	 control	 the	 game	 using	 a
keyboard.	In	the	Android	version,	we	will	only	allow	touch-based	input,	so	we
need	to	make	adjustments	to	the	game’s	UI	and	controls.

Changing	the	MenuState

Let’s	 begin	 by	 making	 changes	 to	 our	 MenuState.	 We	 will	 be	 adding	 two
interactive	buttons	to	the	regions	marked	red	in	Figure	9-5.

Figure	9-5	Button	Placement

The	two	buttons	will	be	implemented	using	Rect	objects.	On	every	touch	event,
we	will	be	checking	if	the	Player’s	finger	is	touching	one	of	the	two	Rect	objects
in	order	to	determine	the	proper	action.

There	are	three	ways	of	implementing	a	touch-based	button.

Method	#1:	The	button	can	act	on	a	touch	down	event	(when	the	finger	first
touches	the	screen).
Method	#2:	The	button	can	act	on	a	touch	up	event	(when	the	finger	is

lifted	from	the	screen).
Method	#3:	The	button	can	use	a	combination	of	steps	1	and	2.	The	button
would	only	be	triggered	if	a	touch	down	event	and	touch	up	event	occur
together	inside	the	same	button	Rect.
b

Method	#1	is	not	my	favorite	solution.	In	some	situations,	an	interactive	element
should	perform	an	action	on	a	touch	down	event	(such	as	when	you	tap	an	empty
checkbox),	but	buttons	should	not	behave	this	way	for	two	reasons.

Firstly,	a	player	might	change	his	or	her	mind	during	a	touch	event.	After	putting
a	 finger	 on	 the	 Play	 button,	 the	 player	 might	 decide	 to	 cancel	 that	 event	 by
swiping	 his	 or	 her	 finger	 outside	 of	 the	 button.	 If	 we	 implement	 our	 buttons
using	method	#1,	this	would	not	be	possible.

Implementing	method	#1	would	also	mean	 that	 the	 subsequent	 touch	up	event
(when	the	player	lifts	the	finger	after	pressing	the	button)	will	be	received	by	the
PlayState.	This	is	probably	not	good	behavior	as	the	player	is	not	expecting	any
of	 his	 or	 her	 touch	 events	 from	 the	 MenuState	 to	 perform	 an	 action	 in	 the
PlayState.

Method	 #2	 is	 better,	 as	 it	 does	 allow	 a	 player	 to	 change	 his	 or	 her	mind.	The
player	can	easily	tap	a	button	and	swipe	away	and	release	elsewhere	to	prevent
invoking	the	button’s	action.	The	main	problem	with	Method	#2	arises	when	the
player	touches	down	on	one	button	then	slides	and	releases	the	finger	on	top	of
another	 button.	 When	 an	 ambiguous	 action	 such	 as	 this	 happens,	 we	 should
probably	 cancel	 the	 touch	 event;	 however,	 method	 #2	will	 just	 treat	 this	 as	 a
regular	press	of	the	second	button.

Method	#3	 is	 the	best	 solution	because	 it	has	 the	benefits	of	both	Methods	#1
and	2	without	having	their	limitations.	Method	#3	can	allow	the	player	to	cancel
a	touch	event	without	worrying	about	releasing	his	or	her	finger	inside	another
button.	More	importantly,	method	#3	allows	us	to	keep	track	of	when	a	button	is
pressed	 and	 released—this	 property	 can	 be	 used	 to	 display	 a	 standard	 button
image	and	a	button-pressed	image.

Let’s	implement	method	#3	for	our	MenuState.	Try	updating	your	MenuState	as
shown	in	listing	9.05.

*****	Listing	9.05	MenuState	(Working	Buttons)	*****

package	com.jamescho.game.state;

import	android.graphics.Rect;

import	android.util.Log;

import	android.view.MotionEvent;

import	com.jamescho.framework.util.Painter;

import	com.jamescho.simpleandroidgdf.Assets;

public	class	MenuState	extends	State	{

			//	Declare	a	Rect	object	for	each	button.

			private	Rect	playRect;

			private	Rect	scoreRect;

			//	Declare	booleans	to	determine	whether	a	button	is	pressed	down.

			private	boolean	playDown	=	false;

			private	boolean	scoreDown	=	false;

			@Override

			public	void	init()	{

								//	Initialize	the	button	Rects	at	the	proper	coordinates.

								playRect	=	new	Rect(316,	227,	484,	286);

								scoreRect	=	new	Rect(316,	300,	484,	359);

			}

			@Override

			public	void	update(float	delta)	{

			}

			@Override

			public	void	render(Painter	g)	{

								g.drawImage(Assets.welcome,	0,	0);

								if	(playDown)	{

																g.drawImage(Assets.startDown,	playRect.left,	playRect.top);

								}	else	{

																g.drawImage(Assets.start,	playRect.left,	playRect.top);																	

								}

								if	(scoreDown)	{

																g.drawImage(Assets.scoreDown,	scoreRect.left,	scoreRect.top);

								}	else	{

																g.drawImage(Assets.score,	scoreRect.left,	scoreRect.top);																							

								}

			}

			@Override

			public	boolean	onTouch(MotionEvent	e,	int	scaledX,	int	scaledY)	{

								if	(e.getAction()	==	MotionEvent.ACTION_DOWN)	{

											if	(playRect.contains(scaledX,	scaledY))	{

																playDown	=	true;

																scoreDown	=	false;	//	Only	one	button	should	be	active	(down)	at	a	time.

											}	else	if	(scoreRect.contains(scaledX,	scaledY))	{

																scoreDown	=	true;

																playDown	=	false;	//	Only	one	button	should	be	active	(down)	at	a	time.																									

											}

								}

								if	(e.getAction()	==	MotionEvent.ACTION_UP)	{

											//	If	the	play	button	is	active	and	the	release	was	within	the	play	button:

											if	(playDown	&&	playRect.contains(scaledX,	scaledY))	{

																//	Button	has	been	released.

																playDown	=	false;

																//	Perform	an	action	here!

																Log.d("MenuState",	"Play	Button	Pressed!");

																//	If	score	button	is	active	and	the	release	was	within	the	score	button:

											}	else	if	(scoreDown	&&	scoreRect.contains(scaledX,	scaledY)){

																//	Button	has	been	released.

																scoreDown	=	false;

																//	Perform	an	action	here!

																Log.d("MenuState",	"Score	Button	Pressed!");

											//	If	the	finger	was	released	anywhere	else:

											}	else	{

																//	Cancel	all	actions.

																scoreDown	=	false;

																playDown	=	false;

											}

								}

								return	true;

			}

}

Now	 run	 your	 application	 in	 the	 DDMS	 perspective	 and	 you	 should	 see	 the
following	screen:

Figure	9-6	Start	and	Score	Buttons

Now	check	the	LogCat	output	as	you	push	the	two	buttons.	You	will	find	that	the
buttons	 behave	 very	 intuitively,	 printing	 the	Log	 statements	 exactly	when	 you
would	expect	them	to.

The	solution	in	listing	9.05	is	works	perfectly	fine.	Here’s	the	issue,	however.	To
implement	 an	 interactive	 button,	 we	 have	 to	 create	 a	 new	 Rect	 object,	 a
corresponding	 boolean,	 and	 a	 series	 of	 if-statements	 for	 rendering	 and	 logic
handling.	That	is	a	lot	of	work	to	do	for	one	button,	no	matter	how	shiny	it	is.

Good	programmers	should	be	lazy—not	in	 the	sense	that	 they	should	refuse	to
get	any	work	done,	but	in	the	sense	that	they	should	seek	minimize	their	effort
and	maximize	 their	output.	 If	you	write	code	for	 this	purpose,	you	will	end	up
with	a	much	cleaner,	intuitive	and	easy	to	maintain	project.

Let’s	try	being	lazy	with	buttons.	How	can	we	make	it	easier	to	create	buttons	in
the	 future—not	 just	 in	 this	MenuState,	 but	 in	 the	PlayState	 and	other	 states	 to
come?	We	can	create	a	class	to	represent	a	button	that	handles	all	of	the	logic	by
itself!

Making	a	UIButton	Class

Inside	 com.jamescho.framework.util,	 create	 a	 class	 named	 UIButton	 and
implement	it	as	shown	in	listing	9.06.

*****	Listing	9.06	UIButton	Class	(Complete)	*****

package	com.jamescho.framework.util;

import	android.graphics.Bitmap;

import	android.graphics.Rect;

public	class	UIButton	{

								private	Rect	buttonRect;

								private	boolean	buttonDown	=	false;

								private	Bitmap	buttonImage,	buttonDownImage;

								

								public	UIButton(int	left,	int	top,	int	right,	int	bottom,	Bitmap	buttonImage,	

Bitmap	buttonPressedImage)	{

																buttonRect	=	new	Rect(left,	top,	right,	bottom);

																this.buttonImage	=	buttonImage;

																this.buttonDownImage	=	buttonPressedImage;

								}

								

								public	void	render(Painter	g)	{

																Bitmap	currentButtonImage	=	buttonDown	?	buttonDownImage	:	buttonImage;

																g.drawImage(currentButtonImage,	buttonRect.left,	buttonRect.top,	

buttonRect.width(),	buttonRect.height());

								}

								public	void	onTouchDown(int	touchX,	int	touchY)	{

																if	(buttonRect.contains(touchX,	touchY))	{

																								buttonDown	=	true;

																}	else	{

																								buttonDown	=	false;

																}

								}

								

								public	void	cancel()	{

																buttonDown	=	false;

								}

								

								public	boolean	isPressed(int	touchX,	int	touchY)	{

																return	buttonDown	&&	buttonRect.contains(touchX,	touchY);

								}

}

Note:	The	following	syntax	from	the	render()	method	may	be	unfamiliar	to	you:

Bitmap	currentButtonImage	=	buttonDown	?	buttonDownImage	:	buttonImage;

In	Java	the	?:	is	called	a	ternary	operator.	It	is	used	to	replace	the	simple	if-else
blocks.	The	syntax	for	using	the	ternary	operator	is	always	as	follows:

someVariable	=	someBooleanCondition	?	a	:	b;

In	the	example	above,	someVariable	will	take	the	value	of	a	if
someBooleanCondition	is	true	and	take	the	value	of	b	if	someBooleanCondition
is	false.	This	means	that	the	above	example	is	equivalent	to	the	following:

if	(someBooleanCondition)	{					

				someVariable	=	a;

}	else	{

				someVariable	=	b;

}

As	you	can	see,	the	ternary	operator	is	much	easier	to	write	(and,	admit	it,	quite
elegant)!	We	lazy	programmers	gravitate	towards	such	things.

We	have	 created	 a	UIButton	 class	 that	 encapsulates	 all	 of	 the	 logic	 needed	 to
create	a	button	and	handle	button	presses	and	button	rendering.	Now	let’s	use	the
UIButton	 class	 inside	 our	 MenuState	 to	 clean	 up	 our	 code!	 Rewrite	 your
MenuState	as	shown	in	listing	9.07.	Double-check	your	import	statements.

*****	Listing	9.07	MenuState	(Updated)		*****

package	com.jamescho.game.state;

import	android.util.Log;

import	android.view.MotionEvent;

import	com.jamescho.framework.util.Painter;

import	com.jamescho.framework.util.UIButton;

import	com.jamescho.simpleandroidgdf.Assets;

public	class	MenuState	extends	State	{

								private	UIButton	playButton,	scoreButton;

								

								@Override

								public	void	init()	{

																playButton	=	new	UIButton(316,	227,	484,	286,	Assets.start,	

Assets.startDown);

																scoreButton	=	new	UIButton(316,	300,	484,	359,	Assets.score,	

Assets.scoreDown);

								}

								@Override

								public	void	update(float	delta)	{

								}

								@Override

								public	void	render(Painter	g)	{

																g.drawImage(Assets.welcome,	0,	0);

																playButton.render(g);

																scoreButton.render(g);

								}

								@Override

								public	boolean	onTouch(MotionEvent	e,	int	scaledX,	int	scaledY)	{

																if	(e.getAction()	==	MotionEvent.ACTION_DOWN)	{

																								playButton.onTouchDown(scaledX,	scaledY);

																								scoreButton.onTouchDown(scaledX,	scaledY);

																}

																if	(e.getAction()	==	MotionEvent.ACTION_UP)	{

																								if	(playButton.isPressed(scaledX,	scaledY))	{

																																playButton.cancel();

																																Log.d("MenuState",	"Play	Button	Pressed!");																													

																								}	else	if	(scoreButton.isPressed(scaledX,	scaledY))	{

																																scoreButton.cancel();

																																Log.d("MenuState",	"Score	Button	Pressed!");																												

																								}	else	{

																																playButton.cancel();

																																scoreButton.cancel();

																								}

																}

																return	true;

								}

}

With	that	change,	we	made	it	much	easier	to	create,	render	and	handle	buttons.
We	could	 simplify	MenuState	even	 further	 and	 remove	all	button-related	 logic
from	 the	 onTouch()	method,	 but	we	will	 keep	 this	 for	 now!	Try	 running	 your
application	and	verify	that	your	buttons	still	behave	the	same	way	as	before.

We	 will	 now	 make	 some	 final	 change	 to	 our	 onTouch()	 method	 to	 allow	 a
transition	to	the	PlayState,	as	shown	highlighted	below:

@Override

public	boolean	onTouch(MotionEvent	e,	int	scaledX,	int	scaledY)	{

								if	(e.getAction()	==	MotionEvent.ACTION_DOWN)	{

																playButton.onTouchDown(scaledX,	scaledY);

																scoreButton.onTouchDown(scaledX,	scaledY);

								}

								if	(e.getAction()	==	MotionEvent.ACTION_UP)	{

																if	(playButton.isPressed(scaledX,	scaledY))	{

																								playButton.cancel();

																								Log.d("MenuState",	"Play	Button	Pressed!");

																								setCurrentState(new	PlayState());

																}	else	if	(scoreButton.isPressed(scaledX,	scaledY))	{

																								scoreButton.cancel();

																								Log.d("MenuState",	"Score	Button	Pressed!");																												

																}	else	{

																								playButton.cancel();

																								scoreButton.cancel();

																}

								}

return	true;

}

Implementing	the	PlayState

Create	a	new	class	called	PlayState	inside	com.jamescho.game.state,	and	extend
State.	 As	 with	 the	 Java	 version	 of	 Ellio,	 the	 PlayState	 will	 handle	 all	 of	 the
gameplay	for	our	Android	game.	The	PlayState	can	be	implemented	with	some
minor	changes	from	its	Java	counterpart:

All	references	to	Graphics	class	will	be	replaced	by	a	reference	to	Painter.
All	references	to	the	Resources	class	will	be	replaced	by	a	reference	to
Assets.
All	references	to	the	Rectangle	class	will	be	replaced	by	a	reference	to	Rect.
Rectangle	collision	logic	will	similarly	need	to	change.
All	references	to	GameMain	will	be	replaced	by	a	reference	to
GameMainActivity.

All	references	to	java.awt.Color	will	be	replaced	by	a	reference	to
android.graphics.Color.	We	can	also	use	the	static	Color.rgb(int	r,	int	g,	int
b)	method	to	select	colors	as	needed	before	drawing	shapes	and	Strings.
The	Font	class	is	no	longer	necessary.	We	will	use	TypeFace	instead.
The	keyboard	and	mouse	input	methods	will	be	replaced	by	the	onTouch()
method.

Listing	9.08	contains	the	PlayState	class	as	it	should	appear	after	making	these
changes.	Note	that	the	touch-based	controls	are	not	implemented	yet.

