
Anthony Molinaro
& Robert de Graaf

Second

Edition

SQL
Cookbook
Query Solutions and Techniques
for All SQL Users

Anthony Molinaro and Robert de Graaf

SQL Cookbook
Query Solutions and Techniques

for All SQL Users

SECOND EDITION

978-1-492-07744-2

[LSI]

SQL Cookbook
by Anthony Molinaro and Robert de Graaf

Copyright © 2021 Robert de Graaf. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jessica Haberman
Development Editor: Virginia Wilson
Production Editor: Kate Galloway
Copyeditor: Kim Wimpsett
Proofreader: nSight, Inc.

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: O’Reilly Media

December 2005: First Edition
December 2020: Second Edition

Revision History for the Second Edition
2020-11-03: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492077442 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. SQL Cookbook, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Yugabyte. See our statement of editorial inde‐
pendence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492077442
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

To my mom: You’re the best! Thank you for everything.
—Anthony

To Clare, Maya, and Leda.
—Robert

Table of Contents

Preface. xi

1. Retrieving Records. 1
1.1 Retrieving All Rows and Columns from a Table 1
1.2 Retrieving a Subset of Rows from a Table 2
1.3 Finding Rows That Satisfy Multiple Conditions 2
1.4 Retrieving a Subset of Columns from a Table 3
1.5 Providing Meaningful Names for Columns 4
1.6 Referencing an Aliased Column in the WHERE Clause 5
1.7 Concatenating Column Values 6
1.8 Using Conditional Logic in a SELECT Statement 7
1.9 Limiting the Number of Rows Returned 8
1.10 Returning n Random Records from a Table 10
1.11 Finding Null Values 11
1.12 Transforming Nulls into Real Values 12
1.13 Searching for Patterns 13
1.14 Summing Up 14

2. Sorting Query Results. 15
2.1 Returning Query Results in a Specified Order 15
2.2 Sorting by Multiple Fields 16
2.3 Sorting by Substrings 17
2.4 Sorting Mixed Alphanumeric Data 18
2.5 Dealing with Nulls When Sorting 21
2.6 Sorting on a Data-Dependent Key 27
2.7 Summing Up 28

v

3. Working with Multiple Tables. 29
3.1 Stacking One Rowset atop Another 29
3.2 Combining Related Rows 31
3.3 Finding Rows in Common Between Two Tables 33
3.4 Retrieving Values from One Table That Do Not Exist in Another 34
3.5 Retrieving Rows from One Table That Do Not Correspond to Rows in

Another 40
3.6 Adding Joins to a Query Without Interfering with Other Joins 42
3.7 Determining Whether Two Tables Have the Same Data 44
3.8 Identifying and Avoiding Cartesian Products 51
3.9 Performing Joins When Using Aggregates 52
3.10 Performing Outer Joins When Using Aggregates 57
3.11 Returning Missing Data from Multiple Tables 60
3.12 Using NULLs in Operations and Comparisons 64
3.13 Summing Up 65

4. Inserting, Updating, and Deleting. 67
4.1 Inserting a New Record 68
4.2 Inserting Default Values 68
4.3 Overriding a Default Value with NULL 70
4.4 Copying Rows from One Table into Another 70
4.5 Copying a Table Definition 71
4.6 Inserting into Multiple Tables at Once 72
4.7 Blocking Inserts to Certain Columns 74
4.8 Modifying Records in a Table 75
4.9 Updating When Corresponding Rows Exist 77
4.10 Updating with Values from Another Table 78
4.11 Merging Records 81
4.12 Deleting All Records from a Table 83
4.13 Deleting Specific Records 83
4.14 Deleting a Single Record 84
4.15 Deleting Referential Integrity Violations 85
4.16 Deleting Duplicate Records 85
4.17 Deleting Records Referenced from Another Table 87
4.18 Summing Up 89

5. Metadata Queries. 91
5.1 Listing Tables in a Schema 91
5.2 Listing a Table’s Columns 93
5.3 Listing Indexed Columns for a Table 94
5.4 Listing Constraints on a Table 95
5.5 Listing Foreign Keys Without Corresponding Indexes 97

vi | Table of Contents

5.6 Using SQL to Generate SQL 100
5.7 Describing the Data Dictionary Views in an Oracle Database 102
5.8 Summing Up 103

6. Working with Strings. 105
6.1 Walking a String 106
6.2 Embedding Quotes Within String Literals 108
6.3 Counting the Occurrences of a Character in a String 109
6.4 Removing Unwanted Characters from a String 110
6.5 Separating Numeric and Character Data 112
6.6 Determining Whether a String Is Alphanumeric 116
6.7 Extracting Initials from a Name 120
6.8 Ordering by Parts of a String 125
6.9 Ordering by a Number in a String 126
6.10 Creating a Delimited List from Table Rows 132
6.11 Converting Delimited Data into a Multivalued IN-List 136
6.12 Alphabetizing a String 141
6.13 Identifying Strings That Can Be Treated as Numbers 147
6.14 Extracting the nth Delimited Substring 153
6.15 Parsing an IP Address 160
6.16 Comparing Strings by Sound 162
6.17 Finding Text Not Matching a Pattern 164
6.18 Summing Up 167

7. Working with Numbers. 169
7.1 Computing an Average 169
7.2 Finding the Min/Max Value in a Column 171
7.3 Summing the Values in a Column 173
7.4 Counting Rows in a Table 175
7.5 Counting Values in a Column 177
7.6 Generating a Running Total 178
7.7 Generating a Running Product 179
7.8 Smoothing a Series of Values 181
7.9 Calculating a Mode 182
7.10 Calculating a Median 185
7.11 Determining the Percentage of a Total 187
7.12 Aggregating Nullable Columns 190
7.13 Computing Averages Without High and Low Values 191
7.14 Converting Alphanumeric Strings into Numbers 193
7.15 Changing Values in a Running Total 196
7.16 Finding Outliers Using the Median Absolute Deviation 197
7.17 Finding Anomalies Using Benford’s Law 201

Table of Contents | vii

7.18 Summing Up 203

8. Date Arithmetic. 205
8.1 Adding and Subtracting Days, Months, and Years 205
8.2 Determining the Number of Days Between Two Dates 208
8.3 Determining the Number of Business Days Between Two Dates 210
8.4 Determining the Number of Months or Years Between Two Dates 215
8.5 Determining the Number of Seconds, Minutes, or Hours Between Two

Dates 218
8.6 Counting the Occurrences of Weekdays in a Year 220
8.7 Determining the Date Difference Between the Current Record and the

Next Record 231
8.8 Summing Up 237

9. Date Manipulation. 239
9.1 Determining Whether a Year Is a Leap Year 240
9.2 Determining the Number of Days in a Year 246
9.3 Extracting Units of Time from a Date 249
9.4 Determining the First and Last Days of a Month 252
9.5 Determining All Dates for a Particular Weekday Throughout a Year 255
9.6 Determining the Date of the First and Last Occurrences of a Specific

Weekday in a Month 261
9.7 Creating a Calendar 268
9.8 Listing Quarter Start and End Dates for the Year 281
9.9 Determining Quarter Start and End Dates for a Given Quarter 286
9.10 Filling in Missing Dates 293
9.11 Searching on Specific Units of Time 301
9.12 Comparing Records Using Specific Parts of a Date 302
9.13 Identifying Overlapping Date Ranges 305
9.14 Summing Up 311

10. Working with Ranges. 313
10.1 Locating a Range of Consecutive Values 313
10.2 Finding Differences Between Rows in the Same Group or Partition 317
10.3 Locating the Beginning and End of a Range of Consecutive Values 323
10.4 Filling in Missing Values in a Range of Values 326
10.5 Generating Consecutive Numeric Values 330
10.6 Summing Up 333

11. Advanced Searching. 335
11.1 Paginating Through a Result Set 335
11.2 Skipping n Rows from a Table 338

viii | Table of Contents

11.3 Incorporating OR Logic When Using Outer Joins 339
11.4 Determining Which Rows Are Reciprocals 341
11.5 Selecting the Top n Records 343
11.6 Finding Records with the Highest and Lowest Values 344
11.7 Investigating Future Rows 345
11.8 Shifting Row Values 347
11.9 Ranking Results 350
11.10 Suppressing Duplicates 351
11.11 Finding Knight Values 353
11.12 Generating Simple Forecasts 359
11.13 Summing Up 367

12. Reporting and Reshaping. 369
12.1 Pivoting a Result Set into One Row 369
12.2 Pivoting a Result Set into Multiple Rows 372
12.3 Reverse Pivoting a Result Set 377
12.4 Reverse Pivoting a Result Set into One Column 379
12.5 Suppressing Repeating Values from a Result Set 382
12.6 Pivoting a Result Set to Facilitate Inter-Row Calculations 384
12.7 Creating Buckets of Data, of a Fixed Size 386
12.8 Creating a Predefined Number of Buckets 388
12.9 Creating Horizontal Histograms 390
12.10 Creating Vertical Histograms 392
12.11 Returning Non-GROUP BY Columns 394
12.12 Calculating Simple Subtotals 397
12.13 Calculating Subtotals for All Possible Expression Combinations 400
12.14 Identifying Rows That Are Not Subtotals 410
12.15 Using Case Expressions to Flag Rows 412
12.16 Creating a Sparse Matrix 414
12.17 Grouping Rows by Units of Time 416
12.18 Performing Aggregations over Different Groups/Partitions

Simultaneously 420
12.19 Performing Aggregations over a Moving Range of Values 422
12.20 Pivoting a Result Set with Subtotals 429
12.21 Summing Up 434

13. Hierarchical Queries. 435
13.1 Expressing a Parent-Child Relationship 436
13.2 Expressing a Child-Parent-Grandparent Relationship 440
13.3 Creating a Hierarchical View of a Table 444
13.4 Finding All Child Rows for a Given Parent Row 449
13.5 Determining Which Rows Are Leaf, Branch, or Root Nodes 450

Table of Contents | ix

13.6 Summing Up 458

14. Odds ’n’ Ends. 459
14.1 Creating Cross-Tab Reports Using SQL Server’s PIVOT Operator 459
14.2 Unpivoting a Cross-Tab Report Using SQL Server’s UNPIVOT Operator 461
14.3 Transposing a Result Set Using Oracle’s MODEL Clause 463
14.4 Extracting Elements of a String from Unfixed Locations 467
14.5 Finding the Number of Days in a Year (an Alternate Solution for Oracle) 470
14.6 Searching for Mixed Alphanumeric Strings 472
14.7 Converting Whole Numbers to Binary Using Oracle 474
14.8 Pivoting a Ranked Result Set 477
14.9 Adding a Column Header into a Double Pivoted Result Set 481
14.10 Converting a Scalar Subquery to a Composite Subquery in Oracle 493
14.11 Parsing Serialized Data into Rows 495
14.12 Calculating Percent Relative to Total 500
14.13 Testing for Existence of a Value Within a Group 502
14.14 Summing Up 505

A. Window Function Refresher. 507

B. Common Table Expressions. 535

Index. 539

x | Table of Contents

Preface

SQL is the lingua franca of the data professional. At the same time, it doesn’t always
get the attention it deserves compared to the hot tool du jour. As result, it’s common
to find people who use SQL frequently but rarely or never go beyond the simplest
queries, often enough because they believe that’s all there is.

This book shows how much SQL can do, expanding users’ tool boxes. By the end of
the book you will have seen how SQL can be used for statistical analysis; to do report‐
ing in a manner similar to Business Intelligence tools; to match text data; to perform
sophisticated analysis on date data; and much more.

The first edition of SQL Cookbook has been a popular choice as the “second book on
SQL”—the book people read after they learn the basics—since its original release. It
has many strengths, such as its wide range of topics and its friendly style.

However, computing is known to move fast, even when it comes to something as
mature as SQL, which has roots going back to the 1970s. While this new edition
doesn’t cover brand new language features, an important change is that features that
were novel at the time of the first edition, and found in some implementations and
not in others, are now stabilized and standardized. As a result, we have a lot more
scope for developing standard solutions than was possible earlier.

There are two key examples that are important to highlight. Common table expres‐
sions (CTEs), including recursive CTEs, were available in a couple of implementa‐
tions at the time the first edition was released, but are now available in all five. They
were introduced to solve some practical limitations of SQL, some of which can be
seen directly in these recipes. A new appendix on recursive CTEs in this edition
underlines their importance and explains their relevance.

Window functions were also new enough at the time of the first edition’s release that
they weren’t available in every implementation. They were also new enough that a
special appendix was written to explain them, which remains. Now, however, window
functions are in all implementations in this book. They are also in every other SQL

xi

implementation that we’re aware of, although there are so many databases out there,
it’s impossible to guarantee there isn’t one that neglects window functions and/or
CTEs.

In addition to standardizing queries where possible, we’ve brought new material into
Chapters 6 and 7. The material in Chapter 7 unlocks new data analysis applications in
recipes about the median absolute deviation and Benford’s law. In Chapter 6, we have
a new recipe to help match data by the sound of the text, and we have moved material
on regular expressions to Chapter 6 from Chapter 14.

Who This Book Is For
This book is meant to be for any SQL user who wants to take their queries further. In
terms of ability, it’s meant for someone who knows at least some SQL—you might
have read Alan Beaulieu’s Learning SQL, for example—and ideally you’ve had to write
queries on data in the wild to answer a real-life problem.

Other than those loose parameters, this is a book for all SQL users, including data
engineers, data scientists, data visualization folk, BI people, etc. Some of these users
may never or rarely access databases directly, but use their data visualization, BI, or
statistical tool to query and fetch data. The emphasis is on practical queries that can
solve real-world problems. Where a small amount of theory appears, it’s there to
directly support the practical elements.

What’s Missing from This Book
This is a practical book, chiefly about using SQL to understand data. It doesn’t cover
theoretical aspects of databases, database design, or the theory behind SQL except
where needed to explain specific recipes or techniques.

It also doesn’t cover extensions to databases to handle data types such as XML and
JSON. There are other resources available for those specialist topics.

Platform and Version
SQL is a moving target. Vendors are constantly pumping new features and function‐
ality into their products. Thus, you should know up front which versions of the vari‐
ous platforms were used in the preparation of this text:

• DB2 11.5
• Oracle Database 19c
• PostgreSQL 12

xii | Preface

• SQL Server 2017
• MySQL 8.0

Tables Used in This Book
The majority of the examples in this book involve the use of two tables, EMP and
DEPT. The EMP table is a simple 14-row table with only numeric, string, and date
fields. The DEPT table is a simple four-row table with only numeric and string fields.
These tables appear in many old database texts, and the many-to-one relationship
between departments and employees is well understood.

All but a very few solutions in this book run against these tables. Nowhere do we
tweak the example data to set up a solution that you would be unlikely to have a
chance of implementing in the real world, as some books do.

The contents of EMP and DEPT are shown here, respectively:

 select * from emp;

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
----- ------ --------- ---- ----------- ---- ---- -------
 7369 SMITH CLERK 7902 17-DEC-2005 800 20
 7499 ALLEN SALESMAN 7698 20-FEB-2006 1600 300 30
 7521 WARD SALESMAN 7698 22-FEB-2006 1250 500 30
 7566 JONES MANAGER 7839 02-APR-2006 2975 20
 7654 MARTIN SALESMAN 7698 28-SEP-2006 1250 1400 30
 7698 BLAKE MANAGER 7839 01-MAY-2006 2850 30
 7782 CLARK MANAGER 7839 09-JUN-2006 2450 10
 7788 SCOTT ANALYST 7566 09-DEC-2007 3000 20
 7839 KING PRESIDENT 17-NOV-2006 5000 10
 7844 TURNER SALESMAN 7698 08-SEP-2006 1500 0 30
 7876 ADAMS CLERK 7788 12-JAN-2008 1100 20
 7900 JAMES CLERK 7698 03-DEC-2006 950 30
 7902 FORD ANALYST 7566 03-DEC-2006 3000 20
 7934 MILLER CLERK 7782 23-JAN-2007 1300 10

 select * from dept;

DEPTNO DNAME LOC
------ -------------- ---------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

Preface | xiii

Additionally, you will find four pivot tables used in this book: T1, T10, T100, and
T500. Because these tables exist only to facilitate pivots, we didn’t give them clever
names. The number following the “T” in each of the pivot tables signifies the number
of rows in each table, starting from 1. For example, here are the values for T1 and
T10:

select id from t1;

 ID

 1

select id from t10;

 ID

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

The pivot tables are a useful shortcut when we need to create a series of rows to facili‐
tate a query.

As an aside, some vendors allow partial SELECT statements. For example, you can
have SELECT without a FROM clause. Sometimes in this book we will use a support
table, T1, with a single row, rather than using partial queries for clarity. This is similar
in usage to Oracle’s DUAL table, but by using the T1 table, we do the same thing in a
standardized way across all the implementations we are looking at.

Any other tables are specific to particular recipes and chapters and will be introduced
in the text when appropriate.

Conventions Used in This Book
We use a number of typographical and coding conventions in this book. Take time to
become familiar with them. Doing so will enhance your understanding of the text.
Coding conventions in particular are important, because we can’t repeat them for
each recipe in the book. Instead, we list the important conventions here.

xiv | Preface

Typographical Conventions
The following typographical conventions are used in this book:

UPPERCASE
Used to indicate SQL keywords within text.

lowercase
Used for all queries in code examples. Other languages such as C and Java use
lowercase for most keywords, and we find it far more readable than uppercase.
Thus, all queries will be lowercase.

Constant width bold

Indicates user input in examples showing an interaction.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

Coding Conventions
Our preference for case in SQL statements is to always use lowercase, for both key‐
words and user-specified identifiers. For example:

select empno, ename
 from emp;

Your preference may be otherwise. For example, many prefer to uppercase SQL key‐
words. Use whatever coding style you prefer, or whatever your project requires.

Despite the use of lowercase in code examples, we consistently use uppercase for SQL
keywords and identifiers in the text. We do this to make those items stand out as
something other than regular prose. For example:

The preceding query represents a SELECT against the EMP table.

While this book covers databases from five different vendors, we’ve decided to use
one format for all the output:

Preface | xv

EMPNO ENAME
----- ------
 7369 SMITH
 7499 ALLEN
 …

Many solutions make use of inline views, or subqueries in the FROM clause. The
ANSI SQL standard requires that such views be given table aliases. (Oracle is the only
vendor that lets you get away without specifying such aliases.) Thus, our solutions use
aliases such as X and Y to identify the result sets from inline views:

 select job, sal
from (select job, max(sal) sal
 from emp
 group by job)x;

Notice the letter X following the final, closing parenthesis. That letter X becomes the
name of the “table” returned by the subquery in the FROM clause. While column
aliases are a valuable tool for writing self-documenting code, aliases on inline views
(for most recipes in this book) are simply formalities. They are typically given trivial
names such as X, Y, Z, TMP1, and TMP2. In cases where a better alias might provide
more understanding, we use them.

You will notice that the SQL in the “Solution” section of the recipes is typically num‐
bered, for example:

1 select ename
2 from emp
3 where deptno = 10

The number is not part of the syntax; it is just to reference parts of the query by num‐
ber in the “Discussion” section.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

xvi | Preface

http://oreilly.com
http://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/sql-ckbk-2e.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Second Edition Acknowledgments
A bunch of great people have helped with this second edition. Thanks to Jess Haber‐
man, Virginia Wilson, Kate Galloway, and Gary O’Brien at O’Reilly. Thanks to Nicho‐
las Adams for repeatedly saving the day in Atlas. Many thanks to the tech reviewers:
Alan Beaulieu, Scott Haines, and Thomas Nield.

Finally, many thanks to my family—Clare, Maya, and Leda—for graciously bearing
losing me to another book for a while.

—Robert de Graaf

First Edition Acknowledgments
This book would not exist without all the support we’ve received from a great many
people. I would like to thank my mother, Connie, to whom this book is dedicated.
Without your hard work and sacrifice, I would not be where I am today. Thank you
for everything, Mom. I am thankful and appreciative of everything you’ve done for
my brother and me. I have been blessed to have you as my mother.

Preface | xvii

https://oreil.ly/sql-ckbk-2e
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

To my brother, Joe: Every time I came home from Baltimore to take a break from
writing, you were there to remind me how great things are when we’re not working,
and how I should finish writing so I can get back to the more important things in life.
You’re a good man, and I respect you. I am extremely proud of you, and proud to call
you my brother.

To my wonderful fiancée, Georgia: Without your support I would not have made it
through all 600-plus pages of this book. You were here sharing this experience with
me, day after day. I know it was just as hard on you as it was on me. I spent all day
working and all night writing, but you were great through it all. You were under‐
standing and supportive, and I am forever grateful. Thank you. I love you.

To my future in-laws: To my mother-in-law and father-in-law, Kiki and George, thank
you for your support throughout this whole experience. You always made me feel at
home whenever I took a break and came to visit, and you made sure Georgia and I
were always well fed. To my sister-in-laws, Anna and Kathy, it was always fun coming
home and hanging out with you guys, giving Georgia and I a much needed break
from the book and from Baltimore.

To my editor, Jonathan Gennick, without whom this book would not exist: Jonathan,
you deserve a tremendous amount of credit for this book. You went above and
beyond what an editor would normally do, and for that you deserve much thanks.
From supplying recipes to tons of rewrites to keeping things humorous despite
oncoming deadlines, I could not have done it without you. I am grateful to have had
you as my editor and grateful for the opportunity you have given me. An experienced
DBA and author yourself, it was a pleasure to work with someone of your technical
level and expertise. I can’t imagine there are too many editors out there who can, if
they decided to, stop editing and work practically anywhere as a database administra‐
tor (DBA); Jonathan can. Being a DBA certainly gives you an edge as an editor as you
usually know what I want to say even when I’m having trouble expressing it. O’Reilly
is lucky to have you on staff, and I am lucky to have you as an editor.

I would like to thank Ales Spetic and Jonathan Gennick for Transact-SQL Cookbook.
Isaac Newton famously said, “If I have seen a little further it is by standing on the
shoulders of giants.” In the acknowledgments section of the Transact-SQL Cookbook,
Ales Spetic wrote something that is a testament to this famous quote, and I feel
should be in every SQL book. I include his words here:

I hope that this book will complement the exiting opuses of outstanding authors like
Joe Celko, David Rozenshtein, Anatoly Abramovich, Eugine Berger, Iztik Ben-Gan,
Richard Snodgrass, and others. I spent many nights studying their work, and I learned
almost everything I know from their books. As I am writing these lines, I’m aware that
for every night I spent discovering their secrets, they must have spent 10 nights putting
their knowledge into a consistent and readable form. It is an honor to be able to give
something back to the SQL community.

xviii | Preface

I would like to thank Sanjay Mishra for his excellent Mastering Oracle SQL book, and
also for putting me in touch with Jonathan. If not for Sanjay, I may have never met
Jonathan and never would have written this book. Amazing how a simple email can
change your life. I would like to thank David Rozenshtein, especially, for his Essence
of SQL book, which provided me with a solid understanding of how to think and
problem solve in sets/SQL. I would like to thank David Rozenshtein, Anatoly Abra‐
movich, and Eugene Birger for their book Optimizing Transact-SQL, from which I
learned many of the advanced SQL techniques I use today.

I would like to thank the whole team at Wireless Generation, a great company with
great people. A big thank-you to all of the people who took the time to review, cri‐
tique, or offer advice to help me complete this book: Jesse Davis, Joel Patterson, Philip
Zee, Kevin Marshall, Doug Daniels, Otis Gospodnetic, Ken Gunn, John Stewart, Jim
Abramson, Adam Mayer, Susan Lau, Alexis Le-Quoc, and Paul Feuer. I would like to
thank Maggie Ho for her careful review of my work and extremely useful feedback
regarding the window function refresher. I would like to thank Chuck Van Buren and
Gillian Gutenberg for their great advice about running. Early morning workouts hel‐
ped me clear my mind and unwind. I don’t think I would have been able to finish this
book without getting out a bit. I would like to thank Steve Kang and Chad Levinson
for putting up with all my incessant talk about different SQL techniques on the nights
when all they wanted was to head to Union Square to get a beer and a burger at
Heartland Brewery after a long day of work. I would like to thank Aaron Boyd for all
his support, kind words, and, most importantly, good advice. Aaron is honest, hard‐
working, and a very straightforward guy; people like him make a company better. I
would like to thank Olivier Pomel for his support and help in writing this book, in
particular for the DB2 solution for creating delimited lists from rows. Olivier contrib‐
uted that solution without even having a DB2 system to test it! I explained to him
how the WITH clause worked, and minutes later he came up with the solution you
see in this book.

Jonah Harris and David Rozenshtein also provided helpful technical review feedback
on the manuscript. And Arun Marathe, Nuno Pinto do Souto, and Andrew Odewahn
weighed in on the outline and choice of recipes while this book was in its formative
stages. Thanks, very much, to all of you.

I want to thank John Haydu and the MODEL clause development team at Oracle
Corporation for taking the time to review the MODEL clause article I wrote for
O’Reilly, and for ultimately giving me a better understanding of how that clause
works. I would like to thank Tom Kyte of Oracle Corporation for allowing me to
adapt his TO_BASE function into a SQL-only solution. Bruno Denuit of Microsoft
answered questions I had regarding the functionality of the window functions intro‐
duced in SQL Server 2005. Simon Riggs of PostgreSQL kept me up-to-date about new
SQL features in PostgreSQL (very big thanks: Simon, by knowing what was coming
out and when, I was able to incorporate some new SQL features such as the ever-so-

Preface | xix

cool GENERATE_SERIES function, which I think made for more elegant solutions
compared to pivot tables).

Last but certainly not least, I’d like to thank Kay Young. When you are talented and
passionate about what you do, it is great to be able to work with people who are like‐
wise as talented and passionate. Many of the recipes you see in this text have come
from working with Kay and coming up with SQL solutions for everyday problems at
Wireless Generation. I want to thank you and let you know I absolutely appreciate all
the help you have given me throughout all of this; from advice to grammar correc‐
tions to code, you played an integral role in the writing of this book. It’s been great
working with you, and Wireless Generation is a better company because you are
there.

—Anthony Molinaro

xx | Preface

CHAPTER 1

Retrieving Records

This chapter focuses on basic SELECT statements. It is important to have a solid
understanding of the basics as many of the topics covered here are not only present in
more difficult recipes but are also found in everyday SQL.

1.1 Retrieving All Rows and Columns from a Table
Problem
You have a table and want to see all of the data in it.

Solution
Use the special * character and issue a SELECT against the table:

1 select *
2 from emp

Discussion
The character * has special meaning in SQL. Using it will return every column for the
table specified. Since there is no WHERE clause specified, every row will be returned
as well. The alternative would be to list each column individually:

select empno,ename,job,sal,mgr,hiredate,comm,deptno
 from emp

In ad hoc queries that you execute interactively, it’s easier to use SELECT *. However,
when writing program code, it’s better to specify each column individually. The per‐
formance will be the same, but by being explicit you will always know what columns
you are returning from the query. Likewise, such queries are easier to understand by

1

people other than yourself (who may or may not know all the columns in the tables in
the query). Problems with SELECT * can also arise if your query is within code, and
the program gets a different set of columns from the query than was expected. At
least, if you specify all columns and one or more is missing, any error thrown is more
likely to be traceable to the specific missing column(s).

1.2 Retrieving a Subset of Rows from a Table
Problem
You have a table and want to see only rows that satisfy a specific condition.

Solution
Use the WHERE clause to specify which rows to keep. For example, to view all
employees assigned to department number 10:

1 select *
2 from emp
3 where deptno = 10

Discussion
The WHERE clause allows you to retrieve only rows you are interested in. If the
expression in the WHERE clause is true for any row, then that row is returned.

Most vendors support common operators such as =, <, >, <=, >=, !, and <>. Addi‐
tionally, you may want rows that satisfy multiple conditions; this can be done by spec‐
ifying AND, OR, and parentheses, as shown in the next recipe.

1.3 Finding Rows That Satisfy Multiple Conditions
Problem
You want to return rows that satisfy multiple conditions.

Solution
Use the WHERE clause along with the OR and AND clauses. For example, if you
would like to find all the employees in department 10, along with any employees who
earn a commission, along with any employees in department 20 who earn at most
$2,000:

2 | Chapter 1: Retrieving Records

1 select *
2 from emp
3 where deptno = 10
4 or comm is not null
5 or sal <= 2000 and deptno=20

Discussion
You can use a combination of AND, OR, and parentheses to return rows that satisfy
multiple conditions. In the solution example, the WHERE clause finds rows such
that:

• The DEPTNO is 10
• The COMM is not NULL
• The salary is $2,000 or less for any employee in DEPTNO 20.

The presence of parentheses causes conditions within them to be evaluated together.

For example, consider how the result set changes if the query was written with the
parentheses as shown here:

select *
 from emp
where (deptno = 10
 or comm is not null
 or sal <= 2000
)
 and deptno=20

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
----- ------ ----- ----- ----------- ----- ---------- ------
 7369 SMITH CLERK 7902 17-DEC-1980 800 20
 7876 ADAMS CLERK 7788 12-JAN-1983 1100 20

1.4 Retrieving a Subset of Columns from a Table
Problem
You have a table and want to see values for specific columns rather than for all the
columns.

Solution
Specify the columns you are interested in. For example, to see only name, department
number, and salary for employees:

1 select ename,deptno,sal
2 from emp

1.4 Retrieving a Subset of Columns from a Table | 3

Discussion
By specifying the columns in the SELECT clause, you ensure that no extraneous data
is returned. This can be especially important when retrieving data across a network,
as it avoids the waste of time inherent in retrieving data that you do not need.

1.5 Providing Meaningful Names for Columns
Problem
You would like to change the names of the columns that are returned by your query
so they are more readable and understandable. Consider this query that returns the
salaries and commissions for each employee:

1 select sal,comm
2 from emp

What’s SAL? Is it short for sale? Is it someone’s name? What’s COMM? Is it communi‐
cation? You want the results to have more meaningful labels.

Solution
To change the names of your query results, use the AS keyword in the form
original_name AS new_name. Some databases do not require AS, but all accept it:

 1 select sal as salary, comm as commission
 2 from emp

SALARY COMMISSION
------- ----------
 800
 1600 300
 1250 500
 2975
 1250 1400
 2850
 2450
 3000
 5000
 1500 0
 1100
 950
 3000
 1300

Discussion
Using the AS keyword to give new names to columns returned by your query is
known as aliasing those columns. The new names that you give are known as aliases.

4 | Chapter 1: Retrieving Records

Creating good aliases can go a long way toward making a query and its results under‐
standable to others.

1.6 Referencing an Aliased Column in the WHERE Clause
Problem
You have used aliases to provide more meaningful column names for your result set
and would like to exclude some of the rows using the WHERE clause. However, your
attempt to reference alias names in the WHERE clause fails:

select sal as salary, comm as commission
 from emp
 where salary < 5000

Solution
By wrapping your query as an inline view, you can reference the aliased columns:

1 select *
2 from (
3 select sal as salary, comm as commission
4 from emp
5) x
6 where salary < 5000

Discussion
In this simple example, you can avoid the inline view and reference COMM or SAL
directly in the WHERE clause to achieve the same result. This solution introduces
you to what you would need to do when attempting to reference any of the following
in a WHERE clause:

• Aggregate functions
• Scalar subqueries
• Windowing functions
• Aliases

Placing your query, the one giving aliases, in an inline view gives you the ability to
reference the aliased columns in your outer query. Why do you need to do this? The
WHERE clause is evaluated before the SELECT; thus, SALARY and COMMISSION
do not yet exist when the “Problem” query’s WHERE clause is evaluated. Those
aliases are not applied until after the WHERE clause processing is complete. How‐
ever, the FROM clause is evaluated before the WHERE. By placing the original query
in a FROM clause, the results from that query are generated before the outermost

1.6 Referencing an Aliased Column in the WHERE Clause | 5

WHERE clause, and your outermost WHERE clause “sees” the alias names. This tech‐
nique is particularly useful when the columns in a table are not named particularly
well.

The inline view in this solution is aliased X. Not all databases
require an inline view to be explicitly aliased, but some do. All of
them accept it.

1.7 Concatenating Column Values
Problem
You want to return values in multiple columns as one column. For example, you
would like to produce this result set from a query against the EMP table:

CLARK WORKS AS A MANAGER
KING WORKS AS A PRESIDENT
MILLER WORKS AS A CLERK

However, the data that you need to generate this result set comes from two different
columns, the ENAME and JOB columns in the EMP table:

 select ename, job
 from emp
 where deptno = 10

ENAME JOB
---------- ---------
CLARK MANAGER
KING PRESIDENT
MILLER CLERK

Solution
Find and use the built-in function provided by your DBMS to concatenate values
from multiple columns.

DB2, Oracle, PostgreSQL
These databases use the double vertical bar as the concatenation operator:

1 select ename||' WORKS AS A '||job as msg
2 from emp
3 where deptno=10

6 | Chapter 1: Retrieving Records

MySQL
This database supports a function called CONCAT:

1 select concat(ename, ' WORKS AS A ',job) as msg
2 from emp
3 where deptno=10

SQL Server
Use the + operator for concatenation:

1 select ename + ' WORKS AS A ' + job as msg
2 from emp
3 where deptno=10

Discussion
Use the CONCAT function to concatenate values from multiple columns. The || is a
shortcut for the CONCAT function in DB2, Oracle, and PostgreSQL, while + is the
shortcut for SQL Server.

1.8 Using Conditional Logic in a SELECT Statement
Problem
You want to perform IF-ELSE operations on values in your SELECT statement. For
example, you would like to produce a result set such that if an employee is paid
$2,000 or less, a message of “UNDERPAID” is returned; if an employee is paid $4,000
or more, a message of “OVERPAID” is returned; and if they make somewhere in
between, then “OK” is returned. The result set should look like this:

 ENAME SAL STATUS
---------- ---------- ---------
SMITH 800 UNDERPAID
ALLEN 1600 UNDERPAID
WARD 1250 UNDERPAID
JONES 2975 OK
MARTIN 1250 UNDERPAID
BLAKE 2850 OK
CLARK 2450 OK
SCOTT 3000 OK
KING 5000 OVERPAID
TURNER 1500 UNDERPAID
ADAMS 1100 UNDERPAID
JAMES 950 UNDERPAID
FORD 3000 OK
MILLER 1300 UNDERPAID

1.8 Using Conditional Logic in a SELECT Statement | 7

Solution
Use the CASE expression to perform conditional logic directly in your SELECT
statement:

1 select ename,sal,
2 case when sal <= 2000 then 'UNDERPAID'
3 when sal >= 4000 then 'OVERPAID'
4 else 'OK'
5 end as status
6 from emp

Discussion
The CASE expression allows you to perform condition logic on values returned by a
query. You can provide an alias for a CASE expression to return a more readable
result set. In the solution, you’ll see the alias STATUS given to the result of the CASE
expression. The ELSE clause is optional. Omit the ELSE, and the CASE expression
will return NULL for any row that does not satisfy the test condition.

1.9 Limiting the Number of Rows Returned
Problem
You want to limit the number of rows returned in your query. You are not concerned
with order; any n rows will do.

Solution
Use the built-in function provided by your database to control the number of rows
returned.

DB2
In DB2 use the FETCH FIRST clause:

1 select *
2 from emp fetch first 5 rows only

MySQL and PostgreSQL
Do the same thing in MySQL and PostgreSQL using LIMIT:

1 select *
2 from emp limit 5

8 | Chapter 1: Retrieving Records

Oracle
In Oracle, place a restriction on the number of rows returned by restricting ROW‐
NUM in the WHERE clause:

1 select *
2 from emp
3 where rownum <= 5

SQL Server
Use the TOP keyword to restrict the number of rows returned:

1 select top 5 *
2 from emp

Discussion
Many vendors provide clauses such as FETCH FIRST and LIMIT that let you specify
the number of rows to be returned from a query. Oracle is different, in that you must
make use of a function called ROWNUM that returns a number for each row
returned (an increasing value starting from one).

Here is what happens when you use ROWNUM <= 5 to return the first five rows:

1. Oracle executes your query.
2. Oracle fetches the first row and calls it row number one.
3. Have we gotten past row number five yet? If no, then Oracle returns the row,

because it meets the criteria of being numbered less than or equal to five. If yes,
then Oracle does not return the row.

4. Oracle fetches the next row and advances the row number (to two, then to three,
then to four, and so forth).

5. Go to step 3.

As this process shows, values from Oracle’s ROWNUM are assigned after each row is
fetched. This is an important and key point. Many Oracle developers attempt to
return only, say, the fifth row returned by a query by specifying ROWNUM = 5.

Using an equality condition in conjunction with ROWNUM is a bad idea. Here is
what happens when you try to return, say, the fifth row using ROWNUM = 5:

1. Oracle executes your query.
2. Oracle fetches the first row and calls it row number one.
3. Have we gotten to row number five yet? If no, then Oracle discards the row,

because it doesn’t meet the criteria. If yes, then Oracle returns the row. But the
answer will never be yes!

1.9 Limiting the Number of Rows Returned | 9

4. Oracle fetches the next row and calls it row number one. This is because the first
row to be returned from the query must be numbered as one.

5. Go to step 3.

Study this process closely, and you can see why the use of ROWNUM = 5 to return
the fifth row fails. You can’t have a fifth row if you don’t first return rows one through
four!

You may notice that ROWNUM = 1 does, in fact, work to return the first row, which
may seem to contradict the explanation thus far. The reason ROWNUM = 1 works to
return the first row is that, to determine whether there are any rows in the table, Ora‐
cle has to attempt to fetch at least once. Read the preceding process carefully, substi‐
tuting one for five, and you’ll understand why it’s OK to specify ROWNUM = 1 as a
condition (for returning one row).

1.10 Returning n Random Records from a Table
Problem
You want to return a specific number of random records from a table. You want to
modify the following statement such that successive executions will produce a differ‐
ent set of five rows:

select ename, job
 from emp

Solution
Take any built-in function supported by your DBMS for returning random values.
Use that function in an ORDER BY clause to sort rows randomly. Then, use the pre‐
vious recipe’s technique to limit the number of randomly sorted rows to return.

DB2
Use the built-in function RAND in conjunction with ORDER BY and FETCH:

1 select ename,job
2 from emp
3 order by rand() fetch first 5 rows only

MySQL
Use the built-in RAND function in conjunction with LIMIT and ORDER BY:

1 select ename,job
2 from emp
3 order by rand() limit 5

10 | Chapter 1: Retrieving Records

PostgreSQL
Use the built-in RANDOM function in conjunction with LIMIT and ORDER BY:

 1 select ename,job
2 from emp
3 order by random() limit 5

Oracle
Use the built-in function VALUE, found in the built-in package DBMS_RANDOM,
in conjunction with ORDER BY and the built-in function ROWNUM:

1 select *
2 from (
3 select ename, job
4 from emp
6 order by dbms_random.value()
7)
8 where rownum <= 5

SQL Server
Use the built-in function NEWID in conjunction with TOP and ORDER BY to
return a random result set:

1 select top 5 ename,job
2 from emp
3 order by newid()

Discussion
The ORDER BY clause can accept a function’s return value and use it to change the
order of the result set. These solutions all restrict the number of rows to return after
the function in the ORDER BY clause is executed. Non-Oracle users may find it help‐
ful to look at the Oracle solution as it shows (conceptually) what is happening under
the covers of the other solutions.

It is important that you don’t confuse using a function in the ORDER BY clause with
using a numeric constant. When specifying a numeric constant in the ORDER BY
clause, you are requesting that the sort be done according the column in that ordinal
position in the SELECT list. When you specify a function in the ORDER BY clause,
the sort is performed on the result from the function as it is evaluated for each row.

1.11 Finding Null Values
Problem
You want to find all rows that are null for a particular column.

1.11 Finding Null Values | 11

Solution
To determine whether a value is null, you must use IS NULL:

1 select *
2 from emp
3 where comm is null

Discussion
NULL is never equal/not equal to anything, not even itself; therefore, you cannot use
= or != for testing whether a column is NULL. To determine whether a row has
NULL values, you must use IS NULL. You can also use IS NOT NULL to find rows
without a null in a given column.

1.12 Transforming Nulls into Real Values
Problem
You have rows that contain nulls and would like to return non-null values in place of
those nulls.

Solution
Use the function COALESCE to substitute real values for nulls:

1 select coalesce(comm,0)
2 from emp

Discussion
The COALESCE function takes one or more values as arguments. The function
returns the first non-null value in the list. In the solution, the value of COMM is
returned whenever COMM is not null. Otherwise, a zero is returned.

When working with nulls, it’s best to take advantage of the built-in functionality pro‐
vided by your DBMS; in many cases you’ll find several functions work equally as well
for this task. COALESCE happens to work for all DBMSs. Additionally, CASE can be
used for all DBMSs as well:

select case
 when comm is not null then comm
 else 0
 end
 from emp

While you can use CASE to translate nulls into values, you can see that it’s much eas‐
ier and more succinct to use COALESCE.

12 | Chapter 1: Retrieving Records

1.13 Searching for Patterns
Problem
You want to return rows that match a particular substring or pattern. Consider the
following query and result set:

select ename, job
 from emp
 where deptno in (10,20)

ENAME JOB
---------- ---------
SMITH CLERK
JONES MANAGER
CLARK MANAGER
SCOTT ANALYST
KING PRESIDENT
ADAMS CLERK
FORD ANALYST
MILLER CLERK

Of the employees in departments 10 and 20, you want to return only those that have
either an “I” somewhere in their name or a job title ending with “ER”:

ENAME JOB
---------- ---------
SMITH CLERK
JONES MANAGER
CLARK MANAGER
KING PRESIDENT
MILLER CLERK

Solution
Use the LIKE operator in conjunction with the SQL wildcard operator (%):

1 select ename, job
2 from emp
3 where deptno in (10,20)
4 and (ename like '%I%' or job like '%ER')

Discussion
When used in a LIKE pattern-match operation, the percent (%) operator matches any
sequence of characters. Most SQL implementations also provide the underscore (“_”)
operator to match a single character. By enclosing the search pattern “I” with % oper‐
ators, any string that contains an “I” (at any position) will be returned. If you do not
enclose the search pattern with %, then where you place the operator will affect the
results of the query. For example, to find job titles that end in “ER,” prefix the %

1.13 Searching for Patterns | 13

operator to “ER”; if the requirement is to search for all job titles beginning with “ER,”
then append the % operator to “ER.”

1.14 Summing Up
These recipes may be simple, but they are also fundamental. Information retrieval is
the core of database querying, and that means these recipes are at the heart of virtu‐
ally everything that is discussed throughout the rest of the book.

14 | Chapter 1: Retrieving Records

CHAPTER 2

Sorting Query Results

This chapter focuses on customizing how your query results look. By understanding
how to control how your result set is organized, you can provide more readable and
meaningful data.

2.1 Returning Query Results in a Specified Order
Problem
You want to display the names, jobs, and salaries of employees in department 10 in
order based on their salary (from lowest to highest). You want to return the following
result set:

ENAME JOB SAL
---------- --------- ----------
MILLER CLERK 1300
CLARK MANAGER 2450
KING PRESIDENT 5000

Solution
Use the ORDER BY clause:

1 select ename,job,sal
2 from emp
3 where deptno = 10
4 order by sal asc

Discussion
The ORDER BY clause allows you to order the rows of your result set. The solution
sorts the rows based on SAL in ascending order. By default, ORDER BY will sort in

15

ascending order, and the ASC clause is therefore optional. Alternatively, specify
DESC to sort in descending order:

select ename,job,sal
 from emp
 where deptno = 10
 order by sal desc

ENAME JOB SAL
---------- --------- ----------
KING PRESIDENT 5000
CLARK MANAGER 2450
MILLER CLERK 1300

You need not specify the name of the column on which to sort. You can instead spec‐
ify a number representing the column. The number starts at 1 and matches the items
in the SELECT list from left to right. For example:

select ename,job,sal
 from emp
 where deptno = 10
 order by 3 desc

ENAME JOB SAL
---------- --------- ----------
KING PRESIDENT 5000
CLARK MANAGER 2450
MILLER CLERK 1300

The number 3 in this example’s ORDER BY clause corresponds to the third column
in the SELECT list, which is SAL.

2.2 Sorting by Multiple Fields
Problem
You want to sort the rows from EMP first by DEPTNO ascending, then by salary
descending. You want to return the following result set:

 EMPNO DEPTNO SAL ENAME JOB
---------- ---------- ---------- ---------- ---------
 7839 10 5000 KING PRESIDENT
 7782 10 2450 CLARK MANAGER
 7934 10 1300 MILLER CLERK
 7788 20 3000 SCOTT ANALYST
 7902 20 3000 FORD ANALYST
 7566 20 2975 JONES MANAGER
 7876 20 1100 ADAMS CLERK
 7369 20 800 SMITH CLERK
 7698 30 2850 BLAKE MANAGER
 7499 30 1600 ALLEN SALESMAN

16 | Chapter 2: Sorting Query Results

 7844 30 1500 TURNER SALESMAN
 7521 30 1250 WARD SALESMAN
 7654 30 1250 MARTIN SALESMAN
 7900 30 950 JAMES CLERK

Solution
List the different sort columns in the ORDER BY clause, separated by commas:

1 select empno,deptno,sal,ename,job
2 from emp
3 order by deptno, sal desc

Discussion
The order of precedence in ORDER BY is from left to right. If you are ordering using
the numeric position of a column in the SELECT list, then that number must not be
greater than the number of items in the SELECT list. You are generally permitted to
order by a column not in the SELECT list, but to do so you must explicitly name the
column. However, if you are using GROUP BY or DISTINCT in your query, you can‐
not order by columns that are not in the SELECT list.

2.3 Sorting by Substrings
Problem
You want to sort the results of a query by specific parts of a string. For example, you
want to return employee names and jobs from table EMP and sort by the last two
characters in the JOB field. The result set should look like the following:

ENAME JOB
---------- ---------
KING PRESIDENT
SMITH CLERK
ADAMS CLERK
JAMES CLERK
MILLER CLERK
JONES MANAGER
CLARK MANAGER
BLAKE MANAGER
ALLEN SALESMAN
MARTIN SALESMAN
WARD SALESMAN
TURNER SALESMAN
SCOTT ANALYST
FORD ANALYST

2.3 Sorting by Substrings | 17

Solution

DB2, MySQL, Oracle, and PostgreSQL
Use the SUBSTR function in the ORDER BY clause:

select ename,job
 from emp
 order by substr(job,length(job)-1)

SQL Server
Use the SUBSTRING function in the ORDER BY clause:

select ename,job
 from emp
 order by substring(job,len(job)-1,2)

Discussion
Using your DBMS’s substring function, you can easily sort by any part of a string. To
sort by the last two characters of a string, find the end of the string (which is the
length of the string) and subtract two. The start position will be the second to last
character in the string. You then take all characters after that start position. SQL Serv‐
er’s SUBSTRING is different from the SUBSTR function as it requires a third parame‐
ter that specifies how many characters to take. In this example, any number greater
than or equal to two will work.

2.4 Sorting Mixed Alphanumeric Data
Problem
You have mixed alphanumeric data and want to sort by either the numeric or charac‐
ter portion of the data. Consider this view, created from the EMP table:

create view V
as
select ename||' '||deptno as data
 from emp

select * from V

DATA

SMITH 20
ALLEN 30
WARD 30
JONES 20
MARTIN 30

18 | Chapter 2: Sorting Query Results

BLAKE 30
CLARK 10
SCOTT 20
KING 10
TURNER 30
ADAMS 20
JAMES 30
FORD 20
MILLER 10

You want to sort the results by DEPTNO or ENAME. Sorting by DEPTNO produces
the following result set:

DATA

CLARK 10
KING 10
MILLER 10
SMITH 20
ADAMS 20
FORD 20
SCOTT 20
JONES 20
ALLEN 30
BLAKE 30
MARTIN 30
JAMES 30
TURNER 30
WARD 30

Sorting by ENAME produces the following result set:

DATA

ADAMS 20
ALLEN 30
BLAKE 30
CLARK 10
FORD 20
JAMES 30
JONES 20
KING 10
MARTIN 30
MILLER 10
SCOTT 20
SMITH 20
TURNER 30
WARD 30

2.4 Sorting Mixed Alphanumeric Data | 19

Solution

Oracle, SQL Server, and PostgreSQL
Use the functions REPLACE and TRANSLATE to modify the string for sorting:

/* ORDER BY DEPTNO */

1 select data
2 from V
3 order by replace(data,
4 replace(
5 translate(data,'0123456789','##########'),'#',''),'')

/* ORDER BY ENAME */

1 select data
2 from V
3 order by replace(
4 translate(data,'0123456789','##########'),'#','')

DB2
Implicit type conversion is more strict in DB2 than in Oracle or PostgreSQL, so you
will need to cast DEPTNO to a CHAR for view V to be valid. Rather than re-create
view V, this solution will simply use an inline view. The solution uses REPLACE and
TRANSLATE in the same way as the Oracle and PostrgreSQL solution, but the order
of arguments for TRANSLATE is slightly different for DB2:

/* ORDER BY DEPTNO */

1 select *
2 from (
3 select ename||' '||cast(deptno as char(2)) as data
4 from emp
5) v
6 order by replace(data,
7 replace(
8 translate(data,'##########','0123456789'),'#',''),'')

/* ORDER BY ENAME */

1 select *
2 from (
3 select ename||' '||cast(deptno as char(2)) as data
4 from emp
5) v
6 order by replace(
7 translate(data,'##########','0123456789'),'#','')

20 | Chapter 2: Sorting Query Results

MySQL
The TRANSLATE function is not currently supported by these platforms; thus, a sol‐
ution for this problem will not be provided.

Discussion
The TRANSLATE and REPLACE functions remove either the numbers or characters
from each row, allowing you to easily sort by one or the other. The values passed to
ORDER BY are shown in the following query results (using the Oracle solution as the
example, as the same technique applies to all three vendors; only the order of param‐
eters passed to TRANSLATE is what sets DB2 apart):

select data,
 replace(data,
 replace(
 translate(data,'0123456789','##########'),'#',''),'') nums,
 replace(
 translate(data,'0123456789','##########'),'#','') chars
 from V

DATA NUMS CHARS
------------ ------ ----------
SMITH 20 20 SMITH
ALLEN 30 30 ALLEN
WARD 30 30 WARD
JONES 20 20 JONES
MARTIN 30 30 MARTIN
BLAKE 30 30 BLAKE
CLARK 10 10 CLARK
SCOTT 20 20 SCOTT
KING 10 10 KING
TURNER 30 30 TURNER
ADAMS 20 20 ADAMS
JAMES 30 30 JAMES
FORD 20 20 FORD
MILLER 10 10 MILLER

2.5 Dealing with Nulls When Sorting
Problem
You want to sort results from EMP by COMM, but the field is nullable. You need a
way to specify whether nulls sort last:

ENAME SAL COMM
---------- ---------- ----------
TURNER 1500 0
ALLEN 1600 300
WARD 1250 500

2.5 Dealing with Nulls When Sorting | 21

MARTIN 1250 1400
SMITH 800
JONES 2975
JAMES 950
MILLER 1300
FORD 3000
ADAMS 1100
BLAKE 2850
CLARK 2450
SCOTT 3000
KING 5000

or whether they sort first:

ENAME SAL COMM
---------- ---------- ----------
SMITH 800
JONES 2975
CLARK 2450
BLAKE 2850
SCOTT 3000
KING 5000
JAMES 950
MILLER 1300
FORD 3000
ADAMS 1100
MARTIN 1250 1400
WARD 1250 500
ALLEN 1600 300
TURNER 1500 0

Solution
Depending on how you want the data to look and how your particular RDBMS sorts
NULL values, you can sort the nullable column in ascending or descending order:

1 select ename,sal,comm
2 from emp
3 order by 3

1 select ename,sal,comm
2 from emp
3 order by 3 desc

This solution puts you in a position such that if the nullable column contains non-
NULL values, they will be sorted in ascending or descending order as well, according
to what you ask for; this may or may not be what you have in mind. If instead you
would like to sort NULL values differently than non-NULL values, for example, you
want to sort non-NULL values in ascending or descending order and all NULL values
last, you can use a CASE expression to conditionally sort the column.

22 | Chapter 2: Sorting Query Results

DB2, MySQL, PostgreSQL, and SQL Server
Use a CASE expression to “flag” when a value is NULL. The idea is to have a flag with
two values: one to represent NULLs, the other to represent non-NULLs. Once you
have that, simply add this flag column to the ORDER BY clause. You’ll easily be able
to control whether NULL values are sorted first or last without interfering with non-
NULL values:

/* NON-NULL COMM SORTED ASCENDING, ALL NULLS LAST */

1 select ename,sal,comm
2 from (
3 select ename,sal,comm,
4 case when comm is null then 0 else 1 end as is_null
5 from emp
6) x
7 order by is_null desc,comm

ENAME SAL COMM
------ ----- ----------
TURNER 1500 0
ALLEN 1600 300
WARD 1250 500
MARTIN 1250 1400
SMITH 800
JONES 2975
JAMES 950
MILLER 1300
FORD 3000
ADAMS 1100
BLAKE 2850
CLARK 2450
SCOTT 3000
KING 5000

/* NON-NULL COMM SORTED DESCENDING, ALL NULLS LAST */

1 select ename,sal,comm
2 from (
3 select ename,sal,comm,
4 case when comm is null then 0 else 1 end as is_null
5 from emp
6) x
7 order by is_null desc,comm desc

ENAME SAL COMM
------ ----- ----------
MARTIN 1250 1400
WARD 1250 500
ALLEN 1600 300
TURNER 1500 0
SMITH 800

2.5 Dealing with Nulls When Sorting | 23

JONES 2975
JAMES 950
MILLER 1300
FORD 3000
ADAMS 1100
BLAKE 2850
CLARK 2450
SCOTT 3000
KING 5000

/* NON-NULL COMM SORTED ASCENDING, ALL NULLS FIRST */

1 select ename,sal,comm
2 from (
3 select ename,sal,comm,
4 case when comm is null then 0 else 1 end as is_null
5 from emp
6) x
7 order by is_null,comm

ENAME SAL COMM
------ ----- ----------
SMITH 800
JONES 2975
CLARK 2450
BLAKE 2850
SCOTT 3000
KING 5000
JAMES 950
MILLER 1300
FORD 3000
ADAMS 1100
TURNER 1500 0
ALLEN 1600 300
WARD 1250 500
MARTIN 1250 1400

/* NON-NULL COMM SORTED DESCENDING, ALL NULLS FIRST */

1 select ename,sal,comm
2 from (
3 select ename,sal,comm,
4 case when comm is null then 0 else 1 end as is_null
5 from emp
6) x
7 order by is_null,comm desc

ENAME SAL COMM
------ ----- ----------
SMITH 800
JONES 2975
CLARK 2450

24 | Chapter 2: Sorting Query Results

BLAKE 2850
SCOTT 3000
KING 5000
JAMES 950
MILLER 1300
FORD 3000
ADAMS 1100
MARTIN 1250 1400
WARD 1250 500
ALLEN 1600 300
TURNER 1500 0

Oracle
Oracle users can use the solution for the other platforms. They can also use the fol‐
lowing Oracle-only solution, taking advantage of the NULLS FIRST and NULLS
LAST extension to the ORDER BY clause to ensure NULLs are sorted first or last
regardless of how non-NULL values are sorted:

/* NON-NULL COMM SORTED ASCENDING, ALL NULLS LAST */

1 select ename,sal,comm
2 from emp
3 order by comm nulls last

ENAME SAL COMM
------ ----- ---------
TURNER 1500 0
ALLEN 1600 300
WARD 1250 500
MARTIN 1250 1400
SMITH 800
JONES 2975
JAMES 950
MILLER 1300
FORD 3000
ADAMS 1100
BLAKE 2850
CLARK 2450
SCOTT 3000
KING 5000

/* NON-NULL COMM SORTED ASCENDING, ALL NULLS FIRST */

1 select ename,sal,comm
2 from emp
3 order by comm nulls first

ENAME SAL COMM
------ ----- ----------
SMITH 800
JONES 2975

2.5 Dealing with Nulls When Sorting | 25

CLARK 2450
BLAKE 2850
SCOTT 3000
KING 5000
JAMES 950
MILLER 1300
FORD 3000
ADAMS 1100
TURNER 1500 0
ALLEN 1600 300
WARD 1250 500
MARTIN 1250 1400

/* NON-NULL COMM SORTED DESCENDING, ALL NULLS FIRST */

1 select ename,sal,comm
2 from emp
3 order by comm desc nulls first

ENAME SAL COMM
------ ----- ----------
SMITH 800
JONES 2975
CLARK 2450
BLAKE 2850
SCOTT 3000
KING 5000
JAMES 950
MILLER 1300
FORD 3000
ADAMS 1100
MARTIN 1250 1400
WARD 1250 500
ALLEN 1600 300
TURNER 1500 0

Discussion
Unless your RDBMS provides you with a way to easily sort NULL values first or last
without modifying non-NULL values in the same column (as Oracle does), you’ll
need an auxiliary column.

As of the time of this writing, DB2 users can use NULLS FIRST
and NULLS LAST in the ORDER BY subclause of the OVER clause
in window functions but not in the ORDER BY clause for the
entire result set.

26 | Chapter 2: Sorting Query Results

The purpose of this extra column (in the query only, not in the table) is to allow you
to identify NULL values and sort them altogether, first or last. The following query
returns the result set for inline view X for the non-Oracle solution:

select ename,sal,comm,
 case when comm is null then 0 else 1 end as is_null
 from emp

ENAME SAL COMM IS_NULL
------ ----- ---------- ----------
SMITH 800 0
ALLEN 1600 300 1
WARD 1250 500 1

JONES 2975 0
MARTIN 1250 1400 1
BLAKE 2850 0
CLARK 2450 0
SCOTT 3000 0
KING 5000 0
TURNER 1500 0 1
ADAMS 1100 0
JAMES 950 0
FORD 3000 0
MILLER 1300 0

By using the values returned by IS_NULL, you can easily sort NULLS first or last
without interfering with the sorting of COMM.

2.6 Sorting on a Data-Dependent Key
Problem
You want to sort based on some conditional logic. For example, if JOB is SALES‐
MAN, you want to sort on COMM; otherwise, you want to sort by SAL. You want to
return the following result set:

ENAME SAL JOB COMM
---------- ---------- --------- ----------
TURNER 1500 SALESMAN 0
ALLEN 1600 SALESMAN 300
WARD 1250 SALESMAN 500
SMITH 800 CLERK
JAMES 950 CLERK
ADAMS 1100 CLERK
MILLER 1300 CLERK
MARTIN 1250 SALESMAN 1400
CLARK 2450 MANAGER
BLAKE 2850 MANAGER
JONES 2975 MANAGER

2.6 Sorting on a Data-Dependent Key | 27

SCOTT 3000 ANALYST
FORD 3000 ANALYST
KING 5000 PRESIDENT

Solution
Use a CASE expression in the ORDER BY clause:

1 select ename,sal,job,comm
2 from emp
3 order by case when job = 'SALESMAN' then comm else sal end

Discussion
You can use the CASE expression to dynamically change how results are sorted. The
values passed to the ORDER BY look as follows:

select ename,sal,job,comm,
 case when job = 'SALESMAN' then comm else sal end as ordered
 from emp
 order by 5

ENAME SAL JOB COMM ORDERED
---------- ---------- --------- ---------- ----------
TURNER 1500 SALESMAN 0 0
ALLEN 1600 SALESMAN 300 300
WARD1 250 SALESMAN 500 500
SMITH 800 CLERK 800
JAMES 950 CLERK 950
ADAMS 1100 CLERK 1100
MILLER 1300 CLERK 1300
MARTIN 1250 SALESMAN 1400 1400
CLARK2 450 MANAGER 2450
BLAKE2 850 MANAGER 2850
JONES2 975 MANAGER 2975
SCOTT 3000 ANALYST 3000
FORD 3000 ANALYST 3000
KING 5000 PRESIDENT 5000

2.7 Summing Up
Sorting query results is one of the core skills for any user of SQL. The ORDER BY
clause can be very powerful, but as we have seen in this chapter, still often requires
some nuance to use effectively. It’s important to master its use, as many of the recipes
in the later chapters depend on it.

28 | Chapter 2: Sorting Query Results

CHAPTER 3

Working with Multiple Tables

This chapter introduces the use of joins and set operations to combine data from
multiple tables. Joins are the foundation of SQL. Set operations are also important. If
you want to master the complex queries found in the later chapters of this book, you
must start here, with joins and set operations.

3.1 Stacking One Rowset atop Another
Problem
You want to return data stored in more than one table, conceptually stacking one
result set atop the other. The tables do not necessarily have a common key, but their
columns do have the same data types. For example, you want to display the name and
department number of the employees in department 10 in table EMP, along with the
name and department number of each department in table DEPT. You want the result
set to look like the following:

ENAME_AND_DNAME DEPTNO
--------------- ----------
CLARK 10
KING 10
MILLER 10

ACCOUNTING 10
RESEARCH 20
SALES 30
OPERATIONS 40

Solution
Use the set operation UNION ALL to combine rows from multiple tables:

29

1 select ename as ename_and_dname, deptno
2 from emp
3 where deptno = 10
4 union all
5 select '----------', null
6 from t1
7 union all
8 select dname, deptno
9 from dept

Discussion
UNION ALL combines rows from multiple row sources into one result set. As with
all set operations, the items in all the SELECT lists must match in number and data
type. For example, both of the following queries will fail:

select deptno | select deptno, dname
 from dept | from dept
 union all | union all
select ename | select deptno
 from emp | from emp

It is important to note, UNION ALL will include duplicates if they exist. If you want
to filter out duplicates, use the UNION operator. For example, a UNION between
EMP.DEPTNO and DEPT.DEPTNO returns only four rows:

select deptno
 from emp
 union
select deptno
 from dept

 DEPTNO

 10
 20
 30
 40

Specifying UNION rather than UNION ALL will most likely result in a sort opera‐
tion to eliminate duplicates. Keep this in mind when working with large result sets.
Using UNION is roughly equivalent to the following query, which applies DISTINCT
to the output from a UNION ALL:

select distinct deptno
 from (
select deptno
 from emp
 union all
select deptno
 from dept
)

30 | Chapter 3: Working with Multiple Tables

 DEPTNO

 10
 20
 30
 40

You wouldn’t use DISTINCT in a query unless you had to, and the same rule applies
for UNION: don’t use it instead of UNION ALL unless you have to. For example,
although in this book we have limited the number of tables for teaching purposes, in
real life if you are querying one table, there may be a more suitable way to query a
single table.

3.2 Combining Related Rows
Problem
You want to return rows from multiple tables by joining on a known common col‐
umn or joining on columns that share common values. For example, you want to dis‐
play the names of all employees in department 10 along with the location of each
employee’s department, but that data is stored in two separate tables. You want the
result set to be the following:

ENAME LOC
---------- ----------
CLARK NEW YORK
KING NEW YORK
MILLER NEW YORK

Solution
Join table EMP to table DEPT on DEPTNO:

1 select e.ename, d.loc
2 from emp e, dept d
3 where e.deptno = d.deptno
4 and e.deptno = 10

Discussion
The solution is an example of a join, or more accurately an equi-join, which is a type
of inner join. A join is an operation that combines rows from two tables into one. An
equi-join is one in which the join condition is based on an equality condition (e.g.,
where one department number equals another). An inner join is the original type of
join; each row returned contains data from each table.

3.2 Combining Related Rows | 31

Conceptually, the result set from a join is produced by first creating a Cartesian prod‐
uct (all possible combinations of rows) from the tables listed in the FROM clause, as
shown here:

select e.ename, d.loc,
 e.deptno as emp_deptno,
 d.deptno as dept_deptno
 from emp e, dept d
 where e.deptno = 10

ENAME LOC EMP_DEPTNO DEPT_DEPTNO
---------- ------------- ---------- -----------
CLARK NEW YORK 10 10
KING NEW YORK 10 10
MILLER NEW YORK 10 10
CLARK DALLAS 10 20

KING DALLAS 10 20
MILLER DALLAS 10 20
CLARK CHICAGO 10 30
KING CHICAGO 10 30
MILLER CHICAGO 10 30
CLARK BOSTON 10 40
KING BOSTON 10 40
MILLER BOSTON 10 40

Every employee in table EMP (in department 10) is returned along with every depart‐
ment in table DEPT. Then, the expression in the WHERE clause involving e.deptno
and d.deptno (the join) restricts the result set such that the only rows returned are the
ones where EMP.DEPTNO and DEPT.DEPTNO are equal:

select e.ename, d.loc,
 e.deptno as emp_deptno,
 d.deptno as dept_deptno
 from emp e, dept d
 where e.deptno = d.deptno
 and e.deptno = 10

ENAME LOC EMP_DEPTNO DEPT_DEPTNO
---------- -------------- ---------- -----------
CLARK NEW YORK 10 10
KING NEW YORK 10 10
MILLER NEW YORK 10 10

An alternative solution makes use of an explicit JOIN clause (the INNER keyword is
optional):

select e.ename, d.loc
 from emp e inner join dept d
 on (e.deptno = d.deptno)
 where e.deptno = 10

32 | Chapter 3: Working with Multiple Tables

Use the JOIN clause if you prefer to have the join logic in the FROM clause rather
than the WHERE clause. Both styles are ANSI compliant and work on all the latest
versions of the RDBMSs in this book.

3.3 Finding Rows in Common Between Two Tables
Problem
You want to find common rows between two tables, but there are multiple columns
on which you can join. For example, consider the following view V created from the
EMP table for teaching purposes:

create view V
as
select ename,job,sal
 from emp
 where job = 'CLERK'

 select * from V

ENAME JOB SAL
---------- --------- ----------
SMITH CLERK 800
ADAMS CLERK 1100
JAMES CLERK 950
MILLER CLERK 1300

Only clerks are returned from view V. However, the view does not show all possible
EMP columns. You want to return the EMPNO, ENAME, JOB, SAL, and DEPTNO of
all employees in EMP that match the rows from view V. You want the result set to be
the following:

 EMPNO ENAME JOB SAL DEPTNO
-------- ---------- --------- ---------- ---------
 7369 SMITH CLERK 800 20
 7876 ADAMS CLERK 1100 20
 7900 JAMES CLERK 950 30
 7934 MILLER CLERK 1300 10

Solution
Join the tables on all the columns necessary to return the correct result. Alternatively,
use the set operation INTERSECT to avoid performing a join and instead return the
intersection (common rows) of the two tables.

MySQL and SQL Server
Join table EMP to view V using multiple join conditions:

3.3 Finding Rows in Common Between Two Tables | 33

1 select e.empno,e.ename,e.job,e.sal,e.deptno
2 from emp e, V
3 where e.ename = v.ename
4 and e.job = v.job
5 and e.sal = v.sal

Alternatively, you can perform the same join via the JOIN clause:

1 select e.empno,e.ename,e.job,e.sal,e.deptno
2 from emp e join V
3 on (e.ename = v.ename
4 and e.job = v.job
5 and e.sal = v.sal)

DB2, Oracle, and PostgreSQL
The MySQL and SQL Server solution also works for DB2, Oracle, and PostgreSQL.
It’s the solution you should use if you need to return values from view V.

If you do not actually need to return columns from view V, you may use the set oper‐
ation INTERSECT along with an IN predicate:

1 select empno,ename,job,sal,deptno
2 from emp
3 where (ename,job,sal) in (
4 select ename,job,sal from emp
5 intersect
6 select ename,job,sal from V
7)

Discussion
When performing joins, you must consider the proper columns to join in order to
return correct results. This is especially important when rows can have common val‐
ues for some columns while having different values for others.

The set operation INTERSECT will return rows common to both row sources. When
using INTERSECT, you are required to compare the same number of items, having
the same data type, from two tables. When working with set operations, keep in mind
that, by default, duplicate rows will not be returned.

3.4 Retrieving Values from One Table That Do Not Exist in
Another
Problem
You want to find those values in one table, call it the source table, that do not also
exist in some target table. For example, you want to find which departments (if any)

34 | Chapter 3: Working with Multiple Tables

in table DEPT do not exist in table EMP. In the example data, DEPTNO 40 from table
DEPT does not exist in table EMP, so the result set should be the following:

 DEPTNO

 40

Solution
Having functions that perform set difference is particularly useful for this problem.
DB2, PostgreSQL, SQL Server, and Oracle all support set difference operations. If
your DBMS does not support a set difference function, use a subquery as shown for
MySQL.

DB2, PostgreSQL, and SQL Server
Use the set operation EXCEPT:

1 select deptno from dept
2 except
3 select deptno from emp

Oracle
Use the set operation MINUS:

1 select deptno from dept
2 minus
3 select deptno from emp

MySQL
Use a subquery to return all DEPTNOs from table EMP into an outer query that
searches table DEPT for rows that are not among the rows returned from the
subquery:

1 select deptno
2 from dept
3 where deptno not in (select deptno from emp)

Discussion

DB2, PostgreSQL, and SQL Server
Set difference functions make this operation easy. The EXCEPT operator takes the
first result set and removes from it all rows found in the second result set. The opera‐
tion is very much like a subtraction.

There are restrictions on the use of set operators, including EXCEPT. Data types and
number of values to compare must match in both SELECT lists. Additionally,

3.4 Retrieving Values from One Table That Do Not Exist in Another | 35

EXCEPT will not return duplicates and, unlike a subquery using NOT IN, NULLs do
not present a problem (see the discussion for MySQL). The EXCEPT operator will
return rows from the upper query (the query before the EXCEPT) that do not exist in
the lower query (the query after the EXCEPT).

Oracle
The Oracle solution is identical to the solution using the EXCEPT operator; however,
Oracle calls its set difference operator MINUS instead of EXCEPT. Otherwise, the
preceding explanation applies to Oracle as well.

MySQL
The subquery will return all DEPTNOs from table EMP. The outer query returns all
DEPTNOs from table DEPT that are “not in” or “not included in” the result set
returned from the subquery.

Duplicate elimination is something you’ll want to consider when using the MySQL
solutions. The EXCEPT- and MINUS-based solutions used for the other platforms
eliminate duplicate rows from the result set, ensuring that each DEPTNO is reported
only one time. Of course, that can only be the case anyway, as DEPTNO is a key field
in my example data. Were DEPTNO not a key field, you could use DISTINCT as fol‐
lows to ensure that each DEPTNO value missing from EMP is reported only once:

select distinct deptno
 from dept
 where deptno not in (select deptno from emp)

Be mindful of NULLs when using NOT IN. Consider the following table,
NEW_DEPT:

create table new_dept(deptno integer)
insert into new_deptvalues (10)
insert into new_dept values (50)
insert into new_dept values (null)

If you try to find the DEPTNOs in table DEPT that do not exist in table NEW_DEPT
and use a subquery with NOT IN, you’ll find that the query returns no rows:

select *
 from dept
 where deptno not in (select deptno from new_dept)

DEPTNOs 20, 30, and 40 are not in table NEW_DEPT, yet were not returned by the
query. Why? The reason is the NULL value present in table NEW_DEPT. Three rows
are returned by the subquery, with DEPTNOs of 10, 50, and NULL. IN and NOT IN
are essentially OR operations and will yield different results because of how NULL
values are treated by logical OR evaluations.

36 | Chapter 3: Working with Multiple Tables

To understand this, examine these truth tables (Let T=true, F=false, N=null):

 OR | T | F | N |
+----+---+---+----+
T	T	T	T
F	T	F	N
N	T	N	N
+----+---+---+----+

 NOT |
+-----+---+
T	F
F	T
N	N
+-----+---+

 AND | T | F | N |
+-----+---+---+---+
T	T	F	N
F	F	F	F
N	N	F	N
+-----+---+---+---+

Now consider the following example using IN and its equivalent using OR:

select deptno
 from dept
 where deptno in (10,50,null)

 DEPTNO

 10

select deptno
 from dept
 where (deptno=10 or deptno=50 or deptno=null)

DEPTNO

 10

Why was only DEPTNO 10 returned? There are four DEPTNOs in DEPT, (10, 20, 30,
40), and each one is evaluated against the predicate (deptno=10 or deptno=50 or
deptno=null). According to the preceding truth tables, for each DEPTNO (10, 20, 30,
40), the predicate yields:

DEPTNO=10
(deptno=10 or deptno=50 or deptno=null)
= (10=10 or 10=50 or 10=null)
= (T or F or N)
= (T or N)
= (T)

3.4 Retrieving Values from One Table That Do Not Exist in Another | 37

DEPTNO=20
(deptno=10 or deptno=50 or deptno=null)
= (20=10 or 20=50 or 20=null)
= (F or F or N)
= (F or N)
= (N)

DEPTNO=30
(deptno=10 or deptno=50 or deptno=null)
= (30=10 or 30=50 or 30=null)
= (F or F or N)
= (F or N)
= (N)

DEPTNO=40
(deptno=10 or deptno=50 or deptno=null)
= (40=10 or 40=50 or 40=null)
= (F or F or N)
= (F or N)
= (N)

Now it is obvious why only DEPTNO 10 was returned when using IN and OR. Next,
consider the same example using NOT IN and NOT OR:

select deptno
 from dept
 where deptno not in (10,50,null)

(no rows)

select deptno
 from dept
 where not (deptno=10 or deptno=50 or deptno=null)

(no rows)

Why are no rows returned? Let’s check the truth tables:

DEPTNO=10
NOT (deptno=10 or deptno=50 or deptno=null)
= NOT (10=10 or 10=50 or 10=null)
= NOT (T or F or N)
= NOT (T or N)
= NOT (T)
= (F)

DEPTNO=20
NOT (deptno=10 or deptno=50 or deptno=null)
= NOT (20=10 or 20=50 or 20=null)
= NOT (F or F or N)
= NOT (F or N)
= NOT (N)
= (N)

38 | Chapter 3: Working with Multiple Tables

DEPTNO=30
NOT (deptno=10 or deptno=50 or deptno=null)
= NOT (30=10 or 30=50 or 30=null)
= NOT (F or F or N)
= NOT (F or N)
= NOT (N)
= (N)

DEPTNO=40
NOT (deptno=10 or deptno=50 or deptno=null)
= NOT (40=10 or 40=50 or 40=null)
= NOT (F or F or N)
= NOT (F or N)
= NOT (N)
= (N)

In SQL, “TRUE or NULL” is TRUE, but “FALSE or NULL” is NULL! You must keep
this in mind when using IN predicates, and when performing logical OR evaluations
and NULL values are involved.

To avoid the problem with NOT IN and NULLs, use a correlated subquery in con‐
junction with NOT EXISTS. The term correlated subquery is used because rows from
the outer query are referenced in the subquery. The following example is an alterna‐
tive solution that will not be affected by NULL rows (going back to the original query
from the “Problem” section):

select d.deptno
 from dept d
 where not exists (
 select 1
 from emp e
 where d.deptno = e.deptno
)

DEPTNO

40

select d.deptno
 from dept d
 where not exists (
 select 1
 from new_dept nd
 where d.deptno = nd.deptno
)

DEPTNO

30
40
20

3.4 Retrieving Values from One Table That Do Not Exist in Another | 39

Conceptually, the outer query in this solution considers each row in the DEPT table.
For each DEPT row, the following happens:

1. The subquery is executed to see whether the department number exists in the
EMP table. Note the condition D.DEPTNO = E.DEPTNO, which brings together
the department numbers from the two tables.

2. If the subquery returns results, then EXISTS (…) evaluates to true and NOT
EXISTS (…) thus evaluates to FALSE, and the row being considered by the outer
query is discarded.

3. If the subquery returns no results, then NOT EXISTS (…) evaluates to TRUE,
and the row being considered by the outer query is returned (because it is for a
department not represented in the EMP table).

The items in the SELECT list of the subquery are unimportant when using a correla‐
ted subquery with EXISTS/NOT EXISTS, which is why we chose to select NULL, to
force you to focus on the join in the subquery rather than the items in the SELECT
list.

3.5 Retrieving Rows from One Table That Do Not
Correspond to Rows in Another
Problem
You want to find rows that are in one table that do not have a match in another table,
for two tables that have common keys. For example, you want to find which depart‐
ments have no employees. The result set should be the following:

 DEPTNO DNAME LOC
---------- -------------- -------------
 40 OPERATIONS BOSTON

Finding the department each employee works in requires an equi-join on DEPTNO
from EMP to DEPT. The DEPTNO column represents the common value between
tables. Unfortunately, an equi-join will not show you which department has no
employees. That’s because by equi-joining EMP and DEPT you are returning all rows
that satisfy the join condition. Instead, you want only those rows from DEPT that do
not satisfy the join condition.

This is a subtly different problem than in the preceding recipe, though at first glance
they may seem the same. The difference is that the preceding recipe yields only a list
of department numbers not represented in table EMP. Using this recipe, however, you
can easily return other columns from the DEPT table; you can return more than just
department numbers.

40 | Chapter 3: Working with Multiple Tables

Solution
Return all rows from one table along with rows from another that may or may not
have a match on the common column. Then, keep only those rows with no match.

DB2, MySQL, PostgreSQL, and SQL Server
Use an outer join and filter for NULLs (keyword OUTER is optional):

1 select d.*
2 from dept d left outer join emp e
3 on (d.deptno = e.deptno)
4 where e.deptno is null

Discussion
This solution works by outer joining and then keeping only rows that have no match.
This sort of operation is sometimes called an anti-join. To get a better idea of how an
anti-join works, first examine the result set without filtering for NULLs:

select e.ename, e.deptno as emp_deptno, d.*
 from dept d left join emp e
 on (d.deptno = e.deptno)

ENAME EMP_DEPTNO DEPTNO DNAME LOC
---------- ---------- ---------- -------------- -------------
SMITH 20 20 RESEARCH DALLAS
ALLEN 30 30 SALES CHICAGO
WARD 30 30 SALES CHICAGO
JONES 20 20 RESEARCH DALLAS
MARTIN 30 30 SALES CHICAGO
BLAKE 30 30 SALES CHICAGO
CLARK 10 10 ACCOUNTING NEW YORK
SCOTT 20 20 RESEARCH DALLAS
KING 10 10 ACCOUNTING NEW YORK
TURNER 30 30 SALES CHICAGO
ADAMS 20 20 RESEARCH DALLAS
JAMES 30 30 SALES CHICAGO
FORD 20 20 RESEARCH DALLAS
MILLER 10 10 ACCOUNTING NEW YORK
 40 OPERATIONS BOSTON

Notice, the last row has a NULL value for EMP.ENAME and EMP_DEPTNO. That’s
because no employees work in department 40. The solution uses the WHERE clause
to keep only rows where EMP_DEPTNO is NULL (thus keeping only rows from
DEPT that have no match in EMP).

3.5 Retrieving Rows from One Table That Do Not Correspond to Rows in Another | 41

3.6 Adding Joins to a Query Without Interfering with
Other Joins
Problem
You have a query that returns the results you want. You need additional information,
but when trying to get it, you lose data from the original result set. For example, you
want to return all employees, the location of the department in which they work, and
the date they received a bonus. For this problem, the EMP_BONUS table contains the
following data:

select * from emp_bonus

 EMPNO RECEIVED TYPE
 ---------- ----------- ----------
 7369 14-MAR-2005 1
 7900 14-MAR-2005 2
 7788 14-MAR-2005 3

The query you start with looks like this:

select e.ename, d.loc
 from emp e, dept d
 where e.deptno=d.deptno

 ENAME LOC
 ---------- -------------
 SMITH DALLAS
 ALLEN CHICAGO
 WARD CHICAGO
 JONES DALLAS
 MARTIN CHICAGO
 BLAKE CHICAGO
 CLARK NEW YORK
 SCOTT DALLAS
 KING NEW YORK
 TURNER CHICAGO
 ADAMS DALLAS
 JAMES CHICAGO
 FORD DALLAS
 MILLER NEW YORK

You want to add to these results the date a bonus was given to an employee, but join‐
ing to the EMP_BONUS table returns fewer rows than you want because not every
employee has a bonus:

select e.ename, d.loc,eb.received
 from emp e, dept d, emp_bonus eb
 where e.deptno=d.deptno
 and e.empno=eb.empno

42 | Chapter 3: Working with Multiple Tables

ENAME LOC RECEIVED
---------- ------------- -----------
SCOTT DALLAS 14-MAR-2005
SMITH DALLAS 14-MAR-2005
JAMES CHICAGO 14-MAR-2005

Your desired result set is the following:

ENAME LOC RECEIVED
---------- ------------- -----------
ALLEN CHICAGO
WARD CHICAGO
MARTIN CHICAGO
JAMES CHICAGO 14-MAR-2005
TURNER CHICAGO
BLAKE CHICAGO
SMITH DALLAS 14-MAR-2005
FORD DALLAS
ADAMS DALLAS
JONES DALLAS
SCOTT DALLAS 14-MAR-2005
CLARK NEW YORK
KING NEW YORK
MILLER NEW YORK

Solution
You can use an outer join to obtain the additional information without losing the data
from the original query. First join table EMP to table DEPT to get all employees and
the location of the department they work, then outer join to table EMP_ BONUS to
return the date of the bonus if there is one. The following is the DB2, MySQL, Post‐
greSQL, and SQL server syntax:

1 select e.ename, d.loc, eb.received
2 from emp e join dept d
3 on (e.deptno=d.deptno)
4 left join emp_bonus eb
5 on (e.empno=eb.empno)
6 order by 2

You can also use a scalar subquery (a subquery placed in the SELECT list) to mimic
an outer join:

1 select e.ename, d.loc,
2 (select eb.received from emp_bonus eb
3 where eb.empno=e.empno) as received
4 from emp e, dept d
5 where e.deptno=d.deptno
6 order by 2

The scalar subquery solution will work across all platforms.

3.6 Adding Joins to a Query Without Interfering with Other Joins | 43

Discussion
An outer join will return all rows from one table and matching rows from another.
See the previous recipe for another example of such a join. The reason an outer join
works to solve this problem is that it does not result in any rows being eliminated that
would otherwise be returned. The query will return all the rows it would return
without the outer join. And it also returns the received date, if one exists.

Use of a scalar subquery is also a convenient technique for this sort of problem, as it
does not require you to modify already correct joins in your main query. Using a
scalar subquery is an easy way to tack on extra data to a query without compromising
the current result set. When working with scalar subqueries, you must ensure they
return a scalar (single) value. If a subquery in the SELECT list returns more than one
row, you will receive an error.

See Also
See Recipe 14.10 for a workaround to the problem of not being able to return multi‐
ple rows from a SELECT-list subquery.

3.7 Determining Whether Two Tables Have the Same Data
Problem
You want to know whether two tables or views have the same data (cardinality and
values). Consider the following view:

create view V
as
select * from emp where deptno != 10
 union all
select * from emp where ename = 'WARD'

select * from V

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
----- ---------- --------- ----- ----------- ----- ----- ------
 7369 SMITH CLERK 7902 17-DEC-2005 800 20
 7499 ALLEN SALESMAN 7698 20-FEB-2006 1600 300 30
 7521 WARD SALESMAN 7698 22-FEB-2006 1250 500 30
 7566 JONES MANAGER 7839 02-APR-2006 2975 20
 7654 MARTIN SALESMAN 7698 28-SEP-2006 1250 1400 30
 7698 BLAKE MANAGER 7839 01-MAY-2006 2850 30
 7788 SCOTT ANALYST 7566 09-DEC-2007 3000 20
 7844 TURNER SALESMAN 7698 08-SEP-2006 1500 0 30
 7876 ADAMS CLERK 7788 12-JAN-2008 1100 20
 7900 JAMES CLERK 7698 03-DEC-2006 950 30

44 | Chapter 3: Working with Multiple Tables

 7902 FORD ANALYST 7566 03-DEC-2006 3000 20
 7521 WARD SALESMAN 7698 22-FEB-2006 1250 500 30

You want to determine whether this view has exactly the same data as table EMP. The
row for employee WARD is duplicated to show that the solution will reveal not only
different data but duplicates as well. Based on the rows in table EMP, the difference
will be the three rows for employees in department 10 and the two rows for employee
WARD. You want to return the following result set:

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT
----- ---------- --------- ----- ----------- ----- ----- ------ ---
 7521 WARD SALESMAN 7698 22-FEB-2006 1250 500 30 1
 7521 WARD SALESMAN 7698 22-FEB-2006 1250 500 30 2
 7782 CLARK MANAGER 7839 09-JUN-2006 2450 10 1
 7839 KING PRESIDENT 17-NOV-2006 5000 10 1
 7934 MILLER CLERK 7782 23-JAN-2007 1300 10 1

Solution
Functions that perform SET difference MINUS or EXCEPT, depending on your
DBMS, make the problem of comparing tables a relatively easy one to solve. If your
DBMS does not offer such functions, you can use a correlated subquery.

DB2 and PostgreSQL
Use the set operations EXCEPT and UNION ALL to find the difference between view
V and table EMP combined with the difference between table EMP and view V:

 1 (
 2 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 3 count(*) as cnt
 4 from V
 5 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
 6 except
 7 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 8 count(*) as cnt
 9 from emp
10 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
11)
12 union all
13 (
14 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
15 count(*) as cnt
16 from emp
17 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
18 except
19 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
20 count(*) as cnt
21 from v
22 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
23)

3.7 Determining Whether Two Tables Have the Same Data | 45

Oracle
Use the set operations MINUS and UNION ALL to find the difference between view
V and table EMP combined with the difference between table EMP and view V:

 1 (
 2 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 3 count(*) as cnt
 4 from V
 5 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
 6 minus
 7 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 8 count(*) as cnt
 9 from emp
10 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
11)
12 union all
13 (
14 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
15 count(*) as cnt
16 from emp
17 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
18 minus
19 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
20 count(*) as cnt
21 from v
22 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
23)

MySQL and SQL Server
Use a correlated subquery and UNION ALL to find the rows in view V and not in
table EMP combined with the rows in table EMP and not in view V:

 1 select *
 2 from (
 3 select e.empno,e.ename,e.job,e.mgr,e.hiredate,
 4 e.sal,e.comm,e.deptno, count(*) as cnt
 5 from emp e
 6 group by empno,ename,job,mgr,hiredate,
 7 sal,comm,deptno
 8) e
 9 where not exists (
10 select null
11 from (
12 select v.empno,v.ename,v.job,v.mgr,v.hiredate,
13 v.sal,v.comm,v.deptno, count(*) as cnt
14 from v
15 group by empno,ename,job,mgr,hiredate,
16 sal,comm,deptno
17) v
18 where v.empno = e.empno
19 and v.ename = e.ename

46 | Chapter 3: Working with Multiple Tables

20 and v.job = e.job
21 and coalesce(v.mgr,0) = coalesce(e.mgr,0)
22 and v.hiredate = e.hiredate
23 and v.sal = e.sal
24 and v.deptno = e.deptno
25 and v.cnt = e.cnt
26 and coalesce(v.comm,0) = coalesce(e.comm,0)
27)
28 union all
29 select *
30 from (
31 select v.empno,v.ename,v.job,v.mgr,v.hiredate,
32 v.sal,v.comm,v.deptno, count(*) as cnt
33 from v
34 group by empno,ename,job,mgr,hiredate,
35 sal,comm,deptno
36) v
37 where not exists (
38 select null
39 from (
40 select e.empno,e.ename,e.job,e.mgr,e.hiredate,
41 e.sal,e.comm,e.deptno, count(*) as cnt
42 from emp e
43 group by empno,ename,job,mgr,hiredate,
44 sal,comm,deptno
45) e
46 where v.empno = e.empno
47 and v.ename = e.ename
48 and v.job = e.job
49 and coalesce(v.mgr,0) = coalesce(e.mgr,0)
50 and v.hiredate = e.hiredate
51 and v.sal = e.sal
52 and v.deptno = e.deptno
53 and v.cnt = e.cnt
54 and coalesce(v.comm,0) = coalesce(e.comm,0)
55)

Discussion
Despite using different techniques, the concept is the same for all solutions:

1. Find rows in table EMP that do not exist in view V.
2. Combine (UNION ALL) those rows with rows from view V that do not exist in

table EMP.

If the tables in question are equal, then no rows are returned. If the tables are differ‐
ent, the rows causing the difference are returned. As an easy first step when compar‐
ing tables, you can compare the cardinalities alone rather than including them with
the data comparison.

3.7 Determining Whether Two Tables Have the Same Data | 47

The following query is a simple example of this and will work on all DBMSs:

select count(*)
 from emp
 union
select count(*)
 from dept

COUNT(*)

 4
 14

Because UNION will filter out duplicates, only one row will be returned if the tables’
cardinalities are the same. Because two rows are returned in this example, you know
that the tables do not contain identical rowsets.

DB2, Oracle, and PostgreSQL
MINUS and EXCEPT work in the same way, so we will use EXCEPT for this discus‐
sion. The queries before and after the UNION ALL are similar. So, to understand
how the solution works, simply execute the query prior to the UNION ALL by itself.
The following result set is produced by executing lines 1–11 in the “Solution” section:

(
 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 count(*) as cnt
 from V
 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
 except
 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 count(*) as cnt
 from emp
 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
)

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT
 ----- ---------- --------- ----- ----------- ----- ----- ------ ---
 7521 WARD SALESMAN 7698 22-FEB-2006 1250 500 30 2

The result set represents a row found in view V that is either not in table EMP, or has
a different cardinality than that same row in table EMP. In this case, the duplicate row
for employee WARD is found and returned. If you’re still having trouble understand‐
ing how the result set is produced, run each query on either side of EXCEPT individ‐
ually. You’ll notice the only difference between the two result sets is the CNT for
employee WARD returned by view V.

48 | Chapter 3: Working with Multiple Tables

The portion of the query after the UNION ALL does the opposite of the query pre‐
ceding UNION ALL. The query returns rows in table EMP not in view V:

(
 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 count(*) as cnt
 from emp
 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
 minus
 select empno,ename,job,mgr,hiredate,sal,comm,deptno,
 count(*) as cnt
 from v
 group by empno,ename,job,mgr,hiredate,sal,comm,deptno
)

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT
----- ---------- --------- ----- ----------- ----- ----- ------ ---
7521 WARD SALESMAN 7698 22-FEB-2006 1250 500 30 1
7782 CLARK MANAGER 7839 09-JUN-2006 2450 10 1
7839 KING PRESIDENT 17-NOV-2006 5000 10 1
7934 MILLER CLERK 7782 23-JAN-2007 1300 10 1

The results are then combined by UNION ALL to produce the final result set.

MySQL and SQL Server
The queries before and after the UNION ALL are similar. To understand how the
subquery-based solution works, simply execute the query prior to the UNION ALL
by itself. The following query is from lines 1–27 in the solution:

select *
 from (
 select e.empno,e.ename,e.job,e.mgr,e.hiredate,
 e.sal,e.comm,e.deptno, count(*) as cnt
 from emp e
 group by empno,ename,job,mgr,hiredate,
 sal,comm,deptno
) e
 where not exists (
select null
 from (
select v.empno,v.ename,v.job,v.mgr,v.hiredate,
 v.sal,v.comm,v.deptno, count(*) as cnt
 from v
 group by empno,ename,job,mgr,hiredate,
 sal,comm,deptno
) v
 where v.empno = e.empno
 and v.ename = e.ename
 and v.job = e.job
 and v.mgr = e.mgr
 and v.hiredate = e.hiredate

3.7 Determining Whether Two Tables Have the Same Data | 49

 and v.sal = e.sal
 and v.deptno = e.deptno
 and v.cnt = e.cnt
 and coalesce(v.comm,0) = coalesce(e.comm,0)
)

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT
 ----- ---------- --------- ----- ----------- ----- ----- ------ ---
 7521 WARD SALESMAN 7698 22-FEB-2006 1250 500 30 1
 7782 CLARK MANAGER 7839 09-JUN-2006 2450 10 1
 7839 KING PRESIDENT 17-NOV-2006 5000 10 1
 7934 MILLER CLERK 7782 23-JAN-2007 1300 10 1

Notice that the comparison is not between table EMP and view V, but rather between
inline view E and inline view V. The cardinality for each row is found and returned as
an attribute for that row. You are comparing each row and its occurrence count. If
you are having trouble understanding how the comparison works, run the subqueries
independently. The next step is to find all rows (including CNT) in inline view E that
do not exist in inline view V. The comparison uses a correlated subquery and NOT
EXISTS. The joins will determine which rows are the same, and the result will be all
rows from inline view E that are not the rows returned by the join. The query after
the UNION ALL does the opposite; it finds all rows in inline view V that do not exist
in inline view E:

select *
 from (
select v.empno,v.ename,v.job,v.mgr,v.hiredate,
 v.sal,v.comm,v.deptno, count(*) as cnt
 from v
 group by empno,ename,job,mgr,hiredate,
 sal,comm,deptno
) v
 where not exists (
select null
 from (
 select e.empno,e.ename,e.job,e.mgr,e.hiredate,
 e.sal,e.comm,e.deptno, count(*) as cnt
 from emp e
 group by empno,ename,job,mgr,hiredate,
 sal,comm,deptno
) e
 where v.empno = e.empno
 and v.ename = e.ename
 and v.job = e.job
 and v.mgr = e.mgr
 and v.hiredate = e.hiredate
 and v.sal = e.sal
 and v.deptno = e.deptno
 and v.cnt = e.cnt
 and coalesce(v.comm,0) = coalesce(e.comm,0)
)

50 | Chapter 3: Working with Multiple Tables

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT
----- ---------- --------- ----- ----------- ----- ----- ------ ---
 7521 WARD SALESMAN 7698 22-FEB-2006 1250 500 30 2

The results are then combined by UNION ALL to produce the final result set.

Ales Spetic and Jonathan Gennick give an alternate solution in
their book Transact-SQL Cookbook (O’Reilly). See the section
“Comparing Two Sets for Equality” in Chapter 2 of their book.

3.8 Identifying and Avoiding Cartesian Products
Problem
You want to return the name of each employee in department 10 along with the loca‐
tion of the department. The following query is returning incorrect data:

select e.ename, d.loc
 from emp e, dept d
 where e.deptno = 10

ENAME LOC
---------- -------------
CLARK NEW YORK
CLARK DALLAS
CLARK CHICAGO
CLARK BOSTON
KING NEW YORK
KING DALLAS
KING CHICAGO
KING BOSTON
MILLER NEW YORK
MILLER DALLAS
MILLER CHICAGO
MILLER BOSTON

The correct result set is the following:

ENAME LOC
---------- ---------
CLARK NEW YORK
KING NEW YORK
MILLER NEW YORK

3.8 Identifying and Avoiding Cartesian Products | 51

Solution
Use a join between the tables in the FROM clause to return the correct result set:

1 select e.ename, d.loc
2 from emp e, dept d
3 where e.deptno = 10
4 and d.deptno = e.deptno

Discussion
Let’s look at the data in the DEPT table:

select * from dept

 DEPTNO DNAME LOC
---------- -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

You can see that department 10 is in New York, and thus you can know that returning
employees with any location other than New York is incorrect. The number of rows
returned by the incorrect query is the product of the cardinalities of the two tables in
the FROM clause. In the original query, the filter on EMP for department 10 will
result in three rows. Because there is no filter for DEPT, all four rows from DEPT are
returned. Three multiplied by four is twelve, so the incorrect query returns twelve
rows. Generally, to avoid a Cartesian product, you would apply the n–1 rule where n
represents the number of tables in the FROM clause and n–1 represents the mini‐
mum number of joins necessary to avoid a Cartesian product. Depending on what
the keys and join columns in your tables are, you may very well need more than n–1
joins, but n–1 is a good place to start when writing queries.

When used properly, Cartesian products can be useful. Common
uses of Cartesian products include transposing or pivoting (and
unpivoting) a result set, generating a sequence of values, and mim‐
icking a loop (although the last two may also be accomplished
using a recursive CTE).

3.9 Performing Joins When Using Aggregates
Problem
You want to perform an aggregation, but your query involves multiple tables. You
want to ensure that joins do not disrupt the aggregation. For example, you want to

52 | Chapter 3: Working with Multiple Tables

find the sum of the salaries for employees in department 10 along with the sum of
their bonuses. Some employees have more than one bonus, and the join between
table EMP and table EMP_BONUS is causing incorrect values to be returned by the
aggregate function SUM. For this problem, table EMP_BONUS contains the follow‐
ing data:

select * from emp_bonus

EMPNO RECEIVED TYPE
----- ----------- ----------
 7934 17-MAR-2005 1
 7934 15-FEB-2005 2
 7839 15-FEB-2005 3
 7782 15-FEB-2005 1

Now, consider the following query that returns the salary and bonus for all employees
in department 10. Table BONUS.TYPE determines the amount of the bonus. A type 1
bonus is 10% of an employee’s salary, type 2 is 20%, and type 3 is 30%.

select e.empno,
 e.ename,
 e.sal,
 e.deptno,
 e.sal*case when eb.type = 1 then .1
 when eb.type = 2 then .2
 else .3
 end as bonus
 from emp e, emp_bonus eb
where e.empno = eb.empno
 and e.deptno = 10

 EMPNO ENAME SAL DEPTNO BONUS
------- ---------- ---------- ---------- ---------
 7934 MILLER 1300 10 130
 7934 MILLER 1300 10 260
 7839 KING 5000 10 1500
 7782 CLARK 2450 10 245

So far, so good. However, things go awry when you attempt a join to the
EMP_BONUS table to sum the bonus amounts:

select deptno,
 sum(sal) as total_sal,
 sum(bonus) as total_bonus
 from (
select e.empno,
 e.ename,
 e.sal,
 e.deptno,
 e.sal*case when eb.type = 1 then .1
 when eb.type = 2 then .2

3.9 Performing Joins When Using Aggregates | 53

 else .3
 end as bonus
 from emp e, emp_bonus eb
 where e.empno = eb.empno
 and e.deptno = 10
) x
 group by deptno

DEPTNO TOTAL_SAL TOTAL_BONUS
------ ----------- -----------
 10 10050 2135

While the TOTAL_BONUS is correct, the TOTAL_SAL is incorrect. The sum of all
salaries in department 10 is 8750, as the following query shows:

select sum(sal) from emp where deptno=10

 SUM(SAL)

 8750

Why is TOTAL_SAL incorrect? The reason is the duplicate rows in the SAL column
created by the join. Consider the following query, which joins tables EMP and
EMP_BONUS:

select e.ename,
 e.sal
 from emp e, emp_bonus eb
 where e.empno = eb.empno
 and e.deptno = 10

ENAME SAL
---------- ----------
CLARK 2450
KING 5000
MILLER 1300
MILLER 1300

Now it is easy to see why the value for TOTAL_SAL is incorrect: MILLER’s salary is
counted twice. The final result set that you are really after is:

DEPTNO TOTAL_SAL TOTAL_BONUS
------ --------- -----------
 10 8750 2135

Solution
You have to be careful when computing aggregates across joins. Typically when dupli‐
cates are returned due to a join, you can avoid miscalculations by aggregate functions
in two ways: you can simply use the keyword DISTINCT in the call to the aggregate
function, so only unique instances of each value are used in the computation; or you

54 | Chapter 3: Working with Multiple Tables

can perform the aggregation first (in an inline view) prior to joining, thus avoiding
the incorrect computation by the aggregate function because the aggregate will
already be computed before you even join, thus avoiding the problem altogether. The
solutions that follow use DISTINCT. The “Discussion” section will discuss the techni‐
que of using an inline view to perform the aggregation prior to joining.

MySQL and PostgreSQL
Perform a sum of only the DISTINCT salaries:

 1 select deptno,
 2 sum(distinct sal) as total_sal,
 3 sum(bonus) as total_bonus
 4 from (
 5 select e.empno,
 6 e.ename,
 7 e.sal,
 8 e.deptno,
 9 e.sal*case when eb.type = 1 then .1
10 when eb.type = 2 then .2
11 else .3
12 end as bonus
13 from emp e, emp_bonus eb
14 where e.empno = eb.empno
15 and e.deptno = 10
16) x
17 group by deptno

DB2, Oracle, and SQL Server
These platforms support the preceding solution, but they also support an alternative
solution using the window function SUM OVER:

 1 select distinct deptno,total_sal,total_bonus
 2 from (
 3 select e.empno,
 4 e.ename,
 5 sum(distinct e.sal) over
 6 (partition by e.deptno) as total_sal,
 7 e.deptno,
 8 sum(e.sal*case when eb.type = 1 then .1
 9 when eb.type = 2 then .2
10 else .3 end) over
11 (partition by deptno) as total_bonus
12 from emp e, emp_bonus eb
13 where e.empno = eb.empno
14 and e.deptno = 10
15) x

3.9 Performing Joins When Using Aggregates | 55

Discussion

MySQL and PostgreSQL
The second query in the “Problem” section of this recipe joins table EMP and table
EMP_BONUS and returns two rows for employee MILLER, which is what causes the
error on the sum of EMP.SAL (the salary is added twice). The solution is to simply
sum the distinct EMP.SAL values that are returned by the query. The following query
is an alternative solution—necessary if there could be duplicate values in the column
you are summing. The sum of all salaries in department 10 is computed first, and that
row is then joined to table EMP, which is then joined to table EMP_BONUS.

The following query works for all DBMSs:

select d.deptno,
 d.total_sal,
 sum(e.sal*case when eb.type = 1 then .1
 when eb.type = 2 then .2
 else .3 end) as total_bonus
 from emp e,
 emp_bonus eb,
 (
select deptno, sum(sal) as total_sal
 from emp
 where deptno = 10
 group by deptno
) d
 where e.deptno = d.deptno
 and e.empno = eb.empno
 group by d.deptno,d.total_sal

 DEPTNO TOTAL_SAL TOTAL_BONUS
--------- ---------- ------------
 10 8750 2135

DB2, Oracle, and SQL Server
This alternative solution takes advantage of the window function SUM OVER. The
following query is taken from lines 3–14 in “Solution” and returns the following
result set:

select e.empno,
 e.ename,
 sum(distinct e.sal) over
 (partition by e.deptno) as total_sal,
 e.deptno,
 sum(e.sal*case when eb.type = 1 then .1
 when eb.type = 2 then .2
 else .3 end) over
 (partition by deptno) as total_bonus

56 | Chapter 3: Working with Multiple Tables

 from emp e, emp_bonus eb
 where e.empno = eb.empno
 and e.deptno = 10

EMPNO ENAME TOTAL_SAL DEPTNO TOTAL_BONUS
----- ---------- ---------- ------ -----------
 7934 MILLER 8750 10 2135
 7934 MILLER 8750 10 2135
 7782 CLARK 8750 10 2135
 7839 KING 8750 10 2135

The windowing function, SUM OVER, is called twice, first to compute the sum of the
distinct salaries for the defined partition or group. In this case, the partition is
DEPTNO 10, and the sum of the distinct salaries for DEPTNO 10 is 8750. The next
call to SUM OVER computes the sum of the bonuses for the same defined partition.
The final result set is produced by taking the distinct values for TOTAL_SAL,
DEPTNO, and TOTAL_BONUS.

3.10 Performing Outer Joins When Using Aggregates
Problem
Begin with the same problem as in Recipe 3.9, but modify table EMP_BONUS such
that the difference in this case is not all employees in department 10 have been given
bonuses. Consider the EMP_BONUS table and a query to (ostensibly) find both the
sum of all salaries for department 10 and the sum of all bonuses for all employees in
department 10:

select * from emp_bonus

 EMPNO RECEIVED TYPE
---------- ----------- ----------
 7934 17-MAR-2005 1
 7934 15-FEB-2005 2

select deptno,
 sum(sal) as total_sal,
 sum(bonus) as total_bonus
 from (
select e.empno,
 e.ename,
 e.sal,
 e.deptno,
 e.sal*case when eb.type = 1 then .1
 when eb.type = 2 then .2
 else .3 end as bonus
 from emp e, emp_bonus eb
 where e.empno = eb.empno

3.10 Performing Outer Joins When Using Aggregates | 57

 and e.deptno = 10
)
 group by deptno

 DEPTNO TOTAL_SAL TOTAL_BONUS
 ------ ---------- -----------
 10 2600 390

The result for TOTAL_BONUS is correct, but the value returned for TOTAL_SAL
does not represent the sum of all salaries in department 10. The following query
shows why the TOTAL_SAL is incorrect:

select e.empno,
 e.ename,
 e.sal,
 e.deptno,
 e.sal*case when eb.type = 1 then .1
 when eb.type = 2 then .2
 else .3 end as bonus
 from emp e, emp_bonus eb
 where e.empno = eb.empno
 and e.deptno = 10

 EMPNO ENAME SAL DEPTNO BONUS
--------- --------- ------- ---------- ----------
 7934 MILLER 1300 10 130
 7934 MILLER 1300 10 260

Rather than sum all salaries in department 10, only the salary for MILLER is sum‐
med, and it is erroneously summed twice. Ultimately, you would like to return the
following result set:

DEPTNO TOTAL_SAL TOTAL_BONUS
------ --------- -----------
 10 8750 390

Solution
The solution is similar to that of Recipe 3.9, but here you outer join to EMP_BONUS
to ensure all employees from department 10 are included.

DB2, MySQL, PostgreSQL, and SQL Server
Outer join to EMP_BONUS, then perform the sum on only distinct salaries from
department 10:

 1 select deptno,
 2 sum(distinct sal) as total_sal,
 3 sum(bonus) as total_bonus
 4 from (
 5 select e.empno,
 6 e.ename,

58 | Chapter 3: Working with Multiple Tables

 7 e.sal,
 8 e.deptno,
 9 e.sal*case when eb.type is null then 0
10 when eb.type = 1 then .1
11 when eb.type = 2 then .2
12 else .3 end as bonus
13 from emp e left outer join emp_bonus eb
14 on (e.empno = eb.empno)
15 where e.deptno = 10
16)
17 group by deptno

You can also use the window function SUM OVER:

 1 select distinct deptno,total_sal,total_bonus
 2 from (
 3 select e.empno,
 4 e.ename,
 5 sum(distinct e.sal) over
 6 (partition by e.deptno) as total_sal,
 7 e.deptno,
 8 sum(e.sal*case when eb.type is null then 0
 9 when eb.type = 1 then .1
10 when eb.type = 2 then .2
11 else .3
12 end) over
13 (partition by deptno) as total_bonus
14 from emp e left outer join emp_bonus eb
15 on (e.empno = eb.empno)
16 where e.deptno = 10
17) x

Discussion
The second query in the “Problem” section of this recipe joins table EMP and table
EMP_BONUS and returns only rows for employee MILLER, which is what causes the
error on the sum of EMP.SAL (the other employees in DEPTNO 10 do not have
bonuses, and their salaries are not included in the sum). The solution is to outer join
table EMP to table EMP_BONUS so even employees without a bonus will be
included in the result. If an employee does not have a bonus, NULL will be returned
for EMP_BONUS.TYPE. It is important to keep this in mind as the CASE statement
has been modified and is slightly different from Recipe 3.9. If EMP_BONUS.TYPE is
NULL, the CASE expression returns zero, which has no effect on the sum.

