

Microsoft	Excel	2019	VBA	and
Macros

Bill	Jelen
Tracy	Syrstad

Microsoft	Excel	2019	VBA	and	Macros

Published	with	the	authorization	of	Microsoft	Corporation	by:
Pearson	Education,	Inc.

Copyright	©	2019	by	Pearson	Education,	Inc.

All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is	protected	by	copyright,	and
permission	must	be	obtained	from	the	publisher	prior	to	any	prohibited	reproduction,	storage	in	a	retrieval
system,	or	transmission	in	any	form	or	by	any	means,	electronic,	mechanical,	photocopying,	recording,	or
likewise.	For	information	regarding	permissions,	request	forms,	and	the	appropriate	contacts	within	the
Pearson	Education	Global	Rights	&	Permissions	Department,	please	visit
www.pearsoned.com/permissions/.	No	patent	liability	is	assumed	with	respect	to	the	use	of	the	information
contained	herein.	Although	every	precaution	has	been	taken	in	the	preparation	of	this	book,	the	publisher
and	author	assume	no	responsibility	for	errors	or	omissions.	Nor	is	any	liability	assumed	for	damages
resulting	from	the	use	of	the	information	contained	herein.

ISBN-13:	978-1-5093-0611-4
ISBN-10:	1-5093-0611-0

Library	of	Congress	Control	Number:		2018963483

1			18

Trademarks

Microsoft	and	the	trademarks	listed	at	http://www.microsoft.com	on	the	“Trademarks”	webpage	are
trademarks	of	the	Microsoft	group	of	companies.	All	other	marks	are	property	of	their	respective	owners.

Warning	and	Disclaimer

Every	effort	has	been	made	to	make	this	book	as	complete	and	as	accurate	as	possible,	but	no	warranty	or
fitness	is	implied.	The	information	provided	is	on	an	“as	is”	basis.	The	author,	the	publisher,	and	Microsoft
Corporation	shall	have	neither	liability	nor	responsibility	to	any	person	or	entity	with	respect	to	any	loss	or
damages	arising	from	the	information	contained	in	this	book.

Special	Sales

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales	opportunities	(which	may
include	electronic	versions;	custom	cover	designs;	and	content	particular	to	your	business,	training	goals,
marketing	focus,	or	branding	interests),	please	contact	our	corporate	sales	department	at
corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact	governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact	intlcs@pearson.com.

Editor-in-Chief:	Brett	Bartow

Executive	Editor:	Loretta	Yates

Project	Editor:	Charlotte	Kughen

Managing	Editor:	Sandra	Schroeder

Senior	Project	Editor:	Tracey	Croom

http://www.pearsoned.com/permissions/
http://www.microsoft.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Copy	Editor:	Charlotte	Kughen

Indexer:	Cheryl	Lenser

Proofreaders:	Sarah	Kearns	and	Karen	Davis

Technical	Editor:	Bob	Umlas

Editorial	Assistant:	Cindy	Teeters

Cover	Designer:	Twist	Creative,	Seattle

Compositor:	Bronkella	Publishing	LLC

For	Chip	Pearson.	Chip’s	website	on	VBA	helped	tens	of	thousands
of	people	around	the	globe.	We	were	sorry	to	hear	that	he	died	this
year	in	an	auto	accident	and	dedicate	this	edition	of	the	book	to
Chip.

—Bill	Jelen	&	Tracy	Syrstad

Contents	at	a	Glance

Introduction

CHAPTER	1			Unleashing	the	power	of	Excel	with	VBA

CHAPTER	2			This	sounds	like	BASIC,	so	why	doesn’t	it	look	familiar?

CHAPTER	3			Referring	to	ranges

CHAPTER	4			Looping	and	flow	control

CHAPTER	5			R1C1-style	formulas

CHAPTER	6			Creating	and	manipulating	names	in	VBA

CHAPTER	7			Event	programming

CHAPTER	8			Arrays

CHAPTER	9			Creating	classes	and	collections

CHAPTER	10	Userforms:	An	introduction

CHAPTER	11	Data	mining	with	Advanced	Filter

CHAPTER	12	Using	VBA	to	create	pivot	tables

CHAPTER	13	Excel	power

CHAPTER	14	Sample	user-defined	functions

CHAPTER	15	Creating	charts

CHAPTER	16	Data	visualizations	and	conditional	formatting

CHAPTER	17	Dashboarding	with	sparklines	in	Excel	2019

CHAPTER	18	Reading	from	and	writing	to	the	web

CHAPTER	19	Text	file	processing

CHAPTER	20	Automating	Word

CHAPTER	21	Using	Access	as	a	back	end	to	enhance	multiuser	access	to	data

CHAPTER	22	Advanced	userform	techniques

CHAPTER	23	The	Windows	Application	Programming	Interface	(API)

CHAPTER	24	Handling	errors

CHAPTER	25	Customizing	the	ribbon	to	run	macros

CHAPTER	26	Creating	add-ins

CHAPTER	27	An	introduction	to	creating	Office	add-ins

CHAPTER	28	What’s	new	in	Excel	2019	and	what’s	changed

Index

Contents

Introduction

Chapter	1			Unleashing	the	power	of	Excel	with	VBA

Barriers	to	entry
The	macro	recorder	doesn’t	work!
No	one	person	on	the	Excel	team	is	focused	on	the	macro

recorder
Visual	Basic	is	not	like	BASIC
Good	news:	Climbing	the	learning	curve	is	easy
Great	news:	Excel	with	VBA	is	worth	the	effort

Knowing	your	tools:	The	Developer	tab
Understanding	which	file	types	allow	macros
Macro	security

Adding	a	trusted	location
Using	macro	settings	to	enable	macros	in	workbooks	outside

trusted	locations
Using	Disable	All	Macros	With	Notification

Overview	of	recording,	storing,	and	running	a	macro
Filling	out	the	Record	Macro	dialog	box

Running	a	macro
Creating	a	macro	button	on	the	ribbon
Creating	a	macro	button	on	the	Quick	Access	Toolbar
Assigning	a	macro	to	a	form	control,	text	box,	or	shape

Understanding	the	VB	Editor
VB	Editor	settings
The	Project	Explorer
The	Properties	window

Understanding	shortcomings	of	the	macro	recorder

Recording	the	macro
Examining	code	in	the	Programming	window
Running	the	macro	on	another	day	produces	undesired

results
Possible	solution:	Use	relative	references	when	recording
Never	use	AutoSum	or	Quick	Analysis	while	recording	a

macro
Four	tips	for	using	the	macro	recorder

Next	steps

Chapter	2			This	sounds	like	BASIC,	so	why	doesn’t	it	look	familiar?

Understanding	the	parts	of	VBA	“speech”
VBA	is	not	really	hard

VBA	Help	files:	Using	F1	to	find	anything
Using	Help	topics

Examining	recorded	macro	code:	Using	the	VB	Editor	and	Help
Optional	parameters
Defined	constants
Properties	can	return	objects

Using	debugging	tools	to	figure	out	recorded	code
Stepping	through	code
More	debugging	options:	Breakpoints
Backing	up	or	moving	forward	in	code
Not	stepping	through	each	line	of	code
Querying	anything	while	stepping	through	code
Using	a	watch	to	set	a	breakpoint
Using	a	watch	on	an	object

Object	Browser:	The	ultimate	reference
Seven	tips	for	cleaning	up	recorded	code

Tip	1:	Don’t	select	anything
Tip	2:	Use	Cells(2,5)	because	it’s	more	convenient	than

Range("E2")

Tip	3:	Use	more	reliable	ways	to	find	the	last	row

Tip	4:	Use	variables	to	avoid	hard-coding	rows	and	formulas
Tip	5:	Use	R1C1	formulas	that	make	your	life	easier
Tip	6:	Copy	and	paste	in	a	single	statement
Tip	7:	Use	With...End	With	to	perform	multiple	actions

Next	steps

Chapter	3			Referring	to	ranges

The	Range	object
Syntax	for	specifying	a	range
Referencing	named	ranges
Shortcut	for	referencing	ranges

Referencing	ranges	in	other	sheets
Referencing	a	range	relative	to	another	range
Using	the	Cells	property	to	select	a	range
Using	the	Offset	property	to	refer	to	a	range
Using	the	Resize	property	to	change	the	size	of	a	range
Using	the	Columns	and	Rows	properties	to	specify	a	range
Using	the	Union	method	to	join	multiple	ranges
Using	the	Intersect	method	to	create	a	new	range	from

overlapping	ranges
Using	the	IsEmpty	function	to	check	whether	a	cell	is	empty
Using	the	CurrentRegion	property	to	select	a	data	range
Using	the	Areas	collection	to	return	a	noncontiguous	range
Referencing	tables
Next	steps

Chapter	4			Looping	and	flow	control

For...Next	loops
Using	variables	in	the	For	statement
Variations	on	the	For...Next	loop
Exiting	a	loop	early	after	a	condition	is	met
Nesting	one	loop	inside	another	loop

Do	loops
Using	the	While	or	Until	clause	in	Do	loops

The	VBA	loop:	For	Each
Object	variables

Flow	control:	Using	If...Then...Else	and	Select	Case
Basic	flow	control:	If...Then...Else
Using	Select	Case...End	Select	for	multiple	conditions

Next	steps

Chapter	5			R1C1-style	formulas

Toggling	to	R1C1-style	references
Witnessing	the	miracle	of	Excel	formulas

Entering	a	formula	once	and	copying	1,000	times
The	secret:	It’s	not	that	amazing

Understanding	the	R1C1	reference	style
Using	R1C1	with	relative	references
Using	R1C1	with	absolute	references
Using	R1C1	with	mixed	references
Referring	to	entire	columns	or	rows	with	R1C1	style
Replacing	many	A1	formulas	with	a	single	R1C1	formula
Remembering	column	numbers	associated	with	column

letters
Using	R1C1	formulas	with	array	formulas
Next	steps

Chapter	6			Creating	and	manipulating	names	in	VBA

Global	versus	local	names
Adding	names
Deleting	names
Adding	comments
Types	of	names

Formulas
Strings

Numbers
Tables
Using	arrays	in	names
Reserved	names

Hiding	names
Checking	for	the	existence	of	a	name
Next	steps

Chapter	7			Event	programming

Levels	of	events
Using	events

Event	parameters
Enabling	events

Workbook	events
Workbook-level	sheet	events

Worksheet	events
Chart	events

Embedded	charts
Embedded	chart	and	chart	sheet	events

Application-level	events
Next	steps

Chapter	8			Arrays

Declaring	an	array
Declaring	a	multidimensional	array
Filling	an	array
Retrieving	data	from	an	array
Using	arrays	to	speed	up	code
Using	dynamic	arrays
Passing	an	array
Next	steps

Chapter	9			Creating	classes	and	collections

Inserting	a	class	module
Trapping	application	and	embedded	chart	events

Application	events
Embedded	chart	events

Creating	a	custom	object
Using	a	custom	object
Using	collections

Creating	a	collection
Creating	a	collection	in	a	standard	module
Creating	a	collection	in	a	class	module

Using	dictionaries
Using	user-defined	types	to	create	custom	properties
Next	steps

Chapter	10	Userforms:	An	introduction

Input	boxes
Message	boxes
Creating	a	userform
Calling	and	hiding	a	userform
Programming	userforms

Userform	events
Programming	controls
Using	basic	form	controls

Using	labels,	text	boxes,	and	command	buttons
Deciding	whether	to	use	list	boxes	or	combo	boxes	in	forms
Using	the	MultiSelect	property	of	a	list	box
Adding	option	buttons	to	a	userform
Adding	graphics	to	a	userform
Using	a	spin	button	on	a	userform
Using	the	MultiPage	control	to	combine	forms

Verifying	field	entry
Illegal	window	closing

Getting	a	file	name
Next	steps

Chapter	11	Data	mining	with	Advanced	Filter

Replacing	a	loop	with	AutoFilter
Using	AutoFilter	techniques
Selecting	visible	cells	only

Advanced	Filter—easier	in	VBA	than	in	Excel
Using	the	Excel	interface	to	build	an	advanced	filter

Using	Advanced	Filter	to	extract	a	unique	list	of	values
Extracting	a	unique	list	of	values	with	the	user	interface
Extracting	a	unique	list	of	values	with	VBA	code
Getting	unique	combinations	of	two	or	more	fields

Using	Advanced	Filter	with	criteria	ranges
Joining	multiple	criteria	with	a	logical	OR
Joining	two	criteria	with	a	logical	AND
Other	slightly	complex	criteria	ranges
The	most	complex	criteria:	Replacing	the	list	of	values	with	a

condition	created	as	the	result	of	a	formula
Setting	up	a	condition	as	the	result	of	a	formula

Using	filter	in	place	in	Advanced	Filter
Catching	no	records	when	using	a	filter	in	place
Showing	all	records	after	running	a	filter	in	place

The	real	workhorse:	xlFilterCopy	with	all	records	rather	than
unique	records	only

Copying	all	columns
Copying	a	subset	of	columns	and	reordering
Excel	in	practice:	Turning	off	a	few	drop-down	menus	in	the

AutoFilter
Next	steps

Chapter	12	Using	VBA	to	create	pivot	tables

Understanding	how	pivot	tables	evolved	over	various	Excel

versions
While	building	a	pivot	table	in	Excel	VBA

Defining	the	pivot	cache
Creating	and	configuring	the	pivot	table
Adding	fields	to	the	data	area
Learning	why	you	cannot	move	or	change	part	of	a	pivot

report
Determining	the	size	of	a	finished	pivot	table	to	convert	the

pivot	table	to	values
Using	advanced	pivot	table	features

Using	multiple	value	fields
Grouping	daily	dates	to	months,	quarters,	or	years
Changing	the	calculation	to	show	percentages
Eliminating	blank	cells	in	the	values	area
Controlling	the	sort	order	with	AutoSort
Replicating	the	report	for	every	product

Filtering	a	data	set
Manually	filtering	two	or	more	items	in	a	pivot	field
Using	the	conceptual	filters
Using	the	search	filter
Setting	up	slicers	to	filter	a	pivot	table
Setting	up	a	timeline	to	filter	an	Excel	2019	pivot	table

Using	the	Data	Model	in	Excel	2019
Adding	both	tables	to	the	Data	Model
Creating	a	relationship	between	the	two	tables
Defining	the	pivot	cache	and	building	the	pivot	table
Adding	model	fields	to	the	pivot	table
Adding	numeric	fields	to	the	values	area
Putting	it	all	together

Using	other	pivot	table	features
Calculated	data	fields
Calculated	items
Using	ShowDetail	to	filter	a	record	set

Changing	the	layout	from	the	Design	tab
Settings	for	the	report	layout
Suppressing	subtotals	for	multiple	row	fields

Next	steps

Chapter	13	Excel	power

File	operations
Listing	files	in	a	directory
Importing	and	deleting	a	CSV	file
Reading	a	text	file	into	memory	and	parsing

Combining	and	separating	workbooks
Separating	worksheets	into	workbooks
Combining	workbooks
Copying	data	to	separate	worksheets	without	using	Filter
Exporting	data	to	an	XML	file

Working	with	cell	comments
Resizing	comments
Placing	a	chart	in	a	comment

Tracking	user	changes
Techniques	for	VBA	pros

Creating	an	Excel	state	class	module
Drilling-down	a	pivot	table
Filtering	an	OLAP	pivot	table	by	a	list	of	items
Creating	a	custom	sort	order
Creating	a	cell	progress	indicator
Using	a	protected	password	box
Changing	case
Selecting	with	SpecialCells
Resetting	a	table’s	format
Using	VBA	Extensibility	to	add	code	to	new	workbooks

Next	steps

Chapter	14	Sample	user-defined	functions

Creating	user-defined	functions
Building	a	simple	custom	function

Sharing	UDFs
Useful	custom	Excel	functions

Setting	the	current	workbook’s	name	in	a	cell
Setting	the	current	workbook’s	name	and	file	path	in	a	cell
Checking	whether	a	workbook	is	open
Checking	whether	a	sheet	in	an	open	workbook	exists
Counting	the	number	of	workbooks	in	a	directory
Retrieving	the	user	ID
Retrieving	date	and	time	of	last	save
Retrieving	permanent	date	and	time
Validating	an	email	address
Summing	cells	based	on	interior	color
Counting	unique	values
Removing	duplicates	from	a	range
Finding	the	first	nonzero-length	cell	in	a	range
Substituting	multiple	characters
Retrieving	numbers	from	mixed	text
Converting	week	number	into	date
Extracting	a	single	element	from	a	delimited	string
Sorting	and	concatenating
Sorting	numeric	and	alpha	characters
Searching	for	a	string	within	text
Reversing	the	contents	of	a	cell
Returning	the	addresses	of	duplicate	maximum	values
Returning	a	hyperlink	address
Returning	the	column	letter	of	a	cell	address
Using	static	random
Using	Select…Case	on	a	worksheet

Next	steps

Chapter	15	Creating	charts

Using	.AddChart2	to	create	a	chart
Understanding	chart	styles
Formatting	a	chart

Referring	to	a	specific	chart
Specifying	a	chart	title
Applying	a	chart	color
Filtering	a	chart
Using	SetElement	to	emulate	changes	from	the	plus	icon
Using	the	format	method	to	micromanage	formatting	options
Changing	an	object’s	fill
Formatting	line	settings

Creating	a	combo	chart
Creating	map	charts
Creating	waterfall	charts
Exporting	a	chart	as	a	graphic
Considering	backward	compatibility
Next	steps

Chapter	16	Data	visualizations	and	conditional	formatting

VBA	methods	and	properties	for	data	visualizations
Adding	data	bars	to	a	range
Adding	color	scales	to	a	range
Adding	icon	sets	to	a	range

Specifying	an	icon	set
Specifying	ranges	for	each	icon

Using	visualization	tricks
Creating	an	icon	set	for	a	subset	of	a	range
Using	two	colors	of	data	bars	in	a	range

Using	other	conditional	formatting	methods
Formatting	cells	that	are	above	or	below	average
Formatting	cells	in	the	top	10	or	bottom	5
Formatting	unique	or	duplicate	cells

Formatting	cells	based	on	their	value
Formatting	cells	that	contain	text
Formatting	cells	that	contain	dates
Formatting	cells	that	contain	blanks	or	errors
Using	a	formula	to	determine	which	cells	to	format
Using	the	new	NumberFormat	property

Next	steps

Chapter	17	Dashboarding	with	sparklines	in	Excel	2019

Creating	sparklines
Scaling	sparklines
Formatting	sparklines

Using	theme	colors
Using	RGB	colors
Formatting	sparkline	elements
Formatting	win/loss	charts

Creating	a	dashboard
Observations	about	sparklines
Creating	hundreds	of	individual	sparklines	in	a	dashboard

Next	steps

Chapter	18	Reading	from	and	writing	to	the	web

Getting	data	from	the	web
Building	multiple	queries	with	VBA
Finding	results	from	retrieved	data
Putting	it	all	together
Examples	of	scraping	websites	using	web	queries

Using	Application.OnTime	to	periodically	analyze	data
Using	ready	mode	for	scheduled	procedures
Specifying	a	window	of	time	for	an	update
Canceling	a	previously	scheduled	macro
Closing	Excel	cancels	all	pending	scheduled	macros
Scheduling	a	macro	to	run	x	minutes	in	the	future

Scheduling	a	verbal	reminder
Scheduling	a	macro	to	run	every	two	minutes

Publishing	data	to	a	web	page
Using	VBA	to	create	custom	web	pages
Using	Excel	as	a	content	management	system
Bonus:	FTP	from	Excel

Next	steps

Chapter	19	Text	file	processing

Importing	from	text	files
Importing	text	files	with	fewer	than	1,048,576	rows
Dealing	with	text	files	with	more	than	1,048,576	rows

Writing	Text	Files
Next	steps

Chapter	20	Automating	Word

Using	early	binding	to	reference	a	Word	object
Using	late	binding	to	reference	a	Word	object
Using	the	New	keyword	to	reference	the	Word	application
Using	the	CreateObject	function	to	create	a	new	instance	of	an

object
Using	the	GetObject	function	to	reference	an	existing	instance	of

Word
Using	constant	values

Using	the	Watches	window	to	retrieve	the	real	value	of	a
constant

Using	the	Object	Browser	to	retrieve	the	real	value	of	a
constant

Understanding	Word’s	objects
The	Document	object

Controlling	form	fields	in	Word
Next	steps

Chapter	21	Using	Access	as	a	back	end	to	enhance	multiuser	access	to	data

ADO	versus	DAOs
The	tools	of	ADO
Adding	a	record	to	a	database
Retrieving	records	from	a	database
Updating	an	existing	record
Deleting	records	via	ADO
Summarizing	records	via	ADO
Other	utilities	via	ADO

Checking	for	the	existence	of	tables
Checking	for	the	existence	of	a	field
Adding	a	table	on	the	fly
Adding	a	field	on	the	fly

SQL	Server	examples
Next	steps

Chapter	22	Advanced	userform	techniques

Using	the	UserForm	toolbar	in	the	design	of	controls	on	userforms
More	userform	controls

CheckBox	controls
TabStrip	controls
RefEdit	controls
ToggleButton	controls
Using	a	scrollbar	as	a	slider	to	select	values

Controls	and	collections
Modeless	userforms
Using	hyperlinks	in	userforms
Adding	controls	at	runtime

Resizing	the	userform	on	the	fly
Adding	a	control	on	the	fly
Sizing	on	the	fly
Adding	other	controls

Adding	an	image	on	the	fly
Putting	it	all	together

Adding	help	to	a	userform
Showing	accelerator	keys
Adding	control	tip	text
Creating	the	tab	order
Coloring	the	active	control

Creating	transparent	forms
Next	steps

Chapter	23	The	Windows	Application	Programming	Interface	(API)

Understanding	an	API	declaration
Using	an	API	declaration
Making	32-bit-	and	64-bit-compatible	API	declarations
API	function	examples

Retrieving	the	computer	name
Checking	whether	an	Excel	file	is	open	on	a	network
Retrieving	display-resolution	information
Customizing	the	About	dialog	box
Disabling	the	X	for	closing	a	userform
Creating	a	running	timer
Playing	sounds

Next	steps

Chapter	24	Handling	errors

What	happens	when	an	error	occurs?
A	misleading	debug	error	in	userform	code

Basic	error	handling	with	the	On	Error	GoTo	syntax
Generic	error	handlers

Handling	errors	by	choosing	to	ignore	them
Suppressing	Excel	warnings
Encountering	errors	on	purpose

Training	your	clients

Errors	that	won’t	show	up	in	debug	mode
Errors	while	developing	versus	errors	months	later

Runtime	error	9:	Subscript	out	of	range
Runtime	error	1004:	Method	range	of	object	global	failed

The	ills	of	protecting	code
More	problems	with	passwords
Errors	caused	by	different	versions
Next	steps

Chapter	25	Customizing	the	ribbon	to	run	macros

Where	to	add	code:	The	customui	folder	and	file
Creating	a	tab	and	a	group
Adding	a	control	to	a	ribbon
Accessing	the	file	structure
Understanding	the	RELS	file
Renaming	an	Excel	file	and	opening	a	workbook
Using	images	on	buttons

Using	Microsoft	Office	icons	on	a	ribbon
Adding	custom	icon	images	to	a	ribbon

Troubleshooting	error	messages
The	attribute	“Attribute	Name”	on	the	element	“customui

ribbon”	is	not	defined	in	the	DTD/schema
Illegal	qualified	name	character
Element	“customui	Tag	Name”	is	unexpected	according	to

content	model	of	parent	element	“customui	Tag	Name”
Found	a	problem	with	some	content
Wrong	number	of	arguments	or	invalid	property	assignment
Invalid	file	format	or	file	extension
Nothing	happens

Other	ways	to	run	a	macro
Using	a	keyboard	shortcut	to	run	a	macro
Attaching	a	macro	to	a	command	button
Attaching	a	macro	to	a	shape

Attaching	a	macro	to	an	ActiveX	control
Running	a	macro	from	a	hyperlink

Next	steps

Chapter	26	Creating	add-ins

Characteristics	of	standard	add-ins
Converting	an	Excel	workbook	to	an	add-in

Using	Save	As	to	convert	a	file	to	an	add-in
Using	the	VB	Editor	to	convert	a	file	to	an	add-in

Having	a	client	install	an	add-in
Standard	add-ins	are	not	secure
Closing	add-ins
Removing	add-ins
Using	a	hidden	workbook	as	an	alternative	to	an	add-in
Next	steps

Chapter	27	An	introduction	to	creating	Office	add-ins

Creating	your	first	Office	add-in—Hello	World
Adding	interactivity	to	an	Office	add-in
A	basic	introduction	to	HTML

Using	tags
Adding	buttons
Using	CSS	files

Using	XML	to	define	an	Office	add-in
Using	JavaScript	to	add	interactivity	to	an	Office	add-in

The	structure	of	a	function
Curly	braces	and	spaces
Semicolons	and	line	breaks
Comments
Variables
Strings
Arrays

JavaScript	for	loops
How	to	do	an	if	statement	in	JavaScript
How	to	do	a	Select..Case	statement	in	JavaScript
How	to	use	a	For	each..next	statement	in	JavaScript
Mathematical,	logical,	and	assignment	Operators
Math	functions	in	JavaScript
Writing	to	the	content	pane	or	task	pane
JavaScript	changes	for	working	in	an	Office	add-in

Next	steps

Chapter	28	What’s	new	in	Excel	2019	and	what’s	changed

Office	365	subscription	versus	Excel	2019	perpetual
If	it	has	changed	in	the	front	end,	it	has	changed	in	VBA

The	ribbon
Single-document	interface
Modern	array	formulas
Quick	Analysis	tool
Charts
Pivot	tables
Slicers
Icons
3D	Models
SmartArt

Learning	the	new	objects	and	methods
Compatibility	mode

Using	the	Version	property
Using	the	Excel8CompatibilityMode	property

Next	steps

Index

Acknowledgments

Thanks	to	Tracy	Syrstad	for	being	a	great	coauthor.

Bob	Umlas	is	the	smartest	Excel	guy	I	know	and	is	an	awesome	technical	editor.
At	Pearson,	Loretta	Yates	is	an	excellent	acquisitions	editor.	Thanks	to	the
Kughens	for	guiding	this	book	through	production.	I	updated	this	edition	in
residence	at	the	Kola	Mi	Writing	Camp.	My	sincere	thanks	to	the	staff	there	for
keeping	me	on	track.

Along	the	way,	I’ve	learned	a	lot	about	VBA	programming	from	the	awesome
community	at	the	MrExcel.com	message	board.	VoG,	Richard	Schollar,	and	Jon
von	der	Heyden	all	stand	out	as	having	contributed	posts	that	led	to	ideas	in	this
book.	Thanks	to	Pam	Gensel	for	Excel	macro	lesson	#1.	Mala	Singh	taught	me
about	creating	charts	in	VBA.

My	family	was	incredibly	supportive	during	this	time.	Thanks	to	Mary	Ellen
Jelen,	Robert	F.	Jelen,	Barbara	Jelen,	and	Robert	K.	Jelen.

—Bill

Thank	you	to	all	the	moderators	at	the	MrExcel	forum	who	keep	the	board
organized,	despite	the	best	efforts	of	the	spammers.	Thank	you	to	Joe4,	RoryA,
and	Petersss	for	helping	process	all	the	forum’s	contact	emails.

Programming	is	a	constant	learning	experience,	and	I	really	appreciate	the
clients	who	have	encouraged	me	to	program	outside	my	comfort	zone	so	that	my
skills	and	knowledge	have	expanded.

World	of	Warcraft	is	how	I	de-stress.	I’d	like	to	give	a	special	thank	you	to	my
in-game	friends	who	help	make	the	game	so	much	fun	and	let	me	unwind:
Louisiv	(for	teaching	me	how	to	tank),	War	(best	co-tank	ever),	Amabeast	(for
pushing	me	out	of	my	comfort	zone),	Chraz	(for	keeping	my	toon	alive),	and
Jagdeule	(for	showing	me	how	great	an	MM	hunter	could	be).

And	last,	but	not	least,	thanks	to	Bill	Jelen.	His	site,	MrExcel.com,	is	a	place
where	thousands	come	for	help.	It’s	also	a	place	where	I,	and	others	like	me,

have	an	opportunity	to	learn	from	and	assist	others.

—Tracy

About	the	Authors

Bill	Jelen,	Excel	MVP	and	the	host	of	MrExcel.com,	has	been	using
spreadsheets	since	1985,	and	he	launched	the	MrExcel.com	website
in	1998.	Bill	was	a	regular	guest	on	Call	for	Help	with	Leo	Laporte
and	has	produced	more	than	2,200	episodes	of	his	daily	video

podcast,	Learn	Excel	from	MrExcel.	He	is	the	author	of	57	books	about
Microsoft	Excel	and	writes	the	monthly	Excel	column	for	Strategic	Finance
magazine.	Before	founding	MrExcel.com,	Bill	Jelen	spent	12	years	in	the
trenches—working	as	a	financial	analyst	for	finance,	marketing,	accounting,	and
operations	departments	of	a	$500	million	public	company.	He	lives	in	Merritt
Island,	Florida,	with	his	wife,	Mary	Ellen.

Tracy	Syrstad	is	a	Microsoft	Excel	developer	and	author	of	nine	Excel	books.
She	has	been	helping	people	with	Microsoft	Office	issues	since	1997,	when	she
discovered	free	online	forums	where	anyone	could	ask	and	answer	questions.
Tracy	found	out	she	enjoyed	teaching	others	new	skills,	and	when	she	began
working	as	a	developer,	she	was	able	to	integrate	the	fun	of	teaching	with	one-
on-one	online	desktop	sharing	sessions.	Tracy	lives	on	an	acreage	in	eastern
South	Dakota	with	her	husband,	one	dog,	two	cats,	one	horse,	and	a	variety	of
wild	foxes,	squirrels,	and	rabbits.

Introduction

In	this	Introduction,	you	will:

Find	out	what	is	in	this	book

Have	a	peek	at	the	future	of	VBA	and	Windows	versions	of	Excel

Learn	about	special	elements	and	typographical	conventions	in	this
book

Find	out	where	to	find	code	files	for	this	book

As	corporate	IT	departments	have	found	themselves	with	long	backlogs	of
requests,	Excel	users	have	discovered	that	they	can	produce	the	reports	needed
to	run	their	businesses	themselves	using	the	macro	language	Visual	Basic	for
Applications	(VBA).	VBA	enables	you	to	achieve	tremendous	efficiencies	in
your	day-to-day	use	of	Excel.	VBA	helps	you	figure	out	how	to	import	data	and
produce	reports	in	Excel	so	that	you	don′t	have	to	wait	for	the	IT	department	to
help	you.

Is	JavaScript	a	threat	to	VBA?

Your	first	questions	are	likely:	″Should	I	invest	time	in	learning	VBA?	How	long
will	Microsoft	support	VBA?	Will	the	new	JavaScript	language	announced	in
May	2018	replace	VBA?˝

Your	investments	in	VBA	will	serve	you	well	until	at	least	2046.

The	last	macro	language	change—from	XLM	to	VBA—happened	in	1993.
XLM	is	still	supported	in	Excel	to	this	day.	That	was	a	case	where	VBA	was
better	than	XLM,	but	XLM	is	still	supported	26	years	later.	If	Microsoft	ever
switches	from	VBA	to	JavaScript,	I	expect	that	they	will	continue	to	support
VBA	in	the	Windows	and	Mac	versions	of	Excel	for	the	next	26	years.

In	May	2018,	Microsoft	announced	a	new	JavaScript	user-defined	function
(UDF)	that	would	allow	macro	code	to	run	on	both	the	client	version	of	Excel

and	in	Excel	Online.	The	cross-platform	ability	is	interesting.

In	the	Excel	universe	today,	there	are	versions	of	Excel	running	in	Windows,
in	MacOS,	on	mobile	phones	powered	by	Android	and	iOS,	and	in	modern
browsers	using	Excel	Online.	In	my	world,	I	use	Excel	99%	of	the	time	on	a
Windows	computer.	There	is	perhaps	1%	of	the	time	where	I	will	open	an	Excel
workbook	on	an	iPad.	But,	if	you	are	in	a	mobile	environment	where	you	are
using	Excel	in	a	browser,	then	the	JavaScript	UDFs	might	be	appropriate	for
you.

For	an	introduction	to	JavaScript	UDFs	in	Excel,	read	Suat	M.	Ozgur′s	Excel
JavaScript	UDFs	Straight	to	the	Point	(ISBN	978-1-61547-247-5).

However,	JavaScript	performance	is	still	horrible.	If	you	don′t	need	your
macros	to	run	in	Excel	Online,	the	VBA	version	of	your	macro	will	run	eight
times	quicker	than	the	JavaScript	version.	For	people	who	plan	to	run	Excel	only
on	the	Mac	or	Windows	platforms,	VBA	will	be	your	go-to	macro	language	for
another	decade.

The	threat	to	Excel	VBA	is	the	new	Excel	Power	Query	tools	found	in	the
Get	&	Transform	tab	of	the	Data	tab	in	Excel	for	Windows.	If	you	are	writing
macros	to	clean	imported	data,	you	should	consider	cleaning	the	data	once	with
Power	Query	and	then	refreshing	the	query	each	day.	I	have	a	lot	of	Power
Query	workflows	set	up	that	would	have	previously	required	VBA.	For	a	primer
on	Power	Query,	check	out	Master	Your	Data	with	Excel	and	Power	BI:
Leveraging	Power	Query	to	Get	&	Transform	Your	Task	Flow	by	Ken	Puls	and
Miguel	Escobar	(ISBN	978-1-61547-058-7).

What	is	in	this	book?

You	have	taken	the	right	step	by	purchasing	this	book.	We	can	help	you	reduce
the	learning	curve	so	that	you	can	write	your	own	VBA	macros	and	put	an	end	to
the	burden	of	generating	reports	manually.

Reducing	the	learning	curve

This	Introduction	provides	a	case	study	about	the	power	of	macros.	Chapter	1,
″Unleashing	the	power	of	Excel	with	VBA,˝	introduces	the	tools	and	confirms
what	you	probably	already	know:	The	macro	recorder	does	not	work	reliably.
Chapter	2,	″This	sounds	like	BASIC,	so	why	doesn′t	it	look	familiar?˝	helps	you

understand	the	crazy	syntax	of	VBA.	Chapter	3,	″Referring	to	ranges,˝	cracks	the
code	on	how	to	work	efficiently	with	ranges	and	cells.

Chapter	4,	″Looping	and	flow	control,˝	covers	the	power	of	looping	using
VBA.	The	case	study	in	this	chapter	demonstrates	creating	a	program	to	produce
a	department	report	and	then	wrapping	that	report	routine	in	a	loop	to	produce	46
reports.

Chapter	5,	″R1C1-style	formulas,˝	covers,	obviously,	R1C1-style	formulas.
Chapter	6,	″Creating	and	manipulating	names	in	VBA,˝	covers	names.	Chapter
7,	″Event	programming,˝	includes	some	great	tricks	that	use	event	programming.
Chapters	8,	″Arrays,˝	and	9,	″Creating	classes	and	collections,˝	cover	arrays,
classes,	and	collections.	Chapter	10,	″Userforms:	An	introduction,˝	introduces
custom	dialog	boxes	that	you	can	use	to	collect	information	from	a	human	using
Excel.

Excel	VBA	power

Chapters	11,	″Data	mining	with	Advanced	Filter,˝	and	12,	″Using	VBA	to	create
pivot	tables,˝	provide	an	in-depth	look	at	Filter,	Advanced	Filter,	and	pivot
tables.	Report	automation	tools	rely	heavily	on	these	concepts.	Chapters	13,
″Excel	power,˝	and	14,	″Sample	user-defined	functions,˝	include	dozens	of	code
samples	designed	to	exhibit	the	power	of	Excel	VBA	and	custom	functions.

Chapters	15,	″Creating	charts,˝	through	20,	″Automating	Word,˝	handle
charting,	data	visualizations,	web	queries,	sparklines,	and	automating	Word.

Techie	stuff	needed	to	produce	applications

Chapter	21,	″Using	Access	as	a	back	end	to	enhance	multiuser	access	to	data,˝
handles	reading	and	writing	to	Access	databases	and	SQL	Server.	The	techniques
for	using	Access	databases	enable	you	to	build	an	application	with	the	multiuser
features	of	Access	while	keeping	the	friendly	front	end	of	Excel.

Chapter	22,	″Advanced	userform	techniques,˝	shows	you	how	to	go	further
with	userforms.	Chapter	23,	″The	Windows	Application	Programming	Interface
(API),˝	teaches	some	tricky	ways	to	achieve	tasks	using	the	Windows	API.
Chapters	24,	″Handling	errors,˝	through	26,	″Creating	add-ins,˝	deal	with	error
handling,	custom	menus,	and	add-ins.	Chapter	27,	″An	introduction	to	creating
Office	add-ins,˝	provides	a	brief	introduction	to	building	your	own	JavaScript

application	within	Excel.	Chapter	28,	″What′s	new	in	Excel	2019	and	what′s
changed,˝	summarizes	the	changes	in	Excel	2019.

Does	this	book	teach	Excel?

Microsoft	believes	that	the	ordinary	Office	customer	touches	only	10%	of	the
features	in	Office.	We	realize	that	everyone	reading	this	book	is	above	average,
and	the	visitors	to	MrExcel.com	are	a	pretty	smart	audience.	Even	so,	a	poll	of
8,000	MrExcel.com	readers	showed	that	only	42%	of	smarter-than-average	users
are	using	any	1	of	the	top	10	power	features	in	Excel.

Bill	regularly	presents	a	Power	Excel	seminar	for	accountants.	These	are
hard-core	Excelers	who	use	Excel	30	to	40	hours	every	week.	Even	so,	two
things	come	out	in	every	seminar.	First,	half	of	the	audience	gasps	when	they	see
how	quickly	you	can	do	tasks	with	a	particular	feature,	such	as	automatic
subtotals	or	pivot	tables.	Second,	someone	in	the	audience	routinely	trumps	me.
For	example,	someone	asks	a	question,	I	answer,	and	someone	in	the	second	row
raises	a	hand	to	give	a	better	answer.

The	point?	Both	the	authors	and	the	audience	of	this	book	know	a	lot	about
Excel.	However,	we	assume	that	in	any	given	chapter,	maybe	58%	of	the	people
have	not	used	pivot	tables	before	and	maybe	even	fewer	have	used	the	Top	10
Filter	feature	of	pivot	tables.	With	this	in	mind,	before	we	show	how	to	automate
something	in	VBA,	we	briefly	cover	how	to	do	the	same	task	in	the	Excel
interface.	This	book	does	not	teach	you	how	to	make	pivot	tables,	but	it	does
alert	you	when	you	might	need	to	explore	a	topic	and	learn	more	about	it
elsewhere.

Case	study:	Monthly	accounting	reports
This	is	a	true	story.	Valerie	is	a	business	analyst	in	the	accounting
department	of	a	medium-size	corporation.	Her	company	recently	installed
an	overbudget	$16	million	enterprise	resource	planning	(ERP)	system.	As
the	project	ground	to	a	close,	there	were	no	resources	left	in	the	IT	budget
to	produce	the	monthly	report	that	this	corporation	used	to	summarize	each
department.

However,	Valerie	had	been	close	enough	to	the	implementation	to	think	of	a
way	to	produce	the	report	herself.	She	understood	that	she	could	export

general	ledger	data	from	the	ERP	system	to	a	text	file	with	comma-
separated	values.	Using	Excel,	Valerie	was	able	to	import	the	general	ledger
data	from	the	ERP	system	into	Excel.

Creating	the	report	was	not	easy.	As	in	many	other	companies,	there	were
exceptions	in	the	data.	Valerie	knew	that	certain	accounts	in	one	particular
cost	center	needed	to	be	reclassed	as	expenses.	She	knew	that	other
accounts	needed	to	be	excluded	from	the	report	entirely.	Working	carefully
in	Excel,	Valerie	made	these	adjustments.	She	created	one	pivot	table	to
produce	the	first	summary	section	of	the	report.	She	cut	the	pivot	table
results	and	pasted	them	into	a	blank	worksheet.	Then	she	created	a	new
pivot	table	report	for	the	second	section	of	the	summary.	After	about	three
hours,	she	had	imported	the	data,	produced	five	pivot	tables,	arranged	them
in	a	summary,	and	neatly	formatted	the	report	in	color.

Becoming	the	hero

Valerie	handed	the	report	to	her	manager.	The	manager	had	just	heard	from
the	IT	department	that	it	would	be	months	before	they	could	get	around	to
producing	″that	convoluted	report.˝	When	Valerie	created	the	Excel	report,
she	became	the	instant	hero	of	the	day.	In	three	hours,	Valerie	had	managed
to	do	the	impossible.	Valerie	was	on	cloud	nine	after	a	well-deserved	″atta-
girl.˝

More	cheers

The	next	day,	Valerie′s	manager	attended	the	monthly	department	meeting.
When	the	department	managers	started	complaining	that	they	could	not	get
the	report	from	the	ERP	system,	this	manager	pulled	out	his	department′s
report	and	placed	it	on	the	table.	The	other	managers	were	amazed.	How
was	he	able	to	produce	this	report?	Everyone	was	relieved	to	hear	that
someone	had	cracked	the	code.	The	company	president	asked	Valerie′s
manager	if	he	could	have	the	report	produced	for	each	department.

Cheers	turn	to	dread

You	can	probably	see	what′s	coming.	This	particular	company	had	46
departments.	That	means	46	one-page	summaries	had	to	be	produced	once	a
month.	Each	report	required	importing	data	from	the	ERP	system,	backing
out	certain	accounts,	producing	five	pivot	tables,	and	then	formatting	the
reports	in	color.	It	had	taken	Valerie	three	hours	to	produce	the	first	report,

but	after	she	got	into	the	swing	of	things,	she	could	produce	the	46	reports
in	40	hours.	Even	after	she	reduced	her	time	per	report,	though,	this	is
horrible.	Valerie	had	a	job	to	do	before	she	became	responsible	for	spending
40	hours	a	month	producing	these	reports	in	Excel.

VBA	to	the	rescue

Valerie	found	Bill′s	company,	MrExcel	Consulting,	and	explained	her
situation.	In	the	course	of	about	a	week,	Bill	was	able	to	produce	a	series	of
macros	in	Visual	Basic	that	did	all	the	mundane	tasks.	For	example,	the
macros	imported	the	data,	backed	out	certain	accounts,	made	five	pivot
tables,	and	applied	the	color	formatting.	From	start	to	finish,	the	entire	40-
hour	manual	process	was	reduced	to	two	button	clicks	and	about	4	minutes.

Right	now,	either	you	or	someone	in	your	company	is	probably	stuck	doing
manual	tasks	in	Excel	that	can	be	automated	with	VBA.	We	are	confident
that	we	can	walk	into	any	company	that	has	20	or	more	Excel	users	and
find	a	case	just	as	amazing	as	Valerie′s.

Versions	of	Excel
This	sixth	edition	of	VBA	and	Macros	is	designed	to	work	with	Excel	2019	and
Office	365	features	released	up	through	June	2018.	The	previous	editions	of	this
book	covered	code	for	Excel	97	through	Excel	2016.	In	80%	of	the	chapters,	the
code	for	Excel	2019	is	identical	to	the	code	in	previous	versions.

Differences	for	Mac	users

Although	Excel	for	Windows	and	Excel	for	the	Mac	are	similar	in	terms	of	user
interface,	there	are	a	number	of	differences	when	you	compare	the	VBA
environment.	Certainly,	nothing	in	Chapter	23	that	uses	the	Windows	API	will
work	on	the	Mac.	That	said,	the	overall	concepts	discussed	in	this	book	apply	to
the	Mac.	You	can	find	a	general	list	of	differences	as	they	apply	to	the	Mac	at
http://www.mrexcel.com/macvba.html	Development	in	VBA	for	Mac	Excel	2019
is	far	more	difficult	than	in	Windows,	with	only	rudimentary	VBA	editing	tools.
Microsoft	actually	recommends	that	you	write	all	of	your	VBA	in	Excel	2019	for
Windows	and	then	use	that	VBA	on	the	Mac.

http://www.mrexcel.com/macvba.html

Special	elements	and	typographical	conventions

The	following	typographical	conventions	are	used	in	this	book:

Italic—Indicates	new	terms	when	they	are	defined,	special	emphasis,	non-
English	words	or	phrases,	and	letters	or	words	used	as	words.

Monospace—Indicates	parts	of	VBA	code,	such	as	object	or	method	names.

Bold	monospace—Indicates	user	input.

In	addition	to	these	typographical	conventions,	there	are	several	special
elements.	Each	chapter	has	at	least	one	case	study	that	presents	a	real-world
solution	to	common	problems.	The	case	study	also	demonstrates	practical
applications	of	topics	discussed	in	the	chapter.

In	addition	to	the	case	studies,	you	will	see	Notes,	Tips,	and	Cautions.

Note	Notes	provide	additional	information	outside	the	main	thread
of	the	chapter	discussion	that	might	be	useful	for	you	to	know.

Tip	Tips	provide	quick	workarounds	and	time-saving	techniques	to
help	you	work	more	efficiently.

Caution	Cautions	warn	about	potential	pitfalls	you	might
encounter.	Pay	attention	to	the	Cautions;	they	alert	you	to
problems	that	might	otherwise	cause	you	hours	of	frustration.

About	the	companion	content

As	a	thank-you	for	buying	this	book,	we	have	put	together	a	set	of	50	Excel
workbooks	that	demonstrate	the	concepts	included	in	this	book.	This	set	of	files
includes	all	the	code	from	the	book,	sample	data,	and	additional	notes	from	the
authors.	To	download	the	code	files,	visit	this	book′s	web	page	at

microsoftpressstore.com/Excel2019VBAMacros/downloads.

Support	and	feedback

The	following	sections	provide	information	on	errata,	book	support,	feedback,
and	contact	information.

Stay	in	touch

Let′s	keep	the	conversation	going!	We′re	on	Twitter:

http://twitter.com/MicrosoftPress

http://twitter.com/MrExcel

Errata,	updates,	and	book	support

We′ve	made	every	effort	to	ensure	the	accuracy	of	this	book	and	its	companion
content.	Any	errors	that	have	been	reported	since	this	book	was	published	are
listed	at	microsoftpressstore.com/Excel2019VBAMacros/errata.

If	you	find	an	error	that	is	not	already	listed,	you	can	report	it	to	us	through
the	same	page.

If	you	need	additional	support,	email	Microsoft	Press	Book	Support	at
microsoftpresscs@pearson.com.

Please	note	that	product	support	for	Microsoft	software	and	hardware	is	not
offered	through	the	previous	addresses.	For	help	with	Microsoft	software	or
hardware,	go	to	http://support.microsoft.com.

http://microsoftpressstore.com/Excel2019VBAMacros/downloads
http://twitter.com/MicrosoftPress
http://twitter.com/MrExcel
http://microsoftpressstore.com/Excel2019VBAMacros/errata
mailto:microsoftpresscs@pearson.com
http://support.microsoft.com

CHAPTER	1
Unleashing	the	power	of	Excel	with	VBA

In	this	chapter,	you	will:

Understand	the	power	of	Excel

Learn	the	barriers	to	entry	of	using	Excel

Get	to	know	your	tools:	The	Developer	tab

Understand	which	file	types	allow	macros

Be	introduced	to	macro	security

Get	an	overview	of	recording,	storing,	and	running	a	macro

Find	out	how	to	run	a	macro

Understand	the	VB	Editor

Understand	the	shortcomings	of	the	macro	recorder

Visual	Basic	for	Applications	(VBA)	combined	with	Microsoft	Excel	is	probably
the	most	powerful	tool	available	to	you.	VBA	is	sitting	on	the	desktops	of	850
million	users	of	Microsoft	Office,	and	most	have	never	figured	out	how	to
harness	the	power	of	VBA	in	Excel.	Using	VBA,	you	can	speed	the	production
of	any	task	in	Excel.	If	you	regularly	use	Excel	to	produce	a	series	of	monthly
charts,	for	example,	you	can	have	VBA	do	that	task	for	you	in	a	matter	of
seconds.

Barriers	to	entry
There	are	two	barriers	to	learning	successful	VBA	programming.	First,	Excel’s
macro	recorder	is	flawed	and	does	not	produce	workable	code	for	you	to	use	as	a
model.	Second,	for	many	who	learned	a	programming	language	such	as	BASIC,
the	syntax	of	VBA	is	horribly	frustrating.

The	macro	recorder	doesn’t	work!

Microsoft	began	to	dominate	the	spreadsheet	market	in	the	mid-1990s.	Although
it	was	wildly	successful	in	building	a	powerful	spreadsheet	program	to	which
any	Lotus	1-2-3	user	could	easily	transition,	the	macro	language	was	just	too
different.	Anyone	proficient	in	recording	Lotus	1-2-3	macros	who	tried
recording	a	few	macros	in	Excel	most	likely	failed.	Although	the	Microsoft	VBA
programming	language	is	much	more	powerful	than	the	Lotus	1-2-3	macro
language,	the	fundamental	flaw	is	that	the	macro	recorder	does	not	work	when
you	use	the	default	settings.

With	Lotus	1-2-3,	you	could	record	a	macro	today	and	play	it	back
tomorrow,	and	it	would	faithfully	work.	When	you	attempt	the	same	feat	in
Microsoft	Excel,	the	macro	might	work	today	but	not	tomorrow.	In	1995,	when	I
tried	to	record	my	first	Excel	macro,	I	was	horribly	frustrated	by	this.	In	this
book,	I	teach	you	the	three	rules	for	getting	the	most	out	of	the	macro	recorder.

No	one	person	on	the	Excel	team	is	focused	on	the	macro	recorder

As	Microsoft	adds	new	features	to	Excel,	the	individual	project	manager	for	a
feature	makes	sure	that	the	macro	recorder	will	record	something	when	you
execute	the	command.	In	the	past	decade,	the	recorded	code	might	work	in	some
situations,	but	it	often	does	not	work	in	all	situations.	If	Microsoft	had	someone
who	was	focused	on	creating	a	useful	macro	recorder,	the	recorded	code	could
often	be	a	lot	more	general	than	it	currently	is.

It	used	to	be	that	you	could	record	a	command	in	any	of	five	ways	and	the
recorded	code	would	work.	Unfortunately,	today,	if	you	want	to	use	the	macro
recorder,	you	often	have	to	try	recording	the	macro	several	different	ways	to	find
a	set	of	steps	that	records	code	that	reliably	works.

Visual	Basic	is	not	like	BASIC

Two	decades	ago,	the	code	generated	by	the	macro	recorder	was	unlike	anything
I	had	ever	seen.	It	said	this	was	“Visual	Basic”	(VB).	I	have	had	the	pleasure	of
learning	half	a	dozen	programming	languages	at	various	times;	this	bizarre-
looking	language	was	horribly	unintuitive	and	did	not	resemble	the	BASIC
language	I	had	learned	in	high	school.

To	make	matters	worse,	even	in	1995	I	was	the	spreadsheet	expert	in	my

office.	My	company	had	forced	everyone	to	convert	from	Lotus	1-2-3	to	Excel,
which	meant	I	was	faced	with	a	macro	recorder	that	didn’t	work	and	a	language
that	I	couldn’t	understand.	This	was	not	a	good	combination	of	events.

My	assumption	in	writing	this	book	is	that	you	are	pretty	talented	with	a
spreadsheet.	You	probably	know	more	than	90%	of	the	people	in	your	office.	I
also	assume	that	even	though	you	are	not	a	programmer,	you	might	have	taken	a
class	in	BASIC	at	some	point.	However,	knowing	BASIC	is	not	a	requirement—
it	actually	is	a	barrier	to	entry	into	the	ranks	of	being	a	successful	VBA
programmer.	There	is	a	good	chance	that	you	have	recorded	a	macro	in	Excel,
and	there’s	a	similar	chance	that	you	were	not	happy	with	the	results.

Good	news:	Climbing	the	learning	curve	is	easy

Even	if	you’ve	been	frustrated	with	the	macro	recorder,	it	is	really	just	a	small
speed	bump	on	your	road	to	writing	powerful	programs	in	Excel.	This	book
teaches	you	not	only	why	the	macro	recorder	fails	but	also	how	to	change	the
recorded	code	into	something	useful.	For	all	the	former	BASIC	programmers	in
the	audience,	I	decode	VBA	so	that	you	can	easily	pick	through	recorded	macro
code	and	understand	what	is	happening.

Great	news:	Excel	with	VBA	is	worth	the	effort

Although	you	probably	have	been	frustrated	with	Microsoft	over	the	inability	to
record	macros	in	Excel,	the	great	news	is	that	Excel	VBA	is	powerful.
Absolutely	anything	you	can	do	in	the	Excel	interface	can	be	duplicated	with
stunning	speed	in	Excel	VBA.	If	you	find	yourself	routinely	creating	the	same
reports	manually	day	after	day	or	week	after	week,	Excel	VBA	will	greatly
streamline	those	tasks.

The	authors	of	this	book	work	for	MrExcel	Consulting.	In	this	role,	we	have
automated	reports	for	hundreds	of	clients.	The	stories	are	often	similar:	The	IT
department	has	a	several-month	backlog	of	requests.	Someone	in	accounting	or
engineering	discovers	that	he	or	she	can	import	some	data	into	Excel	and	get	the
reports	necessary	to	run	the	business.	This	is	a	liberating	event:	You	no	longer
need	to	wait	months	for	the	IT	department	to	write	a	program.	However,	the
problem	is	that	after	you	import	the	data	into	Excel	and	win	accolades	from	your
manager	for	producing	the	report,	you	will	likely	be	asked	to	produce	the	same
report	every	month	or	every	week.	This	becomes	very	tedious.

Again,	the	great	news	is	that	with	a	few	hours	of	VBA	programming,	you
can	automate	the	reporting	process	and	turn	it	into	a	few	button	clicks.	The
reward	is	great.	So	hang	with	me	as	we	cover	a	few	of	the	basics.

This	chapter	exposes	why	the	macro	recorder	does	not	work.	It	also	walks
through	an	example	of	recorded	code	and	demonstrates	why	it	works	today	but
will	fail	tomorrow.	I	realize	that	the	code	you	see	in	this	chapter	might	not	be
familiar	to	you,	but	that’s	okay.	The	point	of	this	chapter	is	to	demonstrate	the
fundamental	problem	with	the	macro	recorder.	This	chapter	also	explains	the
fundamentals	of	the	Visual	Basic	environment.

Knowing	your	tools:	The	Developer	tab

Let’s	start	with	a	basic	overview	of	the	tools	needed	to	use	VBA.	By	default,
Microsoft	hides	the	VBA	tools.	You	need	to	complete	the	following	steps	to
change	a	setting	to	access	the	Developer	tab:

1.	 Right-click	the	ribbon	and	choose	Customize	The	Ribbon.

2.	 In	the	right	list	box,	select	the	Developer	check	box,	which	is	the	tenth
item.

3.	 Click	OK	to	return	to	Excel.

Excel	displays	the	Developer	tab,	as	shown	in	Figure	1-1.

FIGURE	1-1	The	Developer	tab	provides	an	interface	for	running	and	recording	macros.

The	Code	group	on	the	Developer	tab	contains	the	icons	used	for	recording
and	playing	back	VBA	macros,	as	listed	here:

Visual	Basic—Opens	the	Visual	Basic	Editor.

Macros—Displays	the	Macro	dialog	box,	where	you	can	choose	to	run	or
edit	a	macro	from	the	list	of	macros.

Record	Macro—Begins	the	process	of	recording	a	macro.

Use	Relative	References—Toggles	between	using	relative	or	absolute
recording.	With	relative	recording,	Excel	records	that	you	move	down	three
cells.	With	absolute	recording,	Excel	records	that	you	selected	cell	A4.

Macro	Security—Accesses	the	Trust	Center,	where	you	can	choose	to
allow	or	disallow	macros	to	run	on	this	computer.

The	Add-ins	group	provides	icons	for	managing	regular	add-ins	and	COM
add-ins.

The	Controls	group	of	the	Developer	tab	contains	an	Insert	menu	where	you
can	access	a	variety	of	programming	controls	that	can	be	placed	on	the
worksheet.	See	“Assigning	a	macro	to	a	form	control,	text	box,	or	shape,”	later
in	this	chapter.	Other	icons	in	this	group	enable	you	to	work	with	the	on-sheet
controls.	The	Run	Dialog	button	enables	you	to	display	a	custom	dialog	box	or
userform	that	you	designed	in	VBA.	For	more	on	userforms,	see	Chapter	10,
“Userforms:	An	introduction.”

The	XML	group	of	the	Developer	tab	contains	tools	for	importing	and
exporting	XML	documents.

The	Modify	group	enables	you	to	specify	whether	the	Document	Panel	is
always	displayed	for	new	documents.	Users	can	enter	keywords	and	a	document
description	in	the	Document	Panel.	If	you	have	SharePoint	and	InfoPath,	you
can	define	custom	fields	to	appear	in	the	Document	Panel.

Understanding	which	file	types	allow	macros

Excel	2019	offers	support	for	four	file	types.	Macros	are	not	allowed	to	be	stored
in	the	.xlsx	file	type,	and	this	file	type	is	the	default	file	type!	You	have	to	use
the	Save	As	setting	for	all	of	your	macro	workbooks,	or	you	can	change	the
default	file	type	used	by	Excel	2019.

The	available	files	types	are	as	listed	here:

Excel	Workbook	(.xlsx)—Files	are	stored	as	a	series	of	XML	objects	and
then	zipped	into	a	single	file.	This	creates	significantly	smaller	file	sizes.	It
also	allows	other	applications	(even	Notepad!)	to	edit	or	create	Excel
workbooks.	Unfortunately,	macros	cannot	be	stored	in	files	with	an	.xlsx

extension.

Excel	Macro-Enabled	Workbook	(.xlsm)—This	is	similar	to	the	default
.xlsx	format,	except	macros	are	allowed.	The	basic	concept	is	that	if
someone	has	an	.xlsx	file,	he	will	not	need	to	worry	about	malicious
macros.	However,	if	he	sees	an	.xlsm	file,	he	should	be	concerned	that	there
might	be	macros	attached.

Excel	Binary	Workbook	(.xlsb)—This	is	a	binary	format	designed	to
handle	the	larger	1-million-row	grid	size	introduced	in	Excel	2007.	Legacy
versions	of	Excel	stored	their	files	in	a	proprietary	binary	format.	Although
binary	formats	might	load	more	quickly,	they	are	more	prone	to	corruption,
and	a	few	lost	bits	can	destroy	a	whole	file.	Macros	are	allowed	in	this
format.

Excel	97-2003	Workbook	(.xls)—This	format	produces	files	that	can	be
read	by	anyone	using	legacy	versions	of	Excel.	Macros	are	allowed	in	this
binary	format;	however,	when	you	save	in	this	format,	you	lose	access	to
any	cells	outside	A1:IV65536.	In	addition,	if	someone	opens	the	file	in
Excel	2003,	she	loses	access	to	anything	that	used	features	introduced	in
Excel	2007	or	later.

To	avoid	having	to	choose	a	macro-enabled	workbook	in	the	Save	As	dialog
box,	you	can	customize	your	copy	of	Excel	to	always	save	new	files	in	the	.xlsm
format	by	following	these	steps:

1.	 Click	the	File	menu	and	select	Options.

2.	 In	the	Excel	Options	dialog	box,	select	the	Save	category	from	the	left
navigation	pane.

3.	 Open	the	Save	Files	In	This	Format	drop-down	menu	and	select	Excel
Macro-Enabled	Workbook	(*.xlsm).	Click	OK.

Note	Although	you	and	I	are	not	afraid	to	use	macros,	I	have
encountered	people	who	freak	out	when	they	see	the	.xlsm	file
type.	They	actually	seem	angry	that	I	sent	them	an	.xlsm	file	that

did	not	have	any	macros.	Google’s	Gmail	has	joined	this	camp,	refusing	to
show	a	preview	of	any	attachments	sent	in	the	.xlsm	format.

If	you	encounter	someone	who	seems	to	have	a	fear	of	the	.xlsm	file	type,
remind	them	of	these	points:

Every	workbook	created	in	the	past	30	years	could	have	had	macros,
but	in	fact,	most	did	not.

If	someone	is	trying	to	avoid	macros,	she	should	use	the	security
settings	to	prevent	macros	from	running	anyway.	The	person	can	still
open	the	.xlsm	file	to	get	the	data	in	the	spreadsheet.

With	these	arguments,	I	hope	you	can	overcome	any	fears	of	the	.xlsm	file
type	so	that	it	can	be	your	default	file	type.

Macro	security

After	a	Word	VBA	macro	was	used	as	the	delivery	method	for	the	Melissa	virus,
Microsoft	changed	the	default	security	settings	to	prevent	macros	from	running.
Therefore,	before	we	can	begin	discussing	the	recording	of	a	macro,	it’s
important	to	look	at	how	to	adjust	the	default	settings.

In	Excel	2019,	you	can	either	globally	adjust	the	security	settings	or	control
macro	settings	for	certain	workbooks	by	saving	the	workbooks	in	a	trusted
location.	Any	workbook	stored	in	a	folder	that	is	marked	as	a	trusted	location
automatically	has	its	macros	enabled.

You	can	find	the	macro	security	settings	under	the	Macro	Security	icon	on
the	Developer	tab.	When	you	click	this	icon,	the	Macro	Settings	category	of	the
Trust	Center	is	displayed.	You	can	use	the	left	navigation	bar	in	the	dialog	box	to
access	the	Trusted	Locations	list.

Adding	a	trusted	location

You	can	choose	to	store	your	macro	workbooks	in	a	folder	that	is	marked	as	a
trusted	location.	Any	workbook	stored	in	a	trusted	folder	will	have	its	macros
enabled.	Microsoft	suggests	that	a	trusted	location	should	be	on	your	hard	drive.
The	default	setting	is	that	you	cannot	trust	a	location	on	a	network	drive.

To	specify	a	trusted	location,	follow	these	steps:

1.	 Click	Macro	Security	in	the	Developer	tab.

2.	 Click	Trusted	Locations	in	the	left	navigation	pane	of	the	Trust	Center.

3.	 If	you	want	to	trust	a	location	on	a	network	drive,	select	Allow	Trusted
Locations	On	My	Network.

4.	 Click	the	Add	New	Location	button.	Excel	displays	the	Microsoft	Office
Trusted	Location	dialog	box	(see	Figure	1-2).

FIGURE	1-2	You	manage	trusted	folders	in	the	Trusted	Locations	category	of	the	Trust
Center.

5.	 Click	the	Browse	button.	Excel	displays	the	Browse	dialog	box.

6.	 Browse	to	the	parent	folder	of	the	folder	you	want	to	be	a	trusted	location.
Click	the	trusted	folder.	Although	the	folder	name	does	not	appear	in	the
Folder	Name	box,	click	OK.	The	correct	folder	name	will	appear	in	the
Browse	dialog	box.

7.	 If	you	want	to	trust	subfolders	of	the	selected	folder,	select	Subfolders	Of
This	Location	Are	Also	Trusted.

8.	 Click	OK	to	add	the	folder	to	the	Trusted	Locations	list.

Caution	Use	care	when	selecting	a	trusted	location.	When	you
double-click	an	Excel	attachment	in	an	email	message,	Outlook
stores	the	file	in	a	temporary	folder	on	your	C:	drive.	You	will	not

want	to	globally	add	the	C	drive	and	all	subfolders	to	the	Trusted	Locations
list.

Using	macro	settings	to	enable	macros	in	workbooks	outside
trusted	locations

For	all	macros	not	stored	in	a	trusted	location,	Excel	relies	on	the	macro	settings.
The	Low,	Medium,	High,	and	Very	High	settings	that	were	familiar	in	Excel
2003	have	been	renamed.

To	access	the	macro	settings,	click	Macro	Security	in	the	Developer	tab.
Excel	displays	the	Macro	Settings	category	of	the	Trust	Center	dialog	box.
Select	the	second	option,	Disable	All	Macros	With	Notification.	A	description	of
each	option	follows:

Disable	All	Macros	Without	Notification—This	setting	prevents	all
macros	from	running.	This	setting	is	for	people	who	never	intend	to	run
macros.	Because	you	are	currently	holding	a	book	that	teaches	you	how	to
use	macros,	it	is	assumed	that	this	setting	is	not	for	you.	This	setting	is
roughly	equivalent	to	the	old	Very	High	security	setting	in	Excel	2003.
With	this	setting,	only	macros	in	the	Trusted	Locations	folders	can	run.

Disable	All	Macros	With	Notification—The	operative	words	in	this
setting	are	“With	Notification.”	This	means	that	you	see	a	notification	when
you	open	a	file	with	macros	and	you	can	choose	to	enable	the	content.	If
you	ignore	the	notification,	the	macros	remain	disabled.	This	setting	is
similar	to	the	Medium	security	setting	in	Excel	2003	and	is	the
recommended	setting.	In	Excel	2019,	a	message	is	displayed	in	the
Message	area	indicating	that	macros	have	been	disabled.	You	can	choose	to
enable	the	content	by	clicking	that	option,	as	shown	in	Figure	1-3.

FIGURE	1-3	The	Enable	Content	option	appears	when	you	use	Disable	All	Macros	With
Notification.

Disable	All	Macros	Except	Digitally	Signed	Macros—This	setting
requires	you	to	obtain	a	digital	signing	tool	from	Verisign	or	another
provider.	This	might	be	appropriate	if	you	are	going	to	be	selling	add-ins	to
others,	but	it’s	a	bit	of	a	hassle	if	you	just	want	to	write	macros	for	your
own	use.

Enable	All	Macros	(Not	Recommended:	Potentially	Dangerous	Code
Can	Run)—This	setting	is	similar	to	the	Low	macro	security	setting	in

Excel	2003.	Although	it	requires	the	least	amount	of	hassle,	it	also	opens
your	computer	to	attacks	from	malicious	Melissa-like	viruses.	Microsoft
suggests	that	you	not	use	this	setting.

Using	Disable	All	Macros	With	Notification

It	is	recommended	that	you	set	your	macro	settings	to	Disable	All	Macros	With
Notification.	If	you	use	this	setting	and	open	a	workbook	that	contains	macros,
you	see	a	security	warning	in	the	area	just	above	the	formula	bar.	If	you	are
expecting	macros	in	this	workbook,	click	Enable	Content.	If	you	do	not	want	to
enable	macros	for	the	current	workbook,	dismiss	the	security	warning	by
clicking	the	X	at	the	far	right	of	the	message	bar.

If	you	forget	to	enable	the	macros	and	attempt	to	run	a	macro,	Excel
indicates	that	you	cannot	run	the	macro	because	all	macros	have	been	disabled.
If	this	occurs,	close	the	workbook	and	reopen	it	to	access	the	message	bar	again.

Caution	After	you	enable	macros	in	a	workbook	stored	on	a	local
hard	drive	and	then	save	the	workbook,	Excel	remembers	that	you
previously	enabled	macros	in	this	workbook.	The	next	time	you

open	this	workbook,	macros	are	automatically	enabled.

Overview	of	recording,	storing,	and	running	a	macro

Recording	a	macro	is	useful	when	you	do	not	have	experience	writing	lines	of
code	in	a	macro.	As	you	gain	more	knowledge	and	experience,	you	will	record
macros	less	frequently.

To	begin	recording	a	macro,	select	Record	Macro	from	the	Developer	tab.
Before	recording	begins,	Excel	displays	the	Record	Macro	dialog	box,	as	shown
in	Figure	1-4.

FIGURE	1-4	Use	the	Record	Macro	dialog	box	to	assign	a	name	and	a	shortcut	key	to	the	macro
being	recorded.

Filling	out	the	Record	Macro	dialog	box

In	the	Macro	Name	field,	type	a	name	for	the	macro.	Be	sure	to	type	continuous
characters.	For	example,	type	Macro1	(without	a	space),	not	Macro	1	(with	a
space).	Assuming	that	you	will	soon	be	creating	many	macros,	use	a	meaningful
name	for	the	macro.	A	name	such	as	FormatReport	is	more	useful	than	one	like
Macro1.

The	second	field	in	the	Record	Macro	dialog	box	is	a	shortcut	key.	If	you
type	a	lowercase	j	in	this	field	and	later	press	Ctrl+J,	this	macro	runs.	Be	careful,
however,	because	Ctrl+A	through	Ctrl+Z	(except	Ctrl+J)	are	all	already	assigned
to	other	tasks	in	Excel.	If	you	assign	a	macro	to	Ctrl+B,	you	won’t	be	able	to	use
Ctrl+B	for	bold	anymore.	One	alternative	is	to	assign	the	macros	to	Ctrl+Shift+A
through	Ctrl+Shift+Z.	To	assign	a	macro	to	Ctrl+Shift+A,	you	type	Shift+A	in
the	shortcut	key	box.

Caution	You	can	reuse	a	shortcut	key	for	a	macro.	For	example,	if
you	assign	a	macro	to	Ctrl+C,	Excel	runs	your	macro	instead	of
doing	the	normal	action	of	copy.

In	the	Record	Macro	dialog	box,	choose	where	you	want	to	save	a	macro
when	it	is	recorded:	Personal	Macro	Workbook,	New	Workbook,	or	This

Workbook.	My	recommendation	is	that	you	store	macros	related	to	a	particular
workbook	in	This	Workbook.

The	Personal	Macro	Workbook	(Personal.xlsm)	is	not	a	visible	workbook;	it
is	created	if	you	choose	to	save	the	recording	in	the	Personal	Macro	Workbook.
This	workbook	is	used	to	save	a	macro	in	a	workbook	that	opens	automatically
when	you	start	Excel,	thereby	enabling	you	to	use	the	macro.	After	Excel	is
started,	the	workbook	is	hidden.	If	you	want	to	display	it,	select	Unhide	from	the
View	tab.

Tip	I	do	not	recommend	that	you	use	the	personal	workbook	for
every	macro	you	save.	Save	only	those	macros	that	assist	you	in
general	tasks—not	in	tasks	that	are	performed	in	a	specific	sheet	or

workbook.

The	fourth	box	in	the	Record	Macro	dialog	box	is	for	a	description.	This
description	is	added	as	a	comment	to	the	beginning	of	your	macro.

After	you	select	the	location	where	you	want	to	store	the	macro,	click	OK.
Record	your	macro.	For	this	example,	type	Hello	World	in	the	active	cell	and
press	Ctrl+Enter	to	accept	the	entry	and	stay	in	the	same	cell.	When	you	are
finished	recording	the	macro,	click	the	Stop	Recording	icon	in	the	Developer
tab.

Tip	You	also	can	access	a	Stop	Recording	icon	in	the	lower-left
corner	of	the	Excel	window.	Look	for	a	small	white	square	to	the
right	of	the	word	Ready	in	the	status	bar.	Using	this	Stop	button

might	be	more	convenient	than	returning	to	the	Developer	tab.	After	you
record	your	first	macro,	this	area	usually	has	a	Record	Macro	icon,	which	is
a	small	dot	on	an	Excel	worksheet.

Running	a	macro

If	you	assigned	a	shortcut	key	to	your	macro,	you	can	play	it	by	pressing	the	key
combination.	You	also	can	assign	macros	to	a	button	on	the	ribbon	or	the	Quick

Access	Toolbar,	form	controls,	or	drawing	objects,	or	you	can	run	them	from	the
Visual	Basic	toolbar.

Creating	a	macro	button	on	the	ribbon

You	can	add	an	icon	to	a	new	group	on	the	ribbon	to	run	your	macro.	This	is
appropriate	for	macros	stored	in	the	Personal	Macro	Workbook.	Icons	added	to
the	ribbon	are	still	enabled	even	when	your	macro	workbook	is	not	open.	If	you
click	the	icon	when	the	macro	workbook	is	not	open,	Excel	opens	the	workbook
and	runs	the	macro.	Follow	these	steps	to	add	a	macro	button	to	the	ribbon:

1.	 Right-click	the	ribbon	and	choose	Customize	The	Ribbon.

2.	 In	the	list	box	on	the	right,	choose	the	tab	name	where	you	want	to	add	an
icon.

3.	 Click	the	New	Group	button	below	the	right	list	box.	Excel	adds	a	new
entry	called	New	Group	(Custom)	to	the	end	of	the	groups	in	that	ribbon
tab.

4.	 To	move	the	group	to	the	left	in	the	ribbon	tab,	click	the	up	arrow	icon	on
the	right	side	of	the	dialog	box	several	times.

5.	 To	rename	the	group,	click	the	Rename	button.	Type	a	new	name,	such	as
Report	Macros.	Click	OK.	Excel	shows	the	group	in	the	list	box	as	Report
Macros	(Custom).	Note	that	the	word	Custom	does	not	appear	in	the	ribbon.

6.	 Open	the	upper-left	drop-down	menu	and	choose	Macros	from	the	list.	The
Macros	category	is	fourth	in	the	list.	Excel	displays	a	list	of	available
macros	in	the	left	list	box.

7.	 Choose	a	macro	from	the	left	list	box.	Click	the	Add	button	in	the	center	of
the	dialog	box.	Excel	moves	the	macro	to	the	right	list	box	in	the	selected
group.	Excel	uses	a	generic	VBA	icon	for	all	macros.

8.	 Click	the	macro	in	the	right	list	box.	Click	the	Rename	button	at	the	bottom
of	the	right	list	box.	Excel	displays	a	list	of	180	possible	icons.	Choose	an
icon.	Alternatively,	type	a	friendly	label	for	the	icon,	such	as	Format
Report.

9.	 You	can	move	the	Report	Macros	group	to	a	new	location	on	the	ribbon	tab.
Click	Report	Macros	(Custom)	and	use	the	up	and	down	arrow	icons	on	the
right	of	the	dialog	box.

10.	 Click	OK	to	close	the	Excel	Options	dialog	box.	The	new	button	appears	on
the	selected	ribbon	tab.

Creating	a	macro	button	on	the	Quick	Access	Toolbar

You	can	add	an	icon	to	the	Quick	Access	Toolbar	to	run	a	macro.	If	a	macro	is
stored	in	the	Personal	Macro	Workbook,	you	can	have	the	button	permanently
displayed	in	the	Quick	Access	Toolbar.	If	the	macro	is	stored	in	the	current
workbook,	you	can	specify	that	the	icon	should	appear	only	when	the	workbook
is	open.	Follow	these	steps	to	add	a	macro	button	to	the	Quick	Access	Toolbar:

1.	 Right-click	the	Quick	Access	Toolbar	and	choose	Customize	Quick	Access
Toolbar.

2.	 If	your	macro	should	be	available	only	when	the	current	workbook	is	open,
open	the	upper-right	drop-down	menu	and	change	For	All	Documents
(Default)	to	For	FileName.xlsm.	Any	icons	associated	with	the	current
workbook	are	displayed	at	the	end	of	the	Quick	Access	Toolbar.

3.	 Open	the	upper-left	drop-down	menu	and	select	Macros	from	the	list.	The
Macros	category	is	fourth	in	the	list.	Excel	displays	a	list	of	available
macros	in	the	left	list	box.

4.	 Choose	a	macro	from	the	left	list	box.	Click	the	Add	button	in	the	center	of
the	dialog	box.	Excel	moves	the	macro	to	the	right	list	box.	Excel	uses	a
generic	VBA	icon	for	all	macros.

5.	 Click	the	macro	in	the	right	list	box.	Click	the	Modify	button	at	the	bottom
of	the	right	list	box.	Excel	displays	a	list	of	180	possible	icons	(see	Figure
1-5).	Choose	an	icon	from	the	list.	In	the	Display	Name	box,	replace	the
macro	name	with	a	short	name	that	appears	in	the	ToolTip	for	the	icon.

FIGURE	1-5	You	can	attach	a	macro	to	a	button	on	the	Quick	Access	Toolbar.

6.	 Click	OK	to	close	the	Modify	Button	dialog	box.

7.	 Click	OK	to	close	the	Excel	Options	dialog	box.	The	new	button	appears	on
the	Quick	Access	Toolbar.

Assigning	a	macro	to	a	form	control,	text	box,	or	shape

If	you	want	to	create	a	macro	specific	to	a	workbook,	you	can	store	the	macro	in
the	workbook	and	attach	it	to	a	form	control	or	any	object	on	the	sheet.

Follow	these	steps	to	attach	a	macro	to	a	form	control	on	the	sheet:

1.	 On	the	Developer	tab,	click	the	Insert	button	to	open	its	drop-down	menu.
Excel	offers	12	form	controls	and	12	ActiveX	controls	in	this	one	drop-
down	menu.	The	form	controls	are	at	the	top,	and	the	ActiveX	controls	are
at	the	bottom.	Most	icons	in	the	ActiveX	section	of	the	drop-down	menu
look	identical	to	an	icon	in	the	form	controls	section	of	the	drop-down
menu.	Click	the	Button	Form	Control	icon	at	the	upper-left	corner	of	the
Insert	drop-down	menu.

2.	 Move	your	cursor	over	the	worksheet;	the	cursor	changes	to	a	plus	sign.

3.	 Draw	a	button	on	the	sheet	by	clicking	and	holding	the	left	mouse	button
while	drawing	a	box	shape.	Release	the	button	when	you	have	finished.

4.	 Choose	a	macro	from	the	Assign	Macro	dialog	box	and	click	OK.	The
button	is	created	with	generic	text	such	as	Button	1.

5.	 Type	a	new	label	for	the	button.	Note	that	while	you	are	typing,	the
selection	border	around	the	button	changes	from	dots	to	diagonal	lines	to
indicate	that	you	are	in	Text	Edit	mode.	You	cannot	change	the	button	color
while	in	Text	Edit	mode.	To	exit	Text	Edit	mode,	either	click	the	diagonal
lines	to	change	them	to	dots	or	Ctrl+click	the	button	again.	Note	that	if	you
accidentally	click	away	from	the	button,	you	should	Ctrl+click	the	button	to
select	it.	Then	drag	the	cursor	over	the	text	on	the	button	to	select	the	text.

6.	 Right-click	the	dots	surrounding	the	button	and	select	Format	Control.
Excel	displays	the	Format	Control	dialog	box,	which	has	seven	tabs	across
the	top.	If	your	Format	Control	dialog	box	has	only	a	Font	tab,	you	failed	to
exit	Text	Edit	mode.	If	this	occurred,	close	the	dialog	box,	Ctrl+click	the
button,	and	repeat	this	step.

7.	 Use	the	settings	in	the	Format	Control	dialog	box	to	change	the	font	size,
font	color,	margins,	and	similar	settings	for	the	control.	Click	OK	to	close
the	Format	Control	dialog	box	when	you	have	finished.	Click	a	cell	to
deselect	the	button.

8.	 Click	the	new	button	to	run	the	macro.

Macros	can	be	assigned	to	any	worksheet	object,	such	as	clip	art,	a	shape,
SmartArt	graphics,	or	a	text	box.	In	Figure	1-6,	the	top	button	is	a	traditional
button	form	control.	The	other	images	are	clip	art,	a	shape	with	WordArt,	and	a
SmartArt	graphic.	To	assign	a	macro	to	any	object,	right-click	the	object	and
select	Assign	Macro.

FIGURE	1-6	Assigning	a	macro	to	a	form	control	or	an	object	is	appropriate	for	macros	stored	in	the
same	workbook	as	the	control.	You	can	assign	a	macro	to	any	of	these	objects.

Understanding	the	VB	Editor
If	you	want	to	edit	a	recorded	macro,	you	do	it	in	the	VB	Editor.	Press	Alt+F11
or	use	the	Visual	Basic	icon	in	the	Developer	tab.

Figure	1-7	shows	an	example	of	a	typical	VB	Editor	screen.	You	can	see
three	windows:	the	Project	Explorer,	the	Properties	window,	and	the
Programming	window.	Don’t	worry	if	your	window	doesn’t	look	exactly	like
this	because	you	will	see	how	to	display	the	windows	you	need	in	this	review	of
the	editor.

FIGURE	1-7	The	VB	Editor	window.

VB	Editor	settings

Several	settings	in	the	VB	Editor	enable	you	to	customize	this	editor	and	assist
you	in	writing	your	macros.

Under	Tools,	Options,	Editor,	you	find	several	useful	settings.	All	settings
except	for	one	are	set	correctly	by	default.	The	remaining	setting	requires	some
consideration	on	your	part.	This	setting	is	Require	Variable	Declaration.	By
default,	Excel	does	not	require	you	to	declare	variables.	I	prefer	selecting	this
setting	because	it	can	save	time	when	you	create	a	program.	My	coauthor	prefers
to	change	this	setting	to	require	variable	declaration.	This	change	forces	the
compiler	to	stop	if	it	finds	a	variable	that	it	does	not	recognize,	which	reduces
misspelled	variable	names.	Whether	you	turn	this	setting	on	or	keep	it	off	is	a
matter	of	your	personal	preference.

The	Project	Explorer

The	Project	Explorer	lists	any	open	workbooks	and	add-ins	that	are	loaded.	If
you	click	the	+	icon	next	to	the	VBA	Project,	you	see	that	there	is	a	folder

containing	Microsoft	Excel	objects.	There	can	also	be	folders	for	forms,	class
modules,	and	standard	modules.	Each	folder	includes	one	or	more	individual
components.

Right-clicking	a	component	and	selecting	View	Code	or	just	double-clicking
the	components	brings	up	any	code	in	the	Programming	window.	The	exception
is	userforms,	where	double-clicking	displays	the	userform	in	Design	view.

To	display	the	Project	Explorer	window,	select	View,	Project	Explorer	from
the	menu	or	press	Ctrl+R	or	locate	the	bizarre	Project	Explorer	icon	just	below
the	Tools	menu,	sandwiched	between	Design	Mode	and	Properties	Window.

To	insert	a	module,	right-click	your	project,	select	Insert,	and	then	choose	the
type	of	module	you	want.	The	available	modules	are	as	follows:

Microsoft	Excel	objects—By	default,	a	project	consists	of	sheet	modules
for	each	sheet	in	the	workbook	and	a	single	ThisWorkbook	module.	Code
specific	to	a	sheet	such	as	controls	or	sheet	events	is	placed	on	the
corresponding	sheet.	Workbook	events	are	placed	in	the	ThisWorkbook
module.	You	read	more	about	events	in	Chapter	7,	“Event	programming.”

Forms—Excel	enables	you	to	design	your	own	forms	to	interact	with	the
user.	You	read	more	about	these	forms	in	Chapter	10.

Modules—When	you	record	a	macro,	Excel	automatically	creates	a	module
in	which	to	place	the	code.	Most	of	your	code	resides	in	these	types	of
modules.

Class	modules—Class	modules	are	Excel’s	way	of	letting	you	create	your
own	objects.	They	also	allow	pieces	of	code	to	be	shared	among
programmers	without	the	programmer’s	needing	to	understand	how	it
works.	You	read	more	about	class	modules	in	Chapter	9,	“Creating	classes
and	collections.”

The	Properties	window

The	Properties	window	enables	you	to	edit	the	properties	of	various	components
such	as	sheets,	workbooks,	modules,	and	form	controls.	The	properties	list	varies
according	to	what	component	is	selected.	To	display	this	window,	select	View,
Properties	Window	from	the	menu,	press	F4,	or	click	the	Project	Properties	icon
on	the	toolbar.

Understanding	shortcomings	of	the	macro	recorder

Suppose	you	work	in	an	accounting	department.	Each	day	you	receive	a	text	file
from	the	company	system	showing	all	the	invoices	produced	the	prior	day.	This
text	file	has	commas	separating	the	fields.	The	columns	in	the	file	are	Invoice
Date,	Invoice	Number,	Sales	Rep	Number,	Customer	Number,	Product	Revenue,
Service	Revenue,	and	Product	Cost	(see	Figure	1-8).

FIGURE	1-8	The	Invoice.txt	file	has	seven	columns	separated	by	commas.

Each	morning,	you	manually	import	this	file	into	Excel.	You	add	a	total	row
to	the	data,	bold	the	headings,	and	then	print	the	report	for	distribution	to	a	few
managers.

This	seems	like	a	simple	process	that	would	be	ideally	suited	to	using	the
macro	recorder.	However,	due	to	some	problems	with	the	macro	recorder,	your
first	few	attempts	might	not	be	successful.	The	following	example	explains	how
to	overcome	these	problems.

Case	study:	Preparing	to	record	a	macro
The	task	mentioned	in	the	preceding	section	is	perfect	for	a	macro.
However,	before	you	record	a	macro,	think	about	the	steps	you	will	use.	In
this	case,	the	steps	are	as	follows:

1.	 Click	the	File	menu	and	select	Open.

2.	 Navigate	to	the	folder	where	Invoice.txt	is	stored.

3.	 Select	All	Files	(*.*)	from	the	Files	of	Type	drop-down	menu.

4.	 Select	Invoice.txt.

5.	 Click	Open.

6.	 In	the	Text	Import	Wizard—Step	1	Of	3	dialog	box,	select	Delimited
from	the	Original	Data	Type	section.

7.	 Click	Next.

8.	 In	the	Text	Import	Wizard—Step	2	Of	3	dialog	box,	clear	the	Tab	key
and	select	Comma	in	the	Delimiters	section.

9.	 Click	Next.

10.	 In	the	Text	Import	Wizard—Step	3	Of	3	dialog	box,	select	General	in	the
Column	Data	Format	section	and	change	it	to	Date:	MDY.

11.	 Click	Finish	to	import	the	file.

12.	 Press	the	Ctrl	key	and	the	down	arrow	key	to	move	to	the	last	row	of
data.

13.	 Press	the	down	arrow	one	more	time	to	move	to	the	total	row.

14.	 Type	the	word	Total.

15.	 Press	the	right	arrow	key	four	times	to	move	to	column	E	of	the	total
row.

16.	 Click	the	AutoSum	button	and	press	Ctrl+Enter	to	add	a	total	to	the
Product	Revenue	column	while	remaining	in	that	cell.

17.	 Click	the	AutoFill	handle	and	drag	it	from	column	E	to	column	G	to	copy
the	total	formula	to	columns	F	and	G.

18.	 Highlight	row	1	and	click	the	Bold	icon	on	the	Home	tab	to	set	the
headings	in	bold.

19.	 Highlight	the	total	row	and	click	the	Bold	icon	on	the	Home	tab	to	set	the
totals	in	bold.

20.	 Press	Ctrl+*	to	select	the	current	region.

21.	 From	the	Home	tab,	select	Format,	AutoFit	Column	Width.

After	you	have	rehearsed	these	steps	in	your	head,	you	are	ready	to	record
your	first	macro.	Open	a	blank	workbook	and	save	it	with	a	name	such	as
MacroToImportInvoices.xlsm.	Click	the	Record	Macro	button	on	the
Developer	tab.

In	the	Record	Macro	dialog	box,	the	default	macro	name	is	Macro1.
Change	this	to	something	descriptive	like	ImportInvoice.	Make	sure	that	the
macros	will	be	stored	in	This	Workbook.	You	might	want	an	easy	way	to
run	this	macro	later,	so	type	the	letter	i	in	the	Shortcut	Key	field.	In	the
Description	field,	add	a	little	descriptive	text	to	tell	what	the	macro	is	doing
(see	Figure	1-9).	Click	OK	when	you	are	ready.

FIGURE	1-9	Before	recording	the	macro,	you	need	to	complete	the	Record	Macro	dialog
box.

Recording	the	macro

The	macro	recorder	is	now	recording	your	every	move.	For	this	reason,	perform
your	steps	in	exact	order	without	extraneous	actions.	If	you	accidentally	move	to
column	F,	type	a	value,	clear	the	value,	and	then	move	back	to	E	to	enter	the	first
total,	the	recorded	macro	will	blindly	make	that	same	mistake	day	after	day	after
day.	Recorded	macros	move	fast,	but	there	is	nothing	like	watching	the	macro
recorder	play	out	your	mistakes	repeatedly.

Carefully	execute	all	the	actions	necessary	to	produce	the	report.	After	you
have	performed	the	final	step,	click	the	Stop	Recording	button	in	the	Developer
tab	of	the	ribbon.

Examining	code	in	the	Programming	window

Let’s	look	at	the	code	you	just	recorded	in	the	“Preparing	to	record	a	macro”
section.	Don’t	worry	if	it	doesn’t	make	sense	yet.

To	open	the	VB	Editor,	press	Alt+F11.	In	your	VBA	project
(MacroToImportInvoices.xlsm),	find	the	component	Module1,	right-click	the
module,	and	select	View	Code.	Notice	that	some	lines	start	with	an	apostrophe;
these	are	comments	and	are	ignored	by	the	program.	The	macro	recorder	starts
your	macros	with	a	few	comments,	using	the	description	you	entered	in	the
Record	Macro	dialog	box.	The	comment	for	the	keyboard	shortcut	is	there	to
remind	you	of	the	shortcut.

Note	The	comment	does	not	assign	the	shortcut.	If	you	change	the
comment	to	be	Ctrl+J,	it	does	not	change	the	shortcut.	You	must
change	the	setting	in	the	Macro	dialog	box	in	Excel	or	run	this	line

of	code:

Click	here	to	view	code	image
Application.MacroOptions	Macro:="ImportInvoice",	_

Description:="",	ShortcutKey:="j"

Recorded	macro	code	is	usually	pretty	tidy	(see	Figure	1-10).	Each	line	of
code	that	is	not	a	comment	is	indented	4	characters.	If	a	line	is	longer	than	100
characters,	the	recorder	breaks	it	into	multiple	lines	and	indents	the	continued
lines	an	additional	4	characters.	To	continue	a	line	of	code,	type	a	space	and	an
underscore	at	the	end	of	the	first	line	and	then	continue	the	code	on	the	next	line.
Don’t	forget	the	space	before	the	underscore.	Using	an	underscore	without	the
preceding	space	causes	an	error.

FIGURE	1-10	The	recorded	macro	is	neat	looking	and	nicely	indented.

Note	The	physical	limitations	of	this	book	do	not	allow	100
characters	on	a	single	line.	Therefore,	the	lines	are	broken	at	80
characters	so	that	they	fit	on	a	page.	For	this	reason,	your	recorded

macro	might	look	slightly	different	from	the	ones	that	appear	in	this	book.

Consider	that	the	following	seven	lines	of	recorded	code	are	actually	only
one	line	of	code	that	has	been	broken	into	seven	lines	for	readability:

Click	here	to	view	code	image
Workbooks.OpenText

Filename:="C:\somepath\invoice.txt",	_

Origin:=437,	StartRow:=1,	DataType:=xlDelimited,	_

TextQualifier:=xlDoubleQuote,

ConsecutiveDelimiter:=False,	_

Tab:=True,	Semicolon:=False,	Comma:=True,

Space:=False,	_

Other:=False,	FieldInfo:=Array(Array(1,	3),	Array(2,

1),	_

Array(3,	1),	Array(4,	1),	Array(5,	1),	Array(6,	1),	_

Array(7,	1)),	TrailingMinusNumbers:=True

Counting	this	as	one	line,	the	macro	recorder	was	able	to	record	the	21-step
process	in	14	lines	of	code,	which	is	pretty	impressive.

Note	Each	action	you	perform	in	the	Excel	user	interface	might
equate	to	one	or	more	lines	of	recorded	code.	Some	actions	might
generate	a	dozen	lines	of	code.

Test	each	macro

It	is	always	a	good	idea	to	test	macros.	To	test	your	new	macro,	return	to	the
regular	Excel	interface	by	pressing	Alt+F11.	Close	Invoice.txt	without	saving
any	changes.	MacroToImportInvoices.xls	is	still	open.

Press	Ctrl+I	to	run	the	recorded	macro.	It	should	work	beautifully	if	you
completed	the	steps	correctly.	The	data	is	imported,	totals	are	added,	bold
formatting	is	applied,	and	the	columns	are	made	wider.	This	seems	like	a	perfect
solution	(see	Figure	1-11).

FIGURE	1-11	The	macro	formats	the	data	in	the	sheet.

Running	the	macro	on	another	day	produces	undesired	results

After	testing	the	macro,	be	sure	to	save	your	macro	file	to	use	on	another	day.
But	suppose	that	the	next	day,	after	receiving	a	new	Invoice.txt	file	from	the
system,	you	open	the	macro	and	press	Ctrl+I	to	run	it,	and	disaster	strikes.	The
data	for	June	5	happened	to	have	9	invoices,	but	the	data	for	June	6	now	has	17

invoices.	The	recorded	macro	blindly	added	the	totals	in	Row	11	because	this
was	where	you	put	the	totals	when	the	macro	was	recorded	(see	Figure	1-12).

FIGURE	1-12	The	intent	of	the	recorded	macro	was	to	add	a	total	at	the	end	of	the	data,	but	the
recorder	made	a	macro	that	always	adds	totals	at	row	11.

For	those	of	you	working	along	using	the	sample	files	in	this	book,	follow
these	steps	to	try	importing	data	for	another	day:

1.	 Close	Invoice.txt	in	Excel.

2.	 In	Windows	Explorer,	rename	Invoice.txt	to	be	Invoice1.txt.

3.	 In	Windows	Explorer,	rename	Invoice2.txt	to	be	Invoice.txt.

4.	 Return	to	Excel	and	the	MacroToImportInvoices.xlsm	workbook.

5.	 Press	Ctrl+I	to	run	the	macro	with	the	larger	data	set.

This	problem	arises	because	the	macro	recorder	is	recording	all	your	actions
in	Absolute	mode	by	default.	As	an	alternative	to	using	the	default	state	of	the

macro	recorder,	the	next	section	discusses	relative	recording	and	how	it	might
get	you	closer	to	the	desired	solution.

Possible	solution:	Use	relative	references	when	recording

By	default,	the	macro	recorder	records	all	actions	as	absolute	actions.	If	you
navigate	to	row	11	when	you	record	the	macro,	the	macro	will	always	go	to	row
11	when	the	macro	is	run.	This	is	rarely	appropriate	when	dealing	with	variable
numbers	of	rows	of	data.	The	better	option	is	to	use	relative	references	when
recording.

Macros	recorded	with	absolute	references	note	the	actual	address	of	the	cell
pointer,	such	as	A11.	Macros	recorded	with	relative	references	note	that	the	cell
pointer	should	move	a	certain	number	of	rows	and	columns	from	its	current
position.	For	example,	if	the	cell	pointer	starts	in	cell	A1,	the	code
ActiveCell.Offset(16,	1).Select	would	move	the	cell	pointer	to	B17,	which
is	the	cell	16	rows	down	and	1	column	to	the	right.

Although	relative	recording	is	appropriate	in	most	situations,	there	are	times
when	you	need	to	do	something	absolute	while	recording	a	macro.	Here’s	a	great
example:	After	adding	the	totals	to	a	data	set,	you	need	to	return	to	row	1.	If	you
simply	click	row	1	while	in	Relative	mode,	Excel	records	that	you	want	to	select
the	row	10	rows	above	the	current	row.	This	works	with	the	first	invoice	file	but
not	with	longer	or	shorter	invoice	files.	Here	are	two	workarounds:

Toggle	relative	recording	off,	click	row	1,	and	then	toggle	relative	recording
back	on.

Keep	relative	recording	turned	on.	Display	the	Go	To	dialog	box	by
pressing	F5.	Type	A1	and	click	OK.	The	Go	To	dialog	box	gets	recorded	as
always,	going	to	the	absolute	address	you	typed,	even	if	relative	recording
is	turned	on.	A	variation	of	this	method	is	used	in	the	following	example.

The	next	example	shows	the	same	task	as	before	but	uses	relative	references
this	time.	The	solution	will	be	much	closer	to	working	correctly.

Case	study:	Recording	a	macro	with	relative	references
Let’s	try	to	record	the	macro	again,	this	time	using	relative	references.

Note:	If	you	are	following	along	with	the	sample	files,	complete	these	steps:

1.	 Close	Invoice.txt	in	Excel.

2.	 Rename	Invoice.txt	as	Invoice2.txt.

3.	 Rename	Invoice1.txt	as	Invoice.txt.

4.	 Return	to	the	MacroToImportInvoices.xlsm	workbook.

In	the	Developer	tab,	choose	Use	Relative	References	to	toggle	on	relative
recording.	This	setting	persists	until	you	turn	it	off	or	until	you	close	Excel.

In	the	workbook	MacroToImportInvoices.xlsm,	record	a	new	macro	by
selecting	Record	Macro	from	the	Developer	tab.	Give	the	new	macro	the
name	ImportInvoicesRelative	and	assign	a	different	shortcut	key,	such	as
Ctrl+J.

Repeat	steps	1	through	11	from	the	“Preparing	to	record	a	macro”	section	to
import	the	file	and	then	follow	these	steps:

1.	 Press	Ctrl+down	arrow	to	move	to	the	last	row	of	data.

2.	 Press	the	down	arrow	key	one	more	time	to	move	to	the	total	row.

3.	 Type	the	word	Total.

4.	 Press	the	right	arrow	key	four	times	to	move	to	column	E	of	the	total
row.

5.	 Hold	the	Shift	key	while	pressing	the	right	arrow	key	twice	to	select
E11:G11.

6.	 Click	the	AutoSum	button.

7.	 Press	Shift+spacebar	to	select	the	entire	row.	Type	Ctrl+B	to	apply	bold
formatting	to	it.

8.	 Press	F5	to	display	the	Go	To	dialog	box.

9.	 In	the	Go	To	dialog	box,	type	A1:G1	and	click	OK.	Even	though	relative
recording	is	turned	on,	any	navigation	through	the	Go	To	dialog	box	is
recorded	as	an	absolute	reference.

10.	 Click	the	Bold	icon	to	set	the	headings	in	bold.

11.	 Press	Ctrl+*	to	select	all	data	in	the	current	region.

12.	 From	the	Home	tab,	select	Format,	AutoFit	Column	Width.

13.	 Stop	recording.

Press	Alt+F11	to	go	to	the	VB	Editor	to	review	your	code.	The	new	macro
appears	in	Module1,	below	the	previous	macro.

If	you	close	Excel	between	recording	the	first	and	second	macros,	Excel
inserts	a	new	module	called	Module2	for	the	newly	recorded	macro:

Click	here	to	view	code	image
Sub	ImportInvoicesRelative()

'	ImportInvoicesRelative	Macro

'	Import.	Total	Row.	Format.

'	Keyboard	Shortcut:	Ctrl+J

Workbooks.OpenText

Filename:="C:\data\invoice.txt",	_

	Origin:=	437,	StartRow:=1,	DataType:=xlDelimited,

_

	TextQualifier:=xlDoubleQuote,

ConsecutiveDelimiter:=False,	_

	Tab:=False,	Semicolon:=False,	Comma:=True,

Space:=False,	_

	Other:=False,	FieldInfo:=Array(Array(1,	3),

Array(2,	1),	_

	Array(3,	1),	Array(4,	1),	Array(5,	1),	Array(6,

1),	_

	Array(7,	1)),	TrailingMinusNumbers:=True

Selection.End(xlDown).Select

ActiveCell.Offset(1,	0).Range("A1").Select

ActiveCell.FormulaR1C1	=	"Total"

ActiveCell.Offset(0,	4).Range("A1:C1").Select

Selection.FormulaR1C1	=	"=SUM(R[-9]C:R[-1]C)"

ActiveCell.Rows("1:1").EntireRow.Select

ActiveCell.Activate

Selection.Font.Bold	=	True

Application.Goto	Reference:="R1C1:R1C7"

Selection.Font.Bold	=	True

Selection.CurrentRegion.Select

Selection.Columns.AutoFitSelection.Font.Bold	=

True

End	Sub

To	test	the	macro,	close	Invoice.txt	without	saving	and	then	run	the	macro
with	Ctrl+J.	Everything	should	look	good,	and	you	should	get	the	same
results	as	with	the	macro	you	created	with	the	macro	recorder.

The	next	test	is	to	see	whether	the	program	works	on	the	next	day	when	you
might	have	more	rows.	If	you	are	working	along	with	the	sample	files,
close	Invoice.txt	in	Excel.	Rename	Invoice.txt	to	Invoice1.txt.	Rename
Invoice2.txt	to	Invoice.txt.

Open	MacroToImportInvoices.xls	and	run	the	new	macro	with	Ctrl+J.	This
time,	everything	should	look	good,	with	the	totals	in	the	correct	places.
Look	at	Figure	1-13.	Do	you	see	anything	out	of	the	ordinary?

FIGURE	1-13	After	running	the	Relative	macro,	the	totals	appear	in	the	correct	row.

If	you	aren’t	careful,	you	might	print	these	reports	for	your	manager.	If	you
did,	you	would	be	in	trouble.	When	you	look	in	cell	E19,	you	can	see	that
Excel	has	inserted	a	green	triangle	to	tell	you	to	look	at	the	cell.

When	you	move	the	cell	pointer	to	E19,	an	alert	indicator	pops	up	near	the

cell.	This	indicator	tells	you	that	the	formula	fails	to	include	adjacent	cells.
If	you	look	in	the	formula	bar,	you	see	that	the	macro	totaled	only	from	row
10	to	row	18.	Neither	the	relative	recording	nor	the	nonrelative	recording	is
smart	enough	to	replicate	the	logic	of	the	AutoSum	button.
Imagine	that	you	had	fewer	invoice	records	on	this	particular	day.	Excel
would	have	rewarded	you	with	the	illogical	formula	=SUM(E6:E1048574),
as	shown	in	Figure	1-14.	Since	this	formula	would	be	in	E7,	circular
reference	warnings	appear	in	the	status	bar.

FIGURE	1-14	An	incorrect	formula	appears	when	you	run	the	relative	macro	with	fewer
invoice	records.

Note	To	try	this	yourself,	close	Invoice.txt	in	Excel.	Rename
Invoice.txt	to	Invoice2.txt.	Rename	Invoice4.txt	to
Invoice.txt.

If	you	have	tried	using	the	macro	recorder,	most	likely	you	have	run	into
problems	similar	to	the	ones	produced	in	the	previous	two	case	studies.
Although	this	is	frustrating,	you	should	be	happy	to	know	that	the	macro
recorder	actually	gets	you	95%	of	the	way	to	a	useful	macro.

Your	job	is	to	recognize	where	the	macro	recorder	is	likely	to	fail	and	then
be	able	to	dive	into	the	VBA	code	to	fix	the	one	or	two	lines	that	require
adjusting	to	have	a	perfect	macro.	With	some	added	human	intelligence,
you	can	produce	awesome	macros	to	speed	up	your	daily	work.

If	you	are	like	me,	you	are	cursing	Microsoft	about	now.	We	have	wasted	a
good	deal	of	time	over	a	couple	of	days,	and	neither	macro	works.	What
makes	it	worse	is	that	this	sort	of	procedure	would	have	been	handled

perfectly	by	the	old	Lotus	1-2-3	macro	recorder	introduced	in	1983.	Mitch
Kapor	solved	this	problem	33	years	ago,	and	Microsoft	still	can’t	get	it
right.
Did	you	know	that	up	through	Excel	97,	Microsoft	Excel	secretly	ran	Lotus
command-line	macros?	I	found	this	out	right	after	Microsoft	quit	supporting
Excel	97.	At	that	time,	a	number	of	companies	upgraded	to	Excel	XP,
which	no	longer	supported	the	Lotus	1-2-3	macros.	Many	of	these
companies	hired	my	company	to	convert	the	old	Lotus	1-2-3	macros	to
Excel	VBA.	It	is	interesting	that	in	Excel	5,	Excel	95,	and	Excel	97,
Microsoft	offered	an	interpreter	that	could	handle	the	Lotus	macros	that
solved	this	problem	correctly,	yet	its	own	macro	recorder	couldn’t	(and	still
can’t!)	solve	the	problem.

Never	use	AutoSum	or	Quick	Analysis	while	recording	a	macro

There	actually	is	a	macro	recorder	solution	to	the	current	problem	with	recording
an	AutoSum.	It	is	important	to	recognize	that	the	macro	recorder	will	never
correctly	record	the	intent	of	the	AutoSum	button.

If	you	are	in	cell	E99	and	click	the	AutoSum	button,	Excel	starts	scanning
from	cell	E98	upward	until	it	locates	a	text	cell,	a	blank	cell,	or	a	formula.	It	then
proposes	a	formula	that	sums	everything	between	the	current	cell	and	the	found
cell.

However,	the	macro	recorder	records	the	particular	result	of	that	search	on
the	day	that	the	macro	was	recorded.	Rather	than	record	something	along	the
lines	of	“do	the	normal	AutoSum	logic,”	the	macro	recorder	inserts	a	single	line
of	code	to	add	up	the	previous	98	cells.

Excel	2013	added	the	Quick	Analysis	feature.	Select	E2:G99;	click	the
Quick	Analysis	icon	that	appears	below	and	to	the	right	of	a	rectangular
selection;	choose	Totals,	Sum	at	Bottom;	and	you	get	the	correct	totals	in	row
100.	The	macro	recorder	hard-codes	the	formulas	to	always	appear	in	row	100
and	to	always	total	row	2	through	row	99.

The	somewhat	bizarre	workaround	is	to	type	a	SUM	function	that	uses	a	mix
of	relative	and	absolute	row	references.	If	you	type	=SUM(E$2:E10)	while	the
macro	recorder	is	running,	Excel	correctly	adds	code	that	always	sums	from	a
fixed	row	two	down	to	the	relative	reference	that	is	just	above	the	current	cell.

Here	is	the	resulting	code,	with	a	few	comments:

Click	here	to	view	code	image
Sub	FormatInvoice3()

'	FormatInvoice3	Macro

'	Import.	Total.	Format.

'	Keyboard	Shortcut:	Ctrl+K

Workbooks.OpenText	Filename:="C:\Data\invoice.txt",	_

Origin:=437,	StartRow:=1,	DataType:=xlDelimited,	_

TextQualifier:=xlDoubleQuote,

ConsecutiveDelimiter:=False,	_

Tab:=False,	Semicolon:=False,	Comma:=True,

Space:=False,	_

Other:=False,	FieldInfo:=Array(Array(1,	3),

Array(2,	1),	_

Array(3,	1),	Array(4,	1),	Array(5,	1),	Array(6,

1),	_

Array(7,	1)),	TrailingMinusNumbers:=True

Selection.End(xlDown).Select

ActiveCell.Offset(1,	0).Range("A1").Select

ActiveCell.FormulaR1C1	=	"Total"

ActiveCell.Offset(0,	4).Range("A1").Select

Selection.FormulaR1C1	=	"=SUM(R2C:R[-1]C)"

Selection.AutoFill

Destination:=ActiveCell.Range("A1:C1"),	_

Type:=xlFillDefault

ActiveCell.Range("A1:C1").Select

ActiveCell.Rows("1:1").EntireRow.Select

ActiveCell.Activate

Selection.Font.Bold	=	True

Application.Goto	Reference:="R1C1:R1C7"

Selection.Font.Bold	=	True

Selection.CurrentRegion.Select

Selection.Columns.AutoFit

End	Sub

This	third	macro	consistently	works	with	a	data	set	of	any	size.

Four	tips	for	using	the	macro	recorder

You	will	rarely	be	able	to	record	100%	of	your	macros	and	have	them	work.
However,	you	will	get	much	closer	by	using	the	following	four	tips.

Tip	1:	Turn	on	the	Use	Relative	References	setting

Microsoft	should	have	made	this	setting	the	default.	Turn	the	setting	on	and
leave	it	on	while	recording	your	macros.

Tip	2:	Use	special	navigation	keys	to	move	to	the	bottom	of	a	data
set

If	you	are	at	the	top	of	a	data	set	and	need	to	move	to	the	last	cell	that	contains
data,	you	can	press	Ctrl+down	arrow	or	press	the	End	key	and	then	the	down
arrow	key.

Similarly,	to	move	to	the	last	column	in	the	current	row	of	the	data	set,	press
Ctrl+right	arrow	or	press	End	and	then	press	the	right	arrow	key.

By	using	these	navigation	keys,	you	can	jump	to	the	end	of	the	data	set,	no
matter	how	many	rows	or	columns	you	have	today.

Use	Ctrl+*	to	select	the	current	region	around	the	active	cell.	Provided	that
you	have	no	blank	rows	or	blank	columns	in	your	data,	this	key	combination
selects	the	entire	data	set.

Tip	3:	Never	touch	the	AutoSum	icon	while	recording	a	macro

The	macro	recorder	does	not	record	the	“essence”	of	the	AutoSum	button.
Instead,	it	hard-codes	the	formula	that	resulted	from	pressing	the	AutoSum
button.	This	formula	does	not	work	any	time	you	have	more	or	fewer	records	in
the	data	set.

Instead,	type	a	formula	with	a	single	dollar	sign,	such	as	=SUM(E$2:E10).
When	this	is	done,	the	macro	recorder	records	the	first	E$2	as	a	fixed	reference
and	starts	the	SUM	range	directly	below	the	row	1	headings.	Provided	that	the
active	cell	is	E11,	the	macro	recorder	recognizes	E10	as	a	relative	reference
pointing	directly	above	the	current	cell.

Tip	4:	Try	recording	different	methods	if	one	method	does	not
work

There	are	often	many	ways	to	perform	tasks	in	Excel.	If	you	encounter	buggy
code	from	one	method,	try	another	method.	With	16	different	project	managers
on	the	Excel	team,	it	is	likely	that	each	method	was	programmed	by	a	different
group.	In	one	of	the	case	studies	in	this	chapter,	one	task	involved	applying
AutoFit	Column	Width	to	all	cells.	Some	people	might	press	Ctrl+A	to	select	all
cells.	Others	might	press	Ctrl+*.	Since	Excel	2007,	the	code	generated	by
Ctrl+A	when	pressed	in	Relative	mode	does	not	work.	The	Ctrl+*	code	is	very
old	and	continues	to	work	in	all	cases.

Next	steps

Chapter	2,	“This	sounds	like	BASIC,	so	why	doesn’t	it	look	familiar?”	examines
the	three	macros	you	recorded	in	this	chapter	to	make	more	sense	out	of	them.
When	you	know	how	to	decode	the	VBA	code,	it	will	feel	natural	to	either
correct	the	recorded	code	or	simply	write	code	from	scratch.	Hang	on	through
one	more	chapter.	You’ll	soon	learn	that	VBA	is	the	solution,	and	you’ll	be
writing	useful	code	that	works	consistently.

CHAPTER	2
This	sounds	like	BASIC,	so	why	doesn’t
it	look	familiar?

In	this	chapter,	you	will:

Find	out	how	VBA	is	different	than	BASIC

Understand	the	parts	of	VBA	“speech”

Find	out	that	learning	VBA	is	not	really	hard

Examine	recorded	macro	code	using	the	VB	Editor	and	Help

Use	debugging	tools	to	figure	out	recorded	code

Get	to	know	the	Object	Browser

Learn	seven	tips	for	cleaning	up	recorded	code

As	mentioned	in	Chapter	1,	“Unleashing	the	power	of	Excel	with	VBA,”	if	you
have	taken	a	class	in	a	procedural	language	such	as	BASIC	or	COBOL,	you
might	be	confused	when	you	look	at	VBA	code.	Even	though	VBA	stands	for
Visual	Basic	for	Applications,	it	is	an	object-oriented	version	of	BASIC.	Here	is
a	bit	of	VBA	code:

Click	here	to	view	code	image
Selection.End(xlDown).Select

Range("A11").Select

ActiveCell.FormulaR1C1	=	"Total"

Range("E11").Select

Selection.FormulaR1C1	=	_

"=SUM(R[-9]C:R[-1]C)"

Selection.AutoFill	_

Destination:=Range("E11:G11"),	_

Type:=xlFillDefault

This	code	likely	makes	no	sense	to	anyone	who	knows	only	procedural
languages.	Unfortunately,	your	first	introduction	to	programming	in	school
(assuming	that	you	are	more	than	40	years	old)	would	have	been	a	procedural
language.

Here	is	a	section	of	code	written	in	the	BASIC	language:
For	x	=	1	to	10

Print	Rpt$("	",x);

Print	"*"

Next	x

If	you	run	this	code,	you	get	a	pyramid	of	asterisks	on	your	screen:
*

*

*

*

*

*

*

*

*

*

If	you	have	ever	been	in	a	procedural	programming	class,	you	can	probably
look	at	the	code	and	figure	out	what	is	going	on	because	procedural	languages
are	more	English-like	than	object-oriented	languages.	The	statement	Print
"Hello	World"	follows	the	verb–object	format,	which	is	how	you	would
generally	talk.	Let’s	step	away	from	programming	for	a	second	and	look	at	a
concrete	example.

Understanding	the	parts	of	VBA	“speech”

If	you	were	going	to	write	code	for	instructions	to	play	soccer	using	BASIC,	the
instruction	to	kick	a	ball	would	look	something	like	this:

"Kick	the	Ball"

Hey,	this	is	how	you	talk!	It	makes	sense.	You	have	a	verb	(kick)	and	then	a
noun	(ball).	The	BASIC	code	in	the	preceding	section	has	a	verb	(Print)	and	a

noun	(the	asterisk,	*).	Life	is	good.

Here	is	the	problem:	VBA	doesn’t	work	like	this.	In	fact,	no	object-oriented
language	works	like	this.	In	an	object-oriented	language,	the	objects	(nouns)	are
most	important,	hence	the	name:	object-oriented.	If	you	were	going	to	write	code
for	instructions	to	play	soccer	with	VBA,	the	basic	structure	would	be	as
follows:

Ball.Kick

You	have	a	noun	(Ball),	which	comes	first.	In	VBA,	this	is	an	object.	Then
you	have	the	verb	(Kick),	which	comes	next.	In	VBA,	this	is	a	method.

The	basic	structure	of	VBA	is	a	bunch	of	lines	of	code	with	this	syntax:

Object.Method

Needless	to	say,	this	is	not	English.	If	you	took	a	romance	language	in	high
school,	you	will	remember	that	those	languages	use	a	“noun–adjective”
construct.	However,	no	one	uses	“noun–verb”	to	tell	someone	to	do	something:
Water.Drink

Food.Eat

Girl.Kiss

That	is	why	VBA	is	confusing	to	someone	who	previously	took	a	procedural
programming	class.

Let’s	carry	the	analogy	a	bit	further.	Imagine	that	you	walk	onto	a	grassy
field,	and	there	are	five	balls	in	front	of	you:	a	soccer	ball,	basketball,	baseball,
bowling	ball,	and	tennis	ball.	You	want	to	instruct	a	kid	on	your	soccer	team	to
“kick	the	soccer	ball.”

If	you	tell	him	to	kick	the	ball	(or	ball.kick),	you	really	aren’t	sure	which
one	of	the	five	balls	he	will	kick.	Maybe	he	will	kick	the	one	closest	to	him,
which	could	be	a	problem	if	he	is	standing	in	front	of	the	bowling	ball.

For	almost	any	noun,	or	object	in	VBA,	there	is	a	collection	of	that	object.
Think	about	Excel.	If	you	can	have	one	row,	you	can	have	a	bunch	of	rows.	If
you	can	have	one	cell,	you	can	have	a	bunch	of	cells.	If	you	can	have	one
worksheet,	you	can	have	a	bunch	of	worksheets.	The	only	difference	between	an
object	and	a	collection	is	that	you	add	an	s	to	the	name	of	the	object:

Row	becomes	Rows.

Cell	becomes	Cells.

Ball	becomes	Balls.

When	you	refer	to	something	that	is	a	collection,	you	have	to	tell	the
programming	language	to	which	item	you	are	referring.	There	are	a	couple	of
ways	to	do	this.	You	can	refer	to	an	item	by	using	a	number.	For	example,	if	the
soccer	ball	is	the	second	ball,	you	might	say	this:

Balls(2).Kick

This	works	fine,	but	it	could	be	a	dangerous	way	to	program.	For	example,	it
might	work	on	Tuesday.	However,	if	you	get	to	the	field	on	Wednesday	and
someone	has	rearranged	the	balls,	Balls(2).Kick	might	be	a	painful	exercise.

A	much	safer	way	to	go	is	to	use	a	name	for	the	object	in	a	collection.	You
can	say	the	following:

Balls("Soccer").Kick

With	this	method,	you	always	know	that	it	will	be	the	soccer	ball	that	is
being	kicked.

So	far,	so	good.	You	know	that	a	ball	will	be	kicked,	and	you	know	that	it
will	be	the	soccer	ball.	For	most	of	the	verbs,	or	methods	in	Excel	VBA,	there
are	parameters	that	tell	how	to	do	the	action.	These	parameters	act	as	adverbs.
You	might	want	the	soccer	ball	to	be	kicked	to	the	left	and	with	a	hard	force.	In
this	case,	the	method	would	have	a	number	of	parameters	that	tell	how	the
program	should	perform	the	method:

Click	here	to	view	code	image

Balls("Soccer").Kick	Direction:=Left,	Force:=Hard

When	you	are	looking	at	VBA	code,	the	colon–equal	sign	combination	(:=)
indicates	that	you	are	looking	at	parameters	of	how	the	verb	should	be
performed.

Sometimes,	a	method	will	have	a	list	of	10	parameters,	some	of	which	are
optional.	For	example,	if	the	Kick	method	has	an	Elevation	parameter,	you

would	have	this	line	of	code:

Click	here	to	view	code	image

Balls("Soccer").Kick	Direction:=Left,	Force:=Hard,

Elevation:=High

Here	is	the	confusing	part:	Every	method	has	a	default	order	for	its
parameters.	If	you	are	not	a	conscientious	programmer,	and	you	happen	to	know
the	order	of	the	parameters,	you	can	leave	off	the	parameter	names.	The
following	code	is	equivalent	to	the	previous	line	of	code:

Click	here	to	view	code	image

Balls("Soccer").Kick	Left,	Hard,	High

This	throws	a	monkey	wrench	into	our	understanding.	Without	:=,	it	is	not
obvious	that	you	have	parameters.	Unless	you	know	the	parameter	order,	you
might	not	understand	what	is	being	said.	It	is	pretty	easy	with	Left,	Hard,	and
High,	but	when	you	have	parameters	like	the	following:

Click	here	to	view	code	image
ActiveSheet.Shapes.AddShape	type:=1,	Left:=10,

Top:=20,	_

Width:=100,	Height:=200

it	gets	confusing	if	you	instead	have	this:

Click	here	to	view	code	image

ActiveSheet.Shapes.AddShape	1,	10,	20,	100,	200

The	preceding	line	is	valid	code.	However,	unless	you	know	that	the	default
order	of	the	parameters	for	this	Add	method	is	Type,	Left,	Top,	Width,	Height,
this	code	does	not	make	sense.	The	default	order	for	any	particular	method	is	the
order	of	the	parameters	as	shown	in	the	Help	topic	for	that	method.

To	make	life	more	confusing,	you	are	allowed	to	start	specifying	parameters
in	their	default	order	without	naming	them,	and	then	you	can	switch	to	naming
parameters	when	you	hit	one	that	does	not	match	the	default	order.	If	you	want

to	kick	the	ball	to	the	left	and	high	but	do	not	care	about	the	force	(that	is,	you
are	willing	to	accept	the	default	force),	the	following	two	statements	are
equivalent:

Click	here	to	view	code	image
Balls("Soccer").Kick	Direction:=Left,	Elevation:=High

Balls("Soccer").Kick	Left,	Elevation:=High

However,	keep	in	mind	that	as	soon	as	you	start	naming	parameters,	they
have	to	be	named	for	the	remainder	of	that	line	of	code.

Some	methods	simply	act	on	their	own.	To	simulate	pressing	the	F9	key,	you
use	this	code:

Application.Calculate

Other	methods	perform	an	action	and	create	something.	For	example,	you
can	add	a	worksheet	by	using	the	following:

Click	here	to	view	code	image

Worksheets.Add	Before:=Worksheets(1)

However,	because	Worksheets.Add	creates	a	new	object,	you	can	assign	the
results	of	this	method	to	a	variable.	In	this	case,	you	must	surround	the
parameters	with	parentheses:

Click	here	to	view	code	image

Set	MyWorksheet	=

Worksheets.Add(Before:=Worksheets(1))

One	final	bit	of	grammar	is	necessary:	adjectives.	Just	as	adjectives	describe
a	noun,	properties	describe	an	object.	Because	you	are	an	Excel	fan,	let’s	switch
from	the	soccer	analogy	to	an	Excel	analogy.	There	is	an	object	to	describe	the
active	cell.	Fortunately,	it	has	a	very	intuitive	name:

ActiveCell

Suppose	you	want	to	change	the	color	of	the	active	cell	to	red.	There	is	a

property	called	Interior.Color	for	a	cell	that	uses	a	complex	series	of	codes.
However,	you	can	turn	a	cell	to	red	by	using	this	code:

ActiveCell.Interior.Color	=	255

You	can	see	how	this	can	be	confusing.	Again,	there	is	the	noun-dot-
something	construct,	but	this	time	it	is	Object.Property	rather	than
Object.Method.	How	you	tell	them	apart	is	quite	subtle:	There	is	no	colon
before	the	equal	sign.	A	property	is	almost	always	set	equal	to	something,	or
perhaps	the	value	of	a	property	is	assigned	to	something	else.

To	make	this	cell	color	the	same	as	cell	A1,	you	might	say	this:

Click	here	to	view	code	image

ActiveCell.Interior.Color	=	Range("A1").Interior.Color

Interior.Color	is	a	property.	By	changing	the	value	of	a	property,	you	can
make	things	look	different.	It	is	kind	of	bizarre:	Change	an	adjective,	and	you
are	actually	doing	something	to	the	cell.	Humans	would	say,	“Color	the	cell	red,”
whereas	VBA	says	this:

ActiveCell.Interior.Color	=	255

Table	2-1	summarizes	the	VBA	“parts	of	speech.”

TABLE	2-1	Parts	of	the	VBA	programming	language

VBA
Component

Analogous
To Notes

Object Noun Examples	include	cell	or	sheet.

Collection Plural	noun Usually	specifies	which	object:	Worksheets(1).

Method Verb Appears	as	Object.Method.

Parameter Adverb Lists	parameters	after	the	method.	Separate	the	parameter	name	from	its
value	with	:=.

Property Adjective You	can	set	a	property	(for	example,	activecell.height=10)	or	store
the	value	of	a	property	(for	example,	x	=	activecell.height).

VBA	is	not	really	hard

Knowing	whether	you	are	dealing	with	properties	or	methods	helps	you	set	up
the	correct	syntax	for	your	code.	Don’t	worry	if	it	all	seems	confusing	right	now.
When	you	are	writing	VBA	code	from	scratch,	it	is	tough	to	know	whether	the
process	of	changing	a	cell	to	yellow	requires	a	verb	or	an	adjective.	Is	it	a
method	or	a	property?

This	is	where	the	macro	recorder	is	especially	helpful.	When	you	don’t	know
how	to	code	something,	you	record	a	short	little	macro,	look	at	the	recorded
code,	and	figure	out	what	is	going	on.

VBA	Help	files:	Using	F1	to	find	anything

Excel	VBA	Help	is	an	amazing	feature,	provided	that	you	are	connected	to	the
Internet.	If	you	are	going	to	write	VBA	macros,	you	absolutely	must	have	access
to	the	VBA	Help	topics	installed.	Follow	these	steps	to	see	how	easy	it	is	to	get
help	in	VBA:

1.	 Open	Excel	and	switch	to	the	VB	Editor	by	pressing	Alt+F11.	From	the
Insert	menu,	select	Module.

2.	 Type	these	three	lines	of	code:
Sub	Test()

MsgBox	"Hello	World!"

End	Sub

3.	 Click	inside	the	word	MsgBox.

4.	 With	the	cursor	in	the	word	MsgBox,	press	F1.	If	you	can	reach	the	Internet,
you	see	the	Help	topic	for	the	MsgBox	function.

Using	Help	topics

If	you	request	help	on	a	function	or	method,	the	Help	topic	walks	you	through
the	various	available	arguments.	If	you	browse	to	the	bottom	of	a	Help	topic,
you	can	see	a	great	resource:	code	samples	under	the	Example	heading	(see
Figure	2-1).

FIGURE	2-1	Most	Help	topics	include	code	samples.

It	is	possible	to	select	the	code,	copy	it	to	the	Clipboard	by	pressing	Ctrl+C,
and	then	paste	it	into	a	module	by	pressing	Ctrl+V.

After	you	record	a	macro,	if	there	are	objects	or	methods	about	which	you
are	unsure,	you	can	get	help	by	inserting	the	cursor	in	any	keyword	and	pressing
F1.

Examining	recorded	macro	code:	Using	the	VB	Editor
and	Help

Let’s	take	a	look	at	the	code	you	recorded	in	Chapter	1	to	see	whether	it	makes
more	sense	now	that	you	know	about	objects,	properties,	and	methods.	You	can
also	see	whether	it’s	possible	to	correct	the	errors	created	by	the	macro	recorder.

Figure	2-2	shows	the	first	code	that	Excel	recorded	in	the	example	from
Chapter	1.

FIGURE	2-2	Here	is	the	recorded	code	from	the	example	in	Chapter	1.

Now	that	you	understand	the	concept	of	Noun.Verb	or	Object.Method,
consider	the	first	line	of	code	that	says	Workbooks.OpenText.	In	this	case,
Workbooks	is	an	object,	and	OpenText	is	a	method.	Click	your	cursor	inside	the
word	OpenText	and	press	F1	for	an	explanation	of	the	OpenText	method	(see
Figure	2-3).

FIGURE	2-3	This	shows	part	of	the	Help	topic	for	the	OpenText	method.

The	Help	file	confirms	that	OpenText	is	a	method,	or	an	action	word.	The
default	order	for	all	the	arguments	that	can	be	used	with	OpenText	appears	in	the
gray	box.	Notice	that	only	one	argument	is	required:	Filename.	All	the	other
arguments	are	listed	as	optional.

Optional	parameters

The	Help	file	can	tell	you	if	you	happen	to	skip	an	optional	parameter.	For
StartRow,	the	Help	file	indicates	that	the	default	value	is	1.	If	you	leave	out	the
StartRow	parameter,	Excel	starts	importing	at	row	1.	This	is	fairly	safe.

Now	look	at	the	Help	file	note	about	Origin.	If	this	argument	is	omitted,	you
inherit	whatever	value	was	used	for	Origin	the	last	time	someone	used	this
feature	in	Excel	on	this	computer.	That	is	a	recipe	for	disaster.	For	example,	your
code	might	work	98%	of	the	time.	However,	immediately	after	someone	imports
an	Arabic	file,	Excel	remembers	the	setting	for	Arabic	and	thereafter	assumes
that	this	is	what	your	macro	wants	if	you	don’t	explicitly	code	this	parameter.

Defined	constants

Look	at	the	Help	file	entry	for	DataType	in	Figure	2-3,	which	says	it	can	be	one
of	these	constants:	xlDelimited	or	xlFixedWidth.	The	Help	file	says	these	are
the	valid	xlTextParsingType	constants	that	are	predefined	in	Excel	VBA.	In	the
VB	Editor,	press	Ctrl+G	to	bring	up	the	Immediate	window.	In	the	Immediate
window,	type	this	line	and	press	Enter:

Print	xlFixedWidth

The	answer	appears	in	the	Immediate	window.	xlFixedWidth	is	the
equivalent	of	saying	2	(see	Figure	2-4).	In	the	Immediate	window,	type	Print
xlDelimited,	which	is	really	the	same	as	typing	1.	Microsoft	correctly	assumes
that	it	is	easier	for	someone	to	read	code	that	uses	the	somewhat	English-like
term	xlDelimited	than	to	read	1.

FIGURE	2-4	In	the	Immediate	window	of	the	VB	Editor,	you	can	query	to	see	the	true	value	of
constants	such	as	xlFixedWidth.

If	you	were	an	evil	programmer,	you	could	certainly	memorize	all	these
constants	and	write	code	using	the	numeric	equivalents	of	the	constants.
However,	the	programming	gods	(and	the	next	person	who	has	to	look	at	your
code)	will	curse	you	for	this.

In	most	cases,	the	Help	file	either	specifically	calls	out	the	valid	values	of	the
constants	or	offers	a	hyperlink	that	opens	the	Help	topic	showing	the	complete
enumeration	and	the	valid	values	for	the	constants	(see	Figure	2-5).

FIGURE	2-5	Click	the	hyperlink	to	see	all	the	possible	constant	values.	Here,	the	10	possible
xlColumnDataType	constants	are	revealed	in	a	new	Help	topic.

One	complaint	with	this	excellent	Help	system	is	that	it	does	not	identify
which	parameters	are	new	to	a	given	version.	In	this	particular	case,
TrailingMinusNumbers	was	introduced	in	Excel	2002.	If	you	attempt	to	give
this	program	to	someone	who	is	still	using	Excel	2000,	the	code	does	not	run
because	Excel	does	not	understand	the	TrailingMinusNumbers	parameter.	Sadly,
the	only	way	to	learn	to	handle	this	frustrating	problem	is	through	trial	and	error.

If	you	read	the	Help	topic	on	OpenText,	you	can	surmise	that	it	is	basically
the	equivalent	of	opening	a	file	using	the	Text	Import	Wizard.	In	step	1	of	the

wizard,	you	normally	choose	either	Delimited	or	Fixed	Width.	You	also	specify
the	file	origin	and	at	which	row	to	start.	This	first	step	of	the	wizard	is	handled
by	these	parameters	of	the	OpenText	method:
Origin:=437

StartRow:=1

DataType:=xlDelimited

Step	2	of	the	Text	Import	Wizard	enables	you	to	specify	that	your	fields	be
delimited	by	commas.	Because	you	do	not	want	to	treat	two	commas	as	a	single
comma,	the	Treat	Consecutive	Delimiters	As	One	check	box	should	not	be
selected.	Sometimes,	a	field	may	contain	a	comma,	such	as	“XYZ,	Inc.”	In	this
case,	the	field	should	have	quotes	around	the	value,	as	specified	in	the	Text
Qualifier	box.	This	second	step	of	the	wizard	is	handled	by	the	following
parameters	of	the	OpenText	method:
TextQualifier:=xlDoubleQuote

ConsecutiveDelimiter:=False

Tab:=False

Semicolon:=False

Comma:=True

Space:=False

Other:=False

Step	3	of	the	wizard	is	where	you	actually	identify	the	field	types.	In	this
case,	you	leave	all	fields	as	General	except	for	the	first	field,	which	is	marked	as
a	date	in	MDY	(Month,	Day,	Year)	format.	This	is	represented	in	code	by	the
FieldInfo	parameter.

The	third	step	of	the	Text	Import	Wizard	is	fairly	complex.	The	entire
FieldInfo	parameter	of	the	OpenText	method	duplicates	the	choices	made	in
this	step	of	the	wizard.	If	you	happen	to	click	the	Advanced	button	on	the	third
step	of	the	wizard,	you	have	an	opportunity	to	specify	something	other	than	the
default	decimal	and	thousands	separators,	as	well	as	the	setting	Trailing	Minus
For	Negative	Numbers.

Note	Note	that	the	macro	recorder	does	not	write	code	for
DecimalSeparator	or	ThousandsSeparator	unless	you	change
these	from	the	defaults.	The	macro	recorder	does,	however,	always

record	the	TrailingMinusNumbers	parameter.

Remember	that	every	action	you	perform	in	Excel	while	recording	a	macro
gets	translated	to	VBA	code.	In	the	case	of	many	dialog	boxes,	the	settings	you
do	not	change	are	often	recorded	along	with	the	items	you	do	change.	When	you
click	OK	to	close	the	dialog	box,	the	macro	recorder	often	records	all	the	current
settings	from	the	dialog	box	in	the	macro.

Here	is	another	example.	The	next	line	of	code	in	the	macro	is	this:

Selection.End(xlDown).Select

You	can	click	to	get	help	for	three	topics	in	this	line	of	code:	Selection,	End,
and	Select.	Assuming	that	Selection	and	Select	are	somewhat	self-
explanatory,	click	in	the	word	End	and	press	F1	for	Help.

This	Help	topic	says	that	End	is	a	property.	It	returns	a	Range	object	that	is
equivalent	to	pressing	End+up	arrow	or	End+down	arrow	in	the	Excel	interface
(see	Figure	2-6).	If	you	click	the	blue	hyperlink	for	xlDirection,	you	see	the
valid	parameters	that	can	be	passed	to	the	End	function.

FIGURE	2-6	The	correct	Help	topic	for	the	End	property.

Properties	can	return	objects

Recall	from	earlier	in	this	chapter	that	the	basic	syntax	of	VBA	is
Object.Method.	Consider	the	line	of	code	currently	under	examination:

Selection.End(xlDown).Select

In	this	particular	line	of	code,	the	method	is	Select.	The	End	keyword	is	a
property,	but	from	the	Help	file,	you	see	that	it	returns	a	Range	object.	Because
the	Select	method	can	apply	to	a	Range	object,	the	method	is	actually	appended
to	a	property.

Based	on	this	information,	you	might	assume	that	Selection	is	the	object	in
this	line	of	code.	If	you	click	the	mouse	in	the	word	Selection	and	press	F1,
you	will	see	that	according	to	the	Help	topic,	Selection	is	actually	a	property
and	not	an	object.	In	reality,	the	proper	code	would	be	Application.Selection.
However,	when	you	are	running	within	Excel,	VBA	assumes	you	are	referring	to
the	Excel	object	model,	so	you	can	leave	off	the	Application	object.	If	you
were	to	write	a	program	in	Word	VBA	to	automate	Excel,	you	would	be	required
to	include	an	object	variable	before	the	Selection	property	to	qualify	to	which
application	you	are	referring.

In	this	case,	the	Application.Selection	can	return	several	types	of	objects.
If	a	cell	is	selected,	it	returns	the	Range	object.

Using	debugging	tools	to	figure	out	recorded	code

The	following	sections	introduce	some	awesome	debugging	tools	that	are
available	in	the	VB	Editor.	These	tools	are	excellent	for	helping	you	see	what	a
recorded	macro	code	is	doing.

Stepping	through	code

Generally,	a	macro	runs	quickly:	You	start	it,	and	less	than	a	second	later,	it	is
done.	If	something	goes	wrong,	you	do	not	have	an	opportunity	to	figure	out
what	the	macro	is	doing.	However,	using	Excel’s	Step	Into	feature	makes	it
possible	to	run	one	line	of	code	at	a	time.

To	use	this	feature,	make	sure	your	cursor	is	in	the	procedure	you	want	to
run,	such	as	the	ImportInvoice	procedure,	and	then	from	the	menu,	select

Debug,	Step	Into,	as	shown	in	Figure	2-7.	Alternatively,	you	can	press	F8.

FIGURE	2-7	You	can	use	the	Step	Into	feature	to	run	a	single	line	of	code	at	a	time.

The	VB	Editor	is	now	in	Break	mode.	The	line	about	to	be	executed	is
highlighted	in	yellow,	with	a	yellow	arrow	in	the	margin	before	the	code	(see
Figure	2-8).

FIGURE	2-8	The	first	line	of	the	macro	is	about	to	run.

In	this	case,	the	next	line	to	be	executed	is	the	Sub	ImportInvoice()	line.
This	basically	says,	“You	are	about	to	start	running	this	procedure.”	Press	the	F8
key	to	execute	the	line	in	yellow	and	move	to	the	next	line	of	code.	The	long
code	for	OpenText	is	then	highlighted.	Press	F8	to	run	this	line	of	code.	When
you	see	that	Selection.End(xlDown).Select	is	highlighted,	you	know	that
Visual	Basic	has	finished	running	the	OpenText	command.	At	this	point,	you	can
press	Alt+Tab	to	switch	to	Excel	and	see	that	the	Invoice.txt	file	has	been
parsed	into	Excel.	Note	that	A1	is	selected.

Note	If	you	have	a	wide	monitor,	you	can	use	the	Restore	Down
icon	at	the	top	right	of	the	VBA	window	to	arrange	the	window	so
that	you	can	see	both	the	VBA	window	and	the	Excel	window.

(Restore	Down	is	the	two-tiled-window	icon	between	the	Minimize	“dash”
and	the	Close	Window	X	icon	at	the	top	of	every	window.)

This	is	also	a	great	trick	to	use	while	recording	new	code.	You	can	actually
watch	the	code	appear	as	you	do	things	in	Excel.

Switch	back	to	the	VB	Editor	by	pressing	Alt+Tab.	The	next	line	about	to	be
executed	is	Selection.End(xlDown).Select.	Press	F8	to	run	this	code.	Switch
to	Excel	to	see	that	the	last	cell	in	your	data	set	is	selected.

Press	F8	again	to	run	the	Range("A11").Select	line.	If	you	switch	to	Excel
by	pressing	Alt+Tab,	you	see	that	this	is	where	the	macro	starts	to	have
problems.	Instead	of	moving	to	the	first	blank	row,	the	program	moves	to	the
wrong	row.

Now	that	you	have	identified	the	problem	area,	you	can	stop	the	code
execution	by	using	the	Reset	command.	You	can	start	the	Reset	command	either
by	selecting	Run,	Reset	or	by	clicking	the	Reset	button	on	the	toolbar	(it	is	a
small	blue	square	next	to	icons	for	Run	and	Pause).	After	clicking	Reset,	you
should	return	to	Excel	and	undo	anything	done	by	the	partially	completed	macro.
In	this	case,	you	need	to	close	the	Invoice.txt	file	without	saving.

More	debugging	options:	Breakpoints

If	you	have	hundreds	of	lines	of	code,	you	might	not	want	to	step	through	each
line	one	at	a	time.	If	you	have	a	general	idea	that	a	problem	is	happening	in	one
particular	section	of	the	program,	you	can	set	a	breakpoint.	You	can	then	have
the	code	start	to	run,	but	the	macro	breaks	just	before	it	executes	the	breakpoint
line	of	code.

To	set	a	breakpoint,	click	in	the	gray	margin	area	to	the	left	of	the	line	of
code	on	which	you	want	to	break.	A	large	maroon	dot	appears	next	to	this	code,
and	the	line	of	code	is	highlighted	in	brown	(see	Figure	2-9).	(If	you	don’t	see
the	margin	area,	go	to	Tools,	Options,	Editor	Format	and	choose	Margin
Indicator	Bar.)	Or	select	a	line	of	code	and	press	F9	to	toggle	a	breakpoint	on	or

off.

FIGURE	2-9	The	large	maroon	dot	signifies	a	breakpoint.

Next,	from	the	Visual	Basic	menu,	select	Run,	Run	Sub/UserForm	or	press
F5.	The	program	executes	but	stops	just	before	running	the	line	in	the
breakpoint.	The	VB	Editor	shows	the	breakpoint	line	highlighted	in	yellow.	You
can	now	press	F8	to	begin	stepping	through	the	code.

After	you	have	finished	debugging	your	code,	remove	the	breakpoints	by
clicking	the	dark	brown	dot	in	the	margin	next	to	each	breakpoint	to	toggle	it	off.
Alternatively,	you	can	select	Debug,	Clear	All	Breakpoints	or	press
Ctrl+Shift+F9	to	clear	all	breakpoints	that	you	set	in	the	project.

Backing	up	or	moving	forward	in	code

When	you	are	stepping	through	code,	you	might	want	to	jump	over	some	lines	of
code,	or	you	might	have	corrected	some	lines	of	code	that	you	want	to	run	again.
This	is	easy	to	do	when	you	are	working	in	Break	mode.	One	favorite	method	is
to	use	the	mouse	to	grab	the	yellow	arrow.	The	cursor	changes	to	a	three-arrow
icon,	which	enables	you	to	move	the	next	line	up	or	down.	Drag	the	yellow	line
to	whichever	line	you	want	to	execute	next.	The	other	option	is	to	right-click	the
line	to	which	you	want	to	jump	and	then	select	Set	Next	Statement.

Not	stepping	through	each	line	of	code

When	you	are	stepping	through	code,	you	might	want	to	run	a	section	of	code
without	stepping	through	each	line,	such	as	when	you	get	to	a	loop.	You	might
want	VBA	to	run	through	the	loop	100	times	so	you	can	step	through	the	lines
after	the	loop.	It	is	particularly	monotonous	to	press	the	F8	key	hundreds	of
times	to	step	through	a	loop.	Instead,	click	the	cursor	on	the	line	you	want	to	step
to	and	then	press	Ctrl+F8	or	select	Debug,	Run	To	Cursor.	This	command	is	also
available	in	the	right-click	menu.

Querying	anything	while	stepping	through	code

Even	though	variables	have	not	yet	been	discussed,	you	can	query	the	value	of
anything	while	in	Break	mode.	However,	keep	in	mind	that	the	macro	recorder
never	records	a	variable.

Using	the	Immediate	window

Press	Ctrl+G	to	display	the	Immediate	window	in	the	VB	Editor.	While	the
macro	is	in	Break	mode,	ask	the	VB	Editor	to	tell	you	the	currently	selected	cell,
the	name	of	the	active	sheet,	or	the	value	of	any	variable.	Figure	2-10	shows
several	examples	of	queries	typed	into	the	Immediate	window.

FIGURE	2-10	Queries	that	can	be	typed	into	the	Immediate	window	while	a	macro	is	in	Break
mode,	shown	along	with	their	answers.

Instead	of	typing	Print,	you	can	type	a	question	mark:	?
Selection.Address.	Read	the	question	mark	as,	“What	is.”

When	invoked	with	Ctrl+G,	the	Immediate	window	usually	appears	at	the
bottom	of	the	code	window.	You	can	use	the	resize	handle,	which	is	located
above	the	blue	Immediate	title	bar,	to	make	the	Immediate	window	larger	or
smaller.

There	is	a	scrollbar	on	the	side	of	the	Immediate	window	that	you	can	use	to
scroll	backward	or	forward	through	past	entries	in	the	Immediate	window.

It	is	not	necessary	to	run	queries	only	at	the	bottom	of	the	Immediate
window.	For	example,	if	you	have	just	run	a	line	of	code,	in	the	Immediate
window	you	can	ask	for	the	Selection.Address	to	ensure	that	this	line	of	code
worked.

Press	the	F8	key	to	run	the	next	line	of	code.	Instead	of	retyping	the	same
query,	click	in	the	Immediate	window	anywhere	in	the	line	that	contains	the	last

query	and	press	Enter.

The	Immediate	window	runs	this	query	again,	displays	the	results	on	the	next
line,	and	pushes	the	old	results	farther	down	the	window.	In	this	case,	the
selected	address	is	E11:G11.	The	previous	answer,	A6,	is	pushed	down
the	window.

You	also	can	use	this	method	to	change	the	query	by	clicking	to	the	right	of
the	word	Address	in	the	Immediate	window.	Press	the	Backspace	key	to	erase
the	word	Address	and	instead	type	Columns.Count.	Press	Enter,	and	the
Immediate	window	shows	the	number	of	columns	in	the	selection.

This	is	an	excellent	technique	to	use	when	you	are	trying	to	figure	out	a
sticky	bit	of	code.	For	example,	you	can	query	the	name	of	the	active	sheet
(Print	Activesheet.Name),	the	selection	(Print	Selection.Address),	the
active	cell	(Print	ActiveCell.Address),	the	formula	in	the	active	cell	(Print
ActiveCell.Formula),	the	value	of	the	active	cell	(Print	ActiveCell.Value	or
Print	ActiveCell	because	Value	is	the	default	property	of	a	cell),	and	so	on.

To	dismiss	the	Immediate	window,	click	the	X	in	its	upper-right	corner.

Note	Ctrl+G	does	not	toggle	the	window	off.	Use	the	X	at	the	top
right	of	the	Immediate	window	to	close	it.

Querying	by	hovering

In	many	instances,	you	can	hover	the	cursor	over	an	expression	in	code	and	then
wait	a	second	for	a	ToolTip	to	show	the	current	value	of	the	expression.	This	is
incredibly	helpful	when	you	get	to	looping	in	Chapter	4,	“Looping	and	flow
control.”	It	also	comes	in	handy	with	recorded	code.	Note	that	the	expression
that	you	hover	over	does	not	have	to	be	in	the	line	of	code	just	executed.	In
Figure	2-11,	Visual	Basic	just	selected	E11,	making	E11	the	active	cell.	If	you
hover	the	cursor	over	ActiveCell.FormulaR1C1,	you	see	a	ToolTip	showing	that
the	formula	in	the	active	cell	is	"=SUM(R[-9]C:R[-1]C)".

FIGURE	2-11	Hover	the	mouse	cursor	over	any	expression	for	a	few	seconds,	and	a	ToolTip	shows
the	current	value	of	the	expression.

Sometimes	the	VBA	window	seems	to	not	respond	to	hovering.	Because
some	expressions	are	not	supposed	to	show	values,	it	is	difficult	to	tell	whether
VBA	is	not	displaying	a	value	on	purpose	or	whether	you	are	in	the	buggy	“not
responding”	mode.	Try	hovering	over	something	that	you	know	should	respond,
such	as	a	variable.	If	you	get	no	response,	hover,	click	into	the	variable,	and
continue	to	hover.	This	tends	to	wake	Excel	from	its	stupor,	and	hovering	works
again.

Are	you	impressed	yet?	This	chapter	started	with	a	complaint	that	VBA
doesn’t	seem	much	like	BASIC.	However,	by	now	you	have	to	admit	that	the
Visual	Basic	environment	is	great	to	work	in	and	that	the	debugging	tools	are
excellent.

Querying	by	using	a	Watches	window

In	Visual	Basic,	a	watch	is	not	something	you	wear	on	your	wrist;	instead,	it
allows	you	to	watch	the	value	of	any	expression	while	you	step	through	code.
Let’s	say	that	in	the	current	example,	you	want	to	watch	to	see	what	is	selected
as	the	code	runs.	You	can	do	this	by	setting	up	a	watch	for	Selection.Address.

From	the	VB	Editor	Debug	menu,	select	Add	Watch.	In	the	Add	Watch
dialog	box,	enter	Selection.Address	in	the	Expression	text	box	and	click	OK
(see	Figure	2-12).

FIGURE	2-12	Setting	up	a	watch	to	see	the	address	of	the	current	selection.

A	Watches	window	is	added	to	the	busy	Visual	Basic	window,	usually	at	the
bottom	of	the	code	window.	When	you	start	running	the	macro,	import	the	file
and	press	End+down	arrow	to	move	to	the	last	row	with	data.	The	Watches
window	confirms	that	Selection.Address	is	A18	(see	Figure	2-13).

FIGURE	2-13	Without	having	to	hover	or	type	in	the	Immediate	window,	you	always	can	see	the
value	of	watched	expressions.

Press	the	F8	key	to	run	the	code	Rows("1:1").Select.	The	Watches	window
is	updated	to	show	that	the	current	address	of	the	Selection	is	now	$1:$1.

In	the	Watches	window,	the	value	column	is	read/write	(where	possible)!
You	can	type	a	new	value	here	and	see	it	change	on	the	worksheet.

Using	a	watch	to	set	a	breakpoint

Right-click	any	line	in	the	Watches	window	and	select	Edit	Watch.	In	the	Watch
Type	section	of	the	Edit	Watch	dialog	box,	select	Break	When	Value	Changes.
Click	OK.

The	glasses	icon	changes	to	a	hand	with	triangle	icon.	You	can	now	press	F5
to	run	the	code.	The	macro	starts	running	lines	of	code	until	something	new	is
selected.	This	is	very	powerful.	Instead	of	having	to	step	through	each	line	of

code,	you	can	now	conveniently	have	the	macro	stop	only	when	something
important	has	happened.	You	also	can	set	up	a	watch	to	stop	when	the	value	of	a
particular	variable	changes.

Using	a	watch	on	an	object

In	the	preceding	example,	you	watched	a	specific	property:	Selection.Address.
It	also	is	possible	to	watch	an	object	such	as	Selection.	In	Figure	2-14,	when	a
watch	has	been	set	up	on	Selection,	you	get	the	glasses	icon	and	a	+	icon.

FIGURE	2-14	Setting	a	watch	on	an	object	gives	you	a	+	icon	next	to	the	glasses.

By	clicking	the	+	icon,	you	can	see	all	the	properties	associated	with
Selection.	When	you	look	at	Figure	2-15,	you	can	see	more	than	you	ever
wanted	to	know	about	Selection!	There	are	properties	you	probably	never
realized	are	available.	You	can	see	that	the	AddIndent	property	is	set	to	False
and	the	AllowEdit	property	is	set	to	True.	There	are	useful	properties	further
down	in	the	list,	such	as	the	Formula	of	the	selection.

FIGURE	2-15	Clicking	the	+	icon	shows	a	plethora	of	properties	and	their	current	values.

In	this	Watches	window,	some	entries	can	be	expanded.	For	example,	the
Borders	collection	has	a	plus	next	to	it,	which	means	you	can	click	any	+	icon	to
see	more	details.

Object	Browser:	The	ultimate	reference
In	the	VB	Editor,	press	F2	to	open	the	Object	Browser,	which	lets	you	browse
and	search	the	entire	Excel	object	library.	I’ve	previously	owned	large	Excel
books	that	devoted	400-plus	pages	to	listing	every	object	in	the	Object	Browser.
You	can	save	a	tree	by	learning	to	use	the	more-powerful	Object	Browser.	The
built-in	Object	Browser	is	always	available;	you	simply	press	the	F2	key.	The
next	few	pages	show	you	how	to	use	it.

When	you	press	F2,	the	Object	Browser	appears	where	the	code	window
normally	appears.	The	topmost	drop-down	menu	currently	shows	<All
Libraries>.	There	are	entries	in	this	drop-down	menu	for	Excel,	Office,	VBA,
and	each	workbook	that	you	have	open,	plus	additional	entries	for	anything	you
check	in	Tools,	References.	For	now,	go	to	the	drop-down	menu	and	select	only
Excel.

In	the	left	window	of	the	Object	Browser	is	a	list	of	all	classes	available	for
Excel.	Click	the	Application	class	in	the	left	window.	The	right	window	adjusts
to	show	all	properties	and	methods	that	apply	to	the	Application	object.	Click
something	in	the	right	window,	such	as	ActiveCell.	The	bottom	window	of	the

Object	Browser	tells	you	that	ActiveCell	is	a	property	that	returns	a	range.	It
also	tells	you	that	ActiveCell	is	read-only	(an	alert	that	you	cannot	assign	an
address	to	ActiveCell	to	move	the	cell	pointer).

You	have	learned	from	the	Object	Browser	that	ActiveCell	returns	a	range.
When	you	click	the	green	hyperlink	for	Range	in	the	bottom	window,	you	see	all
the	properties	and	methods	that	apply	to	Range	objects	and,	hence,	to	the
ActiveCell	property.	Click	any	property	or	method	and	then	click	the	yellow
question	mark	near	the	top	of	the	Object	Browser	to	go	to	the	Help	topic	for	that
property	or	method.

Type	any	term	in	the	text	box	next	to	the	binoculars	and	click	the	binoculars
to	find	all	matching	members	of	the	Excel	library.	Methods	appear	as	green
books	with	speed	lines.	Properties	appear	as	index	cards,	each	with	a	hand
pointing	to	it.

The	search	capabilities	and	hyperlinks	available	in	the	Object	Browser	make
it	much	more	valuable	than	an	alphabetic	printed	listing	of	all	the	information.
Learn	to	make	use	of	the	Object	Browser	in	the	VBA	window	by	pressing	F2.	To
close	the	Object	Browser	and	return	to	your	code	window,	click	the	X	in	the
upper-right	corner.

Seven	tips	for	cleaning	up	recorded	code

Chapter	1	gave	you	four	tips	for	recording	code.	So	far,	this	chapter	has	covered
how	to	understand	the	recorded	code,	how	to	access	VBA	help	for	any	word,	and
how	to	use	the	excellent	VBA	debugging	tools	to	step	through	your	code.	The
remainder	of	this	chapter	presents	seven	tips	to	use	when	cleaning	up	recorded
code.

Tip	1:	Don’t	select	anything

Nothing	screams	“recorded	code”	more	than	having	code	that	selects	things
before	acting	on	them.	This	makes	sense	in	a	way:	In	the	Excel	interface,	you
have	to	select	row	1	before	you	can	make	it	bold.

However,	this	is	done	rarely	in	VBA.	There	are	a	couple	of	exceptions	to	this
rule.	For	example,	you	need	to	select	a	cell	when	setting	up	a	formula	for
conditional	formatting.	And	it	is	possible	to	directly	turn	on	bold	font	to	row	1
without	selecting	it.

To	streamline	the	code	the	macro	recorder	gives	you,	in	many	cases	you	can
remove	the	part	of	the	code	that	performs	the	selection.	The	following	two	lines
are	macro	recorder	code	before	it	has	been	streamlined:
Cells.Select

Selection.Columns.AutoFit

You	can	streamline	the	recorded	code	so	it	looks	like	this:

Cells.Columns.AutoFit

There	are	a	couple	of	advantages	to	doing	this	streamlining.	First,	there	will
be	half	as	many	lines	of	code	in	your	program.	Second,	the	program	will	run
faster.

To	do	this	streamlining,	after	recording	code,	highlight	from	before	the	word
Select	at	the	end	of	one	line	all	the	way	to	the	dot	after	the	word	Selection	on
the	next	line	and	press	Delete	(see	Figures	2-16	and	2-17).

FIGURE	2-16	Select	the	part	of	the	code	highlighted	here…

FIGURE	2-17	…and	press	the	Delete	key.	This	is	Cleaning	Up	Recorded	Macros	101.

Tip	2:	Use	Cells(2,5)	because	it’s	more	convenient	than
Range("E2")

The	macro	recorder	uses	the	Range()	property	frequently.	If	you	follow	the
macro	recorder’s	example,	you	will	find	yourself	building	a	lot	of	complicated
code.	For	example,	if	you	have	the	row	number	for	the	total	row	stored	in	a
variable,	you	might	try	to	build	this	code:

Click	here	to	view	code	image

Range("E"	&	TotalRow).Formula	=	"=SUM(E2:E"	&

TotalRow-1	&	")"

In	this	code,	you	are	using	concatenation	to	join	the	letter	E	with	the	current
value	of	the	TotalRow	variable.	This	works,	but	eventually	you	have	to	refer	to	a
range	where	the	column	is	stored	in	a	variable.	Say	that	FinalCol	is	10,	which
indicates	column	J.	To	refer	to	this	column	in	a	Range	command,	you	need	to	do
something	like	this:

Click	here	to	view	code	image
FinalColLetter	=

MID("ABCDEFGHIJKLMNOPQRSTUVWXYZ",FinalCol,1)

Range(FinalColLetter	&	"2").Select

Alternatively,	perhaps	you	could	do	something	like	this:

Click	here	to	view	code	image
FinalColLetter	=	CHR(64	+	FinalCol)

Range(FinalColLetter	&	"2").Select

These	approaches	work	for	the	first	26	columns	but	fail	for	the	remaining
99.85%	of	the	columns.

You	could	start	to	write	10-line	functions	to	calculate	that	the	column	letter
for	column	15896	is	WMJ,	but	it	is	not	necessary.	Instead	of	using
Range("WMJ17"),	you	can	use	the	Cells(Row,Column)	syntax.

Chapter	3,	“Referring	to	ranges,”	covers	this	topic	in	complete	detail.
However,	for	now	you	need	to	understand	that	Range("E10")	and	Cells(10,	5)
both	point	to	the	cell	at	the	intersection	of	the	fifth	column	and	the	tenth	row.
Chapter	3	also	shows	you	how	to	use	.Resize	to	point	to	a	rectangular	range.
Cells(11,	5).Resize(1,	3)	is	E11:G11.

Tip	3:	Use	more	reliable	ways	to	find	the	last	row

It	is	difficult	to	trust	data	from	just	anywhere.	If	you	are	analyzing	data	in	Excel,
remember	that	the	data	can	come	from	who-knows-what	system	written	who-

knows-how-long-ago.	The	universal	truth	is	that	eventually	some	clerk	will	find
a	way	to	break	the	source	system	and	enter	a	record	without	an	invoice	number.
Maybe	it	will	take	a	power	failure	to	do	it,	but	invariably,	you	cannot	count	on
having	every	cell	filled	in.

This	is	a	problem	when	you’re	using	the	End+down	arrow	shortcut.	This	key
combination	does	not	take	you	to	the	last	row	with	data	in	the	worksheet.	It	takes
you	to	the	last	row	with	data	in	the	current	range.	In	Figure	2-18,	pressing
End+down	arrow	would	move	the	cursor	to	cell	A7	rather	than	the	true	last	row
with	data.

FIGURE	2-18	End+down	arrow	fails	in	the	user	interface	if	a	record	is	missing	a	value.	Similarly,
End(xlDown)	fails	in	Excel	VBA.

One	better	solution	is	to	start	at	the	bottom	of	the	worksheet	and	look	for	the
first	non-blank	cell	by	using	this:

Click	here	to	view	code	image

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

This	method	could	fail	if	the	very	last	record	happens	to	contain	the	blank
row.	If	the	data	is	dense	enough	that	there	will	always	be	a	diagonal	path	of	non-
blank	cells	to	the	last	row,	you	could	use	this:

Click	here	to	view	code	image

FinalRow	=	Cells(1,1).CurrentRegion.Rows.Count

If	you	are	sure	that	there	are	not	any	notes	or	stray	activated	cells	below	the

data	set,	you	might	try	this:

Click	here	to	view	code	image

FinalRow	=	Cells(1,	1).SpecialCells(xlLastCell).Row

The	xlLastCell	property	is	often	wrong.	Say	that	you	have	data	in	A1:F500.
If	you	accidentally	press	Ctrl+down	arrow	from	A500,	you	will	arrive	at
A1048576.	If	you	then	apply	Bold	to	the	empty	cell,	it	becomes	activated.	Or,	if
you	type	Total	and	then	clear	the	cell,	it	becomes	activated.	At	this	point,
xlLastCell	will	refer	to	F1048576.

Another	method	is	to	use	the	Find	method:

Click	here	to	view	code	image
FinalRow	=	Cells.Find("*",	SearchOrder:=xlByRows,	_

SearchDirection:=xlPrevious).Row

You	will	have	to	choose	from	these	various	methods	based	on	the	nature	of
your	data	set.	If	you	are	not	sure,	you	could	loop	through	all	columns.	If	you	are
expecting	seven	columns	of	data,	you	could	use	this	code:

Click	here	to	view	code	image
FinalRow	=	0

For	i	=	1	to	7

ThisFinal	=	Cells(Rows.Count,	i).End(xlUp).Row

If	ThisFinal	>	FinalRow	then	FinalRow	=	ThisFinal

Next	i

Tip	4:	Use	variables	to	avoid	hard-coding	rows	and	formulas

The	macro	recorder	never	records	a	variable.	Variables	are	easy	to	use,	but	just
as	in	BASIC,	a	variable	can	remember	a	value.	Variables	are	discussed	in	more
detail	in	Chapter	4.

It	is	recommended	that	you	set	the	last	row	that	contains	data	to	a	variable.
Be	sure	to	use	meaningful	variable	names	such	as	FinalRow:

Click	here	to	view	code	image

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

When	you	know	the	row	number	of	the	last	record,	put	the	word	Total	in
column	A	of	the	next	row:

Click	here	to	view	code	image

Cells(FinalRow	+	1,	1).Value	=	"Total"

You	can	even	use	the	variable	when	building	the	formula.	This	formula	totals
everything	from	E2	to	the	FinalRow	of	E:

Click	here	to	view	code	image

Cells(FinalRow	+	1,	5).Formula	=	"=SUM(E2:E"	&

FinalRow	&	")"

Tip	5:	Use	R1C1	formulas	that	make	your	life	easier

The	macro	recorder	often	writes	formulas	in	an	arcane	R1C1	style.	However,
most	people	change	the	code	back	to	use	a	regular	A1-style	formula.	After
reading	Chapter	5,	“R1C1-style	formulas,”	you	will	understand	that	there	are
times	when	you	can	build	an	R1C1	formula	that	is	much	simpler	than	the
corresponding	A1-style	formula.	By	using	an	R1C1	formula,	you	can	add	totals
to	all	three	cells	in	the	total	row	with	the	following:

Click	here	to	view	code	image

Cells(FinalRow+1,	5).Resize(1,	3).FormulaR1C1	=

"=SUM(R2C:R[-1]C)"

Tip	6:	Copy	and	paste	in	a	single	statement

Recorded	code	is	notorious	for	copying	a	range,	selecting	another	range,	and
then	doing	an	ActiveSheet.Paste.	The	Copy	method	as	it	applies	to	a	range	is
actually	much	more	powerful.	You	can	specify	what	to	copy	and	also	specify	the
destination	in	one	statement.