*****	Listing	9.08	PlayState	(Incomplete)	*****

package	com.jamescho.game.state;

import	java.util.ArrayList;

import	android.graphics.Color;

import	android.graphics.Rect;

import	android.graphics.Typeface;

import	android.view.MotionEvent;

import	com.jamescho.framework.util.Painter;

import	com.jamescho.game.model.Block;

import	com.jamescho.game.model.Cloud;

import	com.jamescho.game.model.Player;

import	com.jamescho.simpleandroidgdf.Assets;

import	com.jamescho.simpleandroidgdf.GameMainActivity;

public	class	PlayState	extends	State	{

		private	Player	player;

		private	ArrayList<Block>	blocks;

		private	Cloud	cloud,	cloud2;

		private	int	playerScore	=	0;

		private	static	final	int	BLOCK_HEIGHT	=	50;

		private	static	final	int	BLOCK_WIDTH	=	20;

		private	int	blockSpeed	=	-200;

		private	static	final	int	PLAYER_WIDTH	=	66;

		private	static	final	int	PLAYER_HEIGHT	=	92;

		@Override

		public	void	init()	{

player	=	new	Player(160,	GameMainActivity.GAME_HEIGHT	-	45	-	

PLAYER_HEIGHT,	PLAYER_WIDTH,	PLAYER_HEIGHT);

								blocks	=	new	ArrayList<Block>();

								cloud	=	new	Cloud(100,	100);

								cloud2	=	new	Cloud(500,	50);

								for	(int	i	=	0;	i	<	5;	i++)	{

Block	b	=	new	Block(i	*	200,	GameMainActivity.GAME_HEIGHT	-	95,	

BLOCK_WIDTH,	BLOCK_HEIGHT);

																blocks.add(b);

								}

		}

		@Override

		public	void	update(float	delta)	{

								if	(!player.isAlive())	{

																setCurrentState(new	GameOverState(playerScore	/	100));

								}

								playerScore	+=	1;

								if	(playerScore	%	500	==	0	&&	blockSpeed	>	-280)	{

																blockSpeed	-=	10;

								}

								cloud.update(delta);

								cloud2.update(delta);

								Assets.runAnim.update(delta);

								player.update(delta);

								updateBlocks(delta);

		}

		private	void	updateBlocks(float	delta)	{

				for	(Block	b	:	blocks)	{

								b.update(delta,	blockSpeed);

								if	(b.isVisible())	{

											if	(player.isDucked()	&&	Rect.intersects(b.getRect(),	

player.getDuckRect()))	{

																b.onCollide(player);

																}	else	if	(!player.isDucked()	&&	Rect.intersects(b.getRect(),	

player.getRect()))	{

																								b.onCollide(player);

																}

												}

				}

		}

		@Override

		public	void	render(Painter	g)	{

								g.setColor(Color.rgb(208,	244,	247));

								g.fillRect(0,	0,	GameMainActivity.GAME_WIDTH,	GameMainActivity.GAME_HEIGHT);

								renderPlayer(g);

								renderBlocks(g);

								renderSun(g);

								renderClouds(g);

								g.drawImage(Assets.grass,	0,	405);

								renderScore(g);

		}

		private	void	renderScore(Painter	g)	{

								g.setFont(Typeface.SANS_SERIF,	25);

								g.setColor(Color.GRAY);

								g.drawString(""	+	playerScore	/	100,	20,	30);

		}

		private	void	renderPlayer(Painter	g)	{

				if	(player.isGrounded())	{

								if	(player.isDucked())	{

																g.drawImage(Assets.duck,	(int)	player.getX(),	(int)	player.getY());

								}	else	{

																Assets.runAnim.render(g,	(int)	player.getX(),	(int)	player.getY(),	

player.getWidth(),	player.getHeight());

								}

								}	else	{

																g.drawImage(Assets.jump,	(int)	player.getX(),	(int)	player.getY(),	

player.getWidth(),	player.getHeight());

				}

		}	

		private	void	renderBlocks(Painter	g)	{

								for	(Block	b	:	blocks)	{

																if	(b.isVisible())	{

																								g.drawImage(Assets.block,	(int)	b.getX(),	(int)	b.getY(),	

BLOCK_WIDTH,	BLOCK_HEIGHT);

																}

								}

		}

		private	void	renderSun(Painter	g)	{

								g.setColor(Color.rgb(255,	165,	0));

								g.fillOval(715,	-85,	170,	170);

								g.setColor(Color.YELLOW);

								g.fillOval(725,	-75,	150,	150);

		}

		private	void	renderClouds(Painter	g)	{

								g.drawImage(Assets.cloud1,	(int)	cloud.getX(),	(int)	cloud.getY(),	100,	60);

								g.drawImage(Assets.cloud2,	(int)	cloud2.getX(),	(int)	cloud2.getY(),	100,	60);

		}

		@Override

		public	boolean	onTouch(MotionEvent	e,	int	scaledX,	int	scaledY)	{

								//	TO-DO:	Implement	touch-based	Controls	Here

								return	false;

		}

}

Implementing	Touch	Controls

There	are	many	ways	we	could	implement	touch	controls	in	our	game.	We	could
create	 two	buttons:	 one	 for	 jumping	 and	one	 for	 ducking.	This	would	be	 easy
because	we	made	a	UIButton	class	earlier	in	the	chapter.	For	a	game	like	Ellio,
however,	 swipe	 controls	 are	 even	better!	We	will	 allow	our	player	 to	 jump	by
swiping	a	finger	upwards	and	duck	by	swiping	a	finger	downwards.

A	swipe	is	just	a	combination	of	a	touch	down	and	touch	up	event,	so	the	logic
for	 implementing	swipe	controls	 is	quite	simple.	 Inside	our	onTouch()	method,
we	will	 store	 the	Y-coordinate	of	 the	most	 recent	 touch	down	event.	Later	on,
when	a	touch	up	event	is	detected,	we	compare	its	Y-coordinate	to	the	stored	Y-
coordinate	 of	 the	 most	 recent	 touch	 down	 event—the	 difference	 of	 the	 two
values	 is	 the	 swipe	 distance.	 If	 the	 swipe	 distance	 is	 greater	 than	 50	 pixels
(arbitrarily	chosen),	we	will	tell	Ellio	to	jump	or	duck	depending	on	the	direction
of	the	swipe.

Add	the	following	instance	variable	to	your	PlayState:

private	float	recentTouchY;

This	float	value	will	store	the	Y-coordinate	of	the	most	recent	touch	down	event.
Next,	implement	your	onTouch()	method	as	follows:

@Override

public	boolean	onTouch(MotionEvent	e,	int	scaledX,	int	scaledY)	{

								if	(e.getAction()	==	MotionEvent.ACTION_DOWN)	{

																recentTouchY	=	scaledY;

								}	else	if	(e.getAction()	==	MotionEvent.ACTION_UP)	{

																if	(scaledY	-	recentTouchY	<	-50)	{

																								player.jump();

																}	else	if	(scaledY	-	recentTouchY	>	50)	{

																								player.duck();

																}

								}

								return	true;

}

Note:
Be	sure	to	return	true	whenever	you	handle	input.	This	should	be	done	inside	the
if-statements	for	completeness	(returning	false	below	the	else-if	statement),	but	I
have	chosen	to	do	it	outside	for	simplicity.

Try	commenting	out	the	following	line	in	bold	inside	your	update()	method:

...

if	(!player.isAlive())	{

																setCurrentState(new	GameOverState(playerScore	/	100));

}

...

Now	run	your	application	and	try	playing	the	game!	You	should	be	able	to	use
swipe	controls	to	dodge	the	obstacles,	as	shown	in	Figure	9-7

Figure	9-7	Better	with	Swipe!

Feel	free	to	experiment	with	the	touch	controls	and	tweak	them	to	your	liking.

Note:
If	 you	 are	 having	 problems	 with	 any	 of	 the	 classes	 at	 this	 point,	 you	 can
download	the	source	code	at	jamescho7.com/book/chapter9/checkpoint3.

Implementing	the	GameOverState

Now	uncomment	this	line	of	code	from	PlayState’s	update()	method:

...

if	(!player.isAlive())	{

																setCurrentState(new	GameOverState(playerScore	/	100));

}

...

Now	create	the	GameOverState	class	inside	com.jamescho.game.state,	extending
State	and	adding	unimplemented	methods.	Recall	that	we	need	to	have	a	custom
constructor	 to	 accept	 an	 integer	 representing	 the	player’s	 score,	which	we	will
need	a	variable	for.	Add	these	as	shown	below:

private	String	playerScore;

public	GameOverState(int	playerScore)	{

								this.playerScore	=	playerScore	+	"";	//	Convert	int	to	String

}

Now	add	the	following	import	statements:

import	android.graphics.Color;

import	android.graphics.Typeface;

import	android.view.MotionEvent;

import	com.jamescho.framework.util.Painter;

import	com.jamescho.simpleandroidgdf.GameMainActivity;

We	 will	 implement	 our	 render	 method	 very	 similarly	 to	 that	 of	 our
GameOverState	from	Chapter	6,	as	shown	below:

@Override

public	void	render(Painter	g)	{

								g.setColor(Color.rgb(255,	145,	0));

								g.fillRect(0,	0,	GameMainActivity.GAME_WIDTH,	GameMainActivity.GAME_HEIGHT);

								g.setColor(Color.DKGRAY);

								g.setFont(Typeface.DEFAULT_BOLD,	50);

								g.drawString("GAME	OVER",	257,	175);

								g.drawString(playerScore,	385,	250);

								g.drawString("Touch	the	screen.",	220,	350);

}

Finally,	 we	 just	 have	 to	 listen	 for	 a	 touch	 up	 event	 and	 transition	 to	 the
MenuState!

@Override

public	boolean	onTouch(MotionEvent	e,	int	scaledX,	int	scaledY)	{

								if	(e.getAction()	==	MotionEvent.ACTION_UP)	{

																setCurrentState(new	MenuState());

								}

								return	true;

}

The	full	GameOverState	class	is	shown	in	listing	9.09.

*****	Listing	9.09	GameOverState	(Complete)	*****

package	com.jamescho.game.state;

import	android.graphics.Color;

import	android.graphics.Typeface;

import	android.view.MotionEvent;

import	com.jamescho.framework.util.Painter;

import	com.jamescho.simpleandroidgdf.GameMainActivity;

public	class	GameOverState	extends	State	{

			private	String	playerScore;

			public	GameOverState(int	playerScore)	{

								this.playerScore	=	playerScore	+	"";	//	Convert	int	to	String

			}

			@Override

			public	void	init()	{

			}

			@Override

			public	void	update(float	delta)	{

			}

			@Override

			public	void	render(Painter	g)	{

								g.setColor(Color.rgb(255,	145,	0));

								g.fillRect(0,	0,	GameMainActivity.GAME_WIDTH,	GameMainActivity.GAME_HEIGHT);

								g.setColor(Color.DKGRAY);

								g.setFont(Typeface.DEFAULT_BOLD,	50);

								g.drawString("GAME	OVER",	257,	175);

								g.drawString(playerScore,	385,	250);

								g.drawString("Touch	the	screen.",	220,	350);

			}

			@Override

			public	boolean	onTouch(MotionEvent	e,	int	scaledX,	int	scaledY)	{

								if	(e.getAction()	==	MotionEvent.ACTION_UP)	{

																setCurrentState(new	MenuState());

								}

								return	true;

			}

}

Now,	upon	death,	the	player	will	see	the	screen	shown	in	Figure	9-8.

Figure	9-8	Don't	Panic

Another	Milestone

We	still	have	some	work	to	do	in	order	to	polish	our	game	and	implement	a	high
score	 system	 (remember	 that	 score	 button	 from	 MenuState?),	 but	 you’ve
completed	 the	 core	 implementation	 of	 Ellio	 in	 Android!	 Congratulations	 on
reaching	another	milestone.	If	you’ve	set	out	to	make	your	own	Android	game,
you	can	now	say	that	you’ve	done	just	that.

Our	work	 is	 not	 over,	 and	 you	 still	 have	much	 to	 learn	 before	 you	 can	make
awesome	 games.	 We	 will	 next	 spend	 some	 time	 talking	 about	 optimization
principles—how	we	can	make	our	game	run	better	on	more	devices.	Before	that,
however,	 take	a	well-deserved	break.	You’ve	done	a	 lot	of	hard	work,	and	you
will	be	better	off	reading	the	next	sections	with	a	fresh	mind!

Note:
If	 you	 are	 having	 problems	 with	 any	 of	 the	 classes	 at	 this	 point,	 you	 can
download	the	source	code	at	jamescho7.com/book/chapter9/checkpoint4.

Make	It	Faster:	Optimizing	Your	Game

Ellio	 is	 not	 the	 most	 resource	 demanding	 game	 for	 an	 Android	 device–we
perform	only	 a	 few	2D	 rendering	operations	 in	 every	 frame,	 and	we	keep	our
CPU’s	load	light	by	performing	a	small	number	of	physics	and	collision-related
calculations.	As	such,	there	is	little	we	can	do	to	optimize	the	game	and	improve
performance.

After	 reading	 this	 chapter,	 however,	 you	will	 inevitably	 go	 on	 to	 build	 games
that	are	bigger	than	Ellio	and	these	games	will	probably	be	more	graphically	and
computationally-intensive.	Let’s	make	 sure	 that	your	game’s	performance	does
not	become	a	bottleneck	for	you	by	discussing	some	principles	to	follow	in	order
to	optimize	your	game.	This	will	be	a	conceptual	exercise.	You	do	not	need	to
follow	along	with	your	own	code	(except	at	the	very	end).

Loading	the	Game:	Conserve	Memory

As	you	know,	memory	 (RAM)	 is	 finite.	 If	you	keep	 filling	your	memory	with
data,	 you	 will	 eventually	 run	 out	 of	 memory.	 Let	 me	 illustrate	 this	 with	 an
example	and	discuss	ways	of	preventing	this.

Pretend	that	you	are	running	a	game	on	an	Android	device	that	has	1	GB	of	total
RAM.	The	Android	Operating	System,	being	 a	multi-application	 environment,
may	allocate	as	little	as	16	MB	to	your	application	to	use.	We	start	filling	our	16
MB	heap	(where	objects	are	stored)	with	two	images,	as	shown:

Bitmap	largeImage	=	loadImage(“large.png”);	//	+4	MB

Bitmap	largerImage	=	loadImage(“larger.png”);	//	+8	MB

Let’s	pretend	that	largeImage	takes	up	4	MB	of	RAM	and	that	largerImage	takes
up	8	MB.	After	 loading	 these	 two	 large	 images,	your	application	has	allocated
75%	of	its	memory	(12	MB	/	16	MB).	Now	what	happens	when	you	try	to	load
another	image	of	size	8	MB	into	memory?

Bitmap	puppyPicture	=	loadImage(“puppy.png”);	//	+	8	MB

It	 cannot	 fit,	 and	 we	 get	 an	 OutOfMemoryException.	 Your	 application	 then
crashes,	and	your	game	becomes	unplayable.

Note:
At	 this	 point,	 memory	 is	 not	 full.	 It	 is	 still	 at	 75%	 capacity.
OutOfMemoryException	just	 informs	you	that	 the	requisite	amount	of	memory
needed	to	allocate	room	for	another	object	is	not	there.

How	do	we	prevent	an	OutOfMemoryException	arising	from	Bitmaps?	We	need
to	conserve	memory.	There	are	a	three	ways	that	we	will	discuss	(starting	from
the	least	time	consuming	method	to	the	most	time	consuming).

The	easiest	way	to	conserve	memory	is	to	make	some	of	your	images	smaller—
especially	 those	 that	 could	 get	 away	 with	 being	 a	 little	 blurry,	 such	 as	 the
background	image.	Resizing	can	be	done	inside	an	external	application	such	as
Gimp	or	Photoshop,	or	you	could	use	the	BitmapFactory.Options.inSampleSize
to	do	this	in	code	(example	below).

Recall	that	we	instantiate	a	BitmapFactory.Options	object	when	loading	Bitmaps
in	the	Assets	class.	We	use	it	to	configure	an	image	as	RGB_565	of	ARGB_8888
as	 it	 is	 being	 loaded.	The	 inSampleSize	 value	 is	 an	 integer	 inside	 the	Options
class	 used	 to	 resize	 images	 when	 loading	 them	 into	 memory.	 Having	 an
inSampleSize	value	of	2	would	load	the	image	with	half	the	width	and	half	the
height	of	the	original.

The	example	below	shows	a	modified	Assets.loadBitmap()	method	 that	allows
you	 to	 subsample	 an	 image	and	 reduce	 its	 size	 in	half	using	a	 third	parameter
called	 shouldSubsample.	 You	 should	 NOT	 make	 this	 change	 to	 your	 Ellio
project.

private	static	Bitmap	loadBitmap(String	filename,	boolean	transparency,	boolean	shouldSubsample)	{

								InputStream	inputStream	=	null;

								try	{

																inputStream	=	GameMainActivity.assets.open(filename);

								}	catch	(IOException	e)	{

																e.printStackTrace();

								}

								Options	options	=	new	Options();

								if	(shouldSubsample)	{

																options.inSampleSize	=	2;

								}							

								if	(transparency)	{

																options.inPreferredConfig	=	Config.ARGB_8888;

								}	else	{

																options.inPreferredConfig	=	Config.RGB_565;

								}

								Bitmap	bitmap	=	BitmapFactory.decodeStream(inputStream,	null,	options);

								return	bitmap;

}

Note	that	inSampleSize	must	be	a	multiple	of	2.

A	second	way	of	conserving	memory	is	to	replace	your	images	(or	parts	of	your
images)	with	the	Canvas	class’s	geometry	drawing	calls.	For	example,	 take	the
image	shown	in	Figure	9-9	(art	by	Kenney.nl).

Figure	9-9	Grumpy	and	the	Floating	House

Rather	 than	 storing	 this	 entire	 image	 inside	 memory,	 we	 could	 slice	 it	 into
multiple	pieces	as	shown	in	Figure	9-10.

Now,	we	can	take	these	individual	images,	save	them	into	our	assets	folder,	and
draw	 them	 separately,	 using	 Painter.setColor(Color.rgb(...))	 and	 Painter.fillRect

(0,	0,	gameWidth,	gameHeight)	 to	draw	the	background.	Notice	that	we	would
only	need	a	small	portion	of	 the	water	because	we	can	redraw	the	same	image
multiple	times	across	the	screen.

Figure	9-10	Slicing	an	Image

A	 third	 method	 for	 conserving	 memory	 would	 be	 to	 create	 multiple	 loading
screens	to	load	and	unload	images	within	each	state-to-state	transition.	Let’s	talk
about	this	using	an	example.

In	Ellio,	we	 load	all	of	our	 images	 into	memory	at	once.	We	take	every	 image
file	inside	our	assets	folder	and	create	Bitmap	objects	for	them	using	the	Assets
class.	This	allows	us	to	have	just	one	loading	screen	(which	just	shows	a	black
screen)	that	only	has	to	run	once	throughout	the	game	session

In	theory,	we	could	handle	asset	loading	on	a	state	by	state	basis.	The	LoadState
could	simply	load	all	of	the	images	needed	for	MenuState	(ignoring	the	images
needed	by	 the	PlayState).	We	could	 then	create	a	second	 loading	screen	called
LoadPlayState,	in	which	we	would	do	three	things:

1.	 Unload	all	of	the	images	used	by	the	MenuState	using	the	method
Bitmap.recycle().

2.	 Ask	the	garbage	collector	to	clean	up	the	memory:	System.gc();

3.	 Load	all	of	the	images	needed	by	the	PlayState,	and	transition	to	PlayState.

Note:
For	 a	 real	 example	 on	 implementing	 multiple	 loading	 screens,	 please	 see:
jamescho7.com/book/samples.

As	you	can	see,	there	are	many	ways	of	conserving	memory	when	setting	up	our
game.	Let’s	now	talk	about	how	to	prevent	lag	during	gameplay.Z

During	Gameplay:	Avoid	Garbage	Collection

During	gameplay,	you	may	switch	to	the	DDMS	perspective	and	see	a	series	of
LogCat	messages	like	the	following:

dalvikvm		D		GC_FOR_MALLOC	freed	33	objects	/	21013	bytes	in	8ms

dalvikvm		D		GC_EXPLICIT	freed	281	objects	/	1853	bytes	in	7ms

The	 GC_FOR_MALLOC	 and	 GC_EXPLICIT	 messages	 above	 mean	 that
garbage	 collection	 has	 been	 triggered	 inside	 your	 application.	 The	 above	 two
executions	took	8	and	7ms	to	complete.

These	are	messages	that	you	should	watch	out	for	during	gameplay,	as	they	may
indicate	that	you	are	leaking	memory	(allocating	space	for	a	lot	of	new	objects
rather	than	reusing	existing	objects).