The following query is an alternative solution. The sum of all salaries in department
10 is computed first, then joined to table EMP, which is then joined to table
EMP_BONUS (thus avoiding the outer join). The following query works for all
DBMSs:

3.10 Performing Outer Joins When Using Aggregates | 59

select d.deptno,
 d.total_sal,
 sum(e.sal*case when eb.type = 1 then .1
 when eb.type = 2 then .2
 else .3 end) as total_bonus
 from emp e,
 emp_bonus eb,
 (
select deptno, sum(sal) as total_sal
 from emp
 where deptno = 10
 group by deptno
) d
 where e.deptno = d.deptno
 and e.empno = eb.empno
 group by d.deptno,d.total_sal

 DEPTNO TOTAL_SAL TOTAL_BONUS
--------- ---------- -----------
 10 8750 390

3.11 Returning Missing Data from Multiple Tables
Problem
You want to return missing data from multiple tables simultaneously. Returning rows
from table DEPT that do not exist in table EMP (any departments that have no
employees) requires an outer join. Consider the following query, which returns all
DEPTNOs and DNAMEs from DEPT along with the names of all the employees in
each department (if there is an employee in a particular department):

select d.deptno,d.dname,e.ename
 from dept d left outer join emp e
 on (d.deptno=e.deptno)

 DEPTNO DNAME ENAME
--------- -------------- ----------
 20 RESEARCH SMITH
 30 SALES ALLEN
 30 SALES WARD
 20 RESEARCH JONES
 30 SALES MARTIN
 30 SALES BLAKE
 10 ACCOUNTING CLARK
 20 RESEARCH SCOTT
 10 ACCOUNTING KING
 30 SALES TURNER
 20 RESEARCH ADAMS
 30 SALES JAMES

60 | Chapter 3: Working with Multiple Tables

 20 RESEARCH FORD
 10 ACCOUNTING MILLER
 40 OPERATIONS

The last row, the OPERATIONS department, is returned despite that department not
having any employees, because table EMP was outer joined to table DEPT. Now, sup‐
pose there was an employee without a department. How would you return the previ‐
ous result set along with a row for the employee having no department? In other
words, you want to outer join to both table EMP and table DEPT, and in the same
query. After creating the new employee, a first attempt may look like this:

insert into emp (empno,ename,job,mgr,hiredate,sal,comm,deptno)
select 1111,'YODA','JEDI',null,hiredate,sal,comm,null
 from emp
 where ename = 'KING'

select d.deptno,d.dname,e.ename
 from dept d right outer join emp e
 on (d.deptno=e.deptno)

 DEPTNO DNAME ENAME
---------- ------------ ----------
 10 ACCOUNTING MILLER
 10 ACCOUNTING KING
 10 ACCOUNTING CLARK
 20 RESEARCH FORD
 20 RESEARCH ADAMS
 20 RESEARCH SCOTT
 20 RESEARCH JONES
 20 RESEARCH SMITH
 30 SALES JAMES
 30 SALES TURNER
 30 SALES BLAKE
 30 SALES MARTIN
 30 SALES WARD
 30 SALES ALLEN
 YODA

This outer join manages to return the new employee but lost the OPERATIONS
department from the original result set. The final result set should return a row for
YODA as well as OPERATIONS, such as the following:

 DEPTNO DNAME ENAME
---------- ------------ --------
 10 ACCOUNTING CLARK
 10 ACCOUNTING KING
 10 ACCOUNTING MILLER
 20 RESEARCH ADAMS
 20 RESEARCH FORD
 20 RESEARCH JONES
 20 RESEARCH SCOTT
 20 RESEARCH SMITH

3.11 Returning Missing Data from Multiple Tables | 61

 30 SALES ALLEN
 30 SALES BLAKE
 30 SALES JAMES
 30 SALES MARTIN
 30 SALES TURNER
 30 SALES WARD
 40 OPERATIONS
 YODA

Solution
Use a full outer join to return missing data from both tables based on a common
value.

DB2, MySQL, PostgreSQL, and SQL Server
Use the explicit FULL OUTER JOIN command to return missing rows from both
tables along with matching rows:

1 select d.deptno,d.dname,e.ename
2 from dept d full outer join emp e
3 on (d.deptno=e.deptno)

Alternatively, since MySQL does not yet have a FULL OUTER JOIN, UNION the
results of the two different outer joins:

1 select d.deptno,d.dname,e.ename
2 from dept d right outer join emp e
3 on (d.deptno=e.deptno)
4 union
5 select d.deptno,d.dname,e.ename
6 from dept d left outer join emp e
7 on (d.deptno=e.deptno)

Oracle
Oracle users can still use either of the preceding solutions. Alternatively, you can use
Oracle’s proprietary outer join syntax:

1 select d.deptno,d.dname,e.ename
2 from dept d, emp e
3 where d.deptno = e.deptno(+)
4 union
5 select d.deptno,d.dname,e.ename
6 from dept d, emp e
7 where d.deptno(+) = e.deptno

Discussion
The full outer join is simply the combination of outer joins on both tables. To see how
a full outer join works “under the covers,” simply run each outer join, then union the

62 | Chapter 3: Working with Multiple Tables

results. The following query returns rows from table DEPT and any matching rows
from table EMP (if any):

select d.deptno,d.dname,e.ename
 from dept d left outer join emp e
 on (d.deptno = e.deptno)

 DEPTNO DNAME ENAME
 ------ -------------- ----------
 20 RESEARCH SMITH
 30 SALES ALLEN
 30 SALES WARD
 20 RESEARCH JONES
 30 SALES MARTIN
 30 SALES BLAKE
 10 ACCOUNTING CLARK
 20 RESEARCH SCOTT
 10 ACCOUNTING KING
 30 SALES TURNER
 20 RESEARCH ADAMS
 30 SALES JAMES
 20 RESEARCH FORD
 10 ACCOUNTING MILLER
 40 OPERATIONS

This next query returns rows from table EMP and any matching rows from table
DEPT (if any):

select d.deptno,d.dname,e.ename
 from dept d right outer join emp e
 on (d.deptno = e.deptno)

 DEPTNO DNAME ENAME
 ------ -------------- ----------
 10 ACCOUNTING MILLER
 10 ACCOUNTING KING
 10 ACCOUNTING CLARK
 20 RESEARCH FORD
 20 RESEARCH ADAMS
 20 RESEARCH SCOTT
 20 RESEARCH JONES
 20 RESEARCH SMITH
 30 SALES JAMES
 30 SALES TURNER
 30 SALES BLAKE
 30 SALES MARTIN
 30 SALES WARD
 30 SALES ALLEN
 YODA

The results from these two queries are unioned to provide the final result set.

3.11 Returning Missing Data from Multiple Tables | 63

3.12 Using NULLs in Operations and Comparisons
Problem
NULL is never equal to or not equal to any value, not even itself, but you want to
evaluate values returned by a nullable column like you would evaluate real values. For
example, you want to find all employees in EMP whose commission (COMM) is less
than the commission of employee WARD. Employees with a NULL commission
should be included as well.

Solution
Use a function such as COALESCE to transform the NULL value into a real value that
can be used in standard evaluation:

1 select ename,comm
2 from emp
3 where coalesce(comm,0) < (select comm
4 from emp
5 where ename = 'WARD')

Discussion
The COALESCE function will return the first non-NULL value from the list of values
passed to it. When a NULL value is encountered, it is replaced by zero, which is then
compared with WARD’s commission. This can be seen by putting the COALESCE
function in the SELECT list:

select ename,comm,coalesce(comm,0)
 from emp
 where coalesce(comm,0) < (select comm
 from emp
 where ename = 'WARD')

 ENAME COMM COALESCE(COMM,0)
 ---------- ---------- ----------------
 SMITH 0
 ALLEN 300 300
 JONES 0
 BLAKE 0
 CLARK 0
 SCOTT 0
 KING 0
 TURNER 0 0
 ADAMS 0
 JAMES 0
 FORD 0
 MILLER 0

64 | Chapter 3: Working with Multiple Tables

3.13 Summing Up
Joins are a crucial aspect of querying databases—it will be the norm that you need to
join two or more tables together to find what you are looking for. Mastering the dif‐
ferent combinations and categories of joins that are covered in this chapter will set
you up for success.

3.13 Summing Up | 65

CHAPTER 4

Inserting, Updating, and Deleting

The past few chapters have focused on basic query techniques, all centered around
the task of getting data out of a database. This chapter turns the tables and focuses on
the following three topic areas:

• Inserting new records into your database
• Updating existing records
• Deleting records that you no longer want

For ease in finding them when you need them, recipes in this chapter have been grou‐
ped by topic: all the insertion recipes come first, followed by the update recipes, and
finally recipes for deleting data.

Inserting is usually a straightforward task. It begins with the simple problem of
inserting a single row. Many times, however, it is more efficient to use a set-based
approach to create new rows. To that end, you’ll also find techniques for inserting
many rows at a time.

Likewise, updating and deleting start out as simple tasks. You can update one record,
and you can delete one record. But you can also update whole sets of records at once,
and in very powerful ways. And there are many handy ways to delete records. For
example, you can delete rows in one table depending on whether they exist in another
table.

SQL even has a way, a relatively new addition to the standard, letting you insert,
update, and delete all at once. That may not sound like too useful a thing now, but the
MERGE statement represents a powerful way to synchronize a database table with an
external source of data (such as a flat file feed from a remote system). Check out
Recipe 4.11 in this chapter for details.

67

4.1 Inserting a New Record
Problem
You want to insert a new record into a table. For example, you want to insert a new
record into the DEPT table. The value for DEPTNO should be 50, DNAME should be
PROGRAMMING, and LOC should be BALTIMORE.

Solution
Use the INSERT statement with the VALUES clause to insert one row at a time:

insert into dept (deptno,dname,loc)
values (50,'PROGRAMMING','BALTIMORE')

For DB2, SQL Server, PostgreSQL, and MySQL you have the option of inserting one
row at a time or multiple rows at a time by including multiple VALUES lists:

/* multi row insert */
insert into dept (deptno,dname,loc)
values (1,'A','B'),
 (2,'B','C')

Discussion
The INSERT statement allows you to create new rows in database tables. The syntax
for inserting a single row is consistent across all database brands.

As a shortcut, you can omit the column list in an INSERT statement:

insert into dept
values (50,'PROGRAMMING','BALTIMORE')

However, if you do not list your target columns, you must insert into all of the col‐
umns in the table and be mindful of the order of the values in the VALUES list; you
must supply values in the same order in which the database displays columns in
response to a SELECT * query. Either way, you should be mindful of column con‐
straints because if you don’t insert into every column, you are will create a row where
some values are null. This can cause an error if there are columns constrained not to
accept nulls.

4.2 Inserting Default Values
Problem
A table can be defined to take default values for specific columns. You want to insert a
row of default values without having to specify those values.

68 | Chapter 4: Inserting, Updating, and Deleting

Consider the following table:

create table D (id integer default 0)

You want to insert zero without explicitly specifying zero in the values list of an
INSERT statement. You want to explicitly insert the default, whatever that default is.

Solution
All brands support the use of the DEFAULT keyword as a way of explicitly specifying
the default value for a column. Some brands provide additional ways to solve the
problem.

The following example illustrates the use of the DEFAULT keyword:

insert into D values (default)

You may also explicitly specify the column name, which you’ll need to do anytime
you are not inserting into all columns of a table:

insert into D (id) values (default)

Oracle8i Database and prior versions do not support the DEFAULT keyword. Prior to
Oracle9i Database, there was no way to explicitly insert a default column value.

MySQL allows you to specify an empty values list if all columns have a default value
defined:

insert into D values ()

In this case, all columns will be set to their default values.

PostgreSQL and SQL Server support a DEFAULT VALUES clause:

insert into D default values

The DEFAULT VALUES clause causes all columns to take on their default values.

Discussion
The DEFAULT keyword in the values list will insert the value that was specified as the
default for a particular column during table creation. The keyword is available for all
DBMSs.

MySQL, PostgreSQL, and SQL Server users have another option available if all col‐
umns in the table are defined with a default value (as table D is in this case). You may
use an empty VALUES list (MySQL) or specify the DEFAULT VALUES clause (Post‐
greSQL and SQL Server) to create a new row with all default values; otherwise, you
need to specify DEFAULT for each column in the table.

For tables with a mix of default and nondefault columns, inserting default values for a
column is as easy as excluding the column from the insert list; you do not need to use

4.2 Inserting Default Values | 69

the DEFAULT keyword. Say that table D had an additional column that was not
defined with a default value:

create table D (id integer default 0, foo varchar(10))

You can insert a default for ID by listing only FOO in the insert list:

insert into D (name) values ('Bar')

This statement will result in a row in which ID is 0 and FOO is BAR. ID takes on its
default value because no other value is specified.

4.3 Overriding a Default Value with NULL
Problem
You are inserting into a column having a default value, and you want to override that
default value by setting the column to NULL. Consider the following table:

create table D (id integer default 0, foo VARCHAR(10))

You want to insert a row with a NULL value for ID.

Solution
You can explicitly specify NULL in your values list:

insert into d (id, foo) values (null, 'Brighten')

Discussion
Not everyone realizes that you can explicitly specify NULL in the values list of an
INSERT statement. Typically, when you do not want to specify a value for a column,
you leave that column out of your column and values lists:

insert into d (foo) values ('Brighten')

Here, no value for ID is specified. Many would expect the column to taken on the null
value, but, alas, a default value was specified at table creation time, so the result of the
preceding INSERT is that ID takes on the value zero (the default). By specifying
NULL as the value for a column, you can set the column to NULL despite any default
value (excepting where a constraint has been specifically applied to prevent NULLs).

4.4 Copying Rows from One Table into Another
Problem
You want to copy rows from one table to another by using a query. The query may be
complex or simple, but ultimately you want the result to be inserted into another

70 | Chapter 4: Inserting, Updating, and Deleting

table. For example, you want to copy rows from the DEPT table to the DEPT_EAST
table. The DEPT_EAST table has already been created with the same structure (same
columns and data types) as DEPT and is currently empty.

Solution
Use the INSERT statement followed by a query to produce the rows you want:

1 insert into dept_east (deptno,dname,loc)
2 select deptno,dname,loc
3 from dept
4 where loc in ('NEW YORK','BOSTON')

Discussion
Simply follow the INSERT statement with a query that returns the desired rows. If
you want to copy all rows from the source table, exclude the WHERE clause from the
query. Like a regular insert, you do not have to explicitly specify which columns you
are inserting into. But if you do not specify your target columns, you must insert data
into all of the table’s columns, and you must be mindful of the order of the values in
the SELECT list, as described earlier in Recipe 4.1.

4.5 Copying a Table Definition
Problem
You want to create a new table having the same set of columns as an existing table.
For example, you want to create a copy of the DEPT table and call it DEPT_2. You do
not want to copy the rows, only the column structure of the table.

Solution

DB2
Use the LIKE clause with the CREATE TABLE command:

create table dept_2 like dept

Oracle, MySQL, and PostgreSQL
Use the CREATE TABLE command with a subquery that returns no rows:

1 create table dept_2
2 as
3 select *
4 from dept
5 where 1 = 0

4.5 Copying a Table Definition | 71

SQL Server
Use the INTO clause with a subquery that returns no rows:

1 select *
2 into dept_2
3 from dept
4 where 1 = 0

Discussion

DB2
DB2’s CREATE TABLE…LIKE command allows you to easily use one table as the
pattern for creating another. Simply specify your pattern table’s name following the
LIKE keyword.

Oracle, MySQL, and PostgreSQL
When using Create Table As Select (CTAS), all rows from your query will be used to
populate the new table you are creating unless you specify a false condition in the
WHERE clause. In the solution provided, the expression “1 = 0” in the WHERE
clause of the query causes no rows to be returned. Thus, the result of the CTAS state‐
ment is an empty table based on the columns in the SELECT clause of the query.

SQL Server
When using INTO to copy a table, all rows from your query will be used to populate
the new table you are creating unless you specify a false condition in the WHERE
clause of your query. In the solution provided, the expression “1 = 0” in the predicate
of the query causes no rows to be returned. The result is an empty table based on the
columns in the SELECT clause of the query.

4.6 Inserting into Multiple Tables at Once
Problem
You want to take rows returned by a query and insert those rows into multiple target
tables. For example, you want to insert rows from DEPT into tables DEPT_EAST,
DEPT_WEST, and DEPT_MID. All three tables have the same structure (same col‐
umns and data types) as DEPT and are currently empty.

Solution
The solution is to insert the result of a query into the target tables. The difference
from Recipe 4.4 is that for this problem you have multiple target tables.

72 | Chapter 4: Inserting, Updating, and Deleting

Oracle
Use either the INSERT ALL or INSERT FIRST statement. Both share the same syntax
except for the choice between the ALL and FIRST keywords. The following statement
uses INSERT ALL to cause all possible target tables to be considered:

1 insert all
2 when loc in ('NEW YORK','BOSTON') then
3 into dept_east (deptno,dname,loc) values (deptno,dname,loc)
4 when loc = 'CHICAGO' then
5 into dept_mid (deptno,dname,loc) values (deptno,dname,loc)
6 else
7 into dept_west (deptno,dname,loc) values (deptno,dname,loc)
8 select deptno,dname,loc
9 from dept

DB2
Insert into an inline view that performs a UNION ALL on the tables to be inserted.
You must also be sure to place constraints on the tables that will ensure each row goes
into the correct table:

create table dept_east
(deptno integer,
 dname varchar(10),
 loc varchar(10) check (loc in ('NEW YORK','BOSTON')))

create table dept_mid
(deptno integer,
 dname varchar(10),
 loc varchar(10) check (loc = 'CHICAGO'))

create table dept_west
(deptno integer,
 dname varchar(10),
 loc varchar(10) check (loc = 'DALLAS'))

1 insert into (
2 select * from dept_west union all
3 select * from dept_east union all
4 select * from dept_mid
5) select * from dept

MySQL, PostgreSQL, and SQL Server
As of the time of this writing, these vendors do not support multitable inserts.

4.6 Inserting into Multiple Tables at Once | 73

Discussion

Oracle
Oracle’s multitable insert uses WHEN-THEN-ELSE clauses to evaluate the rows from
the nested SELECT and insert them accordingly. In this recipe’s example, INSERT
ALL and INSERT FIRST would produce the same result, but there is a difference
between the two. INSERT FIRST will break out of the WHEN-THEN-ELSE evalua‐
tion as soon as it encounters a condition evaluating to true; INSERT ALL will evalu‐
ate all conditions even if prior tests evaluate to true. Thus, you can use INSERT ALL
to insert the same row into more than one table.

DB2
My DB2 solution is a bit of a hack. It requires that the tables to be inserted into have
constraints defined to ensure that each row evaluated from the subquery will go into
the correct table. The technique is to insert into a view that is defined as the UNION
ALL of the tables. If the check constraints are not unique among the tables in the
INSERT (i.e., multiple tables have the same check constraint), the INSERT statement
will not know where to put the rows, and it will fail.

MySQL, PostgreSQL, and SQL Server
As of the time of this writing, only Oracle and DB2 provide mechanisms to insert
rows returned by a query into one or more of several tables within the same
statement.

4.7 Blocking Inserts to Certain Columns
Problem
You want to prevent users, or an errant software application, from inserting values
into certain table columns. For example, you want to allow a program to insert into
EMP, but only into the EMPNO, ENAME, and JOB columns.

Solution
Create a view on the table exposing only those columns you want to expose. Then
force all inserts to go through that view.

For example, to create a view exposing the three columns in EMP:

create view new_emps as
select empno, ename, job
 from emp

74 | Chapter 4: Inserting, Updating, and Deleting

Grant access to this view to those users and programs allowed to populate only the
three fields in the view. Do not grant those users insert access to the EMP table. Users
may then create new EMP records by inserting into the NEW_EMPS view, but they
will not be able to provide values for columns other than the three that are specified
in the view definition.

Discussion
When you insert into a simple view such as in the solution, your database server will
translate that insert into the underlying table. For example, the following insert:

insert into new_emps
 (empno ename, job)
 values (1, 'Jonathan', 'Editor')

will be translated behind the scenes into:

insert into emp
 (empno ename, job)
 values (1, 'Jonathan', 'Editor')

It is also possible, but perhaps less useful, to insert into an inline view (currently only
supported by Oracle):

insert into
 (select empno, ename, job
 from emp)
values (1, 'Jonathan', 'Editor')

View insertion is a complex topic. The rules become complicated very quickly for all
but the simplest of views. If you plan to make use of the ability to insert into views, it
is imperative that you consult and fully understand your vendor documentation on
the matter.

4.8 Modifying Records in a Table
Problem
You want to modify values for some or all rows in a table. For example, you might
want to increase the salaries of everyone in department 20 by 10%. The following
result set shows the DEPTNO, ENAME, and SAL for employees in that department:

select deptno,ename,sal
 from emp
 where deptno = 20
 order by 1,3

DEPTNO ENAME SAL
------ ---------- ----------
 20 SMITH 800

4.8 Modifying Records in a Table | 75

 20 ADAMS 1100
 20 JONES 2975
 20 SCOTT 3000
 20 FORD 3000

You want to bump all the SAL values by 10%.

Solution
Use the UPDATE statement to modify existing rows in a database table. For example:

1 update emp
2 set sal = sal*1.10
3 where deptno = 20

Discussion
Use the UPDATE statement along with a WHERE clause to specify which rows to
update; if you exclude a WHERE clause, then all rows are updated. The expression
SAL*1.10 in this solution returns the salary increased by 10%.

When preparing for a mass update, you may want to preview the results. You can do
that by issuing a SELECT statement that includes the expressions you plan to put into
your SET clauses. The following SELECT shows the result of a 10% salary increase:

select deptno,
 ename,
 sal as orig_sal,
 sal*.10 as amt_to_add,
 sal*1.10 as new_sal
 from emp
 where deptno=20
 order by 1,5

DEPTNO ENAME ORIG_SAL AMT_TO_ADD NEW_SAL
------ ------ -------- ---------- -------
 20 SMITH 800 80 880
 20 ADAMS 1100 110 1210
 20 JONES 2975 298 3273
 20 SCOTT 3000 300 3300
 20 FORD 3000 300 3300

The salary increase is broken down into two columns: one to show the increase over
the old salary, and the other to show the new salary.

76 | Chapter 4: Inserting, Updating, and Deleting

4.9 Updating When Corresponding Rows Exist
Problem
You want to update rows in one table when corresponding rows exist in another. For
example, if an employee appears in table EMP_BONUS, you want to increase that
employee’s salary (in table EMP) by 20%. The following result set represents the data
currently in table EMP_BONUS:

select empno, ename
 from emp_bonus

 EMPNO ENAME
---------- ---------
 7369 SMITH
 7900 JAMES
 7934 MILLER

Solution
Use a subquery in your UPDATE statement’s WHERE clause to find employees in
table EMP that are also in table EMP_BONUS. Your UPDATE will then act only on
those rows, enabling you to increase their salary by 20%:

1 update emp
2 set sal=sal*1.20
3 where empno in (select empno from emp_bonus)

Discussion
The results from the subquery represent the rows that will be updated in table EMP.
The IN predicate tests values of EMPNO from the EMP table to see whether they are
in the list of EMPNO values returned by the subquery. When they are, the corre‐
sponding SAL values are updated.

Alternatively, you can use EXISTS instead of IN:

update emp
 set sal = sal*1.20
 where exists (select null
 from emp_bonus
 where emp.empno=emp_bonus.empno)

You may be surprised to see NULL in the SELECT list of the EXISTS subquery. Fear
not, that NULL does not have an adverse effect on the update. Arguably it increases
readability as it reinforces the fact that, unlike the solution using a subquery with an
IN operator, what will drive the update (i.e., which rows will be updated) will be con‐
trolled by the WHERE clause of the subquery, not the values returned as a result of
the subquery’s SELECT list.

4.9 Updating When Corresponding Rows Exist | 77

4.10 Updating with Values from Another Table
Problem
You want to update rows in one table using values from another. For example, you
have a table called NEW_SAL, which holds the new salaries for certain employees.
The contents of table NEW_SAL are as follows:

select *
 from new_sal

DEPTNO SAL
------ ----------
 10 4000

Column DEPTNO is the primary key of table NEW_SAL. You want to update the sal‐
aries and commission of certain employees in table EMP using values table
NEW_SAL if there is a match between EMP.DEPTNO and NEW_SAL.DEPTNO,
update EMP.SAL to NEW_SAL.SAL, and update EMP.COMM to 50% of
NEW_SAL.SAL. The rows in EMP are as follows:

select deptno,ename,sal,comm
 from emp
 order by 1

DEPTNO ENAME SAL COMM
------ ---------- ---------- ----------
 10 CLARK 2450
 10 KING 5000
 10 MILLER 1300
 20 SMITH 800
 20 ADAMS 1100
 20 FORD 3000
 20 SCOTT 3000
 20 JONES 2975
 30 ALLEN 1600 300
 30 BLAKE 2850
 30 MARTIN 1250 1400
 30 JAMES 950
 30 TURNER 1500 0
 30 WARD 1250 500

Solution
Use a join between NEW_SAL and EMP to find and return the new COMM values to
the UPDATE statement. It is quite common for updates such as this one to be per‐
formed via correlated subquery or alternatively using a CTE. Another technique
involves creating a view (traditional or inline, depending on what your database sup‐
ports) and then updating that view.

78 | Chapter 4: Inserting, Updating, and Deleting

DB2
Use a correlated subquery to set new SAL and COMM values in EMP. Also use a cor‐
related subquery to identify which rows from EMP should be updated:

1 update emp e set (e.sal,e.comm) = (select ns.sal, ns.sal/2
2 from new_sal ns
3 where ns.deptno=e.deptno)
4 where exists (select *
5 from new_sal ns
6 where ns.deptno = e.deptno)

MySQL
Include both EMP and NEW_SAL in the UPDATE clause of the UPDATE statement
and join in the WHERE clause:

1 update emp e, new_sal ns
2 set e.sal=ns.sal,
3 e.comm=ns.sal/2
4 where e.deptno=ns.deptno

Oracle
The method for the DB2 solution will work for Oracle, but as an alternative, you can
update an inline view:

1 update (
2 select e.sal as emp_sal, e.comm as emp_comm,
3 ns.sal as ns_sal, ns.sal/2 as ns_comm
4 from emp e, new_sal ns
5 where e.deptno = ns.deptno
6) set emp_sal = ns_sal, emp_comm = ns_comm

PostgreSQL
The method used for the DB2 solution will work for PostgreSQL, but you could also
(quite conveniently) join directly in the UPDATE statement:

1 update emp
2 set sal = ns.sal,
3 comm = ns.sal/2
4 from new_sal ns
5 where ns.deptno = emp.deptno

SQL Server
The method used for the DB2 solution will work for SQL Server, but as an alternative
you can (similarly to the PostgreSQL solution) join directly in the UPDATE
statement:

4.10 Updating with Values from Another Table | 79

1 update e
2 set e.sal = ns.sal,
3 e.comm = ns.sal/2
4 from emp e,
5 new_sal ns
6 where ns.deptno = e.deptno

Discussion
Before discussing the different solutions, it’s worth mentioning something important
regarding updates that use queries to supply new values. A WHERE clause in the sub‐
query of a correlated update is not the same as the WHERE clause of the table being
updated. If you look at the UPDATE statement in the “Problem” section, the join on
DEPTNO between EMP and NEW_SAL is done and returns rows to the SET clause
of the UPDATE statement. For employees in DEPTNO 10, valid values are returned
because there is a matching DEPTNO in table NEW_SAL. But what about employees
in the other departments? NEW_SAL does not have any other departments, so the
SAL and COMM for employees in DEPTNOs 20 and 30 are set to NULL. Unless you
are doing so via LIMIT or TOP or whatever mechanism your vendor supplies for
limiting the number of rows returned in a result set, the only way to restrict rows
from a table in SQL is to use a WHERE clause. To correctly perform this UPDATE,
use a WHERE clause on the table being updated along with a WHERE clause in the
correlated subquery.

DB2
To ensure you do not update every row in table EMP, remember to include a correla‐
ted subquery in the WHERE clause of the UPDATE. Performing the join (the correla‐
ted subquery) in the SET clause is not enough. By using a WHERE clause in the
UPDATE, you ensure that only rows in EMP that match on DEPTNO to table
NEW_SAL are updated. This holds true for all RDBMSs.

Oracle
In the Oracle solution using the update join view, you are using equi-joins to deter‐
mine which rows will be updated. You can confirm which rows are being updated by
executing the query independently. To be able to successfully use this type of
UPDATE, you must first understand the concept of key-preservation. The DEPTNO
column of the table NEW_SAL is the primary key of that table; thus, its values are
unique within the table. When joining between EMP and NEW_SAL, however,
NEW_SAL.DEPTNO is not unique in the result set, as shown here:

select e.empno, e.deptno e_dept, ns.sal, ns.deptno ns_deptno
 from emp e, new_sal ns
 where e.deptno = ns.deptno

80 | Chapter 4: Inserting, Updating, and Deleting

EMPNO E_DEPT SAL NS_DEPTNO
----- ---------- ---------- ----------
 7782 10 4000 10
 7839 10 4000 10
 7934 10 4000 10

To enable Oracle to update this join, one of the tables must be key-preserved, mean‐
ing that if its values are not unique in the result set, it should at least be unique in the
table it comes from. In this case, NEW_SAL has a primary key on DEPTNO, which
makes it unique in the table. Because it is unique in its table, it may appear multiple
times in the result set and will still be considered key-preserved, thus allowing the
update to complete successfully.

PostgreSQL, SQL Server, and MySQL
The syntax is a bit different between these platforms, but the technique is the same.
Being able to join directly in the UPDATE statement is extremely convenient. Since
you specify which table to update (the table listed after the UPDATE keyword),
there’s no confusion as to which table’s rows are modified. Additionally, because you
are using joins in the update (since there is an explicit WHERE clause), you can avoid
some of the pitfalls when coding correlated subquery updates; in particular, if you
missed a join here, it would be obvious you’d have a problem.

4.11 Merging Records
Problem
You want to conditionally insert, update, or delete records in a table depending on
whether corresponding records exist. (If a record exists, then update; if not, then
insert; if after updating a row fails to meet a certain condition, delete it.) For example,
you want to modify table EMP_COMMISSION such that:

• If any employee in EMP_COMMISSION also exists in table EMP, then update
their commission (COMM) to 1000.

• For all employees who will potentially have their COMM updated to 1000, if their
SAL is less than 2000, delete them (they should not be exist in EMP_[.keep-
together] COMMISSION).

• Otherwise, insert the EMPNO, ENAME, and DEPTNO values from table EMP
into table EMP_COMMISSION.

Essentially, you want to execute either an UPDATE or an INSERT depending on
whether a given row from EMP has a match in EMP_COMMISSION. Then you want
to execute a DELETE if the result of an UPDATE causes a commission that’s too high.

4.11 Merging Records | 81

The following rows are currently in tables EMP and EMP_COMMISSION,
respectively:

select deptno,empno,ename,comm
 from emp
 order by 1

DEPTNO EMPNO ENAME COMM
------ ---------- ------ ----------
 10 7782 CLARK
 10 7839 KING
 10 7934 MILLER
 20 7369 SMITH
 20 7876 ADAMS
 20 7902 FORD
 20 7788 SCOTT
 20 7566 JONES
 30 7499 ALLEN 300
 30 7698 BLAKE
 30 7654 MARTIN 1400
 30 7900 JAMES
 30 7844 TURNER 0
 30 7521 WARD 500

select deptno,empno,ename,comm
 from emp_commission
 order by 1

 DEPTNO EMPNO ENAME COMM
---------- ---------- ---------- ----------
 10 7782 CLARK
 10 7839 KING
 10 7934 MILLER

Solution
The statement designed to solve this problem is the MERGE statement, and it can
perform either an UPDATE or an INSERT, as needed. For example:

1 merge into emp_commission ec
2 using (select * from emp) emp
3 on (ec.empno=emp.empno)
4 when matched then
5 update set ec.comm = 1000
6 delete where (sal < 2000)
7 when not matched then
8 insert (ec.empno,ec.ename,ec.deptno,ec.comm)
9 values (emp.empno,emp.ename,emp.deptno,emp.comm)

Currently, MySQL does not have a MERGE statement; otherwise, this query should
work on any RDBMS in this book, and in a wide number of others.

82 | Chapter 4: Inserting, Updating, and Deleting

Discussion
The join on line 3 of the solution determines what rows already exist and will be
updated. The join is between EMP_COMMISSION (aliased as EC) and the subquery
(aliased as EMP). When the join succeeds, the two rows are considered “matched,”
and the UPDATE specified in the WHEN MATCHED clause is executed. Otherwise,
no match is found, and the INSERT in WHEN NOT MATCHED is executed. Thus,
rows from table EMP that do not have corresponding rows based on EMPNO in table
EMP_COMMISSION will be inserted into EMP_COMMISSION. Of all the employ‐
ees in table EMP, only those in DEPTNO 10 should have their COMM updated in
EMP_COMMISSION, while the rest of the employees are inserted. Additionally,
since MILLER is in DEPTNO 10, he is a candidate to have his COMM updated, but
because his SAL is less than 2,000, it is deleted from EMP_COMMISSION.

4.12 Deleting All Records from a Table
Problem
You want to delete all the records from a table.

Solution
Use the DELETE command to delete records from a table. For example, to delete all
records from EMP, use the following:

delete from emp

Discussion
When using the DELETE command without a WHERE clause, you will delete all
rows from the table specified. Sometimes TRUNCATE, which applies to tables and
therefore doesn’t use the WHERE clause, is preferred as it is faster. At least in Oracle,
however, TRUNCATE cannot be undone. You should carefully check vendor docu‐
mentation for a detailed view of the performance and rollback differences between
TRUNCATE and DELETE in your specific RDBMS.

4.13 Deleting Specific Records
Problem
You want to delete records meeting a specific criterion from a table.

4.12 Deleting All Records from a Table | 83

Solution
Use the DELETE command with a WHERE clause specifying which rows to delete.
For example, to delete all employees in department 10, use the following:

delete from emp where deptno = 10

Discussion
By using a WHERE clause with the DELETE command, you can delete a subset of
rows in a table rather than all the rows. Don’t forget to check that you’re deleting the
right data by previewing the effect of your WHERE clause using SELECT—you can
delete the wrong data even in a simple situation. For example, in the previous case, a
typo could lead to the employees in department 20 being deleted instead of depart‐
ment 10!

4.14 Deleting a Single Record
Problem
You want to delete a single record from a table.

Solution
This is a special case of Recipe 4.13. The key is to ensure that your selection criterion
is narrow enough to specify only the one record that you want to delete. Often you
will want to delete based on the primary key. For example, to delete employee
CLARK (EMPNO 7782):

delete from emp where empno = 7782

Discussion
Deleting is always about identifying the rows to be deleted, and the impact of a
DELETE always comes down to its WHERE clause. Omit the WHERE clause and the
scope of a DELETE is the entire table. By writing conditions in the WHERE clause,
you can narrow the scope to a group of records or to a single record. When deleting a
single record, you should typically be identifying that record based on its primary key
or on one of its unique keys.

If your deletion criterion is based on a primary or unique key, then
you can be sure of deleting only one record. (This is because your
RDBMS will not allow two rows to contain the same primary or
unique key values.) Otherwise, you may want to check first, to be
sure you aren’t about to inadvertently delete more records than you
intend.

84 | Chapter 4: Inserting, Updating, and Deleting

4.15 Deleting Referential Integrity Violations
Problem
You want to delete records from a table when those records refer to nonexistent
records in some other table. For example, some employees are assigned to depart‐
ments that do not exist. You want to delete those employees.

Solution
Use the NOT EXISTS predicate with a subquery to test the validity of department
numbers:

delete from emp
 where not exists (
 select * from dept
 where dept.deptno = emp.deptno
)

Alternatively, you can write the query using a NOT IN predicate:

delete from emp
where deptno not in (select deptno from dept)

Discussion
Deleting is really all about selecting: the real work lies in writing WHERE clause con‐
ditions to correctly describe those records that you want to delete.

The NOT EXISTS solution uses a correlated subquery to test for the existence of a
record in DEPT having a DEPTNO matching that in a given EMP record. If such a
record exists, then the EMP record is retained. Otherwise, it is deleted. Each EMP
record is checked in this manner.

The IN solution uses a subquery to retrieve a list of valid department numbers.
DEPTNOs from each EMP record are then checked against that list. When an EMP
record is found with a DEPTNO not in the list, the EMP record is deleted.

4.16 Deleting Duplicate Records
Problem
You want to delete duplicate records from a table. Consider the following table:

create table dupes (id integer, name varchar(10))

insert into dupes values (1, 'NAPOLEON')
insert into dupes values (2, 'DYNAMITE')

4.15 Deleting Referential Integrity Violations | 85

insert into dupes values (3, 'DYNAMITE')
insert into dupes values (4, 'SHE SELLS')
insert into dupes values (5, 'SEA SHELLS')
insert into dupes values (6, 'SEA SHELLS')
insert into dupes values (7, 'SEA SHELLS')

select * from dupes order by 1

 ID NAME
---------- ----------
 1 NAPOLEON
 2 DYNAMITE
 3 DYNAMITE
 4 SHE SELLS
 5 SEA SHELLS
 6 SEA SHELLS
 7 SEA SHELLS

For each group of duplicate names, such as SEA SHELLS, you want to arbitrarily
retain one ID and delete the rest. In the case of SEA SHELLS, you don’t care whether
you delete lines 5 and 6, or lines 5 and 7, or lines 6 and 7, but in the end you want just
one record for SEA SHELLS.

Solution
Use a subquery with an aggregate function such as MIN to arbitrarily choose the ID
to retain (in this case only the NAME with the smallest value for ID is not deleted):

1 delete from dupes
2 where id not in (select min(id)
3 from dupes
4 group by name)

For MySQL users you will need slightly different syntax because you cannot reference
the same table twice in a delete (as of the time of this writing):

1 delete from dupes
2 where id not in
3 (select min(id)
4 from (select id,name from dupes) tmp
5 group by name)

Discussion
The first thing to do when deleting duplicates is to define exactly what it means for
two rows to be considered “duplicates” of each other. For my example in this recipe,
the definition of “duplicate” is that two records contain the same value in their NAME
column. Having that definition in place, you can look to some other column to dis‐
criminate among each set of duplicates, to identify those records to retain. It’s best if

86 | Chapter 4: Inserting, Updating, and Deleting

this discriminating column (or columns) is a primary key. We used the ID column,
which is a good choice because no two records have the same ID.

The key to the solution is that you group by the values that are duplicated (by NAME
in this case), and then use an aggregate function to pick off just one key value to
retain. The subquery in the “Solution” example will return the smallest ID for each
NAME, which represents the row you will not delete:

select min(id)
 from dupes
 group by name

 MIN(ID)

 2
 1
 5
 4

The DELETE then deletes any ID in the table that is not returned by the subquery (in
this case IDs 3, 6, and 7). If you are having trouble seeing how this works, run the
subquery first and include the NAME in the SELECT list:

select name, min(id)
 from dupes
 group by name

NAME MIN(ID)
---------- ----------
DYNAMITE 2
NAPOLEON 1
SEA SHELLS 5
SHE SELLS 4

The rows returned by the subquery represent those to be retained. The NOT IN
predicate in the DELETE statement causes all other rows to be deleted.

4.17 Deleting Records Referenced from Another Table
Problem
You want to delete records from one table when those records are referenced from
some other table. Consider the following table, named DEPT_ACCIDENTS, which
contains one row for each accident that occurs in a manufacturing business. Each row
records the department in which an accident occurred and also the type of accident.

create table dept_accidents
(deptno integer,
 accident_name varchar(20))

4.17 Deleting Records Referenced from Another Table | 87

insert into dept_accidents values (10,'BROKEN FOOT')
insert into dept_accidents values (10,'FLESH WOUND')
insert into dept_accidents values (20,'FIRE')
insert into dept_accidents values (20,'FIRE')
insert into dept_accidents values (20,'FLOOD')
insert into dept_accidents values (30,'BRUISED GLUTE')

select * from dept_accidents

 DEPTNO ACCIDENT_NAME
---------- --------------------
 10 BROKEN FOOT
 10 FLESH WOUND
 20 FIRE
 20 FIRE
 20 FLOOD
 30 BRUISED GLUTE

You want to delete from EMP the records for those employees working at a depart‐
ment that has three or more accidents.

Solution
Use a subquery and the aggregate function COUNT to find the departments with
three or more accidents. Then delete all employees working in those departments:

1 delete from emp
2 where deptno in (select deptno
3 from dept_accidents
4 group by deptno
5 having count(*) >= 3)

Discussion
The subquery will identify which departments have three or more accidents:

select deptno
 from dept_accidents
 group by deptno
having count(*) >= 3

 DEPTNO

 20

The DELETE will then delete any employees in the departments returned by the sub‐
query (in this case, only in department 20).

88 | Chapter 4: Inserting, Updating, and Deleting

4.18 Summing Up
Inserting and updating data may seem to take up less of your time than querying
data, and in the rest of the book we will concentrate on queries. However, being able
to maintain the data in a database is clearly fundamental to its purpose, and these rec‐
ipes are a crucial part of the skill set needed to maintain a database. Some of these
commands, especially commands that remove or delete data, can have lasting conse‐
quences. Always preview any data you intend to delete to make sure you are really
deleting what you mean to, and become familiar with what can and can’t be undone
in your specific RDBMS.

4.18 Summing Up | 89

CHAPTER 5

Metadata Queries

This chapter presents recipes that allow you to find information about a given
schema. For example, you may want to know what tables you’ve created or which for‐
eign keys are not indexed. All of the RDBMSs in this book provide tables and views
for obtaining such data. The recipes in this chapter will get you started on gleaning
information from those tables and views.

Although at a high level the strategy of storing metadata in tables and views within
the RDBMS is common, the ultimate implementation is not standardized to the same
degree as most of the SQL language features covered in this book. Therefore, com‐
pared to other chapters, in this chapter having a different solution for each RDBMS is
far more common.

The following is selection of the most common schema queries written for each of the
RDMSs covered in the book. There is far more information available than the recipes
in this chapter can show. Consult your RDBMS’s documentation for the complete list
of catalog or data dictionary tables/views when you need to go beyond what’s presen‐
ted here.

For the purposes of demonstration, all of the recipes in this chapter
assume there is a schema named SMEAGOL.

5.1 Listing Tables in a Schema
Problem
You want to see a list of all the tables you’ve created in a given schema.

91

Solution
The solutions that follow all assume you are working with the SMEAGOL schema.
The basic approach to a solution is the same for all RDBMSs: you query a system
table (or view) containing a row for each table in the database.

DB2
Query SYSCAT.TABLES:

1 select tabname
2 from syscat.tables
3 where tabschema = 'SMEAGOL'

Oracle
Query SYS.ALL_TABLES:

select table_name
 from all_tables
 where owner = 'SMEAGOL'

PostgreSQL, MySQL, and SQL Server
Query INFORMATION_SCHEMA.TABLES:

1 select table_name
2 from information_schema.tables
3 where table_schema = 'SMEAGOL'

Discussion
In a delightfully circular manner, databases expose information about themselves
through the very mechanisms that you create for your own applications: tables and
views. Oracle, for example, maintains an extensive catalog of system views, such as
ALL_TABLES, that you can query for information about tables, indexes, grants, and
any other database object.

Oracle’s catalog views are just that, views. They are based on an
underlying set of tables that contain the information in a user-
unfriendly form. The views put a usable face on Oracle’s catalog
data.

Oracle’s system views and DB2’s system tables are each vendor-specific. PostgreSQL,
MySQL, and SQL Server, on the other hand, support something called the informa‐
tion schema, which is a set of views defined by the ISO SQL standard. That’s why the
same query can work for all three of those databases.

92 | Chapter 5: Metadata Queries

5.2 Listing a Table’s Columns
Problem
You want to list the columns in a table, along with their data types, and their position
in the table they are in.

Solution
The following solutions assume that you want to list columns, their data types, and
their numeric position in the table named EMP in the schema SMEAGOL.

DB2
Query SYSCAT.COLUMNS:

1 select colname, typename, colno
2 from syscat.columns
3 where tabname = 'EMP'
4 and tabschema = 'SMEAGOL'

Oracle
Query ALL_TAB_COLUMNS:

1 select column_name, data_type, column_id
2 from all_tab_columns
3 where owner = 'SMEAGOL'
4 and table_name = 'EMP'

PostgreSQL, MySQL, and SQL Server
Query INFORMATION_SCHEMA.COLUMNS:

1 select column_name, data_type, ordinal_position
2 from information_schema.columns
3 where table_schema = 'SMEAGOL'
4 and table_name = 'EMP'

Discussion
Each vendor provides ways for you to get detailed information about your column
data. In the previous examples, only the column name, data type, and position are
returned. Additional useful items of information include length, nullability, and
default values.

5.2 Listing a Table’s Columns | 93

5.3 Listing Indexed Columns for a Table
Problem
You want list indexes, their columns, and the column position (if available) in the
index for a given table.

Solution
The vendor-specific solutions that follow all assume that you are listing indexes for
table EMP in the SMEAGOL schema.

DB2
Query SYSCAT.INDEXES:

1 select a.tabname, b.indname, b.colname, b.colseq
2 from syscat.indexes a,
3 syscat.indexcoluse b
4 where a.tabname = 'EMP'
5 and a.tabschema = 'SMEAGOL'
6 and a.indschema = b.indschema
7 and a.indname = b.indname

Oracle
Query SYS.ALL_IND_COLUMNS:

select table_name, index_name, column_name, column_position
 from sys.all_ind_columns
 where table_name = 'EMP'
 and table_owner = 'SMEAGOL'

PostgreSQL
Query PG_CATALOG.PG_INDEXES and INFORMATION_SCHEMA.COLUMNS:

1 select a.tablename,a.indexname,b.column_name
2 from pg_catalog.pg_indexes a,
3 information_schema.columns b
4 where a.schemaname = 'SMEAGOL'
5 and a.tablename = b.table_name

MySQL
Use the SHOW INDEX command:

show index from emp

94 | Chapter 5: Metadata Queries

SQL Server
Query SYS.TABLES, SYS.INDEXES, SYS.INDEX_COLUMNS, and SYS.COLUMNS:

 1 select a.name table_name,
 2 b.name index_name,
 3 d.name column_name,
 4 c.index_column_id
 5 from sys.tables a,
 6 sys.indexes b,
 7 sys.index_columns c,
 8 sys.columns d
 9 where a.object_id = b.object_id
10 and b.object_id = c.object_id
11 and b.index_id = c.index_id
12 and c.object_id = d.object_id
13 and c.column_id = d.column_id
14 and a.name = 'EMP'

Discussion
When it comes to queries, it’s important to know what columns are/aren’t indexed.
Indexes can provide good performance for queries against columns that are fre‐
quently used in filters and that are fairly selective. Indexes are also useful when join‐
ing between tables. By knowing what columns are indexed, you are already one step
ahead of performance problems if they should occur. Additionally, you might want to
find information about the indexes themselves: how many levels deep they are, how
many distinct keys there are, how many leaf blocks there are, and so forth. Such
information is also available from the views/tables queried in this recipe’s solutions.

5.4 Listing Constraints on a Table
Problem
You want to list the constraints defined for a table in some schema and the columns
they are defined on. For example, you want to find the constraints and the columns
they are on for table EMP.

Solution

DB2
Query SYSCAT.TABCONST and SYSCAT.COLUMNS:

1 select a.tabname, a.constname, b.colname, a.type
2 from syscat.tabconst a,
3 syscat.columns b
4 where a.tabname = 'EMP'

5.4 Listing Constraints on a Table | 95

5 and a.tabschema = 'SMEAGOL'
6 and a.tabname = b.tabname
7 and a.tabschema = b.tabschema

Oracle
Query SYS.ALL_CONSTRAINTS and SYS.ALL_CONS_COLUMNS:

 1 select a.table_name,
 2 a.constraint_name,
 3 b.column_name,
 4 a.constraint_type
 5 from all_constraints a,
 6 all_cons_columns b
 7 where a.table_name = 'EMP'
 8 and a.owner = 'SMEAGOL'
 9 and a.table_name = b.table_name
10 and a.owner = b.owner
11 and a.constraint_name = b.constraint_name

PostgreSQL, MySQL, and SQL Server
Query INFORMATION_SCHEMA.TABLE_CONSTRAINTS and INFORMATION_
SCHEMA.KEY_COLUMN_USAGE:

 1 select a.table_name,
 2 a.constraint_name,
 3 b.column_name,
 4 a.constraint_type
 5 from information_schema.table_constraints a,
 6 information_schema.key_column_usage b
 7 where a.table_name = 'EMP'
 8 and a.table_schema = 'SMEAGOL'
 9 and a.table_name = b.table_name
10 and a.table_schema = b.table_schema
11 and a.constraint_name = b.constraint_name

Discussion
Constraints are such a critical part of relational databases that it should go without
saying why you need to know what constraints are on your tables. Listing the con‐
straints on tables is useful for a variety of reasons: you may want to find tables miss‐
ing a primary key, you may want to find which columns should be foreign keys but
are not (i.e., child tables have data different from the parent tables and you want to
know how that happened), or you may want to know about check constraints (Are
columns nullable? Do they have to satisfy a specific condition? etc.).

96 | Chapter 5: Metadata Queries

5.5 Listing Foreign Keys Without Corresponding Indexes
Problem
You want to list tables that have foreign key columns that are not indexed. For exam‐
ple, you want to determine whether the foreign keys on table EMP are indexed.

Solution

DB2
Query SYSCAT.TABCONST, SYSCAT.KEYCOLUSE, SYSCAT.INDEXES, and SYS‐
CAT.INDEXCOLUSE:

 1 select fkeys.tabname,
 2 fkeys.constname,
 3 fkeys.colname,
 4 ind_cols.indname
 5 from (
 6 select a.tabschema, a.tabname, a.constname, b.colname
 7 from syscat.tabconst a,
 8 syscat.keycoluse b
 9 where a.tabname = 'EMP'
10 and a.tabschema = 'SMEAGOL'
11 and a.type = 'F'
12 and a.tabname = b.tabname
13 and a.tabschema = b.tabschema
14) fkeys
15 left join
16 (
17 select a.tabschema,
18 a.tabname,
19 a.indname,
20 b.colname
21 from syscat.indexes a,
22 syscat.indexcoluse b
23 where a.indschema = b.indschema
24 and a.indname = b.indname
25) ind_cols
26 on (fkeys.tabschema = ind_cols.tabschema
27 and fkeys.tabname = ind_cols.tabname
28 and fkeys.colname = ind_cols.colname)
29 where ind_cols.indname is null

Oracle
Query SYS.ALL_CONS_COLUMNS, SYS.ALL_CONSTRAINTS, and
SYS.ALL_IND_COLUMNS:

5.5 Listing Foreign Keys Without Corresponding Indexes | 97

 1 select a.table_name,
 2 a.constraint_name,
 3 a.column_name,
 4 c.index_name
 5 from all_cons_columns a,
 6 all_constraints b,
 7 all_ind_columns c
 8 where a.table_name = 'EMP'
 9 and a.owner = 'SMEAGOL'
10 and b.constraint_type = 'R'
11 and a.owner = b.owner
12 and a.table_name = b.table_name
13 and a.constraint_name = b.constraint_name
14 and a.owner = c.table_owner (+)
15 and a.table_name = c.table_name (+)
16 and a.column_name = c.column_name (+)
17 and c.index_name is null

PostgreSQL
Query INFORMATION_SCHEMA.KEY_COLUMN_USAGE, INFORMATION_
SCHEMA.REFERENTIAL_CONSTRAINTS, INFORMATION_SCHEMA.COL‐
UMNS, and PG_CATALOG.PG_INDEXES:

 1 select fkeys.table_name,
 2 fkeys.constraint_name,
 3 fkeys.column_name,
 4 ind_cols.indexname
 5 from (
 6 select a.constraint_schema,
 7 a.table_name,
 8 a.constraint_name,
 9 a.column_name
10 from information_schema.key_column_usage a,
11 information_schema.referential_constraints b
12 where a.constraint_name = b.constraint_name
13 and a.constraint_schema = b.constraint_schema
14 and a.constraint_schema = 'SMEAGOL'
15 and a.table_name = 'EMP'
16) fkeys
17 left join
18 (
19 select a.schemaname, a.tablename, a.indexname, b.column_name
20 from pg_catalog.pg_indexes a,
21 information_schema.columns b
22 where a.tablename = b.table_name
23 and a.schemaname = b.table_schema
24) ind_cols
25 on (fkeys.constraint_schema = ind_cols.schemaname
26 and fkeys.table_name = ind_cols.tablename
27 and fkeys.column_name = ind_cols.column_name)
28 where ind_cols.indexname is null

98 | Chapter 5: Metadata Queries

MySQL
You can use the SHOW INDEX command to retrieve index information such as
index name, columns in the index, and ordinal position of the columns in the index.
Additionally, you can query INFORMATION_SCHEMA.KEY_COLUMN_USAGE
to list the foreign keys for a given table. In MySQL 5, foreign keys are said to be
indexed automatically, but can in fact be dropped. To determine whether a foreign
key column’s index has been dropped, you can execute SHOW INDEX for a particu‐
lar table and compare the output with that of INFORMATION_SCHEMA.KEY_
COLUMN_USAGE.COLUMN_NAME for the same table. If the COLUMN_NAME
is listed in KEY_COLUMN_USAGE but is not returned by SHOW INDEX, you
know that column is not indexed.

SQL Server
Query SYS.TABLES, SYS.FOREIGN_KEYS, SYS.COLUMNS, SYS.INDEXES, and
SYS.INDEX_COLUMNS:

 1 select fkeys.table_name,
 2 fkeys.constraint_name,
 3 fkeys.column_name,
 4 ind_cols.index_name
 5 from (
 6 select a.object_id,
 7 d.column_id,
 8 a.name table_name,
 9 b.name constraint_name,
10 d.name column_name
11 from sys.tables a
12 join
13 sys.foreign_keys b
14 on (a.name = 'EMP'
15 and a.object_id = b.parent_object_id
16)
17 join
18 sys.foreign_key_columns c
19 on (b.object_id = c.constraint_object_id)
20 join
21 sys.columns d
22 on (c.constraint_column_id = d.column_id
23 and a.object_id = d.object_id
24)
25) fkeys
26 left join
27 (
28 select a.name index_name,
29 b.object_id,
30 b.column_id
31 from sys.indexes a,
32 sys.index_columns b

5.5 Listing Foreign Keys Without Corresponding Indexes | 99

33 where a.index_id = b.index_id
34) ind_cols
35 on (fkeys.object_id = ind_cols.object_id
36 and fkeys.column_id = ind_cols.column_id)
37 where ind_cols.index_name is null

Discussion
Each vendor uses its own locking mechanism when modifying rows. In cases where
there is a parent-child relationship enforced via foreign key, having indexes on the
child column(s) can reducing locking (see your specific RDBMS documentation for
details). In other cases, it is common that a child table is joined to a parent table on
the foreign key column, so an index may help improve performance in that scenario
as well.

5.6 Using SQL to Generate SQL
Problem
You want to create dynamic SQL statements, perhaps to automate maintenance tasks.
You want to accomplish three tasks in particular: count the number of rows in your
tables, disable foreign key constraints defined on your tables, and generate insert
scripts from the data in your tables.

Solution
The concept is to use strings to build SQL statements, and the values that need to be
filled in (such as the object name the command acts upon) will be supplied by data
from the tables you are selecting from. Keep in mind, the queries only generate the
statements; you must then run these statements via script, manually, or however you
execute your SQL statements. The following examples are queries that would work on
an Oracle system. For other RDBMSs the technique is exactly the same, the only dif‐
ference being things like the names of the data dictionary tables and date formatting.
The output shown from the queries that follow are a portion of the rows returned
from an instance of Oracle on my laptop. Your result sets will of course vary:

/* generate SQL to count all the rows in all your tables */

select 'select count(*) from '||table_name||';' cnts
 from user_tables;

CNTS
--
select count(*) from ANT;
select count(*) from BONUS;
select count(*) from DEMO1;
select count(*) from DEMO2;

100 | Chapter 5: Metadata Queries

select count(*) from DEPT;
select count(*) from DUMMY;
select count(*) from EMP;
select count(*) from EMP_SALES;
select count(*) from EMP_SCORE;
select count(*) from PROFESSOR;
select count(*) from T;
select count(*) from T1;
select count(*) from T2;
select count(*) from T3;
select count(*) from TEACH;
select count(*) from TEST;
select count(*) from TRX_LOG;
select count(*) from X;

/* disable foreign keys from all tables */

select 'alter table '||table_name||
 ' disable constraint '||constraint_name||';' cons
 from user_constraints
 where constraint_type = 'R';

CONS
--
alter table ANT disable constraint ANT_FK;
alter table BONUS disable constraint BONUS_FK;
alter table DEMO1 disable constraint DEMO1_FK;
alter table DEMO2 disable constraint DEMO2_FK;
alter table DEPT disable constraint DEPT_FK;
alter table DUMMY disable constraint DUMMY_FK;
alter table EMP disable constraint EMP_FK;
alter table EMP_SALES disable constraint EMP_SALES_FK;
alter table EMP_SCORE disable constraint EMP_SCORE_FK;
alter table PROFESSOR disable constraint PROFESSOR_FK;

/* generate an insert script from some columns in table EMP */

select 'insert into emp(empno,ename,hiredate) '||chr(10)||
 'values('||empno||','||''''||ename
 ||''',to_date('||''''||hiredate||'''));' inserts
 from emp
 where deptno = 10;

INSERTS
--
insert into emp(empno,ename,hiredate)
values(7782,'CLARK',to_date('09-JUN-2006 00:00:00'));

insert into emp(empno,ename,hiredate)
values(7839,'KING',to_date('17-NOV-2006 00:00:00'));

5.6 Using SQL to Generate SQL | 101

insert into emp(empno,ename,hiredate)
values(7934,'MILLER',to_date('23-JAN-2007 00:00:00'));

Discussion
Using SQL to generate SQL is particularly useful for creating portable scripts such as
you might use when testing on multiple environments. Additionally, as can be seen by
the previous examples, using SQL to generate SQL is useful for performing batch
maintenance, and for easily finding out information about multiple objects in one go.
Generating SQL with SQL is an extremely simple operation, and the more you
experiment with it, the easier it will become. The examples provided should give you
a nice base on how to build your own “dynamic” SQL scripts because, quite frankly,
there’s not much to it. Work on it and you’ll get it.

5.7 Describing the Data Dictionary Views in an Oracle
Database
Problem
You are using Oracle. You can’t remember what data dictionary views are available to
you, nor can you remember their column definitions. Worse yet, you do not have
convenient access to vendor documentation.

Solution
This is an Oracle-specific recipe. Not only does Oracle maintain a robust set of data
dictionary views, but there are also data dictionary views to document the data dic‐
tionary views. It’s all so wonderfully circular.

Query the view named DICTIONARY to list data dictionary views and their
purposes:

select table_name, comments
 from dictionary
 order by table_name;

TABLE_NAME COMMENTS
------------------------------ --
ALL_ALL_TABLES Description of all object and relational
 tables accessible to the user

ALL_APPLY Details about each apply process that
 dequeues from the queue visible to the
 current user
…

102 | Chapter 5: Metadata Queries

Query DICT_COLUMNS to describe the columns in a given data dictionary view:

select column_name, comments
 from dict_columns
 where table_name = 'ALL_TAB_COLUMNS';

COLUMN_NAME COMMENTS
------------------------------- --
OWNER
TABLE_NAME Table, view or cluster name
COLUMN_NAME Column name
DATA_TYPE Datatype of the column
DATA_TYPE_MOD Datatype modifier of the column
DATA_TYPE_OWNER Owner of the datatype of the column
DATA_LENGTH Length of the column in bytes
DATA_PRECISION Length: decimal digits (NUMBER) or binary
 digits (FLOAT)

Discussion
Back in the day, when Oracle’s documentation set wasn’t so freely available on the
web, it was incredibly convenient that Oracle made the DICTIONARY and DICT_
COLUMNS views available. Knowing just those two views, you could bootstrap to
learning about all the other views and then shift to learning about your entire
database.

Even today, it’s convenient to know about DICTIONARY and DICT_COLUMNS.
Often, if you aren’t quite certain which view describes a given object type, you can
issue a wildcard query to find out. For example, to get a handle on what views might
describe tables in your schema:

select table_name, comments
 from dictionary
 where table_name LIKE '%TABLE%'
 order by table_name;

This query returns all data dictionary view names that include the term TABLE. This
approach takes advantage of Oracle’s fairly consistent data dictionary view naming
conventions. Views describing tables are all likely to contain TABLE in their name.
(Sometimes, as in the case of ALL_TAB_COLUMNS, TABLE is abbreviated TAB.)

5.8 Summing Up
Queries on metadata open up a range of possibilities for letting SQL do more of the
work than you, and they relieve some of the need to know your database. This is espe‐
cially useful as you deal with more complex databases with similarly complex
structures.

5.8 Summing Up | 103

CHAPTER 6

Working with Strings

This chapter focuses on string manipulation in SQL. Keep in mind that SQL is not
designed to perform complex string manipulation, and you can (and will) find work‐
ing with strings in SQL to be cumbersome and frustrating at times. Despite SQL’s lim‐
itations, there are some useful built-in functions provided by the different DBMSs,
and we’ve tried to use them in creative ways. This chapter in particular is representa‐
tive of the message we tried to convey in the introduction; SQL is the good, the bad,
and the ugly. Hopefully you take away from this chapter a better appreciation for
what can and can’t be done in SQL when working with strings. In many cases you’ll
be surprised by how easy parsing and transforming strings can be, while at other
times you’ll be aghast by the kind of SQL that is necessary to accomplish a particular
task.

Many of the recipes that follow use the TRANSLATE and REPLACE functions that
are now available in all the DBMSs covered in this book, with the exception of
MySQL, which only has replace. In this last case, it is worth noting early on that you
can replicate the effect of TRANSLATE by using nested REPLACE functions.

The first recipe in this chapter is critically important, as it is leveraged by several of
the subsequent solutions. In many cases, you’d like to have the ability to traverse a
string by moving through it a character at a time. Unfortunately, SQL does not make
this easy. Because there is limited loop functionality in SQL, you need to mimic a
loop to traverse a string. We call this operation “walking a string” or “walking
through a string,” and the very first recipe explains the technique. This is a funda‐
mental operation in string parsing when using SQL, and is referenced and used by
almost all recipes in this chapter. We strongly suggest becoming comfortable with
how the technique works.

105

6.1 Walking a String
Problem
You want to traverse a string to return each character as a row, but SQL lacks a loop
operation. For example, you want to display the ENAME “KING” from table EMP as
four rows, where each row contains just characters from KING.

Solution
Use a Cartesian product to generate the number of rows needed to return each char‐
acter of a string on its own line. Then use your DBMS’s built-in string parsing func‐
tion to extract the characters you are interested in (SQL Server users will use SUB‐
STRING instead of SUBSTR and DATALENGTH instead of LENGTH):

1 select substr(e.ename,iter.pos,1) as C
2 from (select ename from emp where ename = 'KING') e,
3 (select id as pos from t10) iter
4 where iter.pos <= length(e.ename)

C
-
K
I
N
G

Discussion
The key to iterating through a string’s characters is to join against a table that has
enough rows to produce the required number of iterations. This example uses table
T10, which contains 10 rows (it has one column, ID, holding the values 1 through
10). The maximum number of rows that can be returned from this query is 10.

The following example shows the Cartesian product between E and ITER (i.e.,
between the specific name and the 10 rows from T10) without parsing ENAME:

select ename, iter.pos
 from (select ename from emp where ename = 'KING') e,
 (select id as pos from t10) iter

ENAME POS
---------- ----------
KING 1
KING 2
KING 3
KING 4
KING 5

106 | Chapter 6: Working with Strings

KING 6
KING 7
KING 8
KING 9
KING 10

The cardinality of inline view E is 1, and the cardinality of inline view ITER is 10. The
Cartesian product is then 10 rows. Generating such a product is the first step in mim‐
icking a loop in SQL.

It is common practice to refer to table T10 as a “pivot” table.

The solution uses a WHERE clause to break out of the loop after four rows have been
returned. To restrict the result set to the same number of rows as there are characters
in the name, that WHERE clause specifies ITER.POS <= LENGTH(E. ENAME) as
the condition:

select ename, iter.pos
 from (select ename from emp where ename = 'KING') e,
 (select id as pos from t10) iter
 where iter.pos <= length(e.ename)

ENAME POS
---------- ----------
KING 1
KING 2
KING 3
KING 4

Now that you have one row for each character in E.ENAME, you can use ITER.POS
as a parameter to SUBSTR, allowing you to navigate through the characters in the
string. ITER.POS increments with each row, and thus each row can be made to return
a successive character from E.ENAME. This is how the solution example works.

Depending on what you are trying to accomplish, you may or may not need to gener‐
ate a row for every single character in a string. The following query is an example of
walking E.ENAME and exposing different portions (more than a single character) of
the string:

select substr(e.ename,iter.pos) a,
 substr(e.ename,length(e.ename)-iter.pos+1) b
 from (select ename from emp where ename = 'KING') e,
 (select id pos from t10) iter
 where iter.pos <= length(e.ename)

6.1 Walking a String | 107

A B
---------- ----------
KING G
ING NG
NG ING
G KING

The most common scenarios for the recipes in this chapter involve walking the whole
string to generate a row for each character in the string, or walking the string such
that the number of rows generated reflects the number of particular characters or
delimiters that are present in the string.

6.2 Embedding Quotes Within String Literals
Problem
You want to embed quote marks within string literals. You would like to produce
results such as the following with SQL:

QMARKS

g'day mate
beavers' teeth
'

Solution
The following three SELECTs highlight different ways you can create quotes: in the
middle of a string and by themselves:

1 select 'g''day mate' qmarks from t1 union all
2 select 'beavers'' teeth' from t1 union all
3 select '''' from t1

Discussion
When working with quotes, it’s often useful to think of them like parentheses. When
you have an opening parenthesis, you must always have a closing parenthesis. The
same goes for quotes. Keep in mind that you should always have an even number of
quotes across any given string. To embed a single quote within a string, you need to
use two quotes:

select 'apples core', 'apple''s core',
 case when '' is null then 0 else 1 end
 from t1

 'APPLESCORE 'APPLE''SCOR CASEWHEN''ISNULLTHEN0ELSE1END
 ----------- ------------ -----------------------------
 apples core apple's core 0

108 | Chapter 6: Working with Strings

The following is the solution stripped down to its bare elements. You have two outer
quotes defining a string literal, and within that string literal, you have two quotes that
together represent just one quote in the string that you actually get:

select '''' as quote from t1

Q
-
'

When working with quotes, be sure to remember that a string literal comprising two
quotes alone, with no intervening characters, is NULL.

6.3 Counting the Occurrences of a Character in a String
Problem
You want to count the number of times a character or substring occurs within a given
string. Consider the following string:

10,CLARK,MANAGER

You want to determine how many commas are in the string.

Solution
Subtract the length of the string without the commas from the original length of the
string to determine the number of commas in the string. Each DBMS provides func‐
tions for obtaining the length of a string and removing characters from a string. In
most cases, these functions are LENGTH and REPLACE, respectively (SQL Server
users will use the built-in function LEN rather than LENGTH):

1 select (length('10,CLARK,MANAGER')-
2 length(replace('10,CLARK,MANAGER',',','')))/length(',')
3 as cnt
4 from t1

Discussion
You arrive at the solution by using simple subtraction. The call to LENGTH on line 1
returns the original size of the string, and the first call to LENGTH on line 2 returns
the size of the string without the commas, which are removed by REPLACE.

By subtracting the two lengths, you obtain the difference in terms of characters,
which is the number of commas in the string. The last operation divides the differ‐
ence by the length of your search string. This division is necessary if the string you
are looking for has a length greater than 1. In the following example, counting the

6.3 Counting the Occurrences of a Character in a String | 109

occurrence of “LL” in the string “HELLO HELLO” without dividing will return an
incorrect result:

select
 (length('HELLO HELLO')-
 length(replace('HELLO HELLO','LL','')))/length('LL')
 as correct_cnt,
 (length('HELLO HELLO')-
 length(replace('HELLO HELLO','LL',''))) as incorrect_cnt
 from t1

CORRECT_CNT INCORRECT_CNT
----------- -------------
 2 4

6.4 Removing Unwanted Characters from a String
Problem
You want to remove specific characters from your data. A scenario where this may
occur is in dealing with badly formatted numeric data, especially currency data,
where commas have been used to separate zeros, and currency markers are mixed in
the column with the quantity. Another scenario is that you want to export data from
your database as a CSV file, but there is a text field containing commas, which will be
read as separators when the CSV file is accessed. Consider this result set:

ENAME SAL
---------- ----------
SMITH 800
ALLEN 1600
WARD 1250
JONES 2975
MARTIN 1250
BLAKE 2850
CLARK 2450
SCOTT 3000
KING 5000
TURNER 1500
ADAMS 1100
JAMES 950
FORD 3000
MILLER 1300

You want to remove all zeros and vowels as shown by the following values in columns
STRIPPED1 and STRIPPED2:

ENAME STRIPPED1 SAL STRIPPED2
---------- ---------- ---------- ---------
SMITH SMTH 800 8
ALLEN LLN 1600 16

110 | Chapter 6: Working with Strings

WARD WRD 1250 125
JONES JNS 2975 2975
MARTIN MRTN 1250 125
BLAKE BLK 2850 285
CLARK CLRK 2450 245
SCOTT SCTT 3000 3
KING KNG 5000 5
TURNER TRNR 1500 15
ADAMS DMS 1100 11
JAMES JMS 950 95
FORD FRD 3000 3
MILLER MLLR 1300 13

Solution
Each DBMS provides functions for removing unwanted characters from a string. The
functions REPLACE and TRANSLATE are most useful for this problem.

DB2, Oracle, PostgreSQL, and SQL Server
Use the built-in functions TRANSLATE and REPLACE to remove unwanted charac‐
ters and strings:

1 select ename,
2 replace(translate(ename,'aaaaa','AEIOU'),'a','') as stripped1,
3 sal,
4 replace(cast(sal as char(4)),'0','') as stripped2
5 from emp

Note that for DB2, the AS keyword is optional for assigning a column alias and can
be left out.

MySQL
MySQL does not offer a TRANSLATE function, so several calls to REPLACE are
needed:

 1 select ename,
 2 replace(
 3 replace(
 4 replace(
 5 replace(
 6 replace(ename,'A',''),'E',''),'I',''),'O',''),'U','')
 7 as stripped1,
 8 sal,
 9 replace(sal,0,'') stripped2
10 from emp

6.4 Removing Unwanted Characters from a String | 111

Discussion
The built-in function REPLACE removes all occurrences of zeros. To remove the
vowels, use TRANSLATE to convert all vowels into one specific character (we used
“a”; you can use any character); then use REPLACE to remove all occurrences of that
character.

6.5 Separating Numeric and Character Data
Problem
You have numeric data stored with character data together in one column. This could
easily happen if you inherit data where units of measurement or currency have been
stored with their quantity (e.g., a column with 100 km, AUD$200, or 40 pounds,
rather than either the column making the units clear or a separate column showing
the units where necessary).

You want to separate the character data from the numeric data. Consider the follow‐
ing result set:

DATA

SMITH800
ALLEN1600
WARD1250
JONES2975
MARTIN1250
BLAKE2850
CLARK2450
SCOTT3000
KING5000
TURNER1500
ADAMS1100
JAMES950
FORD3000
MILLER1300

You would like the result to be:

ENAME SAL
---------- ----------
SMITH 800
ALLEN 1600
WARD 1250
JONES 2975
MARTIN 1250
BLAKE 2850
CLARK 2450
SCOTT 3000
KING 5000

112 | Chapter 6: Working with Strings

TURNER 1500
ADAMS 1100
JAMES 950
FORD 3000
MILLER 1300

Solution
Use the built-in functions TRANSLATE and REPLACE to isolate the character from
the numeric data. Like other recipes in this chapter, the trick is to use TRANSLATE
to transform multiple characters into a single character you can reference. This way
you are no longer searching for multiple numbers or characters; rather, you are
searching for just one character to represent all numbers or one character to repre‐
sent all characters.

DB2
Use the functions TRANSLATE and REPLACE to isolate and separate the numeric
from the character data:

 1 select replace(
 2 translate(data,'0000000000','0123456789'),'0','') ename,
 3 cast(
 4 replace(
 5 translate(lower(data),repeat('z',26),
 6 'abcdefghijklmnopqrstuvwxyz'),'z','') as integer) sal
 7 from (
 8 select ename||cast(sal as char(4)) data
 9 from emp
10) x

Oracle
Use the functions TRANSLATE and REPLACE to isolate and separate the numeric
from the character data:

 1 select replace(
 2 translate(data,'0123456789','0000000000'),'0') ename,
 3 to_number(
 4 replace(
 5 translate(lower(data),
 6 'abcdefghijklmnopqrstuvwxyz',
 7 rpad('z',26,'z')),'z')) sal
 8 from (
 9 select ename||sal data
10 from emp
11)

6.5 Separating Numeric and Character Data | 113

PostgreSQL
Use the functions TRANSLATE and REPLACE to isolate and separate the numeric
from the character data:

 1 select replace(
 2 translate(data,'0123456789','0000000000'),'0','') as ename,
 3 cast(
 4 replace(
 5 translate(lower(data),
 6 'abcdefghijklmnopqrstuvwxyz',
 7 rpad('z',26,'z')),'z','') as integer) as sal
 8 from (
 9 select ename||sal as data
10 from emp
11) x

SQL Server
Use the functions TRANSLATE and REPLACE to isolate and separate the numeric
from the character data:

 1 select replace(
 2 translate(data,'0123456789','0000000000'),'0','') as ename,
 3 cast(
 4 replace(
 5 translate(lower(data),
 6 'abcdefghijklmnopqrstuvwxyz',
 7 replicate('z',26),'z','') as integer) as sal
 8 from (
 9 select concat(ename,sal) as data
10 from emp
11) x

Discussion
The syntax is a bit different for each DBMS, but the technique is the same. The syntax
is slightly different for each DBMS, but the technique is the same; we will use the
Oracle solution for this discussion. The key to solving this problem is to isolate the
numeric and character data. You can use TRANSLATE and REPLACE to do this. To
extract the numeric data, first isolate all character data using TRANSLATE:

select data,
 translate(lower(data),
 'abcdefghijklmnopqrstuvwxyz',
 rpad('z',26,'z')) sal
 from (select ename||sal data from emp)

DATA SAL
-------------------- -------------------
SMITH800 zzzzz800
ALLEN1600 zzzzz1600

114 | Chapter 6: Working with Strings

WARD1250 zzzz1250
JONES2975 zzzzz2975
MARTIN1250 zzzzzz1250
BLAKE2850 zzzzz2850
CLARK2450 zzzzz2450
SCOTT3000 zzzzz3000
KING5000 zzzz5000
TURNER1500 zzzzzz1500
ADAMS1100 zzzzz1100
JAMES950 zzzzz950
FORD3000 zzzz3000
MILLER1300 zzzzzz1300

By using TRANSLATE you convert every nonnumeric character into a lowercase Z.
The next step is to remove all instances of lowercase Z from each record using
REPLACE, leaving only numerical characters that can then be cast to a number:

select data,
 to_number(
 replace(
 translate(lower(data),
 'abcdefghijklmnopqrstuvwxyz',
 rpad('z',26,'z')),'z')) sal
 from (select ename||sal data from emp)

 DATA SAL
 -------------------- ----------
 SMITH800 800
 ALLEN1600 1600
 WARD1250 1250
 JONES2975 2975
 MARTIN1250 1250
 BLAKE2850 2850
 CLARK2450 2450
 SCOTT3000 3000
 KING5000 5000
 TURNER1500 1500
 ADAMS1100 1100
 JAMES950 950
 FORD3000 3000
 MILLER1300 1300

To extract the nonnumeric characters, isolate the numeric characters using
TRANSLATE:

select data,
 translate(data,'0123456789','0000000000') ename
 from (select ename||sal data from emp)

 DATA ENAME
 -------------------- ----------
 SMITH800 SMITH000
 ALLEN1600 ALLEN0000

6.5 Separating Numeric and Character Data | 115

 WARD1250 WARD0000
 JONES2975 JONES0000
 MARTIN1250 MARTIN0000
 BLAKE2850 BLAKE0000
 CLARK2450 CLARK0000
 SCOTT3000 SCOTT0000
 KING5000 KING0000
 TURNER1500 TURNER0000
 ADAMS1100 ADAMS0000
 JAMES950 JAMES000
 FORD3000 FORD0000
 MILLER1300 MILLER0000

By using TRANSLATE, you convert every numeric character into a zero. The next
step is to remove all instances of zero from each record using REPLACE, leaving only
nonnumeric characters:

select data,
 replace(translate(data,'0123456789','0000000000'),'0') ename
 from (select ename||sal data from emp)

 DATA ENAME
 -------------------- -------
 SMITH800 SMITH
 ALLEN1600 ALLEN
 WARD1250 WARD
 JONES2975 JONES
 MARTIN1250 MARTIN
 BLAKE2850 BLAKE
 CLARK2450 CLARK
 SCOTT3000 SCOTT
 KING5000 KING
 TURNER1500 TURNER
 ADAMS1100 ADAMS
 JAMES950 JAMES
 FORD3000 FORD
 MILLER1300 MILLER

Put the two techniques together and you have your solution.

6.6 Determining Whether a String Is Alphanumeric
Problem
You want to return rows from a table only when a column of interest contains no
characters other than numbers and letters. Consider the following view V (SQL
Server users will use the operator + for concatenation instead of ||):

116 | Chapter 6: Working with Strings

create view V as
select ename as data
 from emp
 where deptno=10
 union all
select ename||', $'|| cast(sal as char(4)) ||'.00' as data
 from emp
 where deptno=20
 union all
select ename|| cast(deptno as char(4)) as data
 from emp
 where deptno=30

The view V represents your table, and it returns the following:

DATA

CLARK
KING
MILLER
SMITH, $800.00
JONES, $2975.00
SCOTT, $3000.00
ADAMS, $1100.00
FORD, $3000.00
ALLEN30
WARD30
MARTIN30
BLAKE30
TURNER30
JAMES30

However, from the view’s data you want to return only the following records:

DATA

CLARK
KING
MILLER
ALLEN30
WARD30
MARTIN30
BLAKE30
TURNER30
JAMES30

In short, you want to omit those rows containing data other than letters and digits.

Solution
It may seem intuitive at first to solve the problem by searching for all the possible
non-alphanumeric characters that can be found in a string, but, on the contrary, you
will find it easier to do the exact opposite: find all the alphanumeric characters. By

6.6 Determining Whether a String Is Alphanumeric | 117

doing so, you can treat all the alphanumeric characters as one by converting them to
one single character. The reason you want to do this is so the alphanumeric
characters can be manipulated together, as a whole. Once you’ve generated a copy of
the string in which all alphanumeric characters are represented by a single character
of your choosing, it is easy to isolate the alphanumeric characters from any other
characters.

DB2
Use the function TRANSLATE to convert all alphanumeric characters to a single
character; then identify any rows that have characters other than the converted alpha‐
numeric character. For DB2 users, the CAST function calls in view V are necessary;
otherwise, the view cannot be created due to type conversion errors. Take extra care
when working with casts to CHAR as they are fixed length (padded):

1 select data
2 from V
3 where translate(lower(data),
4 repeat('a',36),
5 '0123456789abcdefghijklmnopqrstuvwxyz') =
6 repeat('a',length(data))

MySQL
The syntax for view V is slightly different in MySQL:

create view V as
select ename as data
 from emp
 where deptno=10
 union all
select concat(ename,', $',sal,'.00') as data
 from emp
 where deptno=20
 union all
select concat(ename,deptno) as data
 from emp
 where deptno=30

Use a regular expression to easily find rows that contain non-alphanumeric data:

1 select data
2 from V
3 where data regexp '[^0-9a-zA-Z]' = 0

Oracle and PostgreSQL
Use the function TRANSLATE to convert all alphanumeric characters to a single
character; then identify any rows that have characters other than the converted alpha‐
numeric character. The CAST function calls in view V are not needed for Oracle and

118 | Chapter 6: Working with Strings

PostgreSQL. Take extra care when working with casts to CHAR as they are fixed
length (padded).

If you decide to cast, cast to VARCHAR or VARCHAR2:

1 select data
2 from V
3 where translate(lower(data),
4 '0123456789abcdefghijklmnopqrstuvwxyz',
5 rpad('a',36,'a')) = rpad('a',length(data),'a')

SQL Server
The technique is the same, with the exception of there being no RPAD in SQL Server:

1 select data
2 from V
3 where translate(lower(data),
4 '0123456789abcdefghijklmnopqrstuvwxyz',
5 replicate('a',36)) = replicate('a',len(data))

Discussion
The key to these solutions is being able to reference multiple characters concurrently.
By using the function TRANSLATE, you can easily manipulate all numbers or all
characters without having to “iterate” and inspect each character one by one.

DB2, Oracle, PostgreSQL, and SQL Server
Only 9 of the 14 rows from view V are alphanumeric. To find the rows that are alpha‐
numeric only, simply use the function TRANSLATE. In this example, TRANSLATE
converts characters 0–9 and a–z to “a”. Once the conversion is done, the converted
row is then compared with a string of all “a” with the same length (as the row). If the
length is the same, then you know all the characters are alphanumeric and nothing
else.

By using the TRANSLATE function (using the Oracle syntax):

where translate(lower(data),
 '0123456789abcdefghijklmnopqrstuvwxyz',
 rpad('a',36,'a'))

you convert all numbers and letters into a distinct character (we chose “a”). Once the
data is converted, all strings that are indeed alphanumeric can be identified as a string
comprising only a single character (in this case, “a”). This can be seen by running
TRANSLATE by itself:

select data, translate(lower(data),
 '0123456789abcdefghijklmnopqrstuvwxyz',
 rpad('a',36,'a'))
 from V

6.6 Determining Whether a String Is Alphanumeric | 119

DATA TRANSLATE(LOWER(DATA)
-------------------- ---------------------
CLARK aaaaa
…
SMITH, $800.00 aaaaa, $aaa.aa
…
ALLEN30 aaaaaaa
…

The alphanumeric values are converted, but the string lengths have not been modi‐
fied. Because the lengths are the same, the rows to keep are the ones for which the call
to TRANSLATE returns all “a"s. You keep those rows, rejecting the others, by com‐
paring each original string’s length with the length of its corresponding string of “a"s:

select data, translate(lower(data),
 '0123456789abcdefghijklmnopqrstuvwxyz',
 rpad('a',36,'a')) translated,
 rpad('a',length(data),'a') fixed
 from V

DATA TRANSLATED FIXED
-------------------- -------------------- ----------------
CLARK aaaaa aaaaa
…
SMITH, $800.00 aaaaa, $aaa.aa aaaaaaaaaaaaaa
…
ALLEN30 aaaaaaa aaaaaaa
…

The last step is to keep only the strings where TRANSLATED equals FIXED.

MySQL
The expression in the WHERE clause:

where data regexp '[^0-9a-zA-Z]' = 0

causes rows that have only numbers or characters to be returned. The value ranges in
the brackets, “0-9a-zA-Z”, represent all possible numbers and letters. The character ^
is for negation, so the expression can be stated as “not numbers or letters.” A return
value of 1 is true and 0 is false, so the whole expression can be stated as “return rows
where anything other than numbers and letters is false.”

6.7 Extracting Initials from a Name
Problem
You want convert a full name into initials. Consider the following name:

Stewie Griffin

120 | Chapter 6: Working with Strings

You would like to return:

S.G.

Solution
It’s important to keep in mind that SQL does not provide the flexibility of languages
such as C or Python; therefore, creating a generic solution to deal with any name for‐
mat is not something particularly easy to do in SQL. The solutions presented here
expect the names to be either first and last name, or first, middle name/middle initial,
and last name.

DB2
Use the built-in functions REPLACE, TRANSLATE, and REPEAT to extract the
initials:

1 select replace(
2 replace(
3 translate(replace('Stewie Griffin', '.', ''),
4 repeat('#',26),
5 'abcdefghijklmnopqrstuvwxyz'),
6 '#',''), ' ','.')
7 ||'.'
8 from t1

MySQL
Use the built-in functions CONCAT, CONCAT_WS, SUBSTRING, and SUB‐
STRING_ INDEX to extract the initials:

 1 select case
 2 when cnt = 2 then
 3 trim(trailing '.' from
 4 concat_ws('.',
 5 substr(substring_index(name,' ',1),1,1),
 6 substr(name,
 7 length(substring_index(name,' ',1))+2,1),
 8 substr(substring_index(name,' ',-1),1,1),
 9 '.'))
10 else
11 trim(trailing '.' from
12 concat_ws('.',
13 substr(substring_index(name,' ',1),1,1),
14 substr(substring_index(name,' ',-1),1,1)
15))
16 end as initials
17 from (
18 select name,length(name)-length(replace(name,' ','')) as cnt
19 from (
20 select replace('Stewie Griffin','.','') as name from t1

6.7 Extracting Initials from a Name | 121

21)y
22)x

Oracle and PostgreSQL
Use the built-in functions REPLACE, TRANSLATE, and RPAD to extract the initials:

1 select replace(
2 replace(
3 translate(replace('Stewie Griffin', '.', ''),
4 'abcdefghijklmnopqrstuvwxyz',
5 rpad('#',26,'#')), '#',''),' ','.') ||'.'
6 from t1

SQL Server
1 select replace(
2 replace(
3 translate(replace('Stewie Griffin', '.', ''),
4 'abcdefghijklmnopqrstuvwxyz',
5 replicate('#',26)), '#',''),' ','.') + '.'
6 from t1

Discussion
By isolating the capital letters, you can extract the initials from a name. The following
sections describe each vendor-specific solution in detail.

DB2
The REPLACE function will remove any periods in the name (to handle middle ini‐
tials), and the TRANSLATE function will convert all non-uppercase letters to #.

select translate(replace('Stewie Griffin', '.', ''),
 repeat('#',26),
 'abcdefghijklmnopqrstuvwxyz')
 from t1

TRANSLATE('STE

S##### G######

At this point, the initials are the characters that are not #. The function REPLACE is
then used to remove all the # characters:

select replace(
 translate(replace('Stewie Griffin', '.', ''),
 repeat('#',26),
 'abcdefghijklmnopqrstuvwxyz'),'#','')
 from t1

122 | Chapter 6: Working with Strings

REP

S G

The next step is to replace the white space with a period by using REPLACE again:

select replace(
 replace(
 translate(replace('Stewie Griffin', '.', ''),
 repeat('#',26),
 'abcdefghijklmnopqrstuvwxyz'),'#',''),' ','.') || '.'
 from t1

 REPLA

 S.G

The final step is to append a decimal to the end of the initials.

Oracle and PostgreSQL
The REPLACE function will remove any periods in the name (to handle middle ini‐
tials), and the TRANSLATE function will convert all non-uppercase letters to #.

select translate(replace('Stewie Griffin','.',''),
 'abcdefghijklmnopqrstuvwxyz',
 rpad('#',26,'#'))
 from t1

TRANSLATE('STE

S##### G######

At this point, the initials are the characters that are not #. The function REPLACE is
then used to remove all the # characters:

select replace(
 translate(replace('Stewie Griffin','.',''),
 'abcdefghijklmnopqrstuvwxyz',
 rpad('#',26,'#')),'#','')
 from t1

REP

S G

The next step is to replace the white space with a period by using REPLACE again:

select replace(
 replace(
 translate(replace('Stewie Griffin','.',''),
 'abcdefghijklmnopqrstuvwxyz',
 rpad('#',26,'#')),'#',''),' ','.') || '.'
 from t1

6.7 Extracting Initials from a Name | 123

REPLA

S.G

The final step is to append a decimal to the end of the initials.

MySQL
The inline view Y is used to remove any period from the name. The inline view X
finds the number of white spaces in the name so the SUBSTR function can be called
the correct number of times to extract the initials. The three calls to SUBSTRING_
INDEX parse the string into individual names based on the location of the white
space. Because there is only a first and last name, the code in the ELSE portion of the
case statement is executed:

select substr(substring_index(name, ' ',1),1,1) as a,
 substr(substring_index(name,' ',-1),1,1) as b
 from (select 'Stewie Griffin' as name from t1) x

A B
- -
S G

If the name in question has a middle name or initial, the initial would be returned by
executing:

substr(name,length(substring_index(name, ' ',1))+2,1)

which finds the end of the first name and then moves two spaces to the beginning of
the middle name or initial, that is, the start position for SUBSTR. Because only one
character is kept, the middle name or initial is successfully returned. The initials are
then passed to CONCAT_WS, which separates the initials by a period:

select concat_ws('.',
 substr(substring_index(name, ' ',1),1,1),
 substr(substring_index(name,' ',-1),1,1),
 '.') a
 from (select 'Stewie Griffin' as name from t1) x

A

S.G..

The last step is to trim the extraneous period from the initials.

124 | Chapter 6: Working with Strings

6.8 Ordering by Parts of a String
Problem
You want to order your result set based on a substring. Consider the following
records:

ENAME

SMITH
ALLEN
WARD
JONES
MARTIN
BLAKE
CLARK
SCOTT
KING
TURNER
ADAMS
JAMES
FORD
MILLER

You want the records to be ordered based on the last two characters of each name:

ENAME

ALLEN
TURNER
MILLER
JONES
JAMES
MARTIN
BLAKE
ADAMS
KING
WARD
FORD
CLARK
SMITH
SCOTT

Solution
The key to this solution is to find and use your DBMS’s built-in function to extract
the substring on which you want to sort. This is typically done with the SUBSTR
function.

6.8 Ordering by Parts of a String | 125

DB2, Oracle, MySQL, and PostgreSQL
Use a combination of the built-in functions LENGTH and SUBSTR to order by a spe‐
cific part of a string:

1 select ename
2 from emp
3 order by substr(ename,length(ename)-1,)

SQL Server
Use functions SUBSTRING and LEN to order by a specific part of a string:

1 select ename
2 from emp
3 order by substring(ename,len(ename)-1,2)

Discussion
By using a SUBSTR expression in your ORDER BY clause, you can pick any part of a
string to use in ordering a result set. You’re not limited to SUBSTR either. You can
order rows by the result of almost any expression.

6.9 Ordering by a Number in a String
Problem
You want order your result set based on a number within a string. Consider the fol‐
lowing view:

create view V as
select e.ename ||' '||
 cast(e.empno as char(4))||' '||
 d.dname as data
 from emp e, dept d
 where e.deptno=d.deptno

This view returns the following data:

DATA

 CLARK 7782 ACCOUNTING
 KING 7839 ACCOUNTING
 MILLER 7934 ACCOUNTING
 SMITH 7369 RESEARCH
 JONES 7566 RESEARCH
 SCOTT 7788 RESEARCH
 ADAMS 7876 RESEARCH
 FORD 7902 RESEARCH
 ALLEN 7499 SALES
 WARD 7521 SALES

126 | Chapter 6: Working with Strings

 MARTIN 7654 SALES
 BLAKE 7698 SALES
 TURNER 7844 SALES
 JAMES 7900 SALES

You want to order the results based on the employee number, which falls between the
employee name and respective department:

DATA

SMITH 7369 RESEARCH
ALLEN 7499 SALES
WARD 7521 SALES
JONES 7566 RESEARCH
MARTIN 7654 SALES
BLAKE 7698 SALES
CLARK 7782 ACCOUNTING
SCOTT 7788 RESEARCH
KING 7839 ACCOUNTING
TURNER 7844 SALES
ADAMS 7876 RESEARCH
JAMES 7900 SALES
FORD 7902 RESEARCH
MILLER 7934 ACCOUNTING

Solution
Each solution uses functions and syntax specific to its DBMS, but the method (mak‐
ing use of the built-in functions REPLACE and TRANSLATE) is the same for each.
The idea is to use REPLACE and TRANSLATE to remove nondigits from the strings,
leaving only the numeric values upon which to sort.

DB2
Use the built-in functions REPLACE and TRANSLATE to order by numeric charac‐
ters in a string:

1 select data
2 from V
3 order by
4 cast(
5 replace(
6 translate(data,repeat('#',length(data)),
7 replace(
8 translate(data,'##########','0123456789'),
9 '#','')),'#','') as integer)

Oracle
Use the built-in functions REPLACE and TRANSLATE to order by numeric charac‐
ters in a string:

6.9 Ordering by a Number in a String | 127

1 select data
2 from V
3 order by
4 to_number(
5 replace(
6 translate(data,
7 replace(
8 translate(data,'0123456789','##########'),
9 '#'),rpad('#',20,'#')),'#'))

PostgreSQL
Use the built-in functions REPLACE and TRANSLATE to order by numeric charac‐
ters in a string:

1 select data
2 from V
3 order by
4 cast(
5 replace(
6 translate(data,
7 replace(
8 translate(data,'0123456789','##########'),
9 '#',''),rpad('#',20,'#')),'#','') as integer)

MySQL
As of the time of this writing, MySQL does not provide the TRANSLATE function.

Discussion
The purpose of view V is only to supply rows on which to demonstrate this recipe’s
solution. The view simply concatenates several columns from the EMP table. The sol‐
ution shows how to take such concatenated text as input and sort it by the employee
number embedded within.

The ORDER BY clause in each solution may look intimidating, but it performs quite
well and is straightforward once you examine it piece by piece. To order by the num‐
bers in the string, it’s easiest to remove any characters that are not numbers. Once the
nonnumeric characters are removed, all that is left to do is cast the string of numerals
into a number and then sort as you see fit. Before examining each function call, it is
important to understand the order in which each function is called. Starting with the
innermost call, TRANSLATE (line 8 from each of the original solutions), you see that:

From the innermost call, the sequence of steps is TRANSLATE (line 8); REPLACE
(line 7) ; TRANSLATE (line 6); REPLACE (line 5). The final step is to use CAST to
return the result as a number.

128 | Chapter 6: Working with Strings

The first step is to convert the numbers into characters that do not exist in the rest of
the string. For this example, we chose # and used TRANSLATE to convert all nonnu‐
meric characters into occurrences of #. For example, the following query shows the
original data on the left and the results from the first translation:

select data,
 translate(data,'0123456789','##########') as tmp
 from V

DATA TMP
 ------------------------------ -----------------------
 CLARK 7782 ACCOUNTING CLARK #### ACCOUNTING
 KING 7839 ACCOUNTING KING #### ACCOUNTING
 MILLER 7934 ACCOUNTING MILLER #### ACCOUNTING
 SMITH 7369 RESEARCH SMITH #### RESEARCH
 JONES 7566 RESEARCH JONES #### RESEARCH
 SCOTT 7788 RESEARCH SCOTT #### RESEARCH
 ADAMS 7876 RESEARCH ADAMS #### RESEARCH
 FORD 7902 RESEARCH FORD #### RESEARCH
 ALLEN 7499 SALES ALLEN #### SALES
 WARD 7521 SALES WARD #### SALES
 MARTIN 7654 SALES MARTIN #### SALES
 BLAKE 7698 SALES BLAKE #### SALES
 TURNER 7844 SALES TURNER #### SALES
 JAMES 7900 SALES JAMES #### SALES

TRANSLATE finds the numerals in each string and converts each one to the # char‐
acter. The modified strings are then returned to REPLACE (line 11), which removes
all occurrences of #:

select data,
replace(
translate(data,'0123456789','##########'),'#') as tmp
 from V

DATA TMP
 ------------------------------ -------------------
 CLARK 7782 ACCOUNTING CLARK ACCOUNTING
 KING 7839 ACCOUNTING KING ACCOUNTING
 MILLER 7934 ACCOUNTING MILLER ACCOUNTING
 SMITH 7369 RESEARCH SMITH RESEARCH
 JONES 7566 RESEARCH JONES RESEARCH
 SCOTT 7788 RESEARCH SCOTT RESEARCH
 ADAMS 7876 RESEARCH ADAMS RESEARCH
 FORD 7902 RESEARCH FORD RESEARCH
 ALLEN 7499 SALES ALLEN SALES
 WARD 7521 SALES WARD SALES
 MARTIN 7654 SALES MARTIN SALES
 BLAKE 7698 SALES BLAKE SALES
 TURNER 7844 SALES TURNER SALES
 JAMES 7900 SALES JAMES SALES

6.9 Ordering by a Number in a String | 129

The strings are then returned to TRANSLATE once again, but this time it’s the sec‐
ond (outermost) TRANSLATE in the solution. TRANSLATE searches the original
string for any characters that match the characters in TMP. If any are found, they too
are converted to #s.

This conversion allows all nonnumeric characters to be treated as a single character
(because they are all transformed to the same character):

select data, translate(data,
 replace(
 translate(data,'0123456789','##########'),
 '#'),
 rpad('#',length(data),'#')) as tmp
 from V

DATA TMP
------------------------------ ---------------------------
CLARK 7782 ACCOUNTING ########7782###########
KING 7839 ACCOUNTING ########7839###########
MILLER 7934 ACCOUNTING ########7934###########
SMITH 7369 RESEARCH ########7369#########
JONES 7566 RESEARCH ########7566#########
SCOTT 7788 RESEARCH ########7788#########
ADAMS 7876 RESEARCH ########7876#########
FORD 7902 RESEARCH ########7902#########
ALLEN 7499 SALES ########7499######
WARD 7521 SALES ########7521######
MARTIN 7654 SALES ########7654######
BLAKE 7698 SALES ########7698######
TURNER 7844 SALES ########7844######
JAMES 7900 SALES ########7900######

The next step is to remove all # characters through a call to REPLACE (line 8), leav‐
ing you with only numbers:

select data, replace(
 translate(data,
 replace(
 translate(data,'0123456789','##########'),
 '#'),
 rpad('#',length(data),'#')),'#') as tmp
 from V

DATA TMP
------------------------------ -----------
CLARK 7782 ACCOUNTING 7782
KING 7839 ACCOUNTING 7839
MILLER 7934 ACCOUNTING 7934
SMITH 7369 RESEARCH 7369
JONES 7566 RESEARCH 7566
SCOTT 7788 RESEARCH 7788
ADAMS 7876 RESEARCH 7876

130 | Chapter 6: Working with Strings

FORD 7902 RESEARCH 7902
ALLEN 7499 SALES 7499
WARD 7521 SALES 7521
MARTIN 7654 SALES 7654
BLAKE 7698 SALES 7698
TURNER 7844 SALES 7844
JAMES 7900 SALES 7900

Finally, cast TMP to a number (line 4) using the appropriate DBMS function (often
CAST) to accomplish this:

select data, to_number(
 replace(
 translate(data,
 replace(
 translate(data,'0123456789','##########'),
 '#'),
 rpad('#',length(data),'#')),'#')) as tmp
 from V

DATA TMP
------------------------------ ----------
CLARK 7782 ACCOUNTING 7782
KING 7839 ACCOUNTING 7839
MILLER 7934 ACCOUNTING 7934
SMITH 7369 RESEARCH 7369
JONES 7566 RESEARCH 7566
SCOTT 7788 RESEARCH 7788
ADAMS 7876 RESEARCH 7876
FORD 7902 RESEARCH 7902
ALLEN 7499 SALES 7499
WARD 7521 SALES 7521
MARTIN 7654 SALES 7654
BLAKE 7698 SALES 7698
TURNER 7844 SALES 7844
JAMES 7900 SALES 7900

When developing queries like this, it’s helpful to work with your expressions in the
SELECT list. That way, you can easily view the intermediate results as you work
toward a final solution. However, because the point of this recipe is to order the
results, ultimately you should place all the function calls into the ORDER BY clause:

select data
 from V
 order by
 to_number(
 replace(
 translate(data,
 replace(
 translate(data,'0123456789','##########'),
 '#'),rpad('#',length(data),'#')),'#'))

6.9 Ordering by a Number in a String | 131

DATA

SMITH 7369 RESEARCH
ALLEN 7499 SALES
WARD 7521 SALES
JONES 7566 RESEARCH
MARTIN 7654 SALES
BLAKE 7698 SALES
CLARK 7782 ACCOUNTING
SCOTT 7788 RESEARCH
KING 7839 ACCOUNTING
TURNER 7844 SALES
ADAMS 7876 RESEARCH
JAMES 7900 SALES
FORD 7902 RESEARCH
MILLER 7934 ACCOUNTING

As a final note, the data in the view is comprised of three fields, only one being
numeric. Keep in mind that if there had been multiple numeric fields, they would
have all been concatenated into one number before the rows were sorted.

6.10 Creating a Delimited List from Table Rows
Problem
You want to return table rows as values in a delimited list, perhaps delimited by com‐
mas, rather than in vertical columns as they normally appear. You want to convert a
result set from this:

DEPTNO EMPS
------ ----------
 10 CLARK
 10 KING
 10 MILLER
 20 SMITH
 20 ADAMS
 20 FORD
 20 SCOTT
 20 JONES
 30 ALLEN
 30 BLAKE
 30 MARTIN
 30 JAMES
 30 TURNER
 30 WARD

to this:

 DEPTNO EMPS
------- ------------------------------------
 10 CLARK,KING,MILLER

132 | Chapter 6: Working with Strings

 20 SMITH,JONES,SCOTT,ADAMS,FORD
 30 ALLEN,WARD,MARTIN,BLAKE,TURNER,JAMES

Solution
Each DBMS requires a different approach to this problem. The key is to take advan‐
tage of the built-in functions provided by your DBMS. Understanding what is avail‐
able to you will allow you to exploit your DBMS’s functionality and come up with
creative solutions for a problem that is typically not solved in SQL.

Most DBMSs have now adopted a function specifically designed to concatenate
strings, such as MySQL’s GROUP_CONCAT function (one of the earliest) or
STRING_ADD (added to SQL Server as recently as SQL Server 2017). These func‐
tions have similar syntax, and make this task straightforward.

DB2
Use LIST_AGG to build the delimited list:

1 select deptno,
2 list_agg(ename ',') within GROUP(Order by 0) as emps
3 from emp
4 group by deptno

MySQL
Use the built-in function GROUP_CONCAT to build the delimited list:

1 select deptno,
2 group_concat(ename order by empno separator, ',') as emps
3 from emp
4 group by deptno

Oracle
Use the built-in function SYS_CONNECT_BY_PATH to build the delimited list:

 1 select deptno,
 2 ltrim(sys_connect_by_path(ename,','),',') emps
 3 from (
 4 select deptno,
 5 ename,
 6 row_number() over
 7 (partition by deptno order by empno) rn,
 8 count(*) over
 9 (partition by deptno) cnt
10 from emp
11)
12 where level = cnt
13 start with rn = 1
14 connect by prior deptno = deptno and prior rn = rn-1

6.10 Creating a Delimited List from Table Rows | 133

PostgreSQL and SQL Server
1 select deptno,
2 string_agg(ename order by empno separator, ',') as emps
3 from emp
4 group by deptno

Discussion
Being able to create delimited lists in SQL is useful because it is a common require‐
ment. The SQL:2016 standard added LIST_AGG to perform this task, but only DB2
has implemented this function so far. Thankfully, other DBMS have similar functions,
often with simpler syntax.

MySQL
The function GROUP_CONCAT in MySQL concatenates the values found in the col‐
umn passed to it, in this case ENAME. It’s an aggregate function, thus the need for
GROUP BY in the query.

PostgreSQL and SQL Server
The STRING_AGG function syntax is similar enough to GROUP_CONCAT that the
same query can be used with the GROUP_CONCAT simply changed to
STRING_AGG.

Oracle
The first step to understanding the Oracle query is to break it down. Running the
inline view by itself (lines 4–10), you generate a result set that includes the following
for each employee: her department, her name, a rank within her respective depart‐
ment that is derived by an ascending sort on EMPNO, and a count of all employees in
her department. For example:

select deptno,
 ename,
 row_number() over
 (partition by deptno order by empno) rn,
 count(*) over (partition by deptno) cnt
 from emp

DEPTNO ENAME RN CNT
------ ---------- -- ---
 10 CLARK 1 3
 10 KING 2 3
 10 MILLER 3 3
 20 SMITH 1 5
 20 JONES 2 5
 20 SCOTT 3 5
 20 ADAMS 4 5

134 | Chapter 6: Working with Strings

 20 FORD 5 5
 30 ALLEN 1 6
 30 WARD 2 6
 30 MARTIN 3 6
 30 BLAKE 4 6
 30 TURNER 5 6
 30 JAMES 6 6

The purpose of the rank (aliased RN in the query) is to allow you to walk the tree.
Since the function ROW_NUMBER generates an enumeration starting from one
with no duplicates or gaps, just subtract one (from the current value) to reference a
prior (or parent) row. For example, the number prior to 3 is 3 minus 1, which equals
2. In this context, 2 is the parent of 3; you can observe this on line 12. Additionally,
the lines:

start with rn = 1
connect by prior deptno = deptno

identify the root for each DEPTNO as having RN equal to 1 and create a new list
whenever a new department is encountered (whenever a new occurrence of 1 is
found for RN).

At this point, it’s important to stop and look at the ORDER BY portion of the
ROW_NUMBER function. Keep in mind the names are ranked by EMPNO, and the
list will be created in that order. The number of employees per department is calcula‐
ted (aliased CNT) and is used to ensure that the query returns only the list that has all
the employee names for a department. This is done because SYS_CONNECT_
BY_PATH builds the list iteratively, and you do not want to end up with partial lists.

For hierarchical queries, the pseudocolumn LEVEL starts with 1 (for queries not
using CONNECT BY, LEVEL is 0, unless you are on release 10g and later when
LEVEL is available only when using CONNECT BY) and increments by one after
each employee in a department has been evaluated (for each level of depth in the
hierarchy). Because of this, you know that once LEVEL reaches CNT, you have
reached the last EMPNO and will have a complete list.

The SYS_CONNECT_BY_PATH function prefixes the list with
your chosen delimiter (in this case, a comma). You may or may not
want that behavior. In this recipe’s solution, the call to the function
LTRIM removes the leading comma from the list.

6.10 Creating a Delimited List from Table Rows | 135

6.11 Converting Delimited Data into a Multivalued IN-List
Problem
You have delimited data that you want to pass to the IN-list iterator of a WHERE
clause. Consider the following string:

7654,7698,7782,7788

You would like to use the string in a WHERE clause, but the following SQL fails
because EMPNO is a numeric column:

select ename,sal,deptno
 from emp
 where empno in ('7654,7698,7782,7788')

This SQL fails because, while EMPNO is a numeric column, the IN list is composed
of a single string value. You want that string to be treated as a comma-delimited list of
numeric values.

Solution
On the surface it may seem that SQL should do the work of treating a delimited string
as a list of delimited values for you, but that is not the case. When a comma embed‐
ded within quotes is encountered, SQL can’t possibly know that signals a multivalued
list. SQL must treat everything between the quotes as a single entity, as one string
value. You must break the string up into individual EMPNOs. The key to this solu‐
tion is to walk the string, but not into individual characters. You want to walk the
string into valid EMPNO values.

DB2
By walking the string passed to the IN-list, you can easily convert it to rows. The
functions ROW_NUMBER, LOCATE, and SUBSTR are particularly useful here:

 1 select empno,ename,sal,deptno
 2 from emp
 3 where empno in (
 4 select cast(substr(c,2,locate(',',c,2)-2) as integer) empno
 5 from (
 6 select substr(csv.emps,cast(iter.pos as integer)) as c
 7 from (select ','||'7654,7698,7782,7788'||',' emps
 8 from t1) csv,
 9 (select id as pos
10 from t100) iter
11 where iter.pos <= length(csv.emps)
12) x
13 where length(c) > 1
14 and substr(c,1,1) = ','
15)

136 | Chapter 6: Working with Strings

MySQL
By walking the string passed to the IN-list, you can easily convert it to rows:

 1 select empno, ename, sal, deptno
 2 from emp
 3 where empno in
 4 (
 5 select substring_index(
 6 substring_index(list.vals,',',iter.pos),',',-1) empno
 7 from (select id pos from t10) as iter,
 8 (select '7654,7698,7782,7788' as vals
 9 from t1) list
10 where iter.pos <=
11 (length(list.vals)-length(replace(list.vals,',','')))+1
12)

Oracle
By walking the string passed to the IN-list, you can easily convert it to rows. The
functions ROWNUM, SUBSTR, and INSTR are particularly useful here:

 1 select empno,ename,sal,deptno
 2 from emp
 3 where empno in (
 4 select to_number(
 5 rtrim(
 6 substr(emps,
 7 instr(emps,',',1,iter.pos)+1,
 8 instr(emps,',',1,iter.pos+1)
 9 instr(emps,',',1,iter.pos)),',')) emps
10 from (select ','||'7654,7698,7782,7788'||',' emps from t1) csv,
11 (select rownum pos from emp) iter
12 where iter.pos <= ((length(csv.emps)-
13 length(replace(csv.emps,',')))/length(','))-1
14)

PostgreSQL
By walking the string passed to the IN-list, you can easily convert it to rows. The
function SPLIT_PART makes it easy to parse the string into individual numbers:

 1 select ename,sal,deptno
 2 from emp
 3 where empno in (
 4 select cast(empno as integer) as empno
 5 from (
 6 select split_part(list.vals,',',iter.pos) as empno
 7 from (select id as pos from t10) iter,
 8 (select ','||'7654,7698,7782,7788'||',' as vals
 9 from t1) list
10 where iter.pos <=
11 length(list.vals)-length(replace(list.vals,',',''))

6.11 Converting Delimited Data into a Multivalued IN-List | 137

12) z
13 where length(empno) > 0
14)

SQL Server
By walking the string passed to the IN-list, you can easily convert it to rows. The
functions ROW_NUMBER, CHARINDEX, and SUBSTRING are particularly useful
here:

 1 select empno,ename,sal,deptno
 2 from emp
 3 where empno in (select substring(c,2,charindex(',',c,2)-2) as empno
 4 from (
 5 select substring(csv.emps,iter.pos,len(csv.emps)) as c
 6 from (select ','+'7654,7698,7782,7788'+',' as emps
 7 from t1) csv,
 8 (select id as pos
 9 from t100) iter
10 where iter.pos <= len(csv.emps)
11) x
12 where len(c) > 1
13 and substring(c,1,1) = ','
14)

Discussion
The first and most important step in this solution is to walk the string. Once you’ve
accomplished that, all that’s left is to parse the string into individual numeric values
using your DBMS’s provided functions.