Here’s	the	recorded	code:
Range("E14").Select

Selection.Copy

Range("F14:G14").Select

ActiveSheet.Paste

Here’s	better	code:

Click	here	to	view	code	image

Range("E14").Copy	Destination:=Range("F14:G14")

Tip	7:	Use	With...End	With	to	perform	multiple	actions

If	you	are	making	the	total	row	bold	with	double	underline	and	a	larger	font	and
special	color,	you	might	get	recorded	code	like	this:

Click	here	to	view	code	image
Range("A14:G14").Select

Selection.Font.Bold	=	True

Selection.Font.Size	=	12

Selection.Font.ColorIndex	=	5

Selection.Font.Underline	=

xlUnderlineStyleDoubleAccounting

For	four	of	these	lines	of	code,	VBA	must	resolve	the	expression
Selection.Font.	Because	you	have	four	lines	that	all	refer	to	the	same	object,
you	can	name	the	object	once	at	the	top	of	a	With	block.	Inside	the	With...End
With	block,	everything	that	starts	with	a	period	is	assumed	to	refer	to	the	With
object:

Click	here	to	view	code	image
With	Range("A14:G14").Font

.Bold	=	True

.Size	=	12

.ColorIndex	=	5

.Underline	=	xlUnderlineStyleDoubleAccounting

End	With

Case	study:	Putting	it	all	together—Fixing	the	recorded	code

Using	the	seven	tips	discussed	in	the	preceding	section,	you	can	convert	the
recorded	code	from	Chapter	1	into	efficient,	professional-looking	code.
Here	is	the	code	as	recorded	by	the	macro	recorder	at	the	end	of	Chapter	1:

Click	here	to	view	code	image
Sub	FormatInvoice3()

Workbooks.OpenText

Filename:="C:\Data\invoice.txt",	Origin:=437,	_

StartRow:=1,	DataType:=xlDelimited,

TextQualifier:=xlDoubleQuote,	_

ConsecutiveDelimiter:=False,	Tab:=False,

Semicolon:=False,	_

Comma:=True,	Space:=False,	Other:=False,

FieldInfo:=Array(_

Array(1,	3),	Array(2,	1),	Array(3,	1),	Array(4,

1),	_

Array(5,	1),	Array(6,	1),	Array(7,	1))

Selection.End(xlDown).Select

ActiveCell.Offset(1,	0).Range("A1").Select

ActiveCell.FormulaR1C1	=	"Total"

ActiveCell.Offset(0,	4).Range("A1").Select

Selection.FormulaR1C1	=	"=SUM(R2C:R[-1]C)"

Selection.AutoFill

Destination:=ActiveCell.Range("A1:C1"),	Type:=	_

xlFillDefault

ActiveCell.Range("A1:C1").Select

ActiveCell.Rows("1:1").EntireRow.Select

ActiveCell.Activate

Selection.Font.Bold	=	True

Application.Goto	Reference:="R1C1:R1C7"

Selection.Font.Bold	=	True

Selection.CurrentRegion.Select

Selection.Columns.AutoFit

End	Sub

Follow	these	steps	to	clean	up	the	recorded	macro	code:

1.	 Leave	the	Workbook.OpenText	lines	alone;	they	are	fine	as	recorded.

2.	 Note	that	the	following	line	of	code	attempts	to	locate	the	final	row	of
data	so	that	the	program	knows	where	to	enter	the	total	row:
Selection.End(xlDown).Select

3.	 You	do	not	need	to	select	anything	to	find	the	last	row.	It	also	helps	to
assign	the	row	number	of	the	final	row	and	the	total	row	to	a	variable	so
that	they	can	be	used	later.	To	handle	the	unexpected	case	in	which	a
single	cell	in	column	A	is	blank,	start	at	the	bottom	of	the	worksheet	and
go	up	to	find	the	last	used	row:

Click	here	to	view	code	image
'	Find	the	last	row	with	data.	This	might	change

every	day

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

TotalRow	=	FinalRow	+	1

Note	that	these	lines	of	code	enter	the	word	Total	in	column	A	of	the
total	row:

Click	here	to	view	code	image
ActiveCell.Offset(1,0).Select

ActiveCell.FormulaR1C1	=	"'Total"

Better	code	uses	the	TotalRow	variable	to	locate	where	to	enter	the	word
Total.	Again,	there	is	no	need	to	select	the	cell	before	entering	the	label:

Click	here	to	view	code	image
'	Build	a	Total	row	below	this

Cells(TotalRow,1).Value	=	"Total"

4.	 Note	that	these	lines	of	code	enter	the	Total	formula	in	column	E	and
copy	it	to	the	next	two	columns:

Click	here	to	view	code	image
ActiveCell.Offset(0,	4).Range("A1").Select

Selection.FormulaR1C1	=	"=SUM(R2C:R[-1]C)"

Selection.AutoFill

Destination:=ActiveCell.Range("A1:C1"),	Type:=	_

xlFillDefault

ActiveCell.Range("A1:C1").Select

There	is	no	reason	to	do	all	this	selecting.	The	following	line	enters	the
formula	in	three	cells:

Click	here	to	view	code	image

Cells(TotalRow,5).Resize(1,	3).FormulaR1C1	=

"=SUM(R2C:R[-1]C)"

(The	R1C1	style	of	formulas	is	discussed	in	Chapter	5.)

5.	 Note	that	the	macro	recorder	selects	a	range	and	then	applies	formatting:

Click	here	to	view	code	image

ActiveCell.Rows("1:1").EntireRow.Select

ActiveCell.Activate

Selection.Font.Bold	=	True

Application.Goto	Reference:="R1C1:R1C7"

Selection.Font.Bold	=	True

There	is	no	reason	to	select	before	applying	the	formatting.	The
preceding	five	lines	can	be	simplified	to	the	two	lines	below.	These	two
lines	perform	the	same	action	and	do	it	much	more	quickly:

Click	here	to	view	code	image
Cells(TotalRow,	1).Resize(1,	7).Font.Bold	=	True

Cells(1,	1).Resize(1,	7).Font.Bold	=	True

6.	 Note	that	the	macro	recorder	selects	all	cells	before	doing	the	AutoFit
command:
Selection.CurrentRegion.Select

Selection.Columns.AutoFit

There	is	no	need	to	select	the	cells	before	doing	the	AutoFit:

Click	here	to	view	code	image

Cells(1,	1).Resize(TotalRow,	7).Columns.AutoFit

7.	 Note	that	the	macro	recorder	adds	a	short	description	to	the	top	of	each
macro:
'	ImportInvoice	Macro

You	have	changed	the	recorded	macro	code	into	something	that	will
actually	work,	so	you	should	feel	free	to	add	your	name	as	author	to	the
description	and	mention	what	the	macro	does:

Click	here	to	view	code	image

'	Written	by	Bill	Jelen.	Import	invoice.txt	and

add	totals.

Here	is	the	final	macro	with	all	the	changes:

Click	here	to	view	code	image
Sub	FormatInvoiceFixed()

'	Written	by	Bill	Jelen.	Import	invoice.txt	and

add	totals.

Click	here	to	view	code	image
Workbooks.OpenText

Filename:="C:\Data\invoice.txt",	Origin:=437,	_

StartRow:=1,	DataType:=xlDelimited,

TextQualifier:=xlDoubleQuote,	_

ConsecutiveDelimiter:=False,	Tab:=False,

Semicolon:=False,	_

Comma:=True,	Space:=False,	Other:=False,

FieldInfo:=Array(_

Array(1,	3),	Array(2,	1),	Array(3,	1),

Array(4,	1),	_

Array(5,	1),	Array(6,	1),	Array(7,	1))

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

TotalRow	=	FinalRow	+	1

Cells(TotalRow,	1).Value	=	"Total"

Cells(TotalRow,	5).Resize(1,	3).FormulaR1C1	=

"=SUM(R2C:R[-1]C)"

Cells(TotalRow,	1).Resize(1,	7).Font.Bold	=	True

Cells(1,	1).Resize(1,	7).Font.Bold	=	True

Cells(1,	1).Resize(TotalRow,	7).Columns.AutoFit

End	Sub

Next	steps

By	now,	you	should	know	how	to	record	a	macro.	You	should	also	be	able	to	use
Help	and	debugging	to	figure	out	how	code	works.	This	chapter	provides	seven
tools	for	making	the	recorded	code	look	like	professional	code.

The	next	chapters	go	into	more	detail	about	referring	to	ranges,	looping,	and
the	crazy	but	useful	R1C1	style	of	formulas	that	the	macro	recorder	loves	to	use.

CHAPTER	3
Referring	to	ranges

In	this	chapter,	you	will:

Learn	how	to	reference	the	Range	object

Reference	ranges	in	other	sheets

Reference	a	range	relative	to	another	range

Use	the	Cells	property	to	select	a	range

Use	the	Offset	property	to	refer	to	a	range

Use	the	Resize	property	to	change	the	size	of	a	range

Use	the	Columns	and	Rows	properties	to	specify	a	range

Use	the	Union	method	to	join	multiple	ranges

Use	the	Intersect	method	to	create	a	new	range	from	overlapping
ranges

Use	the	IsEmpty	function	to	check	whether	a	cell	is	empty

Use	the	CurrentRegion	property	to	select	a	data	range

Use	the	SpecialCells	property	to	interact	with	specific	cells	in	a
range

Use	the	Areas	collection	to	return	a	noncontiguous	range

Learn	the	syntax	used	for	tables

A	range	can	be	a	cell,	a	row,	a	column,	or	a	grouping	of	any	of	these.	The	Range
object	is	probably	the	most	frequently	used	object	in	Excel	VBA;	after	all,
you’re	manipulating	data	on	a	sheet.	Although	a	range	can	refer	to	any	grouping
of	cells	on	a	sheet,	it	can	refer	to	only	one	sheet	at	a	time.	If	you	want	to	refer	to
ranges	on	multiple	sheets,	you	must	refer	to	each	sheet	separately.

This	chapter	shows	you	different	ways	of	referring	to	ranges,	such	as

specifying	a	row	or	column.	You’ll	also	find	out	how	to	manipulate	cells	based
on	the	active	cell	and	how	to	create	a	new	range	from	overlapping	ranges.

The	Range	object

The	following	is	the	Excel	object	hierarchy:

Click	here	to	view	code	image
Application	>	Workbook	>	Worksheet	>	Range

The	Range	object	is	a	property	of	the	Worksheet	object.	This	means	it
requires	that	a	sheet	be	active	or	else	it	must	reference	a	worksheet.	Both	of	the
following	lines	mean	the	same	thing	if	Worksheets(1)	is	the	active	sheet:

Click	here	to	view	code	image
Range("A1")

Worksheets(1).Range("A1")

There	are	several	ways	to	refer	to	a	Range	object.	Range("A1")	is	the	most
identifiable	because	that	is	how	the	macro	recorder	refers	to	it.	However,	all	the
following	are	equivalent	when	referring	to	cell	D5:

Click	here	to	view	code	image
Range("D5")

[D5]

Range("B3").Range("C3")

Cells(5,4)

Range("A1").Offset(4,3)

Range("MyRange")	'assuming	that	D5	has	a	'Name	of

MyRange

Which	format	you	use	depends	on	your	needs.	Keep	reading.	It	will	all	make
sense	soon!

Syntax	for	specifying	a	range

The	Range	property	has	two	acceptable	syntaxes.	To	specify	a	rectangular	range
in	the	first	syntax,	specify	the	complete	range	reference	just	as	you	would	in	a

formula	in	Excel:

Range("A1:B5")

In	the	alternative	syntax,	specify	the	upper-left	corner	and	lower-right	corner
of	the	desired	rectangular	range.	In	this	syntax,	the	equivalent	statement	might
be	this:

Range("A1",	"B5")

For	either	corner,	you	can	substitute	a	named	range,	the	Cells	property,	or
the	ActiveCell	property.	The	following	line	of	code	selects	the	rectangular
range	from	A1	to	the	active	cell:

Range("A1",	ActiveCell).Select

The	following	statement	selects	from	the	active	cell	to	five	rows	below	the
active	cell	and	two	columns	to	the	right:

Click	here	to	view	code	image

Range(ActiveCell,	ActiveCell.Offset(5,	2)).Select

Referencing	named	ranges

You	probably	have	already	used	named	ranges	on	your	worksheets	and	in
formulas.	You	can	also	use	them	in	VBA.

Use	the	following	code	to	refer	to	the	range	"MyRange"	in	Sheet1:

Click	here	to	view	code	image

Worksheets("Sheet1").Range("MyRange")

Notice	the	name	of	the	range	is	in	quotes—unlike	the	use	of	named	ranges	in
formulas	on	the	sheet	itself.	If	you	forget	to	put	the	name	in	quotes,	Excel	thinks
you	are	referring	to	a	variable	in	the	program.	One	exception	is	if	you	use	the
shortcut	syntax	discussed	in	the	next	section.	In	that	case,	quotes	aren’t	used.

Shortcut	for	referencing	ranges

A	shortcut	is	available	when	referencing	ranges.	The	shortcut	involves	using
square	brackets,	as	shown	in	Table	3-1.

TABLE	3-1	Shortcuts	for	referencing	ranges

Standard	Method Shortcut
Range("D5") [D5]

Range("A1:D5") [A1:D5]

Range("A1:D5,	G6:I17") [A1:D5,	G6:I17]

Range("MyRange") [MyRange]

Referencing	ranges	in	other	sheets

Switching	between	sheets	by	activating	the	needed	sheet	slows	down	your	code.
To	avoid	this,	refer	to	a	sheet	that	is	not	active	by	first	referencing	the	Worksheet
object:

Worksheets("Sheet1").Range("A1")

This	line	of	code	references	Sheet1	of	the	active	workbook	even	if	Sheet2	is
the	active	sheet.

To	reference	a	range	in	another	workbook,	include	the	Workbook	object,	the
Worksheet	object,	and	then	the	Range	object:

Click	here	to	view	code	image

Workbooks("InvoiceData.xlsx").Worksheets("Sheet1").Range("A1")

To	use	the	Range	property	as	an	argument	within	another	Range	property,
identify	the	range	fully	each	time.	For	example,	suppose	that	Sheet1	is	your
active	sheet	and	you	need	to	total	data	from	Sheet2:

Click	here	to	view	code	image
WorksheetFunction.Sum(Worksheets("Sheet2").Range(Range("A1"),

_

Range("A7")))

This	line	does	not	work.	Why	not?	Although	Range("A1"),	Range("A7")	is

meant	to	refer	to	the	sheet	at	the	beginning	of	the	code	line	(Sheet2),	Excel	does
not	assume	that	you	want	to	carry	the	Worksheet	object	reference	over	to	these
other	Range	objects	and	assumes	that	they	refer	to	the	active	sheet,	Sheet1.	So
what	do	you	do?	Well,	you	could	write	this:

Click	here	to	view	code	image
WorksheetFunction.Sum(Worksheets("Sheet2").Range(Worksheets("Sheet2").

_

Range("A1"),	Worksheets("Sheet2").Range("A7")))

But	this	not	only	is	a	long	line	of	code	but	also	difficult	to	read!	Thankfully,
there	is	a	simpler	way,	using	With...End	With:

Click	here	to	view	code	image
With	Worksheets("Sheet2")

	WorksheetFunction.Sum(.Range(.Range("A1"),

.Range("A7")))

End	With

Notice	now	there	is	a	.Range	in	your	code	but	without	the	preceding	object
reference.	That’s	because	With	Worksheets("Sheet2")	implies	that	the	object	of
the	range	is	that	worksheet.	Whenever	Excel	sees	a	period	without	an	object
reference	directly	to	the	left	of	it,	it	looks	up	the	code	for	the	closest	With
statement	and	uses	that	as	the	object	reference.

Referencing	a	range	relative	to	another	range

Typically,	the	Range	object	is	a	property	of	a	worksheet.	It	is	also	possible	to
have	Range	be	the	property	of	another	range.	In	this	case,	the	Range	property	is
relative	to	the	original	range,	which	makes	for	unintuitive	code.	Consider	this
example:

Range("B5").Range("C3").Select

This	code	actually	selects	cell	D7.	Think	about	cell	C3,	which	is	located	two
rows	below	and	two	columns	to	the	right	of	cell	A1.	The	preceding	line	of	code
starts	at	cell	B5.	If	we	assume	that	B5	is	in	the	A1	position,	VBA	finds	the	cell
that	would	be	in	the	C3	position	relative	to	B5.	In	other	words,	VBA	finds	the

cell	that	is	two	rows	below	and	two	columns	to	the	right	of	B5,	which	is	D7.

Again,	I	consider	this	coding	style	to	be	very	unintuitive.	This	line	of	code
mentions	two	addresses,	and	the	actual	cell	selected	is	neither	of	these	addresses!
It	seems	misleading	when	you’re	trying	to	read	this	code.

You	might	consider	using	this	syntax	to	refer	to	a	cell	relative	to	the	active
cell.	For	example,	the	following	line	of	code	activates	the	cell	three	rows	down
and	four	columns	to	the	right	of	the	currently	active	cell:

Selection.Range("E4").Select

I	mention	this	syntax	only	because	the	macro	recorder	uses	it.	Recall	that
when	you	recorded	a	macro	in	Chapter	1,	“Unleashing	the	power	of	Excel	with
VBA,”	with	relative	references	on,	the	following	line	was	recorded:

Click	here	to	view	code	image

ActiveCell.Offset(0,	4).Range("A2").Select

This	line	found	the	cell	four	columns	to	the	right	of	the	active	cell,	and	from
there	it	selected	the	cell	that	would	correspond	to	A2.	This	is	not	the	easiest	way
to	write	code,	but	it	is	the	way	the	macro	recorder	does	it.

Although	a	worksheet	is	usually	the	object	of	the	Range	property,
occasionally,	such	as	during	recording,	a	range	may	be	the	property	of	a	range.

Using	the	Cells	property	to	select	a	range

The	Cells	property	refers	to	all	the	cells	of	the	specified	Range	object,	which
can	be	a	worksheet	or	a	range	of	cells.	For	example,	this	line	selects	all	the	cells
of	the	active	sheet:

Cells.Select

Using	the	Cells	property	with	the	Range	object	might	seem	redundant:

Range("A1:D5").Cells

This	line	refers	to	the	original	Range	object.	However,	the	Cells	property	has

an	Item	property	that	makes	the	Cells	property	very	useful.	The	Item	property
enables	you	to	refer	to	a	specific	cell	relative	to	the	Range	object.

The	syntax	for	using	the	Item	property	with	the	Cells	property	is	as	follows:

Cells.Item(Row,Column)

You	must	use	a	numeric	value	for	Row,	but	you	may	use	the	numeric	value	or
string	value	for	Column.	Both	of	the	following	lines	refer	to	cell	C5:
Cells.Item(5,"C")

Cells.Item(5,3)

Because	the	Item	property	is	the	default	property	of	the	Range	object,	you
can	shorten	these	lines	as	follows:
Cells(5,"C")

Cells(5,3)

The	ability	to	use	numeric	values	for	parameters	is	particularly	useful	if	you
need	to	loop	through	rows	or	columns.	The	macro	recorder	usually	uses
something	like	Range("A1").Select	for	a	single	cell	and
Range("A1:C5").Select	for	a	range	of	cells.	If	you’re	learning	to	code	only
from	the	recorder,	you	might	be	tempted	to	write	code	like	this:

Click	here	to	view	code	image
FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

For	i	=	1	to	FinalRow

	Range("A"	&	i	&	":E"	&	i).Font.Bold	=	True

Next	i

This	little	piece	of	code,	which	loops	through	rows	and	bolds	the	cells	in
columns	A	through	E,	is	awkward	to	read	and	write.	But	how	else	can	you	do	it?
Like	this:

Click	here	to	view	code	image
FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

For	i	=	1	to	FinalRow

Cells(i,"A").Resize(,5).Font.Bold	=	True

Next	i

Instead	of	trying	to	type	the	range	address,	the	new	code	uses	the	Cells	and
Resize	properties	to	find	the	required	cell,	based	on	the	active	cell.	See	the
“Using	the	Resize	property	to	change	the	size	of	a	range”	section	later	in	this
chapter	for	more	information	on	the	Resize	property.

You	can	use	the	Cells	properties	for	parameters	in	the	Range	property.	The
following	refers	to	the	range	A1:E5:

Range(Cells(1,1),Cells(5,5))

This	is	particularly	useful	when	you	need	to	specify	variables	with	a
parameter,	as	in	the	previous	looping	example.

Using	the	Offset	property	to	refer	to	a	range

You’ve	already	seen	a	reference	to	Offset	when	you	recorded	a	relative
reference.	Offset	enables	you	to	manipulate	a	cell	based	on	the	location	of
another	cell,	such	as	the	active	cell.	Therefore,	you	do	not	need	to	know	the
address	of	the	cell	you	want	to	manipulate.

The	syntax	for	the	Offset	property	is	as	follows:

Click	here	to	view	code	image

Range.Offset(RowOffset,	ColumnOffset)

For	example,	the	following	code	affects	cell	F5	from	cell	A1:

Click	here	to	view	code	image

Range("A1").Offset(RowOffset:=4,	ColumnOffset:=5)

Or,	shorter	yet,	you	can	write	this:

Range("A1").Offset(4,5)

The	count	of	the	rows	and	columns	starts	at	A1	but	does	not	include	A1.

If	you	need	to	go	over	only	a	row	or	a	column,	but	not	both,	you	don’t	have
to	enter	both	the	row	and	the	column	parameters.	To	refer	to	a	cell	one	column
over,	use	one	of	these	lines:

Click	here	to	view	code	image
Range("A1").Offset(ColumnOffset:=1)

Range("A1").Offset(,1)

Both	of	these	lines	have	the	same	meaning,	so	the	choice	is	yours.	If	you	use
the	second	line,	make	sure	to	include	the	comma	so	Excel	knows	that	the	1	refers
to	the	ColumnOffset	argument.	Referring	to	a	cell	one	row	up	is	similar:

Click	here	to	view	code	image
Range("B2").Offset(RowOffset:=-1)

Range("B2").Offset(-1)

Once	again,	you	can	choose	which	one	to	use.	It’s	a	matter	of	readability	of
the	code.

Suppose	you	have	a	list	of	produce	in	column	A,	with	totals	next	to	the
produce	items	in	column	B.	If	you	want	to	find	any	total	equal	to	zero	and	place
LOW	in	the	cell	next	to	it,	do	this:

Click	here	to	view	code	image
Set	Rng	=	Range("B1:B16").Find(What:="0",

LookAt:=xlWhole,	_

LookIn:=xlValues)

Rng.Offset(,	1).Value	=	"LOW"

When	used	in	a	Sub	and	looping	through	a	data	set,	it	would	look	like	this:

Click	here	to	view	code	image
Sub	FindLow()

With	Range("B1:B16")

Set	Rng	=	.Find(What:="0",	LookAt:=xlWhole,

LookIn:=xlValues)

If	Not	Rng	Is	Nothing	Then

firstAddress	=	Rng.Address

Do

Rng.Offset(,	1).Value	=	"LOW"

Set	Rng	=	.FindNext(Rng)

Loop	While	Not	Rng	Is	Nothing	And	Rng.Address

<>	firstAddress

End	If

End	With

End	Sub

The	LOW	totals	are	noted	by	the	program,	as	shown	inFigure	3-1.

FIGURE	3-1	The	code	puts	“LOW”	next	to	the	zeros	in	the	data	set.

Note	Refer	to	the	section	“Object	variables”	in	Chapter	4,
“Looping	and	flow	control,”	for	more	information	on	the	Set
statement.

Offsetting	isn’t	only	for	single	cells;	you	can	use	it	with	ranges.	You	can	shift
the	focus	of	a	range	over	in	the	same	way	you	can	shift	the	active	cell.	The
following	line	refers	to	B2:D4	(seeFigure	3-2):

Range("A1:C3").Offset(1,1)

FIGURE	3-2	Offsetting	the	original	range	A1:C3	by	one	row	and	one	column	references	a	new
range,	B2:D4.

Using	the	Resize	property	to	change	the	size	of	a
range

The	Resize	property	enables	you	to	change	the	size	of	a	range	based	on	the
location	of	the	active	cell.	You	can	create	a	new	range	as	needed.	This	is	the

syntax	for	the	Resize	property:

Click	here	to	view	code	image

Range.Resize(RowSize,	ColumnSize)

To	reference	the	range	B3:D13,	use	the	following:

Click	here	to	view	code	image

Range("B3").Resize(RowSize:=11,	ColumnSize:=3)

Here’s	a	simpler	way	to	reference	this	range:

Range("B3").Resize(11,	3)

But	what	if	you	need	to	resize	by	only	a	row	or	a	column—not	both?	You
don’t	have	to	enter	both	the	row	and	the	column	parameters.

To	expand	by	two	columns,	use	either	of	the	following:

Click	here	to	view	code	image

Range("B3").Resize(ColumnSize:=2)

or

Range("B3").Resize(,2)

Both	lines	mean	the	same	thing.	The	choice	is	yours.	If	you	use	the	second
line,	make	sure	to	include	the	comma	so	Excel	knows	the	2	refers	to	the
ColumnSize	argument.	Resizing	just	the	rows	is	similar.	You	can	use	either	of	the
following:

Range("B3").Resize(RowSize:=2)

or

Range("B3").Resize(2)

Once	again,	the	choice	is	yours.	It	is	a	matter	of	readability	of	the	code.

From	the	list	of	produce,	say	that	you	want	to	find	the	zero	totals	and	color
the	cells	of	the	total	and	corresponding	produce	(seeFigure	3-3).	Here’s	what	you
do:

Click	here	to	view	code	image
Set	Rng	=	Range("B1:B16").Find(What:="0",

LookAt:=xlWhole,	_

LookIn:=xlValues)

Rng.Offset(,	-1).Resize(,	2).Interior.ColorIndex	=	15

FIGURE	3-3	You	can	resize	a	range	to	extend	the	selection.

Notice	that	the	Offset	property	first	moves	the	active	cell	over	to	the
produce	column.	When	you’re	resizing,	the	upper-left-corner	cell	must	remain
the	same.

Resizing	isn’t	only	for	single	cells;	you	can	use	it	to	resize	an	existing	range.
For	example,	if	you	have	a	named	range	but	need	it	and	the	column	next	to	it,
use	this:

Range("Produce").Resize(,2)

Remember,	the	number	you	resize	by	is	the	total	number	of	rows/columns
you	want	to	include.

Using	the	Columns	and	Rows	properties	to	specify	a
range
The	Columns	and	Rows	properties	refer	to	the	columns	and	rows	of	a	specified
Range	object,	which	can	be	a	worksheet	or	a	range	of	cells.	They	return	a	Range
object	referencing	the	rows	or	columns	of	the	specified	object.

You’ve	seen	the	following	line	used,	but	what	is	it	doing?

Click	here	to	view	code	image

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

This	line	of	code	finds	the	last	row	in	a	sheet	in	which	column	A	has	a	value
and	places	the	row	number	of	that	Range	object	into	the	variable	called
FinalRow.	This	can	be	useful	when	you	need	to	loop	through	a	sheet	row	by	row;
you	will	know	exactly	how	many	rows	you	need	to	go	through.

Note	Some	properties	of	columns	and	rows	require	contiguous
rows	and	columns	in	order	to	work	properly.	For	example,	if	you
were	to	use	the	following	line	of	code,	9	would	be	the	answer

because	only	the	first	range	would	be	evaluated:

Click	here	to	view	code	image

Range("A1:B9,	C10:D19").Rows.Count

However,	if	the	ranges	were	grouped	separately,	the	answer	would	be	19.
Excel	takes	the	top-left	cell	address,	A1,	and	the	bottom-right	cell	address,
D19,	and	counts	the	rows	in	the	range	A1:D19:

Click	here	to	view	code	image

Range("A1:B9",	"C10:D19").Rows.Count

Using	the	Union	method	to	join	multiple	ranges

The	Union	method	enables	you	to	join	two	or	more	noncontiguous	ranges.	It
creates	a	temporary	object	of	the	multiple	ranges,	which	enables	you	to	affect
them	at	the	same	time:

Click	here	to	view	code	image

Application.Union(argument1,	argument2,	etc.)

The	expression	Application	is	not	required.	The	following	code	joins	two
named	ranges	on	the	sheet,	inserts	the	=RAND()	formula,	and	bolds	them:

Click	here	to	view	code	image
Set	UnionRange	=	Union(Range("Range1"),

Range("Range2"))

With	UnionRange

.Formula	=	"=RAND()"

.Font.Bold	=	True

End	With

Using	the	Intersect	method	to	create	a	new	range
from	overlapping	ranges

The	Intersect	method	returns	the	cells	that	overlap	between	two	or	more
ranges.	If	there	is	no	overlap,	an	error	is	returned:

Click	here	to	view	code	image

Application.Intersect(argument1,	argument2,	etc.)

The	expression	Application	is	not	required.	The	following	code	colors	the
overlapping	cells	of	the	two	ranges:

Click	here	to	view	code	image
Set	IntersectRange	=	Intersect(Range("Range1"),

Range("Range2"))

IntersectRange.Interior.ColorIndex	=	6

Using	the	IsEmpty	function	to	check	whether	a	cell	is
empty

The	IsEmpty	function	returns	a	Boolean	value	that	indicates	whether	a	single
cell	is	empty:	True	if	empty,	False	if	not.	The	cell	must	truly	be	empty	for	the
function	to	return	True.	If	it	contains	even	just	a	space	that	you	cannot	see,	Excel
does	not	consider	the	cell	to	be	empty:

IsEmpty(Cell)

Say	that	you	have	several	groups	of	data	separated	by	a	blank	row.	You	want

to	make	the	separations	a	little	more	obvious.	The	following	code	goes	down	the
data	in	column	A.	When	it	finds	an	empty	cell	in	column	A,	it	colors	in	the	first
four	cells	of	that	row	(seeFigure	3-4):

Click	here	to	view	code	image
LastRow	=	Cells(Rows.Count,	1).End(xlUp).Row

For	i	=	1	To	LastRow

If	IsEmpty(Cells(i,	1))	Then

Cells(i,	1).Resize(1,	4).Interior.ColorIndex	=	1

End	If

Next	i

FIGURE	3-4	You	can	make	separations	more	obvious	by	using	colored	rows.

Using	the	CurrentRegion	property	to	select	a	data
range
CurrentRegion	returns	a	Range	object	that	represents	a	set	of	contiguous	data.
As	long	as	the	data	is	surrounded	by	one	empty	row	and	one	empty	column,	you
can	select	the	data	set	by	using	CurrentRegion:

RangeObject.CurrentRegion

The	following	line	selects	A1:D3	because	this	is	the	contiguous	range	of
cells	around	cell	A1	(seeFigure	3-5):

Range("A1").CurrentRegion.Select

This	is	useful	if	you	have	a	data	set	whose	size	is	in	constant	flux.

FIGURE	3-5	You	can	use	CurrentRegion	to	select	a	range	of	contiguous	data	around	the	active	cell.

Case	Study:	Using	the	SpecialCells	method	to	select	specific
cells
Even	Excel	power	users	might	not	have	encountered	the	Go	To	Special
dialog	box.	If	you	press	the	F5	key	in	an	Excel	worksheet,	you	get	the
normal	Go	To	dialog	box	(seeFigure	3-6).	In	the	lower-left	corner	of	this
dialog	box	is	a	button	labeled	Special.	Click	this	button	to	get	to	the	super-
powerful	Go	To	Special	dialog	box	(seeFigure	3-7).

FIGURE	3-6	Although	the	Go	To	dialog	box	doesn’t	seem	useful,	click	the	Special	button	in
the	lower-left	corner	to	specify	what	type	of	cells	to	select.

In	the	Excel	interface,	the	Go	To	Special	dialog	box	enables	you	to	select
only	cells	with	formulas,	only	blank	cells,	or	only	the	visible	cells.
Selecting	only	visible	cells	is	excellent	for	grabbing	the	visible	results	of
AutoFiltered	data.

To	simulate	the	Go	To	Special	dialog	box	in	VBA,	use	the	SpecialCells
method.	This	enables	you	to	act	on	cells	that	meet	certain	criteria,	like	this:

Click	here	to	view	code	image

RangeObject.SpecialCells(Type,	Value)

FIGURE	3-7	The	Go	To	Special	dialog	box	has	many	incredibly	useful	selection	tools,	such
as	one	for	selecting	only	the	formulas	on	a	sheet.

The	SpecialCells	method	has	two	parameters:	Type	and	Value.	Type	is
one	of	the	xlCellType	constants:
xlCellTypeAllFormatConditions

xlCellTypeAllValidation

xlCellTypeBlanks

xlCellTypeComments

xlCellTypeConstants

xlCellTypeFormulas

xlCellTypeLastCell

xlCellTypeSameFormatConditions

xlCellTypeSameValidation

xlCellTypeVisible

Set	one	of	the	following	optional	Value	constants	if	you	use
xlCellTypeConstants	or	xlCellTypeFormulas:

Click	here	to	view	code	image
xlErrors

xlLogical

xlNumbers

xlTextValues

The	following	code	returns	all	the	ranges	that	have	conditional	formatting.
It	produces	an	error	if	there	are	no	conditional	formats	and	adds	a	border
around	each	contiguous	section	it	finds:

Click	here	to	view	code	image
Set	rngCond	=

ActiveSheet.Cells.SpecialCells(xlCellTypeAllFormatConditions)

If	Not	rngCond	Is	Nothing	Then

	rngCond.BorderAround	xlContinuous

End	If

Have	you	ever	had	someone	send	you	a	worksheet	without	all	the	labels
filled	in?	Some	people	think	that	the	data	shown	inFigure	3-8	looks	tidy.
They	enter	the	Region	field	only	once	for	each	region.	This	might	look
aesthetically	pleasing,	but	it’s	impossible	to	sort.

FIGURE	3-8	The	blank	cells	in	the	Region	column	make	it	difficult	to	sort	data	sets	such	as
this.

Using	the	SpecialCells	method	to	select	all	the	blanks	in	this	range	is	one
way	to	fill	the	blank	region	cells	quickly	using	the	region	found	above
them:

Click	here	to	view	code	image
Sub	FillIn()

On	Error	Resume	Next	'Need	this	because	if	there

aren't	any	blank

'cells,	the	code	will	error

Range("A1").CurrentRegion.SpecialCells(xlCellTypeBlanks).FormulaR1C1

_

	=	"=R[-1]C"

Range("A1").CurrentRegion.Value	=

Range("A1").CurrentRegion.Value

End	Sub

In	this	code,	Range("A1").CurrentRegion	refers	to	the	contiguous	range	of
data	in	the	report.	The	SpecialCells	method	returns	just	the	blank	cells	in
that	range.	This	particular	formula	fills	in	all	the	blank	cells	with	a	formula
that	points	to	the	cell	above	the	blank	cell.	(You	can	read	more	about	R1C1-
Style	Formulas	in	Chapter	5,	“R1C1-style	formulas.”)	The	second	line	of
code	is	a	fast	way	to	simulate	using	the	Copy	and	Paste	Special	Values
commands.Figure	3-9	shows	the	results.

FIGURE	3-9	After	the	macro	runs,	the	blank	cells	in	the	Region	column	have	been	filled	with
data.

Using	the	Areas	collection	to	return	a	noncontiguous
range
The	Areas	collection	is	a	collection	of	noncontiguous	ranges	within	a	selection.
It	consists	of	individual	Range	objects	representing	contiguous	ranges	of	cells
within	the	selection.	If	a	selection	contains	only	one	area,	the	Areas	collection
contains	a	single	Range	object	that	corresponds	to	that	selection.

You	might	be	tempted	to	loop	through	the	rows	in	a	sheet	and	check	the
properties	of	a	cell	in	a	row,	such	as	its	formatting	(for	example,	font	or	fill)	or
whether	the	cell	contains	a	formula	or	value.	Then	you	could	copy	the	row	and
paste	it	to	another	section.	However,	there	is	an	easier	way.	InFigure	3-10,	the
user	enters	the	values	below	each	fruit	and	vegetable.	The	percentages	are
formulas.	The	following	line	of	code	selects	the	cells	with	numeric	constants	and
copies	them	to	another	area:

Click	here	to	view	code	image

Range("A:D").SpecialCells(xlCellTypeConstants,

xlNumbers).Copy	_

Range("I1")

FIGURE	3-10	The	Areas	collection	makes	it	easier	to	manipulate	noncontiguous	ranges.

Referencing	tables
A	table	is	a	special	type	of	range	that	offers	the	convenience	of	referencing
named	ranges.	However,	tables	are	not	created	in	the	same	manner	as	other
ranges.	For	more	information	on	how	to	create	a	named	table,	see	Chapter	6,
“Creating	and	manipulating	names	in	VBA.”

Although	you	can	reference	a	table	by	using
Worksheets(1).Range("Table1"),	you	have	access	to	more	of	the	properties
and	methods	that	are	unique	to	tables	if	you	use	the	ListObjects	object,	like
this:

Click	here	to	view	code	image

Worksheets(1).ListObjects("Table1")

This	opens	the	properties	and	methods	of	a	table,	but	you	can’t	use	that	line
to	select	the	table.	To	do	that,	you	have	to	specify	the	part	of	the	table	you	want
to	work	with.	To	select	the	entire	table,	including	the	header	and	total	rows,
specify	the	Range	property:

Click	here	to	view	code	image

Worksheets(1).ListObjects("Table1").Range.Select

The	table	part	properties	include	the	following:

Range—Returns	the	entire	table.

DataBodyRange—Returns	the	data	part	only.

HeaderRowRange—Returns	the	header	row	only.

TotalRowRange—Returns	the	total	row	only.

What	I	really	like	about	coding	with	tables	is	the	ease	of	referencing	specific
columns	of	a	table.	You	don’t	have	to	know	how	many	columns	to	move	in	from
a	starting	position	or	the	letter/number	of	the	column,	and	you	don’t	have	to	use
a	FIND	function.	Instead,	you	can	use	the	header	name	of	the	column.	For
example,	to	select	the	data	of	the	Qty	column	of	the	table,	but	not	the	header	or
total	rows,	do	this:

Click	here	to	view	code	image
Worksheets(1).ListObjects("Table1").ListColumns("Qty")_

.DataBodyRange.Select

Note	For	more	details	on	coding	with	tables,	check	out	Excel
Tables:	A	Complete	Guide	for	Creating,	Using,	and	Automating
Lists	and	Tables	by	Zack	Barresse	and	Kevin	Jones	(ISBN:

9781615470280).

Next	steps

Chapter	4	describes	a	fundamental	component	of	any	programming	language:
loops.	If	you	have	taken	a	programming	class,	you	will	be	familiar	with	basic
loop	structures.	VBA	supports	all	the	usual	loops.	That	chapter	also	describes	a
special	loop,	For	Each...Next,	which	is	unique	to	object-oriented	programming
such	as	VBA.

CHAPTER	4
Looping	and	flow	control

In	this	chapter,	you	will:

Work	with	For...Next	loops

Get	to	know	Do	loops

Be	introduced	to	the	VBA	loop:	For	Each

Use	If...Then...Else	and	Select	Case	for	flow	control

Loops	make	your	life	easier.	You	might	have	20	lines	of	macro	code	that	do
something	cool	one	time.	Add	a	line	of	code	above	and	below,	and	suddenly
your	macro	fixes	a	million	rows	instead	of	one	row.	Loops	are	a	fundamental
component	of	any	programming	language.	If	you’ve	taken	any	programming
classes—even	BASIC—you’ve	likely	encountered	a	For...Next	loop.
Fortunately,	VBA	supports	all	the	usual	loops,	plus	a	special	loop	that	is
excellent	to	use	with	VBA.

This	chapter	covers	the	basic	loop	constructs:

For...Next

Do...While

Do...Until

While...Wend

Do	Until...Loop

This	chapter	also	discusses	the	useful	loop	construct	that	is	unique	to	object-
oriented	languages:	For	Each...Next.

For...Next	loops
For	and	Next	are	common	loop	constructs.	Everything	between	For	and	the	Next

is	run	multiple	times.	Each	time	the	code	runs,	a	certain	counter	variable,
specified	in	the	For	statement,	has	a	different	value.

Consider	this	code:

Click	here	to	view	code	image
For	i	=	1	to	10

Cells(i,	i).Value	=	i

Next	i

As	this	program	starts	to	run,	you	need	to	give	the	counter	variable	a	name.
In	this	example,	the	name	of	the	variable	is	i.	The	first	time	through	the	code,
the	variable	i	is	set	to	1.	The	first	time	the	loop	is	executed,	i	is	equal	to	1,	so
the	cell	in	row	1,	column	1	is	set	to	1	(see	Figure	4-1).

FIGURE	4-1	After	the	first	iteration	through	the	loop,	the	cell	in	row	1,	column	1	has	the	value	1.

Note	To	improve	readability,	you	should	always	indent	lines	of
code	inside	of	a	loop.	It	is	your	preference	whether	you	use	1,	2,	3,
or	4	spaces	for	the	indent.

Let’s	take	a	close	look	at	what	happens	as	VBA	gets	to	the	line	that	says
Next	i.	Before	this	line	is	run,	the	variable	i	is	equal	to	1.	During	the	execution
of	Next	i,	VBA	must	make	a	decision.	VBA	adds	1	to	the	variable	i	and
compares	it	to	the	maximum	value	in	the	To	clause	of	the	For	statement.	If	it	is

within	the	limits	specified	in	the	To	clause,	the	loop	is	not	finished.	In	this	case,
the	value	of	i	is	incremented	to	2.	Code	execution	then	moves	back	to	the	first
line	of	code	after	the	For	statement.	Figure	4-2	shows	the	state	of	the	program
before	it	runs	the	Next	line.	Figure	4-3	shows	what	happens	after	the	Next	line	is
executed.

FIGURE	4-2	Before	the	Next	i	statement	is	run,	i	is	equal	to	1.	VBA	can	safely	add	1	to	i,	and	it	will
be	less	than	or	equal	to	the	10	specified	in	the	To	clause	of	the	For	statement.

FIGURE	4-3	After	the	Next	i	statement	is	run,	i	is	incremented	to	2.	Code	execution	continues	with
the	line	of	code	immediately	following	the	For	statement,	which	writes	a	2	to	cell	B2.

The	second	time	through	the	loop,	the	value	of	i	is	2.	The	cell	in	row	2,
column	2	(that	is,	cell	B2)	gets	the	value	2.

As	the	process	continues,	the	Next	i	statement	advances	i	up	to	3,	4,	and	so
on.	On	the	tenth	pass	through	the	loop,	the	cell	in	row	10,	column	10	is	assigned
the	value	10.

It	is	interesting	to	watch	what	happens	to	the	variable	i	on	the	last	pass
through	Next	i.	Before	running	the	Next	i	line,	the	variable	contains	10.	VBA
is	now	at	a	decision	point.	It	adds	1	to	the	variable	i.	The	value	stored	in	i	is
now	equal	to	11,	which	is	greater	than	the	limit	in	the	For...Next	loop.	VBA
then	moves	execution	to	the	next	line	in	the	macro	after	the	Next	statement	(see
Figure	4-4).	In	case	you	are	tempted	to	use	the	variable	i	later	in	the	macro,	it	is
important	to	realize	that	it	will	be	incremented	beyond	the	limit	specified	in	the
To	clause	of	the	For	statement.

FIGURE	4-4	After	incrementing	i	to	11,	code	execution	moves	to	the	line	after	the	Next	statement.

The	common	use	for	such	a	loop	is	to	walk	through	all	the	rows	in	a	data	set
and	decide	to	perform	some	action	based	on	some	criteria.	For	example,	to	mark
all	the	rows	with	positive	service	revenue	in	column	F,	you	could	use	this	loop:

Click	here	to	view	code	image
For	i	=	2	to	10

	If	Cells(i,	6).Value	>	0	Then

	Cells(i,	8).Value	=	“Service	Revenue”

	Cells(i,	1).Resize(1,	8).Interior.ColorIndex	=	4

	End	If

Next	i

This	loop	checks	each	item	of	data	from	row	2	through	row	10.	If	there	is	a
positive	number	in	column	F,	column	H	of	that	row	has	a	new	label,	and	the	cells
in	columns	A:H	of	the	row	are	colored	using	the	color	index	4,	which	is	green.
After	this	macro	has	been	run,	the	results	look	as	shown	in	Figure	4-5.

Using	variables	in	the	For	statement

The	previous	example	is	not	very	useful	in	that	it	works	only	when	there	are

exactly	10	rows	of	data.	It	is	possible	to	use	a	variable	to	specify	the	upper	and
lower	limit	of	the	For	statement.	This	code	sample	identifies	FinalRow	with	data
and	then	loops	from	row	2	to	that	row:

Click	here	to	view	code	image
FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

For	i	=	2	to	FinalRow

If	Cells(i,	6).Value	>	0	Then

Cells(i,	8).Value	=	"Service	Revenue"

Cells(i,	1).Resize(1,	8).Interior.ColorIndex	=	4

End	If

Next	i

FIGURE	4-5	After	the	loop	completes	all	nine	iterations,	any	rows	with	positive	values	in	column	F
are	colored	green	and	have	the	label	ServiceRevenue	added	to	column	H.

Warning	Exercise	caution	when	using	variables.	What	if	the
imported	file	today	is	empty	and	has	only	a	heading	row?	In	this
case,	the	FinalRow	variable	is	equal	to	1.	This	makes	the	first

statement	of	the	loop	essentially,	say,	For	i	=	2	to	1.	Because	the	start
number	is	higher	than	the	end	number,	the	loop	does	not	execute	at	all.	The
variable	i	is	equal	to	2,	and	code	execution	jumps	to	the	line	after	Next.

Variations	on	the	For...Next	loop

In	a	For...Next	loop,	it	is	possible	to	have	the	loop	variable	jump	up	by
something	other	than	1.	For	example,	you	might	use	it	to	apply	greenbar
formatting	to	every	other	row	in	a	data	set.	In	this	case,	you	want	to	have	the
counter	variable	i	examine	every	other	row	in	the	data	set.	Indicate	this	by

adding	the	Step	clause	to	the	end	of	the	For	statement:

Click	here	to	view	code	image
FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

For	i	=	2	to	FinalRow	Step	2

Cells(i,	1).Resize(1,	7).Interior.ColorIndex	=	35

Next	i

While	running	this	code,	VBA	adds	a	light	green	shading	to	rows	2,	4,	6,	and
so	on	(see	Figure	4-6).

FIGURE	4-6	The	Step	clause	in	the	For	statement	of	the	loop	causes	the	action	to	occur	on	every
other	row.

The	Step	clause	can	be	any	number.	You	might	want	to	check	every	tenth
row	of	a	data	set	to	extract	a	random	sample.	In	this	case,	you	would	use	Step
10:

Click	here	to	view	code	image
FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

NextRow	=	FinalRow	+	5

Cells(NextRow-1,	1).Value	=	"Random	Sample	of	Above

Data"

For	i	=	2	to	FinalRow	Step	10

Cells(i,	1).Resize(1,	8).Copy

Destination:=Cells(NextRow,	1)

NextRow	=	NextRow	+	1

Next	i

You	can	also	have	a	For...Next	loop	run	backward	from	high	to	low.	This	is
particularly	useful	if	you	are	selectively	deleting	rows.	To	do	this,	reverse	the
order	of	the	For	statement	and	have	the	Step	clause	specify	a	negative	number:

Click	here	to	view	code	image
’	Delete	all	rows	where	column	C	is	the	Internal	rep	-

S54

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

For	i	=	FinalRow	to	2	Step	-1

If	Cells(i,	3).Value	=	"S54"	Then

Rows(i).Delete

End	If

Next	i

Note	There	is	a	faster	way	to	delete	the	records,	which	is	discussed
in	the	“Replacing	a	loop	with	AutoFilter”	section	of	Chapter	11,
“Data	mining	with	Advanced	Filter.”

Exiting	a	loop	early	after	a	condition	is	met

Sometimes	you	don’t	need	to	execute	a	whole	loop.	Perhaps	you	just	need	to
read	through	a	data	set	until	you	find	one	record	that	meets	a	certain	criteria.	In
this	case,	you	want	to	find	the	first	record	and	then	stop	the	loop.	A	statement
called	Exit	For	does	this.

The	following	sample	macro	looks	for	a	row	in	the	data	set	where	service
revenue	in	column	F	is	positive	and	product	revenue	in	column	E	is	0.	If	such	a
row	is	found,	you	might	indicate	a	message	that	the	file	needs	manual	processing
today	and	move	the	cell	pointer	to	that	row:

Click	here	to	view	code	image
’	Are	there	any	special	processing	situations	in	the

data?

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

ProblemFound	=	False

For	i	=	2	to	FinalRow

If	Cells(i,	6).Value	>	0	Then

If	cells(i,	5).Value	=	0	Then

Cells(i,	6).Select

ProblemFound	=	True

Exit	For

End	If

End	If

Next	i

If	ProblemFound	Then

MsgBox	“There	is	a	problem	at	row”	&	i

Exit	Sub

End	If

Nesting	one	loop	inside	another	loop

It	is	okay	to	run	a	loop	inside	another	loop.	The	following	code	has	the	first	loop
run	through	all	the	rows	in	a	record	set	while	the	second	loop	runs	through	all
the	columns:

Click	here	to	view	code	image
'	Loop	through	each	row	and	column

'	Add	a	checkerboard	format

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

FinalCol	=	Cells(1,

Columns.Count).End(xlToLeft).Column

For	I	=	2	To	FinalRow

'	For	even	numbered	rows,	start	in	column	1

'	For	odd	numbered	rows,	start	in	column	2

If	I	Mod	2	=	1	Then	'	Divide	I	by	2	and	keep

remainder

StartCol	=	1

Else

StartCol	=	2

End	If

For	J	=	StartCol	To	FinalCol	Step	2

Cells(I,	J).Interior.ColorIndex	=	35

Next	J

Next	I

In	this	code,	the	outer	loop	is	using	the	i	counter	variable	to	loop	through	all
the	rows	in	the	data	set.	The	inner	loop	is	using	the	j	counter	variable	to	loop

through	all	the	columns	in	that	row.	Because	Figure	4-7	has	seven	data	rows,	the
code	runs	through	the	i	loop	seven	times.	Each	time	through	the	i	loop,	the	code
runs	through	the	j	loop	six	or	seven	times.	This	means	that	the	line	of	code	that
is	inside	the	j	loop	ends	up	being	executed	several	times	for	each	pass	through
the	i	loop.	Figure	4-7	shows	the	result.

FIGURE	4-7	The	result	of	nesting	one	loop	inside	the	other;	VBA	can	loop	through	each	row	and
then	each	column.

Do	loops
There	are	several	variations	of	the	Do	loop.	The	most	basic	Do	loop	is	useful	for
doing	a	bunch	of	mundane	tasks.	For	example,	suppose	that	someone	sends	you
a	list	of	addresses	going	down	a	column,	as	shown	in	Figure	4-8.

In	this	case,	you	might	need	to	rearrange	these	addresses	into	a	database	with
name	in	column	B,	street	in	column	C,	and	city	and	state	in	column	D.	By
setting	relative	recording	(see	Chapter	1,	“Unleashing	the	power	of	Excel	with
VBA”)	and	using	the	shortcut	Ctrl+A,	you	can	record	this	bit	of	useful	code:

Click	here	to	view	code	image
Sub	FixOneRecord()

'	Keyboard	Shortcut:	Ctrl+Shift+A

ActiveCell.Offset(1,	0).Range("A1").Select

Selection.Cut

ActiveCell.Offset(-1,	1).Range("A1").Select

ActiveSheet.Paste

ActiveCell.Offset(2,	-1).Range("A1").Select

Selection.Cut

ActiveCell.Offset(-2,	2).Range("A1").Select

ActiveSheet.Paste

ActiveCell.Offset(1,	-2).Range("A1:A3").Select

Selection.EntireRow.Delete

ActiveCell.Select

End	Sub

"/>
FIGURE	4-8	It	would	be	more	useful	to	have	these	addresses	in	a	database	format	to	use	in	a	mail
merge.

This	code	is	designed	to	copy	one	single	address	into	database	format.	The
code	also	navigates	the	cell	pointer	to	the	name	of	the	next	address	in	the	list.
Each	time	you	press	Ctrl+A,	one	address	is	reformatted.

Note	Do	not	assume	that	the	preceding	code	is	suitable	for	a
professional	application.	Remember	that	you	don’t	need	to	select
something	before	acting	on	it.	However,	sometimes	macros	are

written	just	to	automate	a	one-time	mundane	task.

Without	a	macro,	a	lot	of	manual	copying	and	pasting	would	be	required.
However,	with	the	preceding	recorded	macro,	you	can	simply	place	the	cell
pointer	on	a	name	in	column	A	and	press	Ctrl+Shift+A.	That	one	address	is
copied	into	three	columns,	and	the	cell	pointer	moves	to	the	start	of	the	next
address	(see	Figure	4-9).

FIGURE	4-9	After	the	macro	is	run	once,	one	address	is	moved	into	the	proper	format,	and	the	cell
pointer	is	positioned	to	run	the	macro	again.

When	you	use	this	macro,	you	are	able	to	process	an	address	every	second
using	the	shortcut.	However,	when	you	need	to	process	5,000	addresses,	you	do
not	want	to	keep	running	the	same	macro	over	and	over.	In	this	case,	you	can	use
a	Do...Loop	to	set	up	the	macro	to	run	continuously.	You	can	have	VBA	run	this
code	continuously	by	enclosing	the	recorded	code	with	Do	at	the	top	and	Loop	at
the	end.	Now	you	can	sit	back	and	watch	the	code	perform	this	insanely	boring
task	in	minutes	rather	than	hours.

Note	that	this	particular	Do...Loop	will	run	forever	because	there	is	no
mechanism	to	stop	it.	This	works	for	the	task	at	hand	because	you	can	watch	the
progress	on	the	screen	and	press	Ctrl+Break	to	stop	execution	when	the	program
advances	past	the	end	of	this	database.

This	code	uses	a	Do	loop	to	fix	the	addresses:

Click	here	to	view	code	image
Sub	FixAllRecords()

Do

ActiveCell.Offset(1,	0).Range("A1").Select

Selection.Cut

ActiveCell.Offset(-1,	1).Range("A1").Select

ActiveSheet.Paste

ActiveCell.Offset(2,	-1).Range("A1").Select

Selection.Cut

ActiveCell.Offset(-2,	2).Range("A1").Select

ActiveSheet.Paste

ActiveCell.Offset(1,	-2).Range("A1:A3").Select

Selection.EntireRow.Delete

ActiveCell.Select

Loop

End	Sub

These	examples	have	shown	quick-and-dirty	loops	that	are	great	for	when

you	need	to	accomplish	a	task	quickly.	The	Do...Loop	provides	a	number	of
options	that	enable	you	to	have	the	program	stop	automatically	when	it
accomplishes	the	end	of	the	task.

The	first	option	is	to	have	a	line	in	the	Do...Loop	that	detects	the	end	of	the
data	set	and	exits	the	loop.	In	the	current	example,	this	could	be	accomplished	by
using	the	Exit	Do	command	in	an	If	statement.	If	the	current	cell	is	on	a	cell
that	is	empty,	you	can	assume	that	you	have	reached	the	end	of	the	data	and
stopped	processing	the	loop:

Click	here	to	view	code	image
Sub	LoopUntilDone()

Do

If	Selection.Value	=	""	Then	Exit	Do

ActiveCell.Offset(1,	0).Range("A1").Select

Selection.Cut

ActiveCell.Offset(-1,	1).Range("A1").Select

ActiveSheet.Paste

ActiveCell.Offset(2,	-1).Range("A1").Select

Selection.Cut

ActiveCell.Offset(-2,	2).Range("A1").Select

ActiveSheet.Paste

ActiveCell.Offset(1,	-2).Range("A1:A3").Select

Selection.EntireRow.Delete

ActiveCell.Select

Loop

End	Sub

Using	the	While	or	Until	clause	in	Do	loops

There	are	four	variations	of	using	While	or	Until.	These	clauses	can	be	added	to
either	the	Do	statement	or	the	Loop	statement.	In	each	case,	the	While	or	Until
clause	includes	some	test	that	evaluates	to	True	or	False.

With	a	Do	While	<test	expression>...Loop	construct,	the	loop	is	never
executed	if	<test	expression>	is	false.	If	you	are	reading	records	from	a	text
file,	you	cannot	assume	that	the	file	has	one	or	more	records.	Instead,	you	need
to	test	to	see	whether	you	are	already	at	the	end	of	file	with	the	EOF	function
before	you	enter	the	loop:

Click	here	to	view	code	image
'	Read	a	text	file,	skipping	the	Total	lines

Open	"C:\Invoice.txt"	For	Input	As	#1

R	=	1

Do	While	Not	EOF(1)

Line	Input	#1,	Data

If	Not	Left	(Data,	5)	=	"TOTAL"	Then

'	Import	this	row

r	=	r	+	1

Cells(r,	1).Value	=	Data

End	If

Loop

Close	#1

In	this	example,	the	Not	keyword	EOF(1)	evaluates	to	True	after	there	are	no
more	records	to	be	read	from	Invoice.txt.	Some	programmers	think	it	is	hard	to
read	a	program	that	contains	a	lot	of	instances	of	Not.	To	avoid	the	use	of	Not,
use	the	Do	Until	<test	expression>...Loop	construct:

Click	here	to	view	code	image
'	Read	a	text	file,	skipping	the	Total	lines

Open	"C:\Invoice.txt"	For	Input	As	#1

r	=	1

Do	Until	EOF(1)

Line	Input	#1,	Data

If	Not	Left(Data,	5)	=	"TOTAL"	Then

'	Import	this	row

r	=	r	+	1

Cells(r,	1).Value	=	Data

End	If

Loop

Close	#1

In	other	examples,	you	might	always	want	the	loop	to	be	executed	the	first
time.	In	these	cases,	move	the	While	or	Until	instruction	to	the	end	of	the	loop.
This	code	sample	asks	the	user	to	enter	sales	amounts	made	that	day;	it
continually	asks	for	sales	amounts	until	the	user	enters	a	zero:

Click	here	to	view	code	image
TotalSales	=	0

Do

x	=	InputBox(_

Prompt:="Enter	Amount	of	Next	Invoice.	Enter	0

when	done.",	_

Type:=1)

TotalSales	=	TotalSales	+	x

Loop	Until	x	=	0

MsgBox	"The	total	for	today	is	$"	&	TotalSales

In	the	following	loop,	a	check	amount	is	entered,	and	then	it	looks	for	open
invoices	to	which	the	check	can	be	applied.	However,	it	is	often	the	case	that	a
single	check	is	received	that	covers	several	invoices.	The	following	program
sequentially	applies	the	check	to	the	oldest	invoices	until	100%	of	the	check	has
been	applied:

Click	here	to	view	code	image
'	Ask	for	the	amount	of	check	received.	Add	zero	to

convert	to	numeric.

AmtToApply	=	InputBox("Enter	Amount	of	Check")	+	0

'	Loop	through	the	list	of	open	invoices.

'	Apply	the	check	to	the	oldest	open	invoices	and

Decrement	AmtToApply

NextRow	=	2

Do	While	AmtToApply	>	0

OpenAmt	=	Cells(NextRow,	3)

If	OpenAmt	>	AmtToApply	Then

'	Apply	total	check	to	this	invoice

Cells(NextRow,	4).Value	=	AmtToApply

AmtToApply	=	0

Else

Cells(NextRow,	4).Value	=	OpenAmt

AmtToApply	=	AmtToApply	-	OpenAmt

End	If

NextRow	=	NextRow	+	1

Loop

Because	you	can	construct	the	Do...Loop	with	the	While	or	Until	qualifiers
at	the	beginning	or	end,	you	have	a	great	deal	of	subtle	control	over	whether	the
loop	is	always	executed	once,	even	when	the	condition	is	true	at	the	beginning.

While...Wend	loops

While...Wend	loops	are	included	in	VBA	for	backward	compatibility.	In	the
VBA	help	file,	Microsoft	suggests	that	the	Do...Loop	construction	is	more
flexible.	However,	because	you	might	encounter	While...Wend	loops	in	code
written	by	others,	this	chapter	includes	a	quick	example.	In	this	loop,	the	first
line	is	always	While	<condition>.	The	last	line	of	the	loop	is	always	Wend.	Note
that	there	is	no	Exit	While	statement.	In	general,	these	loops	are	okay,	but	the
Do...Loop	construct	is	more	robust	and	flexible.	Because	the	Do	loop	offers
either	the	While	or	the	Until	qualifier,	you	can	use	this	qualifier	at	the	beginning
or	the	end	of	the	loop,	and	you	can	exit	a	Do	loop	early:

Click	here	to	view	code	image
'	Read	a	text	file,	adding	the	amounts

Open	"C:\Invoice.txt"	For	Input	As	#1

TotalSales	=	0

While	Not	EOF(1)

Line	Input	#1,	Data

TotalSales	=	TotalSales	+	Data

Wend

MsgBox	"Total	Sales="	&	TotalSales

	Close	#1

The	VBA	loop:	For	Each
Even	though	the	VBA	loop	is	an	excellent	loop,	the	macro	recorder	never	records
this	type	of	loop.	VBA	is	an	object-oriented	language.	It	is	common	to	have	a
collection	of	objects	in	Excel,	such	as	a	collection	of	worksheets	in	a	workbook,
cells	in	a	range,	pivot	tables	on	a	worksheet,	or	data	series	on	a	chart.

This	special	type	of	loop	is	great	for	looping	through	all	the	items	in	a
collection.	However,	before	discussing	this	loop	in	detail,	you	need	to
understand	a	special	kind	of	variable	called	object	variables.

Object	variables

At	this	point,	you	have	seen	a	variable	that	contains	a	single	value.	When	you
have	a	variable	such	as	TotalSales	=	0,	TotalSales	is	a	normal	variable	and
generally	contains	only	a	single	value.	It	is	also	possible	to	have	a	more
powerful	variable	called	an	object	variable	that	holds	many	values.	In	other
words,	any	property	associated	with	the	object	is	also	associated	with	the	object
variable.

Generally,	developers	do	not	take	the	time	to	declare	variables.	Many	books
implore	you	to	use	the	DIM	statement	to	identify	all	your	variables	at	the	top	of
the	procedure.	This	enables	you	to	specify	that	a	certain	variable	must	be	of	a
certain	type,	such	as	Integer	or	Double.	Although	this	saves	a	tiny	bit	of
memory,	it	requires	you	to	know	up	front	which	variables	you	plan	on	using.
However,	developers	tend	to	whip	up	a	new	variable	on	the	fly	as	the	need
arises.	Even	so,	there	are	great	benefits	to	declaring	object	variables.	For
example,	the	VBA	AutoComplete	feature	turns	on	if	you	declare	an	object
variable	at	the	top	of	your	procedure.	The	following	lines	of	code	declare	three
object	variables—a	worksheet,	a	range,	and	a	pivot	table:

Click	here	to	view	code	image
Sub	Test()

Dim	WSD	as	Worksheet

Dim	MyCell	as	Range

Dim	PT	as	PivotTable

Set	WSD	=	ThisWorkbook.Worksheets("Data")

Set	MyCell	=	WSD.Cells(Rows.Count,

1).End(xlUp).Offset(1,	0)

Set	PT	=	WSD.PivotTables(1)

...

In	this	code,	you	can	see	that	more	than	an	equal	sign	is	used	to	assign	object
variables.	You	also	need	to	use	the	Set	statement	to	assign	a	specific	object	to
the	object	variable.

There	are	many	good	reasons	to	use	object	variables,	not	the	least	of	which	is
the	fact	that	it	can	be	a	great	shorthand	notation.	It	is	easier	to	have	many	lines	of
code	refer	to	WSD	than	to	ThisWorkbook.Worksheets("Data").	In	addition,	as
mentioned	earlier,	the	object	variable	inherits	all	the	properties	of	the	object	to

which	it	refers.

The	For	Each	loop	employs	an	object	variable	rather	than	a	Counter
variable.	The	following	code	loops	through	all	the	cells	in	column	A:

Click	here	to	view	code	image
For	Each	cell	in	Range("A1").CurrentRegion.Resize(,	1)

If	cell.Value	=	"Total"	Then

cell.Resize(1,8).Font.Bold	=	True

End	If

Next	cell

This	code	uses	the	.CurrentRegion	property	to	define	the	current	region	and
then	uses	the	.Resize	property	to	limit	the	selected	range	to	a	single	column.
The	object	variable	is	called	Cell.	Any	name	could	be	used	for	the	object
variable,	but	Cell	seems	more	appropriate	than	something	arbitrary	like	Fred.

The	following	code	sample	searches	all	open	workbooks,	looking	for	a
workbook	in	which	the	first	worksheet	is	called	Menu:

Click	here	to	view	code	image
For	Each	wb	in	Workbooks

If	wb.Worksheets(1).Name	=	"Menu"	Then

WBFound	=	True

WBName	=	wb.Name

Exit	For

End	If

Next	wb

This	code	sample	deletes	all	pivot	tables	on	the	current	sheet:

Click	here	to	view	code	image
For	Each	pt	in	ActiveSheet.PivotTables

pt.TableRange2.Clear

Next	pt

Flow	control:	Using	If...Then...Else	and	Select
Case

Another	aspect	of	programming	that	will	never	be	recorded	by	the	macro
recorder	is	the	concept	of	flow	control.	Sometimes	you	do	not	want	every	line	of
a	program	to	be	executed	every	time	you	run	a	macro.	VBA	offers	two	excellent
choices	for	flow	control:	the	If...Then...Else	construct	and	the	Select	Case
construct.

Basic	flow	control:	If...Then...Else

The	most	common	device	for	program	flow	control	is	the	If	statement.	For
example,	suppose	you	have	a	list	of	products,	as	shown	in	Figure	4-10.	You	want
to	loop	through	each	product	in	the	list	and	copy	it	to	either	a	Fruits	list	or	a
Vegetables	list.	Beginning	programmers	might	be	tempted	to	loop	through	the
rows	twice—once	to	look	for	fruit	and	a	second	time	to	look	for	vegetables.
However,	there	is	no	need	to	loop	through	twice	because	you	can	use	an
If...Then...Else	construct	on	a	single	loop	to	copy	each	row	to	the	correct
place.

FIGURE	4-10	A	single	loop	can	look	for	fruits	or	vegetables.

Using	conditions

Any	If	statement	needs	a	condition	that	is	being	tested.	The	condition	should
always	evaluate	to	TRUE	or	FALSE.	Here	are	some	examples	of	simple	and
complex	conditions:

If	Range("A1").Value	=	"Title"	Then

If	Not	Range("A1").Value	=	"Title"	Then

If	Range("A1").Value	=	"Title"	And	Range("B1").Value	=	"Fruit"

Then

If	Range("A1").Value	=	"Title"	Or	Range("B1").Value	=	"Fruit"

Then

Using	If...Then...End	If

After	the	If	statement,	you	can	include	one	or	more	program	lines	that	will	be
executed	only	if	the	condition	is	met.	You	should	then	close	the	If	block	with	an
End	If	line.	Here	is	a	simple	example	of	an	If	statement:

Click	here	to	view	code	image
Sub	ColorFruitRedBold()

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

For	i	=	2	To	FinalRow

If	Cells(i,	1).Value	=	"Fruit"	Then

Cells(i,	1).Resize(1,	3).Font.Bold	=	True

Cells(i,	1).Resize(1,	3).Font.ColorIndex	=	3

End	If

Next	i

MsgBox	"Fruit	is	now	bold	and	red"

End	Sub

Either/or	decisions:	If...Then...Else...End	If

Sometimes	you	will	want	to	do	one	set	of	statements	if	a	condition	is	true	and
another	set	of	statements	if	the	condition	is	not	true.	To	do	this	with	VBA,	the
second	set	of	conditions	would	be	coded	after	the	Else	statement.	There	is	still
only	one	End	If	statement	associated	with	this	construct.	For	example,	you
could	use	the	following	code	to	color	the	fruit	red	and	the	vegetables	green:

Click	here	to	view	code	image
Sub	FruitRedVegGreen()

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

For	i	=	2	To	FinalRow

If	Cells(i,	1).Value	=	"Fruit"	Then

Cells(i,	1).Resize(1,	3).Font.ColorIndex	=

3

Else

Cells(i,	1).Resize(1,	3).Font.ColorIndex	=

50

End	If

Next	i

MsgBox	"Fruit	is	red	/	Veggies	are	green"

End	Sub

Using	If...ElseIf...End	If	for	multiple	conditions

Notice	that	the	product	list	includes	one	item	that	is	classified	as	an	herb.	Three
conditions	can	be	used	to	test	items	on	the	list.	It	is	possible	to	build	an
If...End	If	structure	with	multiple	conditions.	First,	test	to	see	whether	the
record	is	a	fruit.	Next,	use	an	ElseIf	to	test	whether	the	record	is	a	vegetable.
Then	test	to	see	whether	the	record	is	an	herb.	Finally,	if	the	record	is	none	of
those,	highlight	the	record	as	an	error.	Here’s	the	code	that	does	all	this:

Click	here	to	view	code	image
Sub	MultipleIf()

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

For	i	=	2	To	FinalRow

If	Cells(i,	1).Value	=	"Fruit"	Then

Cells(i,	1).Resize(1,	3).Font.ColorIndex	=

3

ElseIf	Cells(i,	1).Value	=	"Vegetable"	Then

Cells(i,	1).Resize(1,	3).Font.ColorIndex	=

50

ElseIf	Cells(i,	1).Value	=	"Herbs"	Then

Cells(i,	1).Resize(1,	3).Font.ColorIndex	=

5

Else

'	This	must	be	a	record	in	error

Cells(i,	1).Resize(1,

3).Interior.ColorIndex	=	6

End	If

Next	i

MsgBox	"Fruit	is	red	/	Veggies	are	green	/	Herbs

are	blue"

End	Sub

Using	Select	Case...End	Select	for	multiple	conditions

When	you	have	many	different	conditions,	it	becomes	unwieldy	to	use	many
ElseIf	statements.	For	this	reason,	VBA	offers	another	construct,	known	as	the
Select	Case	construct.	In	your	running	example,	always	check	the	value	of	the
class	in	column	A.	This	value	is	called	the	test	expression.	The	basic	syntax	of
this	construct	starts	with	the	words	Select	Case	followed	by	the	test	expression:

Select	Case	Cells(i,	1).Value

Thinking	about	this	problem	in	English,	you	might	say,	“In	cases	in	which
the	record	is	fruit,	color	the	record	with	red.”	VBA	uses	a	shorthand	version	of
this.	You	write	the	word	Case	followed	by	the	literal	"Fruit".	Any	statements
that	follow	Case	"Fruit"	are	executed	whenever	the	test	expression	is	a	fruit.
After	these	statements,	you	have	the	next	Case	statement:	Case	"Vegetables".
You	continue	in	this	fashion,	writing	a	Case	statement	followed	by	the	program
lines	that	are	executed	if	that	case	is	true.

After	you	have	listed	all	the	possible	conditions	you	can	think	of,	you	can
optionally	include	a	Case	Else	section	at	the	end.	The	Case	Else	section
includes	what	the	program	should	do	if	the	test	expression	matches	none	of	your
cases.	Below,	the	macro	adds	a	note	in	column	D	if	an	unexpected	value	is	found
in	A.	Finally,	you	close	the	entire	construct	with	the	End	Select	statement.

The	following	program	does	the	same	operation	as	the	previous	macro	but
uses	a	Select	Case	statement:

Click	here	to	view	code	image
Sub	SelectCase()

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

For	i	=	2	To	FinalRow

Select	Case	Cells(i,	1).Value

Case	"Fruit"

Cells(i,	1).Resize(1,

3).Font.ColorIndex	=	3

Case	"Vegetable"

Cells(i,	1).Resize(1,

3).Font.ColorIndex	=	50

Case	"Herbs"

Cells(i,	1).Resize(1,

3).Font.ColorIndex	=	5

Case	Else

Cells(i,	4).Value	=	"Unexpected	value!"

End	Select

Next	i

MsgBox	"Fruit	is	red	/	Veggies	are	green	/	Herbs

are	blue"

End	Sub

Complex	expressions	in	Case	statements

It	is	possible	to	have	fairly	complex	expressions	in	Case	statements.	For
example,	say	that	you	want	to	perform	the	same	actions	for	all	berry	records:

Click	here	to	view	code	image
Case	"Strawberry",	"Blueberry",	"Raspberry"

AdCode	=	1

If	it	makes	sense	to	do	so,	you	might	code	a	range	of	values	in	the	Case
statement:

Click	here	to	view	code	image
Case	1	to	20

Discount	=	0.05

Case	21	to	100

Discount	=	0.1

You	can	include	the	keyword	Is	and	a	comparison	operator,	such	as	>	or	<:

Click	here	to	view	code	image

Case	Is	<	10

Discount	=	0

Case	Is	>	100

Discount	=	0.2

Case	Else

Discount	=	0.10

Nesting	If	statements

It	is	not	only	possible	but	also	common	to	nest	an	If	statement	inside	another	If
statement.	In	this	situation,	it	is	important	to	use	proper	indentation.	You	often
will	find	that	you	have	several	End	If	lines	at	the	end	of	the	construct.	With
proper	indentation,	it	is	easier	to	tell	which	End	If	is	associated	with	a	particular
If.

The	final	macro	in	this	chapter	contains	a	lot	of	logic	that	handles	the
following	discount	rules:

For	fruit,	quantities	less	than	5	cases	get	no	discount.

Quantities	of	fruit	from	5	to	20	cases	get	a	10%	discount.

Quantities	of	fruit	greater	than	20	cases	get	a	15%	discount.

For	herbs,	quantities	less	than	10	cases	get	no	discount.

Quantities	of	herbs	from	10	cases	to	15	cases	get	a	3%	discount.

Quantities	of	herbs	greater	than	15	cases	get	a	6%	discount.

For	vegetables	except	asparagus,	quantities	of	5	cases	and	greater	earn	a
12%	discount.

Asparagus	requires	20	cases	for	a	discount	of	12%.

None	of	the	discounts	applies	if	the	product	is	on	sale	this	week.	The	sale
price	is	25%	off	the	normal	price.	This	week’s	sale	items	are	strawberries,
lettuce,	and	tomatoes.

The	code	to	execute	this	logic	follows:

Click	here	to	view	code	image
Sub	ComplexIf()

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

For	i	=	2	To	FinalRow

ThisClass	=	Cells(i,	1).Value

ThisProduct	=	Cells(i,	2).Value

ThisQty	=	Cells(i,	3).Value

'	First,	figure	out	if	the	item	is	on	sale

Select	Case	ThisProduct

Case	"Strawberry",	"Lettuce",	"Tomatoes"

Sale	=	True

Case	Else

Sale	=	False

End	Select

'	Figure	out	the	discount

If	Sale	Then

Discount	=	0.25

Elseif	ThisClass	=	"Fruit"	Then

Select	Case	ThisQty

Case	Is	<	5

Discount	=	0

Case	5	To	20

Discount	=	0.1

Case	Is	>	20

Discount	=	0.15

End	Select

ElseIf	ThisClass	=	"Herbs"	Then

Select	Case	ThisQty

Case	Is	<	10

Discount	=	0

Case	10	To	15

Discount	=	0.03

Case	Is	>	15

Discount	=	0.06

End	Select

ElseIf	ThisClass	=	"Vegetables"	Then

'	There	is	a	special	condition	for	asparagus

If	ThisProduct	=	"Asparagus"	Then

If	ThisQty	<	20	Then

Discount	=	0

Else

Discount	=	0.12

End	If

Else

If	ThisQty	<	5	Then

Discount	=	0

Else

Discount	=	0.12

End	If	'	Is	the	product	asparagus	or	not?

End	If	'	Is	the	product	on	sale?

Cells(i,	4).Value	=	Discount

If	Sale	Then

Cells(i,	4).Font.Bold	=	True

End	If

Next	i

Range("D1").Value	=	"Discount"

MsgBox	"Discounts	have	been	applied"

End	Sub

Next	steps

Loops	add	a	tremendous	amount	of	power	to	your	recorded	macros.	Any	time
you	need	to	repeat	a	process	over	all	worksheets	or	all	rows	in	a	worksheet,
using	a	loop	is	the	way	to	go.	Excel	VBA	supports	the	traditional	programming
loops	of	For...Next	and	Do...Loop	and	the	object-oriented	loop	For
Each...Next.	Chapter	5,	“R1C1-style	formulas,”	discusses	the	seemingly	arcane
R1C1	style	of	formulas	and	shows	why	it	is	important	in	Excel	VBA.

CHAPTER	5
R1C1-style	formulas

In	this	chapter,	you	will:

Understand	A1	versus	R1C1	references

Toggle	to	R1C1-style	references

Witness	the	miracle	of	Excel	formulas

Examine	the	R1C1	reference	style

Use	R1C1	formulas	with	array	formulas

Understanding	R1C1	formulas	will	make	your	job	easier	in	VBA.	You	could
skip	this	chapter,	but	if	you	do,	your	code	will	be	harder	to	write.	Taking	30
minutes	to	understand	R1C1	will	make	every	macro	you	write	for	the	rest	of
your	life	easier	to	code.

We	can	trace	the	A1	style	of	referencing	back	to	VisiCalc.	Dan	Bricklin	and
Bob	Frankston	used	A1	to	refer	to	the	cell	in	the	upper-left	corner	of	the
spreadsheet.	Mitch	Kapor	used	this	same	addressing	scheme	in	Lotus	1-2-3.
Upstart	Multiplan	from	Microsoft	attempted	to	buck	the	trend	and	used
something	called	R1C1-style	addressing.	In	R1C1	addressing,	the	cell	known	as
A1	is	referred	to	as	R1C1	because	it	is	in	row	1,	column	1.

With	the	dominance	of	Lotus	1-2-3	in	the	1980s	and	early	1990s,	the	A1
style	became	the	standard.	Microsoft	realized	it	was	fighting	a	losing	battle	and
eventually	offered	either	R1C1-style	addressing	or	A1-style	addressing	in	Excel.
When	you	open	Excel	today,	the	A1	style	is	used	by	default.	Officially,	however,
Microsoft	supports	both	styles	of	addressing.

You	would	think	that	this	chapter	would	be	a	non-issue.	Anyone	who	uses
the	Excel	interface	would	agree	that	the	R1C1	style	is	dead.	However,	we	have
what	on	the	face	of	it	seems	to	be	an	annoying	problem:	The	macro	recorder
records	formulas	in	the	R1C1	style.	So	you	might	be	thinking	that	you	just	need
to	learn	R1C1	addressing	so	that	you	can	read	the	recorded	code	and	switch	it

back	to	the	familiar	A1	style.

I	have	to	give	Microsoft	credit.	R1C1-style	formulas,	you’ll	grow	to
understand,	are	actually	more	efficient,	especially	when	you	are	dealing	with
writing	formulas	in	VBA.	Using	R1C1-style	addressing	enables	you	to	write
more	efficient	code.	Plus,	there	are	some	features	such	as	setting	up	array
formulas	that	require	you	to	enter	a	formula	in	R1C1	style.

I	can	hear	the	collective	groan	from	Excel	users	everywhere.	You	could	skip
these	pages	on	this	old-fashioned	addressing	style	if	it	were	only	an	annoyance
or	an	efficiency	issue.	However,	because	it	is	necessary	to	understand	R1C1
addressing	to	effectively	use	important	features	such	as	array	formulas,	you	have
to	dive	in	and	learn	this	style.

Toggling	to	R1C1-style	references

You	don’t	need	to	switch	to	R1C1	style	in	order	to	use	.FormulaR1C1	in	your
code.	However,	while	you’re	learning	about	R1C1,	it	helps	to	temporarily	switch
to	R1C1	style.

To	switch	to	R1C1-style	addressing,	select	Options	from	the	File	menu.	In
the	Formulas	category,	select	the	R1C1	Reference	Style	check	box	(see	Figure	5-
1).

FIGURE	5-1	Selecting	the	R1C1	reference	style	in	the	Formulas	category	of	the	Excel	Options
dialog	box	causes	Excel	to	use	R1C1	style	in	the	Excel	user	interface.

After	you	switch	to	R1C1	style,	the	column	letters	A,	B,	C	across	the	top	of
the	worksheet	are	replaced	by	numbers	1,	2,	3	(see	Figure	5-2).

FIGURE	5-2	In	R1C1	style,	the	column	letters	are	replaced	by	numbers.

In	this	format,	the	cell	that	you	know	as	B5	is	called	R5C2	because	it	is	in
row	5,	column	2.

Every	couple	weeks,	someone	manages	to	accidentally	turn	on	this	option,
and	we	get	an	urgent	support	request	at	MrExcel.	This	style	is	foreign	to	99%	of
spreadsheet	users.

Witnessing	the	miracle	of	Excel	formulas
Automatically	recalculating	thousands	of	cells	is	the	main	benefit	of	electronic
spreadsheets	over	the	green	ledger	paper	used	up	until	1979.	However,	a	close
second-prize	award	would	be	that	you	can	enter	one	formula	and	copy	that
formula	to	thousands	of	cells.

Entering	a	formula	once	and	copying	1,000	times

Switch	back	to	A1	style	referencing.	Consider	the	worksheet	shown	in	Figure	5-
3.	Enter	a	simple	formula	such	as	=B4*C4	in	cell	D4,	double-click	the	AutoFill
handle,	and	the	formula	intelligently	changes	as	it	is	copied	down	the	range.

FIGURE	5-3	Double-click	the	AutoFill	handle,	and	Excel	intelligently	copies	this	relative-reference
formula	down	the	column.

The	formula	is	rewritten	for	each	row,	eventually	becoming	=C9*B9.	It	seems
intimidating	to	consider	having	a	macro	enter	all	these	different	formulas.	Figure
5-4	shows	how	the	formulas	change	when	you	copy	them	down	columns	D,	F,
and	G.

Note	Press	Ctrl+’	to	switch	to	showing	formulas	rather	than	their
results.	Press	it	again	to	toggle	back	to	seeing	values.

FIGURE	5-4	Amazingly,	Excel	adjusts	the	cell	references	in	each	formula	as	you	copy	down	the
column.

The	formula	in	cell	F4	includes	both	relative	and	absolute	formulas:
=IF(E4,ROUND(D4*B1,2),0).	Thanks	to	the	dollar	signs	inserted	in	cell	B1,
you	can	copy	down	this	formula,	and	it	always	multiplies	the	total	price	in	this
row	by	the	tax	rate	in	cell	B1.

The	secret:	It’s	not	that	amazing

Excel	actually	uses	R1C1-style	formulas	behind	the	scenes.	Excel	shows
addresses	and	formulas	in	A1	style	merely	because	it	needs	to	adhere	to	the
standard	made	popular	by	VisiCalc	and	Lotus.

If	you	switch	the	worksheet	in	Figure	5-4	to	use	R1C1	notation,	you	can	see
that	the	“different”	formulas	in	D4:D9	are	all	actually	identical	formulas	in
R1C1	notation.	The	same	is	true	of	F4:F9	and	G4:G9.

Use	the	Options	dialog	box	to	change	the	sample	worksheet	to	R1C1-style
addresses.	If	you	examine	the	formulas	in	Figure	5-5,	you	see	that	in	R1C1
language,	every	formula	in	column	4	is	identical.	Given	that	Excel	is	storing	the
formulas	in	R1C1	style,	copying	them,	and	then	merely	translating	to	A1	style
for	us	to	understand,	it	is	no	longer	that	amazing	that	Excel	can	easily
manipulate	A1-style	formulas	as	it	does.

FIGURE	5-5	The	same	formulas	as	in	Figure	5-4	are	shown	in	R1C1	style.	Note	that	every	formula
in	column	4	is	the	same,	and	every	formula	in	column	6	is	the	same.

This	is	one	of	the	reasons	R1C1-style	formulas	are	more	efficient	than	A1-
style	formulas	in	VBA.	When	you	have	the	same	formula	being	entered	in	an
entire	range,	it	is	less	confusing.

Case	study:	Entering	A1	versus	R1C1	in	VBA
Think	about	how	you	would	set	up	this	spreadsheet	in	the	Excel	interface.
First,	you	enter	a	formula	in	cells	D4,	F4,	and	G4.	Next,	you	copy	these
cells	and	paste	them	the	rest	of	the	way	down	the	column.	By	using	R1C1-
style	formulas,	you	can	enter	the	same	formula	in	the	entire	column	at	once.

The	equivalent	code	in	R1C1	style	allows	the	formulas	to	be	entered	for	the
entire	column	in	a	single	statement.	Remember,	the	advantage	of	R1C1-
style	formulas	is	that	all	the	formulas	in	Columns	D	and	F,	and	most	of	G,
are	identical:

Click	here	to	view	code	image
Sub	R1C1Style()

'	Locate	the	FinalRow

FinalRow	=	Cells(Rows.Count,	2).End(xlUp).Row

'	Enter	the	first	formula

Range("D4:D"	&	FinalRow).FormulaR1C1	=

"=RC[-1]*RC[-2]"

Range("F4:F"	&	FinalRow).FormulaR1C1	=	_

"=IF(RC[-1],ROUND(RC[-2]*R1C2,2),0)"

Range("G4:G"	&	FinalRow).FormulaR1C1	=

"=RC[-1]+RC[-3]"

'	Enter	the	Total	Row

Cells(FinalRow	+	1,	1).Value	=	"Total"

Cells(FinalRow	+	1,	6).FormulaR1C1	=

"=SUM(R4C:R[-1]C)"

End	Sub

Note	It	seems	counterintuitive,	but	when	you	specify	an	A1-style
formula,	Microsoft	internally	converts	the	formula	to	R1C1	and
then	enters	that	formula	in	the	entire	range.	Thus,	you	can	actually

add	the	“same”	A1-style	formula	to	an	entire	range	by	using	a	single	line	of
code:

Click	here	to	view	code	image

Range("D4:D"	&	FinalRow).Formula	=	"=B4*C4"

Note	Although	you	are	asking	for	the	formula	=B4*C4	to	be	entered
in	D4:D1000,	Excel	enters	this	formula	in	row	4	and	appropriately

adjusts	the	formula	for	the	additional	rows.

Understanding	the	R1C1	reference	style

An	R1C1-style	reference	includes	the	letter	R	to	refer	to	row	and	the	letter	C	to
refer	to	column.	Because	the	most	common	reference	in	a	formula	is	a	relative
reference,	let’s	first	look	at	relative	references	in	R1C1	style.

Using	R1C1	with	relative	references

Imagine	that	you	are	entering	a	formula	in	a	cell.	To	point	to	a	cell	in	a	formula,
you	use	the	letters	R	and	C.	After	each	letter,	enter	the	number	of	rows	or
columns	in	square	brackets.

The	following	list	explains	the	“rules”	for	using	R1C1	relative	references:

For	columns,	a	positive	number	means	to	move	to	the	right	a	certain
number	of	columns,	and	a	negative	number	means	to	move	to	the	left	a
certain	number	of	columns.	For	example,	from	cell	E5,	use	RC[1]	to	refer	to
F5	and	RC[-1]	to	refer	to	D5.

For	rows,	a	positive	number	means	to	move	down	the	spreadsheet	a	certain
number	of	rows.	A	negative	number	means	to	move	toward	the	top	of	the
spreadsheet	a	certain	number	of	rows.	For	example,	from	cell	E5,	use	R[1]C
to	refer	to	E6	and	use	cell	R[-1]C	to	refer	to	E4.

If	you	leave	off	the	number	for	either	the	R	or	the	C,	it	means	that	you	are
pointing	to	a	cell	in	the	same	row	or	column	as	the	cell	with	the	formula.
For	example,	the	R	in	RC[3]	means	that	you	are	pointing	to	the	current	row.

If	you	enter	=R[-1]C[-1]	in	cell	E5,	you	are	referring	to	a	cell	one	row	up
and	one	column	to	the	left:	cell	D4.

If	you	enter	=RC[1]	in	cell	E5,	you	are	referring	to	a	cell	in	the	same	row
but	one	column	to	the	right:	cell	F5.

If	you	enter	=RC	in	cell	E5,	you	are	referring	to	a	cell	in	the	same	row	and
column,	which	is	cell	E5	itself.	You	would	generally	not	do	this	because	it
would	create	a	circular	reference.

Figure	5-6	shows	how	you	would	enter	a	reference	in	cell	E5	to	point	to

various	cells	around	E5.

FIGURE	5-6	Here	are	various	relative	references.	These	would	be	entered	in	cell	E5	to	describe
each	cell	around	E5.

You	can	use	R1C1	style	to	refer	to	a	range	of	cells.	If	you	want	to	add	up	the
12	cells	to	the	left	of	the	current	cell,	you	use	this	formula:

=SUM(RC[-12]:RC[-1])

Using	R1C1	with	absolute	references

An	absolute	reference	is	a	reference	in	which	the	row	and	column	remain	fixed
when	the	formula	is	copied	to	a	new	location.	In	A1-style	notation,	Excel	uses	a
$	before	the	row	number	or	column	letter	to	keep	that	row	or	column	absolute	as
the	formula	is	copied.

To	always	refer	to	an	absolute	row	or	column	number,	just	leave	off	the
square	brackets.	This	reference	refers	to	cell	B3,	no	matter	where	it	is	entered:

=R3C2

Using	R1C1	with	mixed	references

A	mixed	reference	is	a	reference	in	which	the	row	is	fixed	and	the	column	is
allowed	to	be	relative	or	in	which	the	column	is	fixed	and	the	row	is	allowed	to
be	relative.	This	is	useful	in	many	situations.

Imagine	that	you	have	written	a	macro	to	import	Invoice.txt	into	Excel.
Using	.End(xlUp),	you	find	where	the	total	row	should	go.	As	you	are	entering
totals,	you	know	that	you	want	to	sum	from	the	row	above	the	formula	up	to	row

2.	The	following	code	would	handle	that:

Click	here	to	view	code	image
Sub	MixedReference()

TotalRow	=	Cells(Rows.Count,	1).End(xlUp).Row	+	1

Cells(TotalRow,	1).Value	=	"Total"

Cells(TotalRow,	5).Resize(1,	3).FormulaR1C1	=

"=SUM(R2C:R[-1]C)"

End	Sub

In	this	code,	the	reference	R2C:R[-1]C	indicates	that	the	formula	should	add
from	row	2	in	the	same	column	to	the	row	just	above	the	formula	in	the	current
column.	Do	you	see	the	advantage	to	using	R1C1	formulas	in	this	case?	You	can
use	a	single	R1C1	formula	with	a	mixed	reference	to	easily	enter	a	formula	to
handle	an	indeterminate	number	of	rows	of	data	(see	Figure	5-7).

FIGURE	5-7	After	the	macro	has	run,	the	formulas	in	columns	5:7	of	the	total	row	will	have	a
reference	to	a	range	that	is	locked	to	row	2,	but	all	other	aspects	are	relative.

Referring	to	entire	columns	or	rows	with	R1C1	style

You	will	occasionally	write	a	formula	that	refers	to	an	entire	column.	For
example,	you	might	want	to	know	the	maximum	value	in	column	G.	If	you	don’t
know	how	many	rows	you	will	have	in	G,	you	can	write	=MAX($G:$G)	in	A1
style	or	=MAX(C7)	in	R1C1	style.	To	find	the	minimum	value	in	row	1,	use
=MIN($1:$1)	in	A1	style	or	=MIN(R1)	in	R1C1	style.	You	can	use	relative
reference	for	either	rows	or	columns.	To	find	the	average	of	the	row	above	the
current	cell,	use	=AVERAGE(R[-1]).

Replacing	many	A1	formulas	with	a	single	R1C1	formula

When	you	get	used	to	R1C1-style	formulas,	they	actually	seem	a	lot	more
intuitive	to	build.	One	classic	example	to	illustrate	R1C1-style	formulas	is
building	a	multiplication	table.	It	is	easy	to	build	a	multiplication	table	in	Excel
using	a	single	mixed-reference	formula.

Building	the	table

Enter	the	numbers	1	through	12	going	across	B1:M1.	Copy	and	transpose	these
so	that	the	same	numbers	are	going	down	A2:A13.	Now	the	challenge	is	to	build
a	single	formula	that	works	in	all	cells	of	B2:M13	and	that	shows	the
multiplication	of	the	number	in	row	1	by	the	number	in	column	1.	Using	A1-
style	formulas,	you	must	press	the	F4	key	five	times	to	get	the	dollar	signs	in	the
proper	locations.	The	following	is	a	far	simpler	formula	in	R1C1	style:

Click	here	to	view	code	image
Sub	MultiplicationTable()

'	Build	a	multiplication	table	using	a	single

formula

Range("B1:M1").Value	=	Array(1,	2,	3,	4,	5,	6,	7,

8,	9,	10,	11,	12)

Range("B1:M1").Font.Bold	=	True

Range("B1:M1").Copy

Range("A2:A13").PasteSpecial	Transpose:=True

Range("B2:M13").FormulaR1C1	=	"=RC1*R1C"

Cells.EntireColumn.AutoFit

End	Sub

The	R1C1-style	reference	=RC1*R1C	could	not	be	simpler.	In	English,	it	is
saying,	“Take	this	row’s	column	1	and	multiply	it	by	row	1	of	this	column.”	It
works	perfectly	to	build	the	multiplication	table	shown	in	Figure	5-8.

FIGURE	5-8	The	macro	creates	a	multiplication	table.	The	formula	in	B2	uses	two	mixed
references:	=$A2*B$1.

Caution	After	running	the	macro	and	producing	the
multiplication	table	shown	in	Figure	5-8,	note	that	Excel	still	has
the	copied	range	from	line	2	of	the	macro	as	the	active	Clipboard

item.	If	the	user	of	this	macro	selects	a	cell	and	presses	Enter,	the	contents
of	those	cells	copy	to	the	new	location.	However,	this	is	generally	not
desirable.	To	get	Excel	out	of	Cut/Copy	mode,	add	this	line	of	code	before
your	program	ends:

Application.CutCopyMode	=	False

An	interesting	twist

Try	this	experiment:	Move	the	cell	pointer	to	F6.	Turn	on	macro	recording	using
the	Record	Macro	button	on	the	Developer	tab.	Click	the	Use	Relative	Reference
button	on	the	Developer	tab.	Enter	the	formula	=A1	and	press	Ctrl+Enter	to	stay
in	F6.	Click	the	Stop	Recording	button	on	the	floating	toolbar.	You	get	this
single-line	macro,	which	enters	a	formula	that	points	to	a	cell	five	rows	up	and
five	columns	to	the	left:

Click	here	to	view	code	image

Sub	Macro1()

	ActiveCell.FormulaR1C1	=	"=R[-5]C[-5]"

End	Sub

Now,	move	the	cell	pointer	to	cell	A1	and	run	the	macro	that	you	just
recorded.	You	might	think	that	pointing	to	a	cell	five	rows	above	A1	would	lead
to	the	ubiquitous	Run	Time	Error	1004.	But	it	doesn’t!	When	you	run	the	macro,
the	formula	in	cell	A1	is	pointing	to	=XFA1048572,	as	shown	in	Figure	5-9,
meaning	that	R1C1-style	formulas	actually	wrap	from	the	left	side	of	the
workbook	to	the	right	side.	I	cannot	think	of	any	instance	in	which	this	would
actually	be	useful,	but	for	those	of	you	who	rely	on	Excel	to	error	out	when	you
ask	for	something	that	does	not	make	sense,	be	aware	that	your	macro	will
happily	provide	a	result	that’s	probably	not	the	one	that	you	expected!

FIGURE	5-9	The	formula	to	point	to	five	rows	above	B1	wraps	around	to	the	bottom	of	the
worksheet.

Remembering	column	numbers	associated	with	column	letters

I	like	R1C1-style	formulas	enough	to	use	them	regularly	in	VBA.	I	don’t	like
them	enough	to	change	my	Excel	interface	over	to	R1C1-style	numbers.	So	I
routinely	have	to	know	that	the	cell	known	as	U21,	for	example,	is	really
R21C21.

Knowing	that	U	is	the	twenty-first	letter	of	the	alphabet	is	not	something	that
comes	naturally.	We	have	26	letters,	so	A	is	1	and	Z	is	26.	M	is	the	halfway	point
of	the	alphabet	and	is	column	13.	The	rest	of	the	letters	are	not	particularly
intuitive.	A	quick	way	to	get	the	column	number	for	any	column	is	to	enter
=COLUMN()	in	any	empty	cell	in	that	column.	The	result	tells	you	that,	for
example,	DGX	is	column	2910	(see	Figure	5-10).

FIGURE	5-10	Use	the	temporary	formula	=COLUMN()	to	learn	the	column	number	of	any	cell.

You	could	also	select	any	cell	in	DGX,	switch	to	VBA,	press	Ctrl+G	for	the
Immediate	window,	type	?	ActiveCell.Column,	and	press	Enter.

Using	R1C1	formulas	with	array	formulas
Array	formulas	are	powerful	“superformulas.”	At	MrExcel.com,	we	call	these
CSE	formulas	because	you	have	to	use	Ctrl+Shift+Enter	to	enter	them.	If	you	are
not	familiar	with	array	formulas,	you	probably	think	they	look	as	though	they
should	not	work.

The	array	formula	in	F4	in	Figure	5-11	is	a	formula	that	does	more	than
19,000	multiplications	and	then	sums	the	result.	It	looks	as	though	this	would	be
an	illegal	formula.	In	fact,	if	you	happen	to	enter	it	without	using
Ctrl+Shift+Enter,	you	get	the	expected	#VALUE!	error.	However,	if	you	enter	it
with	Ctrl+Shift+Enter,	the	formula	miraculously	pops	out	an	array	of	19,000
values	and	evaluates	each	one.

FIGURE	5-11	The	array	formula	in	F4	does	19,000	calculations.	You	must	use	Ctrl+Shift+Enter	to
enter	this	formula.

Note	You	do	not	type	the	curly	braces	when	entering	the	formula.
Excel	adds	them	for	you	when	you	press	Ctrl+Shift+Enter.

The	code	to	enter	these	formulas	follows:

Click	here	to	view	code	image

Sub	EnterArrayFormulas()

Cells(4,	6).FormulaArray	=

"=SUM((WEEKDAY(ROW(INDIRECT("	&	_

"R[-3]C[-1]&	"":""&R[-2]C[-1])),3)=6)*

(DAY(ROW(INDIRECT("	&	_

"(R[-3]C[-1]&"":""&R[-2]C[-1])))=13))"

	End	Sub

Note	that	although	the	formulas	appear	in	the	user	interface	in	A1-style
notation,	you	must	use	R1C1-style	notation	for	entering	array	formulas.

Tip	Use	this	trick	to	quickly	find	the	R1C1	formula:	Enter	a	regular
A1-style	formula	or	an	array	formula	in	any	cell	in	Excel.	Select
that	cell.	Switch	to	the	VB	Editor.	Press	Ctrl+G	to	display	the

Immediate	window.	Type	Print	ActiveCell.FormulaR1C1	and	press	Enter.
Excel	converts	the	formula	in	the	formula	bar	to	an	R1C1-style	formula.
You	also	can	use	a	question	mark	instead	of	Print.

Next	steps

Read	Chapter	6,	“Creating	and	manipulating	names	in	VBA,”	to	learn	how	to
use	named	ranges	in	macros.

CHAPTER	6
Creating	and	manipulating	names	in
VBA

In	this	chapter,	you	will:

Learn	the	difference	between	global	and	local	names

Learn	how	to	add	and	delete	names

Include	information	about	a	name	by	adding	a	comment

Learn	about	the	different	types	of	names

Make	names	invisible

Check	for	the	existence	of	a	name

You’ve	probably	named	ranges	in	a	worksheet	by	highlighting	a	range	and
typing	a	name	in	the	Name	box	to	the	left	of	the	formula	bar.	You	also	might
have	created	more	complicated	names	containing	formulas.	For	example,
perhaps	you	created	a	name	with	a	formula	that	finds	the	last	row	in	a	column.
The	ability	to	name	a	range	makes	it	much	easier	to	write	formulas.

The	ability	to	create	and	manipulate	names	is	also	available	in	VBA,	which
provides	the	same	benefits	as	naming	ranges	in	a	worksheet.	For	example,	you
can	store	a	new	range	in	a	name.

This	chapter	explains	different	types	of	names	and	the	various	ways	you	can
use	them.

Global	versus	local	names
Names	that	are	global	are	available	anywhere	in	a	workbook.	Names	that	are
local	are	available	only	on	a	specific	worksheet.	With	local	names,	you	can	have
multiple	references	in	the	workbook	with	the	same	name.	Global	names	must	be
unique	to	the	workbook.

The	Name	Manager	dialog	box	(accessed	via	the	Formulas	tab)	lists	all	the
visible	names	in	a	workbook,	even	a	name	that	has	been	assigned	to	both	the
global	and	the	local	levels.	The	Scope	column	lists	the	scope	of	the	name,
whether	it	is	the	workbook	or	a	specific	sheet,	such	as	Sheet1.

For	example,	in	Figure	6-1,	the	name	Apples	is	assigned	to	Sheet1	and	also
to	the	workbook.

FIGURE	6-1	The	Name	Manager	lists	all	local	and	global	names.

Adding	names
If	you	record	the	creation	of	a	named	range	and	then	view	the	code,	you	see
something	like	this:

Click	here	to	view	code	image
ActiveWorkbook.Names.Add	Name:="Fruits",

RefersToR1C1:="=Sheet2!R1C1:R6C6"

This	creates	a	global	name	Fruits,	which	includes	the	range	A1:F6
(R1C1:R6C6).	The	formula	is	enclosed	in	quotes,	and	the	equal	sign	in	the
formula	must	be	included.	In	addition,	the	range	reference	must	be	absolute	(that
is,	it	must	include	the	$	sign)	or	in	R1C1	notation.	If	the	sheet	on	which	the
name	is	created	is	the	active	sheet,	the	sheet	reference	does	not	have	to	be
included.	However,	including	the	sheet	reference	can	make	the	code	easier	to
understand.

To	create	a	local	name,	include	the	sheet	name	with	the	Name	parameter:

Click	here	to	view	code	image
ActiveWorkbook.Names.Add	Name:="Sheet2!Fruits",	_

RefersToR1C1:="=Sheet2!R1C1:R6C6"

Alternatively,	specify	that	the	Names	collection	belongs	to	a	worksheet:

Click	here	to	view	code	image
Worksheets("Sheet2").Names.Add	Name:="Fruits",	_

RefersToR1C1:="=Sheet2!R1C1:R6C6"

Note	If	a	reference	is	not	absolute,	the	name	might	be	created,	but
it	will	not	point	to	the	correct	range.	For	example,	if	you	run	the
following	line	of	code,	the	name	is	created	in	the	workbook:

Click	here	to	view	code	image
ActiveWorkbook.Names.Add	Name:="Citrus",	_

RefersTo:="=Sheet1!A1"

However,	as	you	can	see	in	Figure	6-2,	the	name	hasn’t	actually	been
assigned	to	the	range.	The	reference	will	change	depending	on	which	cell	is
the	active	cell	when	the	name	is	viewed.

FIGURE	6-2	Despite	what	was	coded,	because	absolute	referencing	was	not	used,	Citrus
refers	to	the	active	cell.

The	preceding	example	shows	what	you	would	get	from	the	macro	recorder.
There	is	simpler	code	to	get	the	same	result:
Range("A1:F6").Name	=	"Fruits"

Alternatively,	for	a	local	variable	only,	you	can	use	this:

Click	here	to	view	code	image
Range("A1:F6").Name	=	"Sheet1!Fruits"

When	creating	names	with	these	methods,	absolute	referencing	is	not
required.

Note	You	can	use	table	names	like	defined	names,	but	you	don’t
create	them	the	same	way.	See	the	“Tables”	section	later	in	this
chapter	for	more	information	about	creating	table	names.

Although	this	method	is	much	easier	and	quicker	than	what	the	macro
recorder	creates,	it’s	limited	in	that	it	works	only	for	ranges.	Formulas,	strings,
numbers,	and	arrays	require	the	use	of	the	Add	method.

The	name	you	create	becomes	an	object	when	referenced	like	this:
Names("Fruits")

The	object	has	many	properties,	including	Name,	which	you	can	use	to
rename	the	existing	name,	like	this:
Names("Fruits").Name	=	"Produce"

Fruits	no	longer	exists;	Produce	is	now	the	name	of	the	range.

When	you	are	renaming	names	in	which	a	local	reference	and	a	global
reference	both	carry	the	same	name,	the	previous	line	renames	the	local
reference	first.

Deleting	names

Use	the	Delete	method	to	delete	a	name:
Names("ProduceNum").Delete

An	error	occurs	if	you	attempt	to	delete	a	name	that	does	not	exist.

Note	If	both	local	and	global	references	with	the	same	name	exist,
be	more	specific	about	which	name	is	being	deleted	because	the
local	reference	is	deleted	first.

Adding	comments

You	can	add	comments	about	names,	such	as	why	a	name	was	created	or	where
it	is	used.	To	insert	a	comment	for	the	local	name	LocalOffice,	do	this:

Click	here	to	view	code	image
ActiveWorkbook.Worksheets("Sheet7").Names("LocalOffice").Comment

=	_

"Holds	the	name	of	the	current	office"

The	comments	appear	in	a	column	in	the	Name	Manager,	as	shown	in	Figure
6-3.

Warning	The	name	must	exist	before	a	comment	can	be	added	to
it.

FIGURE	6-3	You	can	add	comments	about	names	to	help	remember	their	purpose.

Types	of	names
The	most	common	use	of	names	is	for	storing	ranges;	however,	names	can	store
more	than	just	ranges.	After	all,	names	store	information.	Names	make	it	simple
to	remember	and	use	potentially	complex	or	large	amounts	of	information.	In
addition,	unlike	variables,	names	remember	what	they	store	beyond	the	life	of
the	program.

You	know	how	to	create	range	names,	but	you	can	also	assign	names	to
name	formulas,	strings,	numbers,	and	arrays,	as	described	in	the	following
pages.

Formulas

The	syntax	for	storing	a	formula	in	a	name	is	the	same	as	for	a	range	because	the
range	is	essentially	a	formula.	The	following	code	allows	for	a	dynamic	named
column	with	the	item	listing	starting	in	A2:

Click	here	to	view	code	image
Names.Add	Name:="ProductList",	_

RefersTo:="=OFFSET(Sheet2!A2,0,0,COUNTA(Sheet2!$A:$A))"

This	code	is	useful	for	creating	dynamic	data	sets	or	for	referencing	any
dynamic	listing	on	which	calculations	may	be	performed,	as	shown	in	Figure	6-
4.

FIGURE	6-4	You	can	assign	names	to	dynamic	formulas.

Strings

When	using	names	to	hold	strings	such	as	the	name	of	the	current	fruit	producer,
enclose	the	string	value	in	quotation	marks.	Because	no	formula	is	involved,	an
equal	sign	is	not	needed.	If	you	were	to	include	an	equal	sign,	Excel	would	treat
the	value	as	a	formula.	Let	Excel	include	the	equal	sign	shown	in	the	Name
Manager:

Click	here	to	view	code	image
Names.Add	Name:	=	"Company",	RefersTo:="CompanyA"

Figure	6-5	shows	how	the	coded	name	appears	in	the	Name	Manager
window.

FIGURE	6-5	You	can	assign	a	name	to	a	string	value.

Tip	Because	names	do	not	lose	their	references	between	sessions,
using	names	is	a	great	way	to	store	values	as	opposed	to	storing
values	in	cells	from	which	the	information	would	have	to	be

retrieved.	For	example,	to	track	the	leading	producer	between	seasons,
create	the	name	Leader.	If	the	new	season’s	leading	producer	matches	the
name	reference,	you	could	create	a	special	report	comparing	the	seasons.
The	other	option	is	to	create	a	special	sheet	to	track	the	values	between
sessions	and	then	retrieve	the	values	when	needed.	With	names,	the	values
are	readily	available.

The	following	procedure	shows	how	cells	in	a	variable	sheet	are	used	to
retain	information	between	sessions:

Click	here	to	view	code	image
Sub	NoNames(ByRef	CurrentTop	As	String)

TopSeller	=	Worksheets("Variables").Range("A1").Value

If	CurrentTop	=	TopSeller	Then

MsgBox	"Top	Producer	is	"	&	TopSeller	&	"	again."

Else

MsgBox	"New	Top	Producer	is	"	&	CurrentTop

End	If

End	Sub

The	following	procedure	shows	how	names	are	used	to	store	information
between	sessions:

Click	here	to	view	code	image
Sub	WithNames()

If	Evaluate("Current")	=	Evaluate("Previous")	Then

MsgBox	"Top	Producer	is	"	&	Evaluate("Previous")	&

"	again."

Else

MsgBox	"New	Top	Producer	is	"	&

Evaluate("Current")

End	If

End	Sub

If	Current	and	Previous	are	previously	declared	names,	you	access	them
directly	rather	than	create	variables	in	which	to	pass	them.	Note	the	use	of	the
Evaluate	method	to	extract	the	values	in	names.	The	string	being	stored	cannot
have	more	than	255	characters.

Numbers

You	can	use	names	to	store	numbers	between	sessions.	Here’s	an	example:

Click	here	to	view	code	image
NumofSales	=	5123

Names.Add	Name:="TotalSales",	RefersTo:=NumofSales

Alternatively,	you	can	use	this:

Click	here	to	view	code	image
Names.Add	Name:="TotalSales",	RefersTo:=5123

Notice	the	lack	of	quotation	marks	and	an	equal	sign	in	the	RefersTo
parameter.	Using	quotation	marks	changes	the	number	to	a	string.	With	the
addition	of	an	equal	sign	in	the	quotation	marks,	the	number	changes	to	a
formula.

To	retrieve	the	value	in	the	name,	you	have	a	longer	and	a	shorter	option:

Click	here	to	view	code	image
NumofSales	=	Names("TotalSales").Value

or	this:
NumofSales	=	[TotalSales]

Note	Keep	in	mind	that	someone	reading	your	code	might	not	be
familiar	with	the	use	of	the	Evaluate	method	(square	brackets).	If
you	know	that	someone	else	will	be	reading	your	code,	avoid	the

use	of	the	Evaluate	method	or	add	a	comment	explaining	it.

Tables

Excel	tables	share	some	of	the	properties	of	defined	names,	but	they	also	have
their	own	unique	methods.	Unlike	with	the	defined	names	you	are	used	to
dealing	with,	you	cannot	manually	create	tables.	In	other	words,	you	cannot
select	a	range	on	a	sheet	and	type	a	name	in	the	Name	field.	However,	you	can
manually	create	them	via	VBA.

Tables	are	not	created	using	the	same	method	as	defined	names.	Instead	of
Range(xx).Add	or	Names.Add,	use	ListObjects.Add.

To	create	a	table	from	cells	A1:C26,	and	assuming	that	the	data	table	has
column	headers,	as	shown	in	Figure	6-6,	use	this:

Click	here	to	view	code	image
ActiveSheet.ListObjects.Add(xlSrcRange,

Range("A1:C26"),	,	xlYes).Name	=	"Table1"

FIGURE	6-6	You	can	turn	a	normal	table	into	an	Excel	table	by	assigning	a	name	to	it	using	VBA.

xlSrcRange	(the	SourceType)	tells	Excel	that	the	source	of	the	data	is	an
Excel	range.	You	then	need	to	specify	the	range	(the	source)	of	the	table.	If	you
have	headers	in	the	table,	include	that	row	when	indicating	the	range.	The	next
argument,	which	is	not	used	in	the	preceding	example,	is	LinkSource,	a	Boolean
indicating	whether	there	is	an	external	data	source	that	is	not	used	if	SourceType
is	xlSrcRange.	xlYes	lets	Excel	know	that	the	data	table	has	column	headers;
otherwise,	Excel	automatically	generates	them.	The	final	argument,	which	is	not
shown	in	the	preceding	example,	is	the	destination.	This	is	used	when
SourceType	is	xlSrcExternal,	indicating	the	upper-left	cell	where	the	table	will
begin.

Using	arrays	in	names

A	name	can	hold	the	data	stored	in	an	array.	The	array	size	is	limited	by
available	memory.	See	Chapter	8,	“Arrays,”	for	more	information	about	arrays.

An	array	reference	is	stored	in	a	name	the	same	way	as	a	numeric	reference:

Click	here	to	view	code	image
Sub	NamedArray()

Dim	myArray(10,	5)

Dim	i	As	Integer,	j	As	Integer

'The	following	For	loops	fill	the	array	myArray

For	i	=	0	To	10	'by	default	arrays	start	at	0

For	j	=	0	To	5

myArray(i,	j)	=	i	+	j

Next	j

Next	i

'The	following	line	takes	our	array	and	gives	it	a

name

Names.Add	Name:="FirstArray",	RefersTo:=myArray

End	Sub

Because	the	name	references	a	variable,	no	quotation	marks	or	equal	signs
are	required.

Reserved	names

Excel	uses	local	names	of	its	own	to	keep	track	of	information.	These	local
names	are	considered	reserved,	and	if	you	use	them	for	your	own	references,
they	might	cause	problems.

Highlight	an	area	on	a	sheet.	Then	from	the	Page	Layout	tab,	select	Print
Area,	Set	Print	Area.

As	shown	in	Figure	6-7,	a	Print_Area	listing	is	in	the	Name	field.	Deselect
the	area	and	look	again	in	the	Name	field	drop-down	menu.	The	name	is	still
listed	there.	Select	it,	and	the	print	area	that	was	previously	set	is	now
highlighted.	If	you	save,	close,	and	reopen	the	workbook,	Print_Area	is	still	set
to	the	same	range.	Print_Area	is	a	name	reserved	by	Excel	for	its	own	use.

FIGURE	6-7	Excel	creates	its	own	names.

Note	Each	sheet	has	its	own	print	area.	In	addition,	setting	a	new
print	area	on	a	sheet	that	has	an	existing	print	area	overwrites	the
original	print-area	name.

Fortunately,	Excel	does	not	have	a	large	list	of	reserved	names:
Criteria

Database

Extract

Print_Area

Print_Titles

Criteria	and	Extract	are	used	when	Advanced	Filter	(on	the	Data	tab,
select	Advanced	from	the	Sort	&	Filter	group)	is	configured	to	extract	the	results
of	the	filter	to	a	new	location.

Database	is	no	longer	required	in	Excel.	However,	some	features,	such	as
Data	Form,	still	recognize	it.	Legacy	versions	of	Excel	used	it	to	identify	the
data	you	wanted	to	manipulate	in	certain	functions.

Print_Area	is	used	when	a	print	area	is	set	(from	the	Page	Layout	tab,	select
Print	Area,	Set	Print	Area)	or	when	Page	Setup	options	that	designate	the	print
area	(from	the	Page	Layout	tab,	Scale)	are	changed.

Print_Titles	is	used	when	print	titles	are	set	(select	Page	Layout,	Print
Titles).

You	should	avoid	using	these	reserved	names,	and	you	should	use	variations
on	them	with	caution.	For	example,	if	you	create	the	name	PrintTitles,	you	might
accidentally	code	this:

Click	here	to	view	code	image
Worksheets("Sheet4").Names("Print_Titles").Delete

If	you	do	this,	you	delete	the	Excel	name	rather	than	your	custom	name.

Hiding	names

Names	are	incredibly	useful,	but	you	don’t	necessarily	want	to	see	all	the	names
you	have	created.	Like	many	other	objects,	names	have	a	Visible	property.	To
hide	a	name,	set	the	Visible	property	to	False.	To	unhide	a	name,	set	the
Visible	property	to	True:

Click	here	to	view	code	image

Names.Add	Name:="ProduceNum",	RefersTo:="=A1",

Visible:=False

Tip	If	a	user	creates	a	Name	object	with	the	same	name	as	the	hidden
one,	the	hidden	name	is	overwritten	without	any	warning	message.
To	prevent	this,	protect	the	worksheet.

Checking	for	the	existence	of	a	name

You	can	use	the	following	function	to	check	for	the	existence	of	a	user-defined
name,	even	a	hidden	one:

Click	here	to	view	code	image
Function	NameExists(ByVal	FindName	As	String,	_

Optional	TargetBook	As	Workbook)	As	Boolean

If	TargetBook	Is	Nothing	Then

If	ActiveWorkbook	Is	Nothing	Then

NameExists	=	False

Exit	Function

End	If

Set	TargetBook	=	ActiveWorkbook

End	If

On	Error	Resume	Next

NameExists	=

CBool(Len(TargetBook.Names(FindName).Name)	<>	0)

On	Error	GoTo	0

End	Function

Keep	in	mind	that	this	function	does	not	return	the	existence	of	Excel’s
reserved	names.	Even	so,	this	is	a	handy	addition	to	your	arsenal	of
“programmers’	useful	code.”	(See	Chapter	14,	“Sample	user-defined	functions,”
for	more	information	on	implementing	custom	functions.)

The	preceding	code	is	also	an	example	of	how	to	use	errors	to	your
advantage.	If	the	name	for	which	you	are	searching	does	not	exist,	an	error
message	is	generated.	By	adding	the	On	Error	Resume	Next	line,	you	force	the
code	to	continue.	Use	On	Error	Goto	0	to	reset	error	trapping;	otherwise,	other
errors	may	be	skipped.	The	use	of	CBool	ensures	that	a	Boolean	is	the	value
returned	to	the	function.

Using	named	ranges	for	VLOOKUP
Say	that	every	day	you	import	a	file	of	sales	data	from	a	chain	of	retail
stores.	The	file	includes	the	store	number	but	not	the	store	name.	You
obviously	don’t	want	to	have	to	type	store	names	every	day,	but	you	would
like	to	have	store	names	appear	on	all	the	reports	that	you	run.

You	have	a	table	(listobject)	of	store	numbers	and	names	on	a	hidden
worksheet.	You	want	to	use	VBA	to	help	maintain	the	list	of	stores	each	day
and	then	use	the	VLOOKUP	function	to	get	store	names	from	the	list	into	your
data	set.

The	basic	steps	are	listed	here:

1.	 Import	the	data	file.

2.	 Find	all	the	unique	store	numbers	in	today’s	file.

3.	 See	whether	any	of	these	store	numbers	are	not	in	your	current	table	of
store	names.

4.	 For	any	stores	that	are	new,	add	them	to	the	table,	and	ask	the	user	for
a	store	name.

5.	 The	StoreList	table	is	larger,	but	because	tables	automatically	size
themselves,	you	don’t	need	to	do	anything.

6.	 Use	a	VLOOKUP	function	in	the	original	data	set	to	add	a	store	name	to
all	records.	This	VLOOKUP	references	the	named	range	of	the	newly
expanded	Store	Names	data	set.

The	following	code	handles	these	six	steps:

Click	here	to	view	code	image
Sub	ImportData()

'This	routine	imports	sales.csv	to	the	data	sheet

'Check	to	see	whether	any	stores	in	column	A	are

new

'If	any	are	new,	then	add	them	to	the	StoreList

table

Dim	WSD	As	Worksheet,	WSM	As	Worksheet

Dim	WB	As	Workbook

Dim	tblStores	As	ListObject

Dim	NewRow	As	ListRow

Set	WB	=	ThisWorkbook

'Data	is	stored	on	the	Data	worksheet

Set	WSD	=	WB.Worksheets("Data")

'StoreList	is	stored	on	a	menu	worksheet

Set	WSM	=	WB.Worksheets("Menu")

Set	tblStores	=	WSM.ListObjects("tblStoreLookup")

'Open	the	file.	This	makes	the	csv	file	active

Workbooks.Open	Filename:="C:\Sales.csv"

'Copy	the	data	to	WSD	and	close

ActiveWorkbook.Range("A1").CurrentRegion.Copy	_

Destination:=WSD.Range("A1")

ActiveWorkbook.Close	SaveChanges:=False

'Create	a	list	of	unique	stores	from	column	A	and

place	in	Z

FinalRow	=	WSD.Cells(WSD.Rows.Count,

1).End(xlUp).Row

WSD.Range("A1").Resize(FinalRow,	1).AdvancedFilter

_

	Action:=xlFilterCopy,

CopyToRange:=WSD.Range("Z1"),	Unique:=True

'For	all	the	unique	stores,	see	whether	they	are

in	the

'current	store	list

'ISNA	returns	True	for	missing	store	because	the

VLOOKUP	will

'return	an	error

FinalStore	=	WSD.Range("Z"	&

WSD.Rows.Count).End(xlUp).Row

WSD.Range("AA1").Value	=	"There?"

Click	here	to	view	code	image
WSD.Range("AA2:AA"	&	FinalStore).FormulaR1C1	=	_

"=ISNA(VLOOKUP(RC[-1],

tblStoreLookup[#All],1,False))"

'Loop	through	the	list	of	today's	stores.	If	they

are	shown

'	as	missing,	then	add	them	at	the	bottom	of	the

StoreList

For	i	=	2	To	FinalStore

If	WSD.Cells(i,	27).Value	=	True	Then

'get	the	next	available	row	in	the	table

Set	NewRow	=	tblStores.ListRows.Add

ThisStore	=	Cells(i,	26).Value

With	NewRow.Range

.Columns(1)	=	ThisStore

.Columns(2)	=	_

InputBox(Prompt:="Enter	name	of	store	"	_

&	ThisStore,	Title:="New	Store	Found")

End	With

End	If

Next	i

'Delete	the	temporary	list	of	stores	in	Z	&	AA

WSD.Range("Z1:AA"	&	FinalStore).Clear

'Use	VLOOKUP	to	add	StoreName	to	column	B	of	the

data	set

WSD.Range("B1").EntireColumn.Insert

WSD.Range("B1").Value	=	"StoreName"

WSD.Range("B2:B"	&	FinalRow).FormulaR1C1	=	_

	"=VLOOKUP(RC1,	tblStoreLookup[#All],2,False)"

'Change	Formulas	to	Values

WSD.Range("B2:B"	&	FinalRow).Value	=	Range("B2:B"

&	FinalRow).Value

'Fix	columnwidths

WSD.Range("A1").CurrentRegion.EntireColumn.AutoFit

'Release	variables	to	free	system	memory

Set	NewRow	=	Nothing

Set	tblStores	=	Nothing

Set	WB	=	Nothing

Set	WSD	=	Nothing

Set	WSM	=	Nothing

End	Sub

Next	steps

In	Chapter	7,	“Event	programming,”	you	find	out	how	you	can	write	code	to	run
automatically	based	on	a	person’s	actions	such	as	activating	a	sheet	or	selecting
a	cell.	This	is	done	with	events,	which	are	actions	in	Excel	that	you	can	capture
and	use	to	your	advantage.

CHAPTER	7
Event	programming

In	this	chapter,	you	will:

Learn	what	events	are	and	how	to	use	them

Review	the	different	types	of	workbook,	worksheet,	chart,	and
application-level	events

Use	a	sheet	event	to	quickly	enter	military	time	into	a	cell

In	this	book,	you’ve	read	about	workbook	events,	and	you’ve	seen	examples	of
worksheet	events.	An	event	allows	you	to	automatically	trigger	a	procedure	to
run	based	on	something	a	user	or	another	procedure	does	in	Excel.	For	example,
if	a	person	changes	the	contents	of	a	cell,	after	he	or	she	presses	Enter	or	Tab,
you	can	have	code	run	automatically.	The	event	that	triggers	the	code	is	the
changing	of	the	contents	of	the	cell.

Levels	of	events
You	can	find	events	at	the	following	levels:

Application	level—Control	based	on	application	actions,	such	as
Application_NewWorkbook

Workbook	level—Control	based	on	workbook	actions,	such	as
Workbook_Open

Worksheet	level—Control	based	on	worksheet	actions,	such	as
Worksheet_SelectionChange

Chart	sheet	level—Control	based	on	chart	actions,	such	as
Chart_Activate

These	are	the	places	where	you	should	put	different	types	of	events:

Workbook	events	go	into	the	ThisWorkbook	module.

Worksheet	events	go	into	the	module	of	the	sheet	they	affect,	such	as
Sheet1.

Chart	sheet	events	go	into	the	module	of	the	chart	sheet	they	affect,	such	as
Chart1.

Pivot	table	events	go	into	the	module	of	the	sheet	with	the	pivot	table,	or
they	can	go	into	the	ThisWorkbook	module.

Embedded	chart	and	application	events	go	into	class	modules.

The	events	can	still	make	procedure	or	function	calls	outside	their	own
modules.	Therefore,	if	you	want	the	same	action	to	take	place	for	two	different
sheets,	you	don’t	have	to	copy	the	code.	Instead,	place	the	code	in	a	module	and
have	each	sheet	event	call	the	procedure.

This	chapter	explains	different	levels	of	events,	where	to	find	them,	and	how
to	use	the	events.

Note	Userform	and	control	events	are	discussed	in	Chapter	10,
“Userforms:	An	introduction,”	and	Chapter	22,	“Advanced
userform	techniques.”

Using	events

Each	level	consists	of	several	types	of	events,	and	memorizing	the	syntax	of
them	all	would	be	a	feat.	Excel	makes	it	easy	to	view	and	insert	the	available
events	in	their	proper	modules	right	from	the	VB	Editor.

When	a	ThisWorkbook,	Sheet,	Chart	Sheet,	or	Class	module	is	active,	the
corresponding	events	are	available	through	the	Object	and	Procedure	drop-down
menus,	as	shown	in	Figure	7-1.

FIGURE	7-1	The	different	events	are	easy	to	access	from	the	VB	Editor	Object	and	Procedure	drop-
down	menus.

After	an	object	is	selected,	the	Procedure	drop-down	menu	updates	to	list	the
events	available	for	that	object.	Selecting	a	procedure	automatically	places	the
procedure	header	(Private	Sub)	and	footer	(End	Sub)	in	the	editor,	as	shown	in
Figure	7-2.

FIGURE	7-2	The	procedure	header	and	footer	are	automatically	placed	when	you	make	selections
from	the	drop-down	menus.

Event	parameters

Some	events	have	parameters,	such	as	Target	or	Cancel,	that	allow	values	to	be
passed	into	the	procedure.	For	example,	some	procedures	are	triggered	before
the	actual	event,	such	as	BeforeRightClick.	Assigning	True	to	the	Cancel
parameter	prevents	the	default	action	from	taking	place.	In	this	case,	the	shortcut
menu	is	prevented	from	appearing:

Click	here	to	view	code	image
Private	Sub	Worksheet_BeforeRightClick(ByVal	Target	As

Range,	_

Cancel	As	Boolean)

Cancel	=	True

End	Sub

Enabling	events

Some	events	can	trigger	other	events,	including	themselves.	For	example,	the
Worksheet_Change	event	is	triggered	by	a	change	in	a	cell.	If	the	event	is
triggered	and	the	procedure	itself	changes	a	cell,	the	event	gets	triggered	again,
which	changes	a	cell,	triggering	the	event,	and	so	on.	The	procedure	gets	stuck
in	an	endless	loop.

To	prevent	an	endless	loop,	disable	the	events	and	then	re-enable	them	at	the

end	of	the	procedure:

Click	here	to	view	code	image
Private	Sub	Worksheet_Change(ByVal	Target	As	Range)

Application.EnableEvents	=	False

Range("A1").Value	=	Target.Value

Application.EnableEvents	=	True

End	Sub

Tip	To	interrupt	a	macro,	press	Esc	or	Ctrl+Break.	To	restart	it,	use
Run	on	the	toolbar	or	press	F5.

Workbook	events

Table	7-1	lists	event	procedures	that	are	available	at	the	workbook	level.	Some
events,	such	as	Workbook_SheetActivate,	are	sheet	events	that	are	available	at
the	workbook	level.	This	means	you	don’t	have	to	copy	and	paste	the	code	in
each	sheet	in	which	you	want	it	to	run.

Note	Table	7-1	does	not	include	the	sheet	events	that	are	also
available	at	the	sheet	level.	To	learn	more	about	such	events,	such
as	Workbook_SheetChange,	look	up	the	Change	event	in	Table	7-3.

TABLE	7-1	Workbook	events

Event	Name Description
Workbook_Activate Occurs	when	the	workbook	containing	this	event	becomes	the

active	workbook.
Workbook_Deactivate Occurs	when	the	active	workbook	is	switched	from	the	workbook

containing	the	event	to	another	workbook.
Workbook_Open The	default	workbook	event;	occurs	when	a	workbook	is	opened;

no	user	interface	is	required.
Workbook_BeforeSave Occurs	when	the	workbook	is	saved.	SaveAsUI	is	set	to	True	if	the

Save	As	dialog	box	is	to	be	displayed.	Setting	Cancel	to	True
prevents	the	workbook	from	being	saved.

Workbook_AfterSave Occurs	after	the	workbook	is	saved.	Success	returns	True	if	the
file	saved	successfully	and	False	if	the	save	was	not	successful.

Workbook_BeforePrint Occurs	when	any	print	command	is	used,	whether	it	is	in	the
ribbon,	on	the	keyboard,	or	in	a	macro.	Setting	Cancel	to	True
prevents	the	workbook	from	being	printed.

Workbook_BeforeClose Occurs	when	the	user	closes	a	workbook.	Setting	Cancel	to	True
prevents	the	workbook	from	closing.

Workbook_NewSheet Occurs	when	a	new	sheet	is	added	to	the	active	workbook.	Sh	is
the	new	worksheet	or	chart	sheet	object.

Workbook_NewChart Occurs	when	the	user	adds	a	new	chart	to	the	active	workbook.	Ch
is	the	new	chart	object.	The	event	is	not	triggered	if	a	chart	is
moved	from	one	location	to	another,	unless	it	is	moved	between	a
chart	sheet	and	a	chart	object.	In	that	case,	the	event	is	triggered
because	a	new	chart	sheet	or	object	is	being	created.

Workbook_WindowResize Occurs	when	the	user	resizes	the	active	workbook’s	window.	Wn	is
the	window.

Workbook_WindowActivate Occurs	when	the	user	activates	any	workbook	window.	Wn	is	the
window.	Only	activating	the	workbook	window	starts	this	event.

Workbook_WindowDeactivate Occurs	when	the	user	deactivates	any	workbook	window.	Wn	is	the
window.	Only	deactivating	the	workbook	window	starts	this
event.

Workbook_AddInInstall Occurs	when	the	user	installs	the	workbook	as	an	add-in	(by
selecting	File,	Options,	Add-ins).	Double-clicking	an	.xlam	file
(an	add-in)	to	open	it	does	not	activate	the	event.

Workbook_AddInUninstall Occurs	when	the	user	uninstalls	the	workbook	(add-in).	The	add-
in	is	not	automatically	closed.

Workbook_Sync Occurs	when	the	user	synchronizes	the	local	copy	of	a	sheet	in	a
workbook	that	is	part	of	a	Document	Workspace	with	the	copy	on
the	server.	SyncEventType	is	the	status	of	the	synchronization.

Workbook_PivotTableCloseConnectionOccurs	when	a	pivot	table	report	closes	its	connection	to	its	data
source.	Target	is	the	pivot	table	that	has	closed	the	connection.

Workbook_PivotTableOpenConnection Occurs	when	a	pivot	table	report	opens	a	connection	to	its	data
source.	Target	is	the	pivot	table	that	has	opened	the	connection.

Workbook_RowsetComplete Occurs	when	the	user	drills	through	a	record	set	or	calls	on	the
row	set	action	on	an	OLAP	pivot	table.	Description	is	a
description	of	the	event;	Sheet	is	the	name	of	the	sheet	on	which
the	record	set	is	created;	Success	indicates	success	or	failure.

Workbook_BeforeXmlExport Occurs	when	the	user	exports	or	saves	XML	data.	Map	is	the	map
used	to	export	or	save	the	data;	Url	is	the	location	of	the	XML
file;	setting	Cancel	to	True	cancels	the	export	operation.

Workbook_AfterXmlExport Occurs	after	the	user	exports	or	saves	XML	data.	Map	is	the	map
used	to	export	or	save	the	data;	Url	is	the	location	of	the	XML
file;	Result	indicates	success	or	failure.

Workbook_BeforeXmlImport Occurs	when	the	user	imports	or	refreshes	XML	data.	Map	is	the
map	used	to	import	the	data;	Url	is	the	location	of	the	XML	file;
IsRefresh	returns	True	if	the	event	was	triggered	by	refreshing	an
existing	connection	and	False	if	triggered	by	importing	from	a
new	data	source;	setting	Cancel	to	True	cancels	the	import	or
refresh	operation.

Workbook_AfterXmlImport Occurs	when	the	user	exports	or	saves	XML	data.	Map	is	the	map
used	to	export	or	save	the	data;	IsRefresh	returns	True	if	the
event	was	triggered	by	refreshing	an	existing	connection	and
False	if	triggered	by	importing	from	a	new	data	source;	Result
indicates	success	or	failure.

Workbook_ModelChange Occurs	when	the	user	changes	the	Data	Model.	Changes	is	the
type	of	change,	such	as	columns	added,	changed,	or	deleted,	that
was	made	to	the	Data	Model.

Workbook_BeforeRemoteChange Occurs	before	changes	by	a	remote	user	are	merged	into	the
workbook.

Workbook_AfterRemoteChange Occurs	after	changes	by	a	remote	user	are	merged	into	the
workbook.

Workbook-level	sheet	events

Table	7-2	lists	sheet	and	pivot	table	events	that	are	available	at	the	workbook
level.	These	events	affect	all	sheets	in	the	workbook.

TABLE	7-2	Workbook-level	sheet	and	pivot	table	events

Event	Name Description
Workbook_SheetActivate Occurs	when	the	user	activates	any	chart	sheet	or

worksheet	in	the	workbook.	Sh	is	the	active	sheet.
Workbook_SheetBeforeDelete Occurs	before	any	worksheet	in	the	workbook	is

deleted.	Sh	is	the	sheet	being	deleted.
Workbook_SheetBeforeDoubleClick Occurs	when	the	user	double-clicks	any	chart	sheet

or	worksheet	in	the	active	workbook.	Sh	is	the	active
sheet;	Target	is	the	object	that’s	double-clicked;
setting	Cancel	to	True	prevents	the	default	action
from	taking	place.

Workbook_SheetBeforeRightClick Occurs	when	the	user	right-clicks	any	worksheet	in
the	active	workbook.	Sh	is	the	active	worksheet;

Target	is	the	object	that’s	right-clicked;	setting
Cancel	to	True	prevents	the	default	action	from
taking	place.

Workbook_SheetCalculate Occurs	when	any	worksheet	is	recalculated	or	any
updated	data	is	plotted	on	a	chart.	Sh	is	the	sheet	that
triggers	the	calculation.

Workbook_SheetChange Occurs	when	the	user	changes	any	range	in	a
worksheet.	Sh	is	the	worksheet;	Target	is	the
changed	range.

Workbook_SheetDeactivate Occurs	when	the	user	deactivates	any	chart	sheet	or
worksheet	in	the	workbook.	Sh	is	the	sheet	being
switched	from.

Workbook_SheetFollowHyperlink Occurs	when	the	user	clicks	any	hyperlink	in	Excel.
Sh	is	the	active	worksheet;	Target	is	the	hyperlink.

Workbook_SheetSelectionChange Occurs	when	the	user	selects	a	new	range	on	any
sheet.	Sh	is	the	active	sheet;	Target	is	the	affected
range.

Workbook_SheetTableUpdate Occurs	after	a	query	table	(not	a	list	object)
connected	to	a	data	model	is	updated.	Sh	is	the	sheet
with	the	query	table;	Target	is	the	query	table	that
was	updated.

Workbook_SheetLensGalleryRenderComplete Occurs	when	the	user	selects	the	Quick	Analysis
tool.	Sh	is	the	active	sheet.

Workbook_SheetPivotTableUpdate Occurs	when	the	user	updates	a	pivot	table.	Sh	is	the
sheet	with	the	pivot	table;	Target	is	the	updated
pivot	table.

Workbook_SheetPivotTableAfterValueChange Occurs	after	the	user	edits	cells	inside	a	pivot	table	or
the	user	recalculates	them	if	they	contain	a	formula.
Sh	is	the	sheet	the	pivot	table	is	on;
TargetPivotTable	is	the	pivot	table	with	the
changed	cells;	TargetRange	is	the	range	that	was
changed.

Workbook_SheetPivotTableBeforeAllocateChangesOccurs	before	a	pivot	table	is	updated	from	its	OLAP
data	source.	Sh	is	the	sheet	the	pivot	table	is	on;
TargetPivotTable	is	the	updated	pivot	table;
ValueChangeStart	is	the	index	number	of	the	first
change;	ValueChangeEnd	is	the	index	number	of	the
last	change;	setting	Cancel	to	True	prevents	the
changes	from	being	applied	to	the	pivot	table.

Workbook_SheetPivotTableBeforeCommitChanges Occurs	before	an	OLAP	pivot	table	updates	its	data
source.	Sh	is	the	sheet	the	pivot	table	is	on;
TargetPivotTable	is	the	updated	pivot	table;
ValueChangeStart	is	the	index	number	of	the	first
change;	ValueChangeEnd	is	the	index	number	of	the

last	change;	setting	Cancel	to	True	prevents	the
changes	from	being	applied	to	the	data	source.

Workbook_SheetPivotTableBeforeDiscardChanges Occurs	before	an	OLAP	pivot	table	discards	changes
from	its	data	source.	Sh	is	the	sheet	the	pivot	table	is
on;	TargetPivotTable	is	the	pivot	table	with
changes	to	discard;	ValueChangeStart	is	the	index
number	of	the	first	change;	ValueChangeEnd	is	the
index	number	of	the	last	change.

Workbook_SheetPivotTableChangeSync Occurs	after	the	user	changes	a	pivot	table.	Sh	is	the
sheet	the	pivot	table	is	on;	Target	is	the	pivot	table
that	has	been	changed.

Worksheet	events

Table	7-3	lists	event	procedures	that	are	available	at	the	worksheet	level.

TABLE	7-3	Worksheet	events

Event	Name Description
Worksheet_Activate Occurs	when	the	sheet	on	which	the	event	is	located

becomes	the	active	sheet.
Worksheet_BeforeDelete Occurs	before	the	sheet	on	which	the	event	is	located	is

deleted.
Worksheet_Deactivate Occurs	when	another	sheet	becomes	the	active	sheet.	If	a

Deactivate	event	is	on	the	active	sheet	and	you	switch	to	a
sheet	with	an	Activate	event,	the	Deactivate	event	runs
first,	followed	by	the	Activate	event.

Worksheet_BeforeDoubleClick Allows	control	over	what	happens	when	the	user	double-
clicks	the	sheet.	Target	is	the	selected	range	on	the	sheet;
Cancel	is	set	to	False	by	default,	but	if	set	to	True,	it
prevents	the	default	action,	such	as	entering	a	cell,	from
happening.

Worksheet_BeforeRightClick Occurs	when	the	user	right-clicks	a	range.	Target	is	the
object	that’s	right-clicked;	setting	Cancel	to	True	prevents
the	default	action	from	taking	place.

Worksheet_Calculate Occurs	after	a	sheet	is	recalculated.
Worksheet_Change Triggered	by	a	change	to	a	cell’s	value,	such	as	when	the

user	enters,	edits,	deletes,	or	pastes	text.	Recalculation	of
a	value	does	not	trigger	the	event.	Target	is	the	cell	that
has	been	changed.

Worksheet_SelectionChange Occurs	when	the	user	selects	a	new	range.	Target	is	the

newly	selected	range.
Worksheet_FollowHyperlink Occurs	when	the	user	clicks	a	hyperlink.	Target	is	the

hyperlink.
Worksheet_LensGalleryRenderComplete Occurs	when	the	user	selects	the	Quick	Analysis	tool.
Worksheet_PivotTableUpdate Occurs	when	the	user	updates	a	pivot	table.	Target	is	the

updated	pivot	table.
Worksheet_PivotTableAfterValueChange Occurs	after	the	user	edits	cells	inside	a	pivot	table	or	the

user	recalculates	them	if	they	contain	a	formula.
TargetPivotTable	is	the	pivot	table	with	the	changed
cells;	TargetRange	is	the	range	that	was	changed.

Worksheet_PivotTableBeforeAllocateChangesOccurs	before	a	pivot	table	is	updated	from	its	OLAP	data
source.	Sh	is	the	sheet	the	pivot	table	is	on;
TargetPivotTable	is	the	updated	pivot	table;
ValueChangeStart	is	the	index	number	of	the	first
change;	ValueChangeEnd	is	the	index	number	of	the	last
change;	setting	Cancel	to	True	prevents	the	changes	from
being	applied	to	the	pivot	table.

Worksheet_PivotTableBeforeCommitChanges Occurs	before	an	OLAP	pivot	table	updates	its	data
source.	TargetPivotTable	is	the	updated	pivot	table;
ValueChangeStart	is	the	index	number	of	the	first
change;	ValueChangeEnd	is	the	index	number	of	the	last
change;	setting	Cancel	to	True	prevents	the	changes	from
being	applied	to	the	data	source.

Worksheet_PivotTableBeforeDiscardChanges Occurs	before	an	OLAP	pivot	table	discards	changes	from
its	data	source.	TargetPivotTable	is	the	pivot	table	with
changes	to	discard;	ValueChangeStart	is	the	index
number	of	the	first	change;	ValueChangeEnd	is	the	index
number	of	the	last	change.

Worksheet_PivotTableChangeSync Occurs	after	a	pivot	table	has	been	changed.	Target	is	the
pivot	table	that	has	been	changed.

Worksheet_TableUpdate Occurs	after	a	query	table	(not	a	list	object)	connected	to	a
data	model	is	updated.	Target	is	the	query	table	that	has
been	changed..

Case	study:	Quickly	entering	military	time	into	a	cell
Say	that	you’re	entering	arrival	and	departure	times	and	want	the	times	to
be	formatted	with	a	24-hour	clock,	also	known	as	military	time.	You	have
tried	formatting	the	cell,	but	no	matter	how	you	enter	the	times,	they	are
displayed	in	the	0:00	hours	and	minutes	format.

The	only	way	to	get	the	time	to	appear	as	military	time,	such	as	23:45,	is	to

have	the	time	entered	in	the	cell	in	that	manner.	Because	typing	the	colon	is
time-consuming,	it	would	be	more	efficient	to	enter	the	numbers	and	let
Excel	format	the	time	for	you.

The	solution	is	to	use	a	Change	event	to	take	what	is	in	the	cell	and	insert
the	colon	for	you:

Click	here	to	view	code	image
Private	Sub	Worksheet_Change(ByVal	Target	As

Range)

Dim	ThisColumn	As	Integer

Dim	UserInput	As	String,	NewInput	As	String

ThisColumn	=	Target.Column

If	ThisColumn	<	3	Then

If	Target.Count	>	1	Then	Exit	Sub	'more	than	1

cell	selected

If	Len(Target)	=	1	Then	Exit	Sub	'only	1

character	entered

UserInput	=	Target.Value

If	IsNumeric(UserInput)	Then

If	UserInput	>	1	Then

NewInput	=	Left(UserInput,

Len(UserInput)	-	2)	&	":"	&	_

Right(UserInput,	2)

Application.EnableEvents	=	False

Target	=	NewInput

Application.EnableEvents	=	True

End	If

End	If

End	If

End	Sub

An	entry	of	2345	displays	as	23:45.	Note	that	the	code	limits	this	format
change	to	columns	A	and	B	(If	ThisColumn	<	3).	Without	this	limitation,
entering	numbers	anywhere	on	a	sheet,	such	as	in	a	totals	column,	would
force	the	numbers	to	be	reformatted.

Note	Use	Application.EnableEvents	=	False	to	prevent

the	procedure	from	calling	itself	when	the	value	in	the	target
is	updated.

Chart	events

Chart	events	occur	when	a	chart	is	changed	or	activated.	Embedded	charts
require	the	use	of	class	modules	to	access	the	events.	For	more	information
about	class	modules,	see	Chapter	9,	“Creating	classes	and	collections.”

Embedded	charts

Because	embedded	charts	do	not	create	chart	sheets,	the	chart	events	are	not	as
readily	available	as	those	of	chart	sheets.	However,	you	can	make	them	available
by	adding	a	class	module,	as	described	here:

1.	 Insert	a	class	module.

2.	 Rename	the	module	to	something	that	will	make	sense	to	you,	such	as
cl_ChartEvents.

3.	 Enter	the	following	line	of	code	in	the	class	module:

Click	here	to	view	code	image
Public	WithEvents	myChartClass	As	Chart

The	chart	events	are	now	available	to	the	chart,	as	shown	in	Figure	7-3.
They	are	accessed	in	the	class	module	rather	than	on	a	chart	sheet.

4.	 Insert	a	standard	module.

5.	 Enter	the	following	lines	of	code	in	the	standard	module:

Click	here	to	view	code	image
Dim	myClassModule	As	New	cl_ChartEvents

Sub	InitializeChart()

Set	myClassModule.myChartClass	=	_

Worksheets(1).ChartObjects(1).Chart

End	Sub

These	lines	initialize	the	embedded	chart	to	be	recognized	as	a	chart	object.
The	procedure	must	be	run	once	per	Excel	session.

Note	You	can	use	Workbook_Open	to	automatically	run	the
InitializeChart	procedure.

FIGURE	7-3	Embedded	chart	events	are	now	available	in	the	class	module.

Embedded	chart	and	chart	sheet	events

Whether	a	chart	is	embedded	on	a	regular	sheet	or	is	its	own	chart	sheet,	the
same	events	are	available.	The	only	difference	will	be	that	the	procedure	heading
for	an	embedded	chart	replaces	Chart	with	the	class	object	you	created.	For
example,	to	trigger	the	BeforeDoubleClick	event	on	a	chart	sheet,	the	procedure
header	would	be	this:	Chart_BeforeDoubleClick.

To	trigger	the	BeforeDoubleClick	event	on	an	embedded	chart	(using	the
class	object	created	in	the	previous	section),	the	procedure	header	would	be	this:
myChartClass_BeforeDoubleClick.

Table	7-4	lists	the	various	chart	events	available	to	both	embedded	charts	and
chart	sheets.

TABLE	7-4	Chart	events

Event	Name Description
Chart_Activate Occurs	when	a	chart	sheet	is	activated	or	changed.
Chart_BeforeDoubleClickOccurs	when	any	part	of	a	chart	is	double-clicked.	ElementID	is	the	part	of	the

chart	that	is	double-clicked,	such	as	the	legend.	Arg1	and	Arg2	are	dependent
on	the	ElementID;	setting	Cancel	to	True	prevents	the	default	double-click
action	from	occurring.

Chart_BeforeRightClick Occurs	when	the	user	right-clicks	a	chart.	Setting	Cancel	to	True	prevents	the
default	right-click	action	from	occurring.

Chart_Calculate Occurs	when	the	user	changes	a	chart’s	data.
Chart_Deactivate Occurs	when	the	user	makes	another	object	(such	as	another	chart	or	sheet)	the

active	object.
Chart_MouseDown Occurs	when	the	cursor	is	over	the	chart	and	the	user	presses	any	mouse	button.

Button	is	the	mouse	button	that	was	clicked;	Shift	is	whether	a	Shift,	Ctrl,	or
Alt	key	was	pressed;	X	is	the	X	coordinate	of	the	cursor	when	the	button	is
pressed;	Y	is	the	Y	coordinate	of	the	cursor	when	the	button	is	pressed.

Chart_MouseMove Occurs	as	the	user	moves	the	cursor	over	a	chart.	Button	is	the	mouse	button
being	held	down,	if	any;	Shift	is	whether	a	Shift,	Ctrl,	or	Alt	key	was	pressed;
X	is	the	X	coordinate	of	the	cursor	on	the	chart;	Y	is	the	Y	coordinate	of	the
cursor	on	the	chart.

Chart_MouseUp Occurs	when	the	user	releases	any	mouse	button	while	the	cursor	is	on	the
chart.	Button	is	the	mouse	button	that	was	clicked;	Shift	is	whether	a	Shift,
Ctrl,	or	Alt	key	was	pressed;	X	is	the	X	coordinate	of	the	cursor	when	the	button
is	released;	Y	is	the	Y	coordinate	of	the	cursor	when	the	button	is	released.

Chart_Resize Occurs	when	the	user	resizes	a	chart	using	the	resize	handles.	However,	this
does	not	occur	when	the	size	is	changed	using	the	size	controls	on	the	Chart
Tools,	Format	tab	or	Format	Chart	Area	task	pane.

Chart_Select Occurs	when	the	user	selects	a	chart	element.	ElementID	is	the	part	of	the	chart
selected,	such	as	the	legend.	Arg1	and	Arg2	are	dependent	on	the	ElementID.

Chart_SeriesChange Occurs	when	a	chart	data	point	is	updated.	SeriesIndex	is	the	offset	in	the
Series	collection	of	updated	series;	PointIndex	is	the	offset	in	the	Point
collection	of	updated	points..

Application-level	events
Application-level	events,	listed	in	Table	7-5,	affect	all	open	workbooks	in	an
Excel	session.	You	need	a	class	module	to	access	them.	This	is	similar	to	the
class	module	used	to	access	events	for	embedded	chart	events.	For	more
information	about	class	modules,	see	Chapter	9.

Follow	these	steps	to	create	the	class	module:

1.	 Insert	a	class	module.

2.	 Rename	the	module	to	something	that	makes	sense	to	you,	such	as
cl_AppEvents.

3.	 Enter	the	following	line	of	code	in	the	class	module:

Click	here	to	view	code	image
Public	WithEvents	AppEvent	As	Application

The	application	events	are	now	available	to	the	workbook,	as	shown	in
Figure	7-4.	They	are	accessed	in	the	class	module	rather	than	in	a	standard
module.

4.	 Insert	a	standard	module.

5.	 Enter	the	following	lines	of	code	in	the	standard	module:

Click	here	to	view	code	image
Dim	myAppEvent	As	New	cl_AppEvents

Sub	InitializeAppEvent()

Set	myAppEvent.AppEvent	=	Application

End	Sub

These	lines	initialize	the	application	to	recognize	application	events.	The
procedure	must	be	run	once	per	session.

Tip	You	can	use	Workbook_Open	to	automatically	run	the
InitializeAppEvent	procedure.

FIGURE	7-4	Application	events	are	now	available	through	the	class	module.

Note	The	object	in	front	of	the	event,	such	as	AppEvent,	is
dependent	on	the	name	given	in	the	class	module.

TABLE	7-5	Application	events

Event	Name Description

AppEvent_AfterCalculate Occurs	after	all	calculations	are	complete,	after
AfterRefresh,	and	SheetChange	events,	and	after
Application.CalculationState	is	set	to	xlDone,
and	there	aren’t	any	outstanding	queries	or
incomplete	calculations.

AppEvent_NewWorkbook Occurs	when	the	user	creates	a	new	workbook.	Wb	is
the	new	workbook.

AppEvent_ProtectedViewWindowActivate Occurs	when	the	user	activates	a	workbook	in
Protected	View	mode.	Pvw	is	the	workbook	being
activated.

AppEvent_ProtectedViewWindowBeforeClose Occurs	when	the	user	closes	a	workbook	in	Protected
View	mode.	Pvw	is	the	workbook	being	deactivated;
Reason	is	why	the	workbook	closed;	setting	Cancel
to	True	prevents	the	workbook	from	closing.

AppEvent_ProtectedViewWindowDeactivate Occurs	when	the	user	deactivates	a	workbook	in
Protected	View	mode.	Pvw	is	the	workbook	being
deactivated.

AppEvent_ProtectedViewWindowOpen Occurs	when	a	workbook	is	open	in	Protected	View
mode.	Pvw	is	the	workbook	being	opened.

AppEvent_ProtectedViewWindowResize Occurs	when	the	user	resizes	the	window	of	the
protected	workbook.	However,	this	does	not	occur	in
the	application	itself.	Pvw	is	the	workbook	that’s
being	resized.

AppEvent_ProtectedViewWindowBeforeEdit Occurs	when	the	user	clicks	the	Enable	Editing
button	of	a	protected	workbook.	Pvw	is	the	protected
workbook;	setting	Cancel	to	True	prevents	the
workbook	from	being	enabled.

AppEvent_SheetActivate Occurs	when	the	user	activates	a	sheet.	Sh	is	the
worksheet	or	chart	sheet.

AppEvent_SheetBeforeDelete Occurs	before	any	worksheet	in	a	workbook	is
deleted.	Sh	is	the	sheet	being	deleted.

AppEvent_SheetBeforeDoubleClick Occurs	when	the	user	double-clicks	a	worksheet.
Target	is	the	selected	range	on	the	sheet;	Cancel	is
set	to	False	by	default.	However,	when	set	to	True,	it
prevents	the	default	action,	such	as	entering	a	cell,
from	happening.

AppEvent_SheetBeforeRightClick Occurs	when	the	user	right-clicks	any	worksheet.	Sh
is	the	active	worksheet;	Target	is	the	object	that’s
right-clicked;	setting	Cancel	to	True	prevents	the
default	action	from	taking	place.

AppEvent_SheetCalculate Occurs	when	the	user	recalculates	any	worksheet	or
plots	any	updated	data	on	a	chart.	Sh	is	the	active
sheet.

AppEvent_SheetChange Occurs	when	the	user	changes	the	value	of	any	cell.
Sh	is	the	worksheet;	Target	is	the	changed	range.

AppEvent_SheetDeactivate Occurs	when	the	user	deactivates	any	chart	sheet	or
worksheet	in	a	workbook.	Sh	is	the	sheet	being
deactivated.

AppEvent_SheetFollowHyperlink Occurs	when	the	user	clicks	any	hyperlink	in	Excel.
Sh	is	the	active	worksheet;	Target	is	the	hyperlink.

AppEvent_SheetSelectionChange Occurs	when	the	user	selects	a	new	range	on	any
sheet.	Sh	is	the	active	sheet;	Target	is	the	selected
range.

AppEvent_SheetTableUpdate Occurs	when	the	user	changes	a	table	object.	Sh	is
the	active	sheet;	Target	is	the	table	object	that	was
updated.

AppEvent_SheetLensGalleryRenderComplete Occurs	when	the	user	selects	the	Quick	Analysis
tool.	Sh	is	the	active	sheet.

AppEvent_SheetPivotTableUpdate Occurs	when	the	user	updates	a	pivot	table.	Sh	is	the
active	sheet;	Target	is	the	updated	pivot	table.

AppEvent_SheetPivotTableAfterValueChange Occurs	after	the	user	edits	cells	inside	a	pivot	table
or,	if	the	cells	contain	a	formula,	the	user	recalculates
them.	Sh	is	the	sheet	the	pivot	table	is	on;
TargetPivotTable	is	the	pivot	table	with	the
changed	cells;	TargetRange	is	the	range	that	was
changed.

AppEvent_SheetPivotTableBeforeAllocateChangesOccurs	before	a	pivot	table	is	updated	from	its	OLAP
data	source.	Sh	is	the	sheet	the	pivot	table	is	on;
TargetPivotTable	is	the	updated	pivot	table;
ValueChangeStart	is	the	index	number	of	the	first
change;	ValueChangeEnd	is	the	index	number	of	the
last	change;	setting	Cancel	to	True	prevents	the
changes	from	being	applied	to	the	pivot	table.

AppEvent_SheetPivotTableBeforeCommitChanges Occurs	before	an	OLAP	pivot	table	updates	its	data
source.	Sh	is	the	sheet	the	pivot	table	is	on;
TargetPivotTable	is	the	updated	pivot	table;
ValueChangeStart	is	the	index	number	of	the	first
change;	ValueChangeEnd	is	the	index	number	of	the
last	change;	setting	Cancel	to	True	prevents	the
changes	from	being	applied	to	the	data	source.

AppEvent_SheetPivotTableBeforeDiscardChanges Occurs	before	an	OLAP	pivot	table	discards	changes
from	its	data	source.	Sh	is	the	sheet	the	pivot	table	is
on;	TargetPivotTable	is	the	pivot	table	with
changes	to	discard;	ValueChangeStart	is	the	index
number	of	the	first	change;	ValueChangeEnd	is	the
index	number	of	the	last	change.

AppEvent_WindowActivate

Occurs	when	the	user	activates	any	workbook
window.	Wb	is	the	workbook	that’s	being	deactivated;
Wn	is	the	window.	This	works	only	if	there	are
multiple	windows.

AppEvent_WindowDeactivate Occurs	when	the	user	deactivates	any	workbook
window.	Wb	is	the	active	workbook;	Wn	is	the
window.	This	works	only	if	there	are	multiple
windows.

AppEvent_WindowResize Occurs	when	the	user	resizes	the	active	workbook.
Wb	is	the	active	workbook;	Wn	is	the	window.

AppEvent_WorkbookActivate Occurs	when	the	user	activates	any	workbook.	Wb	is
the	workbook	being	activated.

AppEvent_WorkbookDeactivate Occurs	when	the	user	switches	between	workbooks.
Wb	is	the	workbook	that’s	being	switched	away	from.

AppEvent_WorkbookAddinInstall Occurs	when	the	user	installs	a	workbook	as	an	add-
in	(via	File,	Options,	Add-ins).	Double-clicking	an
.xlam	file	to	open	it	does	not	activate	the	event.	Wb	is
the	workbook	being	installed.

AppEvent_WorkbookAddinUninstall Occurs	when	the	user	uninstalls	a	workbook	(add-in).
The	add-in	is	not	automatically	closed.	Wb	is	the
workbook	being	uninstalled.

AppEvent_WorkbookBeforeClose Occurs	when	the	user	closes	a	workbook.	Wb	is	the
workbook;	setting	Cancel	to	True	prevents	the
workbook	from	closing.

AppEvent_WorkbookBeforePrint Occurs	when	the	user	uses	any	print	command	(via
the	ribbon,	keyboard,	or	a	macro).	Wb	is	the
workbook;	setting	Cancel	to	True	prevents	the
workbook	from	being	printed.

AppEvent_Workbook_BeforeSave Occurs	when	the	user	saves	the	workbook.	Wb	is	the
workbook;	SaveAsUI	is	set	to	True	if	the	Save	As
dialog	box	is	to	be	displayed;	setting	Cancel	to	True
prevents	the	workbook	from	being	saved.

AppEvent_WorkbookAfterSave Occurs	after	the	user	has	saved	the	workbook.	Wb	is
the	workbook;	Success	returns	True	if	the	file	saved
successfully	and	returns	False	if	the	save	was	not
successful.

AppEvent_WorkbookNewSheet Occurs	when	the	user	adds	a	new	sheet	to	the	active
workbook.	Wb	is	the	workbook;	Sh	is	the	new
worksheet.

AppEvent_WorkbookNewChart Occurs	when	the	user	adds	a	new	chart	to	the	active
workbook.	Wb	is	the	workbook;	Ch	is	the	new	chart
object.	The	event	is	not	triggered	if	the	user	moves	a
chart	from	one	location	to	another,	unless	the	user
moves	it	between	a	chart	sheet	and	a	chart	object.	In

that	case,	the	event	is	triggered	because	a	new	chart
sheet	or	object	is	being	created.

AppEvent_WorkbookOpen Occurs	when	the	user	opens	a	workbook.	Wb	is	the
workbook	that	was	just	opened.

AppEvent_WorkbookPivotTableCloseConnection Occurs	when	a	pivot	table	report	closes	its
connection	to	its	data	source.	Wb	is	the	workbook
containing	the	pivot	table	that	triggered	the	event;
Target	is	the	pivot	table	that	has	closed	the
connection.

AppEvent_WorkbookPivotTableOpenConnection Occurs	when	a	pivot	table	report	opens	a	connection
to	its	data	source.	Wb	is	the	workbook	containing	the
pivot	table	that	triggered	the	event;	Target	is	the
pivot	table	that	has	opened	the	connection.

AppEvent_WorkbookRowsetComplete Occurs	when	the	user	drills	through	a	record	set	or
calls	upon	the	row	set	action	on	an	OLAP	pivot	table.
Wb	is	the	workbook	that	triggered	the	event;
Description	is	a	description	of	the	event;	Sheet	is
the	name	of	the	sheet	on	which	the	record	set	is
created;	Success	indicates	success	or	failure.

AppEvent_WorkbookSync Occurs	when	the	user	synchronizes	the	local	copy	of
a	sheet	in	a	workbook	that	is	part	of	a	document
workspace	with	the	copy	on	the	server.	Wb	is	the
workbook	that	triggered	the	event;	SyncEventType	is
the	status	of	the	synchronization.

AppEvent_WorkbookBeforeXmlExport Occurs	when	the	user	exports	or	saves	XML	data.	Wb
is	the	workbook	that	triggered	the	event;	Map	is	the
map	used	to	export	or	save	the	data;	Url	is	the
location	of	the	XML	file;	Cancel	set	to	True	cancels
the	export	operation.

AppEvent_WorkbookAfterXmlExport Occurs	after	the	user	exports	or	saves	XML	data.	Wb
is	the	workbook	that	triggered	the	event;	Map	is	the
map	used	to	export	or	save	the	data;	Url	is	the
location	of	the	XML	file;	Result	indicates	success	or
failure.