Note:
We	do	explicitly	ask	for	garbage	collection	using	System.gc()	as	we	switch	from
one	state	to	another,	so	do	not	be	alarmed	if	you	see	GC_EXPLICIT	during	these
transitions.

The	Problem	with	Garbage	Collection

As	we’ve	 discussed	 briefly	 in	Chapter	 6,	 garbage	 collection	 is	 considered	 bad
during	 gameplay	 because	 it	 takes	 time	 to	 complete.	 In	 our	 game	 development
framework,	 we	 aim	 for	 60	 FPS,	 or	 roughly	 17	 milliseconds	 per	 frame.	 Let’s
suppose	that	Ellio	takes	an	average	of	13	milliseconds	to	update	and	render	(this
would	mean	4	milliseconds	of	sleep	time).

What	 happens	 if	 the	 garbage	 collector	 were	 to	 run	 for	 some	 15	 milliseconds
during	a	particular	 frame?	That	 leaves	us	with	2	milliseconds	 (17	 -	15)	during
which	we	must	 try	 to	 squeeze	 in	 13	milliseconds	worth	 of	 update	 and	 render
calls.	 In	 this	 scenario,	 this	 iteration	 of	 the	 game	 loop	 may	 take	 not	 17
milliseconds	 but	 something	 like	 30	 milliseconds.	 This	 excess	 time	 elapsed	 is
what	players	would	call	lag.

Avoiding	Memory	Allocation

To	avoid	leaking	memory	and	invoking	the	garbage	collector,	refrain	from	using
the	 new	 keyword	 inside	 the	 game	 loop.	 Stay	 away	 from	methods	 such	 as	 the
following:

....

//	Update	method	called	by	game	loop.	Called	on	every	frame.

public	void	update()	{

								x	+=	10;

								y	+=	5;

								Rect	boundingBox	=	new	Rect(x,	y,	x	+	width,	y	+	height);

								checkCollision(boundingBox,	monster);

}

....

Assuming	60	FPS,	the	above	update()	method	would	create	60	new	Rect	objects
per	second,	filling	up	your	memory	quickly,	prompting	the	garbage	collector	to
come	 in	 and	 do	 time-consuming	 work.	 The	 better	 solution	 would	 be	 the
following:

...	

//	Class	and	Variable	Declarations

private	Rect	boundingBox	=	new	Rect(x,	y,	x	+	width,	y	+	height);

...

//	Update	method	called	by	game	loop.	Called	on	every	frame.

public	void	update()	{

								x	+=	10;

								y	+=	5;

								boundingBox.set(x,	y,	x	+	width,	y	+	height);

								checkCollision(boundingBox,	monster);

}

In	 the	 previous	 example,	we	 only	 create	 the	 boundingBox	Rect	 one	 time.	We
avoid	creating	new	objects	in	every	frame	by	opting	to	update	the	existing	Rect
object.	Garbage	collection	is	no	longer	needed.

Finding	Memory	Leaks	and	Tracking	Allocations

Now,	 when	 you	 notice	 a	 lot	 of	 lag	 in	 your	 gameplay	 and	 see	 the	 garbage
collection	messages	in	your	LogCat,	you	should	be	able	to	find	the	memory	leak
by	searching	 for	 the	new	keyword	 inside	 the	game	 loop.	Sometimes,	however,
finding	 a	 leak	 can	 be	 a	 little	more	 difficult.	 Have	 a	 look	 at	 the	 renderScore()
method	from	Ellio’s	PlayState	class,	reproduced	below:

private	void	renderScore(Painter	g)	{

								g.setFont(Typeface.SANS_SERIF,	25);

								g.setColor(Color.GRAY);

								g.drawString(""	+	playerScore	/	100,	20,	30);

}

At	 first,	 this	 method	 seems	 completely	 innocuous.	 After	 all,	 we	 are	 not
allocating	any	new	objects—or	are	we?

Strings	are	objects.	Every	time	we	create	a	new	String	using	"",	we	are	allocating
space	 for	 an	 object	 in	 memory.	 This	 means	 that	 ""	 +	 playerScore	 /	 100	 is
leaking	memory!	To	verify	 this,	 I	will	 run	Ellio	 in	 the	DDMS	perspective	and
select	the	Ellio	application	under	Devices	as	shown	in	Figure	9-11.

Figure	9-11	Ellio	in	DDMS	Perspective

Notice	that	there	is	a	tab	labeled	Allocation	Tracker	in	the	DDMS	perspective,	as
shown	 in	Figure	9-12.	This	 tool	will	keep	 track	of	all	object	allocations	 in	 the
selected	application.

Figure	9-12	Allocation	Tracker

Let’s	start	the	PlayState	by	hitting	the	start	button	inside	Ellio,	and	then	click	on
the	Start	Tracking	button	inside	the	Allocation	Tracker.	After	playing	Ellio	for	a
while,	we	 can	 click	 on	Get	Allocations	 and	 then	 Stop	Tracking.	 The	 result	 of
these	actions	in	shown	in	Figure	9-13.

Figure	9-13	shows	that	there	have	been	multiple	allocations	of	significant	size	of
the	 class	 java.lang.StringBuilder.	 Note	 that	 this	 is	 allocated	 in
com.jamescho.game.state.PlayState.renderScore.	This	makes	it	clear	that	during
gameplay,	we	are	leaking	memory	inside	renderScore()	by	creating	a	new	String.
If	 we	 were	 to	 comment	 out	 the	 renderScore()	 method	 and	 run	 the	 game,	 we
would	no	longer	see	these	allocations.

Figure	9-13	Allocated	Class:	java.lang.StringBuilder

I	 will	 be	 keeping	 the	 renderScore()	 method	 intact	 for	 the	 purposes	 of	 this
chapter,	but	keep	in	mind	that	this	method	is	indeed	leaking	memory.

Note:
For	an	example	of	how	you	might	print	 the	score	without	using	String	objects,
please	see:	jamescho7.com/book/samples

There	 is	 one	more	 source	 of	 garbage	 collection	 that	 you	 should	 be	 aware	 of.
When	 iterating	 through	 an	 ArrayList	 of	 objects,	 you	 may	 allocate	 something
called	an	ArrayListIterator,	as	shown	in	Figure	9-14.

The	cause	of	this	allocation	is	not	revealed	directly	in	LogCat,	except	for	the	fact
that	ArrayLists	 are	 involved.	The	 actual	 reason	behind	 these	 allocations	 is	 our
use	a	for	each	loop	in	our	updateBlocks()	and	renderBlocks()	methods:

....

//	For	each	loop	leaks	memory:

for	(Block	b	:	blocks)	{

			

}

Figure	9-14	More	Leaking

The	 for	 each	 loop	makes	 use	 of	 an	ArrayListIterator	 object	 to	 iterate	 through
each	child	element,	leaking	memory.	There	is	a	simple	solution	to	this,	and	that
is	to	use	a	regular,	index-based	for	loop	as	shown	in	the	modified	updateBlocks()
and	renderBlocks()	methods	provided	in	listings	9.10	and	9.11:

*****	Listing	9.10	updateBlocks()	(Updated)	*****

private	void	updateBlocks(float	delta)	{

		for	(int	i	=	0;	i	<	blocks.size();	i++)	{

				Block	b	=	blocks.get(i);

				b.update(delta,	blockSpeed);

				if	(b.isVisible())	{

								if	(player.isDucked()	&&	Rect.intersects(b.getRect(),	player.getDuckRect()))	{

																b.onCollide(player);

								}	else	if	(!player.isDucked()	&&	Rect.intersects(b.getRect(),	player.getRect()))	{

																b.onCollide(player);

								}

				}

			}

}

*****	Listing	9.11	renderBlocks()	(Updated)	*****

private	void	renderBlocks(Painter	g)	{

	for	(int	i	=	0;	i	<	blocks.size();	i++)	{

				Block	b	=	blocks.get(i);

			if	(b.isVisible())	{

					g.drawImage(Assets.block,	(int)	b.getX(),	(int)	b.getY(),	BLOCK_WIDTH,	BLOCK_HEIGHT);

			}

	}

}

I	 recommend	 that	 you	 make	 these	 two	 changes	 to	 your	 PlayState	 class	 to
maximize	performance.

We’ve	now	sufficiently	discussed	how	we	can	optimize	our	 framework.	 If	you
keep	 the	 aforementioned	 principles	 in	 mind,	 you	 will	 be	 able	 to	 make	 high-
performance	 games	 that	 run	 well	 on	 a	 wide	 variety	 of	 devices.	 Let’s	 now	 go
back	to	Ellio	and	add	a	final	new	feature—a	high	score	system.

Note:
If	 you	 are	 having	 problems	 with	 any	 of	 the	 classes	 at	 this	 point,	 you	 can
download	the	source	code	at	jamescho7.com/book/chapter9/checkpoint5.

Implementing	a	High	Score	System

In	many	mobile	games,	you	are	going	to	want	to	keep	track	of	the	all-time	best
score	 reached	 on	 a	 device.	 The	 easiest	 way	 to	 accomplish	 this	 is	 by	 using
Android’s	shared	preferences	feature.

You	can	 think	of	 shared	preferences	 as	 a	 repository	of	 data.	You	 can	use	 it	 to
save	information	relevant	to	your	application.	The	saved	data	will	persist	in	the
device’s	file	storage	until	your	application	has	been	uninstalled	from	the	device.

Figure	9-15	Storing	SharedPreferences

As	 shown	 in	Figure	9-15,	you	must	 save	data	 in	key-value	pairs,	 and	you	can
have	 as	many	 pairs	 as	 you	want.	 This	means	 that,	 to	 store	 a	 value	 inside	 the
shared	preferences,	you	must	provide	a	key	associated	with	 that	value,	such	as
“Name.”	Later,	this	key	is	used	to	retrieve	the	saved	value.

Planning	the	High	Score	System

To	implement	the	high	score	system,	we	will	be	saving	the	all-time	best	score	as
an	 integer	 inside	 our	 application’s	 shared	 preferences.	 When	 our
GameMainActivity	 is	 launched,	 we	 will	 retrieve	 the	 saved	 high	 score	 from
shared	preferences	and	store	it	as	a	regular	integer.	When	the	player	finishes	the

game	 and	 reaches	 the	 GameOverState,	 we	 will	 check	 if	 the	 current	 score	 is
greater	than	the	saved	high	score.	If	so,	we	will	replace	the	high	score	with	the
current	score	and	save	it	to	the	shared	preferences.

Providing	the	Accessor	Methods

Open	up	the	GameMainActivity	class	for	Ellio	and	add	the	following	variables:

private	static	SharedPreferences	prefs;

private	static	final	String	highScoreKey	=	"highScoreKey";

private	static	int	highScore;

Add	the	corresponding	import	statements:

import	android.content.SharedPreferences;

import	android.content.SharedPreferences.Editor;

The	prefs	variable	will	be	 the	 reference	 to	our	application’s	SharedPreferences
object.	Inside	prefs,	we	will	be	storing	a	highScore	using	the	key	highScoreKey.

Initialize	 the	 prefs	 and	 highScore	 variables	 as	 shown	 below	 in	 the	 onCreate()
method.	Ignore	the	error	shown	for	retrieveHighScore()	for	now.

@Override

protected	void	onCreate(Bundle	savedInstanceState)	{

								super.onCreate(savedInstanceState);

								prefs	=	getPreferences(Activity.MODE_PRIVATE);										//	New	line!

								highScore	=	retrieveHighScore();																								//	New	Line!

								assets	=	getAssets();

								sGame	=	new	GameView(this,	GAME_WIDTH,	GAME_HEIGHT);

								setContentView(sGame);

								getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);

}

As	you	can	see,	we	can	retrieve	our	application’s	shared	preferences	by	calling
the	getPreferences()	method,	passing	in	the	constant	Activity.MODE_PRIVATE
so	that	only	our	application	can	access	the	preferences’	contents.

Finally,	 declare	 the	 following	 methods	 which	 will	 provide	 the	 access	 to	 the
shared	preferences:

public	static	void	setHighScore(int	highScore)	{

								GameMainActivity.highScore	=	highScore;

								Editor	editor	=	prefs.edit();

								editor.putInt(highScoreKey,	highScore);

								editor.commit();

}

private	int	retrieveHighScore()	{

								return	prefs.getInt(highScoreKey,	0);

}

public	static	int	getHighScore()	{

								return	highScore;

}

The	setHighScore()	method	will	be	called	when	the	player’s	score	is	greater	than
the	 saved	 high	 score.	 To	 actually	 edit	 the	 shared	 preferences,	we	must	 get	 its
SharedPreferences.Editor	 object	 by	 calling	 prefs.edit().	 We	 store	 the	 resulting
Editor	 into	 the	 editor	 variable	 and	 stash	 the	 integer	 highScore	 with	 the	 key
highScoreKey	 into	 the	 editor.	 Once	we	 call	 editor.commit(),	 the	 Editor	 object
will	 commit	 the	 changes	 to	 the	 shared	 preferences,	 overwriting	 any	 existing
values.

The	 retrieveHighScore()	method	 is	called	once	when	 the	application	 is	 started.
Its	 value	 is	 stored	 into	 memory	 as	 highScore	 for	 quicker	 access	 later.	 This
method	simply	retrieves	the	integer	associated	with	highScoreKey.	If	there	is	no
associated	value,	we	use	the	default	value	of	zero.

The	getHighScore()	method	is	a	simple	static	getter	that	will	retrieve	the	current
high	 score.	 This	 method	 exists	 to	 allow	 us	 to	 retrieve	 the	 high	 score	 without
going	into	the	file	system,	which	takes	a	bit	longer.

Listing	9.12	shows	the	completed	GameMainActivity	Class.

*****	Listing	9.12	GameMainActivity	(Completed)	*****

package	com.jamescho.simpleandroidgdf;

import	android.app.Activity;

import	android.content.SharedPreferences;

import	android.content.SharedPreferences.Editor;

import	android.content.res.AssetManager;

import	android.os.Bundle;

import	android.view.WindowManager;

public	class	GameMainActivity	extends	Activity	{

								

								public	static	final	int	GAME_WIDTH	=	800;

								public	static	final	int	GAME_HEIGHT	=	450;

								public	static	GameView	sGame;

								public	static	AssetManager	assets;	

								

								private	static	SharedPreferences	prefs;

								private	static	final	String	highScoreKey	=	"highScoreKey";

								private	static	int	highScore;

								

								@Override

								protected	void	onCreate(Bundle	savedInstanceState)	{

																super.onCreate(savedInstanceState);

																prefs	=	getPreferences(Activity.MODE_PRIVATE);		

																highScore	=	retrieveHighScore();																																

																assets	=	getAssets();

																sGame	=	new	GameView(this,	GAME_WIDTH,	GAME_HEIGHT);

																setContentView(sGame);

																getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);

								}

								

								public	static	void	setHighScore(int	highScore)	{

																GameMainActivity.highScore	=	highScore;

																Editor	editor	=	prefs.edit();

																editor.putInt(highScoreKey,	highScore);

																editor.commit();

								}

								private	int	retrieveHighScore()	{

																return	prefs.getInt(highScoreKey,	0);

								}

								public	static	int	getHighScore()	{

																return	highScore;

								}	

}

Setting	the	High	Score

Now	 that	we	have	created	 the	accessor	methods,	 saving	 the	high	score	 is	very
easy.	Open	GameOverState	and	make	the	following	changes	to	its	constructor:

public	GameOverState(int	playerScore)	{

								this.playerScore	=	playerScore	+	"";	//	Convert	int	to	String

								if	(playerScore	>	GameMainActivity.getHighScore())	{

																GameMainActivity.setHighScore(playerScore);

								}

}

Those	 are	 all	 the	 changes	 needed	 to	 save	 the	 high	 score	 into	 the	 shared
preferences.	Make	sure	you	understand	these	three	lines	of	code.

We	will	make	one	additional	change	to	make	the	GameOverState	display	"HIGH
SCORE"	 rather	 than	 "GAME	OVER"	 in	 the	 event	 of	 a	 high	 score.	Create	 the
following	String	variable	with	the	default	value	of	"GAME	OVER":

private	String	gameOverMessage	=	"GAME	OVER";

Next,	inside	the	constructor,	add	the	new	line	of	code	shown	below:

public	GameOverState(int	playerScore)	{

								this.playerScore	=	playerScore	+	"";	//	Convert	int	to	String

								if	(playerScore	>	GameMainActivity.getHighScore())	{

																GameMainActivity.setHighScore(playerScore);

																gameOverMessage	=	"HIGH	SCORE";									//	This	is	the	new	line!

								}

}

Finally,	make	the	following	change	to	the	render()	method.

@Override

public	void	render(Painter	g)	{

								g.setColor(Color.rgb(255,	145,	0));

								g.fillRect(0,	0,	GameMainActivity.GAME_WIDTH,	GameMainActivity.GAME_HEIGHT);

								g.setColor(Color.DKGRAY);

								g.setFont(Typeface.DEFAULT_BOLD,	50);

								g.drawString("GAME	OVER",	257,	175);

								g.drawString(gameOverMessage,	257,	175);

								g.drawString(playerScore,	385,	250);

								g.drawString("Touch	the	screen.",	220,	350);

}

The	full	updated	class	listing	for	GameOverState	is	shown	in	listing	9.13:

*****	Listing	9.13	GameOverState	(Completed)	*****

package	com.jamescho.game.state;

import	android.graphics.Color;

import	android.graphics.Typeface;

import	android.view.MotionEvent;

import	com.jamescho.framework.util.Painter;

import	com.jamescho.simpleandroidgdf.GameMainActivity;

public	class	GameOverState	extends	State	{

								private	String	playerScore;

								private	String	gameOverMessage	=	"GAME	OVER";

								public	GameOverState(int	playerScore)	{

																this.playerScore	=	playerScore	+	"";	//	Convert	int	to	String

																if	(playerScore	>	GameMainActivity.getHighScore())	{

																								GameMainActivity.setHighScore(playerScore);

																								gameOverMessage	=	"HIGH	SCORE";	//	This	is	the	new	line!