DB2 and SQL Server
The inline view X (lines 6–11) walks the string. The idea in this solution is to “walk
through” the string so that each row has one less character than the one before it:

,7654,7698,7782,7788,
7654,7698,7782,7788,
654,7698,7782,7788,
54,7698,7782,7788,
4,7698,7782,7788,
,7698,7782,7788,
7698,7782,7788,
698,7782,7788,
98,7782,7788,
8,7782,7788,
,7782,7788,
7782,7788,
782,7788,
82,7788,
2,7788,

138 | Chapter 6: Working with Strings

,7788,
7788,
788,
88,
8,
,

Notice that by enclosing the string in commas (the delimiter), there’s no need to make
special checks as to where the beginning or end of the string is.

The next step is to keep only the values you want to use in the IN-list. The values to
keep are the ones with leading commas, with the exception of the last row with its
lone comma. Use SUBSTR or SUBSTRING to identify which rows have a leading
comma, then keep all characters found before the next comma in that row. Once
that’s done, cast the string to a number so it can be properly evaluated against the
numeric column EMPNO (lines 4–14):

 EMPNO

 7654
 7698
 7782
 7788

The final step is to use the results in a subquery to return the desired rows.

MySQL
The inline view (lines 5–9) walks the string. The expression on line 10 determines
how many values are in the string by finding the number of commas (the delimiter)
and adding one. The function SUBSTRING_INDEX (line 6) returns all characters in
the string before (to the left of) the nth occurrence of a comma (the delimiter):

+---------------------+
| empno |
+---------------------+
| 7654 |
| 7654,7698 |
| 7654,7698,7782 |
| 7654,7698,7782,7788 |
+---------------------+

Those rows are then passed to another call to SUBSTRING_INDEX (line 5); this time
the nth occurrence of the delimited is –1, which causes all values to the right of the
nth occurrence of the delimiter to be kept:

6.11 Converting Delimited Data into a Multivalued IN-List | 139

+-------+
| empno |
+-------+
| 7654 |
| 7698 |
| 7782 |
| 7788 |
+-------+

The final step is to plug the results into a subquery.

Oracle
The first step is to walk the string:

select emps,pos
 from (select ','||'7654,7698,7782,7788'||',' emps
 from t1) csv,
 (select rownum pos from emp) iter
 where iter.pos <=
 ((length(csv.emps)-length(replace(csv.emps,',')))/length(','))-1

EMPS POS
--------------------- ----------
,7654,7698,7782,7788, 1
,7654,7698,7782,7788, 2
,7654,7698,7782,7788, 3
,7654,7698,7782,7788, 4

The number of rows returned represents the number of values in your list. The values
for POS are crucial to the query as they are needed to parse the string into individual
values. The strings are parsed using SUBSTR and INSTR. POS is used to locate the
nth occurrence of the delimiter in each string. By enclosing the strings in commas, no
special checks are necessary to determine the beginning or end of a string. The values
passed to SUBSTR and INSTR (lines 7–9) locate the nth and nth+1 occurrence of the
delimiter. By subtracting the value returned for the current comma (the location in
the string where the current comma is) from the value returned by the next comma
(the location in the string where the next comma is) you can extract each value from
the string:

select substr(emps,
 instr(emps,',',1,iter.pos)+1,
 instr(emps,',',1,iter.pos+1)
 instr(emps,',',1,iter.pos)) emps
 from (select ','||'7654,7698,7782,7788'||',' emps
 from t1) csv,
 (select rownum pos from emp) iter
 where iter.pos <=
 ((length(csv.emps)-length(replace(csv.emps,',')))/length(','))-1

140 | Chapter 6: Working with Strings

 EMPS

 7654,
 7698,
 7782,
 7788,

The final step is to remove the trailing comma from each value, cast it to a number,
and plug it into a subquery.

PostgreSQL
The inline view Z (lines 6–9) walks the string. The number of rows returned is deter‐
mined by how many values are in the string. To find the number of values in the
string, subtract the size of the string without the delimiter from the size of the string
with the delimiter (line 9). The function SPLIT_PART does the work of parsing the
string. It looks for the value that comes before the nth occurrence of the delimiter:

select list.vals,
 split_part(list.vals,',',iter.pos) as empno,
 iter.pos
 from (select id as pos from t10) iter,
 (select ','||'7654,7698,7782,7788'||',' as vals
 from t1) list
 where iter.pos <=
 length(list.vals)-length(replace(list.vals,',',''))

 vals | empno | pos
----------------------+-------+-----
,7654,7698,7782,7788, | | 1
,7654,7698,7782,7788, | 7654 | 2
,7654,7698,7782,7788, | 7698 | 3
,7654,7698,7782,7788, | 7782 | 4
,7654,7698,7782,7788, | 7788 | 5

The final step is to cast the values (EMPNO) to a number and plug it into a subquery.

6.12 Alphabetizing a String
Problem
You want alphabetize the individual characters within strings in your tables. Consider
the following result set:

ENAME

ADAMS
ALLEN
BLAKE
CLARK

6.12 Alphabetizing a String | 141

FORD
JAMES
JONES
KING
MARTIN
MILLER
SCOTT
SMITH
TURNER
WARD

You would like the result to be:

OLD_NAME NEW_NAME
---------- --------
ADAMS AADMS
ALLEN AELLN
BLAKE ABEKL
CLARK ACKLR
FORD DFOR
JAMES AEJMS
JONES EJNOS
KING GIKN
MARTIN AIMNRT
MILLER EILLMR
SCOTT COSTT
SMITH HIMST
TURNER ENRRTU
WARD ADRW

Solution
This problem is a good example of the way increased standardization allows for more
similar, and therefore portable solutions.

DB2
To alphabetize rows of strings, it is necessary to walk each string and then order its
characters:

 1 select ename,
 2 listagg(c,'') WITHIN GROUP(ORDER BY c)
 3 from (
 4 select a.ename,
 5 substr(a.ename,iter.pos,1
 6) as c
 7 from emp a,
 8 (select id as pos from t10) iter
 9 where iter.pos <= length(a.ename)
 10 order by 1,2
 11) x
 12 Group By c

142 | Chapter 6: Working with Strings

MySQL
The key here is the GROUP_CONCAT function, which allows you to not only con‐
catenate the characters that make up each name but also order them:

1 select ename, group_concat(c order by c separator '')
2 from (
3 select ename, substr(a.ename,iter.pos,1) c
4 from emp a,
5 (select id pos from t10) iter
6 where iter.pos <= length(a.ename)
7) x
8 group by ename

Oracle
The function SYS_CONNECT_BY_PATH allows you to iteratively build a list:

 1 select old_name, new_name
 2 from (
 3 select old_name, replace(sys_connect_by_path(c,' '),' ') new_name
 4 from (
 5 select e.ename old_name,
 6 row_number() over(partition by e.ename
 7 order by substr(e.ename,iter.pos,1)) rn,
 8 substr(e.ename,iter.pos,1) c
 9 from emp e,
10 (select rownum pos from emp) iter
11 where iter.pos <= length(e.ename)
12 order by 1
13) x
14 start with rn = 1
15 connect by prior rn = rn-1 and prior old_name = old_name
16)
17 where length(old_name) = length(new_name)

PostgreSQL
PostgreSQL has now added STRING_AGG to order characters within a string.

 select ename, string_agg(c , ''
 ORDER BY c)
from (
 select a.ename,
 substr(a.ename,iter.pos,1) as c
 from emp a,
 (select id as pos from t10) iter
 where iter.pos <= length(a.ename)
 order by 1,2
) x
 Group By c

6.12 Alphabetizing a String | 143

SQL Server
If you are using SQL Server 2017 or beyond, the PostgreSQL solution with
STRING_AGG will work. Otherwise, to alphabetize rows of strings, it is necessary to
walk each string and then order their characters:

 1 select ename,
 2 max(case when pos=1 then c else '' end)+
 3 max(case when pos=2 then c else '' end)+
 4 max(case when pos=3 then c else '' end)+
 5 max(case when pos=4 then c else '' end)+
 6 max(case when pos=5 then c else '' end)+
 7 max(case when pos=6 then c else '' end)
 8 from (
 9 select e.ename,
10 substring(e.ename,iter.pos,1) as c,
11 row_number() over (
12 partition by e.ename
13 order by substring(e.ename,iter.pos,1)) as pos
14 from emp e,
15 (select row_number()over(order by ename) as pos
16 from emp) iter
17 where iter.pos <= len(e.ename)
18) x
19 group by ename

Discussion

SQL Server
The inline view X returns each character in each name as a row. The function
SUBSTR or SUBSTRING extracts each character from each name, and the function
ROW_NUMBER ranks each character alphabetically:

ENAME C POS
----- - ---
ADAMS A 1
ADAMS A 2
ADAMS D 3
ADAMS M 4
ADAMS S 5
…

To return each letter of a string as a row, you must walk the string. This is accom‐
plished with inline view ITER.

Now that the letters in each name have been alphabetized, the last step is to put those
letters back together, into a string, in the order they are ranked. Each letter’s position
is evaluated by the CASE statements (lines 2–7). If a character is found at a particular
position, it is then concatenated to the result of the next evaluation (the following
CASE statement). Because the aggregate function MAX is used as well, only one

144 | Chapter 6: Working with Strings

character per position POS is returned so that only one row per name is returned.
The CASE evaluation goes up to the number six, which is the maximum number of
characters in any name in table EMP.

MySQL
The inline view X (lines 3–6) returns each character in each name as a row. The func‐
tion SUBSTR extracts each character from each name:

ENAME C
----- -
ADAMS A
ADAMS A
ADAMS D
ADAMS M
ADAMS S
…

Inline view ITER is used to walk the string. From there, the rest of the work is done
by the GROUP_CONCAT function. By specifying an order, the function not only
concatenates each letter, it does so alphabetically.

Oracle
The real work is done by inline view X (lines 5–11), where the characters in each
name are extracted and put into alphabetical order. This is accomplished by walking
the string and then imposing order on those characters. The rest of the query merely
glues the names back together.

The tearing apart of names can be seen by executing only inline view X:

OLD_NAME RN C
---------- --------- -
ADAMS 1 A
ADAMS 2 A
ADAMS 3 D
ADAMS 4 M
ADAMS 5 S
…

The next step is to take the alphabetized characters and rebuild each name. This is
done with the function SYS_CONNECT_BY_PATH by appending each character to
the ones before it:

6.12 Alphabetizing a String | 145

OLD_NAME NEW_NAME
---------- ---------
ADAMS A
ADAMS AA
ADAMS AAD
ADAMS AADM
ADAMS AADMS
…

The final step is to keep only the strings that have the same length as the names they
were built from.

PostgreSQL
For readability, view V is used in this solution to walk the string. The function
SUBSTR, in the view definition, extracts each character from each name so that the
view returns:

ENAME C
----- -
ADAMS A
ADAMS A
ADAMS D
ADAMS M
ADAMS S
…

The view also orders the results by ENAME and by each letter in each name. The
inline view X (lines 15–18) returns the names and characters from view V, the num‐
ber of times each character occurs in each name, and its position (alphabetically):

ename | c | cnt | pos
------+---+-----+-----
ADAMS | A | 2 | 1
ADAMS | A | 2 | 1
ADAMS | D | 1 | 3
ADAMS | M | 1 | 4
ADAMS | S | 1 | 5

The extra columns CNT and POS, returned by the inline view X, are crucial to the
solution. POS is used to rank each character, and CNT is used to determine the num‐
ber of times the character exists in each name. The final step is to evaluate the posi‐
tion of each character and rebuild the name. You’ll notice that each case statement is
actually two case statements. This is to determine whether a character occurs more
than once in a name; if it does, then rather than return that character, what is
returned is that character appended to itself CNT times. The aggregate function,
MAX, is used to ensure there is only one row per name.

146 | Chapter 6: Working with Strings

6.13 Identifying Strings That Can Be Treated as Numbers
Problem
You have a column that is defined to hold character data. Unfortunately, the rows
contain mixed numeric and character data. Consider view V:

create view V as
select replace(mixed,' ','') as mixed
 from (
select substr(ename,1,2)||
 cast(deptno as char(4))||
 substr(ename,3,2) as mixed
 from emp
 where deptno = 10
 union all
select cast(empno as char(4)) as mixed
 from emp
 where deptno = 20
 union all
select ename as mixed
 from emp
 where deptno = 30
) x
select * from v

 MIXED

 CL10AR
 KI10NG
 MI10LL
 7369
 7566
 7788
 7876
 7902
 ALLEN
 WARD
 MARTIN
 BLAKE
 TURNER
 JAMES

You want to return rows that are numbers only, or that contain at least one number. If
the numbers are mixed with character data, you want to remove the characters and
return only the numbers. For the sample data shown previously, you want the follow‐
ing result set:

6.13 Identifying Strings That Can Be Treated as Numbers | 147

 MIXED

 10
 10
 10
 7369
 7566
 7788
 7876
 7902

Solution
The functions REPLACE and TRANSLATE are extremely useful for manipulating
strings and individual characters. The key is to convert all numbers to a single char‐
acter, which then makes it easy to isolate and identify any number by referring to a
single character.

DB2
Use functions TRANSLATE, REPLACE, and POSSTR to isolate the numeric charac‐
ters in each row. The calls to CAST are necessary in view V; otherwise, the view will
fail to be created due to type conversion errors. You’ll need the function REPLACE to
remove extraneous whitespace due to casting to the fixed-length CHAR:

 1 select mixed old,
 2 cast(
 3 case
 4 when
 5 replace(
 6 translate(mixed,'9999999999','0123456789'),'9','') = ''
 7 then
 8 mixed
 9 else replace(
10 translate(mixed,
11 repeat('#',length(mixed)),
12 replace(
13 translate(mixed,'9999999999','0123456789'),'9','')),
14 '#','')
15 end as integer) mixed
16 from V
17 where posstr(translate(mixed,'9999999999','0123456789'),'9') > 0

MySQL
The syntax for MySQL is slightly different and will define view V as:

create view V as
select concat(
 substr(ename,1,2),
 replace(cast(deptno as char(4)),' ',''),

148 | Chapter 6: Working with Strings

 substr(ename,3,2)
) as mixed
 from emp
 where deptno = 10
 union all
select replace(cast(empno as char(4)), ' ', '')
 from emp where deptno = 20
 union all
select ename from emp where deptno = 30

Because MySQL does not support the TRANSLATE function, you must walk each
row and evaluate it on a character-by-character basis.

 1 select cast(group_concat(c order by pos separator '') as unsigned)
 2 as MIXED1
 3 from (
 4 select v.mixed, iter.pos, substr(v.mixed,iter.pos,1) as c
 5 from V,
 6 (select id pos from t10) iter
 7 where iter.pos <= length(v.mixed)
 8 and ascii(substr(v.mixed,iter.pos,1)) between 48 and 57
 9) y
10 group by mixed
11 order by 1

Oracle
Use functions TRANSLATE, REPLACE, and INSTR to isolate the numeric characters
in each row. The calls to CAST are not necessary in view V. Use the function
REPLACE to remove extraneous whitespace due to casting to the fixed-length
CHAR. If you decide you would like to keep the explicit type conversion calls in the
view definition, it is suggested you cast to VARCHAR2:

 1 select to_number (
 2 case
 3 when
 4 replace(translate(mixed,'0123456789','9999999999'),'9')
 5 is not null
 6 then
 7 replace(
 8 translate(mixed,
 9 replace(
10 translate(mixed,'0123456789','9999999999'),'9'),
11 rpad('#',length(mixed),'#')),'#')
12 else
13 mixed
14 end
15) mixed
16 from V
17 where instr(translate(mixed,'0123456789','9999999999'),'9') > 0

6.13 Identifying Strings That Can Be Treated as Numbers | 149

PostgreSQL
Use functions TRANSLATE, REPLACE, and STRPOS to isolate the numeric charac‐
ters in each row. The calls to CAST are not necessary in view V. Use the function
REPLACE to remove extraneous whitespace due to casting to the fixed-length
CHAR. If you decide you would like to keep the explicit type conversion calls in the
view definition, it is suggested you cast to VARCHAR:

 1 select cast(
 2 case
 3 when
 4 replace(translate(mixed,'0123456789','9999999999'),'9','')
 5 is not null
 6 then
 7 replace(
 8 translate(mixed,
 9 replace(
10 translate(mixed,'0123456789','9999999999'),'9',''),
11 rpad('#',length(mixed),'#')),'#','')
12 else
13 mixed
14 end as integer) as mixed
15 from V
16 where strpos(translate(mixed,'0123456789','9999999999'),'9') > 0

SQL Server
The built-in function ISNUMERIC along with a wildcard search allows you to easily
identify strings that contain numbers, but getting numeric characters out of a string is
not particularly efficient because the TRANSLATE function is not supported.

Discussion
The TRANSLATE function is useful here as it allows you to easily isolate and identify
numbers and characters. The trick is to convert all numbers to a single character; this
way, rather than searching for different numbers, you search for only one character.

DB2, Oracle, and PostgreSQL
The syntax differs slightly among these DBMSs, but the technique is the same. We’ll
use the solution for PostgreSQL for the discussion.

The real work is done by functions TRANSLATE and REPLACE. Getting the final
result set requires several function calls, each listed here in one query:

select mixed as orig,
translate(mixed,'0123456789','9999999999') as mixed1,
replace(translate(mixed,'0123456789','9999999999'),'9','') as mixed2,
 translate(mixed,
 replace(

150 | Chapter 6: Working with Strings

 translate(mixed,'0123456789','9999999999'),'9',''),
 rpad('#',length(mixed),'#')) as mixed3,
 replace(
 translate(mixed,
 replace(
translate(mixed,'0123456789','9999999999'),'9',''),
 rpad('#',length(mixed),'#')),'#','') as mixed4
 from V
 where strpos(translate(mixed,'0123456789','9999999999'),'9') > 0

 ORIG | MIXED1 | MIXED2 | MIXED3 | MIXED4 | MIXED5
--------+--------+--------+--------+--------+--------
 CL10AR | CL99AR | CLAR | ##10## | 10 | 10
 KI10NG | KI99NG | KING | ##10## | 10 | 10
 MI10LL | MI99LL | MILL | ##10## | 10 | 10
 7369 | 9999 | | 7369 | 7369 | 7369
 7566 | 9999 | | 7566 | 7566 | 7566
 7788 | 9999 | | 7788 | 7788 | 7788
 7876 | 9999 | | 7876 | 7876 | 7876
 7902 | 9999 | | 7902 | 7902 | 7902

First, notice that any rows without at least one number are removed. How this is
accomplished will become clear as you examine each of the columns in the previous
result set. The rows that are kept are the values in the ORIG column and are the rows
that will eventually make up the result set. The first step to extracting the numbers is
to use the function TRANSLATE to convert any number to a 9 (you can use any digit;
9 is arbitrary); this is represented by the values in MIXED1. Now that all numbers are
9s, they can be treated as a single unit. The next step is to remove all of the numbers
by using the function REPLACE. Because all digits are now 9, REPLACE simply looks
for any 9s and removes them. This is represented by the values in MIXED2. The next
step, MIXED3, uses values that are returned by MIXED2. These values are then com‐
pared to the values in ORIG. If any characters from MIXED2 are found in ORIG,
they are converted to the # character by TRANSLATE. The result set from MIXED3
shows that the letters, not the numbers, have now been singled out and converted to a
single character. Now that all nonnumeric characters are represented by #s, they can
be treated as a single unit. The next step, MIXED4, uses REPLACE to find and
remove any # characters in each row; what’s left are numbers only. The final step is to
cast the numeric characters as numbers. Now that you’ve gone through the steps, you
can see how the WHERE clause works. The results from MIXED1 are passed to
STRPOS, and if a 9 is found (the position in the string where the first 9 is located),
the result must be greater than 0. For rows that return a value greater than zero, it
means there’s at least one number in that row and it should be kept.

MySQL
The first step is to walk each string, evaluate each character, and determine whether
it’s a number:

6.13 Identifying Strings That Can Be Treated as Numbers | 151

select v.mixed, iter.pos, substr(v.mixed,iter.pos,1) as c
 from V,
 (select id pos from t10) iter
 where iter.pos <= length(v.mixed)
 order by 1,2

+--------+------+------+
| mixed | pos | c |
+--------+------+------+
7369	1	7
7369	2	3
7369	3	6
7369	4	9
…		
ALLEN	1	A
ALLEN	2	L
ALLEN	3	L
ALLEN	4	E
ALLEN	5	N
…		
CL10AR	1	C
CL10AR	2	L
CL10AR	3	1
CL10AR	4	0
CL10AR	5	A
CL10AR	6	R
+--------+------+------+

Now that each character in each string can be evaluated individually, the next step is
to keep only the rows that have a number in the C column:

select v.mixed, iter.pos, substr(v.mixed,iter.pos,1) as c
 from V,
 (select id pos from t10) iter
 where iter.pos <= length(v.mixed)
 and ascii(substr(v.mixed,iter.pos,1)) between 48 and 57
 order by 1,2

+--------+------+------+
| mixed | pos | c |
+--------+------+------+
7369	1	7
7369	2	3
7369	3	6
7369	4	9
…		
CL10AR	3	1
CL10AR	4	0
…
+--------+------+------+

152 | Chapter 6: Working with Strings

At this point, all the rows in column C are numbers. The next step is to use
GROUP_CONCAT to concatenate the numbers to form their respective whole num‐
ber in MIXED. The final result is then cast as a number:

select cast(group_concat(c order by pos separator '') as unsigned)
 as MIXED1
 from (
select v.mixed, iter.pos, substr(v.mixed,iter.pos,1) as c
 from V,
 (select id pos from t10) iter
 where iter.pos <= length(v.mixed)
 and ascii(substr(x.mixed,iter.pos,1)) between 48 and 57
) y
 group by mixed
 order by 1

+--------+
| MIXED1 |
+--------+
| 10 |
| 10 |
| 10 |
| 7369 |
| 7566 |
| 7788 |
| 7876 |
| 7902 |
+--------+

As a final note, keep in mind that any digits in each string will be concatenated to
form one numeric value. For example, an input value of, say, 99Gennick87 will result
in the value 9987 being returned. This is something to keep in mind, particularly
when working with serialized data.

6.14 Extracting the nth Delimited Substring
Problem
You want to extract a specified, delimited substring from a string. Consider the fol‐
lowing view V, which generates source data for this problem:

create view V as
select 'mo,larry,curly' as name
 from t1
 union all
select 'tina,gina,jaunita,regina,leena' as name
 from t1

6.14 Extracting the nth Delimited Substring | 153

Output from the view is as follows:

select * from v

NAME

mo,larry,curly
tina,gina,jaunita,regina,leena

You would like to extract the second name in each row, so the final result set would
be as follows:

 SUB

larry
gina

Solution
The key to solving this problem is to return each name as an individual row while
preserving the order in which the name exists in the list. Exactly how you do these
things depends on which DBMS you are using.

DB2
After walking the NAMEs returned by view V, use the function ROW_NUMBER to
keep only the second name from each string:

 1 select substr(c,2,locate(',',c,2)-2)
 2 from (
 3 select pos, name, substr(name, pos) c,
 4 row_number() over(partition by name
 5 order by length(substr(name,pos)) desc) rn
 6 from (
 7 select ',' ||csv.name|| ',' as name,
 8 cast(iter.pos as integer) as pos
 9 from V csv,
10 (select row_number() over() pos from t100) iter
11 where iter.pos <= length(csv.name)+2
12) x
13 where length(substr(name,pos)) > 1
14 and substr(substr(name,pos),1,1) = ','
15) y
16 where rn = 2

MySQL
After walking the NAMEs returned by view V, use the position of the commas to
return only the second name in each string:

154 | Chapter 6: Working with Strings

 1 select name
 2 from (
 3 select iter.pos,
 4 substring_index(
 5 substring_index(src.name,',',iter.pos),',',-1) name
 6 from V src,
 7 (select id pos from t10) iter,
 8 where iter.pos <=
 9 length(src.name)-length(replace(src.name,',',''))
10) x
11 where pos = 2

Oracle
After walking the NAMEs returned by view V, retrieve the second name in each list
by using SUBSTR and INSTR:

 1 select sub
 2 from (
 3 select iter.pos,
 4 src.name,
 5 substr(src.name,
 6 instr(src.name,',',1,iter.pos)+1,
 7 instr(src.name,',',1,iter.pos+1) -
 8 instr(src.name,',',1,iter.pos)-1) sub
 9 from (select ','||name||',' as name from V) src,
 10 (select rownum pos from emp) iter
 11 where iter.pos < length(src.name)-length(replace(src.name,','))
 12)
 13 where pos = 2

PostgreSQL
Use the function SPLIT_PART to help return each individual name as a row:

 1 select name
 2 from (
 3 select iter.pos, split_part(src.name,',',iter.pos) as name
 4 from (select id as pos from t10) iter,
 5 (select cast(name as text) as name from v) src
 7 where iter.pos <=
 8 length(src.name)-length(replace(src.name,',',''))+1
 9) x
10 where pos = 2

SQL Server
The SQL Server STRING_SPLIT function will do the whole job, but can only take a
single cell. Hence, we use a STRING_AGG within a CTE to present the data the way
STRING_SPLIT requires.

6.14 Extracting the nth Delimited Substring | 155

1 with agg_tab(name)
2 as
3 (select STRING_AGG(name,',') from V)
4 select value from
5 STRING_SPLIT(
6 (select name from agg_tab),',')

Discussion

DB2
The syntax is slightly different between these two DBMSs, but the technique is the
same. We will use the solution for DB2 for the discussion. The strings are walked and
the results are represented by inline view X:

select ','||csv.name|| ',' as name,
 iter.pos
 from v csv,
 (select row_number() over() pos from t100) iter
 where iter.pos <= length(csv.name)+2

EMPS POS
------------------------------- ----
,tina,gina,jaunita,regina,leena, 1
,tina,gina,jaunita,regina,leena, 2
,tina,gina,jaunita,regina,leena, 3
…

The next step is to then step through each character in each string:

select pos, name, substr(name, pos) c,
 row_number() over(partition by name
 order by length(substr(name, pos)) desc) rn
 from (
select ','||csv.name||',' as name,
 cast(iter.pos as integer) as pos
 from v csv,
 (select row_number() over() pos from t100) iter
 where iter.pos <= length(csv.name)+2
) x
 where length(substr(name,pos)) > 1

POS EMPS C RN
--- --------------- ---------------- --
 1 ,mo,larry,curly, ,mo,larry,curly, 1
 2 ,mo,larry,curly, mo,larry,curly, 2
 3 ,mo,larry,curly, o,larry,curly, 3
 4 ,mo,larry,curly, ,larry,curly, 4
 …

156 | Chapter 6: Working with Strings

Now that different portions of the string are available to you, simply identify which
rows to keep. The rows you are interested in are the ones that begin with a comma;
the rest can be discarded:

select pos, name, substr(name,pos) c,
 row_number() over(partition by name
 order by length(substr(name, pos)) desc) rn
 from (
select ','||csv.name||',' as name,
 cast(iter.pos as integer) as pos
 from v csv,
 (select row_number() over() pos from t100) iter
 where iter.pos <= length(csv.name)+2
) x
 where length(substr(name,pos)) > 1
 and substr(substr(name,pos),1,1) = ','

POS EMPS C RN
 --- -------------- ---------------- --
 1 ,mo,larry,curly, ,mo,larry,curly, 1
 4 ,mo,larry,curly, ,larry,curly, 2
 10 ,mo,larry,curly, ,curly, 3
 1 ,tina,gina,jaunita,regina,leena, ,tina,gina,jaunita,regina,leena, 1
 6 ,tina,gina,jaunita,regina,leena, ,gina,jaunita,regina,leena, 2
 11 ,tina,gina,jaunita,regina,leena, ,jaunita,regina,leena, 3
 19 ,tina,gina,jaunita,regina,leena, ,regina,leena, 4
 26 ,tina,gina,jaunita,regina,leena, ,leena, 5

This is an important step as it sets up how you will get the nth substring. Notice that
many rows have been eliminated from this query because of the following condition
in the WHERE clause:

substr(substr(name,pos),1,1) = ','

You’ll notice that ,mo,larry,curly, was ranked 4, but now is ranked 2. Remember,
the WHERE clause is evaluated before the SELECT, so the rows with leading commas
are kept, then ROW_NUMBER performs its ranking. At this point it’s easy to see that,
to get the nth substring, you want rows where RN equals n. The last step is to keep
only the rows you are interested in (in this case where RN equals two) and use
SUBSTR to extract the name from that row. The name to keep is the first name in the
row: larry from ,larry,curly, and gina from ,gina,jaunita,regina,leena,.

MySQL
The inline view X walks each string. You can determine how many values are in each
string by counting the delimiters in the string:

select iter.pos, src.name
 from (select id pos from t10) iter,
 V src

6.14 Extracting the nth Delimited Substring | 157

 where iter.pos <=
 length(src.name)-length(replace(src.name,',',''))

+------+--------------------------------+
| pos | name |
+------+--------------------------------+
1	mo,larry,curly
2	mo,larry,curly
1	tina,gina,jaunita,regina,leena
2	tina,gina,jaunita,regina,leena
3	tina,gina,jaunita,regina,leena
4	tina,gina,jaunita,regina,leena
+------+--------------------------------+

In this case, there is one fewer row than values in each string because that’s all that is
needed. The function SUBSTRING_INDEX takes care of parsing the needed values:

 select iter.pos,src.name name1,
 substring_index(src.name,',',iter.pos) name2,
 substring_index(
 substring_index(src.name,',',iter.pos),',',-1) name3
 from (select id pos from t10) iter,
 V src
 where iter.pos <=
 length(src.name)-length(replace(src.name,',',''))

+------+--------------------------------+--------------------------+---------+
| pos | name1 | name2 | name3 |
+------+--------------------------------+--------------------------+---------+
1	mo,larry,curly	mo	mo
2	mo,larry,curly	mo,larry	larry
1	tina,gina,jaunita,regina,leena	tina	tina
2	tina,gina,jaunita,regina,leena	tina,gina	gina
3	tina,gina,jaunita,regina,leena	tina,gina,jaunita	jaunita
4	tina,gina,jaunita,regina,leena	tina,gina,jaunita,regina	regina
+------+--------------------------------+--------------------------+---------+

We’ve shown three name fields, so you can see how the nested SUBSTRING_INDEX
calls work. The inner call returns all characters to the left of the nth occurrence of a
comma. The outer call returns everything to the right of the first comma it finds
(starting from the end of the string). The final step is to keep the value for NAME3
where POS equals n, in this case 2.

SQL Server
STRING_SPLIT is the workhorse here, but needs its data the right way. The CTE is
merely to turn the two rows of the V.names column into a single value, as required by
STRING_SPLIT being a table-valued function.

158 | Chapter 6: Working with Strings

Oracle
The inline view walks each string. The number of times each string is returned is
determined by how many values are in each string. The solution finds the number of
values in each string by counting the number of delimiters in it. Because each string is
enclosed in commas, the number of values in a string is the number of commas
minus one. The strings are then UNIONed and joined to a table with a cardinality
that is at least the number of values in the largest string. The functions SUBSTR and
INSTR use the value of POS to parse each string:

select iter.pos, src.name,
 substr(src.name,
 instr(src.name,',',1,iter.pos)+1,
 instr(src.name,',',1,iter.pos+1)
 instr(src.name,',',1,iter.pos)-1) sub
 from (select ','||name||',' as name from v) src,
 (select rownum pos from emp) iter
 where iter.pos < length(src.name)-length(replace(src.name,','))

POS NAME SUB
--- --------------------------------- -------------
 1 ,mo,larry,curly, mo
 1 , tina,gina,jaunita,regina,leena, tina
 2 ,mo,larry,curly, larry
 2 , tina,gina,jaunita,regina,leena, gina
 3 ,mo,larry,curly, curly
 3 , tina,gina,jaunita,regina,leena, jaunita
 4 , tina,gina,jaunita,regina,leena, regina
 5 , tina,gina,jaunita,regina,leena, leena

The first call to INSTR within SUBSTR determines the start position of the substring
to extract. The next call to INSTR within SUBSTR finds the position of the nth
comma (same as the start position) as well the position of the nth + 1 comma. Sub‐
tracting the two values returns the length of the substring to extract. Because every
value is parsed into its own row, simply specify WHERE POS = n to keep the nth sub‐
string (in this case, where POS = 2, so the second substring in the list).

PostgreSQL
The inline view X walks each string. The number of rows returned is determined by
how many values are in each string. To find the number of values in each string, find
the number of delimiters in each string and add one. The function SPLIT_PART uses
the values in POS to find the nth occurrence of the delimiter and parse the string into
values:

select iter.pos, src.name as name1,
 split_part(src.name,',',iter.pos) as name2
 from (select id as pos from t10) iter,
 (select cast(name as text) as name from v) src

6.14 Extracting the nth Delimited Substring | 159

 where iter.pos <=
 length(src.name)-length(replace(src.name,',',''))+1

 pos | name1 | name2
-----+--------------------------------+---------
 1 | mo,larry,curly | mo
 2 | mo,larry,curly | larry
 3 | mo,larry,curly | curly
 1 | tina,gina,jaunita,regina,leena | tina
 2 | tina,gina,jaunita,regina,leena | gina
 3 | tina,gina,jaunita,regina,leena | jaunita
 4 | tina,gina,jaunita,regina,leena | regina
 5 | tina,gina,jaunita,regina,leena | leena

We’ve shown NAME twice so you can see how SPLIT_PART parses each string using
POS. Once each string is parsed, the final step is to keep the rows where POS equals
the nth substring you are interested in, in this case, 2.

6.15 Parsing an IP Address
Problem
You want to parse an IP address’s fields into columns. Consider the following IP
address:

111.22.3.4

You would like the result of your query to be:

A B C D
----- ----- ----- ---
111 22 3 4

Solution
The solution depends on the built-in functions provided by your DBMS. Regardless
of your DBMS, being able to locate periods and the numbers immediately surround‐
ing them are the keys to the solution.

DB2
Use the recursive WITH clause to simulate an iteration through the IP address while
using SUBSTR to easily parse it. A leading period is added to the IP address so that
every set of numbers has a period in front of it and can be treated the same way.

 1 with x (pos,ip) as (
 2 values (1,'.92.111.0.222')
 3 union all
 4 select pos+1,ip from x where pos+1 <= 20
 5)

160 | Chapter 6: Working with Strings

 6 select max(case when rn=1 then e end) a,
 7 max(case when rn=2 then e end) b,
 8 max(case when rn=3 then e end) c,
 9 max(case when rn=4 then e end) d
10 from (
11 select pos,c,d,
12 case when posstr(d,'.') > 0 then substr(d,1,posstr(d,'.')-1)
13 else d
14 end as e,
15 row_number() over(order by pos desc) rn
16 from (
17 select pos, ip,right(ip,pos) as c, substr(right(ip,pos),2) as d
18 from x
19 where pos <= length(ip)
20 and substr(right(ip,pos),1,1) = '.'
21) x
22) y

MySQL
The function SUBSTR_INDEX makes parsing an IP address an easy operation:

1 select substring_index(substring_index(y.ip,'.',1),'.',-1) a,
2 substring_index(substring_index(y.ip,'.',2),'.',-1) b,
3 substring_index(substring_index(y.ip,'.',3),'.',-1) c,
4 substring_index(substring_index(y.ip,'.',4),'.',-1) d
5 from (select '92.111.0.2' as ip from t1) y

Oracle
Use the built-in function SUBSTR and INSTR to parse and navigate through the IP
address:

1 select ip,
2 substr(ip, 1, instr(ip,'.')-1) a,
3 substr(ip, instr(ip,'.')+1,
4 instr(ip,'.',1,2)-instr(ip,'.')-1) b,
5 substr(ip, instr(ip,'.',1,2)+1,
6 instr(ip,'.',1,3)-instr(ip,'.',1,2)-1) c,
7 substr(ip, instr(ip,'.',1,3)+1) d
8 from (select '92.111.0.2' as ip from t1)

PostgreSQL
Use the built-in function SPLIT_PART to parse an IP address:

1 select split_part(y.ip,'.',1) as a,
2 split_part(y.ip,'.',2) as b,
3 split_part(y.ip,'.',3) as c,
4 split_part(y.ip,'.',4) as d
5 from (select cast('92.111.0.2' as text) as ip from t1) as y

6.15 Parsing an IP Address | 161

SQL Server
Use the recursive WITH clause to simulate an iteration through the IP address while
using SUBSTR to easily parse it. A leading period is added to the IP address so that
every set of numbers has a period in front of it and can be treated the same way:

 1 with x (pos,ip) as (
 2 select 1 as pos,'.92.111.0.222' as ip from t1
 3 union all
 4 select pos+1,ip from x where pos+1 <= 20
 5)
 6 select max(case when rn=1 then e end) a,
 7 max(case when rn=2 then e end) b,
 8 max(case when rn=3 then e end) c,
 9 max(case when rn=4 then e end) d
10 from (
11 select pos,c,d,
12 case when charindex('.',d) > 0
13 then substring(d,1,charindex('.',d)-1)
14 else d
15 end as e,
16 row_number() over(order by pos desc) rn
17 from (
18 select pos, ip,right(ip,pos) as c,
19 substring(right(ip,pos),2,len(ip)) as d
20 from x
21 where pos <= len(ip)
22 and substring(right(ip,pos),1,1) = '.'
23) x
24) y

Discussion
By using the built-in functions for your database, you can easily walk through parts of
a string. The key is being able to locate each of the periods in the address. Then you
can parse the numbers between each.

In Recipe 6.17 we will see how regular expressions can be used with most RDBMSs—
parsing an IP address is also a good area to apply this idea.

6.16 Comparing Strings by Sound
Problem
Between spelling mistakes and legitimate ways to spell words differently, such as Brit‐
ish versus American spelling, there are many times that two words that you want to
match are represented by different strings of characters. Fortunately, SQL provides a
way to represent the way words sound, which allows you to find strings that sound
the same even though the underlying characters aren’t identical.

162 | Chapter 6: Working with Strings

For example, you have a list of authors’ names, including some from an earlier era
when spelling wasn’t as fixed as it is now, combined with some extra misspellings and
typos. The following column of names is an example:

 a_name

1 Johnson
2 Jonson
3 Jonsen
4 Jensen
5 Johnsen
6 Shakespeare
7 Shakspear
8 Shaekspir
9 Shakespar

Although this is likely part of a longer list, you’d like to identify which of these names
are plausible phonetic matches for other names on the list. While this is an exercise
where there is more than one possible solution, your solution will look something
like this (the meaning of the last column will become clearer by the end of the recipe):

a_name1 a_name2 soundex_name
---- ---- ----
Jensen Johnson J525
Jensen Jonson J525
Jensen Jonsen J525
Jensen Johnsen J525
Johnsen Johnson J525
Johnsen Jonson J525
Johnsen Jonsen J525
Johnsen Jensen J525
...
Jonson Jensen J525
Jonson Johnsen J525
Shaekspir Shakspear S216
Shakespar Shakespeare S221
Shakespeare Shakespar S221
Shakspear Shaekspir S216

Solution
Use the SOUNDEX function to convert strings of characters into the way they sound
when spoken in English. A simple self-join allows you to compare values from the
same column.

1 select an1.a_name as name1, an2.a_name as name2,
2 SOUNDEX(an1.a_name) as Soundex_Name
3 from author_names an1
4 join author_names an2
5 on (SOUNDEX(an1.a_name)=SOUNDEX(an2.a_name)
6 and an1.a_name not like an2.a_name)

6.16 Comparing Strings by Sound | 163

Discussion
The thinking behind SOUNDEX predates both databases and computing, as it origi‐
nated with the US Census as an attempt to resolve different spellings of proper names
for both people and places. There are many algorithms that attempt the same task as
SOUNDEX, and, of course, there are alternative versions for languages other than
English. However, we cover SOUNDEX, as it comes with most RDBMSs.

Soundex keeps the first letter of the name and then replaces the remaining values
with numbers that have the same value if they are phonetically similar. For example,
m and n are both replaced with the number 5.

In the previous example, the actual Soundex output is shown in the Soundex_Name
column. This is just to show what is happening, and not necessary for the solution;
some RDMSs even have a function that hides the Soundex result, such as SQL Serv‐
er’s Difference function, which compares two strings using Soundex and returns a
similarity scale from 0 to 4 (e.g., 4 is a perfect match between the Soundex outputs,
representing 4/4 characters in the Soundex version if the two strings match).

Sometimes Soundex will be sufficient for your needs; other times it won’t be. How‐
ever, a small amount of research, possibly using texts such as Data Matching (Chris‐
ten, 2012), will help you find other algorithms that are frequently (but not always)
simple to implement as a user-defined function, or in another programming language
to suit your taste and needs.

6.17 Finding Text Not Matching a Pattern
Problem
You have a text field that contains some structured text values (e.g., phone numbers),
and you want to find occurrences where those values are structured incorrectly. For
example, you have data like the following:

select emp_id, text
 from employee_comment

EMP_ID TEXT
---------- --
7369 126 Varnum, Edmore MI 48829, 989 313-5351
7499 1105 McConnell Court
 Cedar Lake MI 48812
 Home: 989-387-4321
 Cell: (237) 438-3333

and you want to list rows having invalidly formatted phone numbers. For example,
you want to list the following row because its phone number uses two different sepa‐
rator characters:

164 | Chapter 6: Working with Strings

7369 126 Varnum, Edmore MI 48829, 989 313-5351

You want to consider valid only those phone numbers that use the same character for
both delimiters.

Solution
This problem has a multipart solution:

1. Find a way to describe the universe of apparent phone numbers that you want to
consider.

2. Remove any validly formatted phone numbers from consideration.
3. See whether you still have any apparent phone numbers left. If you do, you know

those are invalidly formatted.

select emp_id, text
from employee_comment
where regexp_like(text, '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}')
 and regexp_like(
 regexp_replace(text,
 '[0-9]{3}([-.])[0-9]{3}\1[0-9]{4}','***'),
 '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}')

 EMP_ID TEXT
---------- --
 7369 126 Varnum, Edmore MI 48829, 989 313-5351
 7844 989-387.5359
 9999 906-387-1698, 313-535.8886

Each of these rows contains at least one apparent phone number that is not correctly
formatted.

Discussion
The key to this solution lies in the detection of an “apparent phone number.” Given
that the phone numbers are stored in a comment field, any text at all in the field
could be construed to be an invalid phone number. You need a way to narrow the
field to a more reasonable set of values to consider. You don’t, for example, want to
see the following row in your output:

 EMP_ID TEXT
---------- --
 7900 Cares for 100-year-old aunt during the day. Schedule only
 for evening and night shifts.

Clearly there’s no phone number at all in this row, much less one that is invalid. We
can all see that. The question is, how do you get the RDBMS to “see” it? We think
you’ll enjoy the answer. Please read on.

6.17 Finding Text Not Matching a Pattern | 165

This recipe comes (with permission) from an article by Jonathan
Gennick called “Regular Expression Anti-Patterns.”

The solution uses Pattern A to define the set of “apparent” phone numbers to
consider:

Pattern A: [0-9]{3}[-.][0-9]{3}[-.][0-9]{4}

Pattern A checks for two groups of three digits followed by one group of four digits.
Any one of a dash (-), a period (.), or a space is accepted as a delimiter between
groups. You could come up with a more complex pattern. For example, you could
decide that you also want to consider seven-digit phone numbers. But don’t get side-
tracked. The point now is that somehow you do need to define the universe of possi‐
ble phone number strings to consider, and for this problem that universe is defined
by Pattern A. You can define a different Pattern A, and the general solution still
applies.

The solution uses Pattern A in the WHERE clause to ensure that only rows having
potential phone numbers (as defined by the pattern!) are considered:

select emp_id, text
 from employee_comment
 where regexp_like(text, '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}')

Next, you need to define what a “good” phone number looks like. The solution does
this using Pattern B:

Pattern B: [0-9]{3}([-.])[0-9]{3}\1[0-9]{4}

This time, the pattern uses \1 to reference the first subexpression. Whichever charac‐
ter is matched by ([-.]) must also be matched by \1. Pattern B describes good phone
numbers, which must be eliminated from consideration (as they are not bad). The
solution eliminates the well-formatted phone numbers through a call to REGEXP_
REPLACE:

regexp_replace(text,
 '[0-9]{3}([-.])[0-9]{3}\1[0-9]{4}','***'),

This call to REGEXP_REPLACE occurs in the WHERE clause. Any well-formatted
phone numbers are replaced by a string of three asterisks. Again, Pattern B can be any
pattern that you desire. The point is that Pattern B describes the acceptable pattern
that you are after.

Having replaced well-formatted phone numbers with strings of three asterisks (*),
any “apparent” phone numbers that remain must, by definition, be poorly formatted.
The solution applies REGEXP_LIKE to the output from REGEXP_LIKE to see
whether any poorly formatted phone numbers remain:

166 | Chapter 6: Working with Strings

and regexp_like(
 regexp_replace(text,
 '[0-9]{3}([-.])[0-9]{3}\1[0-9]{4}','***'),
 '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}')

Regular expressions are a big topic in their own right, requiring
practice to master. Once you do master them, you will find they
match a great variety of string patterns with ease. We recommend
studying a book such as Mastering Regular Expressions by Jeffrey
Friedl to get your regular expression skills to the required level.

6.18 Summing Up
Matching on strings can be a painful task. SQL has added a range of tools to reduce
the pain, and mastering them will keep you out of trouble. Although a lot can be
done with the native SQL string functions, using the regular expression functions that
are increasingly available takes it to another level altogether.

6.18 Summing Up | 167

CHAPTER 7

Working with Numbers

This chapter focuses on common operations involving numbers, including numeric
computations. While SQL is not typically considered the first choice for complex
computations, it is efficient for day-to-day numeric chores. More importantly, as
databases and datawarehouses supporting SQL probably remain the most common
place to find an organization’s data, using SQL to explore and evaluate that data is
essential for anyone putting that data to work. The techniques in this section have
also been chosen to help data scientists decide which data is the most promising for
further analysis.

Some recipes in this chapter make use of aggregate functions and
the GROUP BY clause. If you are not familiar with grouping,
please read at least the first major section, called “Grouping,” in
Appendix A.

7.1 Computing an Average
Problem
You want to compute the average value in a column, either for all rows in a table or
for some subset of rows. For example, you might want to find the average salary for
all employees as well as the average salary for each department.

Solution
When computing the average of all employee salaries, simply apply the AVG function
to the column containing those salaries.

169

By excluding a WHERE clause, the average is computed against all non-NULL values:

1 select avg(sal) as avg_sal
2 from emp

 AVG_SAL

2073.21429

To compute the average salary for each department, use the GROUP BY clause to cre‐
ate a group corresponding to each department:

1 select deptno, avg(sal) as avg_sal
2 from emp
3 group by deptno

 DEPTNO AVG_SAL
---------- ----------
 10 2916.66667
 20 2175
 30 1566.66667

Discussion
When finding an average where the whole table is the group or window, simply apply
the AVG function to the column you are interested in without using the GROUP BY
clause. It is important to realize that the function AVG ignores NULLs. The effect of
NULL values being ignored can be seen here:

create table t2(sal integer)
insert into t2 values (10)
insert into t2 values (20)
insert into t2 values (null)
select avg(sal) select distinct 30/2
 from t2 from t2

 AVG(SAL) 30/2
---------- ----------
 15 15

select avg(coalesce(sal,0)) select distinct 30/3
 from t2 from t2

AVG(COALESCE(SAL,0)) 30/3
-------------------- ----------
 10 10

The COALESCE function will return the first non-NULL value found in the list of
values that you pass. When NULL SAL values are converted to zero, the average
changes. When invoking aggregate functions, always give thought to how you want
NULLs handled.

170 | Chapter 7: Working with Numbers

The second part of the solution uses GROUP BY (line 3) to divide employee records
into groups based on department affiliation. GROUP BY automatically causes aggre‐
gate functions such as AVG to execute and return a result for each group. In this
example, AVG would execute once for each department-based group of employee
records.

It is not necessary, by the way, to include GROUP BY columns in your select list. For
example:

select avg(sal)
 from emp
 group by deptno

 AVG(SAL)

2916.66667
 2175
1566.66667

You are still grouping by DEPTNO even though it is not in the SELECT clause.
Including the column you are grouping by in the SELECT clause often improves
readability, but is not mandatory. It is mandatory, however, to avoid placing columns
in your SELECT list that are not also in your GROUP BY clause.

See Also
See Appendix A for a refresher on GROUP BY functionality.

7.2 Finding the Min/Max Value in a Column
Problem
You want to find the highest and lowest values in a given column. For example, you
want to find the highest and lowest salaries for all employees, as well as the highest
and lowest salaries for each department.

Solution
When searching for the lowest and highest salaries for all employees, simply use the
functions MIN and MAX, respectively:

1 select min(sal) as min_sal, max(sal) as max_sal
 2 from emp

 MIN_SAL MAX_SAL
---------- ----------
 800 5000

7.2 Finding the Min/Max Value in a Column | 171

When searching for the lowest and highest salaries for each department, use the func‐
tions MIN and MAX with the GROUP BY clause:

1 select deptno, min(sal) as min_sal, max(sal) as max_sal
 2 from emp
 3 group by deptno

 DEPTNO MIN_SAL MAX_SAL
 ---------- ---------- ----------
 10 1300 5000
 20 800 3000
 30 950 2850

Discussion
When searching for the highest or lowest values, and in cases where the whole table is
the group or window, simply apply the MIN or MAX function to the column you are
interested in without using the GROUP BY clause.

Remember that the MIN and MAX functions ignore NULLs, and that you can have
NULL groups as well as NULL values for columns in a group. The following are
examples that ultimately lead to a query using GROUP BY that returns NULL values
for two groups (DEPTNO 10 and 20):

select deptno, comm
 from emp
 where deptno in (10,30)
 order by 1

 DEPTNO COMM
 ---------- ----------
 10
 10
 10
 30 300
 30 500
 30
 30 0
 30 1300
 30

select min(comm), max(comm)
 from emp

 MIN(COMM) MAX(COMM)
---------- ----------
 0 1300

172 | Chapter 7: Working with Numbers

select deptno, min(comm), max(comm)
 from emp
 group by deptno

 DEPTNO MIN(COMM) MAX(COMM)
 ---------- ---------- ----------
 10
 20
 30 0 1300

Remember, as Appendix A points out, even if nothing other than aggregate functions
are listed in the SELECT clause, you can still group by other columns in the table; for
example:

select min(comm), max(comm)
 from emp
 group by deptno

 MIN(COMM) MAX(COMM)
---------- ----------
 0 1300

Here you are still grouping by DEPTNO even though it is not in the SELECT clause.
Including the column you are grouping by in the SELECT clause often improves
readability, but is not mandatory. It is mandatory, however, that any column in the
SELECT list of a GROUP BY query also be listed in the GROUP BY clause.

See Also
See Appendix A for a refresher on GROUP BY functionality.

7.3 Summing the Values in a Column
Problem
You want to compute the sum of all values, such as all employee salaries, in a column.

Solution
When computing a sum where the whole table is the group or window, just apply the
SUM function to the columns you are interested in without using the GROUP BY
clause:

1 select sum(sal)
2 from emp

 SUM(SAL)

 29025

7.3 Summing the Values in a Column | 173

When creating multiple groups or windows of data, use the SUM function with the
GROUP BY clause. The following example sums employee salaries by department:

1 select deptno, sum(sal) as total_for_dept
2 from emp
3 group by deptno

 DEPTNO TOTAL_FOR_DEPT
---------- --------------
 10 8750
 20 10875
 30 9400

Discussion
When searching for the sum of all salaries for each department, you are creating
groups or “windows” of data. Each employee’s salary is added together to produce a
total for their respective department. This is an example of aggregation in SQL
because detailed information, such as each individual employee’s salary, is not the
focus; the focus is the end result for each department. It is important to note that the
SUM function will ignore NULLs, but you can have NULL groups, which can be seen
here. DEPTNO 10 does not have any employees who earn a commission; thus,
grouping by DEPTNO 10 while attempting to SUM the values in COMM will result
in a group with a NULL value returned by SUM:

select deptno, comm
 from emp
 where deptno in (10,30)
 order by 1

 DEPTNO COMM
---------- ----------
 10
 10
 10
 30 300
 30 500
 30
 30 0
 30 1300
 30

select sum(comm)
 from emp

 SUM(COMM)

 2100

174 | Chapter 7: Working with Numbers

select deptno, sum(comm)
 from emp
 where deptno in (10,30)
 group by deptno

 DEPTNO SUM(COMM)
---------- ----------
 10
 30 2100

See Also
See Appendix A for a refresher on GROUP BY functionality.

7.4 Counting Rows in a Table
Problem
You want to count the number of rows in a table, or you want to count the number of
values in a column. For example, you want to find the total number of employees as
well as the number of employees in each department.

Solution
When counting rows where the whole table is the group or window, simply use the
COUNT function along with the * character:

1 select count(*)
2 from emp

 COUNT(*)

 14

When creating multiple groups, or windows of data, use the COUNT function with
the GROUP BY clause:

1 select deptno, count(*)
2 from emp
3 group by deptno

 DEPTNO COUNT(*)
---------- ----------
 10 3
 20 5
 30 6

7.4 Counting Rows in a Table | 175

Discussion
When counting the number of employees for each department, you are creating
groups or “windows” of data. Each employee found increments the count by one to
produce a total for their respective department. This is an example of aggregation in
SQL because detailed information, such as each individual employee’s salary or job, is
not the focus; the focus is the end result for each department. It is important to note
that the COUNT function will ignore NULLs when passed a column name as an
argument, but will include NULLs when passed the * character or any constant; con‐
sider the following:

select deptno, comm
 from emp

 DEPTNO COMM
---------- ----------
 20
 30 300
 30 500
 20
 30 1300
 30
 10
 20
 10
 30 0
 20
 30
 20
 10

select count(*), count(deptno), count(comm), count('hello')
 from emp

 COUNT(*) COUNT(DEPTNO) COUNT(COMM) COUNT('HELLO')
---------- ------------- ----------- --------------
 14 14 4 14

select deptno, count(*), count(comm), count('hello')
 from emp
 group by deptno

 DEPTNO COUNT(*) COUNT(COMM) COUNT('HELLO')
 ---------- ---------- ----------- --------------
 10 3 0 3
 20 5 0 5
 30 6 4 6

176 | Chapter 7: Working with Numbers

If all rows are null for the column passed to COUNT or if the table is empty, COUNT
will return zero. It should also be noted that, even if nothing other than aggregate
functions are specified in the SELECT clause, you can still group by other columns in
the table, for example:

select count(*)
 from emp
 group by deptno

 COUNT(*)

 3
 5
 6

Notice that you are still grouping by DEPTNO even though it is not in the SELECT
clause. Including the column you are grouping by in the SELECT clause often
improves readability, but is not mandatory. If you do include it (in the SELECT list),
it is mandatory that it is listed in the GROUP BY clause.

See Also
See Appendix A for a refresher on GROUP BY functionality.

7.5 Counting Values in a Column
Problem
You want to count the number of non-NULL values in a column. For example, you’d
like to find out how many employees are on commission.

Solution
Count the number of non-NULL values in the EMP table’s COMM column:

select count(comm)
 from emp

COUNT(COMM)

 4

Discussion
When you “count star,” as in COUNT(*), what you are really counting is rows
(regardless of actual value, which is why rows containing NULL and non-NULL val‐
ues are counted). But when you COUNT a column, you are counting the number of
non-NULL values in that column. The previous recipe’s discussion touches on this

7.5 Counting Values in a Column | 177

distinction. In this solution, COUNT(COMM) returns the number of non-NULL
values in the COMM column. Since only commissioned employees have commis‐
sions, the result of COUNT(COMM) is the number of such employees.

7.6 Generating a Running Total
Problem
You want to calculate a running total of values in a column.

Solution
As an example, the following solutions show how to compute a running total of salar‐
ies for all employees. For readability, results are ordered by SAL whenever possible so
that you can easily eyeball the progression of the running total.

1 select ename, sal,
2 sum(sal) over (order by sal,empno) as running_total
3 from emp
4 order by 2

ENAME SAL RUNNING_TOTAL
---------- ---------- -------------
SMITH 800 800
JAMES 950 1750
ADAMS 1100 2850
WARD 1250 4100
MARTIN 1250 5350
MILLER 1300 6650
TURNER 1500 8150
ALLEN 1600 9750
CLARK 2450 12200
BLAKE 2850 15050
JONES 2975 18025
SCOTT 3000 21025
FORD 3000 24025
KING 5000 29025

Discussion
The windowing function SUM OVER makes generating a running total a simple task.
The ORDER BY clause in the solution includes not only the SAL column, but also the
EMPNO column (which is the primary key) to avoid duplicate values in the running
total. The column RUNNING_TOTAL2 in the following example illustrates the
problem that you might otherwise have with duplicates:

178 | Chapter 7: Working with Numbers

select empno, sal,
 sum(sal)over(order by sal,empno) as running_total1,
 sum(sal)over(order by sal) as running_total2
 from emp
 order by 2

ENAME SAL RUNNING_TOTAL1 RUNNING_TOTAL2
---------- ---------- -------------- --------------
SMITH 800 800 800
JAMES 950 1750 1750
ADAMS 1100 2850 2850
WARD 1250 4100 5350
MARTIN 1250 5350 5350
MILLER 1300 6650 6650
TURNER 1500 8150 8150
ALLEN 1600 9750 9750
CLARK 2450 12200 12200
BLAKE 2850 15050 15050
JONES 2975 18025 18025
SCOTT 3000 21025 24025
FORD 3000 24025 24025
KING 5000 29025 29025

The values in RUNNING_TOTAL2 for WARD, MARTIN, SCOTT, and FORD are
incorrect. Their salaries occur more than once, and those duplicates are summed and
added to the running total. This is why EMPNO (which is unique) is needed to pro‐
duce the (correct) results that you see in RUNNING_TOTAL1. Consider this: for
ADAMS you see 2850 for RUNNING_TOTAL1 and RUNNING_TOTAL2. Add
WARD’s salary of 1250 to 2850 and you get 4100, yet RUNNING_TOTAL2 returns
5350. Why? Since WARD and MARTIN have the same SAL, their two 1250 salaries
are added together to yield 2500, which is then added to 2850 to arrive at 5350 for
both WARD and MARTIN. By specifying a combination of columns to order by that
cannot result in duplicate values (e.g., any combination of SAL and EMPNO is
unique), you ensure the correct progression of the running total.

7.7 Generating a Running Product
Problem
You want to compute a running product on a numeric column. The operation is simi‐
lar to Recipe 7.6, but using multiplication instead of addition.

Solution
By way of example, the solutions all compute running products of employee salaries.
While a running product of salaries may not be all that useful, the technique can
easily be applied to other, more useful domains.

7.7 Generating a Running Product | 179

Use the windowing function SUM OVER and take advantage of the fact that you can
simulate multiplication by adding logarithms:

1 select empno,ename,sal,
2 exp(sum(ln(sal))over(order by sal,empno)) as running_prod
3 from emp
4 where deptno = 10

EMPNO ENAME SAL RUNNING_PROD
----- ---------- ---- --------------------
 7934 MILLER 1300 1300
 7782 CLARK 2450 3185000
 7839 KING 5000 15925000000

It is not valid in SQL (or, formally speaking, in mathematics) to compute logarithms
of values less than or equal to zero. If you have such values in your tables, you need to
avoid passing those invalid values to SQL’s LN function. Precautions against invalid
values and NULLs are not provided in this solution for the sake of readability, but
you should consider whether to place such precautions in production code that you
write. If you absolutely must work with negative and zero values, then this solution
may not work for you. At the same time, if you have zeros (but no values below zero),
a common workaround is to add 1 to all values, noting that the logarithm of 1 is
always zero regardless of base.

SQL Server users use LOG instead of LN.

Discussion
The solution takes advantage of the fact that you can multiply two numbers by:

1. Computing their respective natural logarithms
2. Summing those logarithms
3. Raising the result to the power of the mathematical constant e (using the EXP

function)

The one caveat when using this approach is that it doesn’t work for summing zero or
negative values, because any value less than or equal to zero is out of range for an
SQL logarithm.

For an explanation of how the window function SUM OVER works, see Recipe 7.6.

180 | Chapter 7: Working with Numbers

7.8 Smoothing a Series of Values
Problem
You have a series of values that appear over time, such as monthly sales figures. As is
common, the data shows a lot of variation from point to point, but you are interested
in the overall trend. Therefore, you want to implement a simple smoother, such as
weighted running average to better identify the trend.

Imagine you have daily sales totals, in dollars, such as from a newsstand:

DATE1 SALES
2020-01-01 647
2020-01-02 561
2020-01-03 741
2020-01-04 978
2020-01-05 1062
2020-01-06 1072
... ...

However, you know that there is volatility to the sales data that makes it difficult to
discern an underlying trend. Possibly different days of the week or month are known
to have especially high or low sales. Alternatively, maybe you are aware that due to
the way the data is collected, sometimes sales for one day are moved into the next day,
creating a trough followed by a peak, but there is no practical way to allocate the sales
to their correct day. Therefore, you need to smooth the data over a number of days to
achieve a proper view of what’s happening.

A moving average can be calculated by summing the current value and the preceding
n-1 values and dividing by n. If you also display the previous values for reference, you
expect something like this:

DATE1 sales salesLagOne SalesLagTwo MovingAverage
----- ------ ----------- ------------ --------------
2020-01-01 647 NULL NULl NULL
2020-01-02 561 647 NULL NULL
2020-01-03 741 561 647 649.667
2020-01-04 978 741 561 760
2020-01-05 1062 978 741 927
2020-01-06 1072 1062 978 1037.333
2020-01-07 805 1072 1062 979.667
2020-01-08 662 805 1072 846.333
2020-01-09 1083 662 805 850
2020-01-10 970 1083 662 905

7.8 Smoothing a Series of Values | 181

Solution
The formula for the mean is well known. By applying a simple weighting to the for‐
mula, we can make it more relevant for this task by giving more weight to more
recent values. Use the window function LAG to create a moving average:

select date1, sales,lag(sales,1) over(order by date1) as salesLagOne,
lag(sales,2) over(order by date1) as salesLagTwo,
(sales
+ (lag(sales,1) over(order by date1))
+ lag(sales,2) over(order by date1))/3 as MovingAverage
from sales

Discussion
A weighted moving average is one of the simplest ways to analyze time-series data
(data that appears at particular time intervals). This is just one way to calculate a sim‐
ple moving average—you can also use a partition with average. Although we have
selected a simple three-point moving average, there are different formulas with differ‐
ing numbers of points according to the characteristics of the data you apply them
[.keep-together]#to—#that’s where this technique really comes into its own.

For example, a simple three-point weighted moving average that emphasizes the most
recent data point could be implemented with the following variant on the solution,
where coefficients and the denominator have been updated:

select date1, sales,lag(sales,1) over(order by date1),
lag(sales,2) over(order by date1),
((3*sales)
+ (2*(lag(sales,1) over(order by date1)))
+ (lag(sales,2) over(order by date1)))/6 as SalesMA
from sales

7.9 Calculating a Mode
Problem
You want to find the mode (for those of you who don’t recall, the mode in mathemat‐
ics is the element that appears most frequently for a given set of data) of the values in
a column. For example, you want to find the mode of the salaries in DEPTNO 20.

Based on the following salaries:

select sal
 from emp
 where deptno = 20
 order by sal

182 | Chapter 7: Working with Numbers

 SAL

 800
 1100
 2975
 3000
 3000

the mode is 3000.

Solution

DB2, MySQL, PostgreSQL, and SQL Server
Use the window function DENSE_RANK to rank the counts of the salaries to facili‐
tate extracting the mode:

 1 select sal
 2 from (
 3 select sal,
 4 dense_rank()over(order by cnt desc) as rnk
 5 from (
 6 select sal, count(*) as cnt
 8 from emp
 9 where deptno = 20
10 group by sal
11) x
12) y
13 where rnk = 1

Oracle
You can use the KEEP extension to the aggregate function MAX to find the mode
SAL. One important note is that if there are ties, i.e., multiple rows that are the mode,
the solution using KEEP will keep only one, and that is the one with the highest sal‐
ary. If you want to see all modes (if more than one exists), you must modify this solu‐
tion or simply use the DB2 solution presented earlier. In this case, since 3000 is the
mode SAL in DEPTNO 20 and is also the highest SAL, this solution is sufficient:

1 select max(sal)
2 keep(dense_rank first order by cnt desc) sal
3 from (
4 select sal, count(*) cnt
5 from emp
6 where deptno=20
7 group by sal
8)

7.9 Calculating a Mode | 183

Discussion

DB2 and SQL Server
The inline view X returns each SAL and the number of times it occurs. Inline view Y
uses the window function DENSE_RANK (which allows for ties) to sort the results.

The results are ranked based on the number of times each SAL occurs, as shown here:

1 select sal,
2 dense_rank()over(order by cnt desc) as rnk
3 from (
4 select sal,count(*) as cnt
5 from emp
6 where deptno = 20
7 group by sal
8) x

 SAL RNK
----- ----------
 3000 1
 800 2
 1100 2
 2975 2

The outermost portion of query simply keeps the row(s) where RNK is 1.

Oracle
The inline view returns each SAL and the number of times it occurs and is shown
here:

select sal, count(*) cnt
 from emp
 where deptno=20
 group by sal

 SAL CNT
 ----- ----------
 800 1
 1100 1
 2975 1
 3000 2

The next step is to use the KEEP extension of the aggregate function MAX to find the
mode. If you analyze the KEEP clause shown here, you will notice three subclauses,
DENSE_RANK, FIRST, and ORDER BY CNT DESC:

keep(dense_rank first order by cnt desc)

184 | Chapter 7: Working with Numbers

This makes finding the mode extremely convenient. The KEEP clause determines
which SAL will be returned by MAX by looking at the value of CNT returned by the
inline view. Working from right to left, the values for CNT are ordered in descending
order; then the first is kept of all the values for CNT returned in DENSE_RANK
order. Looking at the result set from the inline view, you can see that 3000 has the
highest CNT of 2. The MAX(SAL) returned is the greatest SAL that has the greatest
CNT, in this case 3000.

See Also
See Chapter 11, particularly the section on “Finding Knight Values,” for a deeper dis‐
cussion of Oracle’s KEEP extension of aggregate functions.

7.10 Calculating a Median
Problem
You want to calculate the median (for those of who do not recall, the median is the
value of the middle member of a set of ordered elements) value for a column of
numeric values. For example, you want to find the median of the salaries in DEPTNO
20. Based on the following salaries:

select sal
 from emp
 where deptno = 20
 order by sal

 SAL

 800
 1100
 2975
 3000
 3000

the median is 2975.

Solution
Other than the Oracle solution (which uses supplied functions to compute a median),
the introduction of window functions allows for a more efficient solution compared
to the traditional self-join.

DB2 and PostgreSQL
Use the window function PERCENTILE_CONT to find the median:

7.10 Calculating a Median | 185

1 select percentile_cont(0.5)
2 within group(order by sal)
3 from emp
4 where deptno=20

SQL Server
Use the window function PERCENTILE_CONT to find the median:

1 select percentile_cont(0.5)
 2 within group(order by sal)
 3 over()
 4 from emp
 5 where deptno=20

The SQL Server solution works on the same principle but requires an OVER clause.

MySQL
MySQL doesn’t have the PERCENTILE_CONT function, so a workaround is
required. One way is to use the CUME_DIST function in conjunction with a CTE,
effectively re-creating the PERCENTILE_CONT function:

with rank_tab (sal, rank_sal) as
(
select sal, cume_dist() over (order by sal)
 from emp
 where deptno=20
),

inter as
(
 select sal, rank_sal from rank_tab
 where rank_sal>=0.5
union
 select sal, rank_sal from rank_tab
 where rank_sal<=0.5
)

 select avg(sal) as MedianSal
 from inter

Oracle
Use the functions MEDIAN or PERCENTILE_CONT:

1 select median(sal)
2 from emp
3 where deptno=20

1 select percentile_cont(0.5)
2 within group(order by sal)

186 | Chapter 7: Working with Numbers

3 from emp
4 where deptno=20

Discussion

Oracle, PostgreSQL, SQL Server, and DB2
Other than Oracle’s MEDIAN function, the structure of all the solutions is the same.
The PERCENTILE_CONT function allows you to directly apply the definition of a
median, as the median is by definition the 50th percentile. Hence, applying this func‐
tion with the appropriate syntax and using 0.5 as the argument finds the median.

Of course, other percentiles are also available from this function. For example, you
can look for the 5th and/or 95th percentiles to find outliers (another method of find‐
ing outliers is outlined later in this chapter when we discuss the median absolute
deviation).

MySQL
MySQL doesn’t have a PERCENTILE_CONT function, which makes things trickier.
To find the median, the values for SAL must be ordered from lowest to highest. The
CUME_DIST function achieves this goal and labels each row with its percentile.
Hence, it can be used to achieve the same outcome as the PERCENTILE_CONT
function used in the solution for the other databases.

The only difficulty is that the CUME_DIST function is not permitted in a WHERE
clause. As a result, you need to apply it first in a CTE.

The only trap here is that if the number of rows is even, there won’t be a row exactly
on the median. Hence, the solution is written to find the average of the highest value
below or equal to the median, and the lowest value above or equal to the median.
This method works for both odd and even numbers of rows, and if there is an odd
number of rows giving an exact median, it will take average of two numbers that are
equal.

7.11 Determining the Percentage of a Total
Problem
You want to determine the percentage that values in a specific column represent
against a total. For example, you want to determine what percentage of all salaries are
the salaries in DEPTNO 10 (the percentage that DEPTNO 10 salaries contribute to
the total).

7.11 Determining the Percentage of a Total | 187

Solution
In general, computing a percentage against a total in SQL is no different than doing
so on paper: simply divide, then multiply. In this example you want to find the per‐
centage of total salaries in table EMP that come from DEPTNO 10. To do that, simply
find the salaries for DEPTNO 10, and then divide by the total salary for the table. As
the last step, multiply by 100 to return a value that represents a percent.

MySQL and PostgreSQL
Divide the sum of the salaries in DEPTNO 10 by the sum of all salaries:

1 select (sum(
2 case when deptno = 10 then sal end)/sum(sal)
3)*100 as pct
4 from emp

DB2, Oracle, and SQL Server
Use an inline view with the window function SUM OVER to find the sum of all salar‐
ies along with the sum of all salaries in DEPTNO 10. Then do the division and multi‐
plication in the outer query:

1 select distinct (d10/total)*100 as pct
2 from (
3 select deptno,
4 sum(sal)over() total,
5 sum(sal)over(partition by deptno) d10
6 from emp
7) x
8 where deptno=10

Discussion

MySQL and PostgreSQL
The CASE statement conveniently returns only the salaries from DEPTNO 10. They
are then summed and divided by the sum of all the salaries. Because NULLs are
ignored by aggregates, an ELSE clause is not needed in the CASE statement. To see
exactly which values are divided, execute the query without the division:

select sum(case when deptno = 10 then sal end) as d10,
 sum(sal)
 from emp

D10 SUM(SAL)
---- ---------
8750 29025

188 | Chapter 7: Working with Numbers

Depending on how you define SAL, you may need to explicitly use CAST when per‐
forming division to ensure the correct data type. For example, on DB2, SQL Server,
and PostgreSQL, if SAL is stored as an integer, you can apply CAST to ensure a deci‐
mal value is returned, as shown here:

select (cast(
 sum(case when deptno = 10 then sal end)
 as decimal)/sum(sal)
)*100 as pct
 from emp

DB2, Oracle, and SQL Server
As an alternative to the traditional solution, this solution uses window functions to
compute a percentage relative to the total. For DB2 and SQL Server, if you’ve stored
SAL as an integer, you’ll need to use CAST before dividing:

select distinct
 cast(d10 as decimal)/total*100 as pct
 from (
select deptno,
 sum(sal)over() total,
 sum(sal)over(partition by deptno) d10
 from emp
) x
 where deptno=10

It is important to keep in mind that window functions are applied after the WHERE
clause is evaluated. Thus, the filter on DEPTNO cannot be performed in inline view
X. Consider the results of inline view X without and with the filter on DEPTNO. First
without:

select deptno,
 sum(sal)over() total,
 sum(sal)over(partition by deptno) d10
 from emp

DEPTNO TOTAL D10
------- --------- ---------
 10 29025 8750
 10 29025 8750
 10 29025 8750
 20 29025 10875
 20 29025 10875
 20 29025 10875
 20 29025 10875
 20 29025 10875
 30 29025 9400
 30 29025 9400
 30 29025 9400
 30 29025 9400

7.11 Determining the Percentage of a Total | 189

 30 29025 9400
 30 29025 9400

and now with:

select deptno,
 sum(sal)over() total,
 sum(sal)over(partition by deptno) d10
 from emp
 where deptno=10

DEPTNO TOTAL D10
------ --------- ---------
 10 8750 8750
 10 8750 8750
 10 8750 8750

Because window functions are applied after the WHERE clause, the value for TOTAL
represents the sum of all salaries in DEPTNO 10 only. But to solve the problem you
want the TOTAL to represent the sum of all salaries, period. That’s why the filter on
DEPTNO must happen outside of inline view X.

7.12 Aggregating Nullable Columns
Problem
You want to perform an aggregation on a column, but the column is nullable. You
want the accuracy of your aggregation to be preserved, but are concerned because
aggregate functions ignore NULLs. For example, you want to determine the average
commission for employees in DEPTNO 30, but there are some employees who do not
earn a commission (COMM is NULL for those employees). Because NULLs are
ignored by aggregates, the accuracy of the output is compromised. You would like to
somehow include NULL values in your aggregation.

Solution
Use the COALESCE function to convert NULLs to zero so they will be included in
the aggregation:

1 select avg(coalesce(comm,0)) as avg_comm
2 from emp
3 where deptno=30

Discussion
When working with aggregate functions, keep in mind that NULLs are ignored. Con‐
sider the output of the solution without using the COALESCE function:

190 | Chapter 7: Working with Numbers

select avg(comm)
 from emp
 where deptno=30

 AVG(COMM)

 550

This query shows an average commission of 550 for DEPTNO 30, but a quick exami‐
nation of those rows:

select ename, comm
 from emp
 where deptno=30
order by comm desc

ENAME COMM
---------- ---------
BLAKE
JAMES
MARTIN 1400
WARD 500
ALLEN 300
TURNER 0

shows that only four of the six employees can earn a commission. The sum of all
commissions in DEPTNO 30 is 2200, and the average should be 2200/6, not 2200/4.
By excluding the COALESCE function, you answer the question “What is the average
commission of employees in DEPTNO 30 who can earn a commission?” rather than
“What is the average commission of all employees in DEPTNO 30?” When working
with aggregates, remember to treat NULLs accordingly.

7.13 Computing Averages Without High and Low Values
Problem
You want to compute an average, but you want to exclude the highest and lowest val‐
ues to (hopefully) reduce the effect of skew. In statistical language, this is known as a
trimmed mean. For example, you want to compute the average salary of all employees
excluding the highest and lowest salaries.

Solution

MySQL and PostgreSQL
Use subqueries to exclude high and low values:

1 select avg(sal)
2 from emp

7.13 Computing Averages Without High and Low Values | 191

3 where sal not in (
4 (select min(sal) from emp),
5 (select max(sal) from emp)
6)

DB2, Oracle, and SQL Server
Use an inline view with the windowing functions MAX OVER and MIN OVER to
generate a result set from which you can easily eliminate the high and low values:

1 select avg(sal)
2 from (
3 select sal, min(sal)over() min_sal, max(sal)over() max_sal
4 from emp
5) x
6 where sal not in (min_sal,max_sal)

Discussion

MySQL and PostgreSQL
The subqueries return the highest and lowest salaries in the table. By using NOT IN
against the values returned, you exclude the highest and lowest salaries from the aver‐
age. Keep in mind that if there are duplicates (if multiple employees have the highest
or lowest salaries), they will all be excluded from the average. If your goal is to
exclude only a single instance of the high and low values, simply subtract them from
the SUM and then divide:

select (sum(sal)-min(sal)-max(sal))/(count(*)-2)
 from emp

DB2, Oracle, and SQL Server
Inline view X returns each salary along with the highest and lowest salaries:

select sal, min(sal)over() min_sal, max(sal)over() max_sal
 from emp

 SAL MIN_SAL MAX_SAL
--------- --------- ---------
 800 800 5000
 1600 800 5000
 1250 800 5000
 2975 800 5000
 1250 800 5000
 2850 800 5000
 2450 800 5000
 3000 800 5000
 5000 800 5000
 1500 800 5000
 1100 800 5000

192 | Chapter 7: Working with Numbers

 950 800 5000
 3000 800 5000
 1300 800 5000

You can access the high and low salaries at every row, so finding which salaries are
highest and/or lowest is trivial. The outer query filters the rows returned from inline
view X such that any salary that matches either MIN_SAL or MAX_SAL is excluded
from the average.

Robust Statistics

In statistical parlance, a mean calculated with the largest and small‐
est values removed is called a trimmed mean. This can be consid‐
ered a safer estimate of the average, and is an example of a robust
statistic, so called because they are less sensitive to problems such
as bias. Recipe 7.16 is another example of a robust statistical tool.
In both cases, these approaches are valuable to someone analyzing
data within an RDBMS because they don’t require the analyst to
make assumptions that are difficult to test with the relatively limi‐
ted range of statistical tools available in SQL.

7.14 Converting Alphanumeric Strings into Numbers
Problem
You have alphanumeric data and would like to return numbers only. You want to
return the number 123321 from the string “paul123f321.”

Solution

DB2
Use the functions TRANSLATE and REPLACE to extract numeric characters from an
alphanumeric string:

1 select cast(
2 replace(
3 translate('paul123f321',
4 repeat('#',26),
5 'abcdefghijklmnopqrstuvwxyz'),'#','')
6 as integer) as num
7 from t1

Oracle, SQL Server, and PostgreSQL
Use the functions TRANSLATE and REPLACE to extract numeric characters from an
alphanumeric string:

7.14 Converting Alphanumeric Strings into Numbers | 193

1 select cast(
2 replace(
3 translate('paul123f321',
4 'abcdefghijklmnopqrstuvwxyz',
5 rpad('#',26,'#')),'#','')
6 as integer) as num
7 from t1

MySQL
As of the time of this writing, MySQL doesn’t support the TRANSLATE function;
thus, a solution will not be provided.

Discussion
The only difference between the two solutions is syntax; DB2 uses the function
REPEAT rather than RPAD, and the parameter list for TRANSLATE is in a different
order. The following explanation uses the Oracle/PostgreSQL solution but is relevant
to DB2 as well. If you run query inside out (starting with TRANSLATE only), you’ll
see this is simple. First, TRANSLATE converts any nonnumeric character to an
instance of #:

select translate('paul123f321',
 'abcdefghijklmnopqrstuvwxyz',
 rpad('#',26,'#')) as num
 from t1

NUM

####123#321

Since all nonnumeric characters are now represented by #, simply use REPLACE to
remove them, then use CAST the return the result as a number. This particular exam‐
ple is extremely simple because the data is alphanumeric. If additional characters can
be stored, rather than fishing for those characters, it is easier to approach this prob‐
lem differently: rather than finding nonnumeric characters and then removing them,
find all numeric characters and remove anything that is not among them. The follow‐
ing example will help clarify this technique:

select replace(
 translate('paul123f321',
 replace(translate('paul123f321',
 '0123456789',
 rpad('#',10,'#')),'#',''),
 rpad('#',length('paul123f321'),'#')),'#','') as num
 from t1

NUM

123321

194 | Chapter 7: Working with Numbers

This solution looks a bit more convoluted than the original but is not so bad once you
break it down. Observe the innermost call to TRANSLATE:

select translate('paul123f321',
 '0123456789',
 rpad('#',10,'#'))
 from t1

TRANSLATE('

paul###f###

So, the initial approach is different; rather than replacing each nonnumeric character
with an instance of #, you replace each numeric character with an instance of #. The
next step removes all instances of #, thus leaving only nonnumeric characters:

select replace(translate('paul123f321',
 '0123456789',
 rpad('#',10,'#')),'#','')
 from t1

REPLA

paulf

The next step is to call TRANSLATE again, this time to replace each of the nonnu‐
meric characters (from the previous query) with an instance of # in the original
string:

select translate('paul123f321',
 replace(translate('paul123f321',
 '0123456789',
 rpad('#',10,'#')),'#',''),
 rpad('#',length('paul123f321'),'#'))
 from t1

TRANSLATE('

####123#321

At this point, stop and examine the outermost call to TRANSLATE. The second
parameter to RPAD (or the second parameter to REPEAT for DB2) is the length of
the original string. This is convenient to use since no character can occur enough
times to be greater than the string it is part of. Now that all nonnumeric characters
are replaced by instances of #, the last step is to use REPLACE to remove all instances
of #. Now you are left with a number.

7.14 Converting Alphanumeric Strings into Numbers | 195

7.15 Changing Values in a Running Total
Problem
You want to modify the values in a running total depending on the values in another
column. Consider a scenario where you want to display the transaction history of a
credit card account along with the current balance after each transaction. The follow‐
ing view, V, will be used in this example:

create view V (id,amt,trx)
as
select 1, 100, 'PR' from t1 union all
select 2, 100, 'PR' from t1 union all
select 3, 50, 'PY' from t1 union all
select 4, 100, 'PR' from t1 union all
select 5, 200, 'PY' from t1 union all
select 6, 50, 'PY' from t1

 select * from V

ID AMT TR
-- ---------- --
 1 100 PR
 2 100 PR
 3 50 PY
 4 100 PR
 5 200 PY
 6 50 PY

The ID column uniquely identifies each transaction. The AMT column represents the
amount of money involved in each transaction (either a purchase or a payment). The
TRX column defines the type of transaction; a payment is “PY” and a purchase is
“PR.” If the value for TRX is PY, you want the current value for AMT subtracted from
the running total; if the value for TRX is PR, you want the current value for AMT
added to the running total. Ultimately you want to return the following result set:

TRX_TYPE AMT BALANCE
-------- ---------- ----------
PURCHASE 100 100
PURCHASE 100 200
PAYMENT 50 150
PURCHASE 100 250
PAYMENT 200 50
PAYMENT 50 0

Solution
Use the window function SUM OVER to create the running total along with a CASE
expression to determine the type of transaction:

196 | Chapter 7: Working with Numbers

 1 select case when trx = 'PY'
 2 then 'PAYMENT'
 3 else 'PURCHASE'
 4 end trx_type,
 5 amt,
 6 sum(
 7 case when trx = 'PY'
 8 then -amt else amt
 9 end
10) over (order by id,amt) as balance
11 from V

Discussion
The CASE expression determines whether the current AMT is added or deducted
from the running total. If the transaction is a payment, the AMT is changed to a neg‐
ative value, thus reducing the amount of the running total. The result of the CASE
expression is shown here:

select case when trx = 'PY'
 then 'PAYMENT'
 else 'PURCHASE'
 end trx_type,
 case when trx = 'PY'
 then -amt else amt
 end as amt
 from V

TRX_TYPE AMT
-------- ---------
PURCHASE 100
PURCHASE 100
PAYMENT -50
PURCHASE 100
PAYMENT -200
PAYMENT -50

After evaluating the transaction type, the values for AMT are then added to or sub‐
tracted from the running total. For an explanation on how the window function,
SUM OVER, or the scalar subquery creates the running total, see recipe Recipe 7.6.

7.16 Finding Outliers Using the Median Absolute
Deviation
Problem
You want to identify values in your data that may be suspect. There are various rea‐
sons why values could be suspect—there could be a data collection issue, such as an
error with the meter that records the value. There could be a data entry error such as

7.16 Finding Outliers Using the Median Absolute Deviation | 197

a typo or similar. There could also be unusual circumstances when the data was gen‐
erated that mean the data point is correct, but they still require you to use caution in
any conclusion you make from the data. Therefore, you want to detect outliers.

A common way to detect outliers, taught in many statistics courses aimed at non-
statisticians, is to calculate the standard deviation of the data and decide that data
points more than three standard deviations (or some other similar distance) are outli‐
ers. However, this method can misidentify outliers if the data don’t follow a normal
distribution, especially if the spread of data isn’t symmetrical or doesn’t thin out in
the same way as a normal distribution as you move further from the mean.

Solution
First find the median of the values using the recipe for finding the median from ear‐
lier in this chapter. You will need to put this query into a CTE to make it available for
further querying. The deviation is the absolute difference between the median and
each value; the median absolute deviation is the median of this value, so we need to
calculate the median again.

SQL Server
SQL Server has the PERCENTILE_CONT function, which simplifies finding the
median. As we need to find two different medians and manipulate them, we need a
series of CTEs:

with median (median)
as
(select distinct percentile_cont(0.5) within group(order by sal)
 over()
from emp),

Deviation (Deviation)
 as
(Select abs(sal-median)
from emp join median on 1=1),

MAD (MAD) as
(select DISTINCT PERCENTILE_CONT(0.5) within group(order by deviation) over()
from Deviation)

select abs(sal-MAD)/MAD, sal, ename, job
from MAD join emp on 1=1

PostgreSQL and DB2
The overall pattern is the same, but there is different syntax for PERCEN‐
TILE_CONT, as PostgreSQL and DB2 treat PERCENTILE_CONT as an aggregate
function rather than strictly a window function:

198 | Chapter 7: Working with Numbers

with median (median)
as
(select percentile_cont(0.5) within group(order by sal)
from emp),

devtab (deviation)
 as
(select abs(sal-median)
from emp join median),

MedAbsDeviation (MAD) as
(select percentile_cont (0.5) within group(order by deviation)
from devtab)

select abs(sal-MAD)/MAD, sal, ename, job
FROM MedAbsDeviation join emp

Oracle
The recipe is simplified for Oracle users due to the existence of a median function.
However, we still need to use a CTE to handle the scalar value of deviation:

with
Deviation (Deviation)
 as
(select abs(sal-median(sal))
from emp),

MAD (MAD) as
(select median(Deviation)
from Deviation)

select abs(sal-MAD)/MAD, sal, ename, job
FROM MAD join emp

MySQL
As we saw in the earlier section on the median, there is unfortunately no MEDIAN or
PERCENTILE_CONT function in MySQL. This means that each of the medians we
need to find to compute the median absolute deviation is two subqueries within a
CTE. This makes the MySQL a little long-winded:

with rank_tab (sal, rank_sal) as (
select sal, cume_dist() over (order by sal)
from emp),
inter as
(
select sal, rank_sal from rank_tab
where rank_sal>=0.5
union
select sal, rank_sal from rank_tab
where rank_sal<=0.5

7.16 Finding Outliers Using the Median Absolute Deviation | 199

)
,

medianSal (medianSal) as

(
select (max(sal)+min(sal))/2
from inter),
deviationSal (Sal,deviationSal) as
(select Sal,abs(sal-medianSal)
from emp join medianSal
on 1=1
)
,

distDevSal (sal,deviationSal,distDeviationSal) as

(
select sal,deviationSal,cume_dist() over (order by deviationSal)
from deviationSal
),

DevInter (DevInter, sal) as
(
select min(deviationSal), sal
from distDevSal
where distDeviationSal >= 0.5

union

select max(DeviationSal), sal
from distDevSal
where distDeviationSal <= 0.5
),

MAD (MedianAbsoluteDeviance) as
(
select abs(emp.sal-(min(devInter)+max(devInter))/2)
from emp join DevInter on 1=1
)

select emp.sal,MedianAbsoluteDeviance,
(emp.sal-deviationSal)/MedianAbsoluteDeviance
from (emp join MAD on 1=1)
 join deviationSal on emp.sal=deviationSal.sal

Discussion
In each case the recipe follows a similar strategy. First we need to calculate the
median, and then we need to calculate the median of the difference between each
value and the median, which is the actual median absolute deviation. Finally, we need

200 | Chapter 7: Working with Numbers

to use a query to find the ratio of the deviation of each value to the median deviation.
At that point, we can use the outcome in a similar way to the standard deviation. For
example, if a value is three or more deviations from the median, it can be considered
an outlier, to use a common interpretation.

As mentioned earlier, the benefit of this approach over the standard deviation is that
the interpretation is still valid even if the data doesn’t display a normal distribution.
For example, it can be lopsided, and the median absolute deviation will still give a
sound answer.

In our salary data, there is one salary that is more than three absolute deviations from
the median: the CEO’s.

Although there are differing opinions about the fairness of CEO salaries versus those
of most other workers, given that the outlier salary belongs to the CEO, it fits with
our understanding of the data. In other contexts, if there wasn’t a clear explanation of
why the value differed so much, it could lead us to question whether that value was
correct or whether the value made sense when taken with the rest of the values (e.g.,
if it not actually an error, it might make us think we need to analyze our data within
more than one subgroup).

Many of the common statistics, such as the mean and the standard
deviation, assume that the shape of the data is a bell curve—a nor‐
mal distribution. This is true for many data sets, and also not true
for many data sets.
There are a number of methods for testing whether a data set fol‐
lows a normal distribution, both by visualizing the data and
through calculations. Statistical packages commonly contain func‐
tions for these tests, but they are nonexistent and hard to replicate
in SQL. However, there are often alternative statistical tools that
don’t assume the data takes a particular form—nonparametric sta‐
tistics—and these are safer to use.

7.17 Finding Anomalies Using Benford’s Law
Problem
Although outliers, as shown in the previous recipe, are a readily identifiable form of
anomalous data, some other data is less easy to identify as problematic. One way to
detect situations where there are anomalous data but no obvious outliers is to look at
the frequency of digits, which is usually expected to follow Benford’s law. Although
using Benford’s law is most often associated with detecting fraud in situations where
humans have added fake numbers to a data set, it can be used more generally to

7.17 Finding Anomalies Using Benford’s Law | 201

detect data that doesn’t follow expected patterns. For example, it can detect errors
such as duplicated data points, which won’t necessarily stand out as outliers.

Solution
To use Benford’s law, you need to calculate the expected distribution of digits and
then the actual distribution to compare. Although the most sophisticated uses look at
first, second, and combinations of digits, in this example we will stick to just the first
digits.

You compare the frequency predicted by Benford’s law with the actual frequency of
your data. Ultimately you want four columns—the first digit, the count of how many
times each first digit appears, the frequency of first digits predicted by Benford’s law,
and the actual frequency:

with
FirstDigits (FirstDigit)
as
(select left(cast(SAL as CHAR),1) as FirstDigit
 from emp),

TotalCount (Total)
as
 (select count(*)
 from emp),

ExpectedBenford (Digit,Expected)
as
 (select value,(log10(value + 1) - log10(value)) as expected
 from t10
 where value < 10)

select count(FirstDigit),Digit
,coalesce(count(*)/Total,0) as ActualProportion,Expected
From FirstDigits
 Join TotalCount
 Right Join ExpectedBenford
 on FirstDigits.FirstDigit=ExpectedBenford.Digit
group by Digit
order by Digit;

Discussion
Because we need to make use of two different counts—one of the total rows, and
another of the number of rows containing each different first digit—we need to use a
CTE. Strictly speaking, we don’t need to put the expected Benford’s law results into a
separate query within the CTE, but we have done so in this case as it allows us to
identify the digits with a zero count and display them in the table via the right join.

202 | Chapter 7: Working with Numbers

It’s also possible to produce the FirstDigits count in the main query, but we have
chosen not to improve readability through not needing to repeat the LEFT(CAST…
expression in the GROUP BY clause.

The math behind Benford’s law is simple:

Expected frequency = log10
d + 1

d

We can use the T10 pivot table to generate the appropriate values. From there we just
need to calculate the actual frequencies for comparison, which first requires us to
identify the first digit.

Benford’s law works best when there is a relatively large collection of values to apply it
to, and when those values span more than one order of magnitude (10, 100, 1,000,
etc.). Those conditions aren’t entirely met here. At the same time, the deviation from
expected should still make us suspicious that these values are in some sense made-up
values and worth investigating further.

7.18 Summing Up
An enterprise’s data is frequently found in a database supported by SQL, so it makes
sense to use SQL to try to understand that data. SQL doesn’t have the full array of
statistical tools you would expect in a purpose-built package such as SAS, the statisti‐
cal programming language R, or Python’s statistical libraries. However, it does have a
rich set of tools for calculation that as we have seen can provide a deep understanding
of the statistical properties of your data.

7.18 Summing Up | 203

CHAPTER 8

Date Arithmetic

This chapter introduces techniques for performing simple date arithmetic. Recipes
cover common tasks such as adding days to dates, finding the number of business
days between dates, and finding the difference between dates in days.

Being able to successfully manipulate dates with your RDBMS’s built-in functions can
greatly improve your productivity. For all the recipes in this chapter, we try to take
advantage of each RDBMS’s built-in functions. In addition, we have chosen to use
one date format for all the recipes, DD-MON-YYYY. Of course, there are a number
of other commonly used formats, such as DD-MM-YYYY, the ISO standard format.

We chose to standardize on DD-MON-YYYY to benefit those of you who work with
one RDBMS and want to learn others. Seeing one standard format will help you focus
on the different techniques and functions provided by each RDBMS without having
to worry about default date formats.

This chapter focuses on basic date arithmetic. You’ll find more
advanced date recipes in the following chapter. The recipes presen‐
ted in this chapter use simple date data types. If you are using more
complex date data types, you will need to adjust the solutions
accordingly.

8.1 Adding and Subtracting Days, Months, and Years
Problem
You need to add or subtract some number of days, months, or years from a date. For
example, using the HIREDATE for employee CLARK, you want to return six differ‐
ent dates: five days before and after CLARK was hired, five months before and after

205

CLARK was hired, and, finally, five years before and after CLARK was hired. CLARK
was hired on 09-JUN-2006, so you want to return the following result set:

HD_MINUS_5D HD_PLUS_5D HD_MINUS_5M HD_PLUS_5M HD_MINUS_5Y HD_PLUS_5Y
----------- ----------- ----------- ----------- ----------- -----------
04-JUN-2006 14-JUN-2006 09-JAN-2006 09-NOV-2006 09-JUN-2001 09-JUN-2001
12-NOV-2006 22-NOV-2006 17-JUN-2006 17-APR-2007 17-NOV-2001 17-NOV-2001
18-JAN-2007 28-JAN-2007 23-AUG-2006 23-JUN-2007 23-JAN-2002 23-JAN-2002

Solution

DB2
Standard addition and subtraction is allowed on date values, but any value that you
add to or subtract from a date must be followed by the unit of time it represents:

1 select hiredate -5 day as hd_minus_5D,
2 hiredate +5 day as hd_plus_5D,
3 hiredate -5 month as hd_minus_5M,
4 hiredate +5 month as hd_plus_5M,
5 hiredate -5 year as hd_minus_5Y,
6 hiredate +5 year as hd_plus_5Y
7 from emp
8 where deptno = 10

Oracle
Use standard addition and subtraction for days, and use the ADD_MONTHS func‐
tion to add and subtract months and years:

1 select hiredate-5 as hd_minus_5D,
2 hiredate+5 as hd_plus_5D,
3 add_months(hiredate,-5) as hd_minus_5M,
4 add_months(hiredate,5) as hd_plus_5M,
5 add_months(hiredate,-5*12) as hd_minus_5Y,
6 add_months(hiredate,5*12) as hd_plus_5Y
7 from emp
8 where deptno = 10

PostgreSQL
Use standard addition and subtraction with the INTERVAL keyword specifying the
unit of time to add or subtract. Single quotes are required when specifying an
INTERVAL value:

1 select hiredate - interval '5 day' as hd_minus_5D,
2 hiredate + interval '5 day' as hd_plus_5D,
3 hiredate - interval '5 month' as hd_minus_5M,
4 hiredate + interval '5 month' as hd_plus_5M,
5 hiredate - interval '5 year' as hd_minus_5Y,
6 hiredate + interval '5 year' as hd_plus_5Y

206 | Chapter 8: Date Arithmetic

7 from emp
8 where deptno=10

MySQL
Use standard addition and subtraction with the INTERVAL keyword specifying the
unit of time to add or subtract. Unlike the PostgreSQL solution, you do not place sin‐
gle quotes around the INTERVAL value:

1 select hiredate - interval 5 day as hd_minus_5D,
2 hiredate + interval 5 day as hd_plus_5D,
3 hiredate - interval 5 month as hd_minus_5M,
4 hiredate + interval 5 month as hd_plus_5M,
5 hiredate - interval 5 year as hd_minus_5Y,
6 hiredate + interval 5 year as hd_plus_5Y
7 from emp
8 where deptno=10

Alternatively, you can use the DATE_ADD function, which is shown here:

1 select date_add(hiredate,interval -5 day) as hd_minus_5D,
2 date_add(hiredate,interval 5 day) as hd_plus_5D,
3 date_add(hiredate,interval -5 month) as hd_minus_5M,
4 date_add(hiredate,interval 5 month) as hd_plus_5M,
5 date_add(hiredate,interval -5 year) as hd_minus_5Y,
6 date_add(hiredate,interval 5 year) as hd_plus_5DY
7 from emp
8 where deptno=10

SQL Server
Use the DATEADD function to add or subtract different units of time to/from a date:

1 select dateadd(day,-5,hiredate) as hd_minus_5D,
2 dateadd(day,5,hiredate) as hd_plus_5D,
3 dateadd(month,-5,hiredate) as hd_minus_5M,
4 dateadd(month,5,hiredate) as hd_plus_5M,
5 dateadd(year,-5,hiredate) as hd_minus_5Y,
6 dateadd(year,5,hiredate) as hd_plus_5Y
7 from emp
8 where deptno = 10

Discussion
The Oracle solution takes advantage of the fact that integer values represent days
when performing date arithmetic. However, that’s true only of arithmetic with DATE
types. Oracle also has TIMESTAMP types. For those, you should use the INTERVAL
solution shown for PostgreSQL. Beware too, of passing TIMESTAMPs to old-style
date functions such as ADD_MONTHS. By doing so, you can lose any fractional sec‐
onds that such TIMESTAMP values may contain.

8.1 Adding and Subtracting Days, Months, and Years | 207

The INTERVAL keyword and the string literals that go with it represent ISO-
standard SQL syntax. The standard requires that interval values be enclosed within
single quotes. PostgreSQL (and Oracle9i Database and later) complies with the stan‐
dard. MySQL deviates somewhat by omitting support for the quotes.

8.2 Determining the Number of Days Between Two Dates
Problem
You want to find the difference between two dates and represent the result in days.
For example, you want to find the difference in days between the HIREDATEs of
employee ALLEN and employee WARD.

Solution

DB2
Use two inline views to find the HIREDATEs for WARD and ALLEN. Then subtract
one HIREDATE from the other using the DAYS function:

 1 select days(ward_hd) - days(allen_hd)
 2 from (
 3 select hiredate as ward_hd
 4 from emp
 5 where ename = 'WARD'
 6) x,
 7 (
 8 select hiredate as allen_hd
 9 from emp
10 where ename = 'ALLEN'
11) y

Oracle and PostgreSQL
Use two inline views to find the HIREDATEs for WARD and ALLEN, and then sub‐
tract one date from the other:

 1 select ward_hd - allen_hd
 2 from (
 3 select hiredate as ward_hd
 4 from emp
 5 where ename = 'WARD'
 6) x,
 7 (
 8 select hiredate as allen_hd
 9 from emp
10 where ename = 'ALLEN'
11) y

208 | Chapter 8: Date Arithmetic

MySQL and SQL Server
Use the function DATEDIFF to find the number of days between two dates. MySQL’s
version of DATEDIFF requires only two parameters (the two dates you want to find
the difference in days between), and the smaller of the two dates should be passed
first to avoid negative values (opposite in SQL Server). SQL Server’s version of the
function allows you to specify what you want the return value to represent (in this
example you want to return the difference in days). The solution following uses the
SQL Server version:

 1 select datediff(day,allen_hd,ward_hd)
 2 from (
 3 select hiredate as ward_hd
 4 from emp
 5 where ename = 'WARD'
 6) x,
 7 (
 8 select hiredate as allen_hd
 9 from emp
10 where ename = 'ALLEN'
11) y

MySQL users can simply remove the first argument of the function and flip-flop the
order in which ALLEN_HD and WARD_HD is passed.

Discussion
For all solutions, inline views X and Y return the HIREDATEs for employees WARD
and ALLEN, respectively. For example:

select ward_hd, allen_hd
 from (
select hiredate as ward_hd
 from emp
 where ename = 'WARD'
) y,
 (
select hiredate as allen_hd
 from emp
 where ename = 'ALLEN'
) x

WARD_HD ALLEN_HD
----------- ----------
22-FEB-2006 20-FEB-2006

You’ll notice a Cartesian product is created, because there is no join specified between
X and Y. In this case, the lack of a join is harmless as the cardinalities for X and Y are
both 1; thus, the result set will ultimately have one row (obviously, because 1 × 1 = 1).

8.2 Determining the Number of Days Between Two Dates | 209

To get the difference in days, simply subtract one of the two values returned from the
other using methods appropriate for your database.

8.3 Determining the Number of Business Days Between
Two Dates
Problem
Given two dates, you want to find how many “working” days are between them,
including the two dates themselves. For example, if January 10th is a Tuesday and
January 11th is a Monday, then the number of working days between these two dates
is two, as both days are typical workdays. For this recipe, a “business day” is defined
as any day that is not Saturday or Sunday.

Solution
The solution examples find the number of business days between the HIREDATEs of
BLAKE and JONES. To determine the number of business days between two dates,
you can use a pivot table to return a row for each day between the two dates (includ‐
ing the start and end dates). Having done that, finding the number of business days is
simply counting the dates returned that are not Saturday or Sunday.

If you want to exclude holidays as well, you can create a HOLI‐
DAYS table. Then include a simple NOT IN predicate to exclude
days listed in HOLIDAYS from the solution.

DB2
Use the pivot table T500 to generate the required number of rows (representing days)
between the two dates. Then count each day that is not a weekend. Use the DAY‐
NAME function to return the weekday name of each date. For example:

 1 select sum(case when dayname(jones_hd+t500.id day -1 day)
 2 in ('Saturday','Sunday')
 3 then 0 else 1
 4 end) as days
 5 from (
 6 select max(case when ename = 'BLAKE'
 7 then hiredate
 8 end) as blake_hd,
 9 max(case when ename = 'JONES'
10 then hiredate
11 end) as jones_hd
12 from emp

210 | Chapter 8: Date Arithmetic

13 where ename in ('BLAKE','JONES')
14) x,
15 t500
16 where t500.id <= blake_hd-jones_hd+1

MySQL
Use the pivot table T500 to generate the required number of rows (days) between the
two dates. Then count each day that is not a weekend. Use the DATE_ADD function
to add days to each date. Use the DATE_FORMAT function to obtain the weekday
name of each date:

 1 select sum(case when date_format(
 2 date_add(jones_hd,
 3 interval t500.id-1 DAY),'%a')
 4 in ('Sat','Sun')
 5 then 0 else 1
 6 end) as days
 7 from (
 8 select max(case when ename = 'BLAKE'
 9 then hiredate
10 end) as blake_hd,
11 max(case when ename = 'JONES'
12 then hiredate
13 end) as jones_hd
14 from emp
15 where ename in ('BLAKE','JONES')
16) x,
17 t500
18 where t500.id <= datediff(blake_hd,jones_hd)+1

Oracle
Use the pivot table T500 to generate the required number of rows (days) between the
two dates, and then count each day that is not a weekend. Use the TO_CHAR func‐
tion to obtain the weekday name of each date:

 1 select sum(case when to_char(jones_hd+t500.id-1,'DY')
 2 in ('SAT','SUN')
 3 then 0 else 1
 4 end) as days
 5 from (
 6 select max(case when ename = 'BLAKE'
 7 then hiredate
 8 end) as blake_hd,
 9 max(case when ename = 'JONES'
10 then hiredate
11 end) as jones_hd
12 from emp
13 where ename in ('BLAKE','JONES')
14) x,

8.3 Determining the Number of Business Days Between Two Dates | 211

15 t500
16 where t500.id <= blake_hd-jones_hd+1

PostgreSQL
Use the pivot table T500 to generate the required number of rows (days) between the
two dates. Then count each day that is not a weekend. Use the TO_CHAR function to
obtain the weekday name of each date:

 1 select sum(case when trim(to_char(jones_hd+t500.id-1,'DAY'))
 2 in ('SATURDAY','SUNDAY')
 3 then 0 else 1
 4 end) as days
 5 from (
 6 select max(case when ename = 'BLAKE'
 7 then hiredate
 8 end) as blake_hd,
 9 max(case when ename = 'JONES'
10 then hiredate
11 end) as jones_hd
12 from emp
13 where ename in ('BLAKE','JONES')
14) x,
15 t500
16 where t500.id <= blake_hd-jones_hd+1

SQL Server
Use the pivot table T500 to generate the required number of rows (days) between the
two dates, and then count each day that is not a weekend. Use the DATENAME func‐
tion to obtain the weekday name of each date:

 1 select sum(case when datename(dw,jones_hd+t500.id-1)
 2 in ('SATURDAY','SUNDAY')
 3 then 0 else 1
 4 end) as days
 5 from (
 6 selectmax(case when ename = 'BLAKE'
 7 then hiredate
 8 end) as blake_hd,
 9 max(case when ename = 'JONES'
10 then hiredate
11 end) as jones_hd
12 from emp
13 where ename in ('BLAKE','JONES')
14) x,
15 t500
16 where t500.id <= datediff(day,jones_hd-blake_hd)+1

212 | Chapter 8: Date Arithmetic

Discussion
While each RDBMS requires the use of different built-in functions to determine the
name of a day, the overall solution approach is the same for each. The solution can be
broken into two steps:

1. Return the days between the start date and end date (inclusive).
2. Count how many days (i.e., rows) there are, excluding weekends.

