
Bitter, Rick et al "Frontmatter"
LabVIEW Advanced Programming Techinques
Boca Raton: CRC Press LLC,2001

©2001 CRC Press LLC

L

AB

VIEW A

DVANCED

P

ROGRAMMING

T

ECHINIQUES

Rick Bitter

Taqi Mohiuddin

Matt Nawrocki

CRC Press
Boca Raton New York London Tokyo

©2001 CRC Press LLC

Preface and Acknowledgments

As the power of the standard personal computer has steadily evolved, so have the
capabilities of LabVIEW. LabVIEW has simplified the working lives of thousands
of scientists, engineers, and technicians, and has increased their productivity. Auto-
mation has reduced the costs and increased the manufacturing outputs of factories
around the world. Cycle times for product development have been shortened and
the quality of many products has steadily improved. LabVIEW does not get credit
for all of these improvements, but has without question played a valuable role in
accomplishing these goals in many organizations.

In our earlier experiences with LabVIEW, we found that adequate coverage of
key topics was lacking. Subjects that are useful to users without a formal background
in computer science, such as approaches to software development, exception han-
dling, and state machines, were very difficult to find. In addition, newer areas such
as multithreading and ActiveX are even harder to locate, and sometimes documen-
tation is nonexistent. Part of our intent in this book is to cover these topics that are
difficult to find in other books on LabVIEW.

The chapters in this book are written in a manner that will allow readers to study
the topic of interest without having to read the contents in sequential order. Users
of LabVIEW with varying levels of expertise will find this book beneficial.

Proficiency with a programming language requires an understanding of the
language constructs and the tools needed to produce and debug code. The first two
chapters provide an overview of LabVIEW’s Integrated Development Environment,
programming constructs, and main features. These chapters are meant to supplement
LabVIEW’s documentation, and provide good background information for program-
mers new to the language.

Effective programmers have an understanding of programming techniques that
are applicable to a large number of programming problems. Programming tools such
as state machines that simplify logic of handling various occurrences, and the use
of instrument drivers are two such programming tools. Exception handling is left
out of more applications than we want to discuss (including some of our own), but
we have included a chapter specifically on exception handling in LabVIEW.

Advanced programmers understand the operation of the language they are work-
ing with and how it interacts with the system. We present a chapter on multithread-
ing’s impact on LabVIEW. Version 5.0 was LabVIEW’s debut into the world of
multithreaded-capable programming languages. A number of the issues that occur
with multithreading programming were abstracted from the programmer, but a
working knowledge of mutithreaded interactions is needed.

Object Oriented Programming (OOP) is commonly employed in languages such
as C++ and Java. LabVIEW programmers can realize some of the benefits to such

©2001 CRC Press LLC

an approach as well. We define key terms often used in OOP, give an explanation
of object analysis, and introduce the application of these concepts within a LabVIEW
environment.

Finally, we present two chapters on ActiveX. An explanation of related tech-
nologies such as Component Object Model (COM) and Object Linking and Embed-
ding (OLE) is provided, along with the significance of ActiveX. A description on
the use of ActiveX in LabVIEW applications is then provided. We follow this up
with several useful examples of ActiveX, such as embedding a browser on the front
panel, use of the tree view control, and automating tasks with Microsoft Word, Excel,
and Access.

This book would not have been possible without the efforts of many individuals.
First, we want to thank our friends at National Instruments. Ravi Marawar was
invaluable in his support for the completion of this book. We would also like to
thank Norma Dorst and Steve Rogers for their assistance.

Our publisher at CRC Press, Dawn Mesa, has provided us with guidance from
the first day we began working on this book until its completion. This was truly
helpful considering this is our first book. Thanks also go out to Felicia Shapiro,
our editor, who was very understanding and flexible.

A special thanks to Tim Sussman, our colleague and friend. He came through
for us at times when we needed him. Also thanks to Greg Stehling, John Gervasio,
Jeff Hunt, Ron Wegner, Joe Luptak, Mike Crowley, the Tellabs Automation team
(Paul Mueller, Kevin Ross, Bruce Miller, Mark Yedinak, and Purvi Shah), and Waj
Hussain (if it weren’t for Waj, we would have never written the papers which got
us to writing this book).

Finally, we owe many thanks for the love and support of our families. They
had to put up with us during the many hours spent on this book. Thank you, moms
and dads: Auradker and Mariam Mohiuddin, Rich and Madalyn Bitter, Barney an
Veronica Nawrocki. For moral support we thank Jahanara, Mazhar, Tanweer,
Faheem, and Firdaus; Matt Bitter, Andrea and Jerry Lehmacher; Sheila Boyle, andy,
Corinne, Mark, and Colleen Nawrocki, Sue and Steve Fechtner.

©2001 CRC Press LLC

The Authors

Rick Bitter graduated from the University of Illinois at Chicago in 1994. He has
presented papers at Motorola and National Instruments-sponsored symposiums. Rick
currently develops performance testing applications in Motorola’s Wireless Data
Solutions Engineering department as a Senior Software Engineer.

Taqi Mohiuddin graduated in Electrical Engineering from the University of
Illinois at Chicago in 1995. He obtained his MBA from DePaul University. He has
worked with LabVIEW since 1995, beginning with version 3.1, ranging in various
telecommunications applications. He is presently a Senior Engineer working with
the Product Integration Test department at Motorola. He has presented papers on
LabVIEW at Motorola and National Instruments conferences.

Matt Nawrocki graduated from Northern Illinois University in 1995. He has
written papers and has done presentations on LabVIEW topics at Motorola, National
Instruments, and Tellabs. Matt currently works in the Broadband Media Group at
Tellabs, where he writes test automation software for the Cablespan test organization.

©2001 CRC Press LLC

Contents

1. INTRODUCTION TO LABVIEW

1.1 Virtual Instruments
1.1.1 The Front Panel
1.1.2 Block Diagram
1.1.3 Executing VIs
1.1.4 LabVIEW File Extensions

1.2 Help
1.2.1 Built-in Help
1.2.2 Web Sites

1.3 Data Flow Programming
1.4 Menus and Palettes
1.5 Front Panel Controls

1.5.1 Numeric
1.5.2 Boolean
1.5.3 String & Table
1.5.4 List & Ring
1.5.5 Array & Cluster
1.5.6 Graphs and Charts
1.5.7 Path & Refnum

1.6 Block Diagram Functions
1.6.1 Structures
1.6.2 Numeric, Boolean, String, and Comparison
1.6.3 Array and Cluster
1.6.4 Time & Dialog
1.6.5 File I/O
1.6.6 Instrument I/O, Data Acquisition, and Communication
1.6.7 Creating Connectors
1.6.8 Editing Icons
1.6.9 Using SubVIs
1.6.10 VI Setup
1.6.11 Hierarchical Nature

1.7 Setting Preferences
1.7.1 Paths
1.7.2 Block Diagram
1.7.3 History
1.7.4 VI Server and Web Server
1.7.5 Palettes

Bibliography

©2001 CRC Press LLC

2. LABVIEW FEATURES

2.1 Global and Local Variables
2.2 Customizing Controls

2.2.1 Custom Controls
2.2.2 Type Definitions
2.2.3 Strict Type Definitions

2.3 Attribute Nodes
2.4 Reentrant VIs
2.5 Libraries (.LLB)
2.6 File Manager
2.7 Web Server
2.8 Web Document Tool
2.9 Instrument Wizard
2.10 Profile Window
2.11 Auto SubVI Creation
2.12 Graphical Comparison Tools

2.12.1 Compare VIs
2.12.2 Compare VI Hierarchies
2.12.3 SCC Compare Files

2.13 Report Generation Palette
2.14 Application Builder
2.15 Sound VIs
2.16 Application Control

2.16.1 VI Server VIs
2.16.2 Menu VIs
2.16.3 Help VIs
2.16.4 Other Application Control VIs

2.17 Advanced Palette
2.17.1 Data Manipulation
2.17.2 Calling External Code
2.17.3 Synchronization

2.18 Source Code Control
2.18.1 Configuration
2.18.2 Adding and Modifying Files
2.18.3 Advanced Features

2.19 Graphs
2.19.1 Standard Graphs
2.19.2 3-D Graphs
2.19.3 Picture Graphs

2.20 Data Logging
2.21 Find Feature
2.22 Print Documentation
2.23 VI History
2.24 Key Navigation
Bibliography

©2001 CRC Press LLC

3. STATE MACHINES

3.1 Introduction
3.1.1 State Machines in LabVIEW
3.1.2 When to Use a State Machine
3.1.3 Types of State Machines

3.2 Enumerated Types and Type Definitions
3.2.1 Type Definitions Used with State Machines
3.2.2 Creating Enumerated Constants and Type Definitions
3.2.3 Converting between Enumerated Types and Strings
3.2.4 Drawbacks to Using Type Definitions and Enumerated Controls

3.3 Sequence-Style State Machine
3.3.1 When to Use a Sequence-Style State Machine
3.3.2 Example

3.4 Test Executive-Style State Machine
3.4.1 When to Use a Test Executive-Style State Machine
3.4.2 Recommended States for a Test Executive State Machine
3.4.3 Determining States for Test Executive State Machines
3.4.4 Example

3.5 Classical-Style State Machine
3.5.1 When to Use a Classical-Style State Machine
3.5.2 Example

3.6 Queued-Style State Machine
3.6.1 When to Use the Queued-Style State Machine
3.6.2 Example Using LabVIEW Queue Functions
3.6.3 Example Using an Input Array

3.7 Drawbacks to Using State Machines
3.8 Recommendations and Suggestions

3.8.1 Documentation
3.8.2 Ensure Proper Setup
3.8.3 Error and Close States
3.8.4 Status of Shift Registers
3.8.5 Typecasting an Index to an Enumerated Type
3.8.6 Make Sure You Have a Way Out

3.9 Problems
3.9.1 The Blackjack Example
3.9.2 The Test Sequencer Example
3.9.3 The PC Calculator Example

Bibliography

4. APPLICATION STRUCTURE

4.1 Planning
4.2 Purpose of Structure
4.3 Software Models

4.3.1 The Waterfall Model
4.3.2 The Spiral Model

©2001 CRC Press LLC

4.3.3 Block Diagrams
4.3.4 Description of Logic

4.4 Project Administration
4.5 Documentation

4.5.1 LabVIEW Documentation
4.5.2 Printing LabVIEW Documentation
4.5.3 VI History

4.6 The Three-Tiered Structure
4.7 Main Level

4.7.1 User Interface
4.7.2 Exception-Handling at the Main Level

4.8 Second Level — Test Level
4.9 Bottom Level — Drivers
4.10 Style Tips

4.10.1 Sequence Structures
4.10.2 Nested Structures
4.10.3 Drivers
4.10.4 Polling Loops
4.10.5 Array Handling

4.11 Summary
Bibliography

5. DRIVERS

5.1 Communication Standards
5.1.1 GPIB
5.1.2 Serial Communications
5.1.3 VXI Discussion
5.1.4 VISA Definition
5.1.5 DDE
5.1.6 OLE
5.1.7 TCP/IP
5.1.8 DataSocket
5.1.9 DAQ
5.1.10 File I/O
5.1.11 Code Interface Node and Call Library Function

5.2 Driver Classifications
5.2.1 Configuration Drivers
5.2.2 Measurement Drivers
5.2.3 Status Drivers

5.3 Inputs/Outputs
5.4 Error Handling
5.5 NI Spy

5.5.1 NI Spy Introduction
5.5.2 Configuring NI Spy
5.5.3 Running NI Spy

©2001 CRC Press LLC

5.6 Driver Guidelines
5.7 Reuse and Development Reduction
5.8 Driver Example
5.9 IVI Drivers

5.9.1 Five Classes of IVI Drivers
5.9.2 Interchangeability
5.9.3 Simulation
5.9.4 State Management
5.9.5 IVI Driver Installation
5.9.6 IVI Configuration
5.9.7 How to Use IVI Drivers
5.9.8 IVI Virtual Bench
5.9.9 IVI Driver Example

Bibliography

6. EXCEPTION HANDLING

6.1 Exception Handling Defined
6.2 Types of Errors

6.2.1 I/O Errors
6.2.2 Logical Errors

6.3 Built-In Error Handling
6.3.1 Error Cluster
6.3.2 Error Codes
6.3.3 VISA Error Handling
6.3.4 Simple Error Handler
6.3.5 General Error Handler
6.3.6 Find First Error

6.4 Performing Exception Handling
6.4.1 When?
6.4.2 Exception Handling at Main Level
6.4.3 Programmer-Defined Errors
6.4.4 Managing Errors
6.4.5 State Machine Exception Handling
6.4.6 Logging Errors
6.4.7 External Error Handler
6.4.8 Proper Exit Procedure
6.4.9 Exception Handling Example

6.5 Debugging Code
6.5.1 Error List
6.5.2 Execution Highlighting
6.5.3 Single-Stepping
6.5.4 Probe Tool
6.5.5 Breakpoint Tool
6.5.6 Suspending Execution
6.5.7 Data Logging

©2001 CRC Press LLC

6.5.8 NI Spy/GPIB Spy
6.5.9 Utilization of Debugging Tools

6.6 Summary
Bibliography

7. ACTIVEX

7.1 Introduction to OLE, COM, and ActiveX
7.1.1 Definition of Related Terms

7.2 COM
7.2.1 The Variant
7.2.2 Problems that COM Addresses
7.2.3 In-Process and Out-of-Process COM Objects
7.2.4 COM Object Identification
7.2.5 How COM Objects Are Called and Used

7.3 OLE
7.3.1 Origins and Applications

7.4 ActiveX
7.4.1 Description of ActiveX
7.4.2 ActiveX Definitions
7.4.3 Events
7.4.4 Containers
7.4.5 How ActiveX Controls Are Used

7.5 LabVIEW and ActiveX
7.5.1 The LabVIEW ActiveX Container
7.5.2 The ActiveX/OLE Palette
7.5.3 Event Support in LabVIEW 5.1
7.5.4 LabVIEW as ActiveX Server

7.6 The VI Server
Bibliography

8. ACTIVEX EXAMPLES

8.1 Common Dialog Control
8.2 Progress Bar Control
8.3 Microsoft Calendar Control
8.4 Web Browser Control
8.5 Microsoft Scripting Control
8.6 Microsoft Winsock Control

8.6.1 Using Winsock Control with TCP
8.6.2 Using Winsock Control with UDP
8.6.3 Using Winsock in Client Applications
8.6.4 Using Winsock in Server Applications
8.6.5 Using Winsock for Multiple-Connection Servers

8.7 Microsoft System Information Control
8.8 Microsoft MAPI Services
8.9 MAPI Messages Control

©2001 CRC Press LLC

8.10 Microsoft Status Bar Control
8.11 Microsoft Tree View Control
8.12 Microsoft Agent

8.12.1 Request Objects — First Tier
8.12.2 Other First-Tier Controls
8.12.3 The Characters Object
8.12.4 The Character Control

8.13 Registry Editing Control
8.14 Controlling Microsoft Word
8.15 Microsoft Access Control
8.16 Controlling LabVIEW from Other Applications
8.17 Understanding ActiveX Error Codes
8.18 Controls that Do Not Work Well with LabVIEW
8.19 Advanced ActiveX Details

9. MULTITHREADING IN LABVIEW

9.1 Multithreading Terminology
9.1.1 Win32
9.1.2 UNIX
9.1.3 Multitasking
9.1.4 Kernel Objects
9.1.5 Thread
9.1.6 Process
9.1.7 Application
9.1.8 Priority
9.1.9 Security
9.1.10 Thread Safe

9.2 Thread Mechanics
9.2.1 Thread States
9.2.2 Scheduling Threads
9.2.3 Context Switching

9.3 Win32 Multithreading
9.4 Pthreads
9.5 Multithreading Problems

9.5.1 Race Conditions
9.5.2 Priority Inversion
9.5.3 Starvation
9.5.4 Deadlocking
9.5.5 Operating System Solutions

9.6 Multithreading Myths
9.6.1 The More Threads, the Merrier
9.6.2 Always Makes My Program Run Faster
9.6.3 Makes Applications More Robust
9.6.4 Conclusion on Myths

9.7 Multithreaded LabVIEW
9.7.1 Execution Subsystems

©2001 CRC Press LLC

9.7.2 The Run Queue
9.7.3 DLLs in Multithreaded LabVIEW
9.7.4 Customizing the Thread Configuration

9.8 Thread Count Estimations for LabVIEW
9.8.1 Same as Caller or Single Subsystem Applications
9.8.2 Multiple Subsystem Applications
9.8.3 Optimizing VIs for Threading
9.8.4 Using VI Priorities

9.9 Subroutines in LabVIEW
9.9.1 LabVIEW Data Types
9.9.2 When to Use Subroutines
9.9.3 Chapter Summary

Bibliography

10. OBJECT-ORIENTED PROGRAMMING IN LABVIEW

10.1 What Is Object-Oriented?
10.1.1 The Class
10.1.2 Encapsulation
10.1.3 Aggregation
10.1.4 Inheritance
10.1.5 Polymorphism

10.2 Objects and Classes
10.2.1 Methods
10.2.2 Properties

10.3 Object Analysis
10.4 Object Design

10.4.1 Container Classes
10.4.2 Abstract Classes

10.5 Object Programming
10.6 Developing Objects in LabVIEW

10.6.1 Properties
10.6.2 Constructors
10.6.3 Destructors
10.6.4 Methods

10.7 Example, Developing Instrument Drivers
10.7.1 Complex Instrument Designs

10.8 Object Template
10.9 Exercises
Bibliography

Bitter, Rick et al "Introduction to LabVIEW"
LabVIEW Advanced Programming Techinques
Boca Raton: CRC Press LLC,2001

1

©2001 CRC Press LLC

Introduction to LabVIEW

Programmers develop software applications every day in order to increase efficiency
and productivity in various situations. LabVIEW, as a programming language, is a
powerful tool that can be used to help achieve these goals. LabVIEW (Laboratory
Virtual Instrument Engineering Workbench) is a graphically-based programming
language developed by National Instruments. Its graphical nature makes it ideal for
test and measurement (T&M), automation, instrument control, data acquisition, and
data analysis applications. This results in significant productivity improvements over
conventional programming languages. National Instruments focuses on products for
T&M, giving them a good insight into developing LabVIEW.

This chapter will provide a brief introduction to LabVIEW. Some basic topics
will be covered to give you a better understanding of how LabVIEW works and
how to begin using it. This chapter is not intended to teach beginners LabVIEW
programming thoroughly. Those wishing to learn LabVIEW should consider attend-
ing a National Instruments LabVIEW Basics course. Relevant information on the
courses offered, schedules, and locations can be found at

http://www.nat-
inst.com/custed/.

 If you have prior experience with LabVIEW, you can skip this
chapter and proceed to the advanced chapters.

First, VIs and their components will be discussed, followed by LabVIEW's
dataflow programming paradigm. Then, several topics related to creating VIs will
be covered by explaining the front panel and block diagram. The chapter will
conclude with descriptions of icons and setting preferences.

1.1 VIRTUAL INSTRUMENTS

Simply put, a Virtual Instrument (VI) is a LabVIEW programming element. A VI
consists of a front panel, block diagram, and an icon that represents the program.
The front panel is used to display controls and indicators for the user, while the
block diagram contains the code for the VI. The icon, which is a visual representation
of the VI, has connectors for program inputs and outputs.

Programming languages such as C and BASIC use functions and subroutines as
programming elements. LabVIEW uses the VI. The front panel of a VI handles the
function inputs and outputs, and the code diagram performs the work of the VI.
Multiple VIs can be used to create large-scale applications, in fact, large scale
applications may have several hundred VIs. A VI may be used as the user interface
or as a subroutine in an application. User interface elements such as graphs are drag-
and-drop easy in LabVIEW.

http://www.ni.com/custed/
http://www.ni.com/custed/

©2001 CRC Press LLC

1.1.1 T

HE

 F

RONT

 P

ANEL

Figure 1.1 illustrates the front panel of a LabVIEW VI. It contains a knob for
selecting the number of measurements per average, a control for selecting the
measurement type, a digital indicator to display the output value, and a stop button.
An elaborate front panel can be created without much effort to serve as the user
interface for an application. Front panels and LabVIEW’s built-in tools are discussed
in more detail in Section 1.5.

1.1.2 B

LOCK

 D

IAGRAM

Figure 1.2 depicts the block diagram, or source code, that accompanies the front
panel in Figure 1.1. The outer rectangular structure represents a while loop, and the
inner one is a case structure. The icon in the center is a VI, or subroutine, that takes
the number of measurements per average as input and returns the frequency value
as the output. The orange line, or wire, represents the data being passed from the
control into the VI. The selection for the measurement type is connected, or wired
to the case statement to determine which case is executed. When the stop button is
pressed, the while loop stops execution. This example demonstrates the graphical
nature of LabVIEW and gives you the first look at the front panel, block diagram,
and icon that make up a Virtual Instrument. Objects and structures related to the
code diagram will be covered further in Section 1.6.

LabVIEW is not an interpreted language, it is compiled behind the scenes by
LabVIEW’s execution engine. Similar to Java, the VIs are compiled into an execut-
able code that LabVIEW’s execution engine processes during runtime. Every time
a change is made to a VI, LabVIEW constructs a wire table for the VI. This wire

FIGURE 1.1

©2001 CRC Press LLC

table identifies elements in the block diagram that have inputs needed for that element
to run. Elements can be primitive operators such as addition, or more complex such
as a subVI. If LabVIEW successfully constructs all the wire tables, you are presented
a solid arrow indicating that the VIs can be executed. If the wire table cannot be
created, then a broken arrow is presented for the VIs with a problem, and for each
VI loaded in memory that requires that VI for execution. LabVIEW runs in several
subsystems, which will be described throughout this book. All that we need to
understand now is that the main execution subsystem compiles diagrams while you
write them. This allows programmers to write code and test it without needing to
wait for a compiling process, and programmers do not need to worry about execution
speed because the language is not interpreted.

The wire diagrams that are constructed do not define an order in which elements
are executed. This is an important concept for advanced programmers to understand.
LabVIEW is a dataflow-based language, which means that elements will be executed
in a somewhat arbitrary order. LabVIEW does not guarantee which order a series
of elements is executed in if they are not dependent on each other. A process called
arbitrary interleaving is used to determine the order elements are executed in. You
may force an order of execution by requiring that elements require output from
another element before execution. This is a fairly common practice, most program-
mers do not recognize that they are forcing the order of execution. When program-
ming, it will become obvious that some operations must take place before others
can. It is the programmer’s responsibility to provide a mechanism to force the order
of execution in the code design.

1.1.3 E

XECUTING

 VI

S

A LabVIEW program is executed by pressing the arrow or the

Run

 button located
in the palette along the top of the window. While the VI is executing, the

Run

 button
changes to a black color as depicted in Figure 1.3. Note that not all of the items in
the palette are displayed during execution of a VI. As you proceed to the right along
the palette, you will find the

 Continuous Run

,

Stop

, and

Pause

 buttons. The last three
buttons are used for alignment of objects on the panel or diagram. VIs are normally
run from the front panel; however, they can also be executed from the block diagram.

FIGURE 1.2

©2001 CRC Press LLC

This allows the programmer to run the program and utilize some of the other tools
that are available for debugging purposes.

If the

Run

 button appears as a broken arrow, this indicates that the LabVIEW
program or VI cannot compile because of programming errors. When all of the
errors are fixed, the broken

Run

 button will be substituted by the regular

Run

 button.
LabVIEW has successfully compiled the diagram. While editing or creating a VI,
you may notice that the palette displays the broken

Run

 button. If you continue to
see this after editing is completed, press the button to determine the cause of the
errors. An Error List window will appear displaying all of the errors that must be
fixed before the VI can compile. Debugging techniques are discussed further in
Chapter 6, which covers exception handling.

The palette contains four additional buttons on the block diagram that are not
available from the front panel. These are typically used for debugging an application.
The button with the lightbulb is for Execution Highlighting and the three following
it are used for stepping through the code. Figure 1.4 shows the code diagram with
Execution Highlighting activated. You can see bubbles that represent the data flowing
along the wire, from one block to the next. You can step through the code as needed
when the

Pause

 button is used in conjunction with Execution Highlighting. Debug-
ging techniques is a topic covered in Chapter 6.

1.1.4 L

AB

VIEW F

ILE

 E

XTENSIONS

LabVIEW programs utilize the .vi extension. However, multiple VIs can be saved
into library format with the .llb extension. Libraries are useful for grouping related
VIs for file management. When loading a particular VI that makes calls to other
VIs, the system is able to find them quickly. Using a library has benefits over simply

FIGURE 1.3

©2001 CRC Press LLC

using a directory to group VIs. It saves disk space by compressing VIs, and facilitates
the movement of VIs between directories or computers. When saving single VIs,
remember to add the .vi extension. If you need to create a library for a VI and its
subVIs, select Save with Options

from the File menu. If you want to create a new
library starting with one VI, you can use Save or Save As. Then select New VI
Library from the dialog box. The File Manager can then be used to add or remove
VIs from a library.

1.2 HELP

For beginning users of LabVIEW, there are various sources for assistance to aid in
learning the language. Because this book is not a comprehensive guide for beginners,
this section was prepared to reveal some of these sources. LabVIEW’s built-in help
tools will be shown first, followed by outside references and Web sites. LabVIEW’s
online reference is an excellent source of information on the operation of various
LabVIEW elements, error code definitions, and programming examples. Few lan-
guages can boast of having an online help system that is put together as well as
LabVIEW’s.

1.2.1 B

UILT

-

IN

 H

ELP

The first tool that is available to the user is the Simple Help. This is enabled by
selecting this item from the Help pull-down menu. When selected, it activates a
balloon type of help. If the cursor is placed over the particular button, for example,
a small box pops up with its description. This description contains information such
as the inputs and outputs the VI accepts in addition to a short text description of

FIGURE 1.4

©2001 CRC Press LLC

what the VI does. Balloon help is available for all wire diagram elements, including
primitive elements, National Instruments-written VIs , and user-developed VIs. This
tool is beneficial when first working with LabVIEW. It is also helpful when running
VIs in single-stepping mode to find out what each of the step buttons will execute.

The Help window will probably be the most utilized help tool available. It is
also activated from the Help pull-down menu by selecting Show Help (Ctrl+H). The
Help window displays information on most controls, indicators, functions, constants,
and subVIs. The type of information displayed varies depending on the object over
which the cursor is located. For many of LabVIEW’s functions, descriptions are
provided along with inputs, outputs, and default values. When the cursor is placed
over an icon of a VI that a user has created, that user must input the relevant
description to be displayed by the Help window. The same is true for specific controls
and indicators used in an application. This is an element of good documentation
practices, which is explained further in Chapter 6.

Figure 1.5 shows the Help window as it appears when the cursor is placed over
the In Range? function. A brief description of the function is provided in the window
along with the inputs and outputs. The three buttons located in the bottom left corner
of the window are used for displaying the simple/detailed diagram, locking help on
a specific object, and launching the Online Help for that topic.

The Online Help or Reference can be accessed from the Help menu also. The
help files are normally installed with LabVIEW if you choose the typical installation.
If you perform a custom installation of LabVIEW, you must ensure that the appro-
priate box is checked for help files. The Online Reference covers introduction
material, overview, information on functions, and advanced topics. It also has a
searchable index and word list for specific instances of key words.

1.2.2 W

EB

 S

ITES

Several other sources are also available for help on LabVIEW-related topics. National
Instruments’ Web site offers help through online technical support, documents, and
free downloads. The following table lists some that may be useful.

The

LabVIEW Technical Resource

 is a quarterly publication generated by LTR
Publishing, Inc. The issues contain technical information on LabVIEW as well as

FIGURE 1.5

©2001 CRC Press LLC

tips on programming style and techniques. LabVIEW books are also reviewed in
the publication on a regular basis. A resource disk that contains source code asso-
ciated with some of the articles accompanies each issue. Readers are encouraged to
submit and share LabVIEW programming techniques.

1.3 DATA FLOW PROGRAMMING

LabVIEW applications execute based on data flow. LabVIEW applications are
broken up into nodes and wires; each element in a diagram that has input or output
is considered a node. The connection points between nodes are wires. A node can
be a simple operation such as addition, or it can be a very complicated operation
like a subVI that contains internal nodes and wires. The collection of nodes and
wires comprise the wire diagram. Wire diagrams are derived from the block diagrams
and are used by LabVIEW’s compiler to execute the diagrams. The wire diagrams
are hidden from the programmer; they are an intermediate form used by the compiler
to execute code. While you program, the compiler is behind the scenes verifying
that diagrams are available to execute. LabVIEW applications that are built using
the Application Builder use the execution engine as if LabVIEW were still being
used to run the VIs.

A node can be executed when all inputs that are necessary have been applied.
For example, it is impossible for an addition operation to happen unless both numbers
to be added are available. One of these numbers may be an input from a control and
would be available immediately, where the second number is the output of a VI.
When this is the case, the addition operation is suspended until the second number
becomes available. It is entirely possible to have multiple nodes receive all inputs
at approximately the same time. Data flow programming allows for the tasks to be
processed more or less concurrently. This makes multitasking code diagrams
extremely easy to design. Parallel loops that do not require inputs will be executed
in parallel as each node becomes available to execute. Multitasking has been an
ability of LabVIEW’s since Version 1.0. Multitasking is a fundamental ability to

TABLE 1.1
Web Sites

http://www.natinst.com/support

Technical support and contact
information

http://www.natinst.com/support/techdocs.htm

Technical documents, application notes,
knowledgebase (searchable database),
product manuals

http://www.natinst.com/dnldgtwy.htm

Drivers, updates, example programs,
instrument drivers

ftp://ftp.natinst.com/support

Direct link to ftp site for downloads

Info-labview-request@pica.army.mil

Submit request for subscription to
LabVIEW user group

www.ltrpub.com

LabVIEW Technical Resource

www.webring.org/cgi-bin/webring?ring=labview;list

List of many LabVIEW-related sites

http://www.natinst.com/support
http://www.natinst.com/support/techdocs.htm
http://www.natinst.com/dnldgtwy.htm
ftp://ftp.natinst.com/support
mailto:Info-labview-request@pica.army.mil
http://www.engnetbase.com/pdf/ENGnetBASE/2049/www.ltrpub.com
http://www.engnetbase.com/pdf/ENGnetBASE/2049/www.webring.org/cgi-bin/webring?ring=labview;list

©2001 CRC Press LLC

LabVIEW that is not directly available in languages like C, Visual Basic, and C++.
When multiple nodes are available to execute, LabVIEW uses a process called
arbitrary interleaving to determine which node should be executed first. If you watch
a VI in execution highlighting mode and see that nodes execute in the desired order,
you may be in for a rude shock if the order of execution is not always the same.
For example, if three addition operations were set up in parallel using inputs from
user controls, it is possible for eight different orders of execution. Similar to many
operating systems’ mutlithreading models, LabVIEW does not make any guarantees
about which order parallel operations can occur.