AppEvent_WorkbookBeforeXmlImport Occurs	when	the	user	imports	or	refreshes	XML
data.	Wb	is	the	workbook	that	triggered	the	event;
Map	is	the	map	used	to	import	the	data;	Url	is	the
location	of	the	XML	file;	IsRefresh	returns	True	if
the	event	was	triggered	by	refreshing	an	existing
connection	and	False	if	triggered	by	importing	from
a	new	data	source;	setting	Cancel	to	True	cancels	the
import	or	refresh	operation.

AppEvent_WorkbookAfterXmlImport Occurs	after	the	user	imports	or	refreshes	XML	data.
Wb	is	the	workbook	that	triggered	the	event;	Map	is

the	map	used	to	import	the	data;	IsRefresh	returns
True	if	the	event	was	triggered	by	refreshing	an
existing	connection	and	False	if	triggered	by
importing	from	a	new	data	source;	Result	indicates
success	or	failure.

AppEvent_WorkbookModelChange Occurs	when	the	user	changes	the	Data	Model.	Wb	is
the	workbook	that	triggered	the	event;	Changes	is	the
type	of	change,	such	as	columns	added,	changed,	or
deleted,	that	the	user	made	to	the	Data	Model.

AppEvent_WorkbookAfterRemoteChange Occurs	after	changes	by	a	remote	user	are	merged
into	the	workbook.	Wb	is	the	workbook	that	triggered
the	event.

AppEvent_WorkbookBeforeRemoteChange Occurs	before	changes	by	a	remote	user	are	merged
into	the	workbook.	Wb	is	the	workbook	that	triggered
the	event..

Next	steps
In	this	chapter,	you’ve	learned	more	about	interfacing	with	Excel.	In	Chapter	8,
“Arrays,”	you	find	out	how	to	use	multidimensional	arrays.	Reading	data	into	a
multidimensional	array,	performing	calculations	on	the	array,	and	then	writing
the	array	back	to	a	range	can	speed	up	your	macros	dramatically.

CHAPTER	8
Arrays

In	this	chapter,	you	will:

Learn	how	to	declare	an	array

Fill	an	array

Retrieve	data	from	an	array

Use	an	array	to	speed	up	code

Use	dynamic	arrays

Pass	an	array	to	another	procedure	or	function

An	array	is	a	type	of	variable	that	can	be	used	to	hold	more	than	one	piece	of
data.	For	example,	if	you	have	to	work	with	the	name	and	address	of	a	client,
your	first	thought	might	be	to	assign	one	variable	for	the	name	and	another	for
the	address	of	the	client.	Instead,	consider	using	an	array,	which	can	hold	both
pieces	of	information—and	not	for	just	one	client	but	for	hundreds.

Declaring	an	array
You	declare	an	array	by	adding	parentheses	after	the	array	name	and	specifying
the	number	of	array	elements	in	the	parentheses:

Dim	myArray(2)

This	creates	an	array,	myArray,	that	contains	three	elements:

Click	here	to	view	code	image
myArray(0)	=	10

myArray(1)	=	20

myArray(2)	=	30

Three	elements	are	included	because,	by	default,	the	index	count	starts	at	0.
If	the	index	count	needs	to	start	at	1,	use	Option	Base	1	to	force	the	count	to
start	at	1.	To	do	this,	place	the	Option	Base	statement	in	the	declarations	section
at	the	top	of	the	module:

Click	here	to	view	code	image
Option	Base	1

Sub	MyFirstArray()

Dim	myArray(2)

This	now	forces	the	array	to	have	only	two	elements.

You	also	can	create	an	array	independently	of	the	Option	Base	statement	by
declaring	its	lower	and	upper	bounds:

Click	here	to	view	code	image
Dim	myArray(1	to	10)

Dim	BigArray(100	to	200)

Every	array	has	a	lower	bound	(LBound)	and	an	upper	bound	(UBound).	When
you	declare	Dim	myArray(2),	you	are	declaring	the	upper	bound	and	allowing
the	Option	Base	statement	to	declare	the	lower	bound.	By	declaring	Dim
myArray(1	to	10),	you	declare	the	lower	bound,	1,	and	the	upper	bound,	10.

Declaring	a	multidimensional	array

The	arrays	just	discussed	are	considered	one-dimensional	arrays	because	only
one	number	designates	the	location	of	an	element	of	the	array.	Such	an	array	is
like	a	single	row	of	data,	but	because	there	can	be	only	one	row,	you	do	not	have
to	worry	about	the	row	number	—	only	the	column	number.	For	example,	to
retrieve	the	second	element	(Option	Base	0),	use	myArray(1).

In	some	cases,	a	single	dimension	is	not	enough.	This	is	where
multidimensional	arrays	come	in.	Whereas	a	one-dimensional	array	is	a	single
row	of	data,	a	two-dimensional	array	contains	rows	and	columns.

To	declare	another	dimension	to	an	array,	you	add	another	argument.	The
following	creates	an	array	of	10	rows	and	20	columns:

Dim	myArray(1	to	10,	1	to	20)

Note	Another	word	for	array	is	matrix,	which	is	what	a	spreadsheet
is.	The	Cells	object	refers	to	elements	of	a	spreadsheet—and	a	cell
consists	of	a	row	and	a	column.	You’ve	been	using	arrays	all

along!

You	can	create	additional	dimensions	by	including	additional	arguments.
For	example,	to	create	a	three-dimensional	array,	do	this:

Dim	myArray	(1	to	4,	1	to	10,	1	to	4)

The	following	code	places	values	in	the	first	two	columns	of	the	first	row,	as
shown	in	Figure	8-1:
myArray(1,1)	=	10

myArray(1,2)	=	20

FIGURE	8-1	The	VB	Editor	Watches	window	shows	the	first	“row”	of	the	array	being	filled	from
the	previous	lines	of	code.

The	following	code	places	values	in	the	first	two	columns	of	the	second	row:
myArray(2,1)	=	20

myArray(2,2)	=	40

And	so	on.	Of	course,	this	is	time-consuming	and	can	require	many	lines	of
code.	Other	ways	to	fill	an	array	are	discussed	in	the	next	section.

Note	To	get	the	upper	or	lower	bounds	of	another	dimension,	you
have	to	specify	the	dimension.	For	example,	to	retrieve	the	upper
bound	of	the	second	dimension,	use	this:	UBound(MyArray,2).

Filling	an	array

Now	that	you	can	declare	an	array,	you	need	to	fill	it.	One	method	discussed
earlier	is	to	enter	a	value	for	each	element	of	the	array	individually.	However,
there	is	a	quicker	way,	as	shown	in	the	following	sample	code	and	Figure	8-2:

Click	here	to	view	code	image
Option	Base	1

Sub	ColumnHeaders()

Dim	myArray	As	Variant	'Variants	can	hold	any	type	of

data,	including	arrays

Dim	myCount	As	Integer

'Fill	the	variant	with	array	data

myArray	=	Array("Name",	"Address",	"Phone",	"Email")

'Unload	the	array	onto	a	sheet	by	placing	it	in	a

range	of	the	same	size

'if	not	using	Option	Base	1,	then	add	1	to	LBound

Worksheets("Sheet2").Range("A1").Resize(LBound(myArray),

_

UBound(myArray)).Value	=	myArray

End	With

End	Sub

FIGURE	8-2	Use	an	array	to	create	column	headers	quickly.

Variant	variables	can	hold	any	type	of	information.	Create	a	Variant-type
variable	that	can	be	treated	like	an	array.	Use	the	Array	function	to	shove	the
data	into	the	variant	and	force	the	variant	to	take	on	the	properties	of	an	array.
Notice	that	you	don’t	declare	the	size	of	the	array	when	you	fill	it,	as	shown	in
the	previous	example.

If	the	information	needed	in	the	array	is	on	the	sheet	already,	use	the

following	to	fill	an	array	quickly.	This	code	creates	an	array	that	is	16	rows	by	2
columns:

Click	here	to	view	code	image
Dim	myArray	As	Variant

myArray	=	Worksheets("Sheet1").Range("B2:C17")

Although	these	two	methods	are	quick	and	straightforward,	they	might	not
always	suit	the	situation.	For	example,	if	you	need	every	other	row	in	an	array,
use	the	following	code	(see	Figure	8-3):

Click	here	to	view	code	image
Sub	EveryOtherRow()

'there	are	16	rows	of	data,	but	we	are	only	filling

every	other	row

'half	the	table	size,	so	our	array	needs	only	8	rows

Dim	myArray(1	To	8,	1	To	2)

Dim	i	As	Integer,	j	As	Integer,	myCount	As	Integer

'Fill	the	array	with	every	other	row

For	i	=	1	To	8

For	j	=	1	To	2

'i*2	directs	the	program	to	retrieve	every	other	row

myArray(i,	j)	=	Worksheets("Sheet1").Cells(i

*	2,	j	+	1).Value

Next	j

Next	i

'Calculate	contents	of	array	and	transfer	results	to

sheet

For	myCount	=	LBound(myArray)	To	UBound(myArray)

Worksheets("Sheet1").Cells(myCount	*	2,	4).Value

=	_

WorksheetFunction.Sum(myArray(myCount,	1),

myArray(myCount,	2))

Next	myCount

End	Sub

FIGURE	8-3	You	can	fill	the	array	with	data	from	every	other	row.

LBound	finds	the	start	location—the	lower	bound—of	the	array	(myArray).
UBound	finds	the	end	location—the	upper	bound—of	the	array.	The	program	can
then	loop	through	the	array	and	sum	the	information	as	it	writes	it	to	the	sheet.
How	to	extract	data	from	an	array	is	explained	in	the	following	section.

Retrieving	data	from	an	array
After	an	array	is	filled,	the	data	needs	to	be	retrieved.	However,	before	you	do
that,	you	can	manipulate	the	data	or	return	information	about	it,	such	as	the
maximum	integer,	as	shown	in	the	following	code	(see	Figure	8-4):

Click	here	to	view	code	image
Sub	QuickFillMax()

Dim	myArray	As	Variant

Click	here	to	view	code	image
myArray	=	Worksheets("Sheet1").Range("B2:C12").Value

MsgBox	"Maximum	Integer	is:	"	&

WorksheetFunction.Max(myArray)

End	Sub

FIGURE	8-4	You	can	return	the	Max	value	in	an	array.

Data	also	can	be	manipulated	before	it	is	returned	to	the	sheet.	In	the
following	example,	LBound	and	UBound	are	used	with	a	For	loop	to	loop	through
the	elements	of	the	array	and	average	each	set:

Note	MyCount	+	1	is	used	to	place	the	results	back	on	the	sheet
because	LBound	is	1	and	the	data	starts	in	row	2.

Click	here	to	view	code	image
Sub	QuickFillAverage()

Dim	myArray	As	Variant

Dim	myCount	As	Integer

'fill	the	array

myArray	=	Worksheets("Sheet1").Range("B2:C12")

'Average	the	data	in	the	array	just	as	it	is	placed	on

the	sheet

For	myCount	=	LBound(myArray)	To	UBound(myArray)

'calculate	the	average	and	place	the	result	in	column

E

Worksheets("Sheet1").Cells(myCount	+	1,	5).Value

=	_

WorksheetFunction.Average(myArray(myCount,	1),

myArray(myCount,	2))

Next	myCount

End	Sub

The	results	are	placed	on	the	sheet	in	a	new	column	(see	Figure	8-5).

FIGURE	8-5	Calculations	can	be	done	on	the	data	as	it	is	returned	to	the	sheet.

Using	arrays	to	speed	up	code

So	far	you	have	learned	that	arrays	can	make	it	easier	to	manipulate	data	and	get
information	from	it,	but	is	that	all	they	are	good	for?	No,	arrays	are	powerful
because	they	can	actually	make	the	code	run	faster!

In	the	preceding	example,	each	row	was	processed	as	it	was	placed	on	the
sheet.	Imagine	doing	that	10,000	times,	100,000	times,	or	more.	Each	time	Excel
has	to	write	to	the	sheet,	it	slows	down.	You	can	minimize	writing	to	the	sheet	by
doing	all	the	processing	in	memory	and	then	writing	the	data	to	the	sheet	one
time.

In	the	following	example,	the	calculated	average	is	placed	in	a	second	array:
MyAverage.	First,	you	ReDim	it	so	that	it	has	enough	room	to	hold	all	the
calculated	values.	(See	the	next	section,	“Using	dynamic	arrays,”	for	more
information.)	Then,	after	looping	and	filling	it,	you	place	the	entire	array	on	the
sheet.	Notice	that	the	range	you	place	it	in	is	resized	to	fit	the	entire	array.	Also,
because	the	array	was	created	in	code	and	is	just	a	single	element	(row),	you
have	to	transpose	it	so	it’s	in	column	form:

Click	here	to	view	code	image
Sub	QuickFillAverageFast()

'Writes	the	data	to	the	sheet	once

'Also	more	flexible	with	dynamic	range

Dim	myArray	As	Variant,	MyAverage	As	Variant

Dim	myCount	As	Long,	LastRow	As	Long

Dim	wksData	As	Worksheet

Set	wksData	=	Worksheets("EveryOther")

With	wksData

LastRow	=	.Range("A"	&	.Rows.Count).End(xlUp).Row

myArray	=	.Range("B2:C"	&	LastRow)

ReDim	MyAverage(UBound(myArray))

For	myCount	=	LBound(myArray)	To	UBound(myArray)

MyAverage(myCount)	=	_

WorksheetFunction.Average(myArray(myCount,	1),	_

myArray(myCount,	2))

Next	myCount

.Range("E2").Resize(UBound(MyAverage)).Value	=	_

Application.Transpose(MyAverage)

End	With

End	Sub

Using	dynamic	arrays

You	don’t	always	know	how	big	an	array	needs	to	be.	You	could	create	an	array
based	on	how	big	it	could	ever	need	to	be,	but	that’s	a	waste	of	memory—and
what	if	it	turns	out	that	it	needs	to	be	even	bigger?	To	avoid	this	problem,	you
can	use	a	dynamic	array.	A	dynamic	array	is	an	array	that	does	not	have	a	set
size.	In	other	words,	you	declare	the	array	but	leave	the	parentheses	empty,	like
this:

Dim	myArray()

Later,	as	the	program	needs	to	use	the	array,	ReDim	is	used	to	set	the	size	of
the	array.	The	following	program,	which	returns	the	names	of	all	the	sheets	in
the	workbook,	first	creates	a	boundless	array	and	then	sets	the	upper	bound	after
it	knows	how	many	sheets	are	in	the	workbook:

Click	here	to	view	code	image
Sub	MySheets()

Dim	myArray()	As	String

Dim	myCount	As	Integer,	NumShts	As	Integer

NumShts	=	ActiveWorkbook.Worksheets.Count

'Size	the	array

ReDim	myArray(1	To	NumShts)

For	myCount	=	1	To	NumShts

myArray(myCount)	=

ActiveWorkbook.Sheets(myCount).Name

Next	myCount

End	Sub

Using	ReDim	reinitializes	the	array.	Therefore,	if	you	use	it	many	times,	such
as	in	a	loop,	you	lose	all	the	data	it	holds.	To	prevent	this	from	happening,	use
Preserve.	The	Preserve	keyword	enables	you	to	resize	the	last	array	dimension,
but	you	cannot	use	it	to	change	the	number	of	dimensions.

The	following	example	looks	for	all	the	Excel	files	in	a	directory	and	puts
the	results	in	an	array.	Because	you	do	not	know	how	many	files	there	will	be
until	you	actually	look	at	them,	you	can’t	size	the	array	before	the	program	is
run:

Click	here	to	view	code	image
Sub	XLFiles()

Dim	FName	As	String

Dim	arNames()	As	String

Dim	myCount	As	Integer

FName	=	Dir("C:\Excel	VBA	2019	by	Jelen	&

Syrstad*.xls*")

Do	Until	FName	=	""

myCount	=	myCount	+	1

ReDim	Preserve	arNames(1	To	myCount)

arNames(myCount)	=	FName

FName	=	Dir

Loop

End	Sub

Note	Using	Preserve	with	large	amounts	of	data	in	a	loop	can	slow
down	the	program.	If	possible,	use	code	to	figure	out	the	maximum
size	of	an	array	as	soon	as	possible.

Passing	an	array

Just	like	strings,	integers,	and	other	variables,	arrays	can	be	passed	into	other
procedures.	This	makes	for	more	efficient	and	easier-to-read	code.	The	following
sub,	PassAnArray,	passes	the	array	myArray	into	the	function	RegionSales.	The
data	in	the	array	is	summed	for	the	specified	region,	and	the	result	is	returned	to
the	sub:

Click	here	to	view	code	image
Sub	PassAnArray()

Dim	myArray()	As	Variant

Dim	myRegion	As	String

myArray	=	Range("mySalesData")	'named	range	containing

all	the	data

myRegion	=	InputBox("Enter	Region	-	Central,	East,

West")

MsgBox	myRegion	&	"	Sales	are:	"	&

Format(RegionSales(myArray,	_

myRegion),	"$#,#00.00")

End	Sub

Function	RegionSales(ByRef	BigArray	As	Variant,

sRegion	As	String)	As	Long

Dim	myCount	As	Integer

RegionSales	=	0

For	myCount	=	LBound(BigArray)	To	UBound(BigArray)

'The	regions	are	listed	in	column	1	of	the	data,

'hence	the	1st	column	of	the	array

If	BigArray(myCount,	1)	=	sRegion	Then

'The	data	to	sum	is	the	6th	column	in	the	data

RegionSales	=	BigArray(myCount,	6)	+

RegionSales

End	If

Next	myCount

End	Function

Warning	You	can’t	assign	the	values	of	one	array	to	be	the	values
of	another	unless	both	arrays	are	the	same	size	or	the	second	array
doesn’t	have	specifically	declared	dimensions.	To	append	values

from	one	array	to	another	or	to	pass	values	between	arrays	of	differing
sizes,	you	have	to	loop	through	the	arrays.

Next	steps

Arrays	are	a	type	of	variable	used	for	holding	more	than	one	piece	of	data.	In
Chapter	9,	“Creating	classes	and	collections,”	you	discover	the	powerful

technique	of	setting	up	your	own	class	module.	With	this	technique,	you	can	set
up	your	own	object	with	its	own	methods	and	properties.

CHAPTER	9
Creating	classes	and	collections

In	this	chapter,	you	will:

Learn	how	to	insert	a	class	module

Trap	application	and	embedded	chart	events

Create	and	use	a	custom	object

Learn	various	methods	of	creating	collections

Minimize	the	use	of	repeated	code	by	using	a	collection

Learn	about	dictionaries

Create	custom	properties	with	user-defined	types	(UDTs)

Excel	already	has	many	objects	available,	but	there	are	times	when	the	job	at
hand	requires	a	custom	object.	You	can	create	custom	objects	that	you	use	in	the
same	way	as	Excel’s	built-in	objects.	These	special	objects	are	created	in	class
modules.

Class	modules	are	used	to	create	custom	objects	with	custom	properties	and
methods.	They	can	also	be	used	to	trap	application	events,	embedded	chart
events,	ActiveX	control	events,	and	more.

Collections	are	a	variable	type	that	can	hold	groups	of	similar	items,
including	custom	objects.	Each	item	in	a	collection	has	a	unique	key,	and	you
can	use	that	unique	key	to	retrieve	a	value,	including	all	the	properties	of	an
object,	from	the	collection.

Inserting	a	class	module
From	the	VB	Editor,	select	Insert,	Class	Module.	A	new	module,	Class1,	is
added	to	the	VBAProject	workbook	and	is	visible	in	the	Project	Explorer
window	(see	Figure	9-1).	Here	are	two	things	to	keep	in	mind	concerning	class

modules:

Each	custom	object	must	have	its	own	module.	(Event	trapping	can	share	a
module.)

The	class	module	should	be	renamed	to	reflect	the	custom	object.

FIGURE	9-1	Custom	objects	are	created	in	class	modules.

Trapping	application	and	embedded	chart	events
Chapter	7,	“Event	programming,”	explains	how	certain	actions	in	workbooks,
worksheets,	and	nonembedded	charts	can	be	trapped	and	used	to	activate	code.	It
briefly	reviews	how	to	set	up	a	class	module	to	trap	application	and	chart	events.
The	following	text	goes	into	more	detail	about	what	was	shown	in	that	chapter.

Application	events

The	Workbook_BeforePrint	event	is	triggered	when	the	workbook	in	which	it
resides	is	printed.	If	you	want	to	run	the	same	code	in	every	workbook	available,
you	have	to	copy	the	code	to	each	workbook.	Alternatively,	you	can	use	an
application	event,	WorkbookBeforePrint,	which	is	triggered	when	any
workbook	is	printed.

The	application	events	already	exist,	but	a	class	module	must	be	set	up	first
so	that	the	events	can	be	seen.	To	create	a	class	module,	follow	these	steps:

1.	 Insert	a	class	module	into	the	project.	Select	View,	Properties	Window	and
rename	it	something	that	makes	sense	to	you,	such	as	cAppEvents.

2.	 Enter	the	following	into	the	class	module:

Public	WithEvents	xlApp	As	Application

The	name	of	the	variable,	xlApp,	can	be	any	variable	name.	The
WithEvents	keyword	exposes	the	events	associated	with	the	Application
object.

3.	 Select	xlApp	from	the	class	module’s	Object	drop-down	menu	and	then
click	the	Procedure	drop-down	menu	to	its	right	to	view	the	events	that	are
available	for	the	xlApp’s	object	type	(Application),	as	shown	in	see	Figure
9-2.

Tip	For	a	review	of	the	various	application	events,	see	the
“Application-level	events”	section	in	Chapter	7.

FIGURE	9-2	Events	are	made	available	after	an	object	is	created.

Any	of	the	events	listed	can	be	captured,	just	as	workbook	and	worksheet
events	were	captured	in	Chapter	7.	The	following	example	uses	the	NewWorkbook
event	to	set	up	footer	information	automatically.	This	code	is	placed	in	the	class
module,	below	the	xlApp	declaration	line	you	just	added:

Click	here	to	view	code	image
Private	Sub	xlApp_NewWorkbook(ByVal	Wb	As	Workbook)

Dim	wks	As	Worksheet

With	Wb

For	Each	wks	In	.Worksheets

wks.PageSetup.LeftFooter	=	"Created	by:	"	&

Application.UserName

wks.PageSetup.RightFooter	=	Now

Next	wks

End	With

End	Sub

The	procedure	placed	in	a	class	module	does	not	run	automatically,	as	events
in	workbook	or	worksheet	modules	would.	An	instance	of	the	class	module	must
be	created,	and	the	Application	object	must	be	assigned	to	the	xlApp	property.
After	that	is	complete,	the	TrapAppEvent	procedure	needs	to	run.	As	long	as	the
procedure	is	running,	the	footer	is	created	on	each	sheet	every	time	a	new
workbook	is	added.	Place	the	following	in	a	standard	module:

Click	here	to	view	code	image
Public	clsAppEvent	As	New	cAppEvents

Sub	TrapAppEvent()

Set	myAppEvent.xlApp	=	Application

End	Sub

Note	The	application	event	trapping	can	be	terminated	by	any
action	that	resets	the	module	level	or	public	variables,	including
editing	code	in	the	VB	Editor.	To	restart	event	trapping,	run	the

procedure	that	creates	the	object	(TrapAppEvent).

In	this	example,	the	public	myAppEvent	declaration	was	placed	in	a	standard
module	with	the	TrapAppEvent	procedure.	To	automate	the	running	of	the	entire
event	trapping,	all	the	modules	could	be	transferred	to	the	Personal.xlsb	and
the	procedure	transferred	to	a	Workbook_Open	event.	In	any	case,	the	Public
declaration	of	myAppEvent	must	remain	in	a	standard	module	so	that	it	can	be
shared	among	modules.

Embedded	chart	events

Preparing	to	trap	embedded	chart	events	is	the	same	as	preparing	to	trap
application	events.	Create	a	class	module,	insert	the	public	declaration	for	a	chart
type,	create	a	procedure	for	the	desired	event,	and	then	add	a	standard	module
procedure	to	initiate	the	trapping.	The	same	class	module	used	for	the
application	event	can	be	used	for	the	embedded	chart	event.

Place	the	following	line	in	the	declaration	section	of	the	class	module:

Click	here	to	view	code	image

Public	WithEvents	xlChart	As	Chart

The	available	chart	events	are	now	viewable	(see	Figure	9-3).

Tip	For	a	review	of	the	various	charts	events,	see	“Embedded	chart
and	chart	sheet	events”	in	Chapter	7.

FIGURE	9-3	The	chart	events	are	available	after	the	chart	type	variable	has	been	declared.

Next	you’ll	create	a	program	to	change	the	chart	scale.	You	need	to	set	up
three	events.	The	primary	event,	MouseDown,	changes	the	chart	scale	with	a	right-
click	or	double-click.	Because	these	actions	also	have	actions	associated	with
them,	you	need	two	more	events,	BeforeRightClick	and	BeforeDoubleClick,
which	prevent	the	usual	action	from	taking	place.

The	following	BeforeDoubleClick	event	prevents	the	normal	result	of	a
double-click	from	taking	place:

Click	here	to	view	code	image
Private	Sub	xlChart_BeforeDoubleClick(ByVal	ElementID

As	Long,	_

ByVal	Arg1	As	Long,	ByVal	Arg2	As	Long,	Cancel	As

Boolean)

Cancel	=	True

End	Sub

The	following	BeforeRightClick	event	prevents	the	normal	result	of	a	right-
click	from	taking	place:

Click	here	to	view	code	image
Private	Sub	xlChart_BeforeRightClick(Cancel	As

Boolean)

Cancel	=	True

End	Sub

Now	that	the	normal	actions	of	the	double-click	and	right-click	have	been
controlled,	MouseDown	rewrites	the	actions	initiated	by	a	right-click	and	double-
click:

Click	here	to	view	code	image
Private	Sub	xlChart_MouseDown(ByVal	Button	As	Long,	_

ByVal	Shift	As	Long,	ByVal	x	As	Long,	ByVal	y	As

Long)

If	Button	=	1	Then	'left	mouse	button

xlChart.Axes(xlValue).MaximumScale	=	_

xlChart.Axes(xlValue).MaximumScale	-	50

End	If

If	Button	=	2	Then	'right	mouse	button

xlChart.Axes(xlValue).MaximumScale	=	_

xlChart.Axes(xlValue).MaximumScale	+	50

End	If

End	Sub

After	the	events	are	set	in	the	class	module,	all	that	is	left	to	do	is	declare	the
variable	in	a	standard	module,	as	follows:

Click	here	to	view	code	image

Public	myChartEvent	As	New	clsEvents

Then	create	a	procedure	that	captures	the	events	on	the	embedded	chart:

Click	here	to	view	code	image
Sub	TrapChartEvent()

Set	myChartEvent.xlChart	=

Worksheets("EmbedChart").	_

ChartObjects("Chart	2").Chart

End	Sub

Creating	a	custom	object

Class	modules	are	useful	for	trapping	events,	but	they	also	are	valuable	because
you	can	use	them	to	create	custom	objects.	When	you	are	creating	a	custom
object,	the	class	module	becomes	a	template	of	the	object’s	properties	and
methods.	To	help	you	understand	this	better,	in	this	section	you	create	an
employee	object	to	track	employee	name,	ID,	hourly	wage	rate,	and	hours
worked.

Insert	a	class	module	and	rename	it	cEmployee.	The	cEmployee	object	has	six
properties	and	one	method.	Properties	are	variables	in	the	object	that	you	can
assign	a	value	to	or	read	a	value	from.	They	can	be	private,	in	which	case	they
are	accessible	only	within	the	class	module	itself,	or	they	can	be	public,	which
means	they’re	available	from	any	module.

At	the	very	top	of	the	class	module,	place	the	following	private	variables.
Notice	that	each	line	begins	with	the	word	Private.	These	variables	will	be	used
only	within	the	class	module	itself.	They	receive	their	values	from	properties	or
functions	within	the	class	module:

Click	here	to	view	code	image
Private	m_employeename	As	String

Private	m_employeeid	As	String

Private	m_employeehourlyrate	As	String

Private	m_employeeweeklyhours	As	String

Private	m_normalhours	As	Double

Private	m_overtimehours	As	Double

Property	Let	procedures	are	used	to	assign	values	to	properties.	By	default,
properties	are	public,	so	you	don’t	actually	have	to	state	that:

Click	here	to	view	code	image
Property	Let	EmployeeName(RHS	As	String)

m_employeename	=	RHS

End	Property

Property	Let	EmployeeID(RHS	As	String)

m_employeeid	=	RHS

End	Property

Property	Let	EmployeeHourlyRate(RHS	As	Double)

m_employeehourlyrate	=	RHS

End	Property

Property	Let	EmployeeWeeklyHours(RHS	As	Double)

m_employeeweeklyhours	=	RHS

m_normalhours	=	WorksheetFunction.Min(40,	RHS)

m_overtimehours	=	WorksheetFunction.Max(0,	RHS	-

40)

End	Property

These	four	objects’	properties	are	writable.	Place	them	after	declaring	the
private	variables.	The	argument,	RHS,	is	the	value	being	assigned	to	the	property,
which	is	then	assigned	to	one	of	the	private	variables.	I	like	to	use	RHS	(Right
Hand	Side—easy	to	remember!)	as	a	common	argument	name	for	consistency,
but	you	can	use	what	you	want.

Property	Get	procedures	are	read-only	properties	of	the	class	module:

Click	here	to	view	code	image
Property	Get	EmployeeName()	As	String

EmployeeName	=	m_employeename

End	Property

Property	Get	EmployeeID()	As	String

EmployeeID	=	m_employeeid

End	Property

Property	Get	EmployeeWeeklyHours()	As	Double

EmployeeWeeklyHours	=	m_employeeweeklyhours

End	Property

Property	Get	EmployeeNormalHours()	As	Double

EmployeeNormalHours	=	m_normalhours

End	Property

Property	Get	EmployeeOverTimeHours()	As	Double

EmployeeOverTimeHours	=	m_overtimehours

End	Property

In	addition	to	three	of	the	properties	you	assign	values	to,	two	more	are
available	to	get	values	from:	EmployeeNormalHours	and
EmployeeOverTimeHours.	EmployeeHourlyRate	is	the	one	property	that	a	value
can	be	written	to	but	not	read	from.	Why?	Imagine	that	you	have	another	routine
that	reads	all	the	values	from	a	database	into	the	program’s	memory.	A
programmer	using	your	class	module	doesn’t	need	to	see	this	raw	data.	Using	the
Get	property,	you	can	control	what	data	the	programmer	can	access	but	still	have
the	data	available	to	the	program.

Note	Property	Set	procedures	are	used	to	assign	an	object	to	a
property.	For	example,	if	you	want	to	create	a	worksheet	property
that	gets	passed	a	worksheet	object,	do	this:

Property	Set	DataWorksheets	(RHS	as	Worksheet)

You	would	use	Get	to	retrieve,	like	this:
Property	Get	DataWorksheets	()	As	Worksheet

Finally,	you	have	the	function	that	becomes	an	object	method:

Click	here	to	view	code	image
Public	Function	EmployeeWeeklyPay()	As	Double

EmployeeWeeklyPay	=	(m_normalhours	*

m_employeehourlyrate)	+	_

(m_overtimehours	*	m_employeehourlyrate	*	1.5)

End	Function

Like	a	normal	function,	it	can	have	arguments,	but	in	this	case,	you’ve
previously	set	all	the	variables	it	needs	by	using	Let.

You	also	can	use	subs	in	class	modules.	In	this	case,	a	function	is	used
because	you	want	to	return	a	value.	But	if	you	want	to	do	an	action,	like

Range.Cut,	then	you	use	a	sub.

The	object	is	now	complete.	The	next	step	is	to	use	the	object	in	an	actual
program.

Using	a	custom	object

When	a	custom	object	is	properly	configured	in	a	class	module,	it	can	be
referenced	from	other	modules.	To	access	the	properties	and	functions	of	the
object,	first	declare	a	variable	as	the	class	module	and	then	set	a	new	instance	of
the	object.	You	can	then	write	the	code,	referencing	the	custom	object	and	taking
advantage	of	IntelliSense	to	access	its	properties	and	methods,	as	shown	in	see
Figure	9-4.

The	following	example	uses	the	custom	object	created	in	the	previous
section,	“Creating	a	custom	object.”	It	sets	the	values	of	the	properties	and	then
generates	a	message	box,	retrieving	some	of	those	values	and	accessing	the
method	you	created:

Click	here	to	view	code	image
Sub	SingleEmployeePayTime()

'declare	a	variable	as	the	class	module/object

Dim	clsEmployee	As	cEmployee

'set	a	new	instance	to	the	object

Set	clsEmployee	=	New	cEmployee

With	clsEmployee

.EmployeeName	=	"Tracy	Syrstad"

.EmployeeID	=	"1651"

.EmployeeHourlyRate	=	35.15

.EmployeeWeeklyHours	=	45

MsgBox	.EmployeeName	&	Chr(10)	&	Chr(9)	&	_

"Normal	Hours:	"	&	.EmployeeNormalHours	&	Chr(10)

&	Chr(9)	&	_

"OverTime	Hours:	"	&	.EmployeeOverTimeHours	&

Chr(10)	&	Chr(9)	&	_

"Weekly	Pay	:	$"	&	.EmployeeWeeklyPay

End	With

End	Sub

FIGURE	9-4	The	properties	and	method	of	the	custom	object	are	just	as	easily	accessible	as	they	are
for	standard	objects.

Using	collections
A	collection	holds	a	group	of	similar	items.	For	example,	Worksheet	is	a	member
of	the	Worksheets	collection.	You	can	add,	remove,	count,	and	refer	to	each
worksheet	in	a	workbook	by	its	item	number.

Creating	a	collection

To	use	a	collection,	you	first	declare	a	variable	as	the	collection	and	then	set	a
new	instance	of	the	collection.	You	can	then	use	the	Add	method	to	add	items	to
it:

Click	here	to	view	code	image
CollectionName.Add	Item,	Key,	Before,	After

The	Add	method	has	four	arguments.	Item	is	whatever	information	the
collection	holds.	It	can	be	anything	from	a	string	to	an	object	such	as	a
worksheet.	The	second	value,	which	is	optional,	is	Key.	It	is	used	to	look	up	a
member	of	the	collection.	It	must	be	a	unique	string	value.	You	can	use	Key	to
directly	reference	an	item	in	a	collection.	If	you	don’t	know	Key,	then	the	only
way	to	find	an	item	in	a	collection	is	to	loop	through	the	collection.

Before	and	After	are	optional	arguments	you	can	use	to	position	an	item	in
a	collection.	You	can	refer	to	the	key	or	position	of	the	item.	The	following
example	creates	a	collection	with	two	items.	The	first	item	is	added	with	a	key;
the	second	item	is	not.

Click	here	to	view	code	image
Dim	myFirstCollection	as	Collection

Set	MyFirstCollection	=	New	Collection

MyFirstCollection.Add	Item1,	"Key1"	'with	a	key

MyFirstCollection.Add	Item2	'without	a	key

Notice	that	the	key	is	a	string.	If	you	want	to	use	numbers	for	the	key,	then
force	the	number	to	be	treated	as	a	string,	like	this:

Click	here	to	view	code	image
MyFirstCollection.Add	Item3,	CStr(1)

Creating	a	collection	in	a	standard	module

By	setting	up	a	collection	in	a	standard	module,	you	can	access	the	four	default
collection	methods:	Add,	Remove,	Count,	and	Item.	The	following	example	reads
a	list	of	employees	from	a	sheet	into	an	array.	It	then	loops	through	the	array,
supplying	each	property	of	the	custom	object	with	a	value,	and	places	each
record	in	the	collection,	as	shown	in	see	Figure	9-5.

FIGURE	9-5	A	collection	can	hold	any	type	of	variable,	including	a	custom	object’s	properties.

Note	This	example	stores	a	custom	object	in	a	collection.	As	I	said

earlier,	the	value	a	collection	holds	can	be	anything,	including	the
multiple	properties	of	a	class	module.	Technically,	a	single	record
of	the	collection	holds	just	one	value:	the	custom	object.	But	the

custom	object	itself	consists	of	multiple	values.

Click	here	to	view	code	image
Sub	EmployeesPayUsingCollection()

Dim	colEmployees	As	Collection	'declare	a	variable	for

the	collection

Dim	clsEmployee	As	cEmployee

Dim	arrEmployees

Dim	tblEmployees	As	ListObject

Dim	i	As	Long

Dim	FullName	As	String

Set	colEmployees	=	New	Collection	'set	a	new	instance

of	the	collection

Set	tblEmployees	=	Worksheets("Employee

Info").ListObjects("tblEmployees")

arrEmployees	=	tblEmployees.DataBodyRange

'loop	through	each	employee

'assign	values	to	the	custom	object	properties

'then	place	the	custom	object	into	the	collection

'using	the	employee	id	as	the	unique	key

For	i	=	1	To	UBound(arrEmployees)

Set	clsEmployee	=	New	cEmployee

With	clsEmployee

.EmployeeName	=	arrEmployees(i,	1)

.EmployeeID	=	arrEmployees(i,	2)

.EmployeeHourlyRate	=	arrEmployees(i,	3)

.EmployeeWeeklyHours	=	arrEmployees(i,	4)

colEmployees.Add	clsEmployee,	CStr(.EmployeeID)

Click	here	to	view	code	image
End	With

Next	i

'retrieve	information	from	the	custom	object	in	the

collection

'specifically,	the	second	member	of	the	collection

Set	clsEmployee	=	colEmployees(2)

MsgBox	"Number	of	Employees:	"	&	colEmployees.Count	&

Chr(10)	&	_

"Employee(2)	Name:	"	&	clsEmployee.EmployeeName

'retrieve	information	using	the	key

FullName	=	colEmployees("1651").EmployeeName

MsgBox	Left(FullName,	Len(FullName)	-	InStr(1,

FullName,	"	")	-	2)	&	_

"'s	Weekly	Pay:	$"	&

colEmployees("1651").EmployeeWeeklyPay

Set	colEmployees	=	Nothing

Set	tblEmployees	=	Nothing

Set	clsEmployee	=	Nothing

End	Sub

The	collection	colEmployees	is	declared	as	a	new	collection,	and	the	record
clsEmployee	is	assigned	as	a	new	object	of	the	class	module	cEmployee.

After	the	object’s	properties	are	given	values,	the	record	clsEmployee	is
added	to	the	collection.	The	second	parameter	of	the	Add	method	applies	a
unique	key	to	the	record,	which,	in	this	case,	is	EmployeeID.	This	allows	a
specific	record	to	be	accessed	quickly,	as	shown	by	the	second	message	box
(colEmployees(“1651”).EmployeeWeeklyPay)	(see	Figure	9-6).

FIGURE	9-6	Individual	records	in	a	collection	can	be	easily	accessed.

Creating	a	collection	in	a	class	module

When	you	create	a	collection	in	a	class	module,	the	innate	methods	of	the
collection	(Add,	Remove,	Count,	Item)	cannot	be	accessed	outside	the	class

module;	you	need	to	create	your	own	methods	and	properties.	The	advantages	of
creating	a	collection	in	a	class	module	are	the	following:

The	entire	code	is	in	one	module.

You	have	more	control	over	what	is	done	with	the	collection.

You	can	prevent	access	to	the	collection.

Insert	a	new	class	module	for	the	collection	and	rename	it	cEmployees.
Declare	a	private	collection	to	be	used	within	the	class	module:

Click	here	to	view	code	image
Private	AllEmployees	As	New	Collection

Add	the	new	properties	and	methods	required	to	make	the	collection	work.
The	innate	methods	of	the	collection	are	available	within	the	class	module,	and
you	can	use	them	to	create	the	custom	methods	and	properties.

Insert	an	Add	method	for	adding	new	items	to	the	collection:

Click	here	to	view	code	image
Public	Sub	Add(recEmployee	As	clsEmployee)

AllEmployees.Add	recEmployee,

CStr(recEmployee.EmployeeID)

End	Sub

Insert	a	Remove	method	to	remove	a	specific	item	from	the	collection:

Click	here	to	view	code	image
Public	Sub	Remove(myItem	As	Variant)

AllEmployees.Remove	(myItem)

End	Sub

Insert	a	Count	property	to	return	the	number	of	items	in	the	collection:

Click	here	to	view	code	image
Public	Property	Get	Count()	As	Long

Count	=	AllEmployees.Count

End	Property

Insert	an	Items	property	to	return	the	entire	collection:

Click	here	to	view	code	image
Public	Property	Get	Items()	As	Collection

Set	Items	=	AllEmployees

End	Property

Insert	an	Item	property	to	return	a	specific	item	from	the	collection:

Click	here	to	view	code	image
Public	Property	Get	Item(myItem	As	Variant)	As

cEmployee

Set	Item	=	AllEmployees(myItem)

End	Property

Property	Get	is	used	with	Count,	Item,	and	Items	because	these	are	read-
only	properties.	Item	returns	a	reference	to	a	single	member	of	the	collection,
whereas	Items	returns	the	entire	collection	so	that	it	can	be	used	in	For	Each
Next	loops.

After	the	collection	is	configured	in	the	class	module,	you	can	write	a
procedure	in	a	standard	module	to	use	it:

Click	here	to	view	code	image
Sub	EmployeesPayUsingCollection()

'using	a	collection	in	a	class	module

Dim	colEmployees	As	cEmployees

Dim	clsEmployee	As	cEmployee

Dim	arrEmployees

Dim	tblEmployees	As	ListObject

Dim	i	As	Long

Dim	FullName	as	String

Set	colEmployees	=	New	cEmployees	'set	a	new	instance

of	the	collection

Set	tblEmployees	=	Worksheets("Employee

Info").ListObjects("tblEmployees")

Click	here	to	view	code	image

arrEmployees	=	tblEmployees.DataBodyRange

'loop	through	each	employee

'assign	values	to	the	custom	object	properties

'then	place	the	custom	object	into	the	collection

'using	the	employee	id	as	the	unique	key

For	i	=	1	To	UBound(arrEmployees)

Set	clsEmployee	=	New	cEmployee

With	clsEmployee

.EmployeeName	=	arrEmployees(i,	1)

.EmployeeID	=	arrEmployees(i,	2)

.EmployeeHourlyRate	=	arrEmployees(i,	3)

.EmployeeWeeklyHours	=	arrEmployees(i,	4)

'the	key	is	added	by	the	class	module	Add

method

colEmployees.Add	clsEmployee

End	With

Next	i

'retrieve	information	from	the	custom	object	in	the

collection

'specifically,	the	second	member	of	the	collection

Set	clsEmployee	=	colEmployees.Item(2)

MsgBox	"Number	of	Employees:	"	&	colEmployees.Count	&

Chr(10)	&	_

"Employee(2)	Name:	"	&	clsEmployee.EmployeeName

'retrieve	information	using	the	key

FullName	=	colEmployees("1651").EmployeeName

MsgBox	Left(FullName,	Len(FullName)	-	InStr(1,

FullName,	"	")	-	2)	&	_

"'s	Weekly	Pay:	$"	&

colEmployees("1651").EmployeeWeeklyPay

Set	colEmployees	=	Nothing

Set	tblEmployees	=	Nothing

Set	clsEmployee	=	Nothing

End	Sub

This	program	is	not	too	different	from	the	one	used	with	the	standard
collection,	but	there	are	a	few	key	differences:

Instead	of	declaring	colEmployees	as	Collection,	you	declare	it	as	type
cEmployees,	the	new	class	module	collection.

The	array	and	collection	are	filled	the	same	way,	but	the	way	the	records	in
the	collection	are	referenced	has	changed.	When	a	member	of	the
collection,	such	as	employee	record	2,	is	referenced,	the	Item	property	must
be	used.

Using	dictionaries

The	ability	to	use	a	key	to	look	up	values	in	a	collection	is	a	major	plus.	I	often
parallel	collections	and	arrays	to	help	find	information	in	an	array.	For	example,
I	use	the	key	in	the	collection	to	look	up	a	value,	which	is	the	location	of	a
record	in	the	array.

But	a	major	downside	to	collections	is	that	after	you	add	an	item	to	a
collection,	you	can’t	change	it.	So,	if	you	need	the	advantages	of	a	collection	but
also	need	to	change	the	value,	you	should	use	a	dictionary.	A	dictionary	does
everything	a	collection	does	and	more,	but	it	needs	a	little	more	setup	because
it’s	part	of	the	Microsoft	Scripting	Runtime	Library.

Some	of	the	other	differences	between	collections	and	dictionaries	include
the	following:

A	dictionary	requires	a	key.

A	dictionary	key	can	be	any	variable	type	except	for	an	array.

A	dictionary	key	can	be	changed.

You	have	to	use	the	key	to	retrieve	a	value.	You	can’t	use	the	item’s
position.

You	can	change	a	value.

You	can	check	for	the	existence	of	a	key.

In	the	following	example,	which	declares	the	dictionary	using	late	binding,
data	is	placed	into	an	array	and	processed,	using	the	product	name	as	the	key.
The	summed	quantities	are	then	placed	on	the	sheet,	with	the	dictionary	keys	as
labels,	as	shown	in	see	Figure	9-7.

FIGURE	9-7	You	can	use	a	dictionary	to	hold	values	that	could	change	multiple	times	as	the	code
runs.

Tip	See	Chapter	20,	“Automating	Word,”	for	information	on	early
versus	late	binding.

Click	here	to	view	code	image
Sub	UsingADictionary()

Dim	dictData	As	Object

Dim	bItemExists	As	Boolean

Dim	tblSales	As	ListObject

Click	here	to	view	code	image
Dim	arrData,	arrReport,	arrHeaders

Dim	i	As	Long

Dim	rng	As	Range

'create	the	dictionary	object

Set	dictData	=	CreateObject("Scripting.Dictionary")

Set	tblSales	=

Worksheets("Table”).ListObjects("tblSales")

'put	the	data	into	an	array	for	faster	processing

arrData	=	tblSales.DataBodyRange

'loop	through	the	array

For	i	=	1	To	UBound(arrData)

'if	key	exists,	add	to	it

'else	create	and	add	to	it

If	dictData.Exists(arrData(i,	2))	Then

dictData.Item(arrData(i,	2))	=

dictData.Item(arrData(i,	2))	+	_

arrData(i,	5)

Else

dictData.Add	arrData(i,	2),	arrData(i,	5)

End	If

Next	i

'rename	a	key,	just	for	the	heck	of	it

'the	only	way	to	rename	a	key	is	to	know	the	name	of

it

dictData.Key("Tools")	=	"Electrical	Tools"

'the	location	2	rows	beneath	the	table

Set	rng	=

tblSales.Range.Offset(tblSales.Range.Rows.Count	+

2).Resize(1,	1)

'put	the	dictionary	keys	and	values	each	into	an	array

'then	dump	them	on	the	sheet

arrHeaders	=	dictData.Keys

rng.Resize(dictData.Count,	1).Value	=

Application.Transpose(arrHeaders)

arrReport	=	dictData.Items

rng.Offset(,	1).Resize(dictData.Count,	1).Value	=	_

Application.Transpose(arrReport)

Set	dictData	=	Nothing

Set	tblSales	=	Nothing

Set	rng	=	Nothing

End	Sub

The	Exists	method	allows	you	to	check	for	the	existence	of	a	key.	If	the	key
exists,	True	is	returned;	otherwise,	False	is	returned.	You	can	rename	a	key
simply	by	assigning	a	new	name	to	it	(dictData.Key(“Tools”)	=	“Electrical
Tools”).	Dictionaries	also	have	two	methods,	Keys	and	Items,	that	allow	you	to
dump	those	values	into	an	array.	Collections	do	not	include	those	methods.

Case	study:	Minimizing	duplicate	code	for	ActiveX	labels
Say	that	you	have	a	complex	sheet	that	requires	a	way	for	the	user	to	get
help.	You	can	place	the	information	in	comment	boxes,	but	they	are	not
very	obvious,	especially	to	novice	Excel	users.	Another	option	is	to	create
help	buttons.

To	do	this,	create	small	ActiveX	labels	(not	Form	Control	labels)	with	a
question	mark	in	each	one	on	the	worksheet.	To	get	the	button-like
appearance	shown	in	Figure	9-8,	set	the	SpecialEffect	property	of	the
labels	to	Raised	and	darken	the	BackColor.	Place	one	label	per	row.	On
another	sheet,	enter	the	help	text	you	want	to	appear	when	the	label	is
clicked.	Ensure	that	the	label	name	number	matches	the	row	in	which	the
text	is	placed.	For	example,	if	the	label	name	is	Label1,	place	the
corresponding	text	in	cell	A1;	if	the	label	name	is	label51,	place	the	text	in
cell	A51.

	

FIGURE	9-8	You	can	attach	help	buttons	to	the	sheet	and	enter	help	text	on	another	sheet,
which	you	can	later	hide.

Create	a	simple	userform	with	a	label	and	a	close	button.	(see	Chapter	10,
“Userforms—An	Introduction,”	for	more	information	on	userforms.)
Rename	the	form	HelpForm,	the	button	CloseHelp,	and	the	label	HelpText.
Size	the	label	large	enough	to	hold	the	help	text.	Add	the	following	macro,
CloseHelp_Click,	behind	the	form	to	hide	it	when	the	button	is	clicked:

Click	here	to	view	code	image
Private	Sub	CloseHelp_Click()

Unload	Me

End	Sub

At	this	point,	you	could	program	each	button	separately.	If	you	have	many
buttons,	this	would	be	tedious.	And	if	you	ever	need	to	add	more	buttons,
you	will	have	to	update	the	code.	Or	you	could	create	a	class	module	and	a
collection	that	will	automatically	include	all	the	help	buttons	on	the	sheet,
now	and	in	the	future.

Insert	a	class	module	named	cLabel.	You	need	a	public	variable,
HelpLabel,	to	capture	the	control	events:

Click	here	to	view	code	image
Public	WithEvents	HelpLabel	As	MSForms.Label

In	addition,	you	need	a	method	of	finding	and	displaying	the	corresponding
help	text.	The	following	code	extracts	the	number	at	the	end	of	the	label
name	and	uses	that	to	find	the	corresponding	row	on	the	sheet	with	the	help
text:

Click	here	to	view	code	image
Private	Sub	HelpLabel_Click()

Dim	RowNumber	As	Long

RowNumber	=	Right(HelpLabel.Name,

Len(HelpLabel.Name)	-	5)

If	HelpLabel.Caption	=	"?"	Then

HelpForm.Caption	=	"Label	in	cell	"	&	"A"	&

RowNumber

HelpForm.HelpText.Caption	=	Worksheets("Help

Text").Cells(RowNumber,	1)

HelpForm.Show

End	If

End	Sub

In	the	ThisWorkbook	module,	declare	a	global	collection	at	the	top	of	the
module.	Then	create	a	Workbook_Open	procedure	to	create	a	collection	of
the	labels	in	the	workbook:

Click	here	to	view	code	image
Dim	colLabels	As	Collection

Sub	Workbook_Open()

Dim	wks	As	Worksheet

Dim	clsLbl	As	cLabel

Dim	OleObj	As	OLEObject

Set	colLabels=	New	Collection

For	Each	wks	In	ThisWorkbook.Worksheets

For	Each	OleObj	In	wks.OLEObjects

If	OleObj.OLEType	=	xlOLEControl	Then

'in	case	you	have	other	controls	on	the	sheet,

include	only	the	labels

If	TypeName(OleObj.Object)	=	"Label"	Then

Set	clsLbl	=	New	cLabel

Set	clsLbl.HelpLabel	=	OleObj.Object

colLabels.Add	clsLbl

End	If

End	If

Next	OleObj

Next	wks

End	Sub

Run	Workbook_Open	to	create	the	collection.	Click	a	label	on	the	worksheet.
The	corresponding	help	text	appears	in	the	help	form,	as	shown	in	see
Figure	9-9.

FIGURE	9-9	Help	text	is	only	a	click	away.

Using	user-defined	types	to	create	custom	properties
User-defined	types	(UDTs)	provide	some	of	the	power	of	a	custom	object,	but
without	the	need	for	a	class	module.	A	class	module	allows	for	the	creation	of
custom	properties	and	methods,	whereas	a	UDT	allows	only	custom	properties.
However,	sometimes	that	is	all	you	need.

A	UDT	is	declared	with	a	Type...End	Type	statement.	It	can	be	public	or
private.	A	name	that	is	treated	like	an	object	is	given	to	the	UDT.	Within	Type,
individual	variables	are	declared	that	become	the	properties	of	the	UDT.

Within	a	procedure,	a	variable	of	the	custom	type	is	defined.	When	that
variable	is	used,	the	properties	are	available,	just	as	they	are	in	a	custom	object
(see	Figure	9-10).

FIGURE	9-10	The	properties	of	a	UDT	are	available	as	they	are	in	a	custom	object.

The	following	example	uses	two	UDTs	to	summarize	a	report	of	product
styles	in	various	stores.	The	first	UDT	consists	of	properties	for	each	product
style:

Click	here	to	view	code	image
Public	Type	Style

StyleName	As	String

Price	As	Single

UnitsSold	As	Long

UnitsOnHand	As	Long

End	Type

The	second	UDT	consists	of	the	store	name	and	an	array	whose	type	is	the
first	UDT:

Click	here	to	view	code	image
Public	Type	Store

ID	As	String

Styles()	As	Style

End	Type

After	the	UDTs	are	established,	the	main	program	is	written.	Only	a	variable
of	the	second	UDT	type,	Store,	is	needed	because	that	type	contains	the	first
type,	Style	(see	Figure	9-11).	However,	all	the	properties	of	the	UDTs	are	easily
available.	In	addition,	with	the	use	of	the	UDT,	the	various	variables	are	easy	to
remember—they	are	only	a	dot	(.)	away.	Here	is	the	main	program:

Click	here	to	view	code	image
Sub	UDTMain()

Dim	ThisStore	As	Long,	ThisStyle	As	Long

Dim	CurrRow	As	Long,	i	As	Long

Dim	TotalDollarsSold	As	Double,	TotalDollarsOnHand	As

Double

Dim	TotalUnitsSold	As	Long,	TotalUnitsOnHand	As	Long

Dim	StoreID	As	String

Dim	tblStores	As	ListObject

Dim	arrStores	'to	hold	the	data	from	the	table

ReDim	Stores(0	To	0)	As	Store	'The	UDT	is	declared	as

the	outer	array

Set	tblStores	=	Worksheets("Sales

Data").ListObjects("tblStores")

'ensure	data	is	sorted	by	name

Click	here	to	view	code	image
With	tblStores

.Sort.SortFields.Add

.ListColumns(1).DataBodyRange,	_

xlSortOnValues,	xlAscending

.Sort.Apply

.Sort.SortFields.Clear

End	With

'put	the	data	into	an	array	so	it's	faster	to	process

arrStores	=	tblStores.DataBodyRange

'The	following	For	loop	fills	both	arrays.

'The	outer	array	is	filled	with	the

'store	name	and	an	inner	array	consisting	of	product

details.

'To	accomplish	this,	the	store	name	is	tracked,	and

when	it	changes,

'the	outer	array	is	expanded.

'The	inner	array	for	each	outer	array	expands	with

each	new	product

For	i	=	LBound(arrStores)	To	UBound(arrStores)

StoreID	=	arrStores(i,	1)

'Checks	whether	this	is	the	first	entry	in	the

outer	array

If	LBound(Stores)	=	0	Then

ThisStore	=	1

ReDim	Stores(1	To	1)	As	Store

Stores(1).ID	=	StoreID

ReDim	Stores(1).Styles(0	To	0)	As	Style

Else

'if	it's	not	the	first	entry,	see	if	the	store

has	already	been	added

For	ThisStore	=	LBound(Stores)	To

UBound(Stores)

'the	store	has	already	been	added;	no	need

to	add	again

If	Stores(ThisStore).ID	=	StoreID	Then	Exit

For

Next	ThisStore

'the	store	hasn't	been	added,	so	add	it	now

If	ThisStore	>	UBound(Stores)	Then

ReDim	Preserve	Stores(LBound(Stores)	To_

UBound(Stores)	+	1)	As	Store

Stores(ThisStore).ID	=	StoreID

ReDim	Stores(ThisStore).Styles(0	To	0)	As

Style

End	If

End	If

'now	add	the	store	details

With	Stores(ThisStore)

'check	if	the	style	already	exists	in	the

inner	array

If	LBound(.Styles)	=	0	Then

ReDim	.Styles(1	To	1)	As	Style

Else

ReDim	Preserve	.Styles(LBound(.Styles)	To	_

UBound(.Styles)	+	1)	As	Style

End	If

'add	the	rest	of	the	details	for	the	Style

With	.Styles(UBound(.Styles))

.StyleName	=	arrStores(i,	2)

.Price	=	arrStores(i,	3)

.UnitsSold	=	arrStores(i,	4)

.UnitsOnHand	=	arrStores(i,	5)

End	With

End	With

Next	i

Click	here	to	view	code	image
'Create	a	report	on	a	new	sheet

Sheets.Add

Range("A1").Resize(,	5).Value	=	Array("Store	ID",

"Units	Sold",	_

"Dollars	Sold",	"Units	On	Hand",	"Dollars	On

Hand")

CurrRow	=	2

'loop	through	the	outer	array

For	ThisStore	=	LBound(Stores)	To	UBound(Stores)

With	Stores(ThisStore)

TotalDollarsSold	=	0

TotalUnitsSold	=	0

TotalDollarsOnHand	=	0

TotalUnitsOnHand	=	0

'Go	through	the	inner	array	of	product	styles

within	the	array

'of	stores	to	summarize	information

For	ThisStyle	=	LBound(.Styles)	To

UBound(.Styles)

With	.Styles(ThisStyle)

TotalDollarsSold	=	TotalDollarsSold	+

.UnitsSold	*.Price

TotalUnitsSold	=	TotalUnitsSold	+

.UnitsSold

TotalDollarsOnHand	=	TotalDollarsOnHand	+

.UnitsOnHand	*	_

.Price

TotalUnitsOnHand	=	TotalUnitsOnHand	+

.UnitsOnHand

End	With

Next	ThisStyle

Range("A"	&	CurrRow).Resize(,	5).Value	=	_

Array(.ID,	TotalUnitsSold,	TotalDollarsSold,

_

TotalUnitsOnHand,	TotalDollarsOnHand)

End	With

CurrRow	=	CurrRow	+	1

Next	ThisStore

Set	tblStores	=	Nothing

End	Sub

FIGURE	9-11	The	Stores	variable	is	of	type	Store,	which	includes	the	Styles	variable	array.	This
allows	you	to	organize	multiple	pieces	of	data	in	a	couple	variables.

Next	steps
Chapter	10	introduces	the	tools	you	can	use	to	interact	with	users.	You’ll	find	out
how	to	prompt	people	for	information	to	use	in	your	code,	warn	them	of	illegal
actions,	and	provide	them	with	an	interface	to	work	with	other	than	the
spreadsheet.

CHAPTER	10
Userforms:	An	introduction

In	this	chapter,	you	will:

Use	an	input	box	to	request	user	input

Use	a	message	box	to	display	information

Learn	how	to	create	a	userform

Add	controls	to	the	userform

Verify	a	required	field	has	an	entry

Prevent	a	user	from	closing	a	form

Prompt	the	user	to	select	a	file

Userforms	enable	you	to	display	information	and	allow	the	user	to	input
information.	Using	InputBox	and	MsgBox	controls	are	simple	ways	of	doing
this.	You	can	use	the	userform	controls	in	the	VB	Editor	to	create	forms	that	are
more	complex.

This	chapter	covers	simple	user	interfaces	using	input	boxes	and	message
boxes	and	the	basics	of	creating	userforms	in	the	VB	Editor.

Note	To	learn	more	about	advanced	userform	programming,	see
Chapter	22,	“Advanced	userform	techniques.”

Input	boxes
The	InputBox	function	is	used	to	create	a	basic	interface	element	that	requests
input	from	the	user	before	the	program	can	continue.	You	can	configure	the
prompt,	the	title	for	the	window,	a	default	value,	the	window	position,	and	user
help	files.	The	only	two	buttons	provided	are	the	OK	and	Cancel	buttons.	The

returned	value	is	a	string.

The	following	code	asks	the	user	for	the	number	of	months	to	be	averaged.
Figure	10-1	shows	the	resulting	input	box.

Click	here	to	view	code	image
AveMos	=	InputBox(Prompt:="Enter	the	number	"	&	"	of

months	to	average",	_

Title:="Enter	Months",	Default:="3")

FIGURE	10-1	An	input	box	can	be	simple	but	still	effective.

Tip	If	you	need	to	force	the	entry	of	a	variable	type	other	than
string,	use	Application.InputBox.	This	method	allows	you	to
specify	the	return	data	type,	including	a	formula,	number,	or	cell

reference.

Message	boxes
The	MsgBox	function	creates	a	message	box	that	displays	information	and	waits
for	the	user	to	click	a	button	before	continuing.	Whereas	InputBox	has	only	OK
and	Cancel	buttons,	the	MsgBox	function	enables	you	to	choose	from	several
configurations	of	buttons,	including	Yes,	No,	OK,	and	Cancel.	You	also	can
configure	the	prompt,	the	window	title,	and	help	files.	The	following	code
produces	a	prompt	to	find	out	whether	the	user	wants	to	continue.	You	use	a
Select	Case	statement	to	continue	the	program	with	the	appropriate	action:

Click	here	to	view	code	image
myTitle	=	"Report	Finalized"

MyMsg	=	"Do	you	want	to	save	changes	and	close?"

Response	=	MsgBox(myMsg,	vbExclamation	+

vbYesNoCancel,	myTitle)

Select	Case	Response

Case	Is	=	vbYes

ActiveWorkbook.Close	SaveChanges:=True

Case	Is	=	vbNo

ActiveWorkbook.Close	SaveChanges:=False

Case	Is	=	vbCancel

Exit	Sub

End	Select

Figure	10-2	shows	the	resulting	customized	message	box.

FIGURE	10-2	The	MsgBox	function	is	used	to	display	information	and	obtain	a	basic	response	from
the	user.

Tip	You	can	combine	an	icon	option	and	a	buttons	option	for	the
buttons	argument	by	separating	them	with	the	plus	(+)	symbol.	In
the	previous	example,vbExclamation	+	vbYesNoCancel	instructed

Excel	to	show	the	exclamation	symbol	and	the	Yes,	No,	and	Cancel	buttons.

Creating	a	userform
Userforms	combine	the	capabilities	of	InputBox	and	MsgBox	to	create	a	more
efficient	way	of	interacting	with	the	user.	For	example,	rather	than	have	the	user
fill	out	personal	information	on	a	sheet,	you	can	create	a	userform	that	prompts
for	the	required	data	(see	Figure	10-3).

FIGURE	10-3	Create	a	custom	userform	to	get	more	information	from	the	user.

Insert	a	userform	in	the	VB	Editor	by	selecting	Insert,	UserForm	from	the
main	menu.	When	a	UserForm	module	is	added	to	the	Project	Explorer,	a	blank
form	appears	in	the	window	where	your	code	usually	is,	and	the	Controls
toolbox	appears.

To	change	the	codename	of	the	userform,	select	the	form	and	change	the
(Name)	property.	The	codename	of	a	userform	is	used	to	refer	to	the	form,	as
shown	in	the	following	sections.	You	can	resize	a	userform	by	grabbing	and
dragging	the	handles	on	its	right	side,	bottom	edge,	or	lower-right	corner.	To	add
controls	to	the	form,	click	the	desired	control	in	the	toolbox	and	draw	it	on	the
form.	You	can	move	and	resize	controls	at	any	time.

Note	By	default,	the	toolbox	displays	the	most	common	controls.
To	access	more	controls,	right-click	the	toolbox	and	select
Additional	Controls.	However,	be	careful;	other	users	might	not

have	the	same	additional	controls	as	you	do.	If	you	send	users	a	form	with	a
control	they	do	not	have	installed,	the	program	generates	an	error.

After	you	add	a	control	to	a	form,	you	can	change	its	properties	from	the
Properties	window.	(Or,	if	you	don’t	want	to	set	the	properties	manually	now,
you	can	set	them	later	programmatically.)	If	the	Properties	window	is	not	visible,
you	can	bring	it	up	by	selecting	View,	Properties	Window.	Figure	10-4	shows	the
Properties	window	for	a	text	box.

FIGURE	10-4	Use	the	Properties	window	to	change	the	properties	of	a	control.

Calling	and	hiding	a	userform
A	userform	can	be	called	from	any	module.	The	syntax	FormName.Show	causes	a
form	for	the	user	to	pop	up:

frm_AddEmp.Show

The	Load	method	can	also	be	used	to	call	a	userform	to	place	it	in	memory.	It
allows	a	form	to	be	loaded	while	remaining	hidden:

Load	frm_AddEmp

To	hide	a	userform,	use	the	Hide	method.	When	you	do,	the	form	is	still
active	but	is	hidden	from	the	user.	However,	the	controls	on	the	form	can	still	be
accessed	programmatically:

frm_AddEmp.Hide

The	Unload	method	unloads	a	form	from	memory	and	removes	it	from	the
user’s	view,	which	means	the	form	cannot	be	accessed	by	the	user	or
programmatically:

Unload	Me

TIP	Me	is	a	keyword	that	can	be	used	to	refer	to	the	userform.	It	can
be	used	in	the	code	of	any	control	to	refer	to	itself.

Programming	userforms

The	code	for	a	control	goes	in	the	form’s	module.	Unlike	with	the	other	modules,
double-clicking	the	form’s	module	opens	the	form	in	Design	view.	To	view	the
code,	you	can	right-click	either	the	module	or	the	userform	in	Design	view	and
select	View	Code.

Userform	events

Just	like	a	worksheet,	a	userform	has	events	that	are	triggered	by	actions.	After
the	userform	has	been	added	to	a	project,	the	events	are	available	in	the
Properties	drop-down	menu	at	the	top	right	of	the	code	window	(see	Figure	10-
5);	to	access	them,	select	UserForm	from	the	Object	drop-down	menu	on	the
left.

FIGURE	10-5	Various	events	for	a	userform	can	be	selected	from	the	drop-down	menu	at	the	top	of
the	code	window.

The	available	events	for	userforms	are	described	in	Table	10-1.

TABLE	10-1	Userform	events

Event Description
Activate Occurs	when	a	userform	is	either	loaded	or	shown.	This	event	is	triggered	after	the

Initialize	event.
AddControl Occurs	when	a	control	is	added	to	a	userform	at	runtime.	Does	not	run	at	design	time

or	upon	userform	initialization.
BeforeDragOver Occurs	while	the	user	does	a	drag	and	drop	onto	the	userform.
BeforeDropOrPasteOccurs	right	before	the	user	is	about	to	drop	or	paste	data	into	the	userform.
Click Occurs	when	the	user	clicks	the	userform	with	the	mouse.
DblClick Occurs	when	the	user	double-clicks	the	userform	with	the	mouse.	If	a	click	event	is

also	in	use,	the	double-click	event	will	not	work.
Deactivate Occurs	when	a	userform	is	deactivated.
Error Occurs	when	the	userform	runs	into	an	error	and	cannot	return	the	error	information.
Initialize Occurs	when	the	userform	is	first	loaded,	before	the	Activate	event.
KeyDown Occurs	when	the	user	presses	a	key	on	the	keyboard.
KeyPress Occurs	when	the	user	presses	an	ANSI	key.	An	ANSI	key	is	a	typable	character	such

as	the	letter	A.	An	example	of	a	nontypable	character	is	the	Tab	key.
KeyUp Occurs	when	the	user	releases	a	key	on	the	keyboard.
Layout Occurs	when	the	control	changes	size.
MouseDown Occurs	when	the	user	presses	the	mouse	button	within	the	borders	of	the	userform.
MouseMove Occurs	when	the	user	moves	the	mouse	within	the	borders	of	the	userform.
MouseUp Occurs	when	the	user	releases	the	mouse	button	within	the	borders	of	the	userform.
QueryClose Occurs	before	a	userform	closes.	It	allows	you	to	recognize	the	method	used	to	close	a

formand	have	code	respond	accordingly.
RemoveControl Occurs	when	a	control	is	deleted	from	within	the	userform.
Resize Occurs	when	the	userform	is	resized.
Scroll Occurs	when	a	visible	scrollbar	box	is	repositioned.
Terminate Occurs	after	the	userform	has	been	unloaded.	This	is	triggered	after	QueryClose.
Zoom Occurs	when	the	zoom	value	is	changed.

Programming	controls

To	program	a	control,	highlight	the	control	and	select	View,	Code.	The	footer,
header,	and	default	action	for	the	control	are	entered	in	the	programming	field
automatically.	To	see	the	other	actions	that	are	available	for	a	control,	select	the
control	from	the	Object	drop-down	menu	and	view	the	actions	in	the	Properties
drop-down	menu,	as	shown	in	Figure	10-6.

FIGURE	10-6	You	can	select	various	actions	for	a	control	from	the	VB	Editor	drop-down	menus.

The	controls	are	objects,	like	ActiveWorkbook.	They	have	properties	and
methods	that	depend	on	the	type	of	control.	Most	of	the	programming	for	the
controls	is	done	in	the	form’s	module.	However,	if	another	module	needs	to	refer
to	a	control,	the	parent,	which	is	the	form,	needs	to	be	included	with	the	object.
Here’s	an	example	of	a	button	event	that	closes	the	form:

Click	here	to	view	code	image
Private	Sub	btn_EmpCancel_Click()

Unload	Me

End	Sub

The	preceding	code	can	be	broken	down	into	three	sections.

btn_EmpCancel—Name	given	to	the	control

Click—Action	of	the	control

Unload	Me—Code	behind	the	control,	which,	in	this	case,	is	unloading	the
form

Tip	Change	the	(Name)	property	in	the	control’s	Properties	window
to	rename	a	control	from	the	default	assigned	by	the	editor.

Case	study:	Bug	fix	when	adding	controls	to	an	existing	form
If	you’ve	been	using	a	userform	for	some	time	and	later	try	to	add	a	new
control,	you	might	find	that	Excel	seems	to	get	confused	about	the	control.
You	will	see	that	the	control	is	added	to	the	form,	but	when	you	right-click
the	control	and	select	View	Code,	the	code	module	does	not	seem	to
acknowledge	that	the	control	exists.	The	control	name	is	not	available	in	the
left	drop-down	menu	at	the	top	of	the	code	module.

To	work	around	this	situation,	follow	these	steps:

1.	 Add	all	the	controls	you	need	to	add	to	the	existing	userform.

2.	 In	the	Project	Explorer,	right-click	the	userform	and	select	Export	File.
Select	Save	to	save	the	file	in	the	default	location.

3.	 In	the	Project	Explorer,	right-click	the	userform	and	select	Remove.
Because	you	just	exported	the	userform,	click	No	to	the	question	about
exporting.

4.	 Right-click	anywhere	in	the	Project	Explorer	and	select	Import	File.
Select	the	file	name	that	you	saved	in	step	2.

The	new	controls	are	now	available	in	the	code	window	of	the	userform.

Using	basic	form	controls

Each	control	has	different	events	associated	with	it,	so	you	can	code	what
happens	based	on	the	user’s	actions.	A	table	reviewing	the	control	events	is
available	at	the	end	of	each	of	the	sections	that	follow.

A	label	control	is	used	to	display	text	with	information	for	the	user.

A	text	box	control	is	used	to	get	a	manual	entry	from	the	user.

A	command	button	control	is	used	to	create	a	button	a	user	can	press	to
have	the	program	perform	an	action.

Using	labels,	text	boxes,	and	command	buttons

The	basic	form	shown	in	Figure	10-7	consists	of	labels,	text	boxes,	and
command	buttons.	Using	such	a	form	is	a	simple	yet	effective	method	of
requesting	information	from	the	user.	After	the	text	boxes	have	been	filled	in,	the
user	clicks	OK,	and	your	code	reformats	the	data,	if	needed,	then	adds	the
information	to	a	sheet	(see	Figure	10-8),	as	shown	in	the	following	code:

FIGURE	10-7	You	can	use	a	simple	form	like	this	to	collect	information	from	the	user.

FIGURE	10-8	The	information	from	the	form	is	added	to	the	sheet.

Click	here	to	view	code	image
Private	Sub	btn_EmpOK_Click()

Dim	LastRow	As	Long

Dim	tblEmployees	As	ListObject

Set	tblEmployees	=

Worksheets("Employees").ListObjects("tblEmployees")

With	tblEmployees

	.ListRows.Add	'add	a	new	row

With	.DataBodyRange

LastRow	=	.Rows.Count	'get	the	new	row

.Cells(LastRow,	1).Value	=	tb_EmpName.Value

.Cells(LastRow,	2).Value	=	tb_EmpPosition.Value

	.Cells(LastRow,	3).Value	=

tb_EmpHireDate.Value

End	With

End	With

Set	tblEmployees	=	Nothing

End	Sub

By	changing	the	code	as	shown	in	the	following	sample,	you	can	use	the
same	form	design	to	retrieve	information.	The	following	code	retrieves	the
position	and	hire	date	after	the	employee’s	name	is	entered:

Click	here	to	view	code	image

Private	Sub	btn_EmpOK_Click()

Dim	EmpFound	As	Range

Dim	tblEmployees	As	ListObject

Set	tblEmployees	=

Worksheets("Employees").ListObjects("tblEmployees")

With	tblEmployees.ListColumns("Name").DataBodyRange

	Set	EmpFound	=	.Find(tb_EmpName.Value)

	If	EmpFound	Is	Nothing	Then

Msgbox	("Employee	not	found!")

tb_EmpName.Value	=	""

	Else

With	.Cells(EmpFound.Row	-	1,	1)

tb_EmpPosition	=	.Offset(0,	1)

tb_HireDate	=	.Offset(0,	2)

End	With

	End	If

End	With

Set	EmpFound	=	Nothing

Set	tblEmployees	=	Nothing

End	Sub

EmpFound	returns	the	location	of	the	match	as	it	pertains	to	the	sheet,	not	the
listobject.	To	return	the	correct	location	as	it	pertains	to	the	listobject’s
databodyrange,	subtract	1	from	Emfound.Row.

The	available	events	for	Label,	TextBox,	and	CommandButton	controls	are
described	in	Table	10-2.

TABLE	10-2	Label,	TextBox,	and	CommandButton	control	events

Event Description
AfterUpdate

1 Occurs	after	the	control’s	data	has	been	changed	by	the	user.
BeforeDragOver Occurs	while	the	user	drags	and	drops	data	onto	the	control.
BeforeDropOrPasteOccurs	right	before	the	user	is	about	to	drop	or	paste	data	into	the	control.

BeforeUpdate
1 Occurs	before	the	data	in	the	control	is	changed.

Change
1 Occurs	when	the	value	of	the	control	is	changed.

Click
2 Occurs	when	the	user	clicks	the	control	with	the	mouse.

DblClick Occurs	when	the	user	double-clicks	the	control	with	the	mouse.

DropButtonClick
1 Occurs	when	the	user	presses	F4	on	the	keyboard.	This	is	similar	to	the	drop-down

controlon	the	combo	box,	but	there	is	no	drop-down	feature	on	a	text	box.

Enter
3 Occurs	right	before	the	control	receives	the	focus	from	another	control	on	the	same

user-form.
Error Occurs	when	the	control	runs	into	an	error	and	cannot	return	the	error	information.

Exit
3 Occurs	right	after	the	control	loses	focus	to	another	control	on	the	same	userform.

KeyDown
3 Occurs	when	the	user	presses	a	key	on	the	keyboard.

KeyPress
3 Occurs	when	the	user	presses	an	ANSI	key.	An	ANSI	key	is	a	typable	character	such

as	the	letter	A.	An	example	of	a	nontypable	character	is	the	Tab	key.

KeyUp
3 Occurs	when	the	user	releases	a	key	on	the	keyboard.

MouseDown Occurs	when	the	user	presses	the	mouse	button	within	the	borders	of	the	control.
MouseMove Occurs	when	the	user	moves	the	mouse	within	the	borders	of	the	control.
MouseUp Occurs	when	the	user	releases	the	mouse	button	within	the	borders	of	the	control.

1
TextBox	control	only
2
Label	and	CommandButton	controls
3
TextBox	and	CommandButton	controls

Deciding	whether	to	use	list	boxes	or	combo	boxes	in	forms

You	can	let	users	type	employee	names	to	search	for,	but	what	if	they	misspell	a
name?	You	need	a	way	to	make	sure	that	names	are	typed	correctly.	Which	do
you	use	for	this,	a	list	box	or	a	combo	box?	As	explained	below,	the	two	are
similar,	but	the	combo	box	has	an	additional	feature	that	you	may	or	may	not
need.

A	list	box	displays	a	list	of	values	from	which	the	user	can	choose.

A	combo	box	displays	a	list	of	values	from	which	the	user	can	choose	and
allows	the	user	to	enter	a	new	value.

In	this	case,	when	you	want	to	limit	user	options,	you	should	use	a	list	box	to
list	the	employee	names,	as	shown	in	Figure	10-9.

FIGURE	10-9	You	can	use	a	list	box	to	control	user	input	and	selections.

Use	the	following	Initialize	event	to	fill	the	list	box	with	names:

Click	here	to	view	code	image
Private	Sub	UserForm_Initialize()

Dim	tblEmployees	As	ListObject

Set	tblEmployees	=

Worksheets("Employees").ListObjects("tblEmployees")

Me.lb_EmpName.RowSource	=

tblEmployees.ListColumns(1).DataBodyRange.Address

Set	tblEmployees	=	Nothing

End	Sub

Use	the	Click	event	to	fill	in	the	position	and	hire	date	fields	when	a	name	is
selected:

Click	here	to	view	code	image
Private	Sub	lb_EmpName_Click()

Dim	EmpFound	As	Range

Dim	tblEmployees	As	ListObject

Set	tblEmployees	=

Worksheets("Employees").ListObjects("tblEmployees")

With	tblEmployees.ListColumns("Name").DataBodyRange

Set	EmpFound	=	.Find(lb_EmpName.Value)

With	.Cells(EmpFound.Row	-	1,	1)

tb_EmpPosition.Value	=	.Offset(0,	1)

tb_HireDate.Value	=	.Offset(0,	2)

End	With

End	With

Set	EmpFound	=	Nothing

Set	tblEmployees	=	Nothing

End	Sub

Using	the	MultiSelect	property	of	a	list	box

List	boxes	have	a	MultiSelect	property,	which	enables	the	user	to	select
multiple	items	from	the	choices	in	the	list	box	(see	in	Figure	10-10):

fmMultiSelectSingle—The	default	setting	allows	only	a	single	item
selection	at	a	time.

fmMultiSelectMulti—This	allows	an	item	to	be	deselected	when	it	is
clicked	again;	multiple	items	can	also	be	selected.

fmMultiSelectExtended—This	allows	the	Ctrl	and	Shift	keys	to	be	used	to
select	multiple	items.

If	multiple	items	are	selected,	the	Value	property	cannot	be	used	to	retrieve
the	items.	Instead,	check	to	see	whether	the	item	is	selected	and	then	manipulate
it	as	needed,	using	the	following	code:

Click	here	to	view	code	image
Private	Sub	btn_EmpOK_Click()

Dim	LastRow	As	Integer,	i	As	Integer

Dim	tblEmployees	As	ListObject

Set	tblEmployees	=

Worksheets("Employees").ListObjects("tblEmployees")

With	tblEmployees

.ListRows.Add	'add	a	new	row

With	.DataBodyRange

LastRow	=	.Rows.Count	'get	the	new	row

.Cells(LastRow,	1).Value	=	tb_EmpName.Value

For	i	=	0	To	lb_EmpPosition.ListCount	-	1

'if	the	item	is	selected,	add	it	to	the

sheet

If	lb_EmpPosition.Selected(i)	=	True	Then

.Cells(LastRow,	2).Value	=

.Cells(LastRow,	2).Value	&	_

lb_EmpPosition.List(i)	&	","

End	If

Next	i

.Cells(LastRow,	3).Value	=	tb_HireDate.Value

'remove	excess	comma

.Cells(LastRow,	2).Value	=

Left(.Cells(LastRow,	2).Value,	_

Len(.Cells(LastRow,	2).Value)	-	1)

End	With

End	With

Set	tblEmployees	=	Nothing

End	Sub

FIGURE	10-10	The	MultiSelect	property	enables	the	user	to	select	multiple	items	from	a	list	box.

The	items	in	a	list	box	start	counting	at	zero.	For	this	reason,	if	you	use	the
ListCount	property,	you	must	subtract	one	from	the	result:

Click	here	to	view	code	image

For	i	=	0	To	lb_EmpPosition.ListCount	-	1

The	available	events	for	ListBox	controls	and	ComboBox	controls	are
described	in	Table	10-3.

TABLE	10-3	ListBox	and	ComboBox	control	events

Event Description
AfterUpdate Occurs	after	the	control’s	data	has	been	changed	by	the	user.
BeforeDragOver Occurs	while	the	user	drags	and	drops	data	onto	the	control.
BeforeDropOrPasteOccurs	right	before	the	user	is	about	to	drop	or	paste	data	into	the	control.
BeforeUpdate Occurs	before	the	data	in	the	control	is	changed.
Change Occurs	when	the	value	of	the	control	is	changed.
Click Occurs	when	the	user	selects	a	value	from	the	list	box	or	combo	box.
DblClick Occurs	when	the	user	double-clicks	the	control	with	the	mouse.

DropButtonClick
1 Occurs	when	the	drop-down	menu	appears	after	the	user	clicks	the	drop-down	arrow

of	thecombo	box	or	presses	F4	on	the	keyboard.
Enter Occurs	right	before	the	control	receives	the	focus	from	another	control	on	the	same

user-form.
Error Occurs	when	the	control	runs	into	an	error	and	can’t	return	the	error	information.
Exit Occurs	right	after	the	control	loses	focus	to	another	control	on	the	same	userform.
KeyDown Occurs	when	the	user	presses	a	key	on	the	keyboard.
KeyPress Occurs	when	the	user	presses	an	ANSI	key.	An	ANSI	key	is	a	typable	character	such

as	the	letter	A.	An	example	of	a	nontypable	character	is	the	Tab	key.
KeyUp Occurs	when	the	user	releases	a	key	on	the	keyboard.
MouseDown Occurs	when	the	user	presses	the	mouse	button	within	the	borders	of	the	control.
MouseMove Occurs	when	the	user	moves	the	mouse	within	the	borders	of	the	control.
MouseUp Occurs	when	the	user	releases	the	mouse	button	within	the	borders	of	the	control.

1	ComboBox	control	only

Adding	option	buttons	to	a	userform

Option	buttons	are	similar	to	check	boxes	in	that	they	can	be	used	to
make	selections.	However,	unlike	check	boxes,	option	buttons	can	be
configured	to	allow	only	one	selection	out	of	a	group.

Using	the	Frame	tool,	draw	a	frame	to	separate	the	next	set	of	controls
from	the	other	controls	on	the	userform.	The	frame	is	used	to	group
option	buttons	together,	as	shown	in	Figure	10-11.

FIGURE	10-11	You	can	use	a	frame	to	group	option	buttons	together.

Option	buttons	have	a	GroupName	property.	If	you	assign	the	same	group
name,	Buildings,	to	a	set	of	option	buttons,	you	force	them	to	act	collectively,	as
a	toggle,	so	that	only	one	button	in	the	set	can	be	selected.	Selecting	an	option
button	automatically	deselects	the	other	buttons	in	the	same	group	or	frame.	To
prevent	this	behavior,	either	leave	the	GroupName	property	blank	or	enter	a
unique	name	for	each	option	button.

Note	For	users	who	prefer	to	select	the	option	button’s	label	rather
than	the	button	itself,	create	a	separate	label	and	add	code	to	the
label,	like	this,	to	trigger	the	option	button:

Click	here	to	view	code	image
Private	Sub	Lbl_Bldg1_Click()

Obtn_Bldg1.Value	=	True

End	Sub

The	available	events	for	OptionButton	controls	and	Frame	controls	are
described	in	Table	10-4.

TABLE	10-4	OptionButton	and	Frame	control	events

Event Description
AfterUpdate

1 Occurs	after	the	control’s	data	has	been	changed	by	the	user.

AddControl
2 Occurs	when	a	control	is	added	to	a	frame	on	a	form	at	runtime.	Does	not	run	at	design

timeor	upon	userform	initialization.
BeforeDragOver Occurs	while	the	user	does	a	drag	and	drop	onto	the	control.
BeforeDropOrPasteOccurs	right	before	the	user	is	about	to	drop	or	paste	data	into	the	control.

BeforeUpdate
1 Occurs	before	the	data	in	the	control	is	changed.

Change
1 Occurs	when	the	value	of	the	control	is	changed.

Click Occurs	when	the	user	clicks	the	control	with	the	mouse.
DblClick Occurs	when	the	user	double-clicks	the	control	with	the	mouse.
Enter Occurs	right	before	the	control	receives	the	focus	from	another	control	on	the	same

user-form.
Error Occurs	when	the	control	runs	into	an	error	and	cannot	return	the	error	information.
Exit Occurs	right	after	the	control	loses	focus	to	another	control	on	the	same	userform.
KeyDown Occurs	when	the	user	presses	a	key	on	the	keyboard.
KeyPress Occurs	when	the	user	presses	an	ANSI	key.	An	ANSI	key	is	a	typable	character	such

as	the	letter	A.	An	example	of	a	nontypable	character	is	the	Tab	key.
KeyUp Occurs	when	the	user	releases	a	key	on	the	keyboard.

Layout
2 Occurs	when	the	frame	changes	size.

MouseDown Occurs	when	the	user	presses	the	mouse	button	within	the	borders	of	the	control.
MouseMove Occurs	when	the	user	moves	the	mouse	within	the	borders	of	the	control.
MouseUp Occurs	when	the	user	releases	the	mouse	button	within	the	borders	of	the	control.

RemoveControl
2 Occurs	when	a	control	is	deleted	from	within	the	frame	control.

Scroll
2 Occurs	when	the	scrollbar	box,	if	visible,	is	repositioned.

Zoom
2 Occurs	when	the	zoom	value	is	changed.

1	OptionButton	control	only
2	Frame	control	only

Adding	graphics	to	a	userform

A	list	on	a	form	can	be	even	more	helpful	if	a	corresponding	graphic	is
added	to	the	form.	The	following	code	displays	a	photograph
corresponding	to	the	selected	employee	from	the	list	box:

Click	here	to	view	code	image

Private	Sub	lb_EmpName_Change()

Dim	EmpFound	As	Range

Dim	tblEmployees	As	ListObject

Set	tblEmployees	=

Worksheets("Employees").ListObjects("tblEmployees")

With	tblEmployees

Set	EmpFound	=	.ListColumns("Name").	_

DataBodyRange.Find(lb_EmpName.Value)

If	EmpFound	Is	Nothing	Then

MsgBox	("Employee	not	found!")

lb_EmpName.Value	=	""

Exit	Sub

Else

With	.DataBodyRange.Cells(EmpFound.Row	-	1,	_

.ListColumns("Name").Index)

tb_EmpPosition	=	.Offset(0,	1)

tb_HireDate	=	.Offset(0,	2)

On	Error	Resume	Next

Img_Employee.Picture	=	LoadPicture	_

(ThisWorkbook.Path	&	"\"	&	EmpFound.Value

&	".jpg")

On	Error	GoTo	0

End	With

End	If

End	With

Set	EmpFound	=	Nothing

Set	tblEmployees	=	Nothing

End	Sub

The	available	events	for	Graphic	controls	are	described	in	Table	10-5.

TABLE	10-5	Graphic	control	events

Event Description
BeforeDragOver Occurs	while	the	user	drags	and	drops	data	onto	the	control.
BeforeDropOrPaste Occurs	right	before	the	user	is	about	to	drop	or	paste	data	into	the	control.
Click Occurs	when	the	user	clicks	the	image	with	the	mouse.

DblClick Occurs	when	the	user	double-clicks	the	image	with	the	mouse.
Error Occurs	when	the	control	runs	into	an	error	and	can’t	return	the	error	information.
MouseDown Occurs	when	the	user	presses	the	mouse	button	within	the	borders	of	the	image.
MouseMove Occurs	when	the	user	moves	the	mouse	within	the	borders	of	the	image.
MouseUp Occurs	when	the	user	releases	the	mouse	button	within	the	borders	of	the	control.

Using	a	spin	button	on	a	userform

In	the	example	we’ve	been	working	with,	the	Hire	Date	field	allows	the
user	to	enter	the	date	in	any	format,	such	as	1/1/18	or	January	1,	2018.

This	possible	inconsistency	can	create	problems	later	on,	if	you	need	to	use	or
search	for	dates.	The	solution?	Force	users	to	enter	dates	in	a	unified	manner.

Spin	buttons	allow	the	user	to	increment/decrement	through	a	series	of
numbers.	In	this	way,	the	user	is	forced	to	enter	numbers	rather	than	text.	Draw	a
spin	button	for	a	Month	entry	on	the	form.	In	the	Properties	window,	set	Min	to	1
for	January	and	Max	to	12	for	December.	For	the	Value	property,	enter	1,	the	first
month.	Next,	draw	a	text	box	next	to	the	spin	button.	This	text	box	reflects	the
value	of	the	spin	button.	In	addition,	you	can	use	labels.	Place	the	code	below
behind	the	month’s	spin	button	control:

Click	here	to	view	code	image
Private	Sub	SpBtn_Month_Change()

tb_Month.Value	=	SpBtn_Month.Value

End	Sub

Finish	building	the	form.	Use	a	Min	of	1	and	Max	of	31	for	Day,	or	a	Min	of
1900	and	a	Max	of	2100	for	Year:

Click	here	to	view	code	image
Private	Sub	btn_EmpOK_Click()

Dim	LastRow	As	Integer,	i	As	Integer

Dim	tblEmployees	As	ListObject

Set	tblEmployees	=

Worksheets("Employees").ListObjects("tblEmployees")

If	tb_EmpName.Value	=	""	Then

frm_AddEmp.Hide

MsgBox	("Please	enter	an	Employee	Name")

frm_AddEmp.Show

Exit	Sub

End	If

With	tblEmployees

.ListRows.Add	'add	a	new	row

With	.DataBodyRange

LastRow	=	.Rows.Count	'get	the	new	row

.Cells(LastRow,	1).Value	=	tb_EmpName.Value

For	i	=	0	To	lb_EmpPosition.ListCount	-	1

If	lb_EmpPosition.Selected(i)	=	True	Then

.Cells(LastRow,	2).Value	=	_

.Cells(LastRow,	2).Value	&

lb_EmpPosition.List(i)	&	","

End	If

Next	i

'Concatenate	the	values	from	the	textboxes	to

create	the	date

.Cells(LastRow,	3).Value	=	tb_Month.Value	&

"/"	&	tb_Day.Value	&	_

"/"	&	tb_Year.Value

End	With

End	With

End	Sub

The	available	events	for	SpinButton	controls	are	described	in	Table	10-6.

TABLE	10-6	SpinButton	control	events

Event Description
AfterUpdate Occurs	after	the	control’s	data	has	been	changed	by	the	user.
BeforeDragOver Occurs	while	the	user	drags	and	drops	data	onto	the	control.
BeforeDropOrPasteOccurs	right	before	the	user	is	about	to	drop	or	paste	data	into	the	control.
BeforeUpdate Occurs	before	the	data	in	the	control	is	changed.
Change Occurs	when	the	value	of	the	control	is	changed.
Enter Occurs	right	before	the	control	receives	the	focus	from	another	control	on	the

sameuserform.
Error

Occurs	when	the	control	runs	into	an	error	and	cannot	return	the	error	information.
Exit Occurs	right	after	the	control	loses	focus	to	another	control	on	the	same	userform.
KeyDown Occurs	when	the	user	presses	a	key	on	the	keyboard.
KeyPress Occurs	when	the	user	presses	an	ANSI	key.	An	ANSI	key	is	a	typable	character	such

as	theletter	A.	An	example	of	a	nontypable	character	is	the	Tab	key.
KeyUp Occurs	when	the	user	releases	a	key	on	the	keyboard.
SpinDown Occurs	when	the	user	clicks	the	lower	or	left	spin	button,	decreasing	the	value.
SpinUp Occurs	when	the	user	clicks	the	upper	or	right	spin	button,	increasing	the	value.

Using	the	MultiPage	control	to	combine	forms

The	MultiPage	control	provides	a	neat	way	of	organizing	multiple	forms.
Instead	of	having	one	form	for	personal	employee	information	and	one	for

on-the-job	information,	combine	the	information	into	one	multipage	form,	as
shown	in	Figures	10-12	and	10-13.

FIGURE	10-12	Use	the	MultiPage	control	to	combine	multiple	forms.	This	is	the	first	page	of	the
form.

FIGURE	10-13	This	is	the	second	page	of	the	form.

You	can	modify	a	page	by	right-clicking	the	tab	of	the	page	and	then
choosing	from	the	following	menu	options:	New	Page,	Delete	Page,	Rename,
and	Move.

Tip	Adding	multipage	forms	after	the	rest	of	the	form	has	been
created	is	not	an	easy	task.	Therefore,	plan	multipage	forms	from
the	beginning.	If	you	decide	later	that	you	need	a	multipage	form,

insert	a	new	form,	draw	the	MultiPage	control,	and	copy/paste	the	controls
from	the	other	forms	to	the	new	form.

Note	Do	not	right-click	in	the	tab	area	to	view	the	MultiPage	code.
Instead,	right-click	in	the	MultiPage	control’s	main	area	to	get	the
View	Code	option.

Unlike	many	of	the	other	controls	in	which	the	Value	property	holds	a	user-
entered	or	user-selected	value,	the	MultiPage	control	uses	the	Value	property	to
hold	the	number	of	the	active	page,	starting	at	zero.	For	example,	if	you	have	a
five-page	form	and	want	to	activate	the	fourth	page,	use	this:

MultiPage1.Value	=	3

If	you	have	a	control	you	want	all	the	pages	to	share,	such	as	a	Save,	Cancel,

or	Close	button,	place	the	control	on	the	main	userform	rather	than	on	the
individual	pages,	as	shown	in	Figure	10-14.

FIGURE	10-14	Place	common	controls	such	as	the	Close	button	on	the	main	userform.

The	available	events	for	MultiPage	controls	are	described	in	Table	10-7.

TABLE	10-7	MultiPage	control	events

Event Description
AddControl Occurs	when	a	control	is	added	to	a	page	of	the	MultiPage	control.	Does	not	run	at

designtime	or	upon	userform	initialization.
BeforeDragOver Occurs	while	the	user	drags	and	drops	data	onto	a	page	of	the	MultiPage	control.
BeforeDropOrPasteOccurs	right	before	the	user	is	about	to	drop	or	paste	data	onto	a	page	of	the

MultiPage	control.
Change Occurs	when	the	user	changes	pages	of	a	MultiPage	control.
Click Occurs	when	the	user	clicks	on	a	page	of	the	MultiPage	control.
DblClick Occurs	when	the	user	double-clicks	a	page	of	the	MultiPage	control.
Enter Occurs	right	before	the	MultiPage	control	receives	the	focus	from	another	control	on

the	same	userform.
Error Occurs	when	the	MultiPage	control	runs	into	an	error	and	cannot	return	the	error

informa-tion.
Exit Occurs	right	after	the	MultiPage	control	loses	focus	to	another	control	on	the	same

user-form.
KeyDown Occurs	when	the	user	presses	a	key	on	the	keyboard.
KeyPress Occurs	when	the	user	presses	an	ANSI	key.	An	ANSI	key	is	a	typable	character,	such

as	the	letter	A.	An	example	of	a	nontypable	character	is	the	Tab	key.

KeyUp Occurs	when	the	user	releases	a	key	on	the	keyboard.
Layout Occurs	when	the	MultiPage	control	changes	size.
MouseDown Occurs	when	the	user	presses	the	mouse	button	within	the	borders	of	the	control.
MouseMove Occurs	when	the	user	moves	the	mouse	within	the	borders	of	the	control.
MouseUp Occurs	when	the	user	releases	the	mouse	button	within	the	borders	of	the	control.
RemoveControl Occurs	when	a	control	is	removed	from	a	page	of	the	MultiPage	control.
Scroll Occurs	when	the	scrollbar	box,	if	visible,	is	repositioned.
Zoom Occurs	when	the	zoom	value	is	changed.

Verifying	field	entry
Even	when	users	are	told	to	fill	in	all	the	fields,	they	don’t	always	do	it.	With	a
paper	form,	there	is	no	way	to	force	them	to	do	so.	As	a	programmer,	you	can
ensure	that	all	required	fields	are	filled	in	by	not	allowing	the	user	to	continue
until	all	requirements	are	met.	Here’s	how	to	do	this:

Click	here	to	view	code	image
If	tb_EmpName.Value	=	""	Then

frm_AddEmp.Hide

MsgBox	"Please	enter	an	Employee	Name"

frm_AddEmp.Show

Exit	Sub

End	If

Illegal	window	closing
The	userforms	created	in	the	VB	Editor	are	not	that	different	from	normal	dialog
boxes;	they	also	include	the	X	close	button	in	the	upper-right	corner.	Although
using	the	button	is	not	wrong,	it	can	cause	problems,	depending	on	the	objective
of	the	userform.	In	cases	like	this,	you	might	want	to	control	what	happens	if	the
user	clicks	the	button.	Use	the	QueryClose	event	of	the	userform	to	find	out
what	method	is	used	to	close	the	form	and	code	an	appropriate	action:

Click	here	to	view	code	image
Private	Sub	UserForm_QueryClose(Cancel	As	Integer,

CloseMode	As	Integer)

If	CloseMode	=	vbFormControlMenu	Then

MsgBox	"Please	use	the	OK	or	Cancel	buttons	to

close	the	form",	_

vbCritical

Cancel	=	True	'prevent	the	form	from	closing

End	If

End	Sub

When	you	know	which	method	the	user	used	to	try	to	close	the	form,	you
can	create	a	message	box	similar	to	the	one	shown	in	Figure	10-15	to	warn	the
user	that	the	method	was	illegal.

FIGURE	10-15	You	can	control	what	happens	when	the	user	clicks	the	X	button.

The	QueryClose	event	can	be	triggered	in	four	ways:

vbFormControlMenu—The	user	either	right-clicks	on	the	form’s	title	bar
and	selects	the	Close	command	or	clicks	the	X	in	the	upper-right	corner	of
the	form.

vbFormCode—The	Unload	statement	is	used.

vbAppWindows—Windows	shuts	down.

vbAppTaskManager—The	application	is	shut	down	by	the	Task	Manager.

Getting	a	file	name

One	of	the	most	common	client	interactions	occurs	when	you	need	the	client	to
specify	a	path	and	file	name.	Excel	VBA	has	a	built-in	function	to	display	the
File	Open	dialog	box,	as	shown	in	Figure	10-16.	The	client	browses	to	and
selects	a	file.	When	the	client	clicks	the	Open	button,	instead	of	opening	the	file,
Excel	VBA	returns	the	full	path	and	file	name	to	the	code:

FIGURE	10-16	Use	the	File	Open	dialog	box	to	allow	the	user	to	select	a	file.

Click	here	to	view	code	image
Sub	SelectFile()

'Ask	which	file	to	copy

x	=	Application.GetOpenFilename(_

FileFilter:="Excel	Files	(*.xls*),	*.xls*",	_

Title:="Choose	File	to	Copy",	MultiSelect:=False)

'check	in	case	no	files	were	selected

If	x	=	"False"	Then	Exit	Sub

MsgBox	"You	selected	"	&	x

End	Sub

The	preceding	code	allows	the	client	to	select	one	file.	If	you	want	the	user
to	specify	multiple	files,	use	this	code:

Click	here	to	view	code	image
Sub	ManyFiles()

Dim	x	As	Variant

x	=	Application.GetOpenFilename(_

FileFilter:="Excel	Files	(*.xls*),	*.xls*",	_

Title:="Choose	Files",	MultiSelect:=True)

On	Error	Resume	Next

If	Ubound(x)	>	0	Then

For	i	=	1	To	UBound(x)

MsgBox	"You	selected	"	&	x(i)

Next	i

ElseIf	x	=	"False"	Then

Exit	Sub

End	If

On	Error	GoTo	0

End	Sub

In	a	similar	fashion,	you	can	use	Application.GetSaveAsFileName	to	find
the	path	and	file	name	that	should	be	used	to	save	a	file.

Next	steps

Userforms	allow	you	to	get	information	from	the	users	and	guide	them	on	how
to	provide	the	program	with	that	information.	In	Chapter	11,	“Data	mining	with
Advanced	Filter,”	you’ll	find	out	about	using	Advanced	Filter	to	produce	reports
quickly.

CHAPTER	11
Data	mining	with	Advanced	Filter

In	this	chapter,	you	will:

Replace	a	loop	by	using	AutoFilter

Get	to	know	Advanced	Filter

Use	Advanced	Filter	to	extract	a	unique	list	of	values

Use	Advanced	Filter	with	criteria	ranges

Use	filter	in	place	in	Advanced	Filter

Use	Advanced	Record	to	return	all	records	that	match	the	criteria

Read	this	chapter.

Although	very	few	people	use	Advanced	Filter	in	Excel,	it	is	a	workhorse	in
Excel	VBA.	I	estimate	that	I	end	up	using	one	of	these	filtering	techniques	as	the
core	of	a	macro	in	80%	of	the	macros	I	develop	for	clients.	Given	that	Advanced
Filter	is	used	in	fewer	than	1%	of	Excel	sessions,	this	is	a	dramatic	statistic.

So	even	if	you	hardly	ever	use	Advanced	Filter	in	regular	Excel,	you	should
study	this	chapter	to	learn	some	powerful	VBA	techniques.

Replacing	a	loop	with	AutoFilter
In	Chapter	4,	“Looping	and	flow	control,”	you	read	about	several	ways	to	loop
through	a	data	set	to	format	records	that	match	certain	criteria.	By	using	Filter
(Microsoft’s	name	for	what	was	originally	AutoFilter),	you	can	achieve	the	same
result	much	faster.	While	other	examples	in	this	chapter	use	the	Advanced	Filter,
this	example	can	be	solved	with	the	simpler	Filter.	Although	Microsoft	changed
the	name	of	AutoFilter	to	Filter	in	Excel	2007,	the	VBA	code	still	refers	to
AutoFilter.

When	AutoFilter	was	added	to	Excel,	the	team	at	Microsoft	added	extra	care

and	attention	to	it.	Items	hidden	because	of	AutoFilter	are	not	simply	treated	like
other	hidden	rows.	AutoFilter	gets	special	treatment.	You’ve	likely	run	into	the
frustrating	situation	in	the	past	where	you	have	applied	formatting	to	visible
rows	and	the	formatting	has	gotten	applied	to	the	hidden	rows.	This	is	certainly	a
problem	when	you’ve	hidden	rows	by	clicking	the	#2	Group	and	Outline	button
after	using	the	Subtotal	command.	This	is	always	a	problem	when	you	manually
hide	rows.	But	it	is	never	a	problem	when	the	rows	are	hidden	because	of
AutoFilter.

After	you’ve	applied	AutoFilter	to	hide	rows,	any	action	performed	on	the
CurrentRegion	is	applied	only	to	the	visible	rows.	You	can	apply	bold.	You	can
change	the	font	to	red.	You	can	even	use	CurrentRegion.EntireRow.Delete	to
delete	the	visible	rows	and	not	affect	the	rows	hidden	by	the	filter.

Let’s	say	that	you	have	a	data	set	like	the	one	shown	in	Figure	11-1,	and	you
want	to	perform	some	action	on	all	the	records	that	match	a	certain	criteria,	such
as	all	Ford	records.

FIGURE	11-1	Find	all	Ford	records	and	mark	them.

In	Chapter	5,	“R1C1-style	formulas,”	you	learned	to	write	code	like	the
following,	which	you	could	use	to	color	all	the	Ford	records	green:

Click	here	to	view	code	image
Sub	OldLoop()

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

For	i	=	2	To	FinalRow

If	Cells(i,	4)	=	"Ford"	Then

Cells(i,	1).Resize(1,	8).Interior.Color	=

RGB(0,255,0)

End	If

Next	i

End	Sub

If	you	needed	to	delete	records,	you	had	to	be	careful	to	run	the	loop	from
the	bottom	of	the	data	set	to	the	top,	using	code	like	this:

Click	here	to	view	code	image
Sub	OldLoopToDelete()

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

For	i	=	FinalRow	To	2	Step	-1

If	Cells(i,	4)	=	"Ford"	Then

Rows(i).Delete

End	If

Next	i

End	Sub

The	AutoFilter	method,	however,	enables	you	to	isolate	all	the	Ford	records
in	a	single	line	of	code:

Click	here	to	view	code	image

Range("A1").AutoFilter	Field:=4,	Criteria1:=	"Ford"

After	isolating	the	matching	records,	you	do	not	need	to	use	the
VisibleCellsOnly	setting	to	format	the	matching	records.	Instead,	you	can	use
the	following	line	of	code	to	make	all	the	matching	records	green:

Click	here	to	view	code	image

Range("A1").CurrentRegion.Interior.Color	=

RGB(0,255,0)

There	are	two	problems	with	the	current	two-line	macro.	First,	the	program
leaves	the	AutoFilter	drop-down	menus	in	the	data	set.	Second,	the	heading	row
is	also	formatted	in	green.

Note	The	.CurrentRegion	property	extends	the	A1	reference	to
include	the	entire	data	set.

This	single	line	of	code	turns	off	the	AutoFilter	drop-down	menus	and	clears
the	filter:

Range("A1").AutoFilter

If	you	want	to	leave	the	AutoFilter	drop-down	menus	on	but	clear	the
column	D	drop-down	menu	from	showing	Ford,	you	can	use	this	line	of	code:

ActiveSheet.ShowAllData

Addressing	the	second	problem	is	a	bit	more	difficult.	After	you	apply	the
filter	and	select	Range("A1").CurrentRegion,	the	selection	automatically
includes	the	headers	in	the	selection.	Any	formatting	is	also	applied	to	the	header
row.

If	you	do	not	care	about	the	first	blank	row	below	the	data,	you	can	simply
add	OFFSET(1)	to	move	the	current	region	down	to	start	in	A2.	This	would	be
fine	if	your	goal	were	to	delete	all	the	Ford	records:

Click	here	to	view	code	image
Sub	DeleteFord()

'	skips	header,	but	also	deletes	blank	row	below

Range("A1").AutoFilter	Field:=4,	Criteria1:="Ford"

Range("A1").CurrentRegion.Offset(1).EntireRow.Delete

Range("A1").AutoFilter

End	Sub

Note	The	OFFSET	property	usually	requires	the	number	of	rows
and	the	number	of	columns.	Using	.OFFSET(-2,	5)	moves	two
rows	up	and	five	columns	right.	If	you	do	not	want	to	adjust	by	any

columns,	you	can	leave	off	the	column	parameter.	Using	.OFFSET(1)	means
one	row	down	and	zero	columns	over.

The	preceding	code	works	when	you	do	not	mind	if	the	first	blank	row	below
the	data	is	deleted.	However,	when	you	apply	a	green	format	to	those	rows,	the
code	applies	the	green	format	to	the	blank	row	below	the	data	set,	and	that	would
not	look	right.

If	you	will	be	doing	some	formatting,	you	can	determine	the	height	of	the
data	set	and	use	.Resize	to	reduce	the	height	of	the	current	region	while	you	use
OFFSET:

Click	here	to	view	code	image
Sub	ColorFord()

DataHt	=	Range("A1").CurrentRegion.Rows.Count

Range("A1").AutoFilter	Field:=4,	Criteria1:="Ford"

Click	here	to	view	code	image
With

Range("A1").CurrentRegion.Offset(1).Resize(DataHt	-

1)

'	No	need	to	use	VisibleCellsOnly	for	formatting

.Interior.Color	=	RGB(0,255,0)

.Font.Bold	=	True

End	With

'	Clear	the	AutoFilter	&	remove	drop-downs

Range("A1").AutoFilter

End	Sub

Using	AutoFilter	techniques

Excel	2007	introduced	the	possibility	of	selecting	multiple	items	from	a	filter,
filtering	by	color,	filtering	by	icon,	filtering	by	top	10,	and	filtering	to	virtual
date	filters.	Excel	2010	introduced	the	search	box	in	the	filter	drop-down	menu.
All	these	filters	have	VBA	equivalents,	although	some	of	them	are	implemented
in	VBA	using	legacy	filtering	methods.

Selecting	multiple	items

Legacy	versions	of	Excel	allowed	you	to	select	two	values,	joined	by	AND	or	OR.
In	this	case,	you	would	specify	xlAnd	or	xlOr	as	the	operator:

Click	here	to	view	code	image
Range("A1").AutoFilter	Field:=4,	_

Criteria1:="Ford",	_

Operator:=xlOr,	_

Criteria2:="General	Motors"

As	the	AutoFilter	command	became	more	flexible,	Microsoft	continued	to
use	the	same	three	parameters,	even	if	they	didn’t	quite	make	sense.	For
example,	Excel	still	lets	you	filter	a	field	by	asking	for	the	top	five	items	or	the
bottom	8%	of	records.	To	use	this	type	of	filter,	specify	either	"5"	or	"8"	as	the
Criteria1	argument	and	then	specify	xlTop10Items,	xlTop10Percent,
xlBottom10Items,	or	xlBottom10Percent	as	the	operator.	For	example,	the
following	code	produces	the	top	12	revenue	records:

Click	here	to	view	code	image
Sub	Top10Filter()

'	Top	12	Revenue	Records

Range("A1").AutoFilter	Field:=6,	_

Criteria1:="12",	_

Operator:=xlTop10Items

End	Sub

There	are	a	lot	of	numbers	(6,	12,	10)	in	the	code	for	this	AutoFilter.
Field:=6	indicates	that	you	are	looking	at	the	sixth	column.	xlTop10Items	is	the
name	of	the	filter,	but	the	filter	is	not	limited	to	10	items.	The	criteria	12
indicates	the	number	of	items	that	you	want	the	filter	to	return.

Excel	offers	several	new	filter	options.	It	continues	to	force	these	filter
options	to	fit	in	the	old	object	model,	where	the	filter	command	must	fit	in	an
operator	and	up	to	two	criteria	fields.

If	you	want	to	choose	three	or	more	items,	change	the	operator	to	Operator:
=xlFilterValues	and	specify	the	list	of	items	as	an	array	in	the	Criteria1
argument:

Click	here	to	view	code	image
Range("A1").AutoFilter	Field:=4,	_

Criteria1:=Array("General	Motors",	"Ford",

"Fiat"),	_

Operator:=xlFilterValues

Selecting	using	the	Search	box

Excel	2010	introduced	the	Search	box	in	the	AutoFilter	drop-down	menu.	After
typing	something	in	the	Search	box,	you	can	use	the	Select	All	Search	Results
item.

The	macro	recorder	does	a	poor	job	of	recording	the	Search	box.	The	macro
recorder	hard-codes	a	list	of	customers	who	matched	the	search	at	the	time	you
ran	the	macro.

Think	about	the	Search	box.	It	is	really	a	shortcut	way	of	selecting	Text
Filters,	Contains.	Furthermore,	the	Contains	filter	is	actually	a	shortcut	way	of
specifying	the	search	string	surrounded	by	asterisks.	Therefore,	to	filter	to	all	the
records	that	contain	“at,”	use	this:

Click	here	to	view	code	image

Range("A1").AutoFilter,	Field:=4,	Criteria1:="*at*"

Filtering	by	color

To	find	records	that	have	a	particular	font	color,	use	the	operator
xlFilterFontColor	and	specify	a	particular	RGB	value	as	the	criteria.	This
code	finds	all	cells	with	a	red	font	in	column	F:

Click	here	to	view	code	image
Sub	FilterByFontColor()

Range("A1").AutoFilter	Field:=6,	_

Criteria1:=RGB(255,	0,	0),

Operator:=xlFilterFontColor

End	Sub

To	find	records	that	have	no	particular	font	color,	use	the	operator
xlFilterAutomaticFillColor	and	do	not	specify	criteria:

Click	here	to	view	code	image
Sub	FilterNoFontColor()

Range("A1").AutoFilter	Field:=6,	_

Operator:=xlFilterAutomaticFontColor

End	Sub

To	find	records	that	have	a	particular	fill	color,	use	the	operator
xlFilterCellColor	and	specify	a	particular	RGB	value	as	the	criteria.	This
code	finds	all	red	cells	in	column	F:

Click	here	to	view	code	image
Sub	FilterByFillColor()

Range("A1").AutoFilter	Field:=6,	_

Criteria1:=RGB(255,	0,	0),

Operator:=xlFilterCellColor

End	Sub

To	find	records	that	have	no	fill	color,	use	the	operator	xlFilterNoFill	and
do	not	specify	criteria.

Filtering	by	icon

If	you	are	expecting	a	data	set	to	have	an	icon	set	applied,	you	can	filter	to	show
only	records	with	one	particular	icon	by	using	the	xlFilterIcon	operator.

For	the	criteria,	you	have	to	know	which	icon	set	has	been	applied,	as	well	as
which	icon	within	the	set	you	want	to	filter	by.	The	icon	sets	are	identified	using
the	names	shown	in	column	A	in	Figure	11-2.	The	items	range	from	1	through	5.
The	following	code	filters	the	Revenue	column	to	show	the	rows	containing	an
upward-pointing	arrow	in	the	5	Arrows	Gray	icon	set:

Click	here	to	view	code	image
Sub	FilterByIcon()

Range("A1").AutoFilter	Field:=6,	_

Criteria1:=ActiveWorkbook.IconSets(xl5ArrowsGray).Item(5),

_

Operator:=xlFilterIcon

End	Sub

To	find	records	that	have	no	conditional	formatting	icon,	use	the	operator
xlFilterNoIcon	and	do	not	specify	criteria.

FIGURE	11-2	To	search	for	a	particular	icon,	you	need	to	know	the	icon	set	from	column	A	and	the
item	number	from	row	1.

Selecting	a	dynamic	date	range	using	AutoFilters

Perhaps	the	most	powerful	feature	in	the	world	of	Excel	filters	is	the	dynamic
filters.	These	filters	enable	you	to	choose	records	that	are	above	average	or	with
a	date	field	to	select	virtual	periods,	such	as	next	week	or	last	year.

To	use	a	dynamic	filter,	specify	xlFilterDynamic	as	the	operator	and	then
use	1	of	34	values	as	Criteria1.	The	following	code	finds	all	dates	that	are	in
the	next	year:

Click	here	to	view	code	image
Sub	DynamicAutoFilter()

Range("A1").AutoFilter	Field:=3,	_

Criteria1:=xlFilterNextYear,	_

Click	here	to	view	code	image
Operator:=xlFilterDynamic

End	Sub

The	following	are	all	the	dynamic	filter	criteria	options,	which	you	specify	as

Criteria1	in	the	AutoFilter	method:

Criteria	for	values—Use	xlFilterAboveAverage	or
xlFilterBelowAverage	to	find	all	the	rows	that	are	above	or	below
average.

Criteria	for	future	periods—Use	xlFilterTomorrow,	xlFilterNextWeek,
xlFilterNextMonth,	xlFilterNextQuarter,	or	xlFilterNextYear	to	find
rows	that	fall	in	a	certain	future	period.	Note	that	“next	week”	starts	on
Sunday	and	ends	on	Saturday.

Criteria	for	current	periods—Use	xlFilterToday,	xlFilterThisWeek,
xlFilterThisMonth,	xlFilterThisQuarter,	or	xlFilterThisYear	to	find
rows	that	fall	within	the	current	period.	Excel	uses	the	system	clock	to	find
the	current	day.

Criteria	for	past	periods—Use	xlFilterYesterday,	xlFilterLastWeek,
xlFilterLastMonth,	xlFilterLastQuarter,	xlFilterLastYear,	or
xlFilterYearToDate	to	find	rows	that	fall	within	a	previous	period.

Criteria	for	specific	quarters—Use	xlFilterDatesInPeriodQuarter1,
xlFilterDatesInPeriodQuarter2,	xlFilterDatesInPeriodQuarter3,	or
xlFilterDatesInPeriodQuarter4	to	filter	to	rows	that	fall	within	a
specific	quarter.	Note	that	these	filters	do	not	differentiate	based	on	a	year.
If	you	ask	for	quarter	1,	you	might	get	records	from	this	January,	last
February,	and	next	March.

Criteria	for	specific	months—Use	xlFilterDatesInPeriodJanuary
through	xlFilterDatesInPeriodDecember	to	filter	to	records	that	fall
during	a	certain	month.	As	with	quarters,	the	filter	does	not	filter	to	any
particular	year.

Unfortunately,	you	cannot	combine	criteria.	You	might	think	that	you	can
specify	xlFilterDatesInPeriodJanuary	as	Criteria1	and
xlFilterDatesNextYear	as	Criteria2.	Even	though	this	is	a	brilliant	thought,
Microsoft	does	not	support	this	syntax	(yet).

Selecting	visible	cells	only

After	you	apply	a	filter,	most	commands	operate	only	on	the	visible	rows	in	the
selection.	If	you	need	to	delete	the	records,	format	the	records,	or	apply	a
conditional	format	to	the	records,	you	can	simply	refer	to	the	.CurrentRegion	of

the	first	heading	cell	and	perform	the	command.

However,	if	you	have	a	data	set	in	which	the	rows	have	been	hidden	using
the	Hide	Rows	command,	any	formatting	applied	to	.CurrentRegion	applies	to
the	hidden	rows,	too.	In	these	cases,	you	should	use	the	Visible	Cells	Only
option	in	the	Go	To	Special	dialog	box,	as	shown	in	Figure	11-3.

FIGURE	11-3	If	rows	have	been	manually	hidden,	use	Visible	Cells	Only	in	the	Go	To	Special
dialog	box.

To	use	Visible	Cells	Only	in	code,	use	the	SpecialCells	property:

Click	here	to	view	code	image

Range("A1").CurrentRegion.SpecialCells(xlCellTypeVisible)

Case	study:	Using	Go	To	Special	instead	of	looping
The	Go	To	Special	dialog	box	also	plays	a	role	in	this	case	study.

At	a	Data	Analyst	Boot	Camp,	one	of	the	attendees	had	a	macro	that	was
taking	a	long	time	to	run.	The	workbook	had	a	number	of	selection
controls.	A	complex	IF()	function	in	cells	H10:H750	was	choosing	which
records	should	be	included	in	a	report.	While	that	IF()	statement	had	many
nested	conditions,	the	formula	was	inserting	either	KEEP	or	HIDE	in	each
cell:

=IF(logical_test,	"KEEP","HIDE")

The	following	section	of	code	was	hiding	individual	rows:

Click	here	to	view	code	image
For	Each	cell	In	Range("H10:H750")

If	cell.Value	=	"HIDE"	Then

cell.EntireRow.Hidden	=	True

End	If

Next	cell

The	macro	was	taking	several	minutes	to	run.	SUBTOTAL	formulas	that
excluded	hidden	rows	were	recalculating	after	each	pass	through	the	loop.
The	first	attempts	to	speed	up	the	macro	involved	turning	off	screen
updating	and	calculation:

Click	here	to	view	code	image
Application.ScreenUpdating	=	False

Application.Calculation	=	xlCalculationManual

For	Each	cell	In	Range("H10:H750")

If	cell.Value	=	"HIDE"	Then

cell.EntireRow.Hidden	=	True

End	If

Next	cell

Application.Calculation	=	xlCalculationAutomatic

Application.ScreenUpdating	=	True

For	some	reason,	looping	through	all	the	records	was	still	taking	too	long.
We	tried	using	AutoFilter	to	isolate	the	HIDE	records	and	then	hiding	those
rows,	but	we	lost	the	manual	row	hiding	after	turning	off	AutoFilter.

The	solution	was	to	make	use	of	the	Go	To	Special	dialog	box’s	ability	to
limit	the	selection	to	text	results	of	formulas.	First,	the	formula	in	column	H
was	changed	to	return	either	HIDE	or	a	number:

=IF(logical_test,	"HIDE",1)

Then,	the	following	single	line	of	code	was	able	to	hide	the	rows	that
evaluated	to	a	text	value	in	column	H:

Click	here	to	view	code	image
Range("H10:H750")	_

.SpecialCells(xlCellTypeFormulas,	xlTextValues)	_

.EntireRow.Hidden	=	True

Because	all	the	rows	were	hidden	in	a	single	command,	that	section	of	the
macro	ran	in	seconds	rather	than	minutes.

Advanced	Filter—easier	in	VBA	than	in	Excel

Using	the	arcane	Advanced	Filter	command	is	so	difficult	in	the	Excel	user
interface	that	it	is	pretty	rare	to	find	someone	who	enjoys	using	it	regularly.

However,	in	VBA,	advanced	filters	are	a	joy	to	use.	With	a	single	line	of
code,	you	can	rapidly	extract	a	subset	of	records	from	a	database	or	quickly	get	a
unique	list	of	values	in	any	column.	This	is	critical	when	you	want	to	run	reports
for	a	specific	region	or	customer.	Two	advanced	filters	are	used	most	often	in	the
same	procedure—one	to	get	a	unique	list	of	customers	and	a	second	to	filter	to
each	customer,	as	shown	in	Figure	11-4.	The	rest	of	this	chapter	builds	toward
such	a	routine.

FIGURE	11-4	A	typical	macro	uses	two	advanced	filters.

Using	the	Excel	interface	to	build	an	advanced	filter

Because	not	many	people	use	the	Advanced	Filter	feature,	this	section	walks	you
through	examples	using	the	user	interface	to	build	an	advanced	filter	and	then
shows	you	the	analogous	code.	You	will	be	amazed	at	how	complex	the	user
interface	seems	and	yet	how	easy	it	is	to	program	a	powerful	advanced	filter	to
extract	records.

One	reason	Advanced	Filter	is	hard	to	use	is	that	you	can	use	it	in	several
different	ways.	Every	Advanced	Filter	has	to	have	a	List	Range.	You	must	make
three	basic	choices	in	the	Advanced	Filter	dialog	box.	Because	each	choice	has
two	options,	there	are	eight	(2	×	2	×	2)	possible	combinations	of	these	choices.
The	three	basic	choices	are	shown	in	Figure	11-5	and	described	here:

Action—You	can	select	Filter	The	List,	In-Place	or	you	can	select	Copy	To
Another	Location.	If	you	choose	to	filter	the	records	in	place,	the
nonmatching	rows	are	hidden.	Choosing	to	copy	to	a	new	location	copies
the	records	that	match	the	filter	to	a	new	range.

Criteria—You	can	filter	with	or	without	criteria.	Filtering	with	criteria	is
appropriate	for	getting	a	subset	of	rows.	Filtering	without	criteria	is	still
useful	when	you	want	a	subset	of	columns	or	when	you	are	using	the
Unique	Records	Only	option.

Unique—You	can	choose	to	request	Unique	Records	Only	or	request	all
matching	records.	The	Unique	option	makes	using	the	Advanced	Filter
command	one	of	the	fastest	ways	to	find	a	unique	list	of	values	in	one	field.
By	placing	the	Customer	heading	in	the	output	range,	you	get	a	unique	list
of	values	for	that	one	column.

FIGURE	11-5	The	Advanced	Filter	dialog	box	is	complicated	to	use	in	the	Excel	user	interface.
Fortunately,	it	is	much	easier	in	VBA.

Using	Advanced	Filter	to	extract	a	unique	list	of
values

One	of	the	simplest	uses	of	Advanced	Filter	is	to	extract	a	unique	list	of	a	single
field	from	a	data	set.	In	this	example,	you	want	to	get	a	unique	list	of	customers
from	a	sales	report.	You	know	that	Customer	is	in	column	D	of	the	data	set.	You
have	an	unknown	number	of	records	starting	in	cell	A2,	and	row	1	is	the	header
row.	There	is	nothing	located	to	the	right	of	the	data	set.

Extracting	a	unique	list	of	values	with	the	user	interface

To	extract	a	unique	list	of	values,	follow	these	steps:

1.	 With	the	cursor	anywhere	in	the	data	range,	select	Advanced	from	the	Sort
&	Filter	group	on	the	Data	tab.	The	first	time	you	use	the	Advanced	Filter
command	on	a	worksheet,	Excel	automatically	populates	the	List	Range
text	box	with	the	entire	range	of	your	data	set.	On	subsequent	uses	of	the
Advanced	Filter	command,	this	dialog	box	remembers	the	settings	from	the
prior	advanced	filter.

2.	 Select	the	Unique	Records	Only	check	box	at	the	bottom	of	the	dialog	box.

3.	 In	the	Action	section,	select	Copy	To	Another	Location.

4.	 Type	J1	in	the	Copy	To	text	box.

By	default,	Excel	copies	all	the	columns	in	the	data	set.	You	can	filter	just
the	Customer	column	either	by	limiting	List	Range	to	include	only	column	D	or
by	specifying	one	or	more	headings	in	the	Copy	To	range.	Each	method	has	its
own	drawbacks.

Changing	the	list	range	to	a	single	column

Edit	List	Range	to	point	to	the	Customer	column.	In	this	case,	you	need	to
change	the	default	A1:H1127	to	D1:D1127.	The	Advanced	Filter
dialog	box	should	appear.

Note	When	you	initially	edit	any	range	in	the	dialog	box,	Excel
might	be	in	Point	mode.	In	this	mode,	pressing	a	left-	or	right-

arrow	key	inserts	a	cell	reference	in	the	text	box.	If	you	see	the	word	Point
in	the	lower-left	corner	of	your	Excel	window,	press	the	F2	key	to	change
from	Point	mode	to	Edit	mode.

The	drawback	of	this	method	is	that	Excel	remembers	the	list	range	on
subsequent	uses	of	the	Advanced	Filter	command.	If	you	later	want	to	get	a
unique	list	of	regions,	you	will	be	constantly	specifying	the	list	range.

Copying	the	customer	heading	before	filtering

With	a	little	thought	before	invoking	the	Advanced	Filter	command,	you	can
allow	Excel	to	keep	the	default	list	range	A1:H1127.	In	cell	J1,	type	the
Customer	heading	as	shown	in	Figure	11-6.	Leave	the	List	Range	field	pointing
to	columns	A	through	H.	Because	the	Copy	To	range	of	J1	already	contains	a
valid	heading	from	the	list	range,	Excel	copies	data	only	from	the	Customer
column.	This	is	the	preferred	method,	particularly	if	you	will	be	using	multiple
advanced	filters.	Because	Excel	remembers	the	settings	from	the	preceding
advanced	filter,	it	is	more	convenient	to	always	filter	the	entire	columns	of	the
list	range	and	limit	the	columns	by	setting	up	headings	in	the	Copy	To	range.

After	you	use	either	of	these	methods	to	perform	the	advanced	filter,	a
concise	list	of	the	unique	customers	appears	in	column	J	(see	Figure	11-6).

FIGURE	11-6	The	advanced	filter	extracted	a	unique	list	of	customers	from	the	data	set	and	copied
it	to	column	J.

Extracting	a	unique	list	of	values	with	VBA	code

In	VBA,	you	use	the	AdvancedFilter	method	to	carry	out	the	Advanced	Filter
command.	Again,	you	have	three	choices	to	make:

Action—Choose	to	either	filter	in	place	with	the	parameter
Action:=xlFilterInPlace	or	copy	with	Action:=xlFilterCopy.	If	you
want	to	copy,	you	also	have	to	specify	the	parameter
CopyToRange:=Range("J1").

Criteria—To	filter	with	criteria,	include	the	parameter
CriteriaRange:=Range("L1:L2").	To	filter	without	criteria,	omit	this
optional	parameter.

Unique—To	return	only	unique	records,	specify	the	parameter
Unique:=True.

The	following	code	sets	up	a	single-column	output	range	two	columns	to	the
right	of	the	last-used	column	in	the	data	range:

Click	here	to	view	code	image
Sub	GetUniqueCustomers()

Dim	IRange	As	Range

Dim	ORange	As	Range

'	Find	the	size	of	today's	data	set

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

NextCol	=	Cells(1,

Columns.Count).End(xlToLeft).Column	+	2

'	Set	up	the	output	range.	Copy	heading	from	D1	there

Range("D1").Copy	Destination:=Cells(1,	NextCol)

Set	ORange	=	Cells(1,	NextCol)

'	Define	the	input	range

Set	IRange	=	Range("A1").Resize(FinalRow,	NextCol	-

2)

'	Use	the	Advanced	Filter	to	get	a	unique	list	of

customers

IRange.AdvancedFilter	Action:=xlFilterCopy,

CopyToRange:=ORange,	_

Unique:=True

End	Sub

By	default,	an	advanced	filter	copies	all	columns.	If	you	want	just	one
particular	column,	use	that	column	heading	as	the	heading	in	the	output	range.

The	first	bit	of	code	finds	the	final	row	and	column	in	the	data	set.	Although
it	is	not	necessary	to	do	so,	you	can	define	an	object	variable	for	the	output	range
(ORange)	and	for	the	input	range	(IRange).

This	code	is	generic	enough	that	it	will	not	have	to	be	rewritten	if	new
columns	are	added	to	the	data	set	later.	Setting	up	the	object	variables	for	the
input	and	output	range	is	done	for	readability	rather	than	out	of	necessity.	The
previous	code	could	be	written	just	as	easily	like	this	shortened	version:

Click	here	to	view	code	image
Sub	UniqueCustomerRedux()

'	Copy	a	heading	to	create	an	output	range

Range("J1").Value	=	Range("D1").Value

'	Use	the	Advanced	Filter

Range("A1").CurrentRegion.AdvancedFilter

xlFilterCopy,	_

CopyToRange:=Range("J1"),	Unique:=True

End	Sub

When	you	run	either	of	the	previous	blocks	of	code	on	the	sample	data	set,
you	get	a	unique	list	of	customers	off	to	the	right	of	the	data.	The	key	to	getting	a
unique	list	of	customers	is	copying	the	header	from	the	Customer	field	to	a	blank
cell	and	specifying	this	cell	as	the	output	range.

After	you	have	the	unique	list	of	customers,	you	can	sort	the	list	and	add	a
SUMIF	formula	to	get	total	revenue	by	customer.	The	following	code	gets	the
unique	list	of	customers,	sorts	it,	and	then	builds	a	formula	to	total	revenue	by
customer.	Figure	11-7	shows	the	results:

Click	here	to	view	code	image
Sub	RevenueByCustomers()

Dim	IRange	As	Range

Dim	ORange	As	Range

'	Find	the	size	of	today's	data	set

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

NextCol	=	Cells(1,

Columns.Count).End(xlToLeft).Column	+	2

'	Set	up	the	output	range.	Copy	the	heading	from	D1

there

Range("D1").Copy	Destination:=Cells(1,	NextCol)

Set	ORange	=	Cells(1,	NextCol)

'	Define	the	input	range

Set	IRange	=	Range("A1").Resize(FinalRow,	NextCol	-

2)

'	Use	the	Advanced	Filter	to	get	a	unique	list	of

customers

IRange.AdvancedFilter	Action:=xlFilterCopy,	_

CopyToRange:=ORange,	Unique:=True

'	Determine	how	many	unique	customers	we	have

LastRow	=	Cells(Rows.Count,	NextCol).End(xlUp).Row

'	Sort	the	data

Cells(1,	NextCol).Resize(LastRow,	1).Sort

Key1:=Cells(1,	NextCol),	_

Order1:=xlAscending,	Header:=xlYes

Click	here	to	view	code	image

'	Add	a	SUMIF	formula	to	get	totals

Cells(1,	NextCol	+	1).Value	=	"Revenue"

Cells(2,	NextCol	+	1).Resize(LastRow	-

1).FormulaR1C1	=	_

"=SUMIF(R2C4:R"	&	FinalRow	&	_

"C4,RC[-1],R2C6:R"	&	FinalRow	&	"C6)"

End	Sub

FIGURE	11-7	This	macro	produced	a	summary	report	by	customer	from	a	lengthy	data	set.	Using
AdvancedFilter	is	the	key	to	powerful	macros	such	as	these.

Another	use	of	a	unique	list	of	values	is	to	quickly	populate	a	list	box	or	a
combo	box	on	a	userform.	For	example,	suppose	that	you	have	a	macro	that	can
run	a	report	for	any	one	specific	customer.	To	allow	your	clients	to	choose	which
customers	to	report,	create	a	simple	userform.	Add	a	list	box	to	the	userform	and
set	the	list	box’s	MultiSelect	property	to	1-fmMultiSelectMulti.	In	this	case,
the	form	is	named	frmReport.	In	addition	to	the	list	box,	there	are	four	command
buttons:	OK,	Cancel,	Mark	All,	and	Clear	All.	The	code	to	run	the	form	follows.
Note	that	the	Userform_Initialize	procedure	includes	an	advanced	filter	to	get
the	unique	list	of	customers	from	the	data	set:

Click	here	to	view	code	image
Private	Sub	CancelButton_Click()

Unload	Me

End	Sub

Private	Sub	cbSubAll_Click()

For	i	=	0	To	lbCust.ListCount	-	1

Me.lbCust.Selected(i)	=	True

Next	i

End	Sub

Private	Sub	cbSubClear_Click()

For	i	=	0	To	lbCust.ListCount	-	1

Me.lbCust.Selected(i)	=	False

Next	i

End	Sub

Private	Sub	OKButton_Click()

For	i	=	0	To	lbCust.ListCount	-	1

If	Me.lbCust.Selected(i)	=	True	Then

'	Call	a	routine	(discussed	later)	to	produce

this	report

RunCustReport	WhichCust:=Me.lbCust.List(i)

End	If

Next	i

Click	here	to	view	code	image
Unload	Me

End	Sub

Private	Sub	UserForm_Initialize()

Dim	IRange	As	Range

Dim	ORange	As	Range

'	Find	the	size	of	today's	data	set

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

NextCol	=	Cells(1,

Columns.Count).End(xlToLeft).Column	+	2

'	Set	up	the	output	range.	Copy	the	heading	from	D1

there

Range("D1").Copy	Destination:=Cells(1,	NextCol)

Set	ORange	=	Cells(1,	NextCol)

'	Define	the	input	range

Set	IRange	=	Range("A1").Resize(FinalRow,	NextCol	-

2)

'	Use	the	Advanced	Filter	to	get	a	unique	list	of

customers

IRange.AdvancedFilter	Action:=xlFilterCopy,	_

CopyToRange:=ORange,	Unique:=True

'	Determine	how	many	unique	customers	we	have

LastRow	=	Cells(Rows.Count,	NextCol).End(xlUp).Row

'	Sort	the	data

Cells(1,	NextCol).Resize(LastRow,	1).Sort

Key1:=Cells(1,	NextCol),	_

Order1:=xlAscending,	Header:=xlYes

With	Me.lbCust

.RowSource	=	""

.List	=	Cells(2,	NextCol).Resize(LastRow	-	1,

1).Value

End	With

'	Erase	the	temporary	list	of	customers

Cells(1,	NextCol).Resize(LastRow,	1).Clear

End	Sub

Launch	this	form	with	a	simple	module,	like	this:
Sub	ShowCustForm()

frmReport.Show

End	Sub

Your	clients	are	presented	with	a	list	of	all	valid	customers	from	the	data	set.
Because	the	list	box’s	MultiSelect	property	is	set	to	allow	it,	the	clients	can
select	any	number	of	customers.

Getting	unique	combinations	of	two	or	more	fields

To	get	all	unique	combinations	of	two	or	more	fields,	build	the	output	range	to
include	the	additional	fields.	This	code	sample	builds	a	list	of	unique
combinations	of	two	fields:	Customer	and	Product:

Click	here	to	view	code	image
Sub	UniqueCustomerProduct()

Dim	IRange	As	Range

Click	here	to	view	code	image
Dim	ORange	As	Range

'	Find	the	size	of	today's	data	set

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

NextCol	=	Cells(1,

Columns.Count).End(xlToLeft).Column	+	2

'	Set	up	the	output	range.	Copy	headings	from	D1	&

B1

Range("D1").Copy	Destination:=Cells(1,	NextCol)

Range("B1").Copy	Destination:=Cells(1,	NextCol	+	1)

Set	ORange	=	Cells(1,	NextCol).Resize(1,	2)

'	Define	the	input	range

Set	IRange	=	Range("A1").Resize(FinalRow,	NextCol	-

2)

'	Use	the	Advanced	Filter	to	get	a	unique	list	of

customers	&	product

IRange.AdvancedFilter	Action:=xlFilterCopy,	_

CopyToRange:=ORange,	Unique:=True

'	Determine	how	many	unique	rows	we	have

LastRow	=	Cells(Rows.Count,	NextCol).End(xlUp).Row

'	Sort	the	data

Cells(1,	NextCol).Resize(LastRow,	2).Sort

Key1:=Cells(1,	NextCol),	_

Order1:=xlAscending,	Key2:=Cells(1,	NextCol	+	1),	_

Order2:=xlAscending,	Header:=xlYes

End	Sub

In	the	result	shown	in	Figure	11-8,	you	can	see	that	Enhanced	Eggbeater
buys	only	one	product,	and	Distinctive	Wax	buys	three	products.	This	might	be
useful	as	a	guide	in	running	reports	on	either	customer	by	product	or	product	by
customer.

FIGURE	11-8	By	including	two	columns	in	the	output	range	on	a	Unique	Values	query,	you	get
every	combination	of	customer	and	product.

Using	Advanced	Filter	with	criteria	ranges
As	the	name	implies,	Advanced	Filter	is	usually	used	to	filter	records—in	other
words,	to	get	a	subset	of	data.	You	specify	the	subset	by	setting	up	a	criteria
range.

Note	Even	if	you	are	familiar	with	criteria,	be	sure	to	check	out
using	the	powerful	Boolean	formula	in	criteria	ranges	later	in	this
chapter,	in	the	section	“The	most	complex	criteria:	Replacing	the

list	of	values	with	a	condition	created	as	the	result	of	a	formula.”

Set	up	a	criteria	range	in	a	blank	area	of	a	worksheet.	A	criteria	range	always
includes	two	or	more	rows.	The	first	row	of	the	criteria	range	contains	one	or
more	field	header	values	to	match	the	one(s)	in	the	data	range	you	want	to	filter.
The	second	row	contains	a	value	showing	which	records	to	extract.	In	Figure	11-
9,	J1:J2	is	the	criteria	range,	and	L1	is	the	output	range.

In	the	Excel	user	interface,	to	extract	a	unique	list	of	products	that	were
purchased	by	a	particular	customer,	select	Advanced	Filter	and	set	up	the
Advanced	Filter	dialog	box	as	shown	in	Figure	11-9.	Figure	11-10	shows	the
results.

FIGURE	11-9	To	learn	a	unique	list	of	products	purchased	by	Cool	Saddle	Traders,	set	up	the
criteria	range	in	J1:J2.

FIGURE	11-10	Here	is	the	result	of	the	advanced	filter	that	uses	a	criteria	range	and	asks	for	a
unique	list	of	products.	Of	course,	more	complex	and	interesting	criteria	can	be	built.

You	can	use	the	following	VBA	code	to	perform	an	equivalent	advanced
filter:

Click	here	to	view	code	image
Sub	UniqueProductsOneCustomer()

Dim	IRange	As	Range

Dim	ORange	As	Range

Dim	CRange	As	Range

'	Find	the	size	of	today's	data	set

Click	here	to	view	code	image
FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

NextCol	=	Cells(1,

Columns.Count).End(xlToLeft).Column	+	2

'	Set	up	the	output	range	with	one	customer

Cells(1,	NextCol).Value	=	Range("D1").Value

'	In	reality,	this	value	should	be	passed	from	the

userform

Cells(2,	NextCol).Value	=	Range("D2").Value

Set	CRange	=	Cells(1,	NextCol).Resize(2,	1)

'	Set	up	the	output	range.	Copy	the	heading	from	B1

there

Range("B1").Copy	Destination:=Cells(1,	NextCol	+	2)

Set	ORange	=	Cells(1,	NextCol	+	2)

'	Define	the	input	range

Set	IRange	=	Range("A1").Resize(FinalRow,	NextCol	-

2)

'	Use	the	Advanced	Filter	to	get	a	unique	list	of

customers	&	product

IRange.AdvancedFilter	Action:=xlFilterCopy,	_

CriteriaRange:=CRange,	CopyToRange:=ORange,

Unique:=True

'	The	above	could	also	be	written	as:

'IRange.AdvancedFilter	xlFilterCopy,	CRange,

ORange,	True

'	Determine	how	many	unique	rows	we	have

LastRow	=	Cells(Rows.Count,	NextCol	+

2).End(xlUp).Row

'	Sort	the	data

Cells(1,	NextCol	+	2).Resize(LastRow,	1).Sort

Key1:=Cells(1,	_

NextCol	+	2),	Order1:=xlAscending,	Header:=xlYes

End	Sub

Joining	multiple	criteria	with	a	logical	OR

You	might	want	to	filter	records	that	match	one	criteria	or	another.	For	example,
you	can	extract	customers	who	purchased	either	product	M556	or	product	R537.
This	is	called	a	logical	OR	criteria.

When	your	criteria	should	be	joined	by	a	logical	OR,	place	the	criteria	on

subsequent	rows	of	the	criteria	range.	For	example,	the	criteria	range	shown	in
J1:J3	in	Figure	11-11	tells	you	which	customers	order	product	M556	or	product
W435.

FIGURE	11-11	Place	criteria	on	successive	rows	to	join	them	with	an	OR.	This	criteria	range	gets
customers	who	ordered	either	product	M556	or	product	W435.

Joining	two	criteria	with	a	logical	AND

Sometimes,	you	will	want	to	filter	records	that	match	one	criteria	and	another
criteria.	For	example,	you	might	want	to	extract	records	in	which	the	product
sold	was	W435	and	the	region	was	the	West	region.	This	is	called	a	logical
AND.

To	join	two	criteria	with	AND,	put	both	criteria	on	the	same	row	of	the
criteria	range.	For	example,	the	criteria	range	shown	in	J1:K2	in	Figure	11-12
gets	the	customers	who	ordered	product	W435	in	the	West	region.

FIGURE	11-12	Place	criteria	on	the	same	row	to	join	them	with	an	AND.	The	criteria	range	in
J1:K2	gets	customers	from	the	West	region	who	ordered	product	W435.

Other	slightly	complex	criteria	ranges

The	criteria	range	shown	in	Figure	11-13	is	based	on	two	different	fields	that	are
joined	with	an	OR.	The	query	finds	all	records	that	are	from	the	West	region	or
whose	product	is	W435.

FIGURE	11-13	The	criteria	range	in	J1:K3	returns	records	in	which	either	the	region	is	West	or	the
product	is	W435.

The	most	complex	criteria:	Replacing	the	list	of	values	with	a
condition	created	as	the	result	of	a	formula

It	is	possible	to	have	a	criteria	range	with	multiple	logical	AND	and	logical	OR
criteria	joined	together.	Although	this	might	work	in	some	situations,	in	other
scenarios	it	quickly	gets	out	of	hand.	Fortunately,	Excel	allows	for	criteria	in
which	the	records	are	selected	as	the	result	of	a	formula	to	handle	this	situation.

Case	study:	Working	with	very	complex	criteria
Your	clients	so	loved	the	“Create	a	Customer”	report	that	they	hired	you	to
write	a	new	report.	In	this	case,	they	could	select	any	customer,	any
product,	any	region,	or	any	combination	of	them.	You	can	quickly	adapt	the
frmReport	userform	to	show	three	list	boxes,	as	shown	in	Figure	11-14.

FIGURE	11-14	This	super-flexible	form	lets	clients	run	any	types	of	reports	that	they	can
imagine.	It	creates	some	nightmarish	criteria	ranges,	though,	unless	you	know	the	way	out.

In	your	first	test,	imagine	that	you	select	two	customers	and	two	products.

In	this	case,	your	program	has	to	build	a	five-row	criteria	range,	as	shown
in	Figure	11-15.	This	isn’t	too	bad.

FIGURE	11-15	This	criteria	range	returns	any	records	for	which	the	two	selected	customers
ordered	any	of	the	two	selected	products.

This	gets	crazy	if	someone	selects	10	products,	all	regions	except	the	house
region,	and	all	customers	except	the	internal	customer.	Your	criteria	range
would	need	unique	combinations	of	the	selected	fields.	This	could	easily	be
10	products	times	9	regions	times	499	customers—or	more	than	44,000
rows	of	criteria	range.	You	could	quickly	end	up	with	a	criteria	range	that
spans	thousands	of	rows	and	three	columns.	I	was	once	foolish	enough	to
actually	try	running	an	advanced	filter	with	such	a	criteria	range.	It	would
still	be	trying	to	compute	if	I	hadn’t	rebooted	the	computer.

The	solution	for	this	report	is	to	replace	the	lists	of	values	with	a	formula-
based	condition.

Setting	up	a	condition	as	the	result	of	a	formula

Amazingly,	there	is	an	incredibly	obscure	version	of	Advanced	Filter	criteria	that
can	replace	the	44,000-row	criteria	range	in	the	previous	case	study.	In	the
alternative	form	of	criteria	range,	the	top	row	is	left	blank.	There	is	no	heading
above	the	criteria.	The	criteria	set	up	in	row	2	is	a	formula	that	results	in	True	or
False.	If	the	formula	contains	any	relative	references	to	row	2	of	the	data	range,
Excel	compares	that	formula	to	every	row	of	the	data	range,	one	by	one.

For	example,	if	you	want	all	records	in	which	Gross	Profit	Percentage	is
below	53%,	the	formula	built	in	J2	references	the	profit	in	H2	and	the	revenue	in
F2.	You	need	to	leave	J1	blank	to	tell	Excel	that	you	are	using	a	computed
criteria.	Cell	J2	contains	the	formula	=(H2/F2)<0.53.	The	criteria	range	for	the
advanced	filter	would	be	specified	as	J1:J2.

As	Excel	performs	the	advanced	filter,	it	logically	copies	the	formula	and

applies	it	to	all	rows	in	the	database.	Anywhere	that	the	formula	evaluates	to
True,	the	record	is	included	in	the	output	range.

This	is	incredibly	powerful	and	runs	remarkably	fast.	You	can	combine
multiple	formulas	in	adjacent	columns	or	rows	to	join	the	formula	criteria	with
AND	or	OR,	just	as	you	do	with	regular	criteria.

Note	Row	1	of	the	criteria	range	doesn’t	have	to	be	blank,	but	it
cannot	contain	words	that	are	headings	in	the	data	range.	You
could	perhaps	use	that	row	to	explain	that	someone	should	look	to

this	page	in	this	book	for	an	explanation	of	these	computed	criteria.

Case	study:	Using	formula-based	conditions	in	the	Excel	user
interface
You	can	use	formula-based	conditions	to	solve	the	report	introduced	in	the
previous	case	study.	Figure	11-16	shows	the	flow	involved	in	setting	up	a
formula-based	condition.

To	illustrate,	off	to	the	right	of	the	criteria	range,	set	up	a	column	of	cells
with	the	list	of	selected	customers.	Assign	a	name	to	the	range,	such	as
MyCust.	In	cell	J2	of	the	criteria	range,	enter	a	formula	such	as
=NOT(ISNA(Match(D2,	MyCust,0))).

To	the	right	of	the	MyCust	range,	set	up	a	range	with	a	list	of	selected
products.	Assign	this	range	the	name	MyProd.	In	K2	of	the	criteria	range,
add	this	formula	to	check	products:	=NOT(ISNA(Match(B2,MyProd,0))).

To	the	right	of	the	MyProd	range,	set	up	a	range	with	a	list	of	selected
regions.	Assign	this	range	the	name	MyRegion.	In	L2	of	the	criteria	range,
add	this	formula	to	check	for	selected	regions:	=NOT(ISNA(Match(A2,
MyRegion,0))).

Now,	with	a	criteria	range	of	J1:L2,	you	can	effectively	retrieve	records	that
match	any	combination	of	selections	from	the	userform.

FIGURE	11-16	Here	are	the	logical	steps	in	using	formula-based	conditions	to	solve	the
problem.

Using	formula-based	conditions	with	VBA

Referring	back	to	the	userform	shown	in	Figure	11-14,	you	can	use	formula-
based	conditions	to	filter	the	report	using	the	userform.	The	following	is	the	code
for	this	userform.	Note	the	logic	in	OKButton_Click	that	builds	the	formula.
Figure	11-17	shows	the	Excel	sheet	just	before	the	advanced	filter	is	run.

FIGURE	11-17	Here	is	the	worksheet	just	before	the	macro	runs	the	advanced	filter.

The	following	code	initializes	the	userform.	Three	advanced	filters	find	the
unique	list	of	customers,	products,	and	regions:

Click	here	to	view	code	image
Private	Sub	UserForm_Initialize()

Dim	IRange	As	Range

Dim	ORange	As	Range

'	Find	the	size	of	today's	data	set

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

NextCol	=	Cells(1,

Columns.Count).End(xlToLeft).Column	+	2

'	Define	the	input	range

Set	IRange	=	Range("A1").Resize(FinalRow,	NextCol

-	2)

'	Set	up	the	output	range	for	Customer.	Copy	the

heading	from	D1	there

Range("D1").Copy	Destination:=Cells(1,	NextCol)

Set	ORange	=	Cells(1,	NextCol)

'	Use	the	Advanced	Filter	to	get	a	unique	list	of

customers

IRange.AdvancedFilter	Action:=xlFilterCopy,

CriteriaRange:="",	_

CopyToRange:=ORange,	Unique:=True

'	Determine	how	many	unique	customers	we	have

LastRow	=	Cells(Rows.Count,	NextCol).End(xlUp).Row

'	Sort	the	data

Cells(1,	NextCol).Resize(LastRow,	1).Sort

Key1:=Cells(1,	NextCol),	_

Order1:=xlAscending,	Header:=xlYes

With	Me.lbCust

.RowSource	=	""

.List	=	Application.Transpose(_

Cells(2,NextCol).Resize(LastRow-1,1))

End	With

'	Erase	the	temporary	list	of	customers

Cells(1,	NextCol).Resize(LastRow,	1).Clear

'	Set	up	an	output	range	for	the	product.	Copy	the

heading	from	D1	there

Range("B1").Copy	Destination:=Cells(1,	NextCol)

Set	ORange	=	Cells(1,	NextCol)

'	Use	the	Advanced	Filter	to	get	a	unique	list	of

customers

IRange.AdvancedFilter	Action:=xlFilterCopy,	_

CopyToRange:=ORange,	Unique:=True

'	Determine	how	many	unique	customers	we	have

LastRow	=	Cells(Rows.Count,	NextCol).End(xlUp).Row

'	Sort	the	data

Cells(1,	NextCol).Resize(LastRow,	1).Sort

Key1:=Cells(1,	NextCol),	_

Order1:=xlAscending,	Header:=xlYes

With	Me.lbProduct

Click	here	to	view	code	image
.RowSource	=	""

'	The	list	has	to	go	across,	so	transpose	the

vertical	data.

.List	=	Application.Transpose(_

Cells(2,NextCol).Resize(LastRow-1,1))

End	With

'	Erase	the	temporary	list	of	customers

Cells(1,	NextCol).Resize(LastRow,	1).Clear

'	Set	up	the	output	range	for	Region.	Copy	the

heading	from	A1	there

Range("A1").Copy	Destination:=Cells(1,	NextCol)

Set	ORange	=	Cells(1,	NextCol)

'	Use	the	Advanced	Filter	to	get	a	unique	list	of

customers

IRange.AdvancedFilter	Action:=xlFilterCopy,

CopyToRange:=ORange,	_

Unique:=True

'	Determine	how	many	unique	customers	we	have

LastRow	=	Cells(Rows.Count,	NextCol).End(xlUp).Row

'	Sort	the	data

Cells(1,	NextCol).Resize(LastRow,	1).Sort

Key1:=Cells(1,	NextCol),	_

Order1:=xlAscending,	Header:=xlYes

With	Me.lbRegion

.RowSource	=	""

.List	=	Application.Transpose(_

Cells(2,NextCol).Resize(LastRow-1,1))

End	With

'	Erase	the	temporary	list	of	customers

Cells(1,	NextCol).Resize(LastRow,	1).Clear

End	Sub

These	tiny	procedures	run	when	someone	clicks	Mark	All	or	Clear	All	in	the
userform	in	Figure	11-14:

Click	here	to	view	code	image
Private	Sub	CancelButton_Click()

Unload	Me

End	Sub

Private	Sub	cbSubAll_Click()

For	i	=	0	To	lbCust.ListCount	-	1

Me.lbCust.Selected(i)	=	True

Next	i

End	Sub

Private	Sub	cbSubClear_Click()

For	i	=	0	To	lbCust.ListCount	-	1

Me.lbCust.Selected(i)	=	False

Next	i

End	Sub

Private	Sub	CommandButton1_Click()

'	Clear	all	products

For	i	=	0	To	lbProduct.ListCount	-	1

Click	here	to	view	code	image
Me.lbProduct.Selected(i)	=	False

Next	i

End	Sub

Private	Sub	CommandButton2_Click()

'	Mark	all	products

For	i	=	0	To	lbProduct.ListCount	-	1

Me.lbProduct.Selected(i)	=	True

Next	i

End	Sub

Private	Sub	CommandButton3_Click()

'	Clear	all	regions

For	i	=	0	To	lbRegion.ListCount	-	1

Me.lbRegion.Selected(i)	=	False

Next	i

End	Sub

Private	Sub	CommandButton4_Click()

'	Mark	all	regions

For	i	=	0	To	lbRegion.ListCount	-	1

Me.lbRegion.Selected(i)	=	True

Next	i

End	Sub

The	following	code	is	attached	to	the	OK	button.	This	code	builds	three
ranges	in	O,	P,	and	Q	that	list	the	selected	customers,	products,	and	regions.	The
actual	criteria	range	is	composed	of	three	blank	cells	in	J1:L1	and	then	three
formulas	in	J2:L2:

Click	here	to	view	code	image
Private	Sub	OKButton_Click()

Dim	CRange	As	Range,	IRange	As	Range,	ORange	As

Range

'	Build	a	complex	criteria	that	ANDs	all	choices

together

NextCCol	=	10

NextTCol	=	15

For	j	=	1	To	3

Select	Case	j

Case	1

MyControl	=	"lbCust"

MyColumn	=	4

Case	2

MyControl	=	"lbProduct"

MyColumn	=	2

Case	3

MyControl	=	"lbRegion"

MyColumn	=	1

End	Select

NextRow	=	2

'	Check	to	see	what	was	selected.

For	i	=	0	To	Me.Controls(MyControl).ListCount	-	1

If	Me.Controls(MyControl).Selected(i)	=	True	Then

Cells(NextRow,	NextTCol).Value	=	_

Me.Controls(MyControl).List(i)

NextRow	=	NextRow	+	1

Click	here	to	view	code	image
End	If

Next	i

'	If	anything	was	selected,	build	a	new	criteria

formula

If	NextRow	>	2	Then

'	the	reference	to	Row	2	must	be	relative	in	order

to	work

MyFormula	=	"=NOT(ISNA(MATCH(RC"	&	MyColumn	&

",R2C"	&	_

NextTCol	&	":R"	&	NextRow	-	1	&	"C"	&	NextTCol	&

",0)))"

Cells(2,	NextCCol).FormulaR1C1	=	MyFormula

NextTCol	=	NextTCol	+	1

NextCCol	=	NextCCol	+	1

End	If

Next	j

Unload	Me

'	Figure	11-17	shows	the	worksheet	at	this	point

'	If	we	built	any	criteria,	define	the	criteria	range

If	NextCCol	>	10	Then

Set	CRange	=	Range(Cells(1,	10),	Cells(2,

NextCCol	-	1))

Set	IRange	=	Range("A1").CurrentRegion

Set	ORange	=	Cells(1,	20)

IRange.AdvancedFilter	xlFilterCopy,	CRange,

Orange

'	Clear	out	the	criteria

Cells(1,	10).Resize(1,	10).EntireColumn.Clear

End	If

'	At	this	point,	the	matching	records	are	in	T1

End	Sub

Figure	11-17	shows	the	worksheet	just	before	the	AdvancedFilter	method	is
called.	The	user	has	selected	customers,	products,	and	regions.	The	macro	has
built	temporary	tables	in	columns	O,	P,	and	Q	to	show	which	values	the	user
selected.	The	criteria	range	is	J1:L2.	The	criteria	formula	in	J2	looks	to	see
whether	the	value	in	$D2	is	in	the	list	of	selected	customers	in	O.	The	formulas
in	K2	and	L2	compare	$B2	to	column	P	and	$A2	to	column	Q.

Note	Excel	VBA	Help	says	that	if	you	do	not	specify	a	criteria
range,	no	criteria	are	used.	This	is	not	true	in	Excel	2013,	2016,
and	2019.	If	no	criteria	range	is	specified	in	these	versions	of

Excel,	the	advanced	filter	inherits	the	criteria	range	from	the	prior	advanced
filter.	You	should	include	CriteriaRange:=""	to	clear	the	prior	value.

Using	formula-based	conditions	to	return	above-average	records

The	formula-based	conditions	formula	criteria	are	cool	but	are	a	rarely	used
feature	in	a	rarely	used	function.	Some	interesting	business	applications	use	this
technique.	For	example,	this	criteria	formula	would	find	all	the	above-average
rows	in	the	data	set:

=$A2>Average($A$2:$A$1048576)

Using	filter	in	place	in	Advanced	Filter
It	is	possible	to	filter	a	large	data	set	in	place.	In	this	case,	you	do	not	need	an
output	range.	You	normally	specify	a	criteria	range;	otherwise,	you	return	100%
of	the	records,	and	there	is	no	need	to	use	the	advanced	filter!

In	the	user	interface	of	Excel,	running	Filter	In	Place	makes	sense:	You	can
easily	peruse	the	filtered	list,	looking	for	something	in	particular.

Running	a	filter	in	place	in	VBA	is	a	little	less	convenient.	The	only	good
way	to	programmatically	peruse	the	filtered	records	is	to	use	the
xlCellTypeVisible	option	of	the	SpecialCells	method.	In	the	Excel	user

interface,	the	equivalent	action	is	to	select	Home,	Find	&	Select,	Go	to	Special.
In	the	Go	to	Special	dialog	box,	select	Visible	Cells	Only.

To	run	a	Filter	In	Place,	use	the	constant	XLFilterInPlace	as	the	Action
parameter	in	the	AdvancedFilter	command	and	remove	the	CopyToRange	from
the	command:

Click	here	to	view	code	image

IRange.AdvancedFilter	Action:=xlFilterInPlace,

CriteriaRange:=CRange,	_Unique:=False

Then	you	use	this	programmatic	equivalent	to	looping	by	using	Visible	Cells
Only:

Click	here	to	view	code	image
For	Each	cell	In	Range("A2:A"	&

FinalRow).SpecialCells(xlCellTypeVisible)

Ctr	=	Ctr	+	1

Next	cell

MsgBox	Ctr	&	"	cells	match	the	criteria"

If	you	know	that	there	will	be	no	blanks	in	the	visible	cells,	you	can
eliminate	the	loop	with	this:

Click	here	to	view	code	image
Ctr	=	Application.Counta(Range("A2:A"	&

_FinalRow).SpecialCells(xlCellTypeVisible))

Catching	no	records	when	using	a	filter	in	place

Just	as	when	using	Copy,	you	have	to	watch	out	for	the	possibility	of	having	no
records	match	the	criteria.	However,	in	this	case,	it	is	more	difficult	to	realize
that	nothing	is	returned.	You	generally	find	out	when	the	.SpecialCells	method
returns	a	runtime	error	1004,	which	indicates	that	no	cells	were	found.

To	catch	this	condition,	you	have	to	set	up	an	error	trap	to	anticipate	the	1004
error	with	the	SpecialCells	method:

Click	here	to	view	code	image

On	Error	GoTo	NoRecs

For	Each	cell	In	_

Range("A2:A"	&

FinalRow).SpecialCells(xlCellTypeVisible)

Ctr	=	Ctr	+	1

Next	cell

On	Error	GoTo	0

MsgBox	Ctr	&	"	cells	match	the	criteria"

Exit	Sub

Click	here	to	view	code	image
NoRecs:

MsgBox	"No	records	match	the	criteria"

End	Sub

Note	See	Chapter	24,	“Handling	errors,”	for	more	information	on
catching	errors.

This	error	trap	works	because	it	specifically	excludes	the	header	row	from
the	SpecialCells	range.	The	header	row	is	always	visible	after	an	advanced
filter.	Including	it	in	the	range	would	prevent	the	1004	error	from	being	raised.

Showing	all	records	after	running	a	filter	in	place

After	doing	a	filter	in	place,	you	can	get	all	records	to	show	again	by	using	the
ShowAllData	method:

ActiveSheet.ShowAllData

The	real	workhorse:	xlFilterCopy	with	all	records
rather	than	unique	records	only

The	examples	at	the	beginning	of	this	chapter	talk	about	using	xlFilterCopy	to
get	a	unique	list	of	values	in	a	field.	You	used	unique	lists	of	customers,	regions,
and	products	to	populate	the	list	boxes	in	your	report-specific	userforms.