Inline view X performs step one. If you examine inline view X, you’ll notice the use of
the aggregate function MAX, which the recipe uses to remove NULLs. If the use of
MAX is unclear, the following output might help you understand. The output shows
the results from inline view X without MAX:

select case when ename = 'BLAKE'
 then hiredate
 end as blake_hd,
 case when ename = 'JONES'
 then hiredate
 end as jones_hd
 from emp
 where ename in ('BLAKE','JONES')

BLAKE_HD JONES_HD
----------- -----------
 02-APR-2006
01-MAY-2006

Without MAX, two rows are returned. By using MAX you return only one row
instead of two, and the NULLs are eliminated:

select max(case when ename = 'BLAKE'
 then hiredate
 end) as blake_hd,
 max(case when ename = 'JONES'
 then hiredate
 end) as jones_hd
 from emp
 where ename in ('BLAKE','JONES')

BLAKE_HD JONES_HD
----------- -----------
01-MAY-2006 02-APR-2006

The number of days (inclusive) between the two dates here is 30. Now that the two
dates are in one row, the next step is to generate one row for each of those 30 days. To
return the 30 days (rows), use table T500. Since each value for ID in table T500 is
simply one greater than the one before it, add each row returned by T500 to the ear‐
lier of the two dates (JONES_HD) to generate consecutive days starting from

8.3 Determining the Number of Business Days Between Two Dates | 213

JONES_HD up to and including BLAKE_HD. The result of this addition is shown
here (using Oracle syntax):

select x.*, t500.*, jones_hd+t500.id-1
 from (
select max(case when ename = 'BLAKE'
 then hiredate
 end) as blake_hd,
 max(case when ename = 'JONES'
 then hiredate
 end) as jones_hd
 from emp
 where ename in ('BLAKE','JONES')
) x,
 t500
 where t500.id <= blake_hd-jones_hd+1

BLAKE_HD JONES_HD ID JONES_HD+T5
----------- ----------- ---------- -----------
01-MAY-2006 02-APR-2006 1 02-APR-2006
01-MAY-2006 02-APR-2006 2 03-APR-2006
01-MAY-2006 02-APR-2006 3 04-APR-2006
01-MAY-2006 02-APR-2006 4 05-APR-2006
01-MAY-2006 02-APR-2006 5 06-APR-2006
01-MAY-2006 02-APR-2006 6 07-APR-2006
01-MAY-2006 02-APR-2006 7 08-APR-2006
01-MAY-2006 02-APR-2006 8 09-APR-2006
01-MAY-2006 02-APR-2006 9 10-APR-2006
01-MAY-2006 02-APR-2006 10 11-APR-2006
01-MAY-2006 02-APR-2006 11 12-APR-2006
01-MAY-2006 02-APR-2006 12 13-APR-2006
01-MAY-2006 02-APR-2006 13 14-APR-2006
01-MAY-2006 02-APR-2006 14 15-APR-2006
01-MAY-2006 02-APR-2006 15 16-APR-2006
01-MAY-2006 02-APR-2006 16 17-APR-2006
01-MAY-2006 02-APR-2006 17 18-APR-2006
01-MAY-2006 02-APR-2006 18 19-APR-2006
01-MAY-2006 02-APR-2006 19 20-APR-2006
01-MAY-2006 02-APR-2006 20 21-APR-2006
01-MAY-2006 02-APR-2006 21 22-APR-2006
01-MAY-2006 02-APR-2006 22 23-APR-2006
01-MAY-2006 02-APR-2006 23 24-APR-2006
01-MAY-2006 02-APR-2006 24 25-APR-2006
01-MAY-2006 02-APR-2006 25 26-APR-2006
01-MAY-2006 02-APR-2006 26 27-APR-2006
01-MAY-2006 02-APR-2006 27 28-APR-2006
01-MAY-2006 02-APR-2006 28 29-APR-2006
01-MAY-2006 02-APR-2006 29 30-APR-2006
01-MAY-2006 02-APR-2006 30 01-MAY-2006

214 | Chapter 8: Date Arithmetic

If you examine the WHERE clause, you’ll notice that you add 1 to the difference
between BLAKE_HD and JONES_HD to generate the required 30 rows (otherwise,
you would get 29 rows). You’ll also notice that you subtract 1 from T500.ID in the
SELECT list of the outer query, since the values for ID start at 1 and adding 1 to
JONES_HD would cause JONES_HD to be excluded from the final count.

Once you generate the number of rows required for the result set, use a CASE expres‐
sion to “flag” whether each of the days returned is weekday or weekend (return a 1 for
a weekday and a 0 for a weekend). The final step is to use the aggregate function SUM
to tally up the number of 1s to get the final answer.

8.4 Determining the Number of Months or Years Between
Two Dates
Problem
You want to find the difference between two dates in terms of either months or years.
For example, you want to find the number of months between the first and last
employees hired, and you also want to express that value as some number of years.

Solution
Since there are always 12 months in a year, you can find the number of months
between 2 dates and then divide by 12 to get the number of years. After getting com‐
fortable with the solution, you’ll want to round the results up or down depending on
what you want for the year. For example, the first HIREDATE in table EMP is 17-
DEC-1980 and the last is 12-JAN-1983. If you do the math on the years (1983 minus
1980), you get 3 years, yet the difference in months is approximately 25 (a little over 2
years). You should tweak the solution as you see fit. The following solutions will
return 25 months and approximately 2 years.

DB2 and MySQL
Use the functions YEAR and MONTH to return the four-digit year and the two-digit
month for the dates supplied:

1 select mnth, mnth/12
2 from (
3 select (year(max_hd) - year(min_hd))*12 +
4 (month(max_hd) - month(min_hd)) as mnth
5 from (
6 select min(hiredate) as min_hd, max(hiredate) as max_hd
7 from emp
8) x
9) y

8.4 Determining the Number of Months or Years Between Two Dates | 215

Oracle
Use the function MONTHS_BETWEEN to find the difference between two dates in
months (to get years, simply divide by 12):

1 select months_between(max_hd,min_hd),
2 months_between(max_hd,min_hd)/12
3 from (
4 select min(hiredate) min_hd, max(hiredate) max_hd
5 from emp
6) x

PostgreSQL
Use the function EXTRACT to return the four-digit year and two-digit month for the
dates supplied:

 1 select mnth, mnth/12
 2 from (
 3 select (extract(year from max_hd)
 4 extract(year from min_hd)) * 12
 5 +
 6 (extract(month from max_hd)
 7 extract(month from min_hd)) as mnth
 8 from (
 9 select min(hiredate) as min_hd, max(hiredate) as max_hd
10 from emp
11) x
12) y

SQL Server
Use the function DATEDIFF to find the difference between two dates, and use the
DATEPART argument to specify months and years as the time units returned:

 1 select datediff(month,min_hd,max_hd),
 2 datediff(year,min_hd,max_hd)
 3 from (
 4 select min(hiredate) min_hd, max(hiredate) max_hd
 5 from emp
 6) x

Discussion

DB2, MySQL, and PostgreSQL
Once you extract the year and month for MIN_HD and MAX_HD in the PostgreSQL
solution, the method for finding the months and years between MIN_HD and
MAX_HD is the same for all three RDBMs. This discussion will cover all three
solutions.

216 | Chapter 8: Date Arithmetic

Inline view X returns the earliest and latest HIREDATEs in table EMP and is shown
here:

select min(hiredate) as min_hd,
 max(hiredate) as max_hd
 from emp

MIN_HD MAX_HD
----------- -----------
17-DEC-1980 12-JAN-1983

To find the months between MAX_HD and MIN_HD, multiply the difference in
years between MIN_HD and MAX_HD by 12, and then add the difference in months
between MAX_HD and MIN_HD. If you are having trouble seeing how this works,
return the date component for each date. The numeric values for the years and
months are shown here:

select year(max_hd) as max_yr, year(min_hd) as min_yr,
 month(max_hd) as max_mon, month(min_hd) as min_mon
 from (
select min(hiredate) as min_hd, max(hiredate) as max_hd
 from emp
) x

MAX_YR MIN_YR MAX_MON MIN_MON
------ ---------- ---------- ----------
 1983 1980 1 12

Looking at these results, finding the months between MAX_HD and MIN_HD is
simply 1983 − 1980 × 12 + 1 − 12 . To find the number of years between MIN_HD
and MAX_HD, divide the number of months by 12. Again, depending on the results
you are looking for, you will want to round the values.

Oracle and SQL Server
Inline view X returns the earliest and latest HIREDATEs in table EMP and is shown
here:

select min(hiredate) as min_hd, max(hiredate) as max_hd
 from emp

MIN_HD MAX_HD
----------- -----------
17-DEC-1980 12-JAN-1983

The functions supplied by Oracle and SQL Server (MONTHS_BETWEEN and
DATEDIFF, respectively) will return the number of months between two given dates.
To find the year, divide the number of months by 12.

8.4 Determining the Number of Months or Years Between Two Dates | 217

8.5 Determining the Number of Seconds, Minutes, or
Hours Between Two Dates
Problem
You want to return the difference in seconds between two dates. For example, you
want to return the difference between the HIREDATEs of ALLEN and WARD in sec‐
onds, minutes, and hours.

Solution
If you can find the number of days between two dates, you can find seconds, minutes,
and hours as they are the units of time that make up a day.

DB2
Use the function DAYS to find the difference between ALLEN_HD and WARD_HD
in days. Then multiply to find each unit of time:

 1 select dy*24 hr, dy*24*60 min, dy*24*60*60 sec
 2 from (
 3 select (days(max(case when ename = 'WARD'
 4 then hiredate
 5 end)) -
 6 days(max(case when ename = 'ALLEN'
 7 then hiredate
 8 end))
 9) as dy
10 from emp
11) x

MySQL
Use the DATEDIFF function to return the number of days between ALLEN_HD and
WARD_HD. Then multiply to find each unit of time:

 1 select datediff(day,allen_hd,ward_hd)*24 hr,
 2 datediff(day,allen_hd,ward_hd)*24*60 min,
 3 datediff(day,allen_hd,ward_hd)*24*60*60 sec
 4 from (
 5 select max(case when ename = 'WARD'
 6 then hiredate
 7 end) as ward_hd,
 8 max(case when ename = 'ALLEN'
 9 then hiredate
10 end) as allen_hd
11 from emp
12) x

218 | Chapter 8: Date Arithmetic

SQL Server
Use the DATEDIFF function to return the number of days between ALLEN_HD and
WARD_HD. Then use the DATEPART argument to specify the required time unit:

 1 select datediff(day,allen_hd,ward_hd,hour) as hr,
 2 datediff(day,allen_hd,ward_hd,minute) as min,
 3 datediff(day,allen_hd,ward_hd,second) as sec
 4 from (
 5 select max(case when ename = 'WARD'
 6 then hiredate
 7 end) as ward_hd,
 8 max(case when ename = 'ALLEN'
 9 then hiredate
10 end) as allen_hd
11 from emp
12) x

Oracle and PostgreSQL
Use subtraction to return the number of days between ALLEN_HD and WARD_ HD.
Then multiply to find each unit of time:

 1 select dy*24 as hr, dy*24*60 as min, dy*24*60*60 as sec
 2 from (
 3 select (max(case when ename = 'WARD'
 4 then hiredate
 5 end) -
 6 max(case when ename = 'ALLEN'
 7 then hiredate
 8 end)) as dy
 9 from emp
10) x

Discussion
Inline view X for all solutions returns the HIREDATEs for WARD and ALLEN, as
shown here:

select max(case when ename = 'WARD'
 then hiredate
 end) as ward_hd,
 max(case when ename = 'ALLEN'
 then hiredate
 end) as allen_hd
 from emp

WARD_HD ALLEN_HD
----------- -----------
22-FEB-2006 20-FEB-2006

8.5 Determining the Number of Seconds, Minutes, or Hours Between Two Dates | 219

Multiply the number of days between WARD_HD and ALLEN_HD by 24 (hours in a
day), 1440 (minutes in a day), and 86400 (seconds in a day).

8.6 Counting the Occurrences of Weekdays in a Year
Problem
You want to count the number of times each weekday occurs in one year.

Solution
To find the number of occurrences of each weekday in a year, you must:

1. Generate all possible dates in the year.
2. Format the dates such that they resolve to the name of their respective weekdays.
3. Count the occurrence of each weekday name.

DB2
Use recursive WITH to avoid the need to SELECT against a table with at least 366
rows. Use the function DAYNAME to obtain the weekday name for each date, and
then count the occurrence of each:

 1 with x (start_date,end_date)
 2 as (
 3 select start_date,
 4 start_date + 1 year end_date
 5 from (
 6 select (current_date
 7 dayofyear(current_date) day)
 8 +1 day as start_date
 9 from t1
10) tmp
11 union all
12 select start_date + 1 day, end_date
13 from x
14 where start_date + 1 day < end_date
15)
16 select dayname(start_date),count(*)
17 from x
18 group by dayname(start_date)

MySQL
Select against table T500 to generate enough rows to return every day in the year. Use
the DATE_FORMAT function to obtain the weekday name of each date, and then
count the occurrence of each name:

220 | Chapter 8: Date Arithmetic

 1 select date_format(
 2 date_add(
 3 cast(
 4 concat(year(current_date),'-01-01')
 5 as date),
 6 interval t500.id-1 day),
 7 '%W') day,
 8 count(*)
 9 from t500
10 where t500.id <= datediff(
11 cast(
12 concat(year(current_date)+1,'-01-01')
13 as date),
14 cast(
15 concat(year(current_date),'-01-01')
16 as date))
17 group by date_format(
18 date_add(
19 cast(
20 concat(year(current_date),'-01-01')
21 as date),
22 interval t500.id-1 day),
23 '%W')

Oracle
You can use the recursive CONNECT BY to return each day in a year:

 1 with x as (
 2 select level lvl
 3 from dual
 4 connect by level <= (
 5 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')
 6)
 7)
 8 select to_char(trunc(sysdate,'y')+lvl-1,'DAY'), count(*)
 9 from x
10 group by to_char(trunc(sysdate,'y')+lvl-1,'DAY')

PostgreSQL
Use the built-in function GENERATE_SERIES to generate one row for every day in
the year. Then use the TO_CHAR function to obtain the weekday name of each date.
Finally, count the occurrence of each weekday name. For example:

 1 select to_char(
 2 cast(
 3 date_trunc('year',current_date)
 4 as date) + gs.id-1,'DAY'),
 5 count(*)
 6 from generate_series(1,366) gs(id)
 7 where gs.id <= (cast

8.6 Counting the Occurrences of Weekdays in a Year | 221

 8 (date_trunc('year',current_date) +
 9 interval '12 month' as date) -
10 cast(date_trunc('year',current_date)
11 as date))
12 group by to_char(
13 cast(
14 date_trunc('year',current_date)
15 as date) + gs.id-1,'DAY')

SQL Server
Use the recursive WITH to avoid the need to SELECT against a table with at least 366
rows. Use the DATENAME function to obtain the weekday name of each date, and
then count the occurrence of each name. For example:

 1 with x (start_date,end_date)
 2 as (
 3 select start_date,
 4 dateadd(year,1,start_date) end_date
 5 from (
 6 select cast(
 7 cast(year(getdate()) as varchar) + '-01-01'
 8 as datetime) start_date
 9 from t1
10) tmp
11 union all
12 select dateadd(day,1,start_date), end_date
13 from x
14 where dateadd(day,1,start_date) < end_date
15)
16 select datename(dw,start_date),count(*)
17 from x
18 group by datename(dw,start_date)
19 OPTION (MAXRECURSION 366)

Discussion

DB2
Inline view TMP, in the recursive WITH view X, returns the first day of the current
year and is shown here:

select (current_date
 dayofyear(current_date) day)
 +1 day as start_date
 from t1

START_DATE

01-JAN-2005

222 | Chapter 8: Date Arithmetic

The next step is to add one year to START_DATE so that you have the beginning and
end dates. You need to know both because you want to generate every day in a year.
START_DATE and END_DATE are shown here:

select start_date,
 start_date + 1 year end_date
 from (
select (current_date
 dayofyear(current_date) day)
 +1 day as start_date
 from t1
) tmp

 START_DATE END_DATE
 ----------- ------------
 01-JAN-2005 01-JAN-2006

The next step is to recursively increment START_DATE by one day, stopping before
it equals END_DATE. A portion of the rows returned by the recursive view X is
shown here:

with x (start_date,end_date)
as (
select start_date,
 start_date + 1 year end_date
 from (
select (current_date -
 dayofyear(current_date) day)
 +1 day as start_date
 from t1
) tmp
 union all
select start_date + 1 day, end_date
 from x
 where start_date + 1 day < end_date
)
select * from x

START_DATE END_DATE
----------- -----------
01-JAN-2005 01-JAN-2006
02-JAN-2005 01-JAN-2006
03-JAN-2005 01-JAN-2006
…
29-JAN-2005 01-JAN-2006
30-JAN-2005 01-JAN-2006
31-JAN-2005 01-JAN-2006
…
01-DEC-2005 01-JAN-2006
02-DEC-2005 01-JAN-2006
03-DEC-2005 01-JAN-2006
…

8.6 Counting the Occurrences of Weekdays in a Year | 223

29-DEC-2005 01-JAN-2006
30-DEC-2005 01-JAN-2006
31-DEC-2005 01-JAN-2006

The final step is to use the function DAYNAME on the rows returned by the recur‐
sive view X and count how many times each weekday occurs. The final result is
shown here:

with x (start_date,end_date)
as (
select start_date,
 start_date + 1 year end_date
 from (
select (
 current_date -
 dayofyear(current_date) day)
 +1 day as start_date
 from t1
) tmp
 union all
select start_date + 1 day, end_date
 from x
 where start_date + 1 day < end_date
)
select dayname(start_date),count(*)
 from x
 group by dayname(start_date)

START_DATE COUNT(*)
---------- ----------
FRIDAY 52
MONDAY 52
SATURDAY 53
SUNDAY 52
THURSDAY 52
TUESDAY 52
WEDNESDAY 52

MySQL
This solution selects against table T500 to generate one row for every day in the year.
The command on line 4 returns the first day of the current year. It does this by
returning the year of the date returned by the function CURRENT_DATE and then
appending a month and day (following MySQL’s default date format). The result is
shown here:

select concat(year(current_date),'-01-01')
 from t1

START_DATE

01-JAN-2005

224 | Chapter 8: Date Arithmetic

Now that you have the first day in the current year, use the DATEADD function to
add each value from T500.ID to generate each day in the year. Use the function
DATE_FORMAT to return the weekday for each date. To generate the required num‐
ber of rows from table T500, find the difference in days between the first day of the
current year and the first day of the next year, and return that many rows (will be
either 365 or 366). A portion of the results is shown here:

select date_format(
 date_add(
 cast(
 concat(year(current_date),'-01-01')
 as date),
 interval t500.id-1 day),
 '%W') day
 from t500
 where t500.id <= datediff(
 cast(
 concat(year(current_date)+1,'-01-01')
 as date),
 cast(
 concat(year(current_date),'-01-01')
 as date))

DAY

01-JAN-2005
02-JAN-2005
03-JAN-2005
…
29-JAN-2005
30-JAN-2005
31-JAN-2005
…
01-DEC-2005
02-DEC-2005
03-DEC-2005
…
29-DEC-2005
30-DEC-2005
31-DEC-2005

Now that you can return every day in the current year, count the occurrences of each
weekday returned by the function DAYNAME. The final results are shown here:

select date_format(
 date_add(
 cast(
 concat(year(current_date),'-01-01')
 as date),
 interval t500.id-1 day),
 '%W') day,
 count(*)

8.6 Counting the Occurrences of Weekdays in a Year | 225

 from t500
 where t500.id <= datediff(
 cast(
 concat(year(current_date)+1,'-01-01')
 as date),
 cast(
 concat(year(current_date),'-01-01')
 as date))
 group by date_format(
 date_add(
 cast(
 concat(year(current_date),'-01-01')
 as date),
 interval t500.id-1 day),
 '%W')

DAY COUNT(*)
--------- ----------
FRIDAY 52
MONDAY 52
SATURDAY 53
SUNDAY 52
THURSDAY 52
TUESDAY 52
WEDNESDAY 52

Oracle
The solutions provided either select against table T500 (a pivot table), or use the
recursive CONNECT BY and WITH to generate a row for every day in the current
year. The call to the function TRUNC truncates the current date to the first day of the
current year.

If you are using the CONNECT BY/WITH solution, you can use the pseudo-column
LEVEL to generate sequential numbers beginning at one. To generate the required
number of rows needed for this solution, filter ROWNUM or LEVEL on the differ‐
ence in days between the first day of the current year and the first day of the next year
(will be 365 or 366 days). The next step is to increment each day by adding ROW‐
NUM or LEVEL to the first day of the current year. Partial results are shown here:

/* Oracle 9i and later */
with x as (
select level lvl
 from dual
 connect by level <= (
 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')
)
)
select trunc(sysdate,'y')+lvl-1 from x

226 | Chapter 8: Date Arithmetic

If you are using the pivot-table solution, you can use any table or view with at least
366 rows in it. And since Oracle has ROWNUM, there’s no need for a table with
incrementing values starting from one. Consider the following example, which uses
pivot table T500 to return every day in the current year:

/* Oracle 8i and earlier */
select trunc(sysdate,'y')+rownum-1 start_date
 from t500
 where rownum <= (add_months(trunc(sysdate,'y'),12)
 - trunc(sysdate,'y'))

START_DATE

01-JAN-2005
02-JAN-2005
03-JAN-2005
…
29-JAN-2005
30-JAN-2005
31-JAN-2005
…
01-DEC-2005
02-DEC-2005
03-DEC-2005
…
29-DEC-2005
30-DEC-2005
31-DEC-2005

Regardless of which approach you take, you eventually must use the function TO_
CHAR to return the weekday name for each date and then count the occurrence of
each name. The final results are shown here:

/* Oracle 9i and later */
with x as (
select level lvl
 from dual
 connect by level <= (
 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')
)
)
select to_char(trunc(sysdate,'y')+lvl-1,'DAY'), count(*)
 from x
 group by to_char(trunc(sysdate,'y')+lvl-1,'DAY')

/* Oracle 8i and earlier */
select to_char(trunc(sysdate,'y')+rownum-1,'DAY') start_date,
 count(*)
 from t500
 where rownum <= (add_months(trunc(sysdate,'y'),12)
 - trunc(sysdate,'y'))
 group by to_char(trunc(sysdate,'y')+rownum-1,'DAY')

8.6 Counting the Occurrences of Weekdays in a Year | 227

START_DATE COUNT(*)
---------- ----------
FRIDAY 52
MONDAY 52
SATURDAY 53
SUNDAY 52
THURSDAY 52
TUESDAY 52
WEDNESDAY 52

PostgreSQL
The first step is to use the DATE_TRUNC function to return the year of the current
date (shown here, selecting against T1 so only one row is returned):

select cast(
 date_trunc('year',current_date)
 as date) as start_date
 from t1

 START_DATE

 01-JAN-2005

The next step is to select against a row source (any table expression, really) with at
least 366 rows. The solution uses the function GENERATE_SERIES as the row
source. You can, of course, use table T500 instead. Then add one day to the first day
of the current year until you return every day in the year (shown here):

select cast(date_trunc('year',current_date)
 as date) + gs.id-1 as start_date
 from generate_series (1,366) gs(id)
 where gs.id <= (cast
 (date_trunc('year',current_date) +
 interval '12 month' as date) -
 cast(date_trunc('year',current_date)
 as date))

START_DATE

01-JAN-2005
02-JAN-2005
03-JAN-2005
…
29-JAN-2005
30-JAN-2005
31-JAN-2005
…
01-DEC-2005
02-DEC-2005
03-DEC-2005

228 | Chapter 8: Date Arithmetic

…
29-DEC-2005
30-DEC-2005
31-DEC-2005

The final step is to use the function TO_CHAR to return the weekday name for each
date and then count the occurrence of each name. The final results are shown here:

select to_char(
 cast(
 date_trunc('year',current_date)
 as date) + gs.id-1,'DAY') as start_dates,
 count(*)
 from generate_series(1,366) gs(id)
 where gs.id <= (cast
 (date_trunc('year',current_date) +
 interval '12 month' as date) -
 cast(date_trunc('year',current_date)
 as date))
 group by to_char(
 cast(
 date_trunc('year',current_date)
 as date) + gs.id-1,'DAY')

START_DATE COUNT(*)
---------- ----------
FRIDAY 52
MONDAY 52
SATURDAY 53
SUNDAY 52
THURSDAY 52
TUESDAY 52
WEDNESDAY 52

SQL Server
Inline view TMP, in the recursive WITH view X, returns the first day of the current
year and is shown here:

select cast(
 cast(year(getdate()) as varchar) + '-01-01'
 as datetime) start_date
 from t1

START_DATE

01-JAN-2005

Once you return the first day of the current year, add one year to START_DATE so
that you have the beginning and end dates. You need to know both because you want
to generate every day in a year.

START_DATE and END_DATE are shown here:

8.6 Counting the Occurrences of Weekdays in a Year | 229

select start_date,
 dateadd(year,1,start_date) end_date
 from (
select cast(
 cast(year(getdate()) as varchar) + '-01-01'
 as datetime) start_date
 from t1
) tmp

START_DATE END_DATE
----------- -----------
01-JAN-2005 01-JAN-2006

Next, recursively increment START_DATE by one day and stop before it equals
END_DATE. A portion of the rows returned by the recursive view X is shown below:

with x (start_date,end_date)
 as (
 select start_date,
 dateadd(year,1,start_date) end_date
 from (
 select cast(
 cast(year(getdate()) as varchar) + '-01-01'
 as datetime) start_date
 from t1
) tmp
 union all
 select dateadd(day,1,start_date), end_date
 from x
 where dateadd(day,1,start_date) < end_date
)
 select * from x
 OPTION (MAXRECURSION 366)

START_DATE END_DATE
----------- -----------
01-JAN-2005 01-JAN-2006
02-JAN-2005 01-JAN-2006
03-JAN-2005 01-JAN-2006
…
29-JAN-2005 01-JAN-2006
30-JAN-2005 01-JAN-2006
31-JAN-2005 01-JAN-2006
…
01-DEC-2005 01-JAN-2006
02-DEC-2005 01-JAN-2006
03-DEC-2005 01-JAN-2006
…
29-DEC-2005 01-JAN-2006
30-DEC-2005 01-JAN-2006
31-DEC-2005 01-JAN-2006

230 | Chapter 8: Date Arithmetic

The final step is to use the function DATENAME on the rows returned by the recur‐
sive view X and count how many times each weekday occurs. The final result is
shown here:

with x(start_date,end_date)
 as (
 select start_date,
 dateadd(year,1,start_date) end_date
 from (
 select cast(
 cast(year(getdate()) as varchar) + '-01-01'
 as datetime) start_date
 from t1
) tmp
 union all
 select dateadd(day,1,start_date), end_date
 from x
 where dateadd(day,1,start_date) < end_date
)
 select datename(dw,start_date), count(*)
 from x
 group by datename(dw,start_date)
 OPTION (MAXRECURSION 366)

START_DATE COUNT(*)
--------- ----------
FRIDAY 52
MONDAY 52
SATURDAY 53
SUNDAY 52
THURSDAY 52
TUESDAY 52
WEDNESDAY 52

8.7 Determining the Date Difference Between the Current
Record and the Next Record
Problem
You want to determine the difference in days between two dates (specifically dates
stored in two different rows). For example, for every employee in DEPTNO 10, you
want to determine the number of days between the day they were hired and the day
the next employee (can be in another department) was hired.

8.7 Determining the Date Difference Between the Current Record and the Next Record | 231

Solution
The trick to this problem’s solution is to find the earliest HIREDATE after the current
employee was hired. After that, simply use the technique from Recipe 8.2 to find the
difference in days.

DB2
Use a scalar subquery to find the next HIREDATE relative to the current HIREDATE.
Then use the DAYS function to find the difference in days:

1 select x.*,
2 days(x.next_hd) - days(x.hiredate) diff
3 from (
4 select e.deptno, e.ename, e.hiredate,
5 lead(hiredate)over(order by hiredate) next_hd
6 from emp e
7 where e.deptno = 10
8) x

MySQL and SQL Server
Use the lead function to access the next row. The SQL Server version of DATEDIFF is
used here:

1 select x.ename, x.hiredate, x.next_hd,
2 datediff(x.hiredate,x.next_hd,day) as diff
3 from (
4 select deptno, ename, hiredate,
5 lead(hiredate)over(order by hiredate) as next_hd
6 from emp e
7) x
8 where e.deptno=10

MySQL users can exclude the first argument (“day”) and switch the order of the two
remaining arguments:

2 datediff(x.next_hd, x.hiredate) diff

Oracle
Use the window function LEAD OVER to access the next HIREDATE relative to the
current row, thus facilitating subtraction:

1 select ename, hiredate, next_hd,
2 next_hd - hiredate diff
3 from (
4 select deptno, ename, hiredate,
5 lead(hiredate)over(order by hiredate) next_hd
6 from emp
7)
8 where deptno=10

232 | Chapter 8: Date Arithmetic

PostgreSQL
Use a scalar subquery to find the next HIREDATE relative to the current HIREDATE.
Then use simple subtraction to find the difference in days:

1 select x.*,
2 x.next_hd - x.hiredate as diff
3 from (
4 select e.deptno, e.ename, e.hiredate,
5 lead(hiredate)over(order by hiredate) as next_hd
7 from emp e
8 where e.deptno = 10
9) x

Discussion
Despite the differences in syntax, the approach is the same for all these solutions: use
the window function LEAD and then find the difference in days between the two
using the technique described in Recipe 8.2.

The ability to access rows around your current row without additional joins provides
for more readable and efficient code. When working with window functions, keep in
mind that they are evaluated after the WHERE clause, hence the need for an inline
view in the solution. If you were to move the filter on DEPTNO into the inline view,
the results would change (only the HIREDATEs from DEPTNO 10 would be consid‐
ered). One important note to mention about Oracle’s LEAD and LAG functions is
their behavior in the presence of duplicates. In the preface we mention that these rec‐
ipes are not coded “defensively” because there are too many conditions that one can’t
possibly foresee that can break code. Or, even if one can foresee every problem, some‐
times the resulting SQL becomes unreadable. So in most cases, the goal of a solution
is to introduce a technique: one that you can use in your production system, but that
must be tested and many times tweaked to work for your particular data. In this case,
though, there is a situation that we will discuss simply because the workaround may
not be all that obvious, particularly for those coming from non-Oracle systems. In
this example there are no duplicate HIREDATEs in table EMP, but it is certainly pos‐
sible (and probably likely) that there are duplicate date values in your tables. Con‐
sider the employees in DEPTNO 10 and their HIREDATEs:

select ename, hiredate
 from emp
 where deptno=10
 order by 2

ENAME HIREDATE
------ -----------
CLARK 09-JUN-2006
KING 17-NOV-2006
MILLER 23-JAN-2007

8.7 Determining the Date Difference Between the Current Record and the Next Record | 233

For the sake of this example, let’s insert four duplicates such that there are five
employees (including KING) hired on November 17:

insert into emp (empno,ename,deptno,hiredate)
values (1,'ant',10,to_date('17-NOV-2006'))

insert into emp (empno,ename,deptno,hiredate)
values (2,'joe',10,to_date('17-NOV-2006'))

insert into emp (empno,ename,deptno,hiredate)
values (3,'jim',10,to_date('17-NOV-2006'))

insert into emp (empno,ename,deptno,hiredate)
values (4,'choi',10,to_date('17-NOV-2006'))

select ename, hiredate
 from emp
 where deptno=10
 order by 2

ENAME HIREDATE
------ -----------
CLARK 09-JUN-2006
ant 17-NOV-2006
joe 17-NOV-2006
KING 17-NOV-2006
jim 17-NOV-2006
choi 17-NOV-2007
MILLER 23-JAN-2007

Now there are multiple employees in DEPTNO 10 hired on the same day. If you try
to use the proposed solution (moving the filter into the inline view so you only are
concerned with employees in DEPTNO 10 and their HIREDATEs) on this result set,
you get the following output:

select ename, hiredate, next_hd,
 next_hd - hiredate diff
 from (
select deptno, ename, hiredate,
 lead(hiredate)over(order by hiredate) next_hd
 from emp
 where deptno=10
)

ENAME HIREDATE NEXT_HD DIFF
------ ----------- ----------- ----------
CLARK 09-JUN-2006 17-NOV-2006 161
ant 17-NOV-2006 17-NOV-2006 0
joe 17-NOV-2006 17-NOV-2006 0
KING 17-NOV-2006 17-NOV-2006 0
jim 17-NOV-2006 17-NOV-2006 0

234 | Chapter 8: Date Arithmetic

choi 17-NOV-2006 23-JAN-2007 67
MILLER 23-JAN-2007 (null) (null)

Looking at the values of DIFF for four of the five employees hired on the same day,
you can see that the value is zero. This is not correct. All employees hired on the same
day should have their dates evaluated against the HIREDATE of the next date on
which an employee was hired (i.e., all employees hired on November 17 should be
evaluated against MILLER’s HIREDATE). The problem here is that the LEAD func‐
tion orders the rows by HIREDATE but does not skip duplicates. So, for example,
when employee ANT’s HIREDATE is evaluated against employee JOE’s HIREDATE,
the difference is zero, hence a DIFF value of zero for ANT. Fortunately, Oracle has
provided an easy workaround for situations like this one. When invoking the LEAD
function, you can pass an argument to LEAD to specify exactly where the future row
is (i.e., is it the next row, 10 rows later, etc.). So, looking at employee ANT, instead of
looking ahead one row, you need to look ahead five rows (you want to jump over all
the other duplicates), because that’s where MILLER is. If you look at employee JOE,
he is four rows from MILLER, JIM is three rows from MILLER, KING is two rows
from MILLER, and pretty boy CHOI is one row from MILLER. To get the correct
answer, simply pass the distance from each employee to MILLER as an argument to
LEAD. The solution is shown here:

select ename, hiredate, next_hd,
 next_hd - hiredate diff
 from (
select deptno, ename, hiredate,
 lead(hiredate,cnt-rn+1)over(order by hiredate) next_hd
 from (
select deptno,ename,hiredate,
 count(*)over(partition by hiredate) cnt,
 row_number()over(partition by hiredate order by empno) rn
 from emp
 where deptno=10
)
)

ENAME HIREDATE NEXT_HD DIFF
------ ----------- ----------- ----------
CLARK 09-JUN-2006 17-NOV-2006 161
ant 17-NOV-2006 23-JAN-2007 67
joe 17-NOV-2006 23-JAN-2007 67
jim 17-NOV-2006 23-JAN-2007 67
choi 17-NOV-2006 23-JAN-2007 67
KING 17-NOV-2006 23-JAN-2007 67
MILLER 23-JAN-2007 (null) (null)

Now the results are correct. All the employees hired on the same day have their HIR‐
EDATEs evaluated against the next HIREDATE, not a HIREDATE that matches their
own. If the workaround isn’t immediately obvious, simply break down the query.

8.7 Determining the Date Difference Between the Current Record and the Next Record | 235

Start with the inline view:

select deptno,ename,hiredate,
 count(*)over(partition by hiredate) cnt,
 row_number()over(partition by hiredate order by empno) rn
 from emp
 where deptno=10

DEPTNO ENAME HIREDATE CNT RN
------ ------ ----------- ---------- ----------
 10 CLARK 09-JUN-2006 1 1
 10 ant 17-NOV-2006 5 1
 10 joe 17-NOV-2006 5 2
 10 jim 17-NOV-2006 5 3
 10 choi 17-NOV-2006 5 4
 10 KING 17-NOV-2006 5 5
 10 MILLER 23-JAN-2007 1 1

The window function COUNT OVER counts the number of times each HIREDATE
occurs and returns this value to each row. For the duplicate HIREDATEs, a value of 5
is returned for each row with that HIREDATE. The window function ROW_NUM‐
BER OVER ranks each employee by EMPNO. The ranking is partitioned by HIRE‐
DATE, so unless there are duplicate HIREDATEs, each employee will have a rank of
1. At this point, all the duplicates have been counted and ranked, and the ranking can
serve as the distance to the next HIREDATE (MILLER’s HIREDATE). You can see
this by subtracting RN from CNT and adding 1 for each row when calling LEAD:

select deptno, ename, hiredate,
 cnt-rn+1 distance_to_miller,
 lead(hiredate,cnt-rn+1)over(order by hiredate) next_hd
 from (
select deptno,ename,hiredate,
 count(*)over(partition by hiredate) cnt,
 row_number()over(partition by hiredate order by empno) rn
 from emp
 where deptno=10
)

DEPTNO ENAME HIREDATE DISTANCE_TO_MILLER NEXT_HD
------ ------ ----------- ------------------ -----------
 10 CLARK 09-JUN-2006 1 17-NOV-2006
 10 ant 17-NOV-2006 5 23-JAN-2007
 10 joe 17-NOV-2006 4 23-JAN-2007
 10 jim 17-NOV-2006 3 23-JAN-2007
 10 choi 17-NOV-2006 2 23-JAN-2007
 10 KING 17-NOV-2006 1 23-JAN-2007
 10 MILLER 23-JAN-2007 1 (null)

As you can see, by passing the appropriate distance to jump ahead to, the LEAD func‐
tion performs the subtraction on the correct dates.

236 | Chapter 8: Date Arithmetic

8.8 Summing Up
Dates are a common data type, but have their own quirks, as they have more struc‐
ture than simple number data types. In relative terms, there is less standardization
between vendors than in many other areas, but every implementation has a core
group of functions that perform the same tasks even where the syntax is slightly dif‐
ferent. Mastering this core group will ensure your success with dates.

8.8 Summing Up | 237

CHAPTER 9

Date Manipulation

This chapter introduces recipes for searching and modifying dates. Queries involving
dates are very common. Thus, you need to know how to think when working with
dates, and you need to have a good understanding of the functions that your RDBMS
platform provides for manipulating them. The recipes in this chapter form an impor‐
tant foundation for future work as you move on to more complex queries involving
not only dates, but times, too.

Before getting into the recipes, we want to reinforce the concept (mentioned in the
preface) of using these solutions as guidelines to solving your specific problems. Try
to think “big picture.” For example, if a recipe solves a problem for the current
month, keep in mind that you may be able to use the recipe for any month (with
minor modifications), not just the month used in the recipe. Again, these recipes are
guidelines, the absolute final option. There’s no possible way a book can contain an
answer for all your problems, but if you understand what is presented here, modify‐
ing these solutions to fit your needs is trivial. Also consider alternative versions of
these solutions. For instance, if the solution uses one particular function provided by
your RDBMS, it is worth the time and effort to find out if there is an alternative—
maybe one that is more or less efficient than what is presented here. Knowing your
options will make you a better SQL programmer.

The recipes presented in this chapter use simple date data types. If
you are using more complex date data types, you will need to adjust
the solutions accordingly.

239

9.1 Determining Whether a Year Is a Leap Year
Problem
You want to determine whether the current year is a leap year.

Solution
If you’ve worked on SQL for some time, there’s no doubt that you’ve come across sev‐
eral techniques for solving this problem. Just about all the solutions we’ve encoun‐
tered work well, but the one presented in this recipe is probably the simplest. This
solution simply checks the last day of February; if it is the 29th, then the current year
is a leap year.

DB2
Use the recursive WITH clause to return each day in February. Use the aggregate
function MAX to determine the last day in February:

 1 with x (dy,mth)
 2 as (
 3 select dy, month(dy)
 4 from (
 5 select (current_date -
 6 dayofyear(current_date) days +1 days)
 7 +1 months as dy
 8 from t1
 9) tmp1
10 union all
11 select dy+1 days, mth
12 from x
13 where month(dy+1 day) = mth
14)
15 select max(day(dy))
16 from x

Oracle
Use the function LAST_DAY to find the last day in February:

1 select to_char(
2 last_day(add_months(trunc(sysdate,'y'),1)),
3 'DD')
4 from t1

240 | Chapter 9: Date Manipulation

PostgreSQL
Use the function GENERATE_SERIES to return each day in February, and then use
the aggregate function MAX to find the last day in February:

 1 select max(to_char(tmp2.dy+x.id,'DD')) as dy
 2 from (
 3 select dy, to_char(dy,'MM') as mth
 4 from (
 5 select cast(cast(
 6 date_trunc('year',current_date) as date)
 7 + interval '1 month' as date) as dy
 8 from t1
 9) tmp1
10) tmp2, generate_series (0,29) x(id)
11 where to_char(tmp2.dy+x.id,'MM') = tmp2.mth

MySQL
Use the function LAST_DAY to find the last day in February:

1 select day(
2 last_day(
3 date_add(
4 date_add(
5 date_add(current_date,
6 interval -dayofyear(current_date) day),
7 interval 1 day),
8 interval 1 month))) dy
9 from t1

SQL Server
Use the recursive WITH clause to return each day in February. Use the aggregate
function MAX to determine the last day in February:

 select coalesce
 (day
 (cast(concat
 (year(getdate()),'-02-29')
 as date))
 ,28);

Discussion

DB2
The inline view TMP1 in the recursive view X returns the first day in February by:

1. Starting with the current date

9.1 Determining Whether a Year Is a Leap Year | 241

2. Using DAYOFYEAR to determine the number of days into the current year that
the current date represents

3. Subtracting that number of days from the current date to get December 31 of the
prior year and then adding one to get to January 1 of the current year

4. Adding one month to get to February 1

The result of all this math is shown here:

 select (current_date
 dayofyear(current_date) days +1 days) +1 months as dy
 from t1

DY

01-FEB-2005

The next step is to return the month of the date returned by inline view TMP1 by
using the MONTH function:

select dy, month(dy) as mth
 from (
select (current_date
 dayofyear(current_date) days +1 days) +1 months as dy
 from t1
) tmp1

DY MTH
----------- ---
01-FEB-2005 2

The results presented thus far provide the start point for the recursive operation that
generates each day in February. To return each day in February, repeatedly add one
day to DY until you are no longer in the month of February. A portion of the results
of the WITH operation is shown here:

 with x (dy,mth)
 as (
select dy, month(dy)
 from (
select (current_date -
 dayofyear(current_date) days +1 days) +1 months as dy
 from t1
) tmp1
 union all
 select dy+1 days, mth
 from x
 where month(dy+1 day) = mth
)
 select dy,mth
 from x

242 | Chapter 9: Date Manipulation

DY MTH
----------- ---
01-FEB-2005 2
…
10-FEB-2005 2
…
28-FEB-2005 2

The final step is to use the MAX function on the DY column to return the last day in
February; if it is the 29th, you are in a leap year.

Oracle
The first step is to find the beginning of the year using the TRUNC function:

select trunc(sysdate,'y')
 from t1

DY

01-JAN-2005

Because the first day of the year is January 1st, the next step is to add one month to
get to February 1st:

select add_months(trunc(sysdate,'y'),1) dy
 from t1

DY

01-FEB-2005

The next step is to use the LAST_DAY function to find the last day in February:

select last_day(add_months(trunc(sysdate,'y'),1)) dy
 from t1

DY

28-FEB-2005

The final step (which is optional) is to use TO_CHAR to return either 28 or 29.

PostgreSQL
The first step is to examine the results returned by inline view TMP1. Use the
DATE_TRUNC function to find the beginning of the current year and cast that result
as a DATE:

select cast(date_trunc('year',current_date) as date) as dy
 from t1

9.1 Determining Whether a Year Is a Leap Year | 243

DY

01-JAN-2005

The next step is to add one month to the first day of the current year to get the first
day in February, casting the result as a date:

select cast(cast(
 date_trunc('year',current_date) as date)
 + interval '1 month' as date) as dy
 from t1

DY

01-FEB-2005

Next, return DY from inline view TMP1 along with the numeric month of DY.
Return the numeric month by using the TO_CHAR function:

select dy, to_char(dy,'MM') as mth
 from (
 select cast(cast(
 date_trunc('year',current_date) as date)
 + interval '1 month' as date) as dy
 from t1
) tmp1

DY MTH
----------- ---
01-FEB-2005 2

The results shown thus far comprise the result set of inline view TMP2. Your next
step is to use the extremely useful function GENERATE_SERIES to return 29 rows
(values 1 through 29). Every row returned by GENERATE_SERIES (aliased X) is
added to DY from inline view TMP2. Partial results are shown here:

select tmp2.dy+x.id as dy, tmp2.mth
 from (
select dy, to_char(dy,'MM') as mth
 from (
select cast(cast(
 date_trunc('year',current_date) as date)
 + interval '1 month' as date) as dy
 from t1
) tmp1
) tmp2, generate_series (0,29) x(id)
 where to_char(tmp2.dy+x.id,'MM') = tmp2.mth

DY MTH
----------- ---
01-FEB-2005 02
…
10-FEB-2005 02

244 | Chapter 9: Date Manipulation

…
28-FEB-2005 02

The final step is to use the MAX function to return the last day in February. The
function TO_CHAR is applied to that value and will return either 28 or 29.

MySQL
The first step is to find the first day of the current year by subtracting from the cur‐
rent date the number of days it is into the year and then adding one day. Do all of this
with the DATE_ADD function:

select date_add(
 date_add(current_date,
 interval -dayofyear(current_date) day),
 interval 1 day) dy
 from t1

DY

01-JAN-2005

Then add one month again using the DATE_ADD function:

select date_add(
 date_add(
 date_add(current_date,
 interval -dayofyear(current_date) day),
 interval 1 day),
 interval 1 month) dy
 from t1

DY

01-FEB-2005

Now that you’ve made it to February, use the LAST_DAY function to find the last day
of the month:

select last_day(
 date_add(
 date_add(
 date_add(current_date,
 interval -dayofyear(current_date) day),
 interval 1 day),
 interval 1 month)) dy
 from t1

DY

28-FEB-2005

9.1 Determining Whether a Year Is a Leap Year | 245

The final step (which is optional) is to use the DAY function to return either a 28 or
29.

SQL Server
We can create a new date in most RDMSs by creating a string in a recognized date
format and using CAST to change format. We can therefore use the current year by
retrieving the year from the current date. In SQL Server, this is done by applying
YEAR to GET_DATE:

select YEAR(GETDATE());

This will return the year as an integer. We can then create 29th of February by using
CONCAT and CAST:

select cast(concat
 (year(getdate()),'-02-29');

However, this won’t be a real date if the current year isn’t a leap year. For example,
there is no date 2019-02-29. Hence, if we try to use an operator like DAY to find any
of its parts, it will return NULL. Therefore, use COALESCE and DAY to determine
whether there is a 29th day in the month.

9.2 Determining the Number of Days in a Year
Problem
You want to count the number of days in the current year.

Solution
The number of days in the current year is the difference between the first day of the
next year and the first day of the current year (in days). For each solution the steps
are:

1. Find the first day of the current year.
2. Add one year to that date (to get the first day of the next year).
3. Subtract the current year from the result of Step 2.

The solutions differ only in the built-in functions that you use to perform these steps.

DB2
Use the function DAYOFYEAR to help find the first day of the current year, and use
DAYS to find the number of days in the current year:

246 | Chapter 9: Date Manipulation

1 select days((curr_year + 1 year)) - days(curr_year)
2 from (
3 select (current_date -
4 dayofyear(current_date) day +
5 1 day) curr_year
6 from t1
7) x

Oracle
Use the function TRUNC to find the beginning of the current year, and use ADD_
MONTHS to then find the beginning of next year:

1 selectadd_months(trunc(sysdate,'y'),12) - trunc(sysdate,'y')
2 from dual

PostgreSQL
Use the function DATE_TRUNC to find the beginning of the current year. Then use
interval arithmetic to determine the beginning of next year:

1 select cast((curr_year + interval '1 year') as date) - curr_year
2 from (
3 select cast(date_trunc('year',current_date) as date) as curr_year
4 from t1
5) x

MySQL
Use ADDDATE to help find the beginning of the current year. Use DATEDIFF and
interval arithmetic to determine the number of days in the year:

1 select datediff((curr_year + interval 1 year),curr_year)
2 from (
3 select adddate(current_date,-dayofyear(current_date)+1) curr_year
4 from t1
5) x

SQL Server
Use the function DATEADD to find the first day of the current year. Use DATEDIFF
to return the number of days in the current year:

1 select datediff(d,curr_year,dateadd(yy,1,curr_year))
2 from (
3 select dateadd(d,-datepart(dy,getdate())+1,getdate()) curr_year
4 from t1
5) x

9.2 Determining the Number of Days in a Year | 247

Discussion

DB2
The first step is to find the first day of the current year. Use DAYOFYEAR to deter‐
mine how many days you are into the current year. Subtract that value from the cur‐
rent date to get the last day of last year, and then add 1:

select (current_date
 dayofyear(current_date) day +
 1 day) curr_year
 from t1

CURR_YEAR

01-JAN-2005

Now that you have the first day of the current year, just add one year to it; this gives
you the first day of next year. Then subtract the beginning of the current year from
the beginning of the next year.

Oracle
The first step is to find the first day of the current year, which you can easily do by
invoking the built-in TRUNC function and passing Y as the second argument
(thereby truncating the date to the beginning of the year):

select select trunc(sysdate,'y') curr_year
 from dual

CURR_YEAR

01-JAN-2005

Then add one year to arrive at the first day of the next year. Finally, subtract the two
dates to find the number of days in the current year.

PostgreSQL
Begin by finding the first day of the current year. To do that, invoke the DATE_
TRUNC function as follows:

select cast(date_trunc('year',current_date) as date) as curr_year
 from t1

CURR_YEAR

01-JAN-2005

248 | Chapter 9: Date Manipulation

You can then easily add a year to compute the first day of next year. Then all you need
to do is to subtract the two dates. Be sure to subtract the earlier date from the later
date. The result will be the number of days in the current year.

MySQL
Your first step is to find the first day of the current year. Use DAYOFYEAR to find
how many days you are into the current year. Subtract that value from the current
date, and add one:

select adddate(current_date,-dayofyear(current_date)+1) curr_year
 from t1

CURR_YEAR

01-JAN-2005

Now that you have the first day of the current year, your next step is to add one year
to it to get the first day of next year. Then subtract the beginning of the current year
from the beginning of the next year. The result is the number of days in the current
year.

SQL Server
Your first step is to find the first day of the current year. Use DATEADD and DATE‐
PART to subtract from the current date the number of days into the year the current
date is, and add 1:

select dateadd(d,-datepart(dy,getdate())+1,getdate()) curr_year
 from t1

CURR_YEAR

01-JAN-2005

Now that you have the first day of the current year, your next step is to add one year
to it to get the first day of the next year. Then subtract the beginning of the current
year from the beginning of the next year. The result is the number of days in the cur‐
rent year.

9.3 Extracting Units of Time from a Date
Problem
You want to break the current date down into six parts: day, month, year, second,
minute, and hour. You want the results to be returned as numbers.

9.3 Extracting Units of Time from a Date | 249

Solution
Use of the current date is arbitrary. Feel free to use this recipe with other dates. Most
vendors have now adopted the ANSI standard function for extracting parts of dates,
EXTRACT, although SQL Server is an exception. They also retain their own legacy
methods.

DB2
DB2 implements a set of built-in functions that make it easy for you to extract por‐
tions of a date. The function names HOUR, MINUTE, SECOND, DAY, MONTH,
and YEAR conveniently correspond to the units of time you can return: if you want
the day, use DAY; hour, use HOUR; etc. For example:

 1 select hour(current_timestamp) hr,
 2 minute(current_timestamp) min,
 3 second(current_timestamp) sec,
 4 day(current_timestamp) dy,
 5 month(current_timestamp) mth,
 6 year(current_timestamp) yr
 7 from t1

select
 extract(hour from current_timestamp)
 , extract(minute from current_timestamp
 , extract(second from current_timestamp)
 , extract(day from current_timestamp)
 , extract(month from current_timestamp)
 , extract(year from current_timestamp)

 HR MIN SEC DY MTH YR
 ---- ----- ----- ----- ----- -----
 20 28 36 15 6 2005

Oracle
Use functions TO_CHAR and TO_NUMBER to return specific units of time from a
date:

1 select to_number(to_char(sysdate,'hh24')) hour,
2 to_number(to_char(sysdate,'mi')) min,
3 to_number(to_char(sysdate,'ss')) sec,
4 to_number(to_char(sysdate,'dd')) day,
5 to_number(to_char(sysdate,'mm')) mth,
6 to_number(to_char(sysdate,'yyyy')) year
7 from dual

 HOUR MIN SEC DAY MTH YEAR
 ---- ----- ----- ----- ----- -----
 20 28 36 15 6 2005

250 | Chapter 9: Date Manipulation

PostgreSQL
Use functions TO_CHAR and TO_NUMBER to return specific units of time from a
date:

1 select to_number(to_char(current_timestamp,'hh24'),'99') as hr,
2 to_number(to_char(current_timestamp,'mi'),'99') as min,
3 to_number(to_char(current_timestamp,'ss'),'99') as sec,
4 to_number(to_char(current_timestamp,'dd'),'99') as day,
5 to_number(to_char(current_timestamp,'mm'),'99') as mth,
6 to_number(to_char(current_timestamp,'yyyy'),'9999') as yr
7 from t1

 HR MIN SEC DAY MTH YR
 ---- ----- ----- ----- ----- -----
 20 28 36 15 6 2005

MySQL
Use the DATE_FORMAT function to return specific units of time from a date:

1 select date_format(current_timestamp,'%k') hr,
2 date_format(current_timestamp,'%i') min,
3 date_format(current_timestamp,'%s') sec,
4 date_format(current_timestamp,'%d') dy,
5 date_format(current_timestamp,'%m') mon,
6 date_format(current_timestamp,'%Y') yr
7 from t1

 HR MIN SEC DAY MTH YR
---- ----- ----- ----- ----- -----
 20 28 36 15 6 2005

SQL Server
Use the function DATEPART to return specific units of time from a date:

1 select datepart(hour, getdate()) hr,
2 datepart(minute,getdate()) min,
3 datepart(second,getdate()) sec,
4 datepart(day, getdate()) dy,
5 datepart(month, getdate()) mon,
6 datepart(year, getdate()) yr
7 from t1

 HR MIN SEC DAY MTH YR
---- ----- ----- ----- ----- -----
 20 28 36 15 6 2005

9.3 Extracting Units of Time from a Date | 251

Discussion
There’s nothing fancy in these solutions; just take advantage of what you’re already
paying for. Take the time to learn the date functions available to you. This recipe only
scratches the surface of the functions presented in each solution. You’ll find that each
of the functions takes many more arguments and can return more information than
what this recipe provides you.

9.4 Determining the First and Last Days of a Month
Problem
You want to determine the first and last days for the current month.

Solution
The solutions presented here are for finding first and last days for the current month.
Using the current month is arbitrary. With a bit of adjustment, you can make the sol‐
utions work for any month.

DB2
Use the DAY function to return the number of days into the current month the cur‐
rent date represents. Subtract this value from the current date, and then add one to
get the first of the month. To get the last day of the month, add one month to the
current date, and then subtract from it the value returned by the DAY function as
applied to the current date:

1 select (date(current_date) - day(date(current_date)) day + 1 day) firstday,
2 (date(current_date)+1 month
3 - day(date(current_date)+1 month) day) lastday
4 from t1

Oracle
Use the function TRUNC to find the first of the month, and use the function
LAST_DAY to find the last day of the month:

1 select trunc(sysdate,'mm') firstday,
2 last_day(sysdate) lastday
3 from dual

Using TRUNC as described here will result in the loss of any time-
of-day component, whereas LAST_DAY will preserve the time of
day.

252 | Chapter 9: Date Manipulation

PostgreSQL
Use the DATE_TRUNC function to truncate the current date to the first of the cur‐
rent month. Once you have the first day of the month, add one month and subtract
one day to find the end of the current month:

 1 select firstday,
 2 cast(firstday + interval '1 month'
 3 - interval '1 day' as date) as lastday
 4 from (
 5 select cast(date_trunc('month',current_date) as date) as firstday
 6 from t1
 7) x

MySQL
Use the DATE_ADD and DAY functions to find the number of days into the month
the current date is. Then subtract that value from the current date and add one to find
the first of the month. To find the last day of the current month, use the LAST_DAY
function:

1 select date_add(current_date,
2 interval -day(current_date)+1 day) firstday,
3 last_day(current_date) lastday
4 from t1

SQL Server
Use the DATEADD and DAY functions to find the number of days into the month
represented by the current date. Then subtract that value from the current date and
add one to find the first of the month. To get the last day of the month, add one
month to the current date, and then subtract from that result the value returned by
the DAY function applied to the current date, again using the functions DAY and
DATEADD:

1 select dateadd(day,-day(getdate())+1,getdate()) firstday,
2 dateadd(day,
3 -day(dateadd(month,1,getdate())),
4 dateadd(month,1,getdate())) lastday
5 from t1

Discussion

DB2
To find the first day of the month, simply find the numeric value of the current day of
the month, and then subtract this from the current date. For example, if the date is
March 14th, the numeric day value is 14. Subtracting 14 days from March 14th gives
you the last day of the month in February. From there, simply add one day to get to

9.4 Determining the First and Last Days of a Month | 253

the first of the current month. The technique to get the last day of the month is simi‐
lar to that of the first: subtract the numeric day of the month from the current date to
get the last day of the prior month. Since we want the last day of the current month
(not the last day of the prior month), we need to add one month to the current date.

Oracle
To find the first day of the current month, use the TRUNC function with “mm” as the
second argument to “truncate” the current date down to the first of the month. To
find the last day of the current month, simply use the LAST_DAY function.

PostgreSQL
To find the first day of the current month, use the DATE_TRUNC function with
“month” as the second argument to “truncate” the current date down to the first of
the month. To find the last day of the current month, add one month to the first day
of the month, and then subtract one day.

MySQL
To find the first day of the month, use the DAY function. The DAY function returns
the day of the month for the date passed. If you subtract the value returned by
DAY(CURRENT_DATE) from the current date, you get the last day of the prior
month; add one day to get the first day of the current month. To find the last day of
the current month, simply use the LAST_DAY function.

SQL Server
To find the first day of the month, use the DAY function. The DAY function conven‐
iently returns the day of the month for the date passed. If you subtract the value
returned by DAY(GETDATE()) from the current date, you get the last day of the
prior month; add one day to get the first day of the current month. To find the last
day of the current month, use the DATEADD function. Add one month to the cur‐
rent date, then subtract from it the value returned by DAY(GETDATE()) to get the
last day of the current month. Add one month to the current date, and then subtract
from it the value returned by DAY(DATEADD(MONTH,1,GETDATE())) to get the
last day of the current month.

254 | Chapter 9: Date Manipulation

9.5 Determining All Dates for a Particular Weekday
Throughout a Year
Problem
You want to find all the dates in a year that correspond to a given day of the week. For
example, you may want to generate a list of Fridays for the current year.

Solution
Regardless of vendor, the key to the solution is to return each day for the current year
and keep only those dates corresponding to the day of the week that you care about.
The solution examples retain all the Fridays.

DB2
Use the recursive WITH clause to return each day in the current year. Then use the
function DAYNAME to keep only Fridays:

 1 with x (dy,yr)
 2 as (
 3 select dy, year(dy) yr
 4 from (
 5 select (current_date -
 6 dayofyear(current_date) days +1 days) as dy
 7 from t1
 8) tmp1
 9 union all
 10 select dy+1 days, yr
 11 from x
 12 where year(dy +1 day) = yr
 13)
 14 select dy
 15 from x
 16 where dayname(dy) = 'Friday'

Oracle
Use the recursive CONNECT BY clause to return each day in the current year. Then
use the function TO_CHAR to keep only Fridays:

1 with x
2 as (
3 select trunc(sysdate,'y')+level-1 dy
4 from t1
5 connect by level <=
6 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')
7)
8 select *

9.5 Determining All Dates for a Particular Weekday Throughout a Year | 255

9 from x
10 where to_char(dy, 'dy') = 'fri'

PostgreSQL
Use a recursive CTE to generate every day of the year, and filter out days that aren’t
Fridays. This version makes use of the ANSI standard EXTRACT, so it will run on a
wide variety of RDBMs:

1 with recursive cal (dy)
2 as (
3 select current_date
4 -(cast
5 (extract(doy from current_date) as integer)
6 -1)
7 union all
8 select dy+1
9 from cal
10 where extract(year from dy)=extract(year from (dy+1))
11)
12
13 select dy,extract(dow from dy) from cal
14 where cast(extract(dow from dy) as integer) = 6

MySQL
Use a recursive CTE to find all the days in the year. Then filter all days but Fridays:

1 with recursive cal (dy,yr)
2 as
3 (
4 select dy, extract(year from dy) as yr
5 from
6 (select adddate
7 (adddate(current_date, interval - dayofyear(current_date)
8 day), interval 1 day) as dy) as tmp1
9 union all
10 select date_add(dy, interval 1 day), yr
11 from cal
12 where extract(year from date_add(dy, interval 1 day)) = yr
13)
14 select dy from cal
15 where dayofweek(dy) = 6

SQL Server
Use the recursive WITH clause to return each day in the current year. Then use the
function DAYNAME to keep only Fridays:

 1 with x (dy,yr)
 2 as (
 3 select dy, year(dy) yr

256 | Chapter 9: Date Manipulation

 4 from (
 5 select getdate()-datepart(dy,getdate())+1 dy
 6 from t1
 7) tmp1
 8 union all
 9 select dateadd(dd,1,dy), yr
10 from x
11 where year(dateadd(dd,1,dy)) = yr
12)
13 select x.dy
14 from x
15 where datename(dw,x.dy) = 'Friday'
16 option (maxrecursion 400)

Discussion

DB2
To find all the Fridays in the current year, you must be able to return every day in the
current year. The first step is to find the first day of the year by using the DAYOF‐
YEAR function. Subtract the value returned by DAYOFYEAR(CURRENT_DATE)
from the current date to get December 31 of the prior year, and then add one to get
the first day of the current year:

select (current_date
 dayofyear(current_date) days +1 days) as dy
 from t1

DY

01-JAN-2005

Now that you have the first day of the year, use the WITH clause to repeatedly add
one day to the first day of the year until you are no longer in the current year. The
result set will be every day in the current year (a portion of the rows returned by the
recursive view X is shown here):

 with x (dy,yr)
 as (
select dy, year(dy) yr
 from (
select (current_date
 dayofyear(current_date) days +1 days) as dy
 from t1
) tmp1
union all
select dy+1 days, yr
 from x
 where year(dy +1 day) = yr
)
select dy

9.5 Determining All Dates for a Particular Weekday Throughout a Year | 257

 from x

DY

01-JAN-2020
…
15-FEB-2020
…
22-NOV-2020
…
31-DEC-2020

The final step is to use the DAYNAME function to keep only rows that are Fridays.

Oracle
To find all the Fridays in the current year, you must be able to return every day in the
current year. Begin by using the TRUNC function to find the first day of the year:

select trunc(sysdate,'y') dy
 from t1

 DY

 01-JAN-2020

Next, use the CONNECT BY clause to return every day in the current year (to under‐
stand how to use CONNECT BY to generate rows, see Recipe 10.5).

As an aside, this recipe uses the WITH clause, but you can also use
an inline view.

A portion of the result set returned by view X is shown here:

 with x
 as (
select trunc(sysdate,'y')+level-1 dy
from t1
 connect by level <=
 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')
)
select *
from x

DY

01-JAN-2020
…
15-FEB-2020

258 | Chapter 9: Date Manipulation

…
22-NOV-2020
…
31-DEC-2020

The final step is to use the TO_CHAR function to keep only Fridays.

PostgreSQL
To find the Fridays, first find all the days. You need to find the first day of the year,
and then use the recursive CTE to fill in the rest of the days. Remember PostgreSQL
is one of the packages that requires the use of the RECURSIVE keyword to identify a
recursive CTE.

The final step is to use the TO_CHAR function to keep only the Fridays.

MySQL
To find all the Fridays in the current year, you must be able to return every day in the
current year. The first step is to find the first day of the year. Subtract the value
returned by DAYOFYEAR(CURRENT_DATE) from the current date, and then add
one to get the first day of the current year:

select adddate(
 adddate(current_date,
 interval -dayofyear(current_date) day),
 interval 1 day) dy
 from t1

DY

01-JAN-2020

Once you’ve got the first day of the year, it’s simple to use a recursive CTE to add
every day of the year:

with cal (dy) as
(select current

union all
select dy+1

 DY

 01-JAN-2020
 …
 15-FEB-2020
 …
 22-NOV-2020
 …
 31-DEC-2020

9.5 Determining All Dates for a Particular Weekday Throughout a Year | 259

The final step is to use the DAYNAME function to keep only Fridays.

SQL Server
To find all the Fridays in the current year, you must be able to return every day in the
current year. The first step is to find the first day of the year by using the DATEPART
function. Subtract the value returned by DATEPART(DY,GETDATE()) from the cur‐
rent date, and then add one to get the first day of the current year:

select getdate()-datepart(dy,getdate())+1 dy
 from t1

DY

01-JAN-2005

Now that you have the first day of the year, use the WITH clause and the DATEADD
function to repeatedly add one day to the first day of the year until you are no longer
in the current year. The result set will be every day in the current year (a portion of
the rows returned by the recursive view X is shown here):

with x (dy,yr)
 as (
select dy, year(dy) yr
 from (
select getdate()-datepart(dy,getdate())+1 dy
 from t1
) tmp1
 union all
select dateadd(dd,1,dy), yr
 from x
 where year(dateadd(dd,1,dy)) = yr
)
select x.dy
 from x
option (maxrecursion 400)

DY

01-JAN-2020
…
15-FEB-2020
…
22-NOV-2020
…
31-DEC-2020

Finally, use the DATENAME function to keep only rows that are Fridays. For this sol‐
ution to work, you must set MAXRECURSION to at least 366 (the filter on the year
portion of the current year, in recursive view X, guarantees you will never generate
more than 366 rows).

260 | Chapter 9: Date Manipulation

9.6 Determining the Date of the First and Last
Occurrences of a Specific Weekday in a Month
Problem
You want to find, for example, the first and last Mondays of the current month.

Solution
The choice to use Monday and the current month is arbitrary; you can use the solu‐
tions presented in this recipe for any weekday and any month. Because each weekday
is 7 days apart from itself, once you have the first instance of a weekday, you can add
7 days to get the second and 14 days to get the third. Likewise, if you have the last
instance of a weekday in a month, you can subtract 7 days to get the third and sub‐
tract 14 days to get the second.

DB2
Use the recursive WITH clause to generate each day in the current month and use a
CASE expression to flag all Mondays. The first and last Mondays will be the earliest
and latest of the flagged dates:

 1 with x (dy,mth,is_monday)
 2 as (
 3 select dy,month(dy),
 4 case when dayname(dy)='Monday'
 5 then 1 else 0
 6 end
 7 from (
 8 select (current_date-day(current_date) day +1 day) dy
 9 from t1
10) tmp1
11 union all
12 select (dy +1 day), mth,
13 case when dayname(dy +1 day)='Monday'
14 then 1 else 0
15 end
16 from x
17 where month(dy +1 day) = mth
18)
19 select min(dy) first_monday, max(dy) last_monday
20 from x
21 where is_monday = 1

Oracle
Use the functions NEXT_DAY and LAST_DAY, together with a bit of clever date
arithmetic, to find the first and last Mondays of the current month:

9.6 Determining the Date of the First and Last Occurrences of a Specific Weekday in a Month | 261

select next_day(trunc(sysdate,'mm')-1,'MONDAY') first_monday,
 next_day(last_day(trunc(sysdate,'mm'))-7,'MONDAY') last_monday
 from dual

PostgreSQL
Use the function DATE_TRUNC to find the first day of the month. Once you have
the first day of the month, you can use simple arithmetic involving the numeric val‐
ues of weekdays (Sun–Sat is 1–7) to find the first and last Mondays of the current
month:

 1 select first_monday,
 2 case to_char(first_monday+28,'mm')
 3 when mth then first_monday+28
 4 else first_monday+21
 5 end as last_monday
 6 from (
 7 select case sign(cast(to_char(dy,'d') as integer)-2)
 8 when 0
 9 then dy
10 when -1
11 then dy+abs(cast(to_char(dy,'d') as integer)-2)
12 when 1
13 then (7-(cast(to_char(dy,'d') as integer)-2))+dy
14 end as first_monday,
15 mth
16 from (
17 select cast(date_trunc('month',current_date) as date) as dy,
18 to_char(current_date,'mm') as mth
19 from t1
20) x
21) y

MySQL
Use the ADDDATE function to find the first day of the month. Once you have the
first day of the month, you can use simple arithmetic on the numeric values of week‐
days (Sun–Sat is 1–7) to find the first and last Mondays of the current month:

 1 select first_monday,
 2 case month(adddate(first_monday,28))
 3 when mth then adddate(first_monday,28)
 4 else adddate(first_monday,21)
 5 end last_monday
 6 from (
 7 select case sign(dayofweek(dy)-2)
 8 when 0 then dy
 9 when -1 then adddate(dy,abs(dayofweek(dy)-2))
10 when 1 then adddate(dy,(7-(dayofweek(dy)-2)))
11 end first_monday,
12 mth
13 from (

262 | Chapter 9: Date Manipulation

14 select adddate(adddate(current_date,-day(current_date)),1) dy,
15 month(current_date) mth
16 from t1
17) x
18) y

SQL Server
Use the recursive WITH clause to generate each day in the current month, and then
use a CASE expression to flag all Mondays. The first and last Mondays will be the ear‐
liest and latest of the flagged dates:

 1 with x (dy,mth,is_monday)
 2 as (
 3 select dy,mth,
 4 case when datepart(dw,dy) = 2
 5 then 1 else 0
 6 end
 7 from (
 8 select dateadd(day,1,dateadd(day,-day(getdate()),getdate())) dy,
 9 month(getdate()) mth
10 from t1
11) tmp1
12 union all
13 select dateadd(day,1,dy),
14 mth,
15 case when datepart(dw,dateadd(day,1,dy)) = 2
16 then 1 else 0
17 end
18 from x
19 where month(dateadd(day,1,dy)) = mth
20)
21 select min(dy) first_monday,
22 max(dy) last_monday
23 from x
24 where is_monday = 1

Discussion

DB2 and SQL Server
DB2 and SQL Server use different functions to solve this problem, but the technique
is exactly the same. If you eyeball both solutions, you’ll see the only difference
between the two is the way dates are added. This discussion will cover both solutions,
using the DB2 solution’s code to show the results of intermediate steps.

9.6 Determining the Date of the First and Last Occurrences of a Specific Weekday in a Month | 263

If you do not have access to the recursive WITH clause in the ver‐
sion of SQL Server or DB2 that you are running, you can use the
PostgreSQL technique instead.

The first step in finding the first and last Mondays of the current month is to return
the first day of the month. Inline view TMP1 in recursive view X finds the first day of
the current month by first finding the current date, specifically, the day of the month
for the current date. The day of the month for the current date represents how many
days into the month you are (e.g., April 10th is the 10th day of the April). If you sub‐
tract this day of the month value from the current date, you end up at the last day of
the previous month (e.g., subtracting 10 from April 10th puts you at the last day of
March). After this subtraction, simply add one day to arrive at the first day of the cur‐
rent month:

select (current_date-day(current_date) day +1 day) dy
 from t1

DY

01-JUN-2005

Next, find the month for the current date using the MONTH function and a simple
CASE expression to determine whether the first day of the month is a Monday:

select dy, month(dy) mth,
 case when dayname(dy)='Monday'
 then 1 else 0
 end is_monday
 from (
select (current_date-day(current_date) day +1 day) dy
 from t1
) tmp1

DY MTH IS_MONDAY
----------- --- ----------
01-JUN-2005 6 0

Then use the recursive capabilities of the WITH clause to repeatedly add one day to
the first day of the month until you’re no longer in the current month. Along the way,
you will use a CASE expression to determine which days in the month are Mondays
(Mondays will be flagged with 1). A portion of the output from recursive view X is
shown here:

with x (dy,mth,is_monday)
 as (
 select dy,month(dy) mth,
 case when dayname(dy)='Monday'
 then 1 else 0

264 | Chapter 9: Date Manipulation

 end is_monday
 from (
 select (current_date-day(current_date) day +1 day) dy
 from t1
) tmp1
 union all
 select (dy +1 day), mth,
 case when dayname(dy +1 day)='Monday'
 then 1 else 0
 end
 from x
 where month(dy +1 day) = mth
)
 select *
 from x

DY MTH IS_MONDAY
----------- --- ----------
01-JUN-2005 6 0
02-JUN-2005 6 0
03-JUN-2005 6 0
04-JUN-2005 6 0
05-JUN-2005 6 0
06-JUN-2005 6 1
07-JUN-2005 6 0
08-JUN-2005 6 0
…

Only Mondays will have a value of 1 for IS_MONDAY, so the final step is to use the
aggregate functions MIN and MAX on rows where IS_MONDAY is 1 to find the first
and last Mondays of the month.

Oracle
The function NEXT_DAY makes this problem easy to solve. To find the first Monday
of the current month, first return the last day of the prior month via some date arith‐
metic involving the TRUNC function:

select trunc(sysdate,'mm')-1 dy
 from dual

DY

31-MAY-2005

Then use the NEXT_DAY function to find the first Monday that comes after the last
day of the previous month (i.e., the first Monday of the current month):

select next_day(trunc(sysdate,'mm')-1,'MONDAY') first_monday
 from dual

9.6 Determining the Date of the First and Last Occurrences of a Specific Weekday in a Month | 265

FIRST_MONDAY

06-JUN-2005

To find the last Monday of the current month, start by returning the first day of the
current month by using the TRUNC function:

select trunc(sysdate,'mm') dy
 from dual

DY

01-JUN-2005

The next step is to find the last week (the last seven days) of the month. Use the
LAST_DAY function to find the last day of the month, and then subtract seven days:

select last_day(trunc(sysdate,'mm'))-7 dy
 from dual

DY

23-JUN-2005

If it isn’t immediately obvious, you go back seven days from the last day of the month
to ensure that you will have at least one of any weekday left in the month. The last
step is to use the function NEXT_DAY to find the next (and last) Monday of the
month:

select next_day(last_day(trunc(sysdate,'mm'))-7,'MONDAY') last_monday
 from dual

LAST_MONDAY

27-JUN-2005

PostgreSQL and MySQL
PostgreSQL and MySQL also share the same solution approach. The difference is in
the functions that you invoke. Despite their lengths, the respective queries are
extremely simple; little overhead is involved in finding the first and last Mondays of
the current month.

The first step is to find the first day of the current month. The next step is to find the
first Monday of the month. Since there is no function to find the next date for a given
weekday, you need to use a little arithmetic. The CASE expression beginning on line
7 (of either solution) evaluates the difference between the numeric value for the
weekday of the first day of the month and the numeric value corresponding to Mon‐
day. Given that the function TO_CHAR (PostgreSQL), when called with the D or d
format, and the function DAYOFWEEK (MySQL) will return a numeric value from 1
to 7 representing days Sunday to Saturday, Monday is always represented by 2. The

266 | Chapter 9: Date Manipulation

first test evaluated by CASE is the SIGN of the numeric value of the first day of the
month (whatever it may be) minus the numeric value of Monday (2). If the result is
zero, then the first day of the month falls on a Monday, and that is the first Monday of
the month. If the result is –1, then the first day of the month falls on a Sunday, and to
find the first Monday of the month, simply add the difference in days between 2 and 1
(numeric values of Monday and Sunday, respectively) to the first day of the month.

If you are having trouble understanding how this works, forget the
weekday names and just do the math. For example, say you happen
to be starting on a Tuesday and you are looking for the next Friday.
When using TO_CHAR with the d format, or DAYOFWEEK, Fri‐
day is 6 and Tuesday is 3. To get to 6 from 3, simply take the differ‐
ence (6–3 = 3) and add it to the smaller value ((6–3) + 3 = 6). So,
regardless of the actual dates, if the numeric value of the day you
are starting from is less than the numeric value of the day you are
searching for, adding the difference between the two dates to the
date you are starting from will get you to the date you are searching
for.

If the result from SIGN is 1, then the first day of the month falls between Tuesday and
Saturday (inclusive). When the first day of the month has a numeric value greater
than 2 (Monday), subtract from 7 the difference between the numeric value of the
first day of the month and the numeric value of Monday (2), and then add that value
to the first day of the month. You will have arrived at the day of the week that you are
after, in this case Monday.

Again, if you are having trouble understanding how this works,
forget the weekday names and just do the math. For example, sup‐
pose you want to find the next Tuesday and you are starting from
Friday. Tuesday (3) is less than Friday (6). To get to 3 from 6, sub‐
tract the difference between the two values from 7 (7–(|3–6|) = 4)
and add the result (4) to the start day Friday. (The vertical bars in |
3–6| generate the absolute value of that difference.) Here, you’re
not adding 4 to 6 (which will give you 10); you are adding four days
to Friday, which will give you the next Tuesday.

The idea behind the CASE expression is to create a sort of a “next day” function for
PostgreSQL and MySQL. If you do not start with the first day of the month, the value
for DY will be the value returned by CURRENT_DATE, and the result of the CASE
expression will return the date of the next Monday starting from the current date
(unless CURRENT_DATE is a Monday, then that date will be returned).

9.6 Determining the Date of the First and Last Occurrences of a Specific Weekday in a Month | 267

Now that you have the first Monday of the month, add either 21 or 28 days to find the
last Monday of the month. The CASE expression in lines 2–5 determines whether to
add 21 or 28 days by checking to see whether 28 days takes you into the next month.
The CASE expression does this through the following process:

1. It adds 28 to the value of FIRST_MONDAY.
2. Using either TO_CHAR (PostgreSQL) or MONTH, the CASE expression

extracts the name of the current month from the result of FIRST_MONDAY +
28.

3. The result from step two is compared to the value MTH from the inline view.
The value MTH is the name of the current month as derived from CURRENT_
DATE. If the 2 month values match, then the month is large enough for you to
need to add 28 days, and the CASE expression returns FIRST_MONDAY + 28. If
the two month values do not match, then you do not have room to add 28 days,
and the CASE expression returns FIRST_MONDAY + 21 days instead. It is con‐
venient that our months are such that 28 and 21 are the only two possible values
you need worry about adding.

You can extend the solution by adding 7 and 14 days to find the
second and third Mondays of the month, respectively.

9.7 Creating a Calendar
Problem
You want to create a calendar for the current month. The calendar should be format‐
ted like a calendar you might have on your desk: seven columns across and (usually)
five rows down.

Solution
Each solution will look a bit different, but they all solve the problem the same way:
return each day for the current month, and then pivot on the day of the week for each
week in the month to create a calendar.

There are different formats available for calendars. For example, the Unix CAL com‐
mand formats the days from Sunday to Saturday. The examples in this recipe are
based on ISO weeks, so the Monday through Friday format is the most convenient to
generate. Once you become comfortable with the solutions, you’ll see that

268 | Chapter 9: Date Manipulation

reformatting however you like is simply a matter of modifying the values assigned by
the ISO week before pivoting.

As you begin to use different types of formatting with SQL to cre‐
ate readable output, you will notice your queries becoming longer.
Don’t let those long queries intimidate you; the queries presented
for this recipe are extremely simple once broken down and run
piece by piece.

DB2
Use the recursive WITH clause to return every day in the current month. Then pivot
on the day of the week using CASE and MAX:

 1 with x(dy,dm,mth,dw,wk)
 2 as (
 3 select (current_date -day(current_date) day +1 day) dy,
 4 day((current_date -day(current_date) day +1 day)) dm,
 5 month(current_date) mth,
 6 dayofweek(current_date -day(current_date) day +1 day) dw,
 7 week_iso(current_date -day(current_date) day +1 day) wk
 8 from t1
 9 union all
10 select dy+1 day, day(dy+1 day), mth,
11 dayofweek(dy+1 day), week_iso(dy+1 day)
12 from x
13 where month(dy+1 day) = mth
14)
15 select max(case dw when 2 then dm end) as Mo,
16 max(case dw when 3 then dm end) as Tu,
17 max(case dw when 4 then dm end) as We,
18 max(case dw when 5 then dm end) as Th,
19 max(case dw when 6 then dm end) as Fr,
20 max(case dw when 7 then dm end) as Sa,
21 max(case dw when 1 then dm end) as Su
22 from x
23 group by wk
24 order by wk

Oracle
Use the recursive CONNECT BY clause to return each day in the current month.
Then pivot on the day of the week using CASE and MAX:

 1 with x
 2 as (
 3 select *
 4 from (
 5 select to_char(trunc(sysdate,'mm')+level-1,'iw') wk,
 6 to_char(trunc(sysdate,'mm')+level-1,'dd') dm,
 7 to_number(to_char(trunc(sysdate,'mm')+level-1,'d')) dw,

9.7 Creating a Calendar | 269

 8 to_char(trunc(sysdate,'mm')+level-1,'mm') curr_mth,
 9 to_char(sysdate,'mm') mth
10 from dual
11 connect by level <= 31
12)
13 where curr_mth = mth
14)
15 select max(case dw when 2 then dm end) Mo,
16 max(case dw when 3 then dm end) Tu,
17 max(case dw when 4 then dm end) We,
18 max(case dw when 5 then dm end) Th,
19 max(case dw when 6 then dm end) Fr,
20 max(case dw when 7 then dm end) Sa,
21 max(case dw when 1 then dm end) Su
22 from x
23 group by wk
24 order by wk

PostgreSQL
Use the function GENERATE_SERIES to return every day in the current month.
Then pivot on the day of the week using MAX and CASE:

 1 select max(case dw when 2 then dm end) as Mo,
 2 max(case dw when 3 then dm end) as Tu,
 3 max(case dw when 4 then dm end) as We,
 4 max(case dw when 5 then dm end) as Th,
 5 max(case dw when 6 then dm end) as Fr,
 6 max(case dw when 7 then dm end) as Sa,
 7 max(case dw when 1 then dm end) as Su
 8 from (
 9 select *
10 from (
11 select cast(date_trunc('month',current_date) as date)+x.id,
12 to_char(
13 cast(
14 date_trunc('month',current_date)
15 as date)+x.id,'iw') as wk,
16 to_char(
17 cast(
18 date_trunc('month',current_date)
19 as date)+x.id,'dd') as dm,
20 cast(
21 to_char(
22 cast(
23 date_trunc('month',current_date)
24 as date)+x.id,'d') as integer) as dw,
25 to_char(
26 cast(
27 date_trunc('month',current_date)
28 as date)+x.id,'mm') as curr_mth,
29 to_char(current_date,'mm') as mth

270 | Chapter 9: Date Manipulation

30 from generate_series (0,31) x(id)
31) x
32 where mth = curr_mth
33) y
34 group by wk
35 order by wk

MySQL
Use a recursive CTE to return each day in the current month. Then pivot on the day
of the week using MAX and CASE:

with recursive x(dy,dm,mth,dw,wk)
 as (
 select dy,
 day(dy) dm,
 datepart(m,dy) mth,
 datepart(dw,dy) dw,
 case when datepart(dw,dy) = 1
 then datepart(ww,dy)-1
 else datepart(ww,dy)
 end wk
 from (
 select date_add(day,-day(getdate())+1,getdate()) dy
 from t1
) x
 union all
 select dateadd(d,1,dy), day(date_add(d,1,dy)), mth,
 datepart(dw,dateadd(d,1,dy)),
 case when datepart(dw,date_add(d,1,dy)) = 1
 then datepart(wk,date_add(d,1,dy))-1
 else datepart(wk,date_add(d,1,dy))
 end
 from x
 where datepart(m,date_add(d,1,dy)) = mth
)
 select max(case dw when 2 then dm end) as Mo,
 max(case dw when 3 then dm end) as Tu,
 max(case dw when 4 then dm end) as We,
 max(case dw when 5 then dm end) as Th,
 max(case dw when 6 then dm end) as Fr,
 max(case dw when 7 then dm end) as Sa,
 max(case dw when 1 then dm end) as Su
 from x
 group by wk
 order by wk;

9.7 Creating a Calendar | 271

SQL Server
Use the recursive WITH clause to return every day in the current month. Then pivot
on the day of the week using CASE and MAX:

 1 with x(dy,dm,mth,dw,wk)
 2 as (
 3 select dy,
 4 day(dy) dm,
 5 datepart(m,dy) mth,
 6 datepart(dw,dy) dw,
 7 case when datepart(dw,dy) = 1
 8 then datepart(ww,dy)-1
 9 else datepart(ww,dy)
10 end wk
11 from (
12 select dateadd(day,-day(getdate())+1,getdate()) dy
13 from t1
14) x
15 union all
16 select dateadd(d,1,dy), day(dateadd(d,1,dy)), mth,
17 datepart(dw,dateadd(d,1,dy)),
18 case when datepart(dw,dateadd(d,1,dy)) = 1
19 then datepart(wk,dateadd(d,1,dy)) -1
20 else datepart(wk,dateadd(d,1,dy))
21 end
22 from x
23 where datepart(m,dateadd(d,1,dy)) = mth
24)
25 select max(case dw when 2 then dm end) as Mo,
26 max(case dw when 3 then dm end) as Tu,
27 max(case dw when 4 then dm end) as We,
28 max(case dw when 5 then dm end) as Th,
29 max(case dw when 6 then dm end) as Fr,
30 max(case dw when 7 then dm end) as Sa,
31 max(case dw when 1 then dm end) as Su
32 from x
33 group by wk
34 order by wk

Discussion

DB2
The first step is to return each day in the month for which you want to create a calen‐
dar. Do that using the recursive WITH clause. Along with each day of the month
(DM), you will need to return different parts of each date: the day of the week (DW),
the current month you are working with (MTH), and the ISO week for each day of

272 | Chapter 9: Date Manipulation

the month (WK). The results of the recursive view X prior to recursion taking place
(the upper portion of the UNION ALL) are shown here:

select (current_date -day(current_date) day +1 day) dy,
 day((current_date -day(current_date) day +1 day)) dm,
 month(current_date) mth,
 dayofweek(current_date -day(current_date) day +1 day) dw,
 week_iso(current_date -day(current_date) day +1 day) wk
 from t1

DY DM MTH DW WK
----------- -- --- ---------- --
01-JUN-2005 01 06 4 22

The next step is to repeatedly increase the value for DM (move through the days of
the month) until you are no longer in the current month. As you move through each
day in the month, you will also return the day of the week that each day is, and which
ISO week the current day of the month falls into. Partial results are shown here:

with x(dy,dm,mth,dw,wk)
 as (
select (current_date -day(current_date) day +1 day) dy,
 day((current_date -day(current_date) day +1 day)) dm,
 month(current_date) mth,
 dayofweek(current_date -day(current_date) day +1 day) dw,
 week_iso(current_date -day(current_date) day +1 day) wk
 from t1
 union all
 select dy+1 day, day(dy+1 day), mth,
 dayofweek(dy+1 day), week_iso(dy+1 day)
 from x
 where month(dy+1 day) = mth
)
select *
 from x

DY DM MTH DW WK
----------- -- --- ---------- --
01-JUN-2020 01 06 4 22
02-JUN-2020 02 06 5 22
…
21-JUN-2020 21 06 3 25
22-JUN-2020 22 06 4 25
…
30-JUN-2020 30 06 5 26

What you are returning at this point is: each day for the current month, the two-digit
numeric day of the month, the two-digit numeric month, the one-digit day of the
week (1–7 for Sun–Sat), and the two-digit ISO week each day falls into. With all this
information available, you can use a CASE expression to determine which day of the

9.7 Creating a Calendar | 273

week each value of DM (each day of the month) falls into. A portion of the results is
shown here:

with x(dy,dm,mth,dw,wk)
 as (
select (current_date -day(current_date) day +1 day) dy,
 day((current_date -day(current_date) day +1 day)) dm,
 month(current_date) mth,
 dayofweek(current_date -day(current_date) day +1 day) dw,
 week_iso(current_date -day(current_date) day +1 day) wk
 from t1
 union all
 select dy+1 day, day(dy+1 day), mth,
 dayofweek(dy+1 day), week_iso(dy+1 day)
 from x
 where month(dy+1 day) = mth
)
 select wk,
 case dw when 2 then dm end as Mo,
 case dw when 3 then dm end as Tu,
 case dw when 4 then dm end as We,
 case dw when 5 then dm end as Th,
 case dw when 6 then dm end as Fr,
 case dw when 7 then dm end as Sa,
 case dw when 1 then dm end as Su
 from x

WK MO TU WE TH FR SA SU
-- -- -- -- -- -- -- --
22 01
22 02
22 03
22 04
22 05
23 06
23 07
23 08
23 09
23 10
23 11
23 12

As you can see from the partial output, every day in each week is returned as a row.
What you want to do now is to group the days by week, and then collapse all the days
for each week into a single row. Use the aggregate function MAX, and group by WK
(the ISO week) to return all the days for a week as one row. To properly format the
calendar and ensure that the days are in the right order, order the results by WK. The
final output is shown here:

with x(dy,dm,mth,dw,wk)
 as (
select (current_date -day(current_date) day +1 day) dy,

274 | Chapter 9: Date Manipulation

 day((current_date -day(current_date) day +1 day)) dm,
 month(current_date) mth,
 dayofweek(current_date -day(current_date) day +1 day) dw,
 week_iso(current_date -day(current_date) day +1 day) wk
 from t1
 union all
 select dy+1 day, day(dy+1 day), mth,
 dayofweek(dy+1 day), week_iso(dy+1 day)
 from x
 where month(dy+1 day) = mth
)
select max(case dw when 2 then dm end) as Mo,
 max(case dw when 3 then dm end) as Tu,
 max(case dw when 4 then dm end) as We,
 max(case dw when 5 then dm end) as Th,
 max(case dw when 6 then dm end) as Fr,
 max(case dw when 7 then dm end) as Sa,
 max(case dw when 1 then dm end) as Su
 from x
 group by wk
 order by wk

MO TU WE TH FR SA SU
-- -- -- -- -- -- --
 01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

Oracle
Begin by using the recursive CONNECT BY clause to generate a row for each day in
the month for which you want to generate a calendar. If you aren’t running at least
Oracle9i Database, you can’t use CONNECT BY this way. Instead, you can use a pivot
table, such as T500 in the MySQL solution.

Along with each day of the month, you will need to return different bits of informa‐
tion for each day: the day of the month (DM), the day of the week (DW), the current
month you are working with (MTH), and the ISO week for each day of the month
(WK). The results of the WITH view X for the first day of the current month are
shown here:

select trunc(sysdate,'mm') dy,
 to_char(trunc(sysdate,'mm'),'dd') dm,
 to_char(sysdate,'mm') mth,
 to_number(to_char(trunc(sysdate,'mm'),'d')) dw,
 to_char(trunc(sysdate,'mm'),'iw') wk
 from dual

9.7 Creating a Calendar | 275

DY DM MT DW WK
----------- -- -- ---------- --
01-JUN-2020 01 06 4 22

The next step is to repeatedly increase the value for DM (move through the days of
the month) until you are no longer in the current month. As you move through each
day in the month, you will also return the day of the week for each day and the ISO
week into which the current day falls. Partial results are shown here (the full date for
each day is added for readability):

with x
 as (
select *
 from (
select trunc(sysdate,'mm')+level-1 dy,
 to_char(trunc(sysdate,'mm')+level-1,'iw') wk,
 to_char(trunc(sysdate,'mm')+level-1,'dd') dm,
 to_number(to_char(trunc(sysdate,'mm')+level-1,'d')) dw,
 to_char(trunc(sysdate,'mm')+level-1,'mm') curr_mth,
 to_char(sysdate,'mm') mth
 from dual
 connect by level <= 31
)
 where curr_mth = mth
)
select *
 from x

DY WK DM DW CU MT
----------- -- -- ---------- -- --
01-JUN-2020 22 01 4 06 06
02-JUN-2020 22 02 5 06 06
…
21-JUN-2020 25 21 3 06 06
22-JUN-2020 25 22 4 06 06
…
30-JUN-2020 26 30 5 06 06

What you are returning at this point is one row for each day of the current month. In
that row you have: the two-digit numeric day of the month, the two-digit numeric
month, the one-digit day of the week (1–7 for Sun–Sat), and the two-digit ISO week
number. With all this information available, you can use a CASE expression to deter‐
mine which day of the week each value of DM (each day of the month) falls into. A
portion of the results is shown here:

with x
 as (
select *
 from (
select trunc(sysdate,'mm')+level-1 dy,
 to_char(trunc(sysdate,'mm')+level-1,'iw') wk,

276 | Chapter 9: Date Manipulation

 to_char(trunc(sysdate,'mm')+level-1,'dd') dm,
 to_number(to_char(trunc(sysdate,'mm')+level-1,'d')) dw,
 to_char(trunc(sysdate,'mm')+level-1,'mm') curr_mth,
 to_char(sysdate,'mm') mth
 from dual
 connect by level <= 31
)
 where curr_mth = mth
)
select wk,
 case dw when 2 then dm end as Mo,
 case dw when 3 then dm end as Tu,
 case dw when 4 then dm end as We,
 case dw when 5 then dm end as Th,
 case dw when 6 then dm end as Fr,
 case dw when 7 then dm end as Sa,
 case dw when 1 then dm end as Su
 from x

WK MO TU WE TH FR SA SU
-- -- -- -- -- -- -- --
22 01
22 02
22 03
22 04
22 05
23 06
23 07
23 08
23 09
23 10
23 11
23 12

As you can see from the partial output, every day in each week is returned as a row,
but the day number is in one of seven columns corresponding to the day of the week.
Your task now is to consolidate the days into one row for each week. Use the aggre‐
gate function MAX and group by WK (the ISO week) to return all the days for a week
as one row. To ensure the days are in the right order, order the results by WK. The
final output is shown here:

with x
 as (
select *
 from (
select to_char(trunc(sysdate,'mm')+level-1,'iw') wk,
 to_char(trunc(sysdate,'mm')+level-1,'dd') dm,
 to_number(to_char(trunc(sysdate,'mm')+level-1,'d')) dw,
 to_char(trunc(sysdate,'mm')+level-1,'mm') curr_mth,
 to_char(sysdate,'mm') mth
 from dual
 connect by level <= 31

9.7 Creating a Calendar | 277

)
 where curr_mth = mth
)
select max(case dw when 2 then dm end) Mo,
 max(case dw when 3 then dm end) Tu,
 max(case dw when 4 then dm end) We,
 max(case dw when 5 then dm end) Th,
 max(case dw when 6 then dm end) Fr,
 max(case dw when 7 then dm end) Sa,
 max(case dw when 1 then dm end) Su
 from x
 group by wk
 order by wk

MO TU WE TH FR SA SU
-- -- -- -- -- -- --
 01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

MySQL, PostgreSQL, and SQL Server
These solutions are the same except for differences in the specific functions used to
call dates. We arbitrarily use the SQL Serve solution for the explanation. Begin by
returning one row for each day of the month. You can do that using the recursive
WITH clause. For each row that you return, you will need the following items: the
day of the month (DM), the day of the week (DW), the current month you are work‐
ing with (MTH), and the ISO week for each day of the month (WK). The results of
the recursive view X prior to recursion taking place (the upper portion of the UNION
ALL) are shown here:

select dy,
 day(dy) dm,
 datepart(m,dy) mth,
 datepart(dw,dy) dw,
 case when datepart(dw,dy) = 1
 then datepart(ww,dy)-1
 else datepart(ww,dy)
 end wk
 from (
select dateadd(day,-day(getdate())+1,getdate()) dy
 from t1
) x

DY DM MTH DW WK
----------- -- --- ---------- --
01-JUN-2005 1 6 4 23

278 | Chapter 9: Date Manipulation

Your next step is to repeatedly increase the value for DM (move through the days of
the month) until you are no longer in the current month. As you move through each
day in the month, you will also return the day of the week and the ISO week number.
Partial results are shown here:

 with x(dy,dm,mth,dw,wk)
 as (
select dy,
 day(dy) dm,
 datepart(m,dy) mth,
 datepart(dw,dy) dw,
 case when datepart(dw,dy) = 1
 then datepart(ww,dy)-1
 else datepart(ww,dy)
 end wk
 from (
select dateadd(day,-day(getdate())+1,getdate()) dy
 from t1
) x
 union all
 select dateadd(d,1,dy), day(dateadd(d,1,dy)), mth,
 datepart(dw,dateadd(d,1,dy)),
 case when datepart(dw,dateadd(d,1,dy)) = 1
 then datepart(wk,dateadd(d,1,dy))-1
 else datepart(wk,dateadd(d,1,dy))
 end
 from x
 where datepart(m,dateadd(d,1,dy)) = mth
)
select *
 from x

DY DM MTH DW WK
----------- -- --- ---------- --
01-JUN-2005 01 06 4 23
02-JUN-2005 02 06 5 23
…
21-JUN-2005 21 06 3 26
22-JUN-2005 22 06 4 26
…
30-JUN-2005 30 06 5 27

For each day in the current month, you now have: the two-digit numeric day of the
month, the two-digit numeric month, the one-digit day of the week (1–7 for Sun–
Sat), and the two-digit ISO week number.

Now, use a CASE expression to determine which day of the week each value of DM
(each day of the month) falls into. A portion of the results is shown here:

 with x(dy,dm,mth,dw,wk)
 as (
select dy,

9.7 Creating a Calendar | 279

 day(dy) dm,
 datepart(m,dy) mth,
 datepart(dw,dy) dw,
 case when datepart(dw,dy) = 1
 then datepart(ww,dy)-1
 else datepart(ww,dy)
 end wk
 from (
select dateadd(day,-day(getdate())+1,getdate()) dy
 from t1
) x
 union all
 select dateadd(d,1,dy), day(dateadd(d,1,dy)), mth,
 datepart(dw,dateadd(d,1,dy)),
 case when datepart(dw,dateadd(d,1,dy)) = 1
 then datepart(wk,dateadd(d,1,dy))-1
 else datepart(wk,dateadd(d,1,dy))
 end
 from x
 where datepart(m,dateadd(d,1,dy)) = mth
)
select case dw when 2 then dm end as Mo,
 case dw when 3 then dm end as Tu,
 case dw when 4 then dm end as We,
 case dw when 5 then dm end as Th,
 case dw when 6 then dm end as Fr,
 case dw when 7 then dm end as Sa,
 case dw when 1 then dm end as Su
 from x

WK MO TU WE TH FR SA SU
-- -- -- -- -- -- -- --
22 01
22 02
22 03
22 04
22 05
23 06
23 07
23 08
23 09
23 10
23 11
23 12

Every day in each week is returned as a separate row. In each row, the column con‐
taining the day number corresponds to the day of the week. You now need to consoli‐
date the days for each week into one row. Do that by grouping the rows by WK (the
ISO week) and applying the MAX function to the different columns. The results will
be in calendar format as shown here:

280 | Chapter 9: Date Manipulation

with x(dy,dm,mth,dw,wk)
 as (
select dy,
 day(dy) dm,
 datepart(m,dy) mth,
 datepart(dw,dy) dw,
 case when datepart(dw,dy) = 1
 then datepart(ww,dy)-1
 else datepart(ww,dy)
 end wk
 from (
select dateadd(day,-day(getdate())+1,getdate()) dy
 from t1
) x
 union all
 select dateadd(d,1,dy), day(dateadd(d,1,dy)), mth,
 datepart(dw,dateadd(d,1,dy)),
 case when datepart(dw,dateadd(d,1,dy)) = 1
 then datepart(wk,dateadd(d,1,dy))-1
 else datepart(wk,dateadd(d,1,dy))
 end
 from x
 where datepart(m,dateadd(d,1,dy)) = mth
)
select max(case dw when 2 then dm end) as Mo,
 max(case dw when 3 then dm end) as Tu,
 max(case dw when 4 then dm end) as We,
 max(case dw when 5 then dm end) as Th,
 max(case dw when 6 then dm end) as Fr,
 max(case dw when 7 then dm end) as Sa,
 max(case dw when 1 then dm end) as Su
 from x
 group by wk
 order by wk

MO TU WE TH FR SA SU
-- -- -- -- -- -- --
 01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

9.8 Listing Quarter Start and End Dates for the Year
Problem
You want to return the start and end dates for each of the four quarters of a given
year.

9.8 Listing Quarter Start and End Dates for the Year | 281

Solution
There are four quarters to a year, so you know you will need to generate four rows.
After generating the desired number of rows, simply use the date functions supplied
by your RDBMS to return to the quarter the start and end dates fall into. Your goal is
to produce the following result set (one again, the choice to use the current year is
arbitrary):

QTR Q_START Q_END
--- ----------- -----------
 1 01-JAN-2020 31-MAR-2020
 2 01-APR-2020 30-JUN-2020
 3 01-JUL-2020 30-SEP-2020
 4 01-OCT-2020 31-DEC-2020

DB2
Use table EMP and the window function ROW_NUMBER OVER to generate four
rows. Alternatively, you can use the WITH clause to generate rows (as many of the
recipes do), or you can query against any table with at least four rows. The following
solution uses the ROW_NUMBER OVER approach:

 1 select quarter(dy-1 day) QTR,
 2 dy-3 month Q_start,
 3 dy-1 day Q_end
 4 from (
 5 select (current_date -
 6 (dayofyear(current_date)-1) day
 7 + (rn*3) month) dy
 8 from (
 9 select row_number()over() rn
10 from emp
11 fetch first 4 rows only
12) x
13) y

Oracle
Use the function ADD_MONTHS to find the start and end dates for each quarter.
Use ROWNUM to represent the quarter the start and end dates belong to. The fol‐
lowing solution uses table EMP to generate four rows:

1 select rownum qtr,
2 add_months(trunc(sysdate,'y'),(rownum-1)*3) q_start,
3 add_months(trunc(sysdate,'y'),rownum*3)-1 q_end
4 from emp
5 where rownum <= 4

282 | Chapter 9: Date Manipulation

PostgreSQL
Find the first day of the year based on the current date, and use a recursive CTE to fill
in the first date of the remaining three quarters before finding the last day of each
quarter:

 with recursive x (dy,cnt)
 as (
 select
 current_date -cast(extract(day from current_date)as integer) +1 dy
 , id
 from t1
 union all
 select cast(dy + interval '3 months' as date) , cnt+1
 from x
 where cnt+1 <= 4
)
 select cast(dy - interval '3 months' as date) as Q_start
 , dy-1 as Q_end
 from x

MySQL
Find the first day of the year from the current day, and use a CTE to create four rows,
one for each quarter. Use ADDDATE to find the last day of each quarter (three
months after the previous last day, or the first day of the quarter minus one):

1 with recursive x (dy,cnt)
2 as (
3 select
4 adddate(current_date,(-dayofyear(current_date))+1) dy
5 ,id
6 from t1
7 union all
8 select adddate(dy, interval 3 month), cnt+1
9 from x
10 where cnt+1 <= 4
11)
12
13 select quarter(adddate(dy,-1)) QTR
14 , date_add(dy, interval -3 month) Q_start
15 , adddate(dy,-1) Q_end
16 from x
17 order by 1;

SQL Server
Use the recursive WITH clause to generate four rows. Use the function DATEADD to
find the start and end dates. Use the function DATEPART to determine which quar‐
ter the start and end dates belong to:

9.8 Listing Quarter Start and End Dates for the Year | 283

 1 with x (dy,cnt)
 2 as (
 3 select dateadd(d,-(datepart(dy,getdate())-1),getdate()),
 4 1
 5 from t1
 6 union all
 7 select dateadd(m,3,dy), cnt+1
 8 from x
 9 where cnt+1 <= 4
10)
11 select datepart(q,dateadd(d,-1,dy)) QTR,
12 dateadd(m,-3,dy) Q_start,
13 dateadd(d,-1,dy) Q_end
14 from x
15 order by 1

Discussion

DB2
The first step is to generate four rows (with values one through four) for each quarter
in the year. Inline view X uses the window function ROW_NUMBER OVER and the
FETCH FIRST clause to return only four rows from EMP. The results are shown here:

select row_number()over() rn
 from emp
 fetch first 4 rows only

RN
--
 1
 2
 3
 4

The next step is to find the first day of the year, then add n months to it, where n is
three times RN (you are adding 3, 6, 9, and 12 months to the first day of the year).
The results are shown here:

select (current_date
 (dayofyear(current_date)-1) day
 + (rn*3) month) dy
 from (
select row_number()over() rn
 from emp
 fetch first 4 rows only
) x

DY

01-APR-2005
01-JUL-2005

284 | Chapter 9: Date Manipulation

01-OCT-2005
01-JAN-2005

At this point, the values for DY are one day after the end date for each quarter. The
next step is to get the start and end dates for each quarter. Subtract one day from DY
to get the end of each quarter, and subtract three months from DY to get the start of
each quarter. Use the QUARTER function on DY-1 (the end date for each quarter) to
determine which quarter the start and end dates belong to.

Oracle
The combination of ROWNUM, TRUNC, and ADD_MONTHS makes this solution
easy. To find the start of each quarter, simply add n months to the first day of the year,
where n is (ROWNUM-1)*3 (giving you 0, 3, 6, 9). To find the end of each quarter,
add n months to the first day of the year, where n is ROWNUM*3, and subtract one
day. As an aside, when working with quarters, you may also find it useful to use
TO_CHAR and/or TRUNC with the Q formatting option.

PostgreSQL, MySQL, and SQL Server
Like some of the previous recipes, this recipe uses the same structure across three
RDMS implementations, but different syntax for the date operations. The first step is
to find the first day of the year and then recursively add n months, where n is three
times the current iteration (there are four iterations, therefore, you are adding 3*1
months, 3*2 months, etc.), using the DATEADD function or its equivalent. The
results are shown here:

with x (dy,cnt)
 as (
select dateadd(d,-(datepart(dy,getdate())-1),getdate()),
 1
 from t1
 union all
select dateadd(m,3,dy), cnt+1
 from x
 where cnt+1 <= 4
)
select dy
 from x

DY

01-APR-2020
01-JUL-2020
01-OCT-2020
01-JAN-2020

The values for DY are one day after the end of each quarter. To get the end of each
quarter, simply subtract one day from DY by using the DATEADD function. To find

9.8 Listing Quarter Start and End Dates for the Year | 285

the start of each quarter, use the DATEADD function to subtract three months from
DY. Use the DATEPART function on the end date for each quarter to determine
which quarter the start and end dates belong to or its equivalent. If you are using
PostgreSQL, note that you need CAST to ensure data types align after performing
adding the three months to the start date, or the data types will different, and the
UNION ALL in the recursive CTE will fail.

9.9 Determining Quarter Start and End Dates for a Given
Quarter
Problem
When given a year and quarter in the format of YYYYQ (four-digit year, one-digit
quarter), you want to return the quarter’s start and end dates.

Solution
The key to this solution is to find the quarter by using the modulus function on the
YYYYQ value. (As an alternative to modulo, since the year format is four digits, you
can simply substring out the last digit to get the quarter.) Once you have the quarter,
simply multiply by three to get the ending month for the quarter. In the solutions that
follow, inline view X will return all four year and quarter combinations. The result set
for inline view X is as follows:

select 20051 as yrq from t1 union all
select 20052 as yrq from t1 union all
select 20053 as yrq from t1 union all
select 20054 as yrq from t1
 YRQ

 20051
 20052
 20053
 20054

DB2
Use the function SUBSTR to return the year from inline view X. Use the MOD func‐
tion to determine which quarter you are looking for:

 1 select (q_end-2 month) q_start,
 2 (q_end+1 month)-1 day q_end
 3 from (
 4 select date(substr(cast(yrq as char(4)),1,4) ||'-'||
 5 rtrim(cast(mod(yrq,10)*3 as char(2))) ||'-1') q_end
 6 from (
 7 select 20051 yrq from t1 union all

286 | Chapter 9: Date Manipulation

 8 select 20052 yrq from t1 union all
 9 select 20053 yrq from t1 union all
10 select 20054 yrq from t1
11) x
12) y

Oracle
Use the function SUBSTR to return the year from inline view X. Use the MOD func‐
tion to determine which quarter you are looking for:

 1 select add_months(q_end,-2) q_start,
 2 last_day(q_end) q_end
 3 from (
 4 select to_date(substr(yrq,1,4)||mod(yrq,10)*3,'yyyymm') q_end
 5 from (
 6 select 20051 yrq from dual union all
 7 select 20052 yrq from dual union all
 8 select 20053 yrq from dual union all
 9 select 20054 yrq from dual
10) x
11) y

PostgreSQL
Use the function SUBSTR to return the year from the inline view X. Use the MOD
function to determine which quarter you are looking for:

 1 select date(q_end-(2*interval '1 month')) as q_start,
 2 date(q_end+interval '1 month'-interval '1 day') as q_end
 3 from (
 4 select to_date(substr(yrq,1,4)||mod(yrq,10)*3,'yyyymm') as q_end
 5 from (
 6 select 20051 as yrq from t1 union all
 7 select 20052 as yrq from t1 union all
 8 select 20053 as yrq from t1 union all
 9 select 20054 as yrq from t1
10) x
11) y

MySQL
Use the function SUBSTR to return the year from the inline view X. Use the MOD
function to determine which quarter you are looking for:

 1 select date_add(
 2 adddate(q_end,-day(q_end)+1),
 3 interval -2 month) q_start,
 4 q_end
 5 from (
 6 select last_day(
 7 str_to_date(

9.9 Determining Quarter Start and End Dates for a Given Quarter | 287

 8 concat(
 9 substr(yrq,1,4),mod(yrq,10)*3),'%Y%m')) q_end
10 from (
11 select 20051 as yrq from t1 union all
12 select 20052 as yrq from t1 union all
13 select 20053 as yrq from t1 union all
14 select 20054 as yrq from t1
15) x
16) y

SQL Server
Use the function SUBSTRING to return the year from the inline view X. Use the
modulus function (%) to determine which quarter you are looking for:

 1 select dateadd(m,-2,q_end) q_start,
 2 dateadd(d,-1,dateadd(m,1,q_end)) q_end
 3 from (
 4 select cast(substring(cast(yrq as varchar),1,4)+'-'+
 5 cast(yrq%10*3 as varchar)+'-1' as datetime) q_end
 6 from (
 7 select 20051 as yrq from t1 union all
 8 select 20052 as yrq from t1 union all
 9 select 20052 as yrq from t1 union all
10 select 20054 as yrq from t1
11) x
12) y

Discussion

DB2
The first step is to find the year and quarter you are working with. Substring out the
year from inline view X (X.YRQ) using the SUBSTR function. To get the quarter, use
modulus 10 on YRQ. Once you have the quarter, multiply by three to get the end
month for the quarter. The results are shown here:

select substr(cast(yrq as char(4)),1,4) yr,
 mod(yrq,10)*3 mth
 from (
select 20051 yrq from t1 union all
select 20052 yrq from t1 union all
select 20053 yrq from t1 union all
select 20054 yrq from t1
) x

YR MTH
---- ------
2005 3
2005 6

288 | Chapter 9: Date Manipulation

2005 9
2005 12

At this point you have the year and end month for each quarter. Use those values to
construct a date, specifically, the first day of the last month for each quarter. Use the
concatenation operator || to glue together the year and month, and then use the
DATE function to convert to a date:

select date(substr(cast(yrq as char(4)),1,4) ||'-'||
 rtrim(cast(mod(yrq,10)*3 as char(2))) ||'-1') q_end
 from (
select 20051 yrq from t1 union all
select 20052 yrq from t1 union all
select 20053 yrq from t1 union all
select 20054 yrq from t1
) x

Q_END

01-MAR-2005
01-JUN-2005
01-SEP-2005
01-DEC-2005

The values for Q_END are the first day of the last month of each quarter. To get to
the last day of the month, add one month to Q_END and then subtract one day. To
find the start date for each quarter, subtract two months from Q_END.