Often it is undesirable for operations to occur in parallel. The technique used
to ensure that nodes execute in a programmer-defined order is forcing the order of
execution. There are a number of mechanisms available to a LabVIEW programmer
to force the order of execution. Using error clusters is the easiest and recommended
method to guarantee that nodes operate in a desired order. Error Out from one subVI
will be chained to the Error In of the next VI. This is a very sensible way of
controlling the order of execution, and it is essentially a given considering that most
programmers should be using error clusters to track the status of executing code.
Another method of forcing the order of execution is to use sequence diagrams;
however, this method is not recommended. Sequence diagrams are basically Lab-
VIEW’s equivalent of the GOTO statement. Use sequences only when absolutely
necessary, and document what each of the frames is intended to do.

Most VIs have a wire diagram; the exceptions are global variables and VIs with
subroutine priority. Global variables are memory storage VIs only and do not execute.
Subroutine VIs are special cases of a VI that does not support dataflow. We will
discuss both of these types of VIs later. LabVIEW is responsible for tracking wire
diagrams for every VI loaded into memory.

Unless options are set, there will be exactly one copy of the wire diagram in
memory, regardless of the number of instances you have placed in code diagrams.
When two VIs need to use a common subVI, the VIs cannot execute concurrently.
The data and wire diagram of a VI can only be used in a serial fashion unless the
VI is made reentrant. Reentrant VIs will duplicate their wire diagrams and internal
data every time they are called.

1.4 MENUS AND PALETTES

LabVIEW has two different types of menus that are used during programming. The
first set is visible in the window of the front panel and diagram. On the Macintosh,
they are visible along the menu bar when the application is active. These are typical
pull-down menus similar to other applications.

The second set of menus are called pop-up menus (also referred to as popping
up). Pop-up menus are made to appear by right clicking and holding down. Macin-
tosh users must hold down the apple key while pressing the mouse button down.
The pop-up menu that appears when the cursor is on a blank part of the front panel
or block diagram is the Controls palette. Similarly, the Functions palette appears on
the block diagram. You can select specific objects on the front panel or block diagram
and pop up on them. The menus that appear allow you to customize, modify, or

©2001 CRC Press LLC

perform other actions on the object. These menus can vary depending on the object
that you pop up on. Figure 1.6 shows the pop menu that appears for a digital indicator.

The Tools palette is made visible by selecting Show Tools Palette from the
Windows pull-down menu from either the front panel or block diagram. Figure 1.7
displays the movable Tools palette. The first tool is known as the Operating tool.
This is used for editing numbers and text as well as changing values on controls.
The arrow represents the Positioning tool for selecting, positioning, and resizing
objects on the front panel or block diagram. Next is the Labeling tool for editing
text and creating labels. The Wiring tool is depicted by the spool and is used for
wiring data terminals. The Object Popup tool is located under the arrow. This is
exercised for displaying the pop-up menu as an alternative to clicking the right
mouse button. Next to this is the tool for scrolling through the window. The tool for
setting and clearing breakpoints is located under the wiring tool. The probe tool is
used with this when debugging applications. Debugging tools and techniques are
explained further in Chapter 6. Finally, at the bottom is the paintbrush for setting
colors, and the tool for getting colors is right above it.

FIGURE 1.6

FIGURE 1.7

©2001 CRC Press LLC

LabVIEW incorporates shortcut key combinations that are equivalent to some
of the pull-down menu selections. The shortcuts are displayed next to the items in
the menu. The key combinations that are most helpful while you are programming
with LabVIEW are listed in Table 1.2. There are also some shortcuts that are not
found in the menus. For example, you can use the Tab key to move through the
Tools palette. This is a quick way to change to the tool you need. The spacebar lets
you toggle between the Positioning tool and the Operating tool. The normal key
combinations used in Windows and Macintosh for save, cut, copy, and paste are
valid also.

1.5 FRONT PANEL CONTROLS

Numerous front panel controls are available in LabVIEW for developing your
applications. The Controls palette (shown in Figure 1.8) appears when you make
the appropriate selection in the Windows menu. The controls are grouped into
subpalette categories. The subpalettes have a lock in the top left corner to keep the
window visible while you are working with the controls. When creating a VI, controls
can be simply dragged from the palettes and dropped on the front panel. A terminal,
representing the control on the block diagram, then appears for use programmatically.
Controls are basically variables that can be manipulated in the code. The following
subsections will briefly describe the various control palettes. Keep in mind that the
palettes and controls shown correspond to LabVIEW 5.1 and will vary depending
on the version you are using. The ActiveX palette will be described in Chapter 9.

1.5.1 N

UMERIC

Internally, LabVIEW supports a number of numeric data types. Main types are
floating point, integer, and complex numbers. Each type supports three levels of

TABLE 1.2
Shortcuts

Shortcut/Key Combination Description Menu Item

Tab Allows you to switch to most
common tools without
accessing palette.

None

Ctrl, Option, O (Windows,
Macintosh, Sun)

Allows duplication of objects.
Hold down key, click on
object, and drag to new
location.

None

Ctrl + E Lets you toggle between front
panel and block diagram.

Show Panel/Show Diagram

Ctrl + H Displays Help window and
closes it.

Show Help

Ctrl + B Deletes bad wires from code. Remove Bad Wires
Ctrl + Z Undo last action. Undo
Ctrl + R Begins execution of VI. Run

©2001 CRC Press LLC

precision. Floating-point numbers are available as single, double, and extended
precision. LabVIEW defines the number of digits in the mantissa for single and
double precision numbers. Extended precision numbers are defined by the hardware
platform LabVIEW is executing on.

Integers are available as byte, word, and long word precision. Bytes are eight
bit numbers, words are sixteen bit numbers, and long words are 32 bit numbers.
Integers may be used as signed or unsigned quantities.

The controls in the Numeric palette (displayed in Figure 1.9) are self-explana-
tory. The top row contains digital controls and indicators. These are used for allowing
the user to input values or to display output values. The next two rows hold horizontal
and vertical slides. A tank and a thermometer are also available and can be useful
for displaying output. Finally, there are the knob, dial, gauge, meter, color box, and
color ramp in this palette.

Once you have dragged a control or indicator onto the front panel, the pop-up
menu can be used to modify its attributes. The type (floating point, integer, unsigned,
or complex), data range, format, and representation are typical attributes for a digital
control. Representation types that can be displayed for users are decimal, hexadec-
imal, date/time, and engineering notation. Representation types do not alter the
numbers stored in memory; for example displaying two digits beyond the decimal
point does not cause LabVIEW to truncate numbers internally. Figure 1.10 displays
the window that appears when Format & Precision is selected from the pop-up menu.

The nondigital objects in the numeric palette have an option to associate a digital
control or indicator with them through the pop-up menu. Just select Digital Display
from the Show submenu after popping-up on the object. Figure 1.11 shows the meter
with its associated digital indicator for precise readings. The meter, as most controls,

FIGURE 1.8

©2001 CRC Press LLC

can be resized by dragging one of the corners. The scale, markers, and mapping can
also be modified on the meter.

1.5.2 B

OOLEAN

The Boolean palette is illustrated in Figure 1.12. This palette contains various true
or false controls and indicators. The first two rows contain square and round buttons,
push buttons, LEDs, and radio buttons. The remaining booleans include slide
switches, toggle switches, labeled buttons, and checkboxes. Their mechanical action
and data range can be modified through the pop-up menu. Some of the controls in
this palette are also available in the Dialog palette.

Interesting features that LabVIEW programmers can use with boolean controls
is the mechanical action of the controls themselves. Configuration options available
are switch when pressed, switch when released, switch until released, latch when

FIGURE 1.9

FIGURE 1.10

©2001 CRC Press LLC

pressed, latch when released, and latch until released. The major decision is whether
the switch should switch or latch. Switching involves a somewhat permanent change.
Latching changes the value of the control for a short period of time. The release
time is when the user presses the button, and finally lets go. Switch when pressed
makes the new value of the boolean available as soon as the user touches it, and the
change stays in place regardless of how long the user holds the button down.
Switching when released does not trigger the new value until the user lets go of the
control. Switching until released will change the control’s value until the user
releases the button. When the button is released, it toggles back to its original value.

Latching controls will toggle their value for a short period of time. Unlike
switching, latching controls will return to their original value at some point in time.
Latch when pressed booleans will make the toggled value available as soon as the

FIGURE 1.11

FIGURE 1.12

©2001 CRC Press LLC

user clicks the control. Latch when released booleans are toggled for a short while
after the user releases the control. Latch until released controls will retain a toggled
value while the control is activated by the user, and for a short period of time after
the user releases the control.

Boolean controls have a default action of switch when pressed. Latching controls
are very helpful in applications that allow users to change the behavior of an
application for a short period of time. For example, a test application could have a
button titled “e-mail status NOW.” This button is not one that should be mechanically
switched, where hundreds of e-mails can be sent to your boss when one would have
done well. Buttons that switch when released are helpful when users try to time
when a VI may want to stop. Also note that the mechanical action of subVIs is
completely ignored; LabVIEW itself is not considered a user.

In general, it does not seem like there is a lot of material that can be presented
on a topic such as programming buttons, but LabVIEW does provide a fair amount
of flexibility for programmers as to how users and their programs can interact.

1.5.3 S

TRING

 & T

ABLE

The String & Table palette is displayed in Figure 1.13. It holds the string control,
indicator, and table. The string table is simply a two-dimensional string array.
LabVIEW strings are far simpler to use than strings in C. LabVIEW strings will
automatically adjust their size to hold whatever data you place into them. String
controls and indicators have a number of options that make them very flexible when
programming a user interface.

Display options are very useful for programmers performing communications
work. Many strings that are sent to serial instruments and other devices contain
nonprintable characters. String displays can be set to show the ASCII value of the
contents. We have used this display option many times when writing drivers and
code that use nonprintable arrays of characters. The “slash codes” display option is
useful for showing whitespace used in the string. Spaces would appear as /s in slash
code display. Again, this is very useful when writing code that needs to be clearly
understood by a user.

Information that is sensitive can be protected with the password display option.
Similar to standard login screens, password display replaces the characters with
asterisks. Few programmers write their own login screens, but there are times when
this display is necessary. Later in this book we will demonstrate using an ActiveX
control to send e-mail. Before the control can be used to process e-mail, a valid user
login must be presented to the mail server. The password would need to be obscured
to casual observation.

It is possible to enable scrollbars for lengthy text messages, and also possible
to limit values to a single line. If LabVIEW is used to display text files, scrollbars
may become a necessary option. Form processing may want to limit the length of
data users can insert, and single-line-only mode would accomplish this.

New to LabVIEW 5.0 is the ability to update the value of the string while the
user is typing. Previously, a user would have to stop accessing the string control
before the new data was available to the wire diagram. This is undesirable when a

©2001 CRC Press LLC

more interactive application is necessary. As an example, a serial console application
could not have been written well in LabVIEW 4.0. Console applications typically
send each character as they become available from the keyboard buffer. The ability
to update strings while typing allows LabVIEW strings to support this type of
application.

Attribute nodes allow for additional programming options. It is possible to
cause the displayed text to flash with the flash attribute node. String controls can
use the position attribute node to set or examine the current position of the cursor
in the control.

1.5.4 L

IST

 & R

ING

The List & Ring palette is also displayed in Figure 1.13. You will find the text,
dialog, and picture rings along with the enumerated type and selection listbox in the
palette. These items allow menu type controls or indicators for the user interface of
an application. The text or picture represents a numeric value, which can be used
programmatically. The enumerated type has an unsigned number representation and
is especially useful for driving case statements. It is a convenient way to associate
constants with names. Some of the controls represented in this palette are also
available through the Dialog palette.

Figure 1.14 is a simple example that demonstrates how to use the objects in this
palette. Shown is the menu ring with a digital indicator next to it, and a multiple

FIGURE 1.13

©2001 CRC Press LLC

selection listbox with an digital indicator array next to it. The menu ring is similar
to a pull-down menu that allows the user to select one item among a list. Item one
in a menu ring is represented by a numeric value of 0, with the second item being
1, and so on. The second item is selected in this example and its numeric value is
shown in the indicator. The menu ring terminal is wired directly to the indicator
terminal on the block diagram as shown in Figure 1.15.

The multiple selection listbox is represented by an array of numbers, with 0
corresponding to the first item on the list. In our example, Test 3 and Test 5 are
selected and the corresponding array is next to the list box. The array holds two
values, 2 and 4, corresponding to the two tests selected from the listbox. Multiple
selections are made from the listbox by holding down the Shift key and clicking on
the items needed.

1.5.5 A

RRAY

 & C

LUSTER

The last palette displayed in Figure 1.13 is Array & Cluster. To create an array, you
must first drag the array container onto the front panel of a VI. Then a control or
indicator must be dropped inside the array shell. Arrays of any data type can be

FIGURE 1.14

FIGURE 1.15

©2001 CRC Press LLC

created using the objects available in the Controls palette, except for charts or graphs.
The array index begins at zero and the index display has a control that allows you
to scroll to view the elements. A two-dimensional array can be created by either
popping up on the array to add a dimension, or by dragging the corner and extending it.

Unlike C, LabVIEW arrays are always “safe.” It is not possible to overwrite the
boundaries of an array in LabVIEW, it will automatically resize the array. Languages
like C do not perform boundary checking, meaning that it is possible to write to the
fifth element of a four-element array. This would compile without complaint from
the C compiler, and you would end up overwriting a piece of memory and possibly
crashing your program. LabVIEW will also allow your application to write outside
the boundaries of the array, but it will redimension the array to prevent you from
overwriting other data. This is a great feature, but is not one that programmers should
rely on. For example, if writing to the fifth element were actually a bug in your
code, LabVIEW would not complain and it would also not inform you that it changed
the array boundaries!

Array controls and indicators have the ability to add a “dimension gap.” The
dimension gap is a small amount of space between the rows and columns of the
control to make it easier for users to read. Another feature of the array is the ability
to hide the array indexes. This is useful when users will see only small portions of
the array.

A cluster is a data construction that allows grouping of various data types, similar
to a structure in C. The classic example of grouping employee information can be
used here. A cluster can be used to group an employee’s name, social security
number, and department number. To create a cluster, the container must first be
placed on the front panel. Then, you can drop in any type of control or indicator
into the shell. However, you cannot combine controls and indicators. You can only
drop in all controls or all indicators. You can place arrays and even other clusters
inside a cluster shell.

Figure 1.16 shows the array and cluster shells as they appear when you first
place them on the front panel. When an object is dropped inside the array shell, the
border resizes to fit the object. The cluster shell must be modified to the size needed
by dragging a corner. Figure 1.17 shows the array and cluster with objects dropped
inside them. A digital control was dropped in the array shell. The outer display
shows the current index number of the array. The cluster now contains a string
control for the employee name, a digital control (integer) for the department number,
and another string control for the social security number. When only one value from
the cluster data is needed when programming, a LabVIEW function allows you to
unbundle the cluster to retrieve the piece that is needed. This is explained further in
Section 1.6.

The Error In control and Error Out indicator, shown in the two previous figures,
are both clusters. These are used for error detection and exception handling in
LabVIEW. The clusters hold three objects: a status to indicate the occurrence of an
error, a numeric error code, and a string to indicate the source of the error. Many
LabVIEW functions utilize the error cluster for error detection. Error handling is
discussed in Chapter 6.

©2001 CRC Press LLC

1.5.6 G

RAPHS

AND

 C

HARTS

Figure 1.18 displays the Graphs palette with the built-in graph and chart objects.
The Waveform Chart and Waveform Graph are located in the top row, while the
Intensity Chart and Intensity Graph are in the second row. The XY Graph is also

FIGURE 1.16

FIGURE 1.17

©2001 CRC Press LLC

available in the top row of the palette. The graph and chart may look identical at
first, but there is a distinction between the two. The graph is used for plotting a set
of points at one time by feeding it an array of data values. The chart, on the other
hand, is used for plotting one data point or array at a time. A chart also has memory,
maintaining a buffer of previous points which are shown in its display.

The example in Figure 1.19 will help to demonstrate the difference between a
chart and a graph. A Waveform Chart and Waveform Graph are displayed on the
front panel side by side. A For loop is executed 100 times with the index value being
passed to the chart. Once the loop is finished executing, the array of index values
is passed to the graph. A 250-millisecond delay is placed in the For loop so you can
see the chart being updated as the VI executes. Both the chart and graph are used
for displaying evenly sampled data.

Graphs and charts have a number of display options enabling programmers to
display data in a manner that makes sense. For example, both charts and graphs support
a histogram style display. Since histograms plotted with straight lines are awkward to
read, interpolation between points and point styles are completely adjustable.

Graph controls and indicators provide a palette for users to adjust the graphs at
runtime. The palette allows for auto scaling of both the X and Y axes. Zoom features
are available for examining portions of the graph at runtime. Cursors are available
to measure distances between points. This level of functionality is not very common
in graphing packages that come standard with most other languages.

The XY Graph can be used to graph any type of data, similar to a Cartesian
graph. Figure 1.20 illustrates the XY Graph with a plot of a cosine wave. Two
separate arrays are provided as input to this graph. Several graph and chart attributes

FIGURE 1.18

©2001 CRC Press LLC

FIGURE 1.19

FIGURE 1.20

©2001 CRC Press LLC

can be modified for display purposes. The grid options, mapping (linear or log),
scale styles, and marker spacing are some of the items available in the pop-up menu.
Their displays can also be resized on the front panel by dragging a corner.

3-D graphs and picture plots are some of the advanced objects available on this
palette. The 3-D graphs require three separate arrays of data values for graphing the
x, y, and z coordinates. The Polar Plot, Smith Plot, Min-Max Plot, and Distribution
Plot are indicators on the Picture subpalette of the Graph palette.

1.5.7 P

ATH

 & R

EFNUM

The Path & Refnum palette is displayed in Figure 1.18. The first two objects are
the File Path Control and File Path Indicator. These are used when performing
directory- or file-related operations to enter or display paths. The remaining objects
on the palette are refnums, which you may need to employ during programming.

A refnum is a distinct identifier or reference to a specific item. This item can
be a file, external device, ActiveX object, network connection, or another VI. This
identifier is created when a connection is opened to a specific object. When a
connection is first opened, the particulars of the connection need to be defined, such
as a file path, instrument address, or an IP address. After the connection is opened,
a refnum is returned by the open function. This refnum can then be used throughout
an application when operations must be performed on the object. The particulars of
the connection need not be defined again.

Figure 1.21 demonstrates the refnum through a simple example. In this illustra-
tion, a TCP connection is opened to a host computer. The front panel shows controls
for the IP address or host computer name and the remote port number that are needed
to define the connection. The Network Connection Refnum is an indicator returned
by the function that opens the connection. The block diagram shows TCP Open
Connection, a built-in LabVIEW function, with the related data provided. The
refnum, or reference, created by this function can then be used to perform other
operations. This unique identifier represents the connection, and the specifics do not
need to be provided again.

LabVIEW uses refnums to track internally used resources, for example, a file
path refnum contains information needed to read or write to a file. This information
is using system resources such as memory and must be returned. If the programmer
does not close refnums, LabVIEW will leak memory. Over long periods of time,
this could degrade the system’s performance.

1.6 BLOCK DIAGRAM FUNCTIONS

All coding in LabVIEW is done on the block diagram. Various functions are built in
to aid in the development of applications. The Functions palette is displayed in Figure
1.22 and appears when the block diagram window is active. LabVIEW is a program-
ming language and uses the typical programming constructs such as loops, and defines
a couple of other structures unique to data flow programming. This section briefly
describes some of the tools that are available to LabVIEW programmers.

©2001 CRC Press LLC

1.6.1 S

TRUCTURES

The control structures that are accessible from the Structures palette are shown in
Figure 1.23. This palette contains the Sequence, Case, For loop, and While loop
structures. You will also find the Formula Node, Global Variable, and Local Variable
on this palette.

1.6.1.1 Sequence Structure

Place the Sequence structure on the diagram and drag it to the size desired. The
structure looks like a frame of film when placed on the diagram. The Sequence
structure is used to control the flow or execution order of a VI. In LabVIEW, a node
executes when the input data required becomes available to it. Sequence structures
can be used to force one node to execute before another, and to ensure that the VI
executes in the order intended.

FIGURE 1.21

©2001 CRC Press LLC

FIGURE 1.22

FIGURE 1.23

©2001 CRC Press LLC

Each frame is basically a subdiagram. The Sequence structure will begin exe-
cuting when the required data becomes available to it, just as any other node. The
objects placed inside the first frame (Frame 0) execute first, and the rest of the
frames follow sequentially. Within each frame or subdiagram the data flow execution
still applies.

The top of Figure 1.24 shows the Sequence structure as it appears when first
placed on the block diagram. Additional frames are added by popping up anywhere
on the border of the structure and selecting Add Frame After (or Before). The second
picture depicts the Sequence structure after a frame has been added. Only one frame
is visible at a time. The display at the top of the frame indicates which frame is
currently visible.

The example diagrams in Figure 1.25 will help to define some terms that are
related to the Sequence structure. The top window shows Frame 0, while the bottom
window shows Frame 1 of the structure. Data can be passed into a Sequence structure
by simply wiring it to the border to create a tunnel. The blackened area on the border
indicates that a tunnel has been created. Data is passed out of the Sequence structure
in a similar manner, with the data actually being passed out after all of the frames
have been executed. A tunnel is created for each value that needs to be passed in
and is available for use in all frames. The same is true for data being passed out of
a Sequence structure. This point is important because data being passed out of a
Case structure is handled differently.

Data values can be passed from one frame to the following frames with the use
of Sequence locals as shown in the top diagram. The Sequence local is available in
the pop-up menu. The arrow on the local indicates that the data is available for
manipulation in the current frame. Note that in Frame 0, the local to the right is not
available because the data is passed to it in Frame 1. Frame 2 can use data from
both of the Sequence locals. The locals can be moved to any location on the inside
border of the structure.

FIGURE 1.24

©2001 CRC Press LLC

Sequence structures can be avoided in most applications. The main problem
with sequence structures in LabVIEW programming is readability for other pro-
grammers. Controlling the order of execution can be performed with error clusters,
or by designing subVIs with dependent inputs. Sequence structures can be a bad
habit that is easily developed by some LabVIEW programmers. The authors use
sequence diagrams that contain a single frame when working with VIs that do not
use a standard error cluster.

Sequence structures do not have equivalents to other programming languages;
this is a unique structure to dataflow languages. Text-based languages such as Visual
Basic and C perform operations line-by-line; LabVIEW executes things as they
become available.

1.6.1.2 Case Structure

The Case structure is the second object on the palette and is placed on the block
diagram in the same manner as the Sequence structure. The Case structure is similar
to conditional control flow constructs used in programming languages such as C.
The case structure has a bit more responsibility in LabVIEW; in addition to switch
statements, it functions as an if-then-else block when used with a Boolean. Figure
1.26 displays Case structures and four examples of how they are used.

The first Case structure uses a Boolean data type to drive it. A Boolean is wired
to the selector terminal represented by the question mark (?). When a Boolean data
type is wired to the structure, a true case and a false case are created as shown in
the display of the Case structure. The false case is displayed in the figure since only
one case is visible at a time. As with the Sequence structure, the Case structure is

FIGURE 1.25

©2001 CRC Press LLC

a subdiagram which allows you to place code inside of it. Depending on the value
of the Boolean control, the appropriate case will execute. Of course, the availability
of all required data inputs dictates when the Case structure will execute.

A numerical case structure is shown to the right of the structure driven by the
Boolean. When a numeric control is wired to the selection terminal, the case executed
corresponds to the value of this control. When the Case structure is first placed on
the code diagram and the numeric control is wired to the case selector, LabVIEW
creates only two cases. You must pop-up on the structure and add as many cases as
you need. Normally, Case 0 is the default case, but you can change that to any case
you desire. You must specify a default case to account for the different possibilities.
If you do not specify a default case, you must create a case for each possibility. You
can assign a list or range of numbers to a particular case by editing the display, or
case selector label, of the structure with the editing tool. To assign a list to one case,
use numbers separated by commas such as

2, 3, 4, 5

. To specify a range, separate
two numbers by two periods, like

2..5

.
You should also be aware that floating point numbers could be wired to the case

selection terminal. LabVIEW will round the value to the nearest integer. However,
the selector label cannot be edited to a floating point number. The case selector label
will display red characters to indicate that it is not valid.

The lower left Case structure has a string control wired to the case selector. This
capability was first added to LabVIEW in Version 5.0. The case selector display
must be edited to the desired string value for each case. The string is displayed in
quotes but does not have to be entered that way. The case that matches the string
control driving the structure will be executed. LabVIEW allows you to alter the
criteria to perform a case-insensitive match to ignore the difference between upper
and lower case strings. If there is no match, the default case will execute.

Finally, an enumerated type is used to drive the Case structure in the lower right
corner. The text surrounded by the quotes corresponds to the different possible values
of the control. When you first wire the enumerated control to the case selector
terminal, only two cases are created. You must use the pop-up menu to add the rest
of the cases to the structure. Although the enumerated data type is represented by

FIGURE 1.26

©2001 CRC Press LLC

an unsigned integer value, it is more desirable to use than a numeric control. The
text associated with the number gives it an advantage. When wired to a Case
structure, the case selector label displays the text representation of the enumerated
control. This allows you to identify the case quickly, and improves readability.

Data is passed in to the Case structure by creating a tunnel. Each data value
being passed must have a unique tunnel associated with it. This data is made available
to all of the cases in the structure. This is similar to the Sequence structure described
earlier. However, when data is being passed out of the Case, each case must provide
output data. Figure 1.27 illustrates this point. The picture shows the code of a VI
using an enumerated type to control the execution of the Case structure. This VI
takes two numeric values as input and performs an operation on them, returning the
result as output. Depending on the selection, addition, subtraction, multiplication,
or division is performed.

The top window shows the “Subtract” case displayed. Number 2 is subtracted
from Number 1 and the result is passed out to Result. Note that the tunnel used to
pass the data out is white. This indicates that a data value is not being output by all
cases. All of the cases must have a value wired to the tunnel. The bottom window
shows the Add case displayed. Now all of the cases have an output wired to the
tunnel, making it turn black. This concept holds true for any data type driving the
Case structure.

1.6.1.3 For Loop

The For loop is used to execute a section of the code, a specified number of iterations.
An example of the For loop structure is shown in Figure 1.28. The code that needs
to be executed repeatedly is placed inside of the For loop structure. A numeric
constant or variable can be wired to the count terminal to specify the number of
iterations to perform. If a value of zero is passed to the count terminal, the For loop
will not execute. The iteration terminal is an output terminal that holds the number
of iterations the loop has executed. Therefore, the first time the loop executes, the
iteration value is 0.

FIGURE 1.27

©2001 CRC Press LLC

The top block diagram shows a For loop that will execute 25 iterations. A 1 is
added to the value of the iteration terminal and passed out to an indicator array via
a tunnel. The output of the For loop is actually an array of the 25 values, one for
each iteration. Since the loop executed 25 times, LabVIEW passes an array with the
25 elements out of the tunnel. In this case, the array holds values 1 through 25 in
indexes 0 through 24, respectively; this is known as auto indexing. Both the For
loop and While loop assemble arrays when data is passed out. Auto indexing is the
default only for the For loop, however. LabVIEW allows the programmer to disable
auto indexing so that only the last value is passed out of the loop. This is shown in
the bottom code diagram. Popping up on the tunnel and selecting the appropriate
item from the menu disables indexing. The output from the tunnel is wired to a
numeric indicator in this diagram. If you observe the wire connecting the indicator
and the tunnel, you will notice that the wire is thicker in the top diagram because
it is an array. This allows you to quickly distinguish an array from a single value.
Indexing can be enabled in a similar manner if you are using a While loop.

Figure 1.29 illustrates another example diagram utilizing the For loop. An array
is passed into the For loop to perform an operation on the values. In this example,
the count terminal is left unwired. LabVIEW uses the number of elements in the
array to determine how many iterations to perform. This is useful when the size of
the array is variable and not known ahead of time. One element at a time is passed
into the For loop structure and the addition is performed. This property of For loops
is also a feature of auto indexing and is available by default in For loops. This is
the opposite of what the loop does at the output tunnels. Caution needs to be used
when working with multiple arrays being fed into a For loop. LabVIEW will perform
a number of iterations equal to the shorter length of the array. Popping up on the
terminal and selecting

Disable Indexing

 can disable auto indexing.
What if you do wire a value to the count terminal in this example? If the value

passed to the count terminal is greater than the number of elements in the array,

FIGURE 1.28

©2001 CRC Press LLC

LabVIEW uses the number of elements in the array to decide how many iterations
to perform. If the value passed to the count terminal is less than the number of
elements in the array, LabVIEW will use the count terminal value. This indexing
feature on the input side of the For loop can also be disabled by using the pop-up
menu. Once indexing is disabled, the whole array is passed in for each iteration of
the loop.

A last feature of auto indexing is the ability to handle arrays of multiple dimen-
sions. A two-dimensional array fed into a For loop will iterate the values in one
dimension, in other words, a one-dimension array will be fed into the For loop. A
nested For loop can be used to iterate through the one-dimension arrays.