																}

								}

								@Override

								public	void	init()	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	update(float	delta)	{

																//	TODO	Auto-generated	method	stub

								}

								@Override

								public	void	render(Painter	g)	{

																g.setColor(Color.rgb(255,	145,	0));

																g.fillRect(0,	0,	GameMainActivity.GAME_WIDTH,

																																GameMainActivity.GAME_HEIGHT);

																g.setColor(Color.DKGRAY);

																g.setFont(Typeface.DEFAULT_BOLD,	50);

																g.drawString(gameOverMessage,	257,	175);

																g.drawString(playerScore,	385,	250);

																g.drawString("Touch	the	screen.",	220,	350);

								}

								@Override

								public	boolean	onTouch(MotionEvent	e,	int	scaledX,	int	scaledY)	{

																if	(e.getAction()	==	MotionEvent.ACTION_UP)	{

																								setCurrentState(new	MenuState());

																}

																return	true;

								}

}

Now	try	running	your	application	and	verify	that	you	are	able	to	set	a	high	score,
as	shown	in	Figure	9-16:

Figure	9-16	High	Score

Implementing	the	ScoreState

The	final	thing	we	will	do	is	implement	the	ScoreState	class.	Create	this	inside
com.jamescho.game.state	and	extend	State.	We	will	make	it	behave	just	like	the
GameOverState,	except	that	it	will	always	show	the	high	score.	As	an	exercise,
try	 to	 implement	 this	class	yourself.	 If	you	need	help,	 listing	9.14	contains	my
implementation.

*****	Listing	9.14	ScoreState	(Completed)	*****

package	com.jamescho.game.state;

import	android.graphics.Color;

import	android.graphics.Typeface;

import	android.view.MotionEvent;

import	com.jamescho.framework.util.Painter;

import	com.jamescho.simpleandroidgdf.GameMainActivity;

public	class	ScoreState	extends	State	{

								private	String	highScore;

								@Override

								public	void	init()	{

																highScore	=	GameMainActivity.getHighScore()	+	"";

								}

								@Override

								public	void	update(float	delta)	{

								}

								@Override

								public	void	render(Painter	g)	{

											g.setColor(Color.rgb(53,	156,	253));

											g.fillRect(0,	0,	GameMainActivity.GAME_WIDTH,	GameMainActivity.GAME_HEIGHT);

											g.setColor(Color.WHITE);

											g.setFont(Typeface.DEFAULT_BOLD,	50);

											g.drawString("The	All-Time	High	Score",	120,	175);

											g.setFont(Typeface.DEFAULT_BOLD,	70);

											g.drawString(highScore,	370,	260);

											g.setFont(Typeface.DEFAULT_BOLD,	50);

											g.drawString("Touch	the	screen.",	220,	350);									

								}

								@Override

								public	boolean	onTouch(MotionEvent	e,	int	scaledX,	int	scaledY)	{

																if	(e.getAction()	==	MotionEvent.ACTION_UP)	{

																								setCurrentState(new	MenuState());

																}

																return	true;

								}

}

Now	open	MenuState	 and	update	 its	onTouch()	method	 to	 start	 the	ScoreState
when	the	score	button	is	pressed:

@Override

public	boolean	onTouch(MotionEvent	e,	int	scaledX,	int	scaledY)	{

								if	(e.getAction()	==	MotionEvent.ACTION_DOWN)	{

																playButton.onTouchDown(scaledX,	scaledY);

																scoreButton.onTouchDown(scaledX,	scaledY);

								}

								if	(e.getAction()	==	MotionEvent.ACTION_UP)	{

																if	(playButton.isPressed(scaledX,	scaledY))	{

																								playButton.cancel();

																								Log.d("MenuState",	"Play	Button	Pressed!");					

																								setCurrentState(new	PlayState());

																}	else	if	(scoreButton.isPressed(scaledX,	scaledY))	{

																								scoreButton.cancel();

																								Log.d("MenuState",	"Score	Button	Pressed!");

																								setCurrentState(new	ScoreState());						//	This	is	the	new	line!

																}	else	{

																								playButton.cancel();

																								scoreButton.cancel();

																}

								}

								return	true;

}

Run	the	application	one	more	time	and	press	the	score	button.	You	should	see	a
screen	like	that	shown	in	Figure	9-17.

Figure	9-17	Displaying	ScoreState

Note:
If	 you	 are	 having	 problems	 with	 any	 of	 the	 classes	 at	 this	 point,	 you	 can
download	the	source	code	at	jamescho7.com/book/chapter9/complete

And	we	are	done!	We’ve	implemented	an	Android	game	using	our	framework,
studied	 optimization	 principles	 and	 created	 shared	 preferences	 for	 data
persistence.	It’s	your	turn	to	get	some	practice.	Try	to	create	a	game	from	scratch
using	your	own	ideas!	If	you	need	inspiration,	I’d	like	to	point	you	to	the	book’s
companion	site,	where	you	can	see	various	samples	of	the	framework	in	action!

jamescho7.com/book/samples/

We	 are	 nearing	 the	 end	 of	 our	 journey.	 In	 Unit	 4,	 we	will	 learn	 how	we	 can
publish	an	Android	game	onto	the	Google	Play	Store	and	talk	about	integrating
some	cool	Google	services	to	make	your	app	even	more	fun.

Chapter	10:	Releasing	Your	Game
You’ve	now	developed	an	Android	game,	and	you	are	probably	eager	 to	get	 it
into	as	many	people’s	hands	as	possible.	With	the	help	of	Eclipse	and	ADT,	you
can	publish	your	application	in	a	matter	of	minutes;	however,	you	will	probably
not	get	the	results	you	want	unless	you	do	some	homework	first.

When	 building	 an	 Android	 game	 or	 application,	 you	 will	 go	 through	 three
primary	stages:	designing,	developing	and	distributing.	Google	provides	detailed
steps	and	guidelines	 for	each	of	 these	stages	on	 the	official	Android	developer
site	at	the	following	URL,	and	I	highly	suggest	that	you	take	some	time	looking
at	the	following	site	before	moving	any	further:

http://developer.android.com/distribute/index.html

http://developer.android.com/distribute/index.html

Getting	Your	Game	Ready

For	 you	 to	 begin	 sharing	 your	Android	 project	 with	 your	 audience,	 you	must
create	an	Android	Package	file	(APK	for	short).	Using	Eclipse	makes	this	very
easy!	 We	 will	 be	 using	 the	 Android	 version	 of	 Ellio	 from	 Chapter	 9	 as	 an
example.	Before	we	get	 started,	 let’s	make	 sure	 that	 your	game	 is	 ready	 to	be
published.

Note:
If	 necessary,	 you	 can	 download	 the	 Ellio	 project	 from	 jamescho7.com/
book/chapter9/complete

Changing	the	Package	Name

Open	 your	 AndroidManifest.xml	 and	 check	 your	 manifest	 element	 (shown	 in
listing	10.01).

*****	Listing	10.01	manifest	Element	*****

<manifest	xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.jamescho.simpleandroidgdf"

				android:versionCode="1"

				android:versionName="1.0"	>

...

Note	that	the	package	name	is	currently	set	to	com.jamescho.simpleandroidgdf.
We	must	change	this	package	name	to	a	unique	value	in	order	for	us	to	publish
the	game	on	Google	Play.

Assign	 a	 new	package	name,	 such	 as	 com.yourname.ellio.	This	 package	name
will	 be	publicly	visible	on	your	game’s	Google	Play	 listing,	 so	 choose	wisely.
Once	you	have	selected	a	new	name,	update	your	activity	element	as	shown	in
listing	10.02:

*****	Listing	10.02	Updating	the	activity	element	*****

<activity	

																android:screenOrientation="sensorLandscape"

								android:name="com.jamescho.simpleandroidgdf.GameMainActivity"

								android:name="com.jamescho.ellio.GameMainActivity"

								android:label="@string/app_name"

								android:theme="@android:style/Theme.NoTitleBar.Fullscreen"	>

								<intent-filter>

																<action	android:name="android.intent.action.MAIN"	/>

																<category	android:name="android.intent.category.LAUNCHER"	/>

								</intent-filter>

	</activity>

Next,	 you	 must	 rename	 the	 com.jamescho.simpleandroidgdf	 package	 in	 the
Package	 Explorer,	 by	 giving	 it	 the	 same,	 updated	 package	 name	 from	 the
manifest	element.

Note:
Make	sure	to	use	your	own	name,	not	com.jamescho.ellio.	Otherwise,	you	will
not	be	able	to	publish	this	application.

Creating	the	APK

Select	 your	 Android	 project	 inside	 the	 Package	 Explorer	 and	 select	 File	 >
Export.	You	will	see	the	Export	dialog,	as	shown	in	Figure	10-1.

Figure	10-1	Export	Android	Application

Open	the	Android	folder,	select	Export	Android	Application	and	click	Next.	You
should	see	EllioAndroid	as	the	selected	project.	Click	Next	again,	and	you	will
see	the	dialog	shown	in	Figure	10-2.

Figure	10-2	Export	Android	Application

All	Android	applications	must	be	digitally	signed	before	they	can	be	shared.	To
begin	this	process,	simply	select	the	Create	new	keystore	option	in	the	Keystore
selection	 dialog.	 I	 will	 create	 the	 keystore	 on	 my	 Desktop	 with	 the	 name
EllioAndroid.keystore.

Note:
A	 keystore	 is	 a	 collection	 of	 keys,	 which	 are	 used	 when	 signing	 application.
Make	sure	to	keep	this	file	backed	up	and	secure,	as	you	must	use	it	each	time
you	want	to	update	your	application.	If	you	lose	your	keystore,	you	cannot	make
changes	to	a	published	application.

After	hitting	Next,	you	will	see	the	dialog	shown	in	Figure	10-3.	You	must	now

create	a	key	using	the	provided	form.	Think	of	a	key	as	a	seal	of	authentication.
Signing	digitally	using	a	key	allows	others	to	verify	your	authorship	of	an	app.

The	alias	is	the	name	of	the	key.	In	this	case,	I	will	use	release.
The	password	is	the	corresponding	password.	Note	that	this	password	is	not
the	same	as	the	password	for	the	keystore.	Choose	a	password	you	will
remember!
The	validity	refers	to	your	key’s	lifetime.	The	recommended	value	is	30
years.

You	 must	 also	 complete	 at	 least	 one	 of	 the	 six	 certificate	 issuer	 fields	 to
complete	the	key	creation	process,	as	shown	in	Figure	10-4.

Figure	10-3	Key	Creation

Figure	10-4	Key	Creation	(Updated)

Once	you	have	entered	the	required	values,	click	Next	and	you	will	then	see	the
screen	shown	in	Figure	10-5	where	you	are	asked	for	the	destination	APK	file.
Select	 a	 location	 where	 you	 would	 like	 to	 save	 your	 APK	 file	 to,	 and	 click
Finish.	And	you	are	done!	You	have	successfully	created	an	APK	file	and	signed
it	with	a	digital	key.	You	can	now	share	the	APK	file	with	your	buddies,	and	they
will	be	able	to	install	your	game	on	their	devices.

Figure	10-5	Destination	APK

Choosing	a	Marketplace

You	will	 probably	 not	 reach	 that	 big	 of	 an	 audience	 using	 email	 to	 distribute
your	apps.	Once	you	publish	your	game	to	an	application	market	place	such	as
the	Amazon	Appstore	or	Google	Play,	however,	your	game	will	be	available	to
millions	of	people	around	the	world.

As	Google	Play	comes	pre-installed	on	a	vast	majority	of	Android	devices	(and
because	of	the	services	that	Google	offers	such	as	leaderboard	and	achievements
integration),	a	developer	license	on	Google	Play	is	a	must-have.	If	you	want	to
target	 users	who	 rely	 on	 proprietary	marketplaces	 such	 as	 Samsung	Apps	 and

Amazon	Appstore,	you	will	have	to	publish	your	app	on	them	on	an	individual
basis.

Publishing	the	Game	on	Google	Play

Creating	a	Developer	Account

I	will	now	show	you	how	to	create	a	developer	account	on	Google	Play.	For	this,
you	will	need	to	pay	a	one-time	fee	of	$25	USD.	If	you	do	not	want	to	pay	at	this
time,	 continue	 reading	 for	 future	 reference	 and	 return	 to	 this	 section	 at	 your
convenience.

Navigate	 to	 the	 following	 URL	 on	 your	 web	 browser	 https://play.google.com
/apps/publish/.	Log	into	the	Google	Play	Developer	Console	by	using	the	Google
account	 you	 would	 like	 to	 associate	 your	 developer	 account	 with.	 Google
recommends	using	a	new	account	 rather	 than	a	personal	 account	 if	you	would
like	 to	publish	as	an	organization.	Upon	logging	 in,	you	will	see	 the	following
page:

Figure	10-6	Accept	the	Developer	Agreement

Read	through	the	text,	review	the	Google	Play	Developer	distribution	agreement,
agree	to	the	terms,	and	click	Continue	to	payment.	Choose	a	method	of	payment
and	complete	your	account	details.	Once	you	are	finished,	you	should	be	in	your
Developer	Console.	If	not,	navigate	to	the	Console	manually	using	the	provided

URL:

https://play.google.com/apps/publish/

You	should	see	the	page	shown	in	Figure	10-7.

Figure	10-7	The	Google	Play	Developer	Console

Creating	a	new	Application

Click	Add	new	application,	enter	a	name	for	your	application	then	click	Upload
APK,	and	you	will	be	able	 to	begin	uploading	 the	APK	 file	we	created	 in	 the
previous	section.	When	the	screen	shown	in	Figure	10-8	displays,	click	Upload
your	first	APK	to	Production.

Figure	10-8	Ellio	–	Demo	APK

Follow	 the	 provided	 instructions	 to	 upload	 your	 APK	 file.	 Once	 that	 step	 is
complete,	you	will	get	a	message	telling	you	how	many	devices	your	application
is	 compatible	with.	As	 you	will	 notice,	 thousands	 of	 device	 can	 support	 Ellio

https://play.google.com/apps/publish/

(this	 number	 is	 primarily	 dependent	 on	 the	 Minimum	 SDK	 value	 we	 have
chosen	 in	 our	 AndroidManifest).	 Next,	 click	 on	 the	 Store	 Listing	 button	 as
shown	in	Figure	10-9.

Figure	10-9	Store	Listing	for	Ellio

Here,	you	can	enter	details	about	your	application	that	will	be	used	throughout
Google	Play	to	help	users	learn	more	about	your	game	before	downloading.	To
learn	 more	 about	 the	 purpose	 of	 each	 field	 and	 to	 maximize	 your	 game’s
visibility,	please	see	the	following	page:

https://support.google.com/googleplay/android-developer/answer/4448378?
hl=en

The	product	details	information	can	be	changed	at	a	later	time.	Some	developers
will	update	it	with	each	new	release	so	that	their	users	can	learn	about	ongoing
promotions	 or	 changes.	 Enter	 any	 information	 that	 you	 wish	 for	 your	 Ellio
listing.

Next,	you	must	provide	some	graphic	assets	in	order	for	Google	to	display	your
application	 in	 various	 areas	 of	 the	Play	Store.	These	 include	 a	 high	 resolution
icon,	various	screenshots	and	a	feature	graphic	for	apps	chosen	to	be	featured	by
the	Google	Play	Team.	You	can	download	the	appropriate	assets	from	the	book’s
companion	site:

https://support.google.com/googleplay/android-developer/answer/4448378?%20hl=en

jamescho7.com/book/chapter10/

Finally,	 select	 an	 application	 type	 (game	 vs	 app),	 category	 and	 content	 rating
(intended	audience),	and	provide	contact	details	 through	which	users	can	reach
you.	 You	 must	 also	 provide	 a	 URL	 to	 your	 privacy	 policy,	 or	 mark	 “Not
submitting	a	privacy	policy	URL	at	this	time.”

Once	you’ve	completed	the	store	listing	information,	move	on	to	the	Pricing	&
Distribution	as	shown	in	Figure	10-10.

Figure	10-10	Pricing	&	Distribution

Here,	you	can	set	 the	price	of	 the	application	and	specify	which	countries	you
want	 your	 application	 to	 be	 available	 in.	 You	 must	 then	 declare	 that	 your
application	meets	 the	Android	Content	Guidelines	 and	 acknowledge	 that	 your
application	 will	 be	 subject	 to	 various	 laws.	 Read	 through	 this	 section	 and
complete	it	as	you	desire.

If	 you’ve	 successfully	 completed	 the	 APK,	 Store	 Listing	 and	 Pricing	 &
Distribution	information	for	your	application,	you	will	see	the	following	button
at	the	top	right	corner	of	your	screen:

Figure	10-11	The	“Ready	to	Publish”	Button

To	publish	your	 application,	 click	on	 the	button	 and	 select	 “Publish	 this	 app.”
You	 will	 then	 see	 your	 app	 listed	 under	 All	 Applications	 with	 the	 status	 of
“Published,”	along	with	some	pricing	and	install	information	as	shown	in	Figure
10-12.

Figure	10-12	Ellio	Published!

After	several	hours	(in	some	cases	more	than	ten	hours),	your	application	will	be
visible	on	Google	Play	via	play.google.com	and	the	Play	Store	application.

Updating	the	Game

Now	that	your	game	is	available	on	the	web,	millions	of	people	will	be	able	to
access	 your	 application!	 Once	 they	 have	 downloaded	 the	 game,	 the	 real	 test
begins.

Chances	are,	your	game	will	have	some	bugs	that	will	cause	crashes	for	certain
users.	 In	 addition,	 you	might	 decide	 that	 your	 app	 is	missing	 a	 crucial	 feature
and	decide	to	implement	it.	In	this	section,	you	will	learn	how	to	make	changes
to	 your	 application	 and	 upload	 a	 new	 APK	 file	 to	 Google	 Play,	 so	 that	 your
game’s	users	can	have	access	to	the	latest	updates	and	bug	fixes.

The	Resource	Management	Bug

We’ve	carefully	analyzed	our	code	in	order	to	minimize	memory	leaks,	but	our
game	 is	 still	 leaking	 some	 resources,	meaning	 that	 our	 app	 is	 leaving	 objects
floating	 around	 in	 memory	 even	 when	 the	 user	 is	 done	 with	 our	 application.
Some	of	these	objects,	such	as	our	Bitmaps,	will	be	disposed	of	by	the	garbage
collector	once	our	app	is	finished.	Others,	such	as	the	SoundPool	object	that	we
use	to	play	sound	effects	with,	will	still	consume	native	resources	after	our	app	is
closed.	 We	 should	 explicitly	 dispose	 of	 the	 SoundPool	 object	 once	 we	 are
finished.