Oracle
The first step is to find the year and quarter you are working with. Substring out the
year from inline view X (X.YRQ) using the SUBSTR function. To get the quarter, use
modulus 10 on YRQ. Once you have the quarter, multiply by three to get the end
month for the quarter. The results are shown here:

select substr(yrq,1,4) yr, mod(yrq,10)*3 mth
 from (
select 20051 yrq from t1 union all
select 20052 yrq from t1 union all
select 20053 yrq from t1 union all
select 20054 yrq from t1
) x

YR MTH
---- ------
2005 3
2005 6
2005 9
2005 12

9.9 Determining Quarter Start and End Dates for a Given Quarter | 289

At this point you have the year and end month for each quarter. Use those values to
construct a date, specifically, the first day of the last month for each quarter. Use the
concatenation operator || to glue together the year and month, and then use the
TO_DATE function to convert to a date:

select to_date(substr(yrq,1,4)||mod(yrq,10)*3,'yyyymm') q_end
 from (
select 20051 yrq from t1 union all
select 20052 yrq from t1 union all
select 20053 yrq from t1 union all
select 20054 yrq from t1
) x

Q_END

01-MAR-2005
01-JUN-2005
01-SEP-2005
01-DEC-2005

The values for Q_END are the first day of the last month of each quarter. To get to
the last day of the month, use the LAST_DAY function on Q_END. To find the start
date for each quarter, subtract two months from Q_END using the ADD_MONTHS
function.

PostgreSQL
The first step is to find the year and quarter you are working with. Substring out the
year from inline view X (X.YRQ) using the SUBSTR function. To get the quarter, use
modulus 10 on YRQ. Once you have the quarter, multiply by 3 to get the end month
for the quarter. The results are shown here:

select substr(yrq,1,4) yr, mod(yrq,10)*3 mth
 from (
select 20051 yrq from t1 union all
select 20052 yrq from t1 union all
select 20053 yrq from t1 union all
select 20054 yrq from t1
) x

YR MTH
---- -------
2005 3
2005 6
2005 9
2005 12

290 | Chapter 9: Date Manipulation

At this point, you have the year and end month for each quarter. Use those values to
construct a date, specifically, the first day of the last month for each quarter. Use the
concatenation operator || to glue together the year and month, and then use the TO_
DATE function to convert to a date:

select to_date(substr(yrq,1,4)||mod(yrq,10)*3,'yyyymm') q_end
 from (
select 20051 yrq from t1 union all
select 20052 yrq from t1 union all
select 20053 yrq from t1 union all
select 20054 yrq from t1
) x

Q_END

01-MAR-2005
01-JUN-2005
01-SEP-2005
01-DEC-2005

The values for Q_END are the first day of the last month of each quarter. To get to
the last day of the month, add one month to Q_END and subtract one day. To find
the start date for each quarter, subtract two months from Q_END. Cast the final
result as dates.

MySQL
The first step is to find the year and quarter you are working with. Substring out the
year from inline view X (X.YRQ) using the SUBSTR function. To get the quarter, use
modulus 10 on YRQ. Once you have the quarter, multiply by three to get the end
month for the quarter. The results are shown here:

select substr(yrq,1,4) yr, mod(yrq,10)*3 mth
 from (
select 20051 yrq from t1 union all
select 20052 yrq from t1 union all
select 20053 yrq from t1 union all
select 20054 yrq from t1
) x

YR MTH
---- ------
2005 3
2005 6
2005 9
2005 12

At this point, you have the year and end month for each quarter. Use those values to
construct a date, specifically, the last day of each quarter. Use the CONCAT function

9.9 Determining Quarter Start and End Dates for a Given Quarter | 291

to glue together the year and month, and then use the STR_TO_DATE function to
convert to a date. Use the LAST_DAY function to find the last day for each quarter:

select last_day(
 str_to_date(
 concat(
 substr(yrq,1,4),mod(yrq,10)*3),'%Y%m')) q_end
 from (
select 20051 as yrq from t1 union all
select 20052 as yrq from t1 union all
select 20053 as yrq from t1 union all
select 20054 as yrq from t1
) x

Q_END

31-MAR-2005
30-JUN-2005
30-SEP-2005
31-DEC-2005

Because you already have the end of each quarter, all that’s left is to find the start date
for each quarter. Use the DAY function to return the day of the month the end of each
quarter falls on, and subtract that from Q_END using the ADDDATE function to
give you the end of the prior month; add one day to bring you to the first day of the
last month of each quarter. The last step is to use the DATE_ADD function to sub‐
tract two months from the first day of the last month of each quarter to get you to the
start date for each quarter.

SQL Server
The first step is to find the year and quarter you are working with. Substring out the
year from inline view X (X.YRQ) using the SUBSTRING function. To get the quarter,
use modulus 10 on YRQ. Once you have the quarter, multiply by three to get the end
month for the quarter. The results are shown here:

select substring(yrq,1,4) yr, yrq%10*3 mth
 from (
select 20051 yrq from t1 union all
select 20052 yrq from t1 union all
select 20053 yrq from t1 union all
select 20054 yrq from t1
) x

YR MTH
---- ------
2005 3
2005 6
2005 9
2005 12

292 | Chapter 9: Date Manipulation

At this point, you have the year and end month for each quarter. Use those values to
construct a date, specifically, the first day of the last month for each quarter. Use the
concatenation operator + to glue together the year and month, and then use the
CAST function to convert to a date:

select cast(substring(cast(yrq as varchar),1,4)+'-'+
 cast(yrq%10*3 as varchar)+'-1' as datetime) q_end
 from (
select 20051 yrq from t1 union all
select 20052 yrq from t1 union all
select 20053 yrq from t1 union all
select 20054 yrq from t1
) x

Q_END

01-MAR-2005
01-JUN-2005
01-SEP-2005
01-DEC-2005

The values for Q_END are the first day of the last month of each quarter. To get to
the last day of the month, add one month to Q_END and subtract one day using the
DATEADD function. To find the start date for each quarter, subtract two months
from Q_END using the DATEADD function.

9.10 Filling in Missing Dates
Problem
You need to generate a row for every date (or every month, week, or year) within a
given range. Such rowsets are often used to generate summary reports. For example,
you want to count the number of employees hired every month of every year in
which any employee has been hired. Examining the dates of all the employees hired,
there have been hirings from 2000 to 2003:

select distinct
 extract(year from hiredate) as year
 from emp

YEAR

 2000
 2001
 2002
 2003

You want to determine the number of employees hired each month from 2000 to
2003. A portion of the desired result set is shown here:

9.10 Filling in Missing Dates | 293

MTH NUM_HIRED
----------- ----------
01-JAN-2001 0
01-FEB-2001 2
01-MAR-2001 0
01-APR-2001 1
01-MAY-2001 1
01-JUN-2001 1
01-JUL-2001 0
01-AUG-2001 0
01-SEP-2001 2
01-OCT-2001 0
01-NOV-2001 1
01-DEC-2001 2

Solution
The trick here is that you want to return a row for each month even if no employee
was hired (i.e., the count would be zero). Because there isn’t an employee hired every
month between 2000 and 2003, you must generate those months yourself and then
outer join to table EMP on HIREDATE (truncating the actual HIREDATE to its
month so it can match the generated months when possible).

DB2
Use the recursive WITH clause to generate every month (the first day of each month
from January 1, 2000, to December 1, 2003). Once you have all the months for the
required range of dates, outer join to table EMP and use the aggregate function
COUNT to count the number of hires for each month:

 1 with x (start_date,end_date)
 2 as (
 3 select (min(hiredate)
 4 dayofyear(min(hiredate)) day +1 day) start_date,
 5 (max(hiredate)
 6 dayofyear(max(hiredate)) day +1 day) +1 year end_date
 7 from emp
 8 union all
 9 select start_date +1 month, end_date
10 from x
11 where (start_date +1 month) < end_date
12)
13 select x.start_date mth, count(e.hiredate) num_hired
14 from x left join emp e
15 on (x.start_date = (e.hiredate-(day(hiredate)-1) day))
16 group by x.start_date
17 order by 1

294 | Chapter 9: Date Manipulation

Oracle
Use the CONNECT BY clause to generate each month between 2000 and 2003. Then
outer join to table EMP and use the aggregate function COUNT to count the number
of employees hired in each month:

 1 with x
 2 as (
 3 select add_months(start_date,level-1) start_date
 4 from (
 5 select min(trunc(hiredate,'y')) start_date,
 6 add_months(max(trunc(hiredate,'y')),12) end_date
 7 from emp
 8)
 9 connect by level <= months_between(end_date,start_date)
10)
11 select x.start_date MTH, count(e.hiredate) num_hired
12 from x left join emp e
13 on (x.start_date = trunc(e.hiredate,'mm'))
14 group by x.start_date
15 order by 1

PostgreSQL
Use CTE to fill in the months since the earliest hire and then LEFT OUTER JOIN on
the EMP table using the month and year of each generated month to enable the
COUNT of the number of hiredates in each period:

 with recursive x (start_date, end_date)
as
(
 select
 cast(min(hiredate) - (cast(extract(day from min(hiredate))
 as integer) - 1) as date)
 , max(hiredate)
 from emp
 union all
 select cast(start_date + interval '1 month' as date)
 , end_date
 from x
 where start_date < end_date
)

 select x.start_date,count(hiredate)
 from x left join emp
 on (extract(month from start_date) =
 extract(month from emp.hiredate)
 and extract(year from start_date)
 = extract(year from emp.hiredate))
 group by x.start_date
 order by 1

9.10 Filling in Missing Dates | 295

MySQL
Use a recursive CTE to generate each month between the start and end dates, and
then check for hires by using an outer join to table EMP:

 with recursive x (start_date,end_date)
 as
 (
 select
 adddate(min(hiredate),
 -dayofyear(min(hiredate))+1) start_date
 ,adddate(max(hiredate),
 -dayofyear(max(hiredate))+1) end_date
 from emp
 union all
 select date_add(start_date,interval 1 month)
 , end_date
 from x
 where date_add(start_date, interval 1 month) < end_date
)

 select x.start_date mth, count(e.hiredate) num_hired
 from x left join emp e
 on (extract(year_month from start_date)
 =
 extract(year_month from e.hiredate))
 group by x.start_date
 order by 1;

SQL Server
Use the recursive WITH clause to generate every month (the first day of each month
from January 1, 2000, to December 1, 2003). Once you have all the months for the
required range of dates, outer join to table EMP and use the aggregate function
COUNT to count the number of hires for each month:

1 with x (start_date,end_date)
2 as (
3 select (min(hiredate) -
4 datepart(dy,min(hiredate))+1) start_date,
5 dateadd(yy,1,
6 (max(hiredate) -
7 datepart(dy,max(hiredate))+1)) end_date
8 from emp
9 union all
10 select dateadd(mm,1,start_date), end_date
11 from x
12 where dateadd(mm,1,start_date) < end_date
13)
14 select x.start_date mth, count(e.hiredate) num_hired
15 from x left join emp e
16 on (x.start_date =

296 | Chapter 9: Date Manipulation

17 dateadd(dd,-day(e.hiredate)+1,e.hiredate))
18 group by x.start_date
19 order by 1

Discussion

DB2
The first step is to generate every month (actually the first day of each month) from
2000 to 2003. Start using the DAYOFYEAR function on the MIN and MAX HIRE‐
DATEs to find the boundary months:

select (min(hiredate)
 dayofyear(min(hiredate)) day +1 day) start_date,
 (max(hiredate)
 dayofyear(max(hiredate)) day +1 day) +1 year end_date
 from emp

START_DATE END_DATE
----------- -----------
01-JAN-2000 01-JAN-2004

Your next step is to repeatedly add months to START_DATE to return all the months
necessary for the final result set. The value for END_DATE is one day more than it
should be. This is OK. As you recursively add months to START_DATE, you can stop
before you hit END_DATE. A portion of the months created is shown here:

with x (start_date,end_date)
 as (
select (min(hiredate)
 dayofyear(min(hiredate)) day +1 day) start_date,
 (max(hiredate)
 dayofyear(max(hiredate)) day +1 day) +1 year end_date
 from emp
 union all
select start_date +1 month, end_date
 from x
 where (start_date +1 month) < end_date
)
select *
 from x

START_DATE END_DATE
----------- -----------
01-JAN-2000 01-JAN-2004
01-FEB-2000 01-JAN-2004
01-MAR-2000 01-JAN-2004
…
01-OCT-2003 01-JAN-2004
01-NOV-2003 01-JAN-2004
01-DEC-2003 01-JAN-2004

9.10 Filling in Missing Dates | 297

At this point, you have all the months you need, and you can simply outer join to
EMP.HIREDATE. Because the day for each START_DATE is the first of the month,
truncate EMP.HIREDATE to the first day of its month. Finally, use the aggregate
function COUNT on EMP.HIREDATE.

Oracle
The first step is to generate the first day of every for every month from 2000 to 2003.
Start by using TRUNC and ADD_MONTHS together with the MIN and MAX
HIREDATE values to find the boundary months:

select min(trunc(hiredate,'y')) start_date,
 add_months(max(trunc(hiredate,'y')),12) end_date
 from emp

START_DATE END_DATE
----------- -----------
01-JAN-2000 01-JAN-2004

Then repeatedly add months to START_DATE to return all the months necessary for
the final result set. The value for END_DATE is one day more than it should be,
which is OK. As you recursively add months to START_DATE, you can stop before
you hit END_DATE. A portion of the months created is shown here:

with x as (
select add_months(start_date,level-1) start_date
 from (
select min(trunc(hiredate,'y')) start_date,
 add_months(max(trunc(hiredate,'y')),12) end_date
 from emp
)
 connect by level <= months_between(end_date,start_date)
)
select *
 from x

START_DATE

01-JAN-2000
01-FEB-2000
01-MAR-2000
…
01-OCT-2003
01-NOV-2003
01-DEC-2003

At this point, you have all the months you need, and you can simply outer join to
EMP.HIREDATE. Because the day for each START_DATE is the first of the month,
truncate EMP.HIREDATE to the first day of the month it is in. The final step is to use
the aggregate function COUNT on EMP.HIREDATE.

298 | Chapter 9: Date Manipulation

PostgreSQL
This solution uses a CTE to generate the months you need and is similar to the subse‐
quent solutions for MySQL and SQL Server. The first step is to create the boundary
dates using aggregate functions. You could simply find earliest and latest hire dates
using the MIN() and MAX() functions, but the output makes more sense if you find
the first day of the month containing the earliest hire date.

MySQL
First, find the boundary dates by using the aggregate functions MIN and MAX along
with the DAYOFYEAR and ADDDATE functions. The result set shown here is from
inline view X:

with recursive x (start_date,end_date)
 as (
 select
 adddate(min(hiredate),
 -dayofyear(min(hiredate))+1) start_date
 ,adddate(max(hiredate),
 -dayofyear(max(hiredate))+1) end_date
 from emp
 union all
 select date_add(start_date,interval 1 month)
 , end_date
 from x
 where date_add(start_date, interval 1 month) < end_date
)
 select * from x

 select adddate(min(hiredate),-dayofyear(min(hiredate))+1) min_hd,
 adddate(max(hiredate),-dayofyear(max(hiredate))+1) max_hd
 from emp

 MIN_HD MAX_HD
 ----------- -----------
 01-JAN-2000 01-JAN-2003

Next, increment MAX_HD to the last month of the year by the CTE:

MTH

01-JAN-2000
01-FEB-2000
01-MAR-2000
…
01-OCT-2003
01-NOV-2003
01-DEC-2003

Now that you have all the months you need for the final result set, outer join to
EMP.HIREDATE (be sure to truncate EMP.HIREDATE to the first day of the month)

9.10 Filling in Missing Dates | 299

and use the aggregate function COUNT on EMP.HIREDATE to count the number of
hires in each month.

SQL Server
Begin by generating every month (actually, the first day of each month) from 2000 to
2003. Then find the boundary months by applying the DAYOFYEAR function to the
MIN and MAX HIREDATEs:

select (min(hiredate) -
 datepart(dy,min(hiredate))+1) start_date,
 dateadd(yy,1,
 (max(hiredate) -
 datepart(dy,max(hiredate))+1)) end_date
 from emp

START_DATE END_DATE
----------- -----------
01-JAN-2000 01-JAN-2004

Your next step is to repeatedly add months to START_DATE to return all the months
necessary for the final result set. The value for END_DATE is one day more than it
should be, which is OK, as you can stop recursively adding months to START_DATE
before you hit END_DATE. A portion of the months created is shown here:

with x (start_date,end_date)
 as (
select (min(hiredate) -
 datepart(dy,min(hiredate))+1) start_date,
 dateadd(yy,1,
 (max(hiredate) -
 datepart(dy,max(hiredate))+1)) end_date
 from emp
 union all
select dateadd(mm,1,start_date), end_date
 from x
 where dateadd(mm,1,start_date) < end_date
)
select *
 from x

START_DATE END_DATE
----------- -----------
01-JAN-2000 01-JAN-2004
01-FEB-2000 01-JAN-2004
01-MAR-2000 01-JAN-2004
…
01-OCT-2003 01-JAN-2004
01-NOV-2003 01-JAN-2004
01-DEC-2003 01-JAN-2004

300 | Chapter 9: Date Manipulation

At this point, you have all the months you need. Simply outer join to EMP.HIRE‐
DATE. Because the day for each START_DATE is the first of the month, truncate
EMP.HIREDATE to the first day of the month. The final step is to use the aggregate
function COUNT on EMP.HIREDATE.

9.11 Searching on Specific Units of Time
Problem
You want to search for dates that match a given month, day of the week, or some
other unit of time. For example, you want to find all employees hired in February or
December, as well as employees hired on a Tuesday.

Solution
Use the functions supplied by your RDBMS to find month and weekday names for
dates. This particular recipe can be useful in various places. Consider, if you wanted
to search HIREDATEs but wanted to ignore the year by extracting the month (or any
other part of the HIREDATE you are interested in), you can do so. The example solu‐
tions to this problem search by month and weekday name. By studying the date for‐
matting functions provided by your RDBMS, you can easily modify these solutions to
search by year, quarter, combination of year and quarter, month and year combina‐
tion, etc.

DB2 and MySQL
Use the functions MONTHNAME and DAYNAME to find the name of the month
and weekday an employee was hired, respectively:

1 select ename
2 from emp
3 where monthname(hiredate) in ('February','December')
4 or dayname(hiredate) = 'Tuesday'

Oracle and PostgreSQL
Use the function TO_CHAR to find the names of the month and weekday an
employee was hired. Use the function RTRIM to remove trailing whitespaces:

1 select ename
2 from emp
3 where rtrim(to_char(hiredate,'month')) in ('february','december')
4 or rtrim(to_char(hiredate,'day')) = 'tuesday'

9.11 Searching on Specific Units of Time | 301

SQL Server
Use the function DATENAME to find the names of the month and weekday an
employee was hired:

1 select ename
2 from emp
3 where datename(m,hiredate) in ('February','December')
4 or datename(dw,hiredate) = 'Tuesday'

Discussion
The key to each solution is simply knowing which functions to use and how to use
them. To verify what the return values are, put the functions in the SELECT clause
and examine the output. Listed here is the result set for employees in DEPTNO 10
(using SQL Server syntax):

select ename,datename(m,hiredate) mth,datename(dw,hiredate) dw
 from emp
 where deptno = 10

ENAME MTH DW
------ --------- -----------
CLARK June Tuesday
KING November Tuesday
MILLER January Saturday

Once you know what the function(s) return, finding rows using the functions shown
in each of the solutions is easy.

9.12 Comparing Records Using Specific Parts of a Date
Problem
You want to find which employees have been hired on the same month and weekday.
For example, if an employee was hired on Monday, March 10, 2008, and another
employee was hired on Monday, March 2, 2001, you want those two to come up as a
match since the day of week and month match. In table EMP, only three employees
meet this requirement. You want to return the following result set:

MSG
--
JAMES was hired on the same month and weekday as FORD
SCOTT was hired on the same month and weekday as JAMES
SCOTT was hired on the same month and weekday as FORD

302 | Chapter 9: Date Manipulation

Solution
Because you want to compare one employee’s HIREDATE with the HIREDATE of the
other employees, you will need to self-join table EMP. That makes each possible com‐
bination of HIREDATEs available for you to compare. Then, simply extract the week‐
day and month from each HIREDATE and compare.

DB2
After self-joining table EMP, use the function DAYOFWEEK to return the numeric
day of the week. Use the function MONTHNAME to return the name of the month:

1 select a.ename ||
2 ' was hired on the same month and weekday as '||
3 b.ename msg
4 from emp a, emp b
5 where (dayofweek(a.hiredate),monthname(a.hiredate)) =
6 (dayofweek(b.hiredate),monthname(b.hiredate))
7 and a.empno < b.empno
8 order by a.ename

Oracle and PostgreSQL
After self-joining table EMP, use the TO_CHAR function to format the HIREDATE
into weekday and month for comparison:

1 select a.ename ||
2 ' was hired on the same month and weekday as '||
3 b.ename as msg
4 from emp a, emp b
5 where to_char(a.hiredate,'DMON') =
6 to_char(b.hiredate,'DMON')
7 and a.empno < b.empno
8 order by a.ename

MySQL
After self-joining table EMP, use the DATE_FORMAT function to format the HIRE‐
DATE into weekday and month for comparison:

1 select concat(a.ename,
2 ' was hired on the same month and weekday as ',
3 b.ename) msg
4 from emp a, emp b
5 where date_format(a.hiredate,'%w%M') =
6 date_format(b.hiredate,'%w%M')
7 and a.empno < b.empno
8 order by a.ename

9.12 Comparing Records Using Specific Parts of a Date | 303

SQL Server
After self-joining table EMP, use the DATENAME function to format the HIREDATE
into weekday and month for comparison:

1 select a.ename +
2 ' was hired on the same month and weekday as '+
3 b.ename msg
4 from emp a, emp b
5 where datename(dw,a.hiredate) = datename(dw,b.hiredate)
6 and datename(m,a.hiredate) = datename(m,b.hiredate)
7 and a.empno < b.empno
8 order by a.ename

Discussion
The only difference between the solutions is the date function used to format the
HIREDATE. We’ll use the Oracle/PostgreSQL solution in this discussion (because it’s
the shortest to type out), but the explanation holds true for the other solutions as
well.

The first step is to self-join EMP so that each employee has access to the other
employees’ HIREDATEs. Consider the results of the query shown here (filtered for
SCOTT):

select a.ename as scott, a.hiredate as scott_hd,
 b.ename as other_emps, b.hiredate as other_hds
 from emp a, emp b
 where a.ename = 'SCOTT'
 and a.empno != b.empno

SCOTT SCOTT_HD OTHER_EMPS OTHER_HDS
---------- ----------- ---------- -----------
SCOTT 09-DEC-2002 SMITH 17-DEC-2000
SCOTT 09-DEC-2002 ALLEN 20-FEB-2001
SCOTT 09-DEC-2002 WARD 22-FEB-2001
SCOTT 09-DEC-2002 JONES 02-APR-2001
SCOTT 09-DEC-2002 MARTIN 28-SEP-2001
SCOTT 09-DEC-2002 BLAKE 01-MAY-2001
SCOTT 09-DEC-2002 CLARK 09-JUN-2001
SCOTT 09-DEC-2002 KING 17-NOV-2001
SCOTT 09-DEC-2002 TURNER 08-SEP-2001
SCOTT 09-DEC-2002 ADAMS 12-JAN-2003
SCOTT 09-DEC-2002 JAMES 03-DEC-2001
SCOTT 09-DEC-2002 FORD 03-DEC-2001
SCOTT 09-DEC-2002 MILLER 23-JAN-2002

By self-joining table EMP, you can compare SCOTT’s HIREDATE to the HIREDATE
of all the other employees. The filter on EMPNO is so that SCOTT’s HIREDATE is
not returned as one of the OTHER_HDS. The next step is to use your RDBMS’s

304 | Chapter 9: Date Manipulation

supplied date formatting function(s) to compare the weekday and month of the HIR‐
EDATEs and keep only those that match:

select a.ename as emp1, a.hiredate as emp1_hd,
 b.ename as emp2, b.hiredate as emp2_hd
 from emp a, emp b
 where to_char(a.hiredate,'DMON') =
 to_char(b.hiredate,'DMON')
 and a.empno != b.empno
 order by 1

EMP1 EMP1_HD EMP2 EMP2_HD
---------- ----------- ---------- -----------
FORD 03-DEC-2001 SCOTT 09-DEC-2002
FORD 03-DEC-2001 JAMES 03-DEC-2001
JAMES 03-DEC-2001 SCOTT 09-DEC-2002
JAMES 03-DEC-2001 FORD 03-DEC-2001

SCOTT 09-DEC-2002 JAMES 03-DEC-2001
SCOTT 09-DEC-2002 FORD 03-DEC-2001

At this point, the HIREDATEs are correctly matched, but there are six rows in the
result set rather than the three in the “Problem” section of this recipe. The reason for
the extra rows is the filter on EMPNO. By using “not equals,” you do not filter out the
reciprocals. For example, the first row matches FORD and SCOTT, and the last row
matches SCOTT and FORD. The six rows in the result set are technically accurate but
redundant. To remove the redundancy, use “less than” (the HIREDATEs are removed
to bring the intermediate queries closer to the final result set):

select a.ename as emp1, b.ename as emp2
 from emp a, emp b
 where to_char(a.hiredate,'DMON') =
 to_char(b.hiredate,'DMON')
 and a.empno < b.empno
 order by 1

EMP1 EMP2
---------- ----------
JAMES FORD
SCOTT JAMES
SCOTT FORD

The final step is to simply concatenate the result set to form the message.

9.13 Identifying Overlapping Date Ranges
Problem
You want to find all instances of an employee starting a new project before ending an
existing project. Consider table EMP_PROJECT:

9.13 Identifying Overlapping Date Ranges | 305

select *
 from emp_project

EMPNO ENAME PROJ_ID PROJ_START PROJ_END
----- ---------- ------- ----------- -----------
7782 CLARK 1 16-JUN-2005 18-JUN-2005
7782 CLARK 4 19-JUN-2005 24-JUN-2005
7782 CLARK 7 22-JUN-2005 25-JUN-2005
7782 CLARK 10 25-JUN-2005 28-JUN-2005
7782 CLARK 13 28-JUN-2005 02-JUL-2005
7839 KING 2 17-JUN-2005 21-JUN-2005
7839 KING 8 23-JUN-2005 25-JUN-2005
7839 KING 14 29-JUN-2005 30-JUN-2005
7839 KING 11 26-JUN-2005 27-JUN-2005
7839 KING 5 20-JUN-2005 24-JUN-2005
7934 MILLER 3 18-JUN-2005 22-JUN-2005
7934 MILLER 12 27-JUN-2005 28-JUN-2005
7934 MILLER 15 30-JUN-2005 03-JUL-2005
7934 MILLER 9 24-JUN-2005 27-JUN-2005
7934 MILLER 6 21-JUN-2005 23-JUN-2005

Looking at the results for employee KING, you see that KING began PROJ_ID 8
before finishing PROJ_ID 5 and began PROJ_ID 5 before finishing PROJ_ID 2. You
want to return the following result set:

EMPNO ENAME MSG
----- ---------- --------------------------------
7782 CLARK project 7 overlaps project 4
7782 CLARK project 10 overlaps project 7
7782 CLARK project 13 overlaps project 10
7839 KING project 8 overlaps project 5
7839 KING project 5 overlaps project 2
7934 MILLER project 12 overlaps project 9
7934 MILLER project 6 overlaps project 3

Solution
The key here is to find rows where PROJ_START (the date the new project starts)
occurs on or after another project’s PROJ_START date and on or before that other
project’s PROJ_END date. To begin, you need to be able to compare each project with
each other project (for the same employee). By self-joining EMP_PROJECT on
employee, you generate every possible combination of two projects for each
employee. To find the overlaps, simply find the rows where PROJ_START for any
PROJ_ID falls between PROJ_START and PROJ_END for another PROJ_ID by the
same employee.

DB2, PostgreSQL, and Oracle
Self-join EMP_PROJECT. Then use the concatenation operator || to construct the
message that explains which projects overlap:

306 | Chapter 9: Date Manipulation

1 select a.empno,a.ename,
2 'project '||b.proj_id||
3 ' overlaps project '||a.proj_id as msg
4 from emp_project a,
5 emp_project b
6 where a.empno = b.empno
7 and b.proj_start >= a.proj_start
8 and b.proj_start <= a.proj_end
9 and a.proj_id != b.proj_id

MySQL
Self-join EMP_PROJECT. Then use the CONCAT function to construct the message
that explains which projects overlap:

1 select a.empno,a.ename,
2 concat('project ',b.proj_id,
3 ' overlaps project ',a.proj_id) as msg
4 from emp_project a,
5 emp_project b
6 where a.empno = b.empno
7 and b.proj_start >= a.proj_start
8 and b.proj_start <= a.proj_end
9 and a.proj_id != b.proj_id

SQL Server
Self-join EMP_PROJECT. Then use the concatenation operator + to construct the
message that explains which projects overlap:

1 select a.empno,a.ename,
2 'project '+b.proj_id+
3 ' overlaps project '+a.proj_id as msg
4 from emp_project a,
5 emp_project b
6 where a.empno = b.empno
7 and b.proj_start >= a.proj_start
8 and b.proj_start <= a.proj_end
9 and a.proj_id != b.proj_id

Discussion
The only difference between the solutions lies in the string concatenation, so one dis‐
cussion using the DB2 syntax will cover all three solutions. The first step is a self-join
of EMP_PROJECT so that the PROJ_START dates can be compared among the dif‐
ferent projects. The output of the self-join for employee KING is shown here. You can
observe how each project can “see” the other projects:

9.13 Identifying Overlapping Date Ranges | 307

select a.ename,
 a.proj_id as a_id,
 a.proj_start as a_start,
 a.proj_end as a_end,
 b.proj_id as b_id,
 b.proj_start as b_start
 from emp_project a,
 emp_project b
 where a.ename = 'KING'
 and a.empno = b.empno
 and a.proj_id != b.proj_id
order by 2

ENAME A_ID A_START A_END B_ID B_START
------ ----- ----------- ----------- ----- -----------
KING 2 17-JUN-2005 21-JUN-2005 8 23-JUN-2005
KING 2 17-JUN-2005 21-JUN-2005 14 29-JUN-2005
KING 2 17-JUN-2005 21-JUN-2005 11 26-JUN-2005
KING 2 17-JUN-2005 21-JUN-2005 5 20-JUN-2005
KING 5 20-JUN-2005 24-JUN-2005 2 17-JUN-2005
KING 5 20-JUN-2005 24-JUN-2005 8 23-JUN-2005
KING 5 20-JUN-2005 24-JUN-2005 11 26-JUN-2005
KING 5 20-JUN-2005 24-JUN-2005 14 29-JUN-2005
KING 8 23-JUN-2005 25-JUN-2005 2 17-JUN-2005
KING 8 23-JUN-2005 25-JUN-2005 14 29-JUN-2005
KING 8 23-JUN-2005 25-JUN-2005 5 20-JUN-2005
KING 8 23-JUN-2005 25-JUN-2005 11 26-JUN-2005
KING 11 26-JUN-2005 27-JUN-2005 2 17-JUN-2005
KING 11 26-JUN-2005 27-JUN-2005 8 23-JUN-2005
KING 11 26-JUN-2005 27-JUN-2005 14 29-JUN-2005
KING 11 26-JUN-2005 27-JUN-2005 5 20-JUN-2005
KING 14 29-JUN-2005 30-JUN-2005 2 17-JUN-2005
KING 14 29-JUN-2005 30-JUN-2005 8 23-JUN-2005
KING 14 29-JUN-2005 30-JUN-2005 5 20-JUN-2005
KING 14 29-JUN-2005 30-JUN-2005 11 26-JUN-2005

As you can see from the result set, the self-join makes finding overlapping dates easy:
simply return each row where B_START occurs between A_START and A_END. If
you look at the WHERE clause on lines 7 and 8 of the solution:

and b.proj_start >= a.proj_start
and b.proj_start <= a.proj_end

it is doing just that. Once you have the required rows, constructing the messages is
just a matter of concatenating the return values.

Oracle users can use the window function LEAD OVER to avoid the self-join, if the
maximum number of projects per employee is fixed. This can come in handy if the
self-join is expensive for your particular results (if the self-join requires more resour‐
ces than the sorts needed for LEAD OVER). For example, consider the alternative for
employee KING using LEAD OVER:

308 | Chapter 9: Date Manipulation

select empno,
 ename,
 proj_id,
 proj_start,
 proj_end,
 case
 when lead(proj_start,1)over(order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(order by proj_start)
 when lead(proj_start,2)over(order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(order by proj_start)
 when lead(proj_start,3)over(order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(order by proj_start)
 when lead(proj_start,4)over(order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(order by proj_start)
 end is_overlap
 from emp_project
 where ename = 'KING'

EMPNO ENAME PROJ_ID PROJ_START PROJ_END IS_OVERLAP
----- ------ ------- ----------- ----------- ----------
7839 KING 2 17-JUN-2005 21-JUN-2005 5
7839 KING 5 20-JUN-2005 24-JUN-2005 8
7839 KING 8 23-JUN-2005 25-JUN-2005
7839 KING 11 26-JUN-2005 27-JUN-2005
7839 KING 14 29-JUN-2005 30-JUN-2005

Because the number of projects is fixed at five for employee KING, you can use
LEAD OVER to examine the dates of all the projects without a self-join. From here,
producing the final result set is easy. Simply keep the rows where IS_OVERLAP is not
NULL:

select empno,ename,
 'project '||is_overlap||
 ' overlaps project '||proj_id msg
 from (
select empno,
 ename,
 proj_id,
 proj_start,
 proj_end,
 case
 when lead(proj_start,1)over(order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(order by proj_start)
 when lead(proj_start,2)over(order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(order by proj_start)
 when lead(proj_start,3)over(order by proj_start)

9.13 Identifying Overlapping Date Ranges | 309

 between proj_start and proj_end
 then lead(proj_id)over(order by proj_start)
 when lead(proj_start,4)over(order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(order by proj_start)
 end is_overlap
 from emp_project
 where ename = 'KING'
)
 where is_overlap is not null

EMPNO ENAME MSG
----- ------ --------------------------------
7839 KING project 5 overlaps project 2
7839 KING project 8 overlaps project 5

To allow the solution to work for all employees (not just KING), partition by ENAME
in the LEAD OVER function:

select empno,ename,
 'project '||is_overlap||
 ' overlaps project '||proj_id msg
 from (
select empno,
 ename,
 proj_id,
 proj_start,
 proj_end,
 case
 when lead(proj_start,1)over(partition by ename
 order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(partition by ename
 order by proj_start)
 when lead(proj_start,2)over(partition by ename
 order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(partition by ename
 order by proj_start)
 when lead(proj_start,3)over(partition by ename
 order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(partition by ename
 order by proj_start)
 when lead(proj_start,4)over(partition by ename
 order by proj_start)
 between proj_start and proj_end
 then lead(proj_id)over(partition by ename
 order by proj_start)
 end is_overlap
 from emp_project
)
where is_overlap is not null

310 | Chapter 9: Date Manipulation

EMPNO ENAME MSG
----- ------ -------------------------------
7782 CLARK project 7 overlaps project 4
7782 CLARK project 10 overlaps project 7
7782 CLARK project 13 overlaps project 10
7839 KING project 5 overlaps project 2
7839 KING project 8 overlaps project 5
7934 MILLER project 6 overlaps project 3
7934 MILLER project 12 overlaps project 9

9.14 Summing Up
Date manipulations are a common problem for anyone querying a database—a series
of events stored with their dates inspires business users to ask creative date-based
questions. At the same time, dates are one of the less standardized areas of SQLs
between vendors. We hope that you take away from this chapter an idea of how even
when the syntax is different, there is still a common logic that can be applied to quer‐
ies that use dates.

9.14 Summing Up | 311

CHAPTER 10

Working with Ranges

This chapter is about “everyday” queries that involve ranges. Ranges are common in
everyday life. For example, projects that we work on range over consecutive periods
of time. In SQL, it’s often necessary to search for ranges, or to generate ranges, or to
otherwise manipulate range-based data. The queries you’ll read about here are
slightly more involved than the queries found in the preceding chapters, but they are
just as common, and they’ll begin to give you a sense of what SQL can really do for
you when you learn to take full advantage of it.

10.1 Locating a Range of Consecutive Values
Problem
You want to determine which rows represent a range of consecutive projects. Con‐
sider the following result set from view V, which contains data about a project and its
start and end dates:

select *
 from V

PROJ_ID PROJ_START PROJ_END
------- ----------- -----------
 1 01-JAN-2020 02-JAN-2020
 2 02-JAN-2020 03-JAN-2020
 3 03-JAN-2020 04-JAN-2020
 4 04-JAN-2020 05-JAN-2020
 5 06-JAN-2020 07-JAN-2020
 6 16-JAN-2020 17-JAN-2020
 7 17-JAN-2020 18-JAN-2020
 8 18-JAN-2020 19-JAN-2020
 9 19-JAN-2020 20-JAN-2020
 10 21-JAN-2020 22-JAN-2020

313

 11 26-JAN-2020 27-JAN-2020
 12 27-JAN-2020 28-JAN-2020
 13 28-JAN-2020 29-JAN-2020
 14 29-JAN-2020 30-JAN-2020

Excluding the first row, each row’s PROJ_START should equal the PROJ_END of the
row before it (“before” is defined as PROJ_ID–1 for the current row). Examining the
first five rows from view V, PROJ_IDs 1 through 3 are part of the same “group” as
each PROJ_END equals the PROJ_START of the row after it. Because you want to
find the range of dates for consecutive projects, you would like to return all rows
where the current PROJ_END equals the next row’s PROJ_START. If the first five
rows comprised the entire result set, you would like to return only the first three
rows. The final result set (using all 14 rows from view V) should be:

PROJ_ID PROJ_START PROJ_END
------- ----------- -----------
 1 01-JAN-2020 02-JAN-2020
 2 02-JAN-2020 03-JAN-2020
 3 03-JAN-2020 04-JAN-2020
 6 16-JAN-2020 17-JAN-2020
 7 17-JAN-2020 18-JAN-2020
 8 18-JAN-2020 19-JAN-2020
 11 26-JAN-2020 27-JAN-2020
 12 27-JAN-2020 28-JAN-2020
 13 28-JAN-2020 29-JAN-2020

The rows with PROJ_IDs 4, 5, 9, 10, and 14 are excluded from this result set because
the PROJ_END of each of these rows does not match the PROJ_START of the row
following it.

Solution
This solution takes best advantage of the window function LEAD OVER to look at
the “next” row’s BEGIN_DATE, thus avoiding the need to self-join, which was neces‐
sary before window functions were widely introduced:

1 select proj_id, proj_start, proj_end
2 from (
3 select proj_id, proj_start, proj_end,
4 lead(proj_start)over(order by proj_id) next_proj_start
5 from V
6) alias
7 where next_proj_start = proj_end

314 | Chapter 10: Working with Ranges

Discussion

DB2, MySQL, PostgreSQL, SQL Server, and Oracle
Although it is possible to develop a solution using a self-join, the window function
LEAD OVER is perfect for this type of problem, and more intuitive. The function
LEAD OVER allows you to examine other rows without performing a self-join
(though the function must impose order on the result set to do so). Consider the
results of the inline view (lines 3–5) for IDs 1 and 4:

select *
 from (
select proj_id, proj_start, proj_end,
 lead(proj_start)over(order by proj_id) next_proj_start
 from v
)
 where proj_id in (1, 4)

PROJ_ID PROJ_START PROJ_END NEXT_PROJ_START
------- ----------- ----------- ---------------
 1 01-JAN-2020 02-JAN-2020 02-JAN-2020
 4 04-JAN-2020 05-JAN-2020 06-JAN-2020

Examining this snippet of code and its result set, it is particularly easy to see why
PROJ_ID 4 is excluded from the final result set of the complete solution. It’s excluded
because its PROJ_END date of 05-JAN-2020 does not match the “next” project’s start
date of 06-JAN-2020.

The function LEAD OVER is extremely handy when it comes to problems such as
this one, particularly when examining partial results. When working with window
functions, keep in mind that they are evaluated after the FROM and WHERE clauses,
so the LEAD OVER function in the preceding query must be embedded within an
inline view. Otherwise, the LEAD OVER function is applied to the result set after the
WHERE clause has filtered out all rows except for PROJ_ID’s 1 and 4.

Now, depending on how you view the data, you may very well want to include
PROJ_ID 4 in the final result set. Consider the first five rows from view V:

select *
 from V
 where proj_id <= 5

PROJ_ID PROJ_START PROJ_END
------- ----------- -----------
 1 01-JAN-2020 02-JAN-2020
 2 02-JAN-2020 03-JAN-2020
 3 03-JAN-2020 04-JAN-2020
 4 04-JAN-2020 05-JAN-2020
 5 06-JAN-2020 07-JAN-2020

10.1 Locating a Range of Consecutive Values | 315

If your requirement is such that PROJ_ID 4 is in fact contiguous (because PROJ_
START for PROJ_ID 4 matches PROJ_END for PROJ_ID 3), and that only PROJ_ ID
5 should be discarded, the proposed solution for this recipe is incorrect (!) or, at the
very least, incomplete:

select proj_id, proj_start, proj_end
 from (
select proj_id, proj_start, proj_end,
 lead(proj_start)over(order by proj_id) next_start
 from V
where proj_id <= 5
)
where proj_end = next_start

PROJ_ID PROJ_START PROJ_END
------- ----------- -----------
 1 01-JAN-2020 02-JAN-2020
 2 02-JAN-2020 03-JAN-2020
 3 03-JAN-2020 04-JAN-2020

If you believe PROJ_ID 4 should be included, simply add LAG OVER to the query
and use an additional filter in the WHERE clause:

select proj_id, proj_start, proj_end
 from (
select proj_id, proj_start, proj_end,
 lead(proj_start)over(order by proj_id) next_start,
 lag(proj_end)over(order by proj_id) last_end
 from V
where proj_id <= 5
)
where proj_end = next_start
 or proj_start = last_end

PROJ_ID PROJ_START PROJ_END
------- ----------- -----------
 1 01-JAN-2020 02-JAN-2020
 2 02-JAN-2020 03-JAN-2020
 3 03-JAN-2020 04-JAN-2020
 4 04-JAN-2020 05-JAN-2020

Now PROJ_ID 4 is included in the final result set, and only the evil PROJ_ID 5 is
excluded. Please consider your exact requirements when applying these recipes to
your code.

316 | Chapter 10: Working with Ranges

10.2 Finding Differences Between Rows in the Same
Group or Partition
Problem
You want to return the DEPTNO, ENAME, and SAL of each employee along with the
difference in SAL between employees in the same department (i.e., having the same
value for DEPTNO). The difference should be between each current employee and
the employee hired immediately afterward (you want to see if there is a correlation
between seniority and salary on a “per department” basis). For each employee hired
last in his department, return “N/A” for the difference. The result set should look like
this:

DEPTNO ENAME SAL HIREDATE DIFF
------ ---------- ---------- ----------- ----------
 10 CLARK 2450 09-JUN-2006 -2550
 10 KING 5000 17-NOV-2006 3700
 10 MILLER 1300 23-JAN-2007 N/A
 20 SMITH 800 17-DEC-2005 -2175
 20 JONES 2975 02-APR-2006 -25
 20 FORD 3000 03-DEC-2006 0
 20 SCOTT 3000 09-DEC-2007 1900
 20 ADAMS 1100 12-JAN-2008 N/A
 30 ALLEN 1600 20-FEB-2006 350
 30 WARD 1250 22-FEB-2006 -1600
 30 BLAKE 2850 01-MAY-2006 1350
 30 TURNER 1500 08-SEP-2006 250
 30 MARTIN 1250 28-SEP-2006 300
 30 JAMES 950 03-DEC-2006 N/A

Solution
The is another example of where the window functions LEAD OVER and LAG
OVER come in handy. You can easily access next and prior rows without additional
joins. Alternative methods such as subqueries or self-joins are possible but awkward:

1 with next_sal_tab (deptno,ename,sal,hiredate,next_sal)
2 as
3 (select deptno, ename, sal, hiredate,
4 lead(sal)over(partition by deptno
5 order by hiredate) as next_sal
6 from emp)
7
8 select deptno, ename, sal, hiredate
9 , coalesce(cast(sal-next_sal as char), 'N/A') as diff
10 from next_sal_tab

10.2 Finding Differences Between Rows in the Same Group or Partition | 317

In this case, for the sake of variety, we have used a CTE rather than a subquery—both
will work across most RDBMSs these days, with the preference usually relating to
readability.

Discussion
The first step is to use the LEAD OVER window function to find the “next” salary for
each employee within their department. The employees hired last in each department
will have a NULL value for NEXT_SAL:

select deptno,ename,sal,hiredate,
 lead(sal)over(partition by deptno order by hiredate) as next_sal
 from emp

DEPTNO ENAME SAL HIREDATE NEXT_SAL
------ ---------- ---------- ----------- ----------
 10 CLARK 2450 09-JUN-2006 5000
 10 KING 5000 17-NOV-2006 1300
 10 MILLER 1300 23-JAN-2007
 20 SMITH 800 17-DEC-2005 2975
 20 JONES 2975 02-APR-2006 3000
 20 FORD 3000 03-DEC-2006 3000
 20 SCOTT 3000 09-DEC-2007 1100
 20 ADAMS 1100 12-JAN-2008
 30 ALLEN 1600 20-FEB-2006 1250
 30 WARD 1250 22-FEB-2006 2850
 30 BLAKE 2850 01-MAY-2006 1500
 30 TURNER 1500 08-SEP-2006 1250
 30 MARTIN 1250 28-SEP-2006 950
 30 JAMES 950 03-DEC-2006

The next step is to take the difference between each employee’s salary and the salary
of the employee hired immediately after them in the same department:

select deptno,ename,sal,hiredate, sal-next_sal diff
 from (
select deptno,ename,sal,hiredate,
 lead(sal)over(partition by deptno order by hiredate) next_sal
 from emp
)

DEPTNO ENAME SAL HIREDATE DIFF
------ ---------- ---------- ----------- ----------
 10 CLARK 2450 09-JUN-2006 -2550
 10 KING 5000 17-NOV-2006 3700
 10 MILLER 1300 23-JAN-2007
 20 SMITH 800 17-DEC-2005 -2175
 20 JONES 2975 02-APR-2006 -25
 20 FORD 3000 03-DEC-2006 0
 20 SCOTT 3000 09-DEC-2007 1900
 20 ADAMS 1100 12-JAN-2008
 30 ALLEN 1600 20-FEB-2006 350

318 | Chapter 10: Working with Ranges

 30 WARD 1250 22-FEB-2006 -1600
 30 BLAKE 2850 01-MAY-2006 1350
 30 TURNER 1500 08-SEP-2006 250
 30 MARTIN 1250 28-SEP-2006 300
 30 JAMES 950 03-DEC-2006

The next step is to use the COALESCE function to insert “N/A” when there is no next
salary. To be able to return “N/A” you must cast the value of DIFF to a string:

select deptno,ename,sal,hiredate,
 nvl(to_char(sal-next_sal),'N/A') diff
 from (
select deptno,ename,sal,hiredate,
 lead(sal)over(partition by deptno order by hiredate) next_sal
 from emp
)

DEPTNO ENAME SAL HIREDATE DIFF
------ ---------- ---------- ----------- ---------------
 10 CLARK 2450 09-JUN-2006 -2550
 10 KING 5000 17-NOV-2006 3700
 10 MILLER 1300 23-JAN-2007 N/A
 20 SMITH 800 17-DEC-2005 -2175
 20 JONES 2975 02-APR-2006 -25
 20 FORD 3000 03-DEC-2006 0
 20 SCOTT 3000 09-DEC-2007 1900
 20 ADAMS 1100 12-JAN-2008 N/A
 30 ALLEN 1600 20-FEB-2006 350
 30 WARD 1250 22-FEB-2006 -1600
 30 BLAKE 2850 01-MAY-2006 1350
 30 TURNER 1500 08-SEP-2006 250
 30 MARTIN 1250 28-SEP-2006 300
 30 JAMES 950 03-DEC-2006 N/A

While the majority of the solutions provided in this book do not deal with “what if ”
scenarios (for the sake of readability and the author’s sanity), the scenario involving
duplicates when using the LEAD OVER function in this manner must be discussed.
In the simple sample data in table EMP, no employees have duplicate HIREDATEs,
yet this is an unlikely situation. Normally, we would not discuss a “what if ” situation
such as duplicates (since there aren’t any in table EMP), but the workaround involv‐
ing LEAD may not be immediately obvious. Consider the following query, which
returns the difference in SAL between the employees in DEPTNO 10 (the difference
is performed in the order in which they were hired):

select deptno,ename,sal,hiredate,
 lpad(nvl(to_char(sal-next_sal),'N/A'),10) diff
 from (
select deptno,ename,sal,hiredate,
 lead(sal)over(partition by deptno
 order by hiredate) next_sal
 from emp

10.2 Finding Differences Between Rows in the Same Group or Partition | 319

 where deptno=10 and empno > 10
)

DEPTNO ENAME SAL HIREDATE DIFF
------ ------ ----- ----------- ----------
 10 CLARK 2450 09-JUN-2006 -2550
 10 KING 5000 17-NOV-2006 3700
 10 MILLER 1300 23-JAN-2007 N/A

This solution is correct considering the data in table EMP, but if there were duplicate
rows, the solution would fail. Consider the following example, which shows four
more employees hired on the same day as KING:

insert into emp (empno,ename,deptno,sal,hiredate)
values (1,'ant',10,1000,to_date('17-NOV-2006'))

insert into emp (empno,ename,deptno,sal,hiredate)
values (2,'joe',10,1500,to_date('17-NOV-2006'))

insert into emp (empno,ename,deptno,sal,hiredate)
values (3,'jim',10,1600,to_date('17-NOV-2006'))

insert into emp (empno,ename,deptno,sal,hiredate)
values (4,'jon',10,1700,to_date('17-NOV-2006'))

select deptno,ename,sal,hiredate,
 lpad(nvl(to_char(sal-next_sal),'N/A'),10) diff
 from (
select deptno,ename,sal,hiredate,
 lead(sal)over(partition by deptno
 order by hiredate) next_sal
 from emp
 where deptno=10
)

DEPTNO ENAME SAL HIREDATE DIFF
------ ------ ----- ----------- ----------
 10 CLARK 2450 09-JUN-2006 1450
 10 ant 1000 17-NOV-2006 -500
 10 joe 1500 17-NOV-2006 -3500
 10 KING 5000 17-NOV-2006 3400
 10 jim 1600 17-NOV-2006 -100
 10 jon 1700 17-NOV-2006 400
 10 MILLER 1300 23-JAN-2007 N/A

You’ll notice that with the exception of employee JON, all employees hired on the
same date (November 17) evaluate their salary against another employee hired on the
same date! This is incorrect. All employees hired on November 17 should have the
difference of salary computed against MILLER’s salary, not another employee hired
on November 17. Take, for example, employee ANT. The value for DIFF for ANT
is –500 because ANT’s SAL is compared with JOE’s SAL and is 500 less than JOE’s

320 | Chapter 10: Working with Ranges

SAL, hence the value of –500. The correct value for DIFF for employee ANT should
be –300 because ANT makes 300 less than MILLER, who is the next employee hired
by HIREDATE. The reason the solution seems to not work is due to the default
behavior of Oracle’s LEAD OVER function. By default, LEAD OVER looks ahead
only one row. So, for employee ANT, the next SAL based on HIREDATE is JOE’s
SAL, because LEAD OVER simply looks one row ahead and doesn’t skip duplicates.
Fortunately, Oracle planned for such a situation and allows you to pass an additional
parameter to LEAD OVER to determine how far ahead it should look. In the previ‐
ous example, the solution is simply a matter of counting: find the distance from each
employee hired on November 17 to January 23 (MILLER’s HIREDATE). The follow‐
ing shows how to accomplish this:

select deptno,ename,sal,hiredate,
 lpad(nvl(to_char(sal-next_sal),'N/A'),10) diff
 from (
select deptno,ename,sal,hiredate,
 lead(sal,cnt-rn+1)over(partition by deptno
 order by hiredate) next_sal
 from (
select deptno,ename,sal,hiredate,
 count(*)over(partition by deptno,hiredate) cnt,
 row_number()over(partition by deptno,hiredate order by sal) rn
 from emp
 where deptno=10
)
)

DEPTNO ENAME SAL HIREDATE DIFF
------ ------ ----- ----------- ----------
 10 CLARK 2450 09-JUN-2006 1450
 10 ant 1000 17-NOV-2006 -300
 10 joe 1500 17-NOV-2006 200
 10 jim 1600 17-NOV-2006 300
 10 jon 1700 17-NOV-2006 400
 10 KING 5000 17-NOV-2006 3700
 10 MILLER 1300 23-JAN-2007 N/A

Now the solution is correct. As you can see, all the employees hired on November 17
now have their salaries compared with MILLER’s salary. Inspecting the results,
employee ANT now has a value of –300 for DIFF, which is what we were hoping for.
If it isn’t immediately obvious, the expression passed to LEAD OVER; CNT-RN+1 is
simply the distance from each employee hired on November 17 to MILLER. Consider
the following inline view, which shows the values for CNT and RN:

select deptno,ename,sal,hiredate,
 count(*)over(partition by deptno,hiredate) cnt,
 row_number()over(partition by deptno,hiredate order by sal) rn
 from emp
 where deptno=10

10.2 Finding Differences Between Rows in the Same Group or Partition | 321

DEPTNO ENAME SAL HIREDATE CNT RN
------ ------ ----- ----------- ---------- ----------
 10 CLARK 2450 09-JUN-2006 1 1
 10 ant 1000 17-NOV-2006 5 1
 10 joe 1500 17-NOV-2006 5 2
 10 jim 1600 17-NOV-2006 5 3
 10 jon 1700 17-NOV-2006 5 4
 10 KING 5000 17-NOV-2006 5 5
 10 MILLER 1300 23-JAN-2007 1 1

The value for CNT represents, for each employee with a duplicate HIREDATE, how
many duplicates there are in total for their HIREDATE. The value for RN represents a
ranking for the employees in DEPTNO 10. The rank is partitioned by DEPTNO and
HIREDATE so only employees with a HIREDATE that another employee has will
have a value greater than one. The ranking is sorted by SAL (this is arbitrary; SAL is
convenient, but we could have just as easily chosen EMPNO). Now that you know
how many total duplicates there are and you have a ranking of each duplicate, the dis‐
tance to MILLER is simply the total number of duplicates minus the current rank
plus one (CNT-RN+1). The results of the distance calculation and its effect on LEAD
OVER are shown here:

select deptno,ename,sal,hiredate,
 lead(sal)over(partition by deptno
 order by hiredate) incorrect,
 cnt-rn+1 distance,
 lead(sal,cnt-rn+1)over(partition by deptno
 order by hiredate) correct
 from (
select deptno,ename,sal,hiredate,
 count(*)over(partition by deptno,hiredate) cnt,
 row_number()over(partition by deptno,hiredate
 order by sal) rn
 from emp
 where deptno=10
)

DEPTNO ENAME SAL HIREDATE INCORRECT DISTANCE CORRECT
------ ------ ----- ----------- ---------- ---------- ----------
 10 CLARK 2450 09-JUN-2006 1000 1 1000
 10 ant 1000 17-NOV-2006 1500 5 1300
 10 joe 1500 17-NOV-2006 1600 4 1300
 10 jim 1600 17-NOV-2006 1700 3 1300
 10 jon 1700 17-NOV-2006 5000 2 1300
 10 KING 5000 17-NOV-2006 1300 1 1300
 10 MILLER 1300 23-JAN-2007 1

Now you can clearly see the effect that you have when you pass the correct distance to
LEAD OVER. The rows for INCORRECT represent the values returned by LEAD
OVER using a default distance of one. The rows for CORRECT represent the values
returned by LEAD OVER using the proper distance for each employee with a

322 | Chapter 10: Working with Ranges

duplicate HIREDATE to MILLER. At this point, all that is left is to find the difference
between CORRECT and SAL for each row, which has already been shown.

10.3 Locating the Beginning and End of a Range of
Consecutive Values
Problem
This recipe is an extension of the prior recipe, and it uses the same view V from the
prior recipe. Now that you’ve located the ranges of consecutive values, you want to
find just their start and end points. Unlike the prior recipe, if a row is not part of a set
of consecutive values, you still want to return it. Why? Because such a row represents
both the beginning and end of its range. Using the data from view V:

select *
 from V

PROJ_ID PROJ_START PROJ_END
------- ----------- -----------
 1 01-JAN-2020 02-JAN-2020
 2 02-JAN-2020 03-JAN-2020
 3 03-JAN-2020 04-JAN-2020
 4 04-JAN-2020 05-JAN-2020
 5 06-JAN-2020 07-JAN-2020
 6 16-JAN-2020 17-JAN-2020
 7 17-JAN-2020 18-JAN-2020
 8 18-JAN-2020 19-JAN-2020
 9 19-JAN-2020 20-JAN-2020
 10 21-JAN-2020 22-JAN-2020
 11 26-JAN-2020 27-JAN-2020
 12 27-JAN-2020 28-JAN-2020
 13 28-JAN-2020 29-JAN-2020
 14 29-JAN-2020 30-JAN-2020

you want the final result set to be as follows:

PROJ_GRP PROJ_START PROJ_END
-------- ----------- -----------
 1 01-JAN-2020 05-JAN-2020
 2 06-JAN-2020 07-JAN-2020
 3 16-JAN-2020 20-JAN-2020
 4 21-JAN-2020 22-JAN-2020
 5 26-JAN-2020 30-JAN-2020

10.3 Locating the Beginning and End of a Range of Consecutive Values | 323

Solution
This problem is a bit more involved than its predecessor. First, you must identify
what the ranges are. A range of rows is defined by the values for PROJ_START and
PROJ_END. For a row to be considered “consecutive” or part of a group, its
PROJ_START value must equal the PROJ_END value of the row before it. In the case
where a row’s PROJ_START value does not equal the prior row’s PROJ_END value
and its PROJ_END value does not equal the next row’s PROJ_START value, this is an
instance of a single row group. Once you have identify the ranges, you need to be able
to group the rows in these ranges together (into groups) and return only their start
and end points.

Examine the first row of the desired result set. The PROJ_START is the PROJ_
START for PROJ_ID 1 from view V, and the PROJ_END is the PROJ_END for
PROJ_ID 4 from view V. Despite the fact that PROJ_ID 4 does not have a consecutive
value following it, it is the last of a range of consecutive values, and thus it is included
in the first group.

The most straightforward approach for this problem is to use the LAG OVER win‐
dow function. Use LAG OVER to determine whether each prior row’s PROJ_END
equals the current row’s PROJ_START to help place the rows into groups. Once they
are grouped, use the aggregate functions MIN and MAX to find their start and end
points:

 1 select proj_grp, min(proj_start), max(proj_end)
 2 from (
 3 select proj_id,proj_start,proj_end,
 4 sum(flag)over(order by proj_id) proj_grp
 5 from (
 6 select proj_id,proj_start,proj_end,
 7 case when
 8 lag(proj_end)over(order by proj_id) = proj_start
 9 then 0 else 1
10 end flag
11 from V
12) alias1
13) alias2
14 group by proj_grp

Discussion
The window function LAG OVER is extremely useful in this situation. You can exam‐
ine each prior row’s PROJ_END value without a self-join, without a scalar subquery,
and without a view. The results of the LAG OVER function without the CASE expres‐
sion are as follows:

324 | Chapter 10: Working with Ranges

select proj_id,proj_start,proj_end,
 lag(proj_end)over(order by proj_id) prior_proj_end
 from V

PROJ_ID PROJ_START PROJ_END PRIOR_PROJ_END
------- ----------- ----------- --------------
 1 01-JAN-2020 02-JAN-2020
 2 02-JAN-2020 03-JAN-2020 02-JAN-2020
 3 03-JAN-2020 04-JAN-2020 03-JAN-2020
 4 04-JAN-2020 05-JAN-2020 04-JAN-2020
 5 06-JAN-2020 07-JAN-2020 05-JAN-2020
 6 16-JAN-2020 17-JAN-2020 07-JAN-2020
 7 17-JAN-2020 18-JAN-2020 17-JAN-2020
 8 18-JAN-2020 19-JAN-2020 18-JAN-2020
 9 19-JAN-2020 20-JAN-2020 19-JAN-2020
 10 21-JAN-2020 22-JAN-2020 20-JAN-2020
 11 26-JAN-2020 27-JAN-2020 22-JAN-2020
 12 27-JAN-2020 28-JAN-2020 27-JAN-2020
 13 28-JAN-2020 29-JAN-2020 28-JAN-2020
 14 29-JAN-2020 30-JAN-2020 29-JAN-2020

The CASE expression in the complete solution simply compares the value returned
by LAG OVER to the current row’s PROJ_START value; if they are the same, return
0, else return 1. The next step is to create a running total on the zeros and ones
returned by the CASE expression to put each row into a group. The results of the
running total are shown here:

select proj_id,proj_start,proj_end,
 sum(flag)over(order by proj_id) proj_grp
 from (
select proj_id,proj_start,proj_end,
 case when
 lag(proj_end)over(order by proj_id) = proj_start
 then 0 else 1
 end flag
 from V
)

PROJ_ID PROJ_START PROJ_END PROJ_GRP
------- ----------- ----------- ----------
 1 01-JAN-2020 02-JAN-2020 1
 2 02-JAN-2020 03-JAN-2020 1
 3 03-JAN-2020 04-JAN-2020 1
 4 04-JAN-2020 05-JAN-2020 1
 5 06-JAN-2020 07-JAN-2020 2
 6 16-JAN-2020 17-JAN-2020 3
 7 17-JAN-2020 18-JAN-2020 3
 8 18-JAN-2020 19-JAN-2020 3
 9 19-JAN-2020 20-JAN-2020 3
 10 21-JAN-2020 22-JAN-2020 4

10.3 Locating the Beginning and End of a Range of Consecutive Values | 325

 11 26-JAN-2020 27-JAN-2020 5
 12 27-JAN-2020 28-JAN-2020 5
 13 28-JAN-2020 29-JAN-2020 5
 14 29-JAN-2020 30-JAN-2020 5

Now that each row has been placed into a group, simply use the aggregate functions
MIN and MAX on PROJ_START and PROJ_END, respectively, and group by the val‐
ues created in the PROJ_GRP running total column.

10.4 Filling in Missing Values in a Range of Values
Problem
You want to return the number of employees hired each year for the entire decade of
the 2005s, but there are some years in which no employees were hired. You would like
to return the following result set:

YR CNT
---- ----------
2005 1
2006 10
2007 2
2008 1
2009 0
2010 0
2011 0
2012 0
2013 0
2014 0

Solution
The trick to this solution is returning zeros for years that saw no employees hired. If
no employee was hired in a given year, then no rows for that year will exist in table
EMP. If the year does not exist in the table, how can you return a count, any count,
even zero? The solution requires you to outer join. You must supply a result set that
returns all the years you want to see, and then perform a count against table EMP to
see if there were any employees hired in each of those years.

DB2
Use table EMP as a pivot table (because it has 14 rows) and the built-in function
YEAR to generate one row for each year in the decade of 2005. Outer join to table
EMP and count how many employees were hired each year:

 1 select x.yr, coalesce(y.cnt,0) cnt
 2 from (
 3 select year(min(hiredate)over()) -
 4 mod(year(min(hiredate)over()),10) +

326 | Chapter 10: Working with Ranges

 5 row_number()over()-1 yr
 6 from emp fetch first 10 rows only
 7) x
 8 left join
 9 (
10 select year(hiredate) yr1, count(*) cnt
11 from emp
12 group by year(hiredate)
13) y
14 on (x.yr = y.yr1)

Oracle
The Oracle solution follows the same structure as the DB2 solution, with only the dif‐
ferences in the syntax Oracle handles causing a distinct solution to be required:

 1 select x.yr, coalesce(cnt,0) cnt
 2 from (
 3 select extract(year from min(hiredate)over()) -
 4 mod(extract(year from min(hiredate)over()),10) +
 5 rownum-1 yr
 6 from emp
 7 where rownum <= 10
 8) x
 9 left join
10 (
11 select to_number(to_char(hiredate,'YYYY')) yr, count(*) cnt
12 from emp
13 group by to_number(to_char(hiredate,'YYYY'))
14) y
15 on (x.yr = y.yr)

PostgreSQL and MySQL
Use table T10 as a pivot table (because it has 10 rows) and the built-in function
EXTRACT to generate one row for each year in the decade of 2005. Outer join to
table EMP and count how many employees were hired each year:

 1 select y.yr, coalesce(x.cnt,0) as cnt
 2 from (
 3 selectmin_year-mod(cast(min_year as int),10)+rn as yr
 4 from (
 5 select (select min(extract(year from hiredate))
 6 from emp) as min_year,
 7 id-1 as rn
 8 from t10
 9) a
10) y
11 left join
12 (
13 select extract(year from hiredate) as yr, count(*) as cnt
14 from emp

10.4 Filling in Missing Values in a Range of Values | 327

15 group by extract(year from hiredate)
16) x
17 on (y.yr = x.yr)

SQL Server
Use table EMP as a pivot table (because it has 14 rows) and the built-in function
YEAR to generate one row for each year in the decade of 2005. Outer join to table
EMP and count how many employees were hired each year:

 1 select x.yr, coalesce(y.cnt,0) cnt
 2 from (
 3 select top (10)
 4 (year(min(hiredate)over()) -
 5 year(min(hiredate)over())%10)+
 6 row_number()over(order by hiredate)-1 yr
 7 from emp
 8) x
 9 left join
10 (
11 select year(hiredate) yr, count(*) cnt
12 from emp
13 group by year(hiredate)
14) y
15 on (x.yr = y.yr)

Discussion
Despite the difference in syntax, the approach is the same for all solutions. Inline
view X returns each year in the decade of the ’80s by first finding the year of the earli‐
est HIREDATE. The next step is to add RN–1 to the difference between the earliest
year and the earliest year modulus ten. To see how this works, simply execute inline
view X and return each of the values involved separately. Listed here is the result set
for inline view X using the window function MIN OVER (DB2, Oracle, SQL Server)
and a scalar subquery (MySQL, PostgreSQL):

select year(min(hiredate)over()) -
 mod(year(min(hiredate)over()),10) +
 row_number()over()-1 yr,
 year(min(hiredate)over()) min_year,
 mod(year(min(hiredate)over()),10) mod_yr,
 row_number()over()-1 rn
 from emp fetch first 10 rows only

 YR MIN_YEAR MOD_YR RN
---- ---------- ---------- ----------
2005 2005 0 0
2006 2005 0 1
2007 2005 0 2
2008 2005 0 3
1984 2005 0 4

328 | Chapter 10: Working with Ranges

2010 2005 0 5
2011 2005 0 6
2012 2005 0 7
2013 2005 0 8
2014 2005 0 9

select min_year-mod(min_year,10)+rn as yr,
 min_year,
 mod(min_year,10) as mod_yr
 rn
 from (
select (select min(extract(year from hiredate))
 from emp) as min_year,
 id-1 as rn
 from t10
) x

 YR MIN_YEAR MOD_YR RN
---- ---------- ---------- ----------
2005 2005 0 0
2006 2005 0 1
2007 2005 0 2
2008 2005 0 3
2009 2005 0 4
2010 2005 0 5
2011 2005 0 6
2012 2005 0 7
2013 2005 0 8
2014 2005 0 9

Inline view Y returns the year for each HIREDATE and the number of employees
hired during that year:

select year(hiredate) yr, count(*) cnt
 from emp
 group by year(hiredate)

 YR CNT
----- ----------
 2005 1
 2006 10
 2007 2
 2008 1

Finally, outer join inline view Y to inline view X so that every year is returned even if
there are no employees hired.

10.4 Filling in Missing Values in a Range of Values | 329

10.5 Generating Consecutive Numeric Values
Problem
You would like to have a “row source generator” available to you in your queries. Row
source generators are useful for queries that require pivoting. For example, you want
to return a result set such as the following, up to any number of rows that you specify:

ID

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
…

If your RDBMS provides built-in functions for returning rows dynamically, you do
not need to create a pivot table in advance with a fixed number of rows. That’s why a
dynamic row generator can be so handy. Otherwise, you must use a traditional pivot
table with a fixed number of rows (that may not always be enough) to generate rows
when needed.

Solution
This solution shows how to return 10 rows of increasing numbers starting from 1.
You can easily adapt the solution to return any number of rows.

The ability to return increasing values from one opens the door to many other solu‐
tions. For example, you can generate numbers to add to dates in order to generate
sequences of days. You can also use such numbers to parse through strings.

DB2 and SQL Server
Use the recursive WITH clause to generate a sequence of rows with incrementing val‐
ues. Using a recursive CTE will in fact work with the majority of RDBMSs today:

 1 with x (id)
 2 as (
 3 select 1
 4 union all
 5 select id+1
 6 from x
 7 where id+1 <= 10

330 | Chapter 10: Working with Ranges

 8)
 9 select * from x

Oracle
In Oracle Database you can generate rows using the MODEL clause:

1 select array id
2 from dual
3 model
4 dimension by (0 idx)
5 measures(1 array)
6 rules iterate (10) (
7 array[iteration_number] = iteration_number+1
8)

PostgreSQL
Use the handy function GENERATE_SERIES, which is designed for the express pur‐
pose of generating rows:

1 select id
2 from generate_series (1, 10) x(id)

Discussion

DB2 and SQL Server
The recursive WITH clause increments ID (which starts at one) until the WHERE
clause is satisfied. To kick things off, you must generate one row having the value 1.
You can do this by selecting 1 from a one-row table or, in the case of DB2, by using
the VALUES clause to create a one-row result set.

Oracle
In the MODEL clause solution, there is an explicit ITERATE command that allows
you to generate multiple rows. Without the ITERATE clause, only one row will be
returned, since DUAL has only one row. For example:

select array id
 from dual
model
 dimension by (0 idx)
 measures(1 array)
 rules ()

 ID
 --
 1

10.5 Generating Consecutive Numeric Values | 331

The MODEL clause not only allows you array access to rows, it allows you to easily
“create” or return rows that are not in the table you are selecting against. In this solu‐
tion, IDX is the array index (location of a specific value in the array) and ARRAY
(aliased ID) is the “array” of rows. The first row defaults to 1 and can be referenced
with ARRAY[0]. Oracle provides the function ITERATION_NUMBER so you can
track the number of times you’ve iterated. The solution iterates 10 times, causing
ITERATION_NUMBER to go from 0 to 9. Adding one to each of those values yields
the results 1 through 10.

It may be easier to visualize what’s happening with the model clause if you execute the
following query:

select 'array['||idx||'] = '||array as output
 from dual
 model
 dimension by (0 idx)
 measures(1 array)
 rules iterate (10) (
 array[iteration_number] = iteration_number+1
)

OUTPUT

array[0] = 1
array[1] = 2
array[2] = 3
array[3] = 4
array[4] = 5
array[5] = 6
array[6] = 7
array[7] = 8
array[8] = 9
array[9] = 10

PostgreSQL
All the work is done by the function GENERATE_SERIES. The function accepts
three parameters, all numeric values. The first parameter is the start value, the second
parameter is the ending value, and the third parameter is an optional “step” value
(how much each value is incremented by). If you do not pass a third parameter, the
increment defaults to one.

The GENERATE_SERIES function is flexible enough so that you do not have to
hardcode parameters. For example, if you wanted to return 5 rows starting from
value 10 and ending with value 30, incrementing by 5 such that the result set is the
following:

332 | Chapter 10: Working with Ranges

 ID

 10
 15
 20
 25
 30

you can be creative and do something like this:

select id
 from generate_series(
 (select min(deptno) from emp),
 (select max(deptno) from emp),
 5
) x(id)

Notice here that the actual values passed to GENERATE_SERIES are not known
when the query is written. Instead, they are generated by subqueries when the main
query executes.

10.6 Summing Up
Queries that take into account ranges are one of the most common requests from
business users—they are a natural consquence of the way that businesses operate. At
least some of the time, however, a degree of dexterity is needed to apply the range
correctly, and the recipes in this chapter should demonstrate how to apply that
dexterity.

10.6 Summing Up | 333

CHAPTER 11

Advanced Searching

In a very real sense, this entire book so far has been about searching. You’ve seen all
sorts of queries that use joins and WHERE clauses and grouping techniques to search
out and return the results you need. Some types of searching operations, though,
stand apart from others in that they represent a different way of thinking about
searching. Perhaps you’re displaying a result set one page at a time. Half of that prob‐
lem is to identify (search for) the entire set of records that you want to display. The
other half of that problem is to repeatedly search for the next page to display as a user
cycles through the records on a display. Your first thought may not be to think of pag‐
ination as a searching problem, but it can be thought of that way, and it can be solved
that way; that is the type of searching solution this chapter is all about.

11.1 Paginating Through a Result Set
Problem
You want to paginate or “scroll through” a result set. For example, you want to return
the first five salaries from table EMP, then the next five, and so forth. Your goal is to
allow a user to view five records at a time, scrolling forward with each click of a Next
button.

Solution
Because there is no concept of first, last, or next in SQL, you must impose order on
the rows you are working with. Only by imposing order can you accurately return
ranges of records.

335

Use the window function ROW_NUMBER OVER to impose order, and specify the
window of records that you want returned in your WHERE clause. For example, use
this to return rows 1 through 5:

select sal
 from (
select row_number() over (order by sal) as rn,
 sal
 from emp
) x
 where rn between 1 and 5

 SAL

 800
 950
1100
1250
1250

Then use this to return rows 6 through 10:

select sal
 from (
select row_number() over (order by sal) as rn,
 sal
 from emp
) x
 where rn between 6 and 10

 SAL

 1300
 1500
 1600
 2450
 2850

You can return any range of rows that you want simply by changing the WHERE
clause of your query.

Discussion
The window function ROW_NUMBER OVER in inline view X will assign a unique
number to each salary (in increasing order starting from 1). Listed here is the result
set for inline view X:

select row_number() over (order by sal) as rn,
 sal
 from emp

336 | Chapter 11: Advanced Searching

RN SAL
-- ----------
 1 800
 2 950
 3 1100
 4 1250
 5 1250
 6 1300
 7 1500
 8 1600
 9 2450
10 2850
11 2975
12 3000
13 3000
14 5000

Once a number has been assigned to a salary, simply pick the range you want to
return by specifying values for RN.

For Oracle users, an alternative: you can use ROWNUM instead of ROW NUMBER
OVER to generate sequence numbers for the rows:

select sal
 from (
select sal, rownum rn
 from (
select sal
 from emp
 order by sal
)
)
 where rn between 6 and 10

 SAL

 1300
 1500
 1600
 2450
 2850

Using ROWNUM forces you into writing an extra level of subquery. The innermost
subquery sorts rows by salary. The next outermost subquery applies row numbers to
those rows, and, finally, the very outermost SELECT returns the data you are after.

11.1 Paginating Through a Result Set | 337

11.2 Skipping n Rows from a Table
Problem
You want a query to return every other employee in table EMP; you want the first
employee, third employee, and so forth. For example, from the following result set:

ENAME

ADAMS
ALLEN
BLAKE
CLARK
FORD
JAMES
JONES
KING
MARTIN
MILLER
SCOTT
SMITH
TURNER
WARD

you want to return the following:

ENAME

ADAMS
BLAKE
FORD
JONES
MARTIN
SCOTT
TURNER

Solution
To skip the second or fourth or nth row from a result set, you must impose order on
the result set; otherwise, there is no concept of first or next, second, or fourth.

Use the window function ROW_NUMBER OVER to assign a number to each row,
which you can then use in conjunction with the modulo function to skip unwanted
rows. The modulo function is MOD for DB2, MySQL, PostgreSQL, and Oracle. In
SQL Server, use the percent (%) operator. The following example uses MOD to skip
even-numbered rows:

1 select ename
2 from (
3 select row_number() over (order by ename) rn,
4 ename

338 | Chapter 11: Advanced Searching

5 from emp
6) x
7 where mod(rn,2) = 1

Discussion
The call to the window function ROW_NUMBER OVER in inline view X will assign
a rank to each row (no ties, even with duplicate names). The results are shown here:

select row_number() over (order by ename) rn, ename
 from emp

RN ENAME
-- --------
 1 ADAMS
 2 ALLEN
 3 BLAKE
 4 CLARK
 5 FORD
 6 JAMES
 7 JONES
 8 KING
 9 MARTIN
10 MILLER
11 SCOTT
12 SMITH
13 TURNER
14 WARD

The last step is to simply use modulus to skip every other row.

11.3 Incorporating OR Logic When Using Outer Joins
Problem
You want to return the name and department information for all employees in
departments 10 and 20 along with department information for departments 30 and
40 (but no employee information). Your first attempt looks like this:

select e.ename, d.deptno, d.dname, d.loc
 from dept d, emp e
 where d.deptno = e.deptno
 and (e.deptno = 10 or e.deptno = 20)
 order by 2

ENAME DEPTNO DNAME LOC
------- ---------- -------------- -----------
CLARK 10 ACCOUNTING NEW YORK
KING 10 ACCOUNTING NEW YORK
MILLER 10 ACCOUNTING NEW YORK
SMITH 20 RESEARCH DALLAS

11.3 Incorporating OR Logic When Using Outer Joins | 339

ADAMS 20 RESEARCH DALLAS
FORD 20 RESEARCH DALLAS
SCOTT 20 RESEARCH DALLAS
JONES 20 RESEARCH DALLAS

Because the join in this query is an inner join, the result set does not include depart‐
ment information for DEPTNOs 30 and 40.

You attempt to outer join EMP to DEPT with the following query, but you still do not
get the correct results:

select e.ename, d.deptno, d.dname, d.loc
 from dept d left join emp e
 on (d.deptno = e.deptno)
 where e.deptno = 10
 or e.deptno = 20
 order by 2

ENAME DEPTNO DNAME LOC
------- ---------- ------------ -----------
CLARK 10 ACCOUNTING NEW YORK
KING 10 ACCOUNTING NEW YORK
MILLER 10 ACCOUNTING NEW YORK
SMITH 20 RESEARCH DALLAS
ADAMS 20 RESEARCH DALLAS
FORD 20 RESEARCH DALLAS
SCOTT 20 RESEARCH DALLAS
JONES 20 RESEARCH DALLAS

Ultimately, you would like the result set to be the following:

ENAME DEPTNO DNAME LOC
------- ---------- ------------ ---------
CLARK 10 ACCOUNTING NEW YORK
KING 10 ACCOUNTING NEW YORK
MILLER 10 ACCOUNTING NEW YORK
SMITH 20 RESEARCH DALLAS
JONES 20 RESEARCH DALLAS
SCOTT 20 RESEARCH DALLAS
ADAMS 20 RESEARCH DALLAS
FORD 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

Solution
Move the OR condition into the JOIN clause:

1 select e.ename, d.deptno, d.dname, d.loc
2 from dept d left join emp e
3 on (d.deptno = e.deptno
4 and (e.deptno=10 or e.deptno=20))
5 order by 2

340 | Chapter 11: Advanced Searching

Alternatively, you can filter on EMP.DEPTNO first in an inline view and then outer
join:

1 select e.ename, d.deptno, d.dname, d.loc
2 from dept d
3 left join
4 (select ename, deptno
5 from emp
6 where deptno in (10, 20)
7) e on (e.deptno = d.deptno)
8 order by 2

Discussion

DB2, MySQL, PostgreSQL, and SQL Server
Two solutions are given for these products. The first moves the OR condition into the
JOIN clause, making it part of the join condition. By doing that, you can filter the
rows returned from EMP without losing DEPTNOs 30 and 40 from DEPT.

The second solution moves the filtering into an inline view. Inline view E filters on
EMP.DEPTNO and returns EMP rows of interest. These are then outer joined to
DEPT. Because DEPT is the anchor table in the outer join, all departments, including
30 and 40, are returned.

11.4 Determining Which Rows Are Reciprocals
Problem
You have a table containing the results of two tests, and you want to determine which
pair of scores are reciprocals. Consider the following result set from view V:

select *
 from V

TEST1 TEST2
----- ----------
 20 20
 50 25
 20 20
 60 30
 70 90
 80 130
 90 70
 100 50
 110 55
 120 60
 130 80
 140 70

11.4 Determining Which Rows Are Reciprocals | 341

Examining these results, you see that a test score for TEST1 of 70 and TEST2 of 90 is
a reciprocal (there exists a score of 90 for TEST1 and a score of 70 for TEST2). Like‐
wise, the scores of 80 for TEST1 and 130 for TEST2 are reciprocals of 130 for TEST1
and 80 for TEST2. Additionally, the scores of 20 for TEST1 and 20 for TEST2 are
reciprocals of 20 for TEST2 and 20 for TEST1. You want to identify only one set of
reciprocals. You want your result set to be this:

TEST1 TEST2
----- ---------
 20 20
 70 90
 80 130

not this:

TEST1 TEST2
----- ---------
 20 20
 20 20
 70 90
 80 130
 90 70
 130 80

Solution
Use a self-join to identify rows where TEST1 equals TEST2, and vice versa:

select distinct v1.*
 from V v1, V v2
 where v1.test1 = v2.test2
 and v1.test2 = v2.test1
 and v1.test1 <= v1.test2

Discussion
The self-join results in a Cartesian product in which every TEST1 score can be com‐
pared against every TEST2 score, and vice versa. The following query will identify the
reciprocals:

select v1.*
 from V v1, V v2
 where v1.test1 = v2.test2
 and v1.test2 = v2.test1

TEST1 TEST2
----- ----------
 20 20
 20 20
 20 20
 20 20

342 | Chapter 11: Advanced Searching

 90 70
 130 80
 70 90
 80 130

The use of DISTINCT ensures that duplicate rows are removed from the final result
set. The final filter in the WHERE clause (and V1.TEST1 <= V1.TEST2) will ensure
that only one pair of reciprocals (where TEST1 is the smaller or equal value) is
returned.

11.5 Selecting the Top n Records
Problem
You want to limit a result set to a specific number of records based on a ranking of
some sort. For example, you want to return the names and salaries of the employees
with the top five salaries.

Solution
The solution to this problem depends on the use of a window function. Which win‐
dow function you will use depends on how you want to deal with ties. The following
solution uses DENSE_RANK so that each tie in salary will count as only one against
the total:

1 select ename,sal
2 from (
3 select ename, sal,
4 dense_rank() over (order by sal desc) dr
5 from emp
6) x
7 where dr <= 5

The total number of rows returned may exceed five, but there will be only five dis‐
tinct salaries. Use ROW_NUMBER OVER if you want to return five rows regardless
of ties (as no ties are allowed with this function).

Discussion
The window function DENSE_RANK OVER in inline view X does all the work. The
following example shows the entire table after applying that function:

select ename, sal,
 dense_rank() over (order by sal desc) dr
 from emp

ENAME SAL DR
------- ------ ----------
KING 5000 1

11.5 Selecting the Top n Records | 343

SCOTT 3000 2
FORD 3000 2
JONES 2975 3
BLAKE 2850 4
CLARK 2450 5
ALLEN 1600 6
TURNER 1500 7
MILLER 1300 8
WARD 1250 9
MARTIN 1250 9
ADAMS 1100 10
JAMES 950 11
SMITH 800 12

Now it’s just a matter of returning rows where DR is less than or equal to five.

11.6 Finding Records with the Highest and Lowest Values
Problem
You want to find “extreme” values in your table. For example, you want to find the
employees with the highest and lowest salaries in table EMP.

Solution

DB2, Oracle, and SQL Server
Use the window functions MIN OVER and MAX OVER to find the lowest and high‐
est salaries, respectively:

1 select ename
2 from (
3 select ename, sal,
4 min(sal)over() min_sal,
5 max(sal)over() max_sal
6 from emp
7) x
8 where sal in (min_sal,max_sal)

Discussion

DB2, Oracle, and SQL Server
The window functions MIN OVER and MAX OVER allow each row to have access to
the lowest and highest salaries. The result set from inline view X is as follows:

select ename, sal,
 min(sal)over() min_sal,
 max(sal)over() max_sal
 from emp

344 | Chapter 11: Advanced Searching

ENAME SAL MIN_SAL MAX_SAL
------- ------ ---------- ----------
SMITH 800 800 5000
ALLEN 1600 800 5000
WARD 1250 800 5000
JONES 2975 800 5000
MARTIN 1250 800 5000
BLAKE 2850 800 5000
CLARK 2450 800 5000
SCOTT 3000 800 5000
KING 5000 800 5000
TURNER 1500 800 5000
ADAMS 1100 800 5000
JAMES 950 800 5000
FORD 3000 800 5000
MILLER 1300 800 5000

Given this result set, all that’s left is to return rows where SAL equals MIN_SAL or
MAX_SAL.

11.7 Investigating Future Rows
Problem
You want to find any employees who earn less than the employee hired immediately
after them. Based on the following result set:

ENAME SAL HIREDATE
---------- ---------- ---------
SMITH 800 17-DEC-80
ALLEN 1600 20-FEB-81
WARD 1250 22-FEB-81
JONES 2975 02-APR-81
BLAKE 2850 01-MAY-81
CLARK 2450 09-JUN-81
TURNER 1500 08-SEP-81
MARTIN 1250 28-SEP-81
KING 5000 17-NOV-81
JAMES 950 03-DEC-81
FORD 3000 03-DEC-81
MILLER 1300 23-JAN-82
SCOTT 3000 09-DEC-82
ADAMS 1100 12-JAN-83

SMITH, WARD, MARTIN, JAMES, and MILLER earn less than the person hired
immediately after they were hired, so those are the employees you want to find with a
query.

11.7 Investigating Future Rows | 345

Solution
The first step is to define what “future” means. You must impose order on your result
set to be able to define a row as having a value that is “later” than another.

You can use the LEAD OVER window function to access the salary of the next
employee that was hired. It’s then a simple matter to check whether that salary is
larger:

1 select ename, sal, hiredate
2 from (
3 select ename, sal, hiredate,
4 lead(sal)over(order by hiredate) next_sal
5 from emp
6) alias
7 where sal < next_sal

Discussion
The window function LEAD OVER is perfect for a problem such as this one. It not
only makes for a more readable query than the solution for the other products, LEAD
OVER also leads to a more flexible solution because an argument can be passed to it
that will determine how many rows ahead it should look (by default one). Being able
to leap ahead more than one row is important in the case of duplicates in the column
you are ordering by.

The following example shows how easy it is to use LEAD OVER to look at the salary
of the “next” employee hired:

select ename, sal, hiredate,
 lead(sal)over(order by hiredate) next_sal
 from emp

ENAME SAL HIREDATE NEXT_SAL
------- ------ --------- ----------
SMITH 800 17-DEC-80 1600
ALLEN 1600 20-FEB-81 1250
WARD 1250 22-FEB-81 2975
JONES 2975 02-APR-81 2850
BLAKE 2850 01-MAY-81 2450
CLARK 2450 09-JUN-81 1500
TURNER 1500 08-SEP-81 1250
MARTIN 1250 28-SEP-81 5000
KING 5000 17-NOV-81 950
JAMES 950 03-DEC-81 3000
FORD 3000 03-DEC-81 1300
MILLER 1300 23-JAN-82 3000
SCOTT 3000 09-DEC-82 1100
ADAMS 1100 12-JAN-83

346 | Chapter 11: Advanced Searching

The final step is to return only rows where SAL is less than NEXT_SAL. Because of
LEAD OVER’s default range of one row, if there had been duplicates in table EMP—
in particular, multiple employees hired on the same date—their SAL would be com‐
pared. This may or may not have been what you intended. If your goal is to compare
the SAL of each employee with SAL of the next employee hired, excluding other
employees hired on the same day, you can use the following solution as an alternative:

select ename, sal, hiredate
 from (
select ename, sal, hiredate,
 lead(sal,cnt-rn+1)over(order by hiredate) next_sal
 from (
select ename,sal,hiredate,
 count(*)over(partition by hiredate) cnt,
 row_number()over(partition by hiredate order by empno) rn
 from emp
)
)
 where sal < next_sal

The idea behind this solution is to find the distance from the current row to the row
it should be compared with. For example, if there are five duplicates, the first of the
five needs to leap five rows to get to its correct LEAD OVER row. The value for CNT
represents, for each employee with a duplicate HIREDATE, how many duplicates
there are in total for their HIREDATE. The value for RN represents a ranking for the
employees in DEPTNO 10. The rank is partitioned by HIREDATE so only employees
with a HIREDATE that another employee has will have a value greater than one. The
ranking is sorted by EMPNO (this is arbitrary). Now that you know how many total
duplicates there are and you have a ranking of each duplicate, the distance to the next
HIREDATE is simply the total number of duplicates minus the current rank plus one
(CNT-RN+1).

See Also
For additional examples of using LEAD OVER in the presence of duplicates (and a
more thorough discussion of this technique), see Recipe 8.7 and Recipe 10.2.

11.8 Shifting Row Values
Problem
You want to return each employee’s name and salary along with the next highest and
lowest salaries. If there are no higher or lower salaries, you want the results to wrap
(first SAL shows last SAL and vice versa). You want to return the following result set:

11.8 Shifting Row Values | 347

ENAME SAL FORWARD REWIND
---------- ---------- ---------- ----------
SMITH 800 950 5000
JAMES 950 1100 800
ADAMS 1100 1250 950
WARD 1250 1250 1100
MARTIN 1250 1300 1250
MILLER 1300 1500 1250
TURNER 1500 1600 1300
ALLEN 1600 2450 1500
CLARK 2450 2850 1600
BLAKE 2850 2975 2450
JONES 2975 3000 2850
SCOTT 3000 3000 2975
FORD 3000 5000 3000
KING 5000 800 3000

Solution
The window functions LEAD OVER and LAG OVER make this problem easy to
solve and the resulting queries very readable. Use the window functions LAG OVER
and LEAD OVER to access prior and next rows relative to the current row:

1 select ename,sal,
2 coalesce(lead(sal)over(order by sal),min(sal)over()) forward,
3 coalesce(lag(sal)over(order by sal),max(sal)over()) rewind
4 from emp

Discussion
The window functions LAG OVER and LEAD OVER will (by default and unless
otherwise specified) return values from the row before and after the current row,
respectively. You define what “before” or “after” means in the ORDER BY portion of
the OVER clause. If you examine the solution, the first step is to return the next and
prior rows relative to the current row, ordered by SAL:

select ename,sal,
 lead(sal)over(order by sal) forward,
 lag(sal)over(order by sal) rewind
 from emp

ENAME SAL FORWARD REWIND
---------- ---------- ---------- ----------
SMITH 800 950
JAMES 950 1100 800
ADAMS 1100 1250 950
WARD 1250 1250 1100
MARTIN 1250 1300 1250
MILLER 1300 1500 1250
TURNER 1500 1600 1300

348 | Chapter 11: Advanced Searching

ALLEN 1600 2450 1500
CLARK 2450 2850 1600
BLAKE 2850 2975 2450
JONES 2975 3000 2850
SCOTT 3000 3000 2975
FORD 3000 5000 3000
KING 5000 3000

Notice that REWIND is NULL for employee SMITH, and FORWARD is NULL for
employee KING; that is because those two employees have the lowest and highest sal‐
aries, respectively. The requirement in the “Problem” section should NULL values
exist in FORWARD or REWIND is to “wrap” the results, meaning that for the highest
SAL, FORWARD should be the value of the lowest SAL in the table, and for the low‐
est SAL, REWIND should be the value of the highest SAL in the table. The window
functions MIN OVER and MAX OVER with no partition or window specified (i.e.,
an empty parentheses after the OVER clause) will return the lowest and highest salar‐
ies in the table, respectively. The results are shown here:

select ename,sal,
 coalesce(lead(sal)over(order by sal),min(sal)over()) forward,
 coalesce(lag(sal)over(order by sal),max(sal)over()) rewind
 from emp

ENAME SAL FORWARD REWIND
---------- ---------- ---------- ----------
SMITH 800 950 5000
JAMES 950 1100 800
ADAMS 1100 1250 950
WARD 1250 1250 1100
MARTIN 1250 1300 1250
MILLER 1300 1500 1250
TURNER 1500 1600 1300
ALLEN 1600 2450 1500
CLARK 2450 2850 1600
BLAKE 2850 2975 2450
JONES 2975 3000 2850
SCOTT 3000 3000 2975
FORD 3000 5000 3000
KING 5000 800 3000

Another useful feature of LAG OVER and LEAD OVER is the ability to define how
far forward or back you would like to go. In the example for this recipe, you go only
one row forward or back. If want to move three rows forward and five rows back,
doing so is simple. Just specify the values 3 and 5, as shown here:

select ename,sal,
 lead(sal,3)over(order by sal) forward,
 lag(sal,5)over(order by sal) rewind
 from emp

11.8 Shifting Row Values | 349

ENAME SAL FORWARD REWIND
---------- ---------- ---------- ----------
SMITH 800 1250
JAMES 950 1250
ADAMS 1100 1300
WARD 1250 1500
MARTIN 1250 1600
MILLER 1300 2450 800
TURNER 1500 2850 950
ALLEN 1600 2975 1100
CLARK 2450 3000 1250
BLAKE 2850 3000 1250
JONES 2975 5000 1300
SCOTT 3000 1500
FORD 3000 1600
KING 5000 2450

11.9 Ranking Results
Problem
You want to rank the salaries in table EMP while allowing for ties. You want to return
the following result set:

RNK SAL
--- -------
 1 800
 2 950
 3 1100
 4 1250
 4 1250
 5 1300
 6 1500
 7 1600
 8 2450
 9 2850
 10 2975
 11 3000
 11 3000
 12 5000

Solution
Window functions make ranking queries extremely simple. Three window functions
are particularly useful for ranking: DENSE_RANK OVER, ROW_NUMBER OVER,
and RANK OVER.

Because you want to allow for ties, use the window function DENSE_RANK OVER:

1 select dense_rank() over(order by sal) rnk, sal
2 from emp

350 | Chapter 11: Advanced Searching

Discussion
The window function DENSE_RANK OVER does all the legwork here. In parenthe‐
ses following the OVER keyword you place an ORDER BY clause to specify the order
in which rows are ranked. The solution uses ORDER BY SAL, so rows from EMP are
ranked in ascending order of salary.

11.10 Suppressing Duplicates
Problem
You want to find the different job types in table EMP but do not want to see dupli‐
cates. The result set should be as follows:

JOB

ANALYST
CLERK
MANAGER
PRESIDENT
SALESMAN

Solution
All of the RDBMSs support the keyword DISTINCT, and it arguably is the easiest
mechanism for suppressing duplicates from the result set. However, this recipe will
also cover two additional methods for suppressing duplicates.

The traditional method of using DISTINCT and sometimes GROUP BY certainly
works. The following solution is an alternative that makes use of the window function
ROW_NUMBER OVER:

1 select job
2 from (
3 select job,
4 row_number()over(partition by job order by job) rn
5 from emp
6) x
7 where rn = 1

Traditional alternatives
Use the DISTINCT keyword to suppress duplicates from the result set:

select distinct job
 from emp

11.10 Suppressing Duplicates | 351

Additionally, it is also possible to use GROUP BY to suppress duplicates:

select job
 from emp
 group by job

Discussion

DB2, Oracle, and SQL Server
This solution depends on some outside-the-box thinking about partitioned window
functions. By using PARTITION BY in the OVER clause of ROW_NUMBER, you
can reset the value returned by ROW_NUMBER to 1 whenever a new job is encoun‐
tered. The following results are from inline view X:

select job,
 row_number()over(partition by job order by job) rn
 from emp

JOB RN
--------- ----------
ANALYST 1
ANALYST 2
CLERK 1
CLERK 2
CLERK 3
CLERK 4
MANAGER 1
MANAGER 2
MANAGER 3
PRESIDENT 1
SALESMAN 1
SALESMAN 2
SALESMAN 3
SALESMAN 4

Each row is given an increasing, sequential number, and that number is reset to one
whenever the job changes. To filter out the duplicates, all you must do is keep the
rows where RN is 1.

An ORDER BY clause is mandatory when using ROW_NUMBER OVER (except in
DB2) but doesn’t affect the result. Which job is returned is irrelevant so long as you
return one of each job.

Traditional alternatives
The first solution shows how to use the keyword DISTINCT to suppress duplicates
from a result set. Keep in mind that DISTINCT is applied to the whole SELECT list;

352 | Chapter 11: Advanced Searching

additional columns can and will change the result set. Consider the difference
between these two queries:

select distinct job select distinct job, deptno
 from emp from emp

JOB JOB DEPTNO
--------- --------- ----------
ANALYST ANALYST 20
CLERK CLERK 10
MANAGER CLERK 20
PRESIDENT CLERK 30
SALESMAN MANAGER 10
 MANAGER 20
 MANAGER 30
 PRESIDENT 10
 SALESMAN 30

By adding DEPTNO to the SELECT list, what you return is each DISTINCT pair of
JOB/DEPTNO values from table EMP.

The second solution uses GROUP BY to suppress duplicates. While using GROUP
BY in this way is not uncommon, keep in mind that GROUP BY and DISTINCT are
two very different clauses that are not interchangeable. I’ve included GROUP BY in
this solution for completeness, as you will no doubt come across it at some point.

11.11 Finding Knight Values
Problem
You want return a result set that contains each employee’s name, the department they
work in, their salary, the date they were hired, and the salary of the last employee
hired, in each department. You want to return the following result set:

DEPTNO ENAME SAL HIREDATE LATEST_SAL
------ ---------- ---------- ----------- ----------
 10 MILLER 1300 23-JAN-2007 1300
 10 KING 5000 17-NOV-2006 1300
 10 CLARK 2450 09-JUN-2006 1300
 20 ADAMS 1100 12-JAN-2007 1100
 20 SCOTT 3000 09-DEC-2007 1100
 20 FORD 3000 03-DEC-2006 1100
 20 JONES 2975 02-APR-2006 1100
 20 SMITH 800 17-DEC-2005 1100
 30 JAMES 950 03-DEC-2006 950
 30 MARTIN 1250 28-SEP-2006 950
 30 TURNER 1500 08-SEP-2006 950
 30 BLAKE 2850 01-MAY-2006 950
 30 WARD 1250 22-FEB-2006 950
 30 ALLEN 1600 20-FEB-2006 950

11.11 Finding Knight Values | 353

The values in LATEST_SAL are the “knight values” because the path to find them is
analogous to a knight’s path in the game of chess. You determine the result the way a
knight determines a new location: by jumping to a row and then turning and jumping
to a different column (see Figure 11-1). To find the correct values for LATEST_SAL,
you must first locate (jump to) the row with the latest HIREDATE in each DEPTNO,
and then you select (jump to) the SAL column of that row.

Figure 11-1. A knight value comes from “up and over”

The term knight value was coined by a clever coworker of Antho‐
ny’s, Kay Young. After having him review the recipes for correct‐
ness, Anthony admitted to Kay that he was stumped and could not
come up with a good title. Because you need to initially evaluate
one row and then “jump” and take a value from another, Kay came
up with the term knight value.

Solution

DB2 and SQL Server
Use a CASE expression in a subquery to return the SAL of the last employee hired in
each DEPTNO; for all other salaries, return 0. Use the window function MAX OVER
in the outer query to return the nonzero SAL for each employee’s department:

 1 select deptno,
 2 ename,
 3 sal,
 4 hiredate,
 5 max(latest_sal)over(partition by deptno) latest_sal
 6 from (
 7 select deptno,
 8 ename,
 9 sal,

354 | Chapter 11: Advanced Searching

10 hiredate,
11 case
12 when hiredate = max(hiredate)over(partition by deptno)
13 then sal else 0
14 end latest_sal
15 from emp
16) x
17 order by 1, 4 desc

Oracle
Use the window function MAX OVER to return the highest SAL for each DEPTNO.
Use the functions DENSE_RANK and LAST, while ordering by HIREDATE in the
KEEP clause to return the highest SAL for the latest HIREDATE in a given DEPTNO:

1 select deptno,
2 ename,
3 sal,
4 hiredate,
5 max(sal)
6 keep(dense_rank last order by hiredate)
7 over(partition by deptno) latest_sal
8 from emp
9 order by 1, 4 desc

Discussion

DB2 and SQL Server
The first step is to use the window function MAX OVER in a CASE expression to
find the employee hired last, or most recently, in each DEPTNO. If an employee’s
HIREDATE matches the value returned by MAX OVER, then use a CASE expression
to return that employee’s SAL; otherwise, return zero. The results of this are shown
here:

select deptno,
 ename,
 sal,
 hiredate,
 case
 when hiredate = max(hiredate)over(partition by deptno)
 then sal else 0
 end latest_sal
 from emp

DEPTNO ENAME SAL HIREDATE LATEST_SAL
------ --------- ----------- ----------- ----------
 10 CLARK 2450 09-JUN-2006 0
 10 KING 5000 17-NOV-2006 0
 10 MILLER 1300 23-JAN-2007 1300

11.11 Finding Knight Values | 355

 20 SMITH 800 17-DEC-2005 0
 20 ADAMS 1100 12-JAN-2007 1100
 20 FORD 3000 03-DEC-2006 0
 20 SCOTT 3000 09-DEC-2007 0
 20 JONES 2975 02-APR-2006 0
 30 ALLEN 1600 20-FEB-2006 0
 30 BLAKE 2850 01-MAY-2006 0
 30 MARTIN 1250 28-SEP-2006 0
 30 JAMES 950 03-DEC-2006 950
 30 TURNER 1500 08-SEP-2006 0
 30 WARD 1250 22-FEB-2006 0

Because the value for LATEST_SAL will be either zero or the SAL of the employee(s)
hired most recently, you can wrap the previous query in an inline view and use MAX
OVER again, but this time to return the greatest nonzero LATEST_SAL for each
DEPTNO:

select deptno,
 ename,
 sal,
 hiredate,
 max(latest_sal)over(partition by deptno) latest_sal
 from (
select deptno,
 ename,
 sal,
 hiredate,
 case
 when hiredate = max(hiredate)over(partition by deptno)
 then sal else 0
 end latest_sal
 from emp
) x
 order by 1, 4 desc

DEPTNO ENAME SAL HIREDATE LATEST_SAL
------- --------- ---------- ----------- ----------
 10 MILLER 1300 23-JAN-2007 1300
 10 KING 5000 17-NOV-2006 1300
 10 CLARK 2450 09-JUN-2006 1300
 20 ADAMS 1100 12-JAN-2007 1100
 20 SCOTT 3000 09-DEC-2007 1100
 20 FORD 3000 03-DEC-2006 1100
 20 JONES 2975 02-APR-2006 1100
 20 SMITH 800 17-DEC-2005 1100
 30 JAMES 950 03-DEC-2006 950
 30 MARTIN 1250 28-SEP-2006 950
 30 TURNER 1500 08-SEP-2006 950
 30 BLAKE 2850 01-MAY-2006 950
 30 WARD 1250 22-FEB-2006 950
 30 ALLEN 1600 20-FEB-2006 950

356 | Chapter 11: Advanced Searching

Oracle
The key to the Oracle solution is to take advantage of the KEEP clause. The KEEP
clause allows you to rank the rows returned by a group/partition and work with the
first or last row in the group. Consider what the solution looks like without KEEP:

select deptno,
 ename,
 sal,
 hiredate,
 max(sal) over(partition by deptno) latest_sal
 from emp
 order by 1, 4 desc

DEPTNO ENAME SAL HIREDATE LATEST_SAL
------ ---------- ---------- ----------- ----------
 10 MILLER 1300 23-JAN-2007 5000
 10 KING 5000 17-NOV-2006 5000
 10 CLARK 2450 09-JUN-2006 5000
 20 ADAMS 1100 12-JAN-2007 3000
 20 SCOTT 3000 09-DEC-2007 3000
 20 FORD 3000 03-DEC-2006 3000
 20 JONES 2975 02-APR-2006 3000
 20 SMITH 800 17-DEC-2005 3000
 30 JAMES 950 03-DEC-2006 2850
 30 MARTIN 1250 28-SEP-2006 2850
 30 TURNER 1500 08-SEP-2006 2850
 30 BLAKE 2850 01-MAY-2006 2850
 30 WARD 1250 22-FEB-2006 2850
 30 ALLEN 1600 20-FEB-2006 2850

Rather than returning the SAL of the latest employee hired, MAX OVER without
KEEP simply returns the highest salary in each DEPTNO. KEEP, in this recipe, allows
you to order the salaries by HIREDATE in each DEPTNO by specifying ORDER BY
HIREDATE. Then, the function DENSE_RANK assigns a rank to each HIREDATE in
ascending order. Finally, the function LAST determines which row to apply the
aggregate function to: the “last” row based on the ranking of DENSE_RANK. In this
case, the aggregate function MAX is applied to the SAL column for the row with the
“last” HIREDATE. In essence, keep the SAL of the HIREDATE ranked last in each
DEPTNO.

You are ranking the rows in each DEPTNO based on one column (HIREDATE), but
then applying the aggregation (MAX) on another column (SAL). This ability to rank
in one dimension and aggregate over another is convenient as it allows you to avoid
extra joins and inline views as are used in the other solutions. Finally, by adding the
OVER clause after the KEEP clause, you can return the SAL “kept” by KEEP for each
row in the partition.