Figure 1.30 shows the code diagram of a VI that calculates the factorial of a
numerical value. A shift register is utilized to achieve the desired result in this
example. The shift register has two terminals, one on the left border and one on the
right border of the structure. The shift register is used for passing a data value from
the current iteration to the next one. The right terminal holds the data of the current
iteration and is retrieved at the left terminal in the next iteration. A shift register pair
can be created by popping up on the left or right border of the For loop structure and
selecting

Add Shift Register

. The shift register can hold any LabVIEW data type.
In the example shown, a constant value of 1 is wired to the shift register. This

initializes the value of the shift register for the first iteration of the loop. If nothing
was wired to the shift register, the first iteration would contain a value of 0. The
Numeric control wired to the count terminal contains the value for which the factorial
is being calculated. A 1 is added to the iteration terminal and then multiplied to the
previous result. This successfully yields the desired factorial result. Shift registers
can be configured to remember multiple iterations by popping up and selecting Add
Element from either side. A new terminal will appear just below the existing one
on the left border of the structure. When you have two terminals, this allows you
access to the two previous iteration values. The top terminal always holds the last
iteration value.

Shift registers are the only mechanisms available to perform recursive operations
in LabVIEW. Recursion is the ability for a function to call itself during execution,
and it has frustrated thousands of students learning C and C++. The good news for
LabVIEW programmers is that VIs cannot wrap back onto themselves in a wire
diagram. There are times when a recursive operation is the best way to solve a
problem, and using shift registers simulate recursion. Although not truly recursive,

FIGURE 1.29

©2001 CRC Press LLC

access to the last iterations can be used to perform these ever-popular algorithms in
LabVIEW. It is not possible for LabVIEW to overrun a call stack with shift registers,
which is very possible with recursive functions in C. One of the problems with
recursion is that if exit criteria are not correct, the function will not be able to stop
calling itself and will crash the application. Memory usage is also a bit more efficient
for shift registers because there is not as much call stack abuse.

Outputs of a For loop, by default, will be arrays consisting of a collection of
outputs for each iteration of the loop. One advantage of the For loop when handling
arrays is LabVIEW’s efficiency. Since the For loop’s iteration count is derived from
an iteration count or length of an array, LabVIEW can precompute the number of
elements in array outputs. This allows LabVIEW to reserve one contiguous block
of memory to write output arrays to. This is important because, as we mentioned
earlier, LabVIEW will expand array boundaries, but this involves a performance hit
because LabVIEW needs to go to the operating system and reallocate the entire
array and perform a duplication of the existing elements. Small arrays will not be
a significant performance degradation, but larger arrays can slow things down quite
a bit.

1.6.1.4 While Loop

The While loop is an iteration construct that executes until a false value is passed
to its conditional terminal. The conditional terminal is located in the lower right
corner of the While loop structure, as shown in Figure 1.31. The While loop will
execute at least once because the condition is evaluated at the end of the current
iteration. If a true value is passed to the conditional terminal, the loop will execute
another iteration before evaluating the value once again. If the terminal is left
unwired, the loop will execute once before stopping.

Figure 1.31 illustrates the use of the While loop. The output of the subVI is
compared to find out if it is greater than 75.0. This evaluation determines whether
the loop will execute one more iteration. If the value is greater than 75.0, a true
value is passed to the conditional terminal causing it to execute again. If the value
is less than or equal to 75.0, a false value causes the loop to terminate.

Automatic indexing is available for the While loop also, but it is not the default.
When data is passed in or out of the loop structure, you must use the pop-up menu

FIGURE 1.30

©2001 CRC Press LLC

to enable indexing. Shift registers can be created on the left or right border of the
While loop. The shift registers operate in the same manner as described as the For
loop.

While loops can be used to perform the functions of a For loop with a little less
efficiency. Popping up on the terminals can use auto indexing and array creation.
As you will see throughout this book, While loops are used by the authors more
often than For loops. This is not a matter of personal preference, but good design
decisions. When working with previously collected data, such as reading a file and
processing the file contents, For loops will be more efficient and are used in these
types of applications. Points read in the form of arrays can be done far more
efficiently with For loops because LabVIEW can precompute memory allocations.
The problem with For loops is that there is no mechanism to abort execution of the
loop, i.e., there is no break command. While loops stop their execution any time a
false value is fed into the condition terminal.

Stopping execution of a loop is important when performing automation, which
is the authors’ primary use of LabVIEW. One of the inputs to the condition indicator
will be the Boolean value of the error cluster, which we feed through a shift register
for every iteration. In an automation application, the ability to break execution is
more important than the efficiency of array handling. There is a tradeoff of efficiency
against exception handling, but in automation it makes more sense to stop execution
of troubled code.

1.6.1.5 Formula Node

The Formula Node is the first item in the second row of the Structures palette. A
Formula Node is simply a bounded container for math formulas. It allows you to
create formula statements, similar to programming in C. Multiple formulas can be
enclosed in a single node, and each formula must end with a semicolon.

You can use as many variables as you wish, but you must declare each one as
either input or output. Popup on the border of the Formula Node and select either

Add Input

 or

 Add Output

. A terminal is created on the border of the node for
which you must enter the name of the variable. An output has a thicker border to
help differentiate it from an input terminal. All input terminals must have data wired

FIGURE 1.31

©2001 CRC Press LLC

to them, but output terminals do not have to be used or wired to other terminals.
Variables that are not intended for use outside of the Formula Node should be
declared as output and left unwired. The input and output terminals can be created
on any border of the structure.

The Formula Node is illustrated in Figure 1.32. The Formula Node contains a
simple formula to demonstrate how it is used. It has one input variable, y, and one
output variable, x. The output variable terminal has the thicker border and could
have been moved to any location on the structure. The Formula Node uses the input
variable and calculates the output variable according to the formula created. Consult
the

Formula Node Syntax

 topic in Online Help to find out more information on
creating formulas and the various operators that are available. You may also find the

Formula Node Functions and Operators

 topic helpful to learn more about the
different built-in functions offered.

One advantage of the formula node is that its operation is compiled internally
to the node. Long formulas do not take up as much space on your display and can
significantly reduce the number of elements in a wire table for the code diagram.

1.6.2 N

UMERIC

, B

OOLEAN

, S

TRING

,

AND

 C

OMPARISON

The Numeric, Boolean, String, and Comparison palettes are displayed in Figure 1.33.
The functions shown in the Numeric palette are straightforward and simple to use.
The example in Figure 1.30, shown previously, utilized the

multiply

 and

increment

functions. Most of them can be used for any type of number, including arrays and
clusters. The

multiply

 function, for example, requires two inputs and yields the product
of the two.

The Numeric palette holds the Conversion, Trigonometric, Logarithmic, Com-
plex, and Additional Numeric Constants subpalettes. The functions in the Conversion
subpalette are primarily used to convert numerical values to different data types.
The Additional Numeric Constants subpalette holds such constants as Pi, Infinity,
and

e

. One issue to note about floating point numbers in LabVIEW is that “not a
number” quantities are defined. Values for +/- infinity are defined in floating point
numbers, and division by zero will not generate an error but will return NaN (Not
a Number). When performing calculations, it is up to the programmer (as always)
to validate the inputs before performing calculations.

Numbers of various types will be converted when they are involved in a math
operation. An integer and complex number will sum to be a complex number. The

FIGURE 1.32

©2001 CRC Press LLC

conversion performed is referred to as Coercion. Any numbers that are coerced will
be labeled with a gray dot called a “coercion dot.” Coercion is rarely a problem, but
it needs to be understood that there is a small performance penalty for coercion
between types. Numbers will never be converted “backwards,” as a complex number
being converted to an integer. Performing this type of conversion requires that you
use a conversion method.

A rarely used property of floating point numbers is unit support. It is possible
to define quantities with a unit attached. Popping up on any floating-point control,
indicator, or constant on the diagram will allow you to expand the display menu.
One of the display options is Unit. Once the unit is displayed, popping up on the
unit shows the menu of units used by LabVIEW. LabVIEW supports sufficient unit
types to make sure every chemistry, electronics, mechanical, and assembly lab has
little to ask for, if anything. This feature works very well in simulation, measurement,
data display, and educational applications. Unit conversion is also possible, and is
done behind the scenes. A floating-point number with a unit of feet can be wired to
an indicator with a unit of miles. The display will show in miles; there is no need
to perform conversion operations on the results of measurements. In some cases,
this represents a possibility for performance enhancement because programmers
who perform measurement conversions on their own need to add a few elements to
their wire diagrams which will take more time to process. By default, floating-point
numbers have no unit dimensions assigned to them.

FIGURE 1.33

©2001 CRC Press LLC

The Boolean palette holds various functions for performing logical operations.
All of the functions require Boolean inputs, except for the conversion functions. A
Boolean constant is also provided on this palette. The Comparison functions simply
compare data values and return a Boolean as the result. You can compare numeric,
boolean, string, array, cluster, and character values using these functions.

Comparing arrays and clusters is a bit different from comparing primitive types
such as integers. By default, LabVIEW comparison functions will return a single
value for cluster and array comparison. If every element and the length of the arrays
are equal, then a “true” is returned. A “false” is returned if there are any differences.
If programmers want to compare an array element-by-element, the Compare Aggre-
gate option can be enabled on the comparison operator. Popping up on the compar-
ison operator will show Compare Aggregates at the bottom of the list of options.
An aggregate comparison will return an array with Booleans for the result of a
comparison of each and every element in the array or cluster.

Several string functions are provided on the Strings subpalette. Figure 1.34
illustrates the use of Concatenate Strings and String Length functions, the first two
items on this palette. When Concatenate Strings is placed on the block diagram, two
input terminals are normally available. You must pop up on the function and select
Add Input if you wish to concatenate more than two strings at one time. Alternatively,
you can drag any corner of the function up or down to add more input terminals.
You cannot leave any terminal unwired for this function. The example shown has
three inputs being concatenated. A control, a string constant, and a line feed character
are concatenated and wired to the String Length function to determine the total
length. Two subpalettes hold additional functions that perform conversion from
strings to numbers, byte arrays, and file paths.

1.6.3 ARRAY AND CLUSTER

Both Array and Cluster palettes are displayed in Figure 1.35. These palettes contain
various functions for performing operations on these data constructs. The array
functions provided can be used for multidimensional arrays. You must pop up on
the functions and add a dimension if you are working with more than one dimension.
Bundle and Unbundle functions are available for manipulation of clusters.

Figure 1.36 displays the front panel and code diagram of an example that uses
both array and cluster functions. The front panel shows an array of clusters that
contain employee information, similar to the example discussed in Section 1.5.5.
This example demonstrates how to change the contents of the cluster for a specific
element in the array. The Index Array function returns an element in the array

FIGURE 1.34

©2001 CRC Press LLC

specified by the value of the index wired to it, in this case 0. The cluster at Index
0 is then wired to the Bundle By Name function. This function allows you to modify
the contents of the cluster by wiring the new values to the input terminals. Normally,
when Bundle By Name is dropped onto the code diagram, only one element of the
cluster is created. You can either pop up on the function to add extra items, or drag
one of the corners to extend it. The item selection of the cluster can also be changed
through the pop-up menu. New values are wired to the function as shown, and are
then passed to the Replace Array Element function. This function simply replaces
the original data with the values wired to the input terminals at the index specified.
The output is then passed to a local variable of the Employee Records control. Local
variables can be created by popping up on a control or indicator terminal from the
code diagram. Select Local Variable from the Create submenu.

If you work with arrays, one of the array functions you should become very familiar
with is the Dimension array. This function will allow you to set the dimensions on an

FIGURE 1.35

©2001 CRC Press LLC

array. LabVIEW will expand array sizes to prevent users from overwriting the bound-
aries of an array, but this is bad practice. Each time LabVIEW needs to change the
number of elements in a dimension, it must get a memory allocation sufficient to hold
the array and copy each and every element into the new array. This is very inefficient,
and is a bad programming habit to get into. Pre-dimensioning arrays when you know
the length in advance is an efficient habit to develop. The other array function you
will become familiar with is the Replace Array element. This function allows you to
change the value of an element in an array without duplicating the array.

Other functions in these palettes allow you to perform several other operations
on arrays and clusters. The Cluster palette contains an Unbundle function for
retrieving data from a cluster, a function for building cluster arrays, and functions
for converting data between clusters and arrays. The Array palette holds functions
for detecting array sizes, searching for a specific value in an array, building arrays,
decimating arrays, and several other operations. If you are interested in creating
easily-read GUIs, the conversion functions between arrays and clusters is some-
thing you will want to look into. On occasion, it will be desirable to use array
element access in your application, but arrays on the front panel can be difficult
to read. Displaying data on the front panel in the form of a cluster and converting
the cluster to an array in the code diagram makes both users and programmers
happy.

FIGURE 1.36

©2001 CRC Press LLC

1.6.4 TIME & DIALOG

The Time & Dialog palette, displayed in Figure 1.35, contains error handler VIs in
addition to functions for retrieving the system time, wait functions for introducing
delays, and functions for displaying dialog boxes. Chapter 6 covers the topic on
exception handling and describes the error handler VIs in more detail. The Wait
Until Next Multiple function is useful for introducing delays into loop structures.
When placed inside a loop, it causes the loop to pause a specified time between
iterations of execution. The functions on this palette are simple to use and are self-
explanatory.

A few comments regarding time in LabVIEW should be mentioned. When using
the Tick Count or Wait Until Next Multiple functions, it is possible for the counter
to overflow. Windows running on Intel hardware will have a 32-bit counter that is
keeping the tick count. This counter will overflow about once every 50 days. For
most home users, 50 days is an extremely long time to keep a computer running.
In office and lab environments, this is a bit different, machines do not get rebooted
every day because you leave them on. Lab machines may be left running for a couple
of months at a time, and the clock may roll over at an inopportune time. Computers
used in assembly line operations are only rebooted when the line is not assembling
products, and for some assembly lines this happens “once every blue moon.” When
working with tick counts and multiples, be sure to examine the timestamp returned
to verify rollovers do not happen and that you are prepared to compensate for the
changing of the number.

System dates and times are dependent on the system you run on. Most computers
measure the date in the number of seconds that have elapsed since a certain time,
for example January 1, 1974, at 12:00am. This number is stored in a 32-bit number
and it will be an extremely long time from now before this date rolls over (consider
that there are approximately pi * 107 seconds in a year). The concern with system
dates and times is the precision you need. As just mentioned, it is stored in units of
seconds. If you need millisecond accuracy, system date and time are not going to
be sufficient. Some systems will store hundredths or even tenths of a second, but
millisecond accuracy is usually not possible with system times.

Dialog boxes are great for informing users that something is happening in the
system. Dialog boxes need to be avoided in automated applications, however. A
dialog box will halt LabVIEW’s execution until somebody clicks the “OK” button.
If you have an automated system that is expected to run while you are on vacation,
it may be a while before you click the button to complete your testing.

1.6.5 FILE I/O

Figure 1.37 shows the File I/O palette in addition to one of its subpalettes, the
Advanced File Functions. The basic functions allow you to open, close, create, read
from, or write to files. These functions will display a dialog box prompting the user
to select a file if the file path is not provided. The advanced functions facilitate
accessing file and directory information, modifying access privileges, and moving
a file to a different directory, among several others.

©2001 CRC Press LLC

LabVIEW’s file interfaces give programmers as much or as little control over
the file operations as desired. If you want to simply write an array to a tab-delimited
file, there is a function to do just that. Supplying the array is about all that is
necessary. The interface is very simple; you do not have much control over what
the file handler will do. Lack of control should not be a concern for you if your
purpose is to write the tab-delimited string to a file. In fact, the string conversion is
done in the function also.

Programmers who are concerned about the amount of space needed by a large
set of data can use binary access files. Binary access files will put the bit pattern
representing the array directly into the file. The advantages of binary files are the
sizes they require. A 32-bit number stored in a binary file takes exactly 32-bits. If
the number is stored in a hex format, the number would be 8 digits, requiring 64-
bits to store, twice as long. Floating-point numbers have similar storage require-
ments, and binary files can significantly reduce the amount of disk space required
to handle large files.

Binary files also allow programmers to make proprietary file formats. If you
do not know the order in which data is stored, it is extremely difficult to read the
data back from the file. We are not encouraging developers to make proprietary
storage formats — the rest of the engineering community is driving toward open
standards — but this is an ability that binary files offer.

Depending on the data being stored in the binary file, the amount of work you
need to do is variable. If arrays of numbers are being written to the file, there are
binary access VIs to read and convert the numbers automatically. Support for writing

FIGURE 1.37

©2001 CRC Press LLC

single-precision and 16-bit numbers is available through the binary VI subpalette.
One trick programmers may want to use when storing 32-bit numbers into a binary
file is to take each element in the array, split it into a pair of 16-bit numbers, and
rebuild the array. The split numbers can easily be written to the binary file. The array
length will be twice as long, obviously, but storage space will not change because
the storage size of each element is half the size. Your new 16-bit array can be written
to the binary file with ease. Reading back the data works basically the same, but
instead of the Split Number function, you will use the Join Number function.

If you are trying to write data-like clusters to binary files, there are two options
you can use. The first option is to flatten the clusters to a string and write the string
to a file. Flattened strings will be binary. File interfaces will be easy to use, but
reading back arrays of flattened clusters will be a bit more difficult. You will need
to know the length of the flattened string, and be able to parse the file according to
the number of bytes each cluster requires. Be sure to provide a robust error handler;
the conversion might just not work and return all manner of useless data if things
go awry. The second option is to use the read and write files directly. Read and write
from file is used by all of the higher level file functions, but do not open or close
the files on their own; you will need to call File Open and Close, in addition to
knowing what position in the file to write to.

In general, we do not recommend using binary access files. Binary files can only
be read by LabVIEW functions, and a majority of the reasons to use binary files
are obsolete. Modern computers rarely have small hard drives to store data; there is
ample room to store 1000-element arrays. Other applications, such as spreadsheets,
cannot read the data for analysis. Binary files can also be difficult to debug because
the contents of the file are not readable by programmers. ASCII files can be opened
with standard editors like VI, Notepad, and Simpletext. If parsing or reading file
problems show up in your code, it is fairly easy to open up an ASCII file and
determine where the problems could be. Binary files will not display correctly in
text editors, and you will have to “roll your own” editor to have a chance to see
what is happening in the file.

Many programmers use initialization files for use with their applications. Lab-
VIEW supplies a set of interfaces to read and write from these types of files. The
“platform independent” configuration file handlers construct, read, and write keys
to the file that an application can use at startup. Programmers who do not use
Windows, or programmers who need to support multiple operating systems, will
find this set of functions very useful. There is no need to write your own parsing
routines. Data that may be desired in a configuration file is the working directory,
display preferences, the last log files saved to, and instrument calibration factors.
These types of files are not used often enough in programming. Configuration files
allow for flexibility in programs that is persistent. Persistent data is data that is
written to the hard disk on shutdown and read back on startup.

The Advanced File Function subpalette contains VIs to perform standard direc-
tory functions such as change, create, or delete directories. This subpalette has all
the major functions needed to perform standard manipulations, and the interface is
much easier to use than standard C.

©2001 CRC Press LLC

Figure 1.38 illustrates a simple block diagram in which a string is written to a
file. A file constant, available in the File Constants subpalette, containing the file
path information is wired to the Write Characters to File function. The error infor-
mation string is written to an error log, which is simply a text file. The true constant
wired to the function causes the information in the string to be appended to the end
of the file. If this is changed to false, the previous file can be overwritten with the
new string. If you write to a file with this function, remember to format the string
in the manner you would like it to appear in the file.

1.6.6 INSTRUMENT I/O, DATA ACQUISITION, AND
COMMUNICATION

The Instrument I/O, Data Acquisition, and Communication palettes all contain
various built-in functions to simplify communication with external devices. The
three palettes are displayed in Figure 1.39 representing how they appear on a
Windows system. The Instrument I/O palette holds VISA, GPIB, Serial, and VXI-
related functions. The Communication palette contains functions for ActiveX, DDE,
TCP, UDP, Data Socket, and HiQ (Apple Events and PPC replace ActiveX and DDE
on the Macintosh). The specific functions in these palettes will not be discussed in
this book; however, Chapters 7 and 8 cover ActiveX in detail, which is a relatively
new addition to LabVIEW.

When designing an application, there may be a few minor details you should
consider for communications. Interapplication communications do not involve cables
such as GPIB. For Windows applications, DDE should not be used as a communi-
cations protocol. DDE is considered obsolete and only exists for legacy application
support. Windows-specific communications can be done with ActiveX /COM func-
tionality. ActiveX is the current Windows standard for communications in Windows
environments.

The only globally available communications protocols are the Unix standards
TCP and UDP. Both protocols utilize the Internet Protocol (IP). IP-based commu-
nications do not need to be between two different computers; applications residing
on the same computer can communicate with TCP or UDP connections. TCP or
UDP is recommendable because the interfaces are easy to use, standard across all
platforms, and will not be obsolete anytime soon. Macintosh’s PPC and Windows’
DDE are both out-of-date protocols, and neither were particularly easy to use.

GPIB, serial, and VXI communications should be performed with the VISA
library. VISA is the future standard for instrument communications in LabVIEW.
The IEEE 488 and serial interfaces will be supported for some time, but the VISA

FIGURE 1.38

©2001 CRC Press LLC

library is intended to provide a uniform interface for all communications in Lab-
VIEW. Addressing, sending, and receiving from an external device all use the same
VISA API, regardless of the communications line. The common API lets program-
mers focus on talking to the instruments, not on trying to remember how to program
serial instruments.

LabVIEW VIs are very similar to functions or subroutines in programming
languages like C. Once created, VIs can be called inside of other VIs. These subVIs
are called simply by placing them on a code diagram, similar to dragging a function
from the palettes as discussed in the last section. SubVIs are represented on the
block diagram by an icon that you can customize to distinguish it from other subVIs.
Once placed on the code diagram, wire the appropriate input terminals to ensure
that it will execute correctly. This section explains the activities related in setting
up and calling subVIs.

1.6.7 CREATING CONNECTORS

VIs can have inputs and outputs, similar to subroutines. A connector must be defined
for a subVI if data is to be exchanged with it. It will be necessary for you to define
connectors for most VIs that you create. The process consists of designating a
terminal for each of the controls and indicators with which data will need to be
exchanged. Once the inputs and outputs have been appointed terminals, data can be
exchanged with the VI on a block diagram.

Figure 1.40 displays the front panel of a VI with the connector pane visible in
the top right corner of the window. To display the connector pane on a VI, pop up
on the icon that is normally visible and select Show Connector from the menu. Three
rectangles or terminals appear in the example, one for each control and indicator.

FIGURE 1.39

©2001 CRC Press LLC

Each control and indicator can be assigned a terminal by using the wiring tool. Click
on one of the terminals, then click on a control or indicator to designate the terminal.

The bottom window in Figure 1.40 illustrates how the Information to Retrieve
control is assigned the top left terminal on the connector. By default, LabVIEW
creates a terminal for each control and indicator on your front panel, but the assign-
ment will be left to the programmer. If the default connector pattern is not appro-
priate, it can be modified to suit your needs. Once the connector is made visible,
use the items in the pop-up menu to select a different pattern, or rotate the current
pattern.

Controls and indicators can be assigned to any terminal on the connector.
However, controls can only serve as inputs, while indicators can only be used for
outputs. You should assign the inputs on the left terminals of the connector and the
outputs to the right side, even though you are not required to. All LabVIEW built-
in functions follow this convention. This convention also aids the readability of the
code. The data flow can be followed easily on a block diagram when subVIs and
functions are wired from left to right.

FIGURE 1.40

©2001 CRC Press LLC

Built-in LabVIEW functions have inputs that are either required, recommended,
or optional. If an input is required, a block diagram cannot be executed unless the
appropriate data is wired. Correspondingly, LabVIEW allows you to specify whether
an input terminal is required. Once you have designated a particular terminal to a
control, pop up on that terminal and select This Connection Is from the menu. Then
select either Required, Recommended, or Optional. Output indicators have the
required option grayed out in the menu. Output data is never required to be wired.

Good programming practice with subVIs is fairly simple. It is a good idea to
have a few extra connectors in your VI in case additional inputs or outputs are needed
in the future. Default values should be defined for inputs. Defined default values
will allow programmers to minimize the number of items on the calling VI’s code
diagram, making the diagram easier to read. Supplying the same common input to
a VI is also tedious; granted, it is not impossible work to do, but it becomes boring.
Laziness is a virtue in programming; make yourself and other programmers perform
as little work as possible to accomplish tasks.

1.6.8 EDITING ICONS

Icons are modified using the Icon Editor. Either double-click the default icon in the
top right corner of the window or pop up on it and select Edit Icon from the menu.
Figure 1.41 is an illustration of the Icon Editor containing a default LabVIEW VI
icon with a number. This communicates the number of new VIs opened since
initiating the LabVIEW program. Each time you start LabVIEW, the VI contains a
“1” in the icon as the default.

The Tools palette is located on the left side of the Icon Editor window, and the
editing area is in the center. The default foreground color is black, while the back-
ground color is white. When you click on the background/foreground color tool, a
color palette appears allowing you to select from among 256 colors. You can create
different icons for black-and-white, 16-color, and 256-color monitor types. Many
people create an icon in color and forget to create in black and white. This is
important when you need to print out VI documentation, if you are not using a color
printer, the icon will not appear as it should. Try to copy the icon you created from
the color area to the black-and-white area.

Figure 1.42 demonstrates the process of customizing an icon. The top window
in the figure displays an icon that has been partially customized. First, the contents
of the editing area were cleared using the Edit menu. Then, the background color
was changed to gray while the foreground was left as black. The Filled Rectangle
tool was used to draw a rectangle bordered with a black foreground and filled with
a gray background. If you double-click the tool, the rectangle will be drawn for you
automatically. The second window displays the finished icon. The Line tool was
used to draw two horizontal lines, one near the top of the icon and the other near
the bottom. Then, the Text tool was used to write “icon editor” in the editing area.
Finally, the same icon was copied in to the 16-color and black-and-white icon areas.

Since the icons are graphical representations of the VIs, you can use your
imagination and get creative when editing them, if you wish. JPEG- and GIF-
formatted picture files can be copied and pasted into the icon editing areas also.

©2001 CRC Press LLC

Although this can be fun, just remember that the purpose of customizing icons is
to allow people to distinguish the VI from other VIs and icons in a program. Try
to create icons that are descriptive so that someone looking at the code for the first
time can determine its function easily. Using text in the icons often helps achieve

FIGURE 1.41

FIGURE 1.42

©2001 CRC Press LLC

this goal. This helps the readability of the code as well as easing its maintenance.
Veteran programmers quickly abandon the process of taking an hour to develop an
appealing work of art for an icon. We have all had those VIs with the extraordinary
icons that were deleted because they became unnecessary in the project.

1.6.9 USING SUBVIS

The procedure for using subVIs when building an application is similar to dragging
built-in functions from a palette onto the block diagram. The last item on the
Functions palette, displayed in Figure 1.22, is used to place subVIs onto block
diagrams. When Select a VI is clicked, a dialog box appears prompting you to locate
the VI that you want to use. Any VI that has already been saved can be used as a
subVI. Place the VI anywhere on the code diagram and treat it as any other function.
Once the required inputs have been wired, the VI is ready for execution.

1.6.10 VI SETUP

The VI Setup window gives you several options for configuring the execution of
VIs. These options can be adjusted separately for each VI in an application. To
access this configuration window, pop up on the icon in the top right corner and
select VI Setup from the menu. This window is displayed in Figure 1.43, with the
Execution Options selected in the drop down box at the top.

The first four checkboxes shown are options for configuring subVIs and are
referred to as the “subVI node setup.” These boxes are normally unchecked as default
values. In the figure shown, the subVI has been configured to show the front panel
when it is called, and to close the panel after it has finished executing. The check-
boxes on the right are used to set printing options. The execution options also include
allowing reentrant execution, setting VI priority, and setting the preferred execution
system. Reentrant execution refers to making multiple calls to the same VI and is
covered in the next chapter. VI priority and the execution system selections are used
for optimizing the execution of an application. These two topics are discussed further
in Chapter 9, which also covers multithreading. We strongly recommend not working
with either priority or execution subsystem until you read Chapter 9. This is one of
those topics in which not understanding how threads and priorities interact can do
more harm than good.

Figure 1.44 displays the VI setup window with Window Options selected in the
drop-down menu. These configuration selections allow you to customize the appear-
ance of the VI during execution. In the example shown, Show Scroll Bars, Show
Menu Bars, and Show Toolbar have been deselected. These are all enabled by default.
Same as VI Name has also been deselected and the Window Title modified. These
alterations cause the VI to appear as shown in Figure 1.45 during execution. When
the Stop button is pressed, the front panel returns to its normal appearance. Window
options are useful for limiting the actions available to the end user of the program.

Figure 1.46 displays the VI Setup Documentation window. LabVIEW provides
some built-in documentation support that can be configured through either VI Setup
or Preferences. A VI history is kept for each VI that is created. This history is used

©2001 CRC Press LLC

to keep records of changes made to a VI, and serves as documentation for future
reference. Use History Defaults from Preferences has been deselected in the example
shown. This informs LabVIEW to use the settings from the VI setup instead of the
Preferences. The preference settings also allow you to configure the VI history, but
this checkbox determines which ones are used.

Also note that two boxes have been checked which configure LabVIEW to
add an entry to the VI history every time the VI is saved, and also to prompt the
programmer to enter a comment at the same time. The entry LabVIEW adds

FIGURE 1.43

FIGURE 1.44

©2001 CRC Press LLC

consists of the time, date, revision number, and the user name. The programmer
must enter any comments that will provide information on the nature of the
modifications made. Figure 1.47 illustrates the VI history for the VI shown earlier
in Figure 1.45. The VI history can be viewed by selecting Show History under the
Windows pull-down menu. Chapter 4, Application Structure, discusses the impor-
tance of documentation and reveals other documentation methods for LabVIEW
applications.

1.6.11 HIERARCHICAL NATURE

This section describes how VIs, once developed, can be used as subVIs in larger
applications. This creates a hierarchy of VIs in an application where layers are
created. These layers, or tiers, must be managed during development to increase the
readability, maintainability, reuse, and abstraction of code.

FIGURE 1.45

FIGURE 1.46

©2001 CRC Press LLC

Figure 1.48 shows the hierarchy window of a relatively small application. The
hierarchy window can be displayed for any VI by selecting Show VI Hierarchy from
the Project pull-down menu. This window graphically shows the relationship of a
VI to the application. It displays the VI, its callers, and all of the subVI calls that
it makes. The hierarchy window shown in the figure corresponds to the main VI at
the top. There are two layers of VIs below the main. In this example, the application
was developed with three tiers: the main level, the test level, and the driver level.