However,	a	more	common	scenario	is	to	use	an	advanced	filter	to	return	all
records	that	match	the	criteria.	After	the	client	selects	which	customer	to	report,
an	advanced	filter	can	extract	all	records	for	that	customer.

In	all	the	examples	in	the	following	sections,	you	want	to	keep	the	Unique
Records	Only	check	box	cleared.	You	do	this	in	VBA	by	specifying
Unique:=False	as	a	parameter	to	the	AdvancedFilter	method.	This	is	not
difficult	to	do,	and	you	have	some	powerful	options.	If	you	need	only	a	subset	of
fields	for	a	report,	copy	only	those	field	headings	to	the	output	range.	If	you
want	to	resequence	the	fields	to	appear	exactly	as	you	need	them	in	the	report,
you	can	do	this	by	changing	the	sequence	of	the	headings	in	the	output	range.

The	next	sections	walk	you	through	three	quick	examples	to	show	the
options	available.

Copying	all	columns

To	copy	all	columns,	specify	a	single	blank	cell	as	the	output	range.	You	get	all
columns	for	those	records	that	match	the	criteria,	as	shown	in	Figure	11-18:

Click	here	to	view	code	image
Sub	AllColumnsOneCustomer()

Dim	IRange	As	Range

Click	here	to	view	code	image
Dim	ORange	As	Range

Dim	CRange	As	Range

'	Find	the	size	of	today's	data	set

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

NextCol	=	Cells(1,

Columns.Count).End(xlToLeft).Column	+	2

'	Set	up	the	criteria	range	with	one	customer

Cells(1,	NextCol).Value	=	Range("D1").Value

'	In	reality,	this	value	should	be	passed	from	the

userform

Cells(2,	NextCol).Value	=	Range("D2").Value

Set	CRange	=	Cells(1,	NextCol).Resize(2,	1)

'	Set	up	the	output	range.	It	is	a	single	blank

cell

Set	ORange	=	Cells(1,	NextCol	+	2)

'	Define	the	input	range

Set	IRange	=	Range("A1").Resize(FinalRow,	NextCol

-	2)

'	Use	the	Advanced	Filter	to	get	a	unique	list	of

customers	&	product

IRange.AdvancedFilter	Action:=xlFilterCopy,	_

CriteriaRange:=CRange,	CopyToRange:=Orange

End	Sub

FIGURE	11-18	When	using	xlFilterCopy	with	a	blank	output	range,	you	get	all	columns	in	the
same	order	as	they	appear	in	the	original	list	range.

Copying	a	subset	of	columns	and	reordering

If	you	are	doing	an	advanced	filter	to	send	records	to	a	report,	it	is	likely	that	you
might	need	only	a	subset	of	columns,	and	you	might	need	them	in	a	different
sequence.

This	example	finishes	the	frmReport	example	that	was	presented	earlier	in
this	chapter.	As	you	recall,	frmReport	allows	the	client	to	select	a	customer.	The
OK	button	then	calls	the	RunCustReport	routine,	passing	a	parameter	to	identify
for	which	customer	to	prepare	a	report.

Imagine	that	this	is	a	report	being	sent	to	the	customer.	The	customer	really
does	not	care	about	the	surrounding	region,	and	you	do	not	want	to	reveal	your
cost	of	goods	sold	or	profit.	Assuming	that	you	will	put	the	customer’s	name	in
the	title	of	the	report,	the	fields	that	you	need	in	order	to	produce	the	report	are
Date,	Quantity,	Product,	and	Revenue.

The	following	code	copies	those	headings	to	the	output	range:

Click	here	to	view	code	image
Sub	RunCustReport(WhichCust	As	Variant)

Dim	IRange	As	Range

Click	here	to	view	code	image
Dim	ORange	As	Range

Dim	CRange	As	Range

Dim	WBN	As	Workbook

Dim	WSN	As	Worksheet

Dim	WSO	As	Worksheet

Set	WSO	=	ActiveSheet

'	Find	the	size	of	today's	data	set

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

NextCol	=	Cells(1,

Columns.Count).End(xlToLeft).Column	+	2

'	Set	up	the	criteria	range	with	one	customer

Cells(1,	NextCol).Value	=	Range("D1").Value

Cells(2,	NextCol).Value	=	WhichCust

Set	CRange	=	Cells(1,	NextCol).Resize(2,	1)

'	Set	up	the	output	range.	We	want	Date,	Quantity,

Product,	Revenue

'	These	columns	are	in	C,	E,	B,	and	F

Cells(1,	NextCol	+	2).Resize(1,	4).Value	=	_

Array(Cells(1,	3),	Cells(1,	5),	Cells(1,	2),

Cells(1,	6))

Set	ORange	=	Cells(1,	NextCol	+	2).Resize(1,	4)

'	Define	the	input	range

Set	IRange	=	Range("A1").Resize(FinalRow,	NextCol

-	2)

'	Use	the	Advanced	Filter	to	get	a	unique	list	of

customers	&	products

IRange.AdvancedFilter	Action:=xlFilterCopy,	_

CriteriaRange:=CRange,	CopyToRange:=ORange

'	Create	a	new	workbook	with	one	blank	sheet	to

hold	the	output

'	xlWBATWorksheet	is	the	template	name	for	a

single	worksheet

Set	WBN	=	Workbooks.Add(xlWBATWorksheet)

Set	WSN	=	WBN.Worksheets(1)

'	Set	up	a	title	on	WSN

WSN.Cells(1,	1).Value	=	"Report	of	Sales	to	"	&

WhichCust

'	Copy	data	from	WSO	to	WSN

WSO.Cells(1,	NextCol	+	2).CurrentRegion.Copy	_

Destination:=WSN.Cells(3,	1)

TotalRow	=	WSN.Cells(Rows.Count,	1).End(xlUp).Row

+	1

WSN.Cells(TotalRow,	1).Value	=	"Total"

WSN.Cells(TotalRow,	2).FormulaR1C1	=

"=SUM(R2C:R[-1]C)"

WSN.Cells(TotalRow,	4).FormulaR1C1	=

"=SUM(R2C:R[-1]C)"

'	Format	the	new	report	with	bold

WSN.Cells(3,	1).Resize(1,	4).Font.Bold	=	True

WSN.Cells(TotalRow,	1).Resize(1,	4).Font.Bold	=

True

WSN.Cells(1,	1).Font.Size	=	18

WBN.SaveAs	ThisWorkbook.Path	&

Application.PathSeparator	&	_

WhichCust	&	".xlsx"

WBN.Close	SaveChanges:=False

Click	here	to	view	code	image
WSO.Select

'	clear	the	output	range,	etc.

Range("J:Z").Clear

End	Sub

The	advanced	filter	produces	data,	as	shown	in	Figure	11-19.	The	program
then	goes	on	to	copy	the	matching	records	to	a	new	workbook.	A	title	and	a	total
row	are	added,	and	the	report	is	saved	with	the	customer’s	name.	Figure	11-20
shows	the	final	report.

FIGURE	11-19	Immediately	after	the	advanced	filter,	you	have	just	the	columns	and	records	needed
for	the	report.

FIGURE	11-20	After	copying	the	filtered	data	to	a	new	sheet	and	applying	some	formatting,	you
have	a	good-looking	report	to	send	to	each	customer.

Case	study:	Utilizing	two	kinds	of	advanced	filters	to	create	a
report	for	each	customer
The	final	advanced	filter	example	for	this	chapter	uses	several	advanced
filter	techniques.	Let’s	say	that	after	importing	invoice	records,	you	want	to
send	a	purchase	summary	to	each	customer.	The	process	would	be	as
follows:

1.	 Run	an	advanced	filter,	requesting	unique	values,	to	get	a	list	of
customers	in	column	J.	This	AdvancedFilter	specifies	the	Unique:=True
parameter	and	uses	a	CopyToRange	that	includes	a	single	heading,
Customer:

Click	here	to	view	code	image

'	Set	up	the	output	range.	Copy	the	heading	from

D1	there

Range("D1").Copy	Destination:=Cells(1,	NextCol)

Click	here	to	view	code	image
Set	ORange	=	Cells(1,	NextCol)

'	Define	the	input	range

Set	IRange	=	Range("A1").Resize(FinalRow,	NextCol

-	2)

'	Use	the	Advanced	Filter	to	get	a	unique	list	of

customers

IRange.AdvancedFilter	Action:=xlFilterCopy,

CriteriaRange:="",	_

CopyToRange:=ORange,	Unique:=True

2.	 For	each	customer	in	the	list	of	unique	customers	in	column	J,	perform
steps	3	through	7.	Find	the	number	of	customers	in	the	output	range	from
step	1.	Then	use	a	For	Each	Cell	loop	to	loop	through	the	customers:

Click	here	to	view	code	image

'	Loop	through	each	customer

FinalCust	=	Cells(Rows.Count,

NextCol).End(xlUp).Row

For	Each	cell	In	Cells(2,

NextCol).Resize(FinalCust	-	1,	1)

ThisCust	=	cell.Value

'	...	Steps	3	through	7	here

Next	Cell

3.	 Build	a	criteria	range	in	L1:L2	to	be	used	in	a	new	advanced	filter.	The

criteria	range	would	include	the	heading	Customer	in	L1	and	the
customer	name	from	this	iteration	of	the	loop	in	cell	L2:

Click	here	to	view	code	image
'	Set	up	the	criteria	range	with	one	customer

Cells(1,	NextCol	+	2).Value	=	Range("D1").Value

Cells(2,	NextCol	+	2).Value	=	ThisCust

Set	CRange	=	Cells(1,	NextCol	+	2).Resize(2,	1)

4.	 Use	an	advanced	filter	to	copy	matching	records	for	this	customer	to
column	N.	This	Advanced	Filter	statement	specifies	the	Unique:=False
parameter.	Because	you	want	only	the	columns	Date,	Quantity,	Product,
and	Revenue,	the	CopyToRange	specifies	a	four-column	range	with	those
headings	copied	in	the	proper	order:

Click	here	to	view	code	image

'	Set	up	the	output	range.	We	want	Date,

Quantity,	Product,	Revenue

'	These	columns	are	in	C,	E,	B,	and	F

Cells(1,	NextCol	+	4).Resize(1,	4).Value	=	_

Array(Cells(1,	3),	Cells(1,	5),	Cells(1,	2),

Cells(1,	6))

Set	ORange	=	Cells(1,	NextCol	+	4).Resize(1,	4)

'	Use	the	Advanced	Filter	to	get	a	unique	list	of

customers	&	product

IRange.AdvancedFilter	Action:=xlFilterCopy,

CriteriaRange:=CRange,	_

CopyToRange:=Orange

5.	 Copy	the	customer	records	to	a	report	sheet	in	a	new	workbook.	The
VBA	code	uses	the	Workbooks.	Add	method	to	create	a	new	blank
workbook.	Using	the	template	name	xlWBATWorksheet	is	the	way	to
specify	that	you	want	a	workbook	with	a	single	worksheet.	The	extracted
records	from	step	4	are	copied	to	cell	A3	of	the	new	workbook:

Click	here	to	view	code	image

'	Create	a	new	workbook	with	one	blank	sheet	to

hold	the	output

Set	WBN	=	Workbooks.Add(xlWBATWorksheet)

Set	WSN	=	WBN.Worksheets(1)

'	Copy	data	from	WSO	to	WSN

WSO.Cells(1,	NextCol	+	4).CurrentRegion.Copy	_

Destination:=WSN.Cells(3,	1)

6.	 Format	the	report	with	a	title	and	totals.	In	VBA,	add	a	title	that	reflects
the	customer’s	name	in	cell	A1.	Make	the	headings	bold	and	add	a	total
below	the	final	row:

Click	here	to	view	code	image

'	Set	up	a	title	on	WSN

WSN.Cells(1,	1).Value	=	"Report	of	Sales	to	"	&

ThisCust

TotalRow	=	WSN.Cells(Rows.Count,	1).End(xlUp).Row

+	1

WSN.Cells(TotalRow,	1).Value	=	"Total"

WSN.Cells(TotalRow,	2).FormulaR1C1	=

"=SUM(R2C:R[-1]C)"

WSN.Cells(TotalRow,	4).FormulaR1C1	=

"=SUM(R2C:R[-1]C)"

'	Format	the	new	report	with	bold

WSN.Cells(3,	1).Resize(1,	4).Font.Bold	=	True

WSN.Cells(TotalRow,	1).Resize(1,	4).Font.Bold	=

True

WSN.Cells(1,	1).Font.Size	=	18

7.	 Use	Save	As	to	save	the	workbook	based	on	the	customer	name.	After
the	workbook	is	saved,	close	the	new	workbook.	Return	to	the	original
workbook	and	clear	the	output	range	to	prepare	for	the	next	pass	through
the	loop:

Click	here	to	view	code	image

WBN.SaveAs	ThisWorkbook.Path	&

Application.PathSeparator	&	_

WhichCust	&	".xlsx"

WBN.Close	SaveChanges:=False

WSO.Select

'	Free	up	memory	by	setting	object	variables	to

nothing

Set	WSN	=	Nothing

Set	WBN	=	Nothing

'	clear	the	output	range,	etc.

Cells(1,	NextCol	+	2).Resize(1,

10).EntireColumn.Clear

The	complete	code	is	as	follows:

Click	here	to	view	code	image

Sub	RunReportForEachCustomer()

Dim	IRange	As	Range

Dim	ORange	As	Range

Dim	CRange	As	Range

Dim	WBN	As	Workbook

Dim	WSN	As	Worksheet

Dim	WSO	As	Worksheet

Set	WSO	=	ActiveSheet

'	Find	the	size	of	today's	data	set

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

NextCol	=	Cells(1,

Columns.Count).End(xlToLeft).Column	+	2

'	First	-	get	a	unique	list	of	customers	in	J

'	Set	up	the	output	range.	Copy	the	heading	from

D1	there

Range("D1").Copy	Destination:=Cells(1,	NextCol)

Set	ORange	=	Cells(1,	NextCol)

'	Define	the	input	range

Set	IRange	=	Range("A1").Resize(FinalRow,	NextCol

-	2)

Click	here	to	view	code	image

'	Use	the	Advanced	Filter	to	get	a	unique	list	of

customers

IRange.AdvancedFilter	Action:=xlFilterCopy,

CriteriaRange:="",	_

CopyToRange:=ORange,	Unique:=True

'	Loop	through	each	customer

FinalCust	=	Cells(Rows.Count,

NextCol).End(xlUp).Row

For	Each	cell	In	Cells(2,

NextCol).Resize(FinalCust	-	1,	1)

ThisCust	=	cell.Value

'	Set	up	the	criteria	range	with	one	customer

Cells(1,	NextCol	+	2).Value	=	Range("D1").Value

Cells(2,	NextCol	+	2).Value	=	ThisCust

Set	CRange	=	Cells(1,	NextCol	+	2).Resize(2,	1)

'	Set	up	the	output	range.	We	want	Date,

Quantity,	Product,	Revenue

'	These	columns	are	in	C,	E,	B,	and	F

Cells(1,	NextCol	+	4).Resize(1,	4).Value	=	_

Array(Cells(1,	3),	Cells(1,	5),	Cells(1,	2),

Cells(1,	6))

Set	ORange	=	Cells(1,	NextCol	+	4).Resize(1,	4)

'	Adv.	Filter	for	unique	customers	&	product

IRange.AdvancedFilter	Action:=xlFilterCopy,	_

CriteriaRange:=CRange,	_

CopyToRange:=Orange

'	Create	a	new	workbook	with	one	blank	sheet	to

hold	the	output

Set	WBN	=	Workbooks.Add(xlWBATWorksheet)

Set	WSN	=	WBN.Worksheets(1)

'	Copy	data	from	WSO	to	WSN

WSO.Cells(1,	NextCol	+	4).CurrentRegion.Copy	_

Destination:=WSN.Cells(3,	1)

'	Set	up	a	title	on	WSN

WSN.Cells(1,	1).Value	=	"Report	of	Sales	to	"	&

ThisCust

TotalRow	=	WSN.Cells(Rows.Count,	1).End(xlUp).Row

+	1

WSN.Cells(TotalRow,	1).Value	=	"Total"

WSN.Cells(TotalRow,	2).FormulaR1C1	=

"=SUM(R2C:R[-1]C)"

WSN.Cells(TotalRow,	4).FormulaR1C1	=

"=SUM(R2C:R[-1]C)"

'	Format	the	new	report	with	bold

WSN.Cells(3,	1).Resize(1,	4).Font.Bold	=	True

WSN.Cells(TotalRow,	1).Resize(1,	4).Font.Bold	=

True

WSN.Cells(1,	1).Font.Size	=	18

WBN.SaveAs	ThisWorkbook.Path	&

Application.PathSeparator	&	_

WhichCust	&	".xlsx"

WBN.Close	SaveChanges:=False

WSO.Select

Set	WSN	=	Nothing

Set	WBN	=	Nothing

'	clear	the	output	range,	etc.

Cells(1,	NextCol	+	2).Resize(1,

10).EntireColumn.Clear

Click	here	to	view	code	image
Next	cell

Cells(1,	NextCol).EntireColumn.Clear

MsgBox	FinalCust	-	1	&	"	Reports	have	been

created!"

End	Sub

This	is	a	remarkable	58	lines	of	code.	By	incorporating	a	couple	of

advanced	filters	and	not	much	else,	you	have	managed	to	produce	a	tool
that	created	27	reports	in	less	than	1	minute.	Even	an	Excel	power	user
would	normally	take	2	to	3	minutes	per	report	to	create	these	manually.	In
less	than	60	seconds,	this	code	will	save	someone	a	few	hours	every	time
these	reports	need	to	be	created.	Imagine	a	real	scenario	in	which	there	are
hundreds	of	customers.	Undoubtedly,	there	are	people	in	every	city	who	are
manually	creating	these	reports	in	Excel	because	they	simply	don’t	realize
the	power	of	Excel	VBA.

Excel	in	practice:	Turning	off	a	few	drop-down	menus	in	the
AutoFilter

A	really	cool	trick	is	possible	only	in	Excel	VBA.	When	you	AutoFilter	a	list	in
the	Excel	user	interface,	every	column	in	the	data	set	gets	a	field	drop-down
arrow	in	the	heading	row.	Sometimes	you	have	a	field	that	does	not	make	a	lot	of
sense	to	AutoFilter.	For	example,	in	your	current	data	set,	you	might	want	to
provide	AutoFilter	drop-down	menus	for	Region,	Product,	and	Customer	but	not
the	numeric	or	date	fields.	After	setting	up	the	AutoFilter,	you	need	one	line	of
code	to	turn	off	each	drop-down	menu	that	you	do	not	want	to	appear.	The
following	code	turns	off	the	drop-down	menus	for	columns	C,	E,	F,	G,	and	H:

Click	here	to	view	code	image
Sub	AutoFilterCustom()

Range("A1").AutoFilter	Field:=3,

VisibleDropDown:=False

Range("A1").AutoFilter	Field:=5,

VisibleDropDown:=False

Range("A1").AutoFilter	Field:=6,

VisibleDropDown:=False

Range("A1").AutoFilter	Field:=7,

VisibleDropDown:=False

Range("A1").AutoFilter	Field:=8,

VisibleDropDown:=False

End	Sub

Using	this	tool	is	a	fairly	rare	treat.	Most	of	the	time,	Excel	VBA	lets	you	do
things	that	are	possible	in	the	user	interface—and	lets	you	do	them	rapidly.	The

VisibleDropDown	parameter	actually	enables	you	to	do	something	in	VBA	that
is	generally	not	available	in	the	Excel	user	interface.	Your	knowledgeable	clients
will	be	scratching	their	heads,	trying	to	figure	out	how	you	set	up	the	cool
automatic	filter	with	only	a	few	filterable	columns	(see	Figure	11-21).

FIGURE	11-21	Using	VBA,	you	can	set	up	an	automatic	filter	in	which	only	certain	columns	have
the	AutoFilter	drop-down	arrow.

To	clear	the	filter	from	the	customer	column,	use	this	code:

Click	here	to	view	code	image
Sub	SimpleFilter()

Worksheets("SalesReport").Select

Range("A1").AutoFilter

Range("A1").AutoFilter	Field:=4

End	Sub

Next	steps
The	techniques	from	this	chapter	give	you	many	reporting	techniques	available
via	the	arcane	Advanced	Filter	tool.	Chapter	12,	“Using	VBA	to	create	pivot
tables,”	introduces	the	most	powerful	feature	in	Excel:	the	pivot	table.	The
combination	of	advanced	filters	and	pivot	tables	can	help	you	create	reporting
tools	that	enable	amazing	applications.

CHAPTER	12
Using	VBA	to	create	pivot	tables

In	this	chapter,	you	will:

Find	out	how	pivot	tables	evolved

Build	a	pivot	table

Use	advanced	pivot	table	features

Filter	a	data	set

Use	the	data	model	in	Excel	2019

Use	other	pivot	table	features

Pivot	tables	are	the	most	powerful	tools	that	Excel	has	to	offer.	The	concept	was
first	put	into	practice	by	Lotus,	with	its	Improv	product.

I	love	pivot	tables	because	they	help	you	very	quickly	summarize	massive
amounts	of	data.	The	name	pivot	table	comes	from	the	ability	you	have	to	drag
fields	in	the	PivotTable	Fields	list	and	have	them	recalculate.	You	can	use	a	basic
pivot	table	to	produce	a	concise	summary	in	seconds.	However,	pivot	tables
come	in	so	many	varieties	that	they	can	be	the	tools	of	choice	for	many	different
uses.	You	can	build	pivot	tables	to	act	as	the	calculation	engine	to	produce
reports	by	store	or	by	style	or	to	quickly	find	the	top	5	or	bottom	10	of	anything.

I	don’t	suggest	that	you	use	VBA	to	build	pivot	tables	for	a	user;	rather,	I
suggest	that	you	use	pivot	tables	as	a	means	to	an	end—to	extract	a	summary	of
data	that	you	can	then	take	on	to	better	uses.

Understanding	how	pivot	tables	evolved	over	various
Excel	versions
As	Microsoft	invests	in	making	Excel	the	premier	choice	in	business
intelligence,	pivot	tables	continue	to	evolve.	They	were	introduced	in	Excel	5

and	perfected	in	Excel	97.	In	Excel	2000,	pivot	table	creation	in	VBA	was
dramatically	altered.	Some	new	parameters	were	added	in	Excel	2002.	A	few
new	properties,	such	as	PivotFilters	and	TableStyle2,	were	added	in	Excel
2007.	These	are	some	of	the	changes	Microsoft	has	made	in	the	most	recent	four
versions:

Excel	2010	introduced	slicers,	Repeat	All	Item	Labels,	Named	Sets,	and
several	new	calculation	options:	xlPercentOfParentColumn,
xlPercentOfParentRow,	xlPercentRunningTotal,	xlRankAscending,	and
xlRankDescending.	These	do	not	work	in	Excel	2007.

Excel	2013	introduced	timelines,	the	xlDistinctCount	function,	and	the
Power	Pivot	Data	Model.	You	can	add	tables	to	the	Data	Model,	create	a
relationship,	and	produce	a	pivot	table,	but	this	code	does	not	run	in	Excel
2010	or	earlier.

Excel	2016	introduced	AutoGrouping	for	dates.	Although	this	is	automatic,
it	does	not	affect	pivot	tables	built	with	VBA.

Excel	2019	introduced	PivotTable	defaults.	This	does	not	affect	pivot	tables
built	with	VBA.

Because	of	all	the	changes	from	version	to	version,	you	need	to	be	extremely
careful	when	writing	code	in	Excel	2019	that	might	be	run	in	other	versions.

Note	Much	of	the	code	in	this	chapter	works	with	Excel	2010	and
newer.	Although	this	book	does	not	include	code	for	Excel	2007,
one	Excel	2007	example	has	been	included	in	the	sample	file	for

this	chapter.	The	code	listings	from	this	chapter	are	available	for	download
at	http://www.MrExcel.com/getcode2019.html.

While	building	a	pivot	table	in	Excel	VBA

As	I	mentioned	earlier,	this	chapter	does	not	mean	to	imply	that	you	should	use
VBA	to	build	pivot	tables	to	give	to	your	clients.	Instead,	the	purpose	of	this
chapter	is	to	remind	you	that	you	can	use	pivot	tables	as	a	means	to	an	end:	You
can	use	a	pivot	table	to	extract	a	summary	of	data	and	then	use	that	summary
elsewhere.

http://www.MrExcel.com/getcode2019.html

Note	Although	the	Excel	user	interface	has	names	for	the	various
sections	of	a	pivot	table,	VBA	code	continues	to	refer	to	the	old
names.	Microsoft	made	this	choice	because,	otherwise,	millions	of

lines	of	code	would	stop	working	in	Excel	2007	because	they	would	refer
to,	say,	a	page	field	rather	than	a	filter	field.	Today	the	four	sections	of	a
pivot	table	in	the	Excel	user	interface	are	Filter,	Columns,	Rows,	and
Values,	but	VBA	continues	to	use	the	old	terms:	Page	fields,	Column	fields,
Row	fields,	and	Data	fields.

Defining	the	pivot	cache

In	this	first	part	of	this	chapter,	the	data	set	is	an	eight-column	by	5,000-row	data
set,	as	shown	in	Figure	12-1.	The	macros	create	a	regular	pivot	table	from	the
worksheet	data.	Near	the	end	of	the	chapter,	an	example	shows	how	to	build	a
pivot	table	based	on	the	Data	Model	and	Power	Pivot.

FIGURE	12-1	You	can	create	summary	reports	from	this	data	set.

In	Excel	2010	and	later,	you	first	create	a	pivot	cache	object	to	describe	the
input	area	of	the	data:

Click	here	to	view	code	image
Dim	WSD	As	Worksheet

Dim	PTCache	As	PivotCache

Dim	PT	As	PivotTable

Dim	PRange	As	Range

Dim	FinalRow	As	Long

Dim	FinalCol	As	Long

Set	WSD	=	Worksheets("PivotTable")

'	Delete	any	prior	pivot	tables

For	Each	PT	In	WSD.PivotTables

PT.TableRange2.Clear

Next	PT

'	Define	input	area	and	set	up	a	pivot	cache

FinalRow	=	WSD.Cells(Rows.Count,	1).End(xlUp).Row

FinalCol	=	WSD.Cells(1,

Columns.Count).End(xlToLeft).Column

Set	PRange	=	WSD.Cells(1,	1).Resize(FinalRow,

FinalCol)

Set	PTCache	=	ActiveWorkbook.PivotCaches.Create(_

SourceType:=xlDatabase,	_

SourceData:=PRange,	_

Version:=xlPivotTableVersion14)

Creating	and	configuring	the	pivot	table

After	defining	the	pivot	cache,	use	the	CreatePivotTable	method	to	create	a
blank	pivot	table	based	on	the	defined	pivot	cache:

Click	here	to	view	code	image
Set	PT	=

PTCache.CreatePivotTable(TableDestination:=WSD.Cells(2,

_

FinalCol	+	2),	TableName:="PivotTable1",

Version:=xlPivotTableVersion14)

In	the	CreatePivotTable	method,	you	specify	the	output	location	and
optionally	give	the	table	a	name.	After	running	the	preceding	code,	you	have	a
strange-looking	blank	pivot	table	like	the	one	shown	in	Figure	12-2.	You	need	to
use	code	to	drop	fields	onto	the	table.

FIGURE	12-2	When	you	use	the	CreatePivotTable	method,	Excel	gives	you	a	four-cell	blank	pivot
table	that	is	not	very	useful.

You	can	now	run	through	the	steps	needed	to	lay	out	the	pivot	table.	In	the
.AddFields	method,	you	can	specify	one	or	more	fields	that	should	be	in	the
row,	column,	or	filter	area	of	the	pivot	table.

The	RowFields	parameter	enables	you	to	define	fields	that	appear	in	the
Rows	area	of	the	PivotTable	Fields	list.	The	ColumnFields	parameter
corresponds	to	the	Columns	area.	The	PageFields	parameter	corresponds	to	the
Filter	area.

The	following	line	of	code	populates	a	pivot	table	with	two	fields	in	the	row
area	and	one	field	in	the	column	area:

Click	here	to	view	code	image
'	Set	up	the	row	&	column	fields

PT.AddFields	RowFields:=Array("Region",	"Customer"),	_

ColumnFields:="Product"

To	add	a	field	such	as	Revenue	to	the	values	area	of	the	table,	you	change	the
Orientation	property	of	the	field	to	be	xlDataField.

Adding	fields	to	the	data	area

When	you	are	adding	fields	to	the	data	area	of	a	pivot	table,	there	are	many
settings	you	should	control	instead	of	letting	Excel’s	IntelliSense	decide.	For
example,	say	that	you	are	building	a	report	with	revenue	that	you	will	likely
want	to	sum.	If	you	don’t	explicitly	specify	the	calculation,	Excel	scans	through
the	values	in	the	underlying	data.	If	100%	of	the	revenue	columns	are	numeric,
Excel	sums	those	columns.	If	one	cell	is	blank	or	contains	text,	Excel	decides	on
that	day	to	count	the	revenue,	which	produces	confusing	results.	Because	of	this
possible	variability,	you	should	never	use	the	DataFields	argument	in	the
AddFields	method.	Instead,	change	the	property	of	the	field	to	xlDataField.
You	can	then	specify	the	Function	to	be	xlSum.

Although	you	are	setting	up	the	Data	field,	you	can	change	several	other
properties	within	the	same	With...End	With	block.	For	example,	the	Position
property	is	useful	when	you	are	adding	multiple	fields	to	the	data	area.	Specify	1
for	the	first	field,	2	for	the	second	field,	and	so	on.

By	default,	Excel	renames	a	Revenue	field	to	have	a	strange	name	like	Sum
of	Revenue.	You	can	use	the	.Name	property	to	change	that	heading	back	to
something	normal.

Note	You	cannot	reuse	the	word	Revenue	as	a	name.	Instead,	you
should	add	a	trailing	space	after	the	word	Revenue.

You	are	not	required	to	specify	a	number	format,	but	doing	so	can	make	the
resulting	pivot	table	easier	to	understand	and	takes	only	one	extra	line	of	code:

Click	here	to	view	code	image
'	Set	up	the	data	fields

With	PT.PivotFields("Revenue")

.Orientation	=	xlDataField

.Function	=	xlSum

.Position	=	1

.NumberFormat	=	"#,##0"

.Name	=	"Revenue	"

End	With

Your	pivot	table	inherits	the	table	style	settings	selected	as	the	default	on
whatever	computer	happens	to	run	the	code.	If	you	want	control	over	the	final
format,	you	can	explicitly	choose	a	table	style.	The	following	code	applies
banded	rows	and	a	medium	table	style:

Click	here	to	view	code	image
'	Format	the	pivot	table

PT.ShowTableStyleRowStripes	=	True

PT.TableStyle2	=	"PivotStyleMedium10"

If	you	want	to	reuse	the	data	from	the	pivot	table,	turn	off	the	grand	totals
and	subtotals	and	fill	in	the	labels	along	the	left	column.	The	fastest	way	to
suppress	the	11	possible	subtotals	is	to	set	Subtotals(1)	to	True	and	then	to
False,	like	this:

Click	here	to	view	code	image
With	PT

.ColumnGrand	=	False

.RowGrand	=	False

.RepeatAllLabels	xlRepeatLabels	'	New	in	Excel	2010

End	With

PT.PivotFields("Region").Subtotals(1)	=	True

PT.PivotFields("Region").Subtotals(1)	=	False

At	this	point,	you	have	a	complete	pivot	table	like	the	one	shown	in	Figure
12-3.

FIGURE	12-3	Running	fewer	than	50	lines	of	code	created	this	pivot	table	in	less	than	a	second.

Listing	12-1	shows	the	complete	code	used	to	generate	this	pivot	table.

Listing	12-1	Code	to	generate	the	pivot	table	shown	in	Figure	12-3

Click	here	to	view	code	image
Sub	CreatePivot()

Dim	WSD	As	Worksheet

Dim	PTCache	As	PivotCache

Dim	PT	As	PivotTable

Dim	PRange	As	Range

Dim	FinalRow	As	Long

Set	WSD	=	Worksheets("PivotTable")

'	Delete	any	prior	pivot	tables

For	Each	PT	In	WSD.PivotTables

PT.TableRange2.Clear

Next	PT

'	Define	input	area	and	set	up	a	pivot	cache

FinalRow	=	WSD.Cells(Application.Rows.Count,

1).End(xlUp).Row

FinalCol	=	WSD.Cells(1,	Application.Columns.Count).	_

End(xlToLeft).Column

Set	PRange	=	WSD.Cells(1,	1).Resize(FinalRow,

FinalCol)

Set	PTCache	=	ActiveWorkbook.PivotCaches.Create(_

SourceType:=	xlDatabase,	_

SourceData:=PRange.Address,	_

Version:=xlPivotTableVersion14)

'	Create	the	pivot	table	from	the	pivot	cache

Set	PT	=

PTCache.CreatePivotTable(TableDestination:=WSD.	_

Cells(2,	FinalCol	+	2),	TableName:="PivotTable1")

'	Set	up	the	row	and	column	fields

PT.AddFields	RowFields:=Array("Region",	"Customer"),

_

ColumnFields:="Product"

'	Set	up	the	data	fields

With	PT.PivotFields("Revenue")

.Orientation	=	xlDataField

Click	here	to	view	code	image
.Function	=	xlSum

.Position	=	1

.NumberFormat	=	"#,##0"

.Name	=	"Revenue	"

End	With

'Format	the	pivot	table

PT.ShowTableStyleRowStripes	=	True

PT.TableStyle2	=	"PivotStyleMedium10"

With	PT

.ColumnGrand	=	False

.RowGrand	=	False

.RepeatAllLabels	xlRepeatLabels

End	With

PT.PivotFields("Region").Subtotals(1)	=	True

PT.PivotFields("Region").Subtotals(1)	=	False

WSD.Activate

Range("J2").Select

End	Sub

Learning	why	you	cannot	move	or	change	part	of	a	pivot	report

Although	pivot	tables	are	incredible,	they	have	annoying	limitations;	for
example,	you	cannot	move	or	change	just	part	of	a	pivot	table.	Try	to	run	a
macro	that	clears	row	2.	The	macro	comes	to	a	screeching	halt	with	the	error
1004,	as	shown	in	Figure	12-4.	To	get	around	this	limitation,	you	can	copy	the
pivot	table	and	paste	as	values.

FIGURE	12-4	You	cannot	delete	just	part	of	a	pivot	table.

Determining	the	size	of	a	finished	pivot	table	to	convert	the	pivot
table	to	values

Knowing	the	size	of	a	pivot	table	in	advance	is	difficult.	If	you	run	a	report	of
transactional	data	on	one	day,	you	might	or	might	not	have	sales	from	the	West
region,	for	example.	This	could	cause	your	table	to	be	either	six	or	seven
columns	wide.	Therefore,	you	should	use	the	special	property	TableRange2	to
refer	to	the	entire	pivot	table.

PT.TableRange2	includes	the	entire	pivot	table.	In	Figure	12-5,	TableRange2
includes	the	extra	row	at	the	top	with	the	field	heading	Revenue.	To	eliminate
that	row,	the	code	copies	PT.TableRange2	but	offsets	this	selection	by	one	row
by	using	.Offset(1,	0).	Depending	on	the	nature	of	your	pivot	table,	you
might	need	to	use	an	offset	of	two	or	more	rows	to	get	rid	of	extraneous
information	at	the	top	of	the	pivot	table.

FIGURE	12-5	This	figure	shows	an	intermediate	result	of	the	macro.	Only	the	summary	in	J12:M17
will	remain	after	the	macro	finishes.

The	code	copies	PT.TableRange2	and	uses	PasteSpecial	on	a	cell	four	rows
below	the	current	pivot	table.	At	that	point	in	the	code,	your	worksheet	looks	as
shown	in	Figure	12-5.	The	table	in	J2	is	a	live	pivot	table,	and	the	table	in	J12	is
the	copied	results.

You	can	then	eliminate	the	pivot	table	by	applying	the	Clear	method	to	the
entire	table.	If	your	code	is	then	going	on	to	do	additional	formatting,	you	should
remove	the	pivot	cache	from	memory	by	setting	PTCache	equal	to	Nothing.

The	code	in	Listing	12-2	uses	a	pivot	table	to	produce	a	summary	from	the
underlying	data.	At	the	end	of	the	code,	the	pivot	table	is	copied	to	static	values,
and	the	pivot	table	is	cleared.

Listing	12-2	Code	to	produce	a	static	summary	from	a	pivot	table

Click	here	to	view	code	image
Sub	CreateSummaryReportUsingPivot()

'	Use	a	pivot	table	to	create	a	static	summary	report

'	with	product	going	down	the	rows	and	regions	across

Dim	WSD	As	Worksheet

Dim	PTCache	As	PivotCache

Dim	PT	As	PivotTable

Dim	PRange	As	Range

Dim	FinalRow	As	Long

Set	WSD	=	Worksheets("PivotTable")

'	Delete	any	prior	pivot	tables

For	Each	PT	In	WSD.PivotTables

PT.TableRange2.Clear

Next	PT

WSD.Range("J1:Z1").EntireColumn.Clear

Click	here	to	view	code	image
'	Define	input	area	and	set	up	a	pivot	cache

FinalRow	=	WSD.Cells(Application.Rows.Count,

1).End(xlUp).Row

FinalCol	=	WSD.Cells(1,	Application.Columns.Count).	_

End(xlToLeft).Column

Set	PRange	=	WSD.Cells(1,	1).Resize(FinalRow,

FinalCol)

Set	PTCache	=	ActiveWorkbook.PivotCaches.Create(_

SourceType:=	xlDatabase,	_

SourceData:=PRange.Address,	_

Version:=xlPivotTableVersion14)

'	Create	the	pivot	table	from	the	pivot	cache

Set	PT	=

PTCache.CreatePivotTable(TableDestination:=WSD.	_

Cells(2,	FinalCol	+	2),	TableName:="PivotTable1")

'	Set	up	the	row	fields

PT.AddFields	RowFields:="Product",

ColumnFields:="Region"

'	Set	up	the	data	fields

With	PT.PivotFields("Revenue")

.Orientation	=	xlDataField

.Function	=	xlSum

.Position	=	1

.NumberFormat	=	"#,##0"

.Name	=	"Revenue	"

End	With

With	PT

.ColumnGrand	=	False

.RowGrand	=	False

.NullString	=	"0"

End	With

'	PT.TableRange2	contains	the	results.	Move	these	to

J12

'	as	just	values	and	not	a	real	pivot	table.

PT.TableRange2.Offset(1,	0).Copy

WSD.Cells(5	+	PT.TableRange2.Rows.Count,	FinalCol	+

2).	_

PasteSpecial	xlPasteValues

'	At	this	point,	the	worksheet	looks	like	Figure	12-5

'	Delete	the	original	pivot	table	and	the	pivot	cache

PT.TableRange2.Clear

Set	PTCache	=	Nothing

WSD.Activate

Range("J12").Select

End	Sub

The	code	in	Listing	12-2	creates	the	pivot	table.	It	then	copies	the	results	and
pastes	them	as	values	in	J12:M13.	Figure	12-5,	which	was	shown	previously,
includes	an	intermediate	result	just	before	the	original	pivot	table	is	cleared.

So	far,	this	chapter	has	walked	you	through	building	very	simple	pivot	table
reports.	Pivot	tables	offer	far	more	flexibility,	though.	The	sections	that	follow
present	more	complex	reporting	examples.

Using	advanced	pivot	table	features

In	this	section,	you	use	the	detailed	transactional	data	to	produce	a	series	of

reports	for	each	product	line	manager.	This	section	covers	the	following
advanced	pivot	table	steps	that	are	required	in	these	reports:

1.	 Group	the	daily	dates	up	to	yearly	dates.

2.	 Add	multiple	fields	to	the	values	area.

3.	 Control	the	sort	order	so	the	largest	customers	are	listed	first.

4.	 Use	the	ShowPages	feature	to	replicate	the	report	for	each	product	line
manager.

5.	 After	producing	the	pivot	tables,	convert	each	pivot	table	to	values	and	do
some	basic	formatting.

Figure	12-6	shows	the	report	for	one	product	line	manager	to	give	you	an
idea	of	the	final	goal.

FIGURE	12-6	Using	pivot	tables	simplifies	the	creation	of	the	report.

Using	multiple	value	fields

The	report	has	three	fields	in	the	values	area:	#	of	Orders,	Revenue,	and	%	of
Total	Revenue.	Anytime	you	have	two	or	more	fields	in	the	values	area,	a	new
virtual	field	named	Data	becomes	available	in	your	pivot	table.	In	Excel	2019,
the	Data	field	appears	as	Σ	Values	in	the	PivotTable	Fields	list.	When	creating
your	pivot	table,	you	can	specify	Data	as	one	of	the	column	fields	or	row	fields.
The	position	of	the	Data	field	is	important:	It	usually	works	best	as	the	innermost
column	field.

When	you	define	a	pivot	table	in	VBA,	you	have	two	column	fields:	the	Date
field	and	the	Data	field.	To	specify	two	or	more	fields	in	the	AddFields	method,
you	wrap	those	fields	in	an	array	function.

Use	this	code	to	define	the	pivot	table:

Click	here	to	view	code	image
'	Set	up	the	row	fields

PT.AddFields	RowFields:="Customer",	_

ColumnFields:=Array("Date",	"Data"),	_

PageFields:="Product"

This	is	the	first	time	you	have	seen	the	PageFields	parameter	in	this	chapter.
When	you	are	creating	a	pivot	table	for	someone	to	use,	you	should	know	that
the	fields	in	PageFields	allow	for	easy	ad	hoc	analysis.	In	this	case,	the	value	in
PageFields	is	going	to	make	it	easy	to	replicate	the	report	for	every	product	line
manager.

Counting	the	number	of	records

So	far,	the	.Function	property	of	the	Data	fields	has	always	been	xlSum.	A	total
of	11	functions	are	available:	xlSum,	xlCount,	xlAverage,	xlStdDev,	xlMin,
xlMax,	and	so	on.

Count	is	the	only	function	that	works	for	text	fields.	To	count	the	number	of
records,	and	hence	the	number	of	orders,	add	a	text	field	to	the	data	area	and
choose	xlCount	as	the	function:

Click	here	to	view	code	image
With	PT.PivotFields("Region")

.Orientation	=	xlDataField

.Function	=	xlCount

.Position	=	1

.NumberFormat	=	"#,##0"

.Name	=	"#	of	Orders	"

End	With

Note	This	is	a	count	of	the	number	of	records.	It	is	not	a	count	of
the	distinct	values	in	a	field.	This	kind	of	count	was	previously
difficult	to	do	in	a	pivot	table.	It	is	now	possible	using	the	Data

Model.	See	the	“Using	the	Data	Model	in	Excel	2019”	section	later	in	this
chapter	for	details.

Grouping	daily	dates	to	months,	quarters,	or	years

Pivot	tables	have	the	amazing	capability	to	group	daily	dates	up	to	months,
quarters,	and	years.	In	VBA,	this	feature	is	a	bit	annoying	because	you	must
select	a	date	cell	before	issuing	the	grouping	command.

Note	I	used	to	go	through	all	sorts	of	gyrations	to	figure	out	where
the	first	date	field	was.	In	fact,	you	can	simply	refer	to
PT.PivotFields("Date").LabelRange	to	point	to	the	Date

heading.

There	are	seven	choices	for	group	times	or	dates:	Seconds,	Minutes,	Hours,
Days,	Months,	Quarters,	and	Years.	Note	that	you	can	group	a	field	by	multiple
items.	To	do	so,	you	specify	a	series	of	True/False	values	corresponding	to
Seconds,	Minutes,	and	so	on.

For	example,	to	group	by	Months,	Quarters,	and	Years,	you	would	use	the
following:

Click	here	to	view	code	image
PT.PivotFields("Date").LabelRange.Group	,	Periods:=	_

Array(False,	False,	False,	False,	True,	True,	True)

Note	Never	choose	to	group	by	only	months	without	including
years.	If	you	do	this,	Excel	combines	January	from	all	years	in	the
data	into	a	single	item	called	January.	Although	this	is	great	for

seasonality	analyses,	it	is	rarely	what	you	want	in	a	summary.	Always
choose	Years	and	Months	in	the	Grouping	dialog	box.

If	you	want	to	group	by	week,	you	group	only	by	day	and	use	7	as	the	value
for	the	By	parameter:

Click	here	to	view	code	image
PT.PivotFields("Date").LabelRange.Group	_

Start:=True,	End:=True,	By:=7,	_

Periods:=Array(False,	False,	False,	True,	False,

False,	False)

Specifying	True	for	Start	and	End	starts	the	first	week	at	the	earliest	date	in
the	data.	If	you	want	to	show	only	the	weeks	from	Monday,	January	1,	2018,	to
Sunday,	January	2,	2020,	use	this	code:

Click	here	to	view	code	image
With	PT.PivotFields("Date")

.LabelRange.Group	_

Start:=DateSerial(2018,	1,	1),	_

End:=DateSerial(2020,	1,	4),	_

By:=7,	_

Periods:=Array(False,	False,	False,	True,	False,

False,	False)

On	Error	Resume	Next

.PivotItems("<1/1/2018").Visible	=	False

.PivotItems(">1/2/2020").Visible	=	False

On	Error	Goto	0

End	With

Note	There	is	one	limitation	to	grouping	by	week.	When	you
group	by	week,	you	cannot	also	group	by	any	other	measure.	For
example,	grouping	by	both	week	and	quarter	is	not	valid.

Excel	2019	introduced	the	concept	of	AutoGrouping	for	dates.	Excel	2019
has	built-in	rules	that	analyze	the	span	of	dates	and	decide	whether	dates	should
be	grouped	by	month	or	by	month,	quarter,	and	year.	This	does	not	happen	in
VBA,	but	you	can	force	it	by	using	this:

PT.AutoGroup

For	this	report,	you	need	to	group	only	by	year,	so	the	code	is	as	follows:

Click	here	to	view	code	image
'	Group	daily	dates	up	to	years

PT.PivotFields("Date").LabelRange.Group	,	Periods:=	_

Array(False,	False,	False,	False,	False,	False,	True)

Tip	Before	grouping	the	daily	dates	up	to	years,	you	had	about	500
date	columns	across	this	report.	After	grouping,	you	have	two	date
columns	plus	a	total.	I	prefer	to	group	the	dates	as	soon	as	possible

in	the	macro.	If	you	added	the	other	two	data	fields	to	the	report	before
grouping,	your	report	would	be	1,500	columns	wide.	Although	this	is	not	a
problem	since	Excel	2007	increased	the	column	limit	from	256	to	16,384,	it
still	creates	an	unusually	large	report	when	you	ultimately	need	only	a	few
columns.	Allowing	the	pivot	table	to	grow	to	1,500	columns,	even	for	a	few
lines	of	code,	would	make	the	worksheet’s	last	cell	be	column	BER.

After	you	group	daily	dates	to	years,	the	new	Year	field	is	still	called	Date.
This	might	not	always	be	the	case.	If	you	roll	daily	dates	up	to	months	and	to
years,	the	Date	field	contains	months,	and	a	new	Year	field	is	added	to	the
PivotTable	Fields	list	to	hold	years.

Changing	the	calculation	to	show	percentages

Excel	2019	offers	15	choices	on	the	Show	Values	As	tab	of	the	Value	Field
Settings	dialog	box.	These	calculations	enable	you	to	change	how	a	field	is
displayed	in	the	report.	Instead	of	showing	sales,	you	could	show	sales	as	a
percentage	of	total	sales.	You	could	show	a	running	total.	You	could	show	each
day’s	sales	as	a	percentage	of	the	previous	day’s	sales.

All	these	settings	are	controlled	through	the	.Calculation	property	of	the
pivot	field.	Each	calculation	has	its	own	unique	set	of	rules.	Some,	such	as	%	Of
Column,	work	without	any	further	settings.	Others,	such	as	Running	Total	In,
require	a	base	field.	Others,	such	as	Running	Total,	require	a	base	field	and	a
base	item.

To	get	the	percentage	of	the	total,	specify	xlPercentOfTotal	as	the
.Calculation	property	for	the	page	field:

.Calculation	=	xlPercentOfTotal

To	set	up	a	running	total,	you	have	to	specify	a	BaseField.	If	you	need	a
running	total	along	a	date	column,	use	this:

Click	here	to	view	code	image
'	Set	up	Running	Total

.Calculation	=	xlRunningTotal

.BaseField	=	"Date"

With	ship	months	going	down	the	rows,	you	might	want	to	see	the
percentage	of	revenue	growth	from	month	to	month.	You	can	set	up	this
arrangement	with	the	xlPercentDifferenceFrom	setting.	In	this	case,	you	must
specify	that	the	BaseField	is	"Date"	and	that	the	BaseItem	is	something	called
“(previous)":

Click	here	to	view	code	image
'	Set	up	%	change	from	prior	month

With	PT.PivotFields("Revenue")

.Orientation	=	xlDataField

.Function	=	xlSum

.Caption	=	"%Change"

.Calculation	=	xlPercentDifferenceFrom

.BaseField	=	"Date"

.BaseItem	=	"(previous)"

.NumberFormat	=	"#0.0%"

End	With

Note	that	with	positional	calculations,	you	cannot	use	the	AutoShow	or
AutoSort	methods.	This	is	too	bad;	it	would	be	interesting	to	sort	the	customers
from	high	to	low	and	see	their	sizes	in	relation	to	each	other.

You	can	use	the	xlPercentDifferenceFrom	setting	to	express	revenues	as	a
percentage	of	the	West	region	sales:

Click	here	to	view	code	image
'	Show	revenue	as	a	percentage	of	California

With	PT.PivotFields("Revenue")

.Orientation	=	xlDataField

.Function	=	xlSum

.Caption	=	"%	of	West"

.Calculation	=	xlPercentDifferenceFrom

.BaseField	=	"State"

.BaseItem	=	"California"

.Position	=	3

.NumberFormat	=	"#0.0%"

End	With

Table	12-1	shows	the	complete	list	of	.Calculation	options.	The	second
column	indicates	the	compatibility	of	the	calculation	with	earlier	versions	of
Excel.	The	third	column	indicates	whether	you	need	a	base	field	or	a	base	item.

TABLE	12-1	Complete	list	of	.Calculation	options

Calculation Version	compatibility BaseField/BaseItem
xlDifferenceFrom All Both	required
xlIndex All Neither
xlPercentDifferenceFrom All Both	required
xlPercentOf All Both	required
xlPercentOfColumn All Neither
xlPercentOfParent 2010+ BaseField	only
xlPercentOfParentColumn 2010+ Both	required
xlPercentOfParentRow 2010+ Both	required
xlPercentOfRow All Neither
xlPercentOfTotal All Neither
xlPercentRunningTotal 2010+ BaseField	only
xlRankAscending 2010+ BaseField	only
xlRankDescending 2010+ BaseField	only
xlRunningTotal All BaseField	only

After	that	long	explanation	of	the	.Calculation	property,	you	can	build	the
other	two	pivot	table	fields	for	the	product	line	report.

Add	Revenue	to	the	report	twice.	The	first	time,	there	is	no	calculation.	The
second	time,	calculate	the	percentage	of	total:

Click	here	to	view	code	image
'	Set	up	the	data	fields	-	Revenue

With	PT.PivotFields("Revenue")

.Orientation	=	xlDataField

.Function	=	xlSum

.Position	=	2

.NumberFormat	=	"#,##0"

.Name	=	"Revenue	"

End	With

'	Set	up	the	data	fields	-	%	of	total	Revenue

With	PT.PivotFields("Revenue")

.Orientation	=	xlDataField

.Function	=	xlSum

.Position	=	3

.NumberFormat	=	"0.0%"

.Name	=	"%	of	Total	"

.Calculation	=	xlPercentOfColumn

End	With

Note	Take	careful	note	of	the	name	of	the	first	field	in	the
preceding	code.	By	default,	Excel	would	use	Sum	of	Revenue.	If
you	think	this	is	a	goofy	title	(as	I	do),	you	can	change	it.	However,

you	cannot	change	it	to	Revenue	because	there	is	already	a	field	in	the
PivotTable	Fields	list	with	that	name.

In	the	preceding	code,	I	use	the	name	Revenue	with	a	trailing	space.	This
works	fine,	and	no	one	notices	the	extra	space.	However,	in	the	rest	of	the
macro,	when	you	refer	to	this	field,	remember	to	refer	to	it	as	Revenue	with
a	trailing	space.

Eliminating	blank	cells	in	the	values	area

If	you	have	some	customers	who	were	new	in	year	2,	their	sales	will	appear
blank	in	year	1.	Anyone	using	Excel	97	or	later	can	replace	blank	cells	with
zeros.	In	the	Excel	interface,	you	can	find	the	setting	for	this	on	the	Layout	&
Format	tab	of	the	PivotTable	Options	dialog	box.	Select	the	For	Empty	Cells,
Show	option	and	type	0	in	the	box.

The	equivalent	operation	in	VBA	is	to	set	the	NullString	property	for	the
pivot	table	to	"0":

PT.NullString	=	"0"

Note	Although	the	proper	code	is	to	set	this	value	to	a	text	zero,
Excel	puts	a	real	zero	in	the	empty	cells.

FIGURE	12-7	The	Product	drop-down	menu	in	column	K	enables	you	to	filter	the	report	to	certain
products.

Controlling	the	sort	order	with	AutoSort

The	Excel	interface	offers	an	AutoSort	option	that	enables	you	to	show
customers	in	descending	order,	based	on	revenue.	The	equivalent	code	in	VBA
to	sort	the	product	field	by	descending	revenue	uses	the	AutoSort	method:

Click	here	to	view	code	image
PT.PivotFields("Customer").AutoSort

Order:=xlDescending,	_

Field:="Revenue	"

After	applying	some	formatting	in	the	macro,	you	now	have	one	report	with
totals	for	all	products,	as	shown	in	Figure	12-7.

Replicating	the	report	for	every	product

As	long	as	your	pivot	table	was	not	built	on	an	OLAP	data	source,	you	now	have
access	to	one	of	the	most	powerful,	but	least-well-known,	features	in	pivot
tables.	The	command	is	called	Show	Report	Filter	Pages,	and	it	replicates	your
pivot	table	for	every	item	in	one	of	the	fields	in	the	Filters	area.

Because	you	built	the	report	in	this	example	with	Product	as	a	filter	field,	it
takes	only	the	following	code	to	replicate	the	pivot	table	for	every	product:

Click	here	to	view	code	image

'	Replicate	the	pivot	table	for	each	product

PT.ShowPages	PageField:="Product"

After	running	this	code,	you	have	a	new	worksheet	for	every	product	in	the
data	set.	From	there,	you	have	some	simple	formatting	and	calculations	to	do.
Check	the	end	of	the	macro,	shown	in	Listing	12-3,	for	these	techniques,	which
should	be	second	nature	by	this	point	in	the	book.

Listing	12-3	Code	to	produce	one	report	per	product

Click	here	to	view	code	image
Sub	CustomerByProductReport()

'	Use	a	pivot	table	to	create	a	report	for	each

product

'	with	customers	in	rows	and	years	in	columns

Dim	WSD	As	Worksheet

Dim	PTCache	As	PivotCache

Click	here	to	view	code	image
Dim	PT	As	PivotTable

Dim	PT2	As	PivotTable

Dim	WS	As	Worksheet

Dim	WSF	As	Worksheet

Dim	PRange	As	Range

Dim	FinalRow	As	Long

Set	WSD	=	Worksheets("PivotTable")

'	Delete	any	prior	pivot	tables

For	Each	PT	In	WSD.PivotTables

PT.TableRange2.Clear

Next	PT

WSD.Range("J1:Z1").EntireColumn.Clear

'	Define	input	area	and	set	up	a	pivot	cache

FinalRow	=	WSD.Cells(Application.Rows.Count,

1).End(xlUp).Row

FinalCol	=	WSD.Cells(1,	Application.Columns.Count).	_

End(xlToLeft).Column

Set	PRange	=	WSD.Cells(1,	1).Resize(FinalRow,

FinalCol)

Set	PTCache	=	ActiveWorkbook.PivotCaches.Create(_

SourceType:=	xlDatabase,	_

SourceData:=PRange.Address,	_

Version:=xlPivotTableVersion14)

'	Create	the	pivot	table	from	the	pivot	cache

Set	PT	=

PTCache.CreatePivotTable(TableDestination:=WSD.	_

Cells(2,	FinalCol	+	2),	TableName:="PivotTable1")

'	Set	up	the	row	fields

PT.AddFields	RowFields:="Customer",	_

ColumnFields:=Array("Date",	"Data"),	_

PageFields:="Product"

'	Set	up	the	data	fields	-	count	of	orders

With	PT.PivotFields("Region")

.Orientation	=	xlDataField

.Function	=	xlCount

.Position	=	1

.NumberFormat	=	"#,##0"

.Name	=	"#	of	Orders	"

End	With

'	Group	daily	dates	up	to	years

PT.PivotFields("Date").LabelRange.Group	,	Periods:=	_

Array(False,	False,	False,	False,	False,	False,	True)

'	Set	up	the	data	fields	-	Revenue

With	PT.PivotFields("Revenue")

.Orientation	=	xlDataField

.Function	=	xlSum

.Position	=	2

.NumberFormat	=	"#,##0"

.Name	=	"Revenue	"

End	With

Click	here	to	view	code	image
'	Set	up	the	data	fields	-	%	of	total	Revenue

With	PT.PivotFields("Revenue")

.Orientation	=	xlDataField

.Function	=	xlSum

.Position	=	3

.NumberFormat	=	"0.0%"

.Name	=	"%	of	Total	"

.Calculation	=	xlPercentOfColumn

End	With

'	Sort	the	customers	so	the	largest	is	at	the	top

PT.PivotFields("Customer").AutoSort

Order:=xlDescending,	_

Field:="Revenue	"

With	PT

.ShowTableStyleColumnStripes	=	True

.ShowTableStyleRowStripes	=	True

.TableStyle2	=	"PivotStyleMedium10"

.NullString	=	"0"

End	With

'	Replicate	the	pivot	table	for	each	product

PT.ShowPages	PageField:="Product"

Ctr	=	0

For	Each	WS	In	ActiveWorkbook.Worksheets

If	WS.PivotTables.Count	>	0	Then

If	WS.Cells(1,	1).Value	=	"Product"	Then

'	Save	some	info

WS.Select

ThisProduct	=	Cells(1,	2).Value

Ctr	=	Ctr	+	1

If	Ctr	=	1	Then

Set	WSF	=	ActiveSheet

End	If

Set	PT2	=	WS.PivotTables(1)

CalcRows	=	PT2.TableRange1.Rows.Count	-	3

PT2.TableRange2.Copy

PT2.TableRange2.PasteSpecial	xlPasteValues

Range("A1:C3").ClearContents

Range("A1:B2").Clear

Range("A1").Value	=	"Product	report	for	"	&

ThisProduct

Range("A1").Style	=	"Title"

'	Fix	some	headings

Range("b5:d5").Copy

Destination:=Range("H5:J5")

Range("H4").Value	=	"Total"

Range("I4:J4").Clear

Click	here	to	view	code	image
'	Copy	the	format

Range("J1").Resize(CalcRows	+	5,	1).Copy

Range("K1").Resize(CalcRows	+	5,	1).	_

PasteSpecial	xlPasteFormats

Range("K5").Value	=	"%	Rev	Growth"

Range("K6").Resize(CalcRows,	1).FormulaR1C1	=

_

"=IFERROR(RC6/RC3-1,1)"

Range("A2:K5").Style	=	"Heading	4"

Range("A2").Resize(CalcRows	+	10,

11).Columns.AutoFit

End	If

End	If

Next	WS

WSD.Select

PT.TableRange2.Clear

Set	PTCache	=	Nothing

WSF.Select

MsgBox	Ctr	&	"	product	reports	created."

End	Sub

Filtering	a	data	set

There	are	many	ways	to	filter	a	pivot	table,	from	using	the	slicers,	to	the
conceptual	filters,	to	simply	selecting	and	clearing	items	from	one	of	the	many
field	drop-down	menus.

Manually	filtering	two	or	more	items	in	a	pivot	field

When	you	open	a	field	heading	drop-down	menu	and	select	or	clear	items	from
the	list,	you	are	applying	a	manual	filter	(see	Figure	12-8).

For	example,	say	that	you	have	one	client	who	sells	shoes.	In	the	report
showing	sales	of	sandals,	he	wants	to	see	just	the	stores	that	are	in	warm-weather
states.	The	code	to	hide	a	particular	store	is	as	follows:

Click	here	to	view	code	image

PT.PivotFields("Store").PivotItems("Minneapolis").Visible

=	False

FIGURE	12-8	This	filter	drop-down	menu	offers	manual	filters,	a	search	box,	and	conceptual	filters.

This	process	is	easy	in	VBA.	After	building	the	table	with	Product	in	the
page	field,	loop	through	to	change	the	Visible	property	to	show	only	the	total	of
certain	products:

Click	here	to	view	code	image
'	Make	sure	all	PivotItems	along	line	are	visible

For	Each	PivItem	In	_

PT.PivotFields("Product").PivotItems

PivItem.Visible	=	True

Next	PivItem

'	Now	-	loop	through	and	keep	only	certain	items

visible

For	Each	PivItem	In	_

PT.PivotFields("Product").PivotItems

Select	Case	PivItem.Name

Case	"Landscaping/Grounds	Care",	_

"Green	Plants	and	Foliage	Care"

PivItem.Visible	=	True

Case	Else

PivItem.Visible	=	False

End	Select

Next	PivItem

Using	the	conceptual	filters

Excel	2007	introduced	conceptual	filters	for	date	fields,	numeric	fields,	and	text
fields.	Open	the	drop-down	menu	for	any	field	label	in	the	pivot	table,	and	you
can	choose	Label	Filters,	Date	Filters,	or	Value	Filters.	The	date	filters	offer	the
capability	to	filter	to	a	conceptual	period	such	as	last	month	or	next	year	(see
Figure	12-9).

FIGURE	12-9	These	date	filters	were	introduced	in	Excel	2007.

To	apply	a	label	filter	in	VBA,	use	the	PivotFilters.Add	method.	The
following	code	filters	to	the	customers	that	start	with	the	letter	E:

Click	here	to	view	code	image
PT.PivotFields("Customer").PivotFilters.Add	_

Type:=xlCaptionBeginsWith,	Value1:="E"

To	clear	the	filter	from	the	Customer	field,	use	the	ClearAllFilters
method:

Click	here	to	view	code	image

PT.PivotFields("Customer").ClearAllFilters

To	apply	a	date	filter	to	the	date	field	to	find	records	from	this	week,	use	this
code:

Click	here	to	view	code	image

PT.PivotFields("Date").PivotFilters.Add

Type:=xlThisWeek

The	value	filters	enable	you	to	filter	one	field	based	on	the	value	of	another

field.	For	example,	to	find	all	the	markets	where	the	total	revenue	is	more	than
$100,000,	use	this	code:

Click	here	to	view	code	image
PT.PivotFields("Market").PivotFilters.Add	_

Type:=xlValueIsGreaterThan,	_

DataField:=PT.PivotFields("Sum	of	Revenue"),	_

Value1:=100000

Other	value	filters	might	enable	you	to	specify,	for	example,	that	you	want
branches	where	the	revenue	is	between	$50,000	and	$100,000.	In	this	case,	you
specify	one	limit	as	Value1	and	the	second	limit	as	Value2:

Click	here	to	view	code	image
PT.PivotFields("Market").PivotFilters.Add	_

Type:=xlValueIsBetween,	_

DataField:=PT.PivotFields("Sum	of	Revenue"),	_

Value1:=50000,	Value2:=100000

Table	12-2	lists	all	the	possible	filter	types.

TABLE	12-2	Filter	types

Filter	type Description
xlBefore Filters	for	all	dates	before	a	specified	date.
xlBeforeOrEqualTo Filters	for	all	dates	on	or	before	a	specified	date.
xlAfter Filters	for	all	dates	after	a	specified	date.
xlAfterOrEqualTo Filters	for	all	dates	on	or	after	a	specified	date.
xlAllDatesInPeriodJanuary Filters	for	all	dates	in	January.
xlAllDatesInPeriodFebruary Filters	for	all	dates	in	February.
xlAllDatesInPeriodMarch Filters	for	all	dates	in	March.
xlAllDatesInPeriodApril Filters	for	all	dates	in	April.
xlAllDatesInPeriodMay Filters	for	all	dates	in	May.
xlAllDatesInPeriodJune Filters	for	all	dates	in	June.
xlAllDatesInPeriodJuly Filters	for	all	dates	in	July.
xlAllDatesInPeriodAugust Filters	for	all	dates	in	August.

xlAllDatesInPeriodSeptember Filters	for	all	dates	in	September.
xlAllDatesInPeriodOctober Filters	for	all	dates	in	October.
xlAllDatesInPeriodNovember Filters	for	all	dates	in	November.
xlAllDatesInPeriodDecember Filters	for	all	dates	in	December.
xlAllDatesInPeriodQuarter1 Filters	for	all	dates	in	Quarter	1.
xlAllDatesInPeriodQuarter2 Filters	for	all	dates	in	Quarter	2.
xlAllDatesInPeriodQuarter3 Filters	for	all	dates	in	Quarter	3.
xlAllDatesInPeriodQuarter4 Filters	for	all	dates	in	Quarter	4.
xlBottomCount Filters	for	the	specified	number	of	values	from	the	bottom	of	a	list.
xlBottomPercent Filters	for	the	specified	percentage	of	values	from	the	bottom	of	a	list.
xlBottomSum Sums	the	values	from	the	bottom	of	the	list.
xlCaptionBeginsWith Filters	for	all	captions,	beginning	with	the	specified	string.
xlCaptionContains Filters	for	all	captions	that	contain	the	specified	string.
xlCaptionDoesNotBeginWith Filters	for	all	captions	that	do	not	begin	with	the	specified	string.
xlCaptionDoesNotContain Filters	for	all	captions	that	do	not	contain	the	specified	string.
xlCaptionDoesNotEndWith Filters	for	all	captions	that	do	not	end	with	the	specified	string.
xlCaptionDoesNotEqual Filters	for	all	captions	that	do	not	match	the	specified	string.
xlCaptionEndsWith Filters	for	all	captions	that	end	with	the	specified	string.
xlCaptionEquals Filters	for	all	captions	that	match	the	specified	string.
xlCaptionIsBetween Filters	for	all	captions	that	are	within	a	specified	range	of	values.
xlCaptionIsGreaterThan Filters	for	all	captions	that	are	greater	than	the	specified	value.
xlCaptionIsGreaterThanOrEqualToFilters	for	all	captions	that	are	greater	than	or	match	the	specified

value.
xlCaptionIsLessThan Filters	for	all	captions	that	are	less	than	the	specified	value.
xlCaptionIsLessThanOrEqualTo Filters	for	all	captions	that	are	less	than	or	match	the	specified	value.
xlCaptionIsNotBetween Filters	for	all	captions	that	are	not	within	a	specified	range	of	values.
xlDateBetween Filters	for	all	dates	that	are	within	a	specified	range	of	dates.
xlDateLastMonth Filters	for	all	dates	that	apply	to	the	previous	month.
xlDateLastQuarter Filters	for	all	dates	that	apply	to	the	previous	quarter.
xlDateLastWeek Filters	for	all	dates	that	apply	to	the	previous	week.
xlDateLastYear Filters	for	all	dates	that	apply	to	the	previous	year.
xlDateNextMonth Filters	for	all	dates	that	apply	to	the	next	month.
xlDateNextQuarter Filters	for	all	dates	that	apply	to	the	next	quarter.

xlDateNextWeek Filters	for	all	dates	that	apply	to	the	next	week.
xlDateNextYear Filters	for	all	dates	that	apply	to	the	next	year.
xlDateThisMonth Filters	for	all	dates	that	apply	to	the	current	month.
xlDateThisQuarter Filters	for	all	dates	that	apply	to	the	current	quarter.
xlDateThisWeek Filters	for	all	dates	that	apply	to	the	current	week.
xlDateThisYear Filters	for	all	dates	that	apply	to	the	current	year.
xlDateToday Filters	for	all	dates	that	apply	to	the	current	date.
xlDateTomorrow Filters	for	all	dates	that	apply	to	the	next	day.
xlDateYesterday Filters	for	all	dates	that	apply	to	the	previous	day.
xlNotSpecificDate Filters	for	all	dates	that	do	not	match	a	specified	date.
xlSpecificDate Filters	for	all	dates	that	match	a	specified	date.
xlTopCount Filters	for	the	specified	number	of	values	from	the	top	of	a	list.
xlTopPercent Filters	for	the	specified	percentage	of	values	from	the	top	of	a	list.
xlTopSum Sums	the	values	from	the	top	of	the	list.
xlValueDoesNotEqual Filters	for	all	values	that	do	not	match	the	specified	value.
xlValueEquals Filters	for	all	values	that	match	the	specified	value.
xlValueIsBetween Filters	for	all	values	that	are	within	a	specified	range	of	values.
xlValueIsGreaterThan Filters	for	all	values	that	are	greater	than	the	specified	value.
xlValueIsGreaterThanOrEqualTo Filters	for	all	values	that	are	greater	than	or	match	the	specified	value.
xlValueIsLessThan Filters	for	all	values	that	are	less	than	the	specified	value.
xlValueIsLessThanOrEqualTo Filters	for	all	values	that	are	less	than	or	match	the	specified	value.
xlValueIsNotBetween Filters	for	all	values	that	are	not	within	a	specified	range	of	values.
xlYearToDate Filters	for	all	values	that	are	within	one	year	of	a	specified	date.

Using	the	search	filter

Excel	2010	added	a	Search	box	to	the	filter	drop-down	menu.	Although	this	is	a
slick	feature	in	the	Excel	interface,	there	is	no	equivalent	magic	in	VBA.
Whereas	the	drop-down	menu	offers	the	Select	All	Search	Results	check	box,
the	equivalent	VBA	just	lists	all	the	items	that	match	the	selection.	To	achieve
the	same	results	in	VBA,	use	the	xlCaptionContains	filter	described	in	the	code
that	precedes	Table	12-2.

Case	study:	Filtering	to	the	top	5	or	top	10	by	using	a	filter

If	you	are	designing	an	executive	dashboard	utility,	you	might	want	to
spotlight	the	top	5	customers.	As	with	the	AutoSort	option,	you	could	be	a
pivot	table	pro	and	never	have	stumbled	across	the	Top	10	AutoShow
feature	in	Excel.	This	setting	enables	you	to	select	either	the	top	or	the
bottom	n	records,	based	on	any	data	field	in	the	report.

The	code	to	use	AutoShow	in	VBA	involves	the	.AutoShow	method:

Click	here	to	view	code	image
'	Show	only	the	top	5	customers

PT.PivotFields("Customer").AutoShow

Top:=xlAutomatic,	Range:=xlTop,	_

Count:=5,	Field:=	"Sum	of	Revenue"

When	you	create	a	report	using	the	.AutoShow	method,	it	is	often	helpful	to
copy	the	data	and	then	go	back	to	the	original	pivot	report	to	get	the	totals
for	all	markets.	In	the	code,	this	is	achieved	by	removing	the	Customer	field
from	the	pivot	table	and	copying	the	grand	total	to	the	report.	The	code	that
follows	produces	the	report	shown	in	Figure	12-10:

Click	here	to	view	code	image
Sub	Top5Customers()

'	Produce	a	report	of	the	top	5	customers

Dim	WSD	As	Worksheet

Dim	WSR	As	Worksheet

Dim	WBN	As	Workbook

Dim	PTCache	As	PivotCache

Dim	PT	As	PivotTable

Dim	PRange	As	Range

Dim	FinalRow	As	Long

Set	WSD	=	Worksheets("PivotTable")

'	Delete	any	prior	pivot	tables

For	Each	PT	In	WSD.PivotTables

PT.TableRange2.Clear

Next	PT

WSD.Range("J1:Z1").EntireColumn.Clear

'	Define	input	area	and	set	up	a	pivot	cache

FinalRow	=	WSD.Cells(Application.Rows.Count,

1).End(xlUp).Row

FinalCol	=	WSD.Cells(1,

Application.Columns.Count).	_

End(xlToLeft).Column

Set	PRange	=	WSD.Cells(1,	1).Resize(FinalRow,

FinalCol)

Set	PTCache	=	ActiveWorkbook.PivotCaches.Create(_

SourceType:=	xlDatabase,	_

SourceData:=PRange.Address,	_

Click	here	to	view	code	image
Version:=xlPivotTableVersion14)

'	Create	the	pivot	table	from	the	pivot	cache

Set	PT	=

PTCache.CreatePivotTable(TableDestination:=WSD.	_

Cells(2,	FinalCol	+	2),	TableName:="PivotTable1")

'	Set	up	the	row	fields

PT.AddFields	RowFields:="Customer",

ColumnFields:="Product"

'	Set	up	the	data	fields

With	PT.PivotFields("Revenue")

.Orientation	=	xlDataField

.Function	=	xlSum

.Position	=	1

.NumberFormat	=	"#,##0"

.Name	=	"Total	Revenue"

End	With

'	Ensure	that	we	get	zeros	instead	of	blanks	in

the	data	area

PT.NullString	=	"0"

'	Sort	customers	descending	by	sum	of	revenue

PT.PivotFields("Customer").AutoSort

Order:=xlDescending,	_

Field:="Total	Revenue"

'	Show	only	the	top	5	customers

PT.PivotFields("Customer").AutoShow	_

Type:=xlAutomatic,	Range:=xlTop,	_

Count:=5,	Field:="Total	Revenue"

'	Create	a	new	blank	workbook	with	one	worksheet

Set	WBN	=	Workbooks.Add(xlWBATWorksheet)

Set	WSR	=	WBN.Worksheets(1)

WSR.Name	=	"Report"

'	Set	up	title	for	report

With	WSR.[A1]

.Value	=	"Top	5	Customers"

.Font.Size	=	14

End	With

'	Copy	the	pivot	table	data	to	row	3	of	the	report

sheet

'	Use	offset	to	eliminate	the	title	row	of	the

pivot	table

PT.TableRange2.Offset(1,	0).Copy

WSR.[A3].PasteSpecial

Paste:=xlPasteValuesAndNumberFormats

LastRow	=	WSR.Cells(Rows.Count,	1).End(xlUp).Row

WSR.Cells(LastRow,	1).Value	=	"Top	5	Total"

'	Go	back	to	the	pivot	table	to	get	totals	without

the	AutoShow

PT.PivotFields("Customer").Orientation	=	xlHidden

PT.ManualUpdate	=	False

PT.ManualUpdate	=	True

PT.TableRange2.Offset(2,	0).Copy

WSR.Cells(LastRow	+	2,	1).PasteSpecial	Paste:=	_

Click	here	to	view	code	image
xlPasteValuesAndNumberFormats

WSR.Cells(LastRow	+	2,	1).Value	=	"Total	Company"

'	Clear	the	pivot	table

PT.TableRange2.Clear

Set	PTCache	=	Nothing

'	Do	some	basic	formatting

'	Autofit	columns,	bold	the	headings,	right-align

WSR.Range(WSR.Range("A3"),	WSR.Cells(LastRow	+	2,

6)).Columns.AutoFit

Range("A3").EntireRow.Font.Bold	=	True

Range("A3").EntireRow.HorizontalAlignment	=

xlRight

Range("A3").HorizontalAlignment	=	xlLeft

Range("A2").Select

MsgBox	"CEO	Report	has	been	Created"

End	Sub

FIGURE	12-10	The	Top	5	Customers	report	contains	two	pivot	tables.

The	Top	5	Customers	report	actually	contains	two	snapshots	of	a	pivot
table.	After	using	the	AutoShow	feature	to	grab	the	top	five	markets	with
their	totals,	the	macro	went	back	to	the	pivot	table,	removed	the	AutoShow
option,	and	grabbed	the	total	of	all	customers	to	produce	the	Total	Company
row.

Setting	up	slicers	to	filter	a	pivot	table

Excel	2010	introduced	the	concept	of	slicers	for	filtering	pivot	tables.	A	slicer	is
a	visual	filter	that	you	can	resize	and	reposition.	You	can	control	the	color	of	a
slicer	and	control	the	number	of	columns	in	it.	You	can	also	select	or	unselect
items	from	a	slicer	by	using	VBA.

Figure	12-11	shows	a	pivot	table	with	two	slicers.	Both	of	the	slicers	have
been	modified	to	show	multiple	columns.

FIGURE	12-11	Slicers	provide	a	visual	filter	of	several	fields.

Slicers	work	only	with	pivot	tables	designed	to	be	used	by	Excel	2010	or
newer.	A	slicer	consists	of	a	slicer	cache	and	a	slicer.	To	define	a	slicer	cache,
you	need	to	specify	a	pivot	table	as	the	source	and	a	field	name	as	the
SourceField.	The	slicer	cache	is	defined	at	the	workbook	level.	The	following
code	would	enable	you	to	have	a	slicer	on	a	different	worksheet	than	the	pivot
table:

Click	here	to	view	code	image
Dim	SCP	as	SlicerCache

Dim	SCR	as	SlicerCache

Set	SCP	=	ActiveWorkbook.SlicerCaches.Add(Source:=PT,

SourceField:="Product")

Set	SCR	=	ActiveWorkbook.SlicerCaches.Add(Source:=PT,

SourceField:="Region")

After	you	have	defined	the	slicer	cache,	you	can	add	the	slicer.	The	slicer	is
defined	as	an	object	of	the	slicer	cache.	Specify	a	worksheet	as	the	destination.
The	name	argument	controls	the	internal	name	for	the	slicer.	The	Caption
argument	is	the	heading	that	is	visible	in	the	slicer.	This	might	be	useful	if	you
would	like	to	show	the	name	Region,	but	the	IT	department	defined	the	field	as
IDKRegn.	Specify	the	size	of	the	slicer	by	using	height	and	width	in	points.
Specify	the	location	by	using	top	and	left	in	points.

In	the	following	code,	the	values	for	top,	left,	height,	and	width	are	assigned
to	be	equal	to	the	location	or	size	of	certain	cell	ranges:

Click	here	to	view	code	image
Dim	SLP	as	Slicer

Set	SLP	=	SCP.Slicers.Add(SlicerDestination:=WSD,

Name:="Product",	_

Caption:="Product",	_

Top:=WSD.Range("A12").Top,	_

Left:=WSD.Range("A12").Left	+	10,	_

Width:=WSR.Range("A12:C12").Width,	_

Height:=WSD.Range("A12:A16").Height)

Every	slicer	starts	out	as	one	column.	You	can	change	the	style	and	number
of	columns	code	like	this:

Click	here	to	view	code	image
'	Format	the	color	and	number	of	columns

With	SLP

.Style	=	"SlicerStyleLight6"

.NumberOfColumns	=	5

End	With

After	the	slicer	is	defined,	you	can	use	VBA	to	choose	which	items	are
activated	in	the	slicer.	It	seems	counterintuitive,	but	to	choose	items	in	the	slicer,
you	have	to	change	SlicerItem,	which	is	a	member	of	the	SlicerCache,	not	a
member	of	the	Slicer:

Click	here	to	view	code	image
With	SCP

.SlicerItems("A292").Selected	=	True

.SlicerItems("B722").Selected	=	True

.SlicerItems("C409").Selected	=	False

.SlicerItems("D625").Selected	=	False

.SlicerItems("E438").Selected	=	False

End	With

Listing	12-4	shows	how	to	build	a	pivot	table	with	two	slicers.

Listing	12-4	Code	to	build	a	pivot	table	with	two	slicers

Click	here	to	view	code	image
Sub	PivotWithTwoSlicers()

Dim	SCP	As	SlicerCache	'	For	Product	slicer

Dim	SCC	As	SlicerCache	'	For	Customer	slicer

Dim	SLP	As	Slicer

Dim	SLC	As	Slicer

Dim	WSD	As	Worksheet

Dim	WSR	As	Worksheet

Dim	WBD	As	Workbook

Dim	PT	As	PivotTable

Dim	PTCache	As	PivotCache

Dim	PRange	As	Range

Dim	FinalRow	As	Long

Set	WBD	=	ActiveWorkbook

Set	WSD	=	Worksheets("Data")

'	Delete	any	prior	pivot	tables

For	Each	PT	In	WSD.PivotTables

PT.TableRange2.Clear

Next	PT

'	Delete	any	prior	slicer	cache

For	Each	SC	In	ActiveWorkbook.SlicerCaches

SC.Delete

Next	SC

'	Define	input	area	and	set	up	a	pivot	cache

WSD.Select

FinalRow	=	WSD.Cells(Rows.Count,	1).End(xlUp).Row

FinalCol	=	WSD.Cells(1,	Columns.Count).	_

End(xlToLeft).Column

Set	PRange	=	WSD.Cells(1,	1).Resize(FinalRow,

FinalCol)

'	Define	the	pivot	table	cache

Set	PTCache	=	ActiveWorkbook.PivotCaches.Create(_

SourceType:=xlDatabase,	_

Click	here	to	view	code	image
SourceData:=PRange.Address,	_

Version:=xlPivotTableVersion15)

'	Create	the	pivot	table	from	the	pivot	cache

Set	PT	=	PTCache.CreatePivotTable(_

TableDestination:=Cells(18,	FinalCol	+	2),	_

TableName:="PivotTable1",	_

DefaultVersion:=xlPivotTableVersion15)

'	Set	up	the	row	and	column	fields

PT.AddFields	RowFields:=Array("Region")

'	Set	up	the	data	fields

With	PT.PivotFields("Quantity")

.Orientation	=	xlDataField

.Function	=	xlSum

.Position	=	1

.NumberFormat	=	"#,##0"

.Name	=	"Quantity	"

End	With

With	PT.PivotFields("Revenue")

.Orientation	=	xlDataField

.Function	=	xlSum

.Position	=	1

.NumberFormat	=	"$#,##0"

.Name	=	"Revenue	"

End	With

With	PT.PivotFields("Profit")

.Orientation	=	xlDataField

.Function	=	xlSum

.Position	=	1

.NumberFormat	=	"$#,##0"

.Name	=	"Profit	"

End	With

'	Define	the	slicer	caches

Set	SCC	=	WBD.SlicerCaches.Add(PT,	"Customer")

Set	SCP	=	WBD.SlicerCaches.Add(PT,	"Product")

'	Define	Product	as	a	slicer

Set	SLP	=	SCP.Slicers.Add(WSD,	,	_

Name:="Product",	_

Caption:="Product",	_

Top:=WSD.Range("J14").Top	+	5,	_

Left:=WSD.Range("J14").Left	+	5,	_

Width:=343,	Height:=54)

SLP.Style	=	"SlicerStyleLight4"

SLP.NumberOfColumns	=	5

'	Define	Customer	as	a	slicer

Set	SLC	=	SCC.Slicers.Add(WSD,	,	_

Name:="Customer",	_

Click	here	to	view	code	image
Caption:="Customer",	_

Top:=WSD.Range("J1").Top	+	5,	_

Left:=WSD.Range("J1").Left	+	5,	_

Width:=415,	Height:=184)

SLC.Style	=	"SlicerStyleLight2"

SLC.NumberOfColumns	=	3

'	Unselect	some	products

With	SCP

.SlicerItems("C409").Selected	=	False

.SlicerItems("D625").Selected	=	False

.SlicerItems("E438").Selected	=	False

End	With

'	Unselect	one	customer

With	SCC

.SlicerItems("Guarded	Kettle

Corporation").Selected	=	False

End	With

End	Sub

The	preceding	code	assigned	the	newly	created	slicer	to	an	object	variable	so
you	could	easily	format	the	slicer.	What	if	a	slicer	was	created	before	your
macro	starts	running?	You	can	easily	figure	out	the	name	of	the	slicer.	If	a	slicer
is	created	for	the	Product	field,	for	example,	the	name	of	the	SlicerCache	is
"Slicer_Product".	The	following	code	formats	existing	slicers:

Click	here	to	view	code	image
Sub	MoveAndFormatSlicer()

Dim	SCP	As	SlicerCache

Dim	SLP	as	Slicer

Dim	WSD	As	Worksheet

Set	WSD	=	ActiveSheet

Set	SCP	=

ActiveWorkbook.SlicerCaches("Slicer_Product")

Set	SLP	=	SCS.Slicers("Product")

With	SLP

.Style	=	"SlicerStyleLight6"

.NumberOfColumns	=	5

.Top	=	WSD.Range("A1").Top	+	5

.Left	=	WSD.Range("A1").Left	+	5

.Width	=	WSD.Range("A1:B14").Width	-	60

.Height	=	WSD.Range("A1:B14").Height

End	With

End	Sub

Setting	up	a	timeline	to	filter	an	Excel	2019	pivot	table

Microsoft	introduced	the	Timeline	slicer	in	Excel	2013.	This	is	a	special	type	of
slicer	that	is	not	compatible	with	Excel	2010	or	earlier.	The	marketing	name	of
Excel	2013	was	Version	15,	and	VBA	still	uses	that	name,	so	if	you	plan	on
using	a	Timeline	slicer,	you	have	to	specify	xlPivotTableVersion15	(or	higher)
in	two	places	in	the	code:

Click	here	to	view	code	image
'	Define	the	pivot	table	cache

Set	PTCache	=	ActiveWorkbook.PivotCaches.Create(_

SourceType:=xlDatabase,	_

SourceData:=PRange.Address,	_

Version:=xlPivotTableVersion15)

'	Create	the	pivot	table	from	the	pivot	cache

Set	PT	=	PTCache.CreatePivotTable(_

TableDestination:=Cells(10,	FinalCol	+	2),	_

TableName:="PivotTable1",	_

DefaultVersion:=xlPivotTableVersion15)

Later,	after	adding	fields	to	your	pivot	table,	you	define	a	slicer	cache	and
specify	the	type	as	xlTimeLine:

Click	here	to	view	code	image
'	Define	the	slicer	cache

'	First	two	arguments	are	Source	and	SourceField

'	Third	argument,	Name,	should	be	skipped

Set	SC	=	WBD.SlicerCaches.Add2(PT,	"ShipDate",	,	_

SlicerCacheType:=xlTimeline)

Then	you	add	the	slicer	to	the	slicer	cache:

Click	here	to	view	code	image
'	Define	the	timeline	as	a	slicer

Set	SL	=	SC.Slicers.Add(WSD,	,	_

Name:="ShipDate",	_

Caption:="Year",	_

Top:=WSD.Range("J1").Top,	_

Left:=WSD.Range("J1").Left,	_

Width:=262.5,	Height:=108)

Timelines	can	exist	at	the	day,	month,	quarter,	or	year	level.	To	change	the
level	of	a	timeline,	use	the	TimelineViewState.Level	property:

Click	here	to	view	code	image

SL.TimelineViewState.Level	=	xlTimelineLevelYears

To	filter	a	timeline	to	certain	dates,	you	have	to	use	the	Timeline
State.SetFilterDataRange	property,	which	applies	to	the	slicer	cache:

Click	here	to	view	code	image

SC.TimelineState.SetFilterDateRange	"1/1/2014",

"12/31/2015"

Listing	12-5	shows	the	complete	macro	to	build	a	version	15	pivot	table	and
add	a	Timeline	slicer.

Listing	12-5	Code	to	build	a	pivot	with	a	timeline

Click	here	to	view	code	image
Sub	PivotWithYearSlicer()

Dim	SC	As	SlicerCache

Dim	SL	As	Slicer

Dim	WSD	As	Worksheet

Dim	WSR	As	Worksheet

Dim	WBD	As	Workbook

Dim	PT	As	PivotTable

Dim	PTCache	As	PivotCache

Dim	PRange	As	Range

Dim	FinalRow	As	Long

Click	here	to	view	code	image
Set	WBD	=	ActiveWorkbook

Set	WSD	=	Worksheets("Data")

'	Delete	any	prior	pivot	tables

For	Each	PT	In	WSD.PivotTables

PT.TableRange2.Clear

Next	PT

'	Delete	any	prior	slicer	cache

For	Each	SC	In	ActiveWorkbook.SlicerCaches

SC.Delete

Next	SC

'	Define	input	area	and	set	up	a	pivot	cache

WSD.Select

FinalRow	=	WSD.Cells(Rows.Count,	1).End(xlUp).Row

FinalCol	=	WSD.Cells(1,	Columns.Count).	_

End(xlToLeft).Column

Set	PRange	=	WSD.Cells(1,	1).Resize(FinalRow,

FinalCol)

'	Define	the	pivot	table	cache

Set	PTCache	=	ActiveWorkbook.PivotCaches.Create(_

SourceType:=xlDatabase,	_

SourceData:=PRange.Address,	_

Version:=xlPivotTableVersion15)

'	Create	the	pivot	table	from	the	pivot	cache

Set	PT	=	PTCache.CreatePivotTable(_

TableDestination:=Cells(10,	FinalCol	+	2),	_

TableName:="PivotTable1",	_

DefaultVersion:=xlPivotTableVersion15)

'	Set	up	the	row	and	column	fields

PT.AddFields	RowFields:=Array("Customer")

'	Set	up	the	data	fields

With	PT.PivotFields("Revenue")

.Orientation	=	xlDataField

.Function	=	xlSum

.Position	=	1

.NumberFormat	=	"#,##0"

.Name	=	"Revenue	"

End	With

'	Define	the	slicer	cache

'	First	two	arguments	are	Source	and	SourceField

'	Third	argument,	Name,	should	be	skipped

Set	SC	=	WBD.SlicerCaches.Add2(PT,	"ShipDate",	,	_

SlicerCacheType:=xlTimeline)

'	Define	the	timeline	as	a	slicer

Set	SL	=	SC.Slicers.Add(WSD,	,	_

Name:="ShipDate",	_

Caption:="Year",	_

Click	here	to	view	code	image
Top:=WSD.Range("J1").Top,	_

Left:=WSD.Range("J1").Left,	_

Width:=262.5,	Height:=108)

'	Set	the	timeline	to	show	years

SL.TimelineViewState.Level	=	xlTimelineLevelYears

'	Set	the	dates	for	the	timeline

SC.TimelineState.SetFilterDateRange	"1/1/2018",

"12/31/2018"

End	Sub

Figure	12-12	shows	the	Timeline	slicer	built	by	the	code	in	Listing	12-5.

FIGURE	12-12	Timelines	were	introduced	in	Excel	2013.

Using	the	Data	Model	in	Excel	2019

Excel	2019	incorporates	most	parts	of	Power	Pivot	into	the	core	Excel	product.
This	means	you	can	add	two	tables	to	the	Data	Model,	create	a	relationship,
build	a	measure,	and	then	build	a	pivot	table	from	the	Data	Model.

To	follow	along	with	this	example,	open	the	Figure	12-
BeforeDataModel.xlsm	file	from	the	sample	download	files.	This	workbook	has
two	tables:	Sales	and	Sector.	Sector	is	a	lookup	table	that	is	related	to	the	Sales
table	via	a	customer	field.	To	build	the	pivot	table,	follow	these	general	steps:

1.	 Add	the	main	table	to	the	Data	Model.

2.	 Add	the	lookup	table	to	the	Data	Model.

3.	 Link	the	two	tables	with	a	relationship.

4.	 Create	a	pivot	cache	from	ThisWorkbookDataModel.

5.	 Create	a	pivot	table	from	the	cache.

6.	 Add	row	fields.

7.	 Define	a	measure.	Add	the	measure	to	the	pivot	table.

Adding	both	tables	to	the	Data	Model

You	should	already	have	a	data	set	in	the	workbook	that	has	been	converted	to	a
table	using	the	Ctrl+T	shortcut.	On	the	Table	Tools	Design	tab,	change	the	table
name	to	Sales.	To	link	this	table	to	the	Data	Model,	use	this	code:

Click	here	to	view	code	image
'	Build	Connection	to	the	main	Sales	table

Set	WBT	=	ActiveWorkbook

TableName	=	"Sales"

WBT.Connections.Add	Name:="LinkedTable_"	&	TableName,

_

Description:="",	_

ConnectionString:="WORKSHEET;"	&	WBT.FullName,	_

CommandText:=WBT.Name	&	"!"	&	TableName,	_

lCmdType:=7,	_

CreateModelConnection:=True,	_

ImportRelationships:=False

There	are	several	variables	in	this	code	that	use	the	table	name,	the
workbook	path,	or	the	workbook	name.	By	storing	the	table	name	in	a	variable	at
the	top	of	the	code,	you	can	use	the	variables	to	build	the	connection	name,
connection	string,	and	command	text.

Adapting	the	preceding	code	to	link	to	the	lookup	table	then	requires	only
changing	the	TableName	variable:

Click	here	to	view	code	image
TableName	=	"Sector"

WBT.Connections.Add	Name:="LinkedTable_"	&	TableName,

_

Description:="",	_

ConnectionString:="WORKSHEET;"	&	WBT.FullName,	_

CommandText:=WBT.Name	&	"!"	&	TableName,	_

lCmdType:=7,	_

CreateModelConnection:=True,	_

ImportRelationships:=False

Creating	a	relationship	between	the	two	tables

When	you	create	a	relationship	in	the	Excel	interface,	you	specify	four	items	in
the	Create	Relationship	dialog	box.	The	code	to	create	the	relationship	is	more
streamlined.	There	can	be	only	one	Data	Model	per	workbook.	Set	an	object
variable	MO	to	refer	to	the	model	in	this	workbook.	Use	the
ModelRelationships.Add	method,	specifying	the	two	fields	that	are	linked:

Click	here	to	view	code	image
'	Relate	the	two	tables

Dim	MO	As	Model

Set	MO	=	ActiveWorkbook.Model

MO.ModelRelationships.Add	_

ForeignKeyColumn:=	_

MO.ModelTables("Sales").ModelTableColumns("Customer"),

_

PrimaryKeyColumn:=	_

MO.ModelTables("Sector").ModelTableColumns("Customer")

Defining	the	pivot	cache	and	building	the	pivot	table

The	code	to	define	the	pivot	cache	specifies	that	the	data	is	external.	Even
though	the	linked	tables	are	in	your	workbook,	and	even	though	the	Data	Model
is	stored	as	a	binary	large	object	within	the	workbook,	this	is	still	considered	an
external	data	connection.	The	connection	is	always	called
ThisWorkbookDataModel.	To	set	up	the	pivot	cache,	use	this	code:

Click	here	to	view	code	image
'	Define	the	PivotCache

Set	PTCache	=

WBT.PivotCaches.Create(SourceType:=xlExternal,	_

SourceData:=WBT.Connections("ThisWorkbookDataModel"),

_

Version:=xlPivotTableVersion15)

'	Create	the	pivot	table	from	the	pivot	cache

Set	PT	=	PTCache.CreatePivotTable(_

TableDestination:=WSD.Cells(1,	1),

TableName:="PivotTable1")

Adding	model	fields	to	the	pivot	table

There	are	two	types	of	fields	you	need	to	add	to	the	pivot	table.	Text	fields
such	as	Customer,	Sector,	and	Product	are	simply	fields	that	can	be	added	to	the
row	or	column	area	of	the	pivot	table.	No	calculation	has	to	happen	to	these
fields.	The	code	for	adding	text	fields	is	shown	in	this	section.	When	you	add	a
numeric	field	to	the	values	area	in	the	Excel	interface,	you	are	actually	implicitly
defining	a	new	calculated	field.	To	do	this	in	VBA,	you	have	to	explicitly	define
the	field	and	then	add	it.

First,	let’s	look	at	the	simpler	example	of	adding	a	text	field	to	the	row	area.
The	VBA	code	generically	looks	like	this:

Click	here	to	view	code	image
With	PT.CubeFields("[TableName].[FieldName]")

.Orientation	=	xlRowField

.Position	=	1

End	With

In	the	current	example,	add	the	Sector	field	from	the	Sector	table	by	using
this	code:

Click	here	to	view	code	image
With	PT.CubeFields("[Sector].[Sector]")

.Orientation	=	xlRowField

.Position	=	1

End	With

Adding	numeric	fields	to	the	values	area

If	you	have	a	Data	Model	pivot	table	and	you	check	the	Revenue	field,	you	see
the	Revenue	field	move	to	the	Values	area.	Behind	the	scenes,	though,	Excel	is
implicitly	defining	a	new	measure	called	Sum	of	Revenue.	(You	can	see	the
implicit	measures	in	the	Power	Pivot	window	if	you	have	Excel	2019	Pro	Plus.)
In	VBA,	you	need	to	define	a	new	measure	for	Sum	of	Revenue.	To	make	it
easier	to	refer	to	this	measure	later,	assign	the	new	measure	to	an	object	variable:

Click	here	to	view	code	image
'	Before	you	can	add	Revenue	to	the	pivot	table,

'	you	have	to	define	the	measure.

'	This	happens	using	the	GetMeasure	method.

'	Assign	the	cube	field	to	the	CFRevenue	object

Dim	CFRevenue	As	CubeField

Set	CFRevenue	=	PT.CubeFields.GetMeasure(_

AttributeHierarchy:="[Sales].[Revenue]",	_

Function:=xlSum,	_

Caption:="Sum	of	Revenue")

'	Add	the	newly	created	cube	field	to	the	pivot	table

PT.AddDataField	Field:=CFRevenue,	_

Caption:="Total	Revenue"

PT.PivotFields("Total	Revenue").NumberFormat	=

"$#,##0,K"

You	can	use	the	preceding	code	to	create	a	new	measure.	The	following
measure	uses	the	new	xlDistinctCount	function	to	count	the	number	of	unique
customers	in	each	sector:

Click	here	to	view	code	image
'	Add	distinct	count	of	customer	as	a	cube	field

Dim	CFCustCount	As	CubeField

Set	CFCustCount	=	PT.CubeFields.GetMeasure(_

AttributeHierarchy:="[Sales].[Customer]",	_

Function:=xlDistinctCount,	_

Caption:="Customer	Count")

'	Add	the	newly	created	cube	field	to	the	pivot	table

PT.AddDataField	Field:=CFCustCount,	_

Caption:="Customer	Count"

Now	that	PowerPivot	ships	with	every	copy	of	Excel	2019,	you	can	use
DAX	formulas	to	create	new	measures.	The	following	code	adds	a	field	for
Median	Sales:

Click	here	to	view	code	image
'	Add	Median	Sales	using	DAX

ActiveWorkbook.Model.ModelMeasures.Add	_

MeasureName:="Median	Sales",	_

AssociatedTable:=ActiveWorkbook.Model.ModelTables("Sales"),

_

Formula:="Median([Revenue])",	_

FormatInformation:=ActiveWorkbook.Model.ModelFormatCurrency("Default",

2)

PT.AddDataField	PT.CubeFields("[Measures].[Median

Sales]")

Putting	it	all	together

Figure	12-13	shows	the	Data	Model	pivot	table	created	using	the	code	in	Listing
12-6.

FIGURE	12-13	Two	tables	are	linked	with	a	pivot	table	and	two	measures	via	a	macro.

Listing	12-6	Code	to	create	a	Data	Model	pivot	table

Click	here	to	view	code	image
Sub	BuildModelPivotTable()

Dim	WBT	As	Workbook

Dim	WC	As	WorkbookConnection

Dim	MO	As	Model

Dim	PTCache	As	PivotCache

Dim	PT	As	PivotTable

Dim	WSD	As	Worksheet

Dim	CFRevenue	As	CubeField

Dim	CFCustCount	As	CubeField

Set	WBT	=	ActiveWorkbook

Set	WSD	=	WBT.Worksheets("Report")

'	Build	connection	to	the	main	Sales	table

TableName	=	"Sales"

WBT.Connections.Add2	Name:="LinkedTable_"	&

TableName,	_

Description:="MainTable",	_

ConnectionString:="WORKSHEET;"	&	WBT.FullName,	_

CommandText:=WBT.Name	&	"!"	&	TableName,	_

lCmdType:=7,	_

CreateModelConnection:=True,	_

ImportRelationships:=False

'	Build	connection	to	the	Sector	lookup	table

TableName	=	"Sector"

WBT.Connections.Add2	Name:="LinkedTable_"	&

TableName,	_

Description:="LookupTable",	_

ConnectionString:="WORKSHEET;"	&	WBT.FullName,	_

CommandText:=WBT.Name	&	"!"	&	TableName,	_

lCmdType:=7,	_

CreateModelConnection:=True,	_

ImportRelationships:=False

'	Relate	the	two	tables

Set	MO	=	ActiveWorkbook.Model

MO.ModelRelationships.Add	_

ForeignKeyColumn:=MO.ModelTables("Sales")	_

.ModelTableColumns("Customer"),	_

PrimaryKeyColumn:=MO.ModelTables("Sector")	_

.ModelTableColumns("Customer")

'	Delete	any	prior	pivot	tables

For	Each	PT	In	WSD.PivotTables

PT.TableRange2.Clear

Next	PT

'	Define	the	PivotCache

Set	PTCache	=

WBT.PivotCaches.Create(SourceType:=xlExternal,	_

SourceData:=WBT.Connections("ThisWorkbookDataModel"),

_

Version:=xlPivotTableVersion15)

'	Create	the	pivot	table	from	the	pivot	cache

Set	PT	=	PTCache.CreatePivotTable(_

TableDestination:=WSD.Cells(1,	1),

TableName:="PivotTable1")

Click	here	to	view	code	image
'	Add	the	Sector	field	from	the	Sector	table	to	the

Row	areas

With	PT.CubeFields("[Sector].[Sector]")

.Orientation	=	xlRowField

.Position	=	1

End	With

'	Before	you	can	add	Revenue	to	the	pivot	table,

'	you	have	to	define	the	measure.

'	This	happens	using	the	GetMeasure	method

'	Assign	the	cube	field	to	the	CFRevenue	object

Set	CFRevenue	=	PT.CubeFields.GetMeasure(_

AttributeHierarchy:="[Sales].[Revenue]",	_

Function:=xlSum,	_

Caption:="Sum	of	Revenue")

'	Add	the	newly	created	cube	field	to	the	pivot	table

PT.AddDataField	Field:=CFRevenue,	_

Caption:="Total	Revenue"

PT.PivotFields("[Measures].[Sum	of	Revenue]")	_

.NumberFormat	=	"$#,##0,K"

'	Add	Distinct	Count	of	Customer	as	a	cube	field

Set	CFCustCount	=	PT.CubeFields.GetMeasure(_

AttributeHierarchy:="[Sales].[Customer]",	_

Function:=xlDistinctCount,	_

Caption:="Customer	Count")

'	Add	the	newly	created	cube	field	to	the	pivot	table

PT.AddDataField	Field:=CFCustCount,	_

Caption:="Customer	Count"

'	Add	Median	Sales	using	DAX

ActiveWorkbook.Model.ModelMeasures.Add	_

MeasureName:="Median	Sales",	_

AssociatedTable:=	_

ActiveWorkbook.Model.ModelTables("Sales"),	_

Formula:="Median([Revenue])",	_

FormatInformation:=	_

ActiveWorkbook.Model.ModelFormatCurrency("Default",

2)

PT.AddDataField	PT.CubeFields("[Measures].[Median

Sales]")

End	Sub

Using	other	pivot	table	features

This	section	covers	a	few	additional	features	in	pivot	tables	that	you	might	need
to	code	with	VBA.

Calculated	data	fields

Pivot	tables	offer	two	types	of	formulas.	The	most	useful	type	creates	a
calculated	field.	This	adds	a	new	field	to	the	pivot	table.	Calculations	for
calculated	fields	are	always	done	at	the	summary	level.	If	you	define	a	calculated
field	for	average	price	as	revenue	divided	by	units	sold,	Excel	first	adds	the	total
revenue	and	total	quantity,	and	then	it	does	the	division	of	these	totals	to	get	the
result.	In	many	cases,	this	is	exactly	what	you	need.	If	your	calculation	does	not
follow	the	associative	law	of	mathematics,	it	might	not	work	as	you	expect.

To	set	up	a	calculated	field,	use	the	Add	method	with	the	CalculatedFields
object.	You	have	to	specify	a	field	name	and	a	formula,	as	shown	here:

Click	here	to	view	code	image
'	Define	calculated	fields

PT.CalculatedFields.Add	Name:="ProfitPercent",	_

Formula:="=Profit/Revenue"

With	PT.PivotFields("ProfitPercent")

.Orientation	=	xlDataField

.Function	=	xlSum

.Position	=	3

.NumberFormat	=	"#0.0%"

.Name	=	"GP	Pct"

End	With

Note	If	you	create	a	field	called	Profit	Percent,	the	default	pivot
table	produces	a	field	called	Sum	of	Profit	Percent.	This	title	is
misleading	and	downright	silly.	To	prevent	this,	use	the	Name

property	when	defining	the	Data	field	to	replace	Sum	of	Profit	Percent	with
something	such	as	GP	Pct.	Keep	in	mind	that	this	name	must	differ	from	the
name	for	the	calculated	field.

Calculated	items

Suppose	you	have	a	Measure	field	with	two	items:	Budget	and	Actual.	You
would	like	to	add	a	new	position	to	calculate	Variance	as	Actual	minus	Budget.
You	can	do	this	with	a	calculated	item	by	using	this	code:

Click	here	to	view	code	image
'	Define	calculated	item	along	the	product	dimension

PT.PivotFields("Measure").CalculatedItems	_

.Add	"Variance",	"='Actual'-'Budget'"

Using	ShowDetail	to	filter	a	record	set

When	you	double-click	any	number	in	any	pivot	table	in	the	Excel	user
interface,	Excel	inserts	a	new	sheet	in	the	workbook	and	copies	all	the	source
records	that	represent	that	number.	In	the	Excel	user	interface,	this	is	a	great	way
to	perform	a	drill-down	query	into	a	data	set.

The	equivalent	VBA	property	is	ShowDetail.	By	setting	this	property	to	True
for	any	cell	in	the	pivot	table,	you	generate	a	new	worksheet	with	all	the	records
that	make	up	that	cell:

Click	here	to	view	code	image

PT.TableRange2.Offset(2,	1).Resize(1,	1).ShowDetail	=

True

Changing	the	layout	from	the	Design	tab

The	Layout	group	on	the	Design	tab	contains	four	drop-down	menus	that	control
the	following:

Location	of	subtotals	(top	or	bottom)

Presence	of	grand	totals

Report	layout,	including	whether	outer	row	labels	are	repeated

Presence	of	blank	rows

Subtotals	can	appear	either	at	the	top	or	at	the	bottom	of	a	group	of	pivot
items.	The	SubtotalLocation	property	applies	to	the	entire	pivot	table;	valid
values	are	xlAtBottom	and	xlAtTop:

PT.SubtotalLocation:=xlAtTop

Grand	totals	can	be	turned	on	or	off	for	rows	or	columns.	Because	these	two
settings	can	be	confusing,	remember	that	at	the	bottom	of	a	report,	there	is	a	total
line	that	most	people	would	call	the	grand	total	row.	To	turn	off	that	row,	you
have	to	use	the	following:

PT.ColumnGrand	=	False

You	need	to	turn	off	ColumnGrand	when	you	want	to	suppress	the	total	row
because	Microsoft	calls	that	row	the	“grand	total	for	columns.”	Get	it?	In	other
words,	Microsoft	is	saying	that	the	row	at	the	bottom	contains	the	total	of	the
columns	above	it.	It	is	one	of	the	more	awkward	phrases	in	the	Excel	ribbon.	It
confuses	me	every	time.

To	suppress	what	you	would	call	the	grand	total	column	along	the	right	side
of	the	report,	you	have	to	suppress	what	Microsoft	calls	the	“total	for	rows”	by
using	the	following	code:

PT.RowGrand	=	False

Settings	for	the	report	layout

There	are	three	settings	for	the	report	layout:

Tabular	layout—Similar	to	the	default	layout	in	Excel	2003

Outline	layout—Optionally	available	in	Excel	2003

Compact	layout—Introduced	in	Excel	2007

When	you	create	a	pivot	table	in	the	Excel	interface,	you	get	the	Compact
layout.	When	you	build	a	pivot	table	in	VBA,	you	get	the	Tabular	layout.	You
can	change	to	one	of	the	other	layouts	with	one	of	these	lines:

Click	here	to	view	code	image
PT.RowAxisLayout	xlTabularRow

PT.RowAxisLayout	xlOutlineRow

PT.RowAxisLayout	xlCompactRow

Starting	in	Excel	2007,	you	can	add	a	blank	line	to	the	layout	after	each
group	of	pivot	items.	Although	the	Design	tab	offers	a	single	setting	to	affect	the
entire	pivot	table,	the	setting	is	actually	applied	individually	to	each	pivot	field.
The	macro	recorder	responds	by	recording	a	dozen	lines	of	code	for	a	pivot	table
with	12	fields.	You	can	intelligently	add	a	single	line	of	code	for	the	outer	row
fields:

Click	here	to	view	code	image

PT.PivotFields("Region").LayoutBlankLine	=	True

Suppressing	subtotals	for	multiple	row	fields

As	soon	as	you	have	more	than	one	row	field,	Excel	automatically	adds	subtotals
for	all	but	the	innermost	row	field.	That	extra	row	field	can	get	in	the	way	if	you
plan	to	reuse	the	results	of	the	pivot	table	as	a	new	data	set	for	some	other
purpose.	Although	accomplishing	this	task	manually	can	be	relatively	simple,
the	VBA	code	to	suppress	subtotals	is	surprisingly	complex.

Most	people	do	not	realize	that	it	is	possible	to	show	multiple	types	of
subtotals.	For	example,	you	can	choose	to	show	Total,	Average,	Min,	and	Max	in
the	same	pivot	table.

To	suppress	subtotals	for	a	field,	you	must	set	the	Subtotals	property	equal
to	an	array	of	12	False	values.	The	first	False	turns	off	automatic	subtotals,	the
second	False	turns	off	the	Sum	subtotal,	the	third	False	turns	off	the	Count
subtotal,	and	so	on.	This	code	suppresses	the	Region	subtotal:

Click	here	to	view	code	image
PT.PivotFields("Region").Subtotals	=	Array(False,

False,	False,	False,	_

False,	False,	False,	False,	False,	False,	False,

False)

A	different	technique	is	to	turn	on	the	first	subtotal.	This	method
automatically	turns	off	the	other	11	subtotals.	You	can	then	turn	off	the	first
subtotal	to	make	sure	that	all	subtotals	are	suppressed:

Click	here	to	view	code	image
PT.PivotFields("Region").Subtotals(1)	=	True

PT.PivotFields("Region").Subtotals(1)	=	False

Case	study:	Applying	a	data	visualization
Beginning	with	Excel	2007,	fantastic	data	visualizations	such	as	icon	sets,
color	gradients,	and	in-cell	data	bars	are	offered.	When	you	apply	a
visualization	to	a	pivot	table,	you	should	exclude	the	total	rows	from	the
visualization.

If	you	have	20	customers	that	average	$3	million	in	revenue	each,	the	total
for	the	20	customers	is	$60	million.	If	you	include	the	total	in	the	data
visualization,	the	total	gets	the	largest	bar,	and	all	the	customer	records	have
tiny	bars.

In	the	Excel	user	interface,	you	always	want	to	use	the	Add	Rule	or	Edit
Rule	choice	to	select	the	option	All	Cells	Showing	“Sum	of	Revenue”	for
“Customer.”

The	code	to	add	a	data	bar	to	the	Revenue	field	is	as	follows:

Click	here	to	view	code	image
'	Apply	a	data	bar

PT.TableRange2.Cells(3,	2).Select

Selection.FormatConditions.AddDatabar

Selection.FormatConditions(1).ShowValue	=	True

Selection.FormatConditions(1).SetFirstPriority

With	Selection.FormatConditions(1)

.MinPoint.Modify

newtype:=xlConditionValueLowestValue

.MaxPoint.Modify

newtype:=xlConditionValueHighestValue

End	With

With	Selection.FormatConditions(1).BarColor

.ThemeColor	=	xlThemeColorAccent3

.TintAndShade	=	-0.5

End	With

Selection.FormatConditions(1).ScopeType	=

xlFieldsScope

Next	steps

You	may	be	able	to	tell	that	pivot	tables	are	my	favorite	feature	in	Excel.	They
are	incredibly	powerful	and	flexible.	Combined	with	VBA,	they	provide	an
excellent	calculation	engine	and	power	many	of	the	reports	I	build	for	clients.
Chapter	13,	“Excel	power,”	offers	multiple	techniques	for	handling	various	tasks
in	VBA.

CHAPTER	13
Excel	power

In	this	chapter,	you	will:

List	all	files	in	a	folder

Import	data	from	a	CSV	file

Learn	methods	of	splitting	and	merging	data

Export	data	to	an	XML	file

Create	a	log	file

Learn	favorite	techniques	of	various	VBA	pros

Amajor	secret	of	successful	programmers	is	to	never	waste	time	writing	the
same	code	twice.	They	all	have	little	bits—or	even	big	bits—of	code	that	they
use	over	and	over	again.	Another	big	secret	is	to	never	take	8	hours	doing
something	that	can	be	done	in	10	minutes—which	is	what	this	book	is	about!

This	chapter	contains	programs	donated	by	several	Excel	power
programmers.	These	are	programs	they	have	found	useful	and	that	they	hope
will	help	you,	too.	Not	only	can	these	programs	save	you	time,	but	they	also	can
teach	you	new	ways	of	solving	common	problems.

Different	programmers	have	different	programming	styles,	and	we	didn’t
rewrite	the	submissions.	As	you	review	the	code	in	this	chapter,	you’ll	notice
different	ways	of	doing	the	same	task,	such	as	referring	to	ranges.

File	operations
The	utilities	shown	in	the	following	sections	deal	with	handling	files	in	folders.
Being	able	to	loop	through	a	list	of	files	in	a	folder	is	a	useful	task.

Listing	files	in	a	directory

This	utility	was	submitted	by	our	good	friend	Nathan	P.	Oliver	of	Minneapolis,
Minnesota.

This	program	returns	the	filename,	size,	and	date	modified	of	all	specified
file	types	in	the	selected	directory	and	its	subfolders:

Click	here	to	view	code	image
Sub	ExcelFileSearch()

Dim	srchExt	As	Variant,	srchDir	As	Variant

Dim	i	As	Long,	j	As	Long,	strName	As	String

Dim	varArr(1	To	1048576,	1	To	3)	As	Variant

Dim	strFileFullName	As	String

Dim	ws	As	Worksheet

Dim	fso	As	Object

Let	srchExt	=	Application.InputBox("Please	Enter	File

Extension",	_

"Info	Request")

If	srchExt	=	False	And	Not	TypeName(srchExt)	=

"String"	Then

Exit	Sub

End	If

Let	srchDir	=	BrowseForFolderShell

If	srchDir	=	False	And	Not	TypeName(srchDir)	=

"String"	Then

Exit	Sub

End	If

Application.ScreenUpdating	=	False

Set	ws	=	ThisWorkbook.Worksheets.Add(Sheets(1))

On	Error	Resume	Next

Application.DisplayAlerts	=	False

ThisWorkbook.Worksheets("FileSearch	Results").Delete

Application.DisplayAlerts	=	True

On	Error	GoTo	0

ws.Name	=	"FileSearch	Results"

Let	strName	=	Dir$(srchDir	&	"*"	&	srchExt)

Do	While	strName	<>	vbNullString

Let	i	=	i	+	1

Let	strFileFullName	=	srchDir	&	strName

Let	varArr(i,	1)	=	strFileFullName

Let	varArr(i,	2)	=	FileLen(strFileFullName)	\

1024

Let	varArr(i,	3)	=	FileDateTime(strFileFullName)

Let	strName	=	Dir$()

Loop

Set	fso	=	CreateObject("Scripting.FileSystemObject")

Call	recurseSubFolders(fso.GetFolder(srchDir),

varArr(),	i,	CStr(srchExt))

Set	fso	=	Nothing

ThisWorkbook.Windows(1).DisplayHeadings	=	False

With	ws

If	i	>	0	Then

.Range("A2").Resize(i,	UBound(varArr,

2)).Value	=	varArr

For	j	=	1	To	i

.Hyperlinks.Add	anchor:=.Cells(j	+	1,	1),

Address:=varArr(j,	1)

Next

End	If

.Range(.Cells(1,	4),	.Cells(1,

.Columns.Count)).EntireColumn.Hidden	=	_

True

.Range(.Cells(.Rows.Count,	1).End(xlUp)(2),	_

.Cells(.Rows.Count,	1)).EntireRow.Hidden	=

True

With	.Range("A1:C1")

Click	here	to	view	code	image
.Value	=	Array("Full	Name",	"Kilobytes",

"Last	Modified")

.Font.Underline	=	xlUnderlineStyleSingle

.EntireColumn.AutoFit

.HorizontalAlignment	=	xlCenter

End	With

End	With

Application.ScreenUpdating	=	True

End	Sub

Private	Sub	recurseSubFolders(ByRef	Folder	As	Object,

_

ByRef	varArr()	As	Variant,	_

ByRef	i	As	Long,	_

ByRef	srchExt	As	String)

Dim	SubFolder	As	Object

Dim	strName	As	String,	strFileFullName	As	String

For	Each	SubFolder	In	Folder.SubFolders

Let	strName	=	Dir$(SubFolder.Path	&	"*"	&

srchExt)

Do	While	strName	<>	vbNullString

Let	i	=	i	+	1

Let	strFileFullName	=	SubFolder.Path	&	"\"	&

strName

Let	varArr(i,	1)	=	strFileFullName

Let	varArr(i,	2)	=	FileLen(strFileFullName)	\

1024

Let	varArr(i,	3)	=

FileDateTime(strFileFullName)

Let	strName	=	Dir$()

Loop

If	i	>	1048576	Then	Exit	Sub

Call	recurseSubFolders(SubFolder,	varArr(),	i,

srchExt)

Next

End	Sub

Private	Function	BrowseForFolderShell()	As	Variant

Dim	objShell	As	Object,	objFolder	As	Object

Set	objShell	=	CreateObject("Shell.Application")

Set	objFolder	=	objShell.BrowseForFolder(0,	"Please

select	a	folder",	_

0,	"C:\")

If	Not	objFolder	Is	Nothing	Then

On	Error	Resume	Next

If	IsError(objFolder.Items.Item.Path)	Then

BrowseForFolderShell	=	CStr(objFolder)

Else

On	Error	GoTo	0

If	Len(objFolder.Items.Item.Path)	>	3	Then

BrowseForFolderShell	=

objFolder.Items.Item.Path	&	_

Application.PathSeparator

Else

BrowseForFolderShell	=

objFolder.Items.Item.Path

End	If

End	If

Else

BrowseForFolderShell	=	False

End	If

Set	objFolder	=	Nothing:	Set	objShell	=	Nothing

End	Function

Importing	and	deleting	a	CSV	file

This	utility	was	submitted	by	Masaru	Kaji	of	Kobe,	Japan.	Masaru	is	a	computer
systems	administrator.	He	maintains	an	Excel	VBA	tip	site,	Cell	Masters,	at
cellmasters.net/vbatips.htm.

If	you	find	yourself	importing	a	lot	of	comma-separated	value	(CSV)	files
and	then	having	to	go	back	and	delete	them,	this	program	is	for	you.	It	quickly
opens	a	CSV	file	in	Excel	and	permanently	deletes	the	original	file:

Click	here	to	view	code	image
Option	Base	1

Sub	OpenLargeCSVFast()

Dim	buf(1	To	16384)	As	Variant

Dim	i	As	Long

'Change	the	file	location	and	name	here

Const	strFilePath	As	String	=	"C:\temp\Sales.CSV"

Dim	strRenamedPath	As	String

strRenamedPath	=	Split(strFilePath,	".")(0)	&	"txt"

http://cellmasters.net/vbatips.htm

With	Application

.ScreenUpdating	=	False

.DisplayAlerts	=	False

End	With

'Setting	an	array	for	FieldInfo	to	open	CSV

For	i	=	1	To	16384

buf(i)	=	Array(i,	2)

Next

Name	strFilePath	As	strRenamedPath

Workbooks.OpenText	Filename:=strRenamedPath,

DataType:=xlDelimited,	_

Comma:=True,	FieldInfo:=buf

Erase	buf

ActiveSheet.UsedRange.Copy

ThisWorkbook.Sheets(1).Range("A1")

ActiveWorkbook.Close	False

Kill	strRenamedPath

With	Application

.ScreenUpdating	=	True

.DisplayAlerts	=	True

End	With

End	Sub

Reading	a	text	file	into	memory	and	parsing

This	utility	was	submitted	by	Rory	Archibald,	a	reinsurance	analyst	residing	in
East	Sussex,	United	Kingdom.	A	self-admitted	geek	by	inclination,	he	also
maintains	the	website	ExcelMatters.com.

This	utility	takes	a	different	approach	to	reading	a	text	file	than	you	might
have	used	in	the	past.	Instead	of	reading	one	record	at	a	time,	the	macro	loads
the	entire	text	file	into	memory	in	a	single	string	variable.	The	macro	then	parses
the	string	into	individual	records,	all	still	in	memory.	It	then	places	all	the
records	on	the	sheet	at	one	time	(what	I	like	to	call	“dumping”	the	data	onto	the
sheet).	The	advantage	of	this	method	is	that	you	access	the	file	on	disk	only	one
time.	All	subsequent	processing	occurs	in	memory	and	is	very	fast.	Without
further	ado,	here’s	the	utility:

Click	here	to	view	code	image

http://ExcelMatters.com

Sub	LoadLinesFromCSV()

Dim	sht	As	Worksheet

Dim	strtxt	As	String

Dim	textArray()	As	String

'	Add	new	sheet	for	output

Set	sht	=	Sheets.Add

'	open	the	csv	file

With	CreateObject("Scripting.FileSystemObject")	_

.GetFile("c:\temp\sales.csv").OpenAsTextStream(1)

'read	the	contents	into	a	variable

strtxt	=	.ReadAll

'	close	it!

.Close

End	With

'split	the	text	into	an	array	using	carriage	return

and	line	feed

'separator

textArray	=	VBA.Split(strtxt,	vbCrLf)

sht.Range("A1").Resize(UBound(textArray)	+	1).Value	=

_

Application.Transpose(textArray)

End	Sub

Combining	and	separating	workbooks

The	utilities	in	the	following	sections	demonstrate	how	to	combine	worksheets
into	a	single	workbook	or	separate	a	single	workbook	into	individual	worksheets
or	export	data	on	a	sheet	to	an	XML	file.

Separating	worksheets	into	workbooks

This	utility	was	submitted	by	Tommy	Miles	of	Houston,	Texas.

This	sample	goes	through	the	active	workbook	and	saves	each	sheet	as	its
own	workbook	in	the	same	path	as	the	original	workbook.	It	names	the	new
workbooks	based	on	the	sheet	name,	and	it	overwrites	files	without	prompting.

Notice	that	you	need	to	choose	whether	you	save	the	file	as	.xlsm	(macro-
enabled)	or	.xlsx	(with	macros	stripped).	In	the	following	code,	both	lines	are
included—xlsm	and	xlsx—but	the	xlsx	lines	are	commented	out	to	make	them
inactive:

Click	here	to	view	code	image
Sub	SplitWorkbook()

Dim	ws	As	Worksheet

Dim	DisplayStatusBar	As	Boolean

DisplayStatusBar	=	Application.DisplayStatusBar

Application.DisplayStatusBar	=	True

Application.ScreenUpdating	=	False

Application.DisplayAlerts	=	False

Click	here	to	view	code	image
For	Each	ws	In	ThisWorkbook.Sheets

Dim	NewFileName	As	String

Application.StatusBar	=	ThisWorkbook.Sheets.Count

&	_

"	Remaining	Sheets"

If	ThisWorkbook.Sheets.Count	<>	1	Then

NewFileName	=	ThisWorkbook.Path	&	"\"	&

ws.Name	&	".xlsm"	_

'Macro-Enabled

'	NewFileName	=	ThisWorkbook.Path	&	"\"	&

ws.Name	&	".xlsx"	_

'Not	Macro-Enabled

ws.Copy

ActiveWorkbook.Sheets(1).Name	=	"Sheet1"

ActiveWorkbook.SaveAs	Filename:=NewFileName,	_

FileFormat:=xlOpenXMLWorkbookMacroEnabled

'	ActiveWorkbook.SaveAs	Filename:=NewFileName,

_

FileFormat:=xlOpenXMLWorkbook

ActiveWorkbook.Close	SaveChanges:=False

Else

NewFileName	=	ThisWorkbook.Path	&	"\"	&

ws.Name	&	".xlsm"

'	NewFileName	=	ThisWorkbook.Path	&	"\"	&

ws.Name	&	".xlsx"

ws.Name	=	"Sheet1"

End	If

Next

Application.DisplayAlerts	=	True

Application.StatusBar	=	False

Application.DisplayStatusBar	=	DisplayStatusBar

Application.ScreenUpdating	=	True

End	Sub

Combining	workbooks

This	utility	was	submitted	by	Tommy	Miles.

This	sample	goes	through	all	the	Excel	files	in	a	specified	directory	and
combines	them	into	a	single	workbook.	It	renames	the	sheets	based	on	the	name
of	the	original	workbook:

Click	here	to	view	code	image
Sub	CombineWorkbooks()

Dim	CurFile	As	String,	DirLoc	As	String

Dim	DestWB	As	Workbook

Dim	ws	As	Object	'allows	for	different	sheet	types

DirLoc	=	ThisWorkbook.Path	&	"\tst\"	'location	of

files

CurFile	=	Dir(DirLoc	&	"*.xls*")

Application.ScreenUpdating	=	False

Application.EnableEvents	=	False

Set	DestWB	=	Workbooks.Add(xlWorksheet)

Do	While	CurFile	<>	vbNullString

Dim	OrigWB	As	Workbook

Set	OrigWB	=	Workbooks.Open(Filename:=DirLoc	&

CurFile,	_

ReadOnly:=True)

Click	here	to	view	code	image
'Limits	to	valid	sheet	names	and	removes	".xls*"

CurFile	=	Left(Left(CurFile,	Len(CurFile)	-	5),

29)

For	Each	ws	In	OrigWB.Sheets

ws.Copy

After:=DestWB.Sheets(DestWB.Sheets.Count)

If	OrigWB.Sheets.Count	>	1	Then

DestWB.Sheets(DestWB.Sheets.Count).Name	=

CurFile	&	ws.Index

Else

DestWB.Sheets(DestWB.Sheets.Count).Name	=

CurFile

End	If

Next

OrigWB.Close	SaveChanges:=False

CurFile	=	Dir

Loop

Application.DisplayAlerts	=	False

DestWB.Sheets(1).Delete

Application.DisplayAlerts	=	True

Application.ScreenUpdating	=	True

Application.EnableEvents	=	True

Set	DestWB	=	Nothing

End	Sub

Copying	data	to	separate	worksheets	without	using	Filter

This	utility	was	submitted	by	Zack	Barresse	from	Boardman,	Oregon.	Zack	is	an
Excel	ninja	and	VBA	nut,	and	he’s	a	former	firefighter	and	paramedic	who
owns/operates	exceltables.com.	He	co-authored	one	of	my	favorite	books,	Excel
Tables:	A	Complete	Guide	for	Creating,	Using,	and	Automating	Lists	and	Tables
(Holy	Macro!	Books,	2014),	with	Kevin	Jones.

You	can	use	Filter	to	select	specific	records	and	then	copy	them	to	another

http://exceltables.com

sheet.	But	if	you	are	dealing	with	a	lot	of	data	or	have	formulas	in	the	data	set,	it
can	take	a	while	to	run.	Instead	of	using	Filter,	consider	using	a	formula	to	mark
the	desired	records	and	then	sort	by	that	column	to	group	the	desired	records
together.	Combine	this	with	SpecialCells,	and	you	could	have	a	procedure	that
runs	up	to	10	times	faster	than	code	that	uses	Filter.	Here’s	how	it	looks:

Click	here	to	view	code	image
Sub	CriteriaRange_Copy()

Dim	Table	As	ListObject

Dim	SortColumn	As	ListColumn

Dim	CriteriaColumn	As	ListColumn

Dim	FoundRange	As	Range

Dim	TargetSheet	As	Worksheet

Dim	HeaderVisible	As	Boolean

Set	Table	=	ActiveSheet.ListObjects(1)	'	Set	as

desired

HeaderVisible	=	Table.ShowHeaders

Table.ShowHeaders	=	True

On	Error	GoTo	RemoveColumns

Click	here	to	view	code	image
Set	SortColumn	=

Table.ListColumns.Add(Table.ListColumns.Count	+	1)

Set	CriteriaColumn	=	Table.ListColumns.Add	_

(Table.ListColumns.Count	+	1)

On	Error	GoTo	0

'Add	a	column	to	keep	track	of	the	original	order	of

the	records

SortColumn.Name	=	"	Sort"

CriteriaColumn.Name	=	"	Criteria"

SortColumn.DataBodyRange.Formula	=	"=ROW(A1!)"

SortColumn.DataBodyRange.Value	=

SortColumn.DataBodyRange.Value

'add	the	formula	to	mark	the	desired	records

'the	records	not	wanted	will	have	errors

CriteriaColumn.DataBodyRange.Formula	=	"=1/(([@Units]

<10)*([@Cost]<5))"

CriteriaColumn.DataBodyRange.Value	=

CriteriaColumn.DataBodyRange.Value

Table.Range.Sort	Key1:=CriteriaColumn.Range(1,	1),	_

Order1:=xlAscending,	Header:=xlYes

On	Error	Resume	Next

Set	FoundRange	=	Intersect(Table.Range,

CriteriaColumn.DataBodyRange.	_

SpecialCells(xlCellTypeConstants,

xlNumbers).EntireRow)

On	Error	GoTo	0

If	Not	FoundRange	Is	Nothing	Then

Set	TargetSheet	=

ThisWorkbook.Worksheets.Add(After:=ActiveSheet)

FoundRange(1,	1).Offset(-1,

0).Resize(FoundRange.Rows.Count	+	1,	_

FoundRange.Columns.Count	-	2).Copy

TargetSheet.Range("A1").PasteSpecial

xlPasteValuesAndNumberFormats

Application.CutCopyMode	=	False

End	If

Table.Range.Sort	Key1:=SortColumn.Range(1,	1),

Order1:=xlAscending,	_

Header:=xlYes

RemoveColumns:

If	Not	SortColumn	Is	Nothing	Then	SortColumn.Delete

If	Not	CriteriaColumn	Is	Nothing	Then

CriteriaColumn.Delete

Table.ShowHeaders	=	HeaderVisible

End	Sub

Exporting	data	to	an	XML	file

This	utility	was	submitted	by	Livio	Lanzo.	Livio	is	currently	working	as	a
business	analyst	in	finance	in	Luxembourg.	His	main	task	is	to	develop
Excel/Access	tools	for	a	bank.	Livio	is	also	active	on	the	MrExcel.com	forum

under	the	handle	VBA	Geek.

This	program	exports	the	data	from	a	table	to	an	XML	file.	It	uses	early
binding,	so	a	reference	must	be	established	in	the	VB	Editor	using	Tools,
References	to	the	Microsoft	XML,	v6.0	library:

Click	here	to	view	code	image
Const	ROOT_ELEMENT_NAME	=	"SAMPLEDATA"

Const	GROUPS_NAME	=	"EMPLOYEES"

Const	XML_EXPORT_PATH	=	"C:\temp\myXMLFile.xml"

Click	here	to	view	code	image
Sub	CreateXML()

Dim	xml_DOM	As	MSXML2.DOMDocument60

Dim	xml_El	As	MSXML2.IXMLDOMElement

Dim	xRow	As	Long

Dim	xCol	As	Long

Set	xml_DOM	=	CreateObject("MSXML2.DOMDocument.6.0")

xml_DOM.appendChild

xml_DOM.createElement(ROOT_ELEMENT_NAME)

With	Sheet1.ListObjects("TableEmployees")

For	xRow	=	1	To	.ListRows.Count

CREATE_APPEND_ELEMENT	xml_DOM,	ROOT_ELEMENT_NAME,

GROUPS_NAME,	_

0,	NODE_ELEMENT

For	xCol	=	1	To	.ListColumns.Count

CREATE_APPEND_ELEMENT	xml_DOM,	GROUPS_NAME,

.HeaderRowRange(1,	xCol).Text,	(xRow	-

1),	NODE_ELEMENT

CREATE_APPEND_ELEMENT	xml_DOM,

.HeaderRowRange(1,	xCol).Text,	_

.DataBodyRange(xRow,	xCol).Text,	(xRow	-

1),	NODE_TEXT

Next	xCol

Next	xRow

End	With

xml_DOM.Save	XML_EXPORT_PATH

MsgBox	"File	Created:	"	&	XML_EXPORT_PATH,

vbInformation

End	Sub

Private	Sub	CREATE_APPEND_ELEMENT(xmlDOM	As

MSXML2.DOMDocument60,	_

ParentElName	As	String,	_

NewElName	As	String,	_

ParentElIndex	As	Long,	_

ELType	As	MSXML2.tagDOMNodeType)

Dim	xml_ELEMENT	As	Object

If	ELType	=	NODE_ELEMENT	Then

Set	xml_ELEMENT	=	xmlDOM.createElement(NewElName)

ElseIf	ELType	=	NODE_TEXT	Then

Set	xml_ELEMENT	=

xmlDOM.createTextNode(NewElName)

End	If

xmlDOM.getElementsByTagName(ParentElName)

(ParentElIndex).appendChild	_

xml_ELEMENT

End	Sub

Working	with	cell	comments

Cell	comments	are	an	often-underused	feature	in	Excel.	The	following	two
utilities	help	you	get	the	most	out	of	cell	comments.

Resizing	comments

This	utility	was	submitted	by	Tom	Urtis	of	San	Francisco,	California.	Tom	is	the
principal	owner	of	Atlas	Programming	Management,	an	Excel	consulting	firm	in
the	Bay	Area.

Excel	doesn’t	automatically	resize	cell	comments.	In	addition,	if	you	have
several	of	them	on	a	sheet,	as	shown	in	Figure	13-1,	resizing	them	one	at	a	time
can	be	a	hassle.	The	following	utility	resizes	all	the	comment	boxes	on	a	sheet	so
that,	when	selected,	the	entire	comment	is	easily	viewable,	as	shown	in	Figure
13-2.

FIGURE	13-1	By	default,	Excel	doesn’t	size	the	comment	boxes	to	show	all	the	entered	text.

FIGURE	13-2	Resize	the	comment	boxes	to	fit	all	the	text.

Click	here	to	view	code	image
Sub	CommentFitter()

Application.ScreenUpdating	=	False

Dim	x	As	Range,	y	As	Long

For	Each	x	In	Cells.SpecialCells(xlCellTypeComments)

Select	Case	True

Case	Len(x.NoteText)	<>	0

With	x.Comment

.Shape.TextFrame.AutoSize	=	True

If	.Shape.Width	>	250	Then

y	=	.Shape.Width	*	.Shape.Height

.Shape.Width	=	150

.Shape.Height	=	(y	/	200)	*	1.3

End	If

End	With

End	Select

Next	x

Application.ScreenUpdating	=	True

End	Sub

Placing	a	chart	in	a	comment

This	is	another	utility	submitted	by	Tom	Urtis.

A	live	chart	cannot	exist	in	a	shape,	but	you	can	take	a	picture	of	a	chart	and
load	it	into	the	comment	shape,	as	shown	in	Figure	13-3.

FIGURE	13-3	Place	a	chart	in	a	cell	comment.

These	are	the	steps	to	do	this	manually:

1.	 Create	and	save	the	picture	image	you	want	the	comment	to	display.

2.	 If	you	have	not	already	done	so,	create	the	comment	and	select	the	cell	in
which	the	comment	is	located.

3.	 From	the	Review	tab,	select	Edit	Comment	or	right-click	the	cell	and	select
Edit	Comment.

4.	 Right-click	the	comment	border	and	select	Format	Comment.

5.	 Select	the	Colors	And	Lines	tab	and	click	the	down	arrow	belonging	to	the

Color	field	of	the	Fill	section.

6.	 Select	Fill	Effects,	select	the	Picture	tab,	and	then	click	the	Select	Picture
button.

7.	 Navigate	to	your	desired	image,	select	the	image,	and	click	OK	twice.

The	effect	of	having	a	“live	chart”	in	a	comment	can	be	achieved	if,	for
example,	the	code	is	part	of	a	SheetChange	event	when	the	chart’s	source	data	is
being	changed.	In	addition,	business	charts	are	updated	often,	so	you	might	want
a	macro	to	keep	the	comment	updated	and	to	avoid	repeating	the	same	steps.

The	following	utility	does	just	that—and	you	can	use	it	by	simply	modifying
the	file	pathname,	chart	name,	destination	sheet,	cell,	and	size	of	comment
shape,	depending	on	the	size	of	the	chart:

Click	here	to	view	code	image
Sub	PlaceGraph()

Dim	x	As	String,	z	As	Range

Application.ScreenUpdating	=	False

'assign	a	temporary	location	to	hold	the	image

Click	here	to	view	code	image
x	=	"C:\temp\XWMJGraph.gif"

'assign	the	cell	to	hold	the	comment

Set	z	=	Worksheets("ChartInComment").Range("A3")

'delete	any	existing	comment	in	the	cell

On	Error	Resume	Next

z.Comment.Delete

On	Error	GoTo	0

'select	and	export	the	chart

ActiveSheet.ChartObjects("Chart	1").Activate

ActiveChart.Export	x

'add	a	new	comment	to	the	cell,	set	the	size	and

insert	the	chart

With	z.AddComment

With	.Shape

.Height	=	322

.Width	=	465

.Fill.UserPicture	x

End	With

End	With

'delete	the	temporary	image

Kill	x

Range("A1").Activate

Application.ScreenUpdating	=	True

Set	z	=	Nothing

End	Sub

Tracking	user	changes

The	Change	event	is	a	code	solution	posted	often	at	Excel	forums,	primarily
because	it	fills	a	void	that	formulas	alone	can’t	manage	(for	example,	inserting	a
date	and	time	stamp	when	a	user	changes	a	specific	range).	The	following	utility
takes	advantage	of	the	Change	event	in	order	to	create	a	log	file	that	tracks	the
cell	address,	new	value,	date,	time,	and	username	for	changes	made	to	column	A
of	the	sheet	in	which	the	code	is	placed:

This	utility	was	submitted	by	Chris	“Smitty”	Smith	of	Crested	Butte,
Colorado.	Smitty	writes	Excel	help	content	for	Microsoft	on	support.office.com.
Prior	to	that	he	was	a	professional	Office	developer.	When	he’s	not	busy	at	work,
he	is	an	avid	rock	and	ice	climber	and	an	occasional	mountaineer.

Click	here	to	view	code	image
Private	Sub	Worksheet_Change(ByVal	Target	As	Range)

'Code	goes	in	the	Worksheet	specific	module

Dim	ws	As	Worksheet

Dim	lr	As	Long

Dim	rng	As	Range

'Set	the	Destination	worksheet

Click	here	to	view	code	image

http://support.office.com

Set	ws	=	Sheets("Log	Sheet")

'Get	the	first	unused	row	on	the	Log	sheet

lr	=	ws.Cells(Rows.Count,	"A").End(xlUp).Row

'Set	Target	Range,	i.e.	Range("A1,	B2,	C3"),	or

Range("A1:B3")

Set	rng	=	Target.Parent.Range("A:A")

'Only	look	at	single	cell	changes

If	Target.Count	>	1	Then	Exit	Sub

'Only	look	at	that	range

If	Intersect(Target,	rng)	Is	Nothing	Then	Exit	Sub

'Action	if	Condition(s)	are	met	(do	your	thing

here...)

'Put	the	Target	cell's	Address	in	Column	A

ws.Cells(lr	+	1,	"A").Value	=	Target.Address

'Put	the	Target	cell's	value	in	Column	B

ws.Cells(lr	+	1,	"B").Value	=	Target.Value

'Put	the	Date	in	Column	C

ws.Cells(lr	+	1,	"C").Value	=	Date

'Put	the	Time	in	Column	D

ws.Cells(lr	+	1,	"D").Value	=	Format(Now,	"HH:MM:SS

AM/PM")

'Put	the	Date	in	Column	E

ws.Cells(lr	+	1,	"E").Value	=	Environ("UserName")

End	Sub

Techniques	for	VBA	pros

The	utilities	provided	in	the	following	sections	amaze	me.	In	the	various
message	board	communities	on	the	Internet,	VBA	programmers	are	constantly
coming	up	with	new	ways	to	do	things	faster	and	better.	When	someone	posts
some	new	code	that	obviously	runs	circles	around	the	prior	generally	accepted
best	code,	everyone	benefits.

Creating	an	Excel	state	class	module

This	utility	was	submitted	by	Juan	Pablo	Gonzàlez	Ruiz	of	Bogotà,	Colombia.
Juan	Pablo	is	an	Excel	consultant	who	runs	his	photography	business	at
www.juanpg.com.

http://www.juanpg.com

The	following	class	module	is	one	of	my	favorites,	and	I	use	it	in	almost
every	project	I	create.	Before	Juan	shared	the	module	with	me,	I	used	to	enter
the	eight	lines	of	code	to	turn	off	and	back	on	screen	updating,	events,	alerts,	and
calculations.	At	the	beginning	of	a	sub	I	would	turn	them	off,	and	at	the	end	I
would	turn	them	back	on.	That	was	quite	a	bit	of	typing.	Now	I	just	place	the
class	module	in	a	new	workbook	I	create	and	call	it	as	needed.

Insert	a	class	module	named	CAppState	and	place	the	following	code	in	it:

Click	here	to	view	code	image
Private	m_su	As	Boolean

Private	m_ee	As	Boolean

Private	m_da	As	Boolean

Private	m_calc	As	Long

Private	m_cursor	As	Long

Private	m_except	As	StateEnum

Click	here	to	view	code	image
Public	Enum	StateEnum

None	=	0

ScreenUpdating	=	1

EnableEvents	=	2

DisplayAlerts	=	4

Calculation	=	8

Cursor	=	16

End	Enum

Public	Sub	SetState(Optional	ByVal	except	As	StateEnum

=	StateEnum.None)

m_except	=	except

With	Application

If	Not	m_except	And	StateEnum.ScreenUpdating	Then

.ScreenUpdating	=	False

End	If

If	Not	m_except	And	StateEnum.EnableEvents	Then

.EnableEvents	=	False

End	If

If	Not	m_except	And	StateEnum.DisplayAlerts	Then

.DisplayAlerts	=	False

End	If

If	Not	m_except	And	StateEnum.Calculation	Then

.Calculation	=	xlCalculationManual

End	If

If	Not	m_except	And	StateEnum.Cursor	Then

.Cursor	=	xlWait

End	If

End	With

End	Sub

Private	Sub	Class_Initialize()

With	Application

m_su	=	.ScreenUpdating

m_ee	=	.EnableEvents

m_da	=	.DisplayAlerts

m_calc	=	.Calculation

m_cursor	=	.Cursor

End	With

End	Sub

Private	Sub	Class_Terminate()

With	Application

If	Not	m_except	And	StateEnum.ScreenUpdating	Then

.ScreenUpdating	=	m_su

End	If

If	Not	m_except	And	StateEnum.EnableEvents	Then

.EnableEvents	=	m_ee

End	If

Click	here	to	view	code	image
If	Not	m_except	And	StateEnum.DisplayAlerts	Then

.DisplayAlerts	=	m_da

End	If

If	Not	m_except	And	StateEnum.Calculation	Then

.Calculation	=	m_calc

End	If

If	Not	m_except	And	StateEnum.Cursor	Then

.Cursor	=	m_cursor

End	If

End	With

End	Sub

The	following	code	is	an	example	of	calling	the	class	module	to	turn	off	the
various	states,	running	your	code,	and	then	setting	the	states	back:

Click	here	to	view	code	image
Sub	RunFasterCode

Dim	appState	As	CAppState

Set	appState	=	New	CAppState

appState.SetState	None

'run	your	code

'if	you	have	any	formulas	that	need	to	update,	use

'Application.Calculate

'to	force	the	workbook	to	calculate

Set	appState	=	Nothing

End	Sub

Drilling-down	a	pivot	table

This	is	yet	another	utility	submitted	by	Tom	Urtis.

When	you	are	double-clicking	the	data	section,	a	pivot	table’s	default
behavior	is	to	insert	a	new	worksheet	and	display	that	drill-down	information	on
the	new	sheet.	This	utility	serves	as	an	option	for	convenience,	to	keep	the
drilled-down	record	sets	on	the	same	sheet	as	the	pivot	table	(see	Figure	13-4)	so
that	you	can	delete	them	as	you	want.

FIGURE	13-4	Show	the	drill-down	record	set	on	the	same	sheet	as	the	pivot	table.

To	use	this	macro,	double-click	the	data	section	or	the	totals	section	to	create
stacked	drill-down	record	sets	in	the	next	available	row	of	the	sheet.	To	delete
any	drill-down	record	sets	you	have	created,	double-click	anywhere	in	their
respective	current	region.

Here’s	the	utility:

Click	here	to	view	code	image
Private	Sub	Worksheet_BeforeDoubleClick(ByVal	Target

As	Range,	_

Cancel	As	Boolean)

Application.ScreenUpdating	=	False

Dim	LPTR&

With	ActiveSheet.PivotTables(1).DataBodyRange

LPTR	=	.Rows.Count	+	.Row	-	1

End	With

Dim	PTT	As	Integer

On	Error	Resume	Next

PTT	=	Target.PivotCell.PivotCellType

If	Err.Number	=	1004	Then

Err.Clear

If	Not	IsEmpty(Target)	Then

If	Target.Row	>

Range("A1").CurrentRegion.Rows.Count	+	1	Then

Cancel	=	True

With	Target.CurrentRegion

.Resize(.Rows.Count	+

1).EntireRow.Delete

End	With

End	If

Else

Cancel	=	True

End	If

Else

CS	=	ActiveSheet.Name

End	If

Application.ScreenUpdating	=	True

End	Sub

Filtering	an	OLAP	pivot	table	by	a	list	of	items

This	utility	was	submitted	by	Jerry	Sullivan	of	San	Diego,	California.	Jerry	is	an
operations	manager	for	exp	(www.exp.com),	a	building	engineering	consulting
firm.

This	procedure	filters	an	OLAP	pivot	table	to	show	items	in	a	separate	list,
regardless	of	whether	an	item	in	that	list	has	a	matching	record.

The	code	converts	user-friendly	items	into	MDX	member	references—for
example,	from	“banana”	to	“[tblSales].[product_name].&[banana]"]”:

Click	here	to	view	code	image
Sub	FilterOLAP_PT()

'example	showing	call	to	function

sOLAP_FilterByItemList

Dim	pvt	As	PivotTable

Dim	sErrMsg	As	String,	sTemplate	As	String

Dim	vItemsToBeVisible	As	Variant

On	Error	GoTo	ErrProc

With	Application

Click	here	to	view	code	image
.EnableCancelKey	=	xlErrorHandler

.ScreenUpdating	=	False

.DisplayStatusBar	=	False

.EnableEvents	=	False

http://www.exp.com

End	With

'read	filter	items	from	worksheet	table

vItemsToBeVisible	=	Application.Transpose(_

wksPivots.ListObjects("tblVisibleItemsList").DataBodyRange.Value)

Set	pvt	=	wksPivots.PivotTables("PivotTable1")

'call	function

sErrMsg	=	sOLAP_FilterByItemList(_

pvf:=pvt.PivotFields("[tblSales].[product_name].

[product_name]"),	_

vItemsToBeVisible:=vItemsToBeVisible,	_

sItemPattern:="[tblSales].[product_name].&

[ThisItem]")

ExitProc:

On	Error	Resume	Next

With	Application

.EnableEvents	=	True

.DisplayStatusBar	=	True

.ScreenUpdating	=	True

End	With

If	Len(sErrMsg)	>	0	Then	MsgBox	sErrMsg

Exit	Sub

ErrProc:

sErrMsg	=	Err.Number	&	"	-	"	&	Err.Description

Resume	ExitProc

End	Sub

Private	Function	sOLAP_FilterByItemList(ByVal	pvf	As

PivotField,	_

ByVal	vItemsToBeVisible	As	Variant,	_

ByVal	sItemPattern	As	String)	As	String

'filters	an	OLAP	pivot	table	to	display	a	list	of

items,

'	where	some	of	the	items	might	not	exist

'works	by	testing	whether	each	pivotitem	exists,	then

building	an

'	array	of	existing	items	to	be	used	with	the

VisibleItemsList	'	property

'Input	Parameters:

'pvf	-	pivotfield	object	to	be	filtered

'vItemsToBeVisible	-	1-D	array	of	strings	representing

items	to	be	'	visible

'sItemPattern	-	string	that	has	MDX	pattern	of

pivotItem	reference

'	where	the	text	"ThisItem"	will	be	replaced	by	each

'	item	in	vItemsToBeVisible	to	make	pivotItem

references.

'	e.g.:	"[tblSales].[product_name].&[ThisItem]"

Dim	lFilterItemCount	As	Long,	lNdx	As	Long

Dim	vFilterArray	As	Variant

Dim	vSaveVisibleItemsList	As	Variant

Dim	sReturnMsg	As	String,	sPivotItemName	As	String

Click	here	to	view	code	image
'store	existing	visible	items

vSaveVisibleItemsList	=	pvf.VisibleItemsList

If	Not	(IsArray(vItemsToBeVisible))	Then	_

vItemsToBeVisible	=	Array(vItemsToBeVisible)

ReDim	vFilterArray(1	To	_

UBound(vItemsToBeVisible)	-	LBound(vItemsToBeVisible)

+	1)

pvf.Parent.ManualUpdate	=	True

'check	if	pivotitem	exists	then	build	array	of	items

that	exist

For	lNdx	=	LBound(vItemsToBeVisible)	To

UBound(vItemsToBeVisible)

'create	MDX	format	pivotItem	reference	by

substituting	item	into

'pattern

sPivotItemName	=	Replace(sItemPattern,	"ThisItem",

_

vItemsToBeVisible(lNdx))

'attempt	to	make	specified	item	the	only	visible

item

On	Error	Resume	Next

pvf.VisibleItemsList	=	Array(sPivotItemName)

On	Error	GoTo	0

'if	item	doesn't	exist	in	field,	this	will	be

false

If	LCase$(sPivotItemName)	=

LCase$(pvf.VisibleItemsList(1))	Then

lFilterItemCount	=	lFilterItemCount	+	1

vFilterArray(lFilterItemCount)	=

sPivotItemName

End	If

Next	lNdx

'if	at	least	one	existing	item	found,	filter	pivot

using	array

If	lFilterItemCount	>	0	Then

ReDim	Preserve	vFilterArray(1	To	lFilterItemCount)

pvf.VisibleItemsList	=	vFilterArray

Else

sReturnMsg	=	"No	matching	items	found."

pvf.VisibleItemsList	=	vSaveVisibleItemsList

End	If

pvf.Parent.ManualUpdate	=	False

sOLAP_FilterByItemList	=	sReturnMsg

End	Function

Creating	a	custom	sort	order

This	utility	was	submitted	by	Wei	Jiang	of	Wuhan	City,	China.

By	default,	Excel	enables	you	to	sort	lists	numerically	or	alphabetically,	but
sometimes	that	is	not	what	is	needed.	For	example,	a	client	might	need	each
day’s	sales	data	sorted	by	the	default	division	order	of	belts,	handbags,	watches,
wallets,	and	everything	else.	Although	you	can	manually	set	up	a	custom	series
and	sort	using	it,	if	you’re	creating	an	automated	workbook	for	other	users,	that
might	not	be	an	option.	This	utility	uses	a	custom	sort	order	list	to	sort	a	range	of

data	into	default	division	order	and	then	deletes	the	custom	sort	order,	and	Figure
13-5	shows	the	results:

FIGURE	13-5	When	you	use	the	macro,	the	list	in	A:C	is	sorted	first	by	date	and	then	by	the	custom
sort	list	in	Column	I.

Click	here	to	view	code	image
Sub	CustomSort()

'	add	the	custom	list	to	Custom	Lists

Application.AddCustomList	ListArray:=Range(“I1:I5”)

'	get	the	list	number

nIndex	=

Application.GetCustomListNum(Range(“I1:I5”).Value)

'	Now,	we	could	sort	a	range	with	the	custom	list.

'	Note,	we	should	use	nIndex	+	1	as	the	custom	list

number	here,

'	for	the	first	one	is	Normal	order

Range(“A2:C16”).Sort	Key1:=Range(“B2”),

Order1:=xlAscending,	_

Header:=xlNo,	Orientation:=xlSortColumns,	_

OrderCustom:=nIndex	+	1

Range(“A2:C16”).Sort	Key1:=Range(“A2”),

Order1:=xlAscending,	_

Header:=xlNo,	Orientation:=xlSortColumns

'	At	the	end,	we	should	remove	this	custom	list...

Application.DeleteCustomList	nIndex

End	Sub

Creating	a	cell	progress	indicator

Here	is	another	utility	submitted	by	the	prolific	Tom	Urtis.

I	have	to	admit,	the	conditional	formatting	options	in	Excel,	such	as	data
bars,	are	fantastic.	However,	there	still	isn’t	an	option	for	a	visual	like	the
example	shown	in	Figure	13-6.	The	following	utility	builds	a	progress	indicator
in	column	C,	based	on	entries	in	columns	A	and	B:

Click	here	to	view	code	image
Private	Sub	Worksheet_Change(ByVal	Target	As	Range)

If	Target.Column	>	2	Or	Target.Cells.Count	>	1	Then

Exit	Sub

If	Application.IsNumber(Target.Value)	=	False	Then

Application.EnableEvents	=	False

Application.Undo

Application.EnableEvents	=	True

MsgBox	"Numbers	only	please."

Exit	Sub

End	If

Select	Case	Target.Column

Case	1

If	Target.Value	>	Target.Offset(0,	1).Value

Then

Application.EnableEvents	=	False

Click	here	to	view	code	image
Application.Undo

Application.EnableEvents	=	True

MsgBox	"Value	in	column	A	may	not	be	larger

than	value	"	&	_

"in	column	B."

Exit	Sub

End	If

Case	2

If	Target.Value	<	Target.Offset(0,	-1).Value

Then

Application.EnableEvents	=	False

Application.Undo

Application.EnableEvents	=	True

MsgBox	"Value	in	column	B	may	not	be

smaller	"	&	_

"than	value	in	column	A."

Exit	Sub

End	If

End	Select

Dim	x	As	Long

x	=	Target.Row

Dim	z	As	String

z	=	Range("B"	&	x).Value	-	Range("A"	&	x).Value

With	Range("C"	&	x)

.Formula	=	"=IF(RC[-1]

<=RC[-2],REPT(""n"",RC[-1])&"	&	_

"REPT(""n"",RC[-2]-

RC[-1]),REPT(""n"",RC[-2])&"	&	_

"REPT(""o"",RC[-1]-RC[-2]))"

.Value	=	.Value

.Font.Name	=	"Wingdings"

.Font.ColorIndex	=	1

.Font.Size	=	10

If	Len(Range("A"	&	x))	<>	0	Then

.Characters(1,	(.Characters.Count	-

z)).Font.ColorIndex	=	3

.Characters(1,	(.Characters.Count	-

z)).Font.Size	=	12

End	If

End	With

End	Sub

FIGURE	13-6	You	can	use	indicators	in	cells	to	show	progress.

Using	a	protected	password	box

This	utility	was	submitted	by	Daniel	Klann	of	Sydney,	Australia.	Daniel	works
mainly	with	VBA	in	Excel	and	Access	but	dabbles	in	all	sorts	of	languages.

Using	an	input	box	for	password	protection	has	a	major	security	flaw:	The
characters	being	entered	are	easily	viewable.	This	program	changes	the
characters	to	asterisks	as	they	are	entered—just	like	a	real	password	field	(see
Figure	13-7).	Note	that	the	code	that	follows	does	not	work	in	64-bit	Excel.
Refer	to	Chapter	23,	“The	Windows	Application	Programming	Interface	(API),”
for	information	on	modifying	the	code	for	64-bit	Excel.

FIGURE	13-7	You	can	use	an	input	box	as	a	secure	password	field.

Here	is	the	utility:

Click	here	to	view	code	image
Private	Declare	Function	CallNextHookEx	Lib	"user32"	_

(ByVal	hHook	As	Long,	_

ByVal	ncode	As	Long,	ByVal	wParam	As	Long,	lParam	As

Any)	As	Long

Private	Declare	Function	GetModuleHandle	Lib

"kernel32"	_

Alias	"GetModuleHandleA"	(ByVal	lpModuleName	As

String)	As	Long

Private	Declare	Function	SetWindowsHookEx	Lib	"user32"

_

Alias	"SetWindowsHookExA"	_

(ByVal	idHook	As	Long,	ByVal	lpfn	As	Long,	_

ByVal	hmod	As	Long,ByVal	dwThreadId	As	Long)	As	Long

Private	Declare	Function	UnhookWindowsHookEx	Lib

"user32"	_

(ByVal	hHook	As	Long)	As	Long

Private	Declare	Function	SendDlgItemMessage	Lib

"user32"	_

Alias	"SendDlgItemMessageA"	_

(ByVal	hDlg	As	Long,	_

ByVal	nIDDlgItem	As	Long,	ByVal	wMsg	As	Long,	_

ByVal	wParam	As	Long,	ByVal	lParam	As	Long)	As	Long

Private	Declare	Function	GetClassName	Lib	"user32"	_

Alias	"GetClassNameA"	(ByVal	hwnd	As	Long,	_

ByVal	lpClassName	As	String,	_

ByVal	nMaxCount	As	Long)	As	Long

Private	Declare	Function	GetCurrentThreadId	_

Lib	"kernel32"	()	As	Long

'Constants	to	be	used	in	our	API	functions

Private	Const	EM_SETPASSWORDCHAR	=	&HCC

Private	Const	WH_CBT	=	5

Private	Const	HCBT_ACTIVATE	=	5

Private	Const	HC_ACTION	=	0

Click	here	to	view	code	image
Private	hHook	As	Long

Public	Function	NewProc(ByVal	lngCode	As	Long,	_

ByVal	wParam	As	Long,	ByVal	lParam	As	Long)	As	Long

Dim	RetVal

Dim	strClassName	As	String,	lngBuffer	As	Long

If	lngCode	<	HC_ACTION	Then

NewProc	=	CallNextHookEx(hHook,	lngCode,	wParam,

lParam)

Exit	Function

End	If

strClassName	=	String$(256,	"	")

lngBuffer	=	255

If	lngCode	=	HCBT_ACTIVATE	Then	'A	window	has	been

activated

RetVal	=	GetClassName(wParam,	strClassName,

lngBuffer)

'Check	for	class	name	of	the	Inputbox

If	Left$(strClassName,	RetVal)	=	"#32770"	Then

'Change	the	edit	control	to	display	the

password	character	*.

'You	can	change	the	Asc("*")	as	you	please.

SendDlgItemMessage	wParam,	&H1324,

EM_SETPASSWORDCHAR,	Asc("*"),	&H0

End	If

End	If

'This	line	will	ensure	that	any	other	hooks	that	may

be	in	place	are

'called	correctly.

CallNextHookEx	hHook,	lngCode,	wParam,	lParam

End	Function

Public	Function	InputBoxDK(Prompt,	Optional	Title,	_

Optional	Default,	Optional	XPos,	_

Optional	YPos,	Optional	HelpFile,	Optional	Context)

As	String

Dim	lngModHwnd	As	Long,	lngThreadID	As	Long

lngThreadID	=	GetCurrentThreadId

lngModHwnd	=	GetModuleHandle(vbNullString)

hHook	=	SetWindowsHookEx(WH_CBT,	AddressOf	NewProc,

lngModHwnd,	_

lngThreadID)

On	Error	Resume	Next

InputBoxDK	=	InputBox(Prompt,	Title,	Default,	XPos,

YPos,	HelpFile,	_

Context)

UnhookWindowsHookEx	hHook

End	Function

Sub	PasswordBox()

If	InputBoxDK("Please	enter	password",	"Password

Required")	<>	_

"password"	Then

MsgBox	"Sorry,	that	was	not	a	correct	password."

Else

Click	here	to	view	code	image
MsgBox	"Correct	Password!	Come	on	in."

End	If

End	Sub

Changing	case

This	utility	was	submitted	by	Ivan	F.	Moala	of	Auckland,	New	Zealand.	Ivan	is
the	site	author	of	The	XcelFiles	(excelplaza.com/ep_ivan/default.php),	where
you	can	find	out	how	to	do	things	you	thought	you	could	not	do	in	Excel.

Word	can	change	the	case	of	selected	text,	but	that	capability	is	notably
lacking	in	Excel.	This	program	enables	an	Excel	user	to	change	the	case	of	text
in	any	selected	range,	as	shown	in	Figure	13-8.