11.11 Finding Knight Values | 357

Alternatively, you can order by HIREDATE in descending order and “keep” the first
SAL. Compare the following two queries, which return the same result set:

select deptno,
 ename,
 sal,
 hiredate,
 max(sal)
 keep(dense_rank last order by hiredate)
 over(partition by deptno) latest_sal
 from emp
 order by 1, 4 desc

DEPTNO ENAME SAL HIREDATE LATEST_SAL
------ ---------- ---------- ----------- ----------
 10 MILLER 1300 23-JAN-2007 1300
 10 KING 5000 17-NOV-2006 1300
 10 CLARK 2450 09-JUN-2006 1300
 20 ADAMS 1100 12-JAN-2007 1100
 20 SCOTT 3000 09-DEC-2007 1100
 20 FORD 3000 03-DEC-2006 1100
 20 JONES 2975 02-APR-2006 1100
 20 SMITH 800 17-DEC-2005 1100
 30 JAMES 950 03-DEC-2006 950
 30 MARTIN 1250 28-SEP-2006 950
 30 TURNER 1500 08-SEP-2006 950
 30 BLAKE 2850 01-MAY-2006 950
 30 WARD 1250 22-FEB-2006 950
 30 ALLEN 1600 20-FEB-2006 950

select deptno,
 ename,
 sal,
 hiredate,
 max(sal)
 keep(dense_rank first order by hiredate desc)
 over(partition by deptno) latest_sal
 from emp
 order by 1, 4 desc

DEPTNO ENAME SAL HIREDATE LATEST_SAL
------ ---------- ---------- ----------- ----------
 10 MILLER 1300 23-JAN-2007 1300
 10 KING 5000 17-NOV-2006 1300
 10 CLARK 2450 09-JUN-2006 1300
 20 ADAMS 1100 12-JAN-2007 1100
 20 SCOTT 3000 09-DEC-2007 1100
 20 FORD 3000 03-DEC-2006 1100
 20 JONES 2975 02-APR-2006 1100

358 | Chapter 11: Advanced Searching

 20 SMITH 800 17-DEC-2005 1100
 30 JAMES 950 03-DEC-2006 950
 30 MARTIN 1250 28-SEP-2006 950
 30 TURNER 1500 08-SEP-2006 950
 30 BLAKE 2850 01-MAY-2006 950
 30 WARD 1250 22-FEB-2006 950
 30 ALLEN 1600 20-FEB-2006 950

11.12 Generating Simple Forecasts
Problem
Based on current data, you want to return additional rows and columns representing
future actions. For example, consider the following result set:

ID ORDER_DATE PROCESS_DATE
-- ----------- ------------
 1 25-SEP-2005 27-SEP-2005
 2 26-SEP-2005 28-SEP-2005
 3 27-SEP-2005 29-SEP-2005

You want to return three rows per row returned in your result set (each row plus two
additional rows for each order). Along with the extra rows, you would like to return
two additional columns providing dates for expected order processing.

From the previous result set, you can see that an order takes two days to process. For
the purposes of this example, let’s say the next step after processing is verification,
and the last step is shipment. Verification occurs one day after processing, and ship‐
ment occurs one day after verification. You want to return a result set expressing the
whole procedure. Ultimately you want to transform the previous result set to the fol‐
lowing result set:

ID ORDER_DATE PROCESS_DATE VERIFIED SHIPPED
-- ----------- ------------ ----------- -----------
 1 25-SEP-2005 27-SEP-2005
 1 25-SEP-2005 27-SEP-2005 28-SEP-2005
 1 25-SEP-2005 27-SEP-2005 28-SEP-2005 29-SEP-2005
 2 26-SEP-2005 28-SEP-2005
 2 26-SEP-2005 28-SEP-2005 29-SEP-2005
 2 26-SEP-2005 28-SEP-2005 29-SEP-2005 30-SEP-2005
 3 27-SEP-2005 29-SEP-2005
 3 27-SEP-2005 29-SEP-2005 30-SEP-2005
 3 27-SEP-2005 29-SEP-2005 30-SEP-2005 01-OCT-2005

Solution
The key is to use a Cartesian product to generate two additional rows for each order
and then simply use CASE expressions to create the required column values.

11.12 Generating Simple Forecasts | 359

DB2, MySQL, and SQL Server
Use the recursive WITH clause to generate rows needed for your Cartesian product.
The DB2 and SQL Server solutions are identical except for the function used to
retrieve the current date. DB2 uses CURRENT_DATE and SQL Server uses GET-
DATE. MySQL uses the CURDATE and requires the insertion of the keyword
RECURSIVE after WITH to indicate that this is a recursive CTE. The SQL Server sol‐
ution is shown here:

 1 with nrows(n) as (
 2 select 1 from t1 union all
 3 select n+1 from nrows where n+1 <= 3
 4)
 5 select id,
 6 order_date,
 7 process_date,
 8 case when nrows.n >= 2
 9 then process_date+1
10 else null
11 end as verified,
12 case when nrows.n = 3
13 then process_date+2
14 else null
15 end as shipped
16 from (
17 select nrows.n id,
18 getdate()+nrows.n as order_date,
19 getdate()+nrows.n+2 as process_date
20 from nrows
21) orders, nrows
22 order by 1

Oracle
Use the hierarchical CONNECT BY clause to generate the three rows needed for the
Cartesian product. Use the WITH clause to allow you to reuse the results returned by
CONNECT BY without having to call it again:

 1 with nrows as (
 2 select level n
 3 from dual
 4 connect by level <= 3
 5)
 6 select id,
 7 order_date,
 8 process_date,
 9 case when nrows.n >= 2
10 then process_date+1
11 else null
12 end as verified,
13 case when nrows.n = 3

360 | Chapter 11: Advanced Searching

14 then process_date+2
15 else null
16 end as shipped
17 from (
18 select nrows.n id,
19 sysdate+nrows.n as order_date,
20 sysdate+nrows.n+2 as process_date
21 from nrows
22) orders, nrows

PostgreSQL
You can create a Cartesian product many different ways; this solution uses the Post‐
greSQL function GENERATE_SERIES:

 1 select id,
 2 order_date,
 3 process_date,
 4 case when gs.n >= 2
 5 then process_date+1
 6 else null
 7 end as verified,
 8 case when gs.n = 3
 9 then process_date+2
10 else null
11 end as shipped
12 from (
13 select gs.id,
14 current_date+gs.id as order_date,
15 current_date+gs.id+2 as process_date
16 from generate_series(1,3) gs (id)
17) orders,
18 generate_series(1,3)gs(n)

MySQL
MySQL does not support a function for automatic row generation.

Discussion

DB2, MySQL, and SQL Server
The result set presented in the “Problem” section is returned via inline view
ORDERS, and is shown here:

with nrows(n) as (
select 1 from t1 union all
select n+1 from nrows where n+1 <= 3
)
select nrows.n id,getdate()+nrows.n as order_date,
 getdate()+nrows.n+2 as process_date
 from nrows

11.12 Generating Simple Forecasts | 361

ID ORDER_DATE PROCESS_DATE
-- ----------- ------------
 1 25-SEP-2005 27-SEP-2005
 2 26-SEP-2005 28-SEP-2005
 3 27-SEP-2005 29-SEP-2005

This query simply uses the WITH clause to make up three rows representing the
orders you must process. NROWS returns the values 1, 2, and 3, and those numbers
are added to GETDATE (CURRENT_DATE for DB2, CURDATE() for MySQL) to
represent the dates of the orders. Because the “Problem” section states that processing
time takes two days, the query also adds two days to the ORDER_DATE (adds the
value returned by NROWS to GETDATE and then adds two more days).

Now that you have your base result set, the next step is to create a Cartesian product
because the requirement is to return three rows for each order. Use NROWS to create
a Cartesian product to return three rows for each order:

with nrows(n) as (
select 1 from t1 union all
select n+1 from nrows where n+1 <= 3
)
select nrows.n,
 orders.*
 from (
select nrows.n id,
 getdate()+nrows.n as order_date,
 getdate()+nrows.n+2 as process_date
 from nrows
) orders, nrows
 order by 2,1

 N ID ORDER_DATE PROCESS_DATE
--- --- ----------- ------------
 1 1 25-SEP-2005 27-SEP-2005
 2 1 25-SEP-2005 27-SEP-2005
 3 1 25-SEP-2005 27-SEP-2005
 1 2 26-SEP-2005 28-SEP-2005
 2 2 26-SEP-2005 28-SEP-2005
 3 2 26-SEP-2005 28-SEP-2005
 1 3 27-SEP-2005 29-SEP-2005
 2 3 27-SEP-2005 29-SEP-2005
 3 3 27-SEP-2005 29-SEP-2005

Now that you have three rows for each order, simply use a CASE expression to create
the addition column values to represent the status of verification and shipment.

362 | Chapter 11: Advanced Searching

The first row for each order should have a NULL value for VERIFIED and SHIPPED.
The second row for each order should have a NULL value for SHIPPED. The third
row for each order should have non-NULL values for each column. The final result
set is shown here:

with nrows(n) as (
select 1 from t1 union all
select n+1 from nrows where n+1 <= 3
)
select id,
 order_date,
 process_date,
 case when nrows.n >= 2
 then process_date+1
 else null

 end as verified,
 case when nrows.n = 3
 then process_date+2
 else null
 end as shipped
 from (
select nrows.n id,
 getdate()+nrows.n as order_date,
 getdate()+nrows.n+2 as process_date
 from nrows
) orders, nrows
 order by 1

ID ORDER_DATE PROCESS_DATE VERIFIED SHIPPED
-- ----------- ------------ ----------- -----------
 1 25-SEP-2005 27-SEP-2005
 1 25-SEP-2005 27-SEP-2005 28-SEP-2005
 1 25-SEP-2005 27-SEP-2005 28-SEP-2005 29-SEP-2005
 2 26-SEP-2005 28-SEP-2005
 2 26-SEP-2005 28-SEP-2005 29-SEP-2005
 2 26-SEP-2005 28-SEP-2005 29-SEP-2005 30-SEP-2005
 3 27-SEP-2005 29-SEP-2005
 3 27-SEP-2005 29-SEP-2005 30-SEP-2005
 3 27-SEP-2005 29-SEP-2005 30-SEP-2005 01-OCT-2005

The final result set expresses the complete order process, from the day the order was
received to the day it should be shipped.

Oracle
The result set presented in the problem section is returned via inline view ORDERS
and is shown here:

with nrows as (
select level n
 from dual

11.12 Generating Simple Forecasts | 363

connect by level <= 3
)
select nrows.n id,
 sysdate+nrows.n order_date,
 sysdate+nrows.n+2 process_date
 from nrows

ID ORDER_DATE PROCESS_DATE
-- ----------- ------------
 1 25-SEP-2005 27-SEP-2005
 2 26-SEP-2005 28-SEP-2005
 3 27-SEP-2005 29-SEP-2005

This query simply uses CONNECT BY to make up three rows representing the
orders you must process. Use the WITH clause to refer to the rows returned by CON‐
NECT BY as NROWS.N. CONNECT BY returns the values 1, 2, and 3, and those
numbers are added to SYSDATE to represent the dates of the orders. Since the “Prob‐
lem” section states that processing time takes two days, the query also adds two days
to the ORDER_DATE (adds the value returned by GENERATE_ SERIES to SYS‐
DATE and then adds two more days).

Now that you have your base result set, the next step is to create a Cartesian product
because the requirement is to return three rows for each order. Use NROWS to create
a Cartesian product to return three rows for each order:

with nrows as (
select level n
 from dual
connect by level <= 3
)
select nrows.n,
 orders.*
 from (
select nrows.n id,
 sysdate+nrows.n order_date,
 sysdate+nrows.n+2 process_date
 from nrows
) orders, nrows

 N ID ORDER_DATE PROCESS_DATE
--- --- ----------- ------------
 1 1 25-SEP-2005 27-SEP-2005
 2 1 25-SEP-2005 27-SEP-2005
 3 1 25-SEP-2005 27-SEP-2005
 1 2 26-SEP-2005 28-SEP-2005
 2 2 26-SEP-2005 28-SEP-2005
 3 2 26-SEP-2005 28-SEP-2005
 1 3 27-SEP-2005 29-SEP-2005
 2 3 27-SEP-2005 29-SEP-2005
 3 3 27-SEP-2005 29-SEP-2005

364 | Chapter 11: Advanced Searching

Now that you have three rows for each order, simply use a CASE expression to create
the addition column values to represent the status of verification and shipment.

The first row for each order should have a NULL value for VERIFIED and SHIPPED.
The second row for each order should have a NULL value for SHIPPED. The third
row for each order should have non-NULL values for each column. The final result
set is shown here:

with nrows as (
select level n
 from dual
connect by level <= 3
)
select id,
 order_date,
 process_date,
 case when nrows.n >= 2
 then process_date+1
 else null
 end as verified,
 case when nrows.n = 3
 then process_date+2
 else null
 end as shipped
 from (
select nrows.n id,
 sysdate+nrows.n order_date,
 sysdate+nrows.n+2 process_date
 from nrows
) orders, nrows

 ID ORDER_DATE PROCESS_DATE VERIFIED SHIPPED
 -- ----------- ------------ ----------- -----------
 1 25-SEP-2005 27-SEP-2005
 1 25-SEP-2005 27-SEP-2005 28-SEP-2005
 1 25-SEP-2005 27-SEP-2005 28-SEP-2005 29-SEP-2005
 2 26-SEP-2005 28-SEP-2005
 2 26-SEP-2005 28-SEP-2005 29-SEP-2005
 2 26-SEP-2005 28-SEP-2005 29-SEP-2005 30-SEP-2005
 3 27-SEP-2005 29-SEP-2005
 3 27-SEP-2005 29-SEP-2005 30-SEP-2005
 3 27-SEP-2005 29-SEP-2005 30-SEP-2005 01-OCT-2005

The final result set expresses the complete order process from the day the order was
received to the day it should be shipped.

PostgreSQL
The result set presented in the problem section is returned via inline view ORDERS
and is shown here:

11.12 Generating Simple Forecasts | 365

select gs.id,
 current_date+gs.id as order_date,
 current_date+gs.id+2 as process_date
 from generate_series(1,3) gs (id)

ID ORDER_DATE PROCESS_DATE
-- ----------- ------------
 1 25-SEP-2005 27-SEP-2005
 2 26-SEP-2005 28-SEP-2005
 3 27-SEP-2005 29-SEP-2005

This query simply uses the GENERATE_SERIES function to make up three rows rep‐
resenting the orders you must process. GENERATE_SERIES returns the values 1, 2,
and 3, and those numbers are added to CURRENT_DATE to represent the dates of
the orders. Since the “Problem” section states that processing time takes two days, the
query also adds two days to the ORDER_DATE (adds the value returned by GENER‐
ATE_SERIES to CURRENT_DATE and then adds two more days). Now that you
have your base result set, the next step is to create a Cartesian product because the
requirement is to return three rows for each order. Use the GENERATE_ SERIES
function to create a Cartesian product to return three rows for each order:

select gs.n,
 orders.*
 from (
select gs.id,
 current_date+gs.id as order_date,
 current_date+gs.id+2 as process_date
 from generate_series(1,3) gs (id)
) orders,
 generate_series(1,3)gs(n)

 N ID ORDER_DATE PROCESS_DATE
--- --- ----------- ------------
 1 1 25-SEP-2005 27-SEP-2005
 2 1 25-SEP-2005 27-SEP-2005
 3 1 25-SEP-2005 27-SEP-2005
 1 2 26-SEP-2005 28-SEP-2005
 2 2 26-SEP-2005 28-SEP-2005
 3 2 26-SEP-2005 28-SEP-2005
 1 3 27-SEP-2005 29-SEP-2005
 2 3 27-SEP-2005 29-SEP-2005
 3 3 27-SEP-2005 29-SEP-2005

Now that you have three rows for each order, simply use a CASE expression to create
the addition column values to represent the status of verification and shipment.

The first row for each order should have a NULL value for VERIFIED and SHIPPED.
The second row for each order should have a NULL value for SHIPPED. The third
row for each order should have non-NULL values for each column. The final result
set is shown here:

366 | Chapter 11: Advanced Searching

select id,
 order_date,
 process_date,
 case when gs.n >= 2
 then process_date+1
 else null
 end as verified,
 case when gs.n = 3
 then process_date+2
 else null
 end as shipped
 from (
select gs.id,
 current_date+gs.id as order_date,
 current_date+gs.id+2 as process_date
 from generate_series(1,3) gs(id)
) orders,
 generate_series(1,3)gs(n)

ID ORDER_DATE PROCESS_DATE VERIFIED SHIPPED
-- ----------- ------------ ----------- -----------
 1 25-SEP-2005 27-SEP-2005
 1 25-SEP-2005 27-SEP-2005 28-SEP-2005
 1 25-SEP-2005 27-SEP-2005 28-SEP-2005 29-SEP-2005
 2 26-SEP-2005 28-SEP-2005
 2 26-SEP-2005 28-SEP-2005 29-SEP-2005
 2 26-SEP-2005 28-SEP-2005 29-SEP-2005 30-SEP-2005
 3 27-SEP-2005 29-SEP-2005
 3 27-SEP-2005 29-SEP-2005 30-SEP-2005
 3 27-SEP-2005 29-SEP-2005 30-SEP-2005 01-OCT-2005

The final result set expresses the complete order process from the day the order was
received to the day it should be shipped.

11.13 Summing Up
The recipes from this chapter represent practical problems that can’t be solved with a
single function. They are some the kinds of problems that business users will fre‐
quently look to you to solve for them.

11.13 Summing Up | 367

CHAPTER 12

Reporting and Reshaping

This chapter introduces queries you may find helpful for creating reports. These typi‐
cally involve reporting-specific formatting considerations along with different levels
of aggregation. Another focus of this chapter is transposing or pivoting result sets:
reshaping the data by turning rows into columns.

In general, these recipes have in common that they allow you to present data in for‐
mats or shapes different from the way they are stored. As your comfort level with piv‐
oting increases, you’ll undoubtedly find uses for it outside of what are presented in
this chapter.

12.1 Pivoting a Result Set into One Row
Problem
You want to take values from groups of rows and turn those values into columns in a
single row per group. For example, you have a result set displaying the number of
employees in each department:

DEPTNO CNT
------ ----------
 10 3
 20 5
 30 6

You would like to reformat the output so that the result set looks as follows:

DEPTNO_10 DEPTNO_20 DEPTNO_30
--------- ---------- ----------
 3 5 6

369

This is a classic example of data presented in a different shape than the way it is
stored.

Solution
Transpose the result set using CASE and the aggregate function SUM:

1 select sum(case when deptno=10 then 1 else 0 end) as deptno_10,
2 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
3 sum(case when deptno=30 then 1 else 0 end) as deptno_30
4 from emp

Discussion
This example is an excellent introduction to pivoting. The concept is simple: for each
row returned by the unpivoted query, use a CASE expression to separate the rows
into columns. Then, because this particular problem is to count the number of
employees per department, use the aggregate function SUM to count the occurrence
of each DEPTNO. If you’re having trouble understanding how this works exactly,
execute the query with the aggregate function SUM and include DEPTNO for
readability:

select deptno,
 case when deptno=10 then 1 else 0 end as deptno_10,
 case when deptno=20 then 1 else 0 end as deptno_20,
 case when deptno=30 then 1 else 0 end as deptno_30
 from emp
 order by 1

 DEPTNO DEPTNO_10 DEPTNO_20 DEPTNO_30
 ------ ---------- ---------- ----------
 10 1 0 0
 10 1 0 0
 10 1 0 0
 20 0 1 0
 20 0 1 0
 20 0 1 0
 20 0 1 0
 30 0 0 1
 30 0 0 1
 30 0 0 1
 30 0 0 1
 30 0 0 1
 30 0 0 1

You can think of each CASE expression as a flag to determine which DEPTNO a row
belongs to. At this point, the “rows to columns” transformation is already done; the
next step is to simply sum the values returned by DEPTNO_10, DEPTNO_20, and
DEPTNO_30, and then to group by DEPTNO. The following are the results:

370 | Chapter 12: Reporting and Reshaping

select deptno,
 sum(case when deptno=10 then 1 else 0 end) as deptno_10,
 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
 sum(case when deptno=30 then 1 else 0 end) as deptno_30
 from emp
 group by deptno

DEPTNO DEPTNO_10 DEPTNO_20 DEPTNO_30
------ ---------- ---------- ----------
 10 3 0 0
 20 0 5 0
 30 0 0 6

If you inspect this result set, you see that logically the output makes sense; for exam‐
ple, DEPTNO 10 has three employees in DEPTNO_10 and zero in the other depart‐
ments. Since the goal is to return one row, the last step is to remove the DEPTNO and
GROUP BY clause and simply sum the CASE expressions:

select sum(case when deptno=10 then 1 else 0 end) as deptno_10,
 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
 sum(case when deptno=30 then 1 else 0 end) as deptno_30
 from emp

 DEPTNO_10 DEPTNO_20 DEPTNO_30
 --------- ---------- ----------
 3 5 6

The following is another approach that you may sometimes see applied to this same
sort of problem:

select max(case when deptno=10 then empcount else null end) as deptno_10
 max(case when deptno=20 then empcount else null end) as deptno_20,
 max(case when deptno=10 then empcount else null end) as deptno_30
 from (
select deptno, count(*) as empcount
 from emp
 group by deptno
) x

This approach uses an inline view to generate the employee counts per department.
CASE expressions in the main query translate rows to columns, getting you to the
following results:

DEPTNO_10 DEPTNO_20 DEPTNO_30
--------- ---------- ----------
 3 NULL NULL
 NULL 5 NULL
 NULL NULL 6

Then the MAX functions collapses the columns into one row:

12.1 Pivoting a Result Set into One Row | 371

DEPTNO_10 DEPTNO_20 DEPTNO_30
--------- ---------- ----------
 3 5 6

12.2 Pivoting a Result Set into Multiple Rows
Problem
You want to turn rows into columns by creating a column corresponding to each of
the values in a single given column. However, unlike in the previous recipe, you need
multiple rows of output. Like the earlier recipe, pivoting into multiple rows is a fun‐
damental method of reshaping data.

For example, you want to return each employee and their position (JOB), and you
currently use a query that returns the following result set:

JOB ENAME
--------- ----------
ANALYST SCOTT
ANALYST FORD
CLERK SMITH
CLERK ADAMS
CLERK MILLER
CLERK JAMES
MANAGER JONES
MANAGER CLARK
MANAGER BLAKE
PRESIDENT KING
SALESMAN ALLEN
SALESMAN MARTIN
SALESMAN TURNER
SALESMAN WARD

You would like to format the result set such that each job gets its own column:

CLERKS ANALYSTS MGRS PREZ SALES
------ -------- ----- ---- ------
MILLER FORD CLARK KING TURNER
JAMES SCOTT BLAKE MARTIN
ADAMS JONES WARD
SMITH ALLEN

Solution
Unlike the first recipe in this chapter, the result set for this recipe consists of more
than one row. Using the previous recipe’s technique will not work for this recipe, as
the MAX(ENAME) for each JOB would be returned, which would result in one
ENAME for each JOB (i.e., one row will be returned as in the first recipe). To solve

372 | Chapter 12: Reporting and Reshaping

this problem, you must make each JOB/ENAME combination unique. Then, when
you apply an aggregate function to remove NULLs, you don’t lose any ENAMEs.

Use the ranking function ROW_NUMBER OVER to make each JOB/ENAME combi‐
nation unique. Pivot the result set using a CASE expression and the aggregate func‐
tion MAX while grouping on the value returned by the window function:

 1 select max(case when job='CLERK'
 2 then ename else null end) as clerks,
 3 max(case when job='ANALYST'
 4 then ename else null end) as analysts,
 5 max(case when job='MANAGER'
 6 then ename else null end) as mgrs,
 7 max(case when job='PRESIDENT'
 8 then ename else null end) as prez,
 9 max(case when job='SALESMAN'
10 then ename else null end) as sales
11 from (
12 select job,
13 ename,
14 row_number()over(partition by job order by ename) rn
15 from emp
16) x
17 group by rn

Discussion
The first step is to use the window function ROW_NUMBER OVER to help make
each JOB/ENAME combination unique:

select job,
 ename,
 row_number()over(partition by job order by ename) rn
 from emp

 JOB ENAME RN
 --------- ---------- ----------
 ANALYST FORD 1
 ANALYST SCOTT 2
 CLERK ADAMS 1
 CLERK JAMES 2
 CLERK MILLER 3
 CLERK SMITH 4
 MANAGER BLAKE 1
 MANAGER CLARK 2
 MANAGER JONES 3
 PRESIDENT KING 1
 SALESMAN ALLEN 1
 SALESMAN MARTIN 2
 SALESMAN TURNER 3
 SALESMAN WARD 4

12.2 Pivoting a Result Set into Multiple Rows | 373

Giving each ENAME a unique “row number” within a given job prevents any prob‐
lems that might otherwise result from two employees having the same name and job.
The goal here is to be able to group on row number (on RN) without dropping any
employees from the result set due to the use of MAX. This step is the most important
step in solving the problem. Without this first step, the aggregation in the outer query
will remove necessary rows. Consider what the result set would look like without
using ROW_NUMBER OVER, using the same technique as shown in the first recipe:

select max(case when job='CLERK'
 then ename else null end) as clerks,
 max(case when job='ANALYST'
 then ename else null end) as analysts,
 max(case when job='MANAGER'
 then ename else null end) as mgrs,
 max(case when job='PRESIDENT'
 then ename else null end) as prez,
 max(case when job='SALESMAN'
 then ename else null end) as sales
 from emp

CLERKS ANALYSTS MGRS PREZ SALES
---------- ---------- ---------- ---------- ----------
SMITH SCOTT JONES KING WARD

Unfortunately, only one row is returned for each JOB: the employee with the MAX
ENAME. When it comes time to pivot the result set, using MIN or MAX should serve
as a means to remove NULLs from the result set, not restrict the ENAMEs returned.
How this works will be come clearer as you continue through the explanation.

The next step uses a CASE expression to organize the ENAMEs into their proper col‐
umn (JOB):

select rn,
 case when job='CLERK'
 then ename else null end as clerks,
 case when job='ANALYST'
 then ename else null end as analysts,
 case when job='MANAGER'
 then ename else null end as mgrs,
 case when job='PRESIDENT'
 then ename else null end as prez,
 case when job='SALESMAN'
 then ename else null end as sales
 from (
select job,
 ename,
 row_number()over(partition by job order by ename) rn
 from emp
) x

374 | Chapter 12: Reporting and Reshaping

RN CLERKS ANALYSTS MGRS PREZ SALES
-- ---------- ---------- ---------- ---------- ----------
 1 FORD
 2 SCOTT
 1 ADAMS
 2 JAMES
 3 MILLER
 4 SMITH
 1 BLAKE
 2 CLARK
 3 JONES
 1 KING
 1 ALLEN
 2 MARTIN
 3 TURNER
 4 WARD

At this point, the rows are transposed into columns, and the last step is to remove the
NULLs to make the result set more readable. To remove the NULLs, use the aggregate
function MAX and group by RN. (You can use the function MIN as well. The choice
to use MAX is arbitrary, as you will only ever be aggregating one value per group.)
There is only one value for each RN/JOB/ENAME combination. Grouping by RN in
conjunction with the CASE expressions embedded within the calls to MAX ensures
that each call to MAX results in picking only one name from a group of otherwise
NULL values:

select max(case when job='CLERK'
 then ename else null end) as clerks,
 max(case when job='ANALYST'
 then ename else null end) as analysts,
 max(case when job='MANAGER'
 then ename else null end) as mgrs,
 max(case when job='PRESIDENT'
 then ename else null end) as prez,
 max(case when job='SALESMAN'
 then ename else null end) as sales
 from (
select job,
 ename,
 row_number()over(partition by job order by ename) rn
 from emp
) x
group by rn

CLERKS ANALYSTS MGRS PREZ SALES
------ -------- ----- ---- ------
MILLER FORD CLARK KING TURNER
JAMES SCOTT BLAKE MARTIN
ADAMS JONES WARD
SMITH ALLEN

12.2 Pivoting a Result Set into Multiple Rows | 375

The technique of using ROW_NUMBER OVER to create unique combinations of
rows is extremely useful for formatting query results. Consider the following query
that creates a sparse report showing employees by DEPTNO and JOB:

select deptno dno, job,
 max(case when deptno=10
 then ename else null end) as d10,
 max(case when deptno=20
 then ename else null end) as d20,
 max(case when deptno=30
 then ename else null end) as d30,
 max(case when job='CLERK'
 then ename else null end) as clerks,
 max(case when job='ANALYST'
 then ename else null end) as anals,
 max(case when job='MANAGER'
 then ename else null end) as mgrs,
 max(case when job='PRESIDENT'
 then ename else null end) as prez,
 max(case when job='SALESMAN'
 then ename else null end) as sales
 from (
Select deptno,
 job,
 ename,
 row_number()over(partition by job order by ename) rn_job,
 row_number()over(partition by job order by ename) rn_deptno
 from emp
) x
 group by deptno, job, rn_deptno, rn_job
 order by 1

DNO JOB D10 D20 D30 CLERKS ANALS MGRS PREZ SALES
--- --------- ------ ----- ------ ------ ----- ----- ---- ------
 10 CLERK MILLER MILLER
 10 MANAGER CLARK CLARK
 10 PRESIDENT KING KING
 20 ANALYST FORD FORD
 20 ANALYST SCOTT SCOTT
 20 CLERK ADAMS ADAMS
 20 CLERK SMITH SMITH
 20 MANAGER JONES JONES
 30 CLERK JAMES JAMES
 30 MANAGER BLAKE BLAKE
 30 SALESMAN ALLEN ALLEN
 30 SALESMAN MARTIN MARTIN
 30 SALESMAN TURNER TURNER
 30 SALESMAN WARD WARD

By simply modifying what you group by (hence the nonaggregate items in the previ‐
ous SELECT list), you can produce reports with different formats. It is worth the time

376 | Chapter 12: Reporting and Reshaping

of changing things around to understand how these formats change based on what
you include in your GROUP BY clause.

12.3 Reverse Pivoting a Result Set
Problem
You want to transform columns to rows. Consider the following result set:

DEPTNO_10 DEPTNO_20 DEPTNO_30
---------- ---------- ----------
 3 5 6

You would like to convert that to the following:

DEPTNO COUNTS_BY_DEPT
------ --------------
 10 3
 20 5
 30 6

Some readers may have noticed that the first listing is the output from the first recipe
in this chapter. To make this output available for this recipe, we can store it in a view
with the following query:

create view emp_cnts as
(
select sum(case when deptno=10 then 1 else 0 end) as deptno_10,
 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
 sum(case when deptno=30 then 1 else 0 end) as deptno_30
 from emp
)

In the solution and discussion that follow, the queries will refer to the EMP_CNTS
view created by the preceding query.

Solution
Examining the desired result set, it’s easy to see that you can execute a simple
COUNT and GROUP BY on table EMP to produce the desired result. The object
here, though, is to imagine that the data is not stored as rows; perhaps the data is
denormalized and aggregated values are stored as multiple columns.

To convert columns to rows, use a Cartesian product. You’ll need to know in advance
how many columns you want to convert to rows because the table expression you use
to create the Cartesian product must have a cardinality of at least the number of col‐
umns you want to transpose.

12.3 Reverse Pivoting a Result Set | 377

Rather than create a denormalized table of data, the solution for this recipe will use
the solution from the first recipe of this chapter to create a “wide” result set. The full
solution is as follows:

 1 select dept.deptno,
 2 case dept.deptno
 3 when 10 then emp_cnts.deptno_10
 4 when 20 then emp_cnts.deptno_20
 5 when 30 then emp_cnts.deptno_30
 6 end as counts_by_dept
 7 from emp_cnts cross join
 8 (select deptno from dept where deptno <= 30) dept

Discussion
The view EMP_CNTS represents the denormalized view, or “wide” result set that you
want to convert to rows, and is shown here:

DEPTNO_10 DEPTNO_20 DEPTNO_30
--------- ---------- ----------
 3 5 6

Because there are three columns, you will create three rows. Begin by creating a Car‐
tesian product between inline view EMP_CNTS and some table expression that has at
least three rows. The following code uses table DEPT to create the Cartesian product;
DEPT has four rows:

select dept.deptno,
 emp_cnts.deptno_10,
 emp_cnts.deptno_20,
 emp_cnts.deptno_30
 from (
 Select sum(case when deptno=10 then 1 else 0 end) as deptno_10,
 sum(case when deptno=20 then 1 else 0 end) as deptno_20,
 sum(case when deptno=30 then 1 else 0 end) as deptno_30
 from emp
) emp_cnts,
 (select deptno from dept where deptno <= 30) dept

 DEPTNO DEPTNO_10 DEPTNO_20 DEPTNO_30
 ------ ---------- ---------- ---------
 10 3 5 6
 20 3 5 6
 30 3 5 6

The Cartesian product enables you to return a row for each column in inline view
EMP_CNTS. Since the final result set should have only the DEPTNO and the number
of employees in said DEPTNO, use a CASE expression to transform the three col‐
umns into one:

378 | Chapter 12: Reporting and Reshaping

 select dept.deptno,
 case dept.deptno
 when 10 then emp_cnts.deptno_10
 when 20 then emp_cnts.deptno_20
 when 30 then emp_cnts.deptno_30
 end as counts_by_dept
 from (
 emp_cnts
cross join (select deptno from dept where deptno <= 30) dept

 DEPTNO COUNTS_BY_DEPT
 ------ --------------
 10 3
 20 5
 30 6

12.4 Reverse Pivoting a Result Set into One Column
Problem
You want to return all columns from a query as just one column. For example, you
want to return the ENAME, JOB, and SAL of all employees in DEPTNO 10, and you
want to return all three values in one column. You want to return three rows for each
employee and one row of white space between employees. You want to return the fol‐
lowing result set:

EMPS

CLARK
MANAGER
2450

KING
PRESIDENT
5000

MILLER
CLERK
1300

Solution
The key is to use a recursive CTE combined with Cartesian product to return four
rows for each employee. Chapter 10 covers the recursive CTE we need, and it’s
explored further in Appendix B. Using the Cartesian join lets you return one column
value per row and have an extra row for spacing between employees.

12.4 Reverse Pivoting a Result Set into One Column | 379

Use the window function ROW_NUMBER OVER to rank each row based on
EMPNO (1–4). Then use a CASE expression to transform three columns into one
(the keyword RECURSIVE is needed after the first WITH in PostgreSQL and
MySQL):

1 with four_rows (id)
2 as
3 (
4 select 1
5 union all
6 select id+1
7 from four_rows
8 where id < 4
9)
10 ,
11 x_tab (ename,job,sal,rn)
12 as
13 (
 select e.ename,e.job,e.sal,
14 row_number()over(partition by e.empno
15 order by e.empno)
16 from emp e
17 join four_rows on 1=1
18)
19
20 select
21 case rn
22 when 1 then ename
23 when 2 then job
24 when 3 then cast(sal as char(4))
25 end emps
26 from x_tab

Discussion
The first step is to use the window function ROW_NUMBER OVER to create a rank‐
ing for each employee in DEPTNO 10:

select e.ename,e.job,e.sal,
 row_number()over(partition by e.empno
 order by e.empno) rn
from emp e
 where e.deptno=10

ENAME JOB SAL RN
---------- --------- ---------- ----------
CLARK MANAGER 2450 1
KING PRESIDENT 5000 1
MILLER CLERK 1300 1

380 | Chapter 12: Reporting and Reshaping

At this point, the ranking doesn’t mean much. You are partitioning by EMPNO, so
the rank is 1 for all three rows in DEPTNO 10. Once you add the Cartesian product,
the rank will begin to take shape, as shown in the following results:

with four_rows (id)
 as
 (select 1
 union all
 select id+1
 from four_rows
 where id < 4
)
 select e.ename,e.job,e.sal,
 row_number()over(partition by e.empno
 order by e.empno)
 from emp e
 join four_rows on 1=1

 ENAME JOB SAL RN
 ---------- --------- ---------- ----------
 CLARK MANAGER 2450 1
 CLARK MANAGER 2450 2
 CLARK MANAGER 2450 3
 CLARK MANAGER 2450 4
 KING PRESIDENT 5000 1
 KING PRESIDENT 5000 2
 KING PRESIDENT 5000 3
 KING PRESIDENT 5000 4
 MILLER CLERK 1300 1
 MILLER CLERK 1300 2
 MILLER CLERK 1300 3
 MILLER CLERK 1300 4

You should stop at this point and understand two key points:

• RN is no longer 1 for each employee; it is now a repeating sequence of values
from 1 to 4, the reason being that window functions are applied after the FROM
and WHERE clauses are evaluated. So, partitioning by EMPNO causes the RN to
reset to 1 when a new employee is encountered.

• We’ve used a recursive CTE to ensure that for each employee there are four rows.
We don’t need the RECURSIVE keyword in SQL Server or DB2, but we do for
Oracle, MySQL, and PostgreSQL.

The hard work is now done, and all that is left is to use a CASE expression to put
ENAME, JOB, and SAL into one column for each employee (you need to use CAST
to convert SAL to a string to keep CASE happy):

 with four_rows (id)
 as
 (select 1

12.4 Reverse Pivoting a Result Set into One Column | 381

 union all
 select id+1
 from four_rows
 where id < 4
)
 ,
 x_tab (ename,job,sal,rn)
 as
 (select e.ename,e.job,e.sal,
 row_number()over(partition by e.empno
 order by e.empno)
 from emp e
 join four_rows on 1=1)

 select case rn
 when 1 then ename
 when 2 then job
 when 3 then cast(sal as char(4))
 end emps
 from x_tab

 EMPS

 CLARK
 MANAGER
 2450

 KING
 PRESIDENT
 5000

 MILLER
 CLERK
 1300

12.5 Suppressing Repeating Values from a Result Set
Problem
You are generating a report, and when two rows have the same value in a column,
you want to display that value only once. For example, you want to return DEPTNO
and ENAME from table EMP, you want to group all rows for each DEPTNO, and you
want to display each DEPTNO only one time. You want to return the following result
set:

DEPTNO ENAME
------ ---------
 10 CLARK
 KING
 MILLER

382 | Chapter 12: Reporting and Reshaping

 20 SMITH
 ADAMS
 FORD
 SCOTT
 JONES
 30 ALLEN
 BLAKE
 MARTIN
 JAMES
 TURNER
 WARD

Solution
This is a simple formatting problem that is easily solved by the window function LAG
OVER:

1 select
2 case when
3 lag(deptno)over(order by deptno) = deptno then null
4 else deptno end DEPTNO
5 , ename
6 from emp

Oracle users can also use DECODE as an alternative to CASE:

1 select to_number(
2 decode(lag(deptno)over(order by deptno),
3 deptno,null,deptno)
4) deptno, ename
5 from emp

Discussion
The first step is to use the window function LAG OVER to return the prior DEPTNO
for each row:

select lag(deptno)over(order by deptno) lag_deptno,
 deptno,
 ename
 from emp

LAG_DEPTNO DEPTNO ENAME
---------- ---------- ----------
 10 CLARK
 10 10 KING
 10 10 MILLER
 10 20 SMITH
 20 20 ADAMS
 20 20 FORD
 20 20 SCOTT
 20 20 JONES

12.5 Suppressing Repeating Values from a Result Set | 383

 20 30 ALLEN
 30 30 BLAKE
 30 30 MARTIN
 30 30 JAMES
 30 30 TURNER
 30 30 WARD

If you inspect the previous result set, you can easily see where DEPTNO matches
LAG_ DEPTNO. For those rows, you want to set DEPTNO to NULL. Do that by
using DECODE (TO_NUMBER is included to cast DEPTNO as a number):

select to_number(
 CASE WHEN (lag(deptno)over(order by deptno)
= deptno THEN null else deptno END deptno ,
 deptno,null,deptno)
) deptno, ename
 from emp

DEPTNO ENAME
------ ----------
 10 CLARK
 KING
 MILLER
 20 SMITH
 ADAMS
 FORD
 SCOTT
 JONES
 30 ALLEN
 BLAKE
 MARTIN
 JAMES
 TURNER
 WARD

12.6 Pivoting a Result Set to Facilitate Inter-Row
Calculations
Problem
You want to make calculations involving data from multiple rows. To make your job
easier, you want to pivot those rows into columns such that all values you need are
then in a single row.

In this book’s example data, DEPTNO 20 is the department with the highest com‐
bined salary, which you can confirm by executing the following query:

select deptno, sum(sal) as sal
 from emp
 group by deptno

384 | Chapter 12: Reporting and Reshaping

DEPTNO SAL
------ ----------
 10 8750
 20 10875
 30 9400

You want to calculate the difference between the salaries of DEPTNO 20 and
DEPTNO 10 and between DEPTNO 20 and DEPTNO 30.

The final result will look like this:

d20_10_diff d20_30_diff
------------ ----------
2125 1475

Solution
Transpose the totals using the aggregate function SUM and a CASE expression. Then
code your expressions in the select list:

1 select d20_sal - d10_sal as d20_10_diff,
2 d20_sal - d30_sal as d20_30_diff
3 from (
4 select sum(case when deptno=10 then sal end) as d10_sal,
5 sum(case when deptno=20 then sal end) as d20_sal,
6 sum(case when deptno=30 then sal end) as d30_sal
7 from emp
8) totals_by_dept

It is also possible to write this query using a CTE, which some people may find more
readable:

with totals_by_dept (d10_sal, d20_sal, d30_sal)
as
(select
 sum(case when deptno=10 then sal end) as d10_sal,
 sum(case when deptno=20 then sal end) as d20_sal,
 sum(case when deptno=30 then sal end) as d30_sal

from emp)

select d20_sal - d10_sal as d20_10_diff,
 d20_sal - d30_sal as d20_30_diff
 from totals_by_dept

Discussion
The first step is to pivot the salaries for each DEPTNO from rows to columns by
using a CASE expression:

12.6 Pivoting a Result Set to Facilitate Inter-Row Calculations | 385

select case when deptno=10 then sal end as d10_sal,
 case when deptno=20 then sal end as d20_sal,
 case when deptno=30 then sal end as d30_sal
 from emp

D10_SAL D20_SAL D30_SAL
------- ---------- ----------
 800
 1600
 1250
 2975
 1250
 2850
 2450
 3000
 5000
 1500
 1100
 950
 3000
 1300

The next step is to sum all the salaries for each DEPTNO by applying the aggregate
function SUM to each CASE expression:

select sum(case when deptno=10 then sal end) as d10_sal,
 sum(case when deptno=20 then sal end) as d20_sal,
 sum(case when deptno=30 then sal end) as d30_sal
 from emp

D10_SAL D20_SAL D30_SAL
------- ---------- ----------
 8750 10875 9400

The final step is to simply wrap the previous SQL in an inline view and perform the
subtractions.

12.7 Creating Buckets of Data, of a Fixed Size
Problem
You want to organize data into evenly sized buckets, with a predetermined number of
elements in each bucket. The total number of buckets may be unknown, but you want
to ensure that each bucket has five elements. For example, you want to organize the
employees in table EMP into groups of five based on the value of EMPNO, as shown
in the following results:

GRP EMPNO ENAME
--- ---------- -------
 1 7369 SMITH
 1 7499 ALLEN

386 | Chapter 12: Reporting and Reshaping

 1 7521 WARD
 1 7566 JONES
 1 7654 MARTIN
 2 7698 BLAKE
 2 7782 CLARK
 2 7788 SCOTT
 2 7839 KING
 2 7844 TURNER
 3 7876 ADAMS
 3 7900 JAMES
 3 7902 FORD
 3 7934 MILLER

Solution
The solution to this problem is greatly simplified by functions for ranking rows. Once
the rows are ranked, creating buckets of five is simply a matter of dividing and then
taking the mathematical ceiling of the quotient.

Use the window function ROW_NUMBER OVER to rank each employee by
EMPNO. Then divide by five to create the groups (SQL Server users will use CEIL‐
ING, not CEIL):

1 select ceil(row_number()over(order by empno)/5.0) grp,
2 empno,
3 ename
4 from emp

Discussion
The window function ROW_NUMBER OVER assigns a rank or “row number” to
each row sorted by EMPNO:

select row_number()over(order by empno) rn,
 empno,
 ename
 from emp

RN EMPNO ENAME
-- ---------- ----------
 1 7369 SMITH
 2 7499 ALLEN
 3 7521 WARD
 4 7566 JONES
 5 7654 MARTIN
 6 7698 BLAKE
 7 7782 CLARK
 8 7788 SCOTT
 9 7839 KING
10 7844 TURNER
11 7876 ADAMS

12.7 Creating Buckets of Data, of a Fixed Size | 387

12 7900 JAMES
13 7902 FORD
14 7934 MILLER

The next step is to apply the function CEIL (or CEILING) after dividing ROW_
NUMBER OVER by five. Dividing by five logically organizes the rows into groups of
five (i.e., five values less than or equal to 1, five values greater than 1 but less than or
equal to 2); the remaining group (composed of the last 4 rows since 14, the number of
rows in table EMP, is not a multiple of 5) has a value greater than 2 but less than or
equal to 3.

The CEIL function will return the smallest whole number greater than the value
passed to it; this will create whole number groups. The results of the division and
application of the CEIL are shown here. You can follow the order of operation from
left to right, from RN to DIVISION to GRP:

select row_number()over(order by empno) rn,
 row_number()over(order by empno)/5.0 division,
 ceil(row_number()over(order by empno)/5.0) grp,
 empno,
 ename
 from emp

RN DIVISION GRP EMPNO ENAME
-- ---------- --- ----- ----------
 1 .2 1 7369 SMITH
 2 .4 1 7499 ALLEN
 3 .6 1 7521 WARD
 4 .8 1 7566 JONES
 5 1 1 7654 MARTIN
 6 1.2 2 7698 BLAKE
 7 1.4 2 7782 CLARK
 8 1.6 2 7788 SCOTT
 9 1.8 2 7839 KING
10 2 2 7844 TURNER
11 2.2 3 7876 ADAMS
12 2.4 3 7900 JAMES
13 2.6 3 7902 FORD
14 2.8 3 7934 MILLER

12.8 Creating a Predefined Number of Buckets
Problem
You want to organize your data into a fixed number of buckets. For example, you
want to organize the employees in table EMP into four buckets. The result set should
look similar to the following:

388 | Chapter 12: Reporting and Reshaping

GRP EMPNO ENAME
--- ----- ---------
 1 7369 SMITH
 1 7499 ALLEN
 1 7521 WARD
 1 7566 JONES
 2 7654 MARTIN
 2 7698 BLAKE
 2 7782 CLARK
 2 7788 SCOTT
 3 7839 KING
 3 7844 TURNER
 3 7876 ADAMS
 4 7900 JAMES
 4 7902 FORD
 4 7934 MILLER

This is a common way to organize categorical data as dividing a set into a number of
smaller equal sized sets is an important first step for many kinds of analysis. For
example, taking the averages of these groups on salary or any other value may reveal a
trend that is concealed by variability when looking at the cases individually.

This problem is the opposite of the previous recipe, where you had an unknown
number of buckets but a predetermined number of elements in each bucket. In this
recipe, the goal is such that you may not necessarily know how many elements are in
each bucket, but you are defining a fixed (known) number of buckets to be created.

Solution
The solution to this problem is simple now that the NTILE function is widely avail‐
able. NTILE organizes an ordered set into the number of buckets you specify, with
any stragglers distributed into the available buckets starting from the first bucket. The
desired result set for this recipe reflects this: buckets 1 and 2 have four rows, while
buckets 3 and 4 have three rows.

Use the NTILE window function to create four buckets:

1 select ntile(4)over(order by empno) grp,
2 empno,
3 ename
4 from emp

Discussion
All the work is done by the NTILE function. The ORDER BY clause puts the rows
into the desired order, and the function itself then assigns a group number to each
row, for example, so that the first quarter (in this case) are put into group one, the
second into group two, etc.

12.8 Creating a Predefined Number of Buckets | 389

12.9 Creating Horizontal Histograms
Problem
You want to use SQL to generate histograms that extend horizontally. For example,
you want to display the number of employees in each department as a horizontal his‐
togram with each employee represented by an instance of *. You want to return the
following result set:

DEPTNO CNT
------ ----------
 10 ***
 20 *****
 30 ******

Solution
The key to this solution is to use the aggregate function COUNT and use GROUP BY
DEPTNO to determine the number of employees in each DEPTNO. The value
returned by COUNT is then passed to a string function that generates a series of *
characters.

DB2
Use the REPEAT function to generate the histogram:

1 select deptno,
2 repeat('*',count(*)) cnt
3 from emp
4 group by deptno

Oracle, PostgreSQL, and MySQL
Use the LPAD function to generate the needed strings of * characters:

1 select deptno,
2 lpad('*',count(*),'*') as cnt
3 from emp
4 group by deptno

SQL Server
Generate the histogram using the REPLICATE function:

1 select deptno,
2 replicate('*',count(*)) cnt
3 from emp
4 group by deptno

390 | Chapter 12: Reporting and Reshaping

Discussion
The technique is the same for all vendors. The only difference lies in the string func‐
tion used to return a * for each employee. The Oracle solution will be used for this
discussion, but the explanation is relevant for all the solutions.

The first step is to count the number of employees in each department:

select deptno,
 count(*)
 from emp
 group by deptno

DEPTNO COUNT(*)
------ ----------
 10 3
 20 5
 30 6

The next step is to use the value returned by COUNT to control the number of *
characters to return for each department. Simply pass COUNT(*) as an argument to
the string function LPAD to return the desired number of *:

select deptno,
 lpad('*',count(*),'*') as cnt
 from emp
 group by deptno

DEPTNO CNT
------ ----------
 10 ***
 20 *****
 30 ******

For PostgreSQL users, you may need to use CAST to ensure that COUNT(*) returns
an integer as shown here:

select deptno,
 lpad('*',count(*)::integer,'*') as cnt
 from emp
 group by deptno

DEPTNO CNT
------ ----------
 10 ***
 20 *****
 30 ******

This CAST is necessary because PostgreSQL requires the numeric argument to LPAD
to be an integer.

12.9 Creating Horizontal Histograms | 391

12.10 Creating Vertical Histograms
Problem
You want to generate a histogram that grows from the bottom up. For example, you
want to display the number of employees in each department as a vertical histogram
with each employee represented by an instance of *. You want to return the following
result set:

D10 D20 D30
--- --- ---
 *
 * *
 * *
* * *
* * *
* * *

Solution
The technique used to solve this problem is built on a technique used earlier in this
chapter: use the ROW_NUMBER OVER function to uniquely identify each instance
of * for each DEPTNO. Use the aggregate function MAX to pivot the result set and
group by the values returned by ROW_NUMBER OVER (SQL Server users should
not use DESC in the ORDER BY clause):

 1 select max(deptno_10) d10,
 2 max(deptno_20) d20,
 3 max(deptno_30) d30
 4 from (
 5 select row_number()over(partition by deptno order by empno) rn,
 6 case when deptno=10 then '*' else null end deptno_10,
 7 case when deptno=20 then '*' else null end deptno_20,
 8 case when deptno=30 then '*' else null end deptno_30
 9 from emp
10) x
11 group by rn
12 order by 1 desc, 2 desc, 3 desc

Discussion
The first step is to use the window function ROW_NUMBER to uniquely identify
each instance of * in each department. Use a CASE expression to return a * for each
employee in each department:

392 | Chapter 12: Reporting and Reshaping

select row_number()over(partition by deptno order by empno) rn,
 case when deptno=10 then '*' else null end deptno_10,
 case when deptno=20 then '*' else null end deptno_20,
 case when deptno=30 then '*' else null end deptno_30
 from emp

RN DEPTNO_10 DEPTNO_20 DEPTNO_30
-- ---------- ---------- ---------
 1 *
 2 *
 3 *
 1 *
 2 *
 3 *
 4 *
 5 *
 1 *
 2 *
 3 *
 4 *
 5 *
 6 *

The next and last step is to use the aggregate function MAX on each CASE expres‐
sion, grouping by RN to remove the NULLs from the result set. Order the results
ASC or DESC depending on how your RDBMS sorts NULLs:

select max(deptno_10) d10,
 max(deptno_20) d20,
 max(deptno_30) d30
 from (
select row_number()over(partition by deptno order by empno) rn,
 case when deptno=10 then '*' else null end deptno_10,
 case when deptno=20 then '*' else null end deptno_20,
 case when deptno=30 then '*' else null end deptno_30
 from emp
) x
 group by rn
 order by 1 desc, 2 desc, 3 desc

D10 D20 D30
--- --- ---
 *
 * *
 * *
* * *
* * *
* * *

12.10 Creating Vertical Histograms | 393

12.11 Returning Non-GROUP BY Columns
Problem
You are executing a GROUP BY query, and you want to return columns in your select
list that are not also listed in your GROUP BY clause. This is not normally possible,
as such ungrouped columns would not represent a single value per row.

Say that you want to find the employees who earn the highest and lowest salaries in
each department, as well as the employees who earn the highest and lowest salaries in
each job. You want to see each employee’s name, the department he works in, his job
title, and his salary. You want to return the following result set:

DEPTNO ENAME JOB SAL DEPT_STATUS JOB_STATUS
------ ------ --------- ----- --------------- --------------
 10 MILLER CLERK 1300 LOW SAL IN DEPT TOP SAL IN JOB
 10 CLARK MANAGER 2450 LOW SAL IN JOB
 10 KING PRESIDENT 5000 TOP SAL IN DEPT TOP SAL IN JOB
 20 SCOTT ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB
 20 FORD ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB
 20 SMITH CLERK 800 LOW SAL IN DEPT LOW SAL IN JOB
 20 JONES MANAGER 2975 TOP SAL IN JOB
 30 JAMES CLERK 950 LOW SAL IN DEPT
 30 MARTIN SALESMAN 1250 LOW SAL IN JOB
 30 WARD SALESMAN 1250 LOW SAL IN JOB
 30 ALLEN SALESMAN 1600 TOP SAL IN JOB
 30 BLAKE MANAGER 2850 TOP SAL IN DEPT

Unfortunately, including all these columns in the SELECT clause will ruin the group‐
ing. Consider the following example: employee KING earns the highest salary. You
want to verify this with the following query:

select ename,max(sal)
 from empgroup by ename

Instead of seeing KING and KING’s salary, the previous query will return all 14 rows
from table EMP. The reason is because of the grouping: the MAX(SAL) is applied to
each ENAME. So, it would seem the previous query can be stated as “find the
employee with the highest salary,” but in fact what it is doing is “find the highest sal‐
ary for each ENAME in table EMP.” This recipe explains a technique for including
ENAME without the need to GROUP BY that column.

Solution
Use an inline view to find the high and low salaries by DEPTNO and JOB. Then keep
only the employees who make those salaries.

394 | Chapter 12: Reporting and Reshaping

Use the window functions MAX OVER and MIN OVER to find the highest and low‐
est salaries by DEPTNO and JOB. Then keep the rows where the salaries are those
that are highest or lowest by DEPTNO or JOB:

 1 select deptno,ename,job,sal,
 2 case when sal = max_by_dept
 3 then 'TOP SAL IN DEPT'
 4 when sal = min_by_dept
 5 then 'LOW SAL IN DEPT'
 6 end dept_status,
 7 case when sal = max_by_job
 8 then 'TOP SAL IN JOB'
 9 when sal = min_by_job
10 then 'LOW SAL IN JOB'
11 end job_status
12 from (
13 select deptno,ename,job,sal,
14 max(sal)over(partition by deptno) max_by_dept,
15 max(sal)over(partition by job) max_by_job,
16 min(sal)over(partition by deptno) min_by_dept,
17 min(sal)over(partition by job) min_by_job
18 from emp
19) emp_sals
20 where sal in (max_by_dept,max_by_job,
21 min_by_dept,min_by_job)

Discussion
The first step is to use the window functions MAX OVER and MIN OVER to find the
highest and lowest salaries by DEPTNO and JOB:

select deptno,ename,job,sal,
 max(sal)over(partition by deptno) maxDEPT,
 max(sal)over(partition by job) maxJOB,
 min(sal)over(partition by deptno) minDEPT,
 min(sal)over(partition by job) minJOB
 from emp

DEPTNO ENAME JOB SAL MAXDEPT MAXJOB MINDEPT MINJOB
------ ------ --------- ----- ------- ------ ------- ------
 10 MILLER CLERK 1300 5000 1300 1300 800
 10 CLARK MANAGER 2450 5000 2975 1300 2450
 10 KING PRESIDENT 5000 5000 5000 1300 5000
 20 SCOTT ANALYST 3000 3000 3000 800 3000
 20 FORD ANALYST 3000 3000 3000 800 3000
 20 SMITH CLERK 800 3000 1300 800 800
 20 JONES MANAGER 2975 3000 2975 800 2450
 20 ADAMS CLERK 1100 3000 1300 800 800
 30 JAMES CLERK 950 2850 1300 950 800
 30 MARTIN SALESMAN 1250 2850 1600 950 1250
 30 TURNER SALESMAN 1500 2850 1600 950 1250
 30 WARD SALESMAN 1250 2850 1600 950 1250

12.11 Returning Non-GROUP BY Columns | 395

 30 ALLEN SALESMAN 1600 2850 1600 950 1250
 30 BLAKE MANAGER 2850 2850 2975 950 2450

At this point, every salary can be compared with the highest and lowest salaries by
DEPTNO and JOB. Notice that the grouping (the inclusion of multiple columns in
the SELECT clause) does not affect the values returned by MIN OVER and MAX
OVER. This is the beauty of window functions: the aggregate is computed over a
defined “group” or partition and returns multiple rows for each group. The last step is
to simply wrap the window functions in an inline view and keep only those rows that
match the values returned by the window functions. Use a simple CASE expression to
display the “status” of each employee in the final result set:

select deptno,ename,job,sal,
 case when sal = max_by_dept
 then 'TOP SAL IN DEPT'
 when sal = min_by_dept
 then 'LOW SAL IN DEPT'
 end dept_status,
 case when sal = max_by_job
 then 'TOP SAL IN JOB'
 when sal = min_by_job
 then 'LOW SAL IN JOB'
 end job_status
 from (
select deptno,ename,job,sal,
 max(sal)over(partition by deptno) max_by_dept,
 max(sal)over(partition by job) max_by_job,
 min(sal)over(partition by deptno) min_by_dept,
 min(sal)over(partition by job) min_by_job
 from emp
) x
 where sal in (max_by_dept,max_by_job,
 min_by_dept,min_by_job)

DEPTNO ENAME JOB SAL DEPT_STATUS JOB_STATUS
------ ------ --------- ----- --------------- --------------
 10 MILLER CLERK 1300 LOW SAL IN DEPT TOP SAL IN JOB
 10 CLARK MANAGER 2450 LOW SAL IN JOB
 10 KING PRESIDENT 5000 TOP SAL IN DEPT TOP SAL IN JOB
 20 SCOTT ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB
 20 FORD ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB
 20 SMITH CLERK 800 LOW SAL IN DEPT LOW SAL IN JOB
 20 JONES MANAGER 2975 TOP SAL IN JOB
 30 JAMES CLERK 950 LOW SAL IN DEPT
 30 MARTIN SALESMAN 1250 LOW SAL IN JOB
 30 WARD SALESMAN 1250 LOW SAL IN JOB
 30 ALLEN SALESMAN 1600 TOP SAL IN JOB
 30 BLAKE MANAGER 2850 TOP SAL IN DEPT

396 | Chapter 12: Reporting and Reshaping

12.12 Calculating Simple Subtotals
Problem
For the purposes of this recipe, a simple subtotal is defined as a result set that contains
values from the aggregation of one column along with a grand total value for the
table. An example would be a result set that sums the salaries in table EMP by JOB
and that also includes the sum of all salaries in table EMP. The summed salaries by
JOB are the subtotals, and the sum of all salaries in table EMP is the grand total. Such
a result set should look as follows:

JOB SAL
--------- ----------
ANALYST 6000
CLERK 4150
MANAGER 8275
PRESIDENT 5000
SALESMAN 5600
TOTAL 29025

Solution
The ROLLUP extension to the GROUP BY clause solves this problem perfectly. If
ROLLUP is not available for your RDBMS, you can solve the problem, albeit with
more difficulty, using a scalar subquery or a UNION query.

DB2 and Oracle
Use the aggregate function SUM to sum the salaries, and use the ROLLUP extension
of GROUP BY to organize the results into subtotals (by JOB) and a grand total (for
the whole table):

1 select case grouping(job)
2 when 0 then job
3 else 'TOTAL'
4 end job,
5 sum(sal) sal
6 from emp
7 group by rollup(job)

SQL Server and MySQL
Use the aggregate function SUM to sum the salaries, and use WITH ROLLUP to
organize the results into subtotals (by JOB) and a grand total (for the whole table).
Then use COALESCE to supply the label TOTAL for the grand total row (which will
otherwise have a NULL in the JOB column):

12.12 Calculating Simple Subtotals | 397

1 select coalesce(job,'TOTAL') job,
2 sum(sal) sal
3 from emp
4 group by job with rollup

With SQL Server, you also have the option to use the GROUPING function shown in
the Oracle/DB2 recipe rather than COALESCE to determine the level of aggregation.

PostgreSQL
Similar to the SQL Server and MySQL solutions, you use the ROLLUP extension to
GROUP BY with slightly different syntax:

select coalesce(job,'TOTAL') job,
 sum(sal) sal
 from emp
 group by rollup(job)

Discussion

DB2 and Oracle
The first step is to use the aggregate function SUM, grouping by JOB in order to sum
the salaries by JOB:

select job, sum(sal) sal
 from emp
 group by job

JOB SAL
--------- -----
ANALYST 6000
CLERK 4150
MANAGER 8275
PRESIDENT 5000
SALESMAN 5600

The next step is to use the ROLLUP extension to GROUP BY to produce a grand
total for all salaries along with the subtotals for each JOB:

select job, sum(sal) sal
 from emp
 group by rollup(job)

JOB SAL
--------- -------
ANALYST 6000
CLERK 4150
MANAGER 8275
PRESIDENT 5000
SALESMAN 5600
 29025

398 | Chapter 12: Reporting and Reshaping

The last step is to use the GROUPING function in the JOB column to display a label
for the grand total. If the value of JOB is NULL, the GROUPING function will return
1, which signifies that the value for SAL is the grand total created by ROLLUP. If the
value of JOB is not NULL, the GROUPING function will return 0, which signifies the
value for SAL is the result of the GROUP BY, not the ROLLUP. Wrap the call to
GROUPING(JOB) in a CASE expression that returns either the job name or the label
TOTAL, as appropriate:

select case grouping(job)
 when 0 then job
 else 'TOTAL'
 end job,
 sum(sal) sal
 from emp
 group by rollup(job)

JOB SAL
--------- ----------
ANALYST 6000
CLERK 4150
MANAGER 8275
PRESIDENT 5000
SALESMAN 5600
TOTAL 29025

SQL Server and MySQL
The first step is to use the aggregate function SUM, grouping the results by JOB to
generate salary sums by JOB:

select job, sum(sal) sal
 from emp
 group by job

JOB SAL
--------- -----
ANALYST 6000
CLERK 4150
MANAGER 8275
PRESIDENT 5000
SALESMAN 5600

The next step is to use GROUP BY’s ROLLUP extension to produce a grand total for
all salaries along with the subtotals for each JOB:

select job, sum(sal) sal
 from emp
 group by job with rollup

12.12 Calculating Simple Subtotals | 399

JOB SAL
--------- -------
ANALYST 6000
CLERK 4150
MANAGER 8275
PRESIDENT 5000
SALESMAN 5600
 29025

The last step is to use the COEALESCE function against the JOB column. If the value
of JOB is NULL, the value for SAL is the grand total created by ROLLUP. If the value
of JOB is not NULL, the value for SAL is the result of the “regular” GROUP BY, not
the ROLLUP:

select coalesce(job,'TOTAL') job,
 sum(sal) sal
 from emp
 group by job with rollup

JOB SAL
--------- ----------
ANALYST 6000
CLERK 4150
MANAGER 8275
PRESIDENT 5000
SALESMAN 5600
TOTAL 29025

PostgreSQL
The solution is the same in its manner of operation as the preceeding solution for
MySQL and SQL Server. The only difference is the syntax for the ROLLUP clause:
write ROLLUP(JOB) after GROUP BY.

12.13 Calculating Subtotals for All Possible Expression
Combinations
Problem
You want to find the sum of all salaries by DEPTNO, and by JOB, for every JOB/
DEPTNO combination. You also want a grand total for all salaries in table EMP. You
want to return the following result set:

DEPTNO JOB CATEGORY SAL
------ --------- --------------------- -------
 10 CLERK TOTAL BY DEPT AND JOB 1300
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 20 CLERK TOTAL BY DEPT AND JOB 1900

400 | Chapter 12: Reporting and Reshaping

 30 CLERK TOTAL BY DEPT AND JOB 950
 30 SALESMAN TOTAL BY DEPT AND JOB 5600
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 20 ANALYST TOTAL BY DEPT AND JOB 6000
 CLERK TOTAL BY JOB 4150
 ANALYST TOTAL BY JOB 6000
 MANAGER TOTAL BY JOB 8275
 PRESIDENT TOTAL BY JOB 5000
 SALESMAN TOTAL BY JOB 5600
 10 TOTAL BY DEPT 8750
 30 TOTAL BY DEPT 9400
 20 TOTAL BY DEPT 10875
 GRAND TOTAL FOR TABLE 29025

Solution
Extensions added to GROUP BY in recent years make this a fairly easy problem to
solve. If your platform does not supply such extensions for computing various levels
of subtotals, then you must compute them manually (via self-joins or scalar
subqueries).

DB2
For DB2, you will need to use CAST to return from GROUPING as the CHAR(1)
data type:

 1 select deptno,
 2 job,
 3 case cast(grouping(deptno) as char(1))||
 4 cast(grouping(job) as char(1))
 5 when '00' then 'TOTAL BY DEPT AND JOB'
 6 when '10' then 'TOTAL BY JOB'
 7 when '01' then 'TOTAL BY DEPT'
 8 when '11' then 'TOTAL FOR TABLE'
 9 end category,
10 sum(sal)
11 from emp
12 group by cube(deptno,job)
13 order by grouping(job),grouping(deptno)

Oracle
Use the CUBE extension to the GROUP BY clause with the concatenation operator ||:

 1 select deptno,
 2 job,
 3 case grouping(deptno)||grouping(job)
 4 when '00' then 'TOTAL BY DEPT AND JOB'
 5 when '10' then 'TOTAL BY JOB'
 6 when '01' then 'TOTAL BY DEPT'

12.13 Calculating Subtotals for All Possible Expression Combinations | 401

 7 when '11' then 'GRAND TOTALFOR TABLE'
 8 end category,
 9 sum(sal) sal
10 from emp
11 group by cube(deptno,job)
12 order by grouping(job),grouping(deptno)

SQL Server
Use the CUBE extension to the GROUP BY clause. For SQL Server, you will need to
CAST the results from GROUPING to CHAR(1), and you will need to use the +
operator for concatenation (as opposed to Oracle’s || operator):

 1 select deptno,
 2 job,
 3 case cast(grouping(deptno)as char(1))+
 4 cast(grouping(job)as char(1))
 5 when '00' then 'TOTAL BY DEPT AND JOB'
 6 when '10' then 'TOTAL BY JOB'
 7 when '01' then 'TOTAL BY DEPT'
 8 when '11' then 'GRAND TOTAL FOR TABLE'
 9 end category,
10 sum(sal) sal
11 from emp
12 group by deptno,job with cube
13 order by grouping(job),grouping(deptno)

PostgreSQL
PostgreSQL is similar to the preceding, but with slightly different syntax for the
CUBE operator and the concatenation:

select deptno,job
,case concat(
cast (grouping(deptno) as char(1)),cast (grouping(job) as char(1))
)
 when '00' then 'TOTAL BY DEPT AND JOB'
 when '10' then 'TOTAL BY JOB'
 when '01' then 'TOTAL BY DEPT'
 when '11' then 'GRAND TOTAL FOR TABLE'
 end category
 , sum(sal) as sal
 from emp
 group by cube(deptno,job)

MySQL
Although part of the functionality is available, it is not complete, as MySQL has no
CUBE function. Hence, use multiple UNION ALLs, creating different sums for each:

402 | Chapter 12: Reporting and Reshaping

 1 select deptno, job,
 2 'TOTAL BY DEPT AND JOB' as category,
 3 sum(sal) as sal
 4 from emp
 5 group by deptno, job
 6 union all
 7 select null, job, 'TOTAL BY JOB', sum(sal)
 8 from emp
 9 group by job
10 union all
11 select deptno, null, 'TOTAL BY DEPT', sum(sal)
12 from emp
13 group by deptno
14 union all
15 select null,null,'GRAND TOTAL FOR TABLE', sum(sal)
16 from emp

Discussion

Oracle, DB2, and SQL Server
The solutions for all three are essentially the same. The first step is to use the aggre‐
gate function SUM and group by both DEPTNO and JOB to find the total salaries for
each JOB and DEPTNO combination:

select deptno, job, sum(sal) sal
 from emp
 group by deptno, job

DEPTNO JOB SAL
------ --------- -------
 10 CLERK 1300
 10 MANAGER 2450
 10 PRESIDENT 5000
 20 CLERK 1900
 20 ANALYST 6000
 20 MANAGER 2975
 30 CLERK 950
 30 MANAGER 2850
 30 SALESMAN 5600

The next step is to create subtotals by JOB and DEPTNO along with the grand total
for the whole table. Use the CUBE extension to the GROUP BY clause to perform
aggregations on SAL by DEPTNO, JOB, and for the whole table:

select deptno,
 job,
 sum(sal) sal
 from emp
 group by cube(deptno,job)

12.13 Calculating Subtotals for All Possible Expression Combinations | 403

DEPTNO JOB SAL
------ --------- -------
 29025
 CLERK 4150
 ANALYST 6000
 MANAGER 8275
 SALESMAN 5600
 PRESIDENT 5000
 10 8750
 10 CLERK 1300
 10 MANAGER 2450
 10 PRESIDENT 5000
 20 10875
 20 CLERK 1900
 20 ANALYST 6000
 20 MANAGER 2975
 30 9400
 30 CLERK 950
 30 MANAGER 2850
 30 SALESMAN 5600

Next, use the GROUPING function in conjunction with CASE to format the results
into more meaningful output. The value from GROUPING(JOB) will be 1 or 0
depending on whether the values for SAL are due to the GROUP BY or the CUBE. If
the results are due to the CUBE, the value will be 1; otherwise, it will be 0. The same
goes for GROUPING(DEPTNO). Looking at the first step of the solution, you should
see that grouping is done by DEPTNO and JOB. Thus, the expected values from the
calls to GROUPING when a row represents a combination of both DEPTNO and
JOB is 0. The following query confirms this:

select deptno,
 job,
 grouping(deptno) is_deptno_subtotal,
 grouping(job) is_job_subtotal,
 sum(sal) sal
 from emp
 group by cube(deptno,job)
 order by 3,4

DEPTNO JOB IS_DEPTNO_SUBTOTAL IS_JOB_SUBTOTAL SAL
------ --------- ------------------ --------------- -------
 10 CLERK 0 0 1300
 10 MANAGER 0 0 2450
 10 PRESIDENT 0 0 5000
 20 CLERK 0 0 1900
 30 CLERK 0 0 950
 30 SALESMAN 0 0 5600
 30 MANAGER 0 0 2850
 20 MANAGER 0 0 2975
 20 ANALYST 0 0 6000
 10 0 1 8750

404 | Chapter 12: Reporting and Reshaping

 20 0 1 10875
 30 0 1 9400
 CLERK 1 0 4150
 ANALYST 1 0 6000
 MANAGER 1 0 8275
 PRESIDENT 1 0 5000
 SALESMAN 1 0 5600
 1 1 29025

The final step is to use a CASE expression to determine which category each row
belongs to based on the values returned by GROUPING(JOB) and GROUP‐
ING(DEPTNO) concatenated:

select deptno,
 job,
 case grouping(deptno)||grouping(job)
 when '00' then 'TOTAL BY DEPT AND JOB'
 when '10' then 'TOTAL BY JOB'
 when '01' then 'TOTAL BY DEPT'
 when '11' then 'GRAND TOTAL FOR TABLE'
 end category,
 sum(sal) sal
 from emp
 group by cube(deptno,job)
 order by grouping(job),grouping(deptno)

DEPTNO JOB CATEGORY SAL
------ --------- --------------------- -------
 10 CLERK TOTAL BY DEPT AND JOB 1300
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 20 CLERK TOTAL BY DEPT AND JOB 1900
 30 CLERK TOTAL BY DEPT AND JOB 950
 30 SALESMAN TOTAL BY DEPT AND JOB 5600
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 20 ANALYST TOTAL BY DEPT AND JOB 6000
 CLERK TOTAL BY JOB 4150
 ANALYST TOTAL BY JOB 6000
 MANAGER TOTAL BY JOB 8275
 PRESIDENT TOTAL BY JOB 5000
 SALESMAN TOTAL BY JOB 5600
 10 TOTAL BY DEPT 8750
 30 TOTAL BY DEPT 9400
 20 TOTAL BY DEPT 10875
 GRAND TOTAL FOR TABLE 29025

This Oracle solution implicitly converts the results from the GROUPING functions
to a character type in preparation for concatenating the two values. DB2 and SQL
Server users will need to explicitly CAST the results of the GROUPING functions to
CHAR(1), as shown in the solution. In addition, SQL Server users must use the +

12.13 Calculating Subtotals for All Possible Expression Combinations | 405

operator, and not the || operator, to concatenate the results from the two GROUPING
calls into one string.

For Oracle and DB2 users, there is an additional extension to GROUP BY called
GROUPING SETS; this extension is extremely useful. For example, you can use
GROUPING SETS to mimic the output created by CUBE as is shown here (DB2 and
SQL Server users will need to use CAST to ensure the values returned by the
GROUPING function are in the correct format in the same way as in the CUBE
solution):

select deptno,
 job,
 case grouping(deptno)||grouping(job)
 when '00' then 'TOTAL BY DEPT AND JOB'
 when '10' then 'TOTAL BY JOB'
 when '01' then 'TOTAL BY DEPT'
 when '11' then 'GRAND TOTAL FOR TABLE'
 end category,
 sum(sal) sal
 from emp
 group by grouping sets ((deptno),(job),(deptno,job),())

DEPTNO JOB CATEGORY SAL
------ --------- --------------------- -------
 10 CLERK TOTAL BY DEPT AND JOB 1300
 20 CLERK TOTAL BY DEPT AND JOB 1900
 30 CLERK TOTAL BY DEPT AND JOB 950
 20 ANALYST TOTAL BY DEPT AND JOB 6000
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 30 SALESMAN TOTAL BY DEPT AND JOB 5600
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 CLERK TOTAL BY JOB 4150
 ANALYST TOTAL BY JOB 6000
 MANAGER TOTAL BY JOB 8275
 SALESMAN TOTAL BY JOB 5600
 PRESIDENT TOTAL BY JOB 5000
 10 TOTAL BY DEPT 8750
 20 TOTAL BY DEPT 10875
 30 TOTAL BY DEPT 9400
 GRAND TOTAL FOR TABLE 29025

What’s great about GROUPING SETS is that it allows you to define the groups. The
GROUPING SETS clause in the preceding query causes groups to be created by
DEPTNO, by JOB, and by the combination of DEPTNO and JOB, and finally the
empty parentheses requests a grand total. GROUPING SETS gives you enormous
flexibility for creating reports with different levels of aggregation; for example, if you
wanted to modify the preceding example to exclude the GRAND TOTAL, simply
modify the GROUPING SETS clause by excluding the empty parentheses:

406 | Chapter 12: Reporting and Reshaping

/* no grand total */

select deptno,
 job,
 case grouping(deptno)||grouping(job)
 when '00' then 'TOTAL BY DEPT AND JOB'
 when '10' then 'TOTAL BY JOB'
 when '01' then 'TOTAL BY DEPT'
 when '11' then 'GRAND TOTAL FOR TABLE'
 end category,
 sum(sal) sal
 from emp
 group by grouping sets ((deptno),(job),(deptno,job))

DEPTNO JOB CATEGORY SAL
------ --------- --------------------- ----------
 10 CLERK TOTAL BY DEPT AND JOB 1300
 20 CLERK TOTAL BY DEPT AND JOB 1900
 30 CLERK TOTAL BY DEPT AND JOB 950
 20 ANALYST TOTAL BY DEPT AND JOB 6000
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 30 SALESMAN TOTAL BY DEPT AND JOB 5600
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 CLERK TOTAL BY JOB 4150
 ANALYST TOTAL BY JOB 6000
 MANAGER TOTAL BY JOB 8275
 SALESMAN TOTAL BY JOB 5600
 PRESIDENT TOTAL BY JOB 5000
 10 TOTAL BY DEPT 8750
 20 TOTAL BY DEPT 10875
 30 TOTAL BY DEPT 9400

You can also eliminate a subtotal, such as the one on DEPTNO, simply by omitting
(DEPTNO) from the GROUPING SETS clause:

/* nosubtotals by DEPTNO */

select deptno,
 job,
 case grouping(deptno)||grouping(job)
 when '00' then 'TOTAL BY DEPT AND JOB'
 when '10' then 'TOTAL BY JOB'
 when '01' then 'TOTAL BY DEPT'
 when '11' then 'GRAND TOTAL FOR TABLE'
 end category,
 sum(sal) sal
 from emp
 group by grouping sets ((job),(deptno,job),())
 order by 3

12.13 Calculating Subtotals for All Possible Expression Combinations | 407

DEPTNO JOB CATEGORY SAL
------ --------- --------------------- ----------
 GRAND TOTAL FOR TABLE 29025
 10 CLERK TOTAL BY DEPT AND JOB 1300
 20 CLERK TOTAL BY DEPT AND JOB 1900
 30 CLERK TOTAL BY DEPT AND JOB 950
 20 ANALYST TOTAL BY DEPT AND JOB 6000
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 30 SALESMAN TOTAL BY DEPT AND JOB 5600
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 CLERK TOTAL BY JOB 4150
 SALESMAN TOTAL BY JOB 5600
 PRESIDENT TOTAL BY JOB 5000
 MANAGER TOTAL BY JOB 8275
 ANALYST TOTAL BY JOB 6000

As you can see, GROUPING SETS makes it easy indeed to play around with totals
and subtotals to look at your data from different angles.

MySQL
The first step is to use the aggregate function SUM and group by both DEPTNO and
JOB:

select deptno, job,
 'TOTAL BY DEPT AND JOB' as category,
 sum(sal) as sal
 from emp
 group by deptno, job

DEPTNO JOB CATEGORY SAL
------ --------- --------------------- -------
 10 CLERK TOTAL BY DEPT AND JOB 1300
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 20 CLERK TOTAL BY DEPT AND JOB 1900
 20 ANALYST TOTAL BY DEPT AND JOB 6000
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 30 CLERK TOTAL BY DEPT AND JOB 950
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 30 SALESMAN TOTAL BY DEPT AND JOB 5600

The next step is to use UNION ALL to append TOTAL BY JOB sums:

select deptno, job,
 'TOTAL BY DEPT AND JOB' as category,
 sum(sal) as sal
 from emp
 group by deptno, job
 union all

408 | Chapter 12: Reporting and Reshaping

select null, job, 'TOTAL BY JOB', sum(sal)
 from emp
 group by job

DEPTNO JOB CATEGORY SAL
------ --------- --------------------- -------
 10 CLERK TOTAL BY DEPT AND JOB 1300
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 20 CLERK TOTAL BY DEPT AND JOB 1900
 20 ANALYST TOTAL BY DEPT AND JOB 6000
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 30 CLERK TOTAL BY DEPT AND JOB 950
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 30 SALESMAN TOTAL BY DEPT AND JOB 5600
 ANALYST TOTAL BY JOB 6000
 CLERK TOTAL BY JOB 4150
 MANAGER TOTAL BY JOB 8275
 PRESIDENT TOTAL BY JOB 5000
 SALESMAN TOTAL BY JOB 5600

The next step is to UNION ALL the sum of all the salaries by DEPTNO:

select deptno, job,
 'TOTAL BY DEPT AND JOB' as category,
 sum(sal) as sal
 from emp
 group by deptno, job
 union all
select null, job, 'TOTAL BY JOB', sum(sal)
 from emp
 group by job
 union all
select deptno, null, 'TOTAL BY DEPT', sum(sal)
 from emp
 group by deptno

DEPTNO JOB CATEGORY SAL
------ --------- --------------------- -------
 10 CLERK TOTAL BY DEPT AND JOB 1300
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 20 CLERK TOTAL BY DEPT AND JOB 1900
 20 ANALYST TOTAL BY DEPT AND JOB 6000
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 30 CLERK TOTAL BY DEPT AND JOB 950
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 30 SALESMAN TOTAL BY DEPT AND JOB 5600
 ANALYST TOTAL BY JOB 6000
 CLERK TOTAL BY JOB 4150
 MANAGER TOTAL BY JOB 8275
 PRESIDENT TOTAL BY JOB 5000
 SALESMAN TOTAL BY JOB 5600

12.13 Calculating Subtotals for All Possible Expression Combinations | 409

 10 TOTAL BY DEPT 8750
 20 TOTAL BY DEPT 10875
 30 TOTAL BY DEPT 9400

The final step is to use UNION ALL to append the sum of all salaries:

select deptno, job,
 'TOTAL BY DEPT AND JOB' as category,
 sum(sal) as sal
 from emp
 group by deptno, job
 union all
select null, job, 'TOTAL BY JOB', sum(sal)
 from emp
 group by job
 union all
select deptno, null, 'TOTAL BY DEPT', sum(sal)
 from emp
 group by deptno
 union all
select null,null, 'GRAND TOTAL FOR TABLE', sum(sal)
 from emp

DEPTNO JOB CATEGORY SAL
------ --------- --------------------- -------
 10 CLERK TOTAL BY DEPT AND JOB 1300
 10 MANAGER TOTAL BY DEPT AND JOB 2450
 10 PRESIDENT TOTAL BY DEPT AND JOB 5000
 20 CLERK TOTAL BY DEPT AND JOB 1900
 20 ANALYST TOTAL BY DEPT AND JOB 6000
 20 MANAGER TOTAL BY DEPT AND JOB 2975
 30 CLERK TOTAL BY DEPT AND JOB 950
 30 MANAGER TOTAL BY DEPT AND JOB 2850
 30 SALESMAN TOTAL BY DEPT AND JOB 5600
 ANALYST TOTAL BY JOB 6000
 CLERK TOTAL BY JOB 4150
 MANAGER TOTAL BY JOB 8275
 PRESIDENT TOTAL BY JOB 5000
 SALESMAN TOTAL BY JOB 5600
 10 TOTAL BY DEPT 8750
 20 TOTAL BY DEPT 10875
 30 TOTAL BY DEPT 9400
 GRAND TOTAL FOR TABLE 29025

12.14 Identifying Rows That Are Not Subtotals
Problem
You’ve used the CUBE extension of the GROUP BY clause to create a report, and you
need a way to differentiate between rows that would be generated by a normal

410 | Chapter 12: Reporting and Reshaping

GROUP BY clause and those rows that have been generated as a result of using CUBE
or ROLLUP.

The following is the result set from a query using the CUBE extension to GROUP BY
to create a breakdown of the salaries in table EMP:

DEPTNO JOB SAL
------ --------- -------
 29025
 CLERK 4150
 ANALYST 6000
 MANAGER 8275
 SALESMAN 5600
 PRESIDENT 5000
 10 8750
 10 CLERK 1300
 10 MANAGER 2450
 10 PRESIDENT 5000
 20 10875
 20 CLERK 1900
 20 ANALYST 6000
 20 MANAGER 2975
 30 9400
 30 CLERK 950
 30 MANAGER 2850
 30 SALESMAN 5600

This report includes the sum of all salaries by DEPTNO and JOB (for each JOB per
DEPTNO), the sum of all salaries by DEPTNO, the sum of all salaries by JOB, and
finally a grand total (the sum of all salaries in table EMP). You want to clearly identify
the different levels of aggregation. You want to be able to identify which category an
aggregated value belongs to (i.e., does a given value in the SAL column represent a
total by DEPTNO? By JOB? The grand total?). You would like to return the following
result set:

DEPTNO JOB SAL DEPTNO_SUBTOTALS JOB_SUBTOTALS
------ --------- ------- ---------------- -------------
 29025 1 1
 CLERK 4150 1 0
 ANALYST 6000 1 0
 MANAGER 8275 1 0
 SALESMAN 5600 1 0
 PRESIDENT 5000 1 0
 10 8750 0 1
 10 CLERK 1300 0 0
 10 MANAGER 2450 0 0
 10 PRESIDENT 5000 0 0
 20 10875 0 1
 20 CLERK 1900 0 0
 20 ANALYST 6000 0 0
 20 MANAGER 2975 0 0

12.14 Identifying Rows That Are Not Subtotals | 411

 30 9400 0 1
 30 CLERK 950 0 0
 30 MANAGER 2850 0 0
 30 SALESMAN 5600 0 0

Solution
Use the GROUPING function to identify which values exist due to CUBE’s or ROLL‐
UP’s creation of subtotals, or superaggregate values. The following is an example for
PostgreSQL, DB2, and Oracle:

 1 select deptno, jo) sal,
 2 grouping(deptno) deptno_subtotals,
 3 grouping(job) job_subtotals
 4 from emp
 5 group by cube(deptno,job)

The only difference between the SQL Server solution and that for DB2 and Oracle lies
in how the CUBE/ROLLUP clauses are written:

 1 select deptno, job, sum(sal) sal,
 2 grouping(deptno) deptno_subtotals,
 3 grouping(job) job_subtotals
 4 from emp
 5 group by deptno,job with cube

This recipe is meant to highlight the use of CUBE and GROUPING when working
with subtotals. As of the time of this writing, MySQL doesn’t support either CUBE or
GROUPING.

Discussion
If DEPTNO_SUBTOTALS is 0 and JOB_SUBTOTALS is 1 (in which case JOB is
NULL), the value of SAL represents a subtotal of salaries by DEPTNO created by
CUBE. If JOB_SUBTOTALS is 0 and DEPTNO_SUBTOTALS is 1 (in which case
DEPTNO is NULL), the value of SAL represents a subtotal of salaries by JOB created
by CUBE. Rows with 0 for both DEPTNO_SUBTOTALS and JOB_SUBTOTALS rep‐
resent rows created by regular aggregation (the sum of SAL for each DEPTNO/JOB
combination).

12.15 Using Case Expressions to Flag Rows
Problem
You want to map the values in a column, perhaps the EMP table’s JOB column, into a
series of “Boolean” flags. For example, you want to return the following result set:

412 | Chapter 12: Reporting and Reshaping

ENAME IS_CLERK IS_SALES IS_MGR IS_ANALYST IS_PREZ
------ -------- -------- ------ ---------- -------
KING 0 0 0 0 1
SCOTT 0 0 0 1 0
FORD 0 0 0 1 0
JONES 0 0 1 0 0
BLAKE 0 0 1 0 0
CLARK 0 0 1 0 0
ALLEN 0 1 0 0 0
WARD 0 1 0 0 0
MARTIN 0 1 0 0 0
TURNER 0 1 0 0 0
SMITH 1 0 0 0 0
MILLER 1 0 0 0 0
ADAMS 1 0 0 0 0
JAMES 1 0 0 0 0

Such a result set can be useful for debugging and to provide yourself a view of the
data different from what you’d see in a more typical result set.

Solution
Use a CASE expression to evaluate each employee’s JOB, and return a 1 or 0 to signify
their JOB. You’ll need to write one CASE expression, and thus create one column for
each possible job:

 1 select ename,
 2 case when job = 'CLERK'
 3 then 1 else 0
 4 end as is_clerk,
 5 case when job = 'SALESMAN'
 6 then 1 else 0
 7 end as is_sales,
 8 case when job = 'MANAGER'
 9 then 1 else 0
10 end as is_mgr,
11 case when job = 'ANALYST'
12 then 1 else 0
13 end as is_analyst,
14 case when job = 'PRESIDENT'
15 then 1 else 0
16 end as is_prez
17 from emp
18 order by 2,3,4,5,6

12.15 Using Case Expressions to Flag Rows | 413

Discussion
The solution code is pretty much self-explanatory. If you are having trouble under‐
standing it, simply add JOB to the SELECT clause:

select ename,
 job,
 case when job = 'CLERK'
 then 1 else 0
 end as is_clerk,
 case when job = 'SALESMAN'
 then 1 else 0
 end as is_sales,
 case when job = 'MANAGER'
 then 1 else 0
 end as is_mgr,
 case when job = 'ANALYST'
 then 1 else 0
 end as is_analyst,
 case when job = 'PRESIDENT'
 then 1 else 0
 end as is_prez
 from emp
 order by 2

ENAME JOB IS_CLERK IS_SALES IS_MGR IS_ANALYST IS_PREZ
------ --------- -------- -------- ------ ---------- -------
SCOTT ANALYST 0 0 0 1 0
FORD ANALYST 0 0 0 1 0
SMITH CLERK 1 0 0 0 0
ADAMS CLERK 1 0 0 0 0
MILLER CLERK 1 0 0 0 0
JAMES CLERK 1 0 0 0 0
JONES MANAGER 0 0 1 0 0
CLARK MANAGER 0 0 1 0 0
BLAKE MANAGER 0 0 1 0 0
KING PRESIDENT 0 0 0 0 1
ALLEN SALESMAN 0 1 0 0 0
MARTIN SALESMAN 0 1 0 0 0
TURNER SALESMAN 0 1 0 0 0
WARD SALESMAN 0 1 0 0 0

12.16 Creating a Sparse Matrix
Problem
You want to create a sparse matrix, such as the following one transposing the
DEPTNO and JOB columns of table EMP:

414 | Chapter 12: Reporting and Reshaping

D10 D20 D30 CLERKS MGRS PREZ ANALS SALES
---------- ---------- ---------- ------ ----- ---- ----- ------
 SMITH SMITH
 ALLEN ALLEN
 WARD WARD
 JONES JONES
 MARTIN MARTIN
 BLAKE BLAKE
CLARK CLARK
 SCOTT SCOTT
KING KING
 TURNER TURNER
 ADAMS ADAMS
 JAMES JAMES
 FORD FORD
MILLER MILLER

Solution
Use CASE expressions to create a sparse row-to-column transformation:

 1 select case deptno when 10 then ename end as d10,
 2 case deptno when 20 then ename end as d20,
 3 case deptno when 30 then ename end as d30,
 4 case job when 'CLERK' then ename end as clerks,
 5 case job when 'MANAGER' then ename end as mgrs,
 6 case job when 'PRESIDENT' then ename end as prez,
 7 case job when 'ANALYST' then ename end as anals,
 8 case job when 'SALESMAN' then ename end as sales
 9 from emp

Discussion
To transform the DEPTNO and JOB rows to columns, simply use a CASE expression
to evaluate the possible values returned by those rows. That’s all there is to it. As an
aside, if you want to “densify” the report and get rid of some of those NULL rows,
you would need to find something to group by. For example, use the window func‐
tion ROW_NUMBER OVER to assign a ranking for each employee per DEPTNO,
and then use the aggregate function MAX to rub out some of the NULLs:

select max(case deptno when 10 then ename end) d10,
 max(case deptno when 20 then ename end) d20,
 max(case deptno when 30 then ename end) d30,
 max(case job when 'CLERK' then ename end) clerks,
 max(case job when 'MANAGER' then ename end) mgrs,
 max(case job when 'PRESIDENT' then ename end) prez,
 max(case job when 'ANALYST' then ename end) anals,
 max(case job when 'SALESMAN' then ename end) sales
 from (
select deptno, job, ename,
 row_number()over(partition by deptno order by empno) rn

12.16 Creating a Sparse Matrix | 415

 from emp
) x
 group by rn

D10 D20 D30 CLERKS MGRS PREZ ANALS SALES
---------- ---------- ---------- ------ ----- ---- ----- ------
CLARK SMITH ALLEN SMITH CLARK ALLEN
KING JONES WARD JONES KING WARD
MILLER SCOTT MARTIN MILLER SCOTT MARTIN
 ADAMS BLAKE ADAMS BLAKE
 FORD TURNER FORD TURNER
 JAMES JAMES

12.17 Grouping Rows by Units of Time
Problem
You want to summarize data by some interval of time. For example, you have a trans‐
action log and want to summarize transactions by five-second intervals. The rows in
table TRX_LOG are shown here:

select trx_id,
 trx_date,
 trx_cnt
 from trx_log
TRX_ID TRX_DATE TRX_CNT
------ -------------------- ----------
 1 28-JUL-2020 19:03:07 44
 2 28-JUL-2020 19:03:08 18
 3 28-JUL-2020 19:03:09 23
 4 28-JUL-2020 19:03:10 29
 5 28-JUL-2020 19:03:11 27
 6 28-JUL-2020 19:03:12 45
 7 28-JUL-2020 19:03:13 45
 8 28-JUL-2020 19:03:14 32
 9 28-JUL-2020 19:03:15 41
 10 28-JUL-2020 19:03:16 15
 11 28-JUL-2020 19:03:17 24
 12 28-JUL-2020 19:03:18 47
 13 28-JUL-2020 19:03:19 37
 14 28-JUL-2020 19:03:20 48
 15 28-JUL-2020 19:03:21 46
 16 28-JUL-2020 19:03:22 44
 17 28-JUL-2020 19:03:23 36
 18 28-JUL-2020 19:03:24 41
 19 28-JUL-2020 19:03:25 33
 20 28-JUL-2020 19:03:26 19

You want to return the following result set:

416 | Chapter 12: Reporting and Reshaping

GRP TRX_START TRX_END TOTAL
--- -------------------- -------------------- ----------
 1 28-JUL-2020 19:03:07 28-JUL-2020 19:03:11 141
 2 28-JUL-2020 19:03:12 28-JUL-2020 19:03:16 178
 3 28-JUL-2020 19:03:17 28-JUL-2020 19:03:21 202
 4 28-JUL-2020 19:03:22 28-JUL-2020 19:03:26 173

Solution
Group the entries into five row buckets. There are several ways to accomplish that
logical grouping; this recipe does so by dividing the TRX_ID values by five, using a
technique shown earlier in Recipe 12.7.

Once you’ve created the “groups,” use the aggregate functions MIN, MAX, and SUM
to find the start time, end time, and total number of transactions for each “group”
(SQL Server users should use CEILING instead of CEIL):

 1 select ceil(trx_id/5.0) as grp,
 2 min(trx_date) as trx_start,
 3 max(trx_date) as trx_end,
 4 sum(trx_cnt) as total
 5 from trx_log
 6 group by ceil(trx_id/5.0)

Discussion
The first step, and the key to the whole solution, is to logically group the rows
together. By dividing by five and taking the smallest whole number greater than the
quotient, you can create logical groups. For example:

select trx_id,
 trx_date,
 trx_cnt,
 trx_id/5.0 as val,
 ceil(trx_id/5.0) as grp
 from trx_log
TRX_ID TRX_DATE TRX_CNT VAL GRP
------ -------------------- ------- ------ ---
 1 28-JUL-2020 19:03:07 44 .20 1
 2 28-JUL-2020 19:03:08 18 .40 1
 3 28-JUL-2020 19:03:09 23 .60 1
 4 28-JUL-2020 19:03:10 29 .80 1
 5 28-JUL-2020 19:03:11 27 1.00 1
 6 28-JUL-2020 19:03:12 45 1.20 2
 7 28-JUL-2020 19:03:13 45 1.40 2
 8 28-JUL-2020 19:03:14 32 1.60 2
 9 28-JUL-2020 19:03:15 41 1.80 2
 10 28-JUL-2020 19:03:16 15 2.00 2
 11 28-JUL-2020 19:03:17 24 2.20 3
 12 28-JUL-2020 19:03:18 47 2.40 3
 13 28-JUL-2020 19:03:19 37 2.60 3

12.17 Grouping Rows by Units of Time | 417

 14 28-JUL-2020 19:03:20 48 2.80 3
 15 28-JUL-2020 19:03:21 46 3.00 3
 16 28-JUL-2020 19:03:22 44 3.20 4
 17 28-JUL-2020 19:03:23 36 3.40 4
 18 28-JUL-2020 19:03:24 41 3.60 4
 19 28-JUL-2020 19:03:25 33 3.80 4
 20 28-JUL-2020 19:03:26 19 4.00 4

The last step is to apply the appropriate aggregate functions to find the total number
of transactions per five seconds, along with the start and end times for each
transaction:

select ceil(trx_id/5.0) as grp,
 min(trx_date) as trx_start,
 max(trx_date) as trx_end,
 sum(trx_cnt) as total
 from trx_log
 group by ceil(trx_id/5.0)
GRP TRX_START TRX_END TOTAL
--- -------------------- -------------------- ----------
 1 28-JUL-2020 19:03:07 28-JUL-2005 19:03:11 141
 2 28-JUL-2020 19:03:12 28-JUL-2005 19:03:16 178
 3 28-JUL-2020 19:03:17 28-JUL-2005 19:03:21 202
 4 28-JUL-2020 19:03:22 28-JUL-2005 19:03:26 173

If your data is slightly different (perhaps you don’t have an ID for each row), you can
always “group” by dividing the seconds of each TRX_DATE row by five to create a
similar grouping. Then you can include the hour for each TRX_DATE and group by
the actual hour and logical “grouping,” GRP. The following is an example of this tech‐
nique (using Oracle’s TO_CHAR and TO_NUMBER functions, you would use the
appropriate date and character formatting functions for your platform):

select trx_date,trx_cnt,
 to_number(to_char(trx_date,'hh24')) hr,
 ceil(to_number(to_char(trx_date-1/24/60/60,'miss'))/5.0) grp
 from trx_log

TRX_DATE 20 TRX_CNT HR GRP
-------------------- ---------- ---------- ----------
28-JUL-2020 19:03:07 44 19 62
28-JUL-2020 19:03:08 18 19 62
28-JUL-2020 19:03:09 23 19 62
28-JUL-2020 19:03:10 29 19 62
28-JUL-2020 19:03:11 27 19 62
28-JUL-2020 19:03:12 45 19 63
28-JUL-2020 19:03:13 45 19 63
28-JUL-2020 19:03:14 32 19 63
28-JUL-2020 19:03:15 41 19 63
28-JUL-2020 19:03:16 15 19 63
28-JUL-2020 19:03:17 24 19 64
28-JUL-2020 19:03:18 47 19 64
28-JUL-2020 19:03:19 37 19 64

418 | Chapter 12: Reporting and Reshaping

28-JUL-2020 19:03:20 48 19 64
28-JUL-2020 19:03:21 46 19 64
28-JUL-2020 19:03:22 44 19 65
28-JUL-2020 19:03:23 36 19 65
28-JUL-2020 19:03:24 41 19 65
28-JUL-2020 19:03:25 33 19 65
28-JUL-2020 19:03:26 19 19 65

Regardless of the actual values for GRP, the key here is that you are grouping for
every five seconds. From there you can apply the aggregate functions in the same way
as in the original solution:

select hr,grp,sum(trx_cnt) total
 from (
select trx_date,trx_cnt,
 to_number(to_char(trx_date,'hh24')) hr,
 ceil(to_number(to_char(trx_date-1/24/60/60,'miss'))/5.0) grp
 from trx_log
) x
 group by hr,grp
HR GRP TOTAL
-- ---------- ----------
19 62 141
19 63 178
19 64 202
19 65 173

Including the hour in the grouping is useful if your transaction log spans hours. In
DB2 and Oracle, you can also use the window function SUM OVER to produce the
same result. The following query returns all rows from TRX_LOG along with a run‐
ning total for TRX_CNT by logical “group,” and the TOTAL for TRX_CNT for each
row in the “group”:

select trx_id, trx_date, trx_cnt,
 sum(trx_cnt)over(partition by ceil(trx_id/5.0)
 order by trx_date
 range between unbounded preceding
 and current row) runing_total,
 sum(trx_cnt)over(partition by ceil(trx_id/5.0)) total,
 case when mod(trx_id,5.0) = 0 then 'X' end grp_end
 from trx_log

TRX_ID TRX_DATE TRX_CNT RUNING_TOTAL TOTAL GRP_END
------ -------------------- ---------- ------------ ---------- -------
 1 28-JUL-2020 19:03:07 44 44 141
 2 28-JUL-2020 19:03:08 18 62 141
 3 28-JUL-2020 19:03:09 23 85 141
 4 28-JUL-2020 19:03:10 29 114 141
 5 28-JUL-2020 19:03:11 27 141 141 X
 6 28-JUL-2020 19:03:12 45 45 178
 7 28-JUL-2020 19:03:13 45 90 178
 8 28-JUL-2020 19:03:14 32 122 178

12.17 Grouping Rows by Units of Time | 419

 9 28-JUL-2020 19:03:15 41 163 178
 10 28-JUL-2020 19:03:16 15 178 178 X
 11 28-JUL-2020 19:03:17 24 24 202
 12 28-JUL-2020 19:03:18 47 71 202
 13 28-JUL-2020 19:03:19 37 108 202
 14 28-JUL-2020 19:03:20 48 156 202
 15 28-JUL-2020 19:03:21 46 202 202 X
 16 28-JUL-2020 19:03:22 44 44 173
 17 28-JUL-2020 19:03:23 36 80 173
 18 28-JUL-2020 19:03:24 41 121 173
 19 28-JUL-2020 19:03:25 33 154 173
 20 28-JUL-2020 19:03:26 19 173 173 X

12.18 Performing Aggregations over Different Groups/
Partitions Simultaneously
Problem
You want to aggregate over different dimensions at the same time. For example, you
want to return a result set that lists each employee’s name, their department, the num‐
ber of employees in their department (themselves included), the number of employ‐
ees that have the same job (themselves included in this count as well), and the total
number of employees in the EMP table. The result set should look like the following:

ENAME DEPTNO DEPTNO_CNT JOB JOB_CNT TOTAL
------ ------ ---------- --------- -------- ------
MILLER 10 3 CLERK 4 14
CLARK 10 3 MANAGER 3 14
KING 10 3 PRESIDENT 1 14
SCOTT 20 5 ANALYST 2 14
FORD 20 5 ANALYST 2 14
SMITH 20 5 CLERK 4 14
JONES 20 5 MANAGER 3 14
ADAMS 20 5 CLERK 4 14
JAMES 30 6 CLERK 4 14
MARTIN 30 6 SALESMAN 4 14
TURNER 30 6 SALESMAN 4 14
WARD 30 6 SALESMAN 4 14
ALLEN 30 6 SALESMAN 4 14
BLAKE 30 6 MANAGER 3 14

Solution
Use the COUNT OVER window function while specifying different partitions, or
groups of data, on which to perform aggregation:

select ename,
 deptno,
 count(*)over(partition by deptno) deptno_cnt,

420 | Chapter 12: Reporting and Reshaping

 job,
 count(*)over(partition by job) job_cnt,
 count(*)over() total
 from emp

Discussion
This example really shows off the power and convenience of window functions. By
simply specifying different partitions or groups of data to aggregate, you can create
immensely detailed reports without having to self-join over and over, and without
having to write cumbersome and perhaps poorly performing subqueries in your
SELECT list. All the work is done by the window function COUNT OVER. To under‐
stand the output, focus on the OVER clause for a moment for each COUNT
operation:

count(*)over(partition by deptno)

count(*)over(partition by job)

count(*)over()

Remember the main parts of the OVER clause: the PARTITION BY subclause, divid‐
ing the query into partitions; and the ORDER BY subclause, defining the logical
order. Look at the first COUNT, which partitions by DEPTNO. The rows in table
EMP will be grouped by DEPTNO, and the COUNT operation will be performed on
all the rows in each group. Since there is no frame or window clause specified (no
ORDER BY), all the rows in the group are counted. The PARTITION BY clause finds
all the unique DEPTNO values, and then the COUNT function counts the number of
rows having each value. In the specific example of COUNT(*)OVER(PARTITION
BY DEPTNO), the PARTITION BY clause identifies the partitions or groups to be
values 10, 20, and 30.

The same processing is applied to the second COUNT, which partitions by JOB. The
last count does not partition by anything and simply has an empty parentheses. An
empty parentheses implies “the whole table.” So, whereas the two prior COUNTs
aggregate values based on the defined groups or partitions, the final COUNT counts
all rows in table EMP.

Keep in mind that window functions are applied after the WHERE
clause. If you were to filter the result set in some way, for example,
excluding all employees in DEPTNO 10, the value for TOTAL
would not be 14—it would be 11. To filter results after window
functions have been evaluated, you must make your windowing
query into an inline view and then filter on the results from that
view.

12.18 Performing Aggregations over Different Groups/Partitions Simultaneously | 421

12.19 Performing Aggregations over a Moving Range of
Values
Problem
You want to compute a moving aggregation, such as a moving sum on the salaries in
table EMP. You want to compute a sum for every 90 days, starting with the HIRE‐
DATE of the first employee. You want to see how spending has fluctuated for every
90-day period between the first and last employee hired. You want to return the fol‐
lowing result set:

HIREDATE SAL SPENDING_PATTERN
----------- ------- ----------------
17-DEC-200 800 800
20-FEB-2011 1600 2400
22-FEB-2011 1250 3650
02-APR-2011 2975 5825
01-MAY-2011 2850 8675
09-JUN-2011 2450 8275
08-SEP-2011 1500 1500
28-SEP-2011 1250 2750
17-NOV-2011 5000 7750
03-DEC-2011 950 11700
03-DEC-2011 3000 11700
23-JAN-2012 1300 10250
09-DEC-2012 3000 3000
12-JAN-2013 1100 4100

Solution
Being able to specify a moving window in the framing or windowing clause of win‐
dow functions makes this problem easy to solve, if your RDBMS supports such func‐
tions. The key is to order by HIREDATE in your window function and then specify a
window of 90 days starting from the earliest employee hired. The sum will be compu‐
ted using the salaries of employees hired up to 90 days prior to the current employee’s
HIREDATE (the current employee is included in the sum). If you do not have win‐
dow functions available, you can use scalar subqueries, but the solution will be more
complex.

DB2 and Oracle
For DB2 and Oracle, use the window function SUM OVER and order by HIREDATE.
Specify a range of 90 days in the window or “framing” clause to allow the sum to be
computed for each employee’s salary and to include the salaries of all employees hired
up to 90 days earlier. Because DB2 does not allow you to specify HIREDATE in the

422 | Chapter 12: Reporting and Reshaping

ORDER BY clause of a window function (line 3 in the following code), you can order
by DAYS(HIREDATE) instead:

 1 select hiredate,
 2 sal,
 3 sum(sal)over(order by days(hiredate)
 4 range between 90 preceding
 5 and current row) spending_pattern
 6 from emp e

The Oracle solution is more straightforward than DB2’s, because Oracle allows win‐
dow functions to order by datetime types:

 1 select hiredate,
 2 sal,
 3 sum(sal)over(order by hiredate
 4 range between 90 preceding
 5 and current row) spending_pattern
 6 from emp e

MySQL
Use the window function with slightly altered syntax:

1 select hiredate,
2 sal,
3 sum(sal)over(order by hiredate
4 range interval 90 day preceding) spending_pattern
5 from emp e

PostgreSQL and SQL Server
Use a scalar subquery to sum the salaries of all employees hired up to 90 days prior to
the day each employee was hired:

 1 select e.hiredate,
 2 e.sal,
 3 (select sum(sal) from emp d
 4 whered.hiredate between e.hiredate-90
 5 and e.hiredate) as spending_pattern
 6 from emp e
 7 order by 1

Discussion

DB2, MySQL, and Oracle
DB2, MySQL, and Oracle share the same logical solution. The only minor differences
between the solutions are in how you specify HIREDATE in the ORDER BY clause of
the window function and the syntax of specifying the time interval in MySQL. At the
time of this book’s writing, DB2 doesn’t allow a DATE value in such an ORDER BY

12.19 Performing Aggregations over a Moving Range of Values | 423

clause if you are using a numeric value to set the window’s range. (For example,
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW allows
you to order by a date, but RANGE BETWEEN 90 PRECEDING AND CURRENT
ROW does not.)

To understand what the solution query is doing, you simply need to understand what
the window clause is doing. The window you are defining orders the salaries for all
employees by HIREDATE. Then the function computes a sum. The sum is not com‐
puted for all salaries. Instead, the processing is as follows:

1. The salary of the first employee hired is evaluated. Since no employees were
hired before the first employee, the sum at this point is simply the first employee’s
salary.

2. The salary of the next employee (by HIREDATE) is evaluated. This employee’s
salary is included in the moving sum along with any other employees who were
hired up to 90 days prior.