The inherent structure of LabVIEW allows for reuse of VIs and code. Once a
VI is coded, it can be used as a subVI in any application. However, a modular

FIGURE 1.47

FIGURE 1.48

©2001 CRC Press LLC

development approach must be used when creating an application in order to take
advantage of code reuse. Application architecture and how to proceed with applica-
tion development are the topics of Chapter 4. This chapter also discusses how to
manage and create distinct tiers to amplify the benefits offered by the LabVIEW
development environment.

Instrument drivers play a key role in code reuse with LabVIEW. Chapter 5
introduces a formula for the development of drivers to maximize code reuse, based
on National Instruments development method. When this formula is followed, the
result is a set of drivers that can be reused in any application while providing
abstraction for this lowest tier in the hierarchy.

The intrinsic modularity of LabVIEW can be used to apply an object-oriented
methodology to application development. LabVIEW itself is not an object-oriented
language; however, it is object-based. The object-oriented approach can be applied
to LabVIEW, though in a limited manner. Chapter 10 introduces you to the termi-
nology associated with Object-Oriented Programming, as well as how to apply it in
a LabVIEW environment.

1.7 SETTING PREFERENCES

This section describes some of LabVIEW’s preferences that can be configured to
suit a programmer’s needs. The Preferences selection is available in the Edit pull-
down menu. The window that appears is shown in Figure 1.49 along with its default
settings. The preferences shown correspond to the Paths selection from the top drop-
down menu. Some of the preferences selections are self-explanatory and will not be
discussed in this section; however, Table 1.3 lists all of the selections and describes
the notable settings that can be configured in each.

FIGURE 1.49

©2001 CRC Press LLC

1.7.1 PATHS

The Paths configurations, shown in Figure 1.49, dictate the directories in which
LabVIEW will search when opening or saving libraries, VIs, menus, and other files.
The second drop-down menu selector allows you to configure the Library, Tempo-
rary, Default, and Menus directories. The last selection in this menu is used to set
the VI Search Path. This informs LabVIEW of the order in which to search directories
when opening VIs. When you open a VI containing subVIs that are not part of a
library, this search order will be followed to find them. You can configure this to
minimize the time it takes to search and find subVIs.

If your group uses a number of common VIs, such as instrument drivers, the
directories to the drivers should be added to the VI search path. Current projects
should not be added to the search path. The VI search path was intended to allow
programmers to easily insert common VIs. VIs that are written as part of a project
and not intended to be part of a reusable library would end up cluttering up the
search path, lengthening the time LabVIEW takes to locate VIs.

TABLE 1.3
Preferences

Preference Selection Function/Utility
Paths Configure search directories for opening/saving VIs.
Performance and Disk Configure to use multithreading and perform check for available

disk space prior to launch.
Front Panel Settings for front panel editing.
Block Diagram Settings for block diagram programming.
Debugging Options that are used for debugging VIs, and execution

highlighting during execution.
Colors Change default colors used by LabVIEW for front panel, block

diagram, etc.
Fonts Settings for Applications, System, and Dialog Font styles.
Printing Configure print settings.
History Options for recording revision comments when changes are

made to VIs.
Time and Date Configure both time and date formats to be used by LabVIEW.
Miscellaneous Options for tip-strips, native file dialogs, drop-through clicks,

hot menus, autoconstant labels, opening VIs in run mode, and
skipping navigation dialog at launch.

VI Server: Configuration Configure protocols, port numbers, and server resources.
VI Server: TCP/IP Access Set access privileges to specific list of clients for VI Server.
VI Server: Exported VIs Specify list of VIs that are accessible to clients using VI Server.
Web Server: Configuration Enable Web server, configure root directory, set port number

and timeout.
Web Server: Browser Access Set access privileges to specific list of clients for Web server.
Web Server: Visible VIs Specify list of VIs that are accessible to clients from Web server.

©2001 CRC Press LLC

1.7.2 BLOCK DIAGRAM

Figure 1.50 displays the Block Diagram preferences window. These options are
intended to help you develop code on the block diagram. For the beginning user of
LabVIEW, some of these settings can help you get familiar with the programming
environment. Tip-strips, wiring guides, and junction dots are very useful when wiring
data to functions and subVIs. Displaying subVI names is also handy because the
icons are not always descriptive enough to determine their roles in an application.

The last checkbox in this window allows you to configure the maximum number
of undo steps per VI. Undo is a LabVIEW enhancement that was introduced in Version
5.0. Undo and Redo are both available in the Edit pull-down menu. When the box is
unchecked, you can change the default number from 8 to another suitable number.
Keep in mind that a higher number will affect the memory usage for your VIs during
editing. Since actions are recorded for each VI separately, the number of VIs that you
are editing at any one time also affects memory usage. Note that once a VI is saved,
the previous actions are removed from memory and cannot be undone.

1.7.3 HISTORY

The History preferences window is displayed in Figure 1.51. Some of these options
are duplicated in the VI History settings under VI Setup, as described earlier in
Section 1.7.4. If you compare this to Figure 1.46, you will notice that the first four
checkboxes are the same. If you have the Use History Defaults box checked in the
VI Setup window settings, LabVIEW will use the History preferences.

The radio buttons let you configure the login settings for LabVIEW. These
settings will be used to determine the name entered by LabVIEW in the VI History
box that records the comments when an entry is made. The second window in Figure
1.51 shows the User Login information. The login name can be modified in this
window and is accessed by selecting User Name from the Edit menu.

FIGURE 1.50

©2001 CRC Press LLC

Using the VI history is simply good programming practice. Listing the change
history of a VI allows other programmers to understand what modifications a VI has
which can be used to help debug applications. It does not take many experiences with
troubleshooting why an application stopped working because “someone else” made a
modification to code and did not communicate or document the modification. Using
history alone is not quite enough. When making comments in the history, note the
changes that were made, and, equally important, note why the changes were made. It
is fairly common practice to comment code as you write it, but to not keep the
comments up to date when modifications are made. Giving other programmers a hint
as to why a change was made allows them to see the thought process behind the change.

1.7.4 VI SERVER AND WEB SERVER

The VI Server functionality is a feature that was added to LabVIEW in Version 5.0.
It allows you to make calls to LabVIEW and VIs from a remote computer. You can
then control them through code that you develop. This also permits you to load and
run VIs dynamically. Chapter 7 describes the VI Server in more detail along with
the related configurations and some examples.

The Web Server is also an addition to LabVIEW in Version 5.0. The built-in
Web server must be enabled through the preference settings. The Web server will
allow you to view any VIs that are loaded on the same machine using a browser.
You can then view the front panel of a VI that may be running from any remote
machine. The Web Server and its configurations are discussed further in Chapter 2.

FIGURE 1.51

©2001 CRC Press LLC

1.7.5 PALETTES

LabVIEW normally displays the default palettes for both Controls (Figure 1.8) and
Functions (Figure 1.22). You can change the palette view to match your programming
needs by either selecting a new palette set or creating your own palette. The view
can be changed easily through the Edit menu. The Select Palette Set submenu allows
you to select from the following list: basic, data acquisition (daq_view), default, and
test and measurement (t&m_view). This can be further modified to show the standard
icons and text, all icons, or all text using the Display Style submenu.

Select Edit Control & Functions Palettes to create and customize a new palette
set. A window similar to the one shown in Figure 1.52 will appear that will allow
you to perform this. Then select New Setup from the drop-down menu box and
enter a name for the new view. A view called “Personalized” was created for the
example in Figure 1.52. The customized Functions palette is also shown, along with
the modified User Libraries subpalette. A new setup must be created because

FIGURE 1.52

©2001 CRC Press LLC

LabVIEW does not directly allow you to modify the default palette set. It serves as
protection in case the changes a user makes are irreversible.

Once you have created the new setup, the Functions and Controls palettes contain
the default subpalettes and icons. The user is allowed to move, delete, and rename
items in the palettes as desired. All of the available editing options are accessible
through the pop-up menu. Simply pop up on the palette icon or the specific function
within a subpalette to perform the desired action. If you compare the Functions
palette in Figure 1.52 to the default palette in Figure 1.22, you will notice the changes
that were made. Some palettes were deleted while others were moved to new
locations. A VI (Data Logging.vi) was added to the Users Library displayed in the
bottom window. VIs that you have created and may use regularly can be added to
a palette in this manner. After a new setup has been created, it will be available to
you as an item under the Select Palette Set submenu.

BIBLIOGRAPHY

LabVIEW On-line Reference, National Instruments

Bitter, Rick et al "LabVIEW Features"
LabVIEW Advanced Programming Techinques
Boca Raton: CRC Press LLC,2001

2

©2001 CRC Press LLC

LabVIEW Features

The previous chapter covered many of LabVIEWs basic functions. The functions
give a programmer the ability to produce a wide range of applications in a relatively
short time. While the previously discussed functions provide enough of a basis to
build an application, there are a number of LabVIEW features that can make an
application more flexible and easier to use, and can give your application a profes-
sional appearance. Some of these features will be discussed in this chapter.

2.1 GLOBAL AND LOCAL VARIABLES

Global variables are used when a data value needs to be manipulated in several VIs.
The advantage of using a global variable is that you only have to define that data
type once. It can then be read from or written to in multiple VIs. The use of global
variables is considered poor programming practice; they hide the data flow of your
application and create more overhead. National Instruments suggests that you struc-
ture your application to transfer data using a different approach when possible.
However, there are instances when global variables are necessary and are the best
approach for an application. One example would be updating a display from data
being generated in a subVI. The application could have two While loops running in
parallel. Data could be generated in a subVI in the top loop while the bottom loop
reads the data from the global and writes the information to the user interface. There
is no other method for obtaining data from a subVI while it is still running.

The global variable must be created and its data types defined before it can be
used. To create a global, first drag the icon from the Structures palette and drop it
onto a block diagram. Figure 2.1 shows the global as it appears on the diagram. The
question mark and black border indicate that it cannot be used programmatically.
The global has a front panel to which you can add controls, identical to a VI. Globals
do not have a block diagram associated with them. To open the front panel of the
global variable, simply double-click on the icon. The front panel of the global is
shown in the bottom window of Figure 2.1.

Two controls have been created on the global front panel. A global variable can
contain multiple controls on the front panel. Try to logically group related controls
and tie them to a single global variable. Once the data types have been defined, save
the global as a regular VI. The global can then be accessed in any VI by using the
same method you normally follow to place a subVI on the code diagram. If you
have more than one control associated with the global variable, pop up on the icon
once you have dropped it onto a block diagram and use the Select Item submenu to
select the appropriate one.

©2001 CRC Press LLC

A value can be either written to or read from a global. Use a “read” global to
read data from and a “write” global to write data to a global variable. The first
selection in the pop-up menu allows you to change to either a read or write variable.
Figure 2.2 demonstrates how a global and local variable can be used on the block
diagram. The global created in Figure 2.1 is used in this VI to retrieve the Cable
Loss parameter. Global variables are easy to distinguish on the block diagram
because of the unique icon that contains the name of the variable. The thicker border
indicates that it is a read variable.

Measurement Result is a control being used in this VI. The result of the addition
is being passed to the local variable of Measurement Result. Local variables can be
created by popping up on a control or indicator terminal and selecting Local Variable
from the Create submenu. Alternatively, drag and drop the local variable from the
Structures palette. Then, pop up on it and use the Select Item submenu to choose
the name of a control or indicator. A local variable can be created for any control
or indicator terminal. As with the global, the local can be used as a read or write
variable and toggled using the pop-up menu. In the example shown, the name of
the local, Measurement Result, appears in the icon. The icon does not have a thick
border, indicating that it is a write variable.

FIGURE 2.1

©2001 CRC Press LLC

The main difference between local and global variables is access. The local
variable is only available on the code diagram it was created on. The global variable
can be used in any VI or subVI. Due to the fact that the global variable is loaded
from a file, any VI has access to this data. While this flexibility seems like a benefit,
the result is a loss of data control. If a specified global variable is placed in a number
of VIs, one of the VIs could be used by another application. This could result in
errant data being written to the global in your main program. With local variables,
you know the only place the data can be modified is from within that VI. Data
problems become easier to trace.

One alternative to a standard global variable is the use of a “Functional Global.”
A functional global is a VI with an uninitialized While loop. The VI can have two
inputs and one output. The first input would be an Action input. The actions for a
simple global would be read and write. The second input would be the data item to
store. The output would be the indicator for the item to read back. The case structure
would have two states. In the Read state, the program would want to read the global
data. The code diagram wires the data from the shift register to the output indicator.
The Write case would wire the input control to the output of the shift register. The
code diagram is shown in Figure 2.3. The benefit of using this type of global is the
prevention of race conditions; an application cannot attempt to write to and read
from the global at the same time. Only one action will be performed at a time.

2.2 CUSTOMIZING CONTROLS

Controls and indicators can be customized, saved, and reused in different VIs. This
allows you to modify the built-in controls and indicators to accommodate your
applications. This section describes the procedure for creating custom controls and

FIGURE 2.2

FIGURE 2.3

©2001 CRC Press LLC

type definitions. A “Type Definition” is a master copy of a control or indicator. When
you need to use the same control in several VIs, you can create a type definition
and save it. Then, when changes are made to the type definition, they will automat-
ically be applied to all of the VIs that use that control.

2.2.1 C

USTOM

 C

ONTROLS

To customize any control on your front panel, select the control and choose

Edit
Control

 from the Edit pull-down menu. A new window will appear with the control
shown on the panel. This panel has no diagram associated with it and cannot be
executed. Figure 2.4 shows this window with a text ring control on the panel. Also
note that

Control

 is the current selection in the drop-down menu on the toolbar. The
control can be modified in either the Edit mode or the Customize mode; the default
is Edit mode when the window first appears. The Edit mode is similar to the Edit
mode of the front panel of any VI where alterations can be made. It allows you to
make some of the basic changes to a control, such as size and color. The Customize
mode lets you make additional changes to specific elements of the control. The top
window in Figure 2.4 shows the Edit mode, and the bottom window shows the
Customize mode. The first button in the window toolbar allows you to toggle between
the two modes of operation.

Each control is a composite of smaller parts. When you modify a control in the
Customize mode, you are then able to modify the parts of the control. If you open
the Parts Window from the Windows menu, you will be able to see the labels for
each part, as well as the position and size of each part. You can scroll through each
part via the increment arrow. One of the benefits of this capability is the ability to
create custom controls. Text or pictures can be copied and pasted into the control
editor. The pictures can become part of the control. This capability makes the creation
of filling tanks, pipes, and other user-friendly controls possible.

Figure 2.5 shows the modified ring control on the front panel. The up and down
scroll arrows were altered for the ring control. Once the desired modifications are
made to a control, you can replace the original control with the modified one without
saving the control. Select

Apply Changes

 from the Control Editor window before
closing it to use the modified control. Alternatively, you can save the control for use
in other VIs. Simply give it a name and save it with a .ctl extension or use

Save As

from the File menu. To use it on another VI front panel, choose

Select a Control

from the controls palette and use the file dialog box to locate the control.

2.2.2 T

YPE

 D

EFINITIONS

A type definition allows you to set the data type of a control and save it for use in
other VIs. This may be useful if you change the data type and want that change
reflected in several VIs. A type definition allows you to define and control the data
type from one location. It can prove to be very practical when using clusters and
enumerated types. When items need to be added to these controls, you only have to
do it once. Default values cannot be updated from a type definition.

©2001 CRC Press LLC

FIGURE 2.4

FIGURE 2.5

©2001 CRC Press LLC

You create a type definition following a similar procedure as a custom control.
Select the control that you wish to create a type definition from and choose

Edit
Control

 from the Edit pull-down menu. Figure 2.6 displays the window that appears
for an enumerated control. To create a type definition instead of a custom control,
select

Type Def.

 from the drop-down menu in the toolbar. The enumerated control
has been defined as an unsigned word and three items have been entered into the
display. This type definition was saved using the

Save As

 selection from the File
menu. The window title tells you the name of the control and that it is a type definition.

The type definition can be used in multiple VIs, once it has been saved, by using

Select a Control

 from the Controls palette. When you need to modify the type
definition, you can open the control using

Open

 on the File menu. You could also
select the control from a front panel that uses it and choose

Edit Control

 from the
Edit menu, which then opens the window of the saved type definition. A final way
to open the control is by double-clicking on it (if this option is selected in your
preferences).

Any changes made to the type definition will be reflected automatically in its
instances if they have been set to auto-update. The instances include controls, local
variables, and constants created from the control. All VIs that use instances of the
type definition are set to auto-update by default. When you pop up on an instance
of the type definition, you will see a menu similar to the one shown in Figure 2.7.
You can then choose to auto-update the control or disconnect it from the type
definition. Items can be added to the enumerated control type definition shown in
Figure 2.6, and all VIs that use the type definition will be automatically updated.
Items cannot be added to the instances unless the auto update feature is disabled.

2.2.3 S

TRICT

 T

YPE

 D

EFINITIONS

Type definitions cause only the data type of a control to be fixed in its instances.
Other attributes of the type definition can be modified within the instances that are
used. Size, color, default value, data range, format, precision, description, and name

FIGURE 2.6

©2001 CRC Press LLC

are attributes that can be adjusted. Strict type definitions can be used to fix more of
the attributes of a control to create uniformity across its instances. Only the name,
description, and default value of a strict type definition can be altered in the instances.
This allows you to maintain more control of the type definition. In addition, auto
updating cannot be disabled when strict type definitions are used. This forces all
changes to be applied to all of the occurrences.

 Strict type definitions are created in the same manner as type definitions. The
only difference is the drop down menu in the toolbar should be set to Strict Type
Def. After the strict type definition has been saved, changes can be made only to
the master copy. The changes made to the master copy are only reflected in the
VI when it is open. If a VI is not in memory, the changes are not updated. This
could be an issue if a VI is copied to a new location, such as a different PC,
without opening the VI between the time the control was modified and the copy
was performed. In the absence of the Strict Type Def., the VI would first ask you
to find the control. If the control is unavailable, the control will appear greyed
out. If you right-click on the control you have the option of disconnecting from
the Strict Type Def. If you disconnect, the VI would use the last saved version of
the control. In this case, the modifications would not be reflected in the VI on the
new PC.

2.3 ATTRIBUTE NODES

Attribute nodes are a means for getting and setting attributes of a control or indicator
during program execution. The attributes available will vary depending on the par-
ticular control or indicator being used on the front panel of your application. Pop
up on either the control from the front panel or the terminal from the code diagram
and Select

Attribute Node

 from the Create submenu. By providing the ability to
change the appearance, location, and other attributes programmatically, attribute
nodes provide you with a tremendous amount of flexibility while designing and
coding your application.

FIGURE 2.7

©2001 CRC Press LLC

Figure 2.8 illustrates some of the characteristics of attribute nodes. An enumer-
ated type control, Number of Repetitions, will be used to describe attribute nodes.
An attribute node was created for the Number of Repetitions control, and is placed
just below the terminal. In this example, the Visible attribute is being set to “false.”
When the VI executes, the enumerated control will no longer be visible. All of the
attributes associated with Number of Repetitions are shown in the attribute node to
the right on the block diagram. Multiple attributes can be modified at the same time.
Once an attribute node has been created, simply drag any corner to extend the node,
or use the pop-up menu and select

Add Element

.
You can read the current setting or set the value of a control through the attribute

node from the block diagram. Use the pop-up menu to toggle the elements in the
node between read and write. An arrow at the beginning of the element denotes that
you can set the property, while an arrow after the attribute name denotes that you
can read the property. In the figure shown, the first ten elements have the arrow at
the beginning, indicating that they are write elements. When there are multiple
attributes selected on an attribute node, they can be selected as either read or write.
If both operations need to be performed, separate attribute nodes need to be created.

The following example demonstrates how to use attribute nodes in a user inter-
face VI. The front panel of the VI is displayed in Figure 2.9. Depending on the
selection made for the Test Sequence Selection, the appropriate cluster will be
displayed in the framed border below it. The cluster shown for Battery 1 has two
checkboxes that can be manipulated when Battery 1 is selected in the enumerated
control. If Diagnostic Tests? is true, the Self Tests checkbox will be visible. When
the user is finished making the selections, the

Start Testing

 button is pressed.

FIGURE 2.8

©2001 CRC Press LLC

Figure 2.10 shows Frame 0 of the sequence structure on the block diagram
associated with this VI. The first action taken is to set the visible attributes of Battery
1, Battery 2, and Self Tests to false. Also, the

Start Testing

 button’s blinking attribute
is set to true. This ensures that the VI begins in a known state in case it was run
before. Frame 1 of the sequence is shown in Figure 2.11. This purpose of this frame
is to continually monitor the actions the user takes from the front panel. The While
loop repeats every 50 milliseconds until

Start Testing

 is pressed. The 50-millisecond
delay was inserted so that all of the system resources are not used exclusively for
monitoring the front panel. Depending on the selection the user makes, the corre-
sponding controls will be displayed on the front panel for configuring. This example
shows that attribute nodes are practical for various applications.

In the following example, shown in Figure 2.12, more of the attributes are used
to illustrate the benefits of using the attribute node. The VI has a number of front
panel controls. There is a numeric control for frequency input, a set of Boolean
controls to allow the user to select program options, and a stop Boolean to exit the
application. To allow the user to begin typing in the frequency without having to
select the control with the mouse, the attribute for key focus was set to “true” in the
code diagram. This makes the numeric control active when the VI starts execution.
Any numbers typed are put into the control. The second attribute in the attribute
node for the digital control allows you to set the controls caption. This caption can
be changed during execution, allowing you to have different captions based on
program results.

The second set of controls are the Booleans for setting program options. One
of the requirements for this application is to make two additional options available
if the second option is set to “true.” Setting the Disabled attribute to 2 (which is
disabled and grayed out) performs this action when the program starts. If the second

FIGURE 2.9

©2001 CRC Press LLC

option is set to “true,” the Disabled attribute is set to 0. This enables the control,
allowing the user to change the control value. The other option disables the control,
but the control remains visible. The final attribute node in this example sets the
Blinking attribute of the Stop Boolean to “true.” When the VI is run, the

Stop

 button
will flash until the program is stopped. The front panel and code diagram are shown
in Figure 2.12.

FIGURE 2.10

FIGURE 2.11

©2001 CRC Press LLC

2.4 REENTRANT VIS

Reentrant VIs are VIs configured to allow multiple calls to be made to them at the
same time. By default, subVIs are configured to be nonreentrant. When a subVI is
nonreentrant, the calls are executed serially. The first subVI call must finish execution
before the next one can begin. Calls to the subVI also share the same data space,
which can create problems if the subVI does not initialize its variables or start from
a known state. Shift registers that are not initialized, for example, can cause a subVI
to yield incorrect results when called more than one time.

When a subVI is configured to be reentrant, it can speed up the execution of an
application as well as prevent problems caused by sharing the same data space in
the system. Each call to the subVI will execute in its own data space. A separate
instance is created for each call so that multiple calls can be executed in parallel.
The calls will, in effect, execute independently of each other. The use of a separate
data space for each call will result in more memory usage. Depending on the data
types used, and the number of times the VI is executed, this can become an important
issue. When creating an application, you should be aware that subVIs of a reentrant
VI cannot be reentrant.

FIGURE 2.12

©2001 CRC Press LLC

A VI can be enabled for reentrant execution through the Execution Options in
the VI Setup window. Pop up on the icon in the top right corner of the VI window
and select

VI Setup

 from the menu. The Execution Options of the VI Setup window
are displayed in Figure 2.13. Note that the following checkboxes are disabled when
Reentrant Execution is enabled: Show Front Panel When Loaded, Show Front Panel
When Called, Run When Opened, Suspend When Opened, and all of the printing
options. In addition, Execution Highlighting, Single-Stepping, and Pausing are fea-
tures that are no longer available. Those items are disabled because they are all
affected by reentrant operation of a subVI. It is difficult to track multiple instances
of the same VI executing at the same time.

2.5 LIBRARIES (.LLB)

The VI library was briefly mentioned in Chapter 1 when saving a VI was discussed.
This section will describe the procedure for saving and editing a VI library. There
are both advantages and disadvantages to saving a VI inside of a library. National
Instruments suggests that VIs be saved as separate files (.vi extension) rather than
as libraries unless there is a specific need that must be satisfied. The following table
lists benefits of saving as libraries and separate files; the table is also available
through the on-line help VI Libraries topic. These issues need to be considered when
saving files.

To save a file as a VI library, you can use

Save

,

Save As

, or

Save a Copy As

from the File pull-down menu. Figure 2.14 shows the file dialog box that appears
when you select the third option. The dialog box is identical for all three except for
the title of the window. One of the buttons in the dialog box window lets you create
a new VI library. When you press

New VI Library

, the window shown below the

FIGURE 2.13

©2001 CRC Press LLC

dialog box in Figure 2.14 appears. Simply enter a name for the library and press

VI
Library

; the extension will be added for you. If you want to add a VI to an existing
library, use either option and find the library you wish to save it in. The library is
treated as a folder or directory and you can save VIs inside.

You can edit a VI library using one of two methods. The first method is to use

Edit VI Library

 from the File menu. A file dialog box will appear prompting you to

TABLE 2.1
File Type Consideration

Benefits of Saving as .vi Benefits of Saving as .llb

1. You can use your own file system to manage
and store VIs.

1. 255 characters can be used for naming files
(may be useful for Macintosh, where
filenames are limited to 31 characters).

2. Libraries are not hierarchical. Libraries
cannot contain subdirectories or sublibraries.

2. Easier for transporting VIs to different
platform or to different computer.

3. Loading and saving VIs is faster and requires
less disk space for temporary files.

3. Libraries are compressed and require less disk
space.

4. More robust than storing entire project in the
same file.

5. VI library is not compatible with the source
code control that comes with the Professional
Developer Toolkit.

FIGURE 2.14

©2001 CRC Press LLC

select a VI library for editing. Once you have selected a library, a window similar
to the one shown in Figure 2.15 will become visible. This window lists the contents
of the VI library and gives you limited editing options. The

Delete

 button lets you
remove a VI from the library, while the checkbox allows you to designate a VI as
Top Level. The Top Level designation tells LabVIEW to open these VIs automati-
cally when you double-click on the icon to open the library. It also places these VIs
at the top with a separator line when using

Open

 from the File menu. The second
method for editing a VI library, using the File Manager, is discussed in the next
section. The File Manager is a feature that is available for LabVIEW Version 5.0
and later.

There is a final method for saving library files. The files can be saved in the

Save with Options

section of the File menu where there are a number of options
available. The development distribution and the application distribution options allow
you to create a library of VIs. The development distribution comes up with the
default settings of creating a library in a new location with a single prompt. The
option can also be changed to prompt for all, or to create in the current location.
Below this pull-down menu is a set of checkboxes and radio buttons. The default is
to save the entire hierarchy, include external subroutines, and include run-time
menus. There is also an option to include vi.lib files. Use the development distribu-
tion option when you want to transfer an entire hierarchy to another computer that
has LabVIEW already installed. In this case, vi.lib files do not need to be moved
because the other computer already has them.

The application distribution provides the same options as the development dis-
tribution; however, the default settings include the vi.lib files. This helps you create
a library from which an executable can be created for use on a computer that does
not have LabVIEW installed. Use the

Application Builder

 to embed this library in
the runtime executable. The

Remove Diagrams

 option is normally selected. This
reduces the size of the application and prevents anyone from seeing the code dia-
grams you created, but one mistake in where you save the library (especially if it

FIGURE 2.15

©2001 CRC Press LLC

was a library to begin with) and you may never see your code diagrams again. For
application distribution and development distribution, any change made to the default
settings changes the save mode to Custom Save.

2.6 FILE MANAGER

The File Manager is a very useful tool for the organization and administration of
LabVIEW files. The File Manager, displayed in Figure 2.16, is accessed through
the Project pull-down menu. The two drop-down menus allow you to navigate
through different directories or libraries at once, with the contents being displayed
in the listbox below. This window facilitates copying, renaming, deleting, and per-
forming other functions on LabVIEW files. Table 2.2 describes the different services
offered by the File Manager.

The File Manager simplifies editing and creating VI libraries. Using this tool,
directories can be converted into libraries, and libraries can be converted back to
directories. VIs can be moved between libraries, renamed, or deleted quickly. Also,
you can see the contents of two libraries at the same time for easy comparison.
Clicking on an item in either listbox causes the appropriate buttons to be enabled.

For those of you with older versions of LabVIEW, there were some utility VIs
created to perform a lot of the functionality described above. One such utility was
found at this address:

ftp://ftp.natinst.com/support/labview/vis/windows/3.1/librar-
ian/.

The libedit.llb has the capabilities of displaying libraries side by side, copying
files from a library to a directory, and editing the library. This VI was written for
LabVIEW 3.1.

FIGURE 2.16

©2001 CRC Press LLC

2.7 WEB SERVER

National Instruments incorporates a Web server with versions of LabVIEW 5.1 or
later. Once enabled and configured, the Web server allows users to view the front
panels of applications (VIs that have been loaded) from a remote machine using a
browser. Both static and dynamic images of a front panel VI can be viewed remotely.
While the Web server will allow you to view the front panel of an application, the
communication is only in one direction. You do not have the ability to modify or
interact with the application through the Web server. This section will go through
the steps for configuring the Web server, and will show an example of how the front
panel will appear on an Internet browser.

The Web server is set up through the

Preferences

 selection on the Edit pull-
down menu. This window is shown in Figure 2.17 with

Web Server: Configuration

selected in the drop-down menu. The Web server is not running by default, so you
must first check

Enable Web Server

. The default Root Directory is the folder that
holds the HTML files published to the Web. The HTTP Port is the TCP port the
Web server uses to publish the pages. This port number may have to be changed
depending on whether another service is utilizing this default on your machine.
Finally, the log file saves information on the Internet connections to the Web server.
Once this is done, front panels of loaded VIs can be viewed from a remote browser.
However, you may want to perform additional configurations to set access privileges,
as well as determine which VIs can be viewed through the server. Figure 2.18
displays the preference window for the

Web Server: Browser Access

 selection in the
drop-down menu. By default, all computers have access to the published Web pages.
This window allows you to allow or deny specified computers access to the Web

TABLE 2.2
File Manager

Function Description

>>Copy>>,<<Copy<< Copies file from directory or library between contents of left
and right listbox.