FIGURE	13-8	You	can	now	change	the	case	of	words,	just	like	in	Word.

Click	here	to	view	code	image
Sub	TextCaseChange()

Dim	RgText	As	Range

Dim	oCell	As	Range

Dim	Ans	As	String

Dim	strTest	As	String

Dim	sCap	As	Integer,	_

http://excelplaza.com/ep_ivan/default.php

lCap	As	Integer,	_

i	As	Integer

'//	You	need	to	select	a	range	to	alter	first!

Again:

Ans	=	Application.InputBox("[L]owercase"	&	vbCr	&	"

[U]ppercase"	&	vbCr	&	_

"[S]entence"	&	vbCr	&	"[T]itles"	&	vbCr	&	"

[C]apsSmall",	_

"Type	in	a	Letter",	Type:=2)

If	Ans	=	"False"	Then	Exit	Sub

If	InStr(1,	"LUSTC",	UCase(Ans),	vbTextCompare)	=	0	_

Or	Len(Ans)	>	1	Then	GoTo	Again

On	Error	GoTo	NoText

If	Selection.Count	=	1	Then

Set	RgText	=	Selection

Else

Set	RgText	=

Selection.SpecialCells(xlCellTypeConstants,	2)

End	If

Click	here	to	view	code	image
On	Error	GoTo	0

For	Each	oCell	In	RgText

Select	Case	UCase(Ans)

Case	"L":	oCell	=	LCase(oCell.Text)

Case	"U":	oCell	=	UCase(oCell.Text)

Case	"S":	oCell	=	UCase(Left(oCell.Text,	1))

&	_

LCase(Right(oCell.Text,	Len(oCell.Text)	-

1))

Case	"T":	oCell	=

Application.WorksheetFunction.Proper(oCell.Text)

Case	"C"

lCap	=	oCell.Characters(1,	1).Font.Size

sCap	=	Int(lCap	*	0.85)

'Small	caps	for	everything.

oCell.Font.Size	=	sCap

oCell.Value	=	UCase(oCell.Text)

strTest	=	oCell.Value

'Large	caps	for	1st	letter	of	words.

strTest	=	Application.Proper(strTest)

For	i	=	1	To	Len(strTest)

If	Mid(strTest,	i,	1)	=

UCase(Mid(strTest,	i,	1))	Then

oCell.Characters(i,	1).Font.Size	=

lCap

End	If

Next	i

End	Select

Next

Exit	Sub

NoText:

MsgBox	"No	text	in	your	selection	@	"	&

Selection.Address

End	Sub

Selecting	with	SpecialCells

Ivan	F.	Moala	also	submitted	this	handy	utility.

Typically,	when	you	want	to	find	certain	values,	text,	or	formulas	in	a	range,
the	range	is	selected,	and	each	cell	is	tested.	The	following	utility	shows	how
you	can	use	SpecialCells	to	select	only	the	desired	cells.	Having	fewer	cells	to
check	speeds	up	your	code.

The	following	code	ran	in	the	blink	of	an	eye	on	my	machine.	However,	the
version	that	checked	each	cell	in	the	range	(A1:Z20000)	took	14	seconds—an
eternity	in	the	automation	world!

Click	here	to	view	code	image
Sub	SpecialRange()

Dim	TheRange	As	Range

Dim	oCell	As	Range

Set	TheRange	=	Range("A1:Z20000").SpecialCells(__

xlCellTypeConstants,	xlTextValues)

For	Each	oCell	In	TheRange

If	oCell.Text	=	"Your	Text"	Then

Click	here	to	view	code	image
MsgBox	oCell.Address

MsgBox	TheRange.Cells.Count

End	If

Next	oCell

End	Sub

Resetting	a	table’s	format

Here’s	another	utility	submitted	by	Zack	Barresse.

Tables	are	great	tools	to	use,	but	they’re	not	perfect.	One	issue	you’ll
eventually	run	into	is	a	table’s	formatting	acting	up.	For	example,	formatting
might	suddenly	no	longer	be	applied	to	new	rows.	The	following	procedure
resets	a	table’s	format	so	it	functions	properly:

Click	here	to	view	code	image
Sub	ResetFormat(ByVal	Table	As	ListObject,	_

Optional	ByVal	RetainNumberFormats	As	Boolean	=	True)

Dim	Formats()	As	Variant

Dim	ColumnStep	As	Long

If	Table.Parent.ProtectContents	=	True	Then

MsgBox	"The	worksheet	is	protected.",

vbExclamation,	"Whoops!"

Exit	Sub

End	If

If	RetainNumberFormats	Then

ReDim	Formats(Table.ListColumns.Count	-	1)

For	ColumnStep	=	1	To	Table.ListColumns.Count

On	Error	Resume	Next

Formats(ColumnStep	-	1)	=

Table.ListColumns(ColumnStep).	_

DataBodyRange.NumberFormat

On	Error	GoTo	0

If	IsEmpty(Formats(ColumnStep	-	1))	Then

Formats(ColumnStep	-	1)	=	"General"

End	If

Next	ColumnStep

End	If

Table.Range.Style	=	"Normal"

If	RetainNumberFormats	Then

For	ColumnStep	=	1	To	Table.ListColumns.Count

On	Error	Resume	Next

Table.ListColumns(ColumnStep).DataBodyRange.NumberFormat

=	_

Formats(ColumnStep	-	1)

On	Error	GoTo	0

If	Err.Number	<>	0	Then

Table.ListColumns(ColumnStep).DataBodyRange.NumberFormat

=	_

"General"

Err.Clear

End	If

Next	ColumnStep

End	If

End	Sub

Using	VBA	Extensibility	to	add	code	to	new	workbooks

Say	that	you	have	a	macro	that	moves	data	to	a	new	workbook	for	the	regional
managers.	What	if	you	need	to	also	copy	macros	to	the	new	workbook?	You	can
use	VBA	Extensibility	to	import	modules	to	a	workbook	or	to	actually	write
lines	of	code	to	the	workbook.

To	use	any	of	the	following	examples,	you	must	trust	access	to	VBA	by
going	to	the	Developer	tab,	choosing	Macro	Security,	and	checking	Trust	Access
To	The	VBA	Project	Object	Model.

The	easiest	way	to	use	VBA	Extensibility	is	to	export	a	complete	module	or
userform	from	the	current	project	and	import	it	to	the	new	workbook.	Perhaps
you	have	an	application	with	thousands	of	lines	of	code,	and	you	want	to	create	a
new	workbook	with	data	for	the	regional	manager	and	give	her	three	macros	to
enable	custom	formatting	and	printing.	Place	all	of	these	macros	in	a	module

called	modToRegion.	Macros	in	this	module	also	call	the	frmRegion	userform.
The	following	code	transfers	this	code	from	the	current	workbook	to	the	new
workbook:

Click	here	to	view	code	image
Sub	MoveDataAndMacro()

Dim	WSD	as	worksheet

Set	WSD	=	Worksheets("Report")

'	Copy	Report	to	a	new	workbook

WSD.Copy

'	The	active	workbook	is	now	the	new	workbook

'	Delete	any	old	copy	of	the	module	from	C

On	Error	Resume	Next

'	Delete	any	stray	copies	from	hard	drive

Kill	("C:\temp\ModToRegion.bas")

Kill	("C:\temp\frmRegion.frm")

On	Error	GoTo	0

'	Export	module	&	form	from	this	workbook

ThisWorkbook.VBProject.VBComponents("ModToRegion").Export

_

("C:\temp\ModToRegion.bas")

ThisWorkbook.VBProject.VBComponents("frmRegion").Export

_

("C:\temp\frmRegion.	frm")

'	Import	to	new	workbook

ActiveWorkbook.VBProject.VBComponents.Import

("C:\temp\ModToRegion.bas")

ActiveWorkbook.VBProject.VBComponents.Import

("C:\temp\frmRegion.frm")

On	Error	Resume	Next

Kill	("C:\temp\ModToRegion.bas")

Kill	("C:\temp\frmRegion.bas")

On	Error	GoTo	0

End	Sub

This	method	works	if	you	need	to	move	modules	or	userforms	to	a	new
workbook.	However,	what	if	you	need	to	write	some	code	to	the	Workbook_Open
macro	in	the	ThisWorkbook	module?	There	are	two	tools	to	use.	The	Lines

method	enables	you	to	return	a	particular	set	of	code	lines	from	a	given	module.
The	InsertLines	method	enables	you	to	insert	code	lines	to	a	new	module.

Note	With	each	call	to	InsertLines,	you	must	insert	a	complete
macro.	Excel	attempts	to	compile	the	code	after	each	call	to
InsertLines.	If	you	insert	lines	that	do	not	completely	compile,

Excel	might	crash	with	a	general	protection	fault	(GPF).

Click	here	to	view	code	image
Sub	MoveDataAndMacro()

Dim	WSD	as	worksheet

Dim	WBN	as	Workbook

Dim	WBCodeMod1	As	Object,	WBCodeMod2	As	Object

Set	WSD	=	Worksheets("Report")

'	Copy	Report	to	a	new	workbook

WSD.Copy

'	The	active	workbook	is	now	the	new	workbook

Set	WBN	=	ActiveWorkbook

'	Copy	the	Workbook	level	Event	handlers

Set	WBCodeMod1	=

ThisWorkbook.VBProject.VBComponents("ThisWorkbook")	_

.CodeModule

Set	WBCodeMod2	=

WBN.VBProject.VBComponents("ThisWorkbook").CodeModule

WBCodeMod2.InsertLines	1,	WBCodeMod1.Lines(1,

WBCodeMod1.countoflines)

End	Sub

Next	steps

The	utilities	in	this	chapter	aren’t	Excel’s	only	source	of	programming	power.
User-defined	functions	(UDFs)	enable	you	to	create	complex	custom	formulas	to
cover	what	Excel’s	functions	don’t.	In	Chapter	14,	“Sample	user-defined
functions,”	you’ll	find	out	how	to	create	and	share	your	own	functions.

CHAPTER	14
Sample	user-defined	functions

In	this	chapter,	you	will:

Learn	how	to	create	and	share	user-defined	functions

Review	useful	custom	functions

Excel	provides	many	built-in	functions.	However,	sometimes	you	need	a
complex	custom	function	that	Excel	doesn’t	offer,	such	as	a	function	that	sums	a
range	of	cells	based	on	their	interior	color.

So,	what	do	you	do?	You	could	use	the	calculator	next	to	you	as	you	work
your	way	down	your	list—but	be	careful	not	to	enter	the	same	number	twice!	Or,
you	could	convert	the	data	set	to	a	table,	set	a	SUBTOTAL	function	for	visible	cells
in	the	total	row,	and	filter	by	color.	Both	methods	are	time-consuming	and	prone
to	accidents.	What	to	do?

You	could	write	a	procedure	to	solve	this	problem—after	all,	that’s	what	this
book	is	about.	However,	you	have	another	option:	user-defined	functions
(UDFs).

Creating	user-defined	functions
You	can	create	your	own	functions	in	VBA	and	then	use	them	just	like	you	use
Excel’s	built-in	functions,	such	as	SUM.	After	the	custom	function	is	created,	a
user	needs	to	know	only	the	function	name	and	its	arguments.

Note	You	can	enter	UDFs	only	into	standard	modules.	Sheet	and
ThisWorkbook	modules	are	a	special	type	of	module.	If	you	enter	a
UDF	in	either	of	those	modules,	Excel	does	not	recognize	that	you

are	creating	a	UDF.

Building	a	simple	custom	function

To	learn	the	basics	of	UDFs,	you’ll	build	a	custom	function	to	add	two	values.
After	you’ve	created	it,	you’ll	use	it	on	a	worksheet.

Insert	a	new	module	in	the	VB	Editor.	Type	the	following	function	into	the
module.	It	is	a	function	called	ADD	that	totals	two	numbers	in	different	cells.	The
function	has	two	arguments:

Add(Number1,Number2)

Number1	is	the	first	number	to	add;	Number2	is	the	second	number	to	add:

Click	here	to	view	code	image
Function	Add(Number1	As	Integer,	Number2	As	Integer)

As	Integer

Add	=	Number1	+	Number2

End	Function

Let’s	break	this	down:

The	function	name	is	ADD.

Arguments	are	placed	in	parentheses	after	the	name	of	the	function.	This
example	has	two	arguments:	Number1	and	Number2.

As	Integer	defines	the	variable	type	of	the	result	as	a	whole	number.

ADD	=	Number1	+	Number2	is	the	result	of	the	function	that	is	returned.

Here	is	how	to	use	the	function	on	a	worksheet:

1.	 Type	numbers	into	cells	A1	and	A2.

2.	 Select	cell	A3.

3.	 Press	Shift+F3	to	open	the	Insert	Function	dialog	box,	or	choose	Formulas,
Insert	Function.

4.	 In	the	Insert	Function	dialog	box,	select	the	User	Defined	category	(see
Figure	14-1).

5.	 Select	the	ADD	function.

6.	 In	the	first	argument	box,	select	cell	A1	(see	Figure	14-2).

7.	 In	the	second	argument	box,	select	cell	A2.

8.	 Click	OK.

Congratulations!	You	have	created	your	first	custom	function.

FIGURE	14-1	You	can	find	your	UDFs	under	the	User	Defined	category	of	the	Insert	Function
dialog	box.

FIGURE	14-2	You	can	use	the	Function	Arguments	dialog	box	to	enter	your	arguments.

Note	You	can	easily	share	custom	functions	because	users	are	not

required	to	know	how	the	function	works.	See	the	next	section,
“Sharing	UDFs,”	for	more	information.

Most	of	the	functions	used	on	sheets	can	also	be	used	in	VBA	and	vice	versa.
However,	in	VBA	you	call	the	UDF	(ADD)	from	a	procedure	(Addition),	like
this:

Click	here	to	view	code	image
Sub	Addition	()

Dim	Total	as	Integer

Total	=	Add	(1,10)	'we	use	a	user-defined	function	Add

MsgBox	"The	answer	is:	"	&	Total

End	Sub

Sharing	UDFs

Where	you	store	a	UDF	affects	how	you	can	share	it:

Personal.xlsb—Store	a	UDF	in	Personal.xlsb	if	it	is	just	for	your	use	and
won’t	be	used	in	a	workbook	opened	on	another	computer.

Workbook—Store	a	UDF	in	the	workbook	in	which	it	is	being	used	if	it
needs	to	be	distributed	to	many	people.

Add-in—Distribute	a	UDF	via	an	add-in	if	the	workbook	is	to	be	shared
among	a	select	group	of	people.	See	Chapter	26,	“Creating	add-ins,”	for
information	on	how	to	create	an	add-in.

Template—Store	a	UDF	in	a	template	if	it	needs	to	be	used	to	create
several	workbooks	and	the	workbooks	are	distributed	to	many	people.

Useful	custom	Excel	functions

The	sections	that	follow	include	a	sampling	of	functions	that	can	be	useful	in	the
everyday	Excel	world.

Note	This	chapter	shows	functions	donated	by	several	Excel

programmers.	These	are	functions	that	they	have	found	useful	and
that	they	hope	will	also	be	of	help	to	you.

Different	programmers	have	different	programming	styles.	We	did	not
rewrite	the	submissions.	As	you	review	the	lines	of	code,	you	might	notice
different	ways	of	doing	the	same	task,	such	as	referring	to	ranges.

Setting	the	current	workbook’s	name	in	a	cell

The	following	function	sets	the	name	of	the	active	workbook	in	a	cell,	as	shown
in	Figure	14-3:

MyName()

FIGURE	14-3	You	can	use	a	UDF	to	show	the	file	name	or	the	file	name	with	the	directory	path.

No	arguments	are	used	with	this	function:

Click	here	to	view	code	image
Function	MyName()	As	String

	MyName	=	ThisWorkbook.Name

End	Function

Setting	the	current	workbook’s	name	and	file	path	in	a	cell

A	variation	of	the	preceding	function,	the	following	function	sets	the	file	path
and	name	of	the	active	workbook	in	a	cell,	as	shown	previously	in	Figure	14-3:

MyFullName()

No	arguments	are	used	with	this	function:

Click	here	to	view	code	image
Function	MyFullName()	As	String

	MyFullName	=	ThisWorkbook.FullName

End	Function

Checking	whether	a	workbook	is	open

There	might	be	times	when	you	need	to	check	whether	a	workbook	is	open.	The
following	function	returns	True	if	a	workbook	is	open	and	False	if	it	is	not:

BookOpen(Bk)

The	argument	is	Bk,	which	is	the	name	of	the	workbook	being	checked:

Click	here	to	view	code	image
Function	BookOpen(Bk	As	String)	As	Boolean

Dim	T	As	Excel.Workbook

Err.Clear	'clears	any	errors

On	Error	Resume	Next	'if	the	code	runs	into	an	error,

it	skips	it	and

'continues

Set	T	=	Application.Workbooks(Bk)

BookOpen	=	Not	T	Is	Nothing

'If	the	workbook	is	open,	then	T	will	hold	the

workbook	object	and

'therefore	will	NOT	be	Nothing

Err.Clear

On	Error	GoTo	0

End	Function

Here	is	an	example	of	using	the	function:

Click	here	to	view	code	image
Sub	OpenAWorkbook()

Dim	IsOpen	As	Boolean

Dim	BookName	As	String

BookName	=	"ProjectFilesChapter14.xlsm"

IsOpen	=	BookOpen(BookName)	'calling	our	function	-

don't	forget	the	'parameter

If	IsOpen	Then

MsgBox	BookName	&	"	is	already	open!"

Else

Workbooks.Open	BookName

End	If

End	Sub

Checking	whether	a	sheet	in	an	open	workbook	exists

This	function	requires	that	the	workbook(s)	it	checks	be	open.	It	returns	True	if
the	sheet	is	found	and	False	if	it	is	not:

SheetExists(SName,	WBName)

These	are	the	arguments:

SName—The	name	of	the	sheet	being	searched

WBName—(Optional)	The	name	of	the	workbook	that	contains	the	sheet

Here	is	the	function.	If	the	workbook	argument	is	not	provided,	it	uses	the
active	workbook:

Click	here	to	view	code	image
Function	SheetExists(SName	As	String,	Optional	WB	As

Workbook)	As	Boolean

	Dim	WS	As	Worksheet

	'	Use	active	workbook	by	default

	If	WB	Is	Nothing	Then

Set	WB	=	ActiveWorkbook

	End	If

	On	Error	Resume	Next

	SheetExists	=	CBool(Not	WB.Sheets(SName)	Is	Nothing)

	On	Error	GoTo	0

End	Function

Note	CBool	is	a	function	that	converts	the	expression	between	the
parentheses	to	a	Boolean	value.

Here	is	an	example	of	using	this	function:

Click	here	to	view	code	image
Sub	CheckForSheet()

Dim	ShtExists	As	Boolean

ShtExists	=	SheetExists("Sheet9")

'notice	that	only	one	parameter	was	passed;	the

workbook	name	is	optional

If	ShtExists	Then

MsgBox	"The	worksheet	exists!"

Else

MsgBox	"The	worksheet	does	NOT	exist!"

End	If

End	Sub

Counting	the	number	of	workbooks	in	a	directory

This	function	searches	the	current	directory,	and	its	subfolders	if	you	want,
counting	all	Excel	macro	workbook	files	(.xlsm),	including	hidden	files,	or	just
the	ones	starting	with	a	string	of	letters:

NumFilesInCurDir	(LikeText,	Subfolders)

These	are	the	arguments:

LikeText—(Optional)	A	string	value	to	search	for;	must	include	an	asterisk
(*),	such	as	Mr*

Subfolders—(Optional)	True	to	search	subfolders,	False	(default)	not	to

Note	FileSystemObject	requires	the	Microsoft	Scripting	Runtime
reference	library.	To	enable	this	setting,	go	to	Tools,	References
and	check	Microsoft	Scripting	Runtime.

This	function	is	a	recursive	function,	which	means	it	calls	itself	until	a
specific	condition	is	met—in	this	case,	until	all	subfolders	are	processed.	Here	is
the	function:

Click	here	to	view	code	image
Function	NumFilesInCurDir(Optional	strInclude	As

String	=	"",	_

Optional	blnSubDirs	As	Boolean	=	False)

Dim	fso	As	FileSystemObject

Dim	fld	As	Folder

Dim	fil	As	File

Dim	subfld	As	Folder

Dim	intFileCount	As	Integer

Dim	strExtension	As	String

strExtension	=	"XLSM"

Set	fso	=	New	FileSystemObject

Set	fld	=	fso.GetFolder(ThisWorkbook.Path)

	For	Each	fil	In	fld.Files

If	UCase(fil.Name)	Like	"*"	&	UCase(strInclude)	&

"*."	&	_

UCase(strExtension)	Then

intFileCount	=	intFileCount	+	1

End	If

Next	fil

If	blnSubDirs	Then

For	Each	subfld	In	fld.Subfolders

intFileCount	=	intFileCount	+

NumFilesInCurDir(strInclude,	True)

Next	subfld

End	If

NumFilesInCurDir	=	intFileCount

Set	fso	=	Nothing

End	Function

Here	is	an	example	of	using	this	function:

Click	here	to	view	code	image
Sub	CountMyWkbks()

Dim	MyFiles	As	Integer

MyFiles	=	NumFilesInCurDir("MrE*",	True)

MsgBox	MyFiles	&	"	file(s)	found"

End	Sub

Retrieving	the	user	ID

Ever	need	to	keep	a	record	of	who	saves	changes	to	a	workbook?	With	the
USERID	function,	you	can	retrieve	the	name	of	the	user	who	is	logged	in	to	a

computer.	Combine	it	with	the	function	discussed	in	the	“Retrieving	permanent
date	and	time”	section,	later	in	this	chapter,	and	you	have	a	nice	log	file.	You	can
also	use	the	USERID	function	to	set	up	user	rights	to	a	workbook:
WinUserName	()

No	arguments	are	used	with	this	function.

Note	The	USERID	function	is	an	advanced	function	that	uses	the
application	programming	interface	(API),	which	is	reviewed	in
Chapter	23,	“The	Windows	Application	Programming	Interface

(API).”	The	code	is	specific	to	32-bit	Excel.	If	you	are	running	64-bit
Excel,	refer	to	Chapter	23	for	changes	to	make	it	work.

This	first	section	(Private	declarations)	must	be	at	the	top	of	the	module:

Click	here	to	view	code	image
Private	Declare	Function	WNetGetUser	Lib	"mpr.dll"

Alias	"WNetGetUserA"	_

(ByVal	lpName	As	String,	ByVal	lpUserName	As	String,

_

lpnLength	As	Long)	As	Long

Private	Const	NO_ERROR	=	0

Private	Const	ERROR_NOT_CONNECTED	=	2250&

Private	Const	ERROR_MORE_DATA	=	234

Private	Const	ERROR_NO_NETWORK	=	1222&

Private	Const	ERROR_EXTENDED_ERROR	=	1208&

Private	Const	ERROR_NO_NET_OR_BAD_PATH	=	1203&

You	can	place	the	following	section	of	code	anywhere	in	the	module,	as	long
as	it	is	below	the	preceding	section:

Click	here	to	view	code	image
Function	WinUsername()	As	String

'variables

Dim	strBuf	As	String,	lngUser	As	Long,	strUn	As

String

'clear	buffer	for	user	name	from	api	func

strBuf	=	Space$(255)

'use	api	func	WNetGetUser	to	assign	user	value	to

lngUser

'will	have	lots	of	blank	space

lngUser	=	WNetGetUser("",	strBuf,	255)

'if	no	error	from	function	call

If	lngUser	=	NO_ERROR	Then

'clear	out	blank	space	in	strBuf	and	assign	val	to

function

strUn	=	Left(strBuf,	InStr(strBuf,	vbNullChar)	-

1)

WinUsername	=	strUn

Else

'error,	give	up

WinUsername	=	"Error	:"	&	lngUser

	End	If

End	Function

Here’s	an	example	of	using	this	function:

Click	here	to	view	code	image
Sub	CheckUserRights()

Dim	UserName	As	String

UserName	=	WinUsername

Select	Case	UserName

Case	"Administrator"

MsgBox	"Full	Rights"

Case	"Guest"

MsgBox	"You	cannot	make	changes"

Case	Else

MsgBox	"Limited	Rights"

End	Select

End	Sub

Retrieving	date	and	time	of	last	save

This	function	retrieves	the	saved	date	and	time	of	any	workbook,	including	the
current	one:

LastSaved(FullPath)

Note	The	cell	must	be	formatted	for	date	and	time	to	display	the
date/time	correctly.

The	argument	is	FullPath,	a	string	showing	the	full	path	and	file	name	of	the
file	in	question:

Click	here	to	view	code	image
Function	LastSaved(FullPath	As	String)	As	Date

LastSaved	=	FileDateTime(FullPath)

End	Function

Retrieving	permanent	date	and	time

Because	of	the	volatility	of	the	NOW	function,	it	isn’t	very	useful	for	stamping	a
worksheet	with	the	creation	or	editing	date.	Every	time	the	workbook	is	opened
or	recalculated,	the	result	of	the	NOW	function	is	updated.	The	following	UDF
uses	the	NOW	function.	However,	because	you	need	to	reenter	the	cell	to	update
the	function,	it	is	much	less	volatile	(see	Figure	14-4).

No	arguments	are	used	with	this	function:

DateTime()

FIGURE	14-4	Even	after	forcing	a	recalculation,	the	DateTime()	cell	shows	the	time	when	it	was
originally	placed	in	the	cell,	whereas	NOW()	shows	the	current	system	time.

Note	The	cell	must	be	formatted	properly	to	display	the	date/time.

Here’s	is	the	function:

Click	here	to	view	code	image

Function	DateTime()

DateTime	=	Now

End	Function

Validating	an	email	address

If	you	manage	an	email	subscription	list,	you	might	receive	invalid	email
addresses,	such	as	addresses	with	a	space	before	the	“at”	symbol	(@).	The
IsEmailValid	function	can	check	addresses	and	confirm	that	they	are	proper
email	addresses	(see	Figure	14-5):

IsEmailValid	(strEmail)

FIGURE	14-5	Validating	email	addresses.

Note	This	function	cannot	verify	that	an	email	address	is	an
existing	one.	It	only	checks	the	syntax	to	verify	that	the	address
might	be	legitimate.

The	function’s	only	argument	is	strEmail,	an	email	address:

Click	here	to	view	code	image
Function	IsEmailValid(strEmail	As	String)	As	Boolean

Dim	strArray	As	Variant

Dim	strItem	As	Variant

Dim	i	As	Long

Dim	c	As	String

Dim	blnIsItValid	As	Boolean

blnIsItValid	=	True

'count	the	@	in	the	string

i	=	Len(strEmail)	-

Len(Application.Substitute(strEmail,	"@",	""))

'if	there	is	more	than	one	@,	invalid	email

If	i	<>	1	Then	IsEmailValid	=	False:	Exit	Function

ReDim	strArray(1	To	2)

'the	following	two	lines	place	the	text	to	the	left

and	right

'of	the	@	in	their	own	variables

strArray(1)	=	Left(strEmail,	InStr(1,	strEmail,	"@",

1)	-	1)

strArray(2)	=	Application.Substitute(Right(strEmail,

Len(strEmail)	-	_

	Len(strArray(1))),	"@",	"")

For	Each	strItem	In	strArray

'verify	there	is	something	in	the	variable.

'If	there	isn't,	then	part	of	the	email	is	missing

If	Len(strItem)	<=	0	Then

blnIsItValid	=	False

IsEmailValid	=	blnIsItValid

Exit	Function

End	If

'verify	only	valid	characters	in	the	email

For	i	=	1	To	Len(strItem)

'lowercases	all	letters	for	easier	checking

c	=	LCase(Mid(strItem,	i,	1))

If	InStr("abcdefghijklmnopqrstuvwxyz_-.",	c)

<=	0	_

And	Not	IsNumeric(c)	Then

blnIsItValid	=	False

IsEmailValid	=	blnIsItValid

Exit	Function

End	If

Next	i

'verify	that	the	first	character	of	the	left	and

right	aren't	periods

If	Left(strItem,	1)	=	"."	Or	Right(strItem,	1)	=

"."	Then

blnIsItValid	=	False

IsEmailValid	=	blnIsItValid

Exit	Function

End	If

Next	strItem

'verify	there	is	a	period	in	the	right	half	of	the

address

If	InStr(strArray(2),	".")	<=	0	Then

Click	here	to	view	code	image
blnIsItValid	=	False

IsEmailValid	=	blnIsItValid

Exit	Function

End	If

i	=	Len(strArray(2))	-	InStrRev(strArray(2),	".")

'locate	the	period

'verify	that	the	number	of	letters	corresponds	to	a

valid	domain

'extension

If	i	<>	2	And	i	<>	3	And	i	<>	4	Then

blnIsItValid	=	False

IsEmailValid	=	blnIsItValid

Exit	Function

End	If

'verify	that	there	aren't	two	periods	together	in	the

email

If	InStr(strEmail,	"..")	>	0	Then

blnIsItValid	=	False

IsEmailValid	=	blnIsItValid

Exit	Function

End	If

IsEmailValid	=	blnIsItValid

End	Function

Summing	cells	based	on	interior	color

Let’s	say	you	have	created	a	list	of	how	much	each	of	your	clients	owes.	From
this	list,	you	want	to	sum	just	the	cells	to	which	you	have	applied	a	cell	fill	to
indicate	clients	who	are	30	days	past	due.	This	function	sums	cells	based	on	their
fill	color:

SumColor(CellColor,	SumRange)

Note	Cells	colored	by	conditional	formatting	will	not	work	with
this	function;	the	cells	must	have	an	interior	color.

These	are	the	arguments:

CellColor—The	address	of	a	cell	with	the	target	color

SumRange—The	range	of	cells	to	be	searched

Here	is	the	function’s	code:

Click	here	to	view	code	image
Function	SumByColor(CellColor	As	Range,	SumRange	As

Range)

Dim	myCell	As	Range

Dim	iCol	As	Integer

Dim	myTotal

iCol	=	CellColor.Interior.ColorIndex	'get	the	target

color

For	Each	myCell	In	SumRange	'look	at	each	cell	in	the

designated	range

'if	the	cell	color	matches	the	target	color

If	myCell.Interior.ColorIndex	=	iCol	Then

'add	the	value	in	the	cell	to	the	total

myTotal	=	WorksheetFunction.Sum(myCell)	+	myTotal

End	If

Next	myCell

SumByColor	=	myTotal

End	Function

Figure	14-6	shows	a	sample	worksheet	using	this	function.

FIGURE	14-6	The	function	sums	cells	based	on	interior	color.

Counting	unique	values

How	many	times	have	you	had	a	long	list	of	values	and	needed	to	know	how
many	were	unique	values?	This	function	goes	through	a	range	and	provides	that
information,	as	shown	in	Figure	14-7:

NumUniqueValues(Rng)

FIGURE	14-7	The	function	counts	the	number	of	unique	values	in	a	range.

The	argument	is	Rng,	the	range	to	search	unique	values.

Here	is	the	function’s	code:

Click	here	to	view	code	image
Function	NumUniqueValues(Rng	As	Range)	As	Long

Dim	myCell	As	Range

Dim	UniqueVals	As	New	Collection

Application.Volatile	'forces	the	function	to

recalculate	when	the	range	'changes

On	Error	Resume	Next

'the	following	places	each	value	from	the	range	into	a

collection

'because	a	collection,	with	a	key	parameter,	can

contain	only	unique

'values,there	will	be	no	duplicates.	The	error

statements	force	the

'program	to	continue	when	the	error	messages	appear

for	duplicate

'items	in	the	collection

For	Each	myCell	In	Rng

UniqueVals.Add	myCell.Value,	CStr(myCell.Value)

Next	myCell

On	Error	GoTo	0

'returns	the	number	of	items	in	the	collection

NumUniqueValues	=	UniqueVals.Count

End	Function

Removing	duplicates	from	a	range

No	doubt	you	have	also	had	a	list	of	items	and	needed	to	list	only	the	unique
values.	The	following	function	goes	through	a	range	and	stores	only	the	unique
values:

UniqueValues	(OrigArray)

The	argument	is	OrigArray,	an	array	from	which	the	duplicates	will	be
removed.

This	first	section	(Const	declarations)	must	be	at	the	top	of	the	module:

Click	here	to	view	code	image
Const	ERR_BAD_PARAMETER	=	"Array	parameter	required"

Const	ERR_BAD_TYPE	=	"Invalid	Type"

Const	ERR_BP_NUMBER	=	20000

Const	ERR_BT_NUMBER	=	20001

You	can	place	the	following	section	of	code	anywhere	in	the	module,	as	long
as	it	is	below	the	code	just	shown:

Click	here	to	view	code	image

Public	Function	UniqueValues(ByVal	OrigArray	As

Variant)	As	Variant

	Dim	vAns()	As	Variant

	Dim	lStartPoint	As	Long

	Dim	lEndPoint	As	Long

	Dim	lCtr	As	Long,	lCount	As	Long

	Dim	iCtr	As	Integer

	Dim	col	As	New	Collection

	Dim	sIndex	As	String

	Dim	vTest	As	Variant,	vItem	As	Variant

	Dim	iBadVarTypes(4)	As	Integer

'Function	does	not	work	if	array	element	is	one	of

the

'following	types

	iBadVarTypes(0)	=	vbObject

	iBadVarTypes(1)	=	vbError

	iBadVarTypes(2)	=	vbDataObject

	iBadVarTypes(3)	=	vbUserDefinedType

	iBadVarTypes(4)	=	vbArray

'Check	to	see	whether	the	parameter	is	an	array

	If	Not	IsArray(OrigArray)	Then

Err.Raise	ERR_BP_NUMBER,	,	ERR_BAD_PARAMETER

Exit	Function

	End	If

	lStartPoint	=	LBound(OrigArray)

	lEndPoint	=	UBound(OrigArray)

	For	lCtr	=	lStartPoint	To	lEndPoint

vItem	=	OrigArray(lCtr)

'First	check	to	see	whether	variable	type	is

acceptable

Click	here	to	view	code	image
For	iCtr	=	0	To	UBound(iBadVarTypes)

If	VarType(vItem)	=	iBadVarTypes(iCtr)	Or	_

VarType(vItem)	=	iBadVarTypes(iCtr)	+

vbVariant	Then

Err.Raise	ERR_BT_NUMBER,	,	ERR_BAD_TYPE

Exit	Function

End	If

Next	iCtr

'Add	element	to	a	collection,	using	it	as	the

index

'if	an	error	occurs,	the	element	already	exists

sIndex	=	CStr(vItem)

'first	element,	add	automatically

If	lCtr	=	lStartPoint	Then

col.Add	vItem,	sIndex

ReDim	vAns(lStartPoint	To	lStartPoint)	As

Variant

vAns(lStartPoint)	=	vItem

Else

On	Error	Resume	Next

col.Add	vItem,	sIndex

If	Err.Number	=	0	Then

lCount	=	UBound(vAns)	+	1

ReDim	Preserve	vAns(lStartPoint	To	lCount)

vAns(lCount)	=	vItem

End	If

End	If

Err.Clear

	Next	lCtr

	UniqueValues	=	vAns

End	Function

Here	is	an	example	of	using	this	function:

Click	here	to	view	code	image
Function	nodupsArray(rng	As	Range)	As	Variant

	Dim	arr1()	As	Variant

	If	rng.Columns.Count	>	1	Then	Exit	Function

	arr1	=	Application.Transpose(rng)

	arr1	=	UniqueValues(arr1)

	nodupsArray	=	Application.Transpose(arr1)

End	Function

Finding	the	first	nonzero-length	cell	in	a	range

Suppose	you	have	imported	a	large	list	of	data	with	many	empty	cells.	Here	is	a
function	that	evaluates	a	range	of	cells	and	returns	the	value	of	the	first	nonzero-
length	cell:

FirstNonZeroLength(Rng)

The	argument	is	Rng,	the	range	to	search.

Here’s	the	function:

Click	here	to	view	code	image
Function	FirstNonZeroLength(Rng	As	Range)

Dim	myCell	As	Range

FirstNonZeroLength	=	0#

For	Each	myCell	In	Rng

If	Not	IsNull(myCell)	And	myCell	<>	""	Then

FirstNonZeroLength	=	myCell.Value

Exit	Function

End	If

Next	myCell

FirstNonZeroLength	=	myCell.Value

End	Function

Figure	14-8	shows	the	function	on	a	sample	worksheet.

FIGURE	14-8	You	can	use	a	user-defined	function	to	find	the	value	of	the	first	nonzero-length	cell
in	a	range.

Substituting	multiple	characters

Excel	has	a	substitute	function,	but	it	is	a	value-for-value	substitution.	What	if
you	have	several	characters	you	need	to	substitute?	Figure	14-9	shows	several

examples	of	how	this	function	works:

MSubstitute(trStr,	frStr,	toStr)

FIGURE	14-9	You	can	substitute	multiple	characters	in	a	cell.

These	are	the	arguments:

trStr—The	string	to	be	searched

frStr—The	text	being	searched	for

toStr—The	replacement	text

Here’s	the	function’s	code:

Click	here	to	view	code	image
Function	MSubsitute(ByVal	trStr	As	Variant,	frStr	As

String,	_

	toStr	As	String)	As	Variant

Dim	iCol	As	Integer

Dim	j	As	Integer

Dim	Ar	As	Variant

Click	here	to	view	code	image
Dim	vfr()	As	String

Dim	vto()	As	String

ReDim	vfr(1	To	Len(frStr))

ReDim	vto(1	To	Len(frStr))

'place	the	strings	into	an	array

For	j	=	1	To	Len(frStr)

vfr(j)	=	Mid(frStr,	j,	1)

If	Mid(toStr,	j,	1)	<>	""	Then

vto(j)	=	Mid(toStr,	j,	1)

Else

vto(j)	=	""

End	If

Next	j

'compare	each	character	and	substitute	if	needed

If	IsArray(trStr)	Then

Ar	=	trStr

For	iRow	=	LBound(Ar,	1)	To	UBound(Ar,	1)

For	iCol	=	LBound(Ar,	2)	To	UBound(Ar,	2)

For	j	=	1	To	Len(frStr)

Ar(iRow,	iCol)	=

Application.Substitute(Ar(iRow,	iCol),	_

vfr(j),	vto(j))

Next	j

Next	iCol

Next	iRow

Else

Ar	=	trStr

For	j	=	1	To	Len(frStr)

Ar	=	Application.Substitute(Ar,	vfr(j),	vto(j))

Next	j

End	If

MSUBSTITUTE	=	Ar

End	Function

Note	The	toStr	argument	is	assumed	to	be	the	same	length	as
frStr.	If	it	isn’t,	the	remaining	characters	are	considered	null	("").
The	function	is	case	sensitive.	To	replace	all	instances	of	a,	use	a

and	A.	You	cannot	replace	one	character	with	two	characters.	For	example,
this:

Click	here	to	view	code	image

=MSUBSTITUTE("This	is	a	test","i","$@")

results	in	this:

"Th$s	$s	a	test"

Retrieving	numbers	from	mixed	text

This	function	extracts	and	returns	numbers	from	text	that	is	a	mixture	of
numbers	and	letters:

RetrieveNumbers	(myString)

The	argument	is	myString,	the	text	containing	the	numbers	to	be	extracted.

Here’s	the	function’s	code:

Click	here	to	view	code	image
Function	RetrieveNumbers(myString	As	String)

Dim	i	As	Integer,	j	As	Integer

Dim	OnlyNums	As	String

'starting	at	the	END	of	the	string	and	moving

backwards	(Step	-1)

For	i	=	Len(myString)	To	1	Step	-1

'IsNumeric	is	a	VBA	function	that	returns	True	if

a	variable	is	a	number

'When	a	number	is	found,	it	is	added	to	the

OnlyNums	string

If	IsNumeric(Mid(myString,	i,	1))	Then

j	=	j	+	1

OnlyNums	=	Mid(myString,	i,	1)	&	OnlyNums

End	If

If	j	=	1	Then	OnlyNums	=	CInt(Mid(OnlyNums,	1,	1))

Next	i

RetrieveNumbers	=	CLng(OnlyNums)

End	Function

Converting	week	number	into	date

Have	you	ever	received	a	spreadsheet	report	in	which	all	the	headers	showed	the
week	number?	This	can	be	confusing	because	you	probably	wouldn’t	know	what
Week	15	actually	is.	You	would	have	to	get	out	your	calendar	and	count	the
weeks.	This	problem	is	exacerbated	if	you	need	to	count	weeks	in	a	previous
year.	In	this	case,	you	need	a	nice	little	function	that	converts	Week	##	Year	into
the	date	of	a	particular	day	in	a	given	week,	as	shown	in	Figure	14-10.

FIGURE	14-10	You	can	convert	a	week	number	into	a	date	that’s	more	easily	referenced.

Note	The	result	must	be	formatted	as	a	date.

The	argument	is	Str,	the	week	to	be	converted,	in	“Week	##	YYYY”	format.

Here’s	the	function’s	code:

Click	here	to	view	code	image
Function	ConvertWeekDay(Str	As	String)	As	Date

Dim	Week	As	Long

Dim	FirstMon	As	Date

Dim	TStr	As	String

FirstMon	=	DateSerial(Right(Str,	4),	1,	1)

FirstMon	=	FirstMon	-	FirstMon	Mod	7	+	2

TStr	=	Right(Str,	Len(Str)	-	5)

Week	=	Left(TStr,	InStr(1,	TStr,	"	",	1))	+	0

ConvertWeekDay	=	FirstMon	+	(Week	-	1)	*	7

End	Function

Extracting	a	single	element	from	a	delimited	string

Say	that	you	need	to	paste	a	column	of	delimited	data.	You	could	use	Excel’s
Text	To	Columns	feature,	but	you	need	only	an	element	or	two	from	each	cell.
Text	To	Columns	parses	the	entire	thing.	In	this	case,	you	need	a	function	that
lets	you	specify	the	number	of	the	element	in	a	string	that	you	need,	as	shown	in
Figure	14-11:

StringElement(str,chr,ind)

FIGURE	14-11	This	function	extracts	a	single	element	from	delimited	text.

These	are	the	arguments:

str—The	string	to	be	parsed

chr—The	delimiter

ind—The	position	of	the	element	to	be	returned

Here’s	the	function’s	code:

Click	here	to	view	code	image
Function	StringElement(str	As	String,	chr	As	String,

ind	As	Integer)

Dim	arr_str	As	Variant

arr_str	=	Split(str,	chr)

StringElement	=	arr_str(ind	-	1)

End	Function

Sorting	and	concatenating

The	following	function	enables	you	to	take	a	column	of	data,	sort	it	by	numbers
and	then	by	letters,	and	concatenate	it	using	a	comma	(,)	as	the	delimiter	(see
Figure	14-12).	Note	that	since	the	numbers	are	treated	as	strings,	they	are	sorted
lexicographically	(all	numbers	that	start	with	1,	then	numbers	that	start	with	2,
etc.).	For	example,	if	sorting	1,2,10,	you	would	actually	get	1,10,2	because	10
starts	with	a	1,	which	comes	before	2:

SortConcat(Rng)

FIGURE	14-12	This	function	sorts	and	concatenates	a	range	of	variables.

The	argument	is	Rng,	the	range	of	data	to	be	sorted	and	concatenated.
SortConcat	calls	another	procedure,	BubbleSort,	that	must	be	included.

Here’s	the	main	function:

Click	here	to	view	code	image
Function	SortConcat(Rng	As	Range)	As	Variant

Dim	MySum	As	String,	arr1()	As	String

Dim	j	As	Integer,	i	As	Integer

Dim	cl	As	Range

Dim	concat	As	Variant

On	Error	GoTo	FuncFail:

'initialize	output

SortConcat	=	0#

'avoid	user	issues

If	Rng.Count	=	0	Then	Exit	Function

'get	range	into	variant	variable	holding	array

ReDim	arr1(1	To	Rng.Count)

'fill	array

i	=	1

For	Each	cl	In	Rng

arr1(i)	=	cl.Value

i	=	i	+	1

Next

'sort	array	elements

Call	BubbleSort(arr1)

'create	string	from	array	elements

For	j	=	UBound(arr1)	To	1	Step	-1

If	Not	IsEmpty(arr1(j))	Then

MySum	=	arr1(j)	&	",	"	&	MySum

End	If

Next	j

'assign	value	to	function

SortConcat	=	Left(MySum,	Len(MySum)	-	1)

'exit	point

concat_exit:

Exit	Function

'display	error	in	cell

FuncFail:

SortConcat	=	Err.Number	&	"	-	"	&	Err.Description

Resume	concat_exit

End	Function

The	following	function	is	the	ever-popular	BubbleSort.	Many	developers
use	this	program	to	do	a	simple	sort	of	data:

Click	here	to	view	code	image
Sub	BubbleSort(List()	As	String)

'	Sorts	the	List	array	in	ascending	order

Dim	First	As	Integer,	Last	As	Integer

Dim	i	As	Integer,	j	As	Integer

Dim	Temp

First	=	LBound(List)

Last	=	UBound(List)

For	i	=	First	To	Last	-	1

For	j	=	i	+	1	To	Last

If	List(i)	>	List(j)	Then

Temp	=	List(j)

List(j)	=	List(i)

List(i)	=	Temp

End	If

Next	j

Next	i

End	Sub

Sorting	numeric	and	alpha	characters

This	function	takes	a	mixed	range	of	numeric	and	alpha	characters	and	sorts
them—first	numerically	and	then	alphabetically:

sorter(Rng)

The	result	is	placed	in	an	array	that	can	be	displayed	on	a	worksheet	by	using
an	array	formula,	as	shown	in	Figure	14-13.

FIGURE	14-13	This	function	sorts	a	mixed	alphanumeric	list.

The	argument	is	Rng,	the	range	to	be	sorted.

The	function	uses	the	following	two	procedures	to	sort	the	data	in	the	range:

Click	here	to	view	code	image
Public	Sub	QuickSort(ByRef	vntArr	As	Variant,	_

	Optional	ByVal	lngLeft	As	Long	=	-2,	_

	Optional	ByVal	lngRight	As	Long	=	-2)

Dim	i,	j,	lngMid	As	Long

Dim	vntTestVal	As	Variant

If	lngLeft	=	-2	Then	lngLeft	=	LBound(vntArr)

If	lngRight	=	-2	Then	lngRight	=	UBound(vntArr)

If	lngLeft	<	lngRight	Then

lngMid	=	(lngLeft	+	lngRight)	\	2

vntTestVal	=	vntArr(lngMid)

i	=	lngLeft

j	=	lngRight

Do

Do	While	vntArr(i)	<	vntTestVal

i	=	i	+	1

Loop

Do	While	vntArr(j)	>	vntTestVal

j	=	j	-	1

Loop

If	i	<=	j	Then

Call	SwapElements(vntArr,	i,	j)

i	=	i	+	1

j	=	j	-	1

End	If

Loop	Until	i	>	j

If	j	<=	lngMid	Then

Call	QuickSort(vntArr,	lngLeft,	j)

Call	QuickSort(vntArr,	i,	lngRight)

Else

Call	QuickSort(vntArr,	i,	lngRight)

Call	QuickSort(vntArr,	lngLeft,	j)

End	If

End	If

End	Sub

Private	Sub	SwapElements(ByRef	vntItems	As	Variant,	_

ByVal	lngItem1	As	Long,	_

ByVal	lngItem2	As	Long)

Dim	vntTemp	As	Variant

vntTemp	=	vntItems(lngItem2)

vntItems(lngItem2)	=	vntItems(lngItem1)

vntItems(lngItem1)	=	vntTemp

End	Sub

Here’s	an	example	of	using	this	function:

Click	here	to	view	code	image
Function	sorter(Rng	As	Range)	As	Variant

'returns	an	array

Dim	arr1()	As	Variant

If	Rng.Columns.Count	>	1	Then	Exit	Function

arr1	=	Application.Transpose(Rng)

QuickSort	arr1

sorter	=	Application.Transpose(arr1)

End	Function

Searching	for	a	string	within	text

Ever	needed	to	find	out	which	cells	contain	a	specific	string	of	text?	This
function	can	search	strings	in	a	range,	looking	for	specified	text:

ContainsText(Rng,Text)

It	returns	a	result	that	identifies	which	cells	contain	the	text,	as	shown	in
Figure	14-14.

FIGURE	14-14	The	ContainsText	function	returns	a	result	that	identifies	which	cells	contain	a
specified	string.

These	are	the	arguments:

Rng—The	range	in	which	to	search

Text—The	text	for	which	to	search

Here’s	the	function’s	code:

Click	here	to	view	code	image
Function	ContainsText(Rng	As	Range,	Text	As	String)	As

String

Dim	T	As	String

Dim	myCell	As	Range

For	Each	myCell	In	Rng	'look	in	each	cell

If	InStr(myCell.Text,	Text)	>	0	Then	'look	in	the

string	for	the	text

If	Len(T)	=	0	Then

'if	the	text	is	found,	add	the	address	to	my

result

T	=	myCell.Address(False,	False)

Else

T	=	T	&	","	&	myCell.Address(False,	False)

End	If

End	If

Next	myCell

ContainsText	=	T

End	Function

Reversing	the	contents	of	a	cell

This	function	is	mostly	fun,	but	you	might	find	it	useful—it	reverses	the	contents
of	a	cell:

ReverseContents(myCell,	IsText)

These	are	the	arguments:

myCell—The	specified	cell

IsText—(Optional)	Whether	the	cell	value	should	be	treated	as	text
(default)	or	a	number

Here’s	the	function’s	code:

Click	here	to	view	code	image
Function	ReverseContents(myCell	As	Range,	_

	Optional	IsText	As	Boolean	=	True)

Dim	i	As	Integer

Dim	OrigString	As	String,	NewString	As	String

OrigString	=	Trim(myCell)	'remove	leading	and	trailing

spaces

For	i	=	1	To	Len(OrigString)

'by	adding	the	variable	NewString	to	the	character,

'instead	of	adding	the	character	to	NewString	the

string	is	reversed

NewString	=	Mid(OrigString,	i,	1)	&	NewString

Next	i

If	IsText	=	False	Then

ReverseContents	=	CLng(NewString)

Else

ReverseContents	=	NewString

End	If

End	Function

Returning	the	addresses	of	duplicate	maximum	values

MAX	finds	and	returns	the	maximum	value	in	a	range,	but	it	doesn’t	tell	you
whether	there	is	more	than	one	maximum	value.	This	function	returns	the
addresses	of	the	maximum	values	in	a	range,	as	shown	in	Figure	14-15:

ReturnMaxs(Rng)

FIGURE	14-15	This	function	returns	the	addresses	of	all	maximum	values	in	a	range.

The	argument	is	Rng,	the	range	to	search	for	the	maximum	values.

Here’s	the	function’s	code:

Click	here	to	view	code	image
Function	ReturnMaxs(Rng	As	Range)	As	String

Dim	Mx	As	Double

Dim	myCell	As	Range

'if	there	is	only	one	cell	in	the	range,	then	exit

If	Rng.Count	=	1	Then	ReturnMaxs	=	Rng.Address(False,

False):	_

	Exit	Function

Mx	=	Application.Max(Rng)	'uses	Excel's	Max	to	find

the	max	in	the	range

'Because	you	now	know	what	the	max	value	is,

'search	the	range	to	find	matches	and	return	the

address

For	Each	myCell	In	Rng

If	myCell	=	Mx	Then

If	Len(ReturnMaxs)	=	0	Then

ReturnMaxs	=	myCell.Address(False,	False)

Else

ReturnMaxs	=	ReturnMaxs	&	",	"	&

myCell.Address(False,	False)

End	If

End	If

Next	myCell

End	Function

Returning	a	hyperlink	address

Let’s	say	that	you’ve	received	a	spreadsheet	containing	a	list	of	hyperlinked
information.	You	want	to	see	the	actual	links,	not	the	descriptive	text.	You	could
just	right-click	a	hyperlink	and	select	Edit	Hyperlink,	but	you	want	something
more	permanent.	This	function	extracts	the	hyperlink	address,	as	shown	in
Figure	14-16:

GetAddress(HyperlinkCell)

FIGURE	14-16	You	can	extract	the	hyperlink	address	from	behind	a	hyperlink.

The	argument	is	HyperlinkCell,	the	hyperlinked	cell	from	which	you	want
the	address	extracted.

Here’s	the	function’s	code:

Click	here	to	view	code	image
Function	GetAddress(HyperlinkCell	As	Range)

	GetAddress	=

Replace(HyperlinkCell.Hyperlinks(1).Address,

"mailto:",	"")

End	Function

Returning	the	column	letter	of	a	cell	address

You	can	use	CELL("Col")	to	return	a	column	number,	but	what	if	you	need	the
column	letter?	This	function	extracts	the	column	letter	from	a	cell	address,	as
shown	in	Figure	14-17:

ColName(Rng)

FIGURE	14-17	You	can	get	the	column	letter	of	a	cell	address.

The	argument	is	Rng,	the	cell	for	which	you	want	the	column	letter.

Here’s	the	function’s	code:

Click	here	to	view	code	image
Function	ColName(Rng	As	Range)	As	String

ColName	=	Left(Rng.Range("A1").Address(True,	False),	_

	InStr(1,	Rng.Range("A1").Address(True,	False),	"$",

1)	-	1)

End	Function

Using	static	random

The	function	RAND	can	be	very	useful	for	creating	random	numbers,	but	it
constantly	recalculates.	What	if	you	need	random	numbers	but	don’t	want	them
to	change	constantly?	The	following	function	places	a	random	number,	but	the
number	changes	only	if	you	force	the	cell	to	recalculate,	as	shown	in	Figure	14-
18:

StaticRAND()

FIGURE	14-18	You	can	produce	random	numbers	that	are	not	quite	so	volatile	as	the	numbers
created	with	RAND.

There	are	no	arguments	for	this	function.

Here’s	the	function’s	code:

Click	here	to	view	code	image
Function	StaticRAND()	As	Double

Randomize

StaticRAND	=	Rnd

End	Function

Using	Select...Case	on	a	worksheet

At	some	point,	you	have	probably	nested	an	If...Then...Else	on	a	worksheet
to	return	a	value.	The	Select...Case	statement	available	in	VBA	makes	this	a
lot	easier,	but	you	can’t	use	Select...Case	statements	in	a	worksheet	formula.
Instead,	you	can	create	a	UDF	(see	Figure	14-19).

FIGURE	14-19	The	ExcelExperience	function	uses	the	Select...Case	structure	rather	than	nested
If...Then	statements.

This	example	takes	the	user	input	and	returns	a	response,	as	shown	in	Figure
14-19.	Although	you	could	use	the	following	formula	instead,	consider	how	long
it	could	get	if	you	had	more	options.	Or	what	if	you	needed	to	compare	the
results	of	a	calculation?	You	would	have	to	do	the	calculation	for	each	logical
comparison.

Click	here	to	view	code	image

=IF(E3="yes","Well	done!	Please	continue	to	question

2",IF(E3="no","Check	out	Chapter	12	for	some	help.

Please	skip	to	question	10",	"Please	clarify	your

response	in	the	box	below"))

Because	Select...Case	is	case	sensitive,	I’ve	developed	the	habit	of	always
using	uppercase	(UCase)	when	comparing	strings.	Here	is	the	code:

Click	here	to	view	code	image
Function	ExcelExperience(ByVal	UserResponse	As	String)

As	String

Select	Case	UCase(UserResponse)

Case	Is	=	"YES"

ExcelExperience	=	"Well	done!	Please	continue

to	question	2"

Case	Is	=	"NO"

ExcelExperience	=	"Check	out	Chapter	12	for

some	help.	"	&	_	"Please	skip	to	question	10"

Case	Is	=	"MAYBE"

ExcelExperience	=	"Please	clarify	your

response	"	&	_	"in	the	box	below"

Case	Else

ExcelExperience	=	"Invalid	response"

End	Select

End	Function

Next	steps

In	Chapter	15,	“Creating	charts,”	you’ll	find	out	how	spreadsheet	charting	has
become	highly	customizable	and	capable	of	handling	large	amounts	of	data.

CHAPTER	15
Creating	charts

In	this	chapter,	you	will:

Use	.AddChart2	to	create	a	chart

Understand	chart	styles

Format	a	chart

Create	a	combo	chart,	map	chart,	and	waterfall	chart

Export	a	chart	as	a	graphic

Consider	backward	compatibility

Two	new	chart	types	have	been	introduced	since	Excel	2016.	The	filled	map
chart	and	the	funnel	chart	join	the	six	chart	types	that	were	added	to	Excel	2016.

More	importantly,	the	macro	bug	that	prevented	Excel	2016	from	creating
the	new	charts	has	been	fixed.	Whether	you	are	creating	a	new	Ivy	chart	or	a
legacy	chart,	you	can	use	this	code:

Click	here	to	view	code	image
Dim	CH	As	Chart

Set	CH	=	ActiveSheet.Shapes	_

.AddChart2(-1,	xlRegionMap).Chart

CH.SetSourceData	Source:=Range("D1:E7")

'	Settings	specific	to	xlRegionMap:

With	CH.FullSeriesCollection(1)

.GeoMappingLevel	=	xlGeoMappingLevelDataOnly

.RegionLabelOption	=	xlRegionLabelOptionsBestFitOnly

End	With

Traditionally,	the	goal	of	VBA	is	to	never	select	anything	in	the	worksheet.
Thus,	you	first	create	a	chart	by	using	the	.AddChart2	method,	and	then	you

assign	the	data	to	the	chart	by	using	the	.SetSourceData	method.	If	you	have
co-workers	who	are	still	using	the	Perpetual	version	of	Excel	2016,	you	will
have	to	create	the	new	charts	using	this	code	instead:

Click	here	to	view	code	image
.Range("A1:B7").Select

ActiveSheet.Shapes.AddChart2(-1,	xlWaterfall).Select

The	alternative	code	would	be	needed	for	any	of	the	Ivy	chart	types:

xlBoxWhisker

xlFunnel

xlHistogram

xlPareto

xlRegionMap

xlSunburst

xlTreeMap

xlWaterfall

Note	In	May	2018,	Microsoft	announced	that	Office	365	would
offer	support	for	Power	BI	Custom	Visuals.	In	the	summer	of
2018,	the	Excel	team	said	that	there	will	not	initially	be	support	for

inserting	these	chart	types	using	VBA.	It	is	possible	that	Microsoft	will	add
VBA	support	over	time.

Using	.AddChart2	to	create	a	chart

Excel	2013	introduced	a	streamlined	.AddChart2	method.	With	this	method,	you
can	specify	a	chart	style,	type,	size,	and	location,	as	well	as	a	property
introduced	in	Excel	2013:	NewLayout:=True.	When	you	choose	NewLayout,	you
can	avoid	having	a	legend	in	a	single-series	chart.

The	.AddChart2	method	enables	you	to	specify	the	chart	style,	chart	type,
left,	top,	width,	height,	and	new	layout.	This	code	takes	the	data	from	A3:G6	and

creates	a	chart	to	fill	B8:G20:

Click	here	to	view	code	image
Sub	CreateChartUsingAddChart2()

'Create	a	Clustered	Column	Chart	in	B8:G15	from	data

in	A3:G6

Dim	CH	As	Chart

Range("A3:G6").Select

Set	CH	=	ActiveSheet.Shapes.AddChart2(_

Style:=201,	_

	XlChartType:=xlColumnClustered,	_

	Left:=Range("B8").Left,	_

	Top:=Range("B8").Top,	_

	Width:=Range("B8:G20").Width,	_

	Height:=Range("B8:G20").Height,	_

	NewLayout:=True).Chart

End	Sub

The	values	for	Left,	Top,	Width,	and	Height	are	in	pixels.	Here	you	don’t
have	to	try	to	guess	that	column	B	is	27.34	pixels	from	the	left	edge	of	the
worksheet	because	the	preceding	code	finds	the	.Left	property	of	cell	B8	and
uses	that	as	the	Left	of	the	chart.

Figure	15-1	shows	the	resulting	chart.

FIGURE	15-1	Create	a	chart	to	fill	a	specific	range.

Understanding	chart	styles
Excel	2013	introduced	professionally	designed	chart	styles	that	are	shown	in	the
Chart	Styles	gallery	on	the	Design	tab	of	the	ribbon.	These	innovative	designs
use	combinations	of	properties	that	have	been	in	Excel	for	years,	but	they	allow
you	to	apply	a	group	of	properties	in	a	single	command.	The	AddChart2	method
enables	you	to	specify	the	style	number	to	use	when	creating	the	chart.
Unfortunately,	the	style	numbering	system	is	fairly	complex.

Figure	15-2	shows	the	Chart	Styles	gallery	for	a	clustered	column	chart.

FIGURE	15-2	Apply	a	chart	style	to	quickly	format	a	chart.

In	Figure	15-2,	the	chart	styles	are	numbered	201	through	215.	However,	if
you	switch	to	a	bar	chart,	the	similar	chart	styles	are	numbered	216	to	230.

The	styles	for	the	old	chart	types	run	from	201	to	353.	Styles	354	to	497	are
for	the	eight	new	chart	types.

Follow	these	steps	to	learn	the	style	number	associated	with	your	favorite
style:

1.	 Create	a	chart	in	the	Excel	user	interface.

2.	 Open	the	Chart	Styles	gallery	on	the	Design	tab	and	choose	the	chart	style
you	want	to	use.	Keep	the	chart	selected	before	moving	to	Step	3.

Caution	You	might	have	a	tendency	to	click	away	from	the
chart	to	admire	the	newly	selected	style.	If	you	do	unselect
the	chart,	be	certain	to	re-select	the	chart	before	continuing

with	the	following	steps.

3.	 Switch	to	VBA	by	pressing	Alt+F11.

4.	 Open	the	Immediate	window	by	pressing	Ctrl+G.

5.	 Type	?	ActiveChart.ChartStyle	in	the	Immediate	window	and	press
Enter.	The	resulting	number	shows	you	the	value	to	use	for	the	.Style
argument	in	the	.AddChart2	method.

6.	 If	you	don’t	care	what	chart	style	you	will	get,	specify	-1	as	the	.Style
argument.	This	gives	you	the	default	style	for	that	chart	type.

It	is	strange	that	the	.AddChart2	method	uses	an	argument	called
Style:=201,	but	if	you	want	to	change	the	chart	style	later,	you	have	to	use	the
.ChartStyle	property.	Both	Style	and	ChartStyle	refer	to	the	chart	styles
introduced	in	Excel	2013.

Table	15-1	lists	the	ChartType	argument	values.

TABLE	15-1	Chart	types	for	use	in	VBA

Chart	Type Enumerated	Constant

Clustered	column xlColumnClustered

Stacked	column xlColumnStacked

100%	stacked	column xlColumnStacked100

3-D	clustered	column xl3DColumnClustered

Stacked	column	in	3-D xl3DColumnStacked

100%	stacked	column	in	3-D xl3DColumnStacked100

3-D	column xl3DColumn

Waterfall xlWaterfall

Tree	map xlTreeMap

Sunburst xlSunburst

Histogram xlHistogram

Pareto xlPareto

Box	and	whisker xlBoxWhisker

Funnel XlFunnel

Filled	Region	Map XlRegionMap

Line xlLine

Stacked	line xlLineStacked

100%	stacked	line xlLineStacked100

Line	with	markers xlLineMarkers

Stacked	line	with	markers xlLineMarkersStacked

100%	stacked	line	with	markers xlLineMarkersStacked100

Pie xlPie

Pie	in	3-D xl3DPie

Pie	of	pie xlPieOfPie

Exploded	pie xlPieExploded

Exploded	pie	in	3-D xl3DPieExploded

Bar	of	pie xlBarOfPie

Clustered	bar xlBarClustered

Stacked	bar xlBarStacked

100%	stacked	bar xlBarStacked100

Clustered	bar	in	3-D xl3DBarClustered

Stacked	bar	in	3-D xl3DBarStacked

100%	stacked	bar	in	3-D xl3DBarStacked100

Area xlArea

Stacked	area xlAreaStacked

100%	stacked	area xlAreaStacked100

3-D	area xl3DArea

Stacked	area	in	3-D xl3DAreaStacked

100%	stacked	area	in	3-D xl3DAreaStacked100

Scatter	with	only	markers xlXYScatter

Scatter	with	smooth	lines	and	markers xlXYScatterSmooth

Scatter	with	smooth	lines xlXYScatterSmoothNoMarkers

Scatter	with	straight	lines	and	markers xlXYScatterLines

Scatter	with	straight	lines xlXYScatterLinesNoMarkers

High-low-close xlStockHLC

Open-high-low-close xlStockOHLC

Volume-high-low-close xlStockVHLC

Volume-open-high-low-close xlStockVOHLC

3-D	surface xlSurface

Wireframe	3-D	surface xlSurfaceWireframe

Contour xlSurfaceTopView

Wireframe	contour xlSurfaceTopViewWireframe

Doughnut xlDoughnut

Exploded	doughnut xlDoughnutExploded

Bubble xlBubble

Bubble	with	a	3-D	effect xlBubble3DEffect

Radar xlRadar

Radar	with	markers xlRadarMarkers

Filled	radar xlRadarFilled

Excel	supports	a	few	other	chart	types	that	misrepresent	your	data,	such	as
the	cone	and	pyramid	charts.	For	backward	compatibility,	these	are	still	in	VBA,
but	they	are	omitted	from	Table	15-1.	If	your	manager	forces	you	to	create	those
old	chart	types,	you	can	find	them	by	searching	for	xlChartType	enumeration	in
your	favorite	search	engine.

Formatting	a	chart

After	creating	a	chart,	you	will	often	want	to	add	or	move	elements	of	the	chart.
The	following	sections	describe	code	to	control	the	myriad	chart	elements.

Referring	to	a	specific	chart

The	macro	recorder	has	an	unsatisfactory	way	of	writing	code	for	chart	creation.
The	macro	recorder	uses	the	.AddChart2	method	and	adds	a	.Select	to	the	end
of	the	line	to	select	the	chart.	The	rest	of	the	chart	settings	then	apply	to	the
ActiveChart	object.	This	approach	is	a	bit	frustrating	because	you	are	required
to	do	all	the	chart	formatting	before	you	select	anything	else	in	the	worksheet.
The	macro	recorder	does	this	because	chart	names	are	unpredictable.	The	first
time	you	run	a	macro,	the	chart	might	be	called	Chart	1.	But	if	you	run	the
macro	on	another	day	or	on	a	different	worksheet,	the	chart	might	be	called
Chart	3	or	Chart	5.

For	the	most	flexibility,	you	should	assign	each	new	chart	to	a	Chart	object.
Since	Excel	2007,	the	Chart	object	has	existed	inside	a	Shape	object.

Ignoring	the	specifics	of	the	AddChart2	method	for	a	moment,	you	could	use
this	coding	approach,	which	captures	the	Shape	object	in	the	SH	object	variable
and	then	assigns	SH.Chart	to	the	CH	object	variable:

Click	here	to	view	code	image
Dim	WS	as	Worksheet

Dim	SH	as	Shape

Dim	CH	as	Chart

Set	WS	=	ActiveSheet

Set	SH	=	WS.Shapes.AddChart2(...)

Set	CH	=	SH.Chart

You	can	simplify	the	preceding	code	by	appending	.Chart	to	the	end	of	the
AddChart2	method.	The	following	code	has	one	object	variable	fewer:

Click	here	to	view	code	image
Dim	WS	as	Worksheet

Dim	CH	as	Chart

Set	WS	=	ActiveSheet

Set	CH	=	WS.Shapes.AddChart2(...).Chart

If	you	need	to	modify	a	preexisting	chart—such	as	a	chart	that	you	did	not
create—and	there	is	only	one	shape	on	the	worksheet,	you	can	use	this	line	of
code:

Click	here	to	view	code	image
WS.Shapes(1).Chart.Interior.Color	=	RGB(0,0,255)

If	there	are	many	charts,	and	you	need	to	find	the	one	with	the	upper-left
corner	located	in	cell	A4,	you	can	loop	through	all	the	Shape	objects	until	you
find	one	in	the	correct	location,	like	this:

Click	here	to	view	code	image
For	each	Sh	in	ActiveSheet.Shapes

If	Sh.TopLeftCell.Address	=	"A4"	then

Sh.Chart.Interior.Color	=	RGB(0,255,0)

End	If

Next	Sh

Specifying	a	chart	title

Every	chart	created	with	NewLayout:=True	has	a	chart	title.	When	the	chart	has
two	or	more	series,	that	title	is	“Chart	Title.”	You	should	plan	on	changing	the
chart	title	to	something	useful.

To	specify	a	chart	title	in	VBA,	use	this	code:

Click	here	to	view	code	image
ActiveChart.ChartTitle.Caption	=	"Sales	by	Region"

If	you	are	changing	the	chart	title	of	a	newly	created	chart	that	is	assigned	to
the	CH	object	variable,	you	can	use	this:

Click	here	to	view	code	image
CH.ChartTitle.Caption	=	"Sales	by	Region"

This	code	works	if	your	chart	already	has	a	title.	If	you	are	not	sure	that	the
selected	chart	style	has	a	title,	you	can	ensure	that	the	title	is	present	first	with
this:

Click	here	to	view	code	image
CH.SetElement	msoElementChartTitleAboveChart

Although	it	is	relatively	easy	to	add	a	chart	title	and	specify	the	words	in	the
title,	it	becomes	increasingly	complex	to	change	the	formatting	of	the	chart	title.
The	following	code	changes	the	font,	size,	and	color	of	the	title:

Click	here	to	view	code	image
With	CH.ChartTitle.Format.TextFrame2.TextRange.Font

.Name	=	"Rockwell"

.Fill.ForeColor.ObjectThemeColor	=

msoThemeColorAccent2

.Size	=	14

End	With

The	two	axis	titles	operate	the	same	as	the	chart	title.	To	change	the	words,
use	the	.Caption	property.	To	format	the	words,	use	the	Format	property.
Similarly,	you	can	specify	the	axis	titles	by	using	the	Caption	property.	The
following	code	changes	the	axis	title	along	the	category	axis:

Click	here	to	view	code	image
CH.SetElement

msoElementPrimaryCategoryAxisTitleHorizontal

CH.Axes(xlCategory,	xlPrimary).AxisTitle.Caption	=

"Months"

CH.Axes(xlCategory,	xlPrimary).AxisTitle.	_

Format.TextFrame2.TextRange.Font.Fill.	_

ForeColor.ObjectThemeColor	=	msoThemeColorAccent2

Applying	a	chart	color

Excel	2013	introduced	a	ch.ChartColor	property	that	assigns	1	of	26	color
themes	to	a	chart.	Assign	a	value	from	1	to	26,	but	be	aware	that	the	order	of	the
colors	in	the	Chart	Styles	fly-out	menu	(see	Figure	15-3)	has	nothing	to	do	with
the	26	values.

FIGURE	15-3	Color	schemes	in	the	menu	are	called	Color	1,	Color	2,	and	so	on	but	have	nothing	to
do	with	the	VBA	settings.

To	understand	the	ChartColor	values,	consider	the	color	drop-down	menu
shown	in	Figure	15-4.	This	drop-down	menu	offers	10	columns	of	colors:
Background	1,	Text	1,	Background	2,	Text	2,	and	then	Theme	1	through	Theme
6.

Here	is	a	synopsis	of	the	26	values	you	can	use	for	ChartColor:

ChartColor	1,	9,	and	20	use	grayscale	colors	from	column	3.	A
ChartColor	value	of	1	starts	with	a	dark	gray,	then	a	light	gray,	then	a
medium	gray.	A	ChartColor	value	of	9	starts	with	a	light	gray	and	moves	to
darker	grays.	A	ChartColor	value	of	20	starts	with	three	medium	grays,
then	black,	then	very	light	gray,	then	medium	gray.

Value	2	uses	the	six	theme	colors	in	the	top	row,	from	left	to	right.

Values	3	through	8	use	a	single	column	of	colors.	For	example,	ChartColor
=	3	uses	the	six	colors	in	Theme	1,	from	dark	to	light.	ChartColor	values
of	4	through	8	correspond	to	Themes	2	through	6.

Value	10	repeats	value	2	but	adds	a	light	border	around	the	chart	element.

Vaues	11	through	13	are	the	most	inventive.	They	use	three	theme	colors
from	the	top	row	combined	with	the	same	three	theme	colors	from	the
bottom	row.	This	produces	light	and	dark	versions	of	three	different	colors.
ChartColor	11	uses	the	odd-numbered	themes	(1,	3,	and	5).	ChartColor
12	uses	the	even-numbered	themes.	ChartColor	13	uses	Themes	4,	5,	and
6.

Values	14	through	19	repeat	values	3	through	8	but	add	a	light	border.

Values	21	through	26	are	similar	to	values	3	through	8,	but	the	colors
progress	from	light	to	dark.

FIGURE	15-4	ChartColor	combinations	include	a	mix	of	colors	from	the	current	theme.

The	following	code	changes	the	chart	to	use	varying	shades	of	Themes	4,	5,
and	6:
ch.ChartColor	=	13

Filtering	a	chart

In	real	life,	creating	charts	from	tables	of	data	is	not	always	simple.	Tables
frequently	have	totals	or	subtotals.	The	table	in	Figure	15-5	has	quarterly	total
columns	intermixed	with	monthly	values.	When	you	create	a	chart	from	this
data,	the	total	columns	create	a	bad	chart.

To	filter	a	row	or	column	in	VBA,	you	set	the	new	.IsFiltered	property	to
True.	The	following	code	removes	the	total	columns:

Click	here	to	view	code	image

CH.ChartGroups(1).FullCategoryCollection(4).IsFiltered

=	True

CH.ChartGroups(1).FullCategoryCollection(8).IsFiltered

=	True

CH.ChartGroups(1).FullCategoryCollection(12).IsFiltered

=	True

CH.ChartGroups(1).FullCategoryCollection(16).IsFiltered

=	True

FIGURE	15-5	The	subtotals	in	this	table	cause	a	bad-looking	chart.

Using	SetElement	to	emulate	changes	from	the	plus	icon

When	you	select	a	chart,	three	icons	appear	to	the	right	of	the	chart.	The	top	icon
is	a	plus	sign.	All	the	choices	in	the	first-	and	second-level	fly-out	menus	use	the
SetElement	method	in	VBA.	Note	that	the	Add	Chart	Element	drop-down	menu
on	the	Design	tab	includes	all	these	settings,	plus	Lines	and	Up/Down	Bars.

Note	SetElement	does	not	cover	all	of	the	choices	in	the	Format
task	pane	that	often	appears.	See	the	“Using	the	Format	method	to
micromanage	formatting	options”	section	later	in	this	chapter	to

change	those	settings.

If	you	do	not	feel	like	looking	up	the	proper	constant	in	this	book,	you	can

always	quickly	record	a	macro.

The	SetElement	method	is	followed	by	a	constant	that	specifies	which	menu
item	to	select.	For	example,	if	you	want	to	choose	Show	Legend	At	Left,	you
can	use	this	code:

Click	here	to	view	code	image
ActiveChart.SetElement	msoElementLegendLeft

Table	15-2	shows	all	the	available	constants	you	can	use	with	the
SetElement	method.	These	constants	are	in	roughly	the	same	order	in	which
they	appear	in	the	Add	Chart	Element	drop-down	menu.

TABLE	15-2	Constants	available	with	SetElement

Element	Group SetElement	Constant
Axes msoElementPrimaryCategoryAxisNone

Axes msoElementPrimaryCategoryAxisShow

Axes msoElementPrimaryCategoryAxisWithoutLabels

Axes msoElementPrimaryCategoryAxisReverse

Axes msoElementPrimaryCategoryAxisThousands

Axes msoElementPrimaryCategoryAxisMillions

Axes msoElementPrimaryCategoryAxisBillions

Axes msoElementPrimaryCategoryAxisLogScale

Axes msoElementSecondaryCategoryAxisNone

Axes msoElementSecondaryCategoryAxisShow

Axes msoElementSecondaryCategoryAxisWithoutLabels

Axes msoElementSecondaryCategoryAxisReverse

Axes msoElementSecondaryCategoryAxisThousands

Axes msoElementSecondaryCategoryAxisMillions

Axes msoElementSecondaryCategoryAxisBillions

Axes msoElementSecondaryCategoryAxisLogScaIe

Axes msoElementPrimaryValueAxisNone

Axes msoElementPrimaryValueAxisShow

Axes msoElementPrimaryValueAxisThousands

msoElementPrimaryValueAxisMillions

Axes

Axes msoElementPrimaryValueAxisBillions

Axes msoElementPrimaryValueAxisLogScale

Axes msoElementSecondaryValueAxisNone

Axes msoElementSecondaryValueAxisShow

Axes msoElementSecondaryValueAxisThousands

Axes msoElementSecondaryValueAxisMillions

Axes msoElementSecondaryValueAxisBillions

Axes msoElementSecondaryValueAxisLogScale

Axes msoElementSeriesAxisNone

Axes msoElementSeriesAxisShow

Axes msoElementSeriesAxisReverse

Axes msoElementSeriesAxisWithoutLabeling

Axis	Titles msoElementPrimaryCategoryAxisTitleNone

Axis	Titles msoElementPrimaryCategoryAxisTitleBelowAxis

Axis	Titles msoElementPrimaryCategoryAxisTitleAdjacentToAxis

Axis	Titles msoElementPrimaryCategoryAxisTitleHorizontal

Axis	Titles msoEIementPrimaryCategoryAxisTitleVertical

Axis	Titles msoElementPrimaryCategoryAxisTitleRotated

Axis	Titles msoElementSecondaryCategoryAxisTitleAdjacentToAxis

Axis	Titles msoElementSecondaryCategoryAxisTitleBelowAxis

Axis	Titles msoElementSecondaryCategoryAxisTitleHorizontal

Axis	Titles msoElementSecondaryCategoryAxisTitleNone

Axis	Titles msoElementSecondaryCategoryAxisTitleRotated

Axis	Titles msoElementSecondaryCategoryAxisTitleVertical

Axis	Titles msoElementPrimaryValueAxisTitleAdjacentToAxis

Axis	Titles msoElementPrimaryValueAxisTitleBelowAxis

Axis	Titles msoElementPrimaryValueAxisTitleHorizontal

Axis	Titles msoElementPrimaryValueAxisTitleNone

Axis	Titles msoElementPrimaryValueAxisTitleRotated

Axis	Titles msoElementPrimaryValueAxisTitleVertical

Axis	Titles msoElementSecondaryValueAxisTitleBelowAxis

Axis	Titles msoElementSecondaryValueAxisTitleHorizontal

Axis	Titles msoElementSecondaryValueAxisTitleNone

Axis	Titles msoElementSecondaryValueAxisTitleRotated

Axis	Titles msoElementSecondaryValueAxisTitleVertical

Axis	Titles msoElementSeriesAxisTitleHorizontal

Axis	Titles msoElementSeriesAxisTitleNone

Axis	Titles msoElementSeriesAxisTitleRotated

Axis	Titles msoElementSeriesAxisTitleVertical

Axis	Titles msoElementSecondaryValueAxisTitleAdjacentToAxis

Chart	Title msoElementChartTitleNone

Chart	Title msoElementChartTitleCenteredOverlay

Chart	Title msoElementChartTitleAboveChart

Data	Labels msoElementDataLabelCallout	(new	in	Excel	2019)

Data	Labels msoElementDataLabelCenter

Data	Labels msoElementDataLabelInsideEnd

Data	Labels msoElementDataLabelNone

Data	Labels msoElementDataLabelInsideBase

Data	Labels msoElementDataLabelOutSideEnd

Data	Labels msoElementDataLabelTop

Data	Labels msoElementDataLabelBottom

Data	Labels msoElementDataLabelRight

Data	Labels msoElementDataLabelLeft

Data	Labels msoElementDataLabelShow

Data	Labels msoElementDataLabelBestFit

Data	Table msoElementDataTableNone

Data	Table msoElementDataTableShow

Data	Table msoElementDataTableWithLegendKeys

Error	Bars msoElementErrorBarNone

Error	Bars msoElementErrorBarStandardError

Error	Bars msoElementErrorBarPercentage

Error	Bars msoElementErrorBarStandardDeviation

GridLines msoElementPrimaryCategoryGridLinesNone

GridLines msoElementPrimaryCategoryGridLinesMajor

GridLines msoElementPrimaryCategoryGridLinesMinor

GridLines msoElementPrimaryCategoryGridLinesMinorMajor

GridLines msoElementSecondaryCategoryGridLinesNone

GridLines msoElementSecondaryCategoryGridLinesMajor

GridLines msoElementSecondaryCategoryGridLinesMinor

GridLines msoElementSecondaryCategoryGridLinesMinorMajor

GridLines msoElementPrimaryValueGridLinesNone

GridLines msoElementPrimaryValueGridLinesMajor

GridLines msoElementPrimaryValueGridLinesMinor

GridLines msoElementPrimaryValueGridLinesMinorMajor

GridLines msoElementSecondaryValueGridLinesNone

GridLines msoElementSecondaryValueGridLinesMajor

GridLines msoElementSecondaryValueGridLinesMinor

GridLines msoElementSecondaryValueGridLinesMinorMajor

GridLines msoElementSeriesAxisGridLinesNone

GridLines msoElementSeriesAxisGridLinesMajor

GridLines msoElementSeriesAxisGridLinesMinor

GridLines msoElementSeriesAxisGridLinesMinorMajor

Legend msoElementLegendNone

Legend msoElementLegendRight

Legend msoElementLegendTop

Legend msoElementLegendLeft

Legend msoElementLegendBottom

Legend msoElementLegendRightOverlay

Legend msoElementLegendLeftOverlay

Lines msoElementLineNone

Lines msoElementLineDropLine

Lines msoElementLineHiLoLine

Lines msoElementLineDropHiLoLine

Lines msoElementLineSeriesLine

Trendline msoElementTrendlineNone

Trendline msoElementTrendlineAddLinear

Trendline msoElementTrendlineAddExponential

Trendline msoElementTrendlineAddLinearForecast

Trendline msoElementTrendlineAddTwoPeriodMovingAverage

Up/Down	Bars msoElementUpDownBarsNone

Up/Down	Bars msoElementUpDownBarsShow

Plot	Area msoElementPlotAreaNone

Plot	Area msoElementPlotAreaShow

Chart	Wall msoElementChartWallNone

Chart	Wall msoElementChartWallShow

Chart	Floor msoElementChartFloorNone

Chart	Floor msoElementChartFloorShow

Note	If	you	attempt	to	format	an	element	that	is	not	present,	Excel
returns	a	-2147467259	Method	Failed	error.

Using	SetElement	enables	you	to	change	chart	elements	quickly.	As	an
example,	charting	gurus	say	that	the	legend	should	always	appear	to	the	left	or
above	the	chart.	Few	of	the	built-in	styles	show	the	legend	above	the	chart.	I	also
prefer	to	show	the	values	along	the	axis	in	thousands	or	millions,	when
appropriate.	This	is	better	than	displaying	three	or	six	zeros	on	every	line.

The	following	code	handles	these	settings	after	you	create	the	chart:

Click	here	to	view	code	image
Sub	UseSetElement()

Dim	WS	As	Worksheet

Dim	CH	As	Chart

Set	WS	=	ActiveSheet

Range("A1:M4").Select

Set	CH	=	WS.Shapes.AddChart2(Style:=201,	_

XlChartType:=xlColumnClustered,	_

Left:=[B6].Left,	_

Top:=[B6].Top,	_

NewLayout:=False).Chart

'	Set	value	axis	to	display	thousands

CH.SetElement	msoElementPrimaryValueAxisThousands

'	move	the	legend	to	the	top

CH.SetElement	msoElementLegendTop

End	Sub

Using	the	format	method	to	micromanage	formatting	options

The	Format	tab	offers	icons	for	changing	colors	and	effects	for	individual	chart
elements.	Although	many	people	call	the	Shadow,	Glow,	Bevel,	and	Material
settings	“chart	junk,”	there	are	ways	in	VBA	to	apply	these	formats.

Excel	2019	includes	an	object	called	the	ChartFormat	object	that	contains
the	settings	for	Fill,	Glow,	Line,	PictureFormat,	Shadow,	SoftEdge,
TextFrame2,	and	ThreeD.	You	can	access	the	ChartFormat	object	by	using	the
Format	method	on	many	chart	elements.	Table	15-3	lists	a	sampling	of	chart
elements	you	can	format	using	the	Format	method.

TABLE	15-3	Chart	elements	to	which	formatting	applies

Chart	Element VBA	to	Refer	to	This	Chart	Element
Chart	Title ChartTitle

Axis	Title–Category Axes(xlCategory,	xlPrimary).AxisTitle

Axis	Title–Value Axes(xlValue,	xlPrimary).AxisTitle

Legend Legend

Data	Labels	For	Series	1 SeriesCollection(1).DataLabels

Data	Labels	For	Point	2 SeriesCollection(1).DataLabels(2)	or

SeriesCollection(1).Points(2).DataLabel

Data	Table DataTable

Axes–Horizontal Axes(xlCategory,	xlPrimary)

Axes–Vertical Axes(xlValue,	xlPrimary)

Axis–Series	(Surface	Charts
Only)

Axes(xlSeries,	xlPrimary)

Major	Gridlines Axes(xlValue,	xlPrimary).MajorGridlines

Minor	Gridlines Axes(xlValue,	xlPrimary).MinorGridlines

Plot	Area PlotArea

Chart	Area ChartArea

Chart	Wall Walls

Chart	Back	Wall BackWall

Chart	Side	Wall SideWall

Chart	Floor Floor

Trendline	For	Series	1 SeriesCollection(1).TrendLines(1)

Droplines ChartGroups(1).DropLines

Up/Down	Bars ChartGroups(1).UpBars

Error	Bars SeriesCollection(1).ErrorBars

Series(1) SeriesCollection(1)

Series(1)	DataPoint SeriesCollection(1).Points(3)

The	Format	method	is	the	gateway	to	settings	for	Fill,	Glow,	and	so	on.
Each	of	those	objects	has	different	options.	The	following	sections	provide
examples	of	how	to	set	up	each	type	of	format.

Changing	an	object’s	fill

The	Shape	Fill	drop-down	menu	on	the	Format	tab	enables	you	to	choose	a
single	color,	a	gradient,	a	picture,	or	a	texture	for	the	fill.

To	apply	a	specific	color,	you	can	use	the	RGB	(red,	green,	blue)	setting.	To
create	a	color,	you	specify	a	value	from	0	to	255	for	levels	of	red,	green,	and
blue.	The	following	code	applies	a	simple	blue	fill:

Click	here	to	view	code	image
Dim	cht	As	Chart

Dim	upb	As	UpBars

Set	cht	=	ActiveChart

Set	upb	=	cht.ChartGroups(1).UpBars

upb.Format.Fill.ForeColor.RGB	=	RGB(0,	0,	255)

If	you	would	like	an	object	to	pick	up	the	color	from	a	specific	theme	accent
color,	you	use	the	ObjectThemeColor	property.	The	following	code	changes	the
bar	color	of	the	first	series	to	accent	color	6,	which	is	an	orange	color	in	the
Office	theme	(but	might	be	another	color	if	the	workbook	is	using	a	different
theme):

Click	here	to	view	code	image
Sub	ApplyThemeColor()

Dim	cht	As	Chart

Dim	ser	As	Series

Set	cht	=	ActiveChart

Set	ser	=	cht.SeriesCollection(1)

ser.Format.Fill.ForeColor.ObjectThemeColor	=

msoThemeColorAccent6

End	Sub

To	apply	a	built-in	texture,	you	use	the	PresetTextured	method.	The
following	code	applies	a	green	marble	texture	to	the	second	series.	However,	you
can	apply	any	of	the	20	textures:

Click	here	to	view	code	image
Sub	ApplyTexture()

Dim	cht	As	Chart

Dim	ser	As	Series

Set	cht	=	ActiveChart

Set	ser	=	cht.SeriesCollection(2)

ser.Format.Fill.PresetTextured	msoTextureGreenMarble

End	Sub

Note	When	you	type	PresetTextured	followed	by	a	space,	the	VB
Editor	offers	a	complete	list	of	possible	texture	values.

To	fill	the	bars	of	a	data	series	with	a	picture,	you	use	the	UserPicture
method	and	specify	the	path	and	file	name	of	an	image	on	the	computer,	as	in	the
following	example:

Click	here	to	view	code	image
Sub	FormatWithPicture()

Dim	cht	As	Chart

Dim	ser	As	Series

Set	cht	=	ActiveChart

Set	ser	=	cht.SeriesCollection(1)

MyPic	=	"C:\PodCastTitle1.jpg"

ser.Format.Fill.UserPicture	MyPic

End	Sub

In	Excel	2019,	you	can	apply	a	pattern	by	using	the	.Patterned	method.
Patterns	have	a	type	such	as	msoPatternPlain,	as	well	as	foreground	and
background	colors.	The	following	code	creates	dark	red	vertical	lines	on	a	white
background:

Click	here	to	view	code	image
Sub	FormatWithPicture()

Dim	cht	As	Chart

Dim	ser	As	Series

Set	cht	=	ActiveChart

Set	ser	=	cht.SeriesCollection(1)

With	ser.Format.Fill

.Patterned	msoPatternDarkVertical

.BackColor.RGB	=	RGB(255,255,255)

.ForeColor.RGB	=	RGB(255,0,0)

End	With

End	Sub

Caution	Code	that	uses	patterns	does	not	work	with	Excel	2007.
Patterns	were	removed	from	Excel	2007,	but	they	were	restored	in
Excel	2010	due	to	outcry	from	fans	of	patterns.

Gradients	are	more	difficult	to	specify	than	fills.	Excel	2019	provides	three
methods	that	help	you	set	up	the	common	gradients.	The	OneColorGradient	and
TwoColorGradient	methods	require	that	you	specify	a	gradient	direction,	such	as
msoGradientFromCorner.	You	can	then	specify	one	of	four	styles,	numbered	1
through	4,	depending	on	whether	you	want	the	gradient	to	start	at	the	top	left,	top
right,	bottom	left,	or	bottom	right.	After	using	a	gradient	method,	you	need	to
specify	the	ForeColor	and	the	BackColor	settings	for	the	object.	The	following
macro	sets	up	a	two-color	gradient	using	two	theme	colors:

Click	here	to	view	code	image
Sub	TwoColorGradient()

Dim	cht	As	Chart

Dim	ser	As	Series

Set	cht	=	ActiveChart

Set	ser	=	cht.SeriesCollection(1)

ser.Format.Fill.TwoColorGradient

msoGradientFromCorner,	3

ser.Format.Fill.ForeColor.ObjectThemeColor	=

msoThemeColorAccent6

ser.Format.Fill.BackColor.ObjectThemeColor	=

msoThemeColorAccent2

End	Sub

When	using	the	OneColorGradient	method,	you	specify	a	direction,	a	style
(1	through	4),	and	a	darkness	value	between	0	and	1	(0	for	darker	gradients	to	1
for	lighter	gradients).

When	using	the	PresetGradient	method,	you	specify	a	direction,	a	style	(1
through	4),	and	the	type	of	gradient,	such	as	msoGradientBrass,
msoGradientLateSunset,	or	msoGradientRainbow.	Again,	as	you	are	typing	this
code	in	the	VB	Editor,	the	AutoComplete	tool	provides	a	complete	list	of	the
available	preset	gradient	types.

Formatting	line	settings

The	LineFormat	object	formats	either	a	line	or	the	border	around	an	object.	You
can	change	numerous	properties	of	a	line,	such	as	the	color,	arrows,	and	dash
style.

The	following	macro	formats	the	trendline	for	the	first	series	in	a	chart:

Click	here	to	view	code	image
Sub	FormatLineOrBorders()

Dim	cht	As	Chart

Set	cht	=	ActiveChart

With	cht.SeriesCollection(1).Trendlines(1).Format.Line

.DashStyle	=	msoLineLongDashDotDot

.ForeColor.RGB	=	RGB(50,	0,	128)

.BeginArrowheadLength	=	msoArrowheadShort

.BeginArrowheadStyle	=	msoArrowheadOval

.BeginArrowheadWidth	=	msoArrowheadNarrow

.EndArrowheadLength	=	msoArrowheadLong

.EndArrowheadStyle	=	msoArrowheadTriangle

.EndArrowheadWidth	=	msoArrowheadWide

End	With

End	Sub

When	you	are	formatting	a	border,	the	arrow	settings	are	not	relevant,	so	the
code	is	shorter	than	the	code	for	formatting	a	line.	The	following	macro	formats
the	border	around	a	chart:

Click	here	to	view	code	image
Sub	FormatBorder()

Dim	cht	As	Chart

Set	cht	=	ActiveChart

With	cht.ChartArea.Format.Line

.DashStyle	=	msoLineLongDashDotDot

.ForeColor.RGB	=	RGB(50,	0,	128)

End	With

End	Sub

Creating	a	combo	chart

Sometimes	you	need	to	chart	series	of	data	that	are	of	differing	orders	of
magnitude.	Normal	charts	do	a	lousy	job	of	showing	smaller	series.	Combo
charts	can	save	the	day.

Consider	the	data	and	chart	in	Figure	15-6.	Here	you	want	to	plot	the	number
of	sales	per	month	and	also	show	two	quality	ratings.	Perhaps	this	is	a	fictitious
car	dealer	that	sells	80	to	100	cars	a	month,	and	the	customer	satisfaction	usually
runs	in	the	80%	to	90%	range.	When	you	try	to	plot	this	data	on	a	regular	line
chart,	the	column	for	90	cars	sold	dwarfs	the	column	for	80%	customer
satisfaction.

FIGURE	15-6	The	two	small	series	are	moved	to	a	secondary	axis.

Case	study:	Creating	a	combo	chart
Let’s	look	at	an	example	of	the	VBA	needed	to	create	a	combo	chart.	You
want	to	create	a	chart	that	shows	the	number	of	sales	and	also	two
percentage	measurements.	In	this	process,	you	have	to	format	each	of	the
three	series.	At	the	top	of	the	macro,	declare	object	variables	for	the
worksheet,	the	chart,	and	each	of	the	series:

Click	here	to	view	code	image
Dim	WS	As	Worksheet

Dim	CH	As	Chart

Dim	Ser1	As	Series

Dim	Ser2	As	Series

Dim	Ser3	As	Series

Create	the	chart	as	a	regular	clustered	column	chart:

Click	here	to	view	code	image
Set	WS	=	ActiveSheet

Range("A1:G4").Select

Set	CH	=	WS.Shapes.AddChart2(Style:=201,	_

XlChartType:=xlColumnClustered,	_

Left:=[B6].Left,	_

Top:=[B6].Top,	_

NewLayout:=False).Chart

To	work	with	a	series,	assign	FullSeriesCollection	to	an	object	variable
such	as	Ser2.	You	could	get	away	with	a	single	object	variable	called	Ser
that	you	use	over	and	over.	This	code	enables	you	to	come	back	later	in	the
macro	to	refer	to	any	of	the	three	series.	After	you	have	the	Ser2	object
variable	defined,	assign	the	series	to	the	secondary	axis	group	and	change
the	chart	type	of	just	that	series	to	a	line;	then	repeat	the	code	for	Series	3:

Click	here	to	view	code	image
'	Move	Series	2	to	secondary	axis	as	line

Set	Ser2	=	CH.FullSeriesCollection(2)

With	Ser2

.AxisGroup	=	xlSecondary

.ChartType	=	xlLine

End	With

'	Move	Series	3	to	secondary	axis	as	line

Set	Ser3	=	CH.FullSeriesCollection(3)

With	Ser3

.AxisGroup	=	xlSecondary

.ChartType	=	xlLine

End	With

Note	that	so	far,	you	have	not	had	to	touch	Series	1.	Series	1	is	fine	as	a
column	chart	on	the	primary	axis.	You’ll	come	back	to	Series	1	later	in	the
macro.	Because	too	many	of	the	data	points	in	Series	3	were	close	to	100%,
the	Excel	charting	engine	decided	to	make	the	right	axis	span	all	the	way	up
to	120%.	This	is	silly	because	no	one	can	get	a	rating	higher	than	100%.
You	can	override	the	automatic	settings	and	choose	a	scale	for	the	right
axis.	The	following	code	uses	0.6	(for	60%)	as	the	minimum	and	1	(for
100%)	as	the	maximum:

Click	here	to	view	code	image
'	Set	the	secondary	axis	to	go	from	60%	to	100%

CH.Axes(xlValue,	xlSecondary).MinimumScale	=	0.6

CH.Axes(xlValue,	xlSecondary).MaximumScale	=	1

When	you	override	the	scale	values,	Excel	automatically	guesses	where	you
want	the	gridlines	and	axis	labels.	Rather	than	leave	this	to	chance,	you	can
use	MajorUnit	and	MinorUnit:

Click	here	to	view	code	image
'	Labels	every	10%,	secondary	gridline	at	5%

CH.Axes(xlValue,	xlSecondary).MajorUnit	=	0.1

CH.Axes(xlValue,	xlSecondary).MinorUnit	=	0.05

CH.Axes(xlValue,

xlSecondary).TickLabels.NumberFormat	=	"0%"

Axis	labels	and	major	gridlines	appear	at	the	increment	specified	by
MajorUnit.	MinorUnit,	and	that	is	important	only	if	you	plan	on	showing
minor	gridlines.

At	this	point,	there	are	numbers	on	the	left	axis	and	numbers	on	the	right
axis.	I	instantly	went	to	the	percentages	on	the	right	side	and	tried	to	follow
the	gridlines	across.	But	this	doesn’t	work	because	the	gridlines	don’t	line
up	with	the	numbers	on	the	right	side.	They	line	up	with	the	numbers	on	the
left	side.	You	can’t	really	tell	this	for	sure,	though,	because	the	gridlines
coincidentally	happen	to	line	up	with	100%,	80%,	and	60%.

At	this	point,	you	might	decide	to	get	creative.	You	could	use	the	following
code	to	delete	the	gridlines	for	the	left	axis,	add	major	and	minor	gridlines
for	the	right	axis,	delete	the	numbers	along	the	left	axis,	and	replace	the
numbers	on	the	axis	with	a	data	label	in	the	center	of	each	column:

Click	here	to	view	code	image
'	Turn	off	the	gridlines	for	left	axis

CH.Axes(xlValue).HasMajorGridlines	=	False

'	Add	gridlines	for	right	axis

CH.SetElement

msoElementSecondaryValueGridLinesMajor

CH.SetElement

msoElementSecondaryValueGridLinesMinorMajor

'	Hide	the	labels	on	the	primary	axis

CH.Axes(xlValue).TickLabelPosition	=	xlNone

'	Replace	axis	labels	with	a	data	label	on	the

column

Set	Ser1	=	CH.FullSeriesCollection(1)

Ser1.ApplyDataLabels

Ser1.DataLabels.Position	=	xlLabelPositionCenter

Now	you	almost	have	it.	Because	the	book	is	printed	in	monochrome,
change	the	color	of	the	Series	1	data	label	to	white:

Click	here	to	view	code	image
'	Data	Labels	in	white

With

Ser1.DataLabels.Format.TextFrame2.TextRange.Font.Fill

.Visible	=	msoTrue

.ForeColor.ObjectThemeColor	=

msoThemeColorBackground1

.Solid

End	With

And	because	my	charting	mentors	drilled	it	into	my	head,	the	legend	has	to
be	at	the	top	or	the	left.	Here’s	how	you	move	it	to	the	top:

Click	here	to	view	code	image
'	Legend	at	the	top,	per	Gene	Z.

CH.SetElement	msoElementLegendTop

The	resulting	chart	is	shown	in	Figure	15-7.	Thanks	to	the	minor	gridlines,
you	can	easily	tell	if	each	rating	was	in	the	80%–85%,	85%–90%,	or	90%–
95%	range.	The	columns	show	the	sales,	and	the	labels	stay	out	of	the	way,
but	they	are	still	readable.

FIGURE	15-7	The	gridlines	and	the	two	series	represented	by	a	line	correspond	to	the	axis
labels	on	the	right	side.

Creating	map	charts
The	new	filled	map	chart	offers	some	settings	unique	to	map	charts.	Say	that	you
have	data	for	six	states	in	the	southeast	United	States.	By	default,	the	map	chart
shows	48	of	the	50	states.	Set	the	.GeoMappingLevel	to	xlGeoMappingDataOnly
to	limit	the	map	to	only	states	with	data,	as	shown	in	Figure	15-8.

Click	here	to	view	code	image
Sub	RegionMapChart()

Dim	CH	As	Chart

Set	CH	=	ActiveSheet.Shapes.AddChart2(-1,

xlRegionMap).Chart

CH.SetSourceData

Source:=ActiveSheet.Range("A1:B7")

'	the	following	properties	are	specific	to	filled

map	charts

With	CH.FullSeriesCollection(1)

.GeoMappingLevel	=	xlGeoMappingLevelDataOnly

.RegionLabelOption	=

xlRegionLabelOptionsBestFitOnly

End	With

End	Sub

Note	that	Mississippi	is	not	labeled	in	the	chart	in	Figure	15-8.	This	is
because	RegionLabelOption	is	set	to	xlRegionLabelOptionsBestFitOnly.	To
force	all	labels	to	appear,	use	xlRegionLabelOptionsShowAll	instead.

You	can	export	any	chart	to	an	image	file	on	your	hard	drive.	The
ExportChart	method	requires	you	to	specify	a	file	name	and	a	graphic	type.	The
available	graphic	types	depend	on	graphic	file	filters	installed	in	your	Registry.	It
is	a	safe	bet	that	JPG,	BMP,	PNG,	and	GIF	work	on	most	computers.

FIGURE	15-8	Limit	the	filled	map	chart	to	only	regions	with	data.

Creating	waterfall	charts
Waterfall	charts	are	often	used	to	show	profit	on	a	sale	or	cash	flow	over	the
course	of	a	year.	A	waterfall	chart	is	composed	of	floating	columns	that	raise	or
lower	from	the	previous	column.	However,	some	points	will	be	marked	as
Totals,	such	as	the	Net	Price	column	in	Figure	15-9.	Use	the	.IsTotal	property
to	force	a	column	to	not	float.

Click	here	to	view	code	image
Sub	WaterfallChart()

Dim	CH	As	Chart

Set	CH	=	ActiveSheet.Shapes.AddChart2(-1,

xlWaterfall).Chart

CH.SetSourceData	Source:=ActiveSheet.Range("A1:B7")

'	Mark	certain	points	as	totals

With	CH.FullSeriesCollection(1)

.Points(1).IsTotal	=	True

.Points(3).IsTotal	=	True

.Points(7).IsTotal	=	True

End	With

End	Sub

FIGURE	15-9	Any	column	marked	as	a	total	will	touch	the	x-axis.

One	of	the	frustrations	with	the	new	Ivy	charting	engines	is	this:	It	is	often
difficult	to	figure	out	how	to	change	the	colors.	In	the	waterfall	chart	in	Figure
15-9,	there	are	colors	for	Increase,	Decrease,	and	Total.	The	only	way	to	format
those	colors	is	to	do	the	following:

1.	 Click	the	legend	to	select	the	legend.

2.	 Click	the	Increase	legend	entry	to	select	that	one	single	legend	entry.

3.	 Right-click	to	see	a	menu	with	a	choice	to	change	the	fill	for	Increase.

The	equivalent	VBA	often	crashes	Excel.	This	might	be	a	temporary	bug,
and	it	might	be	fixed	by	the	time	you	are	reading	this:

Click	here	to	view	code	image

Sub	FormatWaterfall()

Dim	cht	As	Chart

Dim	lg	As	Legend

Dim	lgentry	As	LegendEntry

Dim	iLegEntry	As	Long

Set	cht	=	ActiveChart

Set	lg	=	cht.Legend

For	iLegEntry	=	1	To	lg.LegendEntries.Count

Set	lgentry	=	lg.LegendEntries(iLegEntry)

lgentry.Format.Fill.ForeColor.ObjectThemeColor	=

msoThemeColorAccent1	+	iLegEntry	-	1

Next

End	Sub

Note	Thanks	to	charting	legend	Jon	Peltier	for	discovering	this
obscure	way	to	change	the	waterfall	fill	colors.	Jon’s	awesome
website	is	PeltierTech.com.

Exporting	a	chart	as	a	graphic

You	can	export	any	chart	to	an	image	file	on	your	hard	drive.	The	ExportChart
method	requires	you	to	specify	a	file	name	and	a	graphic	type.	The	available
graphic	types	depend	on	graphic	file	filters	installed	in	your	Registry—usually
JPG,	BMP,	PNG,	and	GIF.

For	example,	the	following	code	exports	the	active	chart	as	a	GIF	file:

Click	here	to	view	code	image
Sub	ExportChart()

Dim	cht	As	Chart

Set	cht	=	ActiveChart

cht.Export	Filename:="C:\Chart.gif",	Filtername:="GIF"

End	Sub

Considering	backward	compatibility

http://PeltierTech.com

The	.AddChart2	method	works	in	Excel	2013	through	Excel	2019.	For	Excel
2007	and	2010,	you	have	to	revert	to	using	the	.AddChart	method,	as	shown
here:

Click	here	to	view	code	image
Sub	CreateChartIn20072010()

'Create	a	Clustered	Column	Chart	in	B8:G15	from	data

in	A3:G6

Dim	CH	As	Chart

Range("A3:G6").Select

Set	CH	=	ActiveSheet.Shapes.AddChart(_

XlChartType:=xlColumnClustered,	_

Left:=Range("B8").Left,	_

Top:=Range("B8").Top,	_

Width:=Range("B8:G15").Width,	_

Height:=Range("B8:G15").Height).Chart

End	Sub

With	this	method,	you	can	specify	neither	a	Style	nor	a	NewLayout.

Next	steps

In	Chapter	16,	“Data	visualizations	and	conditional	formatting,”	you’ll	find	out
how	to	automate	data	visualization	tools	such	as	icon	sets,	color	scales,	and	data
bars.

CHAPTER	16
Data	visualizations	and	conditional
formatting

In	this	chapter,	you	will:

Use	VBA	methods	and	properties	for	data	visualizations

Add	data	bars	to	a	range

Add	color	scales	to	a	range

Add	icon	sets	to	a	range

Use	visualization	tricks

Use	other	conditional	formatting	methods

Data	visualization	tools	were	introduced	in	Excel	2007	and	improved	in	Excel
2010.	Data	visualizations	appear	on	a	drawing	layer	that	can	hold	icon	sets,	data
bars,	color	scales,	and	sparklines.	Unlike	with	SmartArt	graphics,	Microsoft
exposed	the	entire	object	model	for	the	data	visualization	tools,	so	you	can	use
VBA	to	add	data	visualizations	to	your	reports.

Note	See	Chapter	17,	“Dashboarding	with	sparklines	in	Excel
2019,”	for	more	information	about	sparklines.

Excel	2019	provides	a	variety	of	data	visualizations,	as	described	here	and
shown	in	Figure	16-1:

Data	bars—A	data	bar	adds	an	in-cell	bar	chart	to	each	cell	in	a	range.	The
largest	numbers	have	the	largest	bars,	and	the	smallest	numbers	have	the
smallest	bars.	You	can	control	the	bar	color	as	well	as	the	values	that	should
receive	the	smallest	and	largest	bars.	Data	bars	can	be	solid	or	a	gradient.
The	gradient	bars	can	have	borders.

Color	scales—Excel	applies	a	color	to	each	cell	from	among	a	two-	or
three-color	gradient.	The	two-color	gradients	are	best	for	reports	that	are
presented	in	monochrome.	The	three-color	gradients	require	a	presentation
in	color	but	can	represent	a	report	in	a	traditional	traffic	light	color
combination	of	red–yellow–green.	You	can	control	the	points	along	the
continuum	where	each	color	begins,	and	you	can	choose	the	two	or	three
colors.

Icon	sets—Excel	assigns	an	icon	to	each	number.	Icon	sets	can	contain
three	icons,	such	as	the	red–yellow–green	traffic	lights;	four	icons;	or	five
icons	(as	with	cell-phone	signal	bars).	With	icon	sets,	you	can	control	the
numeric	limits	for	each	icon,	reverse	the	order	of	the	icons,	or	choose	to
show	only	the	icons.

Above/below	average—These	rules,	which	are	under	the	Top/Bottom
Rules	flyout	menu,	make	it	easy	to	highlight	all	the	cells	that	are	above	or
below	average.	You	can	choose	the	formatting	to	apply	to	the	cells.	Note	in
column	G	of	Figure	16-1	that	only	30%	of	the	cells	are	above	average.
Contrast	this	with	the	top	50%	in	column	K.

Duplicate	values—Excel	highlights	any	values	that	are	repeated	within	a
data	set.	Because	the	Delete	Duplicates	command	on	the	Data	tab	of	the
ribbon	is	so	destructive,	you	might	prefer	to	highlight	the	duplicates	and
then	intelligently	decide	which	records	to	delete.	This	also	can	be	used	to
highlight	values	that	appear	only	once	in	the	data.	Microsoft	refers	to	this	as
“Unique	Values,”	although	I	disagree	with	that	term.	I	would	prefer	an
option	that	highlights	the	values	that	would	be	left	after	applying	Remove
Duplicates.	If	the	word	“Apple”	appears	twice	in	a	column,	neither	cell	will
be	marked	as	a	unique	value.

Top/bottom	rules—Excel	highlights	the	top	or	bottom	n	percent	of	cells	or
highlights	the	top	or	bottom	n	cells	in	a	range.

Highlight	cells—The	legacy	conditional	formatting	rules	such	as	greater
than,	less	than,	between,	and	text	that	contains	are	still	available	in	Excel
2019.	The	powerful	Formula	conditions	are	also	available,	although	you
might	need	to	use	these	less	frequently	now	that	you	have	the	average	and
top/bottom	rules.

FIGURE	16-1	Visualizations	such	as	data	bars,	color	scales,	icon	sets,	and	top/bottom	rules	are
controlled	in	the	Excel	user	interface	from	the	Conditional	Formatting	drop-down	menu	on	the	Home
tab	of	the	ribbon.

VBA	methods	and	properties	for	data	visualizations
All	the	data	visualization	settings	are	managed	in	VBA	with	the
FormatConditions	collection.	Conditional	formatting	has	been	in	Excel	since
Excel	97.	In	Excel	2007,	Microsoft	expanded	the	FormatConditions	object	to
handle	the	new	visualizations.	Whereas	legacy	versions	of	Excel	would	use	the
FormatConditions.Add	method,	Excel	2007–2019	offer	additional	methods,
such	as	AddDataBar,	AddIconSetCondition,	AddColorScale,	AddTop10,
AddAboveAverage,	and	AddUniqueValues.

You	can	apply	several	different	conditional	formatting	conditions	to	the	same
range.	For	example,	you	can	apply	a	two-color	color	scale,	an	icon	set,	and	a
data	bar	to	the	same	range.	Excel	includes	a	Priority	property	to	specify	which
conditions	should	be	calculated	first.	Methods	such	as	SetFirstPriority	and
SetLastPriority	ensure	that	a	new	format	condition	is	executed	before	or	after
all	others.

The	StopIfTrue	property	works	in	conjunction	with	the	Priority	property.
Say	that	you	are	highlighting	duplicates	but	want	to	check	only	text	cells.	Create
a	new	formula-based	condition	that	uses	=ISNUMBER()	to	find	numeric	values.
Give	the	ISNUMBER	condition	a	higher	priority	and	apply	StopIfTrue	to	prevent
Excel	from	ever	reaching	the	duplicates	condition	for	numeric	cells.

Beginning	with	Excel	2007,	the	Type	property	was	expanded	dramatically.

This	property	was	formerly	a	toggle	between	CellValue	and	Expression,	but	13
new	types	were	added	in	Excel	2007.	Table	16-1	shows	the	valid	values	for	the
Type	property.	Items	3	and	above	were	introduced	in	Excel	2007.	The	Excel
team	must	have	had	plans	for	more	conditions;	items	7,	14,	and	15	do	not	exist,
so	they	must	have	been	on	the	drawing	board	at	one	time	but	then	removed	from
the	final	version	of	Excel	2007.	One	of	these	was	likely	the	ill-fated	“highlight
entire	table	row”	feature	that	was	in	the	Excel	2007	beta	but	removed	in	the	final
version.

TABLE	16-1	Valid	types	for	a	format	condition

Value Description VBA	Constant
1 Cell	value xlCellValue

2 Expression xlExpression

3 Color	scale xlColorScale

4 Data	bar xlDatabar

5 Top	10	values xlTop10

6 Icon	set xlIconSet

8 Unique	values xlUniqueValues

9 Text	string xlTextString

10 Blanks	condition xlBlanksCondition

11 Time	period xlTimePeriod

12 Above	average	condition xlAboveAverageCondition

13 No	blanks	condition xlNoBlanksCondition

16 Errors	condition xlErrorsCondition

17 No	errors	condition xlNoErrorsCondition

Adding	data	bars	to	a	range

The	Data	Bar	command	adds	an	in-cell	bar	chart	to	each	cell	in	a	range.	Many
charting	experts	complained	to	Microsoft	about	problems	in	the	Excel	2007	data
bars.	For	this	reason,	Microsoft	changed	the	data	bars	in	Excel	2010	to	address
these	problems.

In	Figure	16-2,	the	next-to-last	cell	In	the	left	column	reflects	changes
introduced	in	Excel	2010.	Notice	that	this	cell,	which	has	a	value	of	0,	has	no

data	bar	at	all.	In	Excel	2007,	the	smallest	value	receives	a	4-pixel	data	bar,	even
if	that	smallest	value	is	0.	In	addition,	in	Excel	2019,	the	largest	bar	in	the	data
set	typically	takes	up	the	entire	width	of	the	cell.

FIGURE	16-2	Excel	2019	offers	many	variations	on	data	bars.

In	Excel	2007,	the	data	bars	would	end	in	a	gradient	that	made	it	difficult	to
tell	where	the	bar	ended.	Versions	from	Excel	2010	through	2019	offer	a	border
around	the	bar.	You	can	choose	to	change	the	color	of	the	border	or	even	to
remove	the	border,	as	shown	in	the	right	column	of	Figure	16-2.

Excel	2010–2019	also	offer	support	for	negative	data	bars,	as	shown	in	the
middle	column	of	Figure	16-2;	the	data	bars	run	right	to	left	for	negative	values.
These	allow	comparative	histograms.

To	add	a	data	bar,	you	apply	the	FormatConditions.AddDataBar	method	to	a
range	that	contains	your	numbers.	This	method	requires	no	arguments,	and	it
returns	an	object	of	the	DataBar	type.

After	you	add	the	data	bar,	you	will	most	likely	need	to	change	some	of	its
properties.	One	method	of	referring	to	the	data	bar	is	to	assume	that	the	recently
added	data	bar	is	the	last	item	in	the	collection	of	format	conditions.	This	code
would	add	a	data	bar,	identify	the	data	bar	by	counting	the	conditions,	and	then
change	the	color:

Click	here	to	view	code	image
Range("A2:A11").FormatConditions.AddDatabar

ThisCond	=	Range("A2:A11").FormatConditions.Count

With

Range("A2:A11").FormatConditions(ThisCond).BarColor

.Color	=	RGB(255,	0,	0)	'	Red

.TintAndShade	=	-0.5	'	Darker	than	normal

End	With

A	safer	way	to	go	is	to	define	an	object	variable	of	type	DataBar.	You	can
then	assign	the	newly	created	data	bar	to	the	variable:

Click	here	to	view	code	image
Dim	DB	As	Databar

'	Add	the	data	bars

Set	DB	=	Range("A2:A11").FormatConditions.AddDatabar

'	Use	a	red	that	is	25%	darker

With	DB.BarColor

.Color	=	RGB(255,	0,	0)

.TintAndShade	=	-0.5

End	With

When	specifying	colors	for	the	data	bar	or	the	border,	you	should	use	the
RGB	function	to	assign	a	color.	You	can	modify	the	color	by	making	it	darker	or
lighter,	using	the	TintAndShade	property.	Valid	values	are	from	-1	to	1.	Negative
values	make	the	color	darker,	a	value	of	0	means	no	modification,	and	positive
values	make	the	color	lighter.

By	default,	Excel	assigns	the	shortest	data	bar	to	the	minimum	value	and	the
longest	data	bar	to	the	maximum	value.	If	you	want	to	override	the	defaults,	use
the	Modify	method	for	either	the	MinPoint	or	MaxPoint	properties.	Specify	a
type	from	those	shown	in	Table	16-2.	Types	0,	3,	4,	and	5	require	a	value.	Table
16-2	shows	valid	types.

TABLE	16-2	MinPoint	and	MaxPoint	types

Value Description VBA	Constant
0 Number	is	used. xlConditionNumber

1 Lowest	value	from	the	list	of	values. xlConditionValueLowestValue

2 Highest	value	from	the	list	of	values. xlConditionValueHighestValue

3 Percentage	is	used. xlConditionValuePercent

4 Formula	is	used. xlConditionValueFormula

5 Percentile	is	used. xlConditionValuePercentile

-1 xlConditionValueNone

No	conditional	value.

Use	the	following	code	to	have	the	smallest	bar	assigned	to	values	of	0	and
below:

Click	here	to	view	code	image
DB.MinPoint.Modify	_

	Newtype:=xlConditionValueNumber,	NewValue:=0

To	give	the	top	20%	of	the	bars	the	largest	bar,	use	this	code:

Click	here	to	view	code	image
DB.MaxPoint.Modify	_

	Newtype:=xlConditionValuePercent,	NewValue:=80

An	interesting	alternative	is	to	show	only	the	data	bars	and	not	the	value.	To
do	this,	use	this	code:

DB.ShowValue	=	False

To	show	negative	data	bars	in	Excel	2019,	use	this	line:

Click	here	to	view	code	image

DB.AxisPosition	=	xlDataBarAxisAutomatic

When	you	allow	negative	data	bars,	you	can	specify	an	axis	color,	a	negative
bar	color,	and	a	negative	bar	border	color.	The	following	code	shows	samples	of
how	to	change	the	various	colors.	Figure	16-3	shows	the	data	bars	in	column	C:

Click	here	to	view	code	image
Sub	DataBar2()

'	Add	a	Data	bar

'	Include	negative	data	bars

'	Control	the	min	and	max	point

'

Click	here	to	view	code	image
Dim	DB	As	Databar

With	Range("C4:C11")

.FormatConditions.Delete

'	Add	the	data	bars

Set	DB	=	.FormatConditions.AddDatabar()

End	With

'	Set	the	lower	limit

DB.MinPoint.Modify	newtype:=xlConditionFormula,

NewValue:="-600"

DB.MaxPoint.Modify	newtype:=xlConditionValueFormula,

NewValue:="600"

'	Change	the	data	bar	to	Green

With	DB.BarColor

.Color	=	RGB(0,	255,	0)

.TintAndShade	=	-0.15

End	With

With	DB

'	Use	a	gradient

.BarFillType	=	xlDataBarFillGradient

'	Left	to	Right	for	direction	of	bars

.Direction	=	xlLTR

'	Assign	a	different	color	to	negative	bars

.NegativeBarFormat.ColorType	=	xlDataBarColor

'	Use	a	border	around	the	bars

.BarBorder.Type	=	xlDataBarBorderSolid

'	Assign	a	different	border	color	to	negative

.NegativeBarFormat.BorderColorType	=

xlDataBarSameAsPositive

'	All	borders	are	solid	black

With	.BarBorder.Color

.Color	=	RGB(0,	0,	0)

End	With

'	Axis	where	it	naturally	would	fall,	in	black

.AxisPosition	=	xlDataBarAxisAutomatic

With	.AxisColor

.Color	=	0

.TintAndShade	=	0

End	With

'	Negative	bars	in	red

With	.NegativeBarFormat.Color

.Color	=	255

.TintAndShade	=	0

End	With

'	Negative	borders	in	red

	End	With

End	Sub

In	Excel	2019,	you	have	a	choice	of	showing	a	gradient	or	a	solid	bar.	To
show	a	solid	bar,	use	the	following:

DB.BarFillType	=	xlDataBarFillSolid

The	following	code	sample	produces	the	solid	bars	shown	in	column	E	in
Figure	16-3:

Click	here	to	view	code	image
Sub	DataBar3()

'	Add	a	Data	bar

'	Show	solid	bars

'	Allow	negative	bars

'	hide	the	numbers,	show	only	the	data	bars

'

Dim	DB	As	Databar

With	Range("E4:E11")

.FormatConditions.Delete

'	Add	the	data	bars

Set	DB	=	.FormatConditions.AddDatabar()

End	With

With	DB.BarColor

.Color	=	RGB(0,	0,	255)

.TintAndShade	=	0.1

End	With

'	Hide	the	numbers

DB.ShowValue	=	False

DB.BarFillType	=	xlDataBarFillSolid

DB.NegativeBarFormat.ColorType	=	xlDataBarColor

With	DB.NegativeBarFormat.Color

.Color	=	255

.TintAndShade	=	0

End	With

'	Allow	negatives

DB.AxisPosition	=	xlDataBarAxisAutomatic

'	Negative	border	color	is	different

DB.NegativeBarFormat.BorderColorType	=	xlDataBarColor

With	DB.NegativeBarFormat.BorderColor

.Color	=	RGB(127,	127,	0)

.TintAndShade	=	0

End	With

End	Sub

To	allow	the	bars	to	go	right	to	left,	use	this	code:

DB.Direction	=	xlRTL	'	Right	to	Left

FIGURE	16-3	Data	bars	created	by	the	macros	in	this	section.

Adding	color	scales	to	a	range
You	can	add	color	scales	in	either	two-color	or	three-color	scale	varieties.	Figure
16-4	shows	the	available	settings	in	the	Excel	user	interface	for	a	color	scale
using	three	colors.

FIGURE	16-4	Color	scales	enable	you	to	show	hot	spots	in	your	data	set.

As	with	data	bars,	you	apply	a	color	scale	to	a	range	object	by	using	the
AddColorScale	method.	You	should	specify	a	ColorScaleType	of	either	2	or	3
as	the	only	argument	of	the	AddColorScale	method.

Next,	you	can	indicate	a	color	and	tint	for	both	or	all	three	of	the	color	scale
criteria.	Using	the	values	shown	previously	in	Table	16-2,	you	can	also	specify
whether	the	shade	is	applied	to	the	lowest	value,	the	highest	value,	a	particular
value,	or	a	percentage	or	at	a	percentile.

The	following	code	generates	a	three-color	color	scale	in	the	range	A1:A10:

Click	here	to	view	code	image
Sub	Add3ColorScale()

	Dim	CS	As	ColorScale

With	Range("A1:A10")

.FormatConditions.Delete

'	Add	the	Color	Scale	as	a	3-color	scale

Set	CS	=

.FormatConditions.AddColorScale(ColorScaleType:=3)

End	With

''	Format	the	first	color	as	light	red

With	CS.ColorScaleCriteria(1)

.Type	=	xlConditionValuePercent

.Value	=	30

.FormatColor.Color	=	RGB(255,	0,	0)

.FormatColor.TintAndShade	=	0.25

End	With

''	Format	the	second	color	as	green	at	50%

With	CS.ColorScaleCriteria(2)

.Type	=	xlConditionValuePercent

.Value	=	50

.FormatColor.Color	=	RGB(0,	255,	0)

.FormatColor.TintAndShade	=	0

End	With

''	Format	the	third	color	as	dark	blue

With	CS.ColorScaleCriteria(3)

.Type	=	xlConditionValuePercent

.Value	=	80

.FormatColor.Color	=	RGB(0,	0,	255)

.FormatColor.TintAndShade	=	-0.25

End	With

End	Sub

Adding	icon	sets	to	a	range

Icon	sets	in	Excel	come	with	three,	four,	or	five	different	icons	in	the	set.	Figure
16-5	shows	the	settings	for	an	icon	set	with	five	different	icons.

To	add	an	icon	set	to	a	range,	use	the	AddIconSet	method.	No	arguments	are
required.	You	can	adjust	three	properties	that	apply	to	the	icon	set,	and	you	can
use	several	additional	lines	of	code	to	specify	the	icon	set	in	use	and	the	limits
for	each	icon.

FIGURE	16-5	With	additional	icons,	the	complexity	of	the	code	increases.

Specifying	an	icon	set

After	adding	an	icon	set,	you	can	control	whether	the	icon	order	is	reversed	and
whether	Excel	shows	only	the	icons,	and	you	can	also	specify	1	of	the	20	built-in
icon	sets,	like	this:

Click	here	to	view	code	image
Dim	ICS	As	IconSetCondition

With	Range("A1:C10")

.FormatConditions.Delete

Set	ICS	=	.FormatConditions.AddIconSetCondition()

End	With

'	Global	settings	for	the	icon	set

With	ICS

.ReverseOrder	=	False

.ShowIconOnly	=	False

.IconSet	=	ActiveWorkbook.IconSets(xl5CRV)

End	With

Table	16-3	shows	the	complete	list	of	icon	sets.

TABLE	16-3	Available	icon	sets	and	their	VBA	constants

Icon	Set Value Description Constant
1 3	arrows xl3Arrows

2 3	arrows	gray xl3ArrowsGray

3 3	flags xl3Flags

4 3	traffic	lights	1 xl3TrafficLights1

5 3	traffic	lights	2 xl3TrafficLights2

6 3	signs xl3Signs

7 3	symbols xl3Symbols

8 3	symbols	2 xl3Symbols2

9 4	arrows xl4Arrows

10 4	arrows	gray xl4ArrowsGray

11 4	red	to	black xl4RedToBlack

12 4	power	bars xl4CRV

13 4	traffic	lights xl4TrafficLights

14 5	arrows xl5Arrows

15 5	arrows	gray xl5ArrowsGray

16 5	power	bars xl5CRV

17 5	quarters xl5Quarters

18 3	stars xl3Stars

19 3	triangles xl3Triangles

20 5	boxes xl5Boxes

Specifying	ranges	for	each	icon

After	specifying	the	type	of	icon	set,	you	can	specify	ranges	for	each	icon	within
the	set.	By	default,	the	first	icon	starts	at	the	lowest	value.	You	can	adjust	the
settings	for	each	of	the	additional	icons	in	the	set,	as	shown	here:

Click	here	to	view	code	image
'	The	first	icon	always	starts	at	0

'	Settings	for	the	second	icon	-	start	at	50%

With	ICS.IconCriteria(2)

.Type	=	xlConditionValuePercent

.Value	=	50

.Operator	=	xlGreaterEqual

End	With

With	ICS.IconCriteria(3)

.Type	=	xlConditionValuePercent

.Value	=	60

.Operator	=	xlGreaterEqual

End	With

With	ICS.IconCriteria(4)

.Type	=	xlConditionValuePercent

.Value	=	80

.Operator	=	xlGreaterEqual

End	With

With	ICS.IconCriteria(5)

.Type	=	xlConditionValuePercent

.Value	=	90

.Operator	=	xlGreaterEqual

End	With

Valid	values	for	the	Operator	property	are	XlGreater	or	xlGreaterEqual.

Caution	With	VBA,	it	is	easy	to	create	overlapping	ranges	such
as	icon	1	from	0	to	50	and	icon	2	from	30	to	90.	Even	though	the
Edit	Formatting	Rule	dialog	box	prevents	overlapping	ranges,

VBA	allows	them.	However,	keep	in	mind	that	your	icon	set	will	display
unpredictably	if	you	create	invalid	ranges.

Using	visualization	tricks

If	you	use	an	icon	set	or	a	color	scale,	Excel	applies	a	color	to	all	cells	in	the	data
set.	Two	tricks	in	this	section	enable	you	to	apply	an	icon	set	to	only	a	subset	of
the	cells	or	to	apply	two	different	colors	of	data	bars	to	the	same	range.	The	first
trick	is	available	in	the	user	interface,	but	the	second	trick	is	available	only	in
VBA.

Creating	an	icon	set	for	a	subset	of	a	range

Sometimes,	you	might	want	to	apply	a	red	X	only	to	the	bad	cells	in	a	range.
This	is	tricky	to	do	in	the	Excel	user	interface.

In	the	user	interface,	follow	these	steps	to	apply	a	red	X	to	values	greater
than	or	equal	to	66:

1.	 Add	a	three-symbols	icon	set	to	the	range.

2.	 Choose	Home,	Conditional	Formatting,	Manage	Rules,	and	edit	the	rule.
You	see	the	default	settings	that	appear	in	Figure	16-6.

3.	 Specify	no	cell	icon	for	the	first	two	groups.

4.	 Specify	that	the	top	group	has	a	Type	of	Number	and	>=80.

5.	 Specify	that	the	second	group	has	a	Type	of	Number	and	>66.	Excel
defaults	the	Red	X	group	to	be	used	for	<=66	(see	Figure	16-7).

FIGURE	16-6	These	default	rules	appear	when	you	add	a	three-icon	set.

FIGURE	16-7	Although	the	first	two	ranges	have	no	cell	icon,	use	the	number	values	to	force	the
red	X	to	show	when	the	value	is	<=66.

The	code	to	create	this	effect	in	VBA	is	straightforward.	A	great	deal	of	the
code	makes	sure	that	the	icon	set	has	the	red	X	symbols	on	the	cells	with	values
less	than	or	equal	to	66.	To	hide	the	icons	for	rules	1	and	2,	set	the	Icon	property
to	xlIconNoCellIcon.

The	code	to	highlight	values	less	than	or	equal	to	66	with	a	red	X	is	shown
here:

Click	here	to	view	code	image
Sub	TrickyFormatting()

'	mark	the	bad	cells

Dim	ICS	As	IconSetCondition

Dim	FC	As	FormatCondition

With	Range("A1:D9")

.FormatConditions.Delete

Set	ICS	=	.FormatConditions.AddIconSetCondition()

End	With

With	ICS

.ShowIconOnly	=	False

.IconSet	=	ActiveWorkbook.IconSets(xl3Symbols2)

End	With

With	ICS.IconCriteria(1)

.Type	=	xlConditionValue

.Value	=	80

.Operator	=	xlGreater

.Icon	=	xlIconNoCellIcon

End	With

'	The	threshold	for	this	icon	doesn't	really	matter,

'	but	you	have	to	make	sure	that	it	does	not	overlap

the	3rd	icon

With	ICS.IconCriteria(2)

.Type	=	xlConditionValue

.Value	=	66

.Operator	=	xlGreater

.Icon	=	xlIconNoCellIcon

End	With

End	Sub

Using	two	colors	of	data	bars	in	a	range

This	trick	is	particularly	cool	because	it	can	be	achieved	only	with	VBA.	Say
that	values	greater	than	90	are	acceptable	and	those	90	and	below	indicate
trouble.	You	would	like	acceptable	values	to	have	a	green	bar	and	others	to	have
a	red	bar.

Using	VBA,	you	first	add	the	green	data	bars.	Then,	without	deleting	the
format	condition,	you	add	red	data	bars.

In	VBA,	every	format	condition	has	a	Formula	property	that	defines	whether
the	condition	is	displayed	for	a	given	cell.	Therefore,	the	trick	is	to	write	a
formula	that	defines	when	the	green	bars	are	displayed.	When	the	formula	is	not
True,	the	red	bars	are	allowed	to	show	through.

In	Figure	16-8,	the	effect	is	applied	to	the	range	A1:D10.	You	need	to	write
the	formula	in	A1	style,	as	if	it	applies	to	the	top-left	corner	of	the	selection.	The
formula	needs	to	evaluate	to	True	or	False.	Excel	automatically	copies	the
formula	to	all	the	cells	in	the	range.	The	formula	for	this	condition	is

=IF(A1>90,True,False).

Note	The	formula	is	evaluated	relative	to	the	current	cell	pointer
location.	Even	though	it	is	not	usually	necessary	to	select	cells
before	adding	a	FormatCondition,	in	this	case,	selecting	the	range

ensures	that	the	formula	will	work.

FIGURE	16-8	The	dark	bars	are	red,	and	the	lighter	bars	are	green.	VBA	was	used	to	create	two
overlapping	data	bars,	and	then	the	Formula	property	hid	the	top	bars	for	cells	90	and	below.

The	following	code	creates	the	two-color	data	bars:

Click	here	to	view	code	image
Sub	AddTwoDataBars()

'	passing	values	in	green,	failing	in	red

Dim	DB	As	Databar

Dim	DB2	As	Databar

With	Range("A1:D10")

.FormatConditions.Delete

'	Add	a	Light	Green	Data	Bar

Set	DB	=	.FormatConditions.AddDatabar()

DB.BarColor.Color	=	RGB(0,	255,	0)

DB.BarColor.TintAndShade	=	0.25

'	Add	a	Red	Data	Bar

Set	DB2	=	.FormatConditions.AddDatabar()

DB2.BarColor.Color	=	RGB(255,	0,	0)

'	Make	the	green	bars	only

.Select	'	Required	to	make	the	next	line	work

.FormatConditions(1).Formula	=

"=IF(A1>90,True,False)"

DB.Formula	=	"=IF(A1>90,True,False)"

DB.MinPoint.Modify	newtype:=xlConditionFormula,

NewValue:="60"

DB.MaxPoint.Modify

newtype:=xlConditionValueFormula,	_

NewValue:="100"

DB2.MinPoint.Modify	newtype:=xlConditionFormula,

NewValue:="60"

DB2.MaxPoint.Modify

newtype:=xlConditionValueFormula,	_

NewValue:="100"

		End	With

End	Sub

The	Formula	property	works	for	all	the	conditional	formats,	which	means
you	could	potentially	create	some	obnoxious	combinations	of	data
visualizations.	In	Figure	16-9,	five	different	icon	sets	are	combined	in	a	single
range.	No	one	will	be	able	to	figure	out	whether	a	red	flag	is	worse	than	a	gray
down	arrow.	Even	so,	this	ability	opens	interesting	combinations	for	those	with	a
little	creativity.

FIGURE	16-9	VBA	created	this	mixture	of	five	different	icon	sets	in	a	single	range.	The	Formula
property	in	VBA	is	the	key	to	combining	icon	sets.

Use	the	following	code	to	create	the	crazy	icon	set	shown	in	Figure	16-9:

Click	here	to	view	code	image
Sub	AddCrazyIcons()

	With	Range("A1:C10")

.Select	'	The	.Formula	lines	below	require	.Select

here

.FormatConditions.Delete

'	First	icon	set

.FormatConditions.AddIconSetCondition

.FormatConditions(1).IconSet	=

ActiveWorkbook.IconSets(xl3Flags)

.FormatConditions(1).Formula	=

"=IF(A1<5,TRUE,FALSE)"

'	Next	icon	set

.FormatConditions.AddIconSetCondition

.FormatConditions(2).IconSet	=	_

ActiveWorkbook.IconSets(xl3ArrowsGray)

.FormatConditions(2).Formula	=

"=IF(A1<12,TRUE,FALSE)"

'	Next	icon	set

.FormatConditions.AddIconSetCondition

.FormatConditions(3).IconSet	=	_

ActiveWorkbook.IconSets(xl3Symbols2)

.FormatConditions(3).Formula	=

"=IF(A1<22,TRUE,FALSE)"

'	Next	icon	set

.FormatConditions.AddIconSetCondition

.FormatConditions(4).IconSet	=

ActiveWorkbook.IconSets(xl4CRV)

.FormatConditions(4).Formula	=

"=IF(A1<27,TRUE,FALSE)"

'	Next	icon	set

.FormatConditions.AddIconSetCondition

.FormatConditions(5).IconSet	=

ActiveWorkbook.IconSets(xl5CRV)

End	With

End	Sub

Using	other	conditional	formatting	methods

Although	the	icon	sets,	data	bars,	and	color	scales	get	most	of	the	attention,	there
are	still	plenty	of	other	uses	for	conditional	formatting.

The	remaining	examples	in	this	chapter	show	some	of	the	other	conditional
formatting	rules	and	methods	available.

Formatting	cells	that	are	above	or	below	average

Use	the	AddAboveAverage	method	to	format	cells	that	are	above	or	below
average.	After	adding	the	conditional	format,	specify	whether	the	AboveBelow
property	is	xlAboveAverage	or	xlBelowAverage.

The	following	two	macros	highlight	cells	that	are	above	and	below	average:

Click	here	to	view	code	image
Sub	FormatAboveAverage()

	With	Selection

.FormatConditions.Delete

.FormatConditions.AddAboveAverage

.FormatConditions(1).AboveBelow	=	xlAboveAverage

.FormatConditions(1).Interior.Color	=	RGB(255,	0,

0)

End	With

End	Sub

Sub	FormatBelowAverage()

With	Selection

.FormatConditions.Delete

.FormatConditions.AddAboveAverage

.FormatConditions(1).AboveBelow	=	xlBelowAverage

.FormatConditions(1).Interior.Color	=	RGB(255,	0,

0)

End	With

End	Sub

Formatting	cells	in	the	top	10	or	bottom	5

Four	of	the	choices	on	the	Top/Bottom	Rules	flyout	menu	are	controlled	with	the
AddTop10	method.	After	you	add	the	format	condition,	you	need	to	set	three
properties	that	control	how	the	condition	is	calculated:

TopBottom—Set	this	to	either	xlTop10Top	or	xlTop10Bottom.

Rank—Set	this	to	5	for	the	top	5,	6	for	the	top	6,	and	so	on.

Percent—Set	this	to	False	if	you	want	the	top	10	items.	Set	this	to	True	if
you	want	the	top	10%	of	the	items.

The	following	code	highlights	the	top	or	bottom	cells:

Click	here	to	view	code	image
Sub	FormatTop10Items()

With	Selection

.FormatConditions.Delete

.FormatConditions.AddTop10

.FormatConditions(1).TopBottom	=	xlTop10Top

.FormatConditions(1).Rank	=	10

.FormatConditions(1).Percent	=	False

.FormatConditions(1).Interior.Color	=	RGB(255,	0,

0)

End	With

End	Sub

Sub	FormatBottom5Items()

With	Selection

.FormatConditions.Delete

.FormatConditions.AddTop10

.FormatConditions(1).TopBottom	=	xlTop10Bottom

.FormatConditions(1).Rank	=	5

.FormatConditions(1).Percent	=	False

.FormatConditions(1).Interior.Color	=	RGB(255,	0,

0)

End	With

End	Sub

Sub	FormatTop12Percent()

With	Selection

.FormatConditions.Delete

.FormatConditions.AddTop10

.FormatConditions(1).TopBottom	=	xlTop10Top

.FormatConditions(1).Rank	=	12

.FormatConditions(1).Percent	=	True

.FormatConditions(1).Interior.Color	=	RGB(255,	0,

0)

End	With

End	Sub

Formatting	unique	or	duplicate	cells

The	Remove	Duplicates	command	on	the	Data	tab	of	the	ribbon	is	a	destructive
command.	Instead	of	using	it,	you	might	want	to	mark	the	duplicates	without
removing	them.	If	so,	you	can	use	the	AddUniqueValues	method	to	mark	the
duplicate	or	unique	cells.	After	you	call	this	method,	set	the	DupeUnique
property	to	either	xlUnique	or	xlDuplicate.

I	do	not	really	like	either	of	these	options.	Choosing	duplicate	values	marks
both	cells	that	contain	the	duplicate,	as	shown	in	column	A	in	Figure	16-10.	For
example,	both	A2	and	A8	are	marked,	when	A8	is	really	the	only	duplicate
value.

Choosing	unique	values	marks	only	the	cells	that	do	not	have	duplicates,	as
shown	in	column	C	in	Figure	16-10.	This	leaves	several	cells	unmarked.	For
example,	none	of	the	cells	containing	17	is	marked.

FIGURE	16-10	The	AddUniqueValues	method	can	mark	cells	such	as	those	in	columns	A	and	C.
Unfortunately,	it	cannot	mark	the	truly	useful	pattern	in	column	E.

As	any	data	analyst	knows,	the	truly	useful	option	would	be	to	mark	the	first
unique	value.	In	this	wishful	state,	Excel	would	mark	one	instance	of	each
unique	value.	In	this	case,	the	17	in	E2	would	be	marked,	but	any	subsequent
cells	that	contain	17,	such	as	E8,	would	remain	unmarked.

The	code	to	mark	duplicates	or	unique	values	is	shown	here:

Click	here	to	view	code	image
Sub	FormatDuplicate()

With	Selection

.FormatConditions.Delete

.FormatConditions.AddUniqueValues

.FormatConditions(1).DupeUnique	=	xlDuplicate

.FormatConditions(1).Interior.Color	=	RGB(255,	0,

0)

End	With

End	Sub

Sub	FormatUnique()

With	Selection

.FormatConditions.Delete

.FormatConditions.AddUniqueValues

.FormatConditions(1).DupeUnique	=	xlUnique

.FormatConditions(1).Interior.Color	=	RGB(255,	0,

0)

	End	With

End	Sub

Sub	HighlightFirstUnique()

With	Range("E2:E16")

.Select

.FormatConditions.Delete

.FormatConditions.Add	Type:=xlExpression,	_

Formula1:="=COUNTIF(E$2:E2,E2)=1"

.FormatConditions(1).Interior.Color	=	RGB(255,	0,

0)

End	With

End	Sub

Formatting	cells	based	on	their	value

The	value	conditional	formats	have	been	around	for	several	versions	of	Excel.
Use	the	Add	method	with	the	following	arguments:

Type—Because	this	section	deals	with	formatting	based	on	the	cell	value,
the	type	is	xlCellValue.

Operator—This	argument	can	be	xlBetween,	xlEqual,	xlGreater,
xlGreaterEqual,	xlLess,	xlLessEqual,	xlNotBetween,	or	xlNotEqual.

Formula1—Formula1	is	used	with	each	of	the	operators	specified	to	provide
a	numeric	value.

Formula2—This	argument	is	used	for	xlBetween	and	xlNotBetween.

The	following	code	sample	highlights	cells	based	on	their	values:

Click	here	to	view	code	image
Sub	FormatBetween10And20()

With	Selection

.FormatConditions.Delete

.FormatConditions.Add	Type:=xlCellValue,

Operator:=xlBetween,	_

Formula1:="=10",	Formula2:="=20"

.FormatConditions(1).Interior.Color	=	RGB(255,	0,

0)

End	With

End	Sub

Sub	FormatLessThan15()

With	Selection

.FormatConditions.Delete

.FormatConditions.Add	Type:=xlCellValue,

Operator:=xlLess,	_

Formula1:="=15"

.FormatConditions(1).Interior.Color	=	RGB(255,	0,

0)

End	With

End	Sub

Formatting	cells	that	contain	text

When	you	are	trying	to	highlight	cells	that	contain	a	certain	bit	of	text,	you	use
the	Add	method,	the	xlTextString	type,	and	an	operator	of	xlBeginsWith,
xlContains,	xlDoesNotContain,	or	xlEndsWith.

The	following	code	highlights	all	cells	that	contain	an	upper-	or	lowercase
letter	A:

Click	here	to	view	code	image
Sub	FormatContainsA()

With	Selection

.FormatConditions.Delete

.FormatConditions.Add	Type:=xlTextString,

String:="A",	_

TextOperator:=xlContains

'	other	choices:	xlBeginsWith,	xlDoesNotContain,

xlEndsWith

.FormatConditions(1).Interior.Color	=	RGB(255,	0,

0)

End	With

End	Sub

Formatting	cells	that	contain	dates

Conditional	formatting	allows	you	to	filter	to	a	virtual	date	filter.	The	list	of
available	date	operators	is	a	subset	of	the	date	operators	available	in	the	pivot
table	filters.	Use	the	Add	method,	the	xlTimePeriod	type,	and	one	of	these
DateOperator	values:	xlYesterday,	xlToday,	xlTomorrow,	xlLastWeek,
xlLast7Days,	xlThisWeek,	xlNextWeek,	xlLastMonth,	xlThisMonth,	or
xlNextMonth.

The	following	code	highlights	all	dates	in	the	past	week:

Click	here	to	view	code	image
Sub	FormatDatesLastWeek()

With	Selection

.FormatConditions.Delete

'	DateOperator	choices	include	xlYesterday,

xlToday,	xlTomorrow,

'	xlLastWeek,	xlThisWeek,	xlNextWeek,	xlLast7Days

'	xlLastMonth,	xlThisMonth,	xlNextMonth,

.FormatConditions.Add	Type:=xlTimePeriod,	_

DateOperator:=xlLastWeek

.FormatConditions(1).Interior.Color	=	RGB(255,	0,

0)

End	With

End	Sub

Formatting	cells	that	contain	blanks	or	errors

Buried	deep	within	the	Excel	interface	are	options	to	format	cells	that	contain
blanks,	that	contain	errors,	that	do	not	contain	blanks,	or	that	do	not	contain
errors.	If	you	use	the	macro	recorder,	Excel	uses	the	complicated	xlExpression
version	of	conditional	formatting.	For	example,	to	look	for	a	blank,	Excel	tests	to
see	whether	=LEN(TRIM(A1))=0.	Instead,	you	can	use	any	of	these	four	self-
explanatory	types:

Click	here	to	view	code	image
.FormatConditions.Add	Type:=xlBlanksCondition

.FormatConditions.Add	Type:=xlErrorsCondition

.FormatConditions.Add	Type:=xlNoBlanksCondition

.FormatConditions.Add	Type:=xlNoErrorsCondition

You	are	not	required	to	use	any	other	arguments	with	these	types.

Using	a	formula	to	determine	which	cells	to	format

The	most	powerful	conditional	format	is	the	xlExpression	type.	With	this	type,
you	provide	a	formula	for	the	active	cell	that	evaluates	to	True	or	False.	Make
sure	to	write	the	formula	with	relative	or	absolute	references	so	that	the	formula
is	correct	when	Excel	copies	it	to	the	remaining	cells	in	the	selection.

An	infinite	number	of	conditions	can	be	identified	with	a	formula.	Two
popular	conditions	are	shown	here.

Highlighting	the	first	unique	occurrence	of	each	value	in	a	range

Say	that	in	column	A	in	Figure	16-11,	you	would	like	to	highlight	the	first
occurrence	of	each	value	in	the	column.	The	highlighted	cells	will	then	contain	a
complete	list	of	the	unique	numbers	found	in	the	column.

FIGURE	16-11	A	formula-based	condition	can	mark	the	first	unique	occurrence	of	each	value,	as
shown	in	column	A,	or	the	entire	row	with	the	largest	sales,	as	shown	in	D:F.

The	macro	should	select	cells	A1:A15.	The	formula	should	be	written	to
return	a	True	or	False	value	for	cell	A1.	Because	Excel	logically	copies	this
formula	to	the	entire	range,	you	should	use	a	careful	combination	of	relative	and
absolute	references.

The	formula	can	use	the	COUNTIF	function.	Check	to	see	how	many	times	the
range	from	A$1	to	A1	contains	the	value	A1.	If	the	result	is	equal	to	1,	the
condition	is	True,	and	the	cell	is	highlighted.	The	first	formula	is
=COUNTIF(A$1:A1,A1)=1.	As	the	formula	is	copied	down	to,	say	A12,	the
formula	changes	to	=COUNTIF(A$1:A12,A12)=1.

The	following	macro	creates	the	formatting	shown	in	column	A	in	Figure	16-
11:

Click	here	to	view	code	image
Sub	HighlightFirstUnique()

With	Range("A1:A15")

.Select

.FormatConditions.Delete

.FormatConditions.Add	Type:=xlExpression,	_

Formula1:="=COUNTIF(A$1:A1,A1)=1"

.FormatConditions(1).Interior.Color	=	RGB(255,	0,

0)

End	With

End	Sub

Highlighting	the	entire	row	for	the	largest	sales	value

Another	example	of	a	formula-based	condition	involves	highlighting	the	entire
row	of	a	data	set	in	response	to	a	value	in	one	column.	Consider	the	data	set	in
cells	D2:F15	of	Figure	16-11.	If	you	want	to	highlight	the	entire	row	that
contains	the	largest	sale,	you	select	cells	D2:F15	and	write	a	formula	that	works
for	cell	D2:	=$F2=MAX($F$2:$F$15).	The	code	required	to	format	the	row	with
the	largest	sales	value	is	as	follows:

Click	here	to	view	code	image
Sub	HighlightWholeRow()

With	Range("D2:F15")

.Select

.FormatConditions.Delete

.FormatConditions.Add	Type:=xlExpression,	_

Formula1:="=$F2=MAX($F$2:$F$15)"

.FormatConditions(1).Interior.Color	=	RGB(255,	0,

0)

	End	With

End	Sub

Using	the	new	NumberFormat	property

In	legacy	versions	of	Excel,	a	cell	that	matched	a	conditional	format	could	have
a	particular	font,	font	color,	border,	or	fill	pattern.	Since	Excel	2007,	you	have
also	been	able	to	specify	a	number	format.	This	can	be	useful	for	selectively
changing	the	number	format	used	to	display	the	values.

For	example,	you	might	want	to	display	numbers	greater	than	999	in
thousands,	numbers	greater	than	999,999	in	hundred	thousands,	and	numbers
greater	than	9,999,999	in	millions.

If	you	turn	on	the	macro	recorder	and	attempt	to	record	setting	the
conditional	format	to	a	custom	number	format,	the	Excel	2019	VBA	macro
recorder	actually	records	the	action	of	executing	an	XL4	macro!	You	can	skip
the	recorded	code	and	use	the	NumberFormat	property	as	shown	here:

Click	here	to	view	code	image
Sub	NumberFormat()

With	Range("E1:G26")

.FormatConditions.Delete

.FormatConditions.Add	Type:=xlCellValue,

Operator:=xlGreater,	_

Formula1:="=9999999"

.FormatConditions(1).NumberFormat	=	"$#,##0,""M"""

.FormatConditions.Add	Type:=xlCellValue,

Operator:=xlGreater,

Formula1:="=999999"

.FormatConditions(2).NumberFormat	=

"$#,##0.0,""M"""

.FormatConditions.Add	Type:=xlCellValue,

Operator:=xlGreater,

Formula1:="=999"

.FormatConditions(3).NumberFormat	=	"$#,##0,K"

End	With

End	Sub

Figure	16-12	shows	the	original	numbers	in	columns	A:C.	The	results	of
running	the	macro	are	shown	in	columns	E:G.	The	dialog	box	shows	the
conditional	format	rules	that	are	applied.

FIGURE	16-12	Since	Excel	2007,	conditional	formats	have	been	able	to	specify	a	specific	number
format.

Next	steps
Chapter	17	shows	you	how	to	create	dashboards	from	tiny	charts	called
sparklines.

CHAPTER	17
Dashboarding	with	sparklines	in	Excel
2019

In	this	chapter,	you	will:

Create	sparklines

Scale	sparklines

Format	sparklines

Create	a	dashboard

A	feature	that’s	been	around	since	Excel	2010	is	the	ability	to	create	tiny,	word-
size	charts	called	sparklines.	If	you	are	creating	dashboards,	you	will	want	to
leverage	these	charts.

The	concept	of	sparklines	was	first	introduced	by	Professor	Edward	Tufte,
who	promoted	sparklines	as	a	way	to	show	a	maximum	amount	of	information
with	a	minimal	amount	of	ink.

Microsoft	supports	three	types	of	sparklines:

Line—A	sparkline	shows	a	single	series	on	a	line	chart	within	a	single	cell.
On	a	sparkline,	you	can	add	markers	for	the	highest	point,	the	lowest	point,
the	first	point,	and	the	last	point.	Each	of	those	points	can	have	a	different
color.	You	can	also	choose	to	mark	all	the	negative	points	or	even	all	points.

Column—A	spark	column	shows	a	single	series	on	a	column	chart.	You
can	choose	to	show	a	different	color	for	the	first	bar,	the	last	bar,	the	lowest
bar,	the	highest	bar,	or	all	negative	points.

Win/loss—This	is	a	special	type	of	column	chart	in	which	every	positive
point	is	plotted	at	100%	height	and	every	negative	point	is	plotted	at	–100%
height.	The	theory	is	that	positive	columns	represent	wins	and	negative
columns	represent	losses.	With	these	charts,	you	always	want	to	change	the
color	of	the	negative	columns.	It	is	possible	to	highlight	the	highest/lowest

point	based	on	the	underlying	data.

Creating	sparklines

Microsoft	figures	that	you	will	usually	be	creating	a	group	of	sparklines.	The
main	VBA	object	for	sparklines	is	SparklineGroup.	To	create	sparklines,	you
apply	the	SparklineGroups.Add	method	to	the	range	where	you	want	the
sparklines	to	appear.

In	the	Add	method,	you	specify	a	type	for	the	sparkline	and	the	location	of
the	source	data.

Say	that	you	apply	the	Add	method	to	the	three-cell	range	B2:D2.	Then	the
source	must	be	a	range	that	is	either	three	columns	wide	or	three	rows	tall.

The	Type	parameter	can	be	xlSparkLine	for	a	line,	xlSparkColumn	for	a
column,	or	xlSparkColumn100	for	win/loss.

If	the	SourceData	parameter	is	referring	to	ranges	on	the	current	worksheet,
it	can	be	as	simple	as	"D3:F100".	If	it	is	pointing	to	another	worksheet,	use
"Data!D3:F100"	or	"'My	Data'!D3:F100".	If	you’ve	defined	a	named	range,
you	can	specify	the	name	of	the	range	as	the	source	data.

Figure	17-1	shows	a	table	of	S&P	500	closing	prices	for	three	years.	Notice
that	the	actual	data	for	the	sparklines	is	in	three	contiguous	columns:	D,	E,	and	F.

FIGURE	17-1	Arrange	the	data	for	the	sparklines	in	a	contiguous	range.

In	this	example,	the	data	is	on	the	Data	worksheet,	and	the	sparklines	are
created	on	the	Dashboard	worksheet.	The	WSD	object	variable	is	used	for	the	Data
worksheet.	WSL	is	used	for	the	Dashboard	worksheet.

Because	each	column	might	have	one	or	two	extra	points,	the	code	to	find

the	final	row	is	slightly	different	than	usual:

Click	here	to	view	code	image

FinalRow	=	WSD.[A1].CurrentRegion.Rows.Count

The	.CurrentRegion	property	starts	from	cell	A1	and	extends	in	all
directions	until	it	hits	the	edge	of	the	worksheet	or	the	edge	of	the	data.	In	this
case,	the	CurrentRegion	reports	that	row	253	is	the	final	row.

For	this	example,	the	sparklines	are	created	in	a	row	of	three	cells.	Because
each	cell	is	showing	252	points,	I	am	going	with	fairly	large	sparklines.	The
sparkline	grows	to	the	size	of	the	cell,	so	this	code	makes	each	cell	fairly	wide
and	tall:

Click	here	to	view	code	image
With	WSL.Range("B1:D1")

.Value	=	array(2012,2013,2014)

.HorizontalAlignment	=	xlCenter

.Style	=	"Title"

.ColumnWidth	=	39

.Offset(1,	0).RowHeight	=	100

End	With

The	following	code	creates	three	default	sparklines:

Click	here	to	view	code	image
Dim	SG	as	SparklineGroup

Set	SG	=	WSL.Range("B2:D2").SparklineGroups.Add(_

Type:=xlSparkLine,	_

SourceData:="Data!D2:F"	&	FinalRow)

As	shown	in	Figure	17-2,	these	sparklines	aren’t	perfect	(but	the	next	section
shows	how	to	format	them).	There	are	a	number	of	problems	with	the	default
sparklines.	Think	about	the	vertical	axis	of	a	chart.	Sparklines	always	default	to
have	the	scale	automatically	selected.	Because	you	never	really	get	to	see	what
the	scale	is,	you	cannot	tell	the	range	of	the	chart.

FIGURE	17-2	Three	default	sparklines	are	shown	here.

Figure	17-3	shows	the	minimum	and	maximum	for	each	year.	From	this	data,
you	can	guess	that	the	sparkline	for	2015	probably	goes	from	about	1850	to
2150.	The	sparkline	for	2016	probably	goes	from	1800	to	2300.	The	sparkline
for	2017	probably	goes	from	2225	to	2690.

FIGURE	17-3	Each	sparkline	assigns	the	minimum	and	maximum	scales	to	be	just	outside	these
limits.

Scaling	sparklines

The	default	choice	for	the	sparkline	vertical	axis	is	that	each	sparkline	has	a
different	minimum	and	maximum.	There	are	two	other	choices	available.

One	choice	is	to	group	all	the	sparklines	together	but	to	continue	to	allow
Excel	to	choose	the	minimum	and	maximum	scales.	You	still	won’t	know
exactly	what	values	are	chosen	for	the	minimum	and	maximum.

To	force	the	sparklines	to	have	the	same	automatic	scale,	use	this	code:

Click	here	to	view	code	image
'	Allow	automatic	axis	scale,	but	all	three	of	them

the	same

With	SG.Axes.Vertical

.MinScaleType	=	xlSparkScaleGroup

.MaxScaleType	=	xlSparkScaleGroup

End	With

Note	that	.Axes	belongs	to	the	sparkline	group,	not	to	the	individual
sparklines	themselves.	In	fact,	almost	all	the	good	properties	are	applied	at	the
SparklineGroup	level.	This	has	some	interesting	ramifications.	If	you	want	one
sparkline	to	have	an	automatic	scale	and	another	sparkline	to	have	a	fixed	scale,
you	have	to	create	each	of	those	sparklines	separately,	or	at	least	ungroup	them.

Figure	17-4	shows	the	sparklines	when	both	the	minimum	and	the	maximum
scales	are	set	to	act	as	a	group.	All	three	lines	nearly	meet	now,	which	is	a	good
sign.	You	can	guess	that	the	scale	runs	from	about	1850	up	to	perhaps	2700.
Again,	though,	there	is	no	way	to	tell.	The	solution	is	to	use	a	custom	value	for
both	the	minimum	and	the	maximum	axes.

FIGURE	17-4	All	three	sparklines	have	the	same	minimum	and	maximum	scales,	but	you	don’t
know	what	it	is.

Another	choice	is	to	take	absolute	control	and	assign	a	minimum	and	a
maximum	for	the	vertical	axis	scale.	The	following	code	forces	the	sparklines	to
run	from	a	minimum	of	1829	up	to	a	maximum	that	rounds	up	to	2191:

Click	here	to	view	code	image
Set	AF	=	Application.WorksheetFunction

AllMin	=	AF.Min(WSD.Range("D2:F"	&	FinalRow))

AllMax	=	AF.Max(WSD.Range("D2:F"	&	FinalRow))

AllMin	=	Int(AllMin)

AllMax	=	Int(AllMax	+	0.9)

With	SG.Axes.Vertical

.MinScaleType	=	xlSparkScaleCustom

.MaxScaleType	=	xlSparkScaleCustom

.CustomMinScaleValue	=	AllMin

.CustomMaxScaleValue	=	AllMax

End	With

Figure	17-5	shows	the	resulting	sparklines.	Now	you	know	the	minimum	and
the	maximum,	but	you	need	a	way	to	communicate	it	to	the	reader.

FIGURE	17-5	You’ve	manually	assigned	a	minimum	and	a	maximum	scale,	but	it	does	not	appear
on	the	chart.

One	method	is	to	put	the	minimum	and	maximum	values	in	A2.	With	8-point
bold	Calibri,	a	row	height	of	113	allows	10	rows	of	wrapped	text	in	the	cell.	So
you	could	put	the	maximum	value,	then	vbLf	eight	times,	then	the	minimum
value.	(Using	vbLf	is	the	equivalent	of	pressing	Alt+Enter	when	you	are	entering
values	in	a	cell.)

On	the	right	side,	you	can	put	the	final	point’s	value	and	attempt	to	position
it	within	the	cell	so	that	it	falls	roughly	at	the	same	height	as	the	final	point.
Figure	17-6	shows	this	option.

FIGURE	17-6	Labels	on	the	left	show	the	minimum	and	the	maximum.	Labels	on	the	right	show	the
final	value.