The HIREDATE of the first employee is December 17, 2010, and the HIREDATE of
the next hired employee is February 20, 2011. The second employee was hired less
than 90 days after the first employee, and thus the moving sum for the second
employee is 2400 (1600 + 800). If you are having trouble understanding where the
values in SPENDING_PATTERN come from, examine the following query and result
set:

select distinct
 dense_rank()over(order by e.hiredate) window,
 e.hiredate current_hiredate,
 d.hiredate hiredate_within_90_days,
 d.sal sals_used_for_sum
 from emp e,
 emp d
where d.hiredate between e.hiredate-90 and e.hiredate

WINDOW CURRENT_HIREDATE HIREDATE_WITHIN_90_DAYS SALS_USED_FOR_SUM
------ ---------------- ----------------------- -----------------
 1 17-DEC-2010 17-DEC-2010 800
 2 20-FEB-2011 17-DEC-2010 800
 2 20-FEB-2011 20-FEB-2011 1600
 3 22-FEB-2011 17-DEC-2010 800
 3 22-FEB-2011 20-FEB-2011 1600
 3 22-FEB-2011 22-FEB-2011 1250
 4 02-APR-2011 20-FEB-2011 1600
 4 02-APR-2011 22-FEB-2011 1250
 4 02-APR-2011 02-APR-2011 2975
 5 01-MAY-2011 20-FEB-2011 1600
 5 01-MAY-2011 22-FEB-2011 1250
 5 01-MAY-2011 02-APR-2011 2975
 5 01-MAY-2011 01-MAY-2011 2850

424 | Chapter 12: Reporting and Reshaping

 6 09-JUN-2011 02-APR-2011 2975
 6 09-JUN-2011 01-MAY-2011 2850
 6 09-JUN-2011 09-JUN-2011 2450
 7 08-SEP-2011 08-SEP-2011 1500
 8 28-SEP-2011 08-SEP-2011 1500
 8 28-SEP-2011 28-SEP-2011 1250
 9 17-NOV-2011 08-SEP-2011 1500
 9 17-NOV-2011 28-SEP-2011 1250
 9 17-NOV-2011 17-NOV-2011 5000
 10 03-DEC-2011 08-SEP-2011 1500
 10 03-DEC-2011 28-SEP-2011 1250
 10 03-DEC-2011 17-NOV-2011 5000
 10 03-DEC-2011 03-DEC-2011 950
 10 03-DEC-2011 03-DEC-2011 3000
 11 23-JAN-2012 17-NOV-2011 5000
 11 23-JAN-2012 03-DEC-2011 950
 11 23-JAN-2012 03-DEC-2011 3000
 11 23-JAN-2012 23-JAN-2012 1300
 12 09-DEC-2012 09-DEC-2012 3000
 13 12-JAN-2013 09-DEC-2012 3000
 13 12-JAN-2013 12-JAN-2013 1100

If you look at the WINDOW column, only those rows with the same WINDOW
value will be considered for each sum. Take, for example, WINDOW 3. The salaries
used for the sum for that window are 800, 1600, and 1250, which total 3650. If you
look at the final result set in the “Problem” section, you’ll see the SPENDING_PAT‐
TERN for February 22, 2011 (WINDOW 3) is 3650. As proof, to verify that the previ‐
ous self-join includes the correct salaries for the windows defined, simply sum the
values in SALS_USED_FOR_SUM and group by CURRENT_DATE. The result
should be the same as the result set shown in the “Problem” section (with the dupli‐
cate row for December 3, 2011, filtered out):

select current_hiredate,
 sum(sals_used_for_sum) spending_pattern
 from (
select distinct
 dense_rank()over(order by e.hiredate) window,
 e.hiredate current_hiredate,
 d.hiredate hiredate_within_90_days,
 d.sal sals_used_for_sum
 from emp e,
 emp d
 where d.hiredate between e.hiredate-90 and e.hiredate
) x
 group by current_hiredate

CURRENT_HIREDATE SPENDING_PATTERN
---------------- ----------------
17-DEC-2010 800
20-FEB-2011 2400
22-FEB-2011 3650

12.19 Performing Aggregations over a Moving Range of Values | 425

02-APR-2011 5825
01-MAY-2011 8675
09-JUN-2011 8275
08-SEP-2011 1500
28-SEP-2011 2750
17-NOV-2011 7750
03-DEC-2011 11700
23-JAN-2012 10250
09-DEC-2012 3000
12-JAN-2013 4100

PostgreSQL and SQL Server
The key to this solution is to use a scalar subquery (a self-join will work as well) while
using the aggregate function SUM to compute a sum for every 90 days based on HIR‐
EDATE. If you are having trouble seeing how this works, simply convert the solution
to a self-join and examine which rows are included in the computations. Consider the
following result set, which returns the same result set as that in the solution:

select e.hiredate,
 e.sal,
 sum(d.sal) as spending_pattern
 from emp e, emp d
 where d.hiredate
 between e.hiredate-90 and e.hiredate
 group by e.hiredate,e.sal
 order by 1\

HIREDATE SAL SPENDING_PATTERN
----------- ----- ----------------
17-DEC-2010 800 800
20-FEB-2011 1600 2400
22-FEB-2011 1250 3650
02-APR-2011 2975 5825
01-MAY-2011 2850 8675
09-JUN-2011 2450 8275
08-SEP-2011 1500 1500
28-SEP-2011 1250 2750
17-NOV-2011 5000 7750
03-DEC-2011 950 11700
03-DEC-2011 3000 11700
23-JAN-2012 1300 10250
09-DEC-2012 3000 3000
12-JAN-2013 1100 4100

If it is still unclear, simply remove the aggregation and start with the Cartesian prod‐
uct. The first step is to generate a Cartesian product using table EMP so that each
HIREDATE can be compared with all the other HIREDATEs. (Only a snippet of the
result set is shown here because there are 196 rows (14 × 14) returned by a Cartesian
of EMP):

426 | Chapter 12: Reporting and Reshaping

select e.hiredate,
 e.sal,
 d.sal,
 d.hiredate
 from emp e, emp d

HIREDATE SAL SAL HIREDATE
----------- ----- ----- -----------
17-DEC-2010 800 800 17-DEC-2010
17-DEC-2010 800 1600 20-FEB-2011
17-DEC-2010 800 1250 22-FEB-2011
17-DEC-2010 800 2975 02-APR-2011
17-DEC-2010 800 1250 28-SEP-2011
17-DEC-2010 800 2850 01-MAY-2011
17-DEC-2010 800 2450 09-JUN-2011
17-DEC-2010 800 3000 09-DEC-2012
17-DEC-2010 800 5000 17-NOV-2011
17-DEC-2010 800 1500 08-SEP-2011
17-DEC-2010 800 1100 12-JAN-2013
17-DEC-2010 800 950 03-DEC-2011
17-DEC-2010 800 3000 03-DEC-2011
17-DEC-2010 800 1300 23-JAN-2012
20-FEB-2011 1600 800 17-DEC-2010
20-FEB-2011 1600 1600 20-FEB-2011
20-FEB-2011 1600 1250 22-FEB-2011
20-FEB-2011 1600 2975 02-APR-2011
20-FEB-2011 1600 1250 28-SEP-2011
20-FEB-2011 1600 2850 01-MAY-2011
20-FEB-2011 1600 2450 09-JUN-2011
20-FEB-2011 1600 3000 09-DEC-2012
20-FEB-2011 1600 5000 17-NOV-2011
20-FEB-2011 1600 1500 08-SEP-2011
20-FEB-2011 1600 1100 12-JAN-2013
20-FEB-2011 1600 950 03-DEC-2011
20-FEB-2011 1600 3000 03-DEC-2011
20-FEB-2011 1600 1300 23-JAN-2012

If you examine the previous result set, you’ll notice that there is no HIREDATE 90
days earlier or equal to December 17, except for December 17. So, the sum for that
row should be only 800. If you examine the next HIREDATE, February 20, you’ll
notice that there is one HIREDATE that falls within the 90-day window (within 90
days prior), and that is December 17. If you sum the SAL from December 17 with the
SAL from February 20 (because we are looking for HIREDATEs equal to each HIRE‐
DATE or within 90 days earlier), you get 2400, which happens to be the final result
for that HIREDATE.

Now that you know how it works, use a filter in the WHERE clause to return for each
HIREDATE and HIREDATE that is equal to it or is no more than 90 days earlier:

12.19 Performing Aggregations over a Moving Range of Values | 427

select e.hiredate,
 e.sal,
 d.sal sal_to_sum,
 d.hiredate within_90_days
 from emp e, emp d
 where d.hiredate
 between e.hiredate-90 and e.hiredate
 order by 1
HIREDATE SAL SAL_TO_SUM WITHIN_90_DAYS
----------- ----- ---------- --------------
17-DEC-2010 800 800 17-DEC-2010
20-FEB-2011 1600 800 17-DEC-2010
20-FEB-2011 1600 1600 20-FEB-2011
22-FEB-2011 1250 800 17-DEC-2010
22-FEB-2011 1250 1600 20-FEB-2011
22-FEB-2011 1250 1250 22-FEB-2011
02-APR-2011 2975 1600 20-FEB-2011
02-APR-2011 2975 1250 22-FEB-2011
02-APR-2011 2975 2975 02-APR-2011
01-MAY-2011 2850 1600 20-FEB-2011
01-MAY-2011 2850 1250 22-FEB-2011
01-MAY-2011 2850 2975 02-APR-2011
01-MAY-2011 2850 2850 01-MAY-2011
09-JUN-2011 2450 2975 02-APR-2011
09-JUN-2011 2450 2850 01-MAY-2011
09-JUN-2011 2450 2450 09-JUN-2011
08-SEP-2011 1500 1500 08-SEP-2011
28-SEP-2011 1250 1500 08-SEP-2011
28-SEP-2011 1250 1250 28-SEP-2011
17-NOV-2011 5000 1500 08-SEP-2011
17-NOV-2011 5000 1250 28-SEP-2011
17-NOV-2011 5000 5000 17-NOV-2011
03-DEC-2011 950 1500 08-SEP-2011
03-DEC-2011 950 1250 28-SEP-2011
03-DEC-2011 950 5000 17-NOV-2011
03-DEC-2011 950 950 03-DEC-2011
03-DEC-2011 950 3000 03-DEC-2011
03-DEC-2011 3000 1500 08-SEP-2011
03-DEC-2011 3000 1250 28-SEP-2011
03-DEC-2011 3000 5000 17-NOV-2011
03-DEC-2011 3000 950 03-DEC-2011
03-DEC-2011 3000 3000 03-DEC-2011
23-JAN-2012 1300 5000 17-NOV-2011
23-JAN-2012 1300 950 03-DEC-2011
23-JAN-2012 1300 3000 03-DEC-2011
23-JAN-2012 1300 1300 23-JAN-2012
09-DEC-2012 3000 3000 09-DEC-2012
12-JAN-2013 1100 3000 09-DEC-2012
12-JAN-2013 1100 1100 12-JAN-2013

Now that you know which SALs are to be included in the moving window of summa‐
tion, simply use the aggregate function SUM to produce a more expressive result set:

428 | Chapter 12: Reporting and Reshaping

select e.hiredate,
 e.sal,
 sum(d.sal) as spending_pattern
 from emp e, emp d
 where d.hiredate
 between e.hiredate-90 and e.hiredate
 group by e.hiredate,e.sal
 order by 1

If you compare the result set for the previous query and the result set for the query
shown here (which is the original solution presented), you will see they are the same:

select e.hiredate,
 e.sal,
 (select sum(sal) from emp d
 where d.hiredate between e.hiredate-90
 and e.hiredate) as spending_pattern
 from emp e
 order by 1

HIREDATE SAL SPENDING_PATTERN
----------- ----- ----------------
17-DEC-2010 800 800
20-FEB-2011 1600 2400
22-FEB-2011 1250 3650
02-APR-2011 2975 5825
01-MAY-2011 2850 8675
09-JUN-2011 2450 8275
08-SEP-2011 1500 1500
28-SEP-2011 1250 2750
17-NOV-2011 5000 7750
03-DEC-2011 950 11700
03-DEC-2011 3000 11700
23-JAN-2012 1300 10250
09-DEC-2012 3000 3000
12-JAN-2013 1100 4100

12.20 Pivoting a Result Set with Subtotals
Problem
You want to create a report containing subtotals and then transpose the results to
provide a more readable report. For example, you’ve been asked to create a report
that displays for each department, the managers in the department, and a sum of the
salaries of the employees who work for those managers. Additionally, you want to
return two subtotals: the sum of all salaries in each department for those employees
who have managers, and a sum of all salaries in the result set (the sum of the depart‐
ment subtotals). You currently have the following report:

12.20 Pivoting a Result Set with Subtotals | 429

DEPTNO MGR SAL
------ ---------- ----------
 10 7782 1300
 10 7839 2450
 10 3750
 20 7566 6000
 20 7788 1100
 20 7839 2975
 20 7902 800
 20 10875
 30 7698 6550
 30 7839 2850
 30 9400
 24025

You want to provide a more readable report and want to transform the previous
result set to the following, which makes the meaning of the report much clearer:

MGR DEPT10 DEPT20 DEPT30 TOTAL
---- ---------- ---------- ---------- ----------
7566 0 6000 0
7698 0 0 6550
7782 1300 0 0
7788 0 1100 0
7839 2450 2975 2850
7902 0 800 0
 3750 10875 9400 24025

Solution
The first step is to generate subtotals using the ROLLUP extension to GROUP BY.
The next step is to perform a classic pivot (aggregate and CASE expression) to create
the desired columns for your report. The GROUPING function allows you to easily
determine which values are subtotals (that is, exist because of ROLLUP and otherwise
would not normally be there). Depending on how your RDBMS sorts NULL values,
you may need to add an ORDER BY to the solution to allow it to look like the previ‐
ous target result set.

DB2 and Oracle
Use the ROLLUP extension to GROUP BY and then use a CASE expression to format
the data into a more readable report:

 1 select mgr,
 2 sum(case deptno when 10 then sal else 0 end) dept10,
 3 sum(case deptno when 20 then sal else 0 end) dept20,
 4 sum(case deptno when 30 then sal else 0 end) dept30,
 5 sum(case flag when '11' then sal else null end) total
 6 from (
 7 select deptno,mgr,sum(sal) sal,
 8 cast(grouping(deptno) as char(1))||

430 | Chapter 12: Reporting and Reshaping

 9 cast(grouping(mgr) as char(1)) flag
10 from emp
11 where mgr is not null
12 group by rollup(deptno,mgr)
13) x
14 group by mgr

SQL Server
Use the ROLLUP extension to GROUP BY and then use a CASE expression to format
the data into a more readable report:

 1 select mgr,
 2 sum(case deptno when 10 then sal else 0 end) dept10,
 3 sum(case deptno when 20 then sal else 0 end) dept20,
 4 sum(case deptno when 30 then sal else 0 end) dept30,
 5 sum(case flag when '11' then sal else null end) total
 6 from (
 7 select deptno,mgr,sum(sal) sal,
 8 cast(grouping(deptno) as char(1))+
 9 cast(grouping(mgr) as char(1)) flag
10 from emp
11 where mgr is not null
12 group by deptno,mgr with rollup
13) x
14 group by mgr

PostgreSQL
Use the ROLLUP extension to GROUP BY and then use a CASE expression to format
the data into a more readable report:

 1 select mgr,
 2 sum(case deptno when 10 then sal else 0 end) dept10,
 3 sum(case deptno when 20 then sal else 0 end) dept20,
 4 sum(case deptno when 30 then sal else 0 end) dept30,
 5 sum(case flag when '11' then sal else null end) total
 6 from (
 7 select deptno,mgr,sum(sal) sal,
 8 concat(cast (grouping(deptno) as char(1)),
 9 cast(grouping(mgr) as char(1))) flag
 10 from emp
 11 where mgr is not null
 12 group by rollup (deptno,mgr)
 13) x
 14 group by mgr

MySQL
Use the ROLLUP extension to GROUP BY and then use a CASE expression to format
the data into a more readable report:

12.20 Pivoting a Result Set with Subtotals | 431

1 select mgr,
2 sum(case deptno when 10 then sal else 0 end) dept10,
3 sum(case deptno when 20 then sal else 0 end) dept20,
4 sum(case deptno when 30 then sal else 0 end) dept30,
5 sum(case flag when '11' then sal else null end) total
6 from (
7 select deptno,mgr,sum(sal) sal,
8 concat(cast(grouping(deptno) as char(1)) ,
9 cast(grouping(mgr) as char(1))) flag
10 from emp
11 where mgr is not null
12 group by deptno,mgr with rollup
13) x
14 group by mgr;

Discussion
The solutions provided here are identical except for the string concatenation and how
GROUPING is specified. Because the solutions are so similar, the following discus‐
sion will refer to the SQL Server solution to highlight the intermediate result sets (the
discussion is relevant to DB2 and Oracle as well).

The first step is to generate a result set that sums the SAL for the employees in each
DEPTNO per MGR. The idea is to show how much the employees make under a par‐
ticular manager in a particular department. For example, the following query will
allow you to compare the salaries of employees who work for KING in DEPTNO 10
compared with those who work for KING in DEPTNO 30:

select deptno,mgr,sum(sal) sal
 from emp
 where mgr is not null
 group by mgr,deptno
 order by 1,2

DEPTNO MGR SAL
------ ---------- ----------
 10 7782 1300
 10 7839 2450
 20 7566 6000
 20 7788 1100
 20 7839 2975
 20 7902 800
 30 7698 6550
 30 7839 2850

The next step is to use the ROLLUP extension to GROUP BY to create subtotals for
each DEPTNO and across all employees (who have a manager):

select deptno,mgr,sum(sal) sal
 from emp
 where mgr is not null

432 | Chapter 12: Reporting and Reshaping

 group by deptno,mgr with rollup

DEPTNO MGR SAL
------ ---------- ----------
 10 7782 1300
 10 7839 2450
 10 3750
 20 7566 6000
 20 7788 1100
 20 7839 2975
 20 7902 800
 20 10875
 30 7698 6550
 30 7839 2850
 30 9400
 24025

With the subtotals created, you need a way to determine which values are in fact sub‐
totals (created by ROLLUP) and which are results of the regular GROUP BY. Use the
GROUPING function to create bitmaps to help identify the subtotal values from the
regular aggregate values:

select deptno,mgr,sum(sal) sal,
 cast(grouping(deptno) as char(1))+
 cast(grouping(mgr) as char(1)) flag
 from emp
 where mgr is not null
 group by deptno,mgr with rollup

DEPTNO MGR SAL FLAG
------ ---------- ---------- ----
 10 7782 1300 00
 10 7839 2450 00
 10 3750 01
 20 7566 6000 00
 20 7788 1100 00
 20 7839 2975 00
 20 7902 800 00
 20 10875 01
 30 7698 6550 00
 30 7839 2850 00
 30 9400 01
 24025 11

If it isn’t immediately obvious, the rows with a value of 00 for FLAG are the results of
regular aggregation. The rows with a value of 01 for FLAG are the results of ROLLUP
aggregating SAL by DEPTNO (since DEPTNO is listed first in the ROLLUP; if you
switch the order, for example, GROUP BY MGR, DEPTNO WITH ROLLUP, you’d
see quite different results). The row with a value of 11 for FLAG is the result of
ROLLUP aggregating SAL over all rows.

12.20 Pivoting a Result Set with Subtotals | 433

At this point you have everything you need to create a beautified report by simply
using CASE expressions. The goal is to provide a report that shows employee salaries
for each manager across departments. If a manager does not have any subordinates in
a particular department, a zero should be returned; otherwise, you want to return the
sum of all salaries for that manager’s subordinates in that department. Additionally,
you want to add a final column, TOTAL, representing a sum of all the salaries in the
report. The solution satisfying all these requirements is shown here:

select mgr,
 sum(case deptno when 10 then sal else 0 end) dept10,
 sum(case deptno when 20 then sal else 0 end) dept20,
 sum(case deptno when 30 then sal else 0 end) dept30,
 sum(case flag when '11' then sal else null end) total
 from (
select deptno,mgr,sum(sal) sal,
 cast(grouping(deptno) as char(1))+
 cast(grouping(mgr) as char(1)) flag
 from emp
 where mgr is not null
 group by deptno,mgr with rollup
) x
 group by mgr
 order by coalesce(mgr,9999)

MGR DEPT10 DEPT20 DEPT30 TOTAL
---- ---------- ---------- ---------- ----------
7566 0 6000 0
7698 0 0 6550
7782 1300 0 0
7788 0 1100 0
7839 2450 2975 2850
7902 0 800 0
 3750 10875 9400 24025

12.21 Summing Up
Databases are for storing data, but eventually someone needs to retrieve the data and
present it somewhere. The recipes in this chapter show a variety of important ways
that data can be re-shaped or formatted to meet the needs of users. Apart from their
general usefulness in giving users data in the form they need, these techniques play an
important role in giving a database owner the ability to create a datawarehouse.

As you gain more experience in supporting users in the business, you will become
more adept and extend the ideas here into more elaborate presentations.

434 | Chapter 12: Reporting and Reshaping

CHAPTER 13

Hierarchical Queries

This chapter introduces recipes for expressing hierarchical relationships that you may
have in your data. It is typical when working with hierarchical data to have more dif‐
ficulty retrieving and displaying the data (as a hierarchy) than storing it.

Although it’s only been a couple of years since MySQL added recursive CTEs, now
that they are available it means that recursive CTEs are available in virtually every
RDBMS. As a result, they are the gold standard for dealing with hierarchical queries,
and this chapter will make liberal use of this capability to provide recipes to help you
unravel the hierarchical structure of your data.

Before starting, examine table EMP and the hierarchical relationship between
EMPNO and MGR:

select empno,mgr
 from emp
order by 2

 EMPNO MGR
---------- ----------
 7788 7566
 7902 7566
 7499 7698
 7521 7698
 7900 7698
 7844 7698
 7654 7698
 7934 7782
 7876 7788
 7566 7839
 7782 7839
 7698 7839
 7369 7902
 7839

435

If you look carefully, you will see that each value for MGR is also an EMPNO, mean‐
ing the manager of each employee in table EMP is also an employee in table EMP and
not stored somewhere else. The relationship between MGR and EMPNO is a parent-
child relationship in that the value for MGR is the most immediate parent for a given
EMPNO (it is also possible that the manager for a specific employee can have a man‐
ager as well, and those managers can in turn have managers, and so on, creating an n-
tier hierarchy). If an employee has no manager, then MGR is NULL.

13.1 Expressing a Parent-Child Relationship
Problem
You want to include parent information along with data from child records. For
example, you want to display each employee’s name along with the name of their
manager. You want to return the following result set:

EMPS_AND_MGRS

FORD works for JONES
SCOTT works for JONES
JAMES works for BLAKE
TURNER works for BLAKE
MARTIN works for BLAKE
WARD works for BLAKE
ALLEN works for BLAKE
MILLER works for CLARK
ADAMS works for SCOTT
CLARK works for KING
BLAKE works for KING
JONES works for KING
SMITH works for FORD

Solution
Self-join EMP on MGR and EMPNO to find the name of each employee’s manager.
Then use your RDBMS’s supplied function(s) for string concatenation to generate the
strings in the desired result set.

DB2, Oracle, and PostgreSQL
Self-join on EMP. Then use the double vertical-bar (||) concatenation operator:

1 select a.ename || ' works for ' || b.ename as emps_and_mgrs
2 from emp a, emp b
3 where a.mgr = b.empno

436 | Chapter 13: Hierarchical Queries

MySQL
Self-join on EMP. Then use the concatenation function CONCAT:

1 select concat(a.ename, ' works for ',b.ename) as emps_and_mgrs
2 from emp a, emp b
3 where a.mgr = b.empno

SQL Server
Self-join on EMP. Then use the plus sign (+) as the concatenation operator:

1 select a.ename + ' works for ' + b.ename as emps_and_mgrs
2 from emp a, emp b
3 where a.mgr = b.empno

Discussion
The implementation is essentially the same for all the solutions. The difference lies
only in the method of string concatenation, and thus one discussion will cover all of
the solutions.

The key is the join between MGR and EMPNO. The first step is to build a Cartesian
product by joining EMP to itself (only a portion of the rows returned by the Carte‐
sian product is shown here):

select a.empno, b.empno
 from emp a, emp b

EMPNO MGR
----- ----------
 7369 7369
 7369 7499
 7369 7521
 7369 7566
 7369 7654
 7369 7698
 7369 7782
 7369 7788
 7369 7839
 7369 7844
 7369 7876
 7369 7900
 7369 7902
 7369 7934
 7499 7369
 7499 7499
 7499 7521
 7499 7566
 7499 7654
 7499 7698
 7499 7782

13.1 Expressing a Parent-Child Relationship | 437

 7499 7788
 7499 7839
 7499 7844
 7499 7876
 7499 7900
 7499 7902
 7499 7934

As you can see, by using a Cartesian product you are returning every possible
EMPNO/EMPNO combination (such that it looks like the manager for EMPNO 7369
is all the other employees in the table, including EMPNO 7369).

The next step is to filter the results such that you return only each employee and their
manager’s EMPNO. Accomplish this by joining on MGR and EMPNO:

1 select a.empno, b.empno mgr
2 from emp a, emp b
3 where a.mgr = b.empno

 EMPNO MGR
---------- ----------
 7902 7566
 7788 7566
 7900 7698
 7844 7698
 7654 7698
 7521 7698
 7499 7698
 7934 7782
 7876 7788
 7782 7839
 7698 7839
 7566 7839
 7369 7902

Now that you have each employee and the EMPNO of their manager, you can return
the name of each manager by simply selecting B.ENAME rather than B.EMPNO. If
after some practice you have difficulty grasping how this works, you can use a scalar
subquery rather than a self-join to get the answer:

select a.ename,
 (select b.ename
 from emp b
 where b.empno = a.mgr) as mgr
 from emp a

ENAME MGR
---------- ----------
SMITH FORD
ALLEN BLAKE
WARD BLAKE
JONES KING

438 | Chapter 13: Hierarchical Queries

MARTIN BLAKE
BLAKE KING
CLARK KING
SCOTT JONES
KING
TURNER BLAKE
ADAMS SCOTT
JAMES BLAKE
FORD JONES
MILLER CLARK

The scalar subquery version is equivalent to the self-join, except for one row:
employee KING is in the result set, but that is not the case with the self-join. “Why
not?” you might ask. Remember, NULL is never equal to anything, not even itself. In
the self-join solution, you use an equi-join between EMPNO and MGR, thus filtering
out any employees who have NULL for MGR. To see employee KING when using the
self-join method, you must outer join as shown in the following two queries. The first
solution uses the ANSI outer join, while the second uses the Oracle outer-join syntax.
The output is the same for both and is shown following the second query:

/* ANSI */
select a.ename, b.ename mgr
 from emp a left join emp b
 on (a.mgr = b.empno)

/* Oracle */
select a.ename, b.ename mgr
 from emp a, emp b
 where a.mgr = b.empno (+)

ENAME MGR
---------- ----------
FORD JONES
SCOTT JONES
JAMES BLAKE
TURNER BLAKE
MARTIN BLAKE
WARD BLAKE
ALLEN BLAKE
MILLER CLARK
ADAMS SCOTT
CLARK KING
BLAKE KING
JONES KING
SMITH FORD
KING

13.1 Expressing a Parent-Child Relationship | 439

13.2 Expressing a Child-Parent-Grandparent Relationship
Problem
Employee CLARK works for KING, and to express that relationship you can use the
first recipe in this chapter. What if employee CLARK was in turn a manager for
another employee? Consider the following query:

select ename,empno,mgr
 from emp
 where ename in ('KING','CLARK','MILLER')

ENAME EMPNO MGR
--------- -------- -------
CLARK 7782 7839
KING 7839
MILLER 7934 7782

As you can see, employee MILLER works for CLARK who in turn works for KING.
You want to express the full hierarchy from MILLER to KING. You want to return the
following result set:

LEAF___BRANCH___ROOT

MILLER-->CLARK-->KING

However, the single self-join approach from the previous recipe will not suffice to
show the entire relationship from top to bottom. You could write a query that does
two self-joins, but what you really need is a general approach for traversing such
hierarchies.

Solution
This recipe differs from the first recipe because there is now a three-tier relationship,
as the title suggests. If your RDBMS does not supply functionality for traversing tree-
structured data, as is the case for Oracle, then you can solve this problem using the
CTEs.

DB2, PostgreSQL, and SQL Server
Use the recursive WITH clause to find MILLER’s manager, CLARK, and then
CLARK’s manager, KING. The SQL Server string concatenation operator + is used in
this solution:

1 with x (tree,mgr,depth)
2 as (
3 select cast(ename as varchar(100)),
4 mgr, 0
5 from emp

440 | Chapter 13: Hierarchical Queries

6 where ename = 'MILLER'
7 union all
8 select cast(x.tree+'-->'+e.ename as varchar(100)),
9 e.mgr, x.depth+1
10 from emp e, x
11 where x.mgr = e.empno
12)
13 select tree leaf___branch___root
14 from x
15 where depth = 2

This solution can work on other databases if the concatenation operator is changed.
Hence, change to || for DB2 or CONCAT for PostgreSQL.

MySQL
This is similar to the previous solution, but also needs the RECURSIVE keyword:

1 with recursive x (tree,mgr,depth)
2 as (
3 select cast(ename as varchar(100)),
4 mgr, 0
5 from emp
6 where ename = 'MILLER'
7 union all
8 select cast(concat(x.tree,'-->',emp.ename) as char(100)),
9 e.mgr, x.depth+1
10 from emp e, x
11 where x.mgr = e.empno
12)
13 select tree leaf___branch___root
14 from x
15 where depth = 2

Oracle
Use the function SYS_CONNECT_BY_PATH to return MILLER; MILLER’s manager,
CLARK; and then CLARK’s manager, KING. Use the CONNECT BY clause to walk
the tree:

1 select ltrim(
2 sys_connect_by_path(ename,'-->'),
3 '-->') leaf___branch___root
4 from emp
5 where level = 3
6 start with ename = 'MILLER'
7 connect by prior mgr = empno

13.2 Expressing a Child-Parent-Grandparent Relationship | 441

Discussion

DB2, SQL Server, PostgreSQL, and MySQL
The approach here is to start at the leaf node and walk your way up to the root (as
useful practice, try walking in the other direction). The upper part of the UNION
ALL simply finds the row for employee MILLER (the leaf node). The lower part of
the UNION ALL finds the employee who is MILLER’s manager and then finds that
person’s manager, and this process of finding the “manager’s manager” repeats until
processing stops at the highest-level manager (the root node). The value for DEPTH
starts at 0 and increments automatically by 1 each time a manager is found. DEPTH
is a value that DB2 maintains for you when you execute a recursive query.

For an interesting and in-depth introduction to the WITH clause
with a focus on its use recursively, see Jonathan Gennick’s article
“Understanding the WITH Clause”.

Next, the second query of the UNION ALL joins the recursive view X to table EMP,
to define the parent-child relationship. The query at this point, using SQL Server’s
concatenation operator, is as follows:

 with x (tree,mgr,depth)
 as (
select cast(ename as varchar(100)),
 mgr, 0
 from emp
 where ename = 'MILLER'
 union all
select cast(x.tree+'-->'+e.ename as varchar(100)),
 e.mgr, x.depth+1
 from emp e, x
 where x.mgr = e.empno
)
select tree leaf___branch___root
 from x

TREE DEPTH
---------- ----------
MILLER 0
CLARK 1
KING 2

At this point, the heart of the problem has been solved; starting from MILLER, return
the full hierarchical relationship from bottom to top. What’s left then is merely for‐
matting. Since the tree traversal is recursive, simply concatenate the current ENAME
from EMP to the one before it, which gives you the following result set:

442 | Chapter 13: Hierarchical Queries

http://gennick.com/with.htm

 with x (tree,mgr,depth)
 as (
select cast(ename as varchar(100)),
 mgr, 0
 from emp
 where ename = 'MILLER'
 union all
select cast(x.tree+'-->'+e.ename as varchar(100)),
 e.mgr, x.depth+1
 from emp e, x
 where x.mgr = e.empno
)
select depth, tree
 from x

DEPTH TREE
----- ---------------------------
 0 MILLER
 1 MILLER-->CLARK
 2 MILLER-->CLARK-->KING

The final step is to keep only the last row in the hierarchy. There are several ways to
do this, but the solution uses DEPTH to determine when the root is reached (obvi‐
ously, if CLARK has a manager other than KING, the filter on DEPTH would have to
change; for a more generic solution that requires no such filter, see the next recipe).

Oracle
The CONNECT BY clause does all the work in the Oracle solution. Starting with
MILLER, you walk all the way to KING without the need for any joins. The expres‐
sion in the CONNECT BY clause defines the relationship of the data and how the tree
will be walked:

 select ename
 from emp
 start with ename = 'MILLER'
connect by prior mgr = empno

ENAME

MILLER
CLARK
KING

The keyword PRIOR lets you access values from the previous record in the hierarchy.
Thus, for any given EMPNO, you can use PRIOR MGR to access that employee’s
manager number. When you see a clause such as CONNECT BY PRIOR MGR =
EMPNO, think of that clause as expressing a join between, in this case, parent and
child.

13.2 Expressing a Child-Parent-Grandparent Relationship | 443

For more on CONNECT BY and its use in hierarchical queries,
“Hierarchical Queries in Oracle” is a good overview.

At this point, you have successfully displayed the full hierarchy starting from
MILLER and ending at KING. The problem is for the most part solved. All that
remains is the formatting. Use the function SYS_CONNECT_BY_PATH to append
each ENAME to the one before it:

 select sys_connect_by_path(ename,'-->') tree
 from emp
 start with ename = 'MILLER'
connect by prior mgr = empno

TREE

-->MILLER
-->MILLER-->CLARK
-->MILLER-->CLARK-->KING

Because you are interested in only the complete hierarchy, you can filter on the
pseudo-column LEVEL (a more generic approach is shown in the next recipe):

 select sys_connect_by_path(ename,'-->') tree
 from emp
 where level = 3
 start with ename = 'MILLER'
connect by prior mgr = empno

TREE

-->MILLER-->CLARK-->KING

The final step is to use the LTRIM function to remove the leading --> from the result
set.

13.3 Creating a Hierarchical View of a Table
Problem
You want to return a result set that describes the hierarchy of an entire table. In the
case of the EMP table, employee KING has no manager, so KING is the root node.
You want to display, starting from KING, all employees under KING and all employ‐
ees (if any) under KING’s subordinates. Ultimately, you want to return the following
result set:

444 | Chapter 13: Hierarchical Queries

https://oreil.ly/6yfha

EMP_TREE

KING
KING - BLAKE
KING - BLAKE - ALLEN
KING - BLAKE - JAMES
KING - BLAKE - MARTIN
KING - BLAKE - TURNER
KING - BLAKE - WARD
KING - CLARK
KING - CLARK - MILLER
KING - JONES
KING - JONES - FORD
KING - JONES - FORD - SMITH
KING - JONES - SCOTT
KING - JONES - SCOTT - ADAMS

Solution

DB2, PostgreSQL, and SQL Server
Use the recursive WITH clause to start building the hierarchy at KING and then ulti‐
mately display all the employees. The solution following uses the DB2 concatenation
operator (||). SQL Server users use the concatenation operator (+), and MySQL uses
the CONCAT function. Other than the concatenation operators, the solution will
work as-is on both RDBMSs:

 1 with x (ename,empno)
 2 as (
 3 select cast(ename as varchar(100)),empno
 4 from emp
 5 where mgr is null
 6 union all
 7 select cast(x.ename||' - '||e.ename as varchar(100)),
 8 e.empno
 9 from emp e, x
10 where e.mgr = x.empno
11)
12 select ename as emp_tree
13 from x
14 order by 1

MySQL
MySQL also needs the RECURSIVE keyword:

 1 with recursive x (ename,empno)
 2 as (
 3 select cast(ename as varchar(100)),empno
 4 from emp
 5 where mgr is null

13.3 Creating a Hierarchical View of a Table | 445

 6 union all
 7 select cast(concat(x.ename,' - ',e.ename) as varchar(100)),
 8 e.empno
 9 from emp e, x
10 where e.mgr = x.empno
11)
12 select ename as emp_tree
13 from x
14 order by 1

Oracle
Use the CONNECT BY function to define the hierarchy. Use the SYS_CON‐
NECT_BY_PATH function to format the output accordingly:

1 select ltrim(
2 sys_connect_by_path(ename,' - '),
3 ' - ') emp_tree
4 from emp
5 start with mgr is null
6 connect by prior empno=mgr
7 order by 1

This solution differs from the previous recipe in that it includes no filter on the
LEVEL pseudo-column. Without the filter, all possible trees (where PRIOR
EMPNO=MGR) are displayed.

Discussion

DB2, MySQL, PostgreSQL, and SQL Server
The first step is to identify the root row (employee KING) in the upper part of the
UNION ALL in the recursive view X. The next step is to find KING’s subordinates,
and their subordinates if there are any, by joining recursive view X to table EMP.
Recursion will continue until you’ve returned all employees. Without the formatting
you see in the final result set, the result set returned by the recursive view X is shown
here:

with x (ename,empno)
 as (
select cast(ename as varchar(100)),empno
 from emp
 where mgr is null
 union all
select cast(e.ename as varchar(100)),e.empno
 from emp e, x
 where e.mgr = x.empno
)
 select ename emp_tree
 from x

446 | Chapter 13: Hierarchical Queries

 EMP_TREE

 KING
 JONES
 SCOTT
 ADAMS
 FORD
 SMITH
 BLAKE
 ALLEN
 WARD
 MARTIN
 TURNER
 JAMES
 CLARK
 MILLER

All the rows in the hierarchy are returned (which can be useful), but without the for‐
matting you cannot tell who the managers are. By concatenating each employee to
her manager, you return more meaningful output. Produce the desired output simply
by using the following:

cast(x.ename+','+e.ename as varchar(100))

in the SELECT clause of the lower portion of the UNION ALL in recursive view X.

The WITH clause is extremely useful in solving this type of problem, because the
hierarchy can change (for example, leaf nodes become branch nodes) without any
need to modify the query.

Oracle
The CONNECT BY clause returns the rows in the hierarchy. The START WITH
clause defines the root row. If you run the solution without SYS_CON‐
NECT_BY_PATH, you can see that the correct rows are returned (which can be use‐
ful), but not formatted to express the relationship of the rows:

select ename emp_tree
 from emp
 start with mgr is null
connect by prior empno = mgr

EMP_TREE

KING
JONES
SCOTT
ADAMS
FORD
SMITH
BLAKE
ALLEN

13.3 Creating a Hierarchical View of a Table | 447

WARD
MARTIN
TURNER
JAMES
CLARK
MILLER

By using the pseudo-column LEVEL and the function LPAD, you can see the hierar‐
chy more clearly, and you can ultimately see why SYS_CONNECT_BY_PATH
returns the results that you see in the desired output shown earlier:

select lpad('.',2*level,'.')||ename emp_tree
 from emp
 start with mgr is null
connect by prior empno = mgr

EMP_TREE

..KING
....JONES
......SCOTT
........ADAMS
......FORD
........SMITH
....BLAKE
......ALLEN
......WARD
......MARTIN
......TURNER
......JAMES
....CLARK
......MILLER

The indentation in this output indicates who the managers are by nesting subordi‐
nates under their superiors. For example, KING works for no one. JONES works for
KING. SCOTT works for JONES. ADAMS works for SCOTT.

If you look at the corresponding rows from the solution when using SYS_CON‐
NECT_BY_PATH, you will see that SYS_CONNECT_BY_PATH rolls up the hierar‐
chy for you. When you get to a new node, you see all the prior nodes as well:

KING
KING - JONES
KING - JONES - SCOTT
KING - JONES - SCOTT - ADAMS

448 | Chapter 13: Hierarchical Queries

13.4 Finding All Child Rows for a Given Parent Row
Problem
You want to find all the employees who work for JONES, either directly or indirectly
(i.e., they work for someone who works for JONES). The list of employees under
JONES is shown here (JONES is included in the result set):

ENAME

JONES
SCOTT
ADAMS
FORD
SMITH

Solution
Being able to move to the absolute top or bottom of a tree is extremely useful. For this
solution, there is no special formatting necessary. The goal is to simply return all
employees who work under employee JONES, including JONES himself. This type of
query really shows the usefulness of recursive SQL extensions like Oracle’s CON‐
NECT BY and SQL Server’s/DB2’s WITH clause.

DB2, PostgreSQL, and SQL Server
Use the recursive WITH clause to find all employees under JONES. Begin with
JONES by specifying WHERE ENAME = JONES in the first of the two union queries:

 1 with x (ename,empno)
 2 as (
 3 select ename,empno
 4 from emp
 5 where ename = 'JONES'
 6 union all
 7 select e.ename, e.empno
 8 from emp e, x
 9 where x.empno = e.mgr
10)
11 select ename
12 from x

Oracle
Use the CONNECT BY clause and specify START WITH ENAME = JONES to find
all the employees under JONES:

1 select ename
2 from emp

13.4 Finding All Child Rows for a Given Parent Row | 449

3 start with ename = 'JONES'
4 connect by prior empno = mgr

Discussion

DB2, MySQL, PostgreSQL, and SQL Server
The recursive WITH clause makes this a relatively easy problem to solve. The first
part of the WITH clause, the upper part of the UNION ALL, returns the row for
employee JONES. You need to return ENAME to see the name and EMPNO so you
can use it to join on. The lower part of the UNION ALL recursively joins EMP.MGR
to X.EMPNO. The join condition will be applied until the result set is exhausted.

Oracle
The START WTH clause tells the query to make JONES the root node. The condition
in the CONNECT BY clause drives the tree walk and will run until the condition is
no longer true.

13.5 Determining Which Rows Are Leaf, Branch, or
Root Nodes
Problem
You want to determine what type of node a given row is: a leaf, branch, or root. For
this example, a leaf node is an employee who is not a manager. A branch node is an
employee who is both a manager and also has a manager. A root node is an employee
without a manager. You want to return 1 (TRUE) or 0 (FALSE) to reflect the status of
each row in the hierarchy. You want to return the following result set:

ENAME IS_LEAF IS_BRANCH IS_ROOT
---------- ---------- ---------- ----------
KING 0 0 1
JONES 0 1 0
SCOTT 0 1 0
FORD 0 1 0
CLARK 0 1 0
BLAKE 0 1 0
ADAMS 1 0 0
MILLER 1 0 0
JAMES 1 0 0
TURNER 1 0 0
ALLEN 1 0 0
WARD 1 0 0
MARTIN 1 0 0
SMITH 1 0 0

450 | Chapter 13: Hierarchical Queries

Solution
It is important to realize that the EMP table is modeled in a tree hierarchy, not a
recursive hierarchy, and the value for MGR for root nodes is NULL. If EMP were
modeled to use a recursive hierarchy, root nodes would be self-referencing (i.e., the
value for MGR for employee KING would be KING’s EMPNO). We find self-
referencing to be counterintuitive and thus are using NULL values for root nodes’
MGR. For Oracle users using CONNECT BY and DB2/SQL Server users using
WITH, you’ll find tree hierarchies easier to work with and potentially more efficient
than recursive hierarchies. If you are in a situation where you have a recursive hierar‐
chy and are using CONNECT BY or WITH, watch out: you can end up with a loop in
your SQL. You need to code around such loops if you are stuck with recursive
hierarchies.

DB2, PostgreSQL, MySQL, and SQL Server
Use three scalar subqueries to determine the correct “Boolean” value (either a 1 or a
0) to return for each node type:

 1 select e.ename,
 2 (select sign(count(*)) from emp d
 3 where 0 =
 4 (select count(*) from emp f
 5 where f.mgr = e.empno)) as is_leaf,
 6 (select sign(count(*)) from emp d
 7 where d.mgr = e.empno
 8 and e.mgr is not null) as is_branch,
 9 (select sign(count(*)) from emp d
10 where d.empno = e.empno
11 and d.mgr is null) as is_root
12 from emp e
13 order by 4 desc,3 desc

Oracle
The scalar subquery solution will work for Oracle as well and should be used if you
are on a version of Oracle prior to Oracle Database 10g. The following solution high‐
lights built-in functions provided by Oracle (that were introduced in Oracle Database
10g) to identify root and leaf rows. The functions are CONNECT_BY_ROOT and
CONNECT_BY_ISLEAF, respectively:

 1 select ename,
 2 connect_by_isleaf is_leaf,
 3 (select count(*) from emp e
 4 where e.mgr = emp.empno
 5 and emp.mgr is not null
 6 and rownum = 1) is_branch,
 7 decode(ename,connect_by_root(ename),1,0) is_root
 8 from emp

13.5 Determining Which Rows Are Leaf, Branch, or Root Nodes | 451

 9 start with mgr is null
10 connect by prior empno = mgr
11 order by 4 desc, 3 desc

Discussion

DB2, PostgreSQL, MySQL, and SQL Server
This solution simply applies the rules defined in the “Problem” section to determine
leaves, branches, and roots. The first step is to determine whether an employee is a
leaf node. If the employee is not a manager (no one works under them), then she is a
leaf node. The first scalar subquery, IS_LEAF, is shown here:

select e.ename,
 (select sign(count(*)) from emp d
 where 0 =
 (select count(*) from emp f
 where f.mgr = e.empno)) as is_leaf
 from emp e
order by 2 desc

ENAME IS_LEAF
----------- --------
SMITH 1
ALLEN 1
WARD 1
ADAMS 1
TURNER 1
MARTIN 1
JAMES 1
MILLER 1
JONES 0
BLAKE 0
CLARK 0
FORD 0
SCOTT 0
KING 0

Because the output for IS_LEAF should be a 0 or 1, it is necessary to take the SIGN of
the COUNT(*) operation. Otherwise, you would get 14 instead of 1 for leaf rows. As
an alternative, you can use a table with only one row to count against, because you
only want to return 0 or 1. For example:

select e.ename,
 (select count(*) from t1 d
 where not exists
 (select null from emp f
 where f.mgr = e.empno)) as is_leaf
 from emp e
order by 2 desc

452 | Chapter 13: Hierarchical Queries

ENAME IS_LEAF
---------- ----------
SMITH 1
ALLEN 1
WARD 1
ADAMS 1
TURNER 1
MARTIN 1
JAMES 1
MILLER 1
JONES 0
BLAKE 0
CLARK 0
FORD 0
SCOTT 0
KING 0

The next step is to find branch nodes. If an employee is a manager (someone works
for them) and they also happen to work for someone else, then the employee is a
branch node. The results of the scalar subquery IS_BRANCH are shown here:

select e.ename,
 (select sign(count(*)) from emp d
 where d.mgr = e.empno
 and e.mgr is not null) as is_branch
 from emp e
order by 2 desc

ENAME IS_BRANCH
----------- ---------
JONES 1
BLAKE 1
SCOTT 1
CLARK 1
FORD 1
SMITH 0
TURNER 0
MILLER 0
JAMES 0
ADAMS 0
KING 0
ALLEN 0
MARTIN 0
WARD 0

Again, it is necessary to take the SIGN of the COUNT(*) operation. Otherwise, you
will get (potentially) values greater than 1 when a node is a branch. Like scalar sub‐
query IS_LEAF, you can use a table with one row to avoid using SIGN. The following
solution uses the T1 table:

13.5 Determining Which Rows Are Leaf, Branch, or Root Nodes | 453

select e.ename,
 (select count(*) from t1 t
 where exists (
 select null from emp f
 where f.mgr = e.empno
 and e.mgr is not null)) as is_branch
 from emp e
order by 2 desc

ENAME IS_BRANCH
--------------- ----------
JONES 1
BLAKE 1
SCOTT 1
CLARK 1
FORD 1
SMITH 0
TURNER 0
MILLER 0
JAMES 0
ADAMS 0
KING 0
ALLEN 0
MARTIN 0
WARD 0

The last step is to find the root nodes. A root node is defined as an employee who is a
manager but who does not work for anyone else. In table EMP, only KING is a root
node. Scalar subquery IS_ROOT is shown here:

select e.ename,
 (select sign(count(*)) from emp d
 where d.empno = e.empno
 and d.mgr is null) as is_root
 from emp e
order by 2 desc

ENAME IS_ROOT
---------- ---------
KING 1
SMITH 0
ALLEN 0
WARD 0
JONES 0
TURNER 0
JAMES 0
MILLER 0
FORD 0
ADAMS 0
MARTIN 0

454 | Chapter 13: Hierarchical Queries

BLAKE 0
CLARK 0
SCOTT 0

Because EMP is a small 14-row table, it is easy to see that employee KING is the only
root node, so in this case taking the SIGN of the COUNT(*) operation is not strictly
necessary. If there can be multiple root nodes, then you can use SIGN, or you can use
a one-row table in the scalar subquery as is shown earlier for IS_BRANCH and
IS_LEAF.

Oracle
For those of you on versions of Oracle prior to Oracle Database 10g, you can follow
the discussion for the other RDBMSs, as that solution will work (without modifica‐
tions) in Oracle. If you are on Oracle Database 10g or later, you may want to take
advantage of two functions to make identifying root and leaf nodes a simple task:
they are CONNECT_BY_ROOT and CONNECT_BY_ISLEAF, respectively. As of the
time of this writing, it is necessary to use CONNECT BY in your SQL statement in
order for you to be able to use CONNECT_BY_ROOT and CONNECT_BY_ISLEAF.
The first step is to find the leaf nodes by using CONNECT_BY_ISLEAF as follows:

select ename,
 connect_by_isleaf is_leaf
 from emp
 start with mgr is null
connect by prior empno = mgr
order by 2 desc

ENAME IS_LEAF
---------- ----------
ADAMS 1
SMITH 1
ALLEN 1
TURNER 1
MARTIN 1
WARD 1
JAMES 1
MILLER 1
KING 0
JONES 0
BLAKE 0
CLARK 0
FORD 0
SCOTT 0

The next step is to use a scalar subquery to find the branch nodes. Branch nodes are
employees who are managers but who also work for someone else:

13.5 Determining Which Rows Are Leaf, Branch, or Root Nodes | 455

select ename,
 (select count(*) from emp e
 where e.mgr = emp.empno
 and emp.mgr is not null
 and rownum = 1) is_branch
 from emp
 start with mgr is null
connect by prior empno = mgr
order by 2 desc

ENAME IS_BRANCH
---------- ----------
JONES 1
SCOTT 1
BLAKE 1
FORD 1
CLARK 1
KING 0
MARTIN 0
MILLER 0
JAMES 0
TURNER 0
WARD 0
ADAMS 0
ALLEN 0
SMITH 0

The filter on ROWNUM is necessary to ensure that you return a count of 1 or 0, and
nothing else.

The last step is to identify the root nodes by using the function CON‐
NECT_BY_ROOT. The solution finds the ENAME for the root node and compares it
with all the rows returned by the query. If there is a match, that row is the root node:

select ename,
 decode(ename,connect_by_root(ename),1,0) is_root
 from emp
 start with mgr is null
connect by prior empno = mgr
order by 2 desc

ENAME IS_ROOT
---------- ----------
KING 1
JONES 0
SCOTT 0
ADAMS 0
FORD 0
SMITH 0
BLAKE 0
ALLEN 0
WARD 0

456 | Chapter 13: Hierarchical Queries

MARTIN 0
TURNER 0
JAMES 0
CLARK 0
MILLER 0

The SYS_CONNECT_BY_PATH function rolls up a hierarchy starting from the root
value, as shown here:

select ename,
 ltrim(sys_connect_by_path(ename,','),',') path
 from emp
start with mgr is null
connect by prior empno=mgr

ENAME PATH
---------- ----------------------------
KING KING
JONES KING,JONES
SCOTT KING,JONES,SCOTT
ADAMS KING,JONES,SCOTT,ADAMS
FORD KING,JONES,FORD
SMITH KING,JONES,FORD,SMITH
BLAKE KING,BLAKE
ALLEN KING,BLAKE,ALLEN
WARD KING,BLAKE,WARD
MARTIN KING,BLAKE,MARTIN
TURNER KING,BLAKE,TURNER
JAMES KING,BLAKE,JAMES
CLARK KING,CLARK
MILLER KING,CLARK,MILLER

To get the root row, simply substring out the first ENAME in PATH:

select ename,
 substr(root,1,instr(root,',')-1) root
 from (
select ename,
 ltrim(sys_connect_by_path(ename,','),',') root
 from emp
start with mgr is null
connect by prior empno=mgr
)

ENAME ROOT
---------- ----------
KING
JONES KING
SCOTT KING
ADAMS KING
FORD KING
SMITH KING
BLAKE KING

13.5 Determining Which Rows Are Leaf, Branch, or Root Nodes | 457

ALLEN KING
WARD KING
MARTIN KING
TURNER KING
JAMES KING
CLARK KING
MILLER KING

The last step is to flag the result from the ROOT column; if it is NULL, that is your
root row.

13.6 Summing Up
The spread of CTEs across all vendors has made standardized approaches to hier‐
archical queries far more achievable. This a great step forward as hierarchical rela‐
tionships appear in many kinds of data, even data where the relationship isn’t neces‐
sarily planned for, so queries need to account for it.

458 | Chapter 13: Hierarchical Queries

CHAPTER 14

Odds ’n’ Ends

This chapter contains queries that didn’t fit in any other chapter, either because the
chapter they would belong to is already long enough, or because the problems they
solve are more fun than realistic. This chapter is meant to be a “fun” chapter, in that
the recipes here may or may not be recipes that you would actually use; nevertheless,
the queries are interesting, and we wanted to include them in this book.

14.1 Creating Cross-Tab Reports Using SQL Server’s PIVOT
Operator
Problem
You want to create a cross-tab report to transform your result set’s rows into columns.
You are aware of traditional methods of pivoting but would like to try something dif‐
ferent. In particular, you want to return the following result set without using CASE
expressions or joins:

DEPT_10 DEPT_20 DEPT_30 DEPT_40
------- ----------- ----------- ----------
 3 5 6 0

Solution
Use the PIVOT operator to create the required result set without CASE expressions
or additional joins:

1 select [10] as dept_10,
2 [20] as dept_20,
3 [30] as dept_30,
4 [40] as dept_40
5 from (select deptno, empno from emp) driver

459

6 pivot (
7 count(driver.empno)
8 for driver.deptno in ([10],[20],[30],[40])
9) as empPivot

Discussion
The PIVOT operator may seem strange at first, but the operation it performs in the
solution is technically the same as the more familiar transposition query shown here:

select sum(case deptno when 10 then 1 else 0 end) as dept_10,
 sum(case deptno when 20 then 1 else 0 end) as dept_20,
 sum(case deptno when 30 then 1 else 0 end) as dept_30,
 sum(case deptno when 40 then 1 else 0 end) as dept_40
 from emp

DEPT_10 DEPT_20 DEPT_30 DEPT_40
------- ---------- ---------- ----------
 3 5 6 0

Now that you know what is essentially happening, let’s break down what the PIVOT
operator is doing. Line 5 of the solution shows an inline view named DRIVER:

from (select deptno, empno from emp) driver

We’ve used the alias DRIVER because the rows from this inline view (or table expres‐
sion) feed directly into the PIVOT operation. The PIVOT operator rotates the rows to
columns by evaluating the items listed on line 8 in the FOR list (shown here):

for driver.deptno in ([10],[20],[30],[40])

The evaluation goes something like this:

1. If there are any DEPTNOs with a value of 10, perform the aggregate operation
defined (COUNT(DRIVER.EMPNO)) for those rows.

2. Repeat for DEPTNOs 20, 30, and 40.

The items listed in the brackets on line 8 serve not only to define values for which
aggregation is performed; the items also become the column names in the result set
(without the square brackets). In the SELECT clause of the solution, the items in the
FOR list are referenced and aliased. If you do not alias the items in the FOR list, the
column names become the items in the FOR list sans brackets.

Interestingly enough, since inline view DRIVER is just that—an inline view—you
may put more complex SQL in there. For example, consider the situation where you
want to modify the result set such that the actual department name is the name of the
column. Listed here are the rows in table DEPT:

460 | Chapter 14: Odds ’n’ Ends

select * from dept

DEPTNO DNAME LOC
------ -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

You want to use PIVOT to return the following result set:

ACCOUNTING RESEARCH SALES OPERATIONS
---------- ---------- ---------- ----------
 3 5 6 0

Because inline view DRIVER can be practically any valid table expression, you can
perform the join from table EMP to table DEPT and then have PIVOT evaluate those
rows. The following query will return the desired result set:

select [ACCOUNTING] as ACCOUNTING,
 [SALES] as SALES,
 [RESEARCH] as RESEARCH,
 [OPERATIONS] as OPERATIONS
 from (
 select d.dname, e.empno
 from emp e,dept d
 where e.deptno=d.deptno

) driver
 pivot (
 count(driver.empno)
 for driver.dname in ([ACCOUNTING],[SALES],[RESEARCH],[OPERATIONS])
) as empPivot

As you can see, PIVOT provides an interesting spin on pivoting result sets. Regard‐
less of whether you prefer using it to the traditional methods of pivoting, it’s nice to
have another tool in your toolbox.

14.2 Unpivoting a Cross-Tab Report Using SQL Server’s
UNPIVOT Operator
Problem
You have a pivoted result set (or simply a fact table), and you want to unpivot the
result set. For example, instead of having a result set with one row and four columns,
you want to return a result set with two columns and four rows. Using the result set
from the previous recipe, you want to convert it from this:

14.2 Unpivoting a Cross-Tab Report Using SQL Server’s UNPIVOT Operator | 461

ACCOUNTING RESEARCH SALES OPERATIONS
---------- ---------- ---------- ----------
 3 5 6 0

to this:

DNAME CNT
-------------- ----------
ACCOUNTING 3
RESEARCH 5
SALES 6
OPERATIONS 0

Solution
You didn’t think SQL Server would give you the ability to PIVOT without being able
to UNPIVOT, did you? To unpivot the result set, just use it as the driver and let the
UNPIVOT operator do all the work. All you need to do is specify the column names:

 1 select DNAME, CNT
 2 from (
 3 select [ACCOUNTING] as ACCOUNTING,
 4 [SALES] as SALES,
 5 [RESEARCH] as RESEARCH,
 6 [OPERATIONS] as OPERATIONS
 7 from (
 8 select d.dname, e.empno
 9 from emp e,dept d
10 where e.deptno=d.deptno
11
12) driver
13 pivot (
14 count(driver.empno)
15 for driver.dname in ([ACCOUNTING],[SALES],[RESEARCH],[OPERATIONS])
16) as empPivot
17) new_driver
18 unpivot (cnt for dname in (ACCOUNTING,SALES,RESEARCH,OPERATIONS)
19) as un_pivot

Ideally, before reading this recipe you’ve read the one prior to it, because the inline
view NEW_DRIVER is simply the code from the previous recipe (if you don’t under‐
stand it, please refer to the previous recipe before looking at this one). Since lines 3–
16 consist of code you’ve already seen, the only new syntax is on line 18, where you
use UNPIVOT.

The UNPIVOT command simply looks at the result set from NEW_DRIVER and
evaluates each column and row. For example, the UNPIVOT operator evaluates the
column names from NEW_DRIVER. When it encounters ACCOUNTING, it trans‐
forms the column name ACCOUNTING into a row value (under the column
DNAME). It also takes the value for ACCOUNTING from NEW_DRIVER (which is
3) and returns that as part of the ACCOUNTING row as well (under the column

462 | Chapter 14: Odds ’n’ Ends

CNT). UNPIVOT does this for each of the items specified in the FOR list and simply
returns each one as a row.

The new result set is now skinny and has two columns, DNAME and CNT, with four
rows:

select DNAME, CNT
 from (
 select [ACCOUNTING] as ACCOUNTING,
 [SALES] as SALES,
 [RESEARCH] as RESEARCH,
 [OPERATIONS] as OPERATIONS
 from (
 select d.dname, e.empno
 from emp e,dept d
 where e.deptno=d.deptno

) driver
 pivot (
 count(driver.empno)
 for driver.dname in ([ACCOUNTING],[SALES],[RESEARCH],[OPERATIONS])
) as empPivot
) new_driver
unpivot (cnt for dname in (ACCOUNTING,SALES,RESEARCH,OPERATIONS)
) as un_pivot

DNAME CNT
-------------- ----------
ACCOUNTING 3
RESEARCH 5
SALES 6
OPERATIONS 0

14.3 Transposing a Result Set Using Oracle’s MODEL
Clause
Problem
Like the first recipe in this chapter, you want to find an alternative to the traditional
pivoting techniques you’ve seen already. You want to try your hand at Oracle’s
MODEL clause. Unlike SQL Server’s PIVOT operator, Oracle’s MODEL clause does
not exist to transpose result sets; as a matter of fact, it would be quite accurate to say
the application of the MODEL clause for pivoting would be a misuse and clearly not
what the MODEL clause was intended for. Nevertheless, the MODEL clause provides
for an interesting approach to a common problem. For this particular problem, you
want to transform the following result set from this:

14.3 Transposing a Result Set Using Oracle’s MODEL Clause | 463

select deptno, count(*) cnt
 from emp
 group by deptno

DEPTNO CNT
------ ----------
 10 3
 20 5
 30 6

to this:

 D10 D20 D30
---------- ---------- ----------
 3 5 6

Solution
Use aggregation and CASE expressions in the MODEL clause just as you would use
them if pivoting with traditional techniques. The main difference in this case is that
you use arrays to store the values of the aggregation and return the arrays in the result
set:

select max(d10) d10,
 max(d20) d20,
 max(d30) d30
 from (
select d10,d20,d30
 from (select deptno, count(*) cnt from emp group by deptno)
 model
 dimension by(deptno d)
 measures(deptno, cnt d10, cnt d20, cnt d30)
 rules(
 d10[any] = case when deptno[cv()]=10 then d10[cv()] else 0 end,
 d20[any] = case when deptno[cv()]=20 then d20[cv()] else 0 end,
 d30[any] = case when deptno[cv()]=30 then d30[cv()] else 0 end
)
)

Discussion
The MODEL clause is a powerful addition to the Oracle SQL toolbox. Once you
begin working with MODEL, you’ll notice helpful features such as iteration, array
access to row values, the ability to “upsert” rows into a result set, and the ability to
build reference models. You’ll quickly see that this recipe doesn’t take advantage of
any of the cool features the MODEL clause offers, but it’s nice to be able to look at a
problem from multiple angles and use different features in unexpected ways (if for no
other reason than to learn where certain features are more useful than others).

464 | Chapter 14: Odds ’n’ Ends

The first step to understanding the solution is to examine the inline view in the
FROM clause. The inline view simply counts the number of employees in each
DEPTNO in table EMP. The results are shown here:

select deptno, count(*) cnt
 from emp
 group by deptno

DEPTNO CNT
------ ----------
 10 3
 20 5
 30 6

This result set is what is given to MODEL to work with. Examining the MODEL
clause, you see three subclauses that stand out: DIMENSION BY, MEASURES, and
RULES. Let’s start with MEASURES.

The items in the MEASURES list are simply the arrays you are declaring for this
query. The query uses four arrays: DEPTNO, D10, D20, and D30. Like columns in a
SELECT list, arrays in the MEASURES list can have aliases. As you can see, three of
the four arrays are actually CNT from the inline view.

If the MEASURES list contains our arrays, then the items in the DIMENSION BY
subclause are the array indices. Consider this: array D10 is simply an alias for CNT. If
you look at the result set for the previous inline view, you’ll see that CNT has three
values: 3, 5, and 6. When you create an array of CNT, you are creating an array with
three elements, namely, the three integers: 3, 5, and 6. Now, how do you access these
values from the array individually? You use the array index. The index, defined in the
DIMENSION BY subclause, has the values of 10, 20, and 30 (from the result set
above). So, for example, the following expression:

d10[10]

would evaluate to 3, as you are accessing the value for CNT in array D10 for
DEPTNO 10 (which is 3).

Because all three arrays (D10, D20, D30) contain the values from CNT, all three of
them have the same results. How then do we get the proper count into the correct
array? Enter the RULES subclause. If you look at the result set for the inline view
shown earlier, you’ll see that the values for DEPTNO are 10, 20, and 30. The expres‐
sions involving CASE in the RULES clause simply evaluate each value in the
DEPTNO array:

• If the value is 10, store the CNT for DEPTNO 10 in D10[10] or else store 0.
• If the value is 20, store the CNT for DEPTNO 20 in D20[20] or else store 0.
• If the value is 30, store the CNT for DEPTNO 30 in D30[30] or else store 0.

14.3 Transposing a Result Set Using Oracle’s MODEL Clause | 465

If you find yourself feeling a bit like Alice tumbling down the rabbit hole, don’t
worry; just stop and execute what’s been discussed thus far. The following result set
represents what has been discussed. Sometimes it’s easier to read a bit, look at the
code that actually performs what you just read, and then go back and read it again.
The following is quite simple once you see it in action:

select deptno, d10,d20,d30
 from (select deptno, count(*) cnt from emp group by deptno)
 model
 dimension by(deptno d)
 measures(deptno, cnt d10, cnt d20, cnt d30)
 rules(
 d10[any] = case when deptno[cv()]=10 then d10[cv()] else 0 end,
 d20[any] = case when deptno[cv()]=20 then d20[cv()] else 0 end,
 d30[any] = case when deptno[cv()]=30 then d30[cv()] else 0 end
)

 DEPTNO D10 D20 D30
 ------ ---------- ---------- ----------
 10 3 0 0
 20 0 5 0
 30 0 0 6

As you can see, the RULES subclause is what changed the values in each array. If you
are still not catching on, simply execute the same query but comment out the expres‐
sions in the RULES subclass:

select deptno, d10,d20,d30
 from (select deptno, count(*) cnt from emp group by deptno)
 model
 dimension by(deptno d)
 measures(deptno, cnt d10, cnt d20, cnt d30)
 rules(
 /*
 d10[any] = case when deptno[cv()]=10 then d10[cv()] else 0 end,
 d20[any] = case when deptno[cv()]=20 then d20[cv()] else 0 end,
 d30[any] = case when deptno[cv()]=30 then d30[cv()] else 0 end
 */
)

 DEPTNO D10 D20 D30
 ------ ---------- ---------- ----------
 10 3 3 3
 20 5 5 5
 30 6 6 6

It should be clear now that the result set from the MODEL clause is the same as the
inline view, except that the COUNT operation is aliased D10, D20, and D30. The fol‐
lowing query proves this:

466 | Chapter 14: Odds ’n’ Ends

select deptno, count(*) d10, count(*) d20, count(*) d30
 from emp
 group by deptno

 DEPTNO D10 D20 D30
 ------ ---------- ---------- ----------
 10 3 3 3
 20 5 5 5
 30 6 6 6

So, all the MODEL clause did was to take the values for DEPTNO and CNT, put them
into arrays, and then make sure that each array represents a single DEPTNO. At this
point, arrays D10, D20, and D30 each have a single nonzero value representing the
CNT for a given DEPTNO. The result set is already transposed, and all that is left is
to use the aggregate function MAX (you could have used MIN or SUM; it would
make no difference in this case) to return only one row:

select max(d10) d10,
 max(d20) d20,
 max(d30) d30
 from (
select d10,d20,d30
 from (select deptno, count(*) cnt from emp group by deptno)
 model
 dimension by(deptno d)
 measures(deptno, cnt d10, cnt d20, cnt d30)
 rules(
 d10[any] = case when deptno[cv()]=10 then d10[cv()] else 0 end,
 d20[any] = case when deptno[cv()]=20 then d20[cv()] else 0 end,
 d30[any] = case when deptno[cv()]=30 then d30[cv()] else 0 end
)
)

 D10 D20 D30
 ---------- ---------- ----------
 3 5 6

14.4 Extracting Elements of a String from Unfixed
Locations
Problem
You have a string field that contains serialized log data. You want to parse through the
string and extract the relevant information. Unfortunately, the relevant information is
not at fixed points in the string. Instead, you must use the fact that certain characters
exist around the information you need, to extract said information. For example,
consider the following strings:

14.4 Extracting Elements of a String from Unfixed Locations | 467

xxxxxabc[867]xxx[-]xxxx[5309]xxxxx
xxxxxtime:[11271978]favnum:[4]id:[Joe]xxxxx
call:[F_GET_ROWS()]b1:[ROSEWOOD…SIR]b2:[44400002]77.90xxxxx
film:[non_marked]qq:[unit]tailpipe:[withabanana?]80sxxxxx

You want to extract the values between the square brackets, returning the following
result set:

FIRST_VAL SECOND_VAL LAST_VAL
--------------- ------------------- ---------------
867 - 5309
11271978 4 Joe
F_GET_ROWS() ROSEWOOD…SIR 44400002
non_marked unit withabanana?

Solution
Despite not knowing the exact locations within the string of the interesting values,
you do know that they are located between square brackets [], and you know there
are three of them. Use Oracle’s built-in function INSTR to find the locations of the
brackets. Use the built-in function SUBSTR to extract the values from the string.
View V will contain the strings to parse and is defined as follows (its use is strictly for
readability):

create view V
as
select 'xxxxxabc[867]xxx[-]xxxx[5309]xxxxx' msg
 from dual
 union all
 select 'xxxxxtime:[11271978]favnum:[4]id:[Joe]xxxxx' msg
 from dual
 union all
 select 'call:[F_GET_ROWS()]b1:[ROSEWOOD…SIR]b2:[44400002]77.90xxxxx' msg
 from dual
 union all
 select 'film:[non_marked]qq:[unit]tailpipe:[withabanana?]80sxxxxx' msg
 from dual

 1 select substr(msg,
 2 instr(msg,'[',1,1)+1,
 3 instr(msg,']',1,1)-instr(msg,'[',1,1)-1) first_val,
 4 substr(msg,
 5 instr(msg,'[',1,2)+1,
 6 instr(msg,']',1,2)-instr(msg,'[',1,2)-1) second_val,
 7 substr(msg,
 8 instr(msg,'[',-1,1)+1,
 9 instr(msg,']',-1,1)-instr(msg,'[',-1,1)-1) last_val
10 from V

468 | Chapter 14: Odds ’n’ Ends

Discussion
Using Oracle’s built-in function INSTR makes this problem fairly simple to solve.
Since you know the values you are after are enclosed in [], and that there are three
sets of [], the first step to this solution is to simply use INSTR to find the numeric
positions of [] in each string. The following example returns the numeric position of
the opening and closing brackets in each row:

select instr(msg,'[',1,1) "1st_[",
 instr(msg,']',1,1) "]_1st",
 instr(msg,'[',1,2) "2nd_[",
 instr(msg,']',1,2) "]_2nd",
 instr(msg,'[',-1,1) "3rd_[",
 instr(msg,']',-1,1) "]_3rd"
 from V

 1st_[]_1st 2nd_[]_2nd 3rd_[]_3rd
 ------ ----- ---------- ----- ---------- -----
 9 13 17 19 24 29
 11 20 28 30 34 38
 6 19 23 38 42 51
 6 17 21 26 36 49

At this point, the hard work is done. All that is left is to plug the numeric positions
into SUBSTR to parse MSG at those locations. You’ll notice that in the complete solu‐
tion there’s some simple arithmetic on the values returned by INSTR, particularly, +1
and –1; this is necessary to ensure the opening square bracket, [, is not returned in
the final result set. Listed here is the solution less addition and subtraction of 1 on the
return values from INSTR; notice how each value has a leading square bracket:

select substr(msg,
 instr(msg,'[',1,1),
 instr(msg,']',1,1)-instr(msg,'[',1,1)) first_val,
 substr(msg,
 instr(msg,'[',1,2),
 instr(msg,']',1,2)-instr(msg,'[',1,2)) second_val,
 substr(msg,
 instr(msg,'[',-1,1),
 instr(msg,']',-1,1)-instr(msg,'[',-1,1)) last_val
 from V

FIRST_VAL SECOND_VAL LAST_VAL
--------------- -------------------- -------
[867 [- [5309
[11271978 [4 [Joe
[F_GET_ROWS() [ROSEWOOD…SIR [44400002
[non_marked [unit [withabanana?

From the previous result set, you can see that the open bracket is there. You may be
thinking: “OK, put the addition of 1 to INSTR back and the leading square bracket
goes away. Why do we need to subtract 1?” The reason is this: if you put the addition

14.4 Extracting Elements of a String from Unfixed Locations | 469

back but leave out the subtraction, you end up including the closing square bracket,
as shown here:

select substr(msg,
 instr(msg,'[',1,1)+1,
 instr(msg,']',1,1)-instr(msg,'[',1,1)) first_val,
 substr(msg,
 instr(msg,'[',1,2)+1,
 instr(msg,']',1,2)-instr(msg,'[',1,2)) second_val,
 substr(msg,
 instr(msg,'[',-1,1)+1,
 instr(msg,']',-1,1)-instr(msg,'[',-1,1)) last_val
 from V

FIRST_VAL SECOND_VAL LAST_VAL
--------------- --------------- -------------
867] -] 5309]
11271978] 4] Joe]
F_GET_ROWS()] ROSEWOOD…SIR] 44400002]
non_marked] unit] withabanana?]

At this point it should be clear: to ensure you include neither of the square brackets,
you must add one to the beginning index and subtract one from the ending index.

14.5 Finding the Number of Days in a Year (an Alternate
Solution for Oracle)
Problem
You want to find the number of days in a year.

This recipe presents an alternative solution to “Determining the
Number of Days in a Year” from Chapter 9. This solution is specific
to Oracle.

Solution
Use the TO_CHAR function to format the last date of the year into a three-digit day-
of-the-year number:

1 select 'Days in 2021: '||
2 to_char(add_months(trunc(sysdate,'y'),12)-1,'DDD')
3 as report
4 from dual
5 union all
6 select 'Days in 2020: '||
7 to_char(add_months(trunc(

470 | Chapter 14: Odds ’n’ Ends

8 to_date('01-SEP-2020'),'y'),12)-1,'DDD')
9 from dual

REPORT

Days in 2021: 365
Days in 2020: 366

Discussion
Begin by using the TRUNC function to return the first day of the year for the given
date, as follows:

select trunc(to_date('01-SEP-2020'),'y')
 from dual

TRUNC(TO_DA

01-JAN-2020

Next, use ADD_MONTHS to add one year (12 months) to the truncated date. Then
subtract one day, bringing you to the end of the year in which your original date falls:

select add_months(
 trunc(to_date('01-SEP-2020'),'y'),
 12) before_subtraction,
 add_months(
 trunc(to_date('01-SEP-2020'),'y'),
 12)-1 after_subtraction
 from dual

BEFORE_SUBT AFTER_SUBTR
----------- -----------
01-JAN-2021 31-DEC-2020

Now that you have found the last day in the year you are working with, simply use
TO_CHAR to return a three-digit number representing on which day (1st, 50th, etc.)
of the year the last day is:

select to_char(
 add_months(
 trunc(to_date('01-SEP-2020'),'y'),
 12)-1,'DDD') num_days_in_2020
 from dual

NUM

366

14.5 Finding the Number of Days in a Year (an Alternate Solution for Oracle) | 471

14.6 Searching for Mixed Alphanumeric Strings
Problem
You have a column with mixed alphanumeric data. You want to return those rows
that have both alphabetical and numeric characters; in other words, if a string has
only number or only letters, do not return it. The return values should have a mix of
both letters and numbers. Consider the following data:

STRINGS

1010 switch
333
3453430278
ClassSummary
findRow 55
threes

The final result set should contain only those rows that have both letters and
numbers:

STRINGS

1010 switch
findRow 55

Solution
Use the built-in function TRANSLATE to convert each occurrence of a letter or digit
into a specific character. Then keep only those strings that have at least one occur‐
rence of both. The solution uses Oracle syntax, but both DB2 and PostgreSQL sup‐
port TRANSLATE, so modifying the solution to work on those platforms should be
trivial:

 with v as (
 select 'ClassSummary' strings from dual union
 select '3453430278' from dual union
 select 'findRow 55' from dual union
 select '1010 switch' from dual union
 select '333' from dual union
 select 'threes' from dual
)
 select strings
 from (
 select strings,
 translate(
 strings,
 'abcdefghijklmnopqrstuvwxyz0123456789',
 rpad('#',26,'#')||rpad('*',10,'*')) translated
 from v

472 | Chapter 14: Odds ’n’ Ends

) x
whereinstr(translated,'#') > 0
and instr(translated,'*') > 0

As an alternative to the WITH clause, you may use an inline view
or simply create a view.

Discussion
The TRANSLATE function makes this problem extremely easy to solve. The first step
is to use TRANSLATE to identify all letters and all digits by pound (#) and asterisk
(*) characters, respectively. The intermediate results (from inline view X) are as
follows:

with v as (
select 'ClassSummary' strings from dual union
select '3453430278' from dual union
select 'findRow 55' from dual union
select '1010 switch' from dual union
select '333' from dual union
select 'threes' from dual
)
select strings,
 translate(
 strings,
 'abcdefghijklmnopqrstuvwxyz0123456789',
 rpad('#',26,'#')||rpad('*',10,'*')) translated
 from v

STRINGS TRANSLATED
------------- ------------
1010 switch **** ######
333 ***
3453430278 **********
ClassSummary C####S######
findRow 55 ####R## **
threes ######

At this point, it is only a matter of keeping those rows that have at least one instance
each of # and *. Use the function INSTR to determine whether # and * are in a string.
If those two characters are, in fact, present, then the value returned will be greater
than zero. The final strings to return, along with their translated values, are shown
next for clarity:

with v as (
select 'ClassSummary' strings from dual union
select '3453430278' from dual union
select 'findRow 55' from dual union

14.6 Searching for Mixed Alphanumeric Strings | 473

select '1010 switch' from dual union
select '333' from dual union
select 'threes' from dual
)
select strings, translated
 from (
select strings,
 translate(
 strings,
 'abcdefghijklmnopqrstuvwxyz0123456789',
 rpad('#',26,'#')||rpad('*',10,'*')) translated
 from v
)
 where instr(translated,'#') > 0
 and instr(translated,'*') > 0

STRINGS TRANSLATED
------------ ------------
1010 switch **** ######
findRow 55 ####R## **

14.7 Converting Whole Numbers to Binary Using Oracle
Problem
You want to convert a whole number to its binary representation on an Oracle sys‐
tem. For example, you would like to return all the salaries in table EMP in binary as
part of the following result set:

ENAME SAL SAL_BINARY
---------- ----- --------------------
SMITH 800 1100100000
ALLEN 1600 11001000000
WARD 1250 10011100010
JONES 2975 101110011111
MARTIN 1250 10011100010
BLAKE 2850 101100100010
CLARK 2450 100110010010
SCOTT 3000 101110111000
KING 5000 1001110001000
TURNER 1500 10111011100
ADAMS 1100 10001001100
JAMES 950 1110110110
FORD 3000 101110111000
MILLER 1300 10100010100

Solution
Because of MODEL’s ability to iterate and provide array access to row values, it is a
natural choice for this operation (assuming you are forced to solve the problem in

474 | Chapter 14: Odds ’n’ Ends

SQL, as a stored function is more appropriate here). Like the rest of the solutions in
this book, even if you don’t find a practical application for this code, focus on the
technique. It is useful to know that the MODEL clause can perform procedural tasks
while still keeping SQL’s set-based nature and power. So, even if you find yourself say‐
ing, “I’d never do this in SQL,” that’s fine. We’re in no way suggesting you should or
shouldn’t. We remind you to focus on the technique, so you can apply it to whatever
you consider a more “practical” application.

The following solution returns all ENAME and SAL from table EMP, while calling the
MODEL clause in a scalar subquery (this way it serves as sort of a standalone func‐
tion from table EMP that simply receives an input, processes it, and returns a value,
much like a function would):

 1 select ename,
 2 sal,
 3 (
 4 select bin
 5 from dual
 6 model
 7 dimension by (0 attr)
 8 measures (sal num,
 9 cast(null as varchar2(30)) bin,
10 '0123456789ABCDEF' hex
11)
12 rules iterate (10000) until (num[0] <= 0) (
13 bin[0] = substr(hex[cv()],mod(num[cv()],2)+1,1)||bin[cv()],
14 num[0] = trunc(num[cv()]/2)
15)
16) sal_binary
17 from emp

Discussion
We mentioned in the “Solution” section that this problem is most likely better solved
via a stored function. Indeed, the idea for this recipe came from a function. As a mat‐
ter of fact, this recipe is an adaptation of a function called TO_BASE, written by Tom
Kyte of Oracle Corporation. Like other recipes in this book that you may decide not
to use, even if you do not use this recipe, it does a nice job of showing of some of the
features of the MODEL clause such as iteration and array access of rows.

To make the explanation easier, we focus on a slight variation of the subquery con‐
taining the MODEL clause. The code that follows is essentially the subquery from the
solution, except that it’s been hardwired to return the value 2 in binary:

select bin
 from dual
 model
 dimension by (0 attr)
 measures (2 num,

14.7 Converting Whole Numbers to Binary Using Oracle | 475

 cast(null as varchar2(30)) bin,
 '0123456789ABCDEF' hex
)
 rules iterate (10000) until (num[0] <= 0) (
 bin[0] = substr (hex[cv()],mod(num[cv()],2)+1,1)||bin[cv()],
 num[0] = trunc(num[cv()]/2)
)

BIN

10

The following query outputs the values returned from one iteration of the RULES
defined in the previous query:

select 2 start_val,
 '0123456789ABCDEF' hex,
 substr('0123456789ABCDEF',mod(2,2)+1,1) ||
 cast(null as varchar2(30)) bin,
 trunc(2/2) num
 from dual

START_VAL HEX BIN NUM
--------- ---------------- ---------- ---
 2 0123456789ABCDEF 0 1

START_VAL represents the number you want to convert to binary, which in this case
is 2. The value for BIN is the result of a substring operation on 0123456789ABCDEF
(HEX, in the original solution). The value for NUM is the test that will determine
when you exit the loop.

As you can see from the preceding result set, the first time through the loop BIN is 0
and NUM is 1. Because NUM is not less than or equal to 0, another loop iteration
occurs. The following SQL statement shows the results of the next iteration:

select num start_val,
 substr('0123456789ABCDEF',mod(1,2)+1,1) || bin bin,
 trunc(1/2) num
 from (
select 2 start_val,
 '0123456789ABCDEF' hex,
 substr('0123456789ABCDEF',mod(2,2)+1,1) ||
 cast(null as varchar2(30)) bin,
 trunc(2/2) num
 from dual
)

START_VAL BIN NUM
--------- ---------- ---
 1 10 0

476 | Chapter 14: Odds ’n’ Ends

The next time through the loop, the result of the substring operation on HEX returns
1, and the prior value of BIN, 0, is appended to it. The test, NUM, is now 0; thus, this
is the last iteration, and the return value “10” is the binary representation of the num‐
ber 2. Once you’re comfortable with what’s going on, you can remove the iteration
from the MODEL clause and step through it row by row to follow how the rules are
applied to come to the final result set, as is shown here:

select 2 orig_val, num, bin
 from dual
 model
 dimension by (0 attr)
 measures (2 num,
 cast(null as varchar2(30)) bin,
 '0123456789ABCDEF' hex
)
 rules (
 bin[0] = substr (hex[cv()],mod(num[cv()],2)+1,1)||bin[cv()],
 num[0] = trunc(num[cv()]/2),
 bin[1] = substr (hex[0],mod(num[0],2)+1,1)||bin[0],
 num[1] = trunc(num[0]/2)
)

ORIG_VAL NUM BIN
-------- --- ---------
 2 1 0
 2 0 10

14.8 Pivoting a Ranked Result Set
Problem
You want to rank the values in a table and then pivot the result set into three col‐
umns. The idea is to show the top three, the next three, and then all the rest. For
example, you want to rank the employees in table EMP by SAL and then pivot the
results into three columns. The desired result set is as follows:

TOP_3 NEXT_3 REST
--------------- --------------- --------------
KING (5000) BLAKE (2850) TURNER (1500)
FORD (3000) CLARK (2450) MILLER (1300)
SCOTT (3000) ALLEN (1600) MARTIN (1250)
JONES (2975) WARD (1250)
 ADAMS (1100)
 JAMES (950)
 SMITH (800)

14.8 Pivoting a Ranked Result Set | 477

Solution
The key to this solution is to first use the window function DENSE_RANK OVER to
rank the employees by SAL while allowing for ties. By using DENSE_RANK OVER,
you can easily see the top three salaries, the next three salaries, and then all the rest.

Next, use the window function ROW_NUMBER OVER to rank each employee
within their group (the top three, next three, or last group). From there, simply per‐
form a classic transpose, while using the built-in string functions available on your
platform to beautify the results. The following solution uses Oracle syntax. Since all
vendors now support window functions, converting the solution to work for other
platforms is trivial:

 1 select max(case grp when 1 then rpad(ename,6) ||
 2 ' ('|| sal ||')' end) top_3,
 3 max(case grp when 2 then rpad(ename,6) ||
 4 ' ('|| sal ||')' end) next_3,
 5 max(case grp when 3 then rpad(ename,6) ||
 6 ' ('|| sal ||')' end) rest
 7 from (
 8 select ename,
 9 sal,
10 rnk,
11 case when rnk <= 3 then 1
12 when rnk <= 6 then 2
13 else 3
14 end grp,
15 row_number()over (
16 partition by case when rnk <= 3 then 1
17 when rnk <= 6 then 2
18 else 3
19 end
20 order by sal desc, ename
21) grp_rnk
22 from (
23 select ename,
24 sal,
25 dense_rank()over(order by sal desc) rnk
26 from emp
27) x
28) y
29 group by grp_rnk

Discussion
This recipe is a perfect example of how much you can accomplish with so little, with
the help of window functions. The solution may look involved, but as you break it
down from inside out, you will be surprised how simple it is. Let’s begin by executing
inline view X first:

478 | Chapter 14: Odds ’n’ Ends

select ename,
 sal,
 dense_rank()over(order by sal desc) rnk
 from emp

ENAME SAL RNK
---------- ----- ----------
KING 5000 1
SCOTT 3000 2
FORD 3000 2
JONES 2975 3
BLAKE 2850 4
CLARK 2450 5
ALLEN 1600 6
TURNER 1500 7
MILLER 1300 8
WARD 1250 9
MARTIN 1250 9
ADAMS 1100 10
JAMES 950 11
SMITH 800 12

As you can see from the previous result set, inline view X simply ranks the employees
by SAL, while allowing for ties (because the solution uses DENSE_RANK instead of
RANK, there are ties without gaps). The next step is to take the rows from inline view
X and create groups by using a CASE expression to evaluate the ranking from
DENSE_RANK. Additionally, use the window function ROW_NUMBER OVER to
rank the employees by SAL within their group (within the group you are creating
with the CASE expression). All of this happens in inline view Y and is shown here:

select ename,
 sal,
 rnk,
 case when rnk <= 3 then 1
 when rnk <= 6 then 2
 else 3
 end grp,
 row_number()over (
 partition by case when rnk <= 3 then 1
 when rnk <= 6 then 2
 else 3
 end
 order by sal desc, ename
) grp_rnk
 from (
select ename,
 sal,
 dense_rank()over(order by sal desc) rnk
 from emp
) x

14.8 Pivoting a Ranked Result Set | 479

ENAME SAL RNK GRP GRP_RNK
---------- ----- ---- ---- -------
KING 5000 1 1 1
FORD 3000 2 1 2
SCOTT 3000 2 1 3
JONES 2975 3 1 4
BLAKE 2850 4 2 1
CLARK 2450 5 2 2
ALLEN 1600 6 2 3
TURNER 1500 7 3 1
MILLER 1300 8 3 2
MARTIN 1250 9 3 3
WARD 1250 9 3 4
ADAMS 1100 10 3 5
JAMES 950 11 3 6
SMITH 800 12 3 7

Now the query is starting to take shape, and if you followed it from the beginning
(from inline view X), you can see that it’s not that complicated. The query so far
returns each employee; their SAL; their RNK, which represents where their SAL
ranks among all employees; their GRP, which indicates the group each employee is in
(based on SAL); and finally GRP_RANK, which is a ranking (based on SAL) within
their GRP.

At this point, perform a traditional pivot on ENAME while using the Oracle concate‐
nation operator || to append the SAL. The function RPAD ensures that the numeric
values in parentheses line up nicely. Finally, use GROUP BY on GRP_RNK to ensure
you show each employee in the result set. The final result set is shown here:

select max(case grp when 1 then rpad(ename,6) ||
 ' ('|| sal ||')' end) top_3,
 max(case grp when 2 then rpad(ename,6) ||
 ' ('|| sal ||')' end) next_3,
 max(case grp when 3 then rpad(ename,6) ||
 ' ('|| sal ||')' end) rest
 from (
select ename,
 sal,
 rnk,
 case when rnk <= 3 then 1
 when rnk <= 6 then 2
 else 3
 end grp,
 row_number()over (
 partition by case when rnk <= 3 then 1
 when rnk <= 6 then 2
 else 3
 end
 Order by sal desc, ename
) grp_rnk
 from (

480 | Chapter 14: Odds ’n’ Ends

select ename,
 sal,
 dense_rank()over(order by sal desc) rnk
 from emp
) x
) y
group by grp_rnk

TOP_3 NEXT_3 REST
--------------- --------------- -------------
KING (5000) BLAKE (2850) TURNER (1500)
FORD (3000) CLARK (2450) MILLER (1300)
SCOTT (3000) ALLEN (1600) MARTIN (1250)
JONES (2975) WARD (1250)
ADAMS (1100)
 JAMES (950)
 SMITH (800)

If you examine the queries in all of the steps, you’ll notice that table EMP is accessed
exactly once. One of the remarkable things about window functions is how much
work you can do in just one pass through your data. There’s no need for self-joins or
temp tables; just get the rows you need and then let the window functions do the rest.
Only in inline view X do you need to access EMP. From there, it’s simply a matter of
massaging the result set to look the way you want. Consider what all this means for
performance if you can create this type of report with a single table access. Pretty
cool.

14.9 Adding a Column Header into a Double Pivoted
Result Set
Problem
You want to stack two result sets and then pivot them into two columns. Additionally,
you want to add a “header” for each group of rows in each column. For example, you
have two tables containing information about employees working in different areas of
development in your company (say, in research and applications):

select * from it_research

DEPTNO ENAME
------ --------------------
 100 HOPKINS
 100 JONES
 100 TONEY
 200 MORALES
 200 P.WHITAKER
 200 MARCIANO
 200 ROBINSON

14.9 Adding a Column Header into a Double Pivoted Result Set | 481

 300 LACY
 300 WRIGHT
 300 J.TAYLOR

select * from it_apps

DEPTNO ENAME
------ -----------------
 400 CORRALES
 400 MAYWEATHER
 400 CASTILLO
 400 MARQUEZ
 400 MOSLEY
 500 GATTI
 500 CALZAGHE
 600 LAMOTTA
 600 HAGLER
 600 HEARNS
 600 FRAZIER
 700 GUINN
 700 JUDAH
 700 MARGARITO

You would like to create a report listing the employees from each table in two col‐
umns. You want to return the DEPTNO followed by ENAME for each. Ultimately,
you want to return the following result set:

RESEARCH APPS
-------------------- ---------------
100 400
 JONES MAYWEATHER
 TONEY CASTILLO
 HOPKINS MARQUEZ
200 MOSLEY
 P.WHITAKER CORRALES
 MARCIANO 500
 ROBINSON CALZAGHE
 MORALES GATTI
300 600
 WRIGHT HAGLER
 J.TAYLOR HEARNS
 LACY FRAZIER
 LAMOTTA
 700
 JUDAH
 MARGARITO
 GUINN

482 | Chapter 14: Odds ’n’ Ends

Solution
For the most part, this solution requires nothing more than a simple stack ’n’ pivot
(union then pivot) with an added twist: the DEPTNO must precede the ENAME for
each employee returned. The technique here uses a Cartesian product to generate an
extra row for each DEPTNO, so you have the required rows necessary to show all
employees, plus room for the DEPTNO. The solution uses Oracle syntax, but since
DB2 supports window functions that can compute moving windows (the framing
clause), converting this solution to work for DB2 is trivial. Because the IT_
RESEARCH and IT_APPS tables exist only for this recipe, their table creation state‐
ments are shown along with this solution:

create table IT_research (deptno number, ename varchar2(20))

insert into IT_research values (100,'HOPKINS')
insert into IT_research values (100,'JONES')
insert into IT_research values (100,'TONEY')
insert into IT_research values (200,'MORALES')
insert into IT_research values (200,'P.WHITAKER')
insert into IT_research values (200,'MARCIANO')
insert into IT_research values (200,'ROBINSON')
insert into IT_research values (300,'LACY')
insert into IT_research values (300,'WRIGHT')
insert into IT_research values (300,'J.TAYLOR')

create table IT_apps (deptno number, ename varchar2(20))

insert into IT_apps values (400,'CORRALES')
insert into IT_apps values (400,'MAYWEATHER')
insert into IT_apps values (400,'CASTILLO')
insert into IT_apps values (400,'MARQUEZ')
insert into IT_apps values (400,'MOSLEY')
insert into IT_apps values (500,'GATTI')
insert into IT_apps values (500,'CALZAGHE')
insert into IT_apps values (600,'LAMOTTA')
insert into IT_apps values (600,'HAGLER')
insert into IT_apps values (600,'HEARNS')
insert into IT_apps values (600,'FRAZIER')
insert into IT_apps values (700,'GUINN')
insert into IT_apps values (700,'JUDAH')
insert into IT_apps values (700,'MARGARITO')

 1 select max(decode(flag2,0,it_dept)) research,
 2 max(decode(flag2,1,it_dept)) apps
 3 from (
 4 select sum(flag1)over(partition by flag2
 5 order by flag1,rownum) flag,
 6 it_dept, flag2
 7 from (

14.9 Adding a Column Header into a Double Pivoted Result Set | 483

 8 select 1 flag1, 0 flag2,
 9 decode(rn,1,to_char(deptno),' '||ename) it_dept
10 from (
11 select x.*, y.id,
12 row_number()over(partition by x.deptno order by y.id) rn
13 from (
14 select deptno,
15 ename,
16 count(*)over(partition by deptno) cnt
17 from it_research
18) x,
19 (select level id from dual connect by level <= 2) y
20)
21 where rn <= cnt+1
22 union all
23 select 1 flag1, 1 flag2,
24 decode(rn,1,to_char(deptno),' '||ename) it_dept
25 from (
26 select x.*, y.id,
27 row_number()over(partition by x.deptno order by y.id) rn
28 from (
29 select deptno,
30 ename,
31 count(*)over(partition by deptno) cnt
32 from it_apps
33) x,
34 (select level id from dual connect by level <= 2) y
35)
36 where rn <= cnt+1
37) tmp1
38) tmp2
39 group by flag

Discussion
Like many of the other warehousing/report type queries, the solution presented looks
quite convoluted, but once broken down, you’ll seen it’s nothing more than a stack ’n’
pivot with a Cartesian twist (on the rocks, with a little umbrella). The way to break
down this query is to work on each part of the UNION ALL first and then bring it
together for the pivot. Let’s start with the lower portion of the UNION ALL:

select 1 flag1, 1 flag2,
 decode(rn,1,to_char(deptno),' '||ename) it_dept
 from (
select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
select deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_apps

484 | Chapter 14: Odds ’n’ Ends

) x,
 (select level id from dual connect by level <= 2) y
) z
 where rn <= cnt+1

FLAG1 FLAG2 IT_DEPT
----- ---------- --------------------------
 1 1 400
 1 1 MAYWEATHER
 1 1 CASTILLO
 1 1 MARQUEZ
 1 1 MOSLEY
 1 1 CORRALES
 1 1 500
 1 1 CALZAGHE
 1 1 GATTI
 1 1 600
 1 1 HAGLER
 1 1 HEARNS
 1 1 FRAZIER
 1 1 LAMOTTA
 1 1 700
 1 1 JUDAH
 1 1 MARGARITO
 1 1 GUINN

Let’s examine exactly how that result set is put together. Breaking down the previous
query to its simplest components, you have inline view X, which simply returns each
ENAME and DEPTNO and the number of employees in each DEPTNO from table
IT_APPS. The results are as follows:

select deptno deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_apps

DEPTNO ENAME CNT
------ -------------------- ----------
 400 CORRALES 5
 400 MAYWEATHER 5
 400 CASTILLO 5
 400 MARQUEZ 5
 400 MOSLEY 5
 500 GATTI 2
 500 CALZAGHE 2
 600 LAMOTTA 4
 600 HAGLER 4
 600 HEARNS 4
 600 FRAZIER 4
 700 GUINN 3
 700 JUDAH 3
 700 MARGARITO 3

14.9 Adding a Column Header into a Double Pivoted Result Set | 485

The next step is to create a Cartesian product between the rows returned from inline
view X and two rows generated from DUAL using CONNECT BY. The results of this
operation are as follows:

select *
 from (
select deptno deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_apps
) x,
 (select level id from dual connect by level <= 2) y
 order by 2

DEPTNO ENAME CNT ID
------ ---------- --- ---
 500 CALZAGHE 2 1
 500 CALZAGHE 2 2
 400 CASTILLO 5 1
 400 CASTILLO 5 2
 400 CORRALES 5 1
 400 CORRALES 5 2
 600 FRAZIER 4 1
 600 FRAZIER 4 2
 500 GATTI 2 1
 500 GATTI 2 2
 700 GUINN 3 1
 700 GUINN 3 2
 600 HAGLER 4 1
 600 HAGLER 4 2
 600 HEARNS 4 1
 600 HEARNS 4 2
 700 JUDAH 3 1
 700 JUDAH 3 2
 600 LAMOTTA 4 1
 600 LAMOTTA 4 2
 700 MARGARITO 3 1
 700 MARGARITO 3 2
 400 MARQUEZ 5 1
 400 MARQUEZ 5 2
 400 MAYWEATHER 5 1
 400 MAYWEATHER 5 2
 400 MOSLEY 5 1
 400 MOSLEY 5 2

As you can see from these results, each row from inline view X is now returned twice
due to the Cartesian product with inline view Y. The reason a Cartesian is needed will
become clear shortly. The next step is to take the current result set and rank each
employee within his DEPTNO by ID (ID has a value of 1 or 2 as was returned by the
Cartesian product). The result of this ranking is shown in the output from the follow‐
ing query:

486 | Chapter 14: Odds ’n’ Ends

select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
select deptno deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_apps
) x,
 (select level id from dual connect by level <= 2) y

DEPTNO ENAME CNT ID RN
------ ---------- --- --- ----------
 400 CORRALES 5 1 1
 400 MAYWEATHER 5 1 2
 400 CASTILLO 5 1 3
 400 MARQUEZ 5 1 4
 400 MOSLEY 5 1 5
 400 CORRALES 5 2 6
 400 MOSLEY 5 2 7
 400 MAYWEATHER 5 2 8
 400 CASTILLO 5 2 9
 400 MARQUEZ 5 2 10
 500 GATTI 2 1 1
 500 CALZAGHE 2 1 2
 500 GATTI 2 2 3
 500 CALZAGHE 2 2 4
 600 LAMOTTA 4 1 1
 600 HAGLER 4 1 2
 600 HEARNS 4 1 3
 600 FRAZIER 4 1 4
 600 LAMOTTA 4 2 5
 600 HAGLER 4 2 6
 600 FRAZIER 4 2 7
 600 HEARNS 4 2 8
 700 GUINN 3 1 1
 700 JUDAH 3 1 2
 700 MARGARITO 3 1 3
 700 GUINN 3 2 4
 700 JUDAH 3 2 5
 700 MARGARITO 3 2 6

Each employee is ranked; then his duplicate is ranked. The result set contains dupli‐
cates for all employees in table IT_APP, along with their ranking within their
DEPTNO. The reason you need to generate these extra rows is because you need a
slot in the result set to slip in the DEPTNO in the ENAME column. If you Cartesian-
join IT_APPS with a one-row table, you get no extra rows (because cardinality of any
table × 1 = cardinality of that table).

The next step is to take the results returned thus far and pivot the result set such that
all the ENAMEs are returned in one column but are preceded by the DEPTNO they
are in. The following query shows how this happens:

14.9 Adding a Column Header into a Double Pivoted Result Set | 487

select 1 flag1, 1 flag2,
 decode(rn,1,to_char(deptno),' '||ename) it_dept
 from (
select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
select deptno deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_apps
) x,
 (select level id from dual connect by level <= 2) y
) z
 where rn <= cnt+1

FLAG1 FLAG2 IT_DEPT
----- ---------- -------------------------
 1 1 400
 1 1 MAYWEATHER
 1 1 CASTILLO
 1 1 MARQUEZ
 1 1 MOSLEY
 1 1 CORRALES
 1 1 500
 1 1 CALZAGHE
 1 1 GATTI
 1 1 600
 1 1 HAGLER
 1 1 HEARNS
 1 1 FRAZIER
 1 1 LAMOTTA
 1 1 700
 1 1 JUDAH
 1 1 MARGARITO
 1 1 GUINN

FLAG1 and FLAG2 come into play later and can be ignored for the moment. Focus
your attention on the rows in IT_DEPT. The number of rows returned for each
DEPTNO is CNT*2, but all that is needed is CNT+1, which is the filter in the
WHERE clause. RN is the ranking for each employee. The rows kept are all those
ranked less than or equal to CNT+1; i.e., all employees in each DEPTNO plus one
more (this extra employee is the employee who is ranked first in their DEPTNO).
This extra row is where the DEPTNO will slide in. By using DECODE (an older Ora‐
cle function that gives more or less the equivalent of a CASE expression) to evaluate
the value of RN, you can slide the value of DEPTNO into the result set. The employee
who was at position one (based on the value of RN) is still shown in the result set, but
is now last in each DEPTNO (because the order is irrelevant, this is not a problem).
That pretty much covers the lower part of the UNION ALL.

488 | Chapter 14: Odds ’n’ Ends

The upper part of the UNION ALL is processed in the same way as the lower part, so
there’s no need to explain how that works. Instead, let’s examine the result set
returned when stacking the queries:

select 1 flag1, 0 flag2,
 decode(rn,1,to_char(deptno),' '||ename) it_dept
 from (
select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
select deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_research
) x,
 (select level id from dual connect by level <= 2) y
)
 where rn <= cnt+1
union all
select 1 flag1, 1 flag2,
 decode(rn,1,to_char(deptno),' '||ename) it_dept
 from (
select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
select deptno deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_apps
) x,
 (select level id from dual connect by level <= 2) y
)
 where rn <= cnt+1

FLAG1 FLAG2 IT_DEPT
----- ---------- -----------------------
 1 0 100
 1 0 JONES
 1 0 TONEY
 1 0 HOPKINS
 1 0 200
 1 0 P.WHITAKER
 1 0 MARCIANO
 1 0 ROBINSON
 1 0 MORALES
 1 0 300
 1 0 WRIGHT
 1 0 J.TAYLOR
 1 0 LACY
 1 1 400
 1 1 MAYWEATHER
 1 1 CASTILLO

14.9 Adding a Column Header into a Double Pivoted Result Set | 489

 1 1 MARQUEZ
 1 1 MOSLEY
 1 1 CORRALES
 1 1 500
 1 1 CALZAGHE
 1 1 GATTI
 1 1 600
 1 1 HAGLER
 1 1 HEARNS
 1 1 FRAZIER
 1 1 LAMOTTA
 1 1 700
 1 1 JUDAH
 1 1 MARGARITO
 1 1 GUINN

At this point, it isn’t clear what FLAG1’s purpose is, but you can see that FLAG2 iden‐
tifies which rows come from which part of the UNION ALL (0 for the upper part, 1
for the lower part).

The next step is to wrap the stacked result set in an inline view and create a running
total on FLAG1 (finally, its purpose is revealed!), which will act as a ranking for each
row in each stack. The results of the ranking (running total) are shown here:

select sum(flag1)over(partition by flag2
 order by flag1,rownum) flag,
 it_dept, flag2
 from (
select 1 flag1, 0 flag2,
 decode(rn,1,to_char(deptno),' '||ename) it_dept
 from (
select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
select deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_research
) x,
 (select level id from dual connect by level <= 2) y
)
 where rn <= cnt+1
union all
select 1 flag1, 1 flag2,
 decode(rn,1,to_char(deptno),' '||ename) it_dept
 from (
select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
select deptno deptno,
 ename,
 count(*)over(partition by deptno) cnt

490 | Chapter 14: Odds ’n’ Ends

 from it_apps
) x,
 (select level id from dual connect by level <= 2) y
)
 where rn <= cnt+1
) tmp1

FLAG IT_DEPT FLAG2
---- --------------- ----------
 1 100 0
 2 JONES 0
 3 TONEY 0
 4 HOPKINS 0
 5 200 0
 6 P.WHITAKER 0
 7 MARCIANO 0
 8 ROBINSON 0
 9 MORALES 0
 10 300 0
 11 WRIGHT 0
 12 J.TAYLOR 0
 13 LACY 0
 1 400 1
 2 MAYWEATHER 1
 3 CASTILLO 1
 4 MARQUEZ 1
 5 MOSLEY 1
 6 CORRALES 1
 7 500 1
 8 CALZAGHEe 1
 9 GATTI 1
 10 600 1
 11 HAGLER 1
 12 HEARNS 1
 13 FRAZIER 1
 14 LAMOTTA 1
 15 700 1
 16 JUDAH 1
 17 MARGARITO 1
 18 GUINN 1

The last step (finally!) is to pivot the value returned by TMP1 on FLAG2 while group‐
ing by FLAG (the running total generated in TMP1). The results from TMP1 are
wrapped in an inline view and pivoted (wrapped in a final inline view called TMP2).
The ultimate solution and result set are shown here:

select max(decode(flag2,0,it_dept)) research,
 max(decode(flag2,1,it_dept)) apps
 from (
select sum(flag1)over(partition by flag2
 order by flag1,rownum) flag,

14.9 Adding a Column Header into a Double Pivoted Result Set | 491

 it_dept, flag2
 from (
select 1 flag1, 0 flag2,
 decode(rn,1,to_char(deptno),' '||ename) it_dept
 from (
select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
select deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_research
) x,
 (select level id from dual connect by level <= 2) y
)
 where rn <= cnt+1
union all
select 1 flag1, 1 flag2,
 decode(rn,1,to_char(deptno),' '||ename) it_dept
 from (
select x.*, y.id,
 row_number()over(partition by x.deptno order by y.id) rn
 from (
select deptno deptno,
 ename,
 count(*)over(partition by deptno) cnt
 from it_apps
) x,
 (select level id from dual connect by level <= 2) y
)
 where rn <= cnt+1
) tmp1
) tmp2
 group by flag

RESEARCH APPS
-------------------- ---------------
100 400
 JONES MAYWEATHER
 TONEY CASTILLO
 HOPKINS MARQUEZ
200 MOSLEY
 P.WHITAKER CORRALES
 MARCIANO 500
 ROBINSON CALZAGHE
 MORALES GATTI
300 600
 WRIGHT HAGLER
 J.TAYLOR HEARNS
 LACY FRAZIER
 LAMOTTA

492 | Chapter 14: Odds ’n’ Ends

 700
 JUDAH
 MARGARITO
 GUINN

14.10 Converting a Scalar Subquery to a Composite
Subquery in Oracle
Problem
You want to bypass the restriction of returning exactly one value from a scalar sub‐
query. For example, you attempt to execute the following query:

select e.deptno,
 e.ename,
 e.sal,
 (select d.dname,d.loc,sysdate today
 from dept d
 where e.deptno=d.deptno)
 from emp e

but receive an error because subqueries in the SELECT list are allowed to return only
a single value.

Solution
Admittedly, this problem is quite unrealistic, because a simple join between tables
EMP and DEPT would allow you to return as many values you want from DEPT.
Nevertheless, the key is to focus on the technique and understand how to apply it to a
scenario that you find useful. The key to bypassing the requirement to return a single
value when placing a SELECT within SELECT (scalar subquery) is to take advantage
of Oracle’s object types. You can define an object to have several attributes, and then
you can work with it as a single entity or reference each element individually. In
effect, you don’t really bypass the rule at all. You simply return one value—an [.keep-
together]#object—#that in turn contains many attributes.