Rename Rename a VI, library, or a directory.
Delete Delete a VI, library, or entire directory and contents.
New Create a new directory or VI library in the current directory.
Convert LLBs to Dirs Transforms VI libraries to directories. Gives you options for new

directory name and whether you want to delete the original
library or create a backup.

Convert Dirs to LLBs Transforms directories to VI libraries. Let you know which files
cannot be converted to LLBs because they contain
subdirectories or files that cannot be in libraries.

Check Filenames For selected directory or library, it returns a list of filenames
that are not valid unless they are in a library. Also reveals if
the name is not valid for the platform you are working on or
other platforms, followed by a description of the problem when
a specific file is selected in the list.

©2001 CRC Press LLC

pages. You can enter IP addresses or domain names of computers into the browser
access list. The browser list allows you to use the wildcard character (*) so that you
do not have to list every computer name or IP address individually. The “X” in front
of an entry indicates that a computer is denied access while a “

✓

” indicates that it
is allowed access. If no symbol appears in front, then this is a signal that the item
is not valid.

Figure 2.19 illustrates the window when

Web Server: Visible VIs

 is selected in
the drop-down menu. This window is similar to the browser access settings but

FIGURE 2.17

FIGURE 2.18

©2001 CRC Press LLC

applies to VIs. You can add names of VIs into the listbox and select whether you
want to allow or deny access to them via a browser. Again, the wildcard character
is valid when making entries. The X and

✓

 indicate whether the VI can be accessed,
and the absence of one of these signifies that the syntax may be incorrect. You can
enter the name of a VI or designate the specific path if you have multiple VIs with
the same name.

Viewing the front panel of a VI with a Web browser is a straightforward proce-
dure. Before you can view the front panel, make sure the Web server has been
enabled and the VI has been opened. The VI must be loaded in memory before
anyone can look at it from the Web. Then, from any machine that is allowed access
to the Web server, type the URL of the machine running the Web server into the
browser. To the end of the URL add “.snap?viname” if you want to view a static
image, or “.monitor?viname” to view an image that updates periodically. If you have
spaces in a VI name, use the plus sign (+) or (%20) to represent the space. For
example, to monitor a VI named “test program.vi,” you would enter the following
URL into your browser:

http://111.111.111.11/.monitor?test%20program.vi.

 This
assumes the IP address of the Web server is 111.111.111.11. Depending on the
company you are working for, and your network specifics, the system administrator
may need to set permissions or perform other system administrator intervention.

2.8 WEB DOCUMENT TOOL

 The Web Document Tool can be used to help you customize the way your Web
page appears in a browser. Normally, only the front panels of the VIs that you have
loaded are displayed in the browser when accessed remotely. This tool lets you add
a title with additional text, which is then saved as an HTML file. When you want
to view the front panel of a VI, you use the URL of the HTML page you have saved.
The page then loads the picture of the front panel for you to view along with the
title and additional text.

FIGURE 2.19

©2001 CRC Press LLC

To access this feature, select

Web Document Tool

 from the Project pull-down
menu. The Web Document Tool window is displayed in Figure 2.20. Select a VI
using

Browse

 from the

VI Name

 drop-down menu, or type in a VI name for which
you want to create a page. A dialog box will ask you if you wish to open the VI if
it is not already opened. Then you can enter in a title that you want to appear on
the page, text before the image, and text after the image. The buttons available allow
you to save the changes to an HTML file, start the Web server if it has not already
been enabled, and preview the Web page. When you select

Save To Disk

, a dialog
box will tell you the URL that is to be used to access the page from a browser.
Remember that if the VI has not been loaded, the Web page will appear without the
image of the front panel. Figure 2.21 shows an example of a page created using the
Web document tool in a browser window.

2.9 INSTRUMENT WIZARD

The Instrument Wizard is a tool that helps you manage both the external devices
connected to your computer and the instrument drivers that are available from
National Instruments. An instrument driver is a collection of VIs used to control
instruments. LabVIEW drivers abstract the low-level commands that programmable
instruments respond to. Drivers allow you to control instruments without having to
learn the programming syntax for each instrument. Instrument drivers are discussed
in more detail in Chapter 5, including the recommended style to follow when
developing them.

LabVIEW 5.1 ships with a second CD-ROM that contains instrument drivers
for numerous instruments from various manufacturers. The Instrument Wizard can

FIGURE 2.20

©2001 CRC Press LLC

be used to browse through the available drivers and install the ones needed. The
drivers will then appear in the functions palette for use when programming. You can
add or remove drivers as well as view the current list of installed drivers and their
locations. Remember to check National Instruments’ Web site, the “Instrument
Driver Network,” for the latest updates to the collection of drivers. The driver you
need may well be available for download.

The Instrument Wizard is accessed through the Project pull-down menu. A
welcome window first appears and provides a brief description of the wizard. When
you are ready to proceed, simply press

Next

. The Instrument Wizard will first search
your computer for any connected devices (GPIB Instruments, Serial Ports, VXI
Instruments, or Computer-Based Instruments). You have the option of bypassing this
search and moving on to the management of instrument drivers. If you want to
proceed with the search, click

Next

 and a window similar to the one shown in Figure
2.22 will appear. The listbox displays any external devices that are connected to
your computer.

This window gives you a couple of options before moving on to the next window.
If you select an item and press

Identify Device

, you can communicate with the device
to send it an identification inquiry. The wizard will send the query string “*IDN?”
by default, but you have the option of changing it to suit the type of instrument you
are communicating with. Instruments that adhere to the IEEE 488.2 standard will

FIGURE 2.21

©2001 CRC Press LLC

recognize this command and send an appropriate identification response. If a driver
for the recognized instrument is available, the wizard will give you the opportunity
to install it right away.

The

Set VISA Aliases

 button allows you to associate a name with any of the
devices or serial ports. This name then represents the device and can be substituted
for the instrument descriptor string when communicating with it using VISA. VISA
(Virtual Instrument Software Architecture) is a basis for performing instrument
communications. A detailed description of VISA is given in Chapter 5, which covers
the topic of instrument drivers thoroughly.

The next window, shown in Figure 2.23, is used for managing instrument
drivers. A complete list of the installed instrument drivers appears in the listbox.
The list displays all of the instruments for which the installed drivers can be used.
Some instrument driver libraries support multiple instruments. You may notice that
more than one instrument in this list points to the same library shown in the driver
location.

Drivers can be added or removed using the corresponding buttons from this
window. When you choose to add a driver, the window displayed in Figure 2.24
will become visible. This window lists all of the available instrument drivers by
instrument manufacturer. This list can be sorted by GPIB, Serial, or VXI. When you
have added the needed instruments to the list, press

Install Drivers

. The wizard
returns to the previous window after installation. You should then see the new drivers
in the list of installed instrument drivers.

FIGURE 2.22

©2001 CRC Press LLC

The Instrument Wizard can be used to open an example from the libraries
installed. Select an item in the list and press

 Open Example

. The VI is opened by

FIGURE 2.23

FIGURE 2.24

©2001 CRC Press LLC

the wizard, which can then be used to control the instrument. Many of the instrument
driver libraries provided by National Instruments contain a “Getting Started VI.”
This is the VI normally opened by the wizard.

The last button available in this window is labeled

Convert PNP Drivers.

 This
option is used to convert Plug & Play IVI and VXI drivers so they can be used with
LabVIEW.

2.10 PROFILE WINDOW

LabVIEW has a built-in tool, the Performance Profiler, to help you optimize the
execution of your applications. It can reveal beneficial information such as how
long VIs in the application take to execute, and how much memory each VI is
using. These statistics can then be used to identify critical areas in your program
that can be improved to decrease the overall execution time of your application.
I/O operations, user interface display updates, and large arrays being passed back
and forth are some of the more common sources that can slow down your
application.

Selecting

Show Profile Window

from the Project pull-down menu accesses the
Performance Profiler. The profile window is shown in Figure 2.25 as it appears
before it is started for capturing the data. The name of the VIs, or subVIs, are
displayed in the first column, with various pieces of data exhibited in the columns
that follow.

FIGURE 2.25

©2001 CRC Press LLC

Before you start the profiler, you can configure it to capture the information you
wish to see by using the checkboxes. VI Time, Sub VIs Time, and Total Time are
the basic data provided if the other boxes are not selected. The memory usage data
is optional because this acquisition can impact the execution time of your VIs. This
can result in less accurate data on the timing of your application. Once you start the
profiler, the memory options cannot be changed midstream.

Table 2.3 describes the information provided in the various columns in the profile
window. It includes items that appear when all of the checkboxes are selected in the
profiler window. If memory usage is selected, statistics will be provided for bytes
of memory, as well as blocks of memory used. The memory size used is calculated
at the end of the execution of a VI and may not be a precise representation of the
actual usage during execution.

Frequency Response.vi will be used to demonstrate some actual data taken by
the profile window. The Instrument I/O demonstration is an example program that
is part of the LabVIEW installation when you choose the recommended install.
Figure 2.26 displays the profile window for Frequency Response.vi with the option
for Timing Statistics selected. The data shown in the profile window represents a
single run, after which the profiler was stopped. This data will vary depending on
the configuration of the system from which this VI is executed.

Information on subVIs is normally hidden in the profile window. When you
double-click on a cell containing a VI name, its subVIs will appear below. You can
show or hide subVIs by double-clicking. Clicking on any of the column headings

TABLE 2.3
Profile Window Data

Statistic Description

VI Time Total time taken to execute VI. Includes time spent displaying data and
user interaction with front panel.

Sub VIs Time Total time taken to execute all subVIs of this VI. Includes all VIs under
its hierarchy.

Total Time VI Time + SubVIs Time = Total Time.
Runs Number of times the VI executed.
Average Average time VI took to execute calculated by VI Time

÷

 # Runs.
Shortest Run that took least amount of time to execute.
Longest Run that took longest amount of time to execute.
Diagram Time elapsed to execute code diagram.
Display Amount of time spent updating front panel values from code.
Draw Time taken to draw the front panel.
Tracking Time taken to follow mouse movements and actions taken by the user.
Locals Time taken to pass data to or from local variables on the block diagram.
Avg. Bytes Average bytes used by this VI’s data space per run.
Min. Bytes Minimum bytes used by this VI’s data space in a run.
Max. Bytes Maximum bytes used by this VI’s data space in a run.
Avg. Blocks Average blocks used by this VI’s data space per run.
Min. Blocks Minimum blocks used by this VI’s data space in a run.
Max Blocks Maximum blocks used by this VI’s data space in a run.

©2001 CRC Press LLC

causes the table to sort the data by descending order. The time information can be
displayed in microseconds, milliseconds, or seconds by making the appropriate
selection in the drop-down menu. Memory information can be displayed in bytes
or kilobytes.

2.11 AUTO SUBVI CREATION

Creating and calling subVIs in an application was discussed in the introductory
chapter in Section 1.6.9. Connector terminals, icons, VI setup, and LabVIEW’s
hierarchical nature were some of the topics that were presented to give you enough
information to create and use subVIs. There is another way to create a subVI from
a piece of code on a VI diagram. Use the selection tool to highlight a segment of
the code diagram that you would like to place in a subVI and choose

Create SubVI

from the Edit pull-down menu. LabVIEW then takes the selected code and places
it in a subVI that is automatically wired to your current code diagram.

Figure 2.27 will be used to illustrate how Create SubVI is used. The code diagram
shown is used to open a Microsoft Excel file, write the column headers, and then
write data to the cells. A section of the code has been selected for placing inside of
a subVI using the menu selection. The result of this operation is shown in Figure
2.28, where the selected segment of the code has been replaced with a subVI. The
subVI created by LabVIEW is untitled and unsaved, an activity left for the program-
mer. When the subVI has been saved, however, the action cannot be undone from
the Edit pull-down menu. Be cautious when using this feature so as to prevent
additional time being spent reworking your code. Also, a default icon is used to
represent the subVI, and the programmer is again left to customize it.

Notice that although the Test Data control was part of the code selected for
creating the subVI, it is left on the code diagram. These terminals are never removed
from the code diagram, but are wired into the subVI as input. Then, the appropriate

FIGURE 2.26

©2001 CRC Press LLC

controls and indicators are created in the subVI, as shown in Figure 2.29. The
refnums, error clusters, and the Test Data cluster terminals appear on the code
diagram, with their counterparts on the front panel.

There are instances when creating a subVI using the menu option is illegal.
When there are real or potential problems for creating a subVI from the selected
code, LabVIEW will not perform the action automatically. For potential problems,
a dialog box will notify you of the issue and ask you whether you want to go ahead

FIGURE 2.27

FIGURE 2.28

©2001 CRC Press LLC

with the procedure. If there is a real problem, the action will not be performed, and
a dialog box will notify you of the reason. Some of the problems associated with
creating subVIs are outlined in the on-line help under the “Cycles” topic. A cycle
is data initiating from a subVI output and being fed back to its input. Attribute nodes
within loops, illogical selections, locals variables inside loops, front panel terminals
within loops, and case structures containing attribute nodes, local variables, or front
panel terminals are causes of the cycles described in the help.

This tool should not be used to create all of your subVIs. It is a feature intended
to save time when modifications to VIs are needed. National Instruments suggests
that you use this tool with caution. Follow the rules and recommendations provided
with on-line help when using this feature. Planning is needed before you embark on
the writing of an application. There are several things that should be considered to
get maximum benefit from code that you develop. Chapter 4, Application Structure,
discusses the various tasks involved in a software project, including software design.

2.12 GRAPHICAL COMPARISON TOOLS

Keeping track of different versions of VIs is not always an easy task. Documenting
changes and utilizing version control for files can help if the practices are adhered
to strictly. When the size of an application grows, or if there is a team involved in
the development, it becomes more difficult to follow the guidelines. In LabVIEW
5.0, graphical comparison tools were introduced to help manage the different ver-
sions of VIs. These tools are only available with the Professional Development
System and Professional Developers Toolkit. You can compare VIs, compare VI
hierarchies, or compare files from the source code control tool.

FIGURE 2.29

©2001 CRC Press LLC

2.12.1 C

OMPARE

 VI

S

To compare two VIs, you must select

 Compare VIs

 from the Project pull-down menu.
This tool graphically compares two VIs and compiles a list of the differences between
them. You then have the option of selecting one of the items to have it highlighted
for viewing. Figure 2.30 displays the Compare VIs window as it appears.

Use the

Select

 buttons to choose the two VIs for comparison. Only VIs that have
already been opened or loaded into memory can be selected as shown in Figure
2.31. The listbox displays VIs, Globals, and Type Definitions that are currently in
memory. You should bear in mind that LabVIEW does not allow you to open two
VIs with identical names at the same time. If you want to compare two VIs that
have identical names, you must rename one of them so they both can be loaded at
the same time. Once renamed, both will appear in the listbox.

FIGURE 2.30

FIGURE 2.31

©2001 CRC Press LLC

Once both VIs have been selected, simply press

Compare

 to allow LabVIEW
to begin compiling the list of differences. Figure 2.32 shows the window that lists
the differences found during the comparison. The first box lists the difference and
the second lists the details of the difference. There are four details associated with
the difference selected in the figure shown. You can view the differences or the
details by clicking the appropriate button. The comparison tool can tile the two VIs’
windows and circle the differences graphically to make them convenient for viewing.
A checkmark is placed next to the items that have already been viewed in both
listboxes. The selection of differences in the list can sometimes be very long. Small
differences in objects’ locations, as well as cosmetic differences, will be listed even
though they may not effect the execution of your VI.

2.12.2 C

OMPARE

 VI H

IERARCHIES

You can compare two VI hierarchies by selecting

Compare VI Hierarchies

 from the
Project pull-down menu. This is to be used for differentiating two versions of a top-
level or main-level VI. Figure 2.33 displays the Compare VI Hierarchies window.
Use the buttons next to file paths to select any VI for comparison through the file
dialog box. With this tool, two VIs with the same name can be selected for com-
parison of hierarchies, unlike the tool for comparing VI differences. LabVIEW takes
the second VI selected, renames it, and places it in a temporary directory for
comparison purposes. This saves you the trouble of having to rename the VI yourself
when you want to use the tool to find differences.

When

Compare Hierarchies

 is clicked, descriptions of the differences are dis-
played along with a list of all of the VIs. All of the descriptions provided are relative
to the first VI selected. For example, if a VI is present in the first hierarchy and not
in the second, the description will tell you that a VI has been added to the first
hierarchy. If a VI is present in the second hierarchy and not in the first, the description
will tell you that a VI has been deleted from the first hierarchy. Shared VIs are
present in both hierarchies. A symbol guide is provided in the window to assist you
while reviewing the list. An option is also available to allow you to view these
differences graphically by having the two window displays tiled for convenience.
This is similar to the highlighted differences shown when comparing two VIs. The
variance is circled in red on both VIs for quick identification.

FIGURE 2.32

©2001 CRC Press LLC

2.12.3 SCC C

OMPARE

 F

ILES

Comparing files through the Source Code Control (SCC) Tool is similar to the
procedures for comparing VIs and VI hierarchies. The use of the Source Code
Control tool is described further in Section 2.18, along with the use of external
version control. Select Compare Files from the Source Code Control submenu from
the Project pull-down menu.

The SCC Compare Files tool is displayed in Figure 2.34. It allows you to select
a project that you have already created from the pull-down menu. You also have the
option of comparing files and having the differences shown by clicking on the
respective buttons. Unlike the previous compare VIs function, since the VIs are in
SCC, the VIs still have the same names. The SCC utilities keep track of which VIs
are which, making the function easier to use.

2.13 REPORT GENERATION PALETTE

The Report Generation VIs are an addition to LabVIEW 5.1 that allow users to
programmatically send text reports to a system printer. The Report Generation palette
and the Report Layout subpalette are shown in Figure 2.35. These VIs are only
available for Windows 95, 98, and NT because they only work on Win32 systems.
The VIs use an ActiveX server, NI-Reports Version 1.0, to perform all of the functions
provided in the palette. The NI-Reports ActiveX object is installed on your system
at the same time you install LabVIEW.

FIGURE 2.33

©2001 CRC Press LLC

Chapters 7 and 8 explain ActiveX, the related terminology, and show several
examples to help you get started using this powerful programming tool. You can
view the source code of the Report Generation VIs by opening them as you would
any other VIs. These VIs use the built-in functions from LabVIEW’s ActiveX
subpalette. National Instruments developed this ActiveX object, as well as the VIs
that use the server, to offer a simplified method for generating reports. Once you
become familiar with using the ActiveX functions, you will be able to create your
own report-generation VIs using the NI-Reports object, and utilize other ActiveX
servers that are available.

FIGURE 2.34

FIGURE 2.35

©2001 CRC Press LLC

The first VI available on the palette is Easy Text Report.vi. This is a high-level
VI that performs all of the formatting as well as sending the report to the designated
printer. Use this VI if you just want to send something to the printer without concern
for detailed control or formatting of the report. Easy Text Report performs all of the
actions you would normally have to execute if it were not available. It calls other
VIs on this palette to perform these actions. All you have to provide is the relevant
information and it is ready to go. Simply wire the printer name and the text you
want printed. You can optionally set margins, orientation, font, and header and footer
information with this VI.

Figure 2.36 illustrates a simple example on the use of Easy Text Report.vi. The
VI shown is the same one shown in Figure 2.27, where test data is written to a file
for storage. The VI has been modified slightly to send the same cluster information
to the printer using the report generation feature. The printer name, desired text, and
header and footer information is wired to Easy Text Report.

The other VIs on the palette let you dictate how the report is printed in more
detail. In order to print a report, you must first use New Report.vi to create a new
report. This VI opens an Automation Refnum to NI-Reports server object whose
methods will be used to prepare and print the report. Once the report is created, you
can use Set Report Font.vi or any of the other VIs on the Report Layout subpalette
for formatting. Append Numeric Table to Report.vi lets you add numeric data,
through a two-dimensional array, to your printout. You can then print your informa-
tion with the Print Report VI. Finally, remember to deallocate the resources being
used for printing by executing Dispose Report.vi. You can open and view the source
code for Easy Text Report.vi to get a better understanding of how to use the Report
Generation VIs. This VI performs the sequence of actions described in using the
NI-Reports ActiveX object.

2.14 APPLICATION BUILDER

The Application Builder allows you to create executable programs from the appli-
cations you have developed. The Application Builder is an add-on package that must
be purchased separately, normally shipping only with the Professional Development
System of LabVIEW. This tool has undergone an improvement for LabVIEW Version
5.1. The procedure for creating an executable has been simplified, and thus is
different from previous versions of LabVIEW. Earlier versions required you to first

FIGURE 2.36

©2001 CRC Press LLC

create a VI Library containing all of the VIs used in the application. This is normally
done by creating a library for application distribution by selecting Save with Options
from the File pull-down menu. Once this was completed, you would have to select
Build Application from the Project menu to create an executable program. A third
step was then involved if you wanted to create an installer (for Windows platforms)
by using the Create Distribution Kit selection.

LabVIEW 5.1 now enables you to perform all of these actions using one dialog
box by selecting Build Application. This window is displayed in Figure 2.37 with
the various tabs. Use the Target tab to name your executable, select its destination
directory, and select a directory where support files will be saved. The Source Files
tab selects the top level VI which will be used to perform the build. The builder will
include all of the subVIs in the top level VI’s hierarchy so that you do not have to
create a library. This tab also lets you define any dynamically-loaded VIs and other
support files. Press the Build button to begin the process of creating the executable.

If you want to create an installer program, configure its options under the Installer
tab. Remember that this is only available for Windows versions of LabVIEW. The
options let you set the default directory where the installer will place the application.
You can also create an uninstaller for the application by clicking the Advanced button.

After you have created the executable, you can place it on any machine for use
as a distributed program. LabVIEW’s runtime library gets installed automatically
on the target computer. This allows you to run executable LabVIEW programs on
computers that do not have LabVIEW installed on them. LabVIEW’s runtime library
consists of the execution engine and support functions that are combined into a
dynamic link library (DLL). This method, along with other reductions in unnecessary

FIGURE 2.37

©2001 CRC Press LLC

code is being used in LabVIEW 5.1 to greatly decrease the size of an executable
program created by the application builder on all platforms. As a reminder, the
executable can only be distributed to computers running the same operating system
that was used to create it. You cannot create an executable on Windows for use on
a Macintosh.

2.15 SOUND VIS

Sound VIs are only offered for Windows and Macintosh operating systems. These
VIs are found on the Sound subpalette of the Graphics & Sound palette. These built-
in VIs permit you to easily incorporate sound and the manipulation of sound files
into your applications. This section is only a brief overview of the sound VIs, and
detailed information on their use will not be provided. The Sound palette and its
associated subpalettes are displayed in Figure 2.38.

You can read and write waveform files to an output device using Snd Read or
Write Waveform VIs. These are both general VIs that simplify the use of the sound
VIs. You should ensure that your multimedia playback and recording audio devices
and drivers are installed properly on your system before using the sound VIs.

FIGURE 2.38

©2001 CRC Press LLC

For more control, use the VIs located on the Sound Input and the Sound Output
subpalettes. The Sound Input VIs allow you to configure and capture data from an
input device. The Sound Output VIs let you configure, send data, and control volume
for your output device. Use SI Config.vi or SO Config.vi first when sending or
retrieving data from the devices, and pass the Task ID when performing other
functions. The Task ID serves as a reference to your device that is then used by the
other VIs.

Two VIs that you may find useful in your applications are Beep.vi and Snd Play
Wave File.vi. The first VI simply makes a beep sound on Windows, Macintosh, and
Unix. It can be used to send an audio signal to the user when an action has occurred.
For example, you may want to have your application beep to let the user know that
it needs attention when a test has completed its run or when an error has occurred.
Snd Play Wave File can be used in a similar manner. It is capable of playing back
any waveform audio file (*.wav). Just provide the file path of the audio file you wish
to play.

2.16 APPLICATION CONTROL

The application control palette is part of the function palette on the code diagram.
There are a number of functions and subpalettes on the application control palette
that give the developer added control of the way a LabVIEW program executes. The
Application Control Palette is shown below in Figure 2.39. The function descriptions
are discussed below.

2.16.1 VI SERVER VIS

The VI server functions allow the LabVIEW programmer control over a VI’s prop-
erties, subVI calls, and applications. Through the use of the VI server functions, you
can set the properties of the VI user interface through the code diagram. You can
set whether to show the run button, show scrollbars, set the size of the panel, and
even the title that appears at the top of the window. VI Server functions also allow
you to dynamically load VIs into memory, which can speed up your application by
not having VIs in memory unless they are being used. This is especially useful when
you have seldom used utility VIs that can be loaded when needed and then released
from memory to free up system resources.

FIGURE 2.39

©2001 CRC Press LLC

 Remote access is another capability made available through the VI server. A
VI can be opened and controlled on a remote computer with relative ease. Once the
connection is made to the VI, the interaction is the same as with a local VI using
the server VIs. A brief description of the VI server VIs is provided below, followed
by some examples.

Open VI Reference allows the user to obtain a reference to the VI specified in
the VI Path input. You also have the option of opening this VI on the local machine
or a remote machine. If you want to open the VI on a remote computer, the Open
Application Reference VI needs to be used. The input to this VI is the machine
name. The machine name is the TCP/IP address of the desired computer. The address
can be in IP address notation or domain name notation. If the input is left blank,
the VI will assume you want to make calls to LabVIEW on the current machine.
The output of this VI is an application reference. This reference can then be wired
to the Open VI Reference VI. Similarly, the application reference input to the Open
VI Reference VI can be left unwired, forcing LabVIEW to assume you want the
LabVIEW application on the current computer.

Once the application reference has been wired to the Open VI Reference, there
are a few inputs that still need to be wired. First, a VI path needs to be wired to the
VI. This is the path of the VI to which you want to open a session. This session is
similar to an instrument session. This session can then be passed to the remainder
of the application when performing other operations. If only the VI name is wired
to this input, the VI will use relative addressing (the VI will look in the same directory
as the calling VI). The next input will depend on whether you want to use the Call
by Reference Node VI, which allows the programmer to pass data to and from a
subVI. You can wire inputs and outputs of the specified VI through actual terminal
inputs. The Call by Reference Node VI will show the connector pane of the chosen
VI in its diagram. To be able to use this function, the Type Specifier VI Refnum
needs to be wired in the Open VI Reference VI. To create the type specifier, you
can right-click on the terminal and select Create Control. A type specifier refnum
control appears on the front panel. If you go to the front panel, right-click on the
control, and choose Select VI Server Class, there will be a number of options
available. If you select Browse, you can select the VI for which you want to open
a type specifier refnum. The Browse selection brings up a typical open VI window.
When the desired VI has been selected, the connector pane of the VI appears in the
refnum control as well as in the Call By Reference Node VI. There is also a Close
Application or VI Reference VI. This VI is used to close any refnums created by
the above VIs.

An example of these functions would be helpful to see how they fit together.
We created a VI that has two digital control inputs and a digital indicator output.
The code diagram simply adds the two controls and wires the result to the indicator.
The VI in this example is appropriately named “Add.vi.” In our VI reference example,
we first open an application reference. Since we are using the local LabVIEW
application, we do not need to wire a machine name. Actually, we do not need to
use this VI, but if we want to be able to run this application on other computers in
the future, this VI would already be capable of performing that task. The values of
the two inputs are wired to the connector block of the Call by Reference Node VI.

©2001 CRC Press LLC

The Output terminal is wired to an Indicator. The code diagram of this VI is shown
in Figure 2.40.

There is a second way to perform the same function as the above example. The
example could be executed using the Invoke node instead of the Call by Reference
Node VI. The Invoke node and the Property node are both in the Application Control
Palette. These nodes can be used for complete control over a subVI. The Property
node allows the developer to programmatically set the VIs settings such as the
execution options, history options, front panel window options, and toolbar options.
The settings can be read from the VI or written to the VI. The Invoke node allows
the developer to perform actions like set control values, read control values, run the
VI, and print the VI. The previous example of calling the Add VI to add the two
numbers was rewritten to use the Invoke node instead of the Call by Reference Node
VI. Figure 2.41 shows the code diagram of this VI.

As can be seen from the example, more code is necessary to perform the task
of executing a subVI. The true power in the use of the Invoke and Property nodes
is the control the programmer has over the VI. By using these nodes, you can
configure the VI in the required manner for the application. For example, you may
want to use the same VI for a number of applications, but want the front panel to
be displayed in only one of the applications. The application that needs the front
panel to be displayed can use the Property node to set that value to “true.” This
allows the code to be reused while still being flexible.

We will now provide an example of using the Property node to control a VI’s
property programmatically. This example VI will call a subVI front panel to allow
the user to input data. The data will then be retrieved by the example and displayed.
The desired subVI front panel during execution is shown in Figure 2.42. This VI
will first open a connection to a subVI through the Open VI Reference function
previously described. Once the reference to the VI is opened, we will set the subVI
front panel properties through the Property node. By placing the Property node on
the code diagram, and left-clicking on the property selection with the operator tool,
a list of available properties appears. From this menu we will select our first property.
First, we will select Title from the Front Panel Window section. This will allow us
to change the title that appears on the title bar when the VI is visible.

The next step is to change additional properties. By using the position tool, you
can increase the number of property selections available in the Property node. By
dragging the bottom corner, you can resize this node to as many inputs or outputs
as are needed. The properties will execute from top to bottom. For our user interface,

FIGURE 2.40

©2001 CRC Press LLC

we will set the visibility property of the ScrollBar, MenuBar, and ToolBar to “false.”
The final property to add is the front panel visibility property. We will set this
property to “true” in order to display the front panel of the subVI.

Next, we will use the Invoke node to select the Run VI method. This will perform
the same action as clicking on the Run button. The Invoke node only allows one
method to be invoked per node. A second Invoke node is placed on the code diagram
in order to obtain the subVI output. The name of the output control is wired into
the Invoke node. The output of the node is wired to an Unflatten from String function,
with the resulting data wired to the front panel. A Property node is then placed on
the code diagram to set the subVI front panel visibility attribute to “false.” The final
step is to wire the VI reference to the Close function. The code diagram is shown
in Figure 2.43.