The	following	code	produces	the	sparklines	in	Figure	17-6:

Click	here	to	view	code	image
Sub	SP500Macro()

'	SP500	Macro

'

Dim	SG	As	SparklineGroup

Dim	SL	As	Sparkline

Dim	WSD	As	Worksheet	'	Data	worksheet

Dim	WSL	As	Worksheet	'	Dashboard

On	Error	Resume	Next

Application.DisplayAlerts	=	False

Worksheets("Dashboard").Delete

On	Error	GoTo	0

Set	WSD	=	Worksheets("Data")

Set	WSL	=	ActiveWorkbook.Worksheets.Add

WSL.Name	=	"Dashboard"

Click	here	to	view	code	image
FinalRow	=	WSD.Cells(1,	1).CurrentRegion.Rows.Count

WSD.Cells(2,	4).Resize(FinalRow	-	1,	3).Name	=

"MyData"

WSL.Select

'	Set	up	headings

With	WSL.Range("B1:D1")

.Value	=	Array(2015,	2016,	2017)

.HorizontalAlignment	=	xlCenter

.Style	=	"Title"

.ColumnWidth	=	39

.Offset(1,	0).RowHeight	=	100

End	With

Set	SG	=	WSL.Range("B2:D2").SparklineGroups.Add(_

Type:=xlSparkLine,	_

SourceData:="Data!D2:F250")

Set	SL	=	SG.Item(1)

Set	AF	=	Application.WorksheetFunction

AllMin	=	AF.Min(WSD.Range("D2:F"	&	FinalRow))

AllMax	=	AF.Max(WSD.Range("D2:F"	&	FinalRow))

AllMin	=	Int(AllMin)

AllMax	=	Int(AllMax	+	0.9)

'	Allow	automatic	axis	scale,	but	all	three	of	them

the	same

With	SG.Axes.Vertical

.MinScaleType	=	xlSparkScaleCustom

.MaxScaleType	=	xlSparkScaleCustom

.CustomMinScaleValue	=	AllMin

.CustomMaxScaleValue	=	AllMax

End	With

'	Add	two	labels	to	show	minimum	and	maximum

With	WSL.Range("A2")

.Value	=	AllMax	&	vbLf	&	vbLf	&	vbLf	&	vbLf	_

&	vbLf	&	vbLf	&	vbLf	&	vbLf	&	AllMin

.HorizontalAlignment	=	xlRight

.VerticalAlignment	=	xlTop

.Font.Size	=	8

.Font.Bold	=	True

.WrapText	=	True

End	With

'	Put	the	final	value	on	the	right

FinalVal	=	Round(WSD.Cells(Rows.Count,

6).End(xlUp).Value,	0)

Rg	=	AllMax	-	AllMin

RgTenth	=	Rg	/	10

FromTop	=	AllMax	-	FinalVal

FromTop	=	Round(FromTop	/	RgTenth,	0)	-	1

Click	here	to	view	code	image
If	FromTop	<	0	Then	FromTop	=	0

Select	Case	FromTop

Case	0

RtLabel	=	FinalVal

Case	Is	>	0

RtLabel	=	Application.WorksheetFunction.	_

Rept(vbLf,	FromTop)	&	FinalVal

End	Select

With	WSL.Range("E2")

.Value	=	RtLabel

.HorizontalAlignment	=	xlLeft

.VerticalAlignment	=	xlTop

.Font.Size	=	8

.Font.Bold	=	True

End	With

End	Sub

Formatting	sparklines

Most	of	the	formatting	available	with	sparklines	involves	setting	the	color	of
various	elements	of	the	sparkline.

There	are	a	few	methods	for	assigning	colors	in	Excel	2019.	Before	diving
into	the	sparkline	properties,	you	can	read	about	the	two	methods	of	assigning
colors	in	Excel	VBA.

Using	theme	colors

Excel	2007	introduced	the	concept	of	a	theme	for	a	workbook.	A	theme	is

composed	of	a	body	font,	a	headline	font,	a	series	of	effects,	and	then	a	series	of
colors.

The	first	four	colors	are	used	for	text	and	backgrounds.	The	next	six	colors
are	the	accent	colors.	The	20-plus	built-in	themes	include	colors	that	work	well
together.	There	are	also	two	colors	used	for	hyperlinks	and	followed	hyperlinks.
For	now,	focus	on	the	accent	colors.

Go	to	Page	Layout,	Themes	and	choose	a	theme.	Next	to	the	theme	drop-
down	menu	is	a	Colors	drop-down	menu.	Open	that	drop-down	menu	and	select
Create	New	Theme	Colors	from	the	bottom	of	the	list.	Excel	shows	the	Create
New	Theme	Colors	dialog	box	(see	Figure	17-7).	This	dialog	box	gives	you	a
good	picture	of	the	12	colors	associated	with	the	theme.

Throughout	Excel,	there	are	many	color	chooser	drop-down	menus.	As
shown	in	Figure	17-8,	a	section	of	each	color	chooser	drop-down	menu	is	called
Theme	Colors.	The	top	row	under	Theme	Colors	shows	the	four	font	and	six
accent	colors.

FIGURE	17-7	The	current	theme	includes	12	colors.

FIGURE	17-8	All	but	the	hyperlink	colors	from	the	theme	appear	across	the	top	row.

If	you	want	to	choose	the	last	color	in	the	first	row,	the	VBA	is	as	follows:

Click	here	to	view	code	image

ActiveCell.Font.ThemeColor	=	xlThemeColorAccent6

Going	across	that	top	row	of	Figure	17-8,	these	are	the	10	colors:

Click	here	to	view	code	image
xlThemeColorDark1

xlThemeColorLight1

xlThemeColorDark2

xlThemeColorLight2

xlThemeColorAccent1

xlThemeColorAccent2

Click	here	to	view	code	image
xlThemeColorAccent3

xlThemeColorAccent4

xlThemeColorAccent5

xlThemeColorAccent6

Caution	The	first	four	colors	seem	to	be	reversed.
xlThemeColorDark1	is	a	white	color.	This	is	because	the	VBA
constants	were	written	from	the	point	of	view	of	the	font	color	to

use	when	the	cell	contains	a	dark	or	light	background.	If	you	have	a	cell
filled	with	a	dark	color,	you	want	to	display	a	white	font.	Hence,
xlThemeColorDark1	is	white,	and	xlThemeColorLight1	is	black.

On	your	computer,	open	the	Fill	Color	drop-down	menu	on	the	Home	tab
and	look	at	it	in	color.	If	you	are	using	the	Office	theme,	the	last	column	is
various	shades	of	green.	The	top	row	is	the	actual	color	from	the	theme.	Then
there	are	five	rows	that	go	from	a	light	green	to	a	very	dark	green.

Excel	lets	you	modify	the	theme	color	by	lightening	or	darkening	it.	The
values	range	from	–1,	which	is	very	dark,	to	+1,	which	is	very	light.	For
example,	the	very	light	green	in	row	2	of	Figure	17-8	has	a	tint	and	shade	value
of	0.8,	which	is	almost	completely	light.	The	next	row	has	a	tint	and	shade	level
of	0.6.	The	next	row	has	a	tint	and	shade	level	of	0.4.	That	gives	you	three
choices	that	are	lighter	than	the	theme	color.	The	next	two	rows	are	darker	than
the	theme	color.	These	two	darker	rows	have	values	of	–.25	and	–.5.

If	you	turn	on	the	macro	recorder	and	choose	one	of	these	colors,	you	see	a
confusing	bunch	of	code:

Click	here	to	view	code	image
.Pattern	=	xlSolid

.PatternColorIndex	=	xlAutomatic

.ThemeColor	=	xlThemeColorAccent6

.TintAndShade	=	0.799981688894314

.PatternTintAndShade	=	0

If	you	are	using	a	solid	fill,	you	can	leave	out	the	first,	second,	and	fifth	lines
of	code.

The	.TintAndShade	line	looks	confusing	because	computers	cannot	round
decimal	tenths	very	well.	Remember	that	computers	store	numbers	in	binary.	In
binary,	a	simple	number	like	0.1	is	a	repeating	decimal.	As	the	macro	recorder
tries	to	convert	0.8	from	binary	to	decimal,	it	“misses”	by	a	bit	and	comes	up
with	a	very	close	number:	0.7998168894314.	This	is	really	saying	that	it	should

be	80%	lighter	than	the	base	number.

If	you	are	writing	code	by	hand,	you	only	have	to	assign	two	values	to	use	a
theme	color.	Assign	the	.ThemeColor	property	to	one	of	the	six
xlThemeColorAccent1	through	xlThemeColorAccent6	values.	If	you	want	to	use
a	theme	color	from	the	top	row	of	the	drop-down	menu,	the	.TintAndShade
should	be	0	and	can	be	omitted.	If	you	want	to	lighten	the	color,	use	a	positive
decimal	for	.TintAndShade.	If	you	want	to	darken	the	color,	use	a	negative
decimal.

Tip	The	five	shades	in	the	color	palette	drop-down	menus	are	not
the	complete	set	of	variations.	In	VBA,	you	can	assign	any	two-digit
decimal	value	from	–1.00	to	+1.00.	Figure	17-9	shows	201

variations	of	one	theme	color	created	using	the	.TintAndShade	property	in
VBA.

FIGURE	17-9	These	are	shades	of	one	theme	color.

To	recap,	if	you	want	to	work	with	theme	colors,	you	generally	change	two
properties:	the	theme	color,	in	order	to	choose	one	of	the	six	accent	colors,	and
the	tint	and	shade,	to	lighten	or	darken	the	base	color,	like	this:

Click	here	to	view	code	image
.ThemeColor	=	xlThemeColorAccent6

.TintAndShade	=	0.4

Note	One	advantage	of	using	theme	colors	is	that	your	sparklines
change	color	based	on	the	theme.	If	you	later	decide	to	switch	from
the	Office	theme	to	the	Metro	theme,	the	colors	change	to	match

the	theme.

Using	RGB	colors

For	the	past	three	decades,	computers	have	offered	a	palette	of	16	million	colors.
These	colors	derive	from	adjusting	the	amount	of	red,	green,	and	blue	light	in	a
cell.

Do	you	remember	art	class	in	elementary	school?	You	probably	learned	that
the	three	primary	colors	are	red,	yellow,	and	blue.	You	could	make	green	by
mixing	some	yellow	and	blue	paint.	You	could	make	purple	by	mixing	some	red
and	blue	paint.	You	could	make	orange	by	mixing	some	yellow	and	red	paint.	As
all	of	my	male	classmates	and	I	soon	discovered,	you	could	make	black	by
mixing	all	the	paint	colors.	Those	rules	all	work	with	pigments	in	paint,	but	they
don’t	work	with	light.

Those	pixels	on	your	computer	screen	are	made	up	of	light.	In	the	light
spectrum,	the	three	primary	colors	are	red,	green,	and	blue.	You	can	make	the	16
million	colors	of	the	RGB	color	palette	by	mixing	various	amounts	of	red,	green,
and	blue	light.	Each	of	the	three	colors	is	assigned	an	intensity	from	0	(no	light)
to	255	(full	light).

You	will	often	see	a	color	described	using	the	RGB	function.	In	this	function,
the	first	value	is	the	amount	of	red,	the	second	value	is	the	amount	of	green,	and
the	third	value	is	the	amount	of	blue:

To	make	red,	you	use	=RGB(255,0,0).

To	make	green,	use	=RGB(0,255,0).

To	make	blue,	use	=RGB(0,0,255).

What	happens	if	you	mix	100%	of	all	three	colors	of	light?	You	get	white!
To	make	white,	use	=RGB(255,255,255).

What	if	you	shine	no	light	in	a	pixel?	You	get	black:	=RGB(0,0,0).

To	make	purple,	you	use	some	red,	a	little	green,	and	some	blue:
RGB(139,65,123).

To	make	yellow,	use	full	red	and	green	and	no	blue:	=RGB(255,255,0).

To	make	orange,	use	less	green	than	for	yellow:	=RGB(255,153,0).

In	VBA,	you	can	use	the	RGB	function	just	as	it	is	shown	here.	The	macro
recorder	is	not	a	big	fan	of	using	the	RGB	function,	though.	It	instead	shows	the
result	of	the	RGB	function.	Here	is	how	you	convert	from	the	three	arguments	of
the	RGB	function	to	the	color	value:

Take	the	red	value	times	1.

Add	the	green	value	times	256.

Add	the	blue	value	times	65,536.

Note	Why	65,536?	It	is	256	raised	to	the	second	power.

If	you	choose	a	red	for	your	sparkline,	you	frequently	see	the	macro	recorder
assign	.Color	=	255.	This	is	because	=RGB(255,0,0)	is	255.

When	the	macro	recorder	assigns	a	value	of	5287936,	what	color	does	this
mean?	Here	are	the	steps	you	follow	to	find	out:

1.	 In	Excel,	enter	=Dec2Hex(5287936).	You	get	the	answer	50B000.	This	is	the
color	that	web	designers	refer	to	as	#50B000.

2.	 Go	to	your	favorite	search	engine	and	search	for	“color	chooser.”	Choose	a
utility	that	allows	you	to	type	in	the	hex	color	code	and	see	the	color.	Type
50B000.	You	see	that	#50B000	is	RGB(80,176,0).

While	at	the	color	chooser	web	page,	you’re	offered	additional	colors	that
complement	the	original	color.	Click	around	to	find	other	shades	of	colors	and
see	the	RGB	values	for	those.

To	recap,	to	skip	theme	colors	and	use	RGB	colors,	you	set	the	.Color
property	to	the	result	of	an	RGB	function.

Formatting	sparkline	elements

Figure	17-10	shows	a	plain	sparkline.	The	data	is	created	from	12	points	that
show	performance	versus	a	budget.	You	really	have	no	idea	about	the	scale	from
this	sparkline.

FIGURE	17-10	This	is	a	default	sparkline.

If	your	sparkline	includes	both	positive	and	negative	numbers,	it	helps	to
show	the	horizontal	axis	so	that	you	can	figure	out	which	points	are	above
budget	and	which	points	are	below	budget.

To	show	the	axis,	use	the	following:

Click	here	to	view	code	image
SG.Axes.Horizontal.Axis.Visible	=	True

Figure	17-11	shows	the	horizontal	axis.	This	helps	to	show	which	months
were	above	or	below	budget.

FIGURE	17-11	Add	the	horizontal	axis	to	show	which	months	were	above	or	below	budget.

Using	code	from	the	section	“Scaling	sparklines”	earlier	in	this	chapter,	you
can	add	high	and	low	labels	to	the	cell	to	the	left	of	the	sparkline:

Click	here	to	view	code	image
Set	AF	=	Application.WorksheetFunction

MyMax	=	AF.Max(Range("B5:B16"))

MyMin	=	AF.Min(Range("B5:B16"))

LabelStr	=	MyMax	&	vbLf	&	vbLf	&	vbLf	&	vbLf	&	MyMin

With	SG.Axes.Vertical

.MinScaleType	=	xlSparkScaleCustom

.MaxScaleType	=	xlSparkScaleCustom

.CustomMinScaleValue	=	MyMin

.CustomMaxScaleValue	=	MyMax

End	With

With	Range("D2")

.WrapText	=	True

.Font.Size	=	8

.HorizontalAlignment	=	xlRight

.VerticalAlignment	=	xlTop

.Value	=	LabelStr

.RowHeight	=	56.25

End	With

The	result	of	this	macro	is	shown	in	Figure	17-12.

FIGURE	17-12	Use	a	nonsparkline	feature	to	label	the	vertical	axis.

To	change	the	color	of	the	sparkline,	use	this:

Click	here	to	view	code	image
SG.SeriesColor.Color	=	RGB(255,	191,	0)

The	Show	group	of	the	Sparkline	Tools	Design	tab	offers	six	options.	You
can	further	modify	those	elements	by	using	the	Marker	Color	drop-down	menu.
You	can	choose	to	turn	on	a	marker	for	every	point	in	the	data	set,	as	shown	in
Figure	17-13.

FIGURE	17-13	Show	All	Markers.

This	code	shows	a	black	marker	at	every	point:

Click	here	to	view	code	image
With	SG.Points

.Markers.Color.Color	=	RGB(0,	0,	0)	'	black

.Markers.Visible	=	True

End	With

Instead,	you	can	use	markers	to	show	only	the	minimum,	maximum,	first,
and	last	points.	The	following	code	shows	the	minimum	in	red,	maximum	in
green,	and	first	and	last	points	in	blue:

Click	here	to	view	code	image
With	SG.Points

.Lowpoint.Color.Color	=	RGB(255,	0,	0)	'	red

.Highpoint.Color.Color	=	RGB(51,	204,	77)	'	green

.Firstpoint.Color.Color	=	RGB(0,	0,	255)	'	blue

.Lastpoint.Color.Color	=	RGB(0,	0,	255)	'	blue

.Negative.Color.Color	=	RGB(127,	0,	0)	'	pink

.Markers.Color.Color	=	RGB(0,	0,	0)	'	black

'	Choose	Which	points	to	Show

.Highpoint.Visible	=	True

.Lowpoint.Visible	=	True

.Firstpoint.Visible	=	True

.Lowpoint.Visible	=	True

.Negative.Visible	=	False

.Markers.Visible	=	False

End	With

Figure	17-14	shows	the	sparkline	with	only	the	high,	low,	first,	and	last
points	marked.

FIGURE	17-14	This	sparkline	shows	only	key	markers.

Note	Negative	markers	are	particularly	handy	when	you	are
formatting	win/loss	charts,	which	are	discussed	in	the	next	section.

Formatting	win/loss	charts

Win/loss	charts	are	a	special	type	of	sparkline	for	tracking	binary	events.	A
win/loss	chart	shows	an	upward-facing	marker	for	a	positive	value	and	a
downward-facing	marker	for	any	negative	value.	For	a	zero,	no	marker	is	shown.

You	can	use	these	charts	to	track	proposal	wins	versus	losses.	In	Figure	17-
15,	a	win/loss	chart	shows	the	last	25	regular-season	baseball	games	of	the
famed	1951	pennant	race	between	the	Brooklyn	Dodgers	and	the	New	York
Giants.	This	chart	shows	that	the	Giants	went	on	a	seven-game	winning	streak	to
finish	the	regular	season.	The	Dodgers	went	3–4	during	this	period	and	ended	in

a	tie	with	the	Giants,	forcing	a	three-game	playoff.	The	Giants	won	the	first
game,	lost	the	second,	and	then	advanced	to	the	World	Series	by	winning	the
third	playoff	game.	The	Giants	leapt	out	to	a	2–1	lead	over	the	Yankees	but	then
lost	three	straight.

FIGURE	17-15	This	win/loss	chart	documents	the	most	famous	pennant	race	in	history.

Note	The	words	Regular	season,	Playoff,	and	W.	Series,	as	well	as
the	two	dotted	lines,	are	not	part	of	the	sparkline.	The	lines	are
drawing	objects	manually	added	with	Insert,	Shapes.

To	create	the	chart,	you	use	SparklineGroups.Add	with	the	type
xlSparkColumnStacked100,	like	this:

Click	here	to	view	code	image
Set	SG	=	Range("B2:B3").SparklineGroups.Add(_

Type:=xlSparkColumnStacked100,	_

SourceData:="C2:AD3")

You	generally	show	the	wins	and	losses	using	different	colors.	One	obvious
color	scheme	is	red	for	losses	and	green	for	wins.

There	is	no	specific	way	to	change	only	the	“up”	markers,	so	change	the
color	of	all	markers	to	be	green:

Click	here	to	view	code	image
'	Show	all	points	as	green

SG.SeriesColor.Color	=	5287936

Then	change	the	color	of	the	negative	markers	to	red:

Click	here	to	view	code	image
'Show	losses	as	red

With	SG.Points.Negative

.Visible	=	True

.Color.Color	=	255

End	With

It	is	easier	to	create	the	up/down	charts.	You	don’t	have	to	worry	about
setting	the	line	color,	and	the	vertical	axis	is	always	fixed.

Creating	a	dashboard

Sparklines	provide	the	benefit	of	communicating	a	lot	of	information	in	a	very
tiny	space.	In	this	section,	you’ll	see	how	to	fit	130	charts	on	one	page.

Figure	17-16	shows	a	data	set	that	summarizes	a	1.8-million-row	data	set.	I
used	the	Power	Pivot	add-in	for	Excel	to	import	the	records	and	then	calculated
three	new	measures:

YTD	sales	by	month	by	store

YTD	sales	by	month	for	the	previous	year

Percent	increase	of	YTD	sales	versus	the	previous	year

A	key	statistic	in	retail	stores	is	how	you	are	doing	now	compared	to	the
same	time	last	year.	Also,	this	analysis	has	the	benefit	of	being	cumulative.	The
final	number	for	December	represents	whether	the	store	was	up	or	down
compared	to	the	previous	year.

FIGURE	17-16	This	summary	of	1.8	million	records	is	a	sea	of	numbers.

Observations	about	sparklines

After	working	with	sparklines	for	a	while,	some	observations	come	to	mind:

Sparklines	are	transparent.	You	can	see	through	them	to	the	underlying	cell.
This	means	that	the	fill	color	of	the	underlying	cell	shows	through,	and	the
text	in	the	underlying	cell	shows	through.

If	you	make	the	font	really	small	and	align	the	text	with	the	edge	of	the	cell,
you	can	make	the	text	look	like	a	title	or	a	legend.

If	you	turn	on	text	wrapping	and	make	the	cell	tall	enough	for	5	or	10	lines
of	text	in	the	cell,	you	can	control	the	position	of	the	text	in	the	cell	by
using	vbLf	characters	in	VBA.

Sparklines	work	best	when	they	are	bigger	than	a	typical	cell.	For	all	the
examples	in	this	chapter	I	made	the	column	wider,	the	height	taller,	or	both.

Sparklines	created	together	are	grouped.	Changes	made	to	one	sparkline	are
made	to	all	sparklines.

Sparklines	can	be	created	on	a	worksheet	separate	from	the	data.

Sparklines	look	better	when	there	is	some	white	space	around	the	cells.
This	would	be	tough	to	do	manually	because	you	would	have	to	create	the
sparklines	one	at	a	time.	It	is	easy	to	do	here	because	you	can	leverage
VBA.

Creating	hundreds	of	individual	sparklines	in	a	dashboard

You	address	all	the	issues	just	listed	as	you	are	creating	this	dashboard.	The	plan
is	to	create	each	store’s	sparkline	individually.	This	way,	a	blank	row	and	column
appear	between	the	sparklines.

After	inserting	a	new	worksheet	for	the	dashboard,	you	can	format	the	cells
in	Figure	17-17	with	this	code:

Click	here	to	view	code	image
'	Set	up	the	dashboard	as	alternating	cells	for	the

sparkline	and	then	blank

For	c	=	1	To	11	Step	2

WSL.Cells(1,	c).ColumnWidth	=	15

WSL.Cells(1,	c	+	1).ColumnWidth	=	0.6

Next	c

For	r	=	1	To	45	Step	2

WSL.Cells(r,	1).RowHeight	=	38

WSL.Cells(r	+	1,	1).RowHeight	=	3

Next	r

Keep	track	of	which	cell	contains	the	next	sparkline	with	two	variables:
NextRow	=	1

NextCol	=	1

Figure	out	how	many	rows	of	data	there	are	on	the	Data	worksheet.	Loop
from	row	4	to	the	final	row.	For	each	row,	you	make	a	sparkline.

Build	a	text	string	that	points	back	to	the	correct	row	on	the	Data	sheet,	using
this	code,	and	use	that	as	the	source	data	argument	when	defining	the	sparkline:

Click	here	to	view	code	image
ThisSource	=	"Data!B"	&	i	&	":M"	&	i

Set	SG	=	WSL.Cells(NextRow,

NextCol).SparklineGroups.Add(_

Type:=xlSparkColumn,	_

SourceData:=ThisSource)

In	this	case,	you	want	to	show	a	horizontal	axis	at	the	zero	location.	The
range	of	values	for	all	stores	was	–5%	to	+10%.	The	maximum	scale	value	here
is	being	set	to	0.15	(which	is	equivalent	to	15%)	to	allow	extra	room	for	the
“title”	in	the	cell:

Click	here	to	view	code	image
SG.Axes.Horizontal.Axis.Visible	=	True

With	SG.Axes.Vertical

.MinScaleType	=	xlSparkScaleCustom

.MaxScaleType	=	xlSparkScaleCustom

.CustomMinScaleValue	=	-0.05

.CustomMaxScaleValue	=	0.15

End	With

As	in	the	previous	example	with	the	win/loss	chart,	you	want	the	positive
columns	to	be	green	and	the	negative	columns	to	be	red:

Click	here	to	view	code	image
'	All	columns	green

SG.SeriesColor.Color	=	RGB(0,	176,	80)

'	Negative	columns	red

SG.Points.Negative.Visible	=	True

SG.Points.Negative.Color.Color	=	RGB(255,	0,	0)

Remember	that	the	sparkline	has	a	transparent	background.	Thus,	you	can
write	really	small	text	to	the	cell,	and	it	behaves	almost	like	chart	labels.

The	following	code	joins	the	store	name	and	the	final	percentage	change	for
the	year	into	a	title	for	the	chart.	The	program	writes	this	title	to	the	cell	but
makes	it	small,	centered,	and	vertically	aligned:

Click	here	to	view	code	image
ThisStore	=	WSD.Cells(i,	1).Value	&	"	"	&	_

Format(WSD.Cells(i,	13),	"+0.0%;-0.0%;0%")

'	Add	a	label

With	WSL.Cells(NextRow,	NextCol)

.Value	=	ThisStore

.HorizontalAlignment	=	xlCenter

.VerticalAlignment	=	xlTop

.Font.Size	=	8

.WrapText	=	True

End	With

The	final	element	is	to	change	the	background	color	of	the	cell	based	on	the
final	percentage	so	that	if	it	is	up,	the	background	is	light	green,	and	if	it	is
down,	the	background	is	light	red:

Click	here	to	view	code	image
FinalVal	=	WSD.Cells(i,	13)

'	Color	the	cell	light	red	for	negative,	light	green

for	positive

With	WSL.Cells(NextRow,	NextCol).Interior

If	FinalVal	<=	0	Then

.Color	=	RGB(255,	0,	0)

.TintAndShade	=	0.9

Else

.Color	=	RGB(197,	247,	224)

.TintAndShade	=	0.7

End	If

End	With

After	that	sparkline	is	done,	the	column	or	row	positions	are	incremented	to
prepare	for	the	next	chart:

Click	here	to	view	code	image
NextCol	=	NextCol	+	2

If	NextCol	>	11	Then

NextCol	=	1

NextRow	=	NextRow	+	2

End	If

After	this,	the	loop	continues	with	the	next	store.

The	complete	code	is	shown	here:

Click	here	to	view	code	image
Sub	StoreDashboard()

Dim	SG	As	SparklineGroup

Dim	SL	As	Sparkline

Dim	WSD	As	Worksheet	'	Data	worksheet

Dim	WSL	As	Worksheet	'	Dashboard

On	Error	Resume	Next

Application.DisplayAlerts	=	False

Worksheets("Dashboard").Delete

On	Error	GoTo	0

Set	WSD	=	Worksheets("Data")

Set	WSL	=	ActiveWorkbook.Worksheets.Add

WSL.Name	=	"Dashboard"

'	Set	up	the	dashboard	as	alternating	cells	for	the

sparkline	and	then	blank

For	c	=	1	To	11	Step	2

WSL.Cells(1,	c).ColumnWidth	=	15

WSL.Cells(1,	c	+	1).ColumnWidth	=	0.6

Next	c

For	r	=	1	To	45	Step	2

WSL.Cells(r,	1).RowHeight	=	38

WSL.Cells(r	+	1,	1).RowHeight	=	3

Next	r

NextRow	=	1

NextCol	=	1

FinalRow	=	WSD.Cells(Rows.Count,	1).End(xlUp).Row

For	i	=	4	To	FinalRow

ThisStore	=	WSD.Cells(i,	1).Value	&	"	"	&	_

Format(WSD.Cells(i,	13),	"+0.0%;-0.0%;0%")

ThisSource	=	"Data!B"	&	i	&	":M"	&	i

FinalVal	=	WSD.Cells(i,	13)

Set	SG	=	WSL.Cells(NextRow,

NextCol).SparklineGroups.Add(_

Type:=xlSparkColumn,	_

SourceData:=ThisSource)

SG.Axes.Horizontal.Axis.Visible	=	True

With	SG.Axes.Vertical

.MinScaleType	=	xlSparkScaleCustom

.MaxScaleType	=	xlSparkScaleCustom

.CustomMinScaleValue	=	-0.05

.CustomMaxScaleValue	=	0.15

End	With

'	All	columns	green

SG.SeriesColor.Color	=	RGB(0,	176,	80)

'	Negative	columns	red

SG.Points.Negative.Visible	=	True

Click	here	to	view	code	image
SG.Points.Negative.Color.Color	=	RGB(255,	0,	0)

'	Add	a	label

With	WSL.Cells(NextRow,	NextCol)

.Value	=	ThisStore

.HorizontalAlignment	=	xlCenter

.VerticalAlignment	=	xlTop

.Font.Size	=	8

.WrapText	=	True

End	With

'	Color	the	cell	light	red	for	negative,	light	green

for	positive

With	WSL.Cells(NextRow,	NextCol).Interior

If	FinalVal	<=	0	Then

.Color	=	255

.TintAndShade	=	0.9

Else

.Color	=	RGB(197,	247,	224)

.TintAndShade	=	0.7

End	If

End	With

NextCol	=	NextCol	+	2

If	NextCol	>	11	Then

NextCol	=	1

NextRow	=	NextRow	+	2

End	If

Next	i

End	Sub

Figure	17-17	shows	the	final	dashboard,	which	prints	on	a	single	page	and
summarizes	1.8	million	rows	of	data.

FIGURE	17-17	One	page	summarizes	the	sales	from	hundreds	of	stores.

If	you	zoom	in,	you	can	see	that	every	cell	tells	a	story.	In	Figure	17-18,	Park
Meadows	in	cell	I33	had	a	great	January,	managed	to	stay	ahead	of	last	year
through	the	entire	year,	and	finished	up	0.8%.	Lakeside	in	cell	I35	also	had	a
positive	January,	but	then	it	had	a	bad	February	and	a	worse	March.	Lakeside
struggled	back	toward	0%	for	the	rest	of	the	year	but	ended	up	down	seven-
tenths	of	a	percent.

Note	The	report	is	addictive.	I	find	myself	studying	all	sorts	of
trends,	but	then	I	have	to	remind	myself	that	I	created	the	1.8-
million-row	data	set	using	RandBetween	just	a	few	weeks	ago!	The

report	is	so	compelling	that	I	am	getting	drawn	into	studying	fictional	data.

FIGURE	17-18	Note	the	detail	of	two	sparkline	charts.

Next	steps

In	Chapter	18,	“Reading	from	and	writing	to	the	web,”	you	find	out	how	to
use	web	queries	to	automatically	import	data	from	the	Internet	to	your	Excel
applications.

CHAPTER	18
Reading	from	and	writing	to	the	web

In	this	chapter,	you	will:

Get	data	from	the	web

Use	Application.OnTime	to	periodically	analyze	data

Publish	data	to	a	web	page

The	Internet	has	become	pervasive	and	has	changed	our	lives.	From	your
desktop,	millions	of	answers	are	available	at	your	fingertips.	In	addition,
publishing	a	report	on	the	web	enables	millions	of	others	to	instantly	access	your
information.

This	chapter	discusses	automated	ways	to	pull	data	from	the	web	into
spreadsheets,	using	new	features	from	the	former	Power	Query	add-in.	You’ll
find	out	how	to	use	VBA	to	call	a	website	repeatedly	to	gather	information	for
many	data	points.	This	chapter	also	shows	how	to	save	data	from	a	spreadsheet
directly	to	the	web.

Getting	data	from	the	web
There	is	an	endless	variety	of	data	on	the	Internet.	You	have	two	options	when	it
comes	to	getting	data	from	the	web:	You	can	use	the	Excel	interface	to	build	a
query	and	then	use	VBA	to	refresh	the	query,	or	you	can	attempt	to	write	the
query	in	the	M	language.	The	Power	Query	add-in	that	Microsoft	introduced	for
Excel	2010/2013	is	built	in	to	Excel	2019.	When	you	use	New	Query	in	the	Get
&	Transform	group	on	the	Data	tab,	you	are	using	the	former	Power	Query	add-
in	to	build	your	query	in	the	M	language.

The	code	for	the	query	you	would	need	to	write	to	get	data	from	the	web	is
lengthy	and	difficult:

Click	here	to	view	code	image

Sub	CreatePowerQuery()

ActiveWorkbook.Queries.Add	Name:="Table	1",	_

Formula:="let"	&	Chr(13)	&	""	&	Chr(10)	&	_

"	Source	=	Web.Page(Web.Contents("	&	_

"""http://www.flightstats.com/go/FlightStatus/"	&

_

"flightStatusByFlightPositionDetails.do?id="	&	_

"562694389&airlineCode=AA&flightNumber=5370"")),"

_

Click	here	to	view	code	image
&	Chr(13)	&	""	&	Chr(10)	&	"	Data1	=	Source{1}

[Data],"	_

&	Chr(13)	&	""	&	Chr(10)	&	"	#""Changed	Type""	=

"	&	_

"Table.TransformColumnTypes(Data1,{{""UTC

Time"","	&	_

"type	text},	{""Time	At	Departure"",	type	text},

"	&	_

"{""Time	At	Arrival"",	type	text},	{""Spee"	&	_

"d"",	type	text},	{""Altitude"",	type	text},	"	&

_

"{""Latitude"",	type	number},	{""Longitude"",	"	&

_

"type	number}}),"	&	Chr(13)	&	""	&	Chr(10)	&	"	"

&	_

"#""Removed	Columns""	=	Table.RemoveColumns"	&	_

"(#""Changed	Type"",{""UTC	Time"",	""Time	At	"	&

_

"Departure""}),"	&	Chr(13)	&	""	&	Chr(10)	&	_

"	#""Split	Column	by	Position""	=	Table.Split"	&

_

"Column(#""Removed	Columns"",""Time	At

Arrival"","	&	_

"Splitter.SplitTextByPositions({0,	6},	false),"

Formula	=	Formula	&	_

"{""Time	At	Arrival.1"",	""Time	At

Arrival.2""}),"	&	Chr(13)	&	_

""	&	Chr(10)	&	"	#""Changed	Type1""	=	"	&	_

"Table.TransformColumnTypes(#""Split	Column	by	"

&	_

"Position"",{{""Time	At	Arrival.1"",	type	date},"

&	_

"{""Time	At	Arrival.2"",	type	time}}),"	&	Chr(13)

&	_

""	&	Chr(10)	&	"	#""Removed	Columns1""	=	"	&	_

"Table.RemoveColumns(#""Changed	Type1"",{""Time

At	Arrival.1"	_

"}),"	&	_

Chr(13)	&	""	&	Chr(10)	&	"	#""Split	Column	by

Delimiter""	=	"	&	_

"Table.SplitColumn(#""Removed	Columns1"",""Spe"	&

_

"ed"",Splitter.SplitTextByEachDelimiter({""	""},

"	&	_

"null,	false),{""Speed.1"",	""Speed.2""}),"	&

Chr(13)	&	_

""	&	Chr(10)	&	"	#""Changed	Type2""	=	"	&	_

"Table.TransformColumnTypes(#""Split	Column	by

Delimiter"","	&	_

"{{""Speed.1"",	Int64.Type},	{""Speed.2"",	type

text}}),"	&	_

Chr(13)	&	""	&	Chr(10)	&	"	#""Removed	Columns2""

=	"	&	_

"Table.RemoveColumns(#""Changed	Type2"",

{""Speed.2""}),"	&	_

Chr(13)	&	""	&	Chr(10)	&	"	#""Split	Column	by

Delimiter1""	"	&	_

"=	Table.SplitColumn(#""Removed	Columns2"","	&	_

"""Altitude"",Splitter.SplitTextByEachDelimiter({""

""},	"	&	_

"null,	false),{""Altitude.1"",	""Altitude.2""}),"

&	_

Chr(13)	&	""	&	Chr(10)	&	"	#""Changed	Type3""	=	"

Formula	=	Formula	&

"Table.TransformColumnTypes(#""Split	"	&	_

"Column	by	Delimiter1"","	&	_

"{{""Altitude.1"",	Int64.Type},	{""Altitude.2"",

type	text}}),"	&	_

Chr(13)	&	""	&	Chr(10)	&	"	#""Removed	Columns3""

=	"	&	_

"Table.RemoveColumns(#""Changed	Type3"",

{""Altitude.2""})"	&	_

Chr(13)	&	""	&	Chr(10)	&	"in"	&	Chr(13)	&	""	&

Chr(10)	&	"	"	&	_

"	#""Removed	Columns3"""

Sheets.Add	After:=ActiveSheet

With	ActiveSheet.ListObjects.Add(SourceType:=0,	_

Source:="OLEDB;Provider=Microsoft.Mashup.OleDb.1;"	&

_

"Data	Source=$Workbook$;Location=Table1",	_

Destination:=Range("A1")).QueryTable	.CommandType

=	xlCmdSql

.CommandText	=	Array("SELECT	*	FROM	[Table	1]")

.RowNumbers	=	False

.FillAdjacentFormulas	=	False

.PreserveFormatting	=	True

.RefreshOnFileOpen	=	False

.BackgroundQuery	=	True

Click	here	to	view	code	image
.RefreshStyle	=	xlInsertDeleteCells

.SavePassword	=	False

.SaveData	=	True

.AdjustColumnWidth	=	True

.RefreshPeriod	=	0

.PreserveColumnInfo	=	False

.ListObject.DisplayName	=	"Table_1"

.Refresh	BackgroundQuery:=False

End	With

Selection.ListObject.QueryTable.Refresh

BackgroundQuery:=False

End	Sub

The	easier	solution	is	to	build	the	query	in	the	Power	Query	interface	and

then	refresh	the	query	with	this	code:

Click	here	to	view	code	image
Sub	RefreshPowerQuery()

ActiveWorkbook.RefreshAll

End	Sub

Building	multiple	queries	with	VBA

Say	that	you	want	to	collect	data	from	a	website,	such	as	historical	weather
statistics.	Hourly	weather	statistics	are	available	from
http://www.wunderground.com/history/airport/KCAK/2018/6/17/DailyHistory.html
In	this	URL,	KCAK	is	the	location	code	for	the	Akron	Canton	airport	(CAK).
The	2018/6/17	refers	to	June	17,	2018.	You	can	imagine	how	you	can	iterate
through	multiple	cities	or	multiple	dates.

The	strategy	would	be	to	build	the	Power	Query	from	scratch,	refresh,	copy
the	data	to	a	new	sheet,	and	then	delete	the	Power	Query	and	move	on	to	the
next	city	or	date.

To	gather	weather	data	for	24	months,	you	have	to	repeat	the	web	query
process	more	than	700	times.	Doing	this	manually	would	be	tedious.

The	first	part	can	be	hard-coded	because	it	never	changes:
"URL;http://www.wunderground.com/history/airport/K"

The	next	part	is	the	three-letter	airport	code.	If	you	are	retrieving	data	for
many	cities,	this	part	will	change:

CAK

The	third	part	is	a	slash,	the	date	in	YYYY/M/D	format,	and	a	slash:

/2018/6/17/

The	final	part	can	be	hard-coded:

"DailyHistory.html"

Insert	a	new	worksheet	and	build	an	output	table.	In	cell	A2,	enter	the	first
date	for	which	you	have	sales	history.	Use	the	fill	handle	to	drag	the	dates	down

http://www.wunderground.com/history/airport/KCAK/2018/6/17/DailyHistory.html

to	the	current	date.

The	formula	in	B2	is	="/"&Text(A2,"YYYY/M/D")&"/".

Add	friendly	headings	across	row	1	for	the	statistics	you	will	collect.

Finding	results	from	retrieved	data

Next,	you	have	a	decision	to	make.	It	looks	as	though	the	Weather	Underground
website	is	fairly	static.	The	snow	statistic	even	shows	up	if	I	ask	for	JHM	airport
in	Maui.	If	you	are	positive	that	rainfall	is	always	going	to	appear	in	cell	B28	of
your	results	sheet,	you	could	write	the	macro	to	get	data	from	there.	However,	to
be	safe,	you	can	build	some	lookup	formulas	at	the	top	of	the	worksheet	to	look
for	certain	row	labels	and	to	pull	that	data.	In	Figure	18-1,	eight	VLOOKUP
formulas	find	the	statistics	for	high,	low,	rain,	and	snow	from	the	web	query.

FIGURE	18-1	VLOOKUPs	at	the	top	of	the	web	worksheet	find	and	pull	the	relevant	data	from	a	web
page.

Note	The	variable	web	location	of	the	web	data	happens	more
often	than	you	might	think.	If	you	are	pulling	name	and	address
information,	some	addresses	have	three	lines,	and	some	have	four

lines.	Anything	that	appears	after	that	address	might	be	off	by	a	row.	Some
stock	quote	sites	show	a	different	version	of	the	data,	depending	on	whether
the	market	is	open	or	closed.	If	you	kick	off	a	series	of	web	queries	at	3:45
p.m.,	the	macro	might	work	until	4:00	p.m.	and	then	stop	working.	For
these	reasons,	it	is	often	safer	to	take	the	extra	steps	of	retrieving	the	correct
data	from	the	web	query	by	using	VLOOKUP	statements.

To	build	the	macro,	you	add	some	code	before	the	recorded	code:

Click	here	to	view	code	image

Dim	WSD	as	worksheet

Dim	WSW	as	worksheet

Set	WSD	=	Worksheets("Data")

Set	WSW	=	Worksheets("Web")

FinalRow	=	WSD.Cells(Rows.Count,	1).End(xlUp).Row

Then	add	a	loop	to	go	through	all	the	dates	in	the	data	worksheet:

Click	here	to	view	code	image
For	I	=	2	to	FinalRow

ThisDate	=	WSD.Cells(I,	2).value

'	Build	the	ConnectString

CS	=	"URL:

URL;http://www.wunderground.com/history/airport/KCAK"

CS	=	CS	&	ThisDate	&	"DailyHistory.html"

If	a	web	query	is	about	to	overwrite	existing	data	on	the	worksheet,	it	moves
that	data	to	the	right.	You	want	to	clear	the	previous	web	query	and	all	the
contents:

Click	here	to	view	code	image
For	Each	qt	In	WSD.QueryTables

qt.Delete

Next	qt

WSD.Range("A10:A300").EntireRow.Clear

You	can	now	go	into	the	recorded	code	and	change	the	QueryTables.Add
line	to	the	following:

Click	here	to	view	code	image
With	WSD.QueryTables.Add(Connection:=	CS,

Destination:=WSW.Range("A10"))

After	the	recorded	code,	add	some	lines	to	calculate	the	VLOOKUPs,	copy	the
results,	and	finish	the	loop:

Click	here	to	view	code	image
WSW.Calculate

WSD.Cells(i,	3).Resize(1,	4).Value	=

WSW.Range("B4:E4").Value

Next	i

Step	through	the	code	as	it	goes	through	the	first	loop	to	make	sure	that
everything	is	working.	You	should	notice	that	the	actual	.Refresh	line	takes
about	5	to	10	seconds.	Gathering	two	or	three	years’	worth	of	web	pages	requires
more	than	an	hour	of	processing	time.	Run	the	macro,	head	to	lunch,	and	then
come	back	to	a	good	data	set.

Putting	it	all	together

In	the	final	macro	here,	I	turned	off	screen	updating	and	showed	the	row	number
that	the	macro	is	processing	in	the	status	bar.	I	also	deleted	some	unnecessary
properties	from	the	recorded	code:

Click	here	to	view	code	image
Sub	GetData()

Dim	WSD	As	Worksheet

Dim	WSW	As	Worksheet

Set	WSD	=	Worksheets("Data")

Set	WSW	=	Worksheets("Web")

FinalRow	=	WSD.Cells(Rows.Count,	1).End(xlUp).Row

For	i	=	1	To	FinalRow

ThisDate	=	WSD.Cells(i,	2).Value

'	Build	the	ConnectString

CS	=

"URL;http://www.wunderground.com/history/airport/KCAK/"

CS	=	CS	&	ThisDate

CS	=	CS	&	"DailyHistory.html"

'	Clear	results	of	last	web	query

For	Each	qt	In	WSW.QueryTables

qt.Delete

Next	qt

WSD.Range("A10:A300").EntireRow.Clear

With	WSW.QueryTables.Add(Connection:=CS,	_

Destination:=Range("A10"))

.Name	=	"DailyHistory"

.FieldNames	=	True

Click	here	to	view	code	image
.RowNumbers	=	False

.FillAdjacentFormulas	=	False

.PreserveFormatting	=	True

.RefreshOnFileOpen	=	False

.BackgroundQuery	=	True

.RefreshStyle	=	xlInsertDeleteCells

.SavePassword	=	False

.SaveData	=	True

.AdjustColumnWidth	=	True

.RefreshPeriod	=	0

.WebSelectionType	=	xlEntirePage

.WebFormatting	=	xlWebFormattingNone

.WebPreFormattedTextToColumns	=	True

.WebConsecutiveDelimitersAsOne	=	True

.WebSingleBlockTextImport	=	False

.WebDisableDateRecognition	=	False

.WebDisableRedirections	=	False

.Refresh	BackgroundQuery:=False

End	With

WSD.Range("K3:N3").FormulaR1C1	=	_

"=VLOOKUP(R[-1]C,Web!C1:C2,2,FALSE)"

WSD.Cells(i,	3).Resize(1,	4).Value	=	_

WSD.Range("K3:N3").Value

Next	i

End	Sub

After	an	hour,	you	have	data	retrieved	from	hundreds	of	web	pages	(see
Figure	18-2).

FIGURE	18-2	Here	are	the	results	of	running	the	web	query	hundreds	of	times.

Examples	of	scraping	websites	using	web	queries

Over	the	years,	I	have	used	the	web	query	trick	many	times.	Examples	include
the	following:

I	used	a	web	query	to	get	names	and	company	addresses	for	all	Fortune
1000	CFOs	so	that	I	could	pitch	my	Power	Excel	seminars	to	them.

I	used	a	web	query	to	find	the	complete	membership	roster	for	a	publishing
association	of	which	I	am	a	member.	(I	already	had	the	printed	roster,	but
with	an	electronic	database,	I	could	filter	to	find	publishers	in	certain
cities.)

I	used	a	web	query	to	get	a	mailing	address	for	every	public	library	in	the
United	States.

I	used	a	web	query	to	get	a	complete	list	of	Chipotle	restaurants	(which
later	ended	up	in	my	GPS,	but	that	is	a	story	for	the	[yet	unwritten]
Microsoft	MapPoint	book).

Using	Application.OnTime	to	periodically	analyze
data
VBA	offers	the	OnTime	method	for	running	any	VBA	procedure	at	a	specific
time	of	day	or	after	a	specific	amount	of	time	has	passed.

You	can	write	a	macro	to	capture	data	every	hour	throughout	the	day.	This
macro	would	have	times	hard-coded.	The	following	code	will,	theoretically,
capture	data	from	a	website	every	hour	throughout	the	day:

Click	here	to	view	code	image
Sub	ScheduleTheDay()

Application.OnTime	EarliestTime:=TimeValue("8:00

AM"),	_

Procedure:=	"CaptureData"

Application.OnTime	EarliestTime:=TimeValue("9:00

AM"),	_

Procedure:=	"CaptureData"

Application.OnTime	EarliestTime:=TimeValue("10:00

AM"),	_

Procedure:=	"CaptureData"

Application.OnTime	EarliestTime:=TimeValue("11:00

AM"),	_

Procedure:=	"CaptureData"

Application.OnTime	EarliestTime:=TimeValue("12:00

AM"),	_

Procedure:=	"CaptureData"

Application.OnTime	EarliestTime:=TimeValue("1:00

PM"),	_

Procedure:=	"CaptureData"

Application.OnTime	EarliestTime:=TimeValue("2:00

PM"),	_

Procedure:=	"CaptureData"

Application.OnTime	EarliestTime:=TimeValue("3:00

PM"),	_

Procedure:=	"CaptureData"

Application.OnTime	EarliestTime:=TimeValue("4:00

PM"),	_

Procedure:=	"CaptureData"

Application.OnTime	EarliestTime:=TimeValue("5:00

PM"),	_

Procedure:=	"CaptureData"

End	Sub

Sub	CaptureData()

Dim	WSQ	As	Worksheet

Dim	NextRow	As	Long

Set	WSQ	=	Worksheets("MyQuery")

'	Refresh	the	web	query

WSQ.Range("A2").QueryTable.Refresh

BackgroundQuery:=False

'	Make	sure	the	data	is	updated

Application.Wait	Now	+	TimeValue("0:00:10")

'	Copy	the	web	query	results	to	a	new	row

NextRow	=	WSQ.Cells(Rows.Count,	1).End(xlUp).Row	+	1

WSQ.Range("A2:B2").Copy	WSQ.Cells(NextRow,	1)

End	Sub

Using	ready	mode	for	scheduled	procedures

The	OnTime	method	runs	only	when	Excel	is	in	Ready,	Copy,	Cut,	or	Find	mode
at	the	prescribed	time.	If	you	start	to	edit	a	cell	at	7:59:55	a.m.	and	keep	that	cell
in	Edit	mode,	Excel	cannot	run	the	CaptureData	macro	at	8:00	a.m.,	as	directed.

In	the	preceding	code	example,	I	specified	only	the	start	time	for	the
procedure	to	run.	Excel	waits	anxiously	until	the	spreadsheet	is	returned	to
Ready	mode	and	then	runs	the	scheduled	program	as	soon	as	it	can.

The	classic	example	is	that	you	start	to	edit	a	cell	at	7:59	a.m.,	and	then	your
manager	walks	in	and	asks	you	to	attend	a	surprise	staff	meeting	down	the	hall.
If	you	leave	your	spreadsheet	in	Edit	mode	and	attend	the	staff	meeting	until
10:30	a.m.,	the	program	cannot	run	the	first	three	scheduled	hours	of	updates.	As
soon	as	you	return	to	your	desk	and	press	Enter	to	exit	Edit	mode,	the	program
runs	all	previously	scheduled	tasks.	In	the	preceding	code,	you	find	that	the	first
three	scheduled	updates	of	the	program	all	happen	between	10:30	and	10:31	a.m.

Specifying	a	window	of	time	for	an	update

You	can	provide	Excel	with	a	window	of	time	within	which	to	make	an	update.
The	following	code	tells	Excel	to	run	an	update	at	any	time	between	8:00	a.m.
and	8:05	a.m.:

Click	here	to	view	code	image
Application.OnTime	EarliestTime:=TimeValue("8:00	AM"),

_

Procedure:=	"CaptureData	",	_

LatestTime:=TimeValue("8:05	AM")

If	the	Excel	session	remains	in	Edit	mode	for	the	entire	five	minutes,	the
scheduled	task	is	skipped.

Canceling	a	previously	scheduled	macro

It	is	fairly	difficult	to	cancel	a	previously	scheduled	macro.	You	must	know	the
exact	time	that	the	macro	is	scheduled	to	run.	To	cancel	a	pending	operation,	call
the	OnTime	method	and	use	the	Schedule:=False	parameter	to	unschedule	the
event.	The	following	code	cancels	the	11:00	a.m.	run	of	CaptureData:

Click	here	to	view	code	image
Sub	CancelEleven()

Application.OnTime	EarliestTime:=TimeValue("11:00

AM"),	_

Procedure:=	"CaptureData",	Schedule:=False

End	Sub

It	is	interesting	to	note	that	the	OnTime	schedules	are	remembered	by	a
running	instance	of	Excel.	If	you	keep	Excel	open	but	close	the	workbook	with
the	scheduled	procedure,	it	still	runs.	Consider	this	hypothetical	series	of	events:

1.	 Open	Excel	at	7:30	a.m.

2.	 Open	Schedule.xlsm	and	run	a	macro	to	schedule	a	procedure	at	8:00	a.m.

3.	 Close	Schedule.xlsm	but	keep	Excel	open.

4.	 Open	a	new	workbook	and	begin	entering	data.

At	8:00	a.m.,	Excel	reopens	Schedule.xlsm	and	runs	the	scheduled	macro.
Excel	doesn’t	close	Schedule.xlsm.	As	you	can	imagine,	this	is	fairly	annoying
and	alarming	if	you	are	not	expecting	it.	If	you	are	going	to	make	extensive	use
of	Application.Ontime,	you	might	want	to	have	it	running	in	one	instance	of
Excel	while	you	work	in	a	second	instance	of	Excel.

Note	If	you	are	using	a	macro	to	schedule	a	macro	a	certain
amount	of	time	later,	you	could	remember	the	time	in	an	out-of-the
way	cell	to	be	able	to	cancel	the	update.	See	an	example	in	the

“Scheduling	a	macro	to	run	x	minutes	in	the	future”	section	of	this	chapter.

Closing	Excel	cancels	all	pending	scheduled	macros

If	you	close	Excel	with	File,	Exit,	all	future	scheduled	macros	are	automatically
canceled.	When	you	have	a	macro	that	has	scheduled	a	bunch	of	macros	at
indeterminate	times,	closing	Excel	is	the	only	way	to	prevent	the	macros	from
running.

Scheduling	a	macro	to	run	x	minutes	in	the	future

You	can	schedule	a	macro	to	run	at	a	certain	time	in	the	future.	The	following
macro	uses	the	TIME	function	to	return	the	current	time	and	adds	2	minutes	and
30	seconds	to	the	time.	The	following	macro	runs	something	2	minutes	and	30
seconds	from	now:

Click	here	to	view	code	image
Sub	ScheduleAnything()

'	This	macro	can	be	used	to	schedule	anything

WaitHours	=	0

WaitMin	=	2

WaitSec	=	30

NameOfScheduledProc	=	"CaptureData"

'	---	End	of	Input	Section	-------

'	Determine	the	next	time	this	should	run

NextTime	=	Time	+	TimeSerial(WaitHours,	WaitMin,

WaitSec)

'	Schedule	ThisProcedure	to	run	then

Application.OnTime	EarliestTime:=NextTime,

Procedure:=NameOfScheduledProc

End	Sub

Later,	canceling	this	scheduled	event	would	be	nearly	impossible.	You	won’t
know	the	exact	time	that	the	macro	grabbed	the	TIME	function.	You	might	try	to
save	this	value	in	an	out-of-the-way	cell:

Click	here	to	view	code	image
Sub	ScheduleWithCancelOption

NameOfScheduledProc	=	"CaptureData"

Click	here	to	view	code	image
'	Determine	the	next	time	this	should	run

NextTime	=	Time	+	TimeSerial(0,2,30)

Range("ZZ1").Value	=	NextTime

'	Schedule	ThisProcedure	to	run	then

Application.OnTime	EarliestTime:=NextTime,	_

Procedure:=NameOfScheduledProc

End	Sub

Sub	CancelLater()

NextTime	=	Range("ZZ1").value

Application.OnTime	EarliestTime:=NextTime,	_

Procedure:=CaptureData,	Schedule:=False

End	Sub

Scheduling	a	verbal	reminder

The	text-to-speech	tools	in	Excel	can	be	fun.	The	following	macro	sets	up	a
schedule	that	reminds	you	when	it	is	time	to	go	to	a	staff	meeting:

Click	here	to	view	code	image
Sub	ScheduleSpeak()

Application.OnTime	EarliestTime:=TimeValue("9:14

AM"),	_

Procedure:="RemindMe"

End	Sub

Sub	RemindMe()

Application.Speech.Speak	_

Text:="Bill.	It	is	time	for	the	staff	meeting."

End	Sub

If	you	want	to	pull	a	prank	on	your	manager,	you	can	schedule	Excel	to
automatically	turn	on	the	Speak	On	Enter	feature.	Follow	this	scenario:

1.	 Tell	your	manager	that	you	are	taking	him	out	to	lunch	to	celebrate	April	1.

2.	 At	some	point	in	the	morning,	while	your	manager	is	getting	coffee,	run	the
ScheduleSpeech	macro.	Design	the	macro	to	run	15	minutes	after	your

lunch	starts.

3.	 Take	your	manager	to	lunch.

4.	 While	the	manager	is	away,	the	scheduled	macro	runs.

5.	 When	the	manager	returns	and	starts	typing	data	in	Excel,	the	computer	will
repeat	the	cells	as	they	are	entered.	This	is	slightly	reminiscent	of	the
computer	on	Star	Trek	that	repeated	everything	Lieutenant	Uhura	said.

After	this	starts	happening,	you	can	pretend	to	be	innocent;	after	all,	you
have	a	strong	alibi	for	when	the	prank	began	to	happen.	Here’s	the	code	you	use
to	do	it:

Click	here	to	view	code	image
Sub	ScheduleSpeech()

Application.OnTime	EarliestTime:=TimeValue("12:15

PM"),	_

Click	here	to	view	code	image
Procedure:="SetUpSpeech"

End	Sub

Sub	SetupSpeech())

Application.Speech.SpeakCellOnEnter	=	True

End	Sub

Note	To	turn	off	Speak	on	Enter,	you	can	either	dig	out	the	button
from	the	QAT	customization	panel	(look	in	the	category	called
Commands	Not	On	The	Ribbon)	or,	if	you	can	run	some	VBA,

change	the	SetupSpeech	macro	to	change	the	True	to	False.

Scheduling	a	macro	to	run	every	two	minutes

Say	that	you	want	to	ask	Excel	to	run	a	certain	macro	every	two	minutes.
However,	you	realize	that	if	a	macro	gets	delayed	because	you	accidentally	left
the	workbook	in	Edit	mode	while	going	to	the	staff	meeting,	you	don’t	want
dozens	of	updates	to	happen	in	a	matter	of	seconds.

The	easy	solution	is	to	have	the	ScheduleAnything	procedure	recursively
schedule	itself	to	run	again	in	two	minutes.	The	following	code	schedules	a	run
in	two	minutes	and	then	performs	CaptureData:

Click	here	to	view	code	image
Sub	ScheduleAnything()

'	This	macro	can	be	used	to	schedule	anything

'	Enter	how	often	you	want	to	run	the	macro	in	hours

and	minutes

WaitHours	=	0

WaitMin	=	2

WaitSec	=	0

NameOfThisProcedure	=	"ScheduleAnything"

NameOfScheduledProc	=	"CaptureData"

'	---	End	of	Input	Section	-------

'	Determine	the	next	time	this	should	run

NextTime	=	Time	+	TimeSerial(WaitHours,	WaitMin,

WaitSec)

'	Schedule	ThisProcedure	to	run	then

Application.OnTime	EarliestTime:=NextTime,	_

Procedure:=NameOfThisProcedure

'	Get	the	Data

Application.Run	NameOfScheduledProc

End	Sub

This	method	has	some	advantages.	It	doesn’t	schedule	a	million	updates	in
the	future.	You	have	only	one	future	update	scheduled	at	any	given	time.
Therefore,	if	you	decide	that	you	are	tired	of	seeing	the	national	debt	every	15
seconds,	you	only	need	to	comment	out	the	Application.OnTime	line	of	code
and	wait	15	seconds	for	the	last	update	to	happen.

Publishing	data	to	a	web	page

This	chapter	has	highlighted	many	ways	to	capture	data	from	the	web.	But	you
can	also	publish	Excel	data	back	to	the	web.	That’s	what	this	section	is	about.

The	RunReportForEachCustomer	macro	shown	in	Chapter	11,	“Data	mining
with	Advanced	Filter,”	produces	reports	for	each	customer	in	a	company.	Instead
of	printing	and	faxing	a	report,	it	would	be	cool	to	save	the	Excel	file	as	HTML
and	post	the	results	on	a	company	intranet	so	that	the	customer	service	reps	can
instantly	access	the	latest	version	of	the	report.

With	the	Excel	user	interface,	it	is	easy	to	save	the	report	as	a	web	page	to
create	an	HTML	view	of	the	data.

In	Excel	2019,	use	File,	Save	As.	Select	Web	Page	(*.htm,	*html)	in	the	Save
as	Type	drop-down	menu.	You	have	control	over	the	title	that	appears	in	the
window	title	bar.	This	title	also	gets	written	to	the	top	center	of	your	web	page.
Click	the	Change	Title	button	to	change	the	<Title>	tag	for	the	web	page.	Type
a	name	that	ends	in	either	.htm	or	.html	and	click	Publish.

The	result	is	a	file	that	can	be	viewed	in	any	web	browser.	The	web	page
accurately	shows	the	number	formats	and	font	sizes	(see	Figure	18-3).

FIGURE	18-3	The	formatting	is	close	to	that	of	the	original	worksheet.

Whereas	the	macro	from	Chapter	11	did	WBN.SaveAs,	the	current	macro	uses
this	code	to	write	out	each	web	page:

Click	here	to	view	code	image
HTMLFN	=	"C:\Intranet\"	&	ThisCust	&	".html"

On	Error	Resume	Next

Kill	HTMLFN

On	Error	GoTo	0

With	WBN.PublishObjects.Add(_

SourceType:=xlSourceSheet,	_

Filename:=HTMLFN,	_

Sheet:="Sheet1",	_

Source:="",	_

HtmlType:=xlHtmlStatic,	_

DivID:="A",	_

Click	here	to	view	code	image
Title:="Sales	to	"	&	ThisCust)

.Publish	True

.AutoRepublish	=	False

End	With

Although	the	data	is	accurately	presented	in	Figure	18-3,	it	is	not	extremely
fancy.	For	example,	you	don’t	have	a	company	logo	or	navigation	bar	to
examine	other	reports.

Using	VBA	to	create	custom	web	pages

Long	before	Microsoft	introduced	the	Save	As	Web	Page	functionality,	people
had	been	using	VBA	to	publish	Excel	data	as	HTML.	The	advantage	of	using
VBA	for	this	is	that	you	can	write	out	specific	HTML	statements	to	display
company	logos	and	navigation	bars.

Consider	a	typical	web	page	template:

There	is	code	to	display	a	logo	and	navigation	bar	at	the	top/side.

There	is	content	for	the	page.

There	is	some	HTML	code	to	finish	the	page.

The	following	macro	reads	the	code	behind	a	web	page	and	writes	it	to
Excel:

Click	here	to	view	code	image
Sub	ImportHTML()

ThisFile	=	"C:\Intranet\schedule.html"

Open	ThisFile	For	Input	As	#1

Ctr	=	2

Do

Line	Input	#1,	Data

Worksheets("HTML").Cells(Ctr,	2).Value	=	Data

Ctr	=	Ctr	+	1

Loop	While	EOF(1)	=	False

Close	#1

End	Sub

If	you	import	the	text	of	a	web	page	into	Excel,	even	if	you	don’t	understand
the	HTML	involved,	you	can	probably	find	the	first	lines	that	contain	the	page
content.

Examine	the	HTML	code	in	Excel.	Copy	the	lines	needed	to	draw	the	top
part	of	the	web	page	to	a	worksheet	called	Top.	Copy	the	lines	of	code	needed	to
close	the	web	page	to	a	worksheet	called	Bottom.

You	can	use	VBA	to	write	out	the	top,	generate	content	from	your	worksheet,
and	then	write	out	the	bottom.

Using	Excel	as	a	content	management	system

Half	a	billion	people	are	proficient	in	Excel.	Companies	everywhere	have	data	in
Excel	and	many	staffers	who	are	comfortable	maintaining	that	data.	Rather	than
force	these	people	to	learn	how	to	create	HTML	pages,	why	not	build	a	content
management	system	to	take	their	Excel	data	and	write	out	custom	web	pages?

You	probably	already	have	data	for	a	web	page	in	Excel.	Using	the
ImportHTML	routine	to	read	the	HTML	into	Excel,	you	know	the	top	and	bottom
portions	of	the	HTML	needed	to	render	the	web	page.	Building	a	content
management	system	with	these	tools	is	simple,	and	I’ll	show	you	an	example.	To
the	existing	Excel	data,	I	added	two	worksheets.	In	the	worksheet	called	Top,	I
copied	the	HTML	needed	to	generate	the	navigation	bar	of	the	website.	To	the
worksheet	called	Bottom,	I	copied	the	HTML	needed	to	generate	the	end	of	the
HTML	page.	Figure	18-4	shows	the	simple	Bottom	worksheet.

FIGURE	18-4	Companies	everywhere	are	maintaining	all	sorts	of	data	in	Excel	and	are	comfortable
updating	the	data	in	Excel.	Why	not	marry	Excel	with	a	simple	bit	of	VBA	so	that	custom	HTML	can
be	produced	from	Excel?

The	macro	code	opens	a	text	file	called	directory.html	for	output.	First,	all
the	HTML	code	from	the	Top	worksheet	is	written	to	the	file.	Then	the	macro
loops	through	each	row	in	the	membership	directory,	writing	data	to	the	file.
After	completing	this	loop,	the	following	macro	writes	out	the	HTML	code	from
the	Bottom	worksheet	to	finish	the	file:

Click	here	to	view	code	image
Sub	WriteMembershipHTML()

'	Write	web	pages

Dim	WST	As	Worksheet

Dim	WSB	As	Worksheet

Dim	WSM	As	Worksheet

Set	WSB	=	Worksheets("Bottom")

Set	WST	=	Worksheets("Top")

Set	WSM	=	Worksheets("Membership")

'	Figure	out	the	path

Click	here	to	view	code	image
MyPath	=	ThisWorkbook.Path

LineCtr	=	0

FinalT	=	WST.Cells(Rows.Count,	1).End(xlUp).Row

FinalB	=	WSB.Cells(Rows.Count,	1).End(xlUp).Row

FinalM	=	WSM.Cells(Rows.Count,	1).End(xlUp).Row

MyFile	=	"sampleschedule.html"

ThisFile	=	MyPath	&	Application.PathSeparator	&

MyFile

ThisHostFile	=	MyFile

'	Delete	the	old	HTML	page

On	Error	Resume	Next

Kill	(ThisFile)

On	Error	GoTo	0

'	Build	the	title

ThisTitle	=	"<Title>LTCC	Membership

Directory</Title>"

WST.Cells(3,	2).Value	=	ThisTitle

'	Open	the	file	for	output

Open	ThisFile	For	Output	As	#1

'	Write	out	the	top	part	of	the	HTML

For	j	=	2	To	FinalT

Print	#1,	WST.Cells(j,	2).Value

Next	j

'	For	each	row	in	Membership,	write	out	lines	of	data

to	the	HTML	file

For	j	=	2	To	FinalM

'	Surround	Member	name	with	bold	tags

Print	#1,	""	&	WSM.Cells(j,	1).Value

Next	j

'	Close	the	old	file

Print	#1,	"This	page	current	as	of	"	&	Format(Date,

"mmmm	dd,	yyyy")	&	_

"	"	&	Format(Time,	"h:mm	AM/PM")

'	Write	out	HTML	code	from	the	Bottom	worksheet

For	j	=	2	To	FinalB

Print	#1,	WSB.Cells(j,	2).Value

Next	j

Close	#1

Application.StatusBar	=	False

Application.CutCopyMode	=	False

MsgBox	"web	pages	updated"

End	Sub

Figure	18-5	shows	the	finished	web	page.	This	web	page	looks	a	lot	better
than	the	generic	page	created	by	Excel’s	Save	As	Web	Page	option,	and	it
maintains	the	look	and	feel	of	the	rest	of	the	site.

Using	this	approach	has	many	advantages.	The	person	who	maintains	the
schedule	data	is	comfortable	working	in	Excel.	She	has	already	been	maintaining
the	data	in	Excel	on	a	regular	basis.	Now,	after	updating	some	records,	she	clicks
a	button	to	produce	a	new	version	of	the	web	page.

Of	course,	the	web	designer	is	clueless	about	Excel.	However,	if	he	ever
wants	to	change	the	web	design,	it	is	a	simple	matter	of	opening	his	new
sample.html	file	in	Notepad	and	copying	the	new	code	to	the	Top	and	Bottom
worksheets.

FIGURE	18-5	A	simple	content	management	system	in	Excel	was	used	to	generate	this	web	page.

The	look	and	feel	match	the	look	and	feel	of	the	rest	of	the	website.	Excel	achieved	it	without	any
expensive	web	database	coding.

The	resulting	web	page	has	a	small	file	size—about	one-sixth	the	size	of	an
equivalent	page	created	by	Excel’s	Save	As	Web	Page.

Note	In	real	life,	the	content	management	system	in	this	example
was	extended	to	allow	easy	maintenance	of	the	organization’s
calendar,	board	members,	and	so	on.	The	resulting	workbook	made

it	possible	to	maintain	41	web	pages	at	the	click	of	a	button.

Bonus:	FTP	from	Excel

Even	when	you	are	able	to	update	web	pages	from	Excel,	you	still	have	the
hassle	of	using	an	FTP	program	to	upload	the	pages	from	your	hard	drive	to	the
Internet.	Again,	many	people	are	proficient	in	Excel,	but	not	so	many	are
comfortable	with	using	an	FTP	client.

Ken	Anderson	has	written	a	cool	command-line	FTP	freeware	utility.
Download	WCL_FTP	from	http://www.softlookup.com/display.asp?id=20483.
Save	WCL_FTP.exe	to	the	root	directory	of	your	hard	drive	and	then	use	this
code	to	automatically	upload	your	recently	created	HTML	files	to	your	web
server:

Click	here	to	view	code	image
Sub	DoFTP(fname,	pathfname)

'	To	have	this	work,	copy	wcl_ftp.exe	to	the	C:\	root

directory

'	Download	from	http://www.softlookup.com/display.asp?

id=20483

'	Build	a	string	to	FTP.	The	syntax	is

'	WCL_FTP.exe	"Caption"	hostname	username	password

host-directory	_

'	host-filename	local-filename	get-or-put

0Ascii1Binanry	0NoLog	_

'	0Background	1CloseWhenDone	1PassiveMode	1ErrorsText

http://www.softlookup.com/display.asp?id=20483

Click	here	to	view	code	image
If	Not	Worksheets("Menu").Range("I1").Value	=	True

Then	Exit	Sub

s	=	"""c:\wcl_ftp.exe	""	"	_

&	"""Upload	File	to	website""	"	_

&	"ftp.MySite.com	FTPUser	FTPPassword	www	"	_

&	fname	&	"	"	_

&	""""	&	pathfname	&	"""	"	_

&	"put	"	_

&	"0	0	0	1	1	1"

Shell	s,	vbMinimizedNoFocus

End	Sub

Next	steps

Chapter	19,	“Text	file	processing,”	covers	importing	from	a	text	file	and	writing
to	a	text	file.	Being	able	to	write	to	a	text	file	is	useful	when	you	need	to	write
out	data	for	another	system	to	read.

CHAPTER	19
Text	file	processing

In	this	chapter,	you	will:

Import	from	text	files

Write	text	files

VBA	simplifies	both	reading	and	writing	from	text	files.	This	chapter	covers
importing	from	a	text	file	and	writing	to	a	text	file.	Being	able	to	write	to	a	text
file	is	useful	when	you	need	to	write	out	data	for	another	system	to	read	or	even
when	you	need	to	produce	HTML	files.

Importing	from	text	files
There	are	two	basic	scenarios	when	reading	from	text	files.	If	a	file	contains
fewer	than	1,048,576	records,	it	is	not	difficult	to	import	the	file	using	the
Workbooks.OpenText	method.	If	the	file	contains	more	than	1,048,576	records,
you	have	to	read	the	file	one	record	at	a	time.

Importing	text	files	with	fewer	than	1,048,576	rows

Text	files	typically	come	in	one	of	two	formats.	In	one	format,	the	fields	in	each
record	are	separated	by	some	delimiter,	such	as	a	comma,	pipe,	or	tab.	In	the
second	format,	each	field	takes	a	particular	number	of	character	positions.	This
is	called	a	fixed-width	file,	and	this	format	was	very	popular	in	the	days	of
COBOL.

Excel	can	import	either	type	of	file.	You	can	also	open	both	types	by	using
the	OpenText	method.	In	both	cases,	it	is	best	to	record	the	process	of	opening
the	file	and	then	use	the	recorded	snippet	of	code.

Opening	a	fixed-width	file

Figure	19-1	shows	a	text	file	in	which	each	field	takes	up	a	certain	amount	of
space	in	the	record.	Writing	the	code	to	open	this	type	of	file	is	slightly	arduous
because	you	need	to	specify	the	length	of	each	field.	In	my	collection	of
antiques,	I	still	have	a	metal	ruler	used	by	COBOL	programmers	to	measure	the
number	of	characters	in	a	field	printed	on	a	green-bar	printer.	In	theory,	you
could	change	the	font	of	your	file	to	a	monospace	font	and	use	this	same	method.
However,	using	the	macro	recorder	is	a	slightly	more	up-to-date	method.

FIGURE	19-1This	file	is	fixed	width.	Because	you	must	specify	the	exact	length	of	each	field	in	the
file,	opening	this	file	is	quite	involved.

Turn	on	the	macro	recorder	by	selecting	Record	Macro	from	the	Developer
tab.	Use	the	default	macro	name.	From	the	File	menu,	select	Open.	Change	the
Files	Of	Type	to	All	Files	and	find	your	text	file.

In	the	Text	Import	Wizard’s	step	1,	specify	that	the	data	is	Fixed	Width	and
click	Next.	Excel	looks	at	your	data	and	attempts	to	figure	out	where	each	field
begins	and	ends.	Figure	19-2	shows	Excel’s	guess	on	this	particular	file.	Because
the	Date	field	is	too	close	to	the	Customer	field,	Excel	missed	drawing	that	line.

FIGURE	19-2	Excel	guesses	at	where	each	field	starts	and	ends.	In	this	case,	it	guessed	incorrectly
for	two	of	the	fields.

To	add	a	new	field	indicator	in	step	2	of	the	wizard,	click	in	the	appropriate
place	in	the	Data	Preview	window.	If	you	click	in	the	wrong	column,	click	the
line	and	drag	it	to	the	right	place.	If	Excel	inadvertently	put	in	an	extra	field	line,
double-click	the	line	to	remove	it.	Figure	19-3	shows	the	Data	Preview	window
after	the	appropriate	changes	have	been	made.	Note	the	little	ruler	above	the
data.	When	you	click	to	add	a	field	marker,	Excel	is	actually	handling	the	tedious
work	of	figuring	out	that	the	Customer	field	starts	in	position	25	and	has	a	length
of	11.

FIGURE	19-3	After	you	add	a	new	field	marker	and	adjust	the	marker	between	Customer	and
Quantity	to	the	right	place,	Excel	can	build	the	code	that	gives	you	an	idea	of	the	start	position	and
length	of	each	field.

In	step	3	of	the	wizard,	Excel	assumes	that	every	field	is	in	General	format.
Change	the	format	of	any	fields	that	require	special	handling.	Click	the	third
column	and	choose	the	appropriate	format	from	the	Column	Data	Format	section
of	the	dialog	box.	Figure	19-4	shows	the	selections	for	this	file.

FIGURE	19-4	The	third	column	is	a	date,	and	you	do	not	want	to	import	the	Cost	and	Profit
columns.

If	you	have	date	fields,	click	the	heading	above	that	column	and	change	the
column	data	format	to	a	Date	format.	If	you	have	a	file	with	dates	in	year-month-
day	format	or	day-month-year	format,	select	the	drop-down	menu	next	to	Date
and	choose	the	appropriate	date	sequence.

If	you	prefer	to	skip	some	fields,	click	those	columns	and	select	Do	Not
Import	Column	(Skip)	from	the	Column	Data	Format	section.	This	is	useful	in	a
couple	of	instances.	If	the	file	includes	sensitive	data	that	you	do	not	want	to
show	to	a	client,	you	can	leave	it	out	of	the	import.	For	example,	perhaps	this

report	is	for	a	customer	to	whom	you	do	not	want	to	show	the	cost	of	goods	sold
or	profit.	In	this	case,	you	can	choose	to	skip	these	fields	in	the	import.	In
addition,	occasionally	you	will	encounter	a	text	file	that	is	both	fixed	width	and
delimited	by	a	character	such	as	the	pipe	character.	Setting	the	one-character-
wide	pipe	columns	as	“do	not	import”	is	a	great	way	to	get	rid	of	the	pipe
characters.

If	you	have	text	fields	that	contain	alphabetic	characters,	you	can	choose	the
General	format.	The	only	time	you	should	choose	the	Text	format	is	if	you	have
a	numeric	field	that	you	explicitly	need	imported	as	text.	One	example	of	this	is
an	account	number	with	leading	zeros	or	a	column	of	ZIP	Codes.	In	this	case,
change	the	field	to	Text	format	to	ensure	that	ZIP	Code	01234	does	not	lose	the
leading	zero.

Note	After	you	import	a	text	file	and	specify	that	one	field	is	text,
that	field	exhibits	seemingly	bizarre	behavior.	Try	inserting	a	new
row	and	entering	a	formula	in	the	middle	of	a	column	imported	as

text.	Instead	of	getting	the	results	of	the	formula,	Excel	enters	the	formula
as	text.	The	solution	is	to	delete	the	formula,	format	the	entire	column	as
General,	and	then	enter	the	formula	again.

After	opening	the	file,	turn	off	the	macro	recorder	and	examine	the	recorded
code,	which	should	look	like	this:

Click	here	to	view	code	image
Workbooks.OpenText	Filename:="C:\sales.prn",

Origin:=437,	StartRow:=1,	_

DataType:=xlFixedWidth,	FieldInfo:=Array(Array(0,	1),

Array(8,	1),	_

Array(17,	3),	Array(27,	1),	Array(54,	1),	Array(62,

1),	Array(71,	9),	_

Array(79,	9)),	TrailingMinusNumbers:=True

The	most	confusing	part	of	this	code	is	the	FieldInfo	parameter.	You	are
supposed	to	code	an	array	of	two-element	arrays.	Each	field	in	the	file	gets	a
two-element	array	to	identify	both	where	the	field	starts	and	what	type	of	field	it
is.

The	field	start	position	is	zero	based.	Because	the	Region	field	is	in	the	first
character	position,	its	start	position	is	listed	as	zero.

The	field	type	is	a	numeric	code.	If	you	were	coding	this	by	hand,	you	would
use	the	xlColumnDataType	constant	names;	but	for	some	reason,	the	macro
recorder	uses	the	harder-to-understand	numeric	equivalents.

By	using	Table	19-1,	you	can	decode	the	meaning	of	the	individual	arrays	in
the	FieldInfo	array.	Array(0,	1)	means	that	this	field	starts	zero	characters
from	the	left	edge	of	the	file	and	is	a	General	format.	Array(8,	1)	indicates	that
the	next	field	starts	eight	characters	from	the	left	edge	of	the	file	and	is	General
format.	Array(17,	3)	indicates	that	the	next	field	starts	17	characters	from	the
left	edge	of	the	file	and	is	a	Date	format	in	month-day-year	sequence.

TABLE	19-1	xlColumnDataType	values

Value Constant Used	For
1 xlGeneralFormat General

2 xlTextFormat Text

3 xlMDYFormat MDY	date

4 xlDMYFormat DMY	date

5 xlYMDFormat YMD	date

6 xlMYDFormat MYD	date

7 xlDYMFormat DYM	date

8 xlYDMFormat YDM	date

9 xlSkipColumn Skip	Column

10 xlEMDFormat EMD	date	(for	use	in	Taiwan)

As	you	can	see,	the	FieldInfo	parameter	for	fixed-width	files	is	arduous	to
code	and	confusing	to	look	at.	This	is	one	situation	in	which	it	is	easier	to	record
the	macro	and	copy	the	code	snippet.

Opening	a	delimited	file

Figure	19-5	shows	a	text	file	in	which	the	fields	are	comma	separated.	The	main
task	in	opening	such	a	file	is	to	tell	Excel	that	the	delimiter	in	the	file	is	a	comma
and	then	identify	any	special	processing	for	each	field.	In	this	case,	you

definitely	want	to	identify	the	third	column	as	being	a	date	in	MDY	format.

FIGURE	19-5	This	file	is	comma	delimited.	Opening	this	file	involves	telling	Excel	to	look	for	a
comma	as	the	delimiter	and	then	identifying	any	special	handling,	such	as	treating	the	third	column
as	a	date.	This	is	much	easier	than	handling	fixed-width	files.

Note	If	you	try	to	record	the	process	of	opening	a	comma-
delimited	file	whose	filename	ends	in	.csv,	Excel	records	the
Workbooks.Open	method	rather	than	Workbooks.OpenText.	If	you

need	to	control	the	formatting	of	certain	columns,	rename	the	file	to	have	a
.txt	extension	before	recording	the	macro.	You	can	then	edit	the	recorded
macro	to	change	the	filename	back	to	a	.csv	extension.

Turn	on	the	macro	recorder	and	record	the	process	of	opening	the	text	file.	In
step	1	of	the	wizard,	specify	that	the	file	is	delimited.

In	step	2	of	the	Text	Import	Wizard,	the	Data	Preview	window	might	initially
look	horrible.	This	is	because	Excel	defaults	to	assuming	that	the	fields	are
separated	by	tab	characters	(see	Figure	19-6).

FIGURE	19-6	Before	you	import	a	delimited	text	file,	the	initial	Data	Preview	window	is	a
confusing	mess	of	data	because	Excel	is	looking	for	tab	characters	between	fields	when	a	comma	is
actually	the	delimiter	in	this	file.

After	you’ve	cleared	the	Tab	check	box	and	selected	the	proper	delimiter
choice,	which	in	this	case	is	a	comma,	the	Data	Preview	window	in	step	2	looks
perfect,	as	shown	in	Figure	19-7.

Step	3	of	the	wizard	is	identical	to	step	3	for	a	fixed-width	file.	In	this	case,
specify	that	the	third	column	has	a	date	format.	Click	Finish,	and	you	have	this
code	in	the	macro	recorder:

Click	here	to	view	code	image
Workbooks.OpenText	Filename:="C:\sales.txt",

Origin:=437,	_

StartRow:=1,	DataType:=xlDelimited,

TextQualifier:=xlDoubleQuote,	_

ConsecutiveDelimiter:=False,	Tab:=False,

Semicolon:=False,	_

Comma:=True,	Space:=False,	Other:=False,	_

FieldInfo:=Array(Array(1,	1),	Array(2,	1),	_

Array(3,	3),	Array(4,	1),	Array(5,	1),	Array(6,	1),	_

Array(7,	1),	Array(8,	1)),	TrailingMinusNumbers:=True

Although	this	code	appears	longer	than	the	earlier	code,	it	is	actually	simpler.
In	the	FieldInfo	parameter,	the	two	element	arrays	consist	of	a	sequence
number,	starting	at	1	for	the	first	field,	and	then	an	xlColumnDataType	from
Table	19-1.	In	this	example,	Array(2,	1)	is	saying	“the	second	field	is	of
general	type.”	Array(3,	3)	is	saying	“the	third	field	is	a	date	in	MDY	format.”
The	code	is	longer	because	it	explicitly	specifies	that	each	possible	delimiter	is
set	to	False.	Because	False	is	the	default	for	all	delimiters,	you	really	need	only
the	one	you	will	use.	The	following	code	is	equivalent:

Click	here	to	view	code	image
Workbooks.OpenText	Filename:=	"C:\sales.txt",	_

DataType:=xlDelimited,	Comma:=True,	_

FieldInfo:=Array(Array(1,	1),	Array(2,	1),	Array(3,

3),	_

Array(4,	1),	Array(5,	1),	Array(6,	1),	_

Array(7,	1),	Array(8,	1))

FIGURE	19-7	After	the	delimiter	field	has	been	changed	from	a	tab	to	a	comma,	the	Data	Preview
window	looks	perfect.	This	is	certainly	easier	than	the	cumbersome	process	in	step	2	for	a	fixed-
width	file.	Note	that	Excel	ignores	the	commas	in	the	Customer	field	when	there	are	quotation	marks
around	the	customer.

Finally,	to	make	the	code	more	readable,	you	can	use	the	constant	names
rather	than	the	code	numbers:

Click	here	to	view	code	image
Workbooks.OpenText	Filename:="C:\sales.txt",	_

DataType:=xlDelimited,	_Comma:=True,	_

FieldInfo:=Array(Array(1,	xlGeneralFormat),	_

Array(2,	xlGeneralFormat),	_

Array(3,	xlMDYFormat),	Array(4,	xlGeneralFormat),	_

Array(5,	xlGeneralFormat),	Array(6,	xlGeneralFormat),

_

Array(7,	xlGeneralFormat),	Array(8,	xlGeneralFormat))

Excel	has	built-in	options	to	read	files	in	which	fields	are	delimited	by	tabs,
semicolons,	commas,	or	spaces.	Excel	can	actually	handle	anything	as	a
delimiter.	If	someone	sends	pipe-delimited	text,	you	set	the	Other	parameter	to
True	and	specify	an	OtherChar	parameter:

Click	here	to	view	code	image
Workbooks.OpenText	Filename:=	"C:\sales.txt",

Origin:=437,	_

	DataType:=xlDelimited,	Other:=True,	OtherChar:=	"|",

FieldInfo:=...

Dealing	with	text	files	with	more	than	1,048,576	rows

If	you	use	the	Text	Import	Wizard	to	read	a	file	that	has	more	than	1,048,576
rows	of	data,	you	get	this	error:	“File	not	loaded	completely.”	The	first	1,048,576
rows	of	the	file	load	correctly.

If	you	use	Workbooks.OpenText	to	open	a	file	that	has	more	than	1,048,576
rows	of	data,	you	are	given	no	indication	that	the	file	did	not	load	completely.
Excel	2019	loads	the	first	1,048,576	rows	and	allows	macro	execution	to
continue.	Your	only	indication	that	there	is	a	problem	is	if	someone	notices	that
the	reports	are	not	reporting	all	the	sales.	If	you	think	that	your	files	will	ever	get

this	large,	it	would	be	good	to	check	whether	cell	A1048576	is	nonblank	after	an
import.	If	it	is,	the	odds	are	that	the	entire	file	was	not	loaded.

Reading	text	files	one	row	at	a	time

You	might	run	into	a	text	file	that	has	more	than	1,048,576	rows.	When	this
happens,	you	have	to	read	the	text	file	one	row	at	a	time.

You	need	to	open	the	file	for	INPUT	as	#1.	You	use	#1	to	indicate	that	this	is
the	first	file	you	are	opening.	If	you	had	to	open	two	files,	you	could	open	the
second	file	as	#2.	You	can	then	use	the	Line	Input	#1	statement	to	read	a	line
of	the	file	into	a	variable.	The	following	code	opens	sales.txt,	reads	10	lines	of
the	file	into	the	first	10	cells	of	the	worksheet,	and	closes	the	file:

Click	here	to	view	code	image
Sub	Import10()

ThisFile	=	"C\sales.txt"

Open	ThisFile	For	Input	As	#1

For	i	=	1	To	10

Line	Input	#1,	Data

Cells(i,	1).Value	=	Data

Next	i

Close	#1

End	Sub

Rather	than	read	only	10	records,	you	want	to	read	until	you	get	to	the	end	of
the	file.	Excel	automatically	updates	a	variable	called	EOF.	If	you	open	a	file	for
input	as	#1,	checking	EOF(1)	tells	you	whether	you	have	read	the	last	record.

Use	a	Do...While	loop	to	keep	reading	records	until	you	have	reached	the
end	of	the	file:

Click	here	to	view	code	image
Sub	ImportAll()

ThisFile	=	"C:\sales.txt"

Open	ThisFile	For	Input	As	#1

Ctr	=	0

Do

Line	Input	#1,	Data

Ctr	=	Ctr	+	1

Cells(Ctr,	1).Value	=	Data

Loop	While	EOF(1)	=	False

Close	#1

End	Sub

After	reading	records	with	code	such	as	this,	note	in	Figure	19-8	that	the	data
is	not	parsed	into	columns.	All	the	fields	are	in	column	A	of	the	file.

Use	the	TextToColumns	method	to	parse	the	records	into	columns.	The
parameters	for	TextToColumns	are	nearly	identical	to	those	for	the	OpenText
method:

Click	here	to	view	code	image
Cells(1,	1).Resize(Ctr,	1).TextToColumns

Destination:=Range("A1"),	_

DataType:=xlDelimited,	Comma:=True,

FieldInfo:=Array(Array(1,	_

xlGeneralFormat),	Array(2,	xlMDYFormat),	Array(3,

xlGeneralFormat),	_

Array(4,	xlGeneralFormat),	Array(5,	xlGeneralFormat),

Array(6,	_

xlGeneralFormat),	Array(7,xlGeneralFormat),	Array(8,

xlGeneralFormat),	_

Array(9,	xlGeneralFormat),	Array(10,xlGeneralFormat),

Array(11,	_

xlGeneralFormat))

FIGURE	19-8	When	you	are	reading	a	text	file	one	row	at	a	time,	all	the	data	fields	end	up	in	one
long	entry	in	column	A.

Note	For	the	remainder	of	your	Excel	session,	Excel	remembers
the	delimiter	settings.	There	is	an	annoying	bug	(feature?)	in	Excel.
After	Excel	remembers	that	you	are	using	a	comma	or	a	tab	as	a

delimiter,	any	time	that	you	attempt	to	paste	data	from	the	Clipboard	to
Excel,	the	data	is	parsed	automatically	by	the	delimiters	specified	in	the
OpenText	method.	Therefore,	if	you	attempt	to	paste	some	text	that	includes
the	customer	ABC,	Inc.,	the	text	is	parsed	automatically	into	two	columns,
with	text	up	to	ABC	in	one	column	and	Inc.	in	the	next	column.

Rather	than	hard-code	that	you	are	using	the	#1	designator	to	open	the	text
file,	it	is	safer	to	use	the	FreeFile	function.	This	returns	an	integer	representing
the	next	file	number	available	for	use	by	the	Open	statement.	The	complete	code
to	read	a	text	file	smaller	than	1,048,576	rows	is	as	follows:

Click	here	to	view	code	image
Sub	ImportAll()

ThisFile	=	"C:\sales.txt"

FileNumber	=	FreeFile

Open	ThisFile	For	Input	As	#FileNumber

Ctr	=	0

Do

Line	Input	#FileNumber,	Data

Ctr	=	Ctr	+	1

Cells(Ctr,	1).Value	=	Data

Loop	While	EOF(FileNumber)	=	False

Close	#FileNumber

Cells(1,	1).Resize(Ctr,	1).TextToColumns

Destination:=Range("A1"),	_

DataType:=xlDelimited,	Comma:=True,	_

FieldInfo:=Array(Array(1,	xlGeneralFormat),	_

Array(2,	xlMDYFormat),	Array(3,	xlGeneralFormat),	_

Array(4,	xlGeneralFormat),	Array(5,

xlGeneralFormat),	_

Array(5,	xlGeneralFormat),	Array(6,

xlGeneralFormat),	_

Array(7,	xlGeneralFormat),	Array(8,

xlGeneralFormat),	_

Array(9,	xlGeneralFormat),	Array(10,

xlGeneralFormat),	_

Array(10,	xlGeneralFormat),	Array(11,

xlGeneralFormat))

End	Sub

Reading	text	files	with	more	than	1,048,576	rows

You	can	use	the	Line	Input	method	to	read	a	large	text	file.	A	good	strategy	is
to	read	rows	into	cells	A1:A1048575	and	then	begin	reading	additional	rows	into
cell	AA2.	You	can	start	in	row	2	on	the	second	set	so	that	the	headings	can	be
copied	from	row	1	of	the	first	data	set.	If	the	file	is	large	enough	that	it	fills	up
column	AA,	move	to	BA2,	CA2,	and	so	on.

Also,	you	should	stop	writing	columns	when	you	get	to	row	1048574	and
leave	two	blank	rows	at	the	bottom.	This	ensures	that	the	code
Cells(Rows.Count,	1).End(xlup).Row	finds	the	final	row.	The	following	code
reads	a	large	text	file	into	several	sets	of	columns:

Click	here	to	view	code	image
Sub	ReadLargeFile()

ThisFile	=	"C:\sales.txt"

FileNumber	=	FreeFile

Open	ThisFile	For	Input	As	#FileNumber

NextRow	=	1

NextCol	=	1

Do	While	Not	EOF(1)

Line	Input	#FileNumber,	Data

Cells(NextRow,	NextCol).Value	=	Data

NextRow	=	NextRow	+	1

If	NextRow	=	(Rows.Count	-2)	Then

'	Parse	these	records

Range(Cells(1,	NextCol),	Cells(Rows.Count,

NextCol))	_

.TextToColumns	_

Destination:=Cells(1,	NextCol),

DataType:=xlDelimited,	_

Comma:=True,	FieldInfo:=Array(Array(1,

xlGeneralFormat),	_

Array(2,	xlMDYFormat),	Array(3,

xlGeneralFormat),	_

Array(4,	xlGeneralFormat),	Array(5,

xlGeneralFormat),	_

Array(6,	xlGeneralFormat),	Array(7,

xlGeneralFormat),	_

Array(8,	xlGeneralFormat),	Array(9,

xlGeneralFormat),	_

Array(10,	xlGeneralFormat),	Array(11,

xlGeneralFormat))

'	Copy	the	headings	from	section	1

If	NextCol	>	1	Then

Range("A1:K1").Copy	Destination:=Cells(1,

NextCol)

End	If

'	Set	up	the	next	section

NextCol	=	NextCol	+	26

NextRow	=	2

End	If

Loop

Close	#FileNumber

'	Parse	the	final	section	of	records

FinalRow	=	NextRow	-	1

If	FinalRow	=	1	Then

'	Handle	if	the	file	coincidentally	had	1048574

rows	exactly

NextCol	=	NextCol	-	26

Else

Range(Cells(2,	NextCol),	Cells(FinalRow,

NextCol)).TextToColumns	_

Destination:=Cells(1,	NextCol),

DataType:=xlDelimited,	_

Comma:=True,	FieldInfo:=Array(Array(1,

xlGeneralFormat),	_

Click	here	to	view	code	image
Array(2,	xlMDYFormat),	Array(3,	xlGeneralFormat),

_

Array(4,	xlGeneralFormat),	Array(5,

xlGeneralFormat),	_

Array(6,	xlGeneralFormat),	Array(7,

xlGeneralFormat),	_

Array(8,	xlGeneralFormat),	Array(9,

xlGeneralFormat),	_

Array(10,	xlGeneralFormat),	Array(11,

xlGeneralFormat))

If	NextCol	>	1	Then

Range("A1:K1").Copy	Destination:=Cells(1,	NextCol)

End	If

End	If

DataSets	=	(NextCol	-	1)	/	26	+	1

End	Sub

Usually	you	should	write	the	DataSets	variable	to	a	named	cell	somewhere
in	the	workbook	so	that	later	you	know	how	many	data	sets	you	have	in	the
worksheet.

As	you	can	imagine,	using	this	method,	it	is	possible	to	read	660,601,620
rows	of	data	into	a	single	worksheet.	The	code	you	formerly	used	to	filter	and
report	the	data	now	becomes	more	complex.	You	might	find	yourself	creating
pivot	tables	from	each	set	of	columns	to	create	a	data	set	summary	and	then
summarizing	all	the	summary	tables	with	a	final	pivot	table.	At	some	point,	you
need	to	consider	whether	the	application	really	belongs	in	Access.	You	can	also
consider	whether	the	data	should	be	stored	in	Access	with	an	Excel	front	end,
which	is	discussed	in	Chapter	21,	“Using	Access	as	a	back	end	to	enhance
multiuser	access	to	data.”

Using	Power	Query	to	load	large	files	to	the	Data	Model

If	your	goal	is	to	create	a	pivot	table	from	the	text	file,	you	can	bypass	the
worksheet	grid	and	load	millions	of	rows	directly	into	the	Data	Model.	Now	that
Power	Query	is	built	in	to	Excel	2019,	the	macro	recorder	will	record	the

process	of	importing	data	to	the	Data	Model	with	Power	Query.	Use	the
following	steps:

1.	 On	the	Data	tab,	in	the	Power	Query	group,	select	New	Query,	From	File,
From	Text	File.

2.	 Browse	to	the	text	file.

3.	 In	the	Power	Query	Home	tab,	open	the	Close	And	Load	drop-down	menu
and	choose	Close	And	Load	To.

4.	 In	the	Load	To	dialog	box,	choose	Only	Create	Connection	And	Add	This
Data	To	The	Data	Model.	Click	OK.	The	data	is	loaded	to	the	Power	Pivot
engine.

If	you	use	the	macro	recorder	during	this	process,	your	recorded	code
includes	the	M	language	statements	required	to	define	the	query:

Click	here	to	view	code	image
Sub	ImportToDataModel()

'

'	ImportToDataModel	Macro

ActiveWorkbook.Queries.Add	Name:="demo",	Formula:=	_

	"let"	&	Chr(13)	&	""	&	Chr(10)	&	_

	"	Source	=

Csv.Document(File.Contents(""C:\demo.txt""),	"	&	_

	"[Delimiter="","",Encoding=1252]),"	&	Chr(13)	&	""	&

Chr(10)	&	_

	"	#""First	Row	as	Header""	=

Table.PromoteHeaders(Source),"	&	_

Chr(13)	&	""	&	Chr(10)	&	_

	"	#""Changed	Type""	=	Table.TransformColumnTypes("	&

_

	"#""First	Row	as	Header"","	&	_

	"{{""StoreID"",	Int64.Type},	{""Date"",	type	date},"

&	_

	"{""Division"",	type	text},	{""Units"",

Int64.Type},"	&	_

	"{""Revenue"",	Int64.Type}})"	&	Chr(13)	&	""	&

Chr(10)	&	"i"	&	_

	"""Changed	Type"""

Workbooks("Book4").Connections.Add2	"Power	Query	-

demo",	_

	"Connection	to	the	'demo'	query	in	the	workbook.",	_

	"OLEDB;Provider=Microsoft.Mashup.OleDb.1;"	&	_

	"Data	Source=$Workbook$;Location=demo",	_

	"""demo""",	6,	True,	False

End	Sub

You	can	now	use	Insert,	Pivot	Table	and	specify	This	Workbook	Data	Model
as	the	source	for	the	pivot	table.

Writing	Text	Files

The	code	for	writing	text	files	is	similar	to	the	code	for	reading	text	files.	You
need	to	open	a	specific	file	for	output	as	#1.	Then,	as	you	loop	through	various
records,	you	write	them	to	the	file	by	using	the	Print	#1	statement.

Before	you	open	a	file	for	output,	make	sure	that	any	prior	examples	of	the
file	have	been	deleted.	You	can	use	the	Kill	statement	to	delete	a	file.	Kill
returns	an	error	if	the	file	was	not	there	in	the	first	place.	In	this	case,	you	use	On
Error	Resume	Next	to	prevent	an	error.

The	following	code	writes	out	a	text	file	for	use	by	another	application:

Click	here	to	view	code	image
Sub	WriteFile()

ThisFile	=	"C:\Results.txt"

'	Delete	yesterday's	copy	of	the	file

On	Error	Resume	Next

Kill	ThisFile

On	Error	GoTo	0

'	Open	the	file

Open	ThisFile	For	Output	As	#1

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

'	Write	out	the	file

For	j	=	1	To	FinalRow

Print	#1,	Cells(j,	1).Value

Next	j

End	Sub

This	is	a	somewhat	trivial	example.	You	can	use	this	method	to	write	out	any
type	of	text-based	file.	The	code	at	the	end	of	Chapter	18,	“Reading	from	and
writing	to	the	web,”	uses	the	same	concept	to	write	out	HTML	files.

Next	steps

The	next	chapter	steps	outside	the	world	of	Excel	and	talks	about	how	to	transfer
Excel	data	into	Microsoft	Word	documents.	Chapter	20,	“Automating	Word,”
looks	at	using	Excel	VBA	to	automate	and	control	Microsoft	Word.

CHAPTER	20
Automating	Word

In	this	chapter,	you	will:

Use	early	and	late	binding	to	reference	a	Word	object

Use	the	New	keyword	to	reference	the	Word	application

Use	the	CreateObject	function	to	create	a	new	instance	of	an	object

Use	the	GetObject	function	to	reference	an	existing	instance	of	Word

Use	constant	values

Be	introduced	to	some	of	Word’s	objects

Control	form	fields	in	Word

Word,	Excel,	PowerPoint,	Outlook,	and	Access	all	use	the	same	VBA	language.
The	only	difference	is	their	object	models.	For	example,	Excel	has	a	Workbooks
object,	and	Word	has	Documents.	Any	one	of	these	applications	can	access	the
object	model	of	another	of	the	applications,	as	long	as	the	second	application	is
installed.

To	access	Word’s	object	library,	Excel	must	establish	a	link	to	it	by	using
either	early	binding	or	late	binding.	With	early	binding,	the	reference	to	the
application	object	is	created	when	the	program	is	compiled.	With	late	binding,
the	reference	is	created	when	the	program	is	run.

This	chapter	provides	an	introduction	to	accessing	Word	from	Excel.

Note	This	chapter	does	not	review	Word’s	entire	object	model	or
the	object	models	of	other	applications.	Refer	to	the	VBA	Object
Browser	in	the	appropriate	application	to	learn	about	other	object

models.

Using	early	binding	to	reference	a	Word	object

Code	written	with	early	binding	executes	faster	than	code	with	late	binding.	A
reference	is	made	to	Word’s	object	library	before	the	code	is	written	so	that
Word’s	objects,	properties,	and	methods	are	available	in	the	Object	Browser.
Tips	such	as	a	list	of	members	of	an	object	also	appear,	as	shown	in	Figure	20-1.

The	disadvantage	of	early	binding	is	that	the	referenced	object	library	must
exist	on	the	system.	For	example,	if	you	write	a	macro	referencing	Word	2019’s
object	library	and	someone	with	Word	2010	attempts	to	run	the	code,	the
program	fails	because	it	cannot	find	the	Word	2019	object	library.

FIGURE	20-1	Early	binding	allows	access	to	a	Word	object’s	syntax.

You	add	the	object	library	through	the	VB	Editor,	as	described	here:

1.	 Select	Tools,	References.

2.	 Check	Microsoft	Word	16.0	Object	Library	in	the	Available	References	list
(see	Figure	20-2).	If	the	object	library	is	not	found,	Word	is	not	installed.	If
another	version	is	found	in	the	list,	such	as	12.0,	another	version	of	Word	is
installed,	and	you	should	check	that.

3.	 Click	OK.

FIGURE	20-2	Select	the	object	library	from	the	Available	References	list.

After	the	reference	is	set,	Word	variables	can	be	declared	with	the	correct
Word	variable	type,	such	as	Document.	However,	if	the	object	variable	is
declared	As	Object,	this	forces	the	program	to	use	late	binding.	The	following
example	creates	a	new	instance	of	Word	and	opens	an	existing	Word	document
from	Excel	using	early	binding:

Click	here	to	view	code	image
Sub	WordEarlyBinding()

Dim	wdApp	As	Word.Application

Dim	wdDoc	As	Document

Set	wdApp	=	New	Word.Application

wdApp.Visible	=	True	'make	Word	visible

Set	wdDoc	=	wdApp.Documents.Open(ThisWorkbook.Path	&	_

"\Automating	Word.docx")

Set	wdApp	=	Nothing

Set	wdDoc	=	Nothing

End	Sub

The	declared	variables,	wdApp	and	wdDoc,	are	Word	object	types.	wdApp	is
used	to	create	a	reference	to	the	Word	application	in	the	same	way	the
Application	object	is	used	in	Excel.	New	Word.Application	is	used	to	create	a
new	instance	of	Word.	If	you	are	opening	a	document	in	a	new	instance	of	Word,

Word	is	not	visible.	If	the	application	needs	to	be	shown,	it	must	be	unhidden	(
wdApp.Visible	=	True).	When	the	program	is	done,	release	the	connection	to
Word	by	setting	the	object,	wdApp,	to	Nothing.

Tip	Excel	searches	through	the	selected	libraries	to	find	the
reference	for	the	object	type.	If	the	type	is	found	in	more	than	one
library,	the	first	reference	is	selected.	You	can	influence	which

library	is	chosen	by	changing	the	priority	of	the	reference	in	the	list	of
selected	libraries.

When	the	process	is	finished,	it’s	a	good	idea	to	set	the	object	variables	to
Nothing	and	release	the	memory	being	used	by	the	application,	as	shown	here:
Set	wdApp	=	Nothing

Set	wdDoc	=	Nothing

If	the	referenced	version	of	Word	does	not	exist	on	the	system,	an	error
message	appears	when	the	code	is	compiled.	View	the	References	list;	the
missing	object	is	highlighted	with	the	word	MISSING,	as	shown	in	Figure	20-3.

FIGURE	20-3	Excel	won’t	find	the	expected	Word	2019	object	library	if	someone	opens	the
workbook	in	Excel	2010.

If	a	previous	version	of	Word	is	available,	you	can	try	running	the	program
with	that	version	referenced.	Many	objects	are	the	same	between	versions.

Using	late	binding	to	reference	a	Word	object

When	using	late	binding,	you	create	an	object	that	refers	to	the	Word	application
before	linking	to	the	Word	library.	Because	you	do	not	set	up	a	reference
beforehand,	the	only	constraint	on	the	Word	version	is	that	the	objects,
properties,	and	methods	must	exist.	When	there	are	differences	between	versions
of	Word,	the	version	can	be	verified	and	the	correct	object	used	accordingly.

The	disadvantage	of	late	binding	is	that	because	Excel	does	not	know	what	is
going	on,	it	does	not	understand	that	you	are	referring	to	Word.	This	prevents	the
IntelliSense	from	appearing	when	referencing	Word	objects.	In	addition,	built-in
constants	are	not	available.	This	means	that	when	Excel	is	compiling,	it	cannot
verify	that	the	references	to	Word	are	correct.	After	the	program	is	executed,	the
links	to	Word	begin	to	build,	and	any	coding	errors	are	detected	at	that	point.

The	following	example	creates	a	new	instance	of	Word	and	then	opens	and
makes	visible	an	existing	Word	document:

Click	here	to	view	code	image
Sub	WordLateBinding()

Dim	wdApp	As	Object,	wdDoc	As	Object

Set	wdApp	=	CreateObject("Word.Application")

Set	wdDoc	=	wdApp.Documents.Open(ThisWorkbook.Path	&	_

"\Automating	Word.docx")

wdApp.Visible	=	True

Set	wdApp	=	Nothing

Set	wdDoc	=	Nothing

End	Sub

An	object	variable	(wdApp)	is	declared	and	set	to	reference	the	application	(
CreateObject("Word.Application")).	Other	required	variables	are	then
declared	(wdDoc),	and	the	application	object	is	used	to	refer	these	variables	to
Word’s	object	model.	Declaring	wdApp	and	wdDoc	as	objects	forces	the	use	of	late
binding.	The	program	cannot	create	the	required	links	to	the	Word	object	model
until	it	executes	the	CreateObject	function.

Using	the	New	keyword	to	reference	the	Word
application

In	the	early-binding	example,	the	keyword	New	was	used	to	reference	the	Word
application.	The	New	keyword	can	be	used	only	with	early	binding;	it	does	not
work	with	late	binding.	CreateObject	or	GetObject	would	also	work,	but	New	is
best	for	this	example.	If	an	instance	of	the	application	is	running	and	you	want	to
use	it,	use	the	GetObject	function	instead.

Caution	If	your	code	to	open	Word	runs	smoothly	but	you	don’t
see	an	instance	of	Word	(and	should	because	you	code	it	to	be
Visible),	open	your	Task	Manager	and	look	for	the	process

WinWord.exe.	If	it	exists,	from	the	Immediate	window	in	Excel’s	VB
Editor,	type	the	following	(which	uses	early	binding):

Word.Application.Visible	=	True

If	multiple	instances	of	WinWord.exe	are	found,	you	need	to	make	each
instance	visible	and	close	the	extra	instance(s)	of	WinWord.exe.

Using	the	CreateObject	function	to	create	a	new
instance	of	an	object

The	earlier	late-binding	example	uses	the	CreateObject	function.	However,	you
also	can	use	this	function	in	early	binding.	You	use	it	to	create	a	new	instance	of
an	object,	in	this	case	the	Word	application.	CreateObject	has	a	class	parameter,
which	consists	of	the	name	and	type	of	the	object	to	be	created	(Name.Type).	For
example,	the	examples	in	this	chapter	have	used	(Word.Application),	in	which
Word	is	the	Name	and	Application	is	the	Type.

Using	the	GetObject	function	to	reference	an	existing
instance	of	Word

You	can	use	the	GetObject	function	to	reference	an	instance	of	Word	that’s
already	running.	An	error	is	generated	if	no	instance	of	the	application	can	be

found.	You	can	use	the	existence	of	the	error	to	include	code	that	creates	an
instance	of	the	application.

The	two	parameters	for	GetObject	are	optional.	The	first	parameter	specifies
the	full	path	and	file	name	to	open,	and	the	second	parameter	specifies	the
application	program.	The	following	example	leaves	off	the	application	and
allows	the	default	program,	which	is	Word,	to	open	the	document:

Click	here	to	view	code	image
Sub	UseGetObject()

Dim	wdDoc	As	Object

Set	wdDoc	=	GetObject(ThisWorkbook.Path	&	"\Automating

Word.docx")

wdDoc.Application.Visible	=	True

'more	code	interacting	with	the	Word	document

Set	wdDoc	=	Nothing

End	Sub

This	example	opens	a	document	in	an	existing	instance	of	Word,	if	there	is
one;	otherwise,	it	creates	one.	It	ensures	that	the	Word	application’s	Visible
property	is	set	to	True.	Note	that	to	make	the	document	visible,	you	have	to	refer
to	the	application	object	(wdDoc.Application.Visible)	because	wdDoc	is
referencing	a	document	rather	than	the	application.

Note	Although	the	Word	application’s	Visible	property	is	set	to
True,	this	code	does	not	make	the	Word	application	the	active
application.	In	most	cases,	the	Word	application	icon	stays	in	the

taskbar,	and	Excel	remains	the	active	application	on	the	screen.

The	following	example	uses	errors	to	learn	whether	Word	is	already	open
before	pasting	the	selected	chart	at	the	end	of	a	document.	If	Word	is	not	open,	it
opens	Word	and	creates	a	new	document:

Click	here	to	view	code	image
Sub	IsWordOpen()

Dim	wdApp	As	Word.Application	'early	binding

ActiveChart.ChartArea.Copy

On	Error	Resume	Next	'returns	Nothing	if	Word	isn't

open

Set	wdApp	=	GetObject(,	"Word.Application")

If	wdApp	Is	Nothing	Then

'because	Word	isn't	open,	open	it

Set	wdApp	=	GetObject("",	"Word.Application")

With	wdApp

.Documents.Add

.Visible	=	True

End	With

End	If

On	Error	GoTo	0

With	wdApp.Selection

.EndKey	Unit:=wdStory

.TypeParagraph

.PasteSpecial	Link:=False,

DataType:=wdPasteOLEObject,	_

Placement:=wdInLine,	DisplayAsIcon:=False

End	With

Set	wdApp	=	Nothing

End	Sub

Using	On	Error	Resume	Next	forces	the	program	to	continue	even	if	it	runs
into	an	error.	In	this	case,	an	error	occurs	when	you	attempt	to	link	wdApp	to	an
object	that	does	not	exist.	wdApp	will	have	no	value.	The	next	line,	If	wdApp	Is
Nothing	Then,	takes	advantage	of	this	and	opens	an	instance	of	Word,	adds	an
empty	document,	and	makes	the	application	visible.	Use	On	Error	Goto	0	to
return	to	normal	VBA	error-handling	behavior.

Tip	Note	the	use	of	empty	quotes	for	the	first	parameter	in
GetObject("",	"Word.Application").	This	is	how	you	use	the
GetObject	function	to	open	a	new	instance	of	Word.

Using	constant	values

The	preceding	example	used	constants,	such	as	wdPasteOLEObject	and
wdInLine,	that	are	specific	to	Word.	When	you	are	programming	using	early
binding,	Excel	helps	by	showing	these	constants	in	the	member	list.

With	late	binding,	IntelliSense	doesn’t	appear.	So	what	can	you	do?	You
might	write	your	program	using	early	binding	and	then	change	it	to	late	binding
after	you	compile	and	test	the	program.	The	problem	with	this	method	is	that	the
program	will	not	compile	because	Excel	doesn’t	recognize	the	Word	constants.

The	words	wdPasteOLEObject	and	wdInLine	are	just	terms	for	your
convenience	as	a	programmer.	Behind	each	of	these	text	constants	is	the	real
value	that	VBA	understands.	The	solution	to	this	is	to	retrieve	and	use	these	real
values	with	your	late-binding	program.

Using	the	Watches	window	to	retrieve	the	real	value	of	a	constant

One	way	to	retrieve	the	value	of	a	constant	is	to	add	a	watch	for	constants.	Then
you	step	through	your	code	and	check	the	value	of	the	constant	as	it	appears	in
the	Watches	window,	as	shown	in	Figure	20-4.

FIGURE	20-4	Use	the	Watches	window	to	get	the	real	value	behind	a	Word	constant.

Note	See	“Querying	by	using	a	Watches	window”	in	chapter	2,
“This	sounds	Like	BASIC,	so	why	doesn’t	it	look	familiar?”	for
more	information	on	using	the	Watches	window.

Using	the	Object	Browser	to	retrieve	the	real	value	of	a	constant

Another	way	to	retrieve	the	value	of	a	constant	is	to	look	up	the	constant	in	the
Object	Browser.	However,	you	need	the	Word	library	to	be	set	up	as	a	reference
to	use	this	method.	Once	it	is	set	up,	right-click	the	constant	and	select
Definition.	The	Object	Browser	opens	to	the	constant	and	shows	the	value	in	the
bottom	window	(see	Figure	20-5).

FIGURE	20-5	Use	the	Object	Browser	to	get	the	real	value	of	a	Word	constant.

Tip	You	can	set	up	the	Word	reference	library	to	be	accessed	from
the	Object	Browser.	However,	you	do	not	have	to	set	up	your	code
with	early	binding.	When	you	do	this,	the	reference	is	at	your

fingertips,	but	your	code	is	still	late	binding.	Turning	off	the	reference
library	is	just	a	few	clicks	away.

Replacing	the	constants	in	the	earlier	code	example	with	their	real	values
would	look	like	this:

Click	here	to	view	code	image
With	wdApp.Selection

.EndKey	Unit:=6

.TypeParagraph

.PasteSpecial	Link:=False,	DataType:=0,

Placement:=0,	_

DisplayAsIcon:=False

End	With

However,	what	happens	a	month	from	now,	when	you	return	to	the	code	and
you	try	to	remember	what	those	numbers	mean?	The	solution	is	up	to	you.	Some
programmers	add	comments	to	the	code,	referencing	the	Word	constant.	Other
programmers	create	their	own	variables	to	hold	the	real	value	and	use	those
variables	in	place	of	the	constants,	like	this:

Click	here	to	view	code	image
Const	xwdStory	As	Long	=	6

Const	xwdPasteOLEObject	As	Long	=	0

Const	xwdInLine	As	Long	=	0

With	wdApp.Selection

	.EndKey	Unit:=xwdStory

	.TypeParagraph

	.PasteSpecial	Link:=False,

DataType:=xwdPasteOLEObject,	_

Placement:=xwdInLine,	DisplayAsIcon:=False

End	With

Understanding	Word’s	objects

You	can	use	Word’s	macro	recorder	to	get	a	preliminary	understanding	of	the
Word	object	model.	However,	much	as	with	Excel’s	macro	recorder,	the	results
will	be	long-winded.	Keep	this	in	mind	and	use	the	recorder	to	lead	you	toward
the	objects,	properties,	and	methods	in	Word.

Caution	Word’s	macro	recorder	is	limited	in	what	it	allows	you	to
record.	While	the	mouse	can	be	used	to	move	the	cursor	or	select
objects,	it	doesn’t	record	those	movements.	But	there	are	no	limits

on	what	it	records	from	keyboard	movements.

This	is	what	the	Word	macro	recorder	produces	when	you	add	a	new,	blank
document	by	selecting	File,	New,	Blank	Document:

Click	here	to	view	code	image

Documents.Add	Template:="Normal",	NewTemplate:=False,

DocumentType:=0

You	can	make	this	more	efficient	in	Word	by	using	this:

Documents.Add

Template,	NewTemplate,	and	DocumentType	are	optional	properties	that	the
recorder	includes	but	that	are	not	required	unless	you	need	to	change	a	default
property	or	ensure	that	a	property	is	what	you	require.

To	use	the	same	line	of	code	in	Excel,	a	link	to	the	Word	object	library	is
required,	as	you	learned	earlier.	After	that	link	is	established,	an	understanding
of	Word’s	objects	is	all	you	need.	The	next	section	provides	a	review	of	some	of
Word’s	objects”	enough	to	get	you	off	the	ground.	For	a	more	detailed	listing,
refer	to	the	object	model	in	Word’s	VB	Editor.

The	Document	object

Word’s	Document	object	is	equivalent	to	Excel’s	Workbook	object.	It	consists	of
characters,	words,	sentences,	paragraphs,	sections,	and	headers/footers.	It	is
through	the	Document	object	that	methods	and	properties	affecting	the	entire
document”	such	as	printing,	closing,	searching,	and	reviewing”	are
accomplished.

Creating	a	new	blank	document

To	create	a	blank	document	in	an	existing	instance	of	Word,	use	the	Add	method,
as	shown	here:

Click	here	to	view	code	image
Sub	NewDocument()

Dim	wdApp	As	Word.Application

Set	wdApp	=	GetObject(,	"Word.Application")

wdApp.Documents.Add

'any	other	Word	code	you	need	here

Set	wdApp	=	Nothing

End	Sub

This	example	opens	a	new,	blank	document	that	uses	the	default	template.

Note	You	already	learned	how	to	create	a	new	document	when
Word	is	closed:	Refer	to	GetObject	and	CreateObject.

To	create	a	new	document	that	uses	a	specific	template,	use	this:

Click	here	to	view	code	image

wdApp.Documents.Add	Template:="Interoffice	Memo

(Professional	design).dotx"

This	creates	a	new	document	that	uses	the	Interoffice	Memo	(Professional
design)	template.	Template	can	be	either	the	name	of	a	template	from	the	default
template	location	or	the	file	path	and	name.

Opening	an	existing	document

To	open	an	existing	document,	use	the	Open	method.	Several	parameters	are
available,	including	ReadOnly	and	AddtoRecentFiles.	The	following	example
opens	an	existing	document	as	ReadOnly	and	prevents	the	file	from	being	added
to	the	Recent	File	List	under	the	File	menu:

Click	here	to	view	code	image
wdApp.Documents.Open	_

Filename:="C:\Excel	VBA	2019	by	Jelen	&	Syrstad\"	&	_

"Chapter	8	-	Arrays.docx",	ReadOnly:=True,	AddtoRecentFiles:=False

Saving	changes	to	a	document

After	you’ve	made	changes	to	a	document,	most	likely	you’ll	want	to	save	it.	To
save	a	document	with	its	existing	name,	use	this:

wdApp.Documents.Save

If	you	use	the	Save	command	with	a	new	document	without	a	name,	nothing
happens.	To	save	a	document	with	a	new	name,	you	must	use	the	SaveAs2
method:

Click	here	to	view	code	image
wdApp.ActiveDocument.SaveAs2	_

	"C:\Excel	VBA	2019	by	Jelen	&	Syrstad\MemoTest.docx"

SaveAs2	requires	the	use	of	members	of	the	Document	object,	such	as
ActiveDocument.

Note	SaveAs	still	works,	but	it	isn’t	an	IntelliSense	option.	SaveAs2
offers	a	compatibility	mode	argument.	If	you	don’t	need	it,	you	can
still	use	SaveAs.

Closing	an	open	document

Use	the	Close	method	to	close	a	specified	document	or	all	open	documents.	By
default,	a	Save	dialog	box	appears	for	any	documents	that	have	unsaved
changes.	You	can	use	the	SaveChanges	argument	to	change	this.	To	close	all
open	documents	without	saving	changes,	use	this	code:

Click	here	to	view	code	image

wdApp.Documents.Close	SaveChanges:=wdDoNotSaveChanges

To	close	a	specific	document,	you	can	close	the	active	document,	like	this:

wdApp.ActiveDocument.Close

or	you	can	specify	a	document	name,	like	this:

Click	here	to	view	code	image

wdApp.Documents("Chapter	8	-	Arrays.docx").Close

Printing	a	document

Use	the	PrintOut	method	to	print	part	or	all	of	a	document.	To	print	a	document
with	the	default	print	settings,	use	this:

wdApp.ActiveDocument.PrintOut

By	default,	the	print	range	is	the	entire	document,	but	you	can	change	this	by
setting	the	Range	and	Pages	arguments	of	the	PrintOut	method.	For	example,	to

print	only	page	2	of	the	active	document,	use	this:

Click	here	to	view	code	image

wdApp.ActiveDocument.PrintOut

Range:=wdPrintRangeOfPages,	Pages:="2"

The	Selection	object

The	Selection	object	represents	what	is	selected	in	the	document,	such	as	a
word,	a	sentence,	or	the	insertion	point.	It	also	has	a	Type	property	that	returns
the	type	that	is	selected,	such	as	wdSelectionIP,	wdSelectionColumn,	or
wdSelectionShape.

Navigating	with	HomeKey	and	EndKey

The	HomeKey	and	EndKey	methods	are	used	to	change	the	selection;	they
correspond	to	using	the	Home	and	End	keys,	respectively,	on	the	keyboard.	They
have	two	parameters:	Unit	and	Extend.	Unit	is	the	range	of	movement	to	make
to	either	the	beginning	(Home)	or	the	end	(End)	of	a	line	(wdLine),	document	(
wdStory),	column	(wdColumn),	or	row	(wdRow).	Extend	is	the	type	of	movement:
wdMove	moves	the	selection,	and	wdExtend	extends	the	selection	from	the
original	insertion	point	to	the	new	insertion	point.

To	move	the	cursor	to	the	beginning	of	the	document,	use	this	code:

Click	here	to	view	code	image

wdApp.Selection.HomeKey	Unit:=wdStory,	Extend:=wdMove

To	select	the	document	from	the	insertion	point	to	the	end	of	the	document,
use	this	code:

Click	here	to	view	code	image

wdApp.Selection.EndKey	Unit:=wdStory,	Extend:=wdExtend

Inserting	text	with	TypeText

The	TypeText	method	is	used	to	insert	text	into	a	Word	document.	Settings,	such

as	the	ReplaceSelection	setting,	can	affect	what	happens	when	text	is	typed
into	the	document	when	text	is	selected.	The	following	example	first	makes	sure
that	the	setting	for	overwriting	selected	text	is	turned	on.	Then	it	selects	the
second	paragraph	(using	the	Range	object,	described	in	the	next	section)	and
overwrites	it:

Click	here	to	view	code	image
Sub	InsertText()

Dim	wdApp	As	Word.Application

Dim	wdDoc	As	Document

Dim	wdSln	As	Selection

Set	wdApp	=	GetObject(,	"Word.Application")

Set	wdDoc	=	wdApp.ActiveDocument

wdDoc.Application.Options.ReplaceSelection	=	True

wdDoc.Paragraphs(2).Range.Select

wdApp.Selection.TypeText	"Overwriting	the	selected

paragraph."

Set	wdApp	=	Nothing

Set	wdDoc	=	Nothing

End	Sub

The	Range	object

The	Range	object	uses	the	following	syntax:

Range(StartPosition,	EndPosition)

The	Range	object	represents	a	contiguous	area	or	areas	in	a	document.	It	has
a	starting	character	position	and	an	ending	character	position.	The	object	can	be
the	insertion	point,	a	range	of	text,	or	the	entire	document,	including	nonprinting
characters	such	as	spaces	or	paragraph	marks.

The	Range	object	is	similar	to	the	Selection	object,	but	in	some	ways	it	is
better.	For	example,	the	Range	object	requires	less	code	to	accomplish	the	same
tasks,	and	it	has	more	capabilities.	In	addition,	it	saves	time	and	memory	because
the	Range	object	does	not	require	Word	to	move	the	cursor	or	highlight	objects	in
the	document	to	manipulate	them.

Defining	a	range

To	define	a	range,	enter	a	starting	position	and	an	ending	position,	as	shown	in
the	following	code:

Click	here	to	view	code	image
Sub	RangeText()

Dim	wdApp	As	Word.Application

Dim	wdDoc	As	Document

Dim	wdRng	As	Word.Range

Set	wdApp	=	GetObject(,	"Word.Application")

Set	wdDoc	=	wdApp.ActiveDocument

Set	wdRng	=	wdDoc.Range(0,	50)

wdRng.Select

Set	wdApp	=	Nothing

Set	wdDoc	=	Nothing

Set	wdRng	=	Nothing

End	Sub

Figure	20-6	shows	the	results	of	running	this	code.	The	first	50	characters	are
selected,	including	nonprinting	characters	such	as	paragraph	returns.

FIGURE	20-6	The	Range	object	selects	everything	in	its	path.

Note	In	Figure	20-6	the	range	was	selected	(wdRng.Select)	for
easier	viewing.	It	is	not	required	that	the	range	be	selected	in	order
to	be	manipulated.	For	example,	to	delete	the	range,	do	this:

wdRng.Delete

The	first	character	position	in	a	document	is	always	zero,	and	the	last	is
equivalent	to	the	number	of	characters	in	the	document.

The	Range	object	also	selects	paragraphs.	The	following	example	copies	the
third	paragraph	in	the	active	document	and	pastes	it	into	Excel.	Depending	on
how	the	paste	is	done,	the	text	can	be	pasted	into	a	text	box	(see	Figure	20-7)	or
into	a	cell:

Click	here	to	view	code	image
Sub	SelectSentence()

Dim	wdApp	As	Word.Application

Dim	wdRng	As	Word.Range

Set	wdApp	=	GetObject(,	"Word.Application")

With	wdApp.ActiveDocument

If	.Paragraphs.Count	>=	3	Then

Set	wdRng	=	.Paragraphs(3).Range

wdRng.Copy

End	If

End	With

'This	line	pastes	the	copied	text	into	a	text	box

'because	that	is	the	default	PasteSpecial	method	for

Word	text

Worksheets("Sheet2").PasteSpecial

'This	line	pastes	the	copied	text	into	cell	A1

Worksheets("Sheet2").Paste

Destination:=Worksheets("Sheet2").Range("A1")

Set	wdApp	=	Nothing

Set	wdRng	=	Nothing

End	Sub

FIGURE	20-7	Paste	Word	text	into	an	Excel	text	box.

Formatting	a	Range

After	a	range	is	selected,	you	can	apply	formatting	to	it	(see	Figure	20-8).	The
following	program	loops	through	all	the	paragraphs	of	the	active	document	and
applies	bold	to	the	first	word	of	each	paragraph:

Click	here	to	view	code	image
Sub	ChangeFormat()

Dim	wdApp	As	Word.Application

Dim	wdRng	As	Word.Range

Dim	count	As	Integer

Set	wdApp	=	GetObject(,	"Word.Application")

With	wdApp.ActiveDocument

For	count	=	1	To	.Paragraphs.Count

Set	wdRng	=	.Paragraphs(count).Range

With	wdRng

.Words(1).Font.Bold	=	True

.Collapse	'unselects	the	text

End	With

Next	count

End	With

Set	wdApp	=	Nothing

Set	wdRng	=	Nothing

End	Sub

FIGURE	20-8	Format	the	first	word	of	each	paragraph	in	a	document.

A	quick	way	to	change	the	formatting	of	entire	paragraphs	is	to	change	the

style	(see	Figures	20-9	and	20-10).	The	following	program	finds	a	paragraph
with	the	Normal	style	and	changes	it	to	H3:

Click	here	to	view	code	image
Sub	ChangeStyle()

Dim	wdApp	As	Word.Application

Dim	wdRng	As	Word.Range

Dim	count	As	Integer

Set	wdApp	=	GetObject(,	"Word.Application")

With	wdApp.ActiveDocument

For	Count	=	1	To	.Paragraphs.Count

Set	wdRng	=	.Paragraphs(Count).Range

With	wdRng

If	.Style	=	"Normal"	Then

.Style	=	"H3"

End	If

End	With

Next	Count

End	With

Set	wdApp	=	Nothing

Set	wdRng	=	Nothing

End	Sub

FIGURE	20-9	Before:	A	paragraph	with	the	Normal	style	needs	to	be	changed	to	the	H3	style.

FIGURE	20-10	After:	Apply	styles	with	code	to	change	paragraph	formatting	quickly.

Bookmarks

Bookmarks	are	members	of	the	Document,	Selection,	and	Range	objects.	They
can	make	it	easier	to	navigate	around	Word.	Instead	of	having	to	choose	words,
sentences,	or	paragraphs,	use	bookmarks	to	manipulate	sections	of	a	document
swiftly.

Note	You’re	not	limited	to	using	only	existing	bookmarks.	Instead,
you	can	create	bookmarks	using	code.

Bookmarks	appear	as	gray	I-bars	in	Word	documents.	In	Word,	go	to	File,
Options,	Advanced,	Show	Document	Content	and	select	Show	Bookmarks	to
turn	on	bookmarks.

After	you	have	set	up	bookmarks	in	a	document,	you	can	use	the	bookmarks
to	move	quickly	to	a	range	to	insert	text	or	other	items,	such	as	charts.	The
following	code	automatically	inserts	text	and	a	chart	after	bookmarks	that	were
previously	set	up	in	the	document.	Figure	20-11	shows	the	results.

Click	here	to	view	code	image
Sub	FillInMemo()

Dim	myArray()

Dim	wdBkmk	As	String

Dim	wdApp	As	Word.Application

Dim	wdRng	As	Word.Range

myArray	=	Array("To",	"CC",	"From",	"Subject",

"Chart")

Set	wdApp	=	GetObject(,	"Word.Application")

'insert	text

Set	wdRng	=

wdApp.ActiveDocument.Bookmarks(myArray(0)).Range

wdRng.InsertBefore	("Bill	Jelen")

Set	wdRng	=

wdApp.ActiveDocument.Bookmarks(myArray(1)).Range

wdRng.InsertBefore	("Tracy	Syrstad")

Set	wdRng	=

wdApp.ActiveDocument.Bookmarks(myArray(2)).Range

wdRng.InsertBefore	("MrExcel")

Set	wdRng	=

wdApp.ActiveDocument.Bookmarks(myArray(3)).Range

wdRng.InsertBefore	("Fruit	&	Vegetable	Sales")

'insert	chart

Set	wdRng	=

wdApp.ActiveDocument.Bookmarks(myArray(4)).Range

Worksheets("Fruit	Sales").ChartObjects("Chart	1").Copy

wdRng.PasteAndFormat	Type:=wdPasteOLEObject

wdApp.Activate

Set	wdApp	=	Nothing

Set	wdRng	=	Nothing

End	Sub

FIGURE	20-11	Use	bookmarks	to	enter	text	or	charts	into	a	Word	document.

Controlling	form	fields	in	Word
You	have	seen	how	to	modify	a	document	by	inserting	charts	and	text,
modifying	formatting,	and	deleting	text.	However,	a	document	might	contain
other	items,	such	as	controls,	that	you	can	modify.

For	the	following	example,	a	template	named	New	Client.dotx	was	created,
consisting	of	text	and	bookmarks.	The	bookmarks	are	placed	after	the	Name	and
Date	fields.	Form	field	check	boxes	were	also	added.	The	controls	are	found
under	Legacy	Forms	in	the	Controls	section	of	the	Developer	tab	in	Word,	as
shown	in	Figure	20-12.	Notice	in	the	code	sample	that	follows	that	all	the	check
boxes	have	been	renamed	so	they	make	more	sense.	For	example,	one	check	box

was	renamed	chk401k	from	Checkbox5.	To	rename	a	check	box,	right-click	the
check	box,	select	Properties,	and	type	a	new	name	in	the	Bookmark	field.

FIGURE	20-12	You	can	use	the	form	fields	found	under	the	Legacy	Forms	to	add	check	boxes	to	a
document.

The	questionnaire	was	set	up	in	Excel,	and	it	enables	a	person	to	enter	free
text	in	B1	and	B2	but	select	from	data	validation	in	B3	and	B5:B8,	as	shown	in
Figure	20-13.

FIGURE	20-13	Create	an	Excel	sheet	to	collect	your	data.

The	following	code	goes	into	a	standard	module,	and	the	name	and	date	go
straight	into	the	document:

Click	here	to	view	code	image
Sub	FillOutWordForm()

Dim	TemplatePath	As	String

Dim	wdApp	As	Object

Dim	wdDoc	As	Object

'Open	the	template	in	a	new	instance	of	Word

TemplatePath	=	ThisWorkbook.Path	&	"\New	Client.dotx"

Set	wdApp	=	CreateObject("Word.Application")

Set	wdDoc	=

wdApp.documents.Add(Template:=TemplatePath)

'Place	our	text	values	in	document

With	wdApp.ActiveDocument

.Bookmarks("Name").Range.InsertBefore

Range("B1").Text

.Bookmarks("Date").Range.InsertBefore

Range("B2").Text

End	With

'Using	basic	logic,	select	the	correct	form	object

If	Range("B3").Value	=	"Yes"	Then

Click	here	to	view	code	image
wdDoc.formfields("chkCustYes").CheckBox.Value	=

True

Else

wdDoc.formfields("chkCustNo").CheckBox.Value	=

True

End	If

With	wdDoc

If	Range("B5").Value	=	"Yes"	Then

.Formfields("chk401k").	_

CheckBox.Value	=	True

If	Range("B6").Value	=	"Yes"	Then

.Formfields("chkRoth").	_

CheckBox.Value	=	True

If	Range("B7").Value	=	"Yes"	Then

.Formfields("chkStocks").	_

CheckBox.Value	=	True

If	Range("B8").Value	=	"Yes"	Then

.Formfields("chkBonds").	_

CheckBox.Value	=	True

End	With

wdApp.Visible	=	True

ExitSub:

Set	wdDoc	=	Nothing

Set	wdApp	=	Nothing

End	Sub

The	check	boxes	use	logic	to	verify	whether	the	person	selected	Yes	or	No	to
confirm	whether	the	corresponding	check	box	should	be	checked.	Figure	20-14
shows	a	sample	document	that	has	been	completed.

FIGURE	20-14	Excel	can	control	Word’s	form	fields	and	help	automate	filling	out	documents.

Next	steps
Chapter	19,	“Text	file	processing,”	showed	you	how	to	read	from	a	text	file

to	import	data	from	another	system.	In	this	chapter,	you	learned	how	to	connect
to	another	Office	program	and	access	its	object	module.	In	Chapter	21,	“Using
Access	as	a	back	end	to	enhance	multiuser	access	to	data,”	you’ll	connect	to	an
Access	database	and	learn	about	writing	to	Access	multidimensional	database
(MDB)	files.	Compared	to	text	files,	Access	files	are	faster;	in	addition,	Access
file	are	indexable	and	allow	multiuser	access	to	data.

CHAPTER	21
Using	Access	as	a	back	end	to	enhance
multiuser	access	to	data

In	this	chapter,	you	will:

Understand	the	difference	between	ADO	and	DAOs

Get	to	know	the	tools	of	ADO

Add	a	record	to	a	database

Retrieve	records	from	a	database

Update	an	existing	record

Delete	records	via	ADO

Summarize	records	via	ADO

Get	to	know	other	utilities	via	ADO

Examine	SQL	Server	examples

The	example	near	the	end	of	Chapter	19,	“Text	file	processing,”	proposes	a
method	for	storing	660,601,620	records	in	an	Excel	worksheet.	At	some	point,
you	need	to	admit	that	even	though	Excel	is	the	greatest	product	in	the	world,
there	is	a	time	to	move	to	Access	and	take	advantage	of	Access
multidimensional	database	(MDB)	files.

Even	before	you	have	more	than	1	million	rows,	another	compelling	reason
to	use	MDB	data	files	is	to	allow	multiuser	access	to	data	without	the	headaches
associated	with	shared	workbooks.

Microsoft	Excel	offers	an	option	to	share	a	workbook,	but	you	automatically
lose	a	number	of	important	Excel	features	when	you	do	this	type	of	sharing.
After	you	share	a	workbook,	you	cannot	use	automatic	subtotals,	pivot	tables,
Group	and	Outline	mode,	scenarios,	protection,	or	the	Styles,	Pictures,	Add
Charts,	and	Insert	Worksheets	options.

By	using	an	Excel	VBA	front	end	and	storing	data	in	an	MDB	database,	you
have	the	best	of	both	worlds.	You	have	the	power	and	flexibility	of	Excel	and	the
multiuser	access	capability	available	in	Access.

Tip	MDB	is	the	official	file	format	of	both	Microsoft	Access	and
Microsoft	Visual	Basic.	This	means	you	can	deploy	an	Excel
solution	that	reads	and	writes	from	an	MDB	to	customers	who	do

not	have	Microsoft	Access.	Of	course,	it	helps	if	you	as	the	developer	have
a	copy	of	Access	because	you	can	use	the	Access	front	end	to	set	up	tables
and	queries.

Tip	The	examples	in	this	chapter	make	use	of	the	Microsoft	Jet
Database	Engine	for	reading	from	and	writing	to	an	Access
database.	The	Jet	engine	works	with	Access	data	stored	in	Access

97	through	2013.	If	you	are	sure	that	all	the	people	running	the	macro	will
have	Office	2007	or	newer,	you	could	instead	use	the	ACE	engine.
Microsoft	now	offers	a	64-bit	version	of	the	ACE	engine	but	not	the	Jet
engine.

ADO	versus	DAO

For	several	years,	Microsoft	recommended	using	data	access	objects	(DAOs)	for
accessing	data	in	an	external	database.	DAOs	became	very	popular,	and	a	great
deal	of	code	was	written	for	them.	When	Microsoft	released	Excel	2000,	it
started	pushing	ActiveX	Data	Objects	(ADOs).	The	concepts	are	similar,	and	the
syntax	differs	only	slightly.	I	use	ADO	in	this	chapter.	Realize	that	if	you	start
going	through	code	written	a	decade	ago,	you	might	run	into	DAO	code.	Other
than	a	few	syntax	changes,	the	code	for	both	ADO	and	DAO	looks	similar.

To	use	any	code	in	this	chapter,	open	the	VB	Editor.	Select	Tools,	References
from	the	main	menu	and	then	select	Microsoft	ActiveX	Data	Objects	Library
from	the	Available	References	list,	as	shown	in	Figure	21-1.

FIGURE	21-1	To	read	or	write	from	an	Access	MDB	file,	add	the	reference	for	Microsoft	ActiveX
Data	Objects	Library	2.8	or	higher.

Note	If	you	have	Windows	7	or	newer,	you	have	access	to	version
6.1	of	this	library.	Windows	Vista	offered	version	6.0	of	the	library.
If	you	will	be	distributing	the	application	to	anyone	who	is	still	on

Windows	XP,	you	should	choose	version	2.8	instead.

Case	study:	Creating	a	shared	Access	database
Linda	and	Janine	are	two	buyers	for	a	retail	chain	of	stores.	Each	morning,
they	import	data	from	the	cash	registers	to	get	current	information	on	sales
and	inventory	for	2,000	styles.	Throughout	the	day,	either	buyer	may	enter
transfers	of	inventory	from	one	store	to	another.	It	would	be	ideal	if	Linda
could	see	the	pending	transfers	entered	by	Janine	and	vice	versa.

Each	buyer	has	an	Excel	application	with	VBA	running	on	her	desktop.
They	each	import	the	cash	register	data	and	have	VBA	routines	that
facilitate	the	creation	of	pivot	table	reports	to	help	them	make	buying
decisions.

Attempting	to	store	the	transfer	data	in	a	common	Excel	file	causes

problems.	When	either	buyer	attempts	to	write	to	the	Excel	file,	the	entire
file	becomes	read-only	for	the	other	buyer.	With	a	shared	workbook,	Excel
turns	off	the	capability	to	create	pivot	tables,	and	this	is	required	in	their
application.

Neither	Linda	nor	Janine	has	the	professional	version	of	Office,	so	they	do
not	have	Access	running	on	their	desktop	PCs.	The	solution	is	to	produce
an	Access	database	on	a	network	drive	that	both	Linda	and	Janine	can	see.
These	are	the	steps:

1.	 Using	Access	on	another	PC,	produce	a	new	database	called
transfers.mdb	and	add	a	table	called	tblTransfer,	as	shown	in	Figure
21-2.

FIGURE	21-2	Multiple	people	using	their	own	Excel	workbooks	will	read	and	write	to
this	table	inside	an	MDB	file	on	a	network	drive.

2.	 Move	the	transfers.mdb	file	to	a	network	drive.	You	might	find	that	this
common	folder	uses	different	drive-letter	mappings	on	each	machine.	It
might	be	H:\Common\	on	Linda’s	machine	and	I:\Common\	on	Janine’s
machine.

3.	 On	both	machines,	go	to	the	VB	Editor	and	under	Tools,	References,	add
a	reference	to	ActiveX	Data	Objects	Library.

4.	 In	both	of	their	applications,	find	an	out-of-the-way	cell	in	which	to	store
the	path	to	transfers.mdb.	Name	this	cell	TPath.

The	application	provides	nearly	seamless	multiuser	access	to	both	buyers.
Both	Linda	and	Janine	can	read	or	write	to	the	table	at	the	same	time.	The

only	time	a	conflict	occurs	is	when	they	both	happen	to	try	to	update	the
same	record	at	the	same	time.
Other	than	the	out-of-the-way	cell	reference	to	the	path	to	transfers.mdb,
neither	buyer	is	aware	that	her	data	is	being	stored	in	a	shared	Access	table,
and	neither	computer	needs	to	have	Access	installed.

The	remainder	of	this	chapter	gives	you	the	code	necessary	to	allow	the
application	included	in	the	preceding	case	study	to	read	or	write	data	from	the
tblTransfer	table.

The	tools	of	ADO

You	encounter	several	terms	when	using	ADO	to	connect	to	an	external	data
source:

Record	set—When	connecting	to	an	Access	database,	the	record	set	is
either	a	table	in	the	database	or	a	query	in	the	database.	Most	of	the	ADO
methods	reference	the	record	set.	You	might	also	want	to	create	your	own
query	on	the	fly.	In	this	case,	write	a	SQL	statement	to	extract	only	a	subset
of	records	from	a	table.

Connection—The	connection	defines	the	path	to	the	database	and	the	type
of	database.	In	the	case	of	Access	databases,	you	specify	that	the
connection	is	using	the	Microsoft	Jet	Engine.

Cursor—Think	of	the	cursor	as	a	pointer	that	keeps	track	of	which	record
you	are	using	in	the	database.	There	are	several	types	of	cursors	and	two
places	for	the	cursor	to	be	located	(described	in	the	following	bullets).

Cursor	type—A	dynamic	cursor	is	the	most	flexible	cursor.	If	you	define	a
record	set	and	someone	else	updates	a	row	in	the	table	while	a	dynamic
cursor	is	active,	the	dynamic	cursor	knows	about	the	updated	record.
Although	this	is	the	most	flexible,	it	requires	the	most	overhead.	If	your
database	doesn’t	have	a	lot	of	transactions,	you	might	specify	a	static
cursor;	this	type	of	cursor	returns	a	snapshot	of	the	data	at	the	time	the
cursor	is	established.

Cursor	location—The	cursor	can	be	located	either	on	the	client	or	on	the
server.	For	an	Access	database	residing	on	your	hard	drive,	a	server	location

for	the	cursor	means	that	the	Access	Jet	Engine	on	your	computer	is
controlling	the	cursor.	When	you	specify	a	client	location	for	the	cursor,
your	Excel	session	is	controlling	the	cursor.	On	a	very	large	external	data
set,	it	would	be	better	to	allow	the	server	to	control	the	cursor.	For	small
data	sets,	a	client	cursor	is	faster.

Lock	type—The	point	of	this	chapter	is	to	allow	multiple	people	to	access
a	data	set	at	the	same	time.	The	lock	type	defines	how	ADO	will	prevent
crashes	when	two	people	try	to	update	a	record	at	the	same	time.	With	an
optimistic	lock	type,	an	individual	record	is	locked	only	when	you	attempt
to	update	the	record.	If	your	application	will	be	doing	90%	reads	and	only
occasionally	updating,	then	an	optimistic	lock	is	perfect.	However,	if	you
know	that	every	time	you	read	a	record,	you	will	soon	update	the	record,
you	should	use	a	pessimistic	lock	type.	With	pessimistic	locks,	a	record	is
locked	as	soon	as	you	read	it.	If	you	know	that	you	will	never	write	back	to
the	database,	you	can	use	a	read-only	lock.	This	enables	you	to	read	the
records	without	preventing	others	from	writing	to	them.

The	primary	objects	needed	to	access	data	in	an	MDB	file	are	an	ADO
connection	and	an	ADO	record	set.

The	ADO	connection	defines	the	path	to	the	database	and	specifies	that	the
connection	is	based	on	the	Microsoft	Jet	Engine.

After	you	have	established	the	connection	to	the	database,	you	usually	use
that	connection	to	define	a	record	set.	A	record	set	can	be	a	table	or	a	subset	of
records	in	the	table	or	a	predefined	query	in	the	Access	database.	To	open	a
record	set,	you	have	to	specify	the	connection	and	the	values	for	the	CursorType,
CursorLocation,	LockType,	and	Options	parameters.

Assuming	that	you	have	only	two	users	trying	to	access	the	table	at	a	time,
you	should	use	a	dynamic	cursor	and	an	optimistic	lock	type.	For	large	data	sets,
the	adUseServer	value	of	the	CursorLocation	property	allows	the	database
server	to	process	records	without	using	up	RAM	on	the	client	machine.	If	you
have	a	small	data	set,	it	might	be	faster	to	use	adUseClient	for	the
CursorLocation.	When	the	record	set	is	opened,	all	the	records	are	transferred
to	memory	of	the	client	machine.	This	allows	faster	navigation	from	record	to
record.

Reading	data	from	the	Access	database	is	easy,	provided	that	you	have	fewer
than	1048576	records.	You	can	use	the	CopyFromRecordset	method	to	copy	all

selected	records	from	the	record	set	to	a	blank	area	of	the	worksheet.

To	add	a	record	to	an	Access	table,	use	the	AddNew	method	for	the	record	set.
You	then	specify	the	value	for	each	field	in	the	table	and	use	the	Update	method
to	commit	the	changes	to	the	database.

To	delete	a	record	from	the	table,	you	can	use	a	pass-through	query	to	delete
records	that	match	a	certain	criteria.

Note	If	you	ever	find	yourself	frustrated	with	ADO	and	think,	“If	I
could	just	open	Access,	I	could	knock	out	a	quick	SQL	statement
to	do	exactly	what	I	need,”	then	the	pass-through	query	is	for	you.

Rather	than	use	ADO	to	read	through	the	records,	the	pass-through	query
sends	a	request	to	the	database	to	run	the	SQL	statement	that	your	program
builds.	This	effectively	enables	you	to	handle	any	tasks	that	your	database
might	support	but	that	are	not	handled	by	ADO.	The	types	of	SQL
statements	handled	by	the	pass-through	query	are	dependent	on	which
database	type	you	are	connecting	to.

Other	tools	are	available	that	let	you	make	sure	that	a	table	exists	or	that	a
particular	field	exists	in	a	table.	You	can	also	use	VBA	to	add	new	fields	to	a
table	definition	on	the	fly.

Adding	a	record	to	a	database

Going	back	to	the	case	study	earlier	in	the	chapter,	the	application	you	are
creating	has	a	userform	where	buyers	can	enter	transfers.	To	make	the	calls	to
the	Access	database	as	simple	as	possible,	a	series	of	utility	modules	handle	the
ADO	connection	to	the	database.	This	way,	the	userform	code	can	simply	call
AddTransfer(Style,	FromStore,	ToStore,	Qty).

Here’s	how	you	add	records	after	the	connection	is	defined:

1.	 Open	a	record	set	that	points	to	the	table.	In	the	code	that	follows,	see	the
sections	commented	'	Open	the	Connection,	'	Define	the	Recordset,
and	'	Open	the	Table.

2.	 Use	AddNew	to	add	a	new	record.

3.	 Update	each	field	in	the	new	record.

4.	 Use	Update	to	update	the	record	set.

5.	 Close	the	record	set	and	then	close	the	connection.

The	following	code	adds	a	new	record	to	the	tblTransfer	table:

Click	here	to	view	code	image
Sub	AddTransfer(Style	As	Variant,	FromStore	As

Variant,	_

ToStore	As	Variant,	Qty	As	Integer)

Dim	cnn	As	ADODB.Connection

Dim	rst	As	ADODB.Recordset

MyConn	=	"J:\transfers.mdb"

'	Open	the	Connection

Set	cnn	=	New	ADODB.Connection

With	cnn

.Provider	=	"Microsoft.Jet.OLEDB.4.0"

.Open	MyConn

End	With

'	Define	the	Recordset

Set	rst	=	New	ADODB.Recordset

rst.CursorLocation	=	adUseServer

'	Open	the	Table

rst.Open	Source:="tblTransfer",	_

ActiveConnection:=cnn,	_

CursorType:=adOpenDynamic,	_

LockType:=adLockOptimistic,	_

Options:=adCmdTable

'	Add	a	record

rst.AddNew

'	Set	up	the	values	for	the	fields.	The	first	four

fields

'	are	passed	from	the	calling	userform.	The	date

field

'	is	filled	with	the	current	date.

rst("Style")	=	Style

rst("FromStore")	=	FromStore

rst("ToStore")	=	ToStore

rst("Qty")	=	Qty

rst("tDate")	=	Date

rst("Sent")	=	False

rst("Receive")	=	False

'	Write	the	values	to	this	record

rst.Update

'	Close

rst.Close

cnn.Close

End	Sub

Retrieving	records	from	a	database

Reading	records	from	an	Access	database	is	easy.	As	you	define	a	record	set,
you	pass	a	SQL	string	to	return	the	records	you	are	interested	in.

Note	A	great	way	to	generate	the	SQL	is	to	design	a	query	in
Access	that	retrieves	the	records.	While	viewing	the	query	in
Access,	select	SQL	View	from	the	View	drop-down	menu	on	the

Query	Tools	Design	tab	of	the	ribbon.	Access	shows	you	the	SQL	statement
required	to	execute	that	query.	You	can	use	that	SQL	statement	as	a	model
for	building	the	SQL	string	in	your	VBA	code.

After	the	record	set	is	defined,	use	the	CopyFromRecordSet	method	to	copy
all	the	matching	records	from	Access	to	a	specific	area	of	the	worksheet.

The	following	routine	queries	the	Transfer	table	to	find	all	records	in	which
the	Sent	flag	is	not	yet	set	to	True:

Click	here	to	view	code	image
Sub	GetUnsentTransfers()

Dim	cnn	As	ADODB.Connection

Dim	rst	As	ADODB.Recordset

Dim	WSOrig	As	Worksheet

Dim	WSTemp	As	Worksheet

Dim	sSQL	as	String

Dim	FinalRow	as	Long

Set	WSOrig	=	ActiveSheet

'Build	a	SQL	String	to	get	all	fields	for	unsent

transfers

sSQL	=	"SELECT	ID,	Style,	FromStore,	ToStore,	Qty,

tDate"	_

&	"FROM	tblTransfer"

sSQL	=	sSQL	&	"	WHERE	Sent=FALSE"

'	Path	to	Transfers.mdb

MyConn	=	"J:\transfers.mdb"

Set	cnn	=	New	ADODB.Connection

With	cnn

.Provider	=	"Microsoft.Jet.OLEDB.4.0"

.Open	MyConn

End	With

Set	rst	=	New	ADODB.Recordset

rst.CursorLocation	=	adUseServer

rst.Open	Source:=sSQL,	ActiveConnection:=cnn,	_

CursorType:=AdForwardOnly,

LockType:=adLockOptimistic,	_

Options:=adCmdText

'	Create	the	report	in	a	new	worksheet

Set	WSTemp	=	Worksheets.Add

'	Add	Headings

Range("A1:F1").Value	=	Array("ID",	"Style",	"From",

"To",	"Qty",	"Date")

'	Copy	from	the	record	set	to	row	2

Range("A2").CopyFromRecordset	rst

'	Close	the	connection

rst.Close

cnn.Close

'	Format	the	report

FinalRow	=	Range("A65536").End(xlUp).Row

'	If	there	were	no	records,	then	stop

If	FinalRow	=	1	Then

Application.DisplayAlerts	=	False

WSTemp.Delete

Application.DisplayAlerts	=	True

WSOrig.Activate

MsgBox	"There	are	no	transfers	to	confirm"

Exit	Sub

End	If

'	Format	column	F	as	a	date

Range("F2:F"	&	FinalRow).NumberFormat	=	"m/d/y"

'	Show	the	userform	--	used	in	next	section

frmTransConf.Show

'	Delete	the	temporary	sheet

Application.DisplayAlerts	=	False

WSTemp.Delete

Application.DisplayAlerts	=	True

End	Sub

The	results	are	placed	on	a	blank	worksheet.	The	final	few	lines	display	the
results	in	a	userform	to	illustrate	how	to	update	a	record	in	the	next	section.

The	CopyFromRecordSet	method	copies	records	that	match	the	SQL	query	to
a	range	on	the	worksheet.	Note	that	you	receive	only	the	data	rows.	The

headings	do	not	come	along	automatically.	You	must	use	code	to	write	the
headings	to	row	1.	Figure	21-3	shows	the	results.

FIGURE	21-3	Range("A2").CopyFromRecord	Set	brought	matching	records	from	the	Access
database	to	the	worksheet.

Updating	an	existing	record
To	update	an	existing	record,	you	need	to	build	a	record	set	with	exactly	one
record.	This	requires	that	the	user	select	some	sort	of	unique	key	when
identifying	the	records.	After	you	have	opened	the	record	set,	use	the	Fields
property	to	change	the	field	in	question	and	then	the	Update	method	to	commit
the	changes	to	the	database.

The	earlier	example	returned	a	record	set	to	a	blank	worksheet	and	then
called	the	userform	frmTransConf.	This	form	uses	a	simple
Userform_Initialize	to	display	the	range	in	a	large	list	box:

Click	here	to	view	code	image
Private	Sub	UserForm_Initialize()

'	Determine	how	many	records	we	have

FinalRow	=	Cells(Rows.Count,	1).End(xlUp).Row

If	FinalRow	>	1	Then

Me.lbXlt.RowSource	=	"A2:F"	&	FinalRow

End	If

End	Sub

The	list	box’s	properties	have	the	MultiSelect	property	set	to	True.

After	the	Userform_Initialize	procedure	is	run,	the	unconfirmed	records
are	displayed	in	a	list	box.	The	logistics	planner	can	mark	all	the	records	that
have	been	sent,	as	shown	in	Figure	21-4.

FIGURE	21-4	This	userform	displays	particular	records	from	the	Access	record	set.	When	the	buyer
selects	certain	records	and	then	clicks	the	Confirm	button,	you	have	to	use	ADO’s	Update	method	to
update	the	Sent	field	on	the	selected	records.

The	code	attached	to	the	Confirm	button	follows:

Click	here	to	view	code	image
Private	Sub	cbConfirm_Click()

Dim	cnn	As	ADODB.Connection

Dim	rst	As	ADODB.Recordset

'	If	nothing	is	selected,	warn	them

CountSelect	=	0

For	x	=	0	To	Me.lbXlt.ListCount	-	1

If	Me.lbXlt.Selected(x)	Then

CountSelect	=	CountSelect	+	1

End	If

Next	x

If	CountSelect	=	0	Then

MsgBox	"There	were	no	transfers	selected.	"	&	_

"To	exit	without	confirming	any	transfers,	use

Cancel."

Exit	Sub

End	If

'	Establish	a	connection	to	transfers.mdb

'	Path	to	Transfers.mdb	is	on	Menu

MyConn	=	"J:\transfers.mdb"

Set	cnn	=	New	ADODB.Connection

With	cnn

.Provider	=	"Microsoft.Jet.OLEDB.4.0"

.Open	MyConn

End	With

'	Mark	as	complete

For	x	=	0	To	Me.lbXlt.ListCount	-	1

If	Me.lbXlt.Selected(x)	Then

ThisID	=	Cells(2	+	x,	1).Value

'	Mark	ThisID	as	complete

'Build	SQL	String

sSQL	=	"SELECT	*	FROM	tblTransfer	Where	ID="	&

ThisID

Set	rst	=	New	ADODB.Recordset

With	rst

.Open	Source:=sSQL,	ActiveConnection:=cnn,	_

CursorType:=adOpenKeyset,

LockType:=adLockOptimistic

'	Update	the	field

.Fields("Sent").Value	=	True

.Update

.Close

End	With

End	If

Next	x

'	Close	the	connection

cnn.Close

Set	rst	=	Nothing

Set	cnn	=	Nothing

'	Close	the	userform

Unload	Me

End	Sub

Including	the	ID	field	in	the	fields	returned	in	the	prior	example	is	important
if	you	want	to	narrow	the	information	down	to	a	single	record.

Deleting	records	via	ADO

As	with	updating	a	record,	the	key	to	deleting	records	is	being	able	to	write	a	bit
of	SQL	to	uniquely	identify	the	records	to	be	deleted.	The	following	code	uses
the	Execute	method	to	pass	the	Delete	command	through	to	Access:

Click	here	to	view	code	image
Public	Sub	ADOWipeOutAttribute(RecID)

'	Establish	a	connection	to	transfers.mdb

MyConn	=	"J:\transfers.mdb"

With	New	ADODB.Connection

.Provider	=	"Microsoft.Jet.OLEDB.4.0"

.Open	MyConn

.Execute	"Delete	From	tblTransfer	Where	ID	=	"	&

RecID

.Close

End	With

End	Sub

Summarizing	records	via	ADO

One	strength	of	Access	is	running	summary	queries	that	group	by	a	particular
field.	If	you	build	a	summary	query	in	Access	and	examine	the	SQL	view,	you’ll
see	that	complex	queries	can	be	written.	Similar	SQL	can	be	built	in	Excel	VBA
and	passed	to	Access	via	ADO.

The	following	code	uses	a	fairly	complex	query	to	get	a	net	total	by	store:

Click	here	to	view	code	image
Sub	NetTransfers(Style	As	Variant)

'	This	builds	a	table	of	net	open	transfers

'	on	Styles	AI1

Dim	cnn	As	ADODB.Connection

Dim	rst	As	ADODB.Recordset

'	Build	the	large	SQL	query

'	Basic	Logic:	Get	all	open	Incoming	Transfers	by

store,

'	union	with	-1*	outgoing	transfers	by	store

'	Sum	that	union	by	store,	and	give	us	min	date	as

well

'	A	single	call	to	this	macro	will	replace	60

'	calls	to	GetTransferIn,	GetTransferOut,	TransferAge

sSQL	=	"Select	Store,	Sum(Quantity),	Min(mDate)	From

"	&	_

"(SELECT	ToStore	AS	Store,	Sum(Qty)	AS	Quantity,	"

&	_

"Min(TDate)	AS	mDate	FROM	tblTransfer	where

Style='"	&	Style	&	_

"&	"'	AND	Receive=FALSE	GROUP	BY	ToStore	"

sSQL	=	sSQL	&	"	Union	All	SELECT	FromStore	AS	Store,

"	&	_

"Sum(-1*Qty)	AS	Quantity,	Min(TDate)	AS	mDate	"	&	_

"FROM	tblTransfer	where	Style='"	&	Style	&	"'	AND	"

&	_

"Sent=FALSE	GROUP	BY	FromStore)"

sSQL	=	sSQL	&	"	Group	by	Store"

MyConn	=	"J:\transfers.mdb"

'	open	the	connection.

Set	cnn	=	New	ADODB.Connection

With	cnn

.Provider	=	"Microsoft.Jet.OLEDB.4.0"

.Open	MyConn

End	With

Set	rst	=	New	ADODB.Recordset

rst.CursorLocation	=	adUseServer

'	open	the	first	query

rst.Open	Source:=sSQL,	_

ActiveConnection:=cnn,	_

CursorType:=AdForwardOnly,	_

LockType:=adLockOptimistic,	_

Options:=adCmdText

Range("A1:C1").Value	=	Array("Store",	"Qty",	"Date")

'	Return	Query	Results

Range("A2").CopyFromRecordset	rst

rst.Close

cnn.Close

End	Sub

Other	utilities	via	ADO

Consider	the	application	you	created	for	this	chapter’s	case	study:	The	buyers
now	have	an	Access	database	located	on	their	network	but	possibly	no	copy	of
Access.	It	would	be	ideal	if	you	could	deliver	changes	to	the	Access	database	on
the	fly	as	their	application	opens.

Note	If	you	are	wondering	how	you	would	ever	coax	the	person
using	the	application	to	run	these	queries,	consider	using	an	update
macro	hidden	in	the	Workbook_Open	routine	of	the	client

application.	Such	a	routine	might	first	check	to	see	whether	a	field	exists
and	then	add	the	field	if	it	is	missing.

Note	For	details	on	the	mechanics	of	hiding	the	update	query	in	the
Workbook_Open	routine,	see	the	case	study,	“Using	a	hidden	code
workbook	to	hold	all	macros	and	forms,”	in	Chapter	26,	“Creating

add-ins.”

Checking	for	the	existence	of	tables

If	the	application	in	this	chapter’s	example	needs	a	new	table	in	the	database,
you	can	use	the	code	in	the	next	section.	However,	because	you	have	a	multiuser
application,	only	the	first	person	who	opens	the	application	has	to	add	the	table
on	the	fly.	When	the	next	buyer	shows	up,	the	table	might	have	already	been
added	by	the	first	buyer’s	application.	Because	this	code	is	a	function	instead	of
a	sub,	it	returns	either	True	or	False	to	the	calling	routine.