Note:
Prior	to	Android	3.0,	Bitmaps	were	not	always	automatically	garbage	collected.
Instead,	you	had	to	call	the	Bitmap.recycle()	method	explicitly,	as	we	will	with
our	SoundPool	object	 in	 the	coming	discussion.	For	more	information,	see	this
DevBytes	 video	 on	 Bitmap	 Allocation	 created	 by	 Android	 Engineers:
https://www.youtube.com/	watch?v=rsQet4nBVi8

As	responsible	Android	developers,	we	want	to	minimize	our	game’s	toll	on	our
players’	devices	(to	maximize	battery	 life	and	performance),	and	 it	 is	vital	 that
we	provide	a	means	of	disposing	of	assets	once	they	are	no	longer	in	use.

Recall	that	our	game	runs	as	a	single	Activity.	This	allows	us	to	easily	manage
resources	using	our	knowledge	of	the	Activity	Lifecycle	(refer	to	Figure	7-30	for
a	 refresher).	 You	will	 find	 that	 a	 good	 place	 to	 dispose	 of	 resources	 is	 in	 the
onPause()	method	when	another	Activity	comes	into	the	foreground.	As	the	user

may	choose	not	to	return	to	our	game	after	switching	to	a	new	application,	our
game	should	get	out	of	the	way	by	disposing	of	its	assets.

In	some	cases,	the	user	may	navigate	back	to	our	game,	and	the	disposed	assets
will	 be	 needed	 again.	 In	 that	 case,	 we	 will	 rely	 on	 onResume()	 method	 to
reinitialize	 the	 disposed	 assets.	 Conveniently,	 onResume()	 is	 also	 called	when
the	app	is	first	started,	and	so	we	will	not	need	to	initialize	these	assets	 in	 two
different	places.	You	will	see	what	this	means	when	we	make	our	changes	to	the
Assets	class.

Pausing	the	Game

When	 the	 player	 switches	 to	 another	Activity,	 it	 is	 good	 practice	 to	 pause	 the
gameplay.	If	the	player	chooses	to	navigate	back,	he	or	she	should	see	a	Paused
screen	waiting	for	the	player	to	get	ready.	Using	onPause()	and	onResume(),	we
can	easily	implement	this	feature	as	well.

Adding	onResume()	and	onPause()	to	Assets	and	State

Let’s	 add	 the	 methods	 onResume()	 and	 onPause()	 to	 our	 Assets	 and	 State
classes.	As	Assets	and	State	are	not	subclasses	of	Activity,	 these	new	methods
will	 NOT	 be	 called	 automatically	 by	 the	 Android	 system.	 Instead,	 we	 will
manually	 call	 Assets.onResume()	 and	 currentState.onResume()	 when	 our
Activity’s	 onResume()	 method	 is	 called.	 This	 allows	 us	 to	 inform	 the	 Assets
class	 and	 the	 currentState	 that	 there	 was	 a	 resume	 or	 pause	 event	 in	 the
Activity’s	lifecycle.	We	will	do	the	same	with	onPause()

Begin	by	removing	the	following	lines	from	your	Assets.load()	method.	You	will
no	longer	be	loading	any	sounds	inside	the	load()	method.

hitID	=	loadSound("hit.wav");

onJumpID	=	loadSound("onjump.wav");

Next,	add	the	following	two	methods	to	the	same	class:

public	static	void	onResume()	{

								hitID	=	loadSound("hit.wav");

								onJumpID	=	loadSound("onjump.wav");

}

public	static	void	onPause()	{

								if	(soundPool	!=	null)	{

																soundPool.release();

																soundPool	=	null;

								}

}

The	onPause()	method	will	be	called	by	GameMainActivity.onPause()	when	the
Activity	 is	 pausing.	 As	 there	 is	 no	 guarantee	 that	 soundPool	 will	 be	 needed
again,	we	explicitly	release	it	(to	release	native	resources)	and	set	it	equal	to	null
(to	make	the	job	easier	for	the	garbage	collector).

We	 will	 call	 the	 onResume()	 method	 each	 time	 that	 the	 method
GameMainActivity.onResume()	 is	 called	by	 the	Android	 system.	This	happens
when	 our	 Activity	 is	 resuming	 from	 a	 paused	 state	 or	 when	 our	 Activity	 is
starting	 for	 the	 first	 time,	 so	 we	 no	 longer	 need	 to	 load	 sounds	 in	 the	 load()
method.	Note	that	we	do	not	have	to	reinitialize	soundPool,	because	the	logic	in
our	loadSound()	method	will	do	that	for	us	automatically.

With	 those	 changes	 made,	 we	 need	 to	 prevent	 the	 player	 from	 calling
playSound()	 when	 soundPool	 is	 null.	 Make	 the	 following	 change	 to	 the
playSound()	method:

public	static	void	playSound(int	soundID)	{

								if	(soundPool	!=	null)	{																								

																soundPool.play(soundID,	1,	1,	1,	0,	1);

								}

}

The	updated	Assets	class	is	provided	in	listing	10.03.

Warning:	Your	package	name	may	differ	from	all	subsequent	code	listings	because	of	the	changes	made	to	the	Manifest	earlier	in	the	chapter.

*****	Listing	10.03	Assets	(Updated)	*****

01	package	com.jamescho.ellio;

02

03	import	java.io.IOException;

04	import	java.io.InputStream;

05

06	import	android.graphics.Bitmap;

07	import	android.graphics.Bitmap.Config;

08	import	android.graphics.BitmapFactory;

09	import	android.graphics.BitmapFactory.Options;

10	import	android.media.AudioManager;

11	import	android.media.SoundPool;

12

13	import	com.jamescho.framework.animation.Animation;

14	import	com.jamescho.framework.animation.Frame;

15

16	public	class	Assets	{

17

18						private	static	SoundPool	soundPool;

19						public	static	Bitmap	welcome,	block,	cloud1,	cloud2,	duck,	grass,	jump,	run1,	

run2,	run3,	run4,	run5,	scoreDown,	score,	startDown,	start;

20						public	static	int	hitID,	onJumpID;

21						public	static	Animation	runAnim;

22

23						public	static	void	load()	{

24														welcome	=	loadBitmap("welcome.png",	false);

25														block	=	loadBitmap("block.png",	false);

26														cloud1	=	loadBitmap("cloud1.png",	true);

27														cloud2	=	loadBitmap("cloud2.png",	true);

28														duck	=	loadBitmap("duck.png",	true);

29														grass	=	loadBitmap("grass.png",	false);

30														jump	=	loadBitmap("jump.png",	true);

31														run1	=	loadBitmap("run_anim1.png",	true);

32														run2	=	loadBitmap("run_anim2.png",	true);

33														run3	=	loadBitmap("run_anim3.png",		true);

34														run4	=	loadBitmap("run_anim4.png",	true);

35														run5	=	loadBitmap("run_anim5.png",	true);

36														scoreDown	=	loadBitmap("score_button_down.png",	true);

37														score	=	loadBitmap("score_button.png",	true);

38														startDown	=	loadBitmap("start_button_down.png",	true);

39														start	=	loadBitmap("start_button.png",	true);

40

41														Frame	f1	=	new	Frame(run1,	.1f);

42														Frame	f2	=	new	Frame(run2,	.1f);

43														Frame	f3	=	new	Frame(run3,	.1f);

44														Frame	f4	=	new	Frame(run4,	.1f);

45														Frame	f5	=	new	Frame(run5,	.1f);

46														runAnim	=	new	Animation(f1,	f2,	f3,	f4,	f5,	f3,	f2);

47						}

48														

49						public	static	void	onResume()	{

50														hitID	=	loadSound("hit.wav");

51														onJumpID	=	loadSound("onjump.wav");

52						}

53														

54						public	static	void	onPause()	{

55														if	(soundPool	!=	null)	{

56																						soundPool.release();

57																						soundPool	=	null;

58														}

59						}

60

61						private	static	Bitmap	loadBitmap(String	filename,	boolean	transparency)	{

62														InputStream	inputStream	=	null;

63														try	{

64																						inputStream	=	GameMainActivity.assets.open(filename);

65														}	catch	(IOException	e)	{

66																						e.printStackTrace();

67														}

68

69														Options	options	=	new	Options();

70																						

71														if	(transparency)	{

72																						options.inPreferredConfig	=	Config.ARGB_8888;

73														}	else	{

74																						options.inPreferredConfig	=	Config.RGB_565;

75														}

76														Bitmap	bitmap	=	BitmapFactory.decodeStream(inputStream,	null,	options);

77														return	bitmap;

78						}

79

80						private	static	int	loadSound(String	filename)	{

81														int	soundID	=	0;

82														if	(soundPool	==	null)	{

83																						soundPool	=	new	SoundPool(25,	AudioManager.STREAM_MUSIC,	0);

84														}

85														try	{

86																		soundID	=	soundPool.load(GameMainActivity.assets.openFd(filename),	1);

87														}	catch	(IOException	e)	{

88																		e.printStackTrace();

89														}

90														return	soundID;

91						}

92

93						public	static	void	playSound(int	soundID)	{

94														if	(soundPool	!=	null)	{																								

95																						soundPool.play(soundID,	1,	1,	1,	0,	1);

96														}

97						}

98	}

The	State	 class	 also	needs	 the	onResume()	 and	onPause()	methods	 in	 order	 to
respond	 to	 the	 Activity’s	 resume	 and	 pause	 events.	 Remember	 that	 the	 State
class	 is	 an	 abstract	 superclass,	 so	 creating	 non-abstract	 onResume()	 and
onPause()	methods	allows	all	State	subclasses	to	optionally	override	onResume()
and	 onPause()	 to	 provide	 some	 functionality.	 Add	 the	 empty	 onResume()	 and
onPause()	methods	as	shown	in	listing	10.04.

*****	Listing	10.04	State	(Updated)	*****

package	com.jamescho.game.state;

import	android.view.MotionEvent;

import	com.jamescho.ellio.GameMainActivity;

import	com.jamescho.framework.util.Painter;

public	abstract	class	State	{

								public	void	setCurrentState(State	newState)	{

																GameMainActivity.sGame.setCurrentState(newState);

								}

								public	abstract	void	init();

								public	abstract	void	update(float	delta);

								public	abstract	void	render(Painter	g);

								public	abstract	boolean	onTouch(MotionEvent	e,	int	scaledX,	int	scaledY);

								public	void	onResume()	{}

								

								public	void	onPause()	{}

}

Note:
We	 intentionally	 keep	 the	 State.onResume()	 and	 State.onPause()	 empty	 (these
methods	should	be	overridden	by	a	particular	state	wanting	to	be	informed	of	the
Activity’s	 lifecycle	changes),	but	you	could	provide	 some	default	 functionality
for	every	state	class	by	adding	to	the	method	bodies.

Adding	 onResume()	 and	 onPause()	 to	 GameView	 and
GameMainActivity

The	GameMainActivity	does	not	have	access	 to	 the	current	 state.	Therefore,	 it
must	 ask	 the	GameView	 to	 call	 the	 current	 state’s	 onResume()	 and	 onPause()
methods	 on	 the	 Activity’s	 behalf.	 Add	 the	 following	 two	 methods	 to	 your
GameView	class.

public	void	onResume()	{

								if	(currentState	!=	null)	{

																currentState.onResume();

								}

}

public	void	onPause()	{

								if	(currentState	!=	null)	{

																currentState.onPause();

								}

}

Finally,	 let’s	make	 the	most	 important	 change.	 Add	 these	 two	methods	 to	 the
GameMainActivity	class.

@Override

protected	void	onResume()	{

								super.onResume();

								Assets.onResume();

								sGame.onResume();

}

@Override

protected	void	onPause()	{

								super.onPause();

								Assets.onPause();

								sGame.onPause();

}

Let’s	 summarize	 the	 changes.	 We’ve	 allowed	 our	 Assets	 class	 and	 the
currentState	 to	respond	to	 the	Activity’s	onResume()	and	onPause()	method	by
giving	each	of	 them	two	methods	of	 the	same	name	and	calling	 these	methods

inside	 our	 GameMainActivity.onResume()	 and	 GameMainActivity.onPause()
methods.

The	Assets	class	can	now	use	its	onResume()	and	onPause()	methods	to	load	and
dispose	of	certain	resources.	The	currentState	can	now	override	onResume()	and
onPause()	 in	 order	 to	 provide	 some	 functionality.	We	will	 explore	 this	 feature
next.

Note:
If	 you	 are	 having	 problems	 with	 any	 of	 the	 classes	 at	 this	 point,	 you	 can
download	the	source	code	at	jamescho7.com/book/chapter10/checkpoint1

Implementing	Pause	to	the	PlayState

Thanks	to	the	changes	we	have	just	made,	your	PlayState	can	pause	and	resume
as	the	player	switches	in	and	out	of	your	game.	Implementing	this	entails	adding
a	 few	 new	 variables	 and	 making	 a	 few	 changes	 to	 the	 update()	 and	 render()
methods.	The	full,	updated	PlayState	class	is	provided	in	listing	10.05.	As	all	of
the	 changes	 are	 self-explanatory,	 I	 will	 allow	 you	 to	 review	 the	 changes
highlighted	 on	 your	 own.	 I	 have	 added	 some	 comments	 to	 help	 you	with	 this
process.

Note:
An	ARGB	color	allows	you	 to	 set	 an	RGB	color	with	an	alpha	 (transparency)
channel.	 Each	 value	 is	 provided	 as	 an	 integer	 out	 of	 255.	 The	 value	 153/255,
then,	would	mean	60%	opacity.

*****	Listing	10.05	PlayState	(Updated)	*****

package	com.jamescho.game.state;

import	java.util.ArrayList;

import	android.graphics.Color;

import	android.graphics.Rect;

import	android.graphics.Typeface;

import	android.view.MotionEvent;

import	com.jamescho.framework.util.Painter;

import	com.jamescho.game.model.Block;

import	com.jamescho.game.model.Cloud;

import	com.jamescho.game.model.Player;

import	com.jamescho.simpleandroidgdf.Assets;

import	com.jamescho.simpleandroidgdf.GameMainActivity;

public	class	PlayState	extends	State	{

			private	Player	player;

			private	ArrayList<Block>	blocks;

			private	Cloud	cloud,	cloud2;

			private	int	playerScore	=	0;

			private	static	final	int	BLOCK_HEIGHT	=	50;

			private	static	final	int	BLOCK_WIDTH	=	20;

			private	int	blockSpeed	=	-200;

			private	static	final	int	PLAYER_WIDTH	=	66;

			private	static	final	int	PLAYER_HEIGHT	=	92;

								

			private	float	recentTouchY;

			//	Boolean	to	keep	track	of	game	pauses.

			private	boolean	gamePaused	=	false;

			//	String	displayed	when	paused;

			private	String	pausedString	=	"Game	Paused.	Tap	to	resume.";

								

			@Override

			public	void	init()	{

								player	=	new	Player(160,	GameMainActivity.GAME_HEIGHT	-	45	-	PLAYER_HEIGHT,	

PLAYER_WIDTH,	PLAYER_HEIGHT);

								blocks	=	new	ArrayList<Block>();

								cloud	=	new	Cloud(100,	100);

								cloud2	=	new	Cloud(500,	50);

								for	(int	i	=	0;	i	<	5;	i++)	{

																Block	b	=	new	Block(i	*	200,	GameMainActivity.GAME_HEIGHT	-	95,	

BLOCK_WIDTH,	BLOCK_HEIGHT);

																blocks.add(b);

								}

			}

			//	Overrides	onPause()	from	State.

			//	Called	when	Activity	is	pausing.

			@Override

			public	void	onPause()	{

								gamePaused	=	true;

			}

								

			@Override

			public	void	update(float	delta)	{

								//	If	game	is	paused,	do	not	update	anything.

								if	(gamePaused)	{

																return;

								}

																

								if	(!player.isAlive())	{

																setCurrentState(new	GameOverState(playerScore	/	100));

								}

								playerScore	+=	1;

								if	(playerScore	%	500	==	0	&&	blockSpeed	>	-280)	{

																blockSpeed	-=	10;

								}

								cloud.update(delta);

								cloud2.update(delta);

								Assets.runAnim.update(delta);

								player.update(delta);

								updateBlocks(delta);

			}

			private	void	updateBlocks(float	delta)	{

								for	(int	i	=	0;	i	<	blocks.size();	i++)	{

																Block	b	=	blocks.get(i);

																b.update(delta,	blockSpeed);

																if	(b.isVisible())	{

																								if	(player.isDucked()	&&	Rect.intersects(b.getRect(),	

player.getDuckRect()))	{

																																b.onCollide(player);

																								}	else	if	(!player.isDucked()	&&	Rect.intersects(b.getRect(),	

player.getRect()))	{

																																b.onCollide(player);

																								}

																}

								}

			}

			@Override

			public	void	render(Painter	g)	{

								g.setColor(Color.rgb(208,	244,	247));

								g.fillRect(0,	0,	GameMainActivity.GAME_WIDTH,	GameMainActivity.GAME_HEIGHT);

								renderPlayer(g);

								renderBlocks(g);

								renderSun(g);

								renderClouds(g);

								g.drawImage(Assets.grass,	0,	405);

								renderScore(g);

								//	If	game	is	Paused,	draw	additional	UI	elements:

								if	(gamePaused)	{

																//	ARGB	is	used	to	set	an	ARGB	color.