2.16.2 MENU VIS

The Menu subpalette can be found in the Application Control palette. The Menu VIs
allow a programmer to create a menu structure for the application user to interact with.
The menus are similar to the typical window menus at the top of the toolbar. The first

FIGURE 2.41

FIGURE 2.42

©2001 CRC Press LLC

VI is the current VI’s menu. This function provides the current VI’s menu refnum to
be use by the other functions. The next VI is the Get Menu Selection VI. This VI
returns a string that contains the menu item tag of the last selected menu item. The
function has two primary inputs. The programmer can set the timeout value for the
VI. The VI will read the menu structure for an input until the timeout value has been
exceeded. There is also an option to block the menu after an item is read. This can be
used to prevent the user from entering any input until the program has performed the
action necessary to handle the previous entry. The Enable Menu Tracking VI can be
used to reenable menu tracking after the desired menu has been read.

There are two VIs in the palette for specifying the menu contents. The Insert
Menu Items VI allows the programmer to add items to the menu using the item
names or item tags inputs. There are a number of other options available and are
described in the on-line help. The Delete Menu Items VI allows the programmer to
remove items from the menu. There are also functions available for setting or getting
menu item information. These VIs manipulate the menu item attributes. These
attributes include item name, enabled, checked, and shortcut value. Finally, there is
a VI that will retrieve the item tag and path from the shortcut value.

Before continuing with an example of using the menu VIs, we will discuss the
Menu Editor. If you open the Edit menu from either the front panel or code diagram
of a VI, there will be a selection for Edit Menu. You will need to make this selection
to launch the menu editor. The first choice is a menu ring control that allows you
to select the default menu structure, the minimal menu structure, or a custom menu
structure. If you look at the remainder of the panel while the default menu structure
is selected, you will see that there is a preview section showing the menu names as
they would appear on the front panel during execution. If you click on the menu,
the submenus will be displayed. When you are creating your own menu, this preview
section will allow you to see how the menu will appear during runtime. Below the
preview area is a display area. This area is used to create the new menu. To the right
of this display is a section to set the item properties.

To create your own menu, you must select Custom. This will clear the list of
menus from the display. If you want to use some of the items from the default menu

FIGURE 2.43

©2001 CRC Press LLC

structure, you can select Item Type from the Property section. This will allow you
to copy one item, the entire default structure, or something in between. The items
that appear in the window can be deleted, added, moved, or indented. In addition,
menu separators can be added to make the menu easier to read. Finally, in the
Properties section there is an option to set up shortcut keys for your menu selection.
These will work the same way as Ctl-C works for Copy in most menu structures.

We will now add a simple menu to a VI through the menu editor. This VI will
contain two menus: a File menu and an Options menu. Under each menu heading
there will be two submenus. They will be named “First” and “Second” for conve-
nience. Once we open the menu editor and select Custom, we must select either
Insert User Item from the menu or click the Plus button on the editor window. This
will add a line in the display with question marks. You will now be able to add
information to the Properties section. In the Item Name section we will type in
“File.” The underscore is to highlight a specific letter in the label for use with the
ALT key. If the user presses ALT-F, the file menu will be selected. Notice that the
name placed in the Item Name section is also written into the Item Tag section.
These can be made different, if you choose.

The next step is to add another entry. After pressing the Add button, another
group of question marks is placed below the File entry. You can make this entry a
submenu by clicking on the right arrow button on the editor. Using the arrow keys
will allow you to change an item's depth in the menu structure, as well as move
items up and down the list. The menu editor display is shown in Figure 2.44. When
you have completed the desired modifications, you must save the settings in an .mnu
file. This file will be loaded with the VI to specify the menu settings.

The same menu structure can be created at run time by using the Insert Menu
Items function. The first step is to create the menu types. This is done by wiring the
insert menu items function with the menu names wired to the item tags input, and
nothing wired to the menu tag input. These can be done one at a time, or all at once
through an array. You can then call the insert menu items VI for each menu, inserting
the appropriate submenu items as necessary. The different options can be modified
through the Set Menu Item Info function. Figure 2.45 shows the code used to create
the same menu as described above.

The following example will illustrate how to use the menu in an application.
The VI menus created in the previous example will be modified to have one of the
File items display Close. The example will require the use of a state machine. The
Get Menu Selection VI is inside the While loop. The output of the VI is wired to
the selector of the case structure. The timeout value of the VI is set for 250ms. This
is to prevent the VI from using all of the processor time. The Block Menu input is
set to “true” to allow the state machine to process the inputs without additional
inputs being selected. If the user does not select a menu, an empty string is returned
from the VI. A case for the empty string will need to be created to do nothing. This
will allow the state machine to continually poll the menus for input. A case matching
the close input must be created (_File:_Close). This case will exit the state machine
by wiring a “false” to the conditional terminal of the While loop. Cases for the
options will need to be created to account for those inputs. The code that you want
to run when the menu item is selected should be placed in cases corresponding to

©2001 CRC Press LLC

the menu items. After the case structure executes, the Enable Menu Tracking VI will
need to be wired since menu tracking was disabled when the Get Menu Selection
VI was executed. Finally, one of the cases will need to be made the default. This is
because there always needs to be a default case with a case structure driven by
strings. The code diagram for this VI is shown in Figure 2.46.

2.16.3 HELP VIS

There are three VIs in the Help subpalette. The first VI, Control Help Window, allows
the programmer to select the visibility of the help window as well as its location.
The second VI, Get Help Window Status, reads the status of the help window
(visibility and position). The final VI, Control Online Help, allows the programmer
to display the online help window. The inputs allow the programmer to display the
contents, the index, or jump to a specific section of the online help. The VI can also
close the online help window. These VIs are especially useful when creating custom
menus. The menu selections can include items to query the online help or display
the help window.

FIGURE 2.44

FIGURE 2.45

©2001 CRC Press LLC

2.16.4 OTHER APPLICATION CONTROL VIS

There a couple of additional functions in the application control palette. The first
is the Quit LabVIEW VI. The VI will stop all executing VIs and close the LabVIEW
application. It will not execute if a “false” is wired to the input. Next is the Stop
VI. This VI stops execution of the current application. It performs the same function
as the Stop button on the toolbar. The Print Panel function prints the front panel
when it is called. This VI can be run at any point during program execution. It has
the ability to print the entire front panel, or just the portion of the front panel visible
in the window. In addition, this VI can print the panel of any VI in memory, even
if not open. Finally, there is the Call Chain VI. This VI returns an array of VI
names, from the VI in which the function is executing to the top level VI in its
hierarchy. This function is especially useful when performing error handling. It
will allow you to locate a user-defined error quickly and perform the necessary
actions to deal with it.

2.17 ADVANCED PALETTE

The Advanced palette contains a large variety of functions. The functions in the
palette include the Call Library Function, Code Interface Node, Data Manipulation
subpalette, Synchronization subpalette, and Memory subpalette. These VIs and their
uses will be discussed in the following sections.

2.17.1 DATA MANIPULATION

The first function in the palette is the Type Cast function. This function converts the
data input to the data type specified. For instance, the Type Cast function can convert
an unsigned word input to an enumerated type. The resulting output would be the

FIGURE 2.46

©2001 CRC Press LLC

enumerated value at the index of the unsigned word. Another function on this palette
allows you to split a number into its mantissa and exponent.

There are a number of low-level data functions. There is both a Left and Right
Rotate with Carry function, which rotate the bits of the input. There is a Logical
Shift function to shift the specified number of bits in one direction depending on the
sign of the number of bits input. A Rotate function is available to wrap the bits to
the other end during the data shift. This function also derives direction from the sign
of the number of bits input. Moving on to a slightly higher level, there are functions
to split a 16- or 32-bit number, and to join an 8- or 16-bit number. Finally, there are
functions to swap bytes or words of the designated inputs.

The final functions in this palette are the Flatten to String and Unflatten from
String functions. The Flatten to String function converts the input to a binary string.
The input can be any data type. In addition to the binary string, there is a type string
output to help reconstruct the original data at a later time. The Unflatten from String
function converts the binary string to the data type specified at the input. If the
conversion is not successful, there is a Boolean output that will indicate the error.
Appendix A of the G Programming Reference Manual discusses the data storage
formats. This information can also be found in your on-line help.

2.17.2 CALLING EXTERNAL CODE

LabVIEW has the ability to execute code written in C, as well as execute functions
saved in a DLL. There are two methods for calling outside code. The programmer
can call code written in a text-based language like C using a Code Interface Node
(CIN). The programmer also has the ability to call a function in a DLL or shared
library through the use of the Call Library function. The CIN and the Call Library
functions reside in the Advanced palette. Further descriptions of the CIN and Call
Library functions are in Section 5.1.11.

2.17.3 SYNCHRONIZATION

The Synchronization subpalette contains five categories of VIs: semaphores, occur-
rences, notifications, rendezvous, and queues. The semaphore is also known as a
“mutex.” The purpose of a semaphore is to control access to shared resources. One
example would be a section of code that was responsible for adding or removing
items from an array of data. If this section of code is in the program in multiple
locations, there needs to be a way to ensure that one section of the code is not adding
data in front of data that is being removed. The use of semaphores would prevent
this from being an issue. The semaphore is initially created. During the creation,
the number of tasks is set. The default number of simultaneous accesses is one. The
next step is to place the Acquire Semaphore VI before the code that you want to
protect. The Boolean output of the VI can be used to drive a case structure. A “true”
output will indicate that the semaphore was not acquired. This should result in the
specified code not being executed. If the semaphore is acquired, the size of the
semaphore is reduced, preventing another semaphore from executing until the
Release Semaphore VI is executed. When the release is executed, the next available
semaphore is cleared to execute.

©2001 CRC Press LLC

The Occurrence function provides a means for making a section of code halt
execution until a Generate Occurrence function is executed. The Generate Occur-
rence function is used to create an occurrence reference. This reference is wired to
the Wait on Occurrence function. The Wait function will pass a “false” Boolean out
when the Occurrence has been generated. If a timeout value has been set for the
Wait function, a “true” Boolean will be wired out at the end of the specified time
if no occurrence has been generated. This is a nice feature when you need to perform
polling. For example, you may want to display a screen update until a section of
code completes execution. A While loop running in parallel with the test code can
be created. Inside the While loop is the code required for updating the display. The
Wait on Occurrence function is wired to the conditional terminal. The timeout is set
for the amount of time desired between While loop iterations. If the occurrence is
not generated, a “true” is passed to the conditional terminal, and the While loop
executes again. If the occurrence is generated, a “false” is sent to the conditional
terminal, completing execution of the While loop. An example code diagram using
occurrences is shown in Figure 2.47.

The Notification VI is similar to occurrences. Both functions wait for a message
to be generated in order to execute. There are two main differences between occur-
rences and notifications. The Send Notification VI sends a text message as well as
instructing the Wait on Notification VI to continue. This is true of one or multiple
Wait on Notification VIs. The second difference is the ability to cancel a notification.
You also have the ability to obtain the status from the Get Notifier Status VI.

The Rendezvous VIs are used to synchronize multiple parallel tasks. When the
rendezvous is created, the number of items or instances is entered. In order for code
at the Wait at Rendezvous VI to execute, the specified number of Wait at Rendezvous
VIs must be waiting. The programmer has the option of setting a timeout on the
wait VI. There is also a function that can increase or decrease the number of
rendezvous required for the code to continue. When all of the required Wait on
Rendezvous VIs execute, the tasks all continue at the same time.

FIGURE 2.47

©2001 CRC Press LLC

The final set of functions is the Queue functions. The queue is similar to a stack.
Items are placed on the stack and removed from the stack. The first step in using
the queue functions is to create a queue. The create queue function allows the
programmer to set the size of the queue. If the maximum size is reached, no
additional items will be able to be put into the queue until an item is removed. The
Insert Queue Element and Remove Queue Element VIs perform as advertised. There
is one option for both of these VIs that can be of use: the Insert Queue Element has
the option of inserting the element in the front (default) or back. The Remove Queue
Element allows the data to be taken from the end (default) or beginning. The Queue
functions are beneficial when creating a list of states to execute in a state machine.
More information and examples of the queue used with state machines is included
in the state machines chapter.

2.18 SOURCE CODE CONTROL

Source Code Control (SCC) is a means for managing projects. The use of SCC
encourages file sharing, provide a means for centralized file storage, prevents mul-
tiple people from changing the same VI at the same time, and provides a way to
track changes in software. The Professional Developers version of LabVIEW and
the Full Development version of LabVIEW with the Professional G Developers
Toolkit provide means for source code control. With these versions of LabVIEW,
there are three methods of source code control implementation. The first is the built-
in source code control utilities provided by National Instruments. LabVIEW also
supports use with Microsoft Visual SourceSafe for Windows 95/NT and ClearCase
by Rational Software for Unix. Many of the specifics for SourceSafe and ClearCase
are different than the built-in SCC version. For this discussion, we will discuss the
built-in version. Additional information for SourceSafe and ClearCase should be
obtained from the Professional G Developers Tools Reference Guide and the specific
vendor user manuals.

2.18.1 CONFIGURATION

When you load the Professional G Developers Toolkit, you have the choice of
installing the SCC software as the Administrator or as a Local user. After the software
is loaded, the Administrator will need to set up the SCC Administration utility. If
you choose the Source Code Control selection from the Project pull-down menu,
you will see submenu entry for SCC Administration. By selecting this utility, a dialog
box will appear. The box will ask you what flavor of SCC you are using. For our
description we will select Built-in. You can then configure the features by clicking
on the Configure button. The configuration dialog box will prompt you to enter a
master directory, backup specifications, and file permission settings. The master
directory is the location where the files are stored. The backup selection lets you
choose how many backups to store; you can select from zero to unlimited, or a
specific number. The final input requires you to decide whether to make checked-
in files read only, or make them read/write (but internally locked).

©2001 CRC Press LLC

The next step is to configure the Local Configuration. This is the setting that
each computer using the SCC will need to configure. The Local Configuration utility
is in the same location as the Administrator utility. The dialog box prompts the user
for the SCC system (Built-in, in our case), the local work directory, and the platform.

2.18.2 ADDING AND MODIFYING FILES

The first step to adding files to SCC is to create a project. Selecting Project from
the Source Code Control submenu does this. The dialog box displays the local work
directory and the project list. To add a new project, click on the New Project button.
The program will ask you for a project name and a top level VI. The listbox will
update the list of VIs and subVIs in the hierarchy. If you choose to save the settings,
all of the VIs in the listbox are added to SCC. There is one important stipulation:
the files have to be in the working directory or in an LLB. You do have the option
to add other files to the project by clicking on the Extra Files button.

You can add and remove files from the project (and SCC) by going to the Project
setup as described above. Once in the Project setup, you will need to select the Edit
Project button. The files you want to add need to be in the working directory. When
the Edit Project utility is launched, the SCC File Wizard compares your current
hierarchy to the stored version. If there are differences in the lists, the utility will
display a series of dialog boxes allowing you to change the project or ignore the
changes. No changes are made until you click on Save. If you want to remove a
file, while in the Edit Project dialog box, select the file you want to remove from
the listbox. You can then click on the Remove button to remove the file from the
project. The VI will still remain in source code control. Extra files can be added by
selecting Extra Files from the Edit Project dialog box. You can only add files that
are not in the hierarchy already.

In order to copy files from the master directory to the working directory, you
need to select Retrieve Files from the Source Code Control menu list. When you
have selected the files you want to copy, click on Get Files to complete the trans-
action. The status of the VI is listed in parentheses next to the VI if there are
differences between the local and server copies. You can obtain more information
by clicking on the File Properties button. This button will bring up a dialog box
that displays the VIs project, checkout status, the SCC version, and the modification
dates.

If you want to check a file out of SCC, you need to select Check Files Out from
the Source Code Control menu list. This action will bring up a dialog box containing
a selection for the project name and a display of the contained VIs. To check out a
VI, you need to select the VI name from the list and click on Checkout File. When
checking the file back in, you need to select Check Files In from the Source Code
Control menu list. A dialog box containing the list of VIs comes up again. You will
need to select the VI you are checking in and click on Checkin File. A window will
appear prompting you to change the comments in the Change Description box. When
you have updated the window, click OK.

©2001 CRC Press LLC

2.18.3 ADVANCED FEATURES

There are a number of advanced features available including file history, system
history, creating reports, creating labels, and deleting files. All of the features are a
part of the Advanced section of the Source Code Control menu item. Selecting the
File History button in the Advanced dialog box can access the file history. Through
this File History dialog box, the user is able to create a label, retrieve a previous
version, and delete a version (as well as view the file history, of course). From the
main Advanced dialog box there are also buttons for system history, creating reports,
and deleting files. The Delete File section allows the user to remove a file from SCC.
This action will delete the current version as well as the previous versions.

2.19 GRAPHS

There are a number of graphing controls available in the Functions palette on the
front panel. In addition to these functions on the front panel, there are a number of
VIs available in the Graphics and Sounds palette on the code diagram. The three
main types of graphs will be discussed below.

2.19.1 STANDARD GRAPHS

The standard graphs include the waveform graph and chart, the intensity graph and
chart, and the XY graph. These graphs have been standard LabVIEW controls for
a long time. The waveform graphs and charts are simply displays of 2-D data.
Collecting the data into an array and then wiring the resulting data to the graph
creates the graph. Each time the graph is updated, the graph is refreshed. The chart
is a continual display of data. Each data item is written to the chart, with the previous
data remaining. The XY graph is capable of displaying any arrangement of points.
Each point is plotted individually, without any relation to time or distribution.

The intensity chart and graph are slightly different than the waveform counter-
parts. The intensity chart was created to display 3-D data in a 2-D graph. This is
achieved by using color over the standard display. The values of the X and Y
parameters correspond to a Z parameter. This Z parameter is a number that represents
the color to be displayed.

2.19.2 3-D GRAPHS

Three new graphs were added to the Graph palette with LabVIEW 5.1. These graphs
are the 3-D surface graph, the 3-D parametric graph, and the 3-D curve graph. These
graphs utilize ActiveX technology, and therefore are only available on the Windows
versions of the full development and professional development systems. The 3-D
surface graph displays the surface plot of the Z axis data. The 1-D X and Y data are
optional inputs that displace the surface plot with respect to the X and Y planes.
The 3-D parametric graph is a surface graph with 2-D surface inputs for the X, Y,
and Z planes. The 3-D curve graph is a line drawn from 1-D X, Y, and Z arrays.

©2001 CRC Press LLC

When the 3-D graphs are placed on the front panel, the corresponding VI is
placed on the code diagram with the plot refnum wired to the connector. Since these
graphs are designed using ActiveX controls, the properties and methods can be
modified through the code diagram using the Property and Invoke nodes. These
nodes can be found in the ActiveX subpalette in the Communication palette. The
nodes can also be found in the Application Control palette. Properties and Methods
will be discussed in depth in the Active X chapters (7 and 8). Using the Property
node, the programmer is able to set values like the background color, the lighting,
and the projection style.

A VI that generates data for the 3-D Surface graph is presented as an example.
The VI modifies a number of the attributes through the Property and Invoke nodes.
The resulting front panel and code diagram are shown in Figure 2.48.

In addition to the graph VIs, there are additional 3-D graph utility VIs in the
Graphics & Sound palette. There are VIs for setting the Basic, Action, Grid, and
Projection properties. These VIs simply call the property node internally, allowing
the user to simply input the desired properties without having to do as much wiring.
These VIs are essentially drivers for the graph properties. There are two additional
VIs in the palette. There is a VI to set the number of plots available on a given 3-
D graph. And finally, the Convert OLE Colors VI is used to convert LabVIEW colors
to OLE colors.

FIGURE 2.48

©2001 CRC Press LLC

2.19.3 PICTURE GRAPHS

In the Graph palette, there is a subpalette that contains additional graphing functions.
The Picture subpalette contains a Polar plot, Smith plot, Min-Max plot, and Distri-
bution plot. This subpalette also contains a picture control and a subpalette of
graphing related datatypes.

The Functions palette contains additional picture graph VIs in the Graphics &
Sounds palette. There is a Picture Plot subpalette that contains the VIs corresponding
to the above mentioned plots, as well as functions for building different waveforms
and parameter inputs. There is a Picture Functions subpalette that provides a variety
of functions such as draw rectangle, draw line, and draw text in rectangle. Finally,
there is a subpalette that reads and writes data in the different graphics formats.

2.20 DATA LOGGING

One feature available for application debugging and data storage is front panel data
logging. This feature stores the values of all front panel controls with a corresponding
time and date stamp to a file. The data from this file can be retrieved and displayed.
The VI from which the data is stored can retrieve and display the data through an
interactive display. The data can also be retrieved interactively using the file I/O
functions. This function is described in more detail in the Exception Handling
chapter.

2.21 FIND FEATURE

There are times when developing an application that you want to find instances of
an object. For instance, when wiring a VI with Local variables, you want to make
sure that there is no opportunity for a race condition to occur. In order to prevent
any possible race conditions you will have to find all occurrences of the Local
variable. By finding each instance of the Local, you can ensure there is no possibility
of another section of the code changing the value of the Local before the specific
section has made its modifications.

There is a function in LabVIEW that gives the programmer the ability to find
the location of a selected object. The Find function can be found in the Project menu.
By selecting Find, a dialog box appears on the screen. The dialog box is shown in
Figure 2.49.

The dialog box gives you the opportunity to select what kind of object you want
to search for. There are a number of different objects and options available. To select
a specific type of object, you need to click on the Add button. A pull-down menu
will appear giving you a list of objects to search for. A list of the object categories,
and a brief description, is shown in the following table.

After selecting the object you want to search for, you will need to specify the
search parameters. There is a pull-down menu that allows you to select all VIs in
memory, selected VIs, or the active VI. If you choose selected VIs, you can select
any number of VIs currently in memory by clicking the Select button. You can also
choose to search VIs in vi.lib and the hierarchy window.

©2001 CRC Press LLC

At the top of the Find dialog box, there is a choice of what to search for. The
default selection is Objects, but you can also search for text. If you select Text,
the dialog box will show choices for what to search for, and the search scope. To
choose what to search for, the Find What section allows you to type in the text
string you are attempting to find. You can select whether to find an exact match
including case (Match Case), match the whole word, or to match regular expres-
sion. By clicking on the More Options button, you are able to limit your search.
You will have the option to select or deselect items including the diagram, history,
labels, and descriptions.

FIGURE 2.49

TABLE 2.4
Find Function Objects

Menu Items Description
Functions This selection brings up the Functions palette. Any object available in

the Functions palette can be selected for the search.
VIs This option lets you select from any VIs in memory except VIs

contained in the vi.lib.
Type Defs This choice allows you to select any Type Definitions that are in memory

and not contained in the vi.lib.
Globals This selection allows you to choose any Global variables that are in

memory and not contained in the vi.lib.
Objects in vi.lib Choosing this option displays all VIs, Global variables, and Type

Definitions located in vi.lib.
Others This option allows you to select Attribute Nodes, Break Points, and

Front Panel terminals. This search does not let you look for specific
items, only for all instances of the given object.

VIs by Name This selection provides the user with a dialog box to input the desired
VI to search for. This display contains a list of all VIs in memory in
alphabetical order. You have the option of selecting whether to show
any or all of the VIs, Globals, and Type Definitions.

©2001 CRC Press LLC

Some objects also have the ability to launch their own search by right-clicking
on the object and selecting Find. For example, if you select a Local variable and
select Find from the pop-up menu, you will have the option of finding the indica-
tor/control, the terminal, or the Local variables. If you select Local variables, a list
of all instances of the Local, including the one you selected, will be displayed. You
have the option to clear the display, go to the selected Local in the list, or launch
the Find function. A checkmark will be displayed next to any Local variables you
have already selected.

2.22 PRINT DOCUMENTATION

Many LabVIEW programmers only print out VIs and documentation when they
need to create a manual-type document for their application, or need to view some
code while away from their computers. There are a number of options when printing
that can save time and provide you with documentation that you can use to create
your own on-line references. By using the RTF functions, you have the ability to
create help file source code.

The first step to creating your own documentation is selecting Print Documen-
tation from the File menu. A Print Documentation dialog box will pop up, prompting
you to enter a format for your documentation. You have options from printing
everything, just the panel, or custom prints that allow you to configure the options
you want to select. Once you select what you want in your documentation, you then
have the option of what style to print.

By selecting the Destination, you have the choice of printing to a printer, creating
an HTML file, creating an RTF file, or creating a text file. If you select HTML file,
you will be prompted for additional selections. These selections include image
format and depth. Your image format options are PNG (lossless), JPEG (lossy), or
GIF (uncompressed). In the Depth field you have a choice of black and white, 16
colors, 256 colors, or true color (24 bit). The RTF file options include the depth
field and a checkbox for Help compiler source. The option for printing to a text file
is the number of characters per line.

When you select Print, you need to be careful. If you are printing HTML
documents, the print window will ask you for a name and location for the file.
Each of the images will be saved in separate picture files. If you save a large VI
in this manner, you could get a lot of files spread around your drive. You need to
make sure to create a folder for your storage space to ensure that your files are
in one place and are not difficult to find. The same holds true for RTF file
generation.

2.23 VI HISTORY

The history function provides a means of documenting code revisions. This function
is useful if no form of source code control is being used. This history will allow
you to record what modifications have been done to a VI, and why the changes were
made. Along with the text comment you enter, the date, time, user, and revision

©2001 CRC Press LLC

number are stored. Selecting Show History from the Windows menu can access the
VI History window. The window that appears is shown in Figure 2.50.

If you want to use the History function, you will first need to set up the VI’s
preferences. There are three methods for modifying a VI’s history preferences. You
can select History from the Preferences found in the Edit pull-down menu. The
history preferences accessed here allow you to define when the history is saved. You
can choose to have an entry created when the VI is saved, prompt for comments
when the VI is closed, prompt for comments when the VI is saved, or allow LabVIEW
to record its generated comments. Other options involve different login selections.

You can also select preferences from the VI Setup. In the documentation section
of the VI Setup, there is an option to use the default settings from the history
preferences. If this option is not selected, a number of options for creating the history
become enabled. The final method for accessing history preferences is through the
VI server. In the Property node there is a selection for History. A number of the
options available in the preferences are available. The use of the VI server allows
you to set the preferences for any VI that you can open with the VI server. If you
have a large number of VIs in which to change preferences, you could create a VI
to set the preferences programmatically through the VI server.

If you want to add a history entry, you can enter your comments into the comment
section of the history window. When all of your comments have been made, you
can select Add in the history window. This will add the comments to the VIs history.
Clicking on the Reset button will delete the history. The Reset option will also give
you the option of resetting the revision number. You have the ability to print the
history information when you select Print Complete Documentation or History from
the Custom Print settings.

FIGURE 2.50

©2001 CRC Press LLC

2.24 KEY NAVIGATION

The Key Navigation function provides a means to associate keyboard selections with
front panel controls. An example of key navigation is when you have to enter
information into a form; pressing the tab key cycles through the valid inputs. Another
example of key navigation is the ability to press a function key to select a desired
control. If you want the user to be able to stop execution by pressing the Escape
key, the Stop Boolean can be associated with the Escape key. If the Escape key is
pressed while the program is running, the Boolean control is selected, causing the
value to change.

To open the Key Navigation dialog box, you need to right click on the control
you want to configure and select Key Navigation. The dialog box that is opened is
shown in Figure 2.51. The input section on the top left allows you to define the key
assignment for the control. You can combine specific keys like the Escape key, or
a function key with the Shift or Control key to expand the possible setting combi-
nations. The listbox on the right displays the currently assigned key combinations.
Since you cannot assign the same key combinations to multiple controls, this window
can be used to avoid previously defined assignments. If you do select a previously
defined combination, the previous setting will be removed.

Below the windows is a selection for skipping the control while tabbing. If this
checkbox is selected, the user will not be able to tab to this control. The changes
will take effect when you click on the OK button. There are a few issues to keep in
mind when using Key Navigation. If you assign the Return (Enter) key to a control,
you will not be able to use the Return key to enter the data in any controls. The

FIGURE 2.51

©2001 CRC Press LLC

exception to this rule is if you are tabbing to the controls. If you tab to a control
and press Return, the value of the control will be switched. A final consideration is
the ability to use your application on different computers or platforms. Not all
keyboards have all of the keys available for assignment. This will prevent the user
from being able to use keyboard navigation. In addition, there are a few different
key assignments among Windows, Sun, and Macintosh computers. If an application
will be used on multiple platforms, try to use common keys to make the program
cross-platform compatible.

BIBLIOGRAPHY

G Programming Reference, National Instruments
LabVIEW On-line Reference, National Instruments
Professional G Developers Tools Reference Manual, National Instruments
LabVIEW 5.1 Addendum, National Instruments

Bitter, Rick et al "State Machines"
LabVIEW Advanced Programming Techinques
Boca Raton: CRC Press LLC,2001

3

©2001 CRC Press LLC

State Machines

Every programmer is looking for a faster, easier way to develop software. One tool
that has been used by programmers in multiple software platforms is the state
machine. A state machine is a very flexible tool that can be used by LabVIEW
programmers to make their code easier to maintain, easier to document, and easier
to reuse. In addition, state machines allow the program to change the way it executes
based on inputs and results of the application. This chapter will discuss state machine
fundamentals and provide examples of how to implement different versions of state
machines.

3.1 INTRODUCTION

State machines revolve around three concepts: the state, the event, and the action.
No state machine operates effectively without all three components. This section
will define all three terms and help you identify meaningful states, events, and actions
in your programming. Major mistakes programmers make when working with state
machines is not defining appropriate states. We will begin with the concept of state.

“State” is an abstract term, and programmers often misuse it. When naming a
state, the word “waiting” should be applied to the name of the state. For example,
a state may be waiting for acknowledgment. This name defines that the state machine
is pending a response from an external object. States describe the status of a piece
of programming and are subject to change over time. Choosing states wisely will
make the development of the state machine easier, and the robustness of the resulting
code much stronger. Relevant states allow for additional flexibility in the state
machine because more states allow for additional actions to be taken when events
occur.