This solution makes use of the following object type:

create type generic_obj
 as object (
 val1 varchar2(10),
 val2 varchar2(10),
 val3 date
);

With this type in place, you can execute the following query:

 1 select x.deptno,
 2 x.ename,

14.10 Converting a Scalar Subquery to a Composite Subquery in Oracle | 493

 3 x.multival.val1 dname,
 4 x.multival.val2 loc,
 5 x.multival.val3 today
 6 from (
 7select e.deptno,
 8 e.ename,
 9 e.sal,
10 (select generic_obj(d.dname,d.loc,sysdate+1)
11 from dept d
12 where e.deptno=d.deptno) multival
13 from emp e
14) x

DEPTNO ENAME DNAME LOC TODAY
------ ---------- ---------- ---------- -----------
 20 SMITH RESEARCH DALLAS 12-SEP-2020
 30 ALLEN SALES CHICAGO 12-SEP-2020
 30 WARD SALES CHICAGO 12-SEP-2020
 20 JONES RESEARCH DALLAS 12-SEP-2020
 30 MARTIN SALES CHICAGO 12-SEP-2020
 30 BLAKE SALES CHICAGO 12-SEP-2020
 10 CLARK ACCOUNTING NEW YORK 12-SEP-2020
 20 SCOTT RESEARCH DALLAS 12-SEP-2020
 10 KING ACCOUNTING NEW YORK 12-SEP-2020
 30 TURNER SALES CHICAGO 12-SEP-2020
 20 ADAMS RESEARCH DALLAS 12-SEP-2020
 30 JAMES SALES CHICAGO 12-SEP-2020
 20 FORD RESEARCH DALLAS 12-SEP-2020
 10 MILLER ACCOUNTING NEW YORK 12-SEP-2020

Discussion
The key to the solution is to use the object’s constructor function (by default the con‐
structor function has the same name as the object). Because the object itself is a single
scalar value, it does not violate the scalar subquery rule, as you can see from the
following:

select e.deptno,
 e.ename,
 e.sal,
 (select generic_obj(d.dname,d.loc,sysdate-1)
 from dept d
 where e.deptno=d.deptno) multival
from emp e

DEPTNO ENAME SAL MULTIVAL(VAL1, VAL2, VAL3)
------ ------ ----- ---
 20 SMITH 800 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2020')
 30 ALLEN 1600 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2020')
 30 WARD 1250 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2020')
 20 JONES 2975 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2020')
 30 MARTIN 1250 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2020')

494 | Chapter 14: Odds ’n’ Ends

 30 BLAKE 2850 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2020')
 10 CLARK 2450 GENERIC_OBJ('ACCOUNTING', 'NEW YORK', '12-SEP-2020')
 20 SCOTT 3000 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2020')
 10 KING 5000 GENERIC_OBJ('ACCOUNTING', 'NEW YORK', '12-SEP-2020')
 30 TURNER 1500 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2020')
 20 ADAMS 1100 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2020')
 30 JAMES 950 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2020')
 20 FORD 3000 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2020')
 10 MILLER 1300 GENERIC_OBJ('ACCOUNTING', 'NEW YORK', '12-SEP-2020')

The next step is to simply wrap the query in an inline view and extract the attributes.

In Oracle, unlike the case with other vendors, you do not generally
need to name your inline views. In this particular case, however,
you do need to name your inline view. Otherwise, you will not be
able to reference the object’s attributes.

14.11 Parsing Serialized Data into Rows
Problem
You have serialized data (stored in strings) that you want to parse and return as rows.
For example, you store the following data:

STRINGS

entry:stewiegriffin:lois:brian:
entry:moe::sizlack:
entry:petergriffin:meg:chris:
entry:willie:
entry:quagmire:mayorwest:cleveland:
entry:::flanders:
entry:robo:tchi:ken:

You want to convert these serialized strings into the following result set:

VAL1 VAL2 VAL3
--------------- --------------- ---------------
moe sizlack
petergriffin meg chris
quagmire mayorwest cleveland
robo tchi ken
stewiegriffin lois brian
willie
 flanders

14.11 Parsing Serialized Data into Rows | 495

Solution
Each serialized string in this example can store up to three values. The values are
delimited by colons, and a string may or may not have all three entries. If a string
does not have all three entries, you must be careful to place the entries that are avail‐
able into the correct column in the result set. For example, consider the following
row:

entry:::flanders:

This row represents an entry with the first two values missing and only the third
value available. Hence, if you examine the target result set in the “Problem” section,
you will notice that for the row FLANDERS is in, both VAL1 and VAL2 are NULL.

The key to this solution is nothing more than a string walk with some string parsing,
following by a simple pivot. This solution uses rows from view V, which is defined as
follows. The example uses Oracle syntax, but since nothing more than string parsing
functions are needed for this recipe, converting to other platforms is simple:

create view V
 as
select 'entry:stewiegriffin:lois:brian:' strings
 from dual
 union all
select 'entry:moe::sizlack:'
 from dual
 union all
select 'entry:petergriffin:meg:chris:'
 from dual
 union all
select 'entry:willie:'
 from dual
 union all
select 'entry:quagmire:mayorwest:cleveland:'
 from dual
 union all
select 'entry:::flanders:'
 from dual
 union all
select 'entry:robo:tchi:ken:'
 from dual

Using view V to supply the example data to parse, the solution is as follows:

 1 with cartesian as (
 2 select level id
 3 from dual
 4 connect by level <= 100
 5)
 6 select max(decode(id,1,substr(strings,p1+1,p2-1))) val1,
 7 max(decode(id,2,substr(strings,p1+1,p2-1))) val2,
 8 max(decode(id,3,substr(strings,p1+1,p2-1))) val3

496 | Chapter 14: Odds ’n’ Ends

 9 from (
10 select v.strings,
11 c.id,
12 instr(v.strings,':',1,c.id) p1,
13 instr(v.strings,':',1,c.id+1)-instr(v.strings,':',1,c.id) p2
14 from v, cartesian c
15 where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1
16)
17 group by strings
18 order by 1

Discussion
The first step is to walk the serialized strings:

with cartesian as (
select level id
 from dual
 connect by level <= 100
)
select v.strings,
 c.id
 from v,cartesian c
 where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1

STRINGS ID
----------------------------------- ---
entry:::flanders: 1
entry:::flanders: 2
entry:::flanders: 3
entry:moe::sizlack: 1
entry:moe::sizlack: 2
entry:moe::sizlack: 3
entry:petergriffin:meg:chris: 1
entry:petergriffin:meg:chris: 3
entry:petergriffin:meg:chris: 2
entry:quagmire:mayorwest:cleveland: 1
entry:quagmire:mayorwest:cleveland: 3
entry:quagmire:mayorwest:cleveland: 2
entry:robo:tchi:ken: 1
entry:robo:tchi:ken: 2
entry:robo:tchi:ken: 3
entry:stewiegriffin:lois:brian: 1
entry:stewiegriffin:lois:brian: 3
entry:stewiegriffin:lois:brian: 2
entry:willie: 1

The next step is to use the function INSTR to find the numeric position of each colon
in each string. Since each value you need to extract is enclosed by two colons, the
numeric values are aliased P1 and P2, for “position one” and “position two”:

14.11 Parsing Serialized Data into Rows | 497

with cartesian as (
select level id
 from dual
 connect by level <= 100
)
select v.strings,
 c.id,
 instr(v.strings,':',1,c.id) p1,
 instr(v.strings,':',1,c.id+1)-instr(v.strings,':',1,c.id) p2
 from v,cartesian c
 where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1
 order by 1

STRINGS ID P1 P2
----------------------------------- --- ---------- ----------
entry:::flanders: 1 6 1
entry:::flanders: 2 7 1
entry:::flanders: 3 8 9
entry:moe::sizlack: 1 6 4
entry:moe::sizlack: 2 10 1
entry:moe::sizlack: 3 11 8
entry:petergriffin:meg:chris: 1 6 13
entry:petergriffin:meg:chris: 3 23 6
entry:petergriffin:meg:chris: 2 19 4
entry:quagmire:mayorwest:cleveland: 1 6 9
entry:quagmire:mayorwest:cleveland: 3 25 10
entry:quagmire:mayorwest:cleveland: 2 15 10
entry:robo:tchi:ken: 1 6 5
entry:robo:tchi:ken: 2 11 5
entry:robo:tchi:ken: 3 16 4
entry:stewiegriffin:lois:brian: 1 6 14
entry:stewiegriffin:lois:brian: 3 25 6
entry:stewiegriffin:lois:brian: 2 20 5
entry:willie: 1 6 7

Now that you know the numeric positions for each pair of colons in each string, sim‐
ply pass the information to the function SUBSTR to extract values. Since you want to
create a result set with three columns, use DECODE to evaluate the ID from the Car‐
tesian product:

with cartesian as (
 select level id
 from dual
 connect by level <= 100
)
 select decode(id,1,substr(strings,p1+1,p2-1)) val1,
 decode(id,2,substr(strings,p1+1,p2-1)) val2,
 decode(id,3,substr(strings,p1+1,p2-1)) val3
 from (
 select v.strings,
 c.id,
 instr(v.strings,':',1,c.id) p1,

498 | Chapter 14: Odds ’n’ Ends

 instr(v.strings,':',1,c.id+1)-instr(v.strings,':',1,c.id) p2
 from v,cartesian c
 where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1
)
 order by 1

 VAL1 VAL2 VAL3
 --------------- --------------- --------------
 moe
 petergriffin
 quagmire
 robo
 stewiegriffin
 willie
 lois

 meg
 mayorwest

 tchi
 brian
 sizlack
 chris
 cleveland
 flanders
 ken

The last step is to apply an aggregate function to the values returned by SUBSTR
while grouping by ID, to make a human-readable result set:

with cartesian as (
select level id
 from dual
 connect by level <= 100
)
select max(decode(id,1,substr(strings,p1+1,p2-1))) val1,
 max(decode(id,2,substr(strings,p1+1,p2-1))) val2,
 max(decode(id,3,substr(strings,p1+1,p2-1))) val3
 from (
select v.strings,
 c.id,
 instr(v.strings,':',1,c.id) p1,
 instr(v.strings,':',1,c.id+1)-instr(v.strings,':',1,c.id) p2
 from v,cartesian c
where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1
)
group by strings
order by 1

VAL1 VAL2 VAL3
--------------- --------------- -----------
moe sizlack
petergriffin meg chris

14.11 Parsing Serialized Data into Rows | 499

quagmire mayorwest cleveland
robo tchi ken
stewiegriffin lois brian
willie
 flanders

14.12 Calculating Percent Relative to Total
Problem
You want to report a set of numeric values, and you want to show each value as a
percentage of the whole. For example, you are on an Oracle system and you want to
return a result set that shows the breakdown of salaries by JOB so that you can deter‐
mine which JOB position costs the company the most money. You also want to
include the number of employees per JOB to prevent the results from being mislead‐
ing. You want to produce the following report:

JOB NUM_EMPS PCT_OF_ALL_SALARIES
--------- ---------- -------------------
CLERK 4 14
ANALYST 2 20
MANAGER 3 28
SALESMAN 4 19
PRESIDENT 1 17

As you can see, if the number of employees is not included in the report, it looks as if
the president position takes very little of the overall salary. Seeing that there is only
one president helps put into perspective what that 17% means.

Solution
Only Oracle enables a decent solution to this problem, which involves using the built-
in function RATIO_TO_REPORT. To calculate percentages of the whole for other
databases, you can use division as shown in Recipe 7.11:

1 select job,num_emps,sum(round(pct)) pct_of_all_salaries
2 from (
3 select job,
4 count(*)over(partition by job) num_emps,
5 ratio_to_report(sal)over()*100 pct
6 from emp
7)
8 group by job,num_emps

500 | Chapter 14: Odds ’n’ Ends

Discussion
The first step is to use the window function COUNT OVER to return the number of
employees per JOB. Then use RATIO_TO_REPORT to return the percentage each
salary counts against the total (the value is returned in decimal):

select job,
 count(*)over(partition by job) num_emps,
 ratio_to_report(sal)over()*100 pct
 from emp

JOB NUM_EMPS PCT
--------- ---------- ----------
ANALYST 2 10.3359173
ANALYST 2 10.3359173
CLERK 4 2.75624462
CLERK 4 3.78983635
CLERK 4 4.4788975
CLERK 4 3.27304048
MANAGER 3 10.2497847
MANAGER 3 8.44099914
MANAGER 3 9.81912145
PRESIDENT 1 17.2265289
SALESMAN 4 5.51248923
SALESMAN 4 4.30663221
SALESMAN 4 5.16795866
SALESMAN 4 4.30663221

The last step is to use the aggregate function SUM to sum the values returned by
RATIO_TO_REPORT. Be sure to group by JOB and NUM_EMPS. Multiply by 100 to
return a whole number that represents a percentage (e.g., to return 25 rather than
0.25 for 25%):

select job,num_emps,sum(round(pct)) pct_of_all_salaries
 from (
select job,
 count(*)over(partition by job) num_emps,
 ratio_to_report(sal)over()*100 pct
 from emp
)
 group by job,num_emps

JOB NUM_EMPS PCT_OF_ALL_SALARIES
--------- ---------- -------------------
CLERK 4 14
ANALYST 2 20
MANAGER 3 28
SALESMAN 4 19
PRESIDENT 1 17

14.12 Calculating Percent Relative to Total | 501

14.13 Testing for Existence of a Value Within a Group
Problem
You want to create a Boolean flag for a row depending on whether any row in its
group contains a specific value. Consider an example of a student who has taken a
certain number of exams during a period of time. A student will take three exams
over three months. If a student passes one of these exams, the requirement is satisfied
and a flag should be returned to express that fact. If a student did not pass any of the
three tests in the three-month period, then an additional flag should be returned to
express that fact as well. Consider the following example (using Oracle syntax to
make up rows for this example; minor modifications are necessary for the other ven‐
dors, making user of window functions):

create view V
as
select 1 student_id,
 1 test_id,
 2 grade_id,
 1 period_id,
 to_date('02/01/2020','MM/DD/YYYY') test_date,
 0 pass_fail
 from dual union all
select 1, 2, 2, 1, to_date('03/01/2020','MM/DD/YYYY'), 1 from dual union all
select 1, 3, 2, 1, to_date('04/01/2020','MM/DD/YYYY'), 0 from dual union all
select 1, 4, 2, 2, to_date('05/01/2020','MM/DD/YYYY'), 0 from dual union all
select 1, 5, 2, 2, to_date('06/01/2020','MM/DD/YYYY'), 0 from dual union all
select 1, 6, 2, 2, to_date('07/01/2020','MM/DD/YYYY'), 0 from dual

select *
 from V

STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE PASS_FAIL
---------- ------- -------- --------- ----------- ---------
 1 1 2 1 01-FEB-2020 0
 1 2 2 1 01-MAR-2020 1
 1 3 2 1 01-APR-2020 0
 1 4 2 2 01-MAY-2020 0
 1 5 2 2 01-JUN-2020 0
 1 6 2 2 01-JUL-2020 0

Examining the previous result set, you see that the student has taken six tests over
two, three-month periods. The student has passed one test (1 means “pass”; 0 means
“fail”); thus, the requirement is satisfied for the entire first period. Because the student
did not pass any exams during the second period (the next three months),
PASS_FAIL is 0 for all three exams. You want to return a result set that highlights
whether a student has passed a test for a given period. Ultimately you want to return
the following result set:

502 | Chapter 14: Odds ’n’ Ends

STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE METREQ IN_PROGRESS
---------- ------- -------- --------- ----------- ------ -----------
 1 1 2 1 01-FEB-2020 + 0
 1 2 2 1 01-MAR-2020 + 0
 1 3 2 1 01-APR-2020 + 0
 1 4 2 2 01-MAY-2020 - 0
 1 5 2 2 01-JUN-2020 - 0
 1 6 2 2 01-JUL-2020 - 1

The values for METREQ (“met requirement”) are + and –, signifying the student
either has or has not satisfied the requirement of passing at least one test in a period
(three-month span), respectively. The value for IN_PROGRESS should be 0 if a stu‐
dent has already passed a test in a given period. If a student has not passed a test for a
given period, then the row that has the latest exam date for that student will have a
value of 1 for IN_PROGRESS.

Solution
This problem appears tricky because you have to treat rows in a group as a group and
not as individuals. Consider the values for PASS_FAIL in the “Problem” section. If
you evaluate row by row, it appears that the value for METREQ for each row except
TEST_ID 2 should be –, when it’s not the case. You must ensure you evaluate the
rows as a group. By using the window function MAX OVER, you can easily deter‐
mine whether a student passed at least one test during a particular period. Once you
have that information, the “Boolean” values are a simple matter of using CASE
expressions:

 1 select student_id,
 2 test_id,
 3 grade_id,
 4 period_id,
 5 test_date,
 6 decode(grp_p_f,1,lpad('+',6),lpad('-',6)) metreq,
 7 decode(grp_p_f,1,0,
 8 decode(test_date,last_test,1,0)) in_progress
 9 from (
10 select V.*,
11 max(pass_fail)over(partition by
12 student_id,grade_id,period_id) grp_p_f,
13 max(test_date)over(partition by
14 student_id,grade_id,period_id) last_test
15 from V
16) x

Discussion
The key to the solution is using the window function MAX OVER to return the
greatest value of PASS_FAIL for each group. Because the values for PASS_FAIL are

14.13 Testing for Existence of a Value Within a Group | 503

only 1 or 0, if a student passed at least one exam, then MAX OVER would return 1
for the entire group. How this works is shown here:

select V.*,
 max(pass_fail)over(partition by
 student_id,grade_id,period_id) grp_pass_fail
 from V

STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE PASS_FAIL GRP_PASS_FAIL
---------- ------- -------- --------- ----------- --------- -------------
 1 1 2 1 01-FEB-2020 0 1
 1 2 2 1 01-MAR-2020 1 1
 1 3 2 1 01-APR-2020 0 1
 1 4 2 2 01-MAY-2020 0 0
 1 5 2 2 01-JUN-2020 0 0
 1 6 2 2 01-JUL-2020 0 0

The previous result set shows that the student passed at least one test during the first
period; thus, the entire group has a value of 1 or “pass.” The next requirement is that
if the student has not passed any tests in a period, return a value of 1 for the IN_
PROGRESS flag for the latest test date in that group. You can use the window func‐
tion MAX OVER to do this as well:

select V.*,
 max(pass_fail)over(partition by
 student_id,grade_id,period_id) grp_p_f,
 max(test_date)over(partition by
 student_id,grade_id,period_id) last_test
 from V

STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE PASS_FAIL GRP_P_F LAST_TEST
---------- ------- -------- --------- ----------- --------- ------- -----------
 1 1 2 1 01-FEB-2020 0 1 01-APR-2020
 1 2 2 1 01-MAR-2020 1 1 01-APR-2020
 1 3 2 1 01-APR-2020 0 1 01-APR-2020
 1 4 2 2 01-MAY-2020 0 0 01-JUL-2020
 1 5 2 2 01-JUN-2020 0 0 01-JUL-2020
 1 6 2 2 01-JUL-2020 0 0 01-JUL-2020

Now that you have determined for which period the student has passed a test and
what the latest test date for each period is, the last step is simply a matter of applying
some formatting magic to make the result set look nice. The ultimate solution uses
Oracle’s DECODE function (CASE supporters, eat your hearts out) to create the
METREQ and IN_PROGRESS columns. Use the LPAD function to right justify the
values for METREQ:

select student_id,
 test_id,
 grade_id,
 period_id,
 test_date,

504 | Chapter 14: Odds ’n’ Ends

 decode(grp_p_f,1,lpad('+',6),lpad('-',6)) metreq,
 decode(grp_p_f,1,0,
 decode(test_date,last_test,1,0)) in_progress
 from (
select V.*,
 max(pass_fail)over(partition by
 student_id,grade_id,period_id) grp_p_f,
 max(test_date)over(partition by
 student_id,grade_id,period_id) last_test
 from V
) x

STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE METREQ IN_PROGRESS
---------- ------- -------- --------- ----------- ------ -----------
 1 1 2 1 01-FEB-2020 + 0
 1 2 2 1 01-MAR-2020 + 0
 1 3 2 1 01-APR-2020 + 0
 1 4 2 2 01-MAY-2020 - 0
 1 5 2 2 01-JUN-2020 - 0
 1 6 2 2 01-JUL-2020 - 1

14.14 Summing Up
SQL is more powerful than many credit it. Throughout this book we have tried to
challenge you to see more applications than are typically noted. In this chapter, we’ve
headed straight for the edge cases and tried to show just how you can push SQL, both
with standard features and with certain vendor-specific features.

14.14 Summing Up | 505

APPENDIX A

Window Function Refresher

The recipes in this book take full advantage of the window functions added to the
ISO SQL standard in 2003, as well as vendor-specific window functions. This appen‐
dix is meant to serve as a brief overview of how window functions work. Window
functions make many typically difficult tasks (difficult to solve using standard SQL,
that is) quite easy. For a complete list of window functions available, full syntax, and
in-depth coverage of how they work, please consult your vendor’s documentation.

Grouping
Before moving on to window functions, it is crucial that you understand how group‐
ing works in SQL—the concept of grouping results in SQL can be difficult to master.
The problems stem from not fully understanding how the GROUP BY clause works
and why certain queries return certain results when using GROUP BY.

Simply stated, grouping is a way to organize like rows together. When you use
GROUP BY in a query, each row in the result set is a group and represents one or
more rows with the same values in one or more columns that you specify. That’s the
gist of it.

If a group is simply a unique instance of a row that represents one or more rows with
the same value for a particular column (or columns), then practical examples of
groups from table EMP include all employees in department 10 (the common value
for these employees that enables them to be in the same group is DEPTNO=10) or all
clerks (the common value for these employees that enables them to be in the same
group is JOB=CLERK). Consider the following queries. The first shows all employees
in department 10; the second query groups the employees in department 10 and
returns the following information about the group: the number of rows (members) in
the group, the highest salary, and the lowest salary:

507

select deptno,ename
 from emp
 where deptno=10

DEPTNO ENAME
------ ----------
 10 CLARK
 10 KING
 10 MILLER

select deptno,
 count(*) as cnt,
 max(sal) as hi_sal,
 min(sal) as lo_sal
 from emp
 where deptno=10
 group by deptno

DEPTNO CNT HI_SAL LO_SAL
------ ---------- ---------- ----------
 10 3 5000 1300

If you were not able to group the employees in department 10 together, to get the
information in the second query, you would have to manually inspect the rows for
that department (trivial if there are only three rows, but what if there were three mil‐
lion rows?). So, why would anyone want to group? Reasons for doing so vary; perhaps
you want to see how many different groups exist or how many members (rows) are in
each group. As you can see from this simple example, grouping allows you to get
information about many rows in a table without having to inspect them one by one.

Definition of an SQL Group
In mathematics, a group is defined, for the most part, as (G, •, e), where G is a set, • is
a binary operation in G, and e is a member of G. We will use this definition as the
foundation for what a SQL group is. A SQL group will be defined as (G, e), where G is
a result set of a single or self-contained query that uses GROUP BY, e is a member of
G, and the following axioms are satisfied:

• For each e in G, e is distinct and represents one or more instances of e.
• For each e in G, the aggregate function COUNT returns a value > 0.

The result set is included in the definition of a SQL group to rein‐
force the fact that we are defining what groups are when working
with queries only. Thus, it would be accurate to replace e in each
axiom with the word row because the rows in the result set are
technically the groups.

508 | Appendix A: Window Function Refresher

Because these properties are fundamental to what we consider a group, it is important
that we prove they are true (and we will proceed to do so through the use of some
example SQL queries).

Groups are nonempty
By its very definition, a group must have at least one member (or row). If we accept
this as a truth, then it can be said that a group cannot be created from an empty table.
To prove that proposition true, simply try to prove it is false. The following example
creates an empty table and then attempts to create groups via three different queries
against that empty table:

create table fruits (name varchar(10))

select name
 from fruits
 group by name

(no rows selected)

select count(*) as cnt
 from fruits
 group by name

(no rows selected)

select name, count(*) as cnt
 from fruits
 group by name

(no rows selected)

As you can see from these queries, it is impossible to create what SQL considers a
group from an empty table.

Groups are distinct
Now let’s prove that the groups created via queries with a GROUP BY clause are dis‐
tinct. The following example inserts five rows into table FRUITS and then creates
groups from those rows:

insert into fruits values ('Oranges')
insert into fruits values ('Oranges')
insert into fruits values ('Oranges')
insert into fruits values ('Apple')
insert into fruits values ('Peach')

select *
 from fruits

Window Function Refresher | 509

NAME

Oranges
Oranges
Oranges
Apple
Peach

select name
 from fruits
 group by name

NAME

Apple
Oranges
Peach

select name, count(*) as cnt
 from fruits
 group by name

NAME CNT
------- --------
Apple 1
Oranges 3
Peach 1

The first query shows that “Oranges” occurs three times in table FRUITS. However,
the second and third queries (using GROUP BY) return only one instance of
“Oranges.” Taken together, these queries prove that the rows in the result set (e in G,
from our definition) are distinct, and each value of NAME represents one or more
instances of itself in table FRUITS.

Knowing that groups are distinct is important because it means, typically, you would
not use the DISTINCT keyword in your SELECT list when using a GROUP BY in
your queries.

We don’t pretend GROUP BY and DISTINCT are the same. They
represent two completely different concepts. We do state that the
items listed in the GROUP BY clause will be distinct in the result
set and that using DISTINCT as well as GROUP BY is redundant.

510 | Appendix A: Window Function Refresher

Frege’s Axiom and Russell’s Paradox
For those of you who are interested, Frege’s axiom of abstraction, based on Cantor’s
solution for defining set membership for infinite or uncountable sets, states that,
given a specific identifying property, there exists a set whose members are only those
items having that property. The source of trouble, as put by Robert Stoll, “is the unre‐
stricted use of the principal of abstraction.” Bertrand Russell asked Gottlob Frege to
consider a set whose members are sets and have the defining property of not being
members of themselves.

As Russell pointed out, the axiom of abstraction gives too much freedom because you
are simply specifiying a condition or property to define set membership; thus, a con‐
tradiction can be found. To better explain how a contradiction can be found, he
devised the “Barber puzzle.” The Barber puzzle states:

In a certain town there is a male barber who shaves all those men, and only those
men, who do not shave themselves. If this is true, who, then, shaves the barber?

For a more concrete example, consider the set that can be described as:

For all members x in y that satisfy a specific condition (P).

The mathematical notation for this description is:

{x e y | P(x)}

Because the previous set considers only those x in y that satisfy a condition (P), you
may find it more intuitive to describe the set as x is a member of y if and only if x
satisfies a condition (P).

At this point let us define this condition P(x) as x is not a member of x:

 (x e x)

The set is now defined as x is a member of y if and only if x is not a member of x:

 {x e y | (x e x)}

Russell’s paradox may not be clear to you yet, but ask yourself this: can the previous
set be a member of itself? Let’s assume that x = y and look at the set again. The follow‐
ing set can be defined as y is a member of y if and only if y is not a member of y:

 {y e y | (y e y)}

Simply put, Russell’s paradox leaves us in a position to have a set that is concurrently a
member of itself and not a member of itself, which is a contradiction. Intuitive think‐
ing would lead one to believe this isn’t a problem at all; indeed, how can a set be a
member of itself? The set of all books, after all, is not a book. So why does this para‐
dox exist, and how can it be an issue? It becomes an issue when you consider more
abstract applications of set theory. For example, a “practical” application of Russell’s
paradox can be demonstrated by considering the set of all sets. If we allow such a

Window Function Refresher | 511

concept to exist, then by its very definition, it must be a member of itself (it is, after
all, the set of all sets). What then happens when you apply the previous P(x) to the set
of all sets? Simply stated, Russell’s paradox would state that the set of all sets is a mem‐
ber of itself if and only if it is not a member of itself—clearly a contradiction.

For those of you who are interested, Ernst Zermelo developed the axiom schema of
separation (also referred to as the axiom schema of subsets or the axiom of specifica‐
tion) to elegantly sidestep Russell’s paradox in axiomatic set theory.

COUNT is never zero
The queries and results in the preceding section also prove the final axiom that the
aggregate function COUNT will never return zero when used in a query with
GROUP BY on a nonempty table. It should not be surprising that you cannot return
a count of zero for a group. We have already proved that a group cannot be created
from an empty table; thus, a group must have at least one row. If at least one row
exists, then the count will always be at least one.

Remember, we are talking about using COUNT with GROUP BY,
not COUNT by itself. A query using COUNT without a GROUP
BY on an empty table will, of course, return zero.

Paradoxes
The following quote is from Gottlob Frege in response to Bertrand Russell’s discovery
of a contradiction to Frege’s axiom of abstraction in set theory:

Hardly anything more unfortunate can befall a scientific writer than to have one of the
foundations of his edifice shaken after the work is finished…. This was the position I
was placed in by a letter of Mr. Bertrand Russell, just when the printing of this volume
was nearing its completion.

Paradoxes many times provide scenarios that would seem to contradict established
theories or ideas. In many cases these contradictions are localized and can be
“worked around,” or they are applicable to such small test cases that they can be safely
ignored.

You may have guessed by now that the point to all this discussion of paradoxes is that
there exists a paradox concerning our definition of an SQL group, and that paradox
must be addressed. Although our focus right now is on groups, ultimately we are dis‐
cussing SQL queries. In its GROUP BY clause, a query may have a wide range of val‐
ues such as constants, expressions, or, most commonly, columns from a table. We pay
a price for this flexibility, because NULL is a valid “value” in SQL. NULLs present
problems because they are effectively ignored by aggregate functions. With that said,

512 | Appendix A: Window Function Refresher

if a table consists of a single row and its value is NULL, what would the aggregate
function COUNT return when used in a GROUP BY query? By our very definition,
when using GROUP BY and the aggregate function COUNT, a value >= 1 must be
returned. What happens, then, in the case of values ignored by functions such as
COUNT, and what does this mean to our definition of a GROUP? Consider the fol‐
lowing example, which reveals the NULL group paradox (using the function COA‐
LESCE when necessary for readability):

select *
 from fruits

NAME

Oranges
Oranges
Oranges
Apple
Peach

insert into fruits values (null)
insert into fruits values (null)
insert into fruits values (null)
insert into fruits values (null)
insert into fruits values (null)

select coalesce(name,'NULL') as name
 from fruits

NAME

Oranges
Oranges
Oranges
Apple
Peach
NULL
NULL
NULL
NULL
NULL

select coalesce(name,'NULL') as name,
 count(name) as cnt
 from fruits
 group by name

NAME CNT
-------- ----------
Apple 1
NULL 0

Window Function Refresher | 513

Oranges 3
Peach 1

It would seem that the presence of NULL values in our table introduces a contradic‐
tion, or paradox, to our definition of a SQL group. Fortunately, this contradiction is
not a real cause for concern, because the paradox has more to do with the implemen‐
tation of aggregate functions than our definition. Consider the final query in the pre‐
ceding set; a general problem statement for that query would be:

Count the number of times each name occurs in table FRUITS or count the number of
members in each group.

Examining the previous INSERT statements, it’s clear that there are five rows with
NULL values, which means there exists a NULL group with five members.

While NULL certainly has properties that differentiate it from
other values, it is nevertheless a value and can in fact be a group.

How, then, can we write the query to return a count of 5 instead of 0, thus returning
the information we are looking for while conforming to our definition of a group?
The following example shows a workaround to deal with the NULL group paradox:

select coalesce(name,'NULL') as name,
 count(*) as cnt
 from fruits
 group by name

NAME CNT
--------- --------
Apple 1
Oranges 3
Peach 1
NULL 5

The workaround is to use COUNT(*) rather than COUNT(NAME) to avoid the
NULL group paradox. Aggregate functions will ignore NULL values if any exist in the
column passed to them. Thus, to avoid a zero when using COUNT, do not pass the
column name; instead, pass in an asterisk (*). The * causes the COUNT function to
count rows rather than the actual column values, so whether the actual values are
NULL or not NULL is irrelevant.

One more paradox has to do with the axiom that each group in a result set (for each e
in G) is distinct. Because of the nature of SQL result sets and tables, which are more
accurately defined as multisets or “bags,” not sets (because duplicate rows are
allowed), it is possible to return a result set with duplicate groups. Consider the fol‐
lowing queries:

514 | Appendix A: Window Function Refresher

select coalesce(name,'NULL') as name,
 count(*) as cnt
 from fruits
 group by name
 union all
select coalesce(name,'NULL') as name,
 count(*) as cnt
 from fruits
 group by name

NAME CNT
---------- ---------
Apple 1
Oranges 3
Peach 1
NULL 5
Apple 1
Oranges 3
Peach 1
NULL 5

select x.*
 from (
select coalesce(name,'NULL') as name,
 count(*) as cnt
 from fruits
 group by name
) x,
 (select deptno from dept) y

NAME CNT
---------- ----------
Apple 1
Apple 1
Apple 1
Apple 1
Oranges 3
Oranges 3
Oranges 3
Oranges 3
Peach 1
Peach 1
Peach 1
Peach 1
NULL 5
NULL 5
NULL 5
NULL 5

As you can see in these queries, the groups are in fact repeated in the final results.
Fortunately, this is not much to worry about because it represents only a partial

Window Function Refresher | 515

paradox. The first property of a group states that for (G, e), G is a result set from a
single or self-contained query that uses GROUP BY. Simply put, the result set from
any GROUP BY query itself conforms to our definition of a group. It is only when
you combine the result sets from two GROUP BY queries to create a multiset that
groups may repeat. The first query in the preceding example uses UNION ALL,
which is not a set operation but a multiset operation, and invokes GROUP BY twice,
effectively executing two queries.

If you use UNION, which is a set operation, you will not see
repeating groups.

The second query in the preceding set uses a Cartesian product, which only works if
you materialize the group first and then perform the Cartesian. Thus, the GROUP BY
query when self-contained conforms to our definition. Neither of the two examples
takes anything away from the definition of a SQL group. They are shown for com‐
pleteness, and so that you can be aware that almost anything is possible in SQL.

Relationship Between SELECT and GROUP BY
With the concept of a group defined and proved, it is now time to move on to more
practical matters concerning queries using GROUP BY. It is important to understand
the relationship between the SELECT clause and the GROUP BY clause when group‐
ing in SQL. It is important to keep in mind when using aggregate functions such as
COUNT that any item in your SELECT list that is not used as an argument to an
aggregate function must be part of your group. For example, if you write a SELECT
clause such as this:

select deptno, count(*) as cnt
 from emp

then you must list DEPTNO in your GROUP BY clause:

select deptno, count(*) as cnt
 from emp
 group by deptno

DEPTNO CNT
------- ----
 10 3
 20 5
 30 6

Constants, scalar values returned by user-defined functions, window functions, and
noncorrelated scalar subqueries are exceptions to this rule. Since the SELECT clause

516 | Appendix A: Window Function Refresher

is evaluated after the GROUP BY clause, these constructs are allowed in the SELECT
list and do not have to (and in some cases cannot) be specified in the GROUP BY
clause. For example:

select 'hello' as msg,
 1 as num,
 deptno,
 (select count(*) from emp) as total,
 count(*) as cnt
 from emp
 group by deptno

MSG NUM DEPTNO TOTAL CNT
----- --- ------ ----- ---
hello 1 10 14 3
hello 1 20 14 5
hello 1 30 14 6

Don’t let this query confuse you. The items in the SELECT list not listed in the
GROUP BY clause do not change the value of CNT for each DEPTNO, nor do the
values for DEPTNO change. Based on the results of the preceding query, we can
define the rule about matching items in the SELECT list and the GROUP BY clause
when using aggregates a bit more precisely:

Items in a SELECT list that can potentially change the group or change the value
returned by an aggregate function must be included in the GROUP BY clause.

The additional items in the preceding SELECT list did not change the value of CNT
for any group (each DEPTNO), nor did they change the groups themselves.

Now it’s fair to ask: exactly what items in a SELECT list can change a grouping or the
value returned by an aggregate function? The answer is simple: other columns from
the table(s) you are selecting from. Consider the prospect of adding the JOB column
to the query we’ve been looking at:

select deptno, job, count(*) as cnt
 from emp
 group by deptno, job

DEPTNO JOB CNT
------ ---------- ----
 10 CLERK 1
 10 MANAGER 1
 10 PRESIDENT 1
 20 CLERK 2
 20 ANALYST 2
 20 MANAGER 1
 30 CLERK 1
 30 MANAGER 1
 30 SALESMAN 4

Window Function Refresher | 517

By listing another column, JOB, from table EMP, we are changing the group and
changing the result set. Thus, we must now include JOB in the GROUP BY clause
along with DEPTNO; otherwise, the query will fail. The inclusion of JOB in the
SELECT/GROUP BY clauses changes the query from “How many employees are in
each department?” to “How many different types of employees are in each depart‐
ment?” Notice again that the groups are distinct; the values for DEPTNO and JOB
individually are not distinct, but the combination of the two (which is what is in the
GROUP BY and SELECT list, and thus in the group) is distinct (e.g., 10 and CLERK
appear only once).

If you choose not to put items other than aggregate functions in the SELECT list,
then you may list any valid column you want in the GROUP BY clause. Consider the
following two queries, which highlight this fact:

select count(*)
 from emp
 group by deptno

 COUNT(*)

 3
 5
 6

select count(*)
 from emp
 group by deptno,job

 COUNT(*)

 1
 1
 1
 2
 2
 1
 1
 1
 4

Including items other than aggregate functions in the SELECT list is not mandatory,
but often improves readability and usability of the results.

518 | Appendix A: Window Function Refresher

As a rule, when using GROUP BY and aggregate functions, any
items in the SELECT list (from the table(s) in the FROM clause)
not used as an argument to an aggregate function must be included
in the GROUP BY clause. However, MySQL has a “feature” that
allows you to deviate from this rule, allowing you to place items in
your SELECT list (that are columns in the table(s) you are selecting
from) that are not used as arguments to an aggregate function and
that are not present in your GROUP BY clause. We use the term
feature loosely here as its use is a bug waiting to happen. As a mat‐
ter of fact, if you use MySQL and care at all about the accuracy of
your queries, we suggest you urge them to remove this, ahem,
“feature.”

Windowing
Once you understand the concept of grouping and using aggregates in SQL, under‐
standing window functions is easy. Window functions, like aggregate functions, per‐
form an aggregation on a defined set (a group) of rows, but rather than returning one
value per group, window functions can return multiple values for each group. The
group of rows to perform the aggregation on is the window. DB2 actually calls such
functions online analytic processing (OLAP) functions, and Oracle calls them analytic
functions, but the ISO SQL standard calls them window functions, so that’s the term
used in this book.

A Simple Example
Let’s say that you want to count the total number of employees across all departments.
The traditional method for doing that is to issue a COUNT(*) query against the
entire EMP table:

select count(*) as cnt
 from emp

 CNT

 14

This is easy enough, but often you will find yourself wanting to access such aggregate
data from rows that do not represent an aggregation, or that represent a different
aggregation. Window functions make light work of such problems. For example, the
following query shows how you can use a window function to access aggregate data
(the total count of employees) from detail rows (one per employee):

Window Function Refresher | 519

select ename,
 deptno,
 count(*) over() as cnt
 from emp
 order by 2

ENAME DEPTNO CNT
---------- ------ ------
CLARK 10 14
KING 10 14
MILLER 10 14
SMITH 20 14
ADAMS 20 14
FORD 20 14
SCOTT 20 14
JONES 20 14
ALLEN 30 14
BLAKE 30 14
MARTIN 30 14
JAMES 30 14
TURNER 30 14
WARD 30 14

The window function invocation in this example is COUNT(*) OVER(). The pres‐
ence of the OVER keyword indicates that the invocation of COUNT will be treated as
a window function, not as an aggregate function. In general, the SQL standard allows
for all aggregate functions to also be window functions, and the keyword OVER is
how the language distinguishes between the two uses.

So, what did the window function COUNT(*) OVER () do exactly? For every row
being returned in the query, it returned the count of all the rows in the table. As the
empty parentheses suggest, the OVER keyword accepts additional clauses to affect the
range of rows that a given window function considers. Absent any such clauses, the
window function looks at all rows in the result set, which is why you see the value 14
repeated in each row of output.

Hopefully you are beginning to see the great utility of window functions, which is
that they allow you to work with multiple levels of aggregation in one row. As you
continue through this appendix, you’ll begin to see even more just how incredibly
useful that ability can be.

Order of Evaluation
Before digging deeper into the OVER clause, it is important to note that window
functions are performed as the last step in SQL processing prior to the ORDER BY
clause. As an example of how window functions are processed last, let’s take the query
from the preceding section and use a WHERE clause to filter out employees from
DEPTNO 20 and 30:

520 | Appendix A: Window Function Refresher

select ename,
 deptno,
 count(*) over() as cnt
 from emp
 where deptno = 10
 order by 2

ENAME DEPTNO CNT
---------- ------ ------
CLARK 10 3
KING 10 3
MILLER 10 3

The value for CNT for each row is no longer 14, it is now 3. In this example, it is the
WHERE clause that restricts the result set to three rows; hence, the window function
will count only three rows (there are only three rows available to the window func‐
tion by the time processing reaches the SELECT portion of the query). From this
example you can see that window functions perform their computations after clauses
such as WHERE and GROUP BY are evaluated.

Partitions
Use the PARTITION BY clause to define a partition or group of rows to perform an
aggregation over. As we’ve seen already, if you use empty parentheses, then the entire
result set is the partition that a window function aggregation will be computed over.
You can think of the PARTITION BY clause as a “moving GROUP BY” because
unlike a traditional GROUP BY, a group created by PARTITION BY is not distinct in
a result set. You can use PARTITION BY to compute an aggregation over a defined
group of rows (resetting when a new group is encountered), and rather than having
one group represent all instances of that value in the table, each value (each member
in each group) is returned. Consider the following query:

select ename,
 deptno,
 count(*) over(partition by deptno) as cnt
 from emp
 order by 2

ENAME DEPTNO CNT
---------- ------ ------
CLARK 10 3
KING 10 3
MILLER 10 3
SMITH 20 5
ADAMS 20 5
FORD 20 5
SCOTT 20 5
JONES 20 5

Window Function Refresher | 521

ALLEN 30 6
BLAKE 30 6
MARTIN 30 6
JAMES 30 6
TURNER 30 6
WARD 30 6

This query still returns 14 rows, but now the COUNT is performed for each depart‐
ment as a result of the PARTITION BY DEPTNO clause. Each employee in the same
department (in the same partition) will have the same value for CNT, because the
aggregation will not reset (recompute) until a new department is encountered. Also
note that you are returning information about each group, along with the members of
each group. You can think of the preceding query as a more efficient version of the
following:

select e.ename,
 e.deptno,
 (select count(*) from emp d
 where e.deptno=d.deptno) as cnt
 from emp e
 order by 2

ENAME DEPTNO CNT
---------- ------ ------
CLARK 10 3
KING 10 3
MILLER 10 3
SMITH 20 5
ADAMS 20 5
FORD 20 5
SCOTT 20 5
JONES 20 5
ALLEN 30 6
BLAKE 30 6
MARTIN 30 6
JAMES 30 6
TURNER 30 6
WARD 30 6

Additionally, what’s nice about the PARTITION BY clause is that it performs its com‐
putations independently of other window functions, partitioning by different col‐
umns in the same SELECT statement. Consider the following query, which returns
each employee, their department, the number of employees in their respective depart‐
ment, their job, and the number of employees with the same job:

select ename,
 deptno,
 count(*) over(partition by deptno) as dept_cnt,
 job,
 count(*) over(partition by job) as job_cnt

522 | Appendix A: Window Function Refresher

 from emp
 order by 2

ENAME DEPTNO DEPT_CNT JOB JOB_CNT
---------- ------ -------- --------- -------
MILLER 10 3 CLERK 4
CLARK 10 3 MANAGER 3
KING 10 3 PRESIDENT 1
SCOTT 20 5 ANALYST 2
FORD 20 5 ANALYST 2
SMITH 20 5 CLERK 4
JONES 20 5 MANAGER 3
ADAMS 20 5 CLERK 4
JAMES 30 6 CLERK 4
MARTIN 30 6 SALESMAN 4
TURNER 30 6 SALESMAN 4
WARD 30 6 SALESMAN 4
ALLEN 30 6 SALESMAN 4
BLAKE 30 6 MANAGER 3

In this result set, you can see that employees in the same department have the same
value for DEPT_CNT, and that employees who have the same job position have the
same value for JOB_CNT.

By now it should be clear that the PARTITION BY clause works like a GROUP BY
clause, but it does so without being affected by the other items in the SELECT clause
and without requiring you to write a GROUP BY clause.

Effect of NULLs
Like the GROUP BY clause, the PARTITION BY clause lumps all the NULLs into one
group or partition. Thus, the effect from NULLs when using PARTITION BY is simi‐
lar to that from using GROUP BY. The following query uses a window function to
count the number of employees with each distinct commission (returning –1 in place
of NULL for readability):

select coalesce(comm,-1) as comm,
 count(*)over(partition by comm) as cnt
 from emp

 COMM CNT
------ ----------
 0 1
 300 1
 500 1
 1400 1
 -1 10
 -1 10
 -1 10
 -1 10
 -1 10

Window Function Refresher | 523

 -1 10
 -1 10
 -1 10
 -1 10
 -1 10

Because COUNT(*) is used, the function counts rows. You can see that there are 10
employees having NULL commissions. Use COMM instead of *, however, and you
get quite different results:

select coalesce(comm,-1) as comm,
 count(comm)over(partition by comm) as cnt
 from emp

COMM CNT
---- ----------
 0 1
 300 1
 500 1
1400 1
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0
 -1 0

This query uses COUNT(COMM), which means that only the non-NULL values in
the COMM column are counted. There is one employee with a commission of 0, one
employee with a commission of 300, and so forth. But notice the counts for those
with NULL commissions! Those counts are 0. Why? Because aggregate functions
ignore NULL values, or more accurately, aggregate functions count only non-NULL
values.

When using COUNT, consider whether you want to include
NULLs. Use COUNT(column) to avoid counting NULLs. Use
COUNT(*) if you do want to include NULLs (since you are no
longer counting actual column values, you are counting rows).

When Order Matters
Sometimes the order in which rows are treated by a window function is material to
the results that you want to obtain from a query. For this reason, window function
syntax includes an ORDER BY subclause that you can place within an OVER clause.
Use the ORDER BY clause to specify how the rows are ordered with a partition

524 | Appendix A: Window Function Refresher

(remember, “partition” in the absence of a PARTITION BY clause means the entire
result set).

Some window functions require you to impose order on the parti‐
tions of rows being affected. Thus, for some window functions, an
ORDER BY clause is mandatory. At the time of this writing, SQL
Server does not allow ORDER BY in the OVER clause when used
with aggregate window functions. SQL Server does permit ORDER
BY in the OVER clause when used with window ranking functions.

When you use an ORDER BY clause in the OVER clause of a window function, you
are specifying two things:

• How the rows in the partition are ordered
• What rows are included in the computation

Consider the following query, which sums and computes a running total of salaries
for employees in DEPTNO 10:

select deptno,
 ename,
 hiredate,
 sal,
 sum(sal)over(partition by deptno) as total1,
 sum(sal)over() as total2,
 sum(sal)over(order by hiredate) as running_total
 from emp
 where deptno=10

DEPTNO ENAME HIREDATE SAL TOTAL1 TOTAL2 RUNNING_TOTAL
------ ------ ----------- ----- ------ ------ -------------
 10 CLARK 09-JUN-1981 2450 8750 8750 2450
 10 KING 17-NOV-1981 5000 8750 8750 7450
 10 MILLER 23-JAN-1982 1300 8750 8750 8750

Just to keep you on your toes, I’ve included a sum with empty
parentheses. Notice how TOTAL1 and TOTAL2 have the same val‐
ues. Why? Once again, the order in which window functions are
evaluated answers the question. The WHERE clause filters the
result set such that only salaries from DEPTNO 10 are considered
for summation. In this case, there is only one partition—the entire
result set, which consists of only salaries from DEPTNO 10. Thus
TOTAL1, and TOTAL2 are the same.

Looking at the values returned by column SAL, you can easily see where the values
for RUNNING_TOTAL come from. You can eyeball the values and add them

Window Function Refresher | 525

yourself to compute the running total. But more importantly, why did including an
ORDER BY in the OVER clause create a running total in the first place? The reason
is, when you use ORDER BY in the OVER clause, you are specifying a default “mov‐
ing” or “sliding” window within the partition even though you don’t see it. The
ORDER BY HIREDATE clause terminates summation at the HIREDATE in the cur‐
rent row.

The following query is the same as the previous one, but uses the RANGE
BETWEEN clause (which you’ll learn more about later) to explicitly specify the
default behavior that results from ORDER BY HIREDATE:

select deptno,
 ename,
 hiredate,
 sal,
 sum(sal)over(partition by deptno) as total1,
 sum(sal)over() as total2,
 sum(sal)over(order by hiredate
 range between unbounded preceding
 and current row) as running_total
 from emp
 where deptno=10

DEPTNO ENAME HIREDATE SAL TOTAL1 TOTAL2 RUNNING_TOTAL
------ ------ ----------- ----- ------ ------ -------------
 10 CLARK 09-JUN-1981 2450 8750 8750 2450
 10 KING 17-NOV-1981 5000 8750 8750 7450
 10 MILLER 23-JAN-1982 1300 8750 8750 8750

The RANGE BETWEEN clause that you see in this query is termed the framing clause
by ANSI, and we’ll use that term here. Now, it should be easy to see why specifying an
ORDER BY in the OVER clause created a running total; we’ve (by default) told the
query to sum all rows starting from the current row and include all prior rows
(“prior” as defined in the ORDER BY, in this case ordering the rows by HIREDATE).

The Framing Clause
Let’s apply the framing clause from the preceding query to the result set, starting with
the first employee hired, who is named CLARK:

1. Starting with CLARK’s salary, 2450, and including all employees hired before
CLARK, compute a sum. Since CLARK was the first employee hired in DEPTNO
10, the sum is simply CLARK’s salary, 2450, which is the first value returned by
RUNNING_TOTAL.

2. Let’s move to the next employee based on HIREDATE, named KING, and apply
the framing clause once again. Compute a sum on SAL starting with the current
row, 5000 (KING’s salary), and include all prior rows (all employees hired before

526 | Appendix A: Window Function Refresher

KING). CLARK is the only one hired before KING, so the sum is 5000 + 2450,
which is 7450, the second value returned by RUNNING_TOTAL.

3. Moving on to MILLER, the last employee in the partition based on HIREDATE,
let’s one more time apply the framing clause. Compute a sum on SAL starting
with the current row, 1300 (MILLER’s salary), and include all prior rows (all
employees hired before MILLER). CLARK and KING were both hired before
MILLER, and thus their salaries are included in MILLER’s RUNNING_TOTAL:
2450 + 5000 + 1300 is 8750, which is the value for RUNNING_TOTAL for
MILLER.

As you can see, it is really the framing clause that produces the running total. The
ORDER BY defines the order of evaluation and happens to also imply a default
framing.

In general, the framing clause allows you to define different “subwindows” of data to
include in your computations. There are many ways to specify such subwindows.
Consider the following query:

select deptno,
 ename,
 sal,
 sum(sal)over(order by hiredate
 range between unbounded preceding
 and current row) as run_total1,
 sum(sal)over(order by hiredate
 rows between 1 preceding
 and current row) as run_total2,
 sum(sal)over(order by hiredate
 range between current row
 and unbounded following) as run_total3,
 sum(sal)over(order by hiredate
 rows between current row
 and 1 following) as run_total4
 from emp
 where deptno=10

DEPTNO ENAME SAL RUN_TOTAL1 RUN_TOTAL2 RUN_TOTAL3 RUN_TOTAL4
------ ------ ----- ---------- ---------- ---------- ----------
 10 CLARK 2450 2450 2450 8750 7450
 10 KING 5000 7450 7450 6300 6300
 10 MILLER 1300 8750 6300 1300 1300

Don’t be intimidated here; this query is not as bad as it looks. You’ve already seen
RUN_TOTAL1 and the effects of the framing clause UNBOUNDED PRECEDING
AND CURRENT ROW. Here’s a quick description of what’s happening in the other
examples:

Window Function Refresher | 527

RUN_TOTAL2
Rather than the keyword RANGE, this framing clause specifies ROWS, which
means the frame, or window, is going to be constructed by counting some num‐
ber of rows. The 1 PRECEDING means that the frame will begin with the row
immediately preceding the current row. The range continues through the CUR-
RENT ROW. So what you get in RUN_TOTAL2 is the sum of the current
employee’s salary and that of the preceding employee, based on HIREDATE.

[[sqlckbk-APP-A-NOTE-11]]

It so happens that RUN_TOTAL1 and RUN_TOTAL2 are the
same for both CLARK and KING. Why? Think about which
values are being summed for each of those employees, for each
of the two window functions. Think carefully, and you’ll get
the answer.

RUN_TOTAL3
The window function for RUN_TOTAL3 works just the opposite of that for
RUN_TOTAL1; rather than starting with the current row and including all prior
rows in the summation, summation begins with the current row and includes all
subsequent rows in the summation.

RUN_TOTAL4
This is the inverse of RUN_TOTAL2; rather than starting from the current row
and including one prior row in the summation, start with the current row and
include one subsequent row in the summation.

If you can understand what’s been explained thus far, you will have
no problem with any of the recipes in this book. If you’re not catch‐
ing on, though, try practicing with your own examples and your
own data. It’s usually easier to learn by coding new features rather
than just reading about them.

A Framing Finale
As a final example of the effect of the framing clause on query output, consider the
following query:

select ename,
 sal,
 min(sal)over(order by sal) min1,
 max(sal)over(order by sal) max1,
 min(sal)over(order by sal
 range between unbounded preceding
 and unbounded following) min2,
 max(sal)over(order by sal

528 | Appendix A: Window Function Refresher

 range between unbounded preceding
 and unbounded following) max2,
 min(sal)over(order by sal
 range between current row
 and current row) min3,
 max(sal)over(order by sal
 range between current row
 and current row) max3,
 max(sal)over(order by sal
 rows between 3 preceding
 and 3 following) max4
 from emp

ENAME SAL MIN1 MAX1 MIN2 MAX2 MIN3 MAX3 MAX4
------ ----- ------ ------ ------ ------ ------ ------ ------
SMITH 800 800 800 800 5000 800 800 1250
JAMES 950 800 950 800 5000 950 950 1250
ADAMS 1100 800 1100 800 5000 1100 1100 1300
WARD 1250 800 1250 800 5000 1250 1250 1500
MARTIN 1250 800 1250 800 5000 1250 1250 1600
MILLER 1300 800 1300 800 5000 1300 1300 2450
TURNER 1500 800 1500 800 5000 1500 1500 2850
ALLEN 1600 800 1600 800 5000 1600 1600 2975
CLARK 2450 800 2450 800 5000 2450 2450 3000
BLAKE 2850 800 2850 800 5000 2850 2850 3000
JONES 2975 800 2975 800 5000 2975 2975 5000
SCOTT 3000 800 3000 800 5000 3000 3000 5000
FORD 3000 800 3000 800 5000 3000 3000 5000
KING 5000 800 5000 800 5000 5000 5000 5000

OK, let’s break this query down:

MIN1
The window function generating this column does not specify a framing clause,
so the default framing clause of UNBOUNDED PRECEDING AND CURRENT
ROW kicks in. Why is MIN1 800 for all rows? It’s because the lowest salary
comes first (ORDER BY SAL), and it remains the lowest, or minimum, salary
forever after.

MAX1
The values for MAX1 are much different from those for MIN1. Why? The
answer (again) is the default framing clause UNBOUNDED PRECEDING AND
CURRENT ROW. In conjunction with ORDER BY SAL, this framing clause
ensures that the maximum salary will also correspond to that of the current row.

Consider the first row, for SMITH. When evaluating SMITH’s salary and all prior
salaries, MAX1 for SMITH is SMITH’s salary, because there are no prior salaries.
Moving on to the next row, JAMES, when comparing JAMES’s salary to all prior
salaries, in this case comparing to the salary of SMITH, JAMES’s salary is the

Window Function Refresher | 529

higher of the two, and thus it is the maximum. If you apply this logic to all rows,
you will see that the value of MAX1 for each row is the current employee’s salary.

MIN2 and MAX2
The framing clause given for these is UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING, which is the same as specifying empty parenthe‐
ses. Thus, all rows in the result set are considered when computing MIN and
MAX. As you might expect, the MIN and MAX values for the entire result set are
constant, and thus the value of these columns is constant as well.

MIN3 and MAX3
The framing clause for these is CURRENT ROW AND CURRENT ROW, which
simply means use only the current employee’s salary when looking for the MIN
and MAX salary. Thus, both MIN3 and MAX3 are the same as SAL for each row.
That was easy, wasn’t it?

MAX4
The framing clause defined for MAX4 is 3 PRECEDING AND 3 FOLLOWING,
which means, for every row, consider the three rows prior and the three rows
after the current row, as well as the current row itself. This particular invocation
of MAX(SAL) will return from those rows the highest salary value.

If you look at the value of MAX4 for employee MARTIN, you can see how the
framing clause is applied. MARTIN’s salary is 1250, and the three employee salar‐
ies prior to MARTIN’s are WARD’s (1250), ADAMS’s (1100) and JAMES’s (950).
The three employee salaries after MARTIN’s are MILLER’s (1300), TURNER’s
(1500), and ALLEN’s (1600). Out of all those salaries, including MARTIN’s, the
highest is ALLEN’s, and thus the value of MAX4 for MARTIN is 1600.

Readability + Performance = Power
As you can see, window functions are extremely powerful as they allow you to write
queries that contain both detailed and aggregate information. Using window func‐
tions allows you to write smaller, more efficient queries as compared to using multi‐
ple self-join and/or scalar subqueries. Consider the following query, which easily
answers all of the following questions: “What is the number of employees in each
department? How many different types of employees are in each department (e.g.,
how many clerks are in department 10)? How many total employees are in table
EMP?”

select deptno,
 job,
 count(*) over (partition by deptno) as emp_cnt,
 count(job) over (partition by deptno,job) as job_cnt,
 count(*) over () as total
 from emp

530 | Appendix A: Window Function Refresher

DEPTNO JOB EMP_CNT JOB_CNT TOTAL
------ --------- ---------- ---------- ----------
 10 CLERK 3 1 14
 10 MANAGER 3 1 14
 10 PRESIDENT 3 1 14
 20 ANALYST 5 2 14
 20 ANALYST 5 2 14
 20 CLERK 5 2 14
 20 CLERK 5 2 14
 20 MANAGER 5 1 14
 30 CLERK 6 1 14
 30 MANAGER 6 1 14
 30 SALESMAN 6 4 14
 30 SALESMAN 6 4 14
 30 SALESMAN 6 4 14
 30 SALESMAN 6 4 14

Returning the same result set without using window functions would require a bit
more work:

select a.deptno, a.job,
 (select count(*) from emp b
 where b.deptno = a.deptno) as emp_cnt,
 (select count(*) from emp b
 where b.deptno = a.deptno and b.job = a.job) as job_cnt,
 (select count(*) from emp) as total
 from emp a
 order by 1,2

DEPTNO JOB EMP_CNT JOB_CNT TOTAL
------ --------- ---------- ---------- ----------
 10 CLERK 3 1 14
 10 MANAGER 3 1 14
 10 PRESIDENT 3 1 14
 20 ANALYST 5 2 14
 20 ANALYST 5 2 14
 20 CLERK 5 2 14
 20 CLERK 5 2 14
 20 MANAGER 5 1 14
 30 CLERK 6 1 14
 30 MANAGER 6 1 14
 30 SALESMAN 6 4 14
 30 SALESMAN 6 4 14
 30 SALESMAN 6 4 14
 30 SALESMAN 6 4 14

The nonwindow solution is obviously not difficult to write, yet it certainly is not as
clean or efficient (you won’t see performance differences with a 14-row table, but try
these queries with, say, a 1,000- or 10,000-row table, and then you’ll see the benefit of
using window functions over multiple self-joins and scalar subqueries).

Window Function Refresher | 531

Providing a Base
Besides readability and performance, window functions are useful for providing a
“base” for more complex “report-style” queries. For example, consider the following
“report-style” query that uses window functions in an inline view and then aggregates
the results in an outer query. Using window functions allows you to return detailed as
well as aggregate data, which is useful for reports. The following query uses window
functions to find counts using different partitions. Because the aggregation is applied
to multiple rows, the inline view returns all rows from EMP, which the outer CASE
expressions can use to transpose and create a formatted report:

select deptno,
 emp_cnt as dept_total,
 total,
 max(case when job = 'CLERK'
 then job_cnt else 0 end) as clerks,
 max(case when job = 'MANAGER'
 then job_cnt else 0 end) as mgrs,
 max(case when job = 'PRESIDENT'
 then job_cnt else 0 end) as prez,
 max(case when job = 'ANALYST'
 then job_cnt else 0 end) as anals,
 max(case when job = 'SALESMAN'
 then job_cnt else 0 end) as smen
 from (
select deptno,
 job,
 count(*) over (partition by deptno) as emp_cnt,
 count(job) over (partition by deptno,job) as job_cnt,
 count(*) over () as total
 from emp
) x
 group by deptno, emp_cnt, total

DEPTNO DEPT_TOTAL TOTAL CLERKS MGRS PREZ ANALS SMEN
------ ---------- ----- ------ ---- ---- ----- ----
 10 3 14 1 1 1 0 0
 20 5 14 2 1 0 2 0
 30 6 14 1 1 0 0 4

The previous query returns each department, the total number of employees in each
department, the total number of employees in table EMP, and a breakdown of the
number of different job types in each department. All this is done in one query,
without additional joins or temp tables!

As a final example of how easily multiple questions can be answered using window
functions, consider the following query:

532 | Appendix A: Window Function Refresher

select ename as name,
 sal,
 max(sal)over(partition by deptno) as hiDpt,
 min(sal)over(partition by deptno) as loDpt,
 max(sal)over(partition by job) as hiJob,
 min(sal)over(partition by job) as loJob,
 max(sal)over() as hi,
 min(sal)over() as lo,
 sum(sal)over(partition by deptno
 order by sal,empno) as dptRT,
 sum(sal)over(partition by deptno) as dptSum,
 sum(sal)over() as ttl
 from emp
 order by deptno,dptRT

NAME SAL HIDPT LODPT HIJOB LOJOB HI LO DPTRT DPTSUM TTL
------ ----- ----- ----- ----- ----- ----- ---- ------ ------ ------
MILLER 1300 5000 1300 1300 800 5000 800 1300 8750 29025
CLARK 2450 5000 1300 2975 2450 5000 800 3750 8750 29025
KING 5000 5000 1300 5000 5000 5000 800 8750 8750 29025
SMITH 800 3000 800 1300 800 5000 800 800 10875 29025
ADAMS 1100 3000 800 1300 800 5000 800 1900 10875 29025
JONES 2975 3000 800 2975 2450 5000 800 4875 10875 29025
SCOTT 3000 3000 800 3000 3000 5000 800 7875 10875 29025
FORD 3000 3000 800 3000 3000 5000 800 10875 10875 29025
JAMES 950 2850 950 1300 800 5000 800 950 9400 29025
WARD 1250 2850 950 1600 1250 5000 800 2200 9400 29025
MARTIN 1250 2850 950 1600 1250 5000 800 3450 9400 29025
TURNER 1500 2850 950 1600 1250 5000 800 4950 9400 29025
ALLEN 1600 2850 950 1600 1250 5000 800 6550 9400 29025
BLAKE 2850 2850 950 2975 2450 5000 800 9400 9400 29025

This query answers the following questions easily, efficiently, and readably (and
without additional joins to EMP!). Simply match the employee and their salary with
the different rows in the result set to determine:

• Who makes the highest salary of all employees (HI)
• Who makes the lowest salary of all employees (LO)
• Who makes the highest salary in the department (HIDPT)
• Who makes the lowest salary in the department (LODPT)
• Who makes the highest salary in their job (HIJOB)
• Who makes the lowest salary in their job (LOJOB)
• What is the sum of all salaries (TTL)
• What is the sum of salaries per department (DPTSUM)
• What is the running total of all salaries per department (DPTRT)

Window Function Refresher | 533

APPENDIX B

Common Table Expressions

Many of the queries presented in this cookbook go beyond what is possible using
tables as they are typically available in a database, especially in relation to aggregate
functions and window functions. Therefore, for some queries, you need to make a
derived table—either a subquery or a common table expression (CTE).

Subqueries
Arguably the simplest way to create a virtual table that allows you to run queries on
window functions or aggregate functions is a subquery. All that’s required here is to
write the query that you need within parentheses and then to write a second query
that uses it. The following table illustrates the use of subqueries with a simple double
aggregate—you want to find not just the counts of employees in each job, but then
identify the highest number, but you can’t nest aggregate functions directly in a stan‐
dard query.

One pitfall is that some vendors require you to give the subquery table and alias, but
others do not. The following example was written in MySQL, which does require an
alias. The alias here is HEAD_COUNT_TAB after the closing parenthesis.

Others that require an alias are PostgreSQL and SQL Server, while Oracle does not:

select max(HeadCount) as HighestJobHeadCount from
(select job,count(empno) as HeadCount
from emp
group by job) head_count_tab

535

Common Table Expressions
CTEs were intended to overcome some of the limits of subqueries, and may be most
well known for allowing recursive queries to be used within SQL. In fact, enablng
recursion within SQL was the main inspiration for CTEs.

This example achieves the same result as the subquery we saw earlier—it finds a dou‐
ble aggregate:

with head_count_tab (job,HeadCount) as

(select job,count(empno)
from emp
group by job)

select max(HeadCount) as HighestJobHeadCount
from head_count_tab

Although this query solves a simple problem, it illustrates the essential features of a
CTE. We introduce the derived table using the WITH clause, specifying the column
headings in the parentheses, and use parentheses around the derived table’s query
itself. If we want to add more derived tables, we can add more as long as we separate
each one with a comma and provide its name before its query (the reverse of how
aliasing usually works in SQL).

Because the inner queries are presented before the outer query, in many circumstan‐
ces they may also be considered more readable—they make it easier to study each
logical element of the query separately in order to understand the logical flow. Of
course, as with all things in coding, this will vary according to circumstances, and
sometimes the subquery will be more readable.

Considering that recursion is the key reason for CTEs to exist, the best way to
demonstrate their capability is through a recursive query.

The query that follows calculates the first 20 numbers in the Fibonacci sequence
using a recursive CTE. Note that in the first part of the anchor query, we can initialize
the values in the first row of the virtual table:

with recursive workingTable (fibNum, NextNumber, index1)
as
(select 0,1,1
union all
select fibNum+nextNumber,fibNUm,index1+1
from anchor
where index1<20)

select fibNum from workingTable as fib

536 | Appendix B: Common Table Expressions

The Fibonacci sequence finds the next number by adding the current and previous
numbers; you could also use LAG to achieve this result. However, in this case we’ve
made a pseudo-LAG by using two columns to account for the current number and
the previous. Note the keyword RECURSIVE, which is mandatory in MySQL, Oracle,
and PostgreSQL but not in SQL Server or DB2. In this query, the index1 column is
largely redundant in the sense of not being used for the Fibonacci calculation.
Instead, we have included it to make it simpler to set the number of rows returned via
the WHERE clause. In a recursive CTE, the WHERE clause becomes crucial, as
without it the query would not terminate (although in this specific case, if you try
deleting it, you are likely to find that your database throws an overflow error when
the numbers become too large for the data type).

At the simple end of the spectrum, there’s not a lot of difference between a subquery
and CTE in terms of usability. Both allow for nesting or writing more complicated
queries that refer to other derived tables. However, once you start nesting many sub‐
queries, readability is lessened because the meaning of different variables is hidden in
successive query layers. In contrast, because a CTE arranges each element vertically, it
is easier to understand the meaning of each element.

Summing Up
The use of derived tables dramatically extends the range of SQL. Both subqueries and
CTES are used many times throughout the book, so it is important to understand
how they work, especially as they each have a particular syntax that you need to mas‐
ter to ensure success. The recursive CTE, which is now available in the vendor offer‐
ings in this book, is one of the biggest extensions to have occurred within SQL, allow‐
ing for many extra possibilities.

Common Table Expressions | 537

Index

Symbols
% (modulus) function (SQL Server), 288
% (wildcard) operator, 13
* character in SELECT statements, 1
+ (concatenation) operator (SQL Server), 7, 307
_ (underscore) operator, 13
|| (concatenation) function (DB2/Oracle/Post‐

greSQL), 7, 306

A
abstraction, axiom of, 511
ADDDATE function (MySQL), 247, 262, 292,

299
ADD_MONTHS function (Oracle), 282, 285,

298
aggregate functions

multiple tables and, 52-59
NULL values and, 190, 512
WHERE clause, referencing in, 5

aliases
for CASE expression, 8
inline views, 495
referencing aliased columns, 5

alphabetizing strings, 141-146
alphanumeric strings

converting to numbers, 193-195
determining whether a string is alphanu‐

meric, 116-120
mixed, 472-473
sorting mixed, 18-21

anti-joins, 31
AS keyword, 4
asterisk (*) character in SELECT statements, 1

asterisk (*) character with COUNT function,
175, 177

averages, computing, 169-171
AVG function, 169-171
axiom of abstraction, 511
axiom of specification, 512
axiom schema of separation, 512
axiom schema of subsets, 512

B
Barber Puzzle, 511
Benford's law, 201-203
binary, converting whole numbers to, 474-477

C
calendars, creating, 268-280
Cartesian products, 51, 106
CASE expression, 8, 12, 23, 28, 188, 196
CAST function (SQL Server), 293
CEIL function (DB2/MySQL/Oracle/Post‐

greSQL), 388
CEILING function (SQL Server), 388, 417
COALESCE function, 12, 64, 170, 190, 246, 319
columns

adding headers to double pivoted result sets,
481-491

concatenating, 6
naming, 4
retrieving a subset of columns from a table,

3
retrieving all rows and columns from a

table, 1
common table expressions (CTEs), xi, 536

539

composite subqueries, converting scalar subqu‐
eries to (Oracle), 493-495

CONCAT function (MySQL), 7, 121, 307
concatenation

column values, 6
operator (+) (SQL Server), 7, 307
operator (||) (DB2/Oracle/PostgreSQL), 7,

306
CONCAT_WS function (MySQL), 121, 124
conditional logic in SELECT statements, 7
CONNECT BY clause (Oracle), 269, 295

in hierarchical structures, 446, 450
WITH clause and, 360

CONNECT_BY_ISLEAF function (Oracle),
451, 455

CONNECT_BY_ROOT function (Oracle), 451,
455

constraints, listing, 95
correlated subquery, 39
COUNT function, 88, 175-178, 512
COUNT OVER window function, 420
count star, 177
create table as select (CTAS), 72
CREATE TABLE command, 71
CREATE TABLE … LIKE command (DB2), 72
cross-tab reports

creating (SQL Server), 459-461
unpivoting (SQL Server), 461-463

CTAS (create table as select), 72
CTEs (common table expressions), xi, 536
CUBE extension, 401, 406
CUME_DIST function, 186
CURRENT_DATE function (DB2/MySQL/

PostgreSQL), 267, 362

D
data dependent keys, sorting on, 27
data dictionary views (Oracle), 102
DATE function (DB2), 289
date manipulation, 239-311

comparing records using specific parts of a
date, 302-305

creating a calendar, 268-280
determining all dates for a particular week‐

day throughout a year, 255-260
determining quarter start/end dates for a,

286-293

determining the date of first/last occur‐
rences of specific weekday in month,
261-268

determining the first/last days of a month,
252-254

determining the number of days in a year,
246-249, 470

determining whether a year is a leap year,
240-246

extracting units of time from date, 249-252
filling in missing dates, 293-301
identifying overlapping date ranges,

305-310
listing quarter/end dates for the year,

281-286
searching on specific units of time, 301-302

DATEADD function (SQL Server), 247, 253
DATEDIFF function (MySQL/SQL Server), 247
DATENAME function (SQL Server), 302, 304
DATEPART function (SQL Server), 249, 251,

260, 283, 286
dates, ORDER BY clause and (DB2), 422
DATE_FORMAT function (MySQL), 251, 303
DATE_TRUNC function (PostgreSQL), 243,

247, 253
DAY function (DB2), 246, 250, 252
DAY function (MySQL), 246, 253
DAY function (SQL Server), 246, 253
DAYNAME function (DB2/MySQL/SQL

Server), 301
DAYOFWEEK function (DB2/MYSQL), 267,

303
DAYOFYEAR function (DB2/MySQL/SQL

Server), 246-248, 297, 299-301
DAYS function (DB2), 246
DECODE function (Oracle), 504
DEFAULT keyword, 69
DEFAULT VALUES clause (PostgreSQL/SQL

Server), 69
DELETE command, 81, 83
deleting records

all, 83
duplicate, 85-87
with NULLs (PostgreSQL/MySQL), 374
with NULLs (DB2/Oracle/SQL Server), 373
referenced from another table, 87-88
referencing nonexistent records from

another table, 85
referential integrity violations, 85

540 | Index

single, 84
specific, 83

delimited data, converting to IN-list, 136-141
delimited lists, creating, 132-135
DENSE_RANK function (DB2/Oracle/SQL

Server), 343, 355, 357
DENSE_RANK OVER window function (DB2/

Oracle/SQL Server), 343, 350, 478
DENSE_RANK window function, 183
DEPT table structure, xiii
DICTIONARY view, 102
DISTINCT keyword

alternatives to, 31, 351
SELECT list and, 17, 352, 510
uses for, 36, 54, 343

double aggregate, 535
duplicates

deleting, 85-87
suppressing, 351-353

dynamic SQL, creating, 100-102

E
EMP table structure, xiii
equi-join operations, 31, 40
EXCEPT function, 35, 45, 48
EXTRACT function (PostgreSQL/MySQL), 327
extreme values, finding, 344

F
FETCH FIRST clause (DB2), 8
Fibonacci sequence, 536
forecasts, generating simple, 359-367
foreign keys, listing, 97-100
framing clause, 483
Frege's axiom, 511
Frege, Gottlob, 511
FULL OUTER JOIN command, 62

G
GENERATE_SERIES function (PostgreSQL)

parameters, 332
uses, 241, 244, 270, 331

GETDATE function (SQL Server), 362
GROUP BY clause, 353, 507
GROUP BY queries, returning other columns

in, 394-396
grouping, 507-519

COUNT function and, 175

defined, 508-512
SELECT clause and, 173, 516-519
SUM function and, 173
testing for existence of a value within a

group, 502-504
by time units, 416-419

GROUPING function (DB2/Oracle/SQL
Server), 398, 406, 432

GROUPING SETS extension (DB2/Oracle),
406-408

GROUP_CONCAT function, 133, 143, 145

H
hierarchical queries, 435-458

creating hierarchical view of a table,
444-448

determining which rows are leaf/branch/
root nodes, 450-458

expressing a child-parent-grandparent rela‐
tionship, 440-444

expressing a parent-child relationship,
436-439

finding all child rows for given parent row,
449

histograms
horizontal, 390-391
vertical, 392-393

HOUR function (DB2), 250

I
IF-ELSE operations, 7
implicit type conversion, 20
IN-lists, converting delimited data into,

136-141
indexes, listing, 94
information schema (MySQL/PostgreSQL/SQL

Server), 91
inline views

naming, 495
referencing aliased columns with, 5

inner joins, 31, 340
INSERT ALL statement (Oracle), 73
INSERT FIRST statement (Oracle), 73
INSERT statement, 68, 70
inserting into a column, 70
inserting records

blocking, 74
copying rows from one table to another, 70
with default values, 68-70

Index | 541

into multiple tables, 72-74
new records, 68
with NULL values, 70

INSTR function, 140, 155, 159
INSTR function (Oracle), 468
integrity, deleting records violating, 85
INTERSECT operation, 33-34
ISNUMERIC function, 150
ITERATE command (Oracle), 331
ITERATION_NUMBER function (Oracle), 332

J
JOIN clause, 33
joins

about, 31
aggregates and, 52-57
anti-, 31
equi-, 31, 40
inner, 31, 340
scalar subqueries and, 43
selecting columns, 34
self-, 307, 342

K
KEEP extension (Oracle), 183, 184, 357
keys

data dependent, 27
foreign, 97-100
preserving, 80

knight values, 353-358
Kyte, Tom, 475

L
LAG OVER window function (Oracle),

316-325, 348-349, 383
LAG window function, 182
LAST function (Oracle), 355, 357
LAST_DAY function (MySQL/Oracle), 240,

241, 252, 253, 266
LEAD OVER window function (Oracle)

default behavior, 321
duplicates and, 319
options, 321, 346, 349
self-joins and, 308-310, 314, 317
uses, 315, 347, 348

leap years, 240-246
LEN function, 126
LENGTH function, 109, 126

LIKE operator, 13
LIMIT clause (MySQL/PostgreSQL), 8, 10
LIST_AGG function, 133
logarithms, 180
loop functionality limits, in SQL, 105
LPAD function (Oracle/PostgreSQL/MySQL),

390
LTRIM function (Oracle), 444

M
matrices, creating sparse, 414
MAX function, 171, 183, 324
MAX OVER window function, 344, 349
maximum values, finding, 171-173
median absolute deviation, finding outliers

with, 197-201
MEDIAN function (Oracle), 186
medians, calculating, 185-187
MERGE statement, 67, 82
merging records, 81-83
metadata queries, 91-103

describing data dictionary views in an Ora‐
cle database, 102

listing a table's columns, 93
listing constraints on a table, 95
listing foreign keys without corresponding

indexes, 97-100
listing indexed columns for a table, 94
listing tables in a schema, 91
using SQL to generate SQL, 100-102

MIN function, 171, 324
MIN OVER window function (DB2/

Oracle/SQL Server), 328, 344, 349
minimum values, finding, 171-173
MINUS operation, 35, 36, 45, 48
MINUTE function (DB2), 250
MODEL clause (Oracle), 331, 463-467, 474-477
modes, calculating, 182-185
modifying records

changing row data, 75
copying rows from one table to another, 70
modifying values in a table, 75
using queries for new values, 80
with values from another table, 78-81
when corresponding rows exist, 77

modulus (%) function (SQL Server), 288
MONTH function (DB2/MySQL), 242, 250,

268

542 | Index

MONTHNAME function (DB2/MySQL), 301,
303

multiple tables, inserting data into, 72-74
multiple tables, retrieving data from, 29-65

adding joins to a query without interfering
with other joins, 42-44

Cartesian products and, 51
combining related rows, 31-33
comparing, 44-51
finding rows in common between two

tables, 33
joins when aggregates are used, 52-57
nonmatching rows, 40
NULLs in operations/comparisons, 64
outer joins when using aggregates, 57-59
retrieving rows from one table that do not

correspond to rows in another, 40
retrieving values from one table that do not

exist in another, 34-40
returning missing data from multiple tables,

60-63
stacking one rowset atop another, 29-31

N
n-1 rule, 52
names, extracting initials from, 120-124
new records, inserting, 68
NEWID function, 11
NEXT_DAY function (Oracle), 265-266
NOT EXISTS, 85
NOT IN operator, 36
NROWS function (DB2/SQL Server), 362
NTILE window function (Oracle/SQL Server),

389
NULL paradox, 512
NULLs

aggregate functions and, 190
AVG function and, 170
comparisons to, 439
COUNT function and, 177
finding null values, 11
inserting records with, 70
MIN/MAX functions and, 172
NOT IN operator and, 36
OR operations and, 36
overriding a default value with, 70
removing (DB2/Oracle/SQL Server), 373
removing (PostgreSQL/MySQL), 374
sorting and, 21-27

SUM function and, 174, 176
transforming into real values, 12
window functions and, 523

NULLS FIRST extension, 25
NULLS LAST extension, 25
numbers queries, 169-203

aggregating nullable columns, 190
averages, 169-171
averages without high/low values, 191-193
calculating a median, 185-187
calculating a mode, 182-185
changing values in a running total, 196-197
converting alphanumeric strings into num‐

bers, 193-195
converting whole to binary (Oracle),

474-477
counting rows in a table, 175-177
counting values in a column, 177
determining the percentage of a total,

187-190
finding anomalies using Benford's law,

201-203
finding outliers using the median absolute

deviation, 197-201
finding the min/max value in a column,

171-173
generating a running product, 179
generating a running total, 178
percentage relative to total, 500-501
smoothing a series of values, 181
subtotals for all combinations, 400-410
subtotals, simple, 397-400
summing values in a column, 173-175

O
ORDER BY clause, 10, 15, 17, 178, 422

(see also sorting query results)
outer joins

OR logic in, 341
Oracle syntax, 43, 295
when using aggregates, 57-59

outliers, median absolute deviation for finding,
197-201

OVER keyword, 26

P
PARTITION BY clause, 521-523
patterns, searches for matching, 13
percent (%) operator, 13

Index | 543

percentage calculations, 187-190, 500-501
PERCENTILE_CONT function, 185-187, 198
PIVOT operator (SQL Server), 459-461
pivot tables, xiv
pivoting

about, 370
inter-row calculations, 384-386
MODEL clause (Oracle), 463-467
multiple rows, results into, 372-377
one row, results into, 369-371
ranked result sets, 477-481
reverse, 377-378
subtotals, result sets with, 429-434

PRIOR keyword (Oracle), 443

Q
QUARTER function (DB2/MySQL), 285
quotes, embedding within string literals, 108

R
RAND function, 10
RANDOM function, 11
random records, retrieving, 10
ranges, 313-333

filling in missing values, 326-329
finding differences between rows in same

group/partition, 317-323
generating consecutive numeric values,

330-333
locating range of consecutive values,

313-316
locating the beginning/end of a range of

consecutive values, 323-326
RANK OVER window function, 350
RATIO_TO_REPORT function (Oracle), 501
reciprocal rows, searching for, 341-343
records

merging, 81-83
sorting (see sorting query results)

RECURSIVE keyword, 537
referential integrity, deleting records violating,

85
REGEXP_REPLACE function, 166
REPEAT function, 121
REPEAT function (DB2), 390
REPLACE function, 20, 105

(see also strings)
REPLICATE function (SQL Server), 390
reports, queries for creating, 369-434

calculating simple subtotals, 397-400
calculating subtotals for all possible expres‐

sion combinations, 400-410
creating a predefined number of buckets,

388
creating a sparse matrix, 414
creating buckets of data, of a fixed size,

386-388
creating horizontal histograms, 390-391
creating vertical histograms, 392-393
grouping rows by units of time, 416-419
identifying rows that are not subtotals,

410-412
performing aggregations over a moving

range of values, 422-429
performing aggregations over different

groups/partitions simultaneously,
420-421

pivoting a result set into multiple rows,
372-377

pivoting a result set into one row, 369-371
pivoting a result set to facilitate inter-row

calculations, 384-386
pivoting a result set with subtotals, 429-434
returning non-GROUP BY columns,

394-396
reverse pivoting a result set, 377-378
reverse pivoting a result set into one col‐

umn, 379-381
suppressing repeating values from a result

set, 382-384
using case expressions to flag rows, 412-414

result set, transposing (Oracle), 463-467
retrieving records, 1-14

concatenating column values, 6
finding null values, 11
finding rows that satisfy multiple condi‐

tions, 2
limiting the number of rows returned, 8-10
providing meaningful names for columns, 4
referencing an aliased column in the

WHERE clause, 5
for reports (see reports, queries for creating)
retrieving a subset of columns from a table,

3
retrieving a subset of rows from a table, 2
retrieving all rows and columns from a

table, 1
returning n random records from a table, 10

544 | Index

searching for patterns, 13
transforming nulls into real values, 12
using conditional logic in a SELECT state‐

ment, 7
reverse pivoting result sets, 377-378
robust statistics, 193
ROLLUP extension of GROUP BY (DB2/

Oracle), 397, 410, 430
row generation, dynamic, 330
ROWNUM function (Oracle), 9, 285, 337
rows

copying from one table to another, 70
finding rows that satisfy multiple condi‐

tions, 2
limiting the number of rows returned, 8-10
parsing serialized data into, 495-499
retrieving a subset of rows from a table, 2
retrieving all rows and columns from a

table, 1
ROW_NUMBER function (Oracle), 135
ROW_NUMBER function (SQL Server), 144
ROW_NUMBER OVER window function

(DB2/Oracle/SQL Server)
ORDER BY clause and, 352
uniqueness of result, 336
uses, 284, 336-339, 351, 373

RPAD function, 122, 480
RTRIM function (Oracle/PostgreSQL), 301
RULES subclause (Oracle), 465
running products, 179
running totals, 178, 196-197
Russell's Paradox, 511
Russell, Bertrand, 511

S
scalar subqueries

converting to composite (Oracle), 493-495
joins and, 43
referencing in WHERE clause, 10

scripts, generating, 100-102
searching, 335-367

determining which rows are reciprocals,
341-343

finding knight values, 353-358
finding records with highest/lowest values,

344
generating simple forecasts, 359-367
incorporating OR logic when using outer

joins, 339-341

investigating future rows, 345-347
paginating through a result set, 335-337
patterns, 13
ranking results, 350
selecting top n records, 343
shifting row values, 347-349
skipping n rows from a table, 338
suppressing duplicates, 351-353

SECOND function (DB2), 250
SELECT function, 108
SELECT statements, 1

(see also retrieving records)
* character in, 1
conditional logic in, 7
DISTINCT keyword and, 17, 352, 510
GROUP BY and, 173, 516-519
partial, xiv

self-joins
alternatives to, 308, 314, 324
uses, 307, 342

separation, axiom schema of, 512
serialized data, parsing into rows, 495-499
SET differences, 45
SHOW INDEX command, 94, 99
SIGN function (MySQL/PostgreSQL), 266
sorting query results, 15-28

on data-dependent key, 27
mixed alphanumeric data, 18-21
by multiple fields, 16
NULLS and, 21-27
returning in a specified order, 15-16
by substrings, 17

SOUNDEX function, 163
specification, axiom of, 512
SPLIT_PART function, 137, 141, 155, 161
star (*) character in SELECT statements, 1
START WITH clause (Oracle), 447, 449
Stoll, Robert, 511
strings, 105-167

alphabetizing, 141-146
alphanumeric, sorting mixed, 18-21
comparing strings by sound, 162-164
converting alphanumeric strings to num‐

bers, 193-195
converting delimited data into a multivalued

IN-list, 136-141
counting the occurrences of a character in a

string, 109

Index | 545

creating a delimited list from table rows,
132-135

determining whether alphanumeric,
116-120

embedding quotes within string literals, 108
extracting elements from unfixed locations,

467-470
extracting initials from a name, 120-124
extracting the nth delimited substring,

153-160
finding text not matching a pattern, 164-167
identifying strings that can be treated as

numbers, 147-153
mixed alphanumeric, 472-473
ordering by a number in a string, 126-132
ordering by parts of a string, 125-126
parsing an IP address, 160-162
parsing into rows, 495-499
removing unwanted characters from,

110-112
separating numeric and character data,

112-116
traversing, 106-108
walking a string, 106-108

STRING_AGG function, 134, 143, 155
STRING_SPLIT function, 155, 158
STR_TO_DATE function (MySQL), 292
subqueries, 493-495, 535
subsets, axiom schema of, 512
SUBSTR function (DB2/MySQL/Oracle/Post‐

greSQL), 18, 124, 126, 140, 144, 146, 155,
159

SUBSTRING function (MySQL), 121
SUBSTRING function (SQL Server), 18, 126,

144, 288, 292
substrings

extracting the nth delimited substring,
153-160

sorting query results by, 17
SUBSTRING_INDEX function (MySQL), 121,

124, 139, 161
subtotals

calculating for all combinations, 400-410
calculating simple, 397-400
pivoting result set with, 429-434

SUM function, 174, 176
SUM OVER window function (DB2/

Oracle/SQL Server), 55, 59, 178, 180, 188,
196

summing column values, 173-175
SYS_CONNECT_BY_PATH function (Oracle),

133, 135, 143, 145, 441, 444, 457

T
tables, creating with same columns as

existing table, 71
time, grouping rows by, 416-419
TOP keyword (SQL Server), 9
TO_BASE function (Oracle), 475
TO_CHAR function (Oracle/PostgreSQL), 244,

245, 250, 255, 259
TO_NUMBER function (Oracle/PostgreSQL),

250
TRANSLATE function, 20, 105

(see also strings)
transposing result sets (Oracle), 463-467
trimmed mean, 191, 193
TRUNC function (Oracle), 248, 252, 285
TRUNCATE command, 83

U
underscore (_) operator, 13
UNION ALL operation, 29-31, 46, 48-51, 73,

516
UNION operation, 30, 48
UNPIVOT operator (SQL Server), 461-463
UPDATE statement, 76-83

V
VALUE function, 11

W
WHERE clause

determining whether a string is alphanu‐
meric, 120

finding rows that satisfy multiple condi‐
tions, 2

RECURSIVE with, 537
referencing an aliased column in, 5
retrieving a subset of rows from a table, 2
ROWNUM with, 9

whole numbers, converting to binary, 474-477
wildcard (%) operator, 13
window functions, xi, 507-533

advantages, 396, 481, 530-531
NULLs and, 523
partitions, 521-523

546 | Index

platforms supporting, 422, 483
referencing in WHERE clause, 5
reports and, 532-533
timing of, 315, 421

WITH clause (DB2/SQL Server), 440, 445, 450
WITH clause (SQL Server), 272
WITH ROLLUP (SQL Server/MySQL), 397

Y
YEAR function (DB2/MySQL/SQL Server),

250, 326
Young, Kay, 354

Z
Zermelo, Ernst, 512

Index | 547

About the Authors
Anthony Molinaro is a data scientist at Johnson & Johnson. In his current role he is a
manager in the Observational Health Data Analytics group within Janssen R&D. His
primary areas of research are nonparametric methods, time-series analysis, and large-
scale database characterization and transformation. He is a member of the open sci‐
ence OHDSI community. Anthony holds a BA in mathematics and an MA in applied
mathematics & statistics from CUNY Hunter College. He resides in New York with
his wife Georgia and his two daughters, Kiki and Connie.

Robert de Graaf graduated as an engineer and worked in the manufacturing industry
after completing his studies. While working as an engineer, Robert discovered the
power of statistics for solving real-world problems, and completed a master’s degree
in statistics in time to benefit from the data science boom. He has worked for Right‐
Ship as their senior data scientist since 2013, and is the author of Managing Your Data
Science Projects (Apress).

Colophon
The animal on the cover of SQL Cookbook is a starred agama or roughtail rock agama
(Stellagama stellio). These lizards can be found in Egypt, Turkey, Greece, and other
countries surrounding the Mediterranean Sea, and are often present in rocky moun‐
tainous and coastal regions with arid or semi-arid climates. Starred agamas are diur‐
nal and can often be found on rocks, trees, buildings, and other habitats that allow for
climbing and hiding.

Starred agamas lay anywhere from 3 to 12 eggs per clutch, and they grow to about
30–35 cm in length. This species is characterized by strong legs and—like many other
agamids—the ability to change color depending on their mood or the surrounding
temperature. Both males and females typically have gray or brown bodies with color‐
ful spots along their back and sides. Unlike other lizards, agamids such as the starred
agama cannot regenerate their tails if they lose them.

Though they can be skittish, starred agamas are not usually aggressive toward
humans and become quite tame if handled from a young age. They are commonly
kept as pets, and can be fed a combination of insects and various leafy greens. Small
groups of agamas can be housed together if the terrarium is large enough, but males
need to be kept separate from one another to prevent fighting.

The IUCN does not list the starred agama as a species of concern, and its population
is stable. Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engrav‐
ing, loose plate, source unknown. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	What’s Missing from This Book
	Platform and Version
	Tables Used in This Book
	Conventions Used in This Book
	Typographical Conventions
	Coding Conventions

	O’Reilly Online Learning
	How to Contact Us
	Second Edition Acknowledgments
	First Edition Acknowledgments

	Chapter 1. Retrieving Records
	1.1 Retrieving All Rows and Columns from a Table
	Problem
	Solution
	Discussion

	1.2 Retrieving a Subset of Rows from a Table
	Problem
	Solution
	Discussion

	1.3 Finding Rows That Satisfy Multiple Conditions
	Problem
	Solution
	Discussion

	1.4 Retrieving a Subset of Columns from a Table
	Problem
	Solution
	Discussion

	1.5 Providing Meaningful Names for Columns
	Problem
	Solution
	Discussion

	1.6 Referencing an Aliased Column in the WHERE Clause
	Problem
	Solution
	Discussion

	1.7 Concatenating Column Values
	Problem
	Solution
	Discussion

	1.8 Using Conditional Logic in a SELECT Statement
	Problem
	Solution
	Discussion

	1.9 Limiting the Number of Rows Returned
	Problem
	Solution
	Discussion

	1.10 Returning n Random Records from a Table
	Problem
	Solution
	Discussion

	1.11 Finding Null Values
	Problem
	Solution
	Discussion

	1.12 Transforming Nulls into Real Values
	Problem
	Solution
	Discussion

	1.13 Searching for Patterns
	Problem
	Solution
	Discussion

	1.14 Summing Up

	Chapter 2. Sorting Query Results
	2.1 Returning Query Results in a Specified Order
	Problem
	Solution
	Discussion

	2.2 Sorting by Multiple Fields
	Problem
	Solution
	Discussion

	2.3 Sorting by Substrings
	Problem
	Solution
	Discussion

	2.4 Sorting Mixed Alphanumeric Data
	Problem
	Solution
	Discussion

	2.5 Dealing with Nulls When Sorting
	Problem
	Solution
	Discussion

	2.6 Sorting on a Data-Dependent Key
	Problem
	Solution
	Discussion

	2.7 Summing Up

	Chapter 3. Working with Multiple Tables
	3.1 Stacking One Rowset atop Another
	Problem
	Solution
	Discussion

	3.2 Combining Related Rows
	Problem
	Solution
	Discussion

	3.3 Finding Rows in Common Between Two Tables
	Problem
	Solution
	Discussion

	3.4 Retrieving Values from One Table That Do Not Exist in Another
	Problem
	Solution
	Discussion

	3.5 Retrieving Rows from One Table That Do Not Correspond to Rows in Another
	Problem
	Solution
	Discussion

	3.6 Adding Joins to a Query Without Interfering with Other Joins
	Problem
	Solution
	Discussion
	See Also

	3.7 Determining Whether Two Tables Have the Same Data
	Problem
	Solution
	Discussion

	3.8 Identifying and Avoiding Cartesian Products
	Problem
	Solution
	Discussion

	3.9 Performing Joins When Using Aggregates
	Problem
	Solution
	Discussion

	3.10 Performing Outer Joins When Using Aggregates
	Problem
	Solution
	Discussion

	3.11 Returning Missing Data from Multiple Tables
	Problem
	Solution
	Discussion

	3.12 Using NULLs in Operations and Comparisons
	Problem
	Solution
	Discussion

	3.13 Summing Up

	Chapter 4. Inserting, Updating, and Deleting
	4.1 Inserting a New Record
	Problem
	Solution
	Discussion

	4.2 Inserting Default Values
	Problem
	Solution
	Discussion

	4.3 Overriding a Default Value with NULL
	Problem
	Solution
	Discussion

	4.4 Copying Rows from One Table into Another
	Problem
	Solution
	Discussion

	4.5 Copying a Table Definition
	Problem
	Solution
	Discussion

	4.6 Inserting into Multiple Tables at Once
	Problem
	Solution
	Discussion

	4.7 Blocking Inserts to Certain Columns
	Problem
	Solution
	Discussion

	4.8 Modifying Records in a Table
	Problem
	Solution
	Discussion

	4.9 Updating When Corresponding Rows Exist
	Problem
	Solution
	Discussion

	4.10 Updating with Values from Another Table
	Problem
	Solution
	Discussion

	4.11 Merging Records
	Problem
	Solution
	Discussion

	4.12 Deleting All Records from a Table
	Problem
	Solution
	Discussion

	4.13 Deleting Specific Records
	Problem
	Solution
	Discussion

	4.14 Deleting a Single Record
	Problem
	Solution
	Discussion

	4.15 Deleting Referential Integrity Violations
	Problem
	Solution
	Discussion

	4.16 Deleting Duplicate Records
	Problem
	Solution
	Discussion

	4.17 Deleting Records Referenced from Another Table
	Problem
	Solution
	Discussion

	4.18 Summing Up

	Chapter 5. Metadata Queries
	5.1 Listing Tables in a Schema
	Problem
	Solution
	Discussion

	5.2 Listing a Table’s Columns
	Problem
	Solution
	Discussion

	5.3 Listing Indexed Columns for a Table
	Problem
	Solution
	Discussion

	5.4 Listing Constraints on a Table
	Problem
	Solution
	Discussion

	5.5 Listing Foreign Keys Without Corresponding Indexes
	Problem
	Solution
	Discussion

	5.6 Using SQL to Generate SQL
	Problem
	Solution
	Discussion

	5.7 Describing the Data Dictionary Views in an Oracle Database
	Problem
	Solution
	Discussion

	5.8 Summing Up

	Chapter 6. Working with Strings
	6.1 Walking a String
	Problem
	Solution
	Discussion

	6.2 Embedding Quotes Within String Literals
	Problem
	Solution
	Discussion

	6.3 Counting the Occurrences of a Character in a String
	Problem
	Solution
	Discussion

	6.4 Removing Unwanted Characters from a String
	Problem
	Solution
	Discussion

	6.5 Separating Numeric and Character Data
	Problem
	Solution
	Discussion

	6.6 Determining Whether a String Is Alphanumeric
	Problem
	Solution
	Discussion

	6.7 Extracting Initials from a Name
	Problem
	Solution
	Discussion

	6.8 Ordering by Parts of a String
	Problem
	Solution
	Discussion

	6.9 Ordering by a Number in a String
	Problem
	Solution
	Discussion

	6.10 Creating a Delimited List from Table Rows
	Problem
	Solution
	Discussion

	6.11 Converting Delimited Data into a Multivalued IN-List
	Problem
	Solution
	Discussion

	6.12 Alphabetizing a String
	Problem
	Solution
	Discussion

	6.13 Identifying Strings That Can Be Treated as Numbers
	Problem
	Solution
	Discussion

	6.14 Extracting the nth Delimited Substring
	Problem
	Solution
	Discussion

	6.15 Parsing an IP Address
	Problem
	Solution
	Discussion

	6.16 Comparing Strings by Sound
	Problem
	Solution
	Discussion

	6.17 Finding Text Not Matching a Pattern
	Problem
	Solution
	Discussion

	6.18 Summing Up

	Chapter 7. Working with Numbers
	7.1 Computing an Average
	Problem
	Solution
	Discussion
	See Also

	7.2 Finding the Min/Max Value in a Column
	Problem
	Solution
	Discussion
	See Also

	7.3 Summing the Values in a Column
	Problem
	Solution
	Discussion
	See Also

	7.4 Counting Rows in a Table
	Problem
	Solution
	Discussion
	See Also

	7.5 Counting Values in a Column
	Problem
	Solution
	Discussion

	7.6 Generating a Running Total
	Problem
	Solution
	Discussion

	7.7 Generating a Running Product
	Problem
	Solution
	Discussion

	7.8 Smoothing a Series of Values
	Problem
	Solution
	Discussion

	7.9 Calculating a Mode
	Problem
	Solution
	Discussion
	See Also

	7.10 Calculating a Median
	Problem
	Solution
	Discussion

	7.11 Determining the Percentage of a Total
	Problem
	Solution
	Discussion

	7.12 Aggregating Nullable Columns
	Problem
	Solution
	Discussion

	7.13 Computing Averages Without High and Low Values
	Problem
	Solution
	Discussion

	7.14 Converting Alphanumeric Strings into Numbers
	Problem
	Solution
	Discussion

	7.15 Changing Values in a Running Total
	Problem
	Solution
	Discussion

	7.16 Finding Outliers Using the Median Absolute Deviation
	Problem
	Solution
	Discussion

	7.17 Finding Anomalies Using Benford’s Law
	Problem
	Solution
	Discussion

	7.18 Summing Up

	Chapter 8. Date Arithmetic
	8.1 Adding and Subtracting Days, Months, and Years
	Problem
	Solution
	Discussion

	8.2 Determining the Number of Days Between Two Dates
	Problem
	Solution
	Discussion

	8.3 Determining the Number of Business Days Between Two Dates
	Problem
	Solution
	Discussion

	8.4 Determining the Number of Months or Years Between Two Dates
	Problem
	Solution
	Discussion

	8.5 Determining the Number of Seconds, Minutes, or Hours Between Two Dates
	Problem
	Solution
	Discussion

	8.6 Counting the Occurrences of Weekdays in a Year
	Problem
	Solution
	Discussion

	8.7 Determining the Date Difference Between the Current Record and the Next Record
	Problem
	Solution
	Discussion

	8.8 Summing Up

	Chapter 9. Date Manipulation
	9.1 Determining Whether a Year Is a Leap Year
	Problem
	Solution
	Discussion

	9.2 Determining the Number of Days in a Year
	Problem
	Solution
	Discussion

	9.3 Extracting Units of Time from a Date
	Problem
	Solution
	Discussion

	9.4 Determining the First and Last Days of a Month
	Problem
	Solution
	Discussion

	9.5 Determining All Dates for a Particular Weekday Throughout a Year
	Problem
	Solution
	Discussion

	9.6 Determining the Date of the First and Last Occurrences of a Specific Weekday in a Month
	Problem
	Solution
	Discussion

	9.7 Creating a Calendar
	Problem
	Solution
	Discussion

	9.8 Listing Quarter Start and End Dates for the Year
	Problem
	Solution
	Discussion

	9.9 Determining Quarter Start and End Dates for a Given Quarter
	Problem
	Solution
	Discussion

	9.10 Filling in Missing Dates
	Problem
	Solution
	Discussion

	9.11 Searching on Specific Units of Time
	Problem
	Solution
	Discussion

	9.12 Comparing Records Using Specific Parts of a Date
	Problem
	Solution
	Discussion

	9.13 Identifying Overlapping Date Ranges
	Problem
	Solution
	Discussion

	9.14 Summing Up

	Chapter 10. Working with Ranges
	10.1 Locating a Range of Consecutive Values
	Problem
	Solution
	Discussion

	10.2 Finding Differences Between Rows in the Same Group or Partition
	Problem
	Solution

	10.3 Locating the Beginning and End of a Range of Consecutive Values
	Problem
	Solution
	Discussion

	10.4 Filling in Missing Values in a Range of Values
	Problem
	Solution
	Discussion

	10.5 Generating Consecutive Numeric Values
	Problem
	Solution
	Discussion

	10.6 Summing Up

	Chapter 11. Advanced Searching
	11.1 Paginating Through a Result Set
	Problem
	Solution
	Discussion

	11.2 Skipping n Rows from a Table
	Problem
	Solution
	Discussion

	11.3 Incorporating OR Logic When Using Outer Joins
	Problem
	Solution
	Discussion

	11.4 Determining Which Rows Are Reciprocals
	Problem
	Solution
	Discussion

	11.5 Selecting the Top n Records
	Problem
	Solution
	Discussion

	11.6 Finding Records with the Highest and Lowest Values
	Problem
	Solution
	Discussion

	11.7 Investigating Future Rows
	Problem
	Solution
	Discussion
	See Also

	11.8 Shifting Row Values
	Problem
	Solution
	Discussion

	11.9 Ranking Results
	Problem
	Solution
	Discussion

	11.10 Suppressing Duplicates
	Problem
	Solution
	Discussion

	11.11 Finding Knight Values
	Problem
	Solution
	Discussion

	11.12 Generating Simple Forecasts
	Problem
	Solution
	Discussion

	11.13 Summing Up

	Chapter 12. Reporting and Reshaping
	12.1 Pivoting a Result Set into One Row
	Problem
	Solution
	Discussion

	12.2 Pivoting a Result Set into Multiple Rows
	Problem
	Solution
	Discussion

	12.3 Reverse Pivoting a Result Set
	Problem
	Solution
	Discussion

	12.4 Reverse Pivoting a Result Set into One Column
	Problem
	Solution
	Discussion

	12.5 Suppressing Repeating Values from a Result Set
	Problem
	Solution
	Discussion

	12.6 Pivoting a Result Set to Facilitate Inter-Row Calculations
	Problem
	Solution
	Discussion

	12.7 Creating Buckets of Data, of a Fixed Size
	Problem
	Solution
	Discussion

	12.8 Creating a Predefined Number of Buckets
	Problem
	Solution
	Discussion

	12.9 Creating Horizontal Histograms
	Problem
	Solution
	Discussion

	12.10 Creating Vertical Histograms
	Problem
	Solution
	Discussion

	12.11 Returning Non-GROUP BY Columns
	Problem
	Solution
	Discussion

	12.12 Calculating Simple Subtotals
	Problem
	Solution
	Discussion

	12.13 Calculating Subtotals for All Possible Expression Combinations
	Problem
	Solution
	Discussion

	12.14 Identifying Rows That Are Not Subtotals
	Problem
	Solution
	Discussion

	12.15 Using Case Expressions to Flag Rows
	Problem
	Solution
	Discussion

	12.16 Creating a Sparse Matrix
	Problem
	Solution
	Discussion

	12.17 Grouping Rows by Units of Time
	Problem
	Solution
	Discussion

	12.18 Performing Aggregations over Different Groups/Partitions Simultaneously
	Problem
	Solution
	Discussion

	12.19 Performing Aggregations over a Moving Range of Values
	Problem
	Solution
	Discussion

	12.20 Pivoting a Result Set with Subtotals
	Problem
	Solution
	Discussion

	12.21 Summing Up

	Chapter 13. Hierarchical Queries
	13.1 Expressing a Parent-Child Relationship
	Problem
	Solution
	Discussion

	13.2 Expressing a Child-Parent-Grandparent Relationship
	Problem
	Solution
	Discussion

	13.3 Creating a Hierarchical View of a Table
	Problem
	Solution
	Discussion

	13.4 Finding All Child Rows for a Given Parent Row
	Problem
	Solution
	Discussion

	13.5 Determining Which Rows Are Leaf, Branch, or
Root Nodes
	Problem
	Solution
	Discussion

	13.6 Summing Up

	Chapter 14. Odds ’n’ Ends
	14.1 Creating Cross-Tab Reports Using SQL Server’s PIVOT Operator
	Problem
	Solution
	Discussion

	14.2 Unpivoting a Cross-Tab Report Using SQL Server’s UNPIVOT Operator
	Problem
	Solution

	14.3 Transposing a Result Set Using Oracle’s MODEL Clause
	Problem
	Solution
	Discussion

	14.4 Extracting Elements of a String from Unfixed Locations
	Problem
	Solution
	Discussion

	14.5 Finding the Number of Days in a Year (an Alternate Solution for Oracle)
	Problem
	Solution
	Discussion

	14.6 Searching for Mixed Alphanumeric Strings
	Problem
	Solution
	Discussion

	14.7 Converting Whole Numbers to Binary Using Oracle
	Problem
	Solution
	Discussion

	14.8 Pivoting a Ranked Result Set
	Problem
	Solution
	Discussion

	14.9 Adding a Column Header into a Double Pivoted Result Set
	Problem
	Solution
	Discussion

	14.10 Converting a Scalar Subquery to a Composite Subquery in Oracle
	Problem
	Solution
	Discussion

	14.11 Parsing Serialized Data into Rows
	Problem
	Solution
	Discussion

	14.12 Calculating Percent Relative to Total
	Problem
	Solution
	Discussion

	14.13 Testing for Existence of a Value Within a Group
	Problem
	Solution
	Discussion

	14.14 Summing Up

	Appendix A. Window Function Refresher
	Grouping
	Definition of an SQL Group
	Paradoxes
	Relationship Between SELECT and GROUP BY

	Windowing
	A Simple Example
	Order of Evaluation
	Partitions
	Effect of NULLs
	When Order Matters
	The Framing Clause
	A Framing Finale
	Readability + Performance = Power
	Providing a Base

	Appendix B. Common Table Expressions
	Subqueries
	Common Table Expressions
	Summing Up

	Index
	About the Authors