																//	See	note	accompanying	listing	10.05.

																g.setColor(Color.argb(153,	0,	0,	0));

																g.fillRect(0,	0,	GameMainActivity.GAME_WIDTH,	

GameMainActivity.GAME_HEIGHT);

																g.drawString(pausedString,	235,	240);

								}

			}

			private	void	renderScore(Painter	g)	{

								g.setFont(Typeface.SANS_SERIF,	25);

								g.setColor(Color.GRAY);

								g.drawString(""	+	playerScore	/	100,	20,	30);

			}

			private	void	renderPlayer(Painter	g)	{

								if	(player.isGrounded())	{

																if	(player.isDucked())	{

																					g.drawImage(Assets.duck,	(int)	player.getX(),	(int)	player.getY());

																}	else	{

																					Assets.runAnim.render(g,	(int)	player.getX(),	(int)	player.getY(),	

player.getWidth(),	player.getHeight());

																}

																}	else	{

																					g.drawImage(Assets.jump,	(int)	player.getX(),	(int)	player.getY(),	

player.getWidth(),	player.getHeight());

								}

			}

			private	void	renderBlocks(Painter	g)	{

								for	(int	i	=	0;	i	<	blocks.size();	i++)	{

																Block	b	=	blocks.get(i);

																if	(b.isVisible())	{

																								g.drawImage(Assets.block,	(int)	b.getX(),	(int)	b.getY(),	

BLOCK_WIDTH,	BLOCK_HEIGHT);

																}

								}

			}

								

			private	void	renderSun(Painter	g)	{

								g.setColor(Color.rgb(255,	165,	0));

								g.fillOval(715,	-85,	170,	170);

								g.setColor(Color.YELLOW);

								g.fillOval(725,	-75,	150,	150);

			}

			private	void	renderClouds(Painter	g)	{

								g.drawImage(Assets.cloud1,	(int)	cloud.getX(),	(int)	cloud.getY(),	100,	60);

								g.drawImage(Assets.cloud2,	(int)	cloud2.getX(),	(int)	cloud2.getY(),	100,	60);

			}

			@Override

			public	boolean	onTouch(MotionEvent	e,	int	scaledX,	int	scaledY)	{

								if	(e.getAction()	==	MotionEvent.ACTION_DOWN)	{

																recentTouchY	=	scaledY;

								}	else	if	(e.getAction()	==	MotionEvent.ACTION_UP)	{

																//	Resume	game	if	paused.

																if	(gamePaused)	{

																								gamePaused	=	false;

																								return	true;

																}

																if	(scaledY	-	recentTouchY	<	-50)	{

																								player.jump();

																}	else	if	(scaledY	-	recentTouchY	>	50)	{

																								player.duck();

																}

								}

								return	true;

			}

								

}

With	those	changes	made	to	the	GameState	class,	your	game	should	now	pause
when	 you	 press	 the	 home	 button	 or	 switch	 to	 a	 new	 application,	 as	 shown	 in
Figure	10-13.

Figure	10-13	Ellio	Paused

Now,	players	won’t	be	punished	when	they	need	to	take	a	phone	call.	Ellio	will
patiently	wait	mid-action.

Feeling	adventurous?	As	an	exercise,	try	adding	a	new	button	to	allow	the	player
to	pause	the	game	without	switching	to	a	new	Activity.	Hint:	the	UIButton	class
may	come	in	handy.

Note:
The	back	button	will	exit	an	Activity	completely,	and	our	game	will	not	be	able
to	 resume	 after	 a	 back	 button	 press.	You	 could	 listen	 for	 the	 back	 button	 and
make	 it	behave	as	a	pause	button	or	have	 it	navigate	 the	game	 to	 the	previous
state,	but	I	will	not	be	doing	that	for	Ellio.

Adding	Music

Ellio	is	jumping	around	and	making	a	lot	of	noise,	but	the	air	is	awfully	silent.
Let’s	make	things	a	little	livelier	by	adding	in	some	background	music!

To	 add	 music,	 we	 need	 to	 make	 use	 of	 the	 MediaPlayer	 class
(android.media.MediaPlayer).	A	MediaPlayer	 object	 behaves	 very	much	 like	 a
SoundPool	object,	accepting	a	desired	file	and	playing	it	when	asked.

Recall	 that	music	 is	distinct	 from	sound	because	 it	 tends	 to	be	 longer	and	 thus
requires	 a	 larger	 file.	 Rather	 than	 putting	 an	 entire	 track	 into	 RAM,	 we	 will
stream	music	directly	from	the	file	system.

Open	your	Assets	class	once	more,	and	importing	the	following:

import	android.content.res.AssetFileDescriptor;

import	android.media.MediaPlayer;

Next,	declare	a	new	MediaPlayer	object:

....

public	class	Assets	{

....

								private	static	MediaPlayer	mediaPlayer;

public	static	void	load()	{

....				

A	 MediaPlayer	 object	 should	 be	 released	 when	 no	 longer	 needed.	 Make	 the
following	changes	to	the	onPause()	method.

public	static	void	onPause()	{

								if	(soundPool	!=	null)	{

																soundPool.release();

																soundPool	=	null;

								}

								

								if	(mediaPlayer	!=	null)	{

																mediaPlayer.stop();

																mediaPlayer.release();

																mediaPlayer	=	null;

								}

}

Lastly,	let’s	create	a	method	that	will	allow	us	to	easily	play	music	by	providing
a	 name	 of	 a	 music	 file	 inside	 the	 assets	 folder.	 Add	 the	 playMusic()	 method

shown	in	listing	10.06:

*****	Listing	10.06	playMusic()	*****

public	static	void	playMusic(String	filename,	boolean	looping)	{

			if	(mediaPlayer	==	null)	{

								mediaPlayer	=	new	MediaPlayer();

			}

			try	{

								AssetFileDescriptor	afd	=	GameMainActivity.assets.openFd(filename);

								mediaPlayer.setDataSource(afd.getFileDescriptor(),	afd.getStartOffset(),	

afd.getLength());

								mediaPlayer.setAudioStreamType(AudioManager.STREAM_MUSIC);

								mediaPlayer.prepare();

								mediaPlayer.setLooping(looping);

								mediaPlayer.start();

			}	catch	(Exception	e)	{

								e.printStackTrace();

			}

}

The	playMusic()	method	looks	intimidating	(and	the	underlying	implementation
can	be),	but	let’s	try	to	understand	it,	a	few	lines	at	a	time.	Before	I	explain	the
code,	keep	these	points	in	mind:

A	MediaPlayer	object,	like	an	Activity,	has	a	lifecycle.	It	begins	its	life	in
the	idle	state	and	cannot	play	music	until	it	has	been	initialized	and
prepared.
To	initialize	a	MediaPlayer,	we	must	provide	it	with	a	data	source.	We
cannot	simply	give	it	a	filename.	We	must	provide	a	music	file’s	file
descriptor	(this	concept	is	beyond	the	scope	of	this	book,	but	think	of	it	as
some	integer	representation	of	a	file	inside	the	OS),	and	tell	it	how	many
bytes	of	data	to	read.
A	MediaPlayer	can	be	used	for	many	purposes	(such	as	playing	notification
sounds	or	alarm	sounds).	We	will	be	using	it	to	stream	music,	and	will
explicitly	say	so.

Let’s	 talk	 about	 playMusic()	 in	detail,	 starting	with	 the	method	header.	Notice
that	the	method	accepts	two	arguments:	String	filename	and	boolean	looping.	We
will	come	back	to	these	arguments	later.

In	 the	method	 body,	we	 first	 check	 if	mediaPlayer	 is	 null,	 instantiating	 one	 if
necessary.	At	 instantiation,	 the	mediaPlayer	will	 be	 in	 the	 idle	 state.	Next,	we

retrieve	the	file	descriptor	for	the	music	file	and	provide	it	as	the	data	source	for
the	 MediaPlayer	 object,	 telling	 it	 to	 play	 from	 the	 beginning	 to	 end	 using
afd.getStartOffset()	 and	afd.getLength().	Now,	mediaPlayer	 is	 in	 the	 initialized
state.	Next,	we	tell	the	mediaPlayer	that	it	will	be	streaming	music.	Before	it	can
play	anything,	however,	we	must	tell	it	to	get	ready	by	calling	prepare()	to	put	it
in	the	prepared	state.	Lastly,	we	set	looping	to	the	value	of	boolean	looping	and
tell	it	to	start	playing.

A	catch	block	is	required	as	many	of	these	methods	may	fail	if	you	call	them	at
the	wrong	time	or	provide	an	invalid	argument.

Note:
If	 you	 are	 confused,	 it	 may	 help	 to	 see	 the	 official	 documentation	 on	 the
MediaPlayer	 class	 at	 the	 following	 URL:	 http://developer.android.com/
reference/android/media/MediaPlayer.html

Let’s	make	sure	everything	is	working	properly	by	downloading	an	mp3	file	to
play	 as	 our	 background	 music.	 I	 recently	 discovered	 Matt	 McFarland
(mattmcfarland.com)–a	very	talented	composer	who	makes	high-quality	royalty
free	music	available	on	his	website.	Matt’s	music	can	be	used	without	licensing
fees	in	your	projects,	as	long	as	you	give	him	credit	and	link	to	his	site!

We	 will	 be	 using	 the	 Nintendo	 was	 Cool	 track	 (listen	 to	 it	 at
mattmcfarland.com/song/nintendo-was-cool/)	 as	 it	 captures	 the	 light-hearted,
rhythmic	 feel	 of	Ellio	perfectly.	Download	 the	 track	 for	 free	 at	Matt’s	website
(along	with	the	license	information),	rename	it	to	bgmusic.mp3	and	add	it	to	the
assets	folder	as	shown	in	Figure	10-14.

Figure	10-14	Adding	the	Music	File

Let’s	also	download	a	new	welcome.png	with	proper	attribution	 for	 the	music.
You	can	download	the	image	shown	in	Figure	10-15	at	the	link	following	URL:
jamescho7.com/book/chapter10/

Figure	10-15	New	welcome.png

Since	we	will	be	streaming	music	directly	from	the	file	system,	we	do	not	need
to	 create	 a	 new	 variable	 for	 the	 newly-added	 bgmusic.mp3.	 Instead,	 add	 the
following	line	of	code	shown	in	bold	to	your	Assets.onResume()	method:

public	static	void	onResume()	{

								hitID	=	loadSound("hit.wav");

								onJumpID	=	loadSound("onjump.wav");

								playMusic("bgmusic.mp3",	true);

}

Now,	 every	 time	 your	 GameMainActivity’s	 onResume()	 method	 is	 called,
Nintendo	 was	 Cool	 will	 start	 playing.	 This	 music	 will	 continue	 to	 loop	 until
another	Activity	takes	our	game’s	place	on	the	screen.	Run	your	game	and	make
sure	this	is	working!

Note:	If	you	are	having	problems	with	any	of	the	classes	at	this	point,	you	can
download	the	source	code	at	jamescho7.com/book/chapter10/checkpoint2

Here’s	an	exercise	for	you.	Make	a	copy	of	your	project	and	try	creating	a	button
in	the	MenuState	that	allows	users	to	mute	all	sounds	(you	will	probably	want	to
use	the	UIButton	class).	For	an	additional	challenge,	see	if	you	can	save	the	state
of	the	button	(muted	or	unmuted)	using	GameMainActivity’s	shared	preferences.
If	you	get	stuck,	a	solution	is	available	on	jamescho7.com/book/chapter10.

Uploading	an	Updated	APK	to	Google	Play

Now	 that	 we	 have	 added	 some	 new	 features	 to	 Ellio,	 let’s	 upload	 the	 newest
APK	 to	 the	 store.	 Before	 we	 do	 that,	 however,	 we	 must	 change	 the	 version
information	in	our	AndroidManifest.xml	as	shown	below

<manifest	xmlns:android="http://schemas.android.com/apk/res/android"

				package="com.jamescho.ellio"

				android:versionCode="1"

				android:versionName="1.0"	>

				android:versionCode="2"

				android:versionName="1.1"	>

....

As	 mentioned	 in	 Chapter	 7,	 you	 should	 increment	 android:versionCode	 by	 1
each	 time	 you	 update	 our	 application.	 This	 value	 will	 be	 used	 to	 determine
whether	 one	 version	 of	 the	 app	 is	 an	 upgrade	 or	 a	 downgrade	with	 respect	 to
another.	The	android:versionName	option	can	follow	any	convention	you	wish.
For	this	example,	I	have	chosen	1.1,	but	2.0	or	even	1.0001	would	be	valid.

Now	that	the	Manifest	has	been	updated,	you	must	export	the	Android	project	as
an	APK	file	again.	Repeat	the	steps	from	Make	sure	you	use	the	same	keystore
from	earlier	 in	 the	chapter	by	choosing	 the	Use	existing	keystore	option	rather
than	Create	new	keystore.	Otherwise	you	will	be	unable	 to	update	 the	existing
listing	in	your	Developer	Console.

Once	your	APK	is	ready,	log	back	into	your	Developer	Console,	select	the	Ellio
application	 listing,	 go	 to	 the	 APK	 page,	 and	 click	 Upload	 new	 APK	 to
Production.	Once	the	upload	is	complete,	you	should	see	a	confirmation	dialog
as	shown	in	Figure	10-16.

Figure	10-16	Saving	the	APK

Press	Save,	and	 the	newest	version	of	your	game	will	be	available	 through	the
Play	 Store.	 For	 those	 who	 have	 enabled	 auto-update,	 the	 new	 version	 will
automatically	 begin	 downloading	 on	 their	 devices	 the	 next	 time	 their	 device
checks	for	updates!

Integrating	Google	Play	Game	Services

In	 2013,	 Google	 announced	 the	 Google	 Play	 game	 services—a	 tool	 that	 is
designed	to	help	developers	enhance	their	games	by	adding	social	features	using
Google’s	API	and	infrastructure.	Thanks	to	this	new	service,	developers	can	now
add	global	 leaderboards,	 achievements,	 real-time	multiplayer,	 quests	 and	more
into	 their	 games	 without	 worrying	 about	 maintaining	 their	 own	 servers	 and
writing	code	to	support	networking.

Google	Play	 game	 services	 are	 extremely	 powerful.	With	 a	 few	 lines	 of	 code,
you	can	allow	users	to	sign	into	their	Google	accounts	and	store	achievements,
high-scores	and	game	saves	to	the	cloud.	Under	this	cross-platform	service,	user
data	 synchronizes	across	players’	devices,	meaning	 that	players	do	not	have	 to
worry	about	losing	progress	as	they	switch	from	one	device	to	another.	As	of	this
writing,	 Google	 Play	 games	 services	 support	 Android,	 iOS,	 and	 web-based
games.

I	 will	 not	 be	 providing	 step-by-step	 instructions	 for	 integrating	 Google	 Play
game	 services	 into	 Ellio,	 as	 Google	 has	 some	 top-notch	 instructions	 on	 their
Developers	website.	Instead,	I	will	give	you	a	general	overview	of	the	concepts,
allow	you	to	experiment	on	your	own	with	some	sample	projects,	and	share	the
full	source	code	demonstrating	a	leaderboard	implementation	in	Ellio.

The	Player’s	Perspective

Before	you	learn	how	to	integrate	the	game	services,	let’s	see	an	example	of	it	in
action.	I	have	implemented	a	leaderboard	using	the	Google	Play	game	services
in	Ellio.	Upon	opening	Ellio	for	the	first	time,	players	will	see	the	pop-up	shown
in	Figure	10-17.

Figure	10-17	Connecting	to	Google	Play

Once	 the	 player	 successfully	 signs	 in,	 the	 game	 will	 automatically	 display	 a
welcome	 message.	 In	 addition,	 a	 sign	 out	 button	 will	 appear	 on	 the	 top-left
corner	 of	 the	 screen,	 and	 the	 Score	 button	will	 display	 a	Google	 Play	Games
icon	to	indicate	that	it	is	now	social.	This	is	shown	in	Figure	10-18.

With	 this	 simple	 change,	 players’	 local	 high	 scores	 are	 now	 submitted	 to
Google’s	servers	and	shared	with	the	world.	Of	course,	Ellio	is	a	demo	game	that
people	 will	 not	 be	 competing	 over,	 but	 this	 could	 be	 an	 exciting	 way	 to
encourage	 players	 to	 spend	more	 time	 fighting	monsters	 or	 setting	 records	 in
your	future	games.

Feel	 free	 to	 download	 Ellio	 at	 play.google.com/store/apps/details?id=
com.jamescho.ellio	to	see	the	leaderboard	for	yourself!

Figure	10-18	Welcome	Player!

Figure	10-19	Ellio	Leaderboard

The	Developer’s	Perspective

As	mentioned	 earlier,	 Google	 provides	 step-by-step	 instructions	 on	 getting	 an

app	 integrated	 with	 Google	 Play	 game	 services.	 In	 order	 to	 provide	 some
context,	let	me	give	you	a	brief	overview	of	the	different	components	involved
and	discuss	how	 these	pieces	 fit	 together.	Remember	 that	 the	 following	points
are	 just	 for	 conceptual	understanding.	More	details	 are	provided	 in	 the	official
instructions.

1.	 Google	Play	game	services	are	powered	by	Google’s	servers.	In	order	for	us
to	use	the	services,	we	must	first	download	the	Google	Play	Services	SDK,
which	includes	classes	that	will	enable	us	to	communicate	with	the	servers.

2.	 We	are	specifically	interested	in	the	Google	Play	game	services	API
included	with	Google	Play	Services	SDK.

3.	 To	make	it	as	easy	as	possible	to	use	the	Google	Play	game	services	API,
Google	provides	a	BaseGameUtils	library.	One	of	the	classes	in	this	library
is	called	BaseGameActivity.	This	class	should	be	used	as	the	superclass	of
GameMainActivity,	replacing	the	existing	Activity	superclass.

4.	 Google	handles	a	game	application	and	its	game	service	separately.	In	the
Developer	Console,	we	must	register	a	new	game	service	and	link	it	to	our
game	application.	This	allows	our	game	service	to	authenticate	our	game
when	it	attempts	to	connect.

5.	 The	newly-created	game	service	mentioned	in	step	4	will	receive	an	ID
(called	an	OAuth	2.0	client	ID).	We	must	add	this	to	our	Android	project’s
Manifest	so	that	our	application	can	connect	to	the	correct	game	service.

6.	 The	game	service	entry	in	the	Developer	Console	mentioned	in	steps	4	and
5	is	used	to	configure	leaderboards,	achievements	and	events.	For	example,
if	you	wanted	to	add	an	achievement	for	Ellio	that	should	be	unlocked
when	the	player	reaches	the	score	of	a	hundred,	you	would	add	it	to	the
game	service	in	the	Developer	Console.	An	example	is	shown	in	Figure	10-
20.