Events are occurrences in time that have significant meaning to the piece of
code controlled by the state machine. An event that is of significance for our previous
example is the event “Acknowledgment Received.” This external occurrence will
inform the state machine that the correct event has occurred and a transition from
states is now appropriate. Events can be generated internally by code controlled by
the state machine.

Actions are responses to events, which may or may not impact external code to
the state machine. The state machine determines which actions need to be taken
when a given event occurs. This decision of what action needs to be taken is derived
from two pieces of information: the current state and the event that has occurred.
This pair of data is used to reference a matrix. The elements of this matrix contain
the action to perform and the next state the machine should use. It is possible, and

©2001 CRC Press LLC

often desirable, for the next state to be equal to the current state. Examples in this
section will demonstrate that it is desirable to have state changes occur only when
specific actions occur. This type of behavior is fairly typical in communications
control. Unless a specific sequence of characters arrives, the state should not change,
or perhaps the state machine should generate an error.

The state machine itself always makes state changes. The current state is not
normally given to code external to the state machine. Under no circumstances
should external code be allowed to change the current state. The only information
external code should give to the state machine is an event that has occurred.
Changing state and dictating actions to perform is the responsibility of the state
machine.

3.1.1 S

TATE

 M

ACHINES

IN

 L

AB

VIEW

A state machine, in simple terms, is a case structure inside a While loop, as shown
in Figure 3.1. The While loop provides the ability to continuously execute until
the conditional operator is set “false.” The case statement allows for variations in
the code to be run. The case that is selected to run can be, and usually is, determined
in the previous iteration of the While loop. This allows for a relatively simple
block of code to make decisions and perform elegant tasks. In its simplest form, a
state machine can be a replacement for a sequence structure. In more complex forms
of the state machine, the resulting structure could be used to perform the operations
of a test executive. The topic of state machines is covered in a number of places,
including the National Instruments LabVIEW training courses; however, there is
not a lot of depth to the discussions. This chapter will describe the types of state
machines, the uses, the pitfalls, and numerous examples.

When used properly, the state machine can be one of the best tools available
to a LabVIEW programmer. The decision to use a state machine, as well as which
type to use, should be made at an early stage of application development. During
the design or architecting phase, you can determine whether the use of a state machine
is appropriate for the situation. Chapter 4 discusses how to approach application
development including the various phases of a development life cycle.

FIGURE 3.1

©2001 CRC Press LLC

3.1.2 W

HEN

TO

 U

SE

A

 S

TATE

 M

ACHINE

There are a number of instances where a state machine can be used in LabVIEW
programming. The ability to make a program respond intelligently to a stimulus is
the most powerful aspect of using state machines. The program no longer needs to
be linear. The program can begin execution in a specified order, then choose the
next section of code to execute based on the inputs or results of the current
execution. This can allow the program to perform error handling, user-selected
testing, conditional-based execution, and many other variations. If the programmer
does not always want the code to be executed in the same order for the same number
of iterations, a state machine should be considered.

An example of when a state machine is useful to a programmer is in describing
the response to a communications line. An automated test application that uses
UDP to accept commands from another application should be controlled with a state
machine. Likely, states are “waiting for command,” “processing command,” and
“generating report.” The “waiting for command” state indicates that the application
is idle until the remote control issues a command to take action. “Processing
command” indicates that the application is actively working on a command that was
issued by the remote application. “Generating report” notes that the state for command
has completed processing and output is pending.

Events that may occur when the code is executing are “command received,”
“abort received,” “error occurred,” and “status requested.” All of these possibilities
have a different action that corresponds to their occurrence. Each time an event
occurs, the state machine will take a corresponding action. State machines are
predictable; the matrix of events, actions, and states is not subject to change.

The purpose of the state machine is to provide defined responses to all events
that can occur. This mechanism for control is easily implemented, is scalable for
additional events, and always provides the same response mechanism to events.
Implementing code to respond to multiple events without the state machine control
leads to piles of “spaghetti code” that typically neglect a few events. Events that
are not covered tend to lead to software defects.

3.1.3 T

YPES

OF

 S

TATE

 M

ACHINES

There are a number of different styles of state machines. To this point there is no
defined convention for naming the style of a state machine. In an effort to standardize
the use of state machines for ease of discussion, we propose our own names for
what we feel are the four most common forms of state machines in use. The four
styles are the Sequence, the Test Executive, the Classical, and the Queued style state
machines. Discussions of the four types of state machines, as well as examples of
each type, follow in Sections 3.3 to 3.6.

3.2 ENUMERATED TYPES AND TYPE DEFINITIONS

In the introductory chapters on LabVIEW programming, we stated that an “enumer-
ated type control” is similar to a text ring. The enumerated type control is basically

©2001 CRC Press LLC

a list of text values associated with a numeric value. The main difference for the
enumerated control is that the string is considered part of the data type. The
enumerated control can be found in the “List & Ring” section of the Control palette.
The default data representation of the enumerated control is an unsigned word.
However, its representation can be changed to unsigned byte or unsigned long by
popping up on the control and selecting Representation. When an enumerated type
control is copied to the back panel, the result is an enumerated constant. Using the
“numeric” section of the Function palette can also create an enumerated constant.

Enumerated constants can make state machines easier to navigate and control.
When an enumerated type is connected to a case structure, the case indicator becomes
the enumerated text instead of a numeric index. When a programmer is using a case
structure with a number of cases, navigation of the case structure becomes difficult
if the input is a numeric constant. When the user clicks on the case structure selector,
a list of case numbers is shown. It is difficult for the user to determine which case
does what, requiring the user to go through a number of cases to find the one that
is desired. A benefit of using an enumerated constant with the case structure is
readability. When someone clicks on the selector of a case structure controlled by
an enumerated-type input, the lists of cases by name are shown. If the enumerated
constant values are used to describe the action of the case, the user can easily find
the desired case without searching through multiple cases. Similarly, you can use
strings to drive state machine structures to enhance readability. However, this is
only available if you are using LabVIEW 5.0 or later. When enumerated or string
constants are used with a state machine, there are a few added advantages. When the
state machine passes the next state to execute to the case structure, the state to be
executed becomes obvious. When a state branches to subsequent states, the user can
see by the constant which state will execute next. If numerics are used, the person
going through the code will have to go through the states to see what is next.

A second advantage involves the maintenance of existing code. When numeric
inputs are used to control the state machine, a numeric constant will point to
whichever state corresponds to the defined index. A better way to aid in modifications
is the use of enumerated types. When the order of states is changed, the enumerated
constants will still be pointing to the state with the matching name. This is
important when you change the order of, add, or remove states. The enumerated
constants will still point to the correct state. It should be noted that in the event a
state is added, the state needs to be added to the enumerated constant in order to
make the program executable; however, the order of the enumerated constant does
not have to match the order of the case structure. This problem does not exist when
using string constants to drive the case structure. This leads into the next topic,
type definitions used with state machines.

3.2.1 T

YPE

 D

EFINITIONS

 U

SED

WITH

 S

TATE

 M

ACHINES

A “type definition” is a special type of control. The control is loaded from a separate
file. This separate file is the master copy of the control. The default values of the
control are taken from this separate file. By using the type definition, the user can

©2001 CRC Press LLC

use the same control in multiple VIs. The type definition allows the user to modify
the same control in multiple VIs from one location.

The benefit of using type definitions with state machines is the flexibility
allowed in terms of modifications. When the user adds a case in the state machine,
each enumerated type constant will need to have the name of the new case added to
it. In a large state machine, this could be a very large and tedious task. In addition,
there are many opportunities for mistakes. If the enumerated constant is created from
a type definition, the only place the enumerated type needs to be modified is in the
control editor. Once the type definition is updated, the remaining enumerated con-
stants are automatically updated. No matter how hard we all try, modifications are
sometimes necessary; the use of type definitions can make the process easier.

3.2.2 C

REATING

 E

NUMERATED

 C

ONSTANTS

AND

 T

YPE

 D

EFINITIONS

Selecting Enumerated Type from the List & Ring section of the Tools pallete creates
the enumerated control on the front panel. The user can add items using the Edit
Text tool. Additional items can be added by either selecting Add Item Before or After
from the popup menu, or pressing Shift + Enter while editing the previous item.
The enumerated constant on the code diagram can be created by copying the control
to the code diagram via “copy and paste,” or by dragging the control to the code
diagram. Alternative methods of creating enumerated constants include choosing
Create Constant while the control is selected, and selecting the enumerated constant
from the Function pallete.

To create an enumerated-type definition, the user must first create the enumerated-
type control on the front panel. The user can then edit the control by either double-
clicking on the control or selecting Edit Control from the Edit menu. When the
items have been added to the enumerated control, the controls should be saved as
either a Type Definition or a Strict Type Definition. The strict type definition forces
all attributes of the control, including size and color, to be identical. Once the type
definition is created, any enumerated constants created from this control are auto-
matically updated when the control is modified, unless the user elects to not auto
update the control.

3.2.3 C

ONVERTING

BETWEEN

 E

NUMERATED

 T

YPES

AND

 S

TRINGS

If you need to convert a string to an enumerated type, the

Scan from String

 function
can accomplish this for you. The string to convert is wired to the string input. The
enumerated type constant or control is wired to the default input. The output becomes
the enumerated type constant. The use of this method requires the string to match
the enumerated type constant exactly, except for case. The function is not case-
sensitive. If the match is not found, the enumerated constant wired to the default
input is the output of the function. There is no automatic way to check to see if a
match was found. Converting enumerated types into strings and vice versa is helpful
when application settings are being stored in initialization files. Also, application
logging for defect tracking can be made easier when you are converting enumerated
types into strings for output to your log files.

©2001 CRC Press LLC

There are two methods that can be used to ensure only the desired enumerated
type is recovered from the string input. One option is to convert the enumerated
output back to a string and perform a compare with the original string. The method
needed to convert an enumerated to a string is discussed next. A second option is
to use the

Search 1-D Array

 function to match the string to an array of strings.
Then you would use the index of the matched string to typecast the number to the
enumerated type. This assumes that the array of strings exactly matches the order
of the items in the enumerated type. The benefit of this method is that the

Search
1-D Array

 function returns a –1 if no match is found.
If the programmer wants to convert the enumerated-type to a string value, there

is a method to accomplish this task. The programmer can wire the enumerated type
to the input of the format into string function in the Function palette. This will
give the string value of the selected enumerated type.

3.2.4 D

RAWBACKS

TO

 U

SING

 T

YPE

 D

EFINITIONS

AND

 E

NUMERATED

C

ONTROLS

The first problem was mentioned in Section 3.2.2. If the user does not use type
definitions with the enumerated type constant, and the constant needs to be modified,
each instance of the constant must be modified when used with a state machine. In
a large state machine, there can be large number of enumerated constants that will
need to be modified. The result would be one of two situations when changes to
the code have to be made: either the programmer will have to spend time modifying
or replacing each enumerated control, or the programmer will abandon the changes.
The programmer may decide the benefit of the changes or additions do not outweigh
the effort and time necessary to make the modifications. This drawback limits the
effectiveness of the state machine since one of the greatest benefits is ease of
modification and flexibility.

The programmer needs to be careful when trying to typecast a number to the
enumerated type. The data types need to match. One example is when an enumerated
type is used with a sequence-style state machine. If the programmer is typecasting
an index from a While or For loop to an enumerated type constant, either the index
needs to be converted to an unsigned word integer, or the enumerated type to a long
integer data type. The enumerated data type can be changed in two ways. The
programmer can either select the representation by right-clicking on the enumerated
constant and selecting the representation, or by selecting the proper conversion
function from the Function palette.

If the programmer needs to increment an enumerated data type on the code
diagram, special attention needs to be paid to the upper and lower bounds of the
enumerated type. The enumerated values can wrap when reaching the boundaries.
When using the increment function with an enumerated constant, if the current value
is the last item, the result is the first value in the enumerated type. The reverse is
also true; the decrement of the first value becomes the last value.

©2001 CRC Press LLC

3.3 SEQUENCE-STYLE STATE MACHINE

The first style of state machine is the sequence style. This version of the state
machine is, in essence, a sequence structure. This version of the state machine
executes the states (cases) in order until a false value is wired to the conditional
terminal. There are a couple ways in which to implement this style of state machine.
The first and simplest way is to wire the index of the While loop to the case
statement selector. Inside each case, a Boolean constant of “true” is wired to the
While loop conditional terminal. The final case passes a false Boolean to the
conditional terminal to end execution of the loop. Figure 3.2 shows a sequence
machine using the index of a While loop. This type of state machine is more or
less “brain dead” because, regardless of event, the machine will simply go to the
next state in the sequence.

A second way to implement the sequence-style state machine is to use a shift
register to control the case structure. The shift register is initialized to the first case,
and inside each case the number wired to the shift register is incremented by one.
Again, the state machine will execute the states in order until a false Boolean is
wired to the conditional terminal of the While loop. This implementation of a state
machine is modified for all of the other versions of state machines described in this
chapter. Figure 3.3 shows a simple sequence machine using a shift register.

FIGURE 3.2

FIGURE 3.3

©2001 CRC Press LLC

3.3.1 W

HEN

TO

 U

SE

A

 S

EQUENCE

-S

TYLE

 S

TATE

 M

ACHINE

This style of state machine should be used when the order of execution of the tasks
to be performed is predefined, and it will always execute from beginning to end in
order. This state machine is little more than a replacement for a sequence structure.
We generally prefer to use this type of structure instead of sequences because it is
far easier to read code that uses shift registers than sequence locals. The single
biggest problem with the sequence structure is the readability problems caused by
sequence locals. Most programmers can relate to this readability issue.

 The biggest benefit is gained when the sequence-style state machine is imple-
mented with enumerated-type constants. When enumerated types are used, the code
becomes self-documenting (assuming descriptive state names are used). This allows
someone to see the function of each action at a glance.

3.3.2 E

XAMPLE

When writing test automation software there is often a need for configuring a system
for the test. Generally, there are number of setup procedures that need to be per-
formed in a defined order. The code diagram in Figure 3.4 shows a test that performs
the setup in the basic coding procedure. This version of the VI performs all of the
steps in order on the code diagram. The code becomes difficult to read with all of
the additional VIs cluttering the diagram. This type of application can be efficiently
coded through the use of the sequence-style state machine.

There are a number of distinct steps shown in the block diagram in Figure 3.4.
These steps can be used to create the states in the state machine. As a general rule,
a state can be defined with a one-sentence action: setup power supply, set system
time, write data to global/local variables, etc. In our example, the following states
can be identified: open instrument communications, configure spectrum analyzer,
configure signal generator, configure power supply, set display attributes and vari-
ables to default settings, and set RF switch settings.

Once the states have been identified, the enumerated control should be created.
The enumerated control is selected from the List & Ring group of the Control pallete.
Each of the above states should be put into the enumerated control. You should not
be concerned with how long the state name is as long as it is readable. The label
on the case statement will go as wide as the case statement structure.

There are two main factors to consider when creating state names. The first is
readability. The name should be descriptive of the state to execute. This helps
someone to see at a glance what the states do by selecting the Case Statement
selector. The list of all of the states will be shown. The second factor to consider is
diagram clutter or size. If enumerated constants are used to go to the next state, or
are used for other purposes in the code, the size of the constant will show the entire
state name. This can be quite an obstacle when trying to make the code diagram
small and readable. In the end, compromises will need to be made based on the
specific needs of the application.

After the enumerated control has been created, the state machine structure should
be wired. A While loop should be selected from the Function palette and placed on
the diagram with the desired “footprint.” Next, a case structure should be placed

©2001 CRC Press LLC

inside the While loop. For our example we will be using the index to control the
state machine. This will require typecasting the index to the enumerated type to
make the Case Selector show the enumerated values. The typecast function can be
found in the Data Manipulation section of the advanced portion of the Function
pallete. The index value is wired to the left portion of the typecast function. The
enumerated control is wired to the middle portion of the function. The output of the
typecast is then wired to the case structure. To ensure no issues with data represen-
tations, either the representation of the enumerated control or the index should be
changed. We prefer to change the index to make sure someone reading the code will
see what is being done. Since the index is a long integer, it will need to be converted

FIGURE 3.4

©2001 CRC Press LLC

to an unsigned word to match the default representation of the enumerated control.
The Conversion functions are part of the numeric section of the function pallete.

Now that the enumerated control has been wired to the case structure, the
additional states can be added to match the number of states required. With the
structure in place, the code required to perform each state should be placed into the
appropriate case. Any data, such as instrument handles and the error cluster, can be
passed between states using shift registers. The final and possibly most important
step is to take care of the conditional terminal of the While loop. A Boolean constant
can be placed in each state. The Boolean constant can then be wired to the conditional
terminal. Since the While loop will only exit on a false input, the false constant can
be placed in the last state to allow the state machine to exit. If you forget to wire
the false Boolean to the conditional terminal, the default case of the case statement
will execute until the application is exited.

At this point, the state machine is complete. The diagram in Figure 3.5 shows the
resulting code. When compared to the previous diagram, some of the benefits of state
machines become obvious. Additionally, if modifications or additional steps need to be
added, the effort required is minimal. For example, to add an additional state, the item
will have to be added to the enumerated control and to the case structure. That’s it! As
a bonus, all of the inputs available to the other states are now available to the new state.

3.4 TEST EXECUTIVE STYLE STATE MACHINE

The test executive-style state machine adds flexibility to the sequence-style state
machine. This state machine makes a decision based on inputs either fed into the
machine from sections of code such as the user interface, or calculated in the state
being executed to decide which state to execute next. This state machine uses an
initialized shift register to provide an input to the case statement. Inside each case,
the next state to execute is decided on. An example of this state machine is shown
in Figure 3.6.

FIGURE 3.5

©2001 CRC Press LLC

3.4.1 W

HEN

TO

 U

SE

A

 T

EST

 E

XECUTIVE

 S

TYLE

 S

TATE

 M

ACHINE

There are a number of advantages to this style of state machine. The most important
benefit is the ability to perform error handling. In each state, the next state to execute
is determined in the current state. If actions were completed successfully, the state
machine will determine what state to execute next. In the event that problems arise,
the state machine can decide to branch to its exception-handling state. The next state
to execute may be ambiguous; there is no reason for a state machine to execute one
state at a time in a given order. If we wanted that type of operation, a sequence state
machine or a sequence diagram could be used. A test executive state machine allows
for the code to determine the next state to execute given data generated in the current
state. For example, if a test running in the current state determined that the Device
Under Test (DUT) marginally makes spec, then the state machine may determine that
additional tests should be performed. If the DUT passes the specified test with a lot
of margin, the state machine may conclude that additional testing is not necessary.

The user can make one of the cases perform dedicated exception handling. By
unbundling the status portion of the error cluster, the program can select between
going to the next state to execute or branching off to the Error State. The Error State
should be a state dedicated to handling errors. This state can determine if the error
is recoverable. If the error is recoverable, settings can be modified prior to sending
the state machine back to the appropriate state to retry execution. If the error is not
recoverable, the Error State, in conjunction with the Close State, can perform the
cleanup tasks involved with ending the execution. These tasks can include writing
data to files, closing instrument communications, restoring original settings, etc.
Chapter 6 discusses the implementation of an exception handler in the context of a
state machine.

3.4.2 R

ECOMMENDED

 S

TATES

FOR

A

 T

EST

 E

XECUTIVE

 S

TATE

M

ACHINE

Test executive state machines should always have three states defined: Open, Close,
and Error. The Open state allows for the machine to provide a consistent startup and
initialization point. Initialization is usually necessary for local variables, instrument

FIGURE 3.6

©2001 CRC Press LLC

communications, and log files. The existence of the Open state allows the state
machine to have a defined location to perform these initialization tasks.

A Close state is required for the opposite reason of that of the Open state. Close
allows for an orderly shutdown of the state machine’s resources. VISA, ActiveX,
TCP, and file refnums should be closed off when the state machine stops using them
so that the resources of the machine are not leaked away.

When this type of state machine is developed using a While loop, only one state
should be able to wire a false value to the conditional terminal. The Close state’s
job is to provide the orderly shutdown of the structure, and should be the only state
that can bring down the state machine’s operation. This will guarantee that any
activities that must be done to stop execution in an orderly way are performed.

The Error state allows for a defined exception-handling mechanism private to
the state machine. This is one of the biggest advantages of the test executive style
over “brain dead” sequence-style machines. At any point, the machine can conclude
that an exception has occurred and branch execution to the exception handling state
to record or resolve problems that have been encountered. A trick of the trade with
this type of state machine is to have the shift register containing the next state use
two elements. This allows for the Error state to identify the previous state and
potentially return to that state if the exception can be resolved.

The Error state should not be capable of terminating execution of the state
machine; this is the responsibility of the Close state. If your exception-handling code
determines that execution needs to be halted, the Error state should branch the state
machine to the Close state. This will allow for the state machine to shut down any
resources it can in an orderly manner before stopping execution.

3.4.3 D

ETERMINING

 S

TATES

FOR

 T

EST

 E

XECUTIVE

 S

TATE

 M

ACHINES

When working with a test executive machine, state names correlate to an action that
the state machine will perform. Each name should be representative of a simple
sentence that describes what the state will do. This is a guideline to maximize the
flexibility of the state machine. Using complex or compound sentences to describe
the activity to perform means that every time the state is executed, all actions must
be performed. For example, a good state description is, “This state sets the voltage
of the power supply.” A short, simple sentence encapsulates what this state is going
to do. The state is very reusable and can be called by other states to perform this
activity. A state that is described with the sentence, “This state sets the power supply
voltage, the signal generator’s output level, and sends an email to the operator stating
that we have done this activity,” is not going to be productive. If another state
determines that it needs to change the power supply voltage, it might just issue the
command itself because it does not need the other tasks to be performed. Keeping
state purposes short allows for each state to be reused by other states, and will
minimize the amount of code that needs to be written.

3.4.4 E

XAMPLE

This example of the state machine will perform the function of calculating a threshold
value measurement. The program will apply an input to a device and measure the
resulting output. The user wants to know what level of input is necessary to obtain

©2001 CRC Press LLC

an output in a defined range. While this is a basic function, it shows the flexibility
of the text executive-style state machine.

The first step should be performed before the mouse is even picked up. In order
to code efficiently, a plan should already be in place for what needs to be done. A
flowchart of the process should be created. This is especially true with coding state
machines. A flowchart will help identify what states need to be created, as well as
how the state machine will need to be wired to go to the appropriate states. A
flowchart of the example is shown in Figure 3.7.

Once the test has been laid out, the skeleton of the state machine should be created.
Again, the While loop and case statement need to be placed on the code diagram. An
enumerated control will need to be created with the list of states to be executed. Based
on the tasks identified in the flowchart, the following states are necessary: Instrument
Setup, Measure Output, Compare to Threshold, Increase Input, Decrease Input, Error,
and Close. A better approach is to combine the Increase and Decrease Input states
into a Modify Input state that will change the input based on the measurement rela-
tionship to the desired output. However, this method makes a better example of state
machine program flow and is used for demonstration purposes.

Once the enumerated control is created, an enumerated constant should be made.
Right-clicking on the control and selecting create constant can do this. The Instru-
ment Setup state should be selected from the enumerated list. This is the initial state

FIGURE 3.7

©2001 CRC Press LLC

to execute. The user needs to create a shift register on the While loop. The input of
the shift register is the enumerated constant with the Instrument Setup state selected.
The shift register should then be wired from the While loop boundary to the Case
Statement selector. Inside each state an enumerated constant needs to be wired to
the output of the shift register. This tells the state machine which state to execute
next. Once the structure and inputs have been built, the code for each state can be
implemented.

The Instrument Setup state is responsible for opening instrument communica-
tions, setting default values for front panel controls, and setting the initial state for
the instruments. One way to implement the different tasks would be to either break
these tasks into individual states or use a sequence-style state machine in the Initialize
state. We prefer the second method. This prevents the main state machine from
becoming too difficult to read. The user will know where to look to find what steps
are being done at the beginning of the test. In addition, the Initialize state becomes
easier to reuse by putting the components in one place.

After initializing the test, the program will measure the output of the device.
The value of the measurement will be passed to the remainder of the application
through a shift register. The program then goes to the next state to compare the
measurement to a threshold value. Actually, a range should be used to prevent the
program from trying to match a specific value with all of the significant digits. Not
using a range can cause problems, especially when comparing an integer value to
a real number. Due to the accuracy of the integer, an exact match cannot always be
reached, which could cause a program to provide unexpected results or run endlessly.

Based on the comparison to the threshold value, the state machine will either
branch to the Increase Input state, Decrease Input state, or the Close state (if a match
is found). Depending on the application, the Increase or Decrease state can modify
the input by a defined value, or by a value determined by how far away from the
threshold the measurement is. The Increase and Decrease states branch back to the
Measure Output state.

Although not mentioned previously, each state where errors can be encountered
should check the status of the error Boolean. If an error has occurred, the state machine
should branch to the Error state. What error handling is performed in this state is
dependent on the application being performed. As a minimum, the Error state should
branch to the Close state in order to close the instrument communications.

Finally, there should be a way to stop execution. You should never assume a
program will complete properly. There should be a way for the program to “time
out.” In this example, the test will only execute up to 1000 iterations of the Measure
Input state. One way to implement this requirement is to do a comparison of the
While loop index. Since the Initialize state is only executed once, the state is
negligible. That leaves three states executing per measurement (Measure, Compare,
and the Change). The Measure Output state can compare the loop index to 3000 to
verify the number of times the application has executed. If the index reaches 3000,
the program can either branch to the Close state directly or set an error in the error
cluster. By using the bundling tools, the program can set the error Boolean to “true,”
set a user-defined code, and place a string into the description. The program can
indicate that the test timed out or give some other descriptive error message to let
the user know that the value was never found. Another way to implement this "time

©2001 CRC Press LLC

out” is to use shift registers. A shift register can be initialized to zero. Inside the
Measurement state, the program can increment the value from the shift register. This
value can be compared to the desired number of cycles to determine when the
program should terminate execution. Figure 3.8 shows the completed state machine.
The code is also included on the CD accompanying this book.

3.5 CLASSICAL-STYLE STATE MACHINE

The classical state machine is taught to computer programming students, and is the
most generic of state machine styles. Programmers should use this type of state
machine most frequently, and we do not see them often enough in LabVIEW code.
The first step to using the classical state machine is to define the relevant states,
events, and actions. Once the triad of elements is defined, their interactions can be
specified. This concludes the design of the state machine, and coding may begin to
implement the design. This section will conclude with a design of a state machine
for use with an SMTP mail VI collection. This design will be used to implement a
simple mail-sending utility for use with LabVIEW applications.

Step One is to define the states of the machine. States need to be relevant and
should be defined with the word “waiting.” Using the term “waiting” helps frame
the states correctly. State machines are not proactive; they do not predict events
about to happen. The word “waiting” in the state name appropriately describes the
state’s purpose.

Once the states for the machine are defined, then the events that are to be handled
need to be defined. It is usually better to err on the side of having too many states
than too few. Additional states allow for future expandability and general bullet-
proofing of the design.

3.5.1 W

HEN

TO

 U

SE

A

 C

LASSICAL

 S

TYLE

 S

TATE

 M

ACHINE

Classical state machines are a good design decision when events that occur are
coming from outside the application itself. User mouse-clicks, messages coming
from a communications port, and ActiveX event handling are three examples. Since

FIGURE 3.8

©2001 CRC Press LLC

these events may come into the application at any moment, it is necessary to have
a dedicated control structure to process them. LabVIEW 5.0 introduced menu cus-
tomization for LabVIEW applications. Generally, the programmer needs to generate
a polling loop to determine which, if any, menu selections were made by a user.
State machines fit well into handling these types of user interactions. For example,
if a user menu selection would make other menu selections not meaningful, the
state machine could be used to determine what menu items needed to be disabled;
for example, if your file menu had the option for application logging and a selection
for level of logging. If the user determined that he did not want the application to
generate a log file of its activities, then setting the level of logging detail is no
longer meaningful. The state machine handling the menu polling loop would make
the determination that logging detail is not useful and disable the item in the menu.

3.5.2 E

XAMPLE

One of the requirements of this example is to read information from a serial port
searching for either user inputs or information returned from another application or
instrument. This example will receive commands from a user connected through a
serial port on either the same PC or another PC. Based on the command read in
from the serial port, the application will perform a specific task and return the
appropriate data or message. This program could be a simulation for a piece of
equipment connected through serial communications. The VI will return the expected
inputs, allowing the user to test their code without the instrument being present.
The user can also perform range checking by adjusting what data is returned when
the program requests a measurement.

For this style of state machine the states are fairly obvious. There needs to be an
Initialize state that takes care of the instrument communication and any additional
setup required. The next state is the Input state. This state polls the serial port until
a recognized command is read in. There needs to be at least one state to perform the
application tasks for the matched input. When a command is matched, the state
machine branches to the state developed to handle the task. If more than one state is
necessary, the first state can branch to additional test states until the task is complete.
When the task is completed, the state machine returns to the Input state. Finally, there
needs to be an Error state and a Close state to perform those defined tasks.

The first step is to identify what commands need to be supported. If the purpose
of the test is to do simulation work, only the commands that are going to be used
need to be implemented. Additional commands can always be added when necessary.
For our example, the VI will support the following commands: Identity (ID?),
Measurement (Meas), Status (Status), Configure (Config), and Reset (RST). For
our example, only one state per command will be created.

Once the commands are identified, the state machine can be created. As in the
previous example, the input of the case statement is wired from an initialized shift
register. Inside each state, the next state to execute is wired to the output of the
shift register. This continues until a false Boolean is wired to the conditional
terminal of the While loop. The main structure of this style of state machine is
shown below.

©2001 CRC Press LLC

The most important state in this style of state machine is the Input state. In
our example, the list of commands is wired to a subVI. This subVI reads the serial
port until a match is found in the list. When a match is found, the index of the
matched command is wired out. This index is then wired to an Index Array function.
The other input to this function is an array of enumerated type constants. The list
is a matching list to the command list. The first state to execute for a given command
should be in the array corresponding to the given command. A quick programming
tip: when using this method, the index of the match should be increased by one.
Then in the match array of enumerated constants, the first input should be the Error
state. Since the match pattern function returns a –1 when no match is found, the
index would point to the zero index of the array. This can allow the program to
branch to the Error state if no match is found. Then, each command in order is just
one place above the original array. The code for this state is shown on page 147.