This	code	uses	the	OpenSchema	method	to	query	the	database	schema:

Click	here	to	view	code	image
Function	TableExists(WhichTable)

Dim	cnn	As	ADODB.Connection

Dim	rst	As	ADODB.Recordset

Dim	fld	As	ADODB.Field

TableExists	=	False

'	Path	to	Transfers.mdb	is	on	Menu

MyConn	=	"J:\transfers.mdb"

Set	cnn	=	New	ADODB.Connection

With	cnn

.Provider	=	"Microsoft.Jet.OLEDB.4.0"

.Open	MyConn

End	With

Set	rst	=	cnn.OpenSchema(adSchemaTables)

Do	Until	rst.EOF

If	LCase(rst!Table_Name)	=	LCase(WhichTable)	Then

TableExists	=	True

GoTo	ExitMe

End	If

rst.MoveNext

Loop

ExitMe:

rst.Close

Set	rst	=	Nothing

'	Close	the	connection

cnn.Close

End	Function

Checking	for	the	existence	of	a	field

Sometimes	you	want	to	add	a	new	field	to	an	existing	table.	The	following	code
does	this,	and	it	uses	the	OpenSchema	method	but	this	time	looks	at	the	columns
in	the	tables:

Click	here	to	view	code	image
Function	ColumnExists(WhichColumn,	WhichTable)

Dim	cnn	As	ADODB.Connection

Dim	rst	As	ADODB.Recordset

Dim	WSOrig	As	Worksheet

Dim	WSTemp	As	Worksheet

Dim	fld	As	ADODB.Field

ColumnExists	=	False

'	Path	to	Transfers.mdb	is	on	menu

MyConn	=

ActiveWorkbook.Worksheets("Menu").Range("TPath").Value

If	Right(MyConn,	1)	=	"\"	Then

MyConn	=	MyConn	&	"transfers.mdb"

Else

MyConn	=	MyConn	&	"\transfers.mdb"

End	If

Set	cnn	=	New	ADODB.Connection

With	cnn

.Provider	=	"Microsoft.Jet.OLEDB.4.0"

.Open	MyConn

End	With

Set	rst	=	cnn.OpenSchema(adSchemaColumns)

Do	Until	rst.EOF

If	LCase(rst!Column_Name)	=	LCase(WhichColumn)	And	_

LCase(rst!Table_Name)	=	LCase(WhichTable)	Then

ColumnExists	=	True

GoTo	ExitMe

End	If

rst.MoveNext

Loop

ExitMe:

rst.Close

Set	rst	=	Nothing

'	Close	the	connection

cnn.Close

End	Function

Adding	a	table	on	the	fly

The	following	code	uses	a	pass-through	query	to	tell	Access	to	run	a	Create
Table	command:

Click	here	to	view	code	image
Sub	ADOCreateReplenish()

'	This	creates	tblReplenish

'	There	are	five	fields:

'	Style

'	A	=	Auto	replenishment	for	A

'	B	=	Auto	replenishment	level	for	B	stores

'	C	=	Auto	replenishment	level	for	C	stores

'	RecActive	=	Yes/No	field

Dim	cnn	As	ADODB.Connection

Dim	cmd	As	ADODB.Command

'	Define	the	connection

MyConn	=	"J:\transfers.mdb"

'	open	the	connection

Set	cnn	=	New	ADODB.Connection

With	cnn

.Provider	=	"Microsoft.Jet.OLEDB.4.0"

.Open	MyConn

End	With

Set	cmd	=	New	ADODB.Command

Set	cmd.ActiveConnection	=	cnn

'create	table

cmd.CommandText	=	"CREATE	TABLE	tblReplenish	"	&	_

"(Style	Char(10)	Primary	Key,	"	&	_

"A	int,	B	int,	C	Int,	RecActive	YesNo)"

cmd.Execute	,	,	adCmdText

Set	cmd	=	Nothing

Set	cnn	=	Nothing

Exit	Sub

End	Sub

Adding	a	field	on	the	fly

If	you	determine	that	a	field	does	not	exist,	you	can	use	a	pass-through	query	to
add	a	field	to	the	table,	like	this:

Click	here	to	view	code	image
Sub	ADOAddField()

'	This	adds	a	grp	field	to	tblReplenish

Dim	cnn	As	ADODB.Connection

Dim	cmd	As	ADODB.Command

'	Define	the	connection

MyConn	=	"J:\transfers.mdb"

'	open	the	connection

Set	cnn	=	New	ADODB.Connection

With	cnn

.Provider	=	"Microsoft.Jet.OLEDB.4.0"

.Open	MyConn

End	With

Set	cmd	=	New	ADODB.Command

Set	cmd.ActiveConnection	=	cnn

'create	table

cmd.CommandText	=	"ALTER	TABLE	tblReplenish	Add

Column	Grp	Char(25)"

cmd.Execute	,	,	adCmdText

Set	cmd	=	Nothing

Set	cnn	=	Nothing

End	Sub

SQL	Server	examples

If	you	have	64-bit	versions	of	Office	and	if	Microsoft	does	not	provide	the	64-bit
Microsoft.Jet.OLEDB.4.0	drivers,	you	have	to	switch	over	to	using	SQL	Server
or	another	database	technology:

Click	here	to	view	code	image
Sub	DataExtract()

Application.DisplayAlerts	=	False

'clear	out	all	previous	data

Sheet1.Cells.Clear

'	Create	a	connection	object.

Dim	cnPubs	As	ADODB.Connection

Set	cnPubs	=	New	ADODB.Connection

'	Provide	the	connection	string.

Dim	strConn	As	String

'Use	the	SQL	Server	OLE	DB	Provider.

Click	here	to	view	code	image
strConn	=	"PROVIDER=SQLOLEDB;"

'Connect	to	the	Pubs	database	on	the	local	server.

strConn	=	strConn	&	"DATA	SOURCE=a_sql_server;INITIAL

CATALOG=a_database;"

'Use	an	integrated	login.

strConn	=	strConn	&	"	INTEGRATED	SECURITY=sspi;"

'Now	open	the	connection.

cnPubs.Open	strConn

'	Create	a	record	set	object.

Dim	rsPubs	As	ADODB.Recordset

Set	rsPubs	=	New	ADODB.Recordset

With	rsPubs

'	Assign	the	Connection	object.

.ActiveConnection	=	cnPubs

'	Extract	the	required	records.

.Open	"exec	a_database..a_stored_procedure"

'	Copy	the	records	into	cell	A1	on	Sheet1.

Sheet1.Range("A2").CopyFromRecordset	rsPubs

Dim	myColumn	As	Range

'Dim	title_string	As	String

Dim	K	As	Integer

For	K	=	0	To	rsPubs.Fields.Count	-	1

'Sheet1.Columns(K).Value	=	rsPubs.Fields(K).Name

'title_string	=	title_string	&

rsPubs.Fields(K).Name	&	Chr(9)

'Sheet1.Columns(K).Cells(1).Name	=

rsPubs.Fields(K).Name

'Sheet1.Columns.Column(K)	=

rsPubs.Fields(K).Name

'Set	myColumn	=	Sheet1.Columns(K)

'myColumn.Cells(1,	K).Value	=

rsPubs.Fields(K).Name

'Sheet1.Cells(1,	K)	=	rsPubs.Fields(K).Name

Sheet1.Cells(1,	K	+	1)	=	rsPubs.Fields(K).Name

Sheet1.Cells(1,	K	+	1).Font.Bold	=	"TRUE"

Next	K

'Sheet1.Range("A1").Value	=	title_string

'	Tidy	up

.Close

End	With

cnPubs.Close

Set	rsPubs	=	Nothing

Set	cnPubs	=	Nothing

'clear	out	errors

Dim	cellval	As	Range

Dim	myRng	As	Range

Set	myRng	=	ActiveSheet.UsedRange

For	Each	cellval	In	myRng

Click	here	to	view	code	image
cellval.Value	=	cellval.Value

'cellval.NumberFormat	=	"@"	'this	works	as	well	as

setting

'HorizontalAlignment

cellval.HorizontalAlignment	=	xlRight

Next

End	Sub

Next	steps

In	Chapter	22,	“Advanced	userform	techniques,”	you’ll	discover	more	controls
and	techniques	you	can	use	in	building	userforms.

CHAPTER	22
Advanced	userform	techniques

In	this	chapter,	you	will:

Access	the	UserForm	toolbar

Learn	how	to	use	CheckBox,	TabStrip,	RefEdit,	and	ToggleButton
controls

Use	a	collection	to	control	multiple	controls

Select	a	cell	on	a	sheet	while	a	userform	is	open

Use	hyperlinks	in	userforms

Add	controls	at	runtime

Add	help	to	a	userform

Set	up	a	multicolumn	list	box

Create	transparent	forms

Chapter	10,	“Userforms:	An	introduction,”	covered	the	basics	of	adding	controls
to	userforms.	This	chapter	continues	the	topic,	looking	at	more	advanced
controls	and	methods	for	making	the	most	out	of	userforms.

Using	the	UserForm	toolbar	in	the	design	of	controls
on	userforms
In	the	VB	Editor,	under	View,	Toolbars,	you’	find	a	few	toolbars	that	do	not
appear	unless	you	select	them.	One	of	these	is	the	UserForm	toolbar,	shown	in
Figure	22-1.	It	has	functionality	useful	for	organizing	the	controls	you	add	to	a
userform;	for	example,	you	can	use	it	to	make	all	the	controls	you	select	the
same	size.

FIGURE	22-1	The	UserForm	toolbar	has	tools	for	organizing	the	controls	on	a	userform.

More	userform	controls
The	following	sections	cover	more	userform	controls	you	can	use	to	help	obtain
information	from	people.	At	the	end	of	each	of	the	following	subsections	is	a
table	that	lists	that	control’	events.

CheckBox	controls
Check	boxes	allow	the	user	to	select	one	or	more	options	on	a
userform.	Unlike	with	the	option	buttons	discussed	in	Chapter	10,	a
person	can	select	one	or	more	check	boxes	at	a	time.

The	value	of	a	checked	box	is	True;	the	value	of	an	unchecked	box	is	False.
If	you	clear	the	value	of	a	check	box	(CheckBox1.Value	=	""),	when	the
userform	runs,	the	check	box	will	have	a	grayed-out	check	in	it,	as	shown	in
Figure	22-2.	This	can	be	useful	for	verifying	that	users	have	viewed	all	options
and	made	a	selection.

FIGURE	22-2	Use	the	null	value	of	the	check	box	to	verify	that	a	person	has	viewed	and	answered
all	options.

You	can	use	code	like	the	following	to	review	all	the	check	boxes	in	the
Languages	group	of	the	dialog	box	shown	in	Figure	22-2.	If	a	value	is	null,	the
user	is	prompted	to	review	the	selections:

Click	here	to	view	code	image
Private	Sub	btnClose_Click()

Dim	Msg	As	String

Dim	Chk	As	Control

Set	Chk	=	Nothing

'narrow	down	the	search	to	just	the	2nd	page's

controls

For	Each	Chk	In

frm_Multipage.MultiPage1.Pages(1).Controls

'only	need	to	verify	checkbox	controls

If	TypeName(Chk)	=	"CheckBox"	Then

'and	just	in	case	we	add	more	check	box

controls,

'just	check	the	ones	in	the	group

If	Chk.GroupName	=	"Languages"	Then

'if	the	value	is	null	(the	property	value

is	empty)

If	IsNull(Chk.Object.Value)	Then

'add	the	caption	to	a	string

Msg	=	Msg	&	vbNewLine	&	Chk.Caption

End	If

End	If

End	If

Next	Chk

If	Msg	<>	""	Then

Msg	=	"The	following	check	boxes	were	not

verified:"	&	vbNewLine	&	Msg

MsgBox	Msg,	vbInformation,	"Additional	Information

Required"

End	If

Unload	Me

End	Sub

Table	22-1	lists	the	events	for	CheckBox	controls.

TABLE	22-1	CheckBox	control	events

Event Description
AfterUpdate Occurs	after	a	check	box	has	been	selected/cleared.
BeforeDragOver Occurs	while	the	person	drags	and	drops	data	onto	the	check	box.
BeforeDropOrPasteOccurs	right	before	the	person	is	about	to	drop	or	paste	data	onto	the	check	box.
BeforeUpdate Occurs	before	the	check	box	is	selected/cleared.
Change Occurs	when	the	value	of	the	check	box	is	changed.
Click Occurs	when	the	person	clicks	the	control	with	the	mouse.
DblClick Occurs	when	the	person	double-clicks	the	check	box	with	the	mouse.
Enter Occurs	right	before	the	check	box	receives	the	focus	from	another	control	on	the	same

userform.
Error Occurs	when	the	check	box	runs	into	an	error	and	cannot	return	the	error	information.
Exit Occurs	right	after	the	check	box	loses	focus	to	another	control	on	the	same	userform.
KeyDown Occurs	when	the	person	presses	a	key	on	the	keyboard.
KeyPress Occurs	when	the	person	presses	an	ANSI	key.	An	ANSI	key	is	a	typable	character

such	as	the	letter	A.
KeyUp Occurs	when	the	person	releases	a	key	on	the	keyboard.
MouseDown Occurs	when	the	person	presses	the	mouse	button	within	the	borders	of	the	check	box.
MouseMove Occurs	when	the	person	moves	the	mouse	within	the	borders	of	the	check	box.

MouseUp Occurs	when	the	person	releases	the	mouse	button	within	the	borders	of	the	check	box.

TabStrip	controls
The	MultiPage	control	allows	a	userform	to	have	several	pages.	Each
page	of	the	form	can	have	its	own	set	of	controls,	unrelated	to	any
other	control	on	the	form.	A	TabStrip	control	also	allows	a	userform

to	have	many	pages,	but	the	controls	on	a	tab	strip	are	identical;	they	are	drawn
only	once.	Yet	when	the	form	is	run,	the	information	changes	depending	on
which	tab	strip	is	active	(see	Figure	22-3).

Note	To	learn	more	about	MultiPage	controls,	see	“Using	the
MultiPage	control	to	combine	forms”	in	Chapter	10.

FIGURE	22-3	A	tab	strip	allows	a	userform	with	multiple	pages	to	share	controls	but	not
information.

By	default,	a	tab	strip	is	thin,	with	two	tabs	at	the	top.	Right-clicking	a	tab
enables	you	to	add,	remove,	rename,	or	move	that	tab.	Size	the	tab	strip	to	hold
all	the	controls.	Outside	the	tab	strip	area,	draw	a	button	for	closing	the	form.

You	can	move	the	tabs	around	the	strip,	as	shown	in	Figure	22-3,	by
changing	the	TabOrientation	property.	The	tabs	can	be	at	the	top,	bottom,	left,
or	right	side	of	the	userform.

The	following	lines	of	code	were	used	to	create	the	tab	strip	form	shown	in
Figure	22-3.	The	Initialize	sub	calls	the	sub	SetValuesToTabStrip,	which
sets	the	value	for	the	first	tab:

Click	here	to	view	code	image

Private	Sub	UserForm_Initialize()

SetValuesToTabStrip	1	'As	default

End	Sub

These	lines	of	code	handle	what	happens	when	a	new	tab	is	selected:

Click	here	to	view	code	image
Private	Sub	TabStrip1_Change()

Dim	lngRow	As	Long

lngRow	=	TabStrip1.Value	+	1

SetValuesToTabStrip	lngRow

End	Sub

This	sub	provides	the	data	shown	on	each	tab.	A	sheet	was	set	up,	with	each
row	corresponding	to	a	tab:

Click	here	to	view	code	image
Private	Sub	SetValuesToTabStrip(ByVal	lngRow	As	Long)

With	frm_Staff

.lbl_Address.Caption	=	Cells(lngRow,	2).Value

.lbl_Phone.Caption	=	Cells(lngRow,	3).Value

.lbl_Fax.Caption	=	Cells(lngRow,	4).Value

.lbl_Email.Caption	=	Cells(lngRow,	5).Value

.lbl_Website.Caption	=	Cells(lngRow,	6).Value

.Show

End	With

End	Sub

The	tab	strip’	values	are	automatically	filled	in.	They	correspond	to	the	tab’
position	in	the	strip;	moving	a	tab	changes	its	value.	The	value	of	the	first	tab	of
a	tab	strip	is	0,	which	is	why,	in	the	preceding	code,	we	add	1	to	the	tab	strip
value	when	the	form	is	initialized	to	get	it	to	correspond	with	the	row	on	the
sheet.

Tip	If	you	want	a	single	tab	to	have	an	extra	control,	the	control
could	be	added	at	runtime,	when	the	tab	is	activated,	and	removed
when	the	tab	is	deactivated.

Table	22-2	lists	the	events	for	the	TabStrip	control.

TABLE	22-2	TabStrip	control	events

Event Description
BeforeDragOver Occurs	while	the	person	drags	and	drops	data	onto	the	control.
BeforeDropOrPasteOccurs	right	before	the	person	drops	or	pastes	data	into	the	control.
Change Occurs	when	the	value	of	the	control	is	changed.
Click Occurs	when	the	person	clicks	the	control	with	the	mouse.
DblClick Occurs	when	the	person	double-clicks	the	control	with	the	mouse.
Enter Occurs	right	before	the	control	receives	the	focus	from	another	control	on	the	same

userform.
Error Occurs	when	the	control	runs	into	an	error	and	cannot	return	the	error	information.
Exit Occurs	right	after	the	control	loses	focus	to	another	control	on	the	same	userform.
KeyDown Occurs	when	the	person	presses	a	key	on	the	keyboard.
KeyPress Occurs	when	the	person	presses	an	ANSI	key.	An	ANSI	key	is	a	typable	character,

such	as	the	letter	A.
KeyUp Occurs	when	the	person	releases	a	key	on	the	keyboard.
MouseDown Occurs	when	the	person	presses	the	mouse	button	within	the	borders	of	the	control.
MouseMove Occurs	when	the	person	moves	the	mouse	within	the	borders	of	the	control.
MouseUp Occurs	when	the	person	releases	the	mouse	button	within	the	borders	of	the	control.

RefEdit	controls
The	RefEdit	control	allows	a	person	to	select	a	range	on	a	sheet;	the
range	is	returned	as	the	value	of	the	control.	You	can	add	it	to	any
form.	When	you	click	the	button	on	the	right	side	of	the	field,	the

userform	disappears	and	is	replaced	with	the	range	selection	form	that	is	used	for
selecting	ranges	with	Excel’	many	wizard	tools,	as	shown	in	Figure	22-4.	Click
the	button	on	the	right	of	the	field	to	show	the	userform	once	again.

FIGURE	22-4	Use	RefEdit	to	enable	a	person	to	select	a	range	on	a	sheet.

The	following	code	used	with	a	RefEdit	control	allows	a	person	to	select	a
range,	which	is	then	made	bold:

Click	here	to	view	code	image
Private	Sub	cb1_Click()

Range(RefEdit1.Value).Font.Bold	=	True

Unload	Me

End	Sub

Table	22-3	lists	the	events	for	RefEdit	controls.

Caution	RefEdit	control	events	are	notorious	for	not	working
properly.	If	you	run	into	this	problem,	use	a	different	control’
event	to	trigger	code.

TABLE	22-3	RefEdit	control	events

Event Description
AfterUpdate Occurs	after	the	control’	data	has	been	changed.
BeforeDragOver Occurs	while	the	person	drags	and	drops	data	onto	the	control.
BeforeDropOrPasteOccurs	right	before	the	person	drops	or	pastes	data	into	the	control.
BeforeUpdate Occurs	before	the	data	in	the	control	is	changed.
Change Occurs	when	the	value	of	the	control	is	changed.
Click Occurs	when	the	person	clicks	the	control	with	the	mouse.
DblClick Occurs	when	the	person	double-clicks	the	control	with	the	mouse.
DropButtonClick Occurs	when	the	person	clicks	the	drop	button	on	the	right	side	of	the	field.
Enter Occurs	right	before	the	control	receives	the	focus	from	another	control	on	the	same

userform.

Error Occurs	when	the	control	runs	into	an	error	and	cannot	return	the	error	information.
Exit Occurs	right	after	the	control	loses	focus	to	another	control	on	the	same	userform.
KeyDown Occurs	when	the	person	presses	a	key	on	the	keyboard.
KeyPress Occurs	when	the	person	presses	an	ANSI	key.	An	ANSI	key	is	a	typable	character,

such	as	the	letter	A.
KeyUp Occurs	when	the	person	releases	a	key	on	the	keyboard.
MouseDown Occurs	when	the	person	presses	the	mouse	button	within	the	borders	of	the	control.
MouseMove Occurs	when	the	person	moves	the	mouse	within	the	borders	of	the	control.
MouseUp Occurs	when	the	person	releases	the	mouse	button	within	the	borders	of	the	control.

ToggleButton	controls
A	toggle	button	looks	like	a	normal	command	button,	but	when	it’
clicked,	it	stays	pressed	until	it’	clicked	again.	This	allows	a	True	or
False	value	to	be	returned	based	on	the	status	of	the	button.	Table	22-4

lists	the	events	for	the	ToggleButton	controls.

TABLE	22-4	ToggleButton	control	events

Event Description
AfterUpdate Occurs	after	the	control’	data	has	been	changed.
BeforeDragOver Occurs	while	the	person	drags	and	drops	data	onto	the	control.
BeforeDropOrPasteOccurs	right	before	the	person	drops	or	pastes	data	into	the	control.
BeforeUpdate Occurs	before	the	data	in	the	control	is	changed.
Change Occurs	when	the	value	of	the	control	is	changed.
Click Occurs	when	someone	clicks	the	control	with	the	mouse.
DblClick Occurs	when	the	person	double-clicks	the	control	with	the	mouse.
Enter Occurs	right	before	the	control	receives	the	focus	from	another	control	on	the	same

userform.
Error Occurs	when	the	control	runs	into	an	error	and	cannot	return	the	error	information.
Exit Occurs	right	after	the	control	loses	focus	to	another	control	on	the	same	userform.
KeyDown Occurs	when	the	person	presses	a	key	on	the	keyboard.
KeyPress Occurs	when	the	person	presses	an	ANSI	key.	An	ANSI	key	is	a	typable	character,

such	as	the	letter	A.
KeyUp Occurs	when	the	person	releases	a	key	on	the	keyboard.
MouseDown Occurs	when	the	person	presses	the	mouse	button	within	the	borders	of	the	control.

MouseMove Occurs	when	the	person	moves	the	pointer	within	the	borders	of	the	control.
MouseUp Occurs	when	the	person	releases	the	mouse	button	within	the	borders	of	the	control.

Using	a	scrollbar	as	a	slider	to	select	values
Chapter	10	discusses	using	a	SpinButton	control	to	enable	someone	to
choose	a	date.	A	spin	button	is	useful,	but	it	enables	you	to	adjust	up	or
down	by	only	one	unit	at	a	time.	An	alternative	method	is	to	draw	a

horizontal	or	vertical	scrollbar	in	the	middle	of	the	userform	and	use	it	as	a
slider.	People	can	use	arrows	on	the	ends	of	the	scrollbar	as	they	would	the	spin
button	arrows,	but	they	can	also	grab	the	scrollbar	and	instantly	drag	it	to	a
certain	value.

The	userform	shown	in	Figure	22-5	includes	a	label	named	Label1	and	a
scrollbar	called	ScrollBar1.

FIGURE	22-5	Using	a	ScrollBar	control	allows	the	person	to	drag	to	a	particular	numeric	or	data
value.

The	userform’	Initialize	code	sets	up	the	Min	and	Max	values	for	the
scrollbar.	It	initializes	the	scrollbar	to	a	value	from	cell	A1	and	updates	the
Label1.Caption:

Click	here	to	view	code	image
Private	Sub	UserForm_Initialize()

Me.ScrollBar1.Min	=	0

Me.ScrollBar1.Max	=	100

Me.ScrollBar1.Value	=

Worksheets("Scrollbar").Range("A1").Value

Me.Label1.Caption	=	Me.ScrollBar1.Value

End	Sub

Two	event	handlers	are	needed	for	the	scrollbar.	The	Change	event	triggers
when	a	person	clicks	the	arrows	at	the	ends	of	the	scrollbar.	The	Scroll	event
triggers	when	they	drag	the	slider	to	a	new	value:

Click	here	to	view	code	image
Private	Sub	ScrollBar1_Change()

'This	event	triggers	when	the	user	touches

'the	arrows	on	the	end	of	the	scrollbar

Me.Label1.Caption	=	Me.ScrollBar1.Value

End	Sub

Private	Sub	ScrollBar1_Scroll()

'This	event	triggers	when	the	user	drags	the

slider

Me.Label1.Caption	=	Me.ScrollBar1.Value

End	Sub

Finally,	the	event	attached	to	the	button	writes	the	scrollbar	value	out	to	the
worksheet:

Click	here	to	view	code	image
Private	Sub	btnClose_Click()

Worksheets("Scrollbar").Range("A1").Value	=

Me.ScrollBar1.Value

Unload	Me

End	Sub

Table	22-5	lists	the	events	for	ScrollBar	controls.

TABLE	22-5	ScrollBar	control	events

Event Description
AfterUpdate Occurs	after	a	person	has	changed	the	control’	data.
BeforeDragOver Occurs	while	someone	drags	and	drops	data	onto	the	control.
BeforeDropOrPasteOccurs	right	before	the	person	drops	or	pastes	data	into	the	control.
BeforeUpdate Occurs	before	the	data	in	the	control	is	changed.
Change Occurs	when	the	value	of	the	control	is	changed.

Enter Occurs	right	before	the	control	receives	the	focus	from	another	control	on	the	same
userform.

Error Occurs	when	the	control	runs	into	an	error	and	cannot	return	the	error	information.
Exit Occurs	right	after	the	control	loses	focus	to	another	control	on	the	same	userform.
KeyDown Occurs	when	the	person	presses	a	key	on	the	keyboard.
KeyPress Occurs	when	the	person	presses	an	ANSI	key.	An	ANSI	key	is	a	typable	character,

such	as	the	letter	A.
KeyUp Occurs	when	the	person	releases	a	key	on	the	keyboard.
Scroll Occurs	when	the	slider	is	moved.

Controls	and	collections

In	Chapter	9,	“Creating	classes	and	collections,”	several	labels	on	a	sheet	were
grouped	into	a	collection.	With	a	little	more	code,	these	labels	were	turned	into
help	screens.	Userform	controls	can	also	be	grouped	into	collections	to	take
advantage	of	class	modules.	The	following	example	selects	or	clears	all	the
check	boxes	on	the	userform,	depending	on	which	label	someone	chooses.

Place	the	following	code	in	the	class	module,	clsFormCtl.	It	consists	of	one
property,	chb,	and	two	methods,	SelectAll	and	UnselectAll.

The	SelectAll	method	selects	a	check	box	by	setting	its	value	to	True:

Click	here	to	view	code	image
Public	WithEvents	chb	As	MSForms.CheckBox

Public	Sub	SelectAll()

chb.Value	=	True

End	Sub

The	UnselectAll	method	clears	the	check	box:

Click	here	to	view	code	image
Public	Sub	UnselectAll()

chb.Value	=	False

End	Sub

That	sets	up	the	class	module.	Next,	the	controls	need	to	be	placed	in	a
collection.	The	following	code,	placed	behind	the	form	frm_Movies,	places	the

check	boxes	into	a	collection.	The	check	boxes	are	part	of	the	frame
frm_Selection,	which	makes	it	easier	to	create	the	collection	because	it	narrows
the	number	of	controls	that	need	to	be	checked	from	the	entire	userform	to	just
those	controls	within	the	frame:

Click	here	to	view	code	image
Dim	col_Selection	As	New	Collection

Private	Sub	UserForm_Initialize()

Dim	ctl	As	MSForms.CheckBox

Dim	chb_ctl	As	clsFormCtl

'Go	through	the	members	of	the	frame	and	add	them	to

the	collection

For	Each	ctl	In	frm_Selection.Controls

Set	chb_ctl	=	New	clsFormCtl

Set	chb_ctl.chb	=	ctl

col_Selection.Add	chb_ctl

Next	ctl

End	Sub

When	the	form	is	opened,	the	controls	are	placed	into	the	collection.	All	that’
left	now	is	to	add	the	code	for	labels	to	select	and	clear	the	check	boxes:

Click	here	to	view	code	image
Private	Sub	lbl_SelectAll_Click()

Dim	ctl	As	clsFormCtl

For	Each	ctl	In	col_Selection

ctl.SelectAll

Next	ctl

End	Sub

The	following	code	clears	the	check	boxes	in	the	collection:

Click	here	to	view	code	image
Private	Sub	lbl_unSelectAll_Click()

Dim	ctl	As	clsFormCtl

For	Each	ctl	In	col_Selection

ctl.Unselectall

Next	ctl

End	Sub

All	the	check	boxes	can	be	selected	and	cleared	with	a	single	click	of	the
mouse,	as	shown	in	Figure	22-6.

FIGURE	22-6	Use	frames,	collections,	and	class	modules	together	to	create	quick	and	efficient
userforms.

Tip	If	your	controls	cannot	be	placed	in	a	frame,	you	can	use	the
Tag	property	to	create	an	improvised	grouping.	Tag	is	a	property	that
holds	more	information	about	a	control.	Its	value	is	of	type	String,

so	it	can	hold	any	type	of	information.	For	example,	you	can	use	it	to	create
an	informal	group	of	controls	from	different	groupings.

Modeless	userforms
Have	you	ever	had	a	userform	active	but	needed	to	manipulate	something	on	the
active	sheet	or	switch	to	another	sheet?	Forms	can	be	modeless,	in	which	case
they	don’t	have	to	interfere	with	the	functionality	of	Excel.	A	person	can	type	in
a	cell,	switch	to	another	sheet,	copy/paste	data,	and	use	the	ribbon—as	if	the
userform	were	not	there.

By	default,	a	userform	is	modal,	which	means	that	there	can	be	no
interaction	with	Excel	other	than	with	the	form.	To	make	the	form	modeless,
change	the	ShowModal	property	to	False.	For	example,	to	make	Userform1

modeless	when	it’	opened,	do	this:
Userform1.Show	False

After	it	is	modeless,	someone	can	select	a	cell	on	the	sheet	while	the	form	is
active,	as	shown	in	Figure	22-7.

FIGURE	22-7	A	modeless	form	enables	a	person	to	enter	a	cell	while	the	form	is	still	active.

Using	hyperlinks	in	userforms
In	the	userform	example	shown	in	Figure	22-3,	there	is	a	field	for	email	and	a
field	for	website	address.	It	would	be	nice	to	click	these	and	have	a	blank	email
message	or	web	page	appear	automatically.	You	can	do	this	by	using	the
following	program,	which	creates	a	new	message	or	opens	a	web	browser	when
someone	clicks	the	corresponding	label:

Click	here	to	view	code	image
Private	Declare	PtrSafe	Function	ShellExecute	Lib

"shell32.dll"	Alias	_

"ShellExecuteA"(ByVal	hWnd	As	Long,	ByVal	lpOperation

As	String,	_

ByVal	lpFile	As	String,	ByVal	lpParameters	As	String,

_

ByVal	lpDirectory	As	String,	ByVal	nShowCmd	As	Long)

As	LongPtr

Const	SWNormal	=	1

The	application	programming	interface	(API)	declaration	and	any	other
constants	go	at	the	very	top	of	the	module.

This	sub	controls	what	happens	when	the	email	label	is	clicked,	as	shown	in
Figure	22-8:

Click	here	to	view	code	image
Private	Sub	lbl_Email_Click()

Dim	lngRow	As	Long

lngRow	=	TabStrip1.Value	+	1

ShellExecute	0&,	"open",	"mailto:"	&	Cells(lngRow,

5).Value,	_

vbNullString,	vbNullString,	SWNormal

End	Sub

FIGURE	22-8	Turn	email	addresses	and	websites	into	clickable	links	by	using	a	few	lines	of	code.

This	sub	controls	what	happens	when	someone	clicks	a	website	label:

Click	here	to	view	code	image
Private	Sub	lbl_Website_Click()

Dim	lngRow	As	Long

lngRow	=	TabStrip1.Value	+	1

ShellExecute	0&,	"open",	Cells(lngRow,	6).Value,

vbNullString,	_

vbNullString,	SWNormal

End	Sub

Adding	controls	at	runtime

It’	possible	to	add	controls	to	a	userform	at	runtime.	This	is	convenient	if	you’re
not	sure	how	many	items	you’	be	adding	to	a	form.

Figure	22-9	shows	a	plain	form	with	only	one	button.	This	plain	form	is	used
to	display	any	number	of	pictures	from	a	product	catalog.	The	pictures	and
accompanying	labels	appear	at	runtime,	as	the	form	is	being	displayed.

A	sales	rep	making	a	sales	presentation	uses	this	form	to	display	a	product
catalog.	She	can	select	any	number	of	SKUs	from	an	Excel	worksheet	and	press
a	hotkey	to	display	the	form.	If	she	selects	six	items	on	the	worksheet,	the	form
displays	with	a	small	version	of	each	picture,	as	shown	in	Figure	22-10.

If	the	sales	rep	selects	fewer	items,	the	images	are	displayed	larger,	as	shown
in	Figure	22-11.

A	number	of	techniques	are	used	to	create	this	userform	on	the	fly.	The	initial
form	contains	only	one	button,	cbClose.	Everything	else	is	added	on	the	fly.

FIGURE	22-9	You	can	create	flexible	forms	if	you	add	most	controls	at	runtime.

FIGURE	22-10	The	sales	rep	asked	to	see	photos	of	six	SKUs.	The	UserForm_Initialize
procedure	adds	each	picture	and	label	on	the	fly.

FIGURE	22-11	The	logic	in	Userform_Initialize	decides	how	many	pictures	are	being	displayed
and	adds	the	appropriately	sized	image	controls.

Resizing	the	userform	on	the	fly

Giving	the	best	view	of	the	images	in	the	product	catalog	involves	having	the
form	appear	as	large	as	possible.	The	following	code	uses	the	form’	Height	and
Width	properties	to	make	sure	the	form	fills	almost	the	entire	screen:

Click	here	to	view	code	image
'resize	the	form

Me.Height	=	Int(0.98	*	ActiveWindow.Height)

Me.Width	=	Int(0.98	*	ActiveWindow.Width)

Adding	a	control	on	the	fly

For	a	normal	control	added	at	design	time,	such	as	a	button	called	cbClose,	it	is
easy	to	refer	to	the	control	by	using	its	name:
Me.cbClose.Left	=	100

However,	for	a	control	that’	added	at	runtime,	you	have	to	use	the	Controls
collection	to	set	any	properties	for	the	control.	For	this	reason,	it’	important	to
set	up	a	variable,	such	as	LC,	to	hold	the	name	of	the	control.	Controls	are	added
with	the	.Add	method.	The	important	parameter	is	bstrProgId.	This	property
dictates	whether	the	added	control	is	a	label,	a	text	box,	a	command	button,	or
something	else.

The	following	code	adds	a	new	label	to	the	form.	PicCount	is	a	counter
variable	used	to	ensure	that	each	label	has	a	unique	name.	After	the	form	is
added,	specify	a	position	for	the	control	by	setting	the	Top	and	Left	properties.
You	should	also	set	Height	and	Width	properties	for	the	control:

Click	here	to	view	code	image
LC	=	"LabelA"	&	PicCount

Me.Controls.Add	bstrProgId:="forms.label.1",	Name:=LC,

Visible:=True

Me.Controls(LC).Top	=	25

Me.Controls(LC).Left	=	50

Me.Controls(LC).Height	=	18

Me.Controls(LC).Width	=	60

Me.Controls(LC).Caption	=	Cell.Value

Caution	You	lose	some	of	the	AutoComplete	options	with	this	method.

Normally,	if	you	would	start	to	type	Me.cbClose.,	the
AutoComplete	options	would	present	the	valid	choices	for	a
command	button.	However,	when	you	use	the	Me.Controls(LC)

collection	to	add	controls	on	the	fly,	VBA	does	not	know	what	type	of
control	is	referenced.	In	this	case,	it	is	helpful	to	know	you	need	to	set	the
Caption	property	rather	than	the	Value	property	for	a	label.

Sizing	on	the	fly

In	reality,	you	need	to	be	able	to	calculate	values	for	Top,	Left,	Height,	and
Width	on	the	fly.	You	do	this	based	on	the	actual	height	and	width	of	a	form	and
based	on	how	many	controls	are	needed.

Adding	other	controls

To	add	other	types	of	controls,	change	the	ProgId	used	with	the	Add	method.
Table	22-6	shows	the	ProgIds	for	various	types	of	controls.

TABLE	22-6	Userform	controls	and	corresponding	ProgIds

Control ProgId
CheckBox Forms.CheckBox.1

ComboBox Forms.ComboBox.1

CommandButton Forms.CommandButton.1

Frame Forms.Frame.1

Image Forms.Image.1

Label Forms.Label.1

ListBox Forms.ListBox.1

MultiPage Forms.MultiPage.1

OptionButton Forms.OptionButton.1

ScrollBar Forms.ScrollBar.1

SpinButton Forms.SpinButton.1

TabStrip Forms.TabStrip.1

TextBox Forms.TextBox.1

ToggleButton Forms.ToggleButton.1

Adding	an	image	on	the	fly

There	is	some	unpredictability	in	adding	images	to	a	userform.	Any	given	image
might	be	shaped	either	landscape	or	portrait.	An	image	might	be	small	or	huge.
The	strategy	you	might	want	to	use	is	to	let	an	image	load	at	full	size	by	setting
the	.AutoSize	parameter	to	True	before	loading	it:

Click	here	to	view	code	image
TC	=	"Image"	&	PicCount

Me.Controls.Add	bstrProgId:="forms.image.1",	Name:=TC,

Visible:=True

Me.Controls(TC).Top	=	LastTop

Me.Controls(TC).Left	=	LastLeft

Me.Controls(TC).AutoSize	=	True

On	Error	Resume	Next

Me.Controls(TC).Picture	=	LoadPicture(fname)

On	Error	GoTo	0

After	the	image	has	loaded,	you	can	read	the	control’	Height	and	Width
properties	to	determine	whether	the	image	is	landscape	or	portrait	and	whether
the	image	is	constrained	by	available	width	or	available	height:

Click	here	to	view	code	image
'The	picture	resized	the	control	to	full	size

'determine	the	size	of	the	picture

Wid	=	Me.Controls(TC).Width

Ht	=	Me.Controls(TC).Height

'CellWid	and	CellHt	are	calculated	in	the	full	code

sample	below

WidRedux	=	CellWid	/	Wid

HtRedux	=	CellHt	/	Ht

If	WidRedux	<	HtRedux	Then

Redux	=	WidRedux

Else

Redux	=	HtRedux

End	If

NewHt	=	Int(Ht	*	Redux)

NewWid	=	Int(Wid	*	Redux)

After	you	find	the	proper	size	for	the	image	so	that	it	draws	without

distortion,	set	the	AutoSize	property	to	False	and	use	the	correct	height	and
width	to	have	the	image	not	appear	distorted:

Click	here	to	view	code	image
'Now	resize	the	control

Me.Controls(TC).AutoSize	=	False

Me.Controls(TC).Height	=	NewHt

Me.Controls(TC).Width	=	NewWid

Me.Controls(TC).PictureSizeMode	=

fmPictureSizeModeStretch

Putting	it	all	together

This	is	the	complete	code	for	the	picture	catalog	userform:

Click	here	to	view	code	image
Private	Sub	UserForm_Initialize()

'Display	pictures	of	each	SKU	selected	on	the

worksheet

'This	may	be	anywhere	from	1	to	36	pictures

PicPath	=	"C:\qimage\qi"

'resize	the	form

Me.Height	=	Int(0.98	*	ActiveWindow.Height)

Me.Width	=	Int(0.98	*	ActiveWindow.Width)

'determine	how	many	cells	are	selected

'We	need	one	picture	and	label	for	each	cell

CellCount	=	Selection.Cells.Count

ReDim	Preserve	Pics(1	To	CellCount)

'Figure	out	the	size	of	the	resized	form

TempHt	=	Me.Height

TempWid	=	Me.Width

'The	number	of	columns	is	a	roundup	of	SQRT(CellCount)

'This	will	ensure	4	rows	of	5	pictures	for	20,	etc.

NumCol	=	Int(0.99	+	Sqr(CellCount))

NumRow	=	Int(0.99	+	CellCount	/	NumCol)

'Figure	out	the	height	and	width	of	each	square

'Each	column	will	have	2	points	to	left	&	right	of

pics

CellWid	=

Application.WorksheetFunction.Max(Int(TempWid	/

NumCol)	-	4,	1)

'each	row	needs	to	have	33	points	below	it	for	the

label

CellHt	=	Application.WorksheetFunction.Max(Int(TempHt

/	NumRow)	-	33,	1)

Click	here	to	view	code	image
PicCount	=	0				'Counter	variable

LastTop	=	2

MaxBottom	=	1

'Build	each	row	on	the	form

For	x	=	1	To	NumRow

LastLeft	=	3

'Build	each	column	in	this	row

For	Y	=	1	To	NumCol

PicCount	=	PicCount	+	1

If	PicCount	>	CellCount	Then

'There	is	not	an	even	number	of	pictures

to	fill

'out	the	last	row

Me.Height	=	MaxBottom	+	100

Me.cbClose.Top	=	MaxBottom	+	25

Me.cbClose.Left	=	Me.Width	-	70

Repaint	'redraws	the	form

Exit	Sub

End	If

ThisStyle	=	Selection.Cells(PicCount).Value

ThisDesc	=

Selection.Cells(PicCount).Offset(0,	1).Value

fname	=	PicPath	&	ThisStyle	&	".jpg"

TC	=	"Image"	&	PicCount

Me.Controls.Add	bstrProgId:="forms.image.1",

Name:=TC,	_

Visible:=True

Me.Controls(TC).Top	=	LastTop

Me.Controls(TC).Left	=	LastLeft

Me.Controls(TC).AutoSize	=	True

On	Error	Resume	Next

Me.Controls(TC).Picture	=	LoadPicture(fname)

On	Error	GoTo	0

'The	picture	resized	the	control	to	full	size

'determine	the	size	of	the	picture

Wid	=	Me.Controls(TC).Width

Ht	=	Me.Controls(TC).Height

WidRedux	=	CellWid	/	Wid

HtRedux	=	CellHt	/	Ht

If	WidRedux	<	HtRedux	Then

Redux	=	WidRedux

Else

Redux	=	HtRedux

End	If

NewHt	=	Int(Ht	*	Redux)

NewWid	=	Int(Wid	*	Redux)

'Now	resize	the	control

Me.Controls(TC).AutoSize	=	False

Me.Controls(TC).Height	=	NewHt

Me.Controls(TC).Width	=	NewWid

Me.Controls(TC).PictureSizeMode	=

fmPictureSizeModeStretch

Me.Controls(TC).ControlTipText	=	"Style	"	&	_

ThisStyle	&	"	"	&	ThisDesc

Click	here	to	view	code	image
'Keep	track	of	the	bottommost	&	rightmost

picture

ThisRight	=	Me.Controls(TC).Left	+

Me.Controls(TC).Width

ThisBottom	=	Me.Controls(TC).Top	+

Me.Controls(TC).Height

If	ThisBottom	>	MaxBottom	Then	MaxBottom	=

ThisBottom

'Add	a	label	below	the	picture

LC	=	"LabelA"	&	PicCount

Me.Controls.Add	bstrProgId:="forms.label.1",

Name:=LC,	_

Visible:=True

Me.Controls(LC).Top	=	ThisBottom	+	1

Me.Controls(LC).Left	=	LastLeft

Me.Controls(LC).Height	=	18

Me.Controls(LC).Width	=	CellWid

Me.Controls(LC).Caption	=	ThisDesc

'Keep	track	of	where	the	next	picture	should

display

LastLeft	=	LastLeft	+	CellWid	+	4

Next	Y	'	end	of	this	row

LastTop	=	MaxBottom	+	21	+	16

Next	x

Me.Height	=	MaxBottom	+	100

Me.cbClose.Top	=	MaxBottom	+	25

Me.cbClose.Left	=	Me.Width	-	70

Repaint

End	Sub

Adding	help	to	a	userform

You	have	already	designed	a	great	userform	in	this	chapter,	but	there	is	one	thing
missing:	guidance	for	users.	The	following	sections	show	four	ways	you	can
help	people	fill	out	the	form	properly.

Showing	accelerator	keys

Built-in	forms	often	have	keyboard	shortcuts	that	allow	actions	to	be	triggered	or
fields	selected	with	a	few	keystrokes.	These	shortcuts	are	identified	by	an
underlined	letter	on	a	button	or	label.

You	can	add	this	same	capability	to	custom	userforms	by	entering	a	value	in
the	Accelerator	property	of	the	control.	Pressing	Alt	+	the	accelerator	key
selects	the	control.	For	example,	in	Figure	22-12,	Alt+T	selects	the	Streaming
check	box.	Repeating	the	combination	clears	the	box.

FIGURE	22-12	Use	accelerator	key	combinations,	like	Alt+T	to	select	Streaming,	to	give	userforms
the	power	of	keyboard	shortcuts.

Adding	control	tip	text

When	a	cursor	passes	over	a	ribbon	control,	tip	text	appears,	hinting	at	what	the
control	does.	You	can	also	add	tip	text	to	userforms	by	entering	a	value	in	the
ControlTipText	property	of	a	control.	In	Figure	22-13,	tip	text	has	been	added
to	the	frame	surrounding	the	various	categories.

FIGURE	22-13	Add	tips	to	controls	to	provide	help	to	people.

Creating	the	tab	order

People	can	tab	from	one	field	to	another.	This	is	an	automatic	feature	in	a	form.
To	control	which	field	the	next	tab	goes	to,	set	the	TapStop	property	value	for

each	control.

The	first	tab	stop	is	0,	and	the	last	tab	stop	is	equal	to	the	number	of	controls
in	a	group.	Remember	that	you	can	create	a	group	can	with	a	frame.	Excel
doesn’t	allow	multiple	controls	within	a	group	to	have	the	same	tab	stop.	After
tab	stops	are	set,	a	person	can	use	the	Tab	key	and	spacebar	to	select	or	deselect
various	options.

Tip	If	you	right-click	a	userform	(not	one	of	its	controls)	and	select
Tab	Order,	a	form	appears,	listing	all	the	controls.	You	can	reorder
the	controls	on	this	form	to	set	the	tab	order.

Coloring	the	active	control

Another	method	for	helping	a	person	fill	out	a	form	is	to	color	the	active	field.
The	following	example	changes	the	color	of	a	text	box	or	combo	box	when	it	is
active.	RaiseEvent	is	used	to	call	the	events	declared	at	the	top	of	the	class
module.	The	code	for	the	events	is	part	of	the	userform.

Place	the	following	code	in	a	class	module	called	clsCtlColor:

Click	here	to	view	code	image
Public	Event	GetFocus()

Public	Event	LostFocus(ByVal	strCtrl	As	String)

Private	strPreCtr	As	String

Public	Sub	CheckActiveCtrl(objForm	As

MSForms.UserForm)

With	objForm

If	TypeName(.ActiveControl)	=	"ComboBox"	Or	_

TypeName(.ActiveControl)	=	"TextBox"	Then

strPreCtr	=	.ActiveControl.Name

On	Error	GoTo	Terminate

Do

DoEvents

If	.ActiveControl.Name	<>	strPreCtr	Then

If	TypeName(.ActiveControl)	=

"ComboBox"	Or	_

TypeName(.ActiveControl)	=

"TextBox"	Then

RaiseEvent	LostFocus(strPreCtr)

strPreCtr	=	.ActiveControl.Name

RaiseEvent	GetFocus

End	If

End	If

Loop

End	If

End	With

Terminate:

Exit	Sub

End	Sub

Place	the	following	code	behind	the	userform:

Click	here	to	view	code	image
Private	WithEvents	objForm	As	clsCtlColor

Private	Sub	UserForm_Initialize()

Set	objForm	=	New	clsCtlColor

End	Sub

This	sub	changes	the	BackColor	of	the	active	control	when	the	form	is
activated:

Click	here	to	view	code	image
Private	Sub	UserForm_Activate()

If	TypeName(ActiveControl)	=	"ComboBox"	Or	_

TypeName(ActiveControl)	=	"TextBox"	Then

ActiveControl.BackColor	=	&HC0E0FF

End	If

objForm.CheckActiveCtrl	Me

End	Sub

This	sub	changes	the	BackColor	of	the	active	control	when	it	gets	the	focus:

Click	here	to	view	code	image

Private	Sub	objForm_GetFocus()

ActiveControl.BackColor	=	&HC0E0FF

End	Sub

This	sub	changes	the	BackColor	back	to	white	when	the	control	loses	the
focus:

Click	here	to	view	code	image
Private	Sub	objForm_LostFocus(ByVal	strCtrl	As	String)

Me.Controls(strCtrl).BackColor	=	&HFFFFFF

End	Sub

This	sub	clears	the	objForm	when	the	form	is	closed:

Click	here	to	view	code	image
Private	Sub	UserForm_QueryClose(Cancel	As	Integer,

CloseMode	As	Integer)

Set	objForm	=	Nothing

End	Sub

Case	study:	Setting	up	multicolumn	list	boxes
You’ve	created	several	spreadsheets	containing	store	data.	The	primary	key
of	each	set	is	the	store	number.	The	workbook	is	used	by	several	people,	but
not	everyone	memorizes	stores	by	store	numbers.	You	need	some	way	of
letting	people	select	a	store	by	its	name.	At	the	same	time,	you	need	to
return	the	store	number	to	be	used	in	the	code.	You	could	use	VLOOKUP	or
MATCH,	but	there	is	another	way.

A	list	box	can	have	more	than	one	column,	but	not	all	the	columns	need	to
be	visible.	In	addition,	a	person	can	select	an	item	from	the	visible	list,	but
the	list	box	can	return	the	corresponding	value	from	another	column.

Draw	a	list	box	and	set	the	ColumnCount	property	to	2.	Set	the	RowSource	to
a	two-column	range	called	Stores.	The	first	column	of	the	range	is	the
store	number;	the	second	column	is	the	store	name.	At	this	point,	the	list
box	is	displaying	both	columns	of	data.	To	change	this,	set	the
ColumnWidths	to	0,	100—and	the	text	automatically	updates	to	0	pt;100
pt.	The	first	column	is	now	hidden.	Figure	22-14	shows	the	list	box

properties	as	they	need	to	be.

FIGURE	22-14	Setting	the	list	box	properties	creates	a	two-column	list	box	that	appears	to	be
a	single	column	of	data.

The	appearance	of	the	list	box	has	now	been	set.	When	someone	activates
the	list	box,	she	sees	only	the	store	names.	To	return	the	value	of	the	first
column,	set	the	BoundColumn	property	to	1.	You	can	do	this	through	the
Properties	window	or	through	code.	This	example	uses	code	to	maintain	the
flexibility	of	returning	the	store	number	(see	Figure	22-15):

Click	here	to	view	code	image
Private	Sub	UserForm_Initialize()

lb_StoreName.BoundColumn	=	1

End	Sub

Private	Sub	lb_StoreName_Click()

lbl_StoreNum.Caption	=	lb_StoreName.Value

End	Sub

FIGURE	22-15	Use	a	two-column	list	box	to	allow	the	user	to	select	a	store	name	but	return
the	store	number.

Creating	transparent	forms

Have	you	ever	had	a	form	that	you	had	to	keep	moving	out	of	the	way	so	you
could	see	the	data	behind	it?	The	following	code	sets	the	userform	at	a	50%
transparency	(see	Figure	22-16)	so	that	you	can	see	the	data	behind	it	without
moving	the	form	somewhere	else	on	the	screen	(and	blocking	more	data).

FIGURE	22-16	Create	a	50%	transparent	form	to	view	the	data	on	the	sheet	behind	it.

Place	the	following	code	in	the	declarations	section	at	the	top	of	the
userform:

Click	here	to	view	code	image
Private	Declare	PtrSafe	Function	GetActiveWindow	Lib

"USER32"	()	As	LongPtr

Private	Declare	PtrSafe	Function	SetWindowLongPtr	Lib

"USER32"	Alias	_

"SetWindowLongA"	(ByVal	hWnd	As	LongPtr,	ByVal	nIndex

As	Long,	_

ByVal	dwNewLong	As	LongPtr)	As	LongPtr

Private	Declare	PtrSafe	Function	GetWindowLongPtr	Lib

"USER32"	Alias	_

"GetWindowLongA"	(ByVal	hWnd	As	LongPtr,	ByVal	nIndex

As	Long)	As	Long

Private	Declare	PtrSafe	Function

SetLayeredWindowAttributes	Lib	"USER32"	_

(ByVal	hWnd	As	LongPtr,	ByVal	crKey	As	Integer,	_

ByVal	bAlpha	As	Integer,	ByVal	dwFlags	As	LongPtr)	As

LongPtr

Private	Const	WS_EX_LAYERED	=	&H80000

Private	Const	LWA_COLORKEY	=	&H1

Private	Const	LWA_ALPHA	=	&H2

Private	Const	GWL_EXSTYLE	=	&HFFEC

Dim	hWnd	As	Long

Place	the	following	code	behind	a	toggle	button.	When	the	button	is	pressed
in,	the	transparency	is	reduced	50%.	When	a	person	toggles	the	button	back	up,
the	transparency	is	set	to	0.

Click	here	to	view	code	image
Private	Sub	ToggleButton1_Click()

If	ToggleButton1.Value	=	True	Then

'127	sets	the	50%	semitransparent

SetTransparency	127

Else

'a	value	of	255	is	opaque	and	0	is	transparent

SetTransparency	255

End	If

End	Sub

Private	Sub	SetTransparency(TRate	As	Integer)

Dim	nIndex	As	Long

hWnd	=	GetActiveWindow

nIndex	=	GetWindowLong(hWnd,	GWL_EXSTYLE)

SetWindowLong	hWnd,	GWL_EXSTYLE,	nIndex	Or

WS_EX_LAYERED

SetLayeredWindowAttributes	hWnd,	0,	TRate,	LWA_ALPHA

End	Sub

Next	steps

This	chapter	showed	you	how	to	use	more	advanced	userform	controls.	It	also
reviewed	various	methods	to	maximize	the	use	of	userforms.	In	Chapter	23,
“The	Windows	Application	Programming	Interface	(API),”	you’	discover	more
about	how	to	access	these	functions	and	procedures	that	are	hidden	in	files	on
your	computer.

CHAPTER	23
The	Windows	Application	Programming
Interface	(API)

In	this	chapter,	you	will:

Understand	the	parts	of	an	API	declaration

Learn	how	to	use	an	API	declaration

Make	32-bit-	and	64-bit-compatible	API	declarations

Review	some	API	function	examples

With	all	the	wonderful	things	you	can	do	in	Excel	VBA,	there	are	some	things
that	are	out	of	VBA’s	reach	or	that	are	just	too	difficult	to	do,	such	as	finding	out
what	the	user’s	screen	resolution	setting	is.	This	is	where	the	Windows
application	programming	interface	(API)	can	help.

If	you	look	in	the	Windows	System	directory	\Windows\System32	(Windows
NT	systems),	you	will	see	many	files	with	the	extension	.dll.	These	files,	which
are	dynamic	link	libraries	(DLLs),	contain	various	functions	and	procedures	that
other	programs,	including	VBA,	can	access.	They	give	the	user	access	to
functionality	used	by	the	Windows	operating	system	and	many	other	programs.

Caution	Keep	in	mind	that	Windows	API	declarations	are
accessible	only	on	computers	running	the	Microsoft	Windows
operating	system.

This	chapter	does	not	teach	you	how	to	write	API	declarations,	but	it	does
teach	you	the	basics	of	interpreting	and	using	them.	Several	useful	examples	are
also	included.	Jan	Karel	Pieterse	of	JKP	Application	Development	Services
(www.jkp-ads.com)	is	working	on	an	ever-growing	web	page	that	lists	the	proper
syntax	for	the	64-bit	declarations.	You	can	find	it	at	www.jkp-

http://www.jkp-ads.com
http://www.jkp-ads.com/articles/apideclarations.asp

ads.com/articles/apideclarations.asp.

Understanding	an	API	declaration

The	following	is	an	example	of	an	API	function:

Click	here	to	view	code	image
Private	Declare	PtrSafe	Function	GetUserName	_

Lib	"advapi32.dll"	Alias	"GetUserNameA"	_

(ByVal	lpBuffer	As	String,	nSize	As	Long)	_

As	LongPtr

There	are	two	types	of	API	declarations,	which	are	structured	similarly:

Functions—Return	information

Procedures—Do	something	to	the	system

Basically,	you	can	tell	the	following	about	this	API	function:

It	is	Private;	therefore,	you	can	use	it	only	in	the	module	in	which	it	is
declared.	Declare	it	Public	in	a	standard	module	if	you	want	to	share	it
among	several	modules.

Caution	API	declarations	in	standard	modules	can	be	public	or
private.	API	declarations	in	class	modules	must	be	private.

It	will	be	referred	to	as	GetUserName	in	a	program.	This	is	the	variable
name	assigned	in	the	code.

The	function	being	used	is	found	in	advapi32.dll.

The	alias,	GetUserNameA,	is	what	the	function	is	referred	to	in	the	DLL.
This	name	is	case	sensitive	and	cannot	be	changed;	it	is	specific	to	the	DLL
(dynamic	link	library).	There	are	often	two	versions	of	each	API	function.
One	version	uses	the	ANSI	character	set	and	has	aliases	that	end	with	the
letter	A.	The	other	version	uses	the	Unicode	character	set	and	has	aliases
that	end	with	the	letter	W.	When	specifying	the	alias,	you	are	telling	VBA
which	version	of	the	function	to	use.

There	are	two	parameters:	lpBuffer	and	nSize.	These	are	two	arguments
that	the	DLL	function	accepts.

Caution	The	downside	of	using	APIs	is	that	there	may	be	no
errors	when	your	code	compiles	or	runs.	This	means	that	an
incorrectly	configured	API	call	can	cause	your	computer	to	crash

or	lock	up.	For	this	reason,	it	is	a	good	idea	to	save	often.

Using	an	API	declaration

Using	an	API	is	no	different	from	calling	a	function	or	procedure	you	created	in
VBA.	The	following	example	uses	the	GetUserName	declaration	in	a	function	to
return	the	Windows	user	name	to	Excel:

Click	here	to	view	code	image
Public	Function	UserName()	As	String

Dim	sName	As	String	*	256

Dim	cChars	As	Long

cChars	=	256

If	GetUserName(sName,	cChars)	Then

UserName	=	Left$(sName,	cChars	-	1)

End	If

End	Function

Sub	ProgramRights()

Dim	NameofUser	As	String

NameofUser	=	UserName

Select	Case	NameofUser

Case	Is	=	"Administrator"

MsgBox	"You	have	full	rights	to	this	computer"

Case	Else

MsgBox	"You	have	limited	rights	to	this	computer"

End	Select

End	Sub

Run	the	ProgramRights	macro,	and	you	learn	whether	you	are	currently
signed	on	as	Administrator.	The	result	shown	in	Figure	23-1	indicates	that

Administrator	is	the	current	username.

FIGURE	23-1	The	GetUserName	API	function	can	be	used	to	get	a	user’s	Windows	login	name—
which	is	more	difficult	to	edit	than	the	Excel	username.	You	can	then	control	what	rights	a	user	has
with	your	program.

Making	32-bit-	and	64-bit-compatible	API
declarations
With	Excel	2010,	Microsoft	increased	the	compatibility	between	32-bit	and	64-
bit	API	calls	by	allowing	64-bit	calls	to	work	on	32-bit	systems	but	not	vice
versa.	This	is	not	the	case	with	Excel	2007,	so	if	you’re	writing	code	that	might
be	used	in	Excel	2007,	you	need	to	check	the	bit	version	and	adjust	accordingly.

The	examples	in	this	chapter	are	64-bit	API	declarations	and	might	not	work
in	older	versions	of	32-bit	Excel.	For	example,	say	that	in	a	64-bit	version	you
have	this	declaration:

Click	here	to	view	code	image
Private	Declare	PtrSafe	Function	GetWindowLongptr	Lib

"USER32"	Alias	_

"GetWindowLongA"	(ByVal	hWnd	As	LongPtr,	ByVal	nIndex

As	Long)	As	LongPtr

It	will	need	to	be	changed	to	the	following	to	work	in	the	32-bit	version:

Click	here	to	view	code	image
Private	Declare	Function	GetWindowLongptr	Lib	"USER32"

Alias	_

"GetWindowLongA"	(ByVal	hWnd	As	Long,	ByVal	nIndex	As

Long)	As	LongPtr

The	difference	is	that	PtrSafe	needs	to	be	removed	from	the	declaration.
You	might	also	notice	that	there	is	a	new	variable	type	in	use:	LongPtr.	Actually,
LongPtr	isn’t	a	true	data	type;	it	is	LongLong	for	64-bit	environments	and	Long	in
32-bit	environments.	This	does	not	mean	that	you	should	use	it	throughout	your
code;	it	has	a	specific	use,	such	as	in	API	calls.	But	you	might	find	yourself
using	it	in	your	code	for	API	variables.	For	example,	if	you	return	an	API
variable	of	LongPtr	to	another	variable	in	your	code,	that	variable	must	also	be
LongPtr.

If	you	need	to	distribute	a	workbook	to	Excel	2007	32-bit	and	64-bit	users,
you	don’t	need	to	create	two	workbooks.	You	can	create	an	If...Then...Else
statement	in	the	declarations	area	and	set	up	the	API	calls	for	both	versions.	So,
for	the	preceding	two	examples,	you	could	declare	them	like	so:

Click	here	to	view	code	image
#If	VBA7	Or	Win64	Then

Private	Declare	PtrSafe	Function	GetUserName	Lib

"advapi32.dll"	_

Alias	"GetUserNameA"	(ByVal	lpBuffer	As	String,	nSize

As	Long)	_

As	LongPtr

#Else

Private	Declare	Function	GetUserName	Lib

"advapi32.dll"	_

Alias	"GetUserNameA"	(ByVal	lpBuffer	As	String,	nSize

As	Long)	_

As	LongPtr

#End	If

The	pound	sign	(#)	is	used	to	mark	conditional	compilation.	The	code
compiles	only	the	line(s)	of	code	that	satisfy	the	logic	check.	#If	VBA7	Or
Win64	checks	to	see	whether	the	current	environment	is	using	the	new	code	base
(VBA7,	in	use	only	since	Office	2010)	or	whether	the	environment	(Excel,	not
Windows)	is	64-bit.	If	true,	the	first	API	declaration	is	processed;	otherwise,	the
second	one	is	used.	For	example,	if	Excel	2007	64-bit	or	Excel	2010	or	newer	is
running,	the	first	API	declaration	is	processed,	but	if	the	environment	is	32-bit
Excel	2007,	the	second	one	is	used.	Note	that	in	64-bit	environments,	the	second
API	declaration	will	be	colored	as	an	error	but	will	compile	just	fine.

API	function	examples

The	following	sections	provide	more	examples	of	helpful	API	declarations	you
can	use	in	your	Excel	programs.	Each	example	starts	with	a	short	description	of
what	the	function	can	do,	followed	by	the	actual	declarations	and	an	example	of
its	use.

Retrieving	the	computer	name

This	API	function	returns	the	computer	name	(that	is,	the	name	of	the	computer
found	under	Computer,	Computer	Name):

Click	here	to	view	code	image
Private	Declare	PtrSafe	Function	GetComputerName	Lib

"kernel32"	Alias	_

"GetComputerNameA"	(ByVal	lpBuffer	As	String,	ByRef

nSize	As	Long)	_

As	LongPtr

Private	Function	ComputerName()	As	String

Dim	stBuff	As	String	*	255,	lAPIResult	As	LongPtr

Dim	lBuffLen	As	Long

lBuffLen	=	255

lAPIResult	=	GetComputerName(stBuff,	lBuffLen)

If	lBuffLen	>	0	Then	ComputerName	=	Left(stBuff,

lBuffLen)

End	Function

Sub	ComputerCheck()

Dim	CompName	As	String

CompName	=	ComputerName

If	CompName	<>	"BillJelenPC"	Then

MsgBox	_

"This	application	does	not	have	the	right	to	run	on

this	computer."

ActiveWorkbook.Close	SaveChanges:=False

End	If

End	Sub

The	ComputerCheck	macro	uses	an	API	call	to	get	the	name	of	the	computer.
In	this	example,	the	workbook	refuses	to	open	on	any	computer	except	the	hard-
coded	computer	name	of	the	owner.

Checking	whether	an	Excel	file	is	open	on	a	network

You	can	check	whether	you	have	a	file	open	in	Excel	by	trying	to	set	the
workbook	to	an	object.	If	the	object	is	Nothing	(empty),	you	know	that	the	file	is
not	open.	However,	what	if	you	want	to	see	whether	someone	else	on	a	network
has	the	file	open?	The	following	API	function	returns	that	information:

Click	here	to	view	code	image
Private	Declare	PtrSafe	Function	lOpen	Lib	"kernel32"

Alias	"_lopen"	_

(ByVal	lpPathName	As	String,	ByVal	iReadWrite	As

Long)	As	LongPtr

Private	Declare	PtrSafe	Function	lClose	Lib	"kernel32"

_

Alias	"_lclose"	(ByVal	hFile	As	LongPtr)	As	LongPtr

Private	Const	OF_SHARE_EXCLUSIVE	=	&H10

Private	Function	FileIsOpen(strFullPath_FileName	As

String)	As	Boolean

Dim	hdlFile	As	LongPtr

Dim	lastErr	As	Long

hdlFile	=	-1

hdlFile	=	lOpen(strFullPath_FileName,

OF_SHARE_EXCLUSIVE)

If	hdlFile	=	-1	Then

lastErr	=	Err.LastDllError

Else

lClose	(hdlFile)

End	If

FileIsOpen	=	(hdlFile	=	-1)	And	(lastErr	=	32)

End	Function

Sub	CheckFileOpen()

If	FileIsOpen("C:\XYZ	Corp.xlsx")	Then

MsgBox	"File	is	open"

Else

MsgBox	"File	is	not	open"

End	If

End	Sub

You	can	call	the	FileIsOpen	function	with	a	particular	path	and	file	name	as
the	parameter	to	find	out	whether	someone	has	the	file	open.

Retrieving	display-resolution	information

The	following	API	function	retrieves	the	computer’s	display	size:

Click	here	to	view	code	image
Declare	PtrSafe	Function	DisplaySize	Lib	"user32"

Alias	_

"GetSystemMetrics"	(ByVal	nIndex	As	Long)	As	LongPtr

Public	Const	SM_CXSCREEN	=	0

Public	Const	SM_CYSCREEN	=	1

Function	VideoRes()	As	String

Dim	vidWidth	as	LongPtr,	vidHeight	as	LongPtr

vidWidth	=	DisplaySize(SM_CXSCREEN)

vidHeight	=	DisplaySize(SM_CYSCREEN)

Select	Case	(vidWidth	*	vidHeight)

Case	307200

VideoRes	=	"640	x	480"

Case	480000

VideoRes	=	"800	x	600"

Case	786432

VideoRes	=	"1024	x	768"

Case	Else

VideoRes	=	"Something	else"

End	Select

End	Function

Sub	CheckDisplayRes()

Dim	VideoInfo	As	String

Dim	Msg1	As	String,	Msg2	As	String,	Msg3	As	String

VideoInfo	=	VideoRes

Msg1	=	"Current	resolution	is	set	at	"	&	VideoInfo	&

Chr(10)

Msg2	=	"Optimal	resolution	for	this	application	is

1024	x	768"	&	Chr(10)

Msg3	=	"Please	adjust	resolution"

Select	Case	VideoInfo

Case	Is	=	"640	x	480"

MsgBox	Msg1	&	Msg2	&	Msg3

Case	Is	=	"800	x	600"

MsgBox	Msg1	&	Msg2

Case	Is	=	"1024	x	768"

MsgBox	Msg1

Case	Else

MsgBox	Msg2	&	Msg3

End	Select

End	Sub

The	CheckDisplayRes	macro	warns	the	client	that	the	display	setting	is	not
optimal	for	the	application.

Customizing	the	About	dialog	box

If	you	go	to	File,	Help,	About	Windows	in	File	Explorer,	you	get	a	nice	little
About	dialog	box	with	information	about	the	File	Explorer	and	a	few	system
details.	With	the	following	code,	you	can	get	that	window	to	pop	up	in	your	own
program	and	customize	a	few	items,	as	shown	in	Figure	23-2.

FIGURE	23-2	You	can	customize	the	About	dialog	box	used	by	Windows	for	your	own	program.

Click	here	to	view	code	image
Declare	PtrSafe	Function	ShellAbout	Lib	"shell32.dll"

Alias	"ShellAboutA"	_

(ByVal	hwnd	As	LongPtr,	ByVal	szApp	As	String,	ByVal

szOtherStuff	As	_

String,	ByVal	hIcon	As	Long)	As	LongPtr

Declare	PtrSafe	Function	GetActiveWindow	Lib	"user32"

()	As	LongPtr

Sub	AboutThisProgram()

Dim	hwnd	As	LongPtr

On	Error	Resume	Next

hwnd	=	GetActiveWindow()

ShellAbout	hwnd,	Nm,	"Developed	by	Tracy	Syrstad",	0

On	Error	GoTo	0

End	Sub

Disabling	the	X	for	closing	a	userform

A	person	can	use	the	X	button	located	in	the	upper-right	corner	of	a	userform	to

shut	down	the	form.	You	can	capture	the	close	event	with	QueryClose,	but	to
prevent	the	button	from	being	active	and	working	at	all,	you	need	an	API	call.
The	following	API	declarations	work	together	to	disable	that	X	and	force	the
person	to	use	the	Close	button.	When	the	form	is	initialized,	the	X	button	is
disabled.	After	the	form	is	closed,	the	X	button	is	reset	to	normal:

Click	here	to	view	code	image
Private	Declare	PtrSafe	Function	FindWindow	Lib

"user32"	Alias	_

"FindWindowA"	(ByVal	lpClassName	As	String,	ByVal

lpWindowName	_

As	String)	As	Long

Private	Declare	PtrSafe	Function	GetSystemMenu	Lib

"user32"	_

(ByVal	hWnd	As	LongPtr,	ByVal	bRevert	As	Long)	As

LongPtr

Private	Declare	PtrSafe	Function	DeleteMenu	Lib

"user32"	_

(ByVal	hMenu	As	LongPtr,	ByVal	nPosition	As	Long,	_

ByVal	wFlags	As	Long)	As	LongPtr

Private	Const	SC_CLOSE	As	Long	=	&HF060

Private	Sub	UserForm_Initialize()

Dim	hWndForm	As	LongPtr

Dim	hMenu	As	LongPtr

'ThunderDFrame	is	the	class	name	of	all	userforms

hWndForm	=	FindWindow("ThunderDFrame",	Me.Caption)

hMenu	=	GetSystemMenu(hWndForm,	0)

DeleteMenu	hMenu,	SC_CLOSE,	0&

End	Sub

The	DeleteMenu	macro	in	the	UserForm_Initialize	procedure	causes	the	X
in	the	corner	of	the	userform	to	be	grayed	out,	as	shown	in	Figure	23-3.	The
client	must	therefore	use	your	programmed	Close	button.

FIGURE	23-3	Disable	the	X	button	on	a	userform	to	force	users	to	use	the	Close	button	to	shut
down	the	form	properly	and	prevent	them	from	bypassing	any	code	attached	to	the	Close	button.

Creating	a	running	timer

You	can	use	the	NOW	function	to	get	the	time,	but	what	if	you	need	a	running
timer	that	displays	the	time	as	the	seconds	tick	by?	The	following	API
declarations	work	together	to	provide	this	functionality.	The	timer	is	placed	in
cell	A1	of	Sheet1:

Click	here	to	view	code	image
Public	Declare	PtrSafe	Function	SetTimer	Lib	"user32"

_

(ByVal	hWnd	As	Long,	ByVal	nIDEvent	As	Long,	_

ByVal	uElapse	As	Long,	ByVal	lpTimerFunc	As	LongPtr)

As	LongPtr

Public	Declare	PtrSafe	Function	KillTimer	Lib	"user32"

_

(ByVal	hWnd	As	Long,	ByVal	nIDEvent	As	LongPtr)	As

LongPtr

Public	Declare	PtrSafe	Function	FindWindow	Lib

"user32"	_

Alias	"FindWindowA"	(ByVal	lpClassName	As	String,	_

ByVal	lpWindowName	As	String)	As	LongPtr

Private	lngTimerID	As	Long

Private	datStartingTime	As	Date

Public	Sub	StartTimer()

StopTimer	'stop	previous	timer

datStartingTime	=	Now

lngTimerID	=	SetTimer(0,	1,	10,	AddressOf	RunTimer)

End	Sub

Public	Sub	StopTimer()

Dim	lRet	As	LongPtr,	lngTID	As	Long

If	IsEmpty(lngTimerID)	Then	Exit	Sub

lngTID	=	lngTimerID

lRet	=	KillTimer(0,	lngTID)

lngTimerID	=	Empty

End	Sub

Private	Sub	RunTimer(ByVal	hWnd	As	Long,	_

ByVal	uint1	As	Long,	ByVal	nEventId	As	Long,	_

ByVal	dwParam	As	Long)

On	Error	Resume	Next

Sheet1.Range("A1").Value	=	Format(Now	-

datStartingTime,	"hh:mm:ss")

End	Sub

Run	the	StartTimer	macro	to	have	a	running	timer	update	in	cell	A1.

Playing	sounds

Have	you	ever	wanted	to	play	a	sound	to	warn	users	or	congratulate	them?	To	do
this,	you	can	add	a	sound	object	to	a	sheet	and	then	call	that	sound.	However,	it
would	be	easier	to	use	the	following	API	declaration	and	specify	the	proper	path
to	a	sound	file:

Click	here	to	view	code	image
Public	Declare	PtrSafe	Function	PlayWavSound	Lib

"winmm.dll"	_

Alias	"sndPlaySoundA"	(ByVal	LpszSoundName	As	String,

_

ByVal	uFlags	As	Long)	As	LongPtr

Public	Sub	PlaySound()

Dim	SoundName	As	String

SoundName	=	"C:\Windows\Media\Chimes.wav"

PlayWavSound	SoundName,	0

End	Sub

Next	steps

In	Chapter	24,	“Handling	errors,”	you	find	out	about	error	handling.	In	a	perfect
world,	you	want	to	be	able	to	hand	off	your	applications	to	a	coworker,	leave	for
vacation,	and	not	have	to	worry	about	an	unhandled	error	appearing	while	you
are	on	the	beach.	Chapter	24	discusses	how	to	handle	obvious	and	not-so-
obvious	errors.

CHAPTER	24
Handling	errors

In	this	chapter,	you	will:

Find	out	what	happens	when	an	error	occurs

Do	basic	error	handling	with	the	On	Error	GoTo	syntax

Get	to	know	generic	error	handlers

Find	out	how	to	train	your	clients

Compare	errors	while	developing	with	errors	months	later

Understand	the	ills	of	protecting	code

Find	out	more	about	problems	with	passwords

Examine	errors	caused	by	different	versions

Errors	are	bound	to	happen.	Even	when	you	test	and	retest	your	code,	after	a
report	is	put	into	daily	production	and	used	for	hundreds	of	days,	something
unexpected	eventually	happens.	Your	goal	should	be	to	try	to	head	off	obscure
errors	as	you	code.	For	this	reason,	you	should	always	be	thinking	of	what
unexpected	things	could	happen	someday	that	could	make	your	code	not	work.

What	happens	when	an	error	occurs?
When	VBA	encounters	an	error	and	you	have	no	error-checking	code	in	place,
the	program	stops	and	presents	you	or	your	client	with	the	1004	runtime	error
message,	as	shown	in	Figure	24-1.

FIGURE	24-1	With	an	unhandled	error	in	an	unprotected	module,	you	get	a	choice	to	end	or	debug.

When	presented	with	the	choice	to	end	or	debug,	you	should	click	Debug.	(If
Debug	is	grayed	out,	then	someone	has	protected	the	VBA	code,	and	you	will
have	to	call	the	developer.)	The	VB	Editor	highlights	in	yellow	the	line	that
caused	the	error.	When	you	hover	the	cursor	over	any	variable,	you	see	the
current	value	of	the	variable,	which	provides	a	lot	of	information	about	what
could	have	caused	the	error	(see	Figure	24-2).

FIGURE	24-2	After	clicking	Debug,	the	macro	is	in	break	mode.	Hover	the	cursor	over	a	variable;
after	a	second,	the	current	value	of	the	variable	is	shown.

Especially	in	older	versions,	Excel	has	been	notorious	for	returning	error
messages	that	are	not	very	meaningful.	For	example,	dozens	of	situations	can
cause	a	1004	error.	Seeing	the	offending	line	highlighted	in	yellow	and
examining	the	current	value	of	any	variables	helps	you	discover	the	real	cause	of
an	error.	However,	many	error	messages	in	Excel	2019—including	the	VBA
error	messages—are	more	meaningful	than	the	equivalent	message	in	Excel
2010.

After	examining	the	line	in	error,	click	the	Reset	button	to	stop	execution	of
the	macro.	The	Reset	button	is	the	square	button	under	the	Run	item	in	the	main
menu,	as	shown	in	Figure	24-3.

FIGURE	24-3	The	Reset	button	looks	like	the	Stop	button	in	the	set	of	three	buttons	that	resembles	a
DVD	control	panel.

If	you	fail	to	click	Reset	to	end	the	macro	and	then	attempt	to	run	another
macro,	you	are	presented	with	the	annoying	error	message	shown	in	Figure	24-4.
The	message	is	annoying	because	you	start	in	Excel,	but	when	this	message
window	is	displayed,	the	screen	automatically	switches	to	display	the	VB	Editor.
You	can	see	the	Reset	button	in	the	background,	but	you	cannot	click	it	due	to
the	message	box	being	displayed.	However,	immediately	after	you	click	OK	to
close	the	message	box,	you	are	returned	to	the	Excel	user	interface	instead	of
being	left	in	the	VB	Editor.	Because	this	error	message	occurs	quite	often,	it
would	be	more	convenient	if	you	could	be	returned	to	the	VB	Editor	after
clicking	OK.

FIGURE	24-4	This	message	appears	if	you	forget	to	click	Reset	to	end	a	debug	session	and	then
attempt	to	run	another	macro.

A	misleading	debug	error	in	userform	code

After	you	click	Debug,	the	line	highlighted	as	the	error	can	be	misleading	in
some	situations.	For	example,	suppose	you	call	a	macro	that	displays	a	userform.
Somewhere	in	the	userform	code,	an	error	occurs.	When	you	click	Debug,
instead	of	showing	the	problem	inside	the	userform	code,	Excel	highlights	the
line	in	the	original	macro	that	displayed	the	userform.	Follow	these	steps	to	find
the	real	error:

1.	 After	the	error	message	box	shown	in	Figure	24-5	is	displayed,	click	the
Debug	button.

FIGURE	24-5	Select	Debug	in	response	to	this	error	13.

You	see	that	the	error	allegedly	occurred	on	a	line	that	shows	a	userform,	as
shown	in	Figure	24-6.	Because	you	have	read	this	chapter,	you	know	that
this	is	not	the	line	in	error.

FIGURE	24-6	The	line	in	error	is	indicated	as	the	frmChoose.Show	line.

2.	 Press	F8	to	execute	the	Show	method.	Instead	of	getting	an	error,	you	are
taken	into	the	Userform_Initialize	procedure.

3.	 Keep	pressing	F8	until	you	get	the	error	message	again.	Stay	alert	because
as	soon	as	you	encounter	the	error,	the	error	message	box	is	displayed.
Click	Debug,	and	you	are	returned	to	the	frmChoose.Show	line.	It	is
particularly	difficult	to	follow	the	code	when	the	error	occurs	on	the	other
side	of	a	long	loop,	as	shown	in	Figure	24-7.

FIGURE	24-7	With	25	items	to	add	to	the	list	box,	you	must	press	F8	53	times	to	get	through	this
three-line	loop.

Imagine	trying	to	step	through	the	code	in	Figure	24-7.	You	carefully	press
F8	5	times	with	no	problems	through	the	first	pass	of	the	loop.	Because	the
problem	could	be	in	future	iterations	through	the	loop,	you	continue	to	press	F8.
If	there	are	25	items	to	add	to	the	list	box,	48	more	presses	of	F8	are	required	to
get	through	the	loop	safely.	Each	time	before	pressing	F8,	you	should	mentally
note	that	you	are	about	to	run	some	specific	line.

At	the	point	shown	in	Figure	24-7,	the	next	press	of	the	F8	key	displays	the
error	and	returns	you	to	the	frmChoose.Show	line	back	in	Module1.	This	is	an
annoying	situation.

At	that	point,	you	need	to	start	pressing	F8	again.	If	you	can	recall	the
general	area	where	the	debug	error	occurred,	click	the	mouse	cursor	in	a	line
right	before	that	section	and	use	Ctrl+F8	to	run	the	macro	up	to	the	cursor.
Alternatively,	right-click	that	line	and	choose	Run	to	Cursor.

Sometimes	an	error	will	occur	within	a	loop.	Add	Debug.Print	i	inside	the
loop	and	use	the	Immediate	pane	(which	you	open	by	pressing	Ctrl+G)	to	locate
which	time	through	the	loop	caused	the	problem.

Basic	error	handling	with	the	On	Error	GoTo	syntax
The	basic	error-handling	option	is	to	tell	VBA	that	in	case	of	an	error,	you	want
to	have	code	branch	to	a	specific	area	of	the	macro.	In	this	area,	you	might	have

special	code	that	alerts	users	of	the	problem	and	enables	them	to	react.

A	typical	scenario	is	to	add	the	error-handling	routine	at	the	end	of	the
macro.	To	set	up	an	error	handler,	follow	these	steps:

1.	 After	the	last	code	line	of	the	macro,	insert	the	code	line	Exit	Sub.	This
makes	sure	that	the	execution	of	the	macro	does	not	continue	into	the	error
handler.

2.	 After	the	Exit	Sub	line,	add	a	label.	A	label	is	a	name	followed	by	a	colon.
For	example,	you	might	create	a	label	called	MyErrorHandler:.

3.	 Write	the	code	to	handle	the	error.	If	you	want	to	return	control	of	the
macro	to	the	line	after	the	one	that	caused	the	error,	use	the	statement
Resume	Next.

In	your	macro,	just	before	the	line	that	might	likely	cause	the	error,	add	a	line
reading	On	Error	GoTo	MyErrorHandler.	Note	that	in	this	line,	you	do	not
include	the	colon	after	the	label	name.

Immediately	after	the	line	of	code	that	you	suspect	will	cause	the	error,	add
code	to	turn	off	the	special	error	handler.	Because	this	is	not	intuitive,	it	tends	to
confuse	people.	The	code	to	cancel	any	special	error	handling	is	On	Error	GoTo
0.	There	is	no	label	named	0.	Instead,	this	line	is	a	fictitious	one	that	instructs
Excel	to	go	back	to	the	normal	state	of	displaying	the	debug	error	message	when
an	error	is	encountered.	This	is	why	it	is	important	to	cancel	the	error	handling.

Note	The	following	code	includes	a	special	error	handler	to	handle
the	necessary	action	if	the	file	has	been	moved	or	is	missing:

Click	here	to	view	code	image
Sub	HandleAnError()

Dim	MyFile	as	Variant

'	Set	up	a	special	error	handler

On	Error	GoTo	FileNotThere

Workbooks.Open	Filename:="C:\NotHere.xls"

'	If	we	get	here,	cancel	the	special	error	handler

On	Error	GoTo	0

MsgBox	"The	program	is	complete"

'	The	macro	is	done.	Use	Exit	sub;	otherwise,	the

macro

'	execution	will	continue	into	the	error	handler

Exit	Sub

'	Set	up	a	name	for	the	error	handler

FileNotThere:

MyPrompt	=	"There	was	an	error	opening	the	file.	"

&	_

"It	is	possible	the	file	has	been	moved.	"	&	_

"Click	OK	to	browse	for	the	file,	or	click	"	&	_

"Cancel	to	end	the	program"

Ans	=	MsgBox(Prompt:=MyPrompt,

Buttons:=vbOKCancel)

If	Ans	=	vbCancel	Then	Exit	Sub

'	The	client	clicked	OK.	Let	him	browse	for	the

file

MyFile	=	Application.GetOpenFilename

If	MyFile	=	False	Then	Exit	Sub

'	If	the	2nd	file	is	corrupt,	do	not	recursively

throw

'	back	into	this	error	handler.	Just	stop	the

program.

On	Error	GoTo	0

Workbooks.Open	MyFile

'	If	we	get	here,	then	return	to	the	original

'	macro,	to	the	line	after	the	error.

Resume	Next

End	Sub

You	definitely	do	not	want	this	error	handler	invoked	for	another	error	later
in	the	macro,	such	as	a	divide-by-zero	error.

Note	It	is	possible	to	have	more	than	one	error	handler	at	the	end
of	a	macro.	Make	sure	that	each	error	handler	ends	with	either
Resume	Next	or	Exit	Sub	so	that	macro	execution	does	not

accidentally	move	into	the	next	error	handler.

Generic	error	handlers

Some	developers	like	to	direct	any	error	to	a	generic	error	handler	to	make	use
of	the	Err	object.	This	object	has	properties	for	error	number	and	description.
You	can	offer	this	information	to	the	client	and	prevent	her	from	getting	a	debug
message.	Here	is	the	code	to	do	this:

Click	here	to	view	code	image
On	Error	GoTo	HandleAny

Sheets(9).Select

Exit	Sub

HandleAny:

Msg	=	"We	encountered	"	&	Err.Number	&	"	-	"	&

Err.Description

MsgBox	Msg

Exit	Sub

Handling	errors	by	choosing	to	ignore	them

Some	errors	can	simply	be	ignored.	For	example,	suppose	you	are	going	to	use
VBA	to	write	out	an	index.html	file.	Your	code	erases	any	existing	index.html
file	from	a	folder	before	writing	out	the	next	file.

The	Kill	(FileName)	statement	returns	an	error	if	FileName	does	not	exist.
This	probably	is	not	something	you	need	to	worry	about.	After	all,	you	are	trying
to	delete	the	file,	so	you	probably	do	not	care	whether	someone	already	deleted
it	before	running	the	macro.	In	this	case,	tell	Excel	to	just	skip	over	the	offending
line	and	resume	macro	execution	with	the	next	line.	The	code	to	do	this	is	On
Error	Resume	Next:

Click	here	to	view	code	image
Sub	WriteHTML()

MyFile	=	"C:\Index.html"

On	Error	Resume	Next

Kill	MyFile

On	Error	Goto	0

Open	MyFile	for	Output	as	#1

'	etc...

End	Sub

Note	Be	careful	with	On	Error	Resume	Next.	You	can	use	it
selectively	in	situations	in	which	you	know	that	the	error	can	be
ignored.	You	should	immediately	return	error	checking	to	normal

after	the	line	that	might	cause	an	error	with	On	Error	GoTo	0.

If	you	attempt	to	have	On	Error	Resume	Next	skip	an	error	that	cannot	be
skipped,	the	macro	immediately	steps	out	of	the	current	macro.	If	you	have
a	situation	in	which	MacroA	calls	MacroB,	and	MacroB	encounters	a
nonskippable	error,	the	program	jumps	out	of	MacroB	and	continues	with
the	next	line	in	MacroA.	This	is	rarely	a	good	thing.

VBA	code	to	handle	printer	settings	runs	much	faster	if	you	turn	off
PrintCommunication	at	the	beginning	of	the	preceding	code	and	turn	it	back	on
at	the	end	of	the	code.	This	trick	was	new	in	Excel	2010.	Before	that,	Excel
would	pause	for	almost	a	half-second	during	each	line	of	print	setting	code.	Now
the	whole	block	of	code	runs	in	less	than	a	second.

Case	study:	Overlooking	page	setup	problems
When	you	record	a	macro	and	perform	page	setup,	even	if	you	change	just
one	item	in	the	Page	Setup	dialog	box,	the	macro	recorder	records	two
dozen	settings	for	you.	These	settings	notoriously	differ	from	printer	to
printer.	For	example,	if	you	record	the	PageSetup	on	a	system	with	a	color
printer,	it	might	record	a	setting	for	.BlackAndWhite	=	True.	This	setting
will	fail	on	another	system	on	which	the	printer	does	not	offer	the	choice.
Your	printer	might	offer	a	.PrintQuality	=	600	setting.	If	the	client’s
printer	offers	only	a	300	resolution	setting,	this	code	fails.	For	this	reason,
you	should	surround	the	entire	PageSetup	with	On	Error	Resume	Next	to
ensure	that	most	settings	happen	but	the	trivial	ones	that	fail	do	not	cause
runtime	errors.	Here	is	how	to	do	this:

Click	here	to	view	code	image
On	Error	Resume	Next

Application.PrintCommunication	=	False

With	ActiveSheet.PageSetup

.PrintTitleRows	=	""

.PrintTitleColumns	=	""

End	With

ActiveSheet.PageSetup.PrintArea	=	"A1:L27"

With	ActiveSheet.PageSetup

.LeftHeader	=	""

.CenterHeader	=	""

.RightHeader	=	""

.LeftFooter	=	""

.CenterFooter	=	""

.RightFooter	=	""

.LeftMargin	=	Application.InchesToPoints(0.25)

.RightMargin	=	Application.InchesToPoints(0.25)

.TopMargin	=	Application.InchesToPoints(0.75)

.BottomMargin	=	Application.InchesToPoints(0.5)

.HeaderMargin	=	Application.InchesToPoints(0.5)

.FooterMargin	=	Application.InchesToPoints(0.5)

.PrintHeadings	=	False

.PrintGridlines	=	False

.PrintComments	=	xlPrintNoComments

.PrintQuality	=	300

.CenterHorizontally	=	False

.CenterVertically	=	False

.Orientation	=	xlLandscape

.Draft	=	False

.PaperSize	=	xlPaperLetter

.FirstPageNumber	=	xlAutomatic

.Order	=	xlDownThenOver

.BlackAndWhite	=	False

.Zoom	=	False

.FitToPagesWide	=	1

.FitToPagesTall	=	False

.PrintErrors	=	xlPrintErrorsDisplayed

End	With

Application.PrintCommunication	=	True

On	Error	GoTo	0

Suppressing	Excel	warnings

Some	messages	appear	even	if	you	have	set	Excel	to	ignore	errors.	For	example,
try	to	delete	a	worksheet	using	code,	and	you	still	get	the	message	“You	can’t
undo	deleting	sheets,	and	you	might	be	removing	some	data.	If	you	don’t	need	it,
click	Delete.”	This	is	annoying.	You	do	not	want	your	clients	to	have	to	answer
this	warning;	it	gives	them	a	chance	to	choose	not	to	delete	the	sheet	your	macro
wants	to	delete.	In	fact,	this	is	not	an	error	but	an	alert.	To	suppress	all	alerts	and
force	Excel	to	take	the	default	action,	use	Application.DisplayAlerts	=
False,	like	this:

Click	here	to	view	code	image
Sub	DeleteSheet()

Application.DisplayAlerts	=	False

Worksheets("Sheet2").Delete

Application.DisplayAlerts	=	True

End	Sub

Encountering	errors	on	purpose

Because	programmers	hate	errors,	this	concept	might	seem	counterintuitive,	but
errors	are	not	always	bad.	Sometimes	it	is	faster	to	simply	encounter	an	error.

Suppose,	for	example,	that	you	want	to	find	out	whether	the	active	workbook
contains	a	worksheet	named	Data.	To	find	this	out	without	causing	an	error,	you
could	use	the	following	eight	lines	of	code:

Click	here	to	view	code	image
DataFound	=	False

For	Each	ws	in	ActiveWorkbook.Worksheets

If	ws.Name	=	"Data"	then

DataFound	=	True

Exit	For

End	if

Click	here	to	view	code	image
Next	ws

If	not	DataFound	then	Sheets.Add.Name	=	"Data"

If	your	workbook	has	128	worksheets,	the	program	loops	through	128	times
before	deciding	that	the	data	worksheet	is	missing.

An	alternative	is	to	try	to	reference	the	Data	worksheet.	If	you	have	error
checking	set	to	Resume	Next,	the	code	runs,	and	the	Err	object	is	assigned	a
number	other	than	zero:

Click	here	to	view	code	image
On	Error	Resume	Next

X	=	Worksheets("Data").Name

If	Err.Number	<>	0	then	Sheets.Add.Name	=	"Data"

On	Error	GoTo	0

This	code	runs	much	faster.	Errors	usually	make	programmers	cringe.
However,	in	this	case	and	in	many	other	cases,	the	errors	are	perfectly
acceptable.

Training	your	clients

Suppose	you	are	developing	code	for	a	client	across	the	globe	or	for	the
administrative	assistant	so	that	he	can	run	the	code	while	you	are	on	vacation.	In
both	cases,	you	might	find	yourself	trying	to	debug	code	remotely	while	you	are
on	the	telephone	with	the	client.

For	this	reason,	it	is	important	to	train	clients	about	the	difference	between
an	error	and	a	simple	MsgBox.	Even	though	a	MsgBox	is	a	planned	message,	it	still
appears	out	of	the	blue	with	a	beep.	Teach	your	users	that	error	messages	are
bad,	but	not	everything	that	pops	up	is	an	error	message.	For	example,	I	had	a
client	who	kept	reporting	to	her	boss	that	she	was	getting	an	error	from	my
program.	In	reality,	she	was	getting	an	informational	MsgBox	message.	Both
debug	errors	and	MsgBox	messages	beep	at	the	user,	and	this	user	didn’t	know
that	there’s	a	difference	between	them.

Train	clients	to	call	you	while	any	debug	messages	they	get	are	still
onscreen.	This	way	you	can	get	the	error	number	and	description.	You	also	can

ask	the	client	to	click	Debug	and	tell	you	the	module	name,	the	procedure	name,
and	which	line	is	in	yellow.	Armed	with	this	information,	you	can	usually	figure
out	what	is	going	on.	Without	this	information,	it	is	unlikely	that	you	will	be	able
to	resolve	the	problem.	Getting	a	call	from	a	client	saying	that	there	was	a	1004
error	is	of	little	help	because	1004	is	a	catchall	error	that	can	mean	any	number
of	things.

Errors	that	won’t	show	up	in	debug	mode

This	problem	is	happening	more	frequently	today.	You	write	a	macro	that	does
stuff.	When	you	run	the	macro,	you	get	an	error.	But	then	you	click	Debug	and
start	stepping	through	code	with	F8.	The	macro	runs	fine	without	errors.

Every	time	you	step	through	the	code	one	line	at	a	time,	the	macro	works.
Every	time	you	run	the	code	using	the	Run	button,	you	get	the	error.

Here	is	what	is	happening.	It	used	to	be	that	one	line	of	macro	code	would
run	and	Excel	would	pause	until	that	line	is	complete.	But	now,	it	seems	that
sometimes	the	command	will	return	control	to	the	macro	before	the	command
actually	completes.	Charting	guru	Jon	Peltier	reports	that	this	frequently	happens
when	inserting	new	charts.	Say	you	have	a	macro	where	line	1	is	insert	a	chart,
and	line	2	is	do	something	to	the	chart.	It	can	be	really	bad	if	line	2	tries	to	run
before	the	chart	fully	exists.

Of	course,	when	you	are	running	code	one	line	at	a	time,	the	routine	is	to	see
what	line	is	in	yellow.	Press	F8.	See	that	the	next	line	is	in	yellow.	Press	F8.	You
might	be	pressing	F8	just	one	second	later,	but	that	one	second	is	enough	for	the
chart	to	finish	rendering.

The	workaround	is	to	liberally	apply	a	bunch	of	lines	that	say:

DoEvents

DoEvents	is	supposed	to	make	the	macro	pause	long	enough	for	all	current
events	to	finish.	Sometimes	this	does	not	work	and	you	have	to	use
Application.Wait	to	pause	the	macro	for	a	second	or	two.

Errors	while	developing	versus	errors	months	later

When	you	have	just	written	code	that	you	are	running	for	the	first	time,	you
expect	errors.	In	fact,	you	might	decide	to	step	through	code	line	by	line	to
watch	the	progress	of	the	code	the	first	time	through.

It	is	another	thing	to	have	a	program	that	has	been	running	daily	in
production	suddenly	stop	working	because	of	an	error.	That	can	be	perplexing.
The	code	has	been	working	for	months,	so	why	did	it	suddenly	stop	working
today?	It	is	easy	to	blame	the	client.	However,	when	you	get	right	down	to	it,	it
is	really	the	fault	of	developers	for	not	considering	the	possibilities.

The	following	sections	describe	a	couple	of	common	problems	that	can
strike	an	application	months	later.

Runtime	error	9:	Subscript	out	of	range

You	set	up	an	application	for	a	client	and	you	provided	a	Menu	worksheet	where
some	settings	are	stored.	Then	one	day	this	client	reports	getting	the	error
message	shown	in	Figure	24-8.

FIGURE	24-8	Runtime	error	9	often	occurs	when	you	expect	a	worksheet	to	be	there,	but	it	has	been
deleted	or	renamed	by	the	client.

Your	code	expected	a	worksheet	named	Menu.	For	some	reason,	the	client
either	accidentally	deleted	the	worksheet	or	renamed	it.	When	the	client	then
tried	to	select	the	sheet,	she	received	an	error:

Click	here	to	view	code	image
Sub	GetSettings()

ThisWorkbook.Worksheets("Menu").Select

x	=	Range("A1").Value

End	Sub

This	is	a	classic	situation	where	you	cannot	believe	that	the	client	would	do
something	so	crazy.	After	you	have	been	burned	by	this	one	a	few	times,	you
might	go	to	lengths	like	implementing	this	code	to	prevent	an	unhandled	debug
error:

Click	here	to	view	code	image
Sub	GetSettings()

On	Error	Resume	Next

x	=	ThisWorkbook.Worksheets("Menu").Name

If	Not	Err.Number	=	0	Then

MsgBox	"Expected	to	find	a	Menu	worksheet,	but	it

is	missing"

Exit	Sub

End	If

On	Error	GoTo	0

ThisWorkbook.Worksheets("Menu").Select

x	=	Range("A1").Value

End	Sub

Runtime	error	1004:	Method	range	of	object	global	failed

You	have	code	that	imports	a	text	file	each	day.	You	expect	the	text	file	to	end
with	a	Total	row.	After	importing	the	text,	you	want	to	convert	all	the	detail	rows
to	italic.

The	following	code	works	fine	for	months:

Click	here	to	view	code	image
Sub	SetReportInItalics()

TotalRow	=	Cells(Rows.Count,1).End(xlUp).Row

FinalRow	=	TotalRow	-	1

Range("A1:A"	&	FinalRow).Font.Italic	=	True

End	Sub

Then	one	day,	the	client	calls	with	the	error	message	shown	in	Figure	24-9.

FIGURE	24-9	Runtime	error	1004	can	be	caused	by	a	number	of	things.

Upon	examining	the	code,	you	discover	that	something	bizarre	went	wrong
when	the	text	file	was	transferred	via	FTP	to	the	client	that	day.	The	text	file
ended	up	as	an	empty	file.	Because	the	worksheet	was	empty,	TotalRow	was
determined	to	be	row	1.	If	you	assume	that	the	last	detail	row	was	TotalRow	-
1,	the	code	is	set	up	to	attempt	to	format	row	0,	which	clearly	does	not	exist.

After	an	episode	like	this,	you	find	yourself	writing	code	that	preemptively
looks	for	this	situation:

Click	here	to	view	code	image
Sub	SetReportInItalics()

TotalRow	=	Cells(Rows.Count,1).End(xlUp).Row

FinalRow	=	TotalRow	-	1

If	FinalRow	>	0	Then

Range("A1:A"	&	FinalRow).Font.Italic	=	True

Else

MsgBox	"It	appears	the	file	is	empty	today.	Check

the	FTP	process"

	End	If

End	Sub

The	ills	of	protecting	code
It	is	possible	to	lock	a	VBA	project	so	that	it	cannot	be	viewed.	However,	doing
so	is	not	recommended.	When	code	is	protected	and	an	error	is	encountered,
your	user	is	presented	with	an	error	message	but	no	opportunity	to	debug.	The
Debug	button	is	there,	but	it	is	grayed	out	and	useless	in	helping	you	discover

the	problem.

Further,	the	Excel	VBA	protection	scheme	is	horribly	easy	to	break.
Programmers	in	Estonia	offer	$40	software	that	lets	you	unlock	any	project.
Therefore,	you	need	to	understand	that	office	VBA	code	is	not	secure—and	then
get	over	it.

If	you	absolutely	need	to	truly	protect	your	code,	invest	$100	for	a	license	to
Unviewable+	VBA	Project	from	Esoteric	Software.	This	crowd-funded	software
allows	you	to	create	a	compiled	version	of	a	workbook	where	most	people	will
be	able	to	view	the	VBA.	For	more	details,	visit	http://mrx.cl/hidevba.

Case	study:	Password	cracking
Password-hacking	schemes	were	very	easy	in	Excel	97	and	Excel	2000.
The	password-cracking	software	could	immediately	locate	the	actual
password	in	the	VBA	project	and	report	it	to	the	software	user.

Then,	in	Excel	2002,	Microsoft	offered	a	brilliant	protection	scheme	that
temporarily	appeared	to	foil	the	password-cracking	utilities.	The	password
was	tightly	encrypted.	For	several	months	after	the	release	of	Excel	2002,
password-cracking	programs	had	to	try	brute-force	combinations.	The
software	could	crack	an	easy	password	like	blue	in	10	minutes.	However,
given	a	24-character	password	like	*A6%kJJ542(9$GgU44#2drt8,	the
program	would	take	20	hours	to	find	the	password.	This	was	a	fun
annoyance	to	foist	upon	other	VBA	programmers	who	would	potentially
break	into	your	code.

However,	the	next	version	of	the	password-cracking	software	was	able	to
break	a	24-character	password	in	Excel	2002	in	about	2	seconds.	When	I
tested	my	24-character	password-protected	project,	the	password	utility
quickly	told	me	that	my	password	was	XVII.	I	thought	this	was	certainly
wrong,	but	after	testing,	I	found	the	project	had	a	new	password	of	XVII.
Yes,	this	latest	version	of	the	software	resorted	to	another	approach.	Instead
of	using	brute	force	to	crack	the	password,	it	simply	wrote	a	new	random
four-character	password	to	the	project	and	saved	the	file.

Now,	this	causes	an	embarrassing	problem	for	whoever	cracked	the
password,	and	I’ll	explain	why.

The	developer	has	a	sign	on	his	wall	reminding	him	that	the	password	is

http://mrx.cl/hidevba

*A6%kJJ542(9$GgU44#2drt8.	However,	in	the	cracked	version	of	the	file,
the	password	is	now	XVII.	If	there	is	a	problem	with	the	cracked	file	and	it
is	sent	back	to	the	developer,	the	developer	can	no	longer	open	the	file.	The
only	person	getting	anything	from	this	is	the	programmer	in	Estonia	who
wrote	the	cracking	software.

There	are	not	enough	Excel	VBA	developers	in	the	world,	and	there	are
more	projects	than	there	are	programmers.	In	my	circle	of	developer
friends,	we	acknowledge	that	business	prospects	slip	through	the	cracks
because	we	are	too	busy	with	other	customers.	Therefore,	the	situation	of	a
newbie	developer	is	common.	In	this	scenario,	this	new	developer	does	an
adequate	job	of	writing	code	for	a	customer	and	then	locks	the	VBA
project.

The	customer	needs	some	changes.	The	original	developer	does	the	work.	A
few	weeks	later,	the	developer	delivers	some	requested	changes.	A	month
later,	the	customer	needs	more	work.	Either	the	developer	is	busy	with	other
projects	or	has	underpriced	these	maintenance	jobs	and	has	more	lucrative
work	he	is	attending	to	instead.	The	client	tries	to	contact	the	programmer	a
few	times	before	realizing	he	needs	to	get	the	project	fixed	by	someone	else
and	calls	another	developer—you!

You	get	the	code.	It	is	protected.	You	break	the	password	and	see	who
wrote	the	code.	You	have	no	interest	in	stealing	the	new	developer’s
customer.	In	fact,	you	prefer	to	do	this	one	job	and	then	have	the	customer
return	to	the	original	developer.	However,	because	of	the	password	hacking,
you	have	created	a	situation	in	which	the	two	developers—you	and	the
original	one—have	different	passwords.	Your	only	choice	is	to	remove	the
password	entirely.	This	will	tip	off	the	other	developer	that	someone	else
has	been	in	his	code.	Maybe	you	could	try	to	placate	the	other	developer
with	a	few	lines	of	comment	that	the	password	was	removed	after	the
customer	could	not	contact	the	original	developer.

More	problems	with	passwords

Office	2013	introduced	a	new	SHA-2	class	SHA512	algorithm	to	calculate
encryption	keys.	This	algorithm	causes	significant	slowdowns	in	macros	that
protect	or	unprotect	sheets.

The	password	scheme	for	any	version	of	Excel	from	2002	forward	is
incompatible	with	Excel	97.	If	you	protected	code	in	Excel	2002,	you	cannot
unlock	the	project	in	Excel	97.	As	your	application	is	given	to	more	employees
in	a	company,	you	will	invariably	find	an	employee	using	Excel	97.	Of	course,
that	user	will	come	up	with	a	runtime	error.	However,	if	you	locked	the	project
in	Excel	2002	or	newer,	you	are	not	able	to	unlock	the	project	in	Excel	97,	which
means	you	cannot	debug	the	program	in	Excel	97.

Bottom	line:	Locking	code	causes	more	trouble	than	it	is	worth.

Note	If	you	are	using	a	combination	of	Excel	2003	through	Excel
2019,	the	passwords	transfer	easily	back	and	forth	between
versions.	This	holds	true	even	if	the	file	is	saved	as	an	.xlsm	file

and	opened	in	Excel	2003	using	the	file	converter.	You	can	change	code	in
Excel	2003,	save	the	file,	and	successfully	round-trip	back	to	Excel	2019.

Errors	caused	by	different	versions

Microsoft	improves	VBA	in	every	version	of	Excel.	Pivot	table	creation	was
improved	dramatically	between	Excel	97	and	Excel	2000.	Sparklines	and	slicers
were	new	in	Excel	2010.	The	Data	Model	was	introduced	in	Excel	2013.	Power
Query	was	built	in	to	the	object	model	in	Excel	2016.

The	TrailingMinusNumbers	parameter	was	new	in	Excel	2002.	This	means
that	if	you	write	code	in	Excel	2016	and	then	send	the	code	to	a	client	with	Excel
2000,	that	user	gets	a	compile	error	as	soon	as	she	tries	to	run	any	code	that’s	in
the	same	module	as	the	offending	code.	For	this	reason,	you	need	to	consider
this	application	in	two	modules.

Module1	has	macros	ProcA,	ProcB,	and	ProcC.	Module2	has	macros	ProcD
and	ProcE.	It	happens	that	ProcE	has	an	ImportText	method	with	the
TrailingMinusNumbers	parameter.

The	client	can	run	ProcA	and	ProcB	on	the	Excel	2000	machine	without
problem.	As	soon	as	she	tries	to	run	ProcD,	she	gets	a	compile	error	reported	in
ProcD	because	Excel	tries	to	compile	all	of	Module2	when	she	tries	to	run	code
in	that	module.	This	can	be	incredibly	misleading:	An	error	being	reported	when
the	client	runs	ProcD	is	actually	caused	by	an	error	in	ProcE.

One	solution	is	to	have	access	to	every	supported	version	of	Excel	and	test
the	code	in	all	versions.

Macintosh	users	will	believe	that	their	version	of	Excel	is	the	same	as	Excel
for	Windows.	Microsoft	promised	compatibility	of	files,	but	that	promise	ends	in
the	Excel	user	interface.	VBA	code	is	not	compatible	between	Windows	and	the
Mac.	Excel	VBA	on	the	Mac	in	Excel	2019	is	close	to	Excel	2019	VBA	but
annoyingly	different.	Further,	anything	you	do	with	the	Windows	API	is	not
going	to	work	on	a	Mac.

Next	steps

In	this	chapter	you’ve	learned	how	to	make	your	code	more	bulletproof	for	your
clients.	In	Chapter	25,	“Customizing	the	ribbon	to	run	macros,”	you	find	out
how	to	customize	the	ribbon	to	allow	your	clients	to	enjoy	a	professional	user
interface.

CHAPTER	25
Customizing	the	ribbon	to	run	macros

In	this	chapter,	you	will:

Learn	where	to	add	ribbon	code:	the	customui	folder	and	file

Add	controls	to	a	ribbon

Understand	the	RELS	file

Use	images	on	buttons

Troubleshoot	error	messages

Learn	other	ways	to	run	a	macro

Unlike	the	command	bars	of	old,	a	ribbon	isn’t	designed	via	VBA	code.	Instead,
if	you	want	to	modify	the	ribbon	and	add	your	own	tab,	you	need	to	modify	the
Excel	file	itself,	which	isn’t	as	impossible	as	it	sounds.	The	new	Excel	file	is
actually	a	zipped	file,	containing	various	files	and	folders.	All	you	need	to	do	is
unzip	it,	make	your	changes,	and	you’re	done.	Okay,	it’s	not	that	simple—a	few
more	steps	are	involved—but	it’s	not	impossible.

Before	beginning,	go	to	the	File	tab	and	select	Options,	Advanced,	General
and	select	Show	Add-In	User	Interface	Errors.	This	allows	error	messages	to
appear	so	that	you	can	troubleshoot	errors	in	your	custom	toolbar.

Note	See	the	“Troubleshooting	error	messages”	section	later	in	this
chapter	for	more	details.

Caution	Unlike	when	programming	in	the	VB	Editor,	you	won’t
have	any	assistance	with	automatic	correction	of	letter	case;	and
the	XML	code—which	is	what	the	ribbon	code	is—is	very

particular.	Note	the	case	of	the	XML-specific	words;	for	example,	for,	using

will	generate	an	error.

One	thing	to	keep	in	mind	is	that	with	the	change	to	the	single-document
interface	(SDI)	that	was	made	to	Excel	2013	(and	later	versions),	the	custom
ribbon	tab	attached	to	a	workbook	is	visible	only	when	that	workbook	is	active.
When	you	activate	another	workbook,	the	tab	will	not	appear	on	the	ribbon.	The
exception	is	with	an	add-in;	its	custom	ribbon	is	visible	on	any	workbook	open
after	the	add-in	is	opened.

Note	see	Chapter	26,	“Creating	add-ins,”	for	more	information	on
creating	an	add-in.

Note	The	original	CommandBars	object	in	legacy	Excel	still	works,
but	the	customized	menus	and	toolbars	are	now	all	placed	on	the
Add-Ins	tab.

Where	to	add	code:	The	customui	folder	and	file

Create	a	folder	called	customui.	This	folder	contains	the	elements	of	your
custom	ribbon	tab.	Within	the	folder,	create	a	text	file	and	call	it
customUI14.xml,	as	shown	in	Figure	25-1.	Open	the	XML	file	in	a	text	editor;
either	Notepad	or	WordPad	work.

The
figure	shows	a	screenshot	of	the	Windows	File	Explorer	with	the
customUI14.xml	file	in	the	customui	folder."	/>
FIGURE	25-1	Create	a	customuUI14.xml	file	within	a	customui	folder.

Tip	My	favorite	text	editor	is	Notepad	++	by	Don	Ho	(see
www.notepad-plus-plus.org).	Like	the	VB	Editor,	it	colors	XML-
specific	syntax	after	you	choose	XML	as	the	language	you’re

typing.	It	also	has	a	lot	of	other	useful	tools.

Insert	the	basic	structure	for	the	XML	code,	shown	here,	into	your	XML	file.
For	every	opening	tag	grouping,	such	as	<ribbon>,	there	must	be	a	closing	tag,
</ribbon>:

Click	here	to	view	code	image
<customUI

xmlns="http://schemas.microsoft.com/office/2009/07/customui">

	<ribbon	startFromScratch="false">

<tabs>

<!--	your	ribbon	controls	here	-->

</tabs>

	</ribbon>

</customUI>

http://www.notepad-plus-plus.org

startFromScratch	is	optional	and	has	a	default	value	of	false.	You	use	it	to
tell	the	code	the	other	tabs	in	Excel	will	not	be	shown;	only	yours	will	be	shown.
true	means	to	show	only	your	tab;	false	means	to	show	your	tab	and	all	the
other	tabs.

Caution	Note	the	case	of	the	letters	in	startFromScratch—the
small	s	at	the	beginning	followed	by	the	capital	F	in	From	and
capital	S	in	Scratch.	It	is	crucial	that	you	not	deviate	from	this.

The	<!--	your	ribbon	controls	here	-->	you	see	in	the	previous	code	is
commented	text.	Just	enter	your	comments	between	<!--	and	-->,	and	the
program	ignores	the	line	when	it	runs.

Note	If	you’re	creating	a	ribbon	that	needs	to	be	Excel	2007
compatible,	you	need	to	use	the	following	schema:
http://schemas.microsoft.com/office/2006/01/customui.	Also,

where	you	see	customUI14,	use	customUI.

Creating	a	tab	and	a	group

Before	you	can	add	a	control	to	a	tab,	you	need	to	identify	the	tab	and	group.	A
tab	can	hold	many	different	controls,	which	you	can	group	together,	like	the	Font
group	on	the	Home	tab.

Name	your	tab	My	First	Ribbon	and	add	a	group	called	My	Programs	to	it,
like	this	(see	Figure	25-2):

Click	here	to	view	code	image
<customUI

xmlns="http://schemas.microsoft.com/office/2009/07/customui">

	<ribbon	startFromScratch="false">

<tabs>

<tab	id="CustomTab"	label="My	First	Ribbon">

<group	id="CustomGroup"	label="My	Programs">

http://schemas.microsoft.com/office/2006/01/customui

<!--	your	ribbon	controls	here	-->

</group>

</tab>

</tabs>

</ribbon>

</customUI>

id	is	a	unique	identifier	for	the	control	(in	this	case,	the	tab	and	group).
label	is	the	text	you	want	to	appear	on	your	ribbon	for	the	specified	control.

Adding	a	control	to	a	ribbon

After	you’ve	set	up	the	ribbon	and	group,	you	can	add	controls.	Depending	on
the	type	of	control,	there	are	different	attributes	you	can	include	in	your	XML
code.	(Refer	to	Table	25-1	for	more	information	on	various	controls	and	their
attributes.)

The	following	code	adds	a	normal-sized	button	with	the	text	Click	to	Run	to
the	Reports	group	and	runs	the	sub	HelloWorld	when	the	button	is	clicked	(see
Figure	25-2):

Click	here	to	view	code	image
<customUI

xmlns="http://schemas.microsoft.com/office/2009/07/customui">

	<ribbon	startFromScratch="false">

<tabs>

<tab	id="CustomTab"	label="My	First	Ribbon">

<group	id="CustomGroup"	label="My	Programs">

<button	id="button1"	label="Click	to	run"

onAction="Module1.HelloWorld"	size="normal"/>

</group>

</tab>

</tabs>

</ribbon>

</customUI>

FIGURE	25-2	Run	a	program	with	a	click	of	a	button	on	your	custom	ribbon.

The	properties	of	the	button	include	id,	a	unique	identifier	for	the	control
button,	and	label,	which	holds	the	text	you	want	to	appear	on	your	button.	size,
which	is	the	size	of	the	button,	has	a	default	value	of	normal;	the	other	option	is
large.	onAction	is	the	sub,	HelloWorld,	to	call	when	the	button	is	clicked.	The
sub,	shown	here,	goes	in	a	standard	module,	Module1,	in	the	workbook:

Click	here	to	view	code	image
Sub	HelloWorld(control	As	IRibbonControl)

MsgBox	"Hello	World"

End	Sub

Notice	the	argument	control	As	IRibbonControl.	This	is	the	standard
argument	for	a	sub,	and	it	is	called	by	a	button	control	via	the	onAction	attribute.
Table	25-2	lists	the	required	arguments	for	other	attributes	and	controls.

TABLE	25-1	Ribbon	control	attributes

Attribute

Type
or
Value Description

description String Specifies	description	text	displayed	in	menus	when	the	itemSize
attribute	is	set	to	Large.

enabled true,
false

Specifies	whether	the	control	is	enabled.

getContent Callback Retrieves	XML	content	that	describes	a	dynamic	menu.
getDescription Callback Gets	the	description	of	a	control.
getEnabled Callback Gets	the	enabled	state	of	a	control.
getImage Callback Gets	the	image	for	a	control.
getImageMso Callback Gets	a	built-in	control’s	icon	by	using	the	control	ID.
getItemCount Callback Gets	the	number	of	items	to	be	displayed	in	a	combo	box,	drop-down

menu,	or	gallery.

getItemID Callback Gets	the	ID	for	a	specific	item	in	a	combo	box,	drop-down	menu,	or
gallery.

getItemImage Callback Gets	the	image	of	a	combo	box,	drop-down	menu,	or	gallery.
getItemLabel Callback Gets	the	label	of	a	combo	box,	drop-down	menu,	or	gallery.
getItemScreentip Callback Gets	the	screentip	for	a	combo	box,	drop-down	menu,	or	gallery.
getItemSupertip Callback Gets	the	enhanced	screentip	for	a	combo	box,	drop-down	menu,	or

gallery.
getKeytip Callback Gets	the	keytip	for	a	control.
getLabel Callback Gets	the	label	for	a	control.
getPressed Callback Gets	a	value	that	indicates	whether	a	toggle	button	is	pressed	or	not

pressed.	Gets	a	value	that	indicates	whether	a	check	box	is	selected	or
cleared.

getScreentip Callback Gets	the	screentip	for	a	control.
getSelectedItemID Callback Gets	the	ID	of	the	selected	item	in	a	drop-down	menu	or	gallery.
getSelectedItemIndexCallback Gets	the	index	of	the	selected	item	in	a	drop-down	menu	or	gallery.
getShowImage Callback Gets	a	value	that	specifies	whether	to	display	the	control	image.
getShowLabel Callback Gets	a	value	that	specifies	whether	to	display	the	control	label.
getSize Callback Gets	a	value	that	specifies	the	size	of	a	control	(normal	or	large).
getSupertip Callback Gets	a	value	that	specifies	the	enhanced	screentip	for	a	control.
getText Callback Gets	the	text	to	be	displayed	in	the	edit	portion	of	a	text	box	or	edit	box.
getTitle Callback Gets	the	text	to	be	displayed	(rather	than	a	horizontal	line)	for	a	menu

separator.
getVisible Callback Gets	a	value	that	specifies	whether	the	control	is	visible.
id String Acts	as	a	user-defined	unique	identifier	for	the	control	(and	is	mutually

exclusive	with	idMso	and	idQ—so	specify	only	one	of	these	values).
idMso Control

id
Acts	as	a	built-in	control	ID	(and	is	mutually	exclusive	with	id	and	idQ
—so	specify	only	one	of	these	values).

idQ Qualified
id

Acts	as	a	qualified	control	ID,	prefixed	with	a	namespace	identifier	(and
is	mutually	exclusive	with	id	and	idMso—so	specify	only	one	of	these
values).

image String Specifies	an	image	for	the	control.
imageMso Control

id
Specifies	an	identifier	for	a	built-in	image.

insertAfterMso Control
id

Specifies	the	identifier	for	the	built-in	control	after	which	to	position	this
control.

insertAfterQ Qualified
id

Specifies	the	identifier	of	a	control	whose	idQ	property	was	specified
after	which	to	position	this	control.

insertBeforeMso Control
id

Specifies	the	identifier	for	the	built-in	control	before	which	to	position
this	control.

insertBeforeQ Qualified
id

Specifies	the	identifier	of	a	control	whose	idQ	property	was	specified
before	which	to	position	this	control.

itemSize large,
normal

Specifies	the	size	for	the	items	in	a	menu.

Keytip String Specifies	the	keytip	for	the	control.
label String Specifies	the	label	for	the	control.
onAction Callback Called	when	the	user	clicks	the	control.
onChange Callback Called	when	the	user	enters	or	selects	text	in	an	edit	box	or	combo	box.
screentip String Specifies	the	control’s	screentip.
showImage true,

false

Specifies	whether	the	control’s	image	is	shown.

showItemImage true,
false

Specifies	whether	to	show	the	image	in	a	combo	box,	drop-down	menu,
or	gallery.

showItemLabel true,
false

Specifies	whether	to	show	the	label	in	a	combo	box,	drop-down	menu,	or
gallery.

showLabel true,
false

Specifies	whether	the	control’s	label	is	shown.

size large,
normal

Specifies	the	size	for	the	control.

sizeString String Indicates	the	width	for	the	control	by	specifying	a	string,	such	as
“xxxxxx”.

supertip String Specifies	the	enhanced	screentip	for	the	control.
tag String Specifies	user-defined	text.
title String Specifies	the	text	to	be	displayed,	rather	than	a	horizontal	line,	for	a

menu	separator.
visible true,

false

Specifies	whether	the	control	is	visible.

TABLE	25-2	Required	arguments	for	other	attributes	and	controls

Control Callback	Name Signature
Various
controls

getDescription Sub	GetDescription(control	as	IRibbonControl,	ByRef

description)

getEnabled Sub	GetEnabled(control	As	IRibbonControl,	ByRef	enabled)

getImage Sub	GetImage(control	As	IRibbonControl,	ByRef	image)

getImageMso Sub	GetImageMso(control	As	IRibbonControl,	ByRef

imageMso)

getLabel Sub	GetLabel(control	As	IRibbonControl,	ByRef	label)

getKeytip Sub	GetKeytip	(control	As	IRibbonControl,	ByRef	label)

getSize Sub	GetSize(control	As	IRibbonControl,	ByRef	size)

getScreentip Sub	GetScreentip(control	As	IRibbonControl,	ByRef

screentip)

getSupertip Sub	GetSupertip(control	As	IRibbonControl,	ByRef

screentip)

getVisible Sub	GetVisible(control	As	IRibbonControl,	ByRef	visible)

button getShowImage Sub	GetShowImage	(control	As	IRibbonControl,	ByRef

showImage)

getShowLabel Sub	GetShowLabel	(control	As	IRibbonControl,	ByRef

showLabel)

onAction Sub	OnAction(control	As	IRibbonControl)

checkBox getPressed Sub	GetPressed(control	As	IRibbonControl,	ByRef

returnValue)

onAction Sub	OnAction(control	As	IRibbonControl,	pressed	As

Boolean)

comboBox getItemCount Sub	GetItemCount(control	As	IRibbonControl,	ByRef	count)

getItemID Sub	GetItemID(control	As	IRibbonControl,	index	As

Integer,	ByRef	id)

getItemImage Sub	GetItemImage(control	As	IRibbonControl,	index	As

Integer,	ByRef	image)

getItemLabel Sub	GetItemLabel(control	As	IRibbonControl,	index	As

Integer,	ByRef	label)

getItemScreenTip Sub	GetItemScreenTip(control	As	IRibbonControl,	index	As

Integer,	ByRef	screentip)

getItemSuperTip Sub	GetItemSuperTip	(control	As	IRibbonControl,	index	As

Integer,	ByRef	supertip)

getText Sub	GetText(control	As	IRibbonControl,	ByRef	text)

onChange Sub	OnChange(control	As	IRibbonControl,	text	As	String)

customUI loadImage Sub	LoadImage(imageId	As	string,	ByRef	image)

onLoad Sub	OnLoad(ribbon	As	IRibbonUI)

dropDown getItemCount Sub	GetItemCount(control	As	IRibbonControl,	ByRef	count)

getItemID Sub	GetItemID(control	As	IRibbonControl,	index	As

Integer,	ByRef	id)

getItemImage Sub	GetItemImage(control	As	IRibbonControl,	index	As

Integer,	ByRef	image)

getItemLabel Sub	GetItemLabel(control	As	IRibbonControl,	index	As

Integer,	ByRef	label)

getItemScreenTip Sub	GetItemScreenTip(control	As	IRibbonControl,	index	As

Integer	ByRef	screenTip)

getItemSuperTip Sub	GetItemSuperTip	(control	As	IRibbonControl,	index	As

Integer,	ByRef	superTip)

getSelectedItemID Sub	GetSelectedItemID(control	As	IRibbonControl,	ByRef

index)

getSelectedItemIndex Sub	GetSelectedItemIndex(control	As	IRibbonControl,

ByRef	index)

onAction Sub	OnAction(control	As	IRibbonControl,	selectedId	As

String,	selectedIndex	As	Integer)

dynamicMenu getContent Sub	GetContent(control	As	IRibbonControl,	ByRef	content)

editBox getText Sub	GetText(control	As	IRibbonControl,	ByRef	text)

onChange Sub	OnChange(control	As	IRibbonControl,	text	As	String)

gallery getItemCount Sub	GetItemCount(control	As	IRibbonControl,	ByRef	count)

getItemHeight Sub	getItemHeight(control	As	IRibbonControl,	ByRef

height)

getItemID Sub	GetItemID(control	As	IRibbonControl,	index	As

Integer,	ByRef	id)

getItemImage Sub	GetItemImage(control	As	IRibbonControl,	index	As

Integer,	ByRef	image)

getItemLabel Sub	GetItemLabel(control	As	IRibbonControl,	index	As

Integer,	ByRef	label)

getItemScreenTip Sub	GetItemScreenTip(control	As	IRibbonControl,	index	as

Integer,	ByRef	screen)

getItemSuperTip Sub	GetItemSuperTip	(control	As	IRibbonControl,	index	as

Integer,	ByRef	screen)

getItemWidth Sub	getItemWidth(control	As	IRibbonControl,	ByRef	width)

getSelectedItemID Sub	GetSelectedItemID(control	As	IRibbonControl,	ByRef

index)

getSelectedItemIndex Sub	GetSelectedItemIndex(control	As	IRibbonControl,

ByRef	index)

onAction Sub	OnAction(control	As	IRibbonControl,	selectedId	As

String,	selectedIndex	As	Integer)

menuSeparator getTitle Sub	GetTitle	(control	As	IRibbonControl,	ByRef	title)

toggleButton getPressed Sub	GetPressed(control	As	IRibbonControl,	ByRef

returnValue)

onAction Sub	OnAction(control	As	IRibbonControl,	pressed	As

Boolean)

Accessing	the	file	structure
Excel	files	are	actually	zipped	files	that	contain	various	files	and	folders	to	create
the	workbook	and	worksheets	you	see	when	you	open	the	workbook.	To	view
this	structure,	rename	the	file,	adding	a	.zip	extension	to	the	end	of	the	filename.
For	example,	if	your	filename	is	Chapter	25	-	Simple	Ribbon.xlsm,	rename	it
Chapter	25	-	Simple	Ribbon.xlsm.zip.	You	can	then	use	your	zip	utility	to	access
the	folders	and	files	within.

Copy	into	the	zip	file	your	customui	folder	and	file,	as	shown	in	Figure	25-3.
After	placing	them	in	the	.xlsm	file,	you	need	to	let	the	rest	of	the	Excel	file

know	that	they	are	there	and	what	their	purpose	is.	To	do	that,	you	need	to
modify	the	RELS	file,	as	described	in	the	next	section.

The
figure	shows	a	screenshot	of	the	Windows	File	Explorer	with	the
customUI14.xml	file	in	the	customui	folder."	/>
FIGURE	25-3	Using	a	zip	utility,	open	the	.xlsm	file	and	copy	in	the	customui	folder	and	file.

Understanding	the	RELS	file
The	RELS	file,	found	in	the	_rels	folder,	contains	the	various	relationships	of	an
Excel	file.	Extract	this	file	from	the	zip	file	and	open	it	using	a	text	editor.

The	file	already	contains	existing	relationships	that	you	do	not	want	to
change.	Instead,	you	need	to	add	one	for	the	customui	folder.	Scroll	all	the	way
to	the	right	of	the	<Relationships	line	and	place	your	cursor	before	the
</Relationships>	tag,	as	shown	in	Figure	25-4.	Insert	the	following	code:

Click	here	to	view	code	image
<Relationship	Id="rAB67989"

Type="http://schemas.microsoft.com/office/2007/relationships/ui/_

extensibility"

Target="customui/customUI14.xml"/>

Id	is	any	unique	string	to	identify	the	relationship.	If	Excel	has	a	problem
with	the	string	you	enter,	it	might	change	it	when	you	open	the	file.	Target	is	the

customui	folder	and	file.	Save	your	changes	and	add	the	RELS	file	back	to	the
zip	file.

Note	See	the	section	“Found	a	problem	with	some	content,”	later
in	this	chapter	for	more	information.

The	figure	shows	a	screenshot	of	the	Windows	File	Explorer	with	the
customUI14.xml	file	in	the	customui	folder."	/>
FIGURE	25-4	Place	your	cursor	in	the	correct	spot	for	entering	your	custom	ribbon	relationship.

Caution	Even	though	the	previous	code	appears	as	four	lines	in
this	book,	it	should	appear	as	a	single	line	in	the	RELS	file.	If	you
want	to	enter	it	as	three	separate	lines,	do	not	separate	the	lines

within	the	quoted	strings	and	do	not	use	a	continuation	character	as	you
would	in	VBA.	The	preceding	examples	are	correct	breaks	(not	including
the	line	break	with	the	continuation	character).	The	following	would	be	an
example	of	an	incorrect	break	of	the	fourth	line:

Target	=	"customui/

customUI14.xml"

Renaming	an	Excel	file	and	opening	a	workbook

Rename	the	Excel	file	back	to	its	original	name	by	removing	the	.zip	extension.
Open	your	workbook.

Note	If	any	error	messages	appear	when	you	open	the	Excel	file,
see	“Troubleshooting	error	messages”	later	in	this	chapter.

It	can	be	a	little	time-consuming	to	perform	all	the	steps	involved	in	adding	a
custom	ribbon,	especially	if	you	make	little	mistakes	and	have	to	keep	renaming
your	workbook,	opening	the	zip	file,	extracting	your	file,	modifying,	adding	it
back	to	the	zip,	renaming,	and	testing.	To	aid	in	this,	check	out	the	Custom	UI
Editor	tool,	which	you	download	at
http://openxmldeveloper.org/blog/b/openxmldeveloper/archive/2009/08/07/7293.aspx
This	tool	updates	the	RELS	file,	helps	with	using	custom	images,	and	has	other
useful	aids	to	customizing	the	ribbon.	Another	tool	I	like	to	use	is	the	RibbonX
Visual	Designer	by	Andy	Pope,	available	at
www.andypope.info/vba/ribboneditor_2010.htm.

Using	images	on	buttons

The	image	that	appears	on	a	button	can	be	either	an	image	from	the	Microsoft
Office	icon	library	or	a	custom	image	you	create	and	include	in	the	workbook’s
customui	folder.	With	a	good	icon	image,	you	can	hide	the	button	label	but	still
have	a	friendly	ribbon	with	images	that	are	self-explanatory.

Using	Microsoft	Office	icons	on	a	ribbon

Microsoft	has	made	it	fairly	easy	to	reuse	Microsoft’s	button	images	in	custom
ribbons.	Select	File,	Options,	Customize	Ribbon.	Place	your	mouse	pointer	over
any	menu	command	in	the	list,	and	a	screentip	displays,	providing	more
information	about	the	command.	Included	at	the	very	end,	in	parentheses,	is	the
image	name,	as	shown	in	Figure	25-5.

http://openxmldeveloper.org/blog/b/openxmldeveloper/archive/2009/08/07/7293.aspx
http://www.andypope.info/vba/ribboneditor_2010.htm

The	figure	shows	a	screenshot	of	the	Windows	File	Explorer	with	the
customUI14.xml	file	in	the	customui	folder."	/>
FIGURE	25-5	Placing	your	pointer	over	a	command,	such	as	Hyperlink,	brings	up	the	icon	name,
HyperlinkInsert.

To	place	an	image	on	your	button,	you	need	to	go	back	into	the
customUI14.xml	file	and	tell	Excel	what	you	want.	The	following	code	uses	the
HyperlinkInsert	icon	for	the	HelloWorld	button	and	makes	it	large,	as	shown	in
Figure	25-6.	(Note	that	the	icon	name	is	case	sensitive.)

Click	here	to	view	code	image
<customUI

xmlns="http://schemas.microsoft.com/office/2009/07/customui">

<ribbon	startFromScratch="false">

<tabs>

<tab	id="CustomTab"	label="My	First	Ribbon">

<group	id="CustomGroup"	label="My	Programs">

<button	id="button1"	label="Click	to	run"

onAction="Module1.HelloWorld"

imageMso="HyperlinkInsert"	size="large"/>

</group>

</tab>

</tabs>

</ribbon>

</customUI>

The	figure	shows	a	screenshot	of	the
Windows	File	Explorer	with	the	customUI14.xml	file	in	the	customui
folder."	/>
FIGURE	25-6	You	can	apply	the	image	from	any	Microsoft	Office	icon	to	your	custom	button.

You	aren’t	limited	to	just	the	icons	available	in	Excel.	You	can	use	the	icon
for	any	installed	Microsoft	Office	application.	You	can	download	a	Word
document	from	Microsoft	with	two	galleries	showing	the	icons	available	(and
their	names)	from	http://www.microsoft.com/en-us/download/details.aspx?
id=21103.

Adding	custom	icon	images	to	a	ribbon

What	if	the	icon	library	just	doesn’t	have	the	icon	you’re	looking	for?	You	can
create	your	own	image	file	and	modify	the	ribbon	to	use	it.	Follow	these	steps:

1.	 Create	a	folder	called	images	in	the	customui	folder.	Place	your	image	in	this
folder.

2.	 Create	a	folder	called	_rels	in	the	customui	folder.	Create	a	text	file	called
customUI14.xml.rels	in	this	new	folder,	as	shown	in	Figure	25-7.	Place	the
following	code	in	the	file	(and	note	that	the	Id	for	the	image	relationship	is	the
name	of	the	image	file,	helloworld_png):

Click	here	to	view	code	image
<?xml	version="1.0"	encoding="UTF-8"

standalone="yes"?>

<Relationships

xmlns="http://schemas.openxmlformats.org/package/2006/_

relationships"><Relationship	Id="helloworld_png"_

http://www.microsoft.com/en-us/download/details.aspx?id=21103

Type="http://schemas.openxmlformats.org/officeDocument/2006/

_

relationships/image"

Target="images/helloworld.png"/></Relationships>

FIGURE	25-7	Create	a	_rels	folder	and	an	images	folder	within	the	customui	folder	to	hold	files
relevant	to	your	custom	image.

3.	 Open	the	customUI14.xml	file	and	add	the	image	attribute	to	the	control,	as
shown	here,	before	you	save	and	close	the	file:

Click	here	to	view	code	image
<customUI

xmlns="http://schemas.microsoft.com/office/2009/07/customui">

<ribbon	startFromScratch="false">

<tabs>

<tab	id="CustomTab"	label="My	First	Ribbon">

<group	id="CustomGroup"	label="My	Programs">

<button	id="button1"	label="Click	to	run"

onAction="Module1.HelloWorld"

image="helloworld_png"

size="large"	/>

</group>

</tab>

</tabs>

</ribbon>

</customUI>

4.	 Open	the	[Content_Types].xml	file	and	add	the	following	at	the	very	end	of
the	file	but	before	</Types>:

Click	here	to	view	code	image
<	Default	Extension="png"

ContentType="graphics/.png"/>

Note	If	your	image	is	a	jpg,	you	would	use	the	following:

<Default	Extension="jpg"

ContentType="application/octet-stream"/>

5.	 Save	your	changes,	rename	your	folder,	and	open	your	workbook.	The	custom
image	appears	on	the	button,	as	shown	in	Figure	25-8.

FIGURE	25-8	With	a	few	more	changes	to	your	customui	folder,	you	can	add	a	custom	image	to
a	button.

Troubleshooting	error	messages
To	be	able	to	see	the	error	messages	generated	by	a	custom	ribbon,	go	to	File,
Options,	Advanced,	General	and	select	the	Show	Add-In	User	Interface	Errors
option.

The	attribute	“Attribute	Name”	on	the	element	“customui	ribbon”
is	not	defined	in	the	DTD/schema

As	noted	in	the	section	“Where	to	add	code:	The	customui	folder	and	file”
earlier	in	this	chapter,	the	case	of	attributes	is	very	particular.	If	an	attribute	is

“mis-cased,”	the	error	shown	in	Figure	25-9	might	occur.

FIGURE	25-9	Mis-cased	attributes	can	generate	errors.	Read	the	error	message	carefully;	it	might
help	you	trace	the	problem.

The	code	in	the	customUI14.xml	file	that	generated	the	error	had	the
following	line:

<ribbon	startfromscratch="false">

Instead	of	startFromScratch,	the	code	contained	startfromscratch	(all
lowercase	letters).	The	error	message	even	helps	you	narrow	down	the	problem
by	naming	the	attribute	with	which	it	has	a	problem.

Illegal	qualified	name	character

For	every	opening	<,	you	need	a	closing	>.	If	you	forget	a	closing	>,	the	error
shown	in	Figure	25-10	might	appear.	The	error	message	is	not	specific	at	all,	but
it	does	provide	a	line	and	column	number	to	indicate	where	it’s	having	a
problem.	Still,	it’s	not	the	actual	spot	where	the	missing	>	would	go.	Instead,	it’s
the	beginning	of	the	next	line.	You	have	to	review	your	code	to	find	the	error,
but	you	have	an	idea	of	where	to	start.

FIGURE	25-10	For	every	opening	<,	you	need	a	closing	>.

The	following	code	in	the	customUI14.xml	file	generated	the	error:

Click	here	to	view	code	image
<tab	id="CustomTab"	label="My	First	Ribbon">

<group	id="CustomGroup"	label="My	Programs"

<button	id="button1"	label="Click	to	run"

onAction="Module1.HelloWorld"

image="helloworld_png"

size="large"	/>

Note	the	missing	>	for	the	group	line	(the	second	line	of	code).	The	line
should	have	been	this:

Click	here	to	view	code	image

<group	id="CustomGroup"	label="My	Programs">

Element	“customui	Tag	Name”	is	unexpected	according	to	content
model	of	parent	element	“customui	Tag	Name”

If	your	structure	is	in	the	wrong	order,	such	as	the	group	tag	placed	before	the
tab	tag,	as	shown	here,	a	chain	of	errors	appears,	beginning	with	the	one	shown
in	Figure	25-11.

FIGURE	25-11	An	error	in	one	line	can	lead	to	a	string	of	error	messages	because	the	other	lines	are
now	considered	out	of	order.

Click	here	to	view	code	image
<group	id="CustomGroup"	label="My	Programs">

<tab	id="CustomTab"	label="My	First	Ribbon">

Found	a	problem	with	some	content

Figure	25-12	shows	a	generic	catchall	message	for	different	types	of	problems
Excel	can	find.	If	you	click	No,	the	workbook	doesn’t	open.	If	you	click	Yes,
you	then	receive	the	message	shown	in	Figure	25-13.	While	creating	ribbons,
though,	I	found	it	appearing	most	often	when	Excel	doesn’t	like	the	Relationship
ID	I	have	assigned	to	the	customui	relationship	in	the	RELS	file.	What’s	nice	is
that	if	you	click	Yes	in	the	“Found	a	Problem”	dialog	box,	Excel	assigns	a	new
ID,	and	the	next	time	you	open	the	file,	the	error	should	not	appear.

FIGURE	25-12	This	rather	generic	message	could	appear	for	many	reasons.	Click	Yes	to	try	to
repair	the	file.

FIGURE	25-13	Excel	lets	you	know	whether	it	has	succeeded	in	repairing	the	file.

Here’s	the	original	relationship:

Click	here	to	view	code	image
<Relationship	Id="rId3"

Type="http://schemas.microsoft.com/office/2007/relationships/ui/

_

extensibility"

Target="customui/customUI14.xml"/>

Here’s	the	Excel-modified	relationship:

Click	here	to	view	code	image
<Relationship	Id="rE1FA1CF0-6CA9-499E-9217-

90BF2D86492F"

Type="http://schemas.microsoft.com/office/2007/relationships/ui/

_

extensibility"

Target="customui/customuUI14.xml"/>

In	the	RELS	file,	the	error	also	appears	if	you	split	the	relationship	line
within	a	quoted	string.	You	might	recall	that	you	were	cautioned	against	this	in
the	“Understanding	the	RELS	File”	section,	earlier	in	this	chapter.	In	this	case,
Excel	could	not	fix	the	file,	and	you	must	make	the	correction	yourself.

Wrong	number	of	arguments	or	invalid	property	assignment

If	there	is	a	problem	with	the	sub	being	called	by	a	control,	you	might	see	the
error	message	in	Figure	25-14	when	you	try	to	run	code	from	your	ribbon.	For
example,	the	onAction	of	a	button	requires	a	single	IRibbonControl	argument
such	as	the	following:

Sub	HelloWorld(control	As	IRibbonControl)

It	would	be	incorrect	to	leave	off	the	argument,	as	shown	here:

Sub	HelloWorld()

FIGURE	25-14	It’s	important	for	the	subs	being	called	by	your	controls	to	have	the	proper
arguments.	Refer	to	Table	25-2	for	the	various	control	arguments.

Invalid	file	format	or	file	extension

The	error	message	shown	in	Figure	25-15	looks	rather	drastic,	but	it	could	be

deceiving.	You	could	get	it	if	you’re	missing	quotation	marks	around	an
attribute’s	value	in	the	RELS	file.	For	example,	look	carefully	at	the	following
line,	and	you’ll	see	that	the	Type	value	is	missing	its	quotations	marks:

Type=http://schemas.microsoft.com/office/2007/relationships/ui/extensibility

The	line	should	have	been	this:

Type="http://schemas.microsoft.com/office/2007/relationships/ui/extensibility"

FIGURE	25-15	A	missing	quotation	mark	can	generate	a	drastic	message,	but	it’s	easily	fixed.

Nothing	happens

If	you	open	your	modified	workbook	and	your	ribbon	doesn’t	appear,	but	you
don’t	get	an	error	message,	double-check	your	RELS	file.	It’s	possible	that	you
forgot	to	update	it	with	the	required	relationship	to	your	custumUI14.xml	file.

Other	ways	to	run	a	macro
Using	a	custom	ribbon	is	the	most	elegant	way	to	run	a	macro;	however,	if	you
have	only	a	couple	of	macros	to	run,	it	can	be	a	bit	of	work	to	modify	the	file.
You	could	have	the	client	invoke	a	macro	by	going	to	the	View	tab,	selecting
Macros,	View	Macros,	and	then	selecting	the	macro	from	the	Macros	dialog	box
and	clicking	the	Run	button,	but	this	is	a	bit	unprofessional—and	tedious.	Other
options	are	discussed	in	the	following	sections.

Using	a	keyboard	shortcut	to	run	a	macro

The	easiest	way	to	run	a	macro	is	to	assign	a	keyboard	shortcut	to	it.	Open	the
Macro	dialog	box	by	selecting	the	Developer	or	View	tab	and	clicking	Macros	or
by	pressing	Alt+F8.	Then	select	the	macro	and	click	Options.	Assign	a	shortcut
key	to	the	macro.	Figure	25-16	shows	the	shortcut	Ctrl+Shift+H	being	assigned
to	the	RunHello	macro.	You	can	now	conspicuously	post	a	note	on	the

worksheet,	reminding	the	client	to	press	Ctrl+Shift+H	to	clean	the	first	column.

FIGURE	25-16	The	simplest	way	to	enable	a	client	to	run	a	macro	is	to	assign	a	shortcut	key	to	the
macro.	Ctrl+Shift+H	now	runs	the	RunHello	macro.

Caution	Be	careful	when	assigning	keyboard	shortcuts.	Many	of
the	keys	are	already	mapped	to	important	Windows	shortcuts.	If
you	would	happen	to	assign	a	macro	to	Ctrl+C,	for	example,

anyone	who	uses	this	shortcut	to	copy	the	selection	to	the	Clipboard	will	be
frustrated	when	your	application	does	something	else	in	response	to	this
common	shortcut.	The	letters	J,	M,	and	Q	are	usually	good	choices	because
as	of	Excel	2019,	they	had	not	yet	been	assigned	to	Excel’s	menu	of	“Ctrl+”
shortcut	combinations.	Ctrl+L	and	Ctrl+T	used	to	be	available,	but	these	are
now	used	to	create	tables.

Attaching	a	macro	to	a	command	button

Two	types	of	buttons	can	be	embedded	in	a	sheet:	the	traditional	button	shape
that	you	can	find	in	the	Form	Controls	section	and	an	ActiveX	command	button.
(You	can	access	both	on	the	Developer	tab	under	the	Controls,	Insert	option.)

To	add	a	form	control	button	with	a	macro	to	your	sheet,	follow	these	steps:

1.	 On	the	Developer	tab,	click	the	Insert	button	and	select	the	button	control
from	the	Form	Controls	section	of	the	drop-down,	as	shown	in	Figure	25-
17.

FIGURE	25-17	The	form	controls	are	found	under	the	Insert	icon	on	the	Developer	tab.

2.	 Place	your	cursor	in	the	worksheet	where	you	want	to	insert	the	button	and
then	click	and	drag	to	create	the	shape	of	the	new	button.	When	you	release
the	mouse	button,	the	Assign	Macro	dialog	box	displays.

3.	 In	the	Assign	Macro	dialog	box,	select	a	macro	to	assign	to	the	button	and
click	OK.

4.	 Highlight	the	text	on	the	button	and	type	new	meaningful	text.

5.	 To	change	the	font,	text	alignment,	and	other	aspects	of	the	button’s
appearance,	right-click	the	button	and	select	Format	Control	from	the	pop-
up	menu.

6.	 To	reassign	a	new	macro	to	the	button,	right-click	the	button	and	select
Assign	Macro	from	the	pop-up	menu.

Attaching	a	macro	to	a	shape

The	previous	method	assigned	a	macro	to	an	object	that	looks	like	a	button.	You
can	also	assign	a	macro	to	any	drawing	object	on	the	worksheet.	To	assign	a
macro	to	an	Autoshape	(which	you	get	by	selecting	Insert,	Illustrations,	Shapes),
right-click	the	shape	and	select	Assign	Macro,	as	shown	in	Figure	25-18.

This	method	is	useful	because	you	can	easily	add	a	drawing	object	with	code
and	use	the	OnAction	property	to	assign	another	macro	to	the	object.	There	is

one	big	drawback	to	this	method:	If	you	assign	a	macro	that	exists	in	another
workbook,	and	the	other	workbook	is	saved	and	closed,	Excel	changes	the
OnAction	for	the	object	to	be	hard-coded	to	a	specific	folder.

FIGURE	25-18	Macros	can	be	assigned	to	any	drawing	object	on	the	worksheet.

Attaching	a	macro	to	an	ActiveX	control

ActiveX	controls	are	newer	than	form	controls	and	slightly	more	complicated	to
set	up.	Instead	of	simply	assigning	a	macro	to	a	button,	you	have	a
button_click	event	where	you	can	either	call	another	macro	or	have	the	macro
code	actually	embedded	in	the	event.	Follow	these	steps:

1.	 On	the	Developer	tab,	click	the	Insert	button	and	select	the	Command
Button	icon	from	the	ActiveX	Controls	section.

2.	 Place	your	cursor	in	the	worksheet	where	you	want	to	insert	the	button,	and
then	click	and	drag	to	create	the	shape	of	the	new	button.

3.	 To	format	the	button,	right-click	the	button	and	select	Properties	or	select
Controls,	Properties	from	the	Developer	tab.	You	can	now	adjust	the
button’s	caption	and	color	in	the	Properties	window,	as	shown	in	Figure	25-
19.	If	nothing	happens	when	you	right-click	the	button,	enter	Design	mode

by	clicking	the	Design	Mode	button	on	the	Developer	tab.

FIGURE	25-19	Use	the	Properties	window	to	adjust	aspects	of	the	ActiveX	button.

4.	 To	assign	a	macro	to	the	button,	right-click	it	and	select	View	Code.	This
creates	the	header	and	footer	for	the	button_click	event	in	the	code
window	for	the	current	worksheet.	Type	the	code	you	want	to	have	run	or
the	name	of	the	macro	you	want	to	call.

Note	There	is	one	annoying	aspect	of	this	Properties	window:	It	is
huge	and	covers	a	large	portion	of	your	worksheet.	Eventually,	if
you	want	to	use	the	worksheet,	you’re	going	to	have	to	resize	or

close	this	Properties	window.	When	you	close	the	Properties	window,	it	is
also	hidden	in	the	VB	Editor.	I	would	prefer	to	be	able	to	close	this
Properties	window	without	affecting	my	VB	Editor	environment.

Running	a	macro	from	a	hyperlink

There	is	a	trick	you	can	use	to	run	a	macro	from	a	hyperlink.	Because	many
people	are	used	to	clicking	a	hyperlink	to	perform	an	action,	this	method	might
be	the	most	intuitive	for	your	clients.

The	trick	is	to	set	up	placeholder	hyperlinks	that	simply	link	back	to
themselves.	Select	the	cell	with	the	text	you	want	to	link	to,	and	from	the	Insert
tab,	select	Links,	Link	(or	press	Ctrl+K).	In	the	Insert	Hyperlink	dialog,	click
Place	In	This	Document.	Figure	25-20	shows	a	worksheet	with	four	hyperlinks.

Each	hyperlink	points	back	to	its	own	cell.

FIGURE	25-20	To	run	a	macro	from	a	hyperlink,	you	must	create	placeholder	hyperlinks	that	link
back	to	their	cells.	Then,	using	an	event	handler	macro	in	the	worksheet’s	code	module,	you	can
intercept	the	hyperlink	and	run	any	macro.

When	a	client	clicks	a	hyperlink,	you	can	intercept	this	action	and	run	any
macro	by	using	the	FollowHyperlink	event.	Enter	the	following	code	in	the
code	module	for	the	worksheet:

Click	here	to	view	code	image
Private	Sub	Worksheet_FollowHyperlink(ByVal	Target	As

Hyperlink)

Select	Case	Target.TextToDisplay

Case	"Quarter	1"

RunQuarter1Report

Case	"Quarter	2"

RunQuarter2Report

Case	"Quarter	3"

RunQuarter3Report

Case	"Quarter	4"

RunQuarter4Report

End	Select

End	Sub

Next	steps

From	custom	ribbons	to	simple	buttons	or	hyperlinks,	there	are	plenty	of	ways	to
ensure	that	your	clients	never	need	to	see	the	Macro	dialog	box.	In	Chapter	26,
you	find	out	how	to	package	your	macros	into	add-ins	that	you	can	easily
distribute	to	others.

CHAPTER	26
Creating	add-ins

In	this	chapter,	you	will:

Learn	what	a	standard	add-in	is

Learn	how	to	create,	install,	and	uninstall	an	add-in

Use	a	hidden	workbook	as	an	alternative	to	an	add-in

You	can	create	standard	add-in	files	for	your	clients	to	use	by	employing	VBA.
After	the	client	installs	your	add-in	on	her	PC,	the	program	will	be	available	to
Excel	and	will	load	automatically	every	time	she	opens	Excel.	This	chapter
discusses	standard	add-ins.

Be	aware	that	there	are	two	other	kinds	of	add-ins:	COM	add-ins	and	Office
add-ins.	Neither	of	these	can	be	created	with	VBA.	You	need	either	Visual
Basic.NET	or	Visual	C++	to	create	COM	add-ins.	You	use	HTML,	CSS,	and
JavaScript	to	create	Office	add-ins.	Chapter	27,	“An	introduction	to	creating
Office	add-ins,”	familiarizes	you	with	the	basics	of	creating	Office	add-ins.

Characteristics	of	standard	add-ins
If	you	are	going	to	distribute	an	application,	you	might	want	to	package	the
application	as	an	add-in.	Typically	saved	with	an	.xlam	extension,	an	add-in
offers	several	advantages:

Usually,	clients	can	bypass	your	Workbook_Open	code	by	holding	down	the
Shift	key	while	opening	the	workbook.	With	an	add-in,	they	cannot	bypass
the	Workbook_Open	code	in	this	manner.

After	you	use	the	Add-ins	dialog	box	to	install	an	add-in	(by	selecting	File,
Options,	Add-Ins,	Manage	Excel	Add-Ins,	Go),	the	add-in	will	always	be
loaded	and	available.

Programs	in	an	installed	add-in	can	still	run	even	if	the	macro	security	level

is	set	to	disallow	macros.

Generally,	custom	functions	work	only	in	the	workbook	in	which	they	are
defined.	A	custom	function	added	to	an	add-in	is	available	to	all	open
workbooks.

The	add-in	does	not	show	up	in	the	list	of	open	files	in	the	Window	menu
item.	The	client	cannot	unhide	the	workbook	by	choosing	View,	Window,
Unhide.

Caution	There	is	one	strange	rule	for	which	you	need	to	plan.	An
add-in	is	a	hidden	workbook.	Because	the	add-in	can	never	be
displayed,	your	code	cannot	select	or	activate	any	cells	in	the	add-

in	workbook.	You	are	allowed	to	save	data	in	your	add-in	file,	but	you
cannot	select	any	part	of	the	file.	Also,	if	you	do	write	to	your	add-in	file
data	that	you	want	to	be	available	in	the	future,	your	add-in	code	needs	to
handle	saving	the	file.	Because	your	clients	will	not	realize	that	the	add-in
is	there,	they	will	never	be	reminded	or	asked	to	save	an	unsaved	add-in.
You	might,	therefore,	add	ThisWorkbook.Save	to	the	add-in’s
Workbook_BeforeClose	event.

Converting	an	Excel	workbook	to	an	add-in

Add-ins	are	typically	managed	using	the	Add-Ins	dialog	box.	This	dialog	box
presents	an	add-in	name	and	description,	which	you	control	by	entering	two
specific	properties	for	the	file	before	you	convert	it	to	an	add-in.

Note	If	you’re	modifying	an	existing	add-in,	you	must	make	it
visible	before	you	can	edit	the	properties.	See	the	section	“Using
the	VB	Editor	to	convert	a	file	to	an	add-in”	later	in	this	chapter.

To	change	the	title	and	description	shown	in	the	Add-Ins	dialog	box,	follow
these	steps:

1.	 Select	File,	Info.	Excel	displays	the	Document	Properties	pane	on	the	right
side	of	the	window.

2.	 From	the	Properties	drop-down	menu,	select	Advanced	Properties.

3.	 Enter	the	name	for	the	add-in	in	the	Title	field.

4.	 Enter	a	short	description	of	the	add-in	in	the	Comments	field	(see	Figure
26-1).

5.	 Click	OK	to	save	your	changes.

6.	 Click	the	back	arrow	at	the	top	left	of	the	screen	to	return	to	your
workbook.

There	are	two	ways	to	convert	a	file	to	an	add-in.	The	first	method,	using
Save	As,	is	easier	but	has	an	annoying	byproduct.	The	second	method	uses	the
VB	Editor	and	requires	two	steps,	but	it	gives	you	some	extra	control.	The
sections	that	follow	describe	the	steps	for	using	these	methods.

FIGURE	26-1	Fill	in	the	Title	and	Comments	fields	before	converting	a	workbook	to	an	add-in.

Using	Save	As	to	convert	a	file	to	an	add-in

Select	File,	Save	As.	In	the	Save	As	Type	field,	scroll	through	the	list	and	select
Excel	Add-In	(*.xlam).

As	shown	in	Figure	26-2,	the	file	name	changes	from	filename.xlsm	to
filename.xlam.	Also	note	that	the	save	location	automatically	changes	to	an
AddIns	folder.	The	location	of	this	folder	varies	by	operating	system,	but	it	will
be	something	along	the	lines	of

C:\Users\username\AppData\Roaming\Microsoft\AddIns.	It	is	also	confusing
that,	after	the	.xlsm	file	is	saved	as	an	.xlam	type,	the	unsaved	.xlsm	file	remains
open.	It	is	not	necessary	to	keep	an	.xlsm	version	of	the	file	because	it	is	easy	to
change	an	.xlam	back	to	an	.xlsm	for	editing.

FIGURE	26-2	The	Save	As	method	changes	the	IsAddin	property,	changes	the	name,	and
automatically	saves	the	file	in	your	AddIns	folder.

Tip	If,	before	selecting	the	add-in	file	type,	you	are	already	in	the
folder	to	which	you	want	to	save,	just	click	the	back	arrow	in	the
Save	As	window	to	return	to	that	folder.

Caution	When	the	Save	As	method	is	being	used	to	create	an
add-in,	a	worksheet	must	be	the	active	sheet.	The	add-in	file	type
is	not	available	if	a	chart	sheet	is	the	active	sheet.

Using	the	VB	Editor	to	convert	a	file	to	an	add-in

The	Save	As	method	is	great	if	you	are	creating	an	add-in	for	your	own	use.

However,	if	you	are	creating	an	add-in	for	a	client,	you	probably	want	to	keep
the	add-in	stored	in	a	folder	with	all	the	client’s	application	files.	It	is	fairly	easy
to	bypass	the	Save	As	method	and	create	an	add-in	using	the	VB	Editor:

1.	 Open	the	workbook	that	you	want	to	convert	to	an	add-in.

2.	 Switch	to	the	VB	Editor.

3.	 In	the	Project	Explorer,	click	ThisWorkbook.

4.	 In	the	Properties	window,	find	the	property	called	IsAddin	and	change	its
value	to	True,	as	shown	in	Figure	26-3.

FIGURE	26-3	Creating	an	add-in	is	as	simple	as	changing	the	IsAddin	property	of
ThisWorkbook.

5.	 Press	Ctrl+G	to	display	the	Immediate	window.

6.	 In	the	Immediate	window,	save	the	file,	using	an	.xlam	extension,	like	this:

Click	here	to	view	code	image
ThisWorkbook.SaveAs

FileName:="C:\ClientFiles\Chap26.xlam",	_

FileFormat:=	xlOpenXMLAddIn

You’ve	now	successfully	created	an	add-in	in	the	client	folder	that	you	can
easily	find	and	email	to	your	client.

Tip	If	you	ever	need	to	make	an	add-in	visible—for	example,	to
change	the	properties	or	view	data	you	have	on	sheets—repeat	the
previous	steps	except	select	False	for	the	IsAddin	property.	The

add-in	becomes	visible	in	Excel.	When	you	are	done	with	your	changes,
change	the	property	back	to	True.

Having	a	client	install	an	add-in
When	you	email	an	add-in	to	a	client,	have	her	save	it	on	her	desktop	or	in
another	easy-to-find	folder.	You	should	tell	her	to	follow	these	steps:

1.	 Open	Excel	and	select	File,	Options.	The	Excel	Options	dialog	appears.

2.	 In	the	left	navigation	pane,	select	Add-Ins.

3.	 At	the	bottom	of	the	window,	select	Excel	Add-Ins	from	the	Manage	drop-
down	menu	(see	Figure	26-4).

FIGURE	26-4	Make	sure	to	select	Excel	Add-Ins,	not	COM	Add-Ins,	from	the	drop-down
menu.

4.	 Click	Go.	Excel	displays	the	familiar	Add-Ins	dialog	box,	shown	in	Figure
26-5.

5.	 In	the	Add-Ins	dialog	box,	click	the	Browse	button.

6.	 Browse	to	where	you	saved	the	file.	Highlight	the	add-in	and	click	OK.

Note	Excel	might	prompt	you	to	copy	the	add-in	to	its	AddIns
folder.	I	do	not	do	this	because	the	folder	is	hard	to	find,	especially
if	I	need	to	update	the	file.

The	add-in	is	now	installed.	If	you	allow	it,	Excel	copies	the	file	from	where
you	saved	it	to	the	default	AddIns	folder.	In	the	Add-ins	dialog,	the	title	of	the
add-in	and	comments	as	specified	in	the	File	Properties	dialog	box	are	displayed
(see	Figure	26-5).

FIGURE	26-5	The	add-in	is	now	available	for	use.

Standard	add-ins	are	not	secure
Remember	that	anyone	can	go	to	the	VB	Editor,	select	your	add-in,	and	change
the	IsAddin	property	to	False	to	unhide	the	workbook.	You	can	discourage	this
process	by	locking	the	.xlam	project	for	viewing	and	protecting	it	in	the	VB

Editor,	but	be	aware	that	plenty	of	vendors	sell	a	password-hacking	utility	for
less	than	$40.	To	add	a	password	to	your	add-in,	follow	these	steps:

1.	 Go	to	the	VB	Editor.

2.	 Select	Tools,	VBAProject	Properties.

3.	 Select	the	Protection	tab.

4.	 Select	the	Lock	Project	for	Viewing	check	box.

5.	 Enter	the	password	twice	for	verification.

CAUTION	If	you	protect	the	code	and	don’t	include	error
handling,	people	won’t	be	able	to	click	the	Debug	button	if	an
error	message	appears.	See	Chapter	24,	“Handling	errors,”	for

more	information	on	handling	errors	in	code	so	that	the	program	ends
properly	and	still	provides	customers	with	error	information	they	can	pass
to	you.