Figure	10-20	Adding	a	New	Achievement

7.	 For	each	new	quest,	achievement	or	leaderboard	you	add	to	the	game
service,	you	will	receive	an	ID	such	as	Ck5azno1lkn631km43.	This	ID	is
used	within	your	app	to	reference	a	specific	quest,	achievement	or
leaderboard.	For	example,	when	the	player	of	Ellio	reaches	a	score	of	100,
we	could	run	the	following	line	of	code	(the	ID	is	just	an	example):

Games.Achievements.unlock(getApiClient(),	"Ck5azno1lkn631km43");

The	ID	is	used	to	specify	which	achievement	inside	your	game	service
should	be	unlocked	for	the	current	user.

On	Your	Own:	Integrating	Google	Play	Game	Services

Now	 that	 you	 have	 a	 general	 idea	 of	 the	 steps	 you	 need	 to	 take	 in	 order	 to
integrate	 game	 services,	 follow	 Google’s	 guides	 to	 experiment	 with	 a	 sample
project.

1.	Getting	Started	for	Android	Game	Development:

developers.google.com	/games/services/android/quickstart

Note:
When	 registering	 a	 new	 game	 service	 entry,
(developers.google.com/games/services/console/enabling)	 you	 will	 be	 asked	 to
provide	 a	 SHA1	 signing	 certificate	 fingerprint.	 This	 is	 a	 unique	 ID	 associated
with	a	keystore	used	when	signing	an	application.

Your	app	will	only	be	able	 to	communicate	with	a	game	service	entry	 if	 it	has
been	 signed	with	 the	 keystore	whose	 SHA1	 signing	 certificate	 fingerprint	 has
been	registered	in	the	developer	console	for	that	game	service	entry.

You	need	to	be	aware	that	when	you	run	an	application	using	Eclipse,	it	will	be
signed	 using	 a	 debug	 keystore.	 An	 exported	 APK	 will	 be	 signed	 using	 the
keystore	that	you	specify.

The	 signing	 certificate	 for	 the	 debug	 keystore	 can	 be	 located	 in	 Eclipse	 at
Window	>	Preferences	>	Android	>	Build	as	shown:

The	 signing	 certificate	 for	 a	 release	 keystore	 is	 displayed	 when	 exporting	 an
application	with	that	keystore,	as	shown	below:

2.	Getting	Started	for	Android	Game	Development:
developers.google.com/games/services/android	/leaderboards

You	should	also	reference	the	Quality	Checklist	for	Google	Play	Game	Services
(developers.google.com/games/services/checklist)	 for	 rules	 to	 follow	 when
implementing	game	services.

Download	the	Source	Code

The	 full	 source	 code	 for	 Ellio	with	 a	 leaderboard	 implementation,	 along	with
step-by-step	 instructions	on	configuring	 the	game	project	and	game	service	for

testing,	 can	 be	 found	 at	 jamescho7.com/book/chapter10/complete.	 Remember
that	 if	 you	 are	 having	 any	 trouble	 getting	 things	working,	 let	me	 know	 in	 the
forums	at	the	book’s	companion	site	jamescho7.com.	I	will	try	to	help	as	best	as
I	can.

If	 you’ve	 successfully	 integrated	 Google	 Play	 games	 services	 into	 your	 Ellio
project,	 congratulations!	 Now	 you	 know	 how	 to	 publish	 a	 game	 on	 the	 Play
Store,	release	updates	and	even	integrate	cloud-based	features.	You	have	all	the
skills	and	knowledge	necessary	to	start	creating	some	exciting	games	for	people
to	 enjoy.	 Of	 course,	 you	 will	 need	 to	 spend	 a	 lot	 of	 time	 practicing	 and
experimenting	in	order	to	make	games	that	people	will	play	regularly.	In	Chapter
11,	 we	 will	 talk	 about	 how	 you	 can	 continue	 to	 improve	 your	 skill	 and	 your
games.

Note:
Appendix	C	summarizes	all	the	steps	you	will	need	to	take	in	order	to	build	and
publish	a	game	using	our	Android	game	development	framework,	covering	all	of
the	material	from	Units	3	and	4.

Chapter	11:	Continuing	the	Journey
You’ve	made	 it	 to	 the	 end	 of	 the	 book.	 That	 means	 you’ve	 built	 an	 Android
game	 from	 scratch	 just	 like	 you’ve	 set	 out	 to	 do	 and	 picked	 up	 the	 Java
programming	language	in	the	process;	however,	if	you	plan	to	continue	pursuing
game	development	(as	I	hope	you	will)	the	journey	is	far	from	over.

As	you	know,	game	development	is	wide	ranging	and	extensive	area.	Despite	my
best	 efforts	 to	make	 this	book	comprehensive,	 there	were	a	 lot	of	 topics	 that	 I
could	not	cover.	In	spite	of	this,	my	hope	is	that—in	reading	this	book	from	start
to	finish—you	have	built	a	solid	foundation	upon	which	you	can	continue	your
quest	to	build	great	games.	If	I	have	done	my	job	correctly,	you	will	now	be	able
to	use	the	wealth	of	resources	available	online	in	order	to	continue	getting	better,
so	 that	 you	 can	 start	 building	 those	 games	 with	 3D	 graphics,	 networking,
artificial	 intelligence,	 particle	 effects,	 controller	 support,	 and	 other	 exciting
features	that	will	immerse	your	players.

Publish	a	Game!

Before	moving	on	to	bigger,	newer	topics,	I	recommend	that	you	first	try	making
a	complete	Android	game	of	your	own	to	publish	and	share	with	 the	world	by
using	 the	game	 framework	 (see	Appendix	C	 for	a	 step-by-step	overview).	The
book’s	companion	site	jamescho7.com	will	be	a	great	resource	for	learning	how
to	 implement	 certain	 features	 and	 building	 a	 better	 game;	 you	will	 be	 able	 to
access	all	of	the	source	code	from	this	book,	download	sample	game	projects	for
you	 to	 reverse-engineer,	 and	 learn	 even	 more	 about	 game	 development.	 By
applying	 the	concepts	you’ve	 learned	 in	 this	book	 to	build	your	own	products,
you	will	be	able	to	solidify	your	understanding	and	prepare	yourself	for	further
learning.

Additional	Resources

If	you	are	looking	for	inspiration,	join	a	community	of	game	developers	such	as
the	one	at	 java-gaming.org.	You	will	 find	 thousands	of	 fellow	developers	who
are	 committed	 to	 building	 high-performance	 Java	 games,	 and	 you	will	 realize
that	there	is	no	limit	to	what	you	can	accomplish	using	Java!

To	learn	more	about	Android,	Play	Services	and	more,	subscribe	to	the	Android
Developers	channel	on	YouTube	at	the	following	URL:

youtube.com/channel/UCVHFbqXqoYvEWM1Ddxl0QDg

You	will	 regularly	 find	 relevant,	 interesting	 videos	 and	 learn	 new	 information
you	can	use	in	order	to	improve	our	Android	game	development	framework.

I’d	also	like	to	share	the	tutorial	website	created	by	my	indie	game	development
company.	 At	 tuts.kilobolt.com,	 we	 offer	 tutorials	 on	 topics	 such	 as	 Android,
libGDX	(more	on	this	in	the	next	section)	and	team	collaboration.

Figure	11-1	tuts.kilobolt.com

We	also	maintain	a	friendly	community	forum	at	forum.kilobolt.com	to	help	out
when	 people	 are	 having	 issues	 with	 their	 projects.	 In	 addition,	 if	 you	 are
interested,	you	will	be	able	to	find	a	team	of	developers	to	work	on	large-scale
projects	with!	So	go	ahead	and	register	and	introduce	yourself	to	the	community.
It	would	be	awesome	for	me	to	get	to	know	you!

Going	Beyond

Eventually,	you	will	want	to	move	on	from	simple	2D	Android	games	in	search
of	 greater	 games,	 and	 you	will	 outgrow	our	 basic	Android	 game	development
framework.	There	are	two	broad	pathways	that	you	might	 take	in	order	to	take
things	to	a	higher	level.	Of	course,	these	are	generalizations,	and	you	will	likely
find	an	intermediate	path	that	works	for	you.

Pathway	I:	Learning	to	use	a	Game	Engine	or	Game	Framework

If	 you	 want	 to	 make	 highly-polished	 games	 packed	 with	 awesome	 features
without	learning	how	every	detail	is	implemented	in	code,	learning	how	to	use	a
game	engine	or	a	popular	game	framework	is	your	best	bet.	Doing	so	will	mean
that	 you	 can	 spend	 the	 majority	 of	 your	 development	 time	 on	 building	 your
game,	not	preparing	a	framework	to	build	a	game.

My	favorite	game	engine	is	Unity—a	cross-platform	engine	that	will	allow	you
to	build	2D	and	3D	games	using	an	intuitive	user	interface.	It	lets	you	drag	and
drop	 characters,	 add	 fancy	 lighting	 effects,	 and	 build	 big	 game	 levels	without
writing	a	single	line	of	code	(of	course	you	can	add	your	own	code	to	make	the
game	 behave	 exactly	 as	 you	 want	 it).	 Unity	 also	 comes	 with	 an	 Asset	 Store
where	you	can	download	pre-made	content	such	as	animated	characters,	particle
effects	or	environments	to	use	in	your	own	game.

Figure	11-2	Unity	2D	Platformer	Demo

Perhaps	the	greatest	feature	of	Unity	is	its	cross-platform	nature.	You	can	build	a
game	 once	 in	 the	 engine	 and	 deploy	 it	 to	 variety	 of	 platforms	 including	 iOS,
Android,	PC,	Mac,	and	consoles.	Unity	does	require	a	knowledge	of	C#	(or	Boo
or	 JavaScript);	 however,	 C#	 is	 very	 similar	 to	 Java,	 and	 you	 will	 have	 little
trouble	learning	it	with	the	help	of	the	official	Unity	site,	which	offers	dozens	of
video	 tutorials	 and	extensive	documentation	 that	will	help	you	get	 started.	For
this,	 please	 see	 the	 following	 unity3d.com/learn/tutorials
/modules/beginner/scripting.

An	alternative	to	a	full-fledged	game	engine	is	a	game	development	framework
such	as	libGDX	(libgdx.com).	Taking	this	route	will	mean	that	you	will	need	to
do	a	 little	more	work	to	get	 the	results	you	want,	but	 this	can	be	helpful	when
learning	how	games	are	built.	If	you	want	to	stick	with	Java	and	you	are	happy
with	coding	your	game	from	start	to	finish	rather	than	using	a	GUI	game	editor,
libGDX	is	the	perfect	solution.

libGDX	 is	 an	 open	 source,	 cross-platform	 game	 development	 framework	 that
allows	 you	 to	 build	 Java	 games	 that	 run	 on	 a	 variety	 of	 platforms,	 such	 as
Windows,	Mac,	HTML5,	Android	 and	 IOS.	 It	 is	 a	 constantly	 growing	 project
that	offers	hundreds	of	classes	for	you	to	use	in	your	projects,	meaning	that	you
do	 not	 have	 to	 waste	 time	 and	 resources	 on	 writing	 utility	 classes	 to	 solve
problems	that	every	other	game	developer	has	encountered	in	his	or	her	career.
To	 get	 started	 with	 libGDX,	 check	 out	 the	 official	 wiki:

github.com/libgdx/libgdx/wiki

Pathway	II:	Studying	the	Technology	of	Game	Development

Perhaps	you	care	less	about	creating	game	content	and	care	more	about	growing
as	 a	 game	 programmer.	 If	 you	 are	 interested	 in	 the	 technical	 aspects	 of	 game
development	and	want	to	learn	more	about	the	technologies	that	power	modern
games,	here	are	some	you	might	want	to	consider:

OpenGL	(Open	Graphics	Library):	To	make	the	leap	into	high	performance
2D	and	3D	mobile	games	without	relying	on	a	game	development
framework,	the	natural	first	step	is	to	learn	OpenGL.	See	the	Android	API
Guides	on	OpenGL	ES	(OpenGL	for	Embedded	Systems)	at	the	following
URL	for	an	introduction:
developer.android.com/guide/topics/graphics/opengl.html
Box2D:	You	might	want	to	start	implementing	realistic	physics	into	your
games,	so	that	your	game	objects	react	more	realistically	on	the	screen.	You
could	build	a	brand	new	physics	engine	from	scratch,	but	there	is	already	a
free,	open	source	solution	that	has	been	featured	in	games	such	as	Angry
Birds	and	Limbo.	Box2D	is	written	in	the	C++	programming	language,
meaning	that	you	must	learn	C/C++	to	start	tackling	Box2D	in	its	native
language.	For	this,	a	great	starting	point	is	the	official	manual:
box2d.org/manual.pdf
Alternatively,	you	can	begin	using	Box2D	through	game	development
frameworks	such	as	libGDX,	which	can	act	as	a	bridge	between	your	Java
code	and	C++	Box2D	code.	For	more	on	this,	please	see	the	following	URL
(Note:	a	basic	knowledge	of	libGDX	is	recommended	before	you	read	this
tutorial):	github.com/libgdx/libgdx/wiki/Box2d

Of	course,	to	be	a	better	game	programmer,	you	need	to	be	a	better	programmer
in	general.	Here	are	some	tips	on	improving	your	skill.

1.	 Practice	problem	solving.	Coders	need	to	solve	problems	on	a	daily	basis.
As	such,	it	is	essential	that	you	practice	problem	solving	in	order	to	become
a	versatile	coder.	Visit	codingbat.com	and	projecteuler.net	to	start
practicing.

2.	 Read	lots	of	code.	There	is	always	someone	better	than	you	(and	there’s
always	someone	worse).	Find	open	source	projects	you	are	interested	in	and
study	how	other	people	approach	certain	problems.	Learn	from	other

people’s	successes	and	mistakes	and	incorporate	this	knowledge	into	your
own	work.

3.	 Write	lots	of	code.	You	can	read	Shakespeare	all	day	long,	but	you	won’t	be
able	to	write	anywhere	close	to	his	level	without	practice.	Create	many
mini-projects	and	try	something	new	every	day.

4.	 Study	how	computers	work.	If	you	understand	the	lower-level	details	of	a
computer’s	operation,	you	will	be	better	equipped	to	write	higher-level
code.	This	means	that	you	will	be	able	to	write	more	efficient	code,	which
is	crucial	in	game	development.

5.	 a

Choosing	 to	 study	 the	 technology	may	 be	 the	more	 difficult	 path.	 It	 promises
fewer	 immediate	rewards	and	lots	of	hard	work.	In	 the	 long	run,	however,	you
will	 have	 a	 much	 more	 intimate	 understanding	 of	 game	 development.	 That
means	 you	 will	 one	 day	 be	 able	 to	 write	 your	 own	 game	 engines,	 modify
existing	 ones	 to	 suit	 your	 needs	 and,	when	 the	 time	 comes,	make	 your	 games
much	better.

Final	Words

Thank	 you	 for	 reading!	 I	 hope	 this	 book	 was	 helpful	 in	 getting	 you	 up	 and
running	 with	 game	 development.	 Now	 for	 your	 next	 quest,	 build	 on!	 I	 look
forward	to	playing	your	games	one	day.	Remember	to	tweet	all	the	cheat	codes
to	@jamescho7.

Appendix	A:	More	on	Static
To	understand	static,	we	will	 talk	about	a	usage	of	 the	static	keyword	we	have
encountered	 and	 ignored	 throughout	 Unit	 1:	 the	 main	 method.	 But	 first,	 as
review,	 ask	 yourself	 what	 steps	 you	 must	 take	 to	 call	 a	 non-static	 method
belonging	to	some	class,	such	as	those	shown	in	listing	A.01.

*****	Listing	A.01	A	Very	Simple	Class	*****

public	class	SimpleClass	{

private	int	age;

public	void	sayHello()	{

System.out.println("Hello");

}

public	void	sayAge()	{

System.out.println("My	age	is	"	+	age);

}

public	static	void	main(String[]	args)	{

//	What	goes	here?

}

}

What	 would	 go	 inside	 the	 main	 method	 if	 you	 wanted	 to	 call	 the	 sayHello()
method?	Think	about	it	for	a	second	and	write	down	an	answer.

If	you	thought	the	following,	you	would	be	wrong:

public	static	void	main(String[]	args)	{

								sayHello();

}

Remember	that	if	you	want	to	use	a	method	belonging	to	the	SimpleClass,	you
must	first	instantiate	the	class.	The	correct	answer	is	as	follows:

public	static	void	main(String[]	args)	{

								SimpleClass	simple	=	new	SimpleClass();

								simple.sayHello();

}

In	the	case	of	listing	A.01,	it	was	very	easy	to	instantiate	SimpleClass	to	call	its
method;	however,	in	some	situations,	this	is	not	the	case.

Uses	of	Static

The	keyword	static	exists	for	situations	in	which	you	cannot	instantiate	an	object
prior	 to	using	 its	variables	and	methods.	The	main	method	 in	 listing	A.01	 is	a
good	example.	If	the	main	method	were	not	static,	where	would	you	instantiate
SimpleClass	to	call	its	main	method?	You	couldn’t.

The	keyword	static	is	also	useful	when	a	method	or	a	variable	is	not	dependent
on	some	property	of	an	instance	of	some	class.	In	listing	A.01,	for	example,	the
sayHello()	method	will	 perform	 the	 exact	 same	behavior	 for	ALL	 instances	of
SimpleClass.	In	such	a	situation,	you	may	be	better	off	making	the	method	static
so	that	you	do	not	have	to	create	an	instance	of	the	object	to	use	the	method.

In	contrast,	 the	 implementation	of	 sayAge()	depends	on	 the	 individual	object’s
modifiable	 age	variable.	 It	would	not	make	 sense	 for	 it	 to	be	 static,	 as	EACH
instance	of	SimpleClass	should	have	its	own	age	and	therefore	sayAge().

Appendix	 B:	 Simple	 Physics	 of
Motion
Let’s	 review	 some	 elementary	 physics	 concepts	 and	 discuss	 how	 they	 fit	 into
game	 development.	 We	 will	 specifically	 be	 focusing	 on	 the	 two-dimensional
motion	of	simple	bodies.