Closing	add-ins

Add-ins	can	be	closed	in	three	ways:

Clear	the	add-in	from	the	Add-Ins	dialog	box.	This	closes	the	add-in	for	this
session	and	ensures	that	it	does	not	open	during	future	sessions.

Use	the	VB	Editor	to	close	the	add-in.	In	the	VB	Editor’s	Immediate
window,	type	this	code	to	close	the	add-in:

Workbooks("YourAddinName.xlam").Close

Close	Excel.	All	add-ins	are	closed	when	Excel	is	closed.

Removing	add-ins

You	might	want	to	remove	an	add-in	from	the	list	of	available	add-ins	in	the
Add-Ins	dialog	box.	There	is	no	effective	way	to	do	this	within	Excel.	Follow
these	steps:

1.	 Close	all	running	instances	of	Excel.

2.	 Use	Windows	Explorer	to	locate	the	file.	The	file	might	be	located	in
%AppData%\Microsoft\AddIns\.

3.	 In	Windows	Explorer,	rename	the	file	or	move	it	to	a	different	folder.

4.	 Open	Excel.	You	get	a	note	warning	you	that	the	add-in	could	not	be	found.
Click	OK	to	dismiss	this	warning.

5.	 Select	Excel	Add-Ins	on	the	Developer	tab.	In	the	Add-Ins	dialog	box,	clear
the	name	of	the	add-in	you	want	to	remove.	Excel	notifies	you	that	the	file
cannot	be	found	and	asks	whether	you	want	to	remove	it	from	the	list.	Click
Yes.

Using	a	hidden	workbook	as	an	alternative	to	an	add-
in

One	cool	feature	of	an	add-in	is	that	the	workbook	is	hidden.	This	keeps	most
beginners	from	poking	around	and	changing	formulas.	However,	it	is	possible	to
hide	a	workbook	without	creating	an	add-in.

It	is	easy	enough	to	hide	a	workbook	by	selecting	View,	Window,	Hide	In
Excel.	The	trick	is	to	then	save	the	workbook	as	Hidden.	With	a	file	that	is
hidden,	the	normal	File,	Save	choice	does	not	work.	You	can	save	the	file	from
the	VB	Editor’s	Immediate	window.	In	the	VB	Editor,	make	sure	that	the
workbook	is	selected	in	the	Project	Explorer.	Then,	in	the	Immediate	window,
type	the	following:

ThisWorkbook.Save

There	is	a	downside	to	using	a	hidden	workbook:	A	custom	ribbon	tab	will
not	be	visible	if	the	workbook	it	is	attached	to	is	hidden.

Case	study:	Using	a	hidden	code	workbook	to	hold	all	macros
and	forms
Access	developers	routinely	use	a	separate	database	to	hold	macros	and
forms.	They	place	all	forms	and	programs	in	one	database	and	all	data	in	a
second	database.	These	database	files	are	linked	through	the	Link	Tables

function	in	Access.

For	large	projects	in	Excel,	I	recommend	using	the	same	method.	You	use	a
little	bit	of	VBA	code	in	the	Data	workbook	to	open	the	Code	workbook.

The	advantage	to	this	method	is	that	when	it	is	time	to	enhance	the
application,	you	can	mail	a	new	code	file	without	affecting	the	client’s	data
file.

I	once	encountered	a	single-file	application	rolled	out	by	another	developer
that	the	client	had	sent	out	to	50	sales	reps.	The	reps	replicated	the
application	for	each	of	their	10	largest	customers.	Within	a	week,	there
were	500	copies	of	this	file	floating	around	the	country.	When	they
discovered	a	critical	flaw	in	the	program,	patching	500	files	was	a
nightmare.

We	designed	a	replacement	application	that	used	two	workbooks.	The	data
workbook	ended	up	with	about	20	lines	of	code.	This	code	was	responsible
for	opening	the	code	workbook	and	passing	control	to	the	code	workbook.
As	the	files	were	being	closed,	the	data	workbook	would	close	the	code
workbook.

There	were	many	advantages	to	this	method.	First,	the	customer	data	files
were	kept	to	a	very	small	size.	Each	sales	rep	now	has	1	workbook	with
program	code	and	10	or	more	data	files	for	each	customer.	As
enhancements	are	completed,	we	distribute	new	program	code	workbooks.
The	sales	rep	opens	his	or	her	existing	customer	data	workbook,	which
automatically	grabs	the	new	code	workbook.

Because	the	previous	developer	had	been	stuck	with	the	job	of	trying	to
patch	500	workbooks,	we	were	extremely	careful	to	have	as	few	lines	of
code	in	the	customer	workbook	as	possible.	There	are	maybe	10	lines	of
code,	and	they	were	tested	thoroughly	before	being	sent	out.	By	contrast,
the	code	workbook	contains	3,000-plus	lines	of	code.	If	something	goes
wrong	with	the	application,	I	am	almost	certain	that	the	bad	code	is	in	the
easy-to-replace	code	workbook.

In	the	customer	data	workbook,	the	Workbook_Open	procedure	has	this
code:

Click	here	to	view	code	image
Private	Sub	Workbook_Open()

On	Error	Resume	Next

Click	here	to	view	code	image
X	=	Workbooks("Code.xlsm").Name

If	Not	Err	=	0	then

On	Error	Goto	0

Workbooks.Open	Filename:=	_

ThisWorkbook.Path	&	Application.PathSeparator	&

"Code.xlsm"

End	If

On	Error	Goto	0

Application.Run	"Code.xlsm!CustFileOpen"

End	Sub

The	CustFileOpen	procedure	in	the	code	workbook	could	also	handle
adding	a	custom	menu	for	the	application.	Because	custom	tabs	for	hidden
workbooks	are	not	visible,	you	have	to	use	the	legacy	CommandBars	method
to	create	a	menu	that	appears	on	the	Add-Ins	tab.

This	dual-workbook	solution	works	well	and	allows	updates	to	be
seamlessly	delivered	to	the	client	without	touching	any	of	the	500	customer
files.

Next	steps

Microsoft	has	introduced	a	new	way	of	sharing	applications	with	customers:
Office	add-ins.	These	are	programs	that,	simply	put,	use	JavaScript,	HTML,	and
XML	to	put	a	web	page	in	a	frame	on	a	sheet.	Chapter	27	introduces	you	to	what
is	involved	in	creating	these	apps	and	deploying	them	over	a	network.

CHAPTER	27
An	introduction	to	creating	Office	add-
ins

In	this	chapter,	you	will:

Create	an	Office	add-in

Add	interactivity	to	an	Office	add-in

Learn	the	basics	of	HTML	and	JavaScript

Use	XML	to	define	an	Office	add-in

With	Office	2013,	Microsoft	introduced	Office	add-ins,	applications	that	provide
expanded	functionality	to	a	sheet,	such	as	a	selectable	calendar,	or	an	interface
with	the	web,	such	as	retrieving	information	from	Wikipedia	or	Bing.	Like	Excel
add-ins,	once	Office	add-ins	are	installed,	they’re	always	available.	But	unlike
Excel	add-ins,	the	Office	add-ins	have	limited	interaction	with	sheets	and	do	not
use	VBA.

An	Office	add-in	consists	of	an	HTML	file	that	provides	the	user	interface	on
a	task	or	content	pane,	a	CSS	file	to	provide	styles	for	the	HTML	file,	a
JavaScript	file	to	provide	interactivity	to	the	HTML	file,	and	an	XML	file	to
register	the	Office	add-in	with	Excel.	This	might	sound	like	a	lot	of	new
programming	skills,	but	it’s	not.	I’ve	designed	only	the	most	basic	web	pages,
and	that	was	years	ago,	but	I	was	able	to	apply	my	VBA	programming	skills	to
JavaScript,	which	is	where	the	bulk	of	the	programming	goes.	The	language	is	a
little	different,	but	it’s	not	so	different	that	you	can’t	create	a	simple,	useful	app.

This	chapter	introduces	you	to	creating	an	Office	add-in	to	distribute	locally
and	to	the	basics	of	the	various	programming	languages.	It	is	not	meant	to
provide	in-depth	instruction,	especially	for	JavaScript.

Note	JavaScript	custom	functions	are	user-defined	functions

(UDFs)	you	create	for	use	with	Excel	Online.	They	use	the	same
JavaScript	API	as	Office	add-ins.	This	book	doesn’t	cover	creating	them.
For	more	information,	see	Excel	JavaScript	UDFs	Straight	to	the	Point	by
Suat	M.	Ozgur	(ISBN	978-1-61547-247-5).

Tip	You	don’t	need	a	fancy	program	to	write	the	code	for	any	of	the
files	in	an	Office	add-in.	The	Notepad	program	that	comes	with
Windows	does	the	job.	But	when	you	consider	the	case	sensitivity

of	some	programming	languages,	like	JavaScript,	using	a	program	that
provides	some	help	is	a	good	idea.	I	spent	a	couple	of	hours	in	frustration
over	some	of	the	samples	in	this	chapter,	wondering	why	they	didn’t	work
when	the	code	was	perfect.	Except	the	code	wasn’t	perfect.	Again	and	again
I	missed	the	case	sensitivity	in	JavaScript	and	XML,	and,	in	one	case,	I	had
a	curly	apostrophe	instead	of	a	straight	one.

Switching	to	Notepad++	(www.notepad-plus-plus.org)	was	a	quick	and
easy	solution	because	it	highlights	keywords	and	grays	out	strings	(which	is
how	I	found	the	incorrect	apostrophe	around	a	string).

Creating	your	first	Office	add-in—Hello	World

Hello	World	is	probably	the	most	popular	first	program	for	programmers	to	try
out.	It’s	a	simple	program,	just	outputting	the	words	“Hello	World,”	but	it
introduces	the	basics	required	by	the	application.	So,	with	that	said,	it’s	time	to
create	a	Hello	World	Office	add-in.

Caution	A	network	is	used	to	distribute	the	Office	add-in	locally.
You	cannot	use	a	local	drive	or	a	network	drive	mapped	to	a	drive
letter.	If	you	do	not	have	access	to	a	network,	you	will	not	be	able

to	test	your	Office	add-in.

Note	In	the	following	steps,	you	enter	text	into	a	text	editor.	Unlike
with	the	VB	Editor,	there	isn’t	a	compiler	to	point	out	mistakes

http://www.notepad-plus-plus.org

before	you	run	the	program.	It	is	very	important	that	you	enter	the
text	exactly	as	written,	including	the	case	of	text	within	quotation	marks.

To	open	a	file	for	editing,	such	as	with	Notepad,	right-click	the	file	and
select	Open	With.	If	you	see	Notepad,	select	it;	otherwise,	select	Choose
Another	App.	From	the	dialog	box	that	opens,	find	Notepad.	Make	sure	that
Always	Use	This	App	To	Open	filetype	Files	is	not	selected	and	then	click
OK.	The	next	time	you	need	to	edit	the	file,	Notepad	appears	in	the	quick
list	of	available	programs	in	the	Open	With	option.

Follow	these	steps	to	create	your	Office	add-in:

1.	 Create	a	folder	and	name	it	HelloWorld.	This	folder	can	be	on	your	local
drive	while	you	are	creating	the	program.	All	the	program	files	will	be
placed	in	this	folder.	When	you’re	finished,	you’ll	move	it	to	the	network.

2.	 Create	the	HTML	program	by	inserting	a	text	file	in	the	folder	and	naming
it	HelloWorld.html.	Then	open	the	HTML	file	for	editing	and	enter	the
following	code	in	it:

Click	here	to	view	code	image
<!DOCTYPEhtml>

<html>

<head>

<meta	charset="UTF-8"/>

<meta	http-equiv="X-UA-Compatible"

content="IE=Edge"/>

<link	rel="stylesheet"	type="text/css"

href="program.css"/>

</head>

<body>

<p>Hello	World!</p>

</body>

</html>

Save	and	close	the	file.

3.	 Create	the	CSS	file	to	hold	the	styles	used	by	the	HTML	file	by	inserting	a
text	file	into	the	folder	and	naming	it	program.css.	Note	that	this	is	the	same

file	name	used	in	the	HTML	file	in	the	<link	rel>	tag.	Open	the	CSS	file
for	editing	and	enter	the	following	code	in	it:

Click	here	to	view	code	image
body

{

position:relative;

}

li	:hover

{

text-decoration:	underline;

cursor:pointer;

}

h1,h3,h4,p,a,li

{

font-family:	"Segoe	UI	Light","Segoe

UI",Tahoma,sans-serif;

text-decoration-color:#4ec724;

}

Save	and	close	the	file.

4.	 Create	the	XML	file	by	inserting	a	text	file	in	the	folder	and	naming	it
HelloWorld.xml.	Then	open	the	XML	file	for	editing	and	enter	the
following	code	in	it.

Caution	The	following	code	sample	and	others	that	follow
include	lines	that	extended	beyond	the	width	of	the	page,	so	I
needed	to	add	a	_	to	indicate	a	line	that	is	continued.	Unlike

in	VBA,	in	this	case	you	should	not	type	the	underscores.	Instead,
when	you	get	to	an	underscore,	just	ignore	it	and	continue	inputting
the	code	after	it	on	the	same	line.

Click	here	to	view	code	image
<?xml	version="1.0"	encoding="utf-8"?>

<OfficeApp

xmlns="http://schemas.microsoft.com/office/appforoffice/1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:type="TaskPaneApp">

<Id>08afd7fe-1631-42f4-84f1-5ba51e242f98</Id>

<Version>1.0</Version>

<ProviderName>Tracy	Syrstad</ProviderName>

<DefaultLocale>EN-US</DefaultLocale>

<DisplayName	DefaultValue="Hello	World	app"/>

<Description	DefaultValue="My	first	app."/>

<IconUrl	DefaultValue=

"http://officeimg.vo.msecnd.net/_layouts/images/general/

_

officelogo.jpg"/>

	<Capabilities>

<Capability	Name="Document"/>

<Capability	Name="Workbook"/>

	</Capabilities>

<DefaultSettings>

	<SourceLocation

DefaultValue="\\workpc\MyApps\HelloWorld\	_

HelloWorld.html"/>

	</DefaultSettings>

	<Permissions>ReadWriteDocument</Permissions>

</OfficeApp>

Do	not	close	the	XML	file	yet.

5.	 While	the	XML	file	is	still	open,	note	the	ID	08afd7fe-1631-42f4-84f1-
5ba51e242f98.	This	is	a	globally	unique	identifier	(GUID).	If	you	are
testing	on	a	private	network	and	not	distributing	this	file,	you	can	likely	use
this	GUID.	But	if	you’re	on	a	business	network	with	other	programmers	or
if	you’re	distributing	the	file,	you	must	generate	your	own	GUID.	See	the
section	“Using	XML	to	define	an	Office	add-in,”	later	in	this	chapter,	for
more	information	on	GUIDs.

Note	GUID	stands	for	globally	unique	identifier.	A	GUID	is	a
unique	reference	number	that	identifies	software.	It’s	usually
displayed	as	32	alphanumeric	digits	separated	into	five	groups

(8-4-4-4-12)	by	hyphens.	A	GUID	has	so	many	digits	that	it's	rare	for
identical	ones	to	be	generated.

6.	 Move	the	HelloWorld	folder	to	a	network	share	folder	if	it’s	not	already
there.	Note	the	path	to	the	folder	and	to	the	HTML	file	because	you	will	be
making	use	of	this	information.	The	path	to	the	folder	should	be
\\myserver\myfolder.	For	example,	my	HelloWorld	folder	is	located	at
\\workpc\MyApps\HelloWorld.

7.	 Open	the	XML	file	for	editing	and	change	<SourceLocation>	(located	near
the	bottom	of	the	code)	to	the	location	of	the	HTML	file	on	your	network.
Save	and	close	the	file.

8.	 Configure	your	network	share	as	a	Trusted	Catalog	Address	by	following
these	steps:

a.	 Start	Excel	and	go	to	File,	Options,	Trust	Center	and	click	Trust	Center
Settings.

b.	 Select	Trusted	Add-In	Catalogs.

c.	 Enter	your	folder	path	in	the	Catalog	URL	field	and	click	Add	Catalog.
The	path	is	added	to	the	list	box.

d.	 Select	the	Show	In	Menu	box.

e.	 Click	OK.	You	should	see	a	prompt	indicating	that	the	Office	add-in	will
be	available	the	next	time	Excel	starts	(see	Figure	27-1).	Click	OK	twice.

9.	 Restart	Excel.

Caution	Only	one	network	share	at	a	time	can	be	configured
to	show	in	the	catalog.	If	you	want	users	to	have	access	to
multiple	Office	add-ins	at	once,	the	XML	for	the	Office	add-

ins	must	be	stored	in	the	same	network	share.	Otherwise,	users	will
have	to	go	into	their	settings	and	select	which	catalog	to	show.

10.	 Insert	the	Office	add-in	you	just	created	into	Excel	by	selecting	Insert,	Add-
Ins,	Store.	Then,	in	the	Office	Add-Ins	dialog	box,	select	Shared	Folder.	If
you	don’t	see	anything	when	you’ve	selected	the	link,	click	Refresh.	The

Hello	World	Office	add-in	should	be	listed,	as	shown	in	Figure	27-2.

Note	If	you	still	do	not	see	anything	after	refreshing,	there	is
something	incorrect	in	the	files	or	the	setup.	Carefully	review
all	the	code	and	steps.	If	you	do	not	see	anything	incorrect,	try

changing	the	GUID.

FIGURE	27-1	Configure	the	location	of	your	Office	add-ins	under	Trusted	Add-In	Catalogs.

FIGURE	27-2	The	Shared	Folder	lists	any	Office	add-ins	available	in	the	active	catalog.

11.	 Select	the	Office	add-in	and	click	Insert.	A	task	pane	on	the	right	side	of	the
Excel	window	opens,	as	shown	in	Figure	27-3,	and	displays	the	words
“Hello	World!”

FIGURE	27-3	By	creating	Hello	World,	you	take	a	first	step	in	creating	interactive	Office
add-ins.

Adding	interactivity	to	an	Office	add-in

The	Hello	World	Office	add-in	created	in	the	preceding	section	is	a	static	one;	it
doesn’t	do	anything	except	show	the	words	in	the	code.	But	as	you	browse	the
web,	you	run	into	dynamic	web	pages.	Some	of	those	web	pages	use	JavaScript,
a	programming	language	that	adds	automation	to	elements	on	otherwise	static
websites.	In	this	section,	you	modify	the	Hello	World	Office	add-in	by	adding	a
button	to	write	data	to	a	sheet	and	another	button	that	reads	data	from	a	sheet,

performs	a	calculation,	and	writes	the	results	to	the	task	pane.

Tip	You	don’t	have	to	restart	Excel	if	you	are	editing	the	code	of	an
installed	Office	add-in.	Instead,	right-click	in	the	Office	add-in’s
task	pane	and	select	Reload.

To	add	these	interactive	features	to	the	Hello	World	Office	add-in,	follow
these	steps:

1.	 To	create	the	JavaScript	file	that	will	provide	the	interactivity	for	the	two
buttons	Write	Data	To	Sheet	and	Read	&	Calculate	Data	From	Sheet,	first
insert	a	text	file	in	the	Hello	World	folder	and	name	the	file	program.js.
Then	open	the	JavaScript	file	for	editing	and	enter	the	following	code	in	it:

Click	here	to	view	code	image
Office.initialize	=	function	(reason)	{

//Add	any	needed	initialization

}

//declare	and	set	the	values	of	an	array

var	MyArray	=	[[234],[56],[1798],	[52358]];

//write	MyArray	contents	to	the	active	sheet

function	writeData()	{

Office.context.document.setSelectedDataAsync(MyArray,

_

{coercionType:	'matrix'});

}

/*reads	the	selected	data	from	the	active	sheet

so	that	we	have	some	content	to	read*/

function	ReadData()	{

Office.context.document.getSelectedDataAsync("matrix",

_

function	(result)	{

//if	the	cells	are	successfully	read,	print	the

results	in	the	task	pane

if	(result.status	===	"succeeded"){

sumData(result.value);

}

//if	there	was	an	error,	print	the	error	in	the

task	pane

else{

document.getElementById("results").innerText	=

_

result.error.name;

}

});

}

/*the	function	that	calculates	and	shows	the

result

in	the	task	pane*/

function	sumData(data)	{

var	printOut	=	0;

//sum	together	all	the	values	in	the	selected

range

for	(var	x	=	0	;	x	<	data.length;	x++)	{

for	(var	y	=	0;	y	<	data[x].length;	y++)	{

printOut	+=	data[x][y];

}

}

//print	the	results	in	the	task	pane

document.getElementById("results").innerText	=

printOut;

}

Save	and	close	the	file.

Note	In	JavaScript,	lines	prefixed	by	//	and	/*	are	comments.

2.	 Edit	the	HelloWorld.html	file	so	that	it	points	to	the	JavaScript	file
program.js,	and	add	the	two	buttons	used	by	the	JavaScript	code.	To	do	this,
replace	the	existing	code	with	the	following:

Click	here	to	view	code	image
<!DOCTYPEhtml>

<html>

<head>

<meta	charset="UTF-8"/>

<meta	http-equiv="X-UA-Compatible"

content="IE=Edge"/>

<link	rel="stylesheet"	type="text/css"

href="program.css"/>

<!--begin	pointer	to	JavaScript	file-->

<script	src	=

"https://appsforoffice.microsoft.com/lib/1.0/

_

hosted/office.js"></script>

<script	src=	"program.js"></script>

<!--end	pointer	to	JavaScript	file-->

</head>

<body>

<!--begin	replacement	of	body-->

<button	onclick="writeData()">Write	Data	To

Sheet</button></br>

<button	onclick="ReadData()">Read	&

Calculate	Data	From	Sheet	_

</button></br>

<h4>Calculation	Results:	<div	id="results">

</div>	</h4>

<!--end	replacement	of	body-->

</body>

</html>

In	this	new	code,	you’ve	added	<script>	tags	and	replaced	the	code
between	the	<body>	tags.	Comment	tags,	<!--comments-->,	are	included	to
show	where	the	changes	are.

3.	 Save	and	close	the	file.

After	creating	the	JavaScript	file	and	updating	the	HTML	file,	reload	the
Office	add-in	and	test	it	by	clicking	the	Write	Data	To	Sheet	button.	It	should
write	the	numbers	from	MyArray	onto	the	sheet.	With	those	cells	selected,	click

Read	&	Calculate	Data	From	Sheet,	and	the	results	of	adding	the	selected
numbers	together	will	appear	in	the	Calculation	Results	line	of	the	task	pane,	as
shown	in	Figure	27-4.

FIGURE	27-4	Use	JavaScript	to	create	an	Office	add-in	that	can	perform	a	calculation	with	data
from	a	sheet.

A	basic	introduction	to	HTML
The	HTML	code	in	an	Office	add-in	controls	how	the	task	or	content	pane	will
look,	such	as	the	text	and	buttons.	If	you	open	the	HTML	file	from	either	of	your
Hello	World	files,	it	opens	in	your	default	browser	and	looks	as	it	did	in	Excel’s
task	pane	(though	without	any	functionality).	You	can	design	the	Office	add-in
as	you	would	a	web	page,	including	adding	images	and	links.	The	following
sections	review	a	few	basics	to	get	you	started	in	designing	your	own	Office
add-in	interface.

Using	tags

HTML	consists	of	elements,	such	as	images,	links,	and	controls,	that	are	defined
by	the	use	of	tags	enclosed	in	angle	brackets.	For	example,	the	starting	tag
<button>	tells	the	code	that	what	follows,	inside	and	outside	the	tag’s	brackets,
relates	to	a	button	element.	For	each	start	tag,	you	have	an	end	tag,	which	is
usually	the	same	as	the	opening	tag	but	with	a	slash—like	</button>—but	some
tags	can	be	empty—like	/>.	A	browser	does	not	display	tags	or	anything	within	a
tag’s	brackets.	Text	that	you	want	displayed	needs	to	be	outside	the	tag's
brackets.

Comments	have	a	tag	of	their	own	and	don’t	require	your	typical	end	tag.	As
in	VBA,	commented	text	doesn’t	appear	on	the	screen.	Add	comments	to	your

HTML	code	like	this:

<!--This	is	a	comment-->

A	multiline	comment	would	appear	like	this:

Click	here	to	view	code	image
<!--This	is	a	multiline	comment.

Notice	that	nothing	special	is	needed	-->

Adding	buttons

To	create	the	code	for	a	button,	you	need	to	label	the	button	and	link	it	to	a
function	in	the	JavaScript	file	that	will	run	when	the	button	is	clicked.	Here’s	an
example:

Click	here	to	view	code	image

<button	onclick="writeData()">Write	Data	To

Sheet</button>

The	first	part,	<button	onclick="writeData()">,	identifies	the	control	as	a
button	and	assigns	the	function	writeData	to	the	click	event	for	the	button.
Notice	that	the	function	name	is	in	quotation	marks	and	includes	argument
parentheses,	which	are	empty.	The	second	part,	Write	Data	To	Sheet,	is	the
text	of	the	label	on	the	button.	The	label	name	is	not	in	quotation	marks.	The	line
ends	with	the	closing	tag	for	the	button.

To	change	other	attributes	of	the	button,	you	just	need	to	specify	those
attributes.	For	example,	to	change	the	button	text	to	red,	add	the	style	attribute
for	color,	like	this:

Click	here	to	view	code	image

<button	onclick="writeData()"	style="color:Red">Write

Data	To	Sheet</button>

To	add	a	tooltip	that	appears	when	the	mouse	is	placed	over	the	button,	as
shown	in	Figure	27-5,	use	the	title	attribute,	like	this:

Click	here	to	view	code	image
<button	onclick="writeData()"	style="color:Red"

title	=	"Use	to	quickly	add	numbers	to	your	sheet">

	Write	Data	To	Sheet</button></br>

Use	a	space	to	separate	multiple	attributes.	After	an	attribute	name,	such	as
style,	put	an	equal	sign	and	then	the	value	in	quotation	marks.	Also	notice	that
HTML	is	rather	forgiving	about	where	you	put	your	line	breaks.	Just	don’t	put
them	within	a	string,	or	you	might	also	get	a	line	break	on	the	screen	in	that
position.

FIGURE	27-5	Add	other	attributes	to	your	button	to	change	colors	or	add	tooltip	text	for	users.

Using	CSS	files

CSS	stands	for	Cascading	Style	Sheets.	You	create	styles	in	Excel	and	Word	to
make	it	easy	to	modify	how	text	looks	in	an	entire	file	without	changing	every
occurrence.	You	can	do	the	same	thing	with	an	Office	add-in	by	creating	a
separate	style	file	(CSS)	that	your	HTML	code	references.	In	the	file,	you	set	up
rules	for	various	elements	of	the	HTML	file,	such	as	layout,	colors,	and	fonts.

The	CSS	file	provided	in	the	Hello	World	example	can	be	used	for	a	variety
of	projects.	It	includes	styles	for	h1,	h3,	and	h4	headings,	hyperlinks	(a),
paragraph	tags	(p),	and	bullets	(li).

Using	XML	to	define	an	Office	add-in
XML	defines	the	elements	needed	to	display	and	run	an	Office	add-in	in	Excel,
including	the	GUID,	Office	add-in	logo,	and	location	of	the	HTML	file.	XML
also	configures	how	the	Office	add-in	will	appear	in	the	Office	Add-Ins	store
and	can	provide	a	version	number	for	the	program.

Caution	XML	tags	are	case	sensitive.	When	you	make	changes	to
the	provided	Hello	World	sample,	be	sure	you	don’t	change	any	of
the	tags	but	only	their	values.

Two	types	of	user	interfaces	are	available	for	an	Office	add-in:	a	task	pane	or
a	content	pane.	A	task	pane	starts	off	docked	on	the	right	side	of	the	Excel
window,	but	a	user	can	undock	it	and	move	it	around	the	window.	A	content
pane	appears	as	a	frame	in	the	middle	of	the	Excel	window.	Which	type	you	use
is	up	to	you.	To	tell	an	Office	add-in	which	type	of	pane	to	use,	set	the	xsi:type
value	to	either	TaskPaneApp	or	ContentApp.

You	should	always	use	a	unique	identifier	when	creating	an	Office	add-in.
Websites	such	as	http://www.guidgen.com	generate	GUIDs	for	you.

In	the	Hello	World	sample,	the	store	icon	used	is	an	online	icon	that
Microsoft	has	made	available.	But	you	can	also	use	your	own	.jpg	file.	The
image	should	be	small,	about	32×32	pixels.	Update	IconURL	with	the	full	path	to
the	image,	like	this:

Click	here	to	view	code	image

<IconUrl

DefaultValue="\\workpc\MyApps\HelloWorld\mrexcellogo.jpg"/>

The	SourceLocation	tag	is	used	to	set	the	full	path	to	the	HTML	file.	If	the
HTML	file	cannot	be	found	when	the	Office	add-in	is	being	installed,	an	error
message	appears,	stating	that	the	file	couldn’t	be	found.

Note	If	you	make	changes	to	XML	after	you’ve	already	configured
the	location	of	the	catalog	or	installed	the	Office	add-in,	be	sure	to
click	the	Refresh	link	in	the	Office	Add-Ins	dialog	box.	For

example,	if	you	switch	between	TaskPaneApp	and	ContentApp,	the	change
might	not	be	reflected	even	if	you	select	to	install	the	Office	add-in	again.
To	be	safe,	refresh	the	Office	Add-Ins	dialog	box.

http://www.guidgen.com

Using	JavaScript	to	add	interactivity	to	an	Office	add-
in

JavaScript	provides	the	wow	factor	behind	an	Office	add-in.	You	can	create	a
very	useful	reference	with	just	HTML,	but	to	make	an	interactive	Office	add-in,
such	as	a	function	calculator,	you	need	JavaScript.

The	following	sections	provide	a	basic	introduction	to	JavaScript.	If	you	are
already	familiar	with	JavaScript,	you	can	go	ahead	to	“JavaScript	changes	for
working	in	the	Office	add-in.”

Note	The	document.getElementById("results").innerText
command	used	in	the	following	examples	is	the	command	for	the
code	to	put	the	returned	value	in	the	place	reserved	by	the	“results”

variable	in	the	HTML	file.

Note	Microsoft	is	always	making	improvements	to	the	JavaScript
API,	expanding	its	capabilities	to	handle	Excel’s	objects.	You	can
keep	up	with	these	changes	at	the	API	reference	site	at

https://docs.microsoft.com/en-us/javascript/api/excel?view=office-js.

The	structure	of	a	function

JavaScript	code	consists	of	functions	called	by	HTML	code	and	by	other
JavaScript	functions.	Just	as	in	VBA,	each	JavaScript	function	starts	with
function	followed	by	the	name	of	the	function	and	any	arguments	in	parentheses.
But	unlike	in	VBA,	there	is	no	End	Function	at	the	end;	instead,	you	use	curly
braces	to	group	the	function.	See	the	following	subsection,	“Curly	braces	and
spaces,”	for	more	information.

JavaScript	is	case	sensitive,	including	variable	and	function	names.	For
example,	if	you	create	a	function	called	writeData	but	then	try	to	call
WriteData	from	another	function,	the	code	does	not	work	because	in	one	case,
write	is	in	lowercase,	and	in	the	other	it	has	a	capital	W.	JavaScript	recognizes
these	as	different	functions.	Create	case	rules	for	yourself,	such	as	initial	caps	for

https://docs.microsoft.com/en-us/javascript/api/excel?view=office-js

each	word	in	a	variable,	and	stick	to	them.	This	helps	reduce	troubleshooting	of
JavaScript	code	issues.

Curly	braces	and	spaces

Curly	braces	({})	are	characters	used	in	JavaScript	but	not	in	VBA.	You	use
them	to	group	blocks	of	code	that	should	be	executed	together.	You	can	have
several	sets	of	braces	within	a	function.	For	example,	you	would	use	them	to
group	all	the	code	in	a	function;	then,	within	the	function,	you	would	use	them	to
group	lines	of	code	such	as	within	an	if	statement.

After	you’ve	finished	typing	a	line	in	VBA	and	gone	to	another	line,	you
might	notice	that	the	line	adjusts	itself,	adding	or	removing	spaces.	In
JavaScript,	spaces	don’t	usually	matter;	the	exceptions	are	spaces	in	strings	and
spaces	between	keywords	and	variables	in	the	code.	In	the	code	samples	in	this
section,	notice	that	sometimes	I	have	included	spaces	(a	=	1)	and	sometimes	I
have	not	(a=1).

Semicolons	and	line	breaks

You’ve	probably	noticed	the	semicolons	(;)	used	in	JavaScript	code.	They	might
have	appeared	at	the	end	of	every	line,	or	maybe	only	on	some	lines.	Perhaps
you’ve	noticed	a	line	without	a	semicolon	or	noticed	a	semicolon	in	the	middle
of	a	line.	The	reason	the	use	of	semicolons	appears	inconsistent	is	that,	under
normal	circumstances,	semicolons	are	not	required.	A	semicolon	is	a	line	break.
If	you	use	hard	returns	in	your	code,	you	are	already	placing	line	breaks,	so	the
semicolon	is	not	needed.	If	you	combine	multiple	lines	of	code	onto	one	line,
though,	you	need	a	semicolon	to	let	the	code	know	that	the	next	piece	of	code	is
not	part	of	the	previous	code.

Comments

There	are	two	ways	to	comment	out	lines	in	JavaScript.	To	comment	out	a	single
line,	place	two	slashes	(//)	at	the	beginning	of	the	line,	like	this:

//comment	out	a	single	line	in	the	code	like	this

If	you	want	to	comment	out	multiple	lines	in	VBA,	you	have	to	preface	each
line	with	an	apostrophe.	JavaScript	has	a	cleaner	method.	At	the	beginning	of	the

first	line	you	want	to	comment	out,	place	a	slash	and	an	asterisk	(/*).	At	the	end
of	the	last	line	of	the	comment,	place	an	asterisk	and	a	slash	(*/).	It	looks	like
this:
/*	Comment	out

multiple	lines	of	code

like	this	*/

Variables

In	VBA,	you	have	the	option	of	declaring	variables.	If	you	do	declare	them,	you
don’t	have	to	declare	the	variable	type,	but	after	a	value	is	assigned	to	a	variable,
it’s	not	always	easy	to	change	the	type.	In	JavaScript,	you	don’t	declare
variables,	except	for	arrays.	(See	the	later	subsection	“Arrays”	for	more
information.)	When	a	value	is	assigned	to	a	variable,	it	becomes	that	type,	but	if
you	reference	the	variable	in	another	way,	its	type	might	change.

In	the	following	example,	the	string	“123”	is	assigned	to	myVar,	but	in	the
next	line,	a	number	is	subtracted:
myVar	=	"123"

myVar	=	myVar-2

JavaScript	just	goes	with	it,	allowing	you	to	change	the	variable	from	a	string
to	a	number.	If	you	ran	this	code,	myVar	would	be	121.	Note	that	myVar+2	would
not	deliver	the	same	result.	See	the	next	subsection,	“Strings,”	for	more
information.

If	you	need	to	ensure	that	a	variable	is	of	a	specific	type,	use	one	of	these
functions	to	do	so:	Boolean,	Number,	or	String.	For	example,	you	have	a
function	that	is	reading	in	numbers	imported	onto	a	sheet.	As	is	common	in
imports,	the	numbers	could	be	stored	as	text.	Instead	of	having	to	ensure	that	the
user	converts	the	data,	use	the	Number	keyword	when	processing	the	values	like
this	to	force	the	number	to	be	a	number:

Number(importedValue)

Strings

As	in	VBA,	in	JavaScript	you	reference	strings	by	using	double	quotations
marks	(“string”),	but,	unlike	in	VBA,	you	can	also	use	single	quotation	marks
('string').	The	choice	is	up	to	you;	just	don’t	start	a	string	with	one	type	of

quotations	marks	and	end	with	another.	The	capability	to	use	either	set	can	be
useful.	For	example,	if	you	want	to	show	quoted	text,	you	use	the	single	quotes
around	the	entire	string,	like	this:

Click	here	to	view	code	image

document.getElementById("results").innerText	=	'She

heard	him	shout,	"Stay	away!"'

This	would	be	the	result	in	the	pane:

She	heard	him	shout,	"Stay	away!"

To	concatenate	two	strings,	use	the	plus	(+)	sign.	You	also	use	the	plus	to	add
two	numbers.	So	what	happens	if	you	have	a	variable	hold	a	number	as	text	and
add	it	to	a	number,	as	in	this	example:
myVar	=	"123"

myVar	=	myVar+2

You	might	think	that	the	result	would	be	125.	After	all,	in	the	previous
example,	with	-2,	the	result	was	121.	In	this	case,	concatenation	has	priority
over	addition,	and	the	answer	is	actually	1232.	To	ensure	that	the	variable	is
treated	like	a	number,	use	the	Number	function.	If	the	variable	it	is	holding	cannot
be	converted	to	a	number,	the	function	returns	NaN,	for	“not	a	number.”

Arrays

Arrays	are	required	for	processing	multiple	cells	in	JavaScript.	Arrays	in
JavaScript	are	not	very	different	from	arrays	in	VBA.	To	declare	an	unlimited-
size	array,	do	this:

var	MyArray	=	new	Array	()

Note	If	you	are	unfamiliar	with	using	arrays	in	VBA,	see	Chapter
8,	“Arrays.”

To	create	an	array	of	limited	size,	such	as	3,	do	this:

var	MyArray	=	new	Array(3)

You	can	also	fill	an	array	at	the	same	time	that	you	declare	it.	The	following
creates	an	array	of	three	elements,	two	of	which	are	strings	and	the	third	of
which	is	a	number:

Click	here	to	view	code	image

var	MyArray	=	['first	value',	'second	value',	3]

The	array	index	always	starts	at	0.	To	print	the	second	element,	second
value,	of	the	preceding	array,	do	this:

Click	here	to	view	code	image
document.getElementById("results").innerText	=

MyArray[1]

If	you’ve	declared	an	array	with	a	specific	size	but	need	to	add	another
element,	you	can	add	the	element	by	specifying	the	index	number	or	by	using
the	push()	function.	For	example,	to	add	a	fourth	element,	4,	to	the	previously
declared	array,	MyArray,	do	this	(because	the	count	starts	at	0,	the	fourth	element
has	an	index	of	3):

MyArray	[3]	=	4

If	you	don’t	know	the	current	size	of	the	array,	use	the	push()	function	to
add	a	new	value	to	the	end	of	the	array.	For	example,	if	you	don’t	know	the
index	value	for	the	last	value	in	the	preceding	array,	you	can	add	a	new	element,
fifth	value,	like	this:

MyArray.push('fifth	value')

Refer	to	the	section	“How	to	do	a	For	each..next	statement	in	JavaScript”
if	you	need	to	process	the	entire	array	at	once.	JavaScript	has	other	functions	for
processing	arrays,	such	as	concat(),	which	can	join	two	arrays,	and	reverse(),
which	reverses	the	order	of	the	array’s	elements.	Because	this	is	just	a	basic
introduction	to	JavaScript,	those	functions	are	not	covered	here.	For	a	tip	on
applying	a	math	function	to	an	entire	array	with	a	single	line	of	code,	see	the
section	“Math	functions	in	JavaScript.”

JavaScript	for	loops

When	you	added	interactivity	to	the	Hello	World	Office	add-in	earlier	in	this
chapter,	you	used	the	following	code	to	sum	the	selected	range:

Click	here	to	view	code	image
for	(var	x	=	0	;	x	<	data.length;	x++)	{

for	(var	y	=	0;	y	<	data[x].length;	y++)	{

printOut	+=	data[x][y];

}

}

The	two	for	loops	process	the	array,	data,	that	is	passed	into	the	function,
with	x	as	the	row	and	y	as	the	column.

A	for	loop	consists	of	three	separate	sections	separated	by	semicolons.
When	the	loop	is	started,	the	first	section,	var	x=0,	initializes	any	variables	used
in	the	loop.	Multiple	variables	would	be	separated	by	commas.	The	second
section,	x	<	data.length,	tests	whether	the	loop	should	be	entered.	The	third
section,	x++,	changes	any	variables	to	continue	the	loop,	in	this	case
incrementing	x	by	1	(x++	is	shorthand	for	x=x+1).	This	section	can	also	have
more	than	one	variable,	with	commas	separating	them.

Tip	To	break	out	of	a	loop	early,	use	the	break	keyword.

How	to	do	an	if	statement	in	JavaScript

The	basic	if	statement	in	JavaScript	has	this	syntax:
if	(expression){

//do	this

}

Here,	expression	is	a	logical	function	that	returns	true	or	false,	just	as	in
VBA.	If	the	expression	is	true,	the	code	continues	and	runs	the	lines	of	code	in
the	//do	this	section.	To	execute	code	if	the	expression	is	false,	you	need	to
add	an	else	statement,	like	this:
if	(expression){

//do	this	if	true

}

else{

//do	this	if	false

}

How	to	do	a	Select..Case	statement	in	JavaScript

Select..Case	statements	are	very	useful	in	VBA	as	an	alternative	to	using
multiple	If..Else	statements.	In	JavaScript,	similar	functionality	is	in	the
switch()	statement.	Typically,	this	is	the	syntax	of	a	switch()	statement:

Click	here	to	view	code	image
switch(expression){

case	firstcomparison	:	{

//do	this

break;

}

case	secondcomparison	:	{

//do	this

break;

}

default	:	{

//no	matches,	so	do	this

break;

}

}

Here,	expression	is	the	value	you	want	to	compare	to	the	case	statements.
The	break	keyword	is	used	to	stop	the	program	from	comparing	to	the	next
statement,	after	it	has	run	one	comparison.	That	is	one	difference	from	a	Select
statement:	Whereas	in	VBA,	after	a	comparison	is	successful,	the	program
leaves	the	Select	statement,	in	JavaScript,	without	the	break	keyword,	the
program	continues	in	the	switch	statement	until	it	reaches	the	end.	Use	default
as	you	would	a	Case	Else	in	VBA—to	cover	any	comparisons	that	are	not
specified.

The	preceding	syntax	works	for	one-on-one	comparisons.	If	you	want	to	see
how	an	expression	fits	within	a	range,	the	standard	syntax	won’t	work.	You	need

to	replace	the	expression	with	true	to	force	the	code	into	running	the	switch
statement.	The	case	statements	are	where	you	use	the	expression	compared	to
the	range.	The	following	code	is	a	BMI	calculator	UDF	converted	to	JavaScript.
It	compares	the	calculated	BMI	to	the	various	ranges	and	returns	a	text
description	to	post	to	the	task	pane:

Click	here	to	view	code	image
Office.initialize	=	function	(reason)	{

//Add	any	needed	initialization.

}

function	calculateBMI()	{

Office.context.document.getSelectedDataAsync("matrix",

function	(result)	{

//call	the	calculator	with	the	array,	result.value,	as

the	argument

myCalculator(result.value);

});

}

function	myCalculator(data){

var	calcBMI	=	0;

var	BMI="";

//Perform	the	initial	BMI	calculation	to	get	the

numerical	value

calcBMI	=	(data[1][0]	/	(data[0][0]	*data	[0]

[0]))*	703

/*evaluate	the	calculated	BMI	to	get	a	string	value

because	we	want	to	evaluate	range,	instead	of

switch(calcBMI),	we	do	switch	(true)	and	then	use	our

variable	as	part	of	the	ranges	*/

switch(true){

//if	the	calcBMI	is	less	than	18.5

case	(calcBMI	<=	18.5)	:	{

BMI	=	"Underweight"

break;

}

//if	the	calcBMI	is	a	value	between	18.5	and

(&&)	24.9

case	((calcBMI	>	18.5)&&(calcBMI	<=	24.9)):{

BMI	=	"Normal"

break;

}

case	((calcBMI	>	24.9)&&(calcBMI	<=	29.9))	:

{

BMI	=	"Overweight"

break;

}

//if	the	calcBMI	is	greater	than	30

case	(calcBMI	>	29.9)	:	BMI	=	"Obese"

default	:	{

BMI	=	'Try	again'

break;

}

}

document.getElementById("results").innerText	=

BMI;

}

How	to	use	a	For	each..next	statement	in	JavaScript

If	you	have	a	collection	of	items	to	process	in	VBA,	you	might	use	a	For
each..next	statement.	One	option	in	JavaScript	is	for	(...	in	...).	For
example,	if	you	have	an	array	of	items,	you	can	use	the	following	code	to	output
the	list:

Click	here	to	view	code	image
//set	up	a	variable	to	hold	the	output	text

arrayOutput=	""

/*process	the	array

i	is	a	variable	to	hold	the	index	value.

Its	count	starts	as	0*/

for	(i	in	MyArray)	{

/*create	the	output	by	adding	the	element

to	the	previous	element	value.

\n	is	used	to	put	in	a	line	break	*/

arrayOutput	+=	MyArray[i]	+	'\n'

}

//write	the	output	to	the	screen

document.getElementById("results").innerText	=

arrayOutput

You	can	do	whatever	you	need	to	each	element	of	the	array.	In	this	example,
you’re	building	a	string	to	hold	the	element	value	and	a	line	break	so	that	when	it
prints	to	the	screen,	each	element	appears	on	its	own	line,	as	shown	in	Figure	27-
6.	The	MyArray	variable	used	in	this	code	was	filled	in	the	earlier	section,
“Arrays.”

FIGURE	27-6	JavaScript	has	its	own	equivalents	to	many	VBA	looping	statements,	such	as	for..in
loop,	which	was	used	to	output	each	result	to	its	own	line.

Mathematical,	logical,	and	assignment	Operators

JavaScript	offers	the	same	basic	operators	as	VBA	plus	a	few	more	to	shorten
your	code.	Table	27-1	lists	the	various	operators.	Assume	here	that	x	=	5.

TABLE	27-1	JavaScript	Operators

Operator Description Example Result
+ Addition x+5 10

- Subtraction x-5 0

/ Division x/5 1

* Multiplication x*5 25

% Remainder	after	division 11%x 1

() Override	the	usual	order
of	operations

(x+2)*5 35,	whereas	x+2*5=15

- Unary	minus	(for	negative
numbers)

-x -5

== Values	are	equal x=='5' true

=== Values	and	types	are	equal x==='5' false	since	the	types	don’t	match.	x	is	a	number
being	compared	to	a	string.

> Greater	than x>10 false

< Less	than x<10 true

>= Greater	than	or	equal	to x>=5 true

<= Less	than	or	equal	to x<=4 false

!= Values	are	not	equal x!='5' false

!== Values	and	types	are	not
equal

x!=='5' true

&& And x==5	&&

1==1

true

|| Or x=='5'	||

1==2

false

! Not !(x==5) false

++ Increment ++x	or	x++ 6

-- Decrement --x	or	x-- 4

+= Equal	to	with	addition x	+=	11 16

-= Equal	to	with	subtraction x-=22 -17

*= Equal	to	with
multiplication

x*=2 10

/= Equal	to	with	division x/=30 6

%= Equal	to	with	the
remainder

x%=11 1

The	increment	and	decrement	operators	are	two	of	my	favorites;	I	wish	we
had	them	in	VBA.	Not	only	do	they	reduce	your	code,	but	they	offer	a	flexibility
that	VBA	lacks	(post-	and	pre-increments).	You	might	remember	the	use	of	x++
in	the	Hello	World	program	earlier	in	this	chapter.	You	used	this	in	place	of
x=x+1	to	increment	the	for	loop.	But	it	doesn’t	just	increment	the	value.	It	uses
the	value	and	then	increments	it.	This	is	called	a	post-increment.	JavaScript	also
offers	a	pre-increment,	which	means	the	value	is	incremented	and	then	used.	So
if	you	have	x=5,	both	of	the	following	lines	of	code	return	6:

Click	here	to	view	code	image
//would	increment	x	and	then	post	the	value

document.getElementById("results").innerText	=	++x

//would	return	6

//would	post	the	value	of	x	(now	6	after	the	previous

increment)	then	increment

document.getElementById("results2").innerText	=	x++

//would	return	6

Math	functions	in	JavaScript

JavaScript	has	several	math	functions	available,	as	shown	in	Table	27-2.	Using
these	functions	is	straightforward.	For	example,	to	return	the	absolute	value	of
the	variable	myNumber,	do	this:
result	=	Math.abs(myNumber)

TABLE	27-2	JavaScript	math	functions

Function Description

Math.abs(a) Returns	the	absolute	value	of	a.
Math.acos(a) Returns	the	arc	cosine	of	a.
Math.asin(a) Returns	the	arc	sine	of	a.
Math.atan(a) Returns	the	arc	tangent	of	a.
Math.atan2(a,b) Returns	the	arc	tangent	of	a/b.
Math.ceil(a) Returns	the	integer	closest	to	a	and	not	less	than	a.
Math.cos(a) Returns	the	cosine	of	a.
Math.exp(a) Returns	the	exponent	of	a	(Euler’s	number	to	the	power	a).
Math.floor(a) Rounds	down,	and	returns	the	integer	closest	to	a.
Math.log(a) Returns	the	log	of	a	base	e.
Math.max(a,b) Returns	the	maximum	of	a	and	b.
Math.min(a,b) Returns	the	minimum	of	a	and	b.
Math.pow(a,b) Returns	a	to	the	power	b.
Math.random() Returns	a	random	number	between	0	and	1	(but	not	including	0	or	1).
Math.round(a) Rounds	up	or	down	and	returns	the	integer	closest	to	a.
Math.sin(a) Returns	the	sine	of	a.
Math.sqrt(a Returns	the	square	root	of	a.
Math.tan(a) Returns	the	tangent	of	a.

Tip	If	you	need	to	apply	a	math	function	to	all	elements	of	an	array,

you	can	do	so	by	using	the	map()	function	and	the	desired	Math
function.	For	example,	to	ensure	that	every	value	in	an	array	is	positive,	use
the	Math.abs	function.	The	following	example	changes	each	element	in	an
array	to	its	absolute	value	and	then	prints	the	results	to	the	screen,	as	shown
in	Figure	27-7:

Click	here	to	view	code	image
result	=	0

arrayOutput	=	""

arrNums	=	[9,	-16,	25,	-34,	28.9]

result	=	arrNums.map(Math.abs)

for	(i	in	result){

arrayOutput	+=	result[i]	+'\n'

}

document.getElementById("results").innerText	=

arrayOutput

FIGURE	27-7	Using	arrays	is	a	common	way	of	storing	data	in	JavaScript,	which	offers
many	functions	for	simplifying	working	with	those	arrays.

Writing	to	the	content	pane	or	task	pane

After	you’ve	processed	a	user’s	data,	you	need	to	display	the	results.	This	can	be
done	on	the	sheet	or	in	the	Office	add-in’s	pane.	Assuming	that	arrayOutput
holds	the	data	you	want	to	write	to	the	pane,	do	this:

Click	here	to	view	code	image
document.getElementById("results").innerText	=

arrayOutput

This	code	writes	data	to	the	Office	add-in’s	pane,	specifically	to	the	results

variable	reserved	in	the	HTML	code.	To	write	to	the	sheet,	see	the	later
subsection	“Reading	from	and	writing	to	a	sheet.”

JavaScript	changes	for	working	in	an	Office	add-in

Not	all	JavaScript	code	will	work	in	an	Office	add-in.	For	example,	you	cannot
use	the	alert	or	document.write	statements.	There	are	also	some	new
statements	for	interacting	with	Excel	provided	in	a	JavaScript	API	that	you	link
to	in	the	HTML	file	with	this	line:

Click	here	to	view	code	image
<script	src	=

"https://appsforoffice.microsoft.com/lib/1.0/hosted/office.js">

</script>

Like	the	APIs	used	in	VBA,	the	JavaScript	API	gives	you	access	to	objects,
methods,	properties,	and	events	that	JavaScript	can	use	to	interact	with	Excel.
You’ve	now	seen	some	of	the	most	commonly	used	objects.	For	more
information	on	these	and	other	available	objects,	go	to
http://msdn.microsoft.com/en-us/library/office/apps/fp142185.aspx.

Initializing	an	Office	add-in

The	following	event	statement	must	be	placed	at	the	top	of	the	JavaScript	script:

Click	here	to	view	code	image
Office.initialize	=	function	(reason)	{	/*any

initialization*/}

It	initializes	the	Office	add-in	to	interact	with	Excel.	The	reason	parameter
returns	how	the	Office	add-in	was	initialized.	If	the	Office	add-in	is	inserted	into
the	document,	then	reason	is	inserted.	If	the	Office	add-in	is	already	part	of	a
workbook	that’s	being	opened,	reason	is	documentOpened.

Reading	from	and	writing	to	a	sheet

Office.context.document	represents	the	object	that	the	Office	add-in	is
interacting	with—the	sheet.	It	has	several	methods	available,	most	importantly

http://msdn.microsoft.com/en-us/library/office/apps/fp142185.aspx

the	two	that	enable	you	to	read	selected	data	and	write	to	a	range.

The	following	line	uses	the	setSelectedDataAsync	method	to	write	the
values	in	MyArray	to	the	selected	range	on	a	sheet:

Click	here	to	view	code	image
Office.context.document.setSelectedDataAsync(MyArray,

{coercionType:	'matrix'});

The	first	argument,	MyArray,	is	required.	It	contains	the	values	to	write	to	the
selected	range.	The	second	argument,	coercionType,	is	optional.	Its	value,
matrix,	tells	the	code	that	you	want	the	values	treated	as	a	one-dimensional
array.

The	method	for	reading	from	a	sheet,	getSelectedDataAsync,	is	similar	to
the	write	method:

Click	here	to	view	code	image
Office.context.document.getSelectedDataAsync("matrix",

function	(result)	{

//code	to	manipulate	the	read	data,	result

});

The	first	argument,	matrix,	is	the	coercionType	and	is	required.	It	tells	the
method	how	the	selected	data	should	be	returned—in	this	case,	in	an	array.	The
second	argument	shown	is	an	optional	callback	function,	with	result	being	a
variable	that	holds	the	returned	values	(result.value)	if	the	call	was	successful
and	an	error	if	not.

To	find	out	whether	the	call	was	successful,	use	the	status	property,
result.status.	To	retrieve	the	error	message,	use	this:
result.error.name

Next	steps

Read	Chapter	28,	“What’s	new	in	Excel	2019	and	what’s	changed,”	to	learn
about	more	features	that	have	changed	significantly	in	Excel	2019.

CHAPTER	28
What’s	new	in	Excel	2019	and	what’s
changed

In	this	chapter,	you	will:

Understand	ways	to	purchase	Excel	2019

Get	to	know	newer	features	of	Excel

Learn	how	to	look	up	information	about	the	new	objects	and	methods

Ensure	your	code	works	in	different	versions	of	Excel

This	chapter	reviews	changes	since	Excel	2007—2016.	In	conjunction	with
reviewing	those	sections,	you	should	also	review	information	in	this	book	on
tables,	sorting,	and	conditional	formatting.

Office	365	subscription	versus	Excel	2019	perpetual
There	are	two	ways	you	can	purchase	Excel	2019.	One	way	is	with	an	Office
365	subscription,	which	will	always	provide	you	with	the	latest	and	greatest
changes	in	Excel.	The	other	way	is	a	one-time	payment	for	Excel	2019.
Although	you	will	still	receive	patches,	Microsoft	might	choose	not	to	provide
certain	new	features.	Keep	in	mind	that	if	you	have	an	Office	365	subscription
but	are	writing	programs	for	Excel	2019	users,	they	may	not	have	access	to	a
feature	you	are	coding.

If	it	has	changed	in	the	front	end,	it	has	changed	in
VBA
If	you	were	using	Excel	2003	(or	older)	before	Excel	2019,	almost	everything
you	knew	about	programming	Excel	objects	has	changed.	Basic	logic	still	works
(For	loops,	for	example),	but	most	objects	have	changed.

If	you	have	been	using	Excel	2007,	2010,	2013,	or	2016,	there	are	still	a	few
changes	to	consider,	and	they	are	noted	in	this	chapter.	For	most	items,	the
changes	are	obvious	because	if	the	Excel	user	interface	has	changed,	the	VBA
has	changed.

The	ribbon

If	you	have	been	working	with	a	legacy	version	of	Excel,	the	ribbon	is	one	of	the
first	changes	you’ll	notice	when	you	open	Excel	2019.	Although	the
CommandBars	object	does	still	work	to	a	point,	if	you	want	to	flawlessly	integrate
your	custom	controls	into	the	ribbon,	you	need	to	make	some	major	changes.

Note	see	Chapter	25,	“Customizing	the	ribbon	to	run	macros,”	for
more	information.

Single-document	interface

For	years,	if	you	had	multiple	documents	open	in	Word,	you	could	drag	each
document	to	a	different	monitor.	This	capability	was	not	available	in	Excel	until
Excel	2013.	With	Excel	2013,	Excel	changed	from	a	multiple-document
interface	to	a	single-document	interface	(SDI).	This	means	the	individual
workbook	window	no	longer	resides	within	a	single	application	window.	Instead,
each	workbook	is	in	its	own	standalone	window,	separate	from	any	other	open
workbook.

Changes	to	the	layout	of	one	window	don’t	affect	any	previously	opened
windows.	To	see	this	in	action,	open	two	workbooks.	In	the	second	workbook,
enter	and	run	the	following	code,	which	adds	a	new	item,	Example	Option,	to
the	bottom	of	the	right-click	menu:

Click	here	to	view	code	image
Sub	AddRightClickMenuItem()

Dim	cb	As	CommandBarButton

Set	cb	=	CommandBars("Cell").Controls.Add

(Type:=msoControlButton,	temporary:=True)

cb.Caption	=	"Example	Option"

End	Sub

Right-click	a	cell	in	the	second	workbook,	and	Example	Option	appears	right
where	it	should.	Right-click	a	cell	in	the	first	workbook,	and	the	option	does	not
appear.	Return	to	the	second	workbook	and	press	Ctrl+N	to	add	a	new
workbook.	Right-click	a	cell	in	this	third	workbook,	and	the	menu	item	appears.
Go	to	the	first	workbook,	create	a	new	workbook,	and	check	the	right-click
menu.	The	option	does	not	appear.

Now	delete	the	custom	menu.	Go	to	the	third	workbook	and	paste	and	run
the	following	code:

Click	here	to	view	code	image
Sub	DeleteRightClickMenuItem()

CommandBars("Cell").Controls("Example	Option").Delete

End	Sub

The	menu	item	is	removed	from	the	third	workbook,	but	when	you	check	the
right-click	menu	of	the	second	workbook,	the	item	is	still	there.	Although	Excel
copied	the	menu	from	the	active	workbook	when	creating	new	workbooks,	the
logic	to	remove	the	menu	item	does	not	propagate.

Note	Don’t	worry	about	having	to	delete	all	instances	of	the
sample	menu	item.	It	was	created	to	be	temporary	and	will	be	gone
when	you	restart	Excel.

Another	change	to	keep	in	mind	is	that	making	a	change	to	the	window	of
one	workbook,	such	as	minimizing	it,	doesn’t	affect	the	other	workbooks.	If	you
want	to	minimize	all	windows,	you	need	to	loop	through	the	application’s
windows,	like	this:

Click	here	to	view	code	image
Sub	MinimizeAll()

Dim	myWin	As	Window

For	Each	myWin	In	Application.Windows

myWin.WindowState	=	xlMinimized

Next	myWin

End	Sub

Modern	array	formulas

With	the	introduction	to	Office	365	of	SEQUENCE,	SORT,	SORTBY,	UNIQUE,	FILTER,
SINGLE,	and	RANDARRAY,	creating	array	formulas	becomes	easier.	You	will	not
need	to	use	.FormulaArray	for	these	functions.	Simply	use	.Formula	or
.FormulaR1C1	to	build	the	array	formulas.	For	example,	to	fill	A1:A10	with	the
numbers	1	to	10,	use	this	code:

Click	here	to	view	code	image

Range("A1").Formula	=	"=SEQUENCE(10)"

Note	that	only	cell	A1	will	report	having	a	formula.	The	other	cells	will
report	having	a	value.

Quick	Analysis	tool

Introduced	in	Excel	2013,	the	Quick	Analysis	tool	appears	in	the	lower-right
corner	when	a	range	of	data	is	selected.	This	tool	suggests	what	the	user	could
do	with	the	data,	such	as	apply	conditional	formatting	or	create	a	chart.	You	can
activate	a	specific	tab,	such	as	Totals,	when	the	user	selects	a	range,	like	this:

Click	here	to	view	code	image
Private	Sub	Worksheet_SelectionChange(ByVal	Target	As

Range)

Application.QuickAnalysis.Show	(xlTotals)

End	Sub

Charts

Charts	have	gone	through	a	few	incarnations	since	Excel	2003,	and	with	those
changes	to	the	interface	there	have	also	been	changes	to	the	object	model.	In
Excel	2013,	Microsoft	introduced	a	completely	new	interface	and	a	new	method,
AddChart2,	which	is	not	backward	compatible—not	even	to	Excel	2010.	With
Excel	2019,	Microsoft	introduced	two	new	chart	styles:	funnel	charts	and	filled
map	charts.	In	early	2019,	Office	365	will	begin	supporting	custom	visuals	from
Power	BI.	As	this	book	goes	to	press,	there	is	no	VBA	code	available	for	these
charts,	but	it	will	likely	be	offered.

In	Excel	2016,	there	was	a	bug	so	only	new	charts	introduced	in	Excel	2016
would	use	the	new	Ivy	charting	engine.	If	you	were	creating	an	old	style	chart,
you	had	to	use	the	old	programming	method.	This	bug	has	been	fixed	in	Excel
2019	and	for	Office	365	subscription	users,	but	if	you	are	an	Excel	2016
Perpetual	user,	it	has	not	been	fixed.	see	Chapter	15,	“Creating	charts,”	for	more
information	on	this	chart	compatibility	issue.

Excel	2010	introduced	a	type	of	minichart,	called	a	sparkline.	A	sparkline	is
different	from	a	standard	chart	in	that	it	can	be	inserted	within	a	cell.	Sparklines
are	not	backward	compatible.

Pivot	tables

Excel	2007,	2010,	2013,	2016,	and	2019	have	offered	many	new	features	in
pivot	tables.	If	you	use	code	for	a	new	feature,	the	code	works	in	the	current
version	but	crashes	in	previous	versions	of	Excel.

In	Excel	2019,	you	can	change	cell	formatting	for	a	specific	cell	in	a	pivot
table,	and	Excel	will	remember	that	formatting	even	if	the	shape	of	the	pivot
table	changes.	There	is	no	special	property	introduced	for	this—simply	format
the	cell	as	usual.

Excel	2019	offers	pivot	table	defaults.	These	can	be	set	in	VBA	using
Application.DefaultPivotTableLayoutOptions.	For	example,	to	build	future
pivot	tables	in	classic	drag-and-drop	mode,	use	this:

Click	here	to	view	code	image

Application.DefaultPivotTableLayoutOptions.InGridDropZones

=	True

Note	see	Chapter	12,	“Using	VBA	to	create	pivot	tables,”	for	more
information.

Slicers

Slicers	were	a	new	feature	in	Excel	2010	for	use	on	pivot	tables.	They	aren’t
backward	compatible—not	even	to	Excel	2007.	They’re	useful	in	pivot	tables

because	they	allow	for	easy-to-see	and	-use	filtering	options.	If	you	open	a
workbook	with	a	slicer	in	an	older	version	of	Excel,	the	slicer	is	replaced	with	a
shape	that	includes	text	explaining	what	the	shape	is	there	for	and	that	the
feature	is	not	available.

In	Excel	2013,	slicers	were	added	to	tables.	The	functionality	is	the	same	as
that	of	slicers	for	pivot	tables,	but	these	new	slicers	are	not	backward	compatible
—not	even	to	Excel	2010.

Note	see	Chapter	12	for	more	information	on	pivot	table	slicers.

Icons

Microsoft	added	the	Icons	button	to	the	Insert	tab	of	the	ribbon	between	Excel
2016	and	Excel	2019.	Although	it	is	a	new	command	in	the	ribbon,	the	code	to
insert	an	icon	uses	Pictures.Insert	with	the	download	argument	being	a
location	from	Office.net.	Use	the	Macro	recorder	to	discover	the	correct	path	to
the	particular	icon.

3D	Models

Support	for	displaying	and	rotating	3D	Models	was	introduced	in	June	2017.
You	can	insert	and	rotate	most	files	used	by	3D	Printers.	Support	for	VBA	was
added	later.	You	can	apply	new	methods	.IncrementRotationX,
.IncrementRotationY,	and	.IncrementRotationZ	to	the	Model3D	object.	The
following	code	rotates	an	object	called	Bennu	by	10	degrees	along	the	X	axis.

Click	here	to	view	code	image

ActiveSheet.Shapes.Range(Array("Bennu")).Model3D.IncrementRotationY

10

SmartArt

SmartArt	was	introduced	in	Excel	2007	to	replace	the	Diagram	feature	in	legacy
versions	of	Excel.	Recording	is	very	limited,	but	it	helps	you	find	the	correct
schema.	After	that,	the	recorder	doesn’t	capture	text	entry	or	format	changes.

The	following	example	created	the	art	shown	in	Figure	28-1.	The	name	of
the	schema	used	is	hChevron3.	In	this	code,	I	changed	SchemeColor	for	the
middle	chevron	and	left	the	other	two	with	the	default	colors:

Click	here	to	view	code	image
Sub	AddDiagram()

With	ActiveSheet

Call	.Shapes.AddSmartArt(Application.SmartArtLayouts(

_

"urn:microsoft.com/office/officeart/2005/8/layout/hChevron3"))

.Select

.Shapes.Range(Array("Diagram

1")).GroupItems(1).TextEffect.Text	=	"Bill"

.Shapes.Range(Array("Diagram

1")).GroupItems(3).TextEffect.Text	=	"Tracy"

With	.Shapes.Range(Array("Diagram	1")).GroupItems(2)

.Fill.BackColor.SchemeColor	=	7

.Fill.Visible	=	True

.TextEffect.Text	=	"Barb"

End	With

End	With

End	Sub

FIGURE	28-1	The	macro	recorder	is	limited	when	recording	the	creation	of	SmartArt.	You	need	to
trace	through	the	object’s	properties	to	find	what	you	need.

Learning	the	new	objects	and	methods
When	you	click	the	Help	button	in	Excel’s	VB	Editor,	you’re	brought	to
Microsoft’s	online	Help	resource.	Select	Excel	VBA	Reference,	Object	Model	to
view	a	list	of	all	objects,	properties,	methods,	and	events	in	the	Excel	2019
object	model.

Compatibility	mode

With	the	changes	in	Excel	2019,	it’s	important	to	verify	an	application’s	version.
Two	properties	you	can	use	to	do	this	are	Version	and
Excel8CompatibilityMode.

Dealing	with	compatibility	issues
Creating	a	Compatibility	mode	workbook	can	be	problematic.	Most	code
will	still	run	in	legacy	versions	of	Excel,	as	long	as	the	program	doesn’t	run
into	an	item	from	the	Excel	2007	or	newer	object	models.	If	you	use	any
items	from	the	newer	object	models,	however,	the	code	will	not	compile	in
legacy	versions.	To	work	around	this,	comment	out	the	specific	lines	of
code,	compile,	and	then	comment	the	lines	back	in.

If	your	only	Excel	compatibility	issue	is	the	use	of	constant	values,	partially
treat	your	code	as	if	you	were	doing	late	binding	to	an	external	application.
If	you	have	only	constant	values	that	are	incompatible,	treat	them	like	late-
binding	arguments,	assigning	a	variable	the	numeric	value	of	the	constant.
The	following	section	shows	an	example	of	this	approach.

Note	See	“Using	constant	values,”	in	Chapter	20	for	more
information	on	using	constant	values.

Using	the	Version	property

The	Version	property	returns	a	string	that	contains	the	active	Excel	application
version.	For	2016	and	2019,	this	is	16.0.	This	can	prove	useful	if	you’ve
developed	an	add-in	to	use	across	versions,	but	some	parts	of	it,	such	as	saving
the	active	workbook,	are	version	specific:

Click	here	to	view	code	image
Sub	WorkbookSave()

Dim	xlVersion	As	String,	myxlOpenXMLWorkbook	As	String

myxlOpenXMLWorkbook	=	"51"	'non-macro	enabled	workbook

xlVersion	=	Application.Version

Select	Case	xlVersion

Case	Is	=	"9.0",	"10.0",	"11.0"

ActiveWorkbook.SaveAs

Filename:="LegacyVersionExcel.xls"

Case	Is	=	"12.0",	"14.0",	"15.0",	"16.0"	'12.0	is

2007,	14.0	is	2010

ActiveWorkbook.SaveAs

Filename:="Excel2019Version",	_

FileFormat:=myxlOpenXMLWorkbook

End	Select

End	Sub

Caution	Note	that	for	the	FileFormat	property	of	the	Excel	12.0
and	newer	Case,	I	had	to	create	my	own	variable,
myxlOpenXMLWorkbook,	to	hold	the	constant	value	of

xlOpenXMLWorkbook.	If	I	were	to	try	to	run	this	in	a	legacy	version	of	Excel
just	using	the	Excel	constant	xlOpenXMLWorkbook,	the	code	would	not	even
compile.

Using	the	Excel8CompatibilityMode	property

The	Excel8CompatibilityMode	property	returns	a	Boolean	to	let	you	know
whether	a	workbook	is	in	Compatibility	mode—that	is,	saved	as	an	Excel	97—
2003	file.	You	use	this,	for	example,	if	you	have	an	add-in	that	uses	conditional
formatting	that	you	don’t	want	the	user	to	try	to	use	on	the	workbook.	The
CompatibilityCheck	function	returns	True	if	the	active	workbook	is	in
Compatibility	mode	and	False	if	it	is	not.	The	procedure	CheckCompatibility
uses	the	result	to	inform	the	user	of	an	incompatible	feature:

Click	here	to	view	code	image
Function	CompatibilityCheck()	As	Boolean

Dim	blMode	As	Boolean

Dim	arrVersions()

arrVersions	=	Array("12.0",	"14,0",	"15.0",	"16.0")

If

Application.IsNumber(Application.Match(Application.Version,

arrVersions,	0))	Then

blMode	=	ActiveWorkbook.Excel8CompatibilityMode

If	blMode	=	True	Then

CompatibilityCheck	=	True

ElseIf	blMode	=	False	Then

CompatibilityCheck	=	False

End	If

End	If

End	Function

Sub	CheckWorkbookCompatibility()

Dim	xlCompatible	As	Boolean

xlCompatible	=	CompatibilityCheck

If	xlCompatible	=	True	Then

MsgBox	"You	are	attempting	to	use	an	Excel	2007	or

newer	function	"	&	_

Chr(10)	&	"in	a	97-2003	Compatibility	Mode

workbook"

End	If

End	Sub

Next	steps

If	we	as	authors	have	done	our	job	correctly,	you	now	have	the	tools	you	need	to
design	your	own	VBA	applications	in	Excel.	You	understand	the	shortcomings
of	the	macro	recorder	yet	know	how	to	use	it	as	an	aid	in	learning	how	to	do
something.	You	know	how	to	use	Excel’s	power	tools	in	VBA	to	produce
workhorse	routines	that	can	save	you	hours	of	time	each	week.	You’ve	also
learned	how	to	have	your	application	interact	with	others	so	that	you	can	create
applications	to	be	used	by	others	in	your	organization	or	in	other	organizations.

If	you	have	found	any	sections	of	the	book	confusing	or	thought	they	could
have	been	spelled	out	better,	we	welcome	your	comments	and	will	give	them
consideration	as	we	prepare	the	next	edition	of	this	book.	Write	to	us:

Pub@MrExcel.com	to	contact	Bill	or

ExcelGGirl@gmail.com	to	contact	Tracy

mailto:Pub@MrExcel.com
mailto:ExcelGGirl@gmail.com

Whether	your	goal	is	to	automate	some	of	your	own	tasks	or	to	become	a
paid	Excel	consultant,	we	hope	that	we’ve	helped	you	on	your	way.	Both	are
rewarding	goals.	With	500	million	potential	customers,	we	find	that	being	Excel
consultants	is	a	friendly	business.	If	you	are	interested	in	joining	our	ranks,	you
can	use	this	book	as	your	training	manual.	Master	the	topics,	and	you	will	be
qualified	to	join	us.

For	assistance	with	any	Excel	VBA	questions,	post	your	question	as	a	New
Thread	at	the	MrExcel	Message	Board.	It's	free	to	post,	and	the	passionate
community	answers	about	10,000	Excel	VBA	questions	every	year.	To	get
started,	use	the	Register	link	at	the	top	right	of	the	page	at
https://www.mrexcel.com/forum/index.php.

https://www.mrexcel.com/forum/index.php

Index

Symbols
:=	(colon-equal	sign),	30
{	}	(curly	braces),	in	JavaScript,	536
--	(decrement	operator),	in	JavaScript,	543
++	(increment	operator),	in	JavaScript,	543
+	(plus	sign),	in	JavaScript,	537
“”	(quotation	marks)	in	JavaScript,	537
;	(semicolons),	in	JavaScript,	536
[]	(square	brackets),	as	Evaluate	method,	103
3D	Models,	551
24-hour	clocks,	formatting	cells	as,	115-116
32-bit	API	declarations,	compatibility,	471-472
64-bit	API	declarations,	compatibility,	471-472
9	runtime	error	(subscript	out	of	range),	488-489
1004	runtime	error

method	range	of	object	global	failed,	489-490
troubleshooting,	199-200
VB	Editor	actions,	479-480

A
A1	references

copying	formulas,	89-91
R1C1	references	versus,	87-88
replacing	multiple	with	single	R1C1	reference,	93-95
toggling,	88-89

About	dialog	box,	customizing,	475
above	average	conditional	formatting,	344

above/below	average	rules,	330
absolute	references

in	recorded	macros,	19-20
with	R1C1	references,	92

accelerator	keys	in	userforms,	461-462
Access

database	connection	terminology,	428-429
fields

checking	for	existence,	438-439
creating,	440

MDB	files,	425
creating	shared	databases,	427-428

pass-through	queries,	429
records

adding,	430-431
deleting,	435
retrieving,	431-433
summarizing,	436-437
updating,	433-435

tables
checking	for	existence,	437-438
creating,	439

accessing	file	structure,	501
ACE	engine,	426
Activate	event	(userforms),	155
active	control,	coloring,	463-464
ActiveCell	property,	45
ActiveX	controls,	running	macros	from,	512-513
ActiveX	Data	Objects	(ADOs),	426-429
ActiveX	labels,	minimizing	duplicate	code,	144-146
Add	method

array	names,	104
Document	object,	415

formula	names,	101
number	names,	103
string	names,	101-103
tables,	103-104

Add	Watch	dialog	box,	43
add-ins.	see	also	Office	add-ins

advantages	of,	515
closing,	521
converting	workbooks	to,	516-517

with	Save	As,	517
with	VB	Editor,	518

hidden	workbooks	versus,	521-523
installing,	519-520
removing,	521
saving	data	in,	516
security,	520
types	of,	515
viewing,	519

AddAboveAverage	method	(FormatConditions	object),	344
AddChart	method,	328
AddChart2	method,	306-307
AddControl	event

frames,	163
MultiPage	controls,	168
userforms,	155

AddFields	method	(pivot	tables),	218
adding

button	images	(on	ribbon),	503-505
buttons	in	HTML,	533-534
color	scales	to	ranges,	336-337
comments	to	names,	100
controls

to	ribbon,	496-500

at	runtime,	455-461
to	userforms,	157

data	bars	to	ranges,	331-335
Data	Model	fields	to	pivot	tables,	243
fields	in	pivot	table	data	area,	212-215
icon	sets	to	ranges,	337-340
images	to	userforms,	458-459
interactivity	to	Office	add-ins,	530-532,	535
names,	98-99
records	(database),	430-431
tables	to	Data	Model,	242
trusted	locations,	6-7
value	fields	to	Data	Model	pivot	tables,	243-244
VBA	code	to	workbooks	with	VBA	Extensibility,	276-277

addresses	(cell)
of	duplicate	max	values,	returning,	301-302
column	letter	of,	returning,	302-303

addresses
email,	validating,	287-289
hyperlink,	returning,	302

AddTop10	method	(FormatConditions	object),	345
AddUniqueValues	method	(FormatConditions	object),	346
ADOs	(ActiveX	Data	Objects),	426-429
Advanced	Filter,	181

criteria	ranges,	189-190
clearing,	198
formula-based	conditions,	191-198
joining	with	logical	AND,	191
joining	with	logical	OR,	190-191

in	Excel	interface,	182
extracting	unique	list	of	values,	182

with	Excel	interface,	183-184
for	multiple	fields,	187-188

with	VBA	code,	184-187
filter	in	place,	199

no	records	returned,	199-200
viewing	all	records	after,	200

returning	all	matching	records,	200
copying	all	columns,	200-201
copying	subset	of	columns,	201-203
creating	individual	reports,	203-207

AfterUpdate	event
list	boxes/combo	boxes,	162
option	buttons,	163-164
spin	buttons,	166
text	box	control,	159

alerts,	suppressing,	486
alphanumeric	data,	sorting,	298-300
AND,	joining	criteria	ranges	with,	191
API	(application	programming	interface)	declarations,	469

32-bit	and	64-bit	compatibility,	471-472
calling,	470-471
checking	open	network	files,	473
creating	running	timer,	476-477
customizing	About	dialog	box,	475
disabling	X	button	in	userforms,	475-476
explained,	469-470
playing	sounds,	477
returning	computer	name,	472-473
returning	display	resolution,	474

application	events
in	class	modules,	118,	132-133
list	of,	119,	122

Application	object,	38,	45
application	states,	enabling/disabling,	263,	265
Application.EnableEvents	=	False	events,	preventing	recursive	procedure

calling,	116
applying	math	functions	to	arrays,	544
Areas	collection	(Range	object),	selecting	noncontiguous	ranges,	66
arguments

for	ribbon	controls,	499-500
troubleshooting,	508-509

arranging	VBA	and	Excel	windows,	39
array	formulas,	R1C1	references	with,	96
arrays,	123

applying	math	functions	to,	544
data,	retrieving,	126-127
declaring,	123-124
dynamic	arrays,	declaring,	128-129
filling,	125-126
formulas,	549
functions,	passing	to,	130
in	JavaScript,	538
multidimensional,	declaring,	124-125
names,	creating,	104
optimizing	code	with,	128
values,	passing	to/from,	130

assigning
macros	to	form	controls,	12-13
shortcut	keys	to	macros,	9

assignment	operators	in	JavaScript,	542-543
associating	column	names	with	numbers	in	R1C1	references,	95
attributes

for	ribbon	controls,	497-498
troubleshooting,	506

author	contact	information,	554
AutoFilter

avoiding	when	copying	data,	257-258
dynamic	filters,	178-179

filtering
by	color,	177
by	icon,	178

replacing	loops	with,	173-176
on	selected	columns	only,	207-208
selecting

multiple	items,	176-177
with	Search	box,	177
visible	cells	only,	179-180

AutoShow,	filtering	pivot	tables,	232-234
AutoSort	in	pivot	tables,	224
AutoSum	in	recorded	macros,	23-26

B
backward	compatibility,	creating	charts,	328
backward	in	code,	moving,	40
BASIC,	Visual	Basic	versus,	2
BeforeDragOver	event

frames/option	buttons,	163
graphics,	165
label/text	box/command	button	control,	159
list	boxes/combo	boxes,	162
MultiPage	controls,	168
spin	buttons,	166
userforms,	155

BeforeDropOrPaste	event
frames/option	buttons,	163
graphics,	165
label/text	box/command	button	control,	159
list	boxes/combo	boxes,	162
MultiPage	controls,	168
spin	buttons,	166

userforms,	155
BeforeUpdate	event

list	boxes/combo	boxes,	162
option	buttons,	164
spin	buttons,	166
text	box	control,	159

below	average	conditional	formatting,	344
blank	cells

highlighting,	348-349
in	pivot	table	value	areas,	eliminating,	223-224

bookmarks	(Word),	421-422
breaking	out	of	loops,	539
breakpoints,	40

in	Watches	window,	43
Browse	dialog	box,	6
building	multiplication	tables,	93-95
buttons

adding	in	HTML,	533-534
command	buttons,	running	macros,	510-511
on	ribbon,	adding	images	to,	503-505

C
calculated	fields	in	pivot	tables,	246-247
calculated	items	in	pivot	tables,	247
calculations	in	pivot	tables,	changing	to	percentages,	221-223
calling

API	declarations,	470-471
userforms,	154

canceling	scheduled	macros,	382-383
Cascading	Style	Sheets	(CSS),	534
Case	Else	statements	in	Select	Case...End	Select	constructs,	83
case	of	text,	changing,	273-274

case	sensitivity
of	JavaScript,	526,	536
in	text	editors,	526
of	XML,	526

Case	statements	in	Select	Case...End	Select	constructs,	83-84
CBool	function,	284
cell	ranges.See	ranges
cell	references.See	references
cells

comments
charts	in,	260-262
resizing,	259-260

finding	first	nonzero-length	in	range,	292-293
formatting	as	military	time,	115-116
highlighting

above/below	average,	344
blank/error	cells,	348-349
by	date,	348
first	unique	value,	349-350
formula-based,	349-350
by	text,	348
top/bottom	values,	345
unique/duplicate,	346-347
by	value,	347

progress	indicators,	creating,	269-270
in	ranges

finding	empty	cells,	62-63
selecting	specific	cells	with	SpecialCells	method,	63-65

returning
addresses	of	duplicate	max	values,	301-302
column	letter	of	address,	302-303
hyperlink	addresses,	302

reversing	contents,	300-301

selecting	with	SpecialCells,	274-275
summing	based	on	color,	289-290
visible	selecting,	179-180

Cells	object,	as	array,	124
Cells	property	(Range	object),	selecting	ranges,	57-58
Change	event

formatting	cells	as	military	time,	115
list	boxes/combo	boxes,	162
MultiPage	controls,	168
option	buttons,	164
spin	buttons,	166
text	box	control,	159
tracking	user	changes,	262-263

changing
colors	in	waterfall	charts,	327-328
default	file	type,	5
names.See	renaming
part	of	pivot	table,	215
pivot	table	calculations	to	percentages,	221-223
pivot	table	layout,	248
rows/formulas	to	variables	in	recorded	code,	49
shortcut	keys	for	macros,	18
text	case,	273-274

characters,	substituting	multiple,	293-294
chart	colors,	applying,	312-313
chart	events,	116

for	embedded	charts,	116-117,	134-135
list	of,	117-118

chart	styles,	list	of,	307-310
chart	titles,	specifying,	311-312
ChartColor	property,	312-313
ChartFormat	object,	319-320
charts

combo	charts,	creating,	323-325
in	comments,	260-262
creating,	305

with	AddChart2	method,	306-307
backward	compatibility,	328
chart	styles,	307-310

exporting	as	graphics,	328
filtering,	313
formatting

chart	colors,	312-313
chart	titles,	311-312
fill	color,	320-322
with	Format	method,	319-320
line	settings,	322
referring	to	specific	chart,	310-311
with	SetElement	method,	314-319

map	charts,	creating,	326
new	features,	549-550
new	types,	305
Power	BI	Custom	Visuals,	306
version	compatibility,	549
waterfall	charts,	creating,	326-328

check	box	controls	(Word),	422-424
check	boxes,	444-446
class	modules,	131

application	events	in,	118,	132-133
collections,	creating,	140-142
custom	objects

creating,	135-137
referencing,	137-138

embedded	chart	events	in,	116-117,	134-135
enabling/disabling	application	states,	263,	265
inserting,	131-132

minimizing	duplicate	ActiveX	label	code,	144-146
cleaning	up	recorded	code,	tips	for,	46,	50-52

copy/paste	statements,	49
deleting	selections,	46-47
finding	last	data	row,	47-48
R1C1	formulas,	49
range	references,	47
variables	for	rows/formulas,	49
With...End	With	statements,	50

ClearAllFilters	method	(pivot	tables),	229
clearing

Advanced	Filter	criteria	ranges,	198
conceptual	filters	(pivot	tables),	229

Click	event
frames/option	buttons,	164
graphics,	165
list	boxes/combo	boxes,	162
MultiPage	controls,	168
userforms,	155

clients,	training	in	error	handling,	487
clip	art,	assigning	macros	to,	12
Close	method	(Document	object),	416
closing

add-ins,	521
documents	(Word),	416
Excel,	canceling	scheduled	macros,	383
Properties	window,	513
userforms

disabling	X	button,	475-476
illegally,	169-170

code	optimization	with	arrays,	128
collections,	131,	138

creating,	138

in	class	modules,	140-142
in	standard	modules,	139-140

dictionaries,	compared,	142-144
grouping	controls	into,	451-453
minimizing	ActiveX	label	code,	144-146
objects	versus,	29

colon-equal	sign	(:=),	30
color	scales,	329

adding	to	ranges,	336-337
coloring	active	control,	463-464
colors

changing	in	waterfall	charts,	327-328
chart	colors,	applying,	312-313
for	data	bars,	333
fill	color,	formatting	charts,	320-322
filtering	by	with	AutoFilter,	177
multiple	colors	for	data	bars,	341-343
RGB	colors,	362,	364
summing	cells	based	on,	289-290
theme	colors,	359-362

column	sets,	importing	text	files	into,	402-403
column	sparklines,	353
ColumnGrand	property	(pivot	tables),	248
columns

associating	names	with	numbers	in	R1C1	references,	95
copying	all	with	Advanced	Filter,	200-201
copying	subset	with	Advanced	Filter,	201-203
referencing	with	R1C1	references,	93
reordering	with	Advanced	Filter,	201-203
returning	letter	of	address,	302-303
selected	columns,	AutoFilter	on,	207-208
sorting	and	concatenating,	296-298

Columns	property	(Range	object),	referencing	ranges,	61

combining
userforms,	167-169
workbooks,	256-257

combo	boxes
events,	162
list	boxes	versus,	160-161

combo	charts,	creating,	323-325
command	button	controls,	157-159

events,	159
running	macros,	510-511

comments,	18
adding	to	names,	100
charts	in,	260-262
in	HTML,	533
in	JavaScript,	531,	536
resizing,	259-260

Compatibility	mode,	troubleshooting,	552
complex	expressions	in	Case	statements,	84
computer	name,	returning,	472-473
concatenating

columns,	296-298
in	JavaScript,	537

conceptual	filters	for	pivot	tables,	228-231
conditional	compilation,	472
conditional	formatting.	see	also	data	visualizations

above/below	average	cells,	344
blank/error	cells,	348-349
custom	number	formats,	350-351
date-based,	348
with	formulas,	349-350
progress	indicators,	creating,	269-270
text-based,	348
top/bottom	values,	345

unique/duplicate	cells,	346-347
value-based,	347

conditions
formula-based	in	Advanced	Filter,	191-198
in	If...Then...Else	constructs,	81-82
in	Select	Case...End	Select	constructs,	83-84

configuring	pivot	tables,	211-212
connections,	428-429
constant	values

compatibility,	552
retrieving	when	referencing	Word,	412-414

constants
defined,	35-37
for	SetElement	method,	314-318

content	management	system,	Excel	as,	388-390
content	panes	(Office	add-ins),	534,	544
content	problem	error	message,	507-508
controls

active	control,	coloring,	463-464
adding

to	ribbon,	496-500
at	runtime,	455-461

check	boxes,	444-446
combo	boxes,	160-162
command	buttons,	157-159
frames,	163-164
graphics,	164-165
grouping	into	collections,	451-453
labels,	157-159
list	boxes,	160-162
multicolumn	list	boxes,	464-465
MultiPage,	167-169,	446
option	buttons,	163-164

organizing	on	UserForm	toolbar,	443-444
ProgIDs	for,	458
programming,	156
RefEdit,	448-449
renaming,	156
scrollbars	as	sliders,	450-451
spin	buttons,	165-167
tab	order,	setting,	462-463
TabStrip,	446-448
text	boxes,	157-159
toggle	buttons,	449-450
troubleshooting	new	controls,	157
in	Word,	422-424

converting
formulas	to	R1C1	style,	96
pivot	tables	to	values,	215-217
week	numbers	to	dates,	295-296
workbooks	to	add-ins,	516-517

with	Save	As,	517
with	VB	Editor,	518

copying
all	columns	with	Advanced	Filter,	200-201
data	to	worksheets,	257-258
formulas,	89-91
in	recorded	code,	49
subset	of	columns	with	Advanced	Filter,	201-203

counting
records	in	pivot	tables,	219
unique	values,	290-291
workbooks	in	directory,	284-285

cracking	passwords,	490-491
Create	New	Theme	Colors	dialog	box,	359
CreateObject	function,	referencing	Word,	411

CreatePivotTable	method,	211-212
creating

array	names,	104
arrays,	123-124
charts,	305

with	AddChart2	method,	306-307
backward	compatibility,	328
chart	styles,	307-310

combo	charts,	323-325
custom	sort	order,	268-269
customui	folder/file,	494-495
custom	web	pages,	387
dashboards,	368-373
documents	(Word),	415-416
dynamic	arrays,	128-129
fields	(database),	440
formula	names,	101
icon	sets	for	subset	of	range,	340-341
individual	reports	with	Advanced	Filter,	203-207
macro	buttons

on	Quick	Access	Toolbar,	11
on	ribbon,	10

map	charts,	326
multidimensional	arrays,	124-125
named	ranges,	98-99
number	names,	103
Office	add-ins,	526-530
pivot	tables,	211-212
progress	indicators,	269-270
ranges	from	overlapping	ranges,	62
ribbon	tabs/groups,	495-496
running	timers,	476-477
shared	Access	databases,	427-428

sparklines,	353-355
for	dashboard,	369-373

string	names,	101-103
table	relationships	in	Data	Model,	242
tables,	103-104
tables	(database),	439
transparent	userforms,	465-466
UDFs	(user-defined	functions),	279-281
userforms,	153-154
waterfall	charts,	326-328

criteria	ranges	in	Advanced	Filter,	189-190
clearing,	198
formula-based	conditions,	191-198
joining

with	logical	AND,	191
with	logical	OR,	190-191

Criteria	reserved	name,	105
CSS	(Cascading	Style	Sheets),	534
CSV	(comma-separated	values)	files,	importing	and	deleting,	254
.csv	file	extension,	opening	files	with,	397
curly	braces	({	}),	in	JavaScript,	536
CurrentRegion	property	(Range	object),	175

selecting	ranges,	63
cursor	locations,	428
cursor	types,	428
cursors,	428
custom	functions	in	JavaScript,	525.	see	also	UDFs	(user-defined	functions)
custom	icons,	adding	to	buttons	(on	ribbon),	504-505
custom	number	formats,	350-351
custom	objects,	131.	see	also	class	modules

creating,	135-137
referencing,	137-138

custom	properties,	creating,	146-149

custom	sort	order,	creating,	268-269
Custom	UI	Editor	tool,	502
custom	web	pages,	creating,	387
customizing

About	dialog	box,	475
ribbon,	493

accessing	file	structure,	501
adding	button	images,	503-505
adding	controls,	496-500
creating	customui	folder/file,	494-495
creating	tabs/groups,	495-496
RELS	file,	501-502
renaming/opening	workbooks,	502
troubleshooting	error	messages,	493,	505-509
visibility	of	ribbon,	494

customui	folder/file,	creating,	494-495

D
daily	dates,	grouping	in	pivot	tables,	219-221
DAOs	(data	access	objects),	426
dashboards,	creating,	368-373
data

in	arrays,	retrieving,	126-127
web	data

retrieving,	375-381
scheduling	retrieval,	381

data	access	objects	(DAOs),	426
data	area	for	pivot	tables,	adding	fields,	212-215
data	bars,	329

adding	to	ranges,	331-335
multiple	colors	for,	341-343

Data	field	(pivot	tables),	218-219

Data	Model,	241
importing	text	files	into,	403-404
pivot	cache,	defining,	243
pivot	tables

adding	text	fields,	243
adding	value	fields,	243-244
example	code,	244-246

tables
adding,	242
creating	relationships,	242

data	sets	for	pivot	tables,	replicating	reports,	224-227
data	types	for	input	boxes,	152
data	visualizations,	329.	see	also	conditional	formatting

color	scales,	adding	to	ranges,	336-337
data	bars

adding	to	ranges,	331-335
multiple	colors	for,	341-343

icon	sets
adding	to	ranges,	337-340
creating	for	subset	of	range,	340-341
mixing,	343-344

in	pivot	tables,	249-250
types	of,	329-330
VBA	methods/properties	for,	330-331

Database	reserved	name,	105
databases,	SQL	Server,	440-442.	see	also	Access;	MDB	files
dates

converting	week	numbers	to,	295-296
daily	dates,	grouping	in	pivot	tables,	219-221
highlighting	cells	based	on,	348
retrieving

permanent,	287
saved,	286

DblClick	event
frames/option	buttons,	164
graphics,	165
label/text	box/command	button	control,	159
list	boxes/combo	boxes,	162
MultiPage	controls,	168
userforms,	155

Deactivate	event	(userforms),	155
Debug	mode,	errors	not	showing	up,	487-488
debugging	tools.	see	also	error	handling

breakpoints,	40
Immediate	window,	41-42
moving	forward/backward	in	code,	40
running	code	while	stepping,	41
stepping	through	code,	38-40
ToolTips,	42
Watches	window,	43-45

declarations	(API)
32-bit	and	64-bit	compatibility,	471-472
calling,	470-471
checking	open	network	files,	473
creating	running	timer,	476-477
customizing	About	dialog	box,	475
disabling	X	button	in	userforms,	475-476
explained,	469-470
playing	sounds,	477
returning	computer	name,	472-473
returning	display	resolution,	474

declaring
arrays,	123-124
dynamic	arrays,	128-129
multidimensional	arrays,	124-125
variables,	14,	79

decrement	operator	(--),	in	JavaScript,	543
default	file	type,	changing,	5
defined	constants	in	Help	topics,	35-37
defining

pivot	cache,	210-211
in	Data	Model,	243

ranges	(Word),	418-419
slicer	cache,	235

deleting
add-ins,	521
CSV	files,	254
duplicate	values,	291-292
names,	100
part	of	pivot	table,	215
pivot	cache,	216
records	(database),	435
selections	in	recorded	code,	46-47

delimited	strings,	extracting	elements	from,	296
delimited	text	files,	393

opening,	397-399
delimiter	settings,	401
Design	tab	(pivot	tables),	Layout	group,	248
Developer	tab,	enabling,	3-4
dictionaries,	collections	versus,	142-144
Dim	statements,	declaring	variables,	79
directories

counting	workbooks	in,	284-285
listing	files	in,	251-253

disabling
application	states,	263,	265
events,	111
macros,	7-8

displaying	File	Open	dialog	box,	170-171

display	resolution,	returning,	474
DLLs	(dynamic	link	libraries),	469
Document	object	(Word),	415

closing	documents,	416
creating	documents,	415-416
opening	documents,	416
printing	documents,	417

documents	(Word)
bookmarks,	421-422
closing,	416
creating,	415-416
form	fields,	422-424
opening,	416
printing,	417
selections	in,	417

inserting	text,	417-418
navigating,	417
ranges,	418-421

DoEvents	syntax,	488
Do...Loop	loops,	75-77

exiting,	76-77
Until	clause	in,	77-78
While	clause	in,	77-78

drilling	down	pivot	tables,	265-266
drop-down	menus	(AutoFilter),	hiding,	207-208
DropButtonClick	event

combo	boxes,	162
text	box	control,	159

duplicate	ActiveX	label	code,	minimizing,	144-146
duplicate	cells,	highlighting,	346-347
duplicate	max	values,	returning	addresses	of,	301-302
duplicate	values,	removing,	291-292
duplicate	values	rules,	330

dynamic	arrays,	declaring,	128-129
dynamic	cursors,	428
dynamic	filters	in	AutoFilter,	178-179
dynamic	link	libraries	(DLLs),	469

E
early	binding,	407-409
Edit	Watch	dialog	box,	43
editing	macros

Project	Explorer,	14-15
Properties	window,	15
VB	Editor	interface,	13-14
VB	Editor	settings,	14

either/or	decisions	in	If...Then...Else	constructs,	82
Else	statements,	81-82
ElseIf	statements,	82
email	addresses,	validating,	287-289
embedded	charts,	events	for,	116-118,	134-135
empty	cells	in	ranges,	finding,	62-63
empty	files,	checking	for,	489-490
enabling

application	states,	263,	265
Developer	tab,	3-4
events,	111
macros,	7-8

End	If	statements,	81
EndKey	method	(Selection	object),	417
Enter	event

frames/option	buttons,	164
list	boxes/combo	boxes,	162
MultiPage	controls,	169
spin	buttons,	166

text	box/command	button	control,	159
Err	object,	484
Error	event

frames/option	buttons,	164
graphics,	165
label/text	box/command	button	control,	159
list	boxes/combo	boxes,	162
MultiPage	controls,	169
spin	buttons,	166
userforms,	155

error	handling.	see	also	troubleshooting
checking	for	empty	files,	489-490
with	Err	object,	484
errors	not	in	Debug	mode,	487-488
by	Excel	version,	492
ignoring	errors,	484-486
method	range	of	object	global	failed	(error	1004),	489-490
multiple	error	handlers,	484
with	On	Error	Go	To,	482-483
pausing	macro,	487-488
purposely	encountering	errors,	486-487
subscript	out	of	range	(error	9),	488-489
suppressing	alerts,	486
training	clients	in,	487
userforms,	481-482
VB	Editor	actions,	479-482

error	messages,	troubleshooting	on	ribbon,	493,	505-509
errors.	see	also	runtime	errors

with	filter	in	place,	199-200
highlighting	cells	with,	348-349

Evaluate	method,	avoiding,	103
events.	see	also	procedures

application	events

in	class	modules,	118,	132-133
list	of,	119,	122

chart	events,	116
for	embedded	charts,	116-117,	134-135
list	of,	117-118

for	check	boxes,	445-446
for	combo	boxes,	162
for	command	button	controls,	159
enabling/disabling,	111
for	frames,	163-164
for	graphic	controls,	165
for	label	controls,	159
levels	of,	109
for	list	boxes,	162
in	MultiPage	controls,	168-169
for	option	buttons,	163-164
parameters,	110
for	RefEdit	controls,	448-449
for	scrollbars,	451
for	spin	buttons,	166-167
for	TabStrip	controls,	447-448
for	text	box	controls,	159
for	toggle	buttons,	449-450
in	userforms,	155-156
viewing	and	inserting,	110
where	to	use,	109
workbook	events,	list	of,	111-113
workbook-level	sheet	events,	list	of,	113-114
worksheet	events,	list	of,	114-115

examining	recorded	macro	code,	33-34
breakpoints,	40
defined	constants,	35-37
in	Immediate	window,	41-42

moving	forward/backward	in	code,	40
optional	parameters,	34
properties	returning	objects,	38
running	code	while	stepping,	41
stepping	through	code,	38-40
with	ToolTips,	42
in	Watches	window,	43-45

Excel
checking	if	open	on	network,	473
as	content	management	system,	388-390
interface

Advanced	Filter	in,	182
extracting	unique	list	of	values,	183-184
formula-based	conditions,	193-194

pivot	tables,	history	in,	209-210
referencing	Word	from,	407

CreateObject	function,	411
early	binding,	407-409
GetObject	function,	411-412
late	binding,	410
New	keyword,	410
retrieving	constant	values,	412-414

Excel	97-2003	Workbook	(.xls)	file	type,	5
Excel	2019

file	types,	4-5
changing	default,	5

help	features,	object	model,	551
new	features,	547

3D	Models,	551
array	formulas,	549
charts,	549-550
icons,	550
pivot	tables,	550

Quick	Analysis	tool,	549
ribbon,	548
single-document	interface	(SDI),	548-549
slicers,	550
SmartArt,	551

Office	365	subscription	versus,	547
Excel	Binary	Workbook	(.xlsb)	file	type,	5
Excel	Macro-Enabled	Workbook	(.xlsm)	file	type,	4-5
Excel	versions

backward	compatibility	when	creating	charts,	328
error	handling	in,	492
password	schemes	in,	491-492
verifying

with	Excel8CompatibilityMode	property,	553
with	Version	property,	552

Excel	Workbook	(.xlsx)	file	type,	4
Excel8CompatibilityMode	property,	553
existence	of	names,	checking	for,	106
Exit	Do	statement,	76
Exit	event

frames/option	buttons,	164
list	boxes/combo	boxes,	162
MultiPage	controls,	169
spin	buttons,	166
text	box/command	button	control,	159

Exit	For	statements,	73-74
exiting

Do...Loop	loops,	76-77
For...Next	loops	early,	73-74

exporting
charts	as	graphics,	328
tables	to	XML,	258-259

Extract	reserved	name,	105

extracting
elements	from	delimited	strings,	296
unique	list	of	values,	182

with	Excel	interface,	183-184
for	multiple	fields,	187-188
with	VBA	code,	184-187

F
F1	shortcut	key	(Help	topics),	32-33
FieldInfo	parameter,	values	in,	396-397
fields

calculated	fields	in	pivot	tables,	246-247
Data	Model	fields,	adding	to	pivot	tables,	243
database	fields

checking	for	existence,	438-439
creating,	440

multiple	value	fields
extracting	unique	list	of	values,	187-188
in	pivot	tables,	218-219

in	pivot	table	data	area,	adding,	212-215
requiring	in	userforms,	169
row	fields	in	pivot	tables,	suppressing	subtotals,	249
skipping	during	imports,	395
value	fields,	adding	to	Data	Model	pivot	tables,	243-244

file	formats,	troubleshooting,	509
file	names,	setting	in	cells,	282
File	Open	dialog	box,	displaying,	170-171
file	path,	setting	in	cell,	282
file	structure,	accessing,	501
file	types	in	Excel	2019,	4-5
files

CSV	files,	importing	and	deleting,	254

empty	files,	checking	for,	489-490
listing	in	directory,	251-253
opening	in	Notepad,	526
saving,	changing	default	file	type,	5
selecting	in	userforms,	170-171
text	files,	reading/parsing	in	memory,	254-255

fill	color,	formatting	charts,	320-322
filling	arrays,	125-126
Filter.	See	AutoFilter
filter	in	place	in	Advanced	Filter,	199

no	records	returned,	199-200
viewing	all	records	after,	200

filtering.	see	also	Advanced	Filter
charts,	313
OLAP	pivot	tables,	266-268
pivot	tables

with	AutoShow,	232-234
with	conceptual	filters,	228-231
manually,	227-228
with	Search	box,	232
with	slicers,	234-238
with	Timeline	slicers,	238-241

record	sets	in	pivot	tables,	247
finding

empty	cells	in	ranges,	62-63
first	nonzero-length	cell	in	range,	292-293
last	data	row	in	recorded	code,	47-48
pivot	table	size,	215-217
results	in	web	data,	378-379

fixed-width	text	files,	opening,	393-397
flow	control.	see	also	loops

If...Then...Else	constructs,	81-82
conditions	in,	81-82

either/or	decisions	in,	82
ElseIf	statements	in,	82
End	If	statements	in,	81

nesting	If	statements,	84-86
Select	Case...End	Select	constructs,	83-84

for	(...	in	...)	statement	in	JavaScript,	541-542
For	Each...Loop	loops,	79-80
For	each..next	statements	in	JavaScript,	541-542
for	loops	in	JavaScript,	539
For	statements	in	For...Next	loops,	69-71

Step	clause	in,	72-73
variables	in,	71-72

For...Next	loops,	69-71
exiting	early,	73-74
nesting,	74
Step	clause	in	For	statement,	72-73
variables	in	For	statement,	71-72

form	controls,	assigning	macros	to,	12-13
form	fields	(Word),	422-424
Format	method	(formatting	charts),	319-320
FormatConditions	collection,	330
formatting

cells	as	military	time,	115-116
charts

chart	colors,	312-313
chart	titles,	311-312
fill	color,	320-322
with	Format	method,	319-320
line	settings,	322
referring	to	specific	chart,	310-311
with	SetElement	method,	314-319

conditional	formatting.	see	also	data	visualizations
above/below	average,	344

blank/error	cells,	348-349
custom	number	formats,	350-351
date-based,	348
with	formulas,	349-350
text-based,	348
top/bottom	values,	345
unique/duplicate	cells,	346-347
value-based,	347

ranges	(Word),	419-421
rows	with	AutoFilter,	173-176
slicers,	238
sparklines,	359

with	RGB	colors,	362-364
sparkline	elements,	364-366
with	theme	colors,	359-362
win/loss	charts,	366-367

tables,	resetting	formatting,	275
forms	in	hidden	workbooks,	522-523.	see	also	userforms
formula-based	conditions	in	Advanced	Filter	criteria	ranges,	191-198
formulas

array	formulas,	R1C1	references	with,	96
for	arrays,	549
changing	to	variables	in	recorded	code,	49
conditional	formatting	with,	349-350
converting	to	R1C1	style,	96
copying,	89-91
names,	creating,	101
R1C1,	in	recorded	code,	49
in	text	fields,	troubleshooting,	396

forward	in	code,	moving,	40
found	a	problem	error	message,	507-508
frame	controls,	163-164
FreeFile	function,	401

FTP,	publishing	web	data	via,	390-391
Function	Arguments	dialog	box,	281
functions.	see	also	declarations	(API);	UDFs	(user-defined	functions)

arrays,	passing	to,	130
in	JavaScript,	535
math	functions	in	JavaScript,	543-544
names,	checking	for	existence,	106
recursive,	284

G
GetObject	function,	referencing	Word,	411-412
GetUserName	API	function,	470-471
globally	unique	identifiers	(GUIDs),	528
global	names,	97-98
Go	To	dialog	box,	21-22
Go	To	Special	dialog	box,	63-65

hiding	rows,	180-181
selecting	visible	cells	only,	179-180

gradients,	formatting	charts,	321-322
graphic	controls,	164-165
graphics,	exporting	charts	as,	328
grouping

controls	into	collections,	451-453
daily	dates	in	pivot	tables,	219-221

GroupName	property	(option	buttons),	163
groups	(on	ribbon),	creating,	495-496
GUIDs	(globally	unique	identifiers),	528

H
Hello	World	example	(Office	add-ins),	526-530
help	features

in	Excel	2019
Help	topics,	32-37
macro	recorder	as,	32
Object	Browser,	45-46
object	model,	551

in	userforms
accelerator	keys,	461-462
coloring	active	control,	463-464
tab	order,	462-463
tip	text,	462

Help	topics,	32-33
defined	constants,	35-37
OpenText	method,	33
optional	parameters,	34
properties	returning	objects,	38

hiding
drop-down	menus	(AutoFilter),	207-208
names,	105
rows	with	Go	To	Special	dialog	box,	180-181
userforms,	154
workbooks,	521-523

highlight	cells	rules,	330
highlighting

cells
above/below	average,	344
blank/error	cells,	348-349
by	date,	348
first	unique	value,	349-350
formula-based,	349-350
by	text,	348
top/bottom	values,	345
unique/duplicate,	346-347
by	value,	347

rows,	350
HomeKey	method	(Selection	object),	417
horizontal	axis	in	sparklines,	viewing,	364-365
hovering,	querying	variables	by,	42
HTML

creating	custom	web	pages,	387
in	Office	add-ins,	532

buttons,	533-534
CSS	files,	534
tags,	533

saving	workbooks	as,	386-387
hyperlinks

returning	addresses	of,	302
running	macros	from,	513-514
in	userforms,	454-455

I
icon	sets,	329

adding	to	ranges,	337-340
creating	for	subset	of	range,	340-341
mixing,	343-344

icons
custom	icons,	adding	to	buttons	(on	ribbon),	504-505
filtering	with	AutoFilter,	178
Microsoft	Office	icons,	adding	to	buttons	(on	ribbon),	503-504
new	features,	550

if	statements
Exit	Do	statements	in,	76
in	If...Then...Else	constructs,	81-82
in	JavaScript,	539
nesting,	84-86

If...Then...Else	constructs,	81-82

conditions	in,	81-82
either/or	decisions	in,	82
ElseIf	statements	in,	82
End	If	statements	in,	81

ignoring	errors,	484-486
illegal	qualified	name	character	error	message,	506-507
illegally	closing	userforms,	169-170
images,	adding

to	buttons	(on	ribbon),	503-505
to	userforms,	458-459

Immediate	window,	41-42
importing

CSV	files,	254
from	text	files,	393

into	column	sets,	402-403
into	Data	Model	with	Power	Query,	403-404
delimited	files,	397-399
file	types	available,	393
fixed-width	files,	393-397
more	than	1,048,576	rows,	399-404
reading	one	row	at	a	time,	400-401

improving.	See	optimizing
inactive	worksheets,	referencing	ranges	in,	55-56
increment	operator	(++)	in	JavaScript,	543
Initialize	event	(userforms),	155
initializing	Office	add-ins,	545
input	boxes,	151-152

return	data	types,	152
secure	password	input,	270-273

InputBox	function,	151-152
Insert	Function	dialog	box,	280
inserting

class	modules,	131-132

comments	for	names,	100
events,	110
modules,	15
text	in	selections	(Word),	417-418

installing	add-ins,	519-520
interactivity,	adding	to	Office	add-ins,	530-532,	535
interface

Excel
Advanced	Filter	in,	182
extracting	unique	list	of	values,	183-184
formula-based	conditions,	193-194

Office	add-ins,	534
interrupting	macros,	111
Intersect	method	(Range	object),	creating	ranges	from	overlapping	ranges,

62
invalid	file	format	error	message,	509
IsEmpty	function	(Range	object),	finding	empty	cells,	62-63
Ivy	charts,	creating,	305

J
JavaScript

adding	interactivity	with,	530-532,	535
arrays,	538
case	sensitivity,	526,	536
changes	for	Office	add-ins,	544-545
comments,	531,	536
curly	braces	({	})	in,	536
custom	functions,	525
For	each..next	statements,	541-542
for	loops,	539
functions,	535
if	statements,	539

initializing	Office	add-ins,	545
line	breaks,	536
math	functions,	543-544
operators,	542-543
reading/writing	to	worksheets,	545
Select...Case	statements,	540-541
semicolons	(;)	in,	536
spaces	in,	536
strings,	537-538
variables,	537
writing	to	content/task	panes,	544

Jet	engine,	426
joining

criteria	ranges
with	logical	AND,	191
with	logical	OR,	190-191

ranges	with	Union	method,	61

K
keyboard	shortcuts,	running	macros,	510
KeyDown	event

frames/option	buttons,	164
list	boxes/combo	boxes,	162
MultiPage	controls,	169
spin	buttons,	166
text	box/command	button	control,	159
userforms,	155

KeyPress	event
frames/option	buttons,	164
list	boxes/combo	boxes,	162
MultiPage	controls,	169
spin	buttons,	167

text	box/command	button	control,	159
userforms,	155

KeyUp	event
frames/option	buttons,	164
list	boxes/combo	boxes,	162
MultiPage	controls,	169
spin	buttons,	167
text	box/command	button	control,	159
userforms,	155

L
label	controls,	157-159
labels	in	sparklines,	viewing,	365
last	data	row,	finding	in	recorded	code,	47-48
late	binding,	407,	410
Layout	event

frames,	164
MultiPage	controls,	169
userforms,	155

Layout	group	(Design	tab)	for	pivot	tables,	248
layout	settings	for	pivot	tables,	248-249
libraries	for	object	models,	setting	priority,	409
line	breaks	in	JavaScript,	536
line	continuation,	18
line	settings,	formatting	charts,	322
line	sparklines,	353
list	boxes

combo	boxes	versus,	160-161
events,	162
ListCount	property,	162
multicolumn,	464-465
MultiSelect	property,	161-162

ListCount	property	(list	boxes),	162
listing	files	in	directory,	251-253
listings

Data	Model	pivot	table,	245-246
pivot	table	generation,	214-215
pivot	table	slicers,	236-238
pivot	table	static	summary,	216-217
pivot	table	timelines,	239-241
replicating	pivot	table	reports,	224-227

local	names,	97-98
creating,	98
reserved,	104-105

lock	types,	428
logical	AND,	joining	criteria	ranges	with,	191
logical	operators	in	JavaScript,	542-543
logical	OR,	joining	criteria	ranges	with,	190-191
loops.	see	also	flow	control

breaking	out,	539
Do...Loop,	75-77

exiting,	76-77
Until	clause	in,	77-78
While	clause	in,	77-78

For	Each...Loop,	79-80
for	loops	in	JavaScript,	539
For...Next,	69-71

exiting	early,	73-74
nesting,	74
Step	clause	in	For	statement,	72-73
variables	in	For	statement,	71-72

Go	To	Special	dialog	box	versus,	180-181
replacing	with	AutoFilter,	173-176
While...Wend,	79

Lotus	1-2-3	macro	recorder,	Excel	macro	recorder	versus,	1,	24

M
M	language,	375
Macintosh	computers,	compatibility,	492
macro	buttons,	creating

on	Quick	Access	Toolbar,	11
on	ribbon,	10

macro	recorder,	8
cleaning	up	code,	tips	for,	46-52
Developer	tab	icons,	4
examining	code,	33-34

breakpoints,	40
defined	constants,	35-37
in	Immediate	window,	41-42
moving	forward/backward	in	code,	40
optional	parameters,	34
properties	returning	objects,	38
running	code	while	stepping,	41
stepping	through	code,	38-40
with	ToolTips,	42
in	Watches	window,	43-45

fields	in	Record	Macro	dialog	box,	9
as	help	resource,	32
limitations	of,	1-2,	15-16

absolute	references,	19-20
AutoSum,	23-24
preparations	for	recording,	16-17
Quick	Analysis,	24-25
recording	macro,	17
relative	references,	20-24
viewing	code	in	Programming	window,	17-19

tips	for,	25-26
macros

assigning
to	form	controls,	12-13
to	shortcut	keys,	9

editing
Project	Explorer,	14-15
Properties	window,	15
VB	Editor	interface,	13-14
VB	Editor	settings,	14

in	hidden	workbooks,	522-523
interrupting,	111
pausing,	487-488
restarting,	111
running

with	ActiveX	controls,	512-513
with	command	buttons,	510-511
with	form	controls,	12-13
with	hyperlinks,	513-514
with	keyboard	shortcuts,	510
with	macro	button	on	Quick	Access	Toolbar,	11
with	macro	button	on	ribbon,	10
with	shapes,	511-512
with	shortcut	keys,	10

saving,	9
scheduling,	381

canceling	scheduled,	382-383
for	every	two	minutes,	385
for	x	minutes	in	future,	383-384
Ready	mode,	382
verbal	reminders,	384-385
windows	of	time	for,	382

security,	5
adding	trusted	locations,	6-7
enabling/disabling	macros,	7-8

shortcut	keys,	changing,	18
testing,	19

manually	filtering	pivot	tables,	227-228
map	charts,	creating,	326
map()	function	(JavaScript),	544
markers	in	sparklines,	viewing,	365-366
matching	records,	returning	all	with	Advanced	Filter,	200

copying	all	columns,	200-201
copying	subset	of	columns,	201-203
creating	individual	reports,	203-207

math	functions	in	JavaScript,	543-544
mathematical	operators	in	JavaScript,	542-543
matrix.	See	arrays
max	values,	returning	addresses	of	duplicates,	301-302
MDB	(multidimensional	database)	files,	425

creating	shared	databases,	427-428
database	connection	terminology,	428-429
fields

checking	for	existence,	438-439
creating,	440

records
adding,	430-431
deleting,	435
retrieving,	431-433
summarizing,	436-437
updating,	433-435

tables
checking	for	existence,	437-438
creating,	439

memory,	reading/parsing	text	files	in,	254-255
message	boxes,	152

errors	versus,	487
method	range	of	object	global	failed	(error	1004),	489-490

methods,	28
parameters,	29-30

Microsoft	Access.	See	Access
Microsoft	ActiveX	Data	Objects	Library,	426
Microsoft	Jet	Database	Engine,	426
Microsoft	Office	icons,	adding	to	buttons	(on	ribbon),	503-504
Microsoft	Office	Trusted	Location	dialog	box,	6
Microsoft	Scripting	Runtime	reference	library,	284
military	time,	formatting	cells	as,	115-116
minimizing	duplicate	ActiveX	label	code,	144-146
minutes	in	future,	scheduled	macros	for,	383-384
mixed	alphanumeric	data,	sorting,	298-300
mixed	references	with	R1C1	references,	92-93
mixed	text,	retrieving	numbers	from,	294-295
mixing	icon	sets,	343-344
modeless	userforms,	453-454
modules,	inserting,	15
MouseDown	event

frames/option	buttons,	164
graphics,	165
label/text	box/command	button	control,	159
list	boxes/combo	boxes,	162
MultiPage	controls,	169
userforms,	155

MouseMove	event
frames/option	buttons,	164
graphics,	165
label/text	box/command	button	control,	159
list	boxes/combo	boxes,	162
MultiPage	controls,	169
userforms,	155

MouseUp	event
frames/option	buttons,	164

graphics,	165
label/command	button	control,	159
label/text	box/command	button	control,	159
list	boxes/combo	boxes,	162
MultiPage	controls,	169
userforms,	155

moving
forward/backward	in	code,	40
part	of	pivot	table,	215

MsgBox	function,	152
multicolumn	list	boxes,	464-465
multidimensional	arrays,	declaring,	124-125
multidimensional	database	files.	See	MDB
MultiPage	controls,	167-169,	446
multiple	A1	references,	replacing	with	single	R1C1	reference,	93-95
multiple	actions	in	recorded	code,	50
multiple	characters,	substituting,	293-294
multiple	colors	for	data	bars,	341-343
multiple	error	handlers,	484
multiple	fields,	extracting	unique	list	of	values,	187-188
multiple	items,	selecting	with	AutoFilter,	176-177
multiple	queries	for	web	data,	377-378
multiple	value	fields	in	pivot	tables,	218-219
multiplication	tables,	building,	93-95
MultiSelect	property	(list	boxes),	161-162

N
Name	Manager	dialog	box,	97-98
name	of	workbook,	setting	in	cell,	282
named	ranges

creating,	98-99
referencing,	54-55

for	VLOOKUP()	function,	106-108
names

adding,	98-99
of	arrays,	creating,	104
capabilities	of,	100
checking	for	existence,	106
comments,	adding	to,	100
deleting,	100
of	formulas,	creating,	101
global,	97-98
hiding,	105
local,	97-98
of	numbers,	creating,	103
renaming,	99
reserved,	104-105
of	strings,	creating,	101-103
of	tables,	creating,	103-104
values,	storing	with,	102

navigating
documents	(Word)	with	bookmarks,	421-422
selections	(Word),	417

navigation	keys	in	recorded	macros,	26
nesting

For...Next	loops,	74
If	statements,	84-86

network	files,	checking	if	open,	473
network	requirements	for	Office	add-ins,	526-529
new	features,	547

3D	Models,	551
array	formulas,	549
charts,	549-550
icons,	550
pivot	tables,	209-210,	550

Quick	Analysis	tool,	549
ribbon,	548
single-document	interface	(SDI),	548-549
slicers,	550
SmartArt,	551

New	keyword,	referencing	Word,	410
Next	statements	in	For...Next	loops,	69-71
noncontiguous	ranges,	selecting,	66
nonzero-length	cells,	finding	first	in	range,	292-293
Notepad,	526
Notepad++,	494,	526
NOW	function,	287
NumberFormat	property	(FormatConditions	object),	350-351
numbers

names,	creating,	103
retrieving	from	mixed	text,	294-295
week	numbers,	converting	to	dates,	295-296

O
Object	Browser,	45-46

retrieving	constants,	413-414
object	models,	407,	551

priority	of	libraries,	setting,	409
Word,	414-415

bookmarks,	421-422
CreateObject	function,	411
Document	object,	415-417
early	binding,	407-409
GetObject	function,	411-412
late	binding,	410
New	keyword,	410
Range	object,	418-421

retrieving	constant	values,	412-414
Selection	object,	417-418

object	variables,	79-80
object-oriented	languages

parts	of	speech	analogy,	28-31
procedural	languages	versus,	27-28

objects,	28
collections	versus,	29
custom.	See	custom	objects
properties,	31
returned	by	properties,	38
watches	on,	44-45

Office	365	subscription
Excel	2019	versus,	547
Power	BI	Custom	Visuals	support,	306

Office	add-ins,	525
adding	interactivity,	530-532,	535
case	sensitivity,	526
content/task	panes,	writing	to,	544
creating,	526-530
HTML	in,	532

buttons,	533-534
CSS	files,	534
tags,	533

initializing,	545
interface	types,	534
JavaScript	changes	for,	544-545.	see	also	JavaScript
network	requirements,	526-529
XML	in,	534-535

Office	Add-Ins	dialog	box,	refreshing,	535
Office	icons,	adding	to	buttons	(on	ribbon),	503-504
Offset	property	(Range	object),	175

referencing	ranges,	58-59

OLAP	pivot	tables,	filtering,	266-268
On	Error	Go	To	syntax,	482-483
On	Error	Resume	Next	syntax,	484-485
online	data.	See	web	data
OnTime	method,	381

canceling	scheduled	macros,	382-383
for	every	two	minutes,	385
for	x	minutes	in	future,	383-384
Ready	mode,	382
verbal	reminders,	384-385
windows	of	time	in,	382

Open	method	(Document	object),	416
open	network	files,	checking	for,	473
open	workbooks,	checking	for,	282-283
opening

delimited	text	files,	397-399
documents	(Word),	416
files	in	Notepad,	526
fixed-width	text	files,	393-397
VB	Editor,	18
workbooks	when	customizing	ribbon,	502

OpenText	method,	33,	35,	37,	393
delimited	text	files,	397-399
file	types	for,	393
fixed-width	text	files,	393-397
importing	more	than	1,048,576	rows,	399

operators	in	JavaScript,	542-543
optimistic	lock	types,	428
optimizing	code	with	arrays,	128
option	buttons,	163

events,	163-164
GroupName	property,	163

optional	parameters	in	Help	topics,	34

OR,	joining	criteria	ranges	with,	190-191
organizing	controls	on	UserForm	toolbar,	443-444
overlapping	ranges,	creating	ranges	from,	62

P
Page	Setup	dialog	box,	ignoring	errors,	485-486
parameters,	29-30

for	events,	110
optional,	34

parsing	text	files	in	memory,	254-255
parts	of	speech	analogy	(object-oriented	languages),	28-31
pass-through	queries,	429
passing

arrays	to	functions,	130
values	to/from	arrays,	130

passwords
for	add-ins,	520
cracking,	490-491
in	Excel	versions,	491-492
secure	password	input,	270-273

pasting	in	recorded	code,	49
patterns,	formatting	charts,	321
pausing	macros,	487-488
percentages,	changing	pivot	table	calculations	to,	221-223
performance	of	code,	optimizing	with	arrays,	128
permanent	date/time,	retrieving,	287
Personal	Macro	Workbook,	9
pessimistic	lock	types,	429
pictures,	formatting	charts,	321
pivot	cache

defining,	210-211,	243
deleting,	216

pivot	table	events	(workbook-level),	list	of,	113-114
pivot	tables,	209

AutoSort,	224
calculated	fields	in,	246-247
calculated	items	in,	247
calculations,	changing	to	percentages,	221-223
configuring,	211-212
converting	to	values,	215-217
creating,	211-212
daily	dates,	grouping,	219-221
data	area,	adding	fields,	212-215
Data	Model	example	code,	244-246
Data	Model	fields,	adding,	243
data	sets,	replicating	reports	for,	224-227
data	visualizations	in,	249-250
drilling	down,	265-266
filtering

with	AutoShow,	232-234
with	conceptual	filters,	228-231
manually,	227-228
with	Search	box,	232
with	slicers,	234-238
with	Timeline	slicers,	238-241

finding	size	of,	215-217
history	in	Excel,	209-210
Layout	group	(Design	tab),	248
moving/changing	part	of,	215
new	features,	550
OLAP	pivot	tables,	filtering,	266-268
pivot	cache

defining,	210-211,	243
deleting,	216

record	sets,	filtering,	247

reports,	layout	settings,	248-249
subtotals,	suppressing,	249
value	fields

adding	to	Data	Model,	243-244
multiple,	218-219

values	area,	eliminating	blank	cells,	223-224
VBA	terminology	for,	210

playing	sounds,	477
plus	sign	(+)	in	JavaScript,	537
Power	BI	Custom	Visuals,	306
Power	Query	add-in,	375

importing	text	files	into	Data	Model,	403-404
preparing	to	record	macros,	16-17
Preserve	keyword,	129
Print_Area	reserved	name,	105
Print_Titles	reserved	name,	105
printing	documents	(Word),	417
PrintOut	method	(Document	object),	417
priority	of	libraries,	setting,	409
private	variables,	135
procedural	languages,	object-oriented	languages	versus,	27-28
procedures,	preventing	recursive	calling,	116.	see	also	events
ProgIDs	for	controls,	458
programming

controls,	156
userforms,	154-156

Programming	window,	viewing	code	in,	17-19
progress	indicators,	creating,	269-270
Project	Explorer,	14-15
properties,	31,	135.	see	also	variables

custom,	creating,	146-149
returning	objects,	38

Properties	window,	15

closing,	513
Property	Get	procedures,	137
Property	Let	procedures,	136
Property	Set	procedures,	137
protecting

code
disadvantages	of,	490
Excel	password	versions,	491-492
password	cracking,	490-491

hidden	names,	106
public	variables,	135
publishing	web	data

Excel	as	content	management	system,	388-390
via	FTP,	390-391
saving	as	HTML,	386-387
writing	macro	for,	387

purposely	encountering	errors,	486-487

Q
QueryClose	event	(userforms),	155,	169-170
querying

variables
in	Immediate	window,	41-42
with	ToolTips,	42
in	Watches	window,	43

web	data,	375,	377
cleaning	up	macro,	379-380
examples	of,	380-381
finding	results	in,	378-379
with	multiple	queries,	377-378
scheduling	retrieval,	381

Quick	Access	Toolbar,	macro	buttons	on,	11

Quick	Analysis	tool,	549
in	recorded	macros,	24-25

quotation	marks	(““)	in	JavaScript,	537

R
R1C1	references

A1	references	versus,	87-88
absolute	references	with,	92
with	array	formulas,	96
associating	column	numbers	with	column	names,	95
converting	formulas	to,	96
copying	formulas,	89-91
for	entire	columns/rows,	93
mixed	references	with,	92-93
in	recorded	code,	49
relative	references	with,	91-92
replacing	multiple	A1	references,	93-95
toggling,	88-89

RAND	function,	303
random	numbers,	generating	static,	303
Range	object,	541

Areas	collection,	selecting	noncontiguous	ranges,	66
Cells	property,	selecting	ranges,	57-58
Columns	property,	referencing	ranges,	61
CurrentRegion	property,	selecting	ranges,	63
Intersect	method,	creating	ranges	from	overlapping	ranges,	62
IsEmpty	function,	finding	empty	cells,	62-63
Offset	property,	referencing	ranges,	58-59
referencing,	53-54

named	ranges,	54-55
in	other	worksheets,	55-56
relative	to	other	ranges,	56

syntax,	54
Resize	property,	resizing	ranges,	60-61
Rows	property,	referencing	ranges,	61
SpecialCells	method,	selecting	specific	cells,	63-65
Union	method,	joining	ranges,	61
in	Word,	418

defining	ranges,	418-419
formatting	ranges,	419-421

ranges,	53
adding

color	scales	to,	336-337
data	bars	to,	331-335
icon	sets	to,	337-340

creating	from	overlapping	ranges,	62
finding

empty	cells	in,	62-63
first	nonzero-length	cell	in,	292-293

joining	with	Union	method,	61
multiple	data	bar	colors	in,	341-343
named	ranges

creating,	98-99
for	VLOOKUP()	function,	106-108

referencing
with	Columns	property,	61
named	ranges,	54-55
with	Offset	property,	58-59
in	other	worksheets,	55-56
in	recorded	code,	47
relative	to	other	ranges,	56
with	Rows	property,	61
syntax,	54

resizing	with	Resize	property,	60-61
selecting

with	Cells	property,	57-58
with	CurrentRegion	property,	63
noncontiguous	ranges,	66
specific	cells	with	SpecialCells	method,	63-65

sorting
by	custom	sort	order,	268-269
numerically	then	alphabetically,	298-300

subsets	of,	creating	icon	sets	for,	340-341
tables

creating,	103-104
referencing,	66-67
selecting,	66

reading.	see	also	importing
from	worksheets	with	JavaScript,	545
text	files	into	memory,	254-255

Ready	mode,	scheduled	macros	and,	382
Record	Macro	dialog	box,	8-9,	17
record	sets,	428

filtering	in	pivot	tables,	247
recording	macros,	8

cleaning	up	code,	tips	for,	46-52
Developer	tab	icons,	4
examining	code,	33-34

breakpoints,	40
defined	constants,	35-37
in	Immediate	window,	41-42
moving	forward/backward	in	code,	40
optional	parameters,	34
properties	returning	objects,	38
running	code	while	stepping,	41
stepping	through	code,	38-40
with	ToolTips,	42
in	Watches	window,	43-45

fields	in	Record	Macro	dialog	box,	9
as	help	resource,	32
limitations	of,	1-2,	15-16

absolute	references,	19-20
AutoSum,	23-24
preparations	for	recording,	16-17
Quick	Analysis,	24-25
recording	macro,	17
relative	references,	20-24
viewing	code	in	Programming	window,	17-19

tips	for,	25-26
records

copying	to	worksheets,	257-258
counting	in	pivot	tables,	219
database

adding,	430-431
deleting,	435
retrieving,	431-433
summarizing,	436-437
updating,	433-435

recursive	functions,	284
recursive	procedure	calling,	preventing,	116
RefEdit	controls,	448-449
references

R1C1
A1	versus,	87-88
absolute	references	with,	92
with	array	formulas,	96
associating	column	numbers	with	column	names,	95
converting	formulas	to,	96
copying	formulas,	89-91
for	entire	columns/rows,	93
mixed	references	with,	92-93

relative	references	with,	91-92
replacing	multiple	A1	references,	93-95
toggling,	88-89

to	ranges	in	recorded	code,	47
referencing

custom	objects,	137-138
Range	object,	53-54

with	Columns	property,	61
named	ranges,	54-55
with	Offset	property,	58-59
in	other	worksheets,	55-56
relative	to	other	ranges,	56
with	Rows	property,	61
syntax,	54

tables,	66-67
Word,	407

CreateObject	function,	411
early	binding,	407-409
GetObject	function,	411-412
late	binding,	410
New	keyword,	410
retrieving	constant	values,	412-414

refreshing	Office	Add-Ins	dialog	box,	535
relationships,	creating	between	tables	in	Data	Model,	242
relative	references

with	R1C1	references,	91-92
to	ranges,	56
in	recorded	macros,	20-25

RELS	file,	501-502
reminders	(verbal),	scheduling,	384-385
RemoveControl	event

frames,	164
MultiPage	controls,	169

userforms,	155
removing.	See	deleting
renaming

controls,	156
names,	99
workbooks	when	customizing	ribbon,	502

reordering	columns	with	Advanced	Filter,	201-203
replacing

loops	with	AutoFilter,	173-176
multiple	A1	references	with	single	R1C1	reference,	93-95

replicating	reports	in	pivot	tables,	224-227
reports

creating	individual	with	Advanced	Filter,	203-207
from	pivot	tables,	layout	settings,	248-249
replicating	in	pivot	tables,	224-227

required	fields	in	userforms,	169
requiring	variable	declarations,	14
reserved	names,	104-105
Reset	button	(VB	Editor),	480
Reset	command	(stopping	code),	40
resetting	table	formatting,	275
Resize	event	(userforms),	156
Resize	property	(Range	object),	60-61
resizing

comments,	259-260
ranges	with	Resize	property,	60-61
userforms,	457

resolution	(of	display),	returning,	474-475
resources	for	information.	See	help	resources
restarting	macros,	111
Restore	Down	icon	(arranging	window),	39
retrieving

array	data,	126-127

constant	values	when	referencing	Word,	412-414
numbers	from	mixed	text,	294-295
permanent	date/time	for	workbooks,	287
records	(database),	431-433
saved	date/time	for	workbooks,	286
user	IDs,	285-286
web	data,	375,	377

cleaning	up	macro,	379-380
examples	of,	380-381
finding	results	in,	378-379
with	multiple	queries,	377-378
scheduling	retrieval,	381

return	data	types	for	input	boxes,	152
returning

all	matching	records	with	Advanced	Filter,	200
copying	all	columns,	200-201
copying	subset	of	columns,	201-203
creating	individual	reports,	203-207

cell	addresses	of	duplicate	max	values,	301-302
column	letter	of	cell	addresses,	302-303
computer	name,	472-473
display	resolution,	474
hyperlink	addresses,	302

reversing	cell	contents,	300-301
RGB	colors,	362,	364
RGB	function,	333-364
ribbon

customizing,	493
accessing	file	structure,	501
adding	button	images,	503-505
adding	controls,	496-500
creating	customui	folder/file,	494-495
creating	tabs/groups,	495-496

RELS	file,	501-502
renaming/opening	workbooks,	502
troubleshooting	error	messages,	493,	505-509
visibility	of	ribbon,	494

macro	buttons	on,	10
new	features,	548

RibbonX	Visual	Designer,	503
row	fields	in	pivot	tables,	suppressing	subtotals,	249
RowGrand	property	(pivot	tables),	248
rows

changing	to	variables	in	recorded	code,	49
formatting	with	AutoFilter,	173-176
hiding	with	Go	To	Special	dialog	box,	180-181
highlighting,	350
referencing	with	R1C1	references,	93

Rows	property	(Range	object),	referencing	ranges,	61
running

code	while	stepping,	41
macros

with	ActiveX	controls,	512-513
with	command	buttons,	510-511
with	form	controls,	12,-13
with	hyperlinks,	513-514
with	keyboard	shortcuts,	510
with	macro	button	on	Quick	Access	Toolbar,	11
with	macro	button	on	ribbon,	10
with	shapes,	511-512
with	shortcut	keys,	10

running	timers,	creating,	476-477
runtime,	adding	controls,	455-461
runtime	errors

subscript	out	of	range,	488-489
method	range	of	object	global	failed,	489-490

troubleshooting,	199-200
VB	Editor	actions,	479-480

S
Save	As	command,	converting	workbooks	to	add-ins,	517
saved	date/time,	retrieving,	286
saving

add-in	data,	516
files,	changing	default	file	type,	5
macros,	9
workbooks	as	HTML,	386-387

scaling	sparklines,	355-359
scheduling	macros,	381

canceling	scheduled,	382-383
for	every	two	minutes,	385
for	x	minutes	in	future,	383-384
Ready	mode,	382
verbal	reminders,	384-385
windows	of	time	for,	382

Scroll	event
frames,	164
MultiPage	controls,	169
userforms,	156

scrollbars,	as	sliders,	450-451
SDI	(single-document	interface),	548-549
Search	box

filtering	pivot	tables,	232
selecting	with	in	AutoFilter,	177

searching	for	strings,	300
secure	password	input,	270-273
security

add-ins,	520

macros,	5
adding	trusted	locations,	6-7
enabling/disabling	macros,	7-8

passwords
for	add-ins,	520
cracking,	490-491
in	Excel	versions,	491-492
secure	password	input,	270-273

protecting	code
disadvantages	of,	490
Excel	password	versions,	491-492
password	cracking,	490-491

Select	Case...End	Select	constructs,	83-84
Select...Case	statements

in	JavaScript,	540-541
in	worksheets,	303-304

selecting
cells	with	SpecialCells,	274-275
files	in	userforms,	170-171
multiple	items	with	AutoFilter,	176-177
ranges

with	Cells	property,	57-58
with	CurrentRegion	property,	63
noncontiguous	ranges,	66
specific	cells	with	SpecialCells	method,	63-65

with	Search	box	in	AutoFilter,	177
tables,	66
visible	cells,	179-180

Selection	object	(Word),	417
inserting	text,	417-418
navigating,	417

Selection	property,	38
selections,	deleting	in	recorded	code,	46-47

semicolons	(;)	in	JavaScript,	536
separating	worksheets	into	workbooks,	255-256
Set	statements	for	object	variables,	80
SetElement	method	(formatting	charts),	314-319
shapes

assigning	macros	to,	12
running	macros	from,	511-512

shared	Access	databases,	creating,	427-428
sharing

UDFs	(user-defined	functions),	281
workbooks,	425

sheet	events,	workbook-level,	113-114
shortcut	keys

assigning	to	macros,	9
changing	for	macros,	18
running	macros,	10

ShowAllData	method,	200
ShowDetail	property	(pivot	tables),	247
single	rows,	importing	text	files	by,	400-401
single-document	interface	(SDI),	548-549
size	of	pivot	tables,	finding,	215-217
skipping	fields	during	imports,	395
slicer	cache,	defining,	235
slicers

filtering	pivot	tables,	234-238
formatting,	238
new	features,	550
Timeline	slicers,	238-241

sliders,	scrollbars	as,	450-451
SmartArt

assigning	macros	to,	12
new	features,	551

sorting

columns,	296-298
pivot	tables,	224
ranges

by	custom	sort	order,	268-269
numerically	then	alphabetically,	298-300

sounds,	playing,	477
spaces	in	JavaScript,	536
SparklineGroup	object,	353
sparklines,	353,	550

creating,	353-355
for	dashboard,	369-373

formatting,	359
with	RGB	colors,	362,	364
sparkline	elements,	364-366
with	theme	colors,	359-362
win/loss	charts,	366-367

scaling,	355-359
tips	for,	368-369
types	of,	353

Speak	On	Enter	feature,	384
SpecialCells	method	(Range	object),	selecting	specific	cells,	63-65,	274-275
speeding	up.	See	optimizing
spin	buttons,	165-167
SpinDown	event	(spin	buttons),	167
SpinUp	event	(spin	buttons),	167
spreadsheets.	See	worksheets
SQL	Server,	440-442
SQL	statements

pass-through	queries,	429
viewing,	431

square	brackets	([]),	as	Evaluate	method,	103
standard	add-ins.	See	add-ins
standard	modules,	creating	collections,	139-140

states,	enabling/disabling,	263,	265
static	cursors,	428
static	random	numbers,	generating,	303
Step	clause	in	For	statement	in	For...Next	loops,	72-73
stepping	through	code,	38-41
storing	values	with	names,	102
strings

delimited	strings,	extracting	elements	from,	296
in	JavaScript,	537-538
names,	creating,	101-103
searching	text	for,	300

styles	(chart),	list	of,	307-310
subscript	out	of	range	(error	9),	488-489
subset	of	columns,	copying	with	Advanced	Filter,	201-203
subsets	of	ranges,	creating	icon	sets	for,	340-341
substituting	multiple	characters,	293-294
SubtotalLocation	property	(pivot	tables),	248
subtotals,	suppressing	in	pivot	tables,	249
summarizing	records	(database),	436-437
summing	cells	based	on	color,	289-290
suppressing

alerts,	486
subtotals	in	pivot	tables,	249

switch()	statement	in	JavaScript,	540-541
switching	to	SQL	Server,	440-442

T
tab	order	in	userforms,	462-463
tables

adding	to	Data	Model,	242
creating,	103-104
creating	relationships	in	Data	Model,	242

database
checking	for	existence,	437-438
creating,	439

exporting	to	XML,	258-259
referencing,	66-67
resetting	formatting,	275
selecting,	66

tabs	(on	ribbon),	creating,	495-496
TabStrip	controls,	446-448
Tag	property,	453
tags	(HTML),	533
task	pane	(Office	add-ins),	534,	544
Terminate	event	(userforms),	156
test	expressions,	83
testing	macros,	19
text

changing	case,	273-274
highlighting	cells	based	on,	348
inserting	in	selections	(Word),	417-418
retrieving	numbers	from,	294-295
searching	for	strings,	300

text	box	controls,	157-159
text	boxes,	assigning	macros	to,	12
text	editors,	case	sensitivity	in,	526
text	fields,	troubleshooting	formulas	in,	396
text	files

importing	from,	393
into	column	sets,	402-403
into	Data	Model	with	Power	Query,	403-404
delimited	files,	397-399
file	types	available,	393
fixed-width	files,	393-397
more	than	1,048,576	rows,	399-404

reading	one	row	at	a	time,	400-401
reading/parsing	in	memory,	254-255
writing,	404-405

Text	Import	Wizard,	16,	35,	37
textures,	formatting	charts,	320
theme	colors,	359-362
Then	statements	in	If...Then...Else	constructs,	81-82
time	formats,	military	time,	115-116
time	windows	for	scheduled	macros,	382
Timeline	slicers,	238-241
timers,	creating	running,	476-477
tip	text	in	userforms,	462
titles	(chart),	specifying,	311-312
toggle	buttons,	449-450
toggling	R1C1	references,	88-89
ToolTips	in	VB	Editor,	42
Top	10	AutoShow,	filtering	pivot	tables,	232-234
top/bottom	rules,	330,	345
tracking	user	changes,	262-263
training	clients	in	error	handling,	487
transparency	of	userforms,	465-466
TrapAppEvent	procedure,	133
troubleshooting.	see	also	error	handling

1004	runtime	error,	199-200
Compatibility	mode,	552
error	messages	on	ribbon,	493,	505-509
formulas	in	text	fields,	396
new	controls,	157

trusted	locations,	adding,	6-7
two	minutes,	scheduled	macros	for,	385
Type...End	Type	statements,	146
TypeText	method	(Selection	object),	417-418

U
UDFs	(user-defined	functions)

cells
finding	first	nonzero-length	in	range,	292-293
returning	addresses	of	duplicate	max	values,	301-302
returning	column	letter	of	address,	302-303
returning	hyperlink	addresses,	302
reversing	contents,	300-301
summing	based	on	color,	289-290

characters,	substituting	multiple,	293-294
columns,	sorting	and	concatenating,	296-298
creating,	279-281
delimited	strings,	extracting	elements	from,	296
email	addresses,	validating,	287-289
in	JavaScript,	525
random	numbers,	generating	static,	303
ranges,	sorting	numerically	then	alphabetically,	298-300
sharing,	281
text

retrieving	numbers	from,	294-295
searching	for	strings,	300

user	IDs,	retrieving,	285-286
values

counting	unique,	290-291
removing	duplicates,	291-292

week	numbers,	converting	to	dates,	295-296
workbooks

checking	for	worksheet	existence,	283-284
checking	if	open,	282-283
counting	in	directory,	284-285
retrieving	permanent	date/time,	287
retrieving	saved	date/time,	286

setting	file	path	in	cell,	282
setting	name	in	cell,	282

worksheets,	Select...Case	statements	in,	303-304
UDTs	(user-defined	types),	146-149
Union	method	(Range	object),	joining	ranges,	61
unique	cells,	highlighting,	346-347
unique	list	of	values,	extracting,	182

with	Excel	interface,	183-184
for	multiple	fields,	187-188
with	VBA	code,	184-187

unique	values
counting,	290-291
highlighting	first,	349-350

Until	clause	in	Do...Loop	loops,	77-78
Unviewable+	VBA	Project	software,	490
updating	records	(database),	433-435
user	changes,	tracking,	262-263
user	IDs,	retrieving,	285-286
user-defined	functions	(UDFs).	See	UDFs
user-defined	types	(UDTs),	146-149
UserForm	toolbar,	443-444
userforms,	151

calling,	154
closing	illegally,	169-170
controls

adding	at	runtime,	455-461
check	boxes,	444-446
combo	boxes,	160-162
command	buttons,	157-159
frames,	163-164
graphics,	164-165
grouping	into	collections,	451-453
labels,	157-159

list	boxes,	160-162
multicolumn	list	boxes,	464-465
MultiPage,	167-169,	446
option	buttons,	163-164
ProgIDs	for,	458
programming,	156
RefEdit,	448-449
renaming,	156
scrollbars	as	sliders,	450-451
spin	buttons,	165-167
TabStrip,	446-448
text	boxes,	157-159
toggle	buttons,	449-450
troubleshooting	new	controls,	157

creating,	153-154
disabling	X	button,	475-476
error	handling,	481-482
help	features

accelerator	keys,	461-462
coloring	active	control,	463-464
tab	order,	462-463
tip	text,	462

hiding,	154
hyperlinks	in,	454-455
images,	adding,	458-459
input	boxes,	151-152
message	boxes,	152
modeless,	453-454
programming,	154-156
required	fields,	169
resizing,	457
selecting	files	in,	170-171
transparency,	465-466

UserForm	toolbar,	443-444

V
validating	email	addresses,	287-289
value	fields	in	pivot	tables

adding	in	Data	Model,	243-244
multiple	fields,	218-219

values
arrays

filling,	125-126
passing	to/from,	130

converting	pivot	tables	to,	215-217
counting	unique,	290-291
custom	number	formats,	350-351
extracting	unique,	182

with	Excel	interface,	183-184
for	multiple	fields,	187-188
with	VBA	code,	184-187

first	unique,	highlighting,	349-350
highlighting	cells	based	on,	347
removing	duplicates,	291-292
storing	with	names,	102

values	area	of	pivot	tables,	eliminating	blank	cells,	223-224
variables.	see	also	properties

arrays.	See	arrays
changing	rows/formulas	to	in	recorded	code,	49
declaring,	14,	79
in	For	statement	in	For...Next	loops,	71-72
in	JavaScript,	537
object	variables,	79-80
querying

in	Immediate	window,	41-42

with	ToolTips,	42
in	Watches	window,	43

VB	Editor
converting	workbooks	to	add-ins,	518
debugging	tools

breakpoints,	40
Immediate	window,	41-42
moving	forward/backward	in	code,	40
running	code	while	stepping,	41
stepping	through	code,	38-40
ToolTips,	42
Watches	window,	43-45

error	handling	in,	479-482
interface,	13-14
Object	Browser,	45-46
opening,	18
Programming	window,	viewing	code	in,	17-19
Project	Explorer,	14-15
Properties	window,	15
settings,	14

VBA	(Visual	Basic	for	Applications)
barriers	to	entry,	1

macro	recorder	limitations,	1-2
Visual	Basic	versus	BASIC,	2

data	visualization	methods/properties,	330-331
Developer	tab,	enabling,	3-4
help	resources

Help	topics,	32-33
macro	recorder,	32
Object	Browser,	45-46

learning	curve,	2-3
new	features,	547

3D	Models,	551

array	formulas,	549
charts,	549-550
icons,	550
pivot	tables,	550
Quick	Analysis	tool,	549
ribbon,	548
single-document	interface	(SDI),	548-549
slicers,	550
SmartArt,	551

object	models,	407
as	object-oriented	language

parts	of	speech	analogy,	28-31
procedural	languages	versus,	27-28

pivot	table	terminology,	210
power	of,	1
protecting	code

disadvantages	of,	490
Excel	password	versions,	491-492
password	cracking,	490-491

VBA	Extensibility,	adding	code	to	workbooks,	276-277
verbal	reminders,	scheduling,	384-385
verifying	workbook	version

with	Excel8CompatibilityMode	property,	553
with	Version	property,	552

Version	property,	552
versions	of	Excel

error	handling,	492
password	schemes	in,	491-492
pivot	tables	in,	209-210
verifying

with	Excel8CompatibilityMode	property,	553
with	Version	property,	552

viewing

add-ins,	519
all	records	after	filter	in	place,	200
custom	ribbon,	494
Developer	tab,	3-4
events,	110
horizontal	axis	in	sparklines,	364-365
macro	code	in	Programming	window,	17-19
Project	Explorer,	14
sparkline	labels,	365
sparkline	markers,	365-366
SQL	statements,	431
VBA	and	Excel	windows,	39
Word	instances,	411

visible	cells,	selecting,	179-180
Visual	Basic,	BASIC	versus,	2
Visual	Basic	for	Applications.	See	VBA	(Visual	Basic	for	Applications)
visualizations.	See	data	visualizations
VLOOKUP()	function

finding	results	in	web	data,	378
named	ranges	for,	106-108

W
warnings,	suppressing,	486
Watches	window,	43-45

retrieving	constants,	413
waterfall	charts,	creating,	326-328
WCL_FTP	utility,	390-391
web	data

publishing
Excel	as	content	management	system,	388-390
via	FTP,	390-391
saving	as	HTML,	386-387

writing	macro	for,	387
retrieving,	375,	377

cleaning	up	macro,	379-380
examples	of,	380-381
finding	results	in,	378-379
with	multiple	queries,	377-378

scheduling	retrieval,	381
week	numbers,	converting	to	dates,	295-296
Wend	statements	in	While...Wend	loops,	79
While	clause	in	Do...Loop	loops,	77-78
While...Wend	loops,	79
win/loss	sparklines,	353,	366-367
windows	(VBA	and	Excel),	viewing,	39
Windows	API.	See	API	(application	programming	interface)
Windows	computers,	compatibility,	492
windows	of	time	for	scheduled	macros,	382
WinWord.exe,	411
With...End	With	statements	in	recorded	code,	50
Word

object	model,	414-415
bookmarks,	421-422
Document	object,	415-417
Range	object,	418-421
Selection	object,	417-418

referencing	from	Excel,	407
CreateObject	function,	411
early	binding,	407-409
GetObject	function,	411-412
late	binding,	410
New	keyword,	410
retrieving	constant	values,	412-414

viewing	instances,	411
workbook	events,	list	of,	111-113

workbook-level	sheet	events,	list	of,	113-114
workbooks

adding	code	with	VBA	Extensibility,	276-277
checking	if	open,	282-283
combining,	256-257
Compatibility	mode,	troubleshooting,	552
converting	to	add-ins,	516-517

with	Save	As,	517
with	VB	Editor,	518

counting	in	directory,	284-285
file	structure,	accessing,	501
hiding,	521-523
renaming/opening	when	customizing	ribbon,	502
retrieving	permanent	date/time,	287
retrieving	saved	date/time,	286
saving	as	HTML,	386-387
setting	file	path	in	cell,	282
setting	name	in	cell,	282
sharing,	425
user	changes,	tracking,	262-263
verifying	version

with	Excel8CompatibilityMode	property,	553
with	Version	property,	552

worksheets.	See	worksheets
worksheet	events,	list	of,	114-115
worksheets

as	arrays,	124
checking	for	existence,	283-284
combining	into	single	workbook,	256-257
copying	data	to,	257-258
inactive	worksheets,	referencing	ranges	in,	55-56
reading/writing	with	JavaScript,	545
Select...Case	statements	in,	303-304

separating	into	workbooks,	255-256
user	changes,	tracking,	262-263

writing
to	content/task	panes	with	JavaScript,	544
text	files,	404-405
to	worksheets	with	JavaScript,	545

X-Y-Z
X	button	in	userforms,	disabling,	475-476
.xlsb	(Excel	Binary	Workbook)	file	type,	5
.xls	(Excel	97-2003	Workbook)	file	type,	5
.xlsm	(Excel	Macro-Enabled	Workbook)	file	type,	4-5
.xlsx	(Excel	Workbook)	file	type,	4
XML

case	sensitivity,	526
exporting	tables	to,	258-259
in	Office	add-ins,	534-535

Zoom	event
frames,	164
MultiPage	controls,	169
userforms,	156

Code	Snippets

Many	titles	include	programming	code	or	configuration	examples.	To	optimize
the	presentation	of	these	elements,	view	the	eBook	in	single-column,	landscape
mode	and	adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting
code	and	configurations	in	the	reflowable	text	format,	we	have	included	images
of	the	code	that	mimic	the	presentation	found	in	the	print	book;	therefore,	where
the	reflowable	format	may	compromise	the	presentation	of	the	code	listing,	you
will	see	a	“Click	here	to	view	code	image”	link.	Click	the	link	to	view	the	print-
fidelity	code	image.	To	return	to	the	previous	page	viewed,	click	the	Back	button
on	your	device	or	app.

Hear	aboutit	first.

Since	1984,	Microsoft	Press	has	helped	IT	professionals,	developers,	and	home
office	users	advance	their	technical	skills	and	knowledge	with	books	and
learning	resources.

Sign	up	today	to	deliver	exclusive	offers	directly	to	your	inbox.

New	products	and	announcements

Free	sample	chapters

Special	promotions	and	discounts

...	and	more!

microsoftpressstore.com/newsletters

http://microsoftpressstore.com/newsletters

Plug	into	learning	at
microsoftpressstore.com

The	Microsoft	Press	Store	by	Pearson	offers:

Free	U.S.	shipping

Buy	an	eBook,	get	three	formats	–	Includes	PDF,	EPUB,	and	MOBI	to	use
with	your	computer,	tablet,	and	mobile	devices

Print	&	eBook	Best	Value	Packs

eBook	Deal	of	the	Week	–	Save	up	to	50%	on	featured	title

Newsletter	–	Be	the	first	to	hear	about	new	releases,	announcements,	special
offers,	and	more

Register	your	book	–	Find	companion	files,	errata,	and	product	updates,	plus
receive	a	special	coupon*	to	save	on	your	next	purchase

Discounts	are	applied	to	the	list	price	of	a	product.	Some	products	are	not	eligible	to	receive	additional
discounts,	so	your	discount	code	may	not	be	applied	to	all	items	in	your	cart.	Discount	codes	cannot	be
applied	to	products	that	are	already	discounted,	such	as	eBook	Deal	of	the	Week,	eBooks	that	are	part	of	a
book	+	eBook	pack,	and	products	with	special	discounts	applied	as	part	of	a	promotional	offering.	Only	one
coupon	can	be	used	per	order.

http://microsoftpressstore.com

	Title Page
	Copyright Page
	Dedication Page
	Contents at a Glance
	Contents
	Acknowledgments
	About the Authors
	Introduction
	Chapter 1 Unleashing the power of Excel with VBA
	Barriers to entry
	Knowing your tools: The Developer tab
	Understanding which file types allow macros
	Macro security
	Overview of recording, storing, and running a macro
	Running a macro
	Understanding the VB Editor
	Understanding shortcomings of the macro recorder
	Next steps

	Chapter 2 This sounds like BASIC, so why doesn’t it look familiar?
	Understanding the parts of VBA “speech”
	VBA is not really hard
	Examining recorded macro code: Using the VB Editor and Help
	Using debugging tools to figure out recorded code
	Object Browser: The ultimate reference
	Seven tips for cleaning up recorded code
	Next steps

	Chapter 3 Referring to ranges
	The Range object
	Referencing ranges in other sheets
	Referencing a range relative to another range
	Using the Cells property to select a range
	Using the Offset property to refer to a range
	Using the Resize property to change the size of a range
	Using the Columns and Rows properties to specify a range
	Using the Union method to join multiple ranges
	Using the Intersect method to create a new range from overlapping ranges
	Using the IsEmpty function to check whether a cell is empty
	Using the CurrentRegion property to select a data range
	Using the Areas collection to return a noncontiguous range
	Referencing tables
	Next steps

	Chapter 4 Looping and flow control
	For...Next loops
	Do loops
	The VBA loop: For Each
	Flow control: Using If...Then...Else and Select Case
	Next steps

	Chapter 5 R1C1-style formulas
	Toggling to R1C1-style references
	Witnessing the miracle of Excel formulas
	Understanding the R1C1 reference style
	Using R1C1 formulas with array formulas
	Next steps

	Chapter 6 Creating and manipulating names in VBA
	Global versus local names
	Adding names
	Deleting names
	Adding comments
	Types of names
	Hiding names
	Checking for the existence of a name
	Next steps

	Chapter 7 Event programming
	Levels of events
	Using events
	Workbook events
	Worksheet events
	Chart events
	Application-level events
	Next steps

	Chapter 8 Arrays
	Declaring an array
	Declaring a multidimensional array
	Filling an array
	Retrieving data from an array
	Using arrays to speed up code
	Using dynamic arrays
	Passing an array
	Next steps

	Chapter 9 Creating classes and collections
	Inserting a class module
	Trapping application and embedded chart events
	Creating a custom object
	Using a custom object
	Using collections
	Using dictionaries
	Using user-defined types to create custom properties
	Next steps

	Chapter 10 Userforms: An introduction
	Input boxes
	Message boxes
	Creating a userform
	Calling and hiding a userform
	Programming userforms
	Programming controls
	Using basic form controls
	Verifying field entry
	Illegal window closing
	Getting a file name
	Next steps

	Chapter 11 Data mining with Advanced Filter
	Replacing a loop with AutoFilter
	Advanced Filter—easier in VBA than in Excel
	Using Advanced Filter to extract a unique list of values
	Using Advanced Filter with criteria ranges
	Using filter in place in Advanced Filter
	The real workhorse: xlFilterCopy with all records rather than unique records only
	Next steps

	Chapter 12 Using VBA to create pivot tables
	Understanding how pivot tables evolved over various Excel versions
	While building a pivot table in Excel VBA
	Using advanced pivot table features
	Filtering a data set
	Using the Data Model in Excel 2019
	Using other pivot table features
	Next steps

	Chapter 13 Excel power
	File operations
	Combining and separating workbooks
	Working with cell comments
	Tracking user changes
	Techniques for VBA pros
	Next steps

	Chapter 14 Sample user-defined functions
	Creating user-defined functions
	Sharing UDFs
	Useful custom Excel functions
	Next steps

	Chapter 15 Creating charts
	Using .AddChart2 to create a chart
	Understanding chart styles
	Formatting a chart
	Creating a combo chart
	Creating map charts
	Creating waterfall charts
	Exporting a chart as a graphic
	Considering backward compatibility
	Next steps

	Chapter 16 Data visualizations and conditional formatting
	VBA methods and properties for data visualizations
	Adding data bars to a range
	Adding color scales to a range
	Adding icon sets to a range
	Using visualization tricks
	Using other conditional formatting methods
	Next steps

	Chapter 17 Dashboarding with sparklines in Excel 2019
	Creating sparklines
	Scaling sparklines
	Formatting sparklines
	Creating a dashboard
	Next steps

	Chapter 18 Reading from and writing to the web
	Getting data from the web
	Using Application.OnTime to periodically analyze data
	Publishing data to a web page
	Next steps

	Chapter 19 Text file processing
	Importing from text files
	Writing Text Files
	Next steps

	Chapter 20 Automating Word
	Using early binding to reference a Word object
	Using late binding to reference a Word object
	Using the New keyword to reference the Word application
	Using the CreateObject function to create a new instance of an object
	Using the GetObject function to reference an existing instance of Word
	Using constant values
	Understanding Word’s objects
	Controlling form fields in Word
	Next steps

	Chapter 21 Using Access as a back end to enhance multiuser access to data
	ADO versus DAOs
	The tools of ADO
	Adding a record to a database
	Retrieving records from a database
	Updating an existing record
	Deleting records via ADO
	Summarizing records via ADO
	Other utilities via ADO
	SQL Server examples
	Next steps

	Chapter 22 Advanced userform techniques
	Using the UserForm toolbar in the design of controls on userforms
	More userform controls
	Controls and collections
	Modeless userforms
	Using hyperlinks in userforms
	Adding controls at runtime
	Adding help to a userform
	Creating transparent forms
	Next steps

	Chapter 23 The Windows Application Programming Interface (API)
	Understanding an API declaration
	Using an API declaration
	Making 32-bit- and 64-bit-compatible API declarations
	API function examples
	Next steps

	Chapter 24 Handling errors
	What happens when an error occurs?
	Basic error handling with the On Error GoTo syntax
	Generic error handlers
	Training your clients
	Errors that won’t show up in debug mode
	Errors while developing versus errors months later
	The ills of protecting code
	More problems with passwords
	Errors caused by different versions
	Next steps

	Chapter 25 Customizing the ribbon to run macros
	Where to add code: The customui folder and file
	Creating a tab and a group
	Adding a control to a ribbon
	Accessing the file structure
	Understanding the RELS file
	Renaming an Excel file and opening a workbook
	Using images on buttons
	Troubleshooting error messages
	Other ways to run a macro
	Next steps

	Chapter 26 Creating add-ins
	Characteristics of standard add-ins
	Converting an Excel workbook to an add-in
	Having a client install an add-in
	Standard add-ins are not secure
	Closing add-ins
	Removing add-ins
	Using a hidden workbook as an alternative to an add-in
	Next steps

	Chapter 27 An introduction to creating Office add-ins
	Creating your first Office add-in—Hello World
	Adding interactivity to an Office add-in
	A basic introduction to HTML
	Using XML to define an Office add-in
	Using JavaScript to add interactivity to an Office add-in
	Next steps

	Chapter 28 What’s new in Excel 2019 and what’s changed
	Office 365 subscription versus Excel 2019 perpetual
	If it has changed in the front end, it has changed in VBA
	Learning the new objects and methods
	Compatibility mode
	Next steps

	Index
	Code Snippets