Figure	b-1	Position	Example	(Spaceship	Art	by	Kenney.nl)

In	the	example	shown	in	Figure	B-1,	the	spaceship	has	an	x-position	of	2	and	a
y-position	of	3.	Note	that	we	use	the	top-left	corner	as	the	origin	and	that	x	and	y
increase	to	the	bottom	right	direction.	Coordinate	systems	in	computer	graphics
are	typically	handled	this	way.

Velocity	is	the	signed	(+	or	-)	speed	of	a	body.	A	given	velocity	describes	how
the	position	of	an	object	will	change	with	respect	to	time.

To	 illustrate	 this,	 assume	 that	 the	 spaceship	 shown	 in	 Figure	 B-1	 has	 an	 x-
velocity	of	3	per	frame	and	a	y-velocity	of	1	per	frame.	In	the	frame	following
Figure	B-1	(approximately	17	milliseconds	 later	at	60	FPS),	 the	spaceship	will
have	a	new	position	of	(x	=	5,	y	=	4).	Note	that	x-velocity	and	y-velocity	do	not
interact	with	each	other.

Acceleration	describes	the	change	in	velocity	of	a	body	per	given	time.	As	with
velocity,	acceleration	in	the	x-axis	is	independent	from	acceleration	in	the	y-axis.

Acceleration	 is	 most	 commonly	 used	 to	 implement	 gravity	 in	 games	 and	 to
provide	 smooth	 changes	 in	 a	 character’s	 velocity.	 If	 you	 want	 a	 character	 to
begin	moving,	consider	adding	to	the	acceleration	values	rather	than	the	velocity
values.	This	will	give	you	a	more	natural	result.

Listing	 B.01	 provides	 a	 simple	 example	 of	 how	 acceleration,	 velocity	 and
position	can	be	handled	in	a	game	object’s	update()	method.

*****	Listing	B.01	A	Very	Simple	Class	*****

public	class	Spaceship	{

			private	float	x,y;

			private	float	velX,	velY;

			private	float	accelX,	accelY;

			private	Spaceship	(float	x,	float	y,	float	velX,	float	velY,	float	accelX,	

float	accelY)	{

								this.x	=	x;

								this.y	=	y;

								this.velX	=	velX;

								this.velY	=	velY;

								this.accelX	=	accelX;

								this.accelY	=	accelY;

				}

			Private	void	update(float	delta)	{

								//	Accelerate	Object

								velX	+=	accelX	*	delta;

								velY	+=	accelY	*	delta;

								//	Reposition	Object

								x	+=	velX	*	delta;

								y	+=	velY	*	delta;

			}

}

Appendix	 C:	 Building	 Android
Games	in	7	Steps
This	Appendix	condenses	 the	material	 covered	 in	Units	3	and	4	 into	a	 simple,
actionable	 guide.	 Some	 of	 the	 steps	 may	 be	 taken	 out	 of	 sequence	 at	 your
convenience.

Step	1:	Design	Your	Game

The	best	place	 to	begin	developing	a	game	 is	away	from	a	computer.	 I	always
start	with	a	simple	gameplay	idea—something	that	will	be	fun	to	do	as	a	player.	I
then	jot	down	ideas	and	draw	a	bunch	of	pictures	until	I	have	a	design	that	I	am
happy	with.	 I	 then	 start	 outlining	 the	 Java	classes	 that	 I	will	 be	 requiring,	 and
begin	 coding.	 When	 designing	 and	 building	 a	 game,	 use	 an	 iterative	 process
where	you	continuously	design	and	redesign	your	game	as	you	experiment	with
various	features.

This	 is	 a	 good	 stage	 for	 you	 to	 consider	 if	 and	 how	 you	 will	 monetize	 your
game.	A	good	resource	for	this	is	provided	below:

developer.android.com/training/distribute.html

You	should	also	decide	whether	you	will	be	making	use	of	Google	Play	game
services.

Step	2:	Download	 the	Most	Recent	Android	Game	Development
Framework

Visit	 jamescho7.com/book/downloads	 to	 download	 the	 Eclipse	 project	 for	 the
game	 development	 framework.	 Import	 it	 into	 your	 Eclipse	 workspace	 and
rename	it	as	needed.

Upon	doing	so,	you	may	see	a	bunch	of	Java	errors.	This	typically	occurs	when
you	do	not	have	the	version	of	the	Android	platform	that	was	used	to	build	the
project.	The	simple	fix	is	to	right-click	on	your	project	(Ctrl	+	click	on	Mac)	and

select	Properties.	Next,	 select	Android	as	 shown	 in	Figure	C-1	and	choose	 the
most	recent	target.	Hit	Apply	and	press	OK.

Figure	c-1	Selecting	a	Build	Target

Step	3:	Update	the	Icons

Open	 the	 res/drawable	 folders	 and	 replace	 the	 icon	 images.	 The	 appropriate
image	resolutions	are	provided	below:

LDPI:	36	x	36px
MDPI:	48	x	48px
HDPI:	72	x	72px
XHDPI:	96	x	96px

Step	4:	Update	the	Package	Name

You	must	change	the	package	name	of	your	application	in	three	different	places.
Firstly,	you	should	change	the	package	name	of	com.jamescho.simpleandroidgdf
in	the	workspace	to	a	desired	value.	Next,	open	AndroidManifest.xml	and	update

the	manifest	 and	 activity	 tags	 to	mirror	 the	 change	 (lines	 needing	 change	 are
highlighted	in	bold	below).

<manifest	xmlns:android="http://schemas.android.com/apk/res/android"

								package="com.jamescho.simpleandroidgdf"

											

																<activity

																								android:screenOrientation="sensorLandscape"

																								android:name="com.jamescho.simpleandroidgdf.GameMainActivity"

																							

You	 can	 also	 set	 the	 name	 of	 your	 Android	 game	 using	 the	 android:label
attribute	in	the	Manifest.

Step	5:	Build	the	Game

At	this	point,	you	need	to	build	your	game,	using	state	and	model	classes	as	your
building	blocks.

Choosing	a	game	resolution:	For	simplicity	and	an	easy	transition	from	Java	to
Android,	Ellio	has	used	a	fixed	800	x	450	game	resolution.	For	your	games,	you
may	want	 a	more	 flexible	 solution	 so	 that	 each	 device	 has	 a	 game	 resolution
equal	 to	 its	 screen	 size.	To	 see	 an	 example	of	 how	you	might	 implement	 this,
please	see	jamescho7.com/book/samples.

If	you	do	not	want	to	create	your	own	assets,	the	following	resources	may	be	of
use:

Art:	kenney.nl
Music:	mattmcfarland.com
Sounds:	bfxr.net

Step	6:	Integrate	Google	Play	Game	Services	(Optional)

Please	 see	 the	 samples	 (jamescho7.com/book/samples)	 and	 the	 official	Google
guides	for	help	with	this	process.

Introduction:	developer.android.com/google/play-services/games.html
Getting	Started:	developers.google.com/games/services/android/quickstart

Quality	Checklist	for	Google	Play	Game	Services:
developers.google.com/games/services/checklist

Step	7:	Deploy	Your	Game	and	Market	It!

Export	 your	 game	 as	 an	 APK	 and	 upload	 it	 to	 the	 Developer	 Console
(play.google.com/apps/publish/).	Next,	use	the	power	of	social	media	to	tell	the
world	about	your	game!	At	 this	point,	you	should	be	actively	 listening	 to	user
feedback	and	updating	your	game	as	necessary.

	The Beginner’s Guide to Android Game Development
	James S. Cho

	Chapter 1: The Fundamentals of Programming
	What is Programming?
	Types of Data
	Primitives
	Strings

	Declaring and Initializing Variables
	Variable Names versus Literals
	To Initialize or Not Initialize

	It’s All About the Bits (A Brief Discussion of Bits and Bytes)
	Converting between data types

	Operations
	Arithmetic Operations
	Order of Operations
	Relational/Boolean Operations
	Conditional Operators

	Functions (better known in Java as ‘Methods’)
	An Overview of Function Calls
	More on Arguments
	Summary of Functions

	Control Flow Part 1 – If and Else statements
	If-Else Blocks
	If, Else-if and Else
	Functions and If-Else Blocks
	Nested If-Else blocks
	Simplifying boolean statements

	Control Flow Part 2 – While and For loops
	While loops
	For Loops

	The Training Wheels Are Now Off!

	Chapter 2: Beginning Java
	Object-Oriented Programming
	Setting up the Development Machine
	Installing Eclipse
	Installing the Java Development Kit
	Opening Eclipse

	Writing Your First Program
	Creating a New Java Project
	Creating a Java Class
	Main Method
	Saying Hello

	Executing Java Programs
	Explaining the Magic – The Compiler and the JVM
	Building a Simple Calculator Program
	Building a Simple Counting Program
	Basics of Objects
	Classes
	Working with Objects
	Creating New Object Variables
	Assigning and Accessing an Object’s State
	Invoking an Object’s Behavior
	Hiding Our Variables
	Improving Our Program
	Distinguishing Between Classes and Objects
	Objects Are Independent
	Working with Objects from the Java API
	Practice with Strings
	More practice with Objects – Simulating a dice
	How random is java.util.Random?
	More on importing

	Grouping objects and primitives
	Arrays
	ArrayLists
	Using ArrayLists with Primitives
	Using ArrayLists with Loops

	Summary of Chapter 2

	Chapter 03: Designing Better Objects
	Constructors
	Variables Receive Default Values
	Avoiding Java Exceptions
	Initializing Our Coder Object Using A Method
	Initializing Our Coder Object Using A Custom Constructor

	Getters and Setters
	Interface
	Polymorphism
	Inheritance
	Graphics
	Introduction to JFrame
	Explaining the Coordinate System
	Creating a JFrame
	Adding a JPanel
	Explaining the Terms
	Understanding the MyPanel
	Back to FirstFrame

	A Milestone

	Chapter 04: Laying the Foundations
	Java Game Development – An Overview
	Learning to Build Games
	Building a Game Development Framework
	The Purpose of a Game Development Framework
	What Makes a Good Game Development Framework?
	Essential Terminology
	Designing Our Framwork
	Downloading the Source Code
	Starting the Framework
	A Discussion of Packages
	Creating Our Classes
	Creating a JFrame in GameMain
	The Static Keyword
	The Final Keyword
	Creating a Constructor for Game.java
	Adding the Game to the JFrame

	Adding Image Files to Our Project
	Creating the Resources class
	Try/Catch Block
	Loading Image Files from the resources Package

	Checkpoint #1
	Defining ‘State’
	Creating State Class
	More on Abstract Classes
	Why We Use an Abstract Class
	Creating the LoadState Class
	Setting the Current State
	Transitioning to MenuState

	Checkpoint #2
	The Need to Multi-Task
	Threads
	Adding the Game Thread
	Implementing the Game Loop
	Frames per Second and the Timing Mechanism
	Exiting the Game
	Fixing Paint
	Handling Player Input
	Attaching the InputHandler

	Checkpoint #3
	A Note on Licenses and Code Reuse

	It All Starts Here

	Chapter 5: Keeping It Simple
	Game Development: A High-Level Overview
	The Classes

	Preparing the LoneBall Project
	Copying the Framework

	Adding and Loading Resources
	Implementing the Gameplay Screen
	Adding the PlayState
	Transitioning into PlayState

	Designing the Paddles
	The Variables in Paddle
	The Methods

	Creating the Paddle Class
	Adding the Variables
	Adding the Methods
	Reducing Dependencies with Constants
	Adding the Getters

	Implementing the Paddle Objects inside PlayState
	Rendering the Paddles
	Handling Player Input
	Updating the Paddles by Delegation
	Fixing the Bug

	Implementing a Score System
	Implementing the RandomNumberGenerator Class
	Designing the Ball
	The Variables in the Ball Class
	The Methods in the Ball Class

	Creating the Ball Class
	Adding the Variables
	Adding the Update Methods
	Adding the Misc. Methods
	Adding the Getter Methods

	Implementing the Ball Object inside PlayState
	Declaring and Initializing the Ball
	Updating the Ball
	Rendering the Ball

	Handling Collision: Ball vs. Paddles and Ball vs. the Void
	Running the Final Product

	Exporting the Game
	Executing the Game
	Before Moving Forward
	The Next Level

	Chapter 6: The Next Level
	The Framework Needs an Update
	Framerate-Dependent vs. Framerate-Independent Movement
	Animation

	Planning the Changes: A High-Level Overview
	Methods to Know Before Getting Started
	Math.max()
	System.nanoTime()

	Updating the Game Loop
	Fixing the Timing Mechanism
	Calculating Delta
	Allowing Framerate-Independent Movement
	Declaring Variables outside of a Loop

	Switching to Active Rendering
	Reviewing the Code

	Updating the State Classes
	Adding RandomNumberGenerator
	Adding Animation
	Designing and Implementing the Frame Class
	Designing the Animation Class
	Implementing the Animation Class

	Ellio: Optimization Matters
	The Issue of Memory Management
	Optimizing Techniques
	Meet the Garbage Collector
	Fear the Garbage Collector
	Memory Management and Ellio

	Ellio: A High-Level Overview
	The Classes

	Preparing the Ellio Project
	Copying the Framework

	Adding and Loading Resources
	Designing and Implementing the Player
	Describing the Properties and Behavior
	Creating the Player Class and Its Variables
	Adding the Methods
	Discussing the update() and isGrounded()methods:
	Discussing the updateRects() Method:
	Casting a Value
	Discussing the duck(), jump() and pushBack() Methods
	Adding the Getters

	Designing and Implementing the Cloud
	Designing and Implementing the Block Class
	Designing and Implementing the Supporting State Classes
	The GameOverState
	The MenuState

	Designing and Implementing the PlayState
	The Variables of PlayState
	Initializing the Variables
	Adding User Input
	Updating the PlayState
	Rendering the PlayState
	Running the Game

	Another Journey Begins

	Chapter 7: Beginning Android Development
	Android: Same Language in a New World
	The Challenges of Android Development
	The Joys of Android Development

	Hello, Android: Your First Android App
	Creating a New Android Application

	Navigating Around an Android Application Project
	The Important Stuff
	The Other Important Stuff

	Fundamental Android Concepts
	Activities
	XML
	Layouts
	Fragments
	AndroidManifest.xml

	Rewriting Hello, World
	Creating MainActivity
	Adding onCreate()
	Creating the Layout
	Adding Widgets
	The setContentView(...) Method

	Running an Android Application
	Using the Emulator
	Debugging FirstApp
	Using a Physical Device

	The Activity Lifecycle
	Why the Activity Lifecycle Matters

	Views
	Event Handling
	Drawing Views

	Responding to Events and Starting a Second Activity
	Creating the SecondActivity Class
	Creating a Content View
	Adding the Variables to CustomView
	Drawing the CustomView
	Handling Touch Events
	Setting the New CustomView
	Creating a Button
	Setting a Button’s OnClickListener
	Optional: The Anonymous Inner Class
	Starting a New Activity

	LogCat: Basics of Debugging
	Onward to Android Game Development

	Chapter 8: The Android Game Framework
	Understanding the General Principles
	Building the Android Game Framework
	Designing Our Framework
	Explaining the Changes
	Creating the Project
	Creating the GameMainActivity
	Registering the Activity
	Running your Application
	A Single Activity Game
	Creating the GameView
	Setting the GameView as the Content View

	Discussing the GameView’s Components
	Current State
	Handling Input
	Handling Drawing
	Canvas and Memory Management
	Screen Resolution vs. Game Resolution

	Building the State, InputHandler and Painter Classes
	Painter
	State
	InputHandler

	Adding the Assets
	The res Folder
	Downloading the Image Files
	Adding the Icon Images
	Adding the Welcome Image
	Creating the Assets Class
	Memory vs. File System
	Loading Images from assets Folder
	Loading Sounds from assets Folder

	Creating the State Classes
	Creating the GameView Class
	Declaring the Variables
	Initializing the Graphics Variables
	Testing the Application in DDMS Perspective
	Setting up Input
	Setting the Initial State
	Implementing the Game Loop Thread
	Create Animation, Frame, RandomNumberGenerator Classes

	Wrapping Up

	Chapter 9: Building the Game
	Preparing the Project
	Copying the Framework
	Download and Setting the Icons
	Download the Assets
	Loading the Assets

	Implementing the Model Classes
	Implementing the Cloud Class
	Implementing the Block Class
	Implementing the Player Class

	Implementing the State Classes
	Changing the MenuState
	Making a UIButton Class
	Implementing the PlayState
	Implementing Touch Controls
	Implementing the GameOverState

	Another Milestone
	Make It Faster: Optimizing Your Game
	Loading the Game: Conserve Memory
	During Gameplay: Avoid Garbage Collection
	The Problem with Garbage Collection
	Avoiding Memory Allocation
	Finding Memory Leaks and Tracking Allocations

	Implementing a High Score System
	Planning the High Score System
	Providing the Accessor Methods
	Setting the High Score
	Implementing the ScoreState

	Chapter 10: Releasing Your Game
	Getting Your Game Ready
	Changing the Package Name
	Creating the APK
	Choosing a Marketplace

	Publishing the Game on Google Play
	Creating a Developer Account
	Creating a new Application

	Updating the Game
	The Resource Management Bug
	Pausing the Game
	Adding onResume() and onPause() to Assets and State
	Adding onResume() and onPause() to GameView and GameMainActivity
	Implementing Pause to the PlayState
	Adding Music
	Uploading an Updated APK to Google Play

	Integrating Google Play Game Services
	The Player’s Perspective
	The Developer’s Perspective
	On Your Own: Integrating Google Play Game Services
	Download the Source Code

	Chapter 11: Continuing the Journey
	Publish a Game!
	Additional Resources
	Going Beyond
	Pathway I: Learning to use a Game Engine or Game Framework
	Pathway II: Studying the Technology of Game Development

	Final Words

	Appendix A: More on Static
	Uses of Static

	Appendix B: Simple Physics of Motion
	Appendix C: Building Android Games in 7 Steps
	Step 1: Design Your Game
	Step 2: Download the Most Recent Android Game Development Framework
	Step 3: Update the Icons
	Step 4: Update the Package Name
	Step 5: Build the Game
	Step 6: Integrate Google Play Game Services (Optional)
	Step 7: Deploy Your Game and Market It!