The VI will continue to cycle through reading the serial port for commands and
executing the selected states until the program is finished executing. There should
be a way to stop the VI from the front panel to allow the VI to close the serial
communications.

In this example, we are simulating an instrument for testing purposes. Using
the Random Number Generator function and setting the upper and lower limits can
use the measurement outputs to perform range checking. The state can be set up to
output invalid data to check the error-handling capabilities of the code as well. This
is a nice application for testing code without having the instrument available.

This next example will focus on developing a Simple Mail Transfer Protocol
(SMTP) VI. Communications with a mail server are best handled through a state
machine. The possibilities of errors and different responses from the server can make
development of robust code very difficult. A state machine will provide the needed
control mechanism so that responding to the various events that occur during a mail
transfer conversation can be handled completely.

Before we begin the VI development, we need to get an understanding of how
SMTP works. Typically, we learn that protocols containing the word “simple” are
anything but simple. SMTP is not very difficult to work with, but we need to
know the commands and responses that are going to present themselves. SMTP is
defined in Request For Comments (RFC) 811, which is an Internet standard.
Basically, each command we send will cause the server to generate a response.
Responses from the server consist of a three-digit number and text response. We
are most concerned with the first digit, which has a range from two to five.

The server responses that begin with the digit two are positive responses.
Basically, we did something correctly, and the server is allowing us to continue. A
response with a leading three indicates that we performed an accepted action, but the
action is not completed.

Before we can design the state machine, we need to review the order in which
communications should occur and design the states, events, and actions around the
way things happen. When designing state machines of any kind, the simplest route
to take is to thoroughly understand what is supposed to happen and design a set of
states around the sequence of events. Exception handling is fairly easy to add once
the correct combinations are understood.

©2001 CRC Press LLC

Figure 3.9 shows the sequence of events we are expecting to happen. First, we
are going to create a TCP connection to the server. The server should respond with
a “220,” indicating that we have successfully connected. Once we are connected, we
are going to send the Mail From command. This command identifies which user is
sending the mail. No password or authentication technique is used by SMTP; all
you need is a valid user ID. Servers will respond with a 250 code indicating that
the user is valid and allowed to send mail. Addressing the message comes next, and
this is done with “RCPT TO: <email address>.” Again, the server should respond
with a 250 response code. To fill out the body of the message, the DATA command
is issued which should elicit a 354 response from the server. The 354 command
means that the server has accepted our command, but the command will not be
completed until we send the <CRLF>.<CRLF> sequence. We are now free to send
the body of the message, and the server will not send another response until we
send the carriage return line feed combination. Once the <CRLF>.<CRLF> has
been sent, the server will send another 250 response. At this point we are finished
and can issue the QUIT command. Servers respond to QUIT with a 220 response
and then disconnect the line. It is not absolutely necessary to send the QUIT

FIGURE 3.9

©2001 CRC Press LLC

command, we could just close the connection and the server would handle that just
fine.

As we can see, our actions only happen when we receive a response from the
server. The likely events we will receive from the server are 220, 250, and 354
responses for “everything is OK.” Codes of 400 and 500 are error conditions and
we need to handle them differently. Several interactions with the sever generate both
250 and 220 response codes, and a state machine will make handling them very
easy. Our action taken from these events will be determined by our current state.
The control code just became much easier to write.

Our event listing will be 220, 250, 354, >400, and TCP Error. These values
will fit nicely into an enumerated type. Five events will make for a fairly simple
state machine matrix. We will need states to handle all of the boxes in the right
column of Figure 3.9. This will allow us to account for all the possible interactions
between our application and the mail server.

Surprisingly, we will only need states for half of the boxes in the right column of
Figure 3.9 . When we receive a response code, the action we take will allow us to skip
over the next box in the diagram as a state. We just go to a state where we are waiting
for a response to the last action. The combination of Event Received and Current state
will allow us to uniquely determine the next action we need to take. This lets us to
drive a simple case structure to handle the mail conversation, which is far easier to
write than one long chain of SubVIs in which we will have to account for all the
possible combinations. The table summarizes all of the states, events, and actions.

We have an action called “Do Nothing.” This action literally means “take no
action” and is used in scenarios that are not possible, or where there is no relevant
action we need to perform. One of the state/event pairs, Waiting For Hello and 354
Received, has a Do Nothing response. This is not a possible response from the
server. A response code in the 300 range means that our command was accepted,
but we need to do something to complete the action. TCP connections do not require

State/Event
200

Received
250

Received
354

Received
>400

Received TCP Error

Waiting For
Hello

Waiting For
Address/
Send from

Waiting For
Hello/ Do
Nothing

Waiting For
Hello/ Do
Nothing

Waiting For
Hello/
QUIT

Waiting For
Hello/
QUIT

Waiting For
Address

Waiting For
Address/
Do Nothing

Waiting For
Data/ Send
Recpt

Waiting For
Address/
Do Nothing

Waiting For
Address/
QUIT

Waiting for
Address/
QUIT

Waiting For
Data

Waiting For
Data/ Do
Nothing

Waiting
Send Body/
Send Data

Waiting For
Data/ Do
Nothing

Waiting for
Data/ QUIT

Waiting For
Data/ QUIT

Waiting To
Send Body

Waiting To
Send Body/
Do Nothing

Waiting To
Send Body/
Do Nothing

Waiting To
Quit/ Send
Body

Waiting To
Send Body/
QUIT

Waiting To
Send Body/
QUIT

Waiting To
Quit

Waiting To
Quit/ Do
Nothing

Waiting To
Quit/ QUIT

Waiting To
Quit/ QUIT

Waiting To
Quit/ QUIT

Waiting To
Quit/
QUIT.

©2001 CRC Press LLC

any secondary steps on our part, so this is not likely to happen. We will be using
an array for storing the state/event pairs, and something needs to be put into this
element of the array. Do Nothing prevents us from getting into trouble.

You can see from the table that there is a correct path through the state machine
and, hopefully, we will follow the correct path each time we use the SMTP driver.
This will not always be the case, and we have other responses to handle unexpected
or undesirable responses. For the first row of the state table, TCP errors are assumed
to mean that we cannot connect to the mail server, and we should promptly exit
the state machine and SMTP driver. There is very little we can do to establish a
connection that is not responding to our connection request. When we receive our
220 reply code from the connection request, we go to the Waiting for Address state
and send the information on who is sending the e-mail.

The waiting for Address state has an error condition that will cause us to exit.
If the Sending From information is invalid, we will not receive our 250 response
code; instead, we will receive a code with a number exceeding 500. This would
mean that the user name we supplied is not valid and we may not send mail. Again,
there is little we can do from the SMTP driver to correct this problem. We need to
exit and generate an error indicating that we could not send the mail.

Developing the state machine to handle the events and determine actions is
actually very simple. All we need is an internal type to remember the current state,

FIGURE 3.10

©2001 CRC Press LLC

a case statement to perform the specific actions, and a loop to monitor TCP
communications. Since LabVIEW is going to remember which number was last
input to the current state, we will need the ability to initialize the state machine
every time we start up. Not initializing the state machine on startup could cause
the state machine to think it is currently in the Wait to Quit state, which would
not be suitable for most e-mail applications.

Figure 3.10 shows the state/action pair matrix we will be using. The matrix is
a two-dimensional array of clusters. Each cluster contains two enumerated types
titled “next state” and “action.” When we receive an event, we reference the element
in this matrix that corresponds to the event and the current state. This element
contains the two needed pieces of information: what do we do and what is the next
state of operation.

To use the matrix we will need to internally track the state of the machine.
This will be done with an input on the front panel. The matrix and current state
will not be wired to connectors, but will basically be used as local variables to the
state machine. We do not want to allow users to randomly change the current state
or the matrix that is used to drive the machine. Hiding the state from external code
prevents programmers from cheating by altering the state variable. This is a defensive
programming tactic and eliminates the possibility that someone will change the
state at inappropriate times. Cheating is more likely to introduce defects into the
code than to correct problems with the state machine. If there is an issue with the
state machine, then the state machine should be corrected. Workarounds on state
machines are bad programming practices. The real intention of a state machine is
to enforce a strict set of rules on a code section is of behavior.

Now that we have defined the matrix, we will write the rest of the VI supporting
the matrix. Input for Current State will be put on the front panel in addition to a
Boolean titled “Reset.” The purpose of the reset Boolean is to inform the state
machine that it is starting and the current internal state should be changed back to
its default. The Boolean should not be used to reset the machine during normal
operation, only at startup. The only output of the state machine is the action to
take. There is no need for external agents to know what the new state of the machine
will be, the current state of the machine, or the previous state. We will not give
access to this information because it is not a good defensive programming practice.
What the state machine looks like to external sections of code is shown in Figure
3.11.

The “innards” of the state machine are simple and shown in Figure 3.12. There
is a case statement that is driven by the current value of the reset input. If this
input is “false,” we index the state/event matrix to get the action to perform and
the new state for the machine. The new state is written into the local Variable for
Current state, and the action is output to the external code. If the reset Boolean is
“true,” then we set the current state to Waiting for Hello and output an action, Do
Nothing. The structure of this VI could not be much simpler; it would be difficult
to write code to handle the SMTP conversation in a manner that would be as robust
or easy to read as this state machine.

Now that we have the driving force of our SMTP sending VI written, it is time
to begin writing the supporting code. The state machine itself is not responsible

©2001 CRC Press LLC

for parsing messages on the TCP link, or performing any of the actions it dictates.
The code that is directly calling the state machine will be responsible for this; we
have a slave/master relationship for this code. A division of labor is present; the
SMTP VI performs all the interfaces to the server, and gets its commands from the
state machine. This makes readability easier because we know exactly where to look
for problems. If the SMTP VI did not behave correctly, we can validate that the
state machine gave correct instructions. Assuming the state machine gave correct
instructions, the problem is with the SMTP VI.

State machines work well for dealing with protocols such as SMTP. SMTP
sends reply codes back, and the reply codes may be the same for different actions.
The 220 reply code is used for both quitting and starting the mail conversation. If
you were not using a state machine to determine what to do when you receive a
220 from the server, “tons” of temporary variables and “spaghetti code” would be
needed instead. The matrix looks much easier to work with. Instead of following
code and tracking variables, you look at the matrix to determine what the code should
be doing.

3.6 QUEUED-STYLE STATE MACHINE

As the name suggests, the queued-style state machine works with an input queue.
Prior to entering the state machine, a queue or input buffer is created. As the state
machine executes, the state that has executed is removed from the queue during
execution of the state machine. New states can be added to or removed from the

FIGURE 3.11

FIGURE 3.12

©2001 CRC Press LLC

queue based on what happens during execution. The execution of the queued-style
state machine can complete by executing the close state when the queue is empty.
We recommend always using a Close state as the last element of the queue. This
will enable the program to take care of all communications, VISA sessions, and
data handling. There is a way to combine these methods through the use of the
Default state in the case statement.

There are two ways to implement the queue. The first method is using the
LabVIEW queue functions. The Queue palette can be found in the Synchronization
palette in the Advanced pallete of the Function pallette (are you lost yet?). [Func-
tions>>Advanced>>Synchronization>>Queue]. The VIs contained in this pallete
allow you to create, destroy, add elements, remove elements, etc. For use with the
state machine, the program could create a queue and add the list of elements (states
to execute) prior to the state machine executing. Inside the While loop, the program
could remove one element (state) and wire the state to the case selector of the case
structure. If an error occurs, or there is a need to branch to another section of the
state machine, the appropriate elements can be added to the queue. The addition can
be either to the existing list, or the list could be flushed if it is desired to not
continue with the existing list of states.

The use of the LabVIEW Queue function requires the programmer to either use
text labels for the case structure, or to convert the string labels to corresponding
numeric or enumerated constants. One alternative is to use an array of enumerated
types instead of the Queue function (again, string arrays would work fine). The VI
can place all of the states into an array. Each time the While loop executes, a state
is removed from the array and executed. This method requires the programmer to
remove the array element that has been executed and pass the remaining array through
a shift register back to the beginning of the state machine, as shown in Figure 3.8.

3.6.1 WHEN TO USE THE QUEUED-STYLE STATE MACHINE

This style of state machine is very useful when a user interface is used to query the
user for a list of states to execute consecutively. The user interface could ask the user
to select tests from a list of tests to execute. Based on the selected items, the program
can create the list of states (elements) to place in the queue. This queue can then be
used to drive the program execution with no further intervention from the user. The
execution flexibility of the application is greatly enhanced. If the user decides to
perform one task 50 times and a second task once followed by a third task, the VI
can take these inputs and create a list of states for the state machine to execute. The
user will not have to wait until the first task is complete before selecting a second
and third task to execute. The state machine will execute as long as there are states
in the buffer. The options available to the user are only limited by the user interface.

3.6.2 EXAMPLE USING LABVIEW QUEUE FUNCTIONS

This first example will use the built-in LabVIEW Queue function. In this example,
a user interface VI will prompt the user to select which tests need to be executed.
The selected tests will then be built into a list of tests to execute, which will be

©2001 CRC Press LLC

added to the test queue. Once the test queue is built, the state machine will execute
the next test to be performed. After each execution, the test that has been executed
will be removed from the queue. This example is not for the faint of heart, but it
shows you how to make your code more flexible and efficient.

The first step is creating the user interface. The example user interface here is
a subVI that shows its front panel when called. The user is prompted to select which
tests to execute. There are checkboxes for the user to select for each test. There are
a number of other methods that work as well, such as using a multiple selection
listbox. The queue can be built in the user interface VI, or the data can be passed
to another VI that builds the queue. We prefer to build the queue in a separate VI
in order to keep the tasks separated for future reuse. In this example, an array of
clusters is built. The cluster has two components: a Boolean value indicating if the
test was selected and an enumerated type constant representing the specific test.
There is an array value for each of the options on the user interface.

The array is wired into the parsing VI that converts the clusters to queue entries.
The array is wired into a For loop in order to go through each array item. There are
two case statements inside the For loop. The first case statement is used to bypass
the inner case statement if the test was not selected (a false value). The second case
statement is a state machine used in the true case to build the queue. If a test is
selected, the VI goes to the state machine and executes the state referenced by the
enumerated type constant from the input. Inside the specific cases the appropriate
state name (in string format) is added to the output array. In some instances multiple
cases may be necessary to complete a given task. In these instances, the cases to
execute are all added to the output array. This is why the string value of the
enumerated type input is not simply added to the queue. Using the state machine
allows a selected input to have different queue inputs. You would be tied to the name
of the enumerated type if the Format into String function was used. When all of the
array items have been sorted, a close state string is added to the end of the array to
allow the main program to close the state machine.

The final stage of the VI is to build the queue with the inputs from the output
string array. The first step is using the Create Queue function to create a named
queue. The queue has a reference ID just like a VISA instrument. The ID is then
passed into a For loop with an output array of strings. Inside the For loop, each
string is put into the queue using the Insert Queue Element VI. When the VI
completes execution, the reference ID is passed back to the main program. The
queue-building VI is shown in Figure 3.13.

Now that the queue is built, the actual test needs to be created. The main VI
should consist of a state machine. The main structure of the state machine should
be a While loop with the case structure inside. Again, each case, except the Close
state, should wire a “true” Boolean to the conditional terminal of the While loop.
The only trick to this implementation is the control of the case statement. In the
beginning of the While loop, the Remove Queue Element VI should be used to get
the next state to execute. Once the state executes, the While loop will return to the
beginning to take the next state from the queue. This will continue until the Close
state is executed and the While loop is stopped. In the Close state, the programmer
should use the Destroy Queue VI to close out the operation.

©2001 CRC Press LLC

There is one final trick to this implementation: the wiring of the string input to the
state machine. There are two ways to accomplish this task. The first is to create the
case structure with the string names for each state. One of the states will need to be
made the Default state in order for the VI to be executable. Since there are no defined
inputs for a string, one of the cases is required to be “default.” We would suggest making
the default case an Error state since there should not be any undefined states in the state
machine. If you do not want to use strings for the state machine, the second option is
to convert the strings into enumerated-type constants. The method required to perform
this action is described in Section 3.2.4. The enumerated constant can then be used to
control the state machine. The main diagram is shown in Figure 3.14.

3.6.3 EXAMPLE USING AN INPUT ARRAY

A second version of the queued-style state machine involves using an array of states
to execute instead of the LabVIEW Queue functions. We will use the same example
application to illustrate the interchangeability of the methods. The application can
use the same user interface. This time, instead of creating an array of strings based

FIGURE 3.13

FIGURE 3.14

©2001 CRC Press LLC

on the user inputs, the array of the enumerated types used in the user interface will
be built. This array will then be passed to the main state machine. The programmer
should make sure to add the Close State constant to the end of the array to prevent
an endless loop. As a backup plan, the user should also make the Close state the
default state. This will force the Close state to execute if the array is empty. The
VI to build the state array is shown in Figure 3.15.

At the beginning of the While loop, the first state is taken off of the array of
states by using the Index Array function. This value is then directly wired to the
case structure input. The array is also passed to the end of the While loop. At the
end of the While loop, the state that was executed is removed. Using the Array
Subset function performs the removal. When the state array is wired to this function,
with the index value being set to 1, the first element is removed from the array.
This is continued until the Close state is executed, or until the array is empty. The
diagram of the main VI is shown in Figure 3.16.

FIGURE 3.15

FIGURE 3.16

©2001 CRC Press LLC

3.7 DRAWBACKS TO USING STATE MACHINES.

There are very few drawbacks to state machines, and we will go through those
instances here. The first issue we have found with state machines is the difficulty
following program flow. Due to the nature of state machines, the order of execution
can change due to many factors. The code becomes difficult to debug and trace errors.
This is especially true with time-critical applications where execution highlighting
is not an option. Documentation is crucial for reading and debugging tests using
state machines.

For applications where there are only a couple of tasks that are done sequentially,
a state machine can be overkill. Creating an enumerated control for the case state-
ment, setting up Error and Close states, and creating the necessary shift registers
can be more work than is necessary. This is the case only in very simple sequences
where there will not be major changes or additions. If there is a possibility of
expanding the functionality of the VI, a state machine should be used. The benefits
and issues of using a state machine should be considered during the architecting
stage of an application.

3.8 RECOMMENDATIONS AND SUGGESTIONS

As is the case with most programming tasks, there are a number of ways to “skin
a cat.” While this is true, there are a number of methods of “skinning a cat” that
can make life easier. Using a sharp knife is one of them. Seriously, though, there
are a number of ways to make state machines easier to use and modify. The following
are tips or suggestions for using state machines.

3.8.1 DOCUMENTATION.

The programmer should spend time documenting all code; however, this is especially
true when using state machines. Since the order of the execution changes, thorough
documentation can help when debugging. An additional reason to document is for
when you attempt to reuse the code. If it has been a while since you wrote the VI,
it may take some time to figure out how the code executes and why some inputs
and outputs are there. Some of the code written in LabVIEW strives to abstract low-
level interactions from the higher levels. Good documentation can help ensure that
the programmer does not have to go through the low-level code to know what is
required for the inputs and outputs. Chapter 4, Application Structure, also discusses
some documenting methods available in LabVIEW.

3.8.2 ENSURE PROPER SETUP

Since state machines can change the order of execution, special care should be taken
to ensure all equipment is in the proper state, all necessary inputs have been wired,
all necessary instruments are open, etc. You should try to make every state a stand-
alone piece of code. If you are taking measurements from a spectrum analyzer, and
the instrument needs to be on a certain screen, you must make sure to set the
instrument to that screen. There is no guarantee that previous states have set the

©2001 CRC Press LLC

screen unless the order of execution is set. If there is a chance that a prior state will
not execute, the necessary precautions must be taken to avoid relying on the prior
state to perform the setup.

3.8.3 ERROR, OPEN, AND CLOSE STATES

When creating a state machine, there are three states that should always be created.
There should be an Error state to handle any errors that occur in the program
execution. If you are not using enumerated types or text labels for the states, you
should make the Error state the first state. This way, when states are added or
removed, the location of the Error state will always remain the same. An additional
benefit to making the Error state the first state is when a Match Pattern function
is used to select the state to execute. When no match is found a –1 is returned. If
the returned value is incremented, the state machine will go to the Zero state. The
Error state can be as simple as checking and modifying the error cluster and proceeding
to the Close state or to an Error state that can remove certain states and try to
recover remaining portions of the execution. The Close state should take care of
closing instruments, writing data, and completing execution of the state machine.
This is especially important when performing I/O operations. For example, if a
serial port is not closed, the program will return an error until the open ports are
taken care of. The Open State should handle instrument initialization and provide a
single entry point to the state machine.

3.8.4 STATUS OF SHIFT REGISTERS

Most state machines will have a number of shift registers in order to pass data from
one state to another, unless local or global variables are used. National Instruments
suggests that local and global variables be used with caution. Depending on the
purpose of the state machine, care needs to be taken with regard to the initial values
of the shift registers. The first time the state machine runs, any uninitialized shift
registers will be empty. The next time the state machine runs, the uninitialized shift
registers will contain the value from the previous execution. There are times that
this is desirable; however, this can lead to confusing errors that are difficult to track
down when the register is expected to be empty. This method of not initializing
the shift register is an alternative way to make a global variable. When the VI is
called, the last value written to the shift register is the initial value recalled when
it is loaded.

As a rule of thumb, global variables should generally be avoided. In state machine
programming, it is important to make sure the machine is properly initialized at
startup. Initializing shift registers is fairly easy to do, but more importantly, shift
register values cannot be changed from other sections of the application. The biggest
problem with global variables is their global scope. When working in team develop-
ment environments, global variables should be more or less forbidden. As we men-
tioned earlier, a state machine’s internal data should be strictly off-limits to other
sections of the application. Allowing other sections of the application to have access
to a state machine information can reduce its ability to make intelligent decisions.

©2001 CRC Press LLC

3.8.5 TYPECASTING AN INDEX TO AN ENUMERATED TYPE

This was mentioned earlier, but this problem can make it difficult to track errors.
When the index is being typecast into an enumerated type, make sure the data types
match. When the case structure is referenced by integers, it can be much more
difficult to identify which state is which. It is far easier for programmers to identify
states with text descriptions than integer numbers. Use type definitions to simplify
the task of tracking the names of states. Type definitions allow for programmers to
modify the state listing during programming and have the changes occur globally
on the state machine.

3.8.6 MAKE SURE YOU HAVE A WAY OUT

In order for the state machine to complete execution, there will need to be a “false”
Boolean wired to the conditional terminal of the While loop. The programmer needs
to make sure that there is a way for the state machine to exit. It is common to
forget to wire out the false in the Close state which leads to strange results. If
there is a way to get into an endless loop, it will usually happen. There should
also be safeguards in place to ensure any While loops inside the state machine will
complete execution. If there is a While loop waiting for a specific response, there
should be a way to set a timeout for the While loop. This will ensure that the state
machine can be completed in a graceful manner.

It is obvious that the state machine design should include a way to exit the
machine, but there should only be one way out, through the Close state. Having
any state being able to exit the machine is a poor programming practice. Arbitrary
exit points will probably introduce defects into the code because proper shutdown
activities may not occur. Quality code takes time and effort to develop. Following
strict rules such as allowing only one state to exit the machine helps programmers
write quality code by enforcing discipline on code structure design.

3.9 PROBLEMS

This section gives a set of example applications that can be developed using state
machines. The state machines are used to make intelligent decisions based on inputs
from users, mathematical calculations, or other programming inputs.

3.9.1 THE BLACKJACK EXAMPLE

To give a fun and practical example of state machines, we will build a VI that
simulates the game of Blackjack. Your mission, if you choose to accept it, is to
design a VI that will show the dealer’s and player’s hands (for added challenge, only
show the dealer’s up card). Allow the player to take a card, stand, or split the cards
(if they are a pair). Finally, show the result of the hand. Indicate if the dealer won,
the player won, there was a push, or there was a blackjack. Obviously, with an
example of this type, there are many possible solutions. We will work through the
solution we used to implement this example. The code is included on the CD
included with this book.

©2001 CRC Press LLC

The first step to our solution was to plan out the application structure. After
creating a flowchart of the process, the following states were identified: Initialize,
Deal, User Choice, Hit, Split, Dealer Draw, and Result State. The Initialize state
is where the totals are set to zero and the cards are shuffled. Additionally, the state
sets the display visible attributes for the front panel split pair's controls to “false.”
The flowchart is shown in Figure 3.17.

The shuffling was performed by the following method. A subVI takes an input
array of strings (representations of the cards) and picks a card from the array at
random to create a new array. The cards are randomly chosen until all of the cards
are in the new array. The VI is shown in Figure 3.18.

The next state to define is the Deal Cards state. This state takes the deck of
cards (the array passed through shift registers) and passes the deck to the Deal Card
VI. This VI takes the first card off the deck and returns three values. The first is
the string value of the card for front panel display. The second output is the card
value. The final output is the deck of cards after the card that has been used is

FIGURE 3.17

©2001 CRC Press LLC

removed from the array. This state deals two cards to the dealer and to the player.
The sum of the player's cards is displayed on the front panel. The dealer’s up card
value is sent to the front panel; however, the total is not displayed.

The User Choice state is where the player can make the decision to stand, hit,
or split. The first step in this state is to evaluate if the user has busted (total over
21) or has blackjack. If the total is blackjack, or the total is over 21 without an
ace, the program will go directly to the Result state. If the player has over 21
including an ace, 10 is deducted from the players total to use the ace as a one. There
is additional code to deal with a split hand if it is active.

The Split state has a few functions in it. The first thing the state does is make
the split displays visible. The next function is to split the hand into two separate

FIGURE 3.18

FIGURE 3.19

©2001 CRC Press LLC

hands. The player can then play the split hand until a bust or stand. At this point,
the hand reverts to the original hand.

The Hit state simply calls the Deal Card VI. The card dealt is added to the current
total. The state will conclude by returning to the User Choice state. The Dealer
Draw state is executed after the player stands on a total. The dealer will draw cards
until the total is 17 or greater. The state concludes by going to the Result state.
The Result state evaluates the player and dealer totals, assigning a string representing
a win, loss, or tie (push). This state exits the state machine. The user must restart
the VI to get a new shuffle and deal.

As can be seen by the code diagram of the VI shown in Figure 3.19, the design
requirements have been met. There are a number of ways to implement this design;
however, this is a “quick and dirty” example that meets the needs. The main lesson
that should be learned is that by using a state machine, a fairly intricate application
can be developed in a minimal amount of space. In addition, changes to the VI
should be fairly easy due to the use of enumerated types and shift registers. The
programmer has a lot of flexibility.

3.9.2 THE TEST SEQUENCER EXAMPLE

For this example, there is a list of tests that have been created to perform evaluation
on a unit under test. The user wants to be able to select any or all of the tests to
run on the product. In addition, the user may want to run the tests multiple times
to perform overnight or weekend testing. The goal of this example is to create a
test sequencer to meet these requirements.

The first step is to identify the structure of the application that we need to create.
For this problem, the queued state machine seems to be the best fit. This will allow
a list of tests to be generated and run from an initial user interface. With a basic
structure identified, we can create a flowchart to aid in the design of the state machine.
The test application will first call a User Interface subVI to obtain the user-selected
inputs. These inputs will then be converted into a list (array) of states to execute.
For this example each test gets its own state. After each state executes, a decision
will need to be made. After a test executes, the state machine will have to identify
if an error has occurred. If an error was generated in the state that completed execution,
the state machine should branch to an error state; otherwise, the state that executed
should be removed from the list. In order to exit the testing, an Exit state will need
to be placed at the end of the input list of states. In this Exit state, the code will
need to identify if the user selected continuous operation. By “continuous operation”
we mean repeating the tests until a user stop. This option requires the ability to
reset the list of states and a Stop button to allow the user to gracefully stop the
test execution. The flowchart is shown in Figure 3.20.

The first step is to design the user interface. The user interface for this example
will incorporate a multiple select listbox. This has a couple benefits. The first
benefit is the ability to easily modify the list of tests available. The list of available
tests can be passed to the listbox. The multiple select listbox allows the user to
select as many or as few tests as necessary. Finally, the array of selected items in
string form is available through the Attribute node. The list of tests can then be

©2001 CRC Press LLC

used to drive the state machine, or be converted to a list of enumerated constants
corresponding to the state machine. In addition to the multiple select listbox, there
will need to be a Boolean control on the user interface to allow the user to run the
tests continuously, and a Boolean control to complete execution of the subVI. By
passing the array of tests into the User Interface VI and passing the array of selected
items out, this subVI will be reusable.

The next step is to build the state machine. The first action we usually take is
to create the enumerated type definition control. This will allow us to add or remove
items in the enumerated control in one location. The next decision that needs to be
made is what to do in the event there is no match to an existing state. This could
be a result of a state being removed from the state machine, or a mismatch between
the string list of tests to execute and the Boolean names for the states. There should
be a default case created to account for these situations. The default case could simply

FIGURE 3.20

©2001 CRC Press LLC

be a “pass-through” state, essentially a Do Nothing state. When dealing with strings,
it is important to acknowledge that these types of situations can occur, and program
accordingly. The code diagram of the Test Sequencer VI is shown in Figure 3.21.

Once the enumerated control is created, the state machine can be built. After
performing an error check, the array of states is passed into a While loop through
a shift register. The conditional terminal of the While loop is indirectly wired to a
Boolean created on the front panel to stop the state machine. This will allow the
program to gracefully stop after the current test completes execution. What we mean
by “indirectly” is that the Boolean for the stop button is wired to an AND gate. The
other input of the AND gate is a Boolean constant that is wired out of each state in
the state machine. This allows the Close state or the Stop button to exit execution.
One important item to note on the code diagram is the sequence structure that is
around the Stop button. This was placed there to ensure the value of the button was
not read until the completion of the current state. If the sequence structure was not
used, the value of the Stop button would have been read before the completion of
the given state. If the user wanted to stop the state machine, and the user pressed
the button, the state machine would finish the current test and perform the next test.
Only after reentering the state machine would the “false” be wired to the conditional
terminal of the While loop.

Inside the While loop, the Index Array function is used to obtain the first state
to execute by wiring a zero to the index input. The output of this function is wired
to the case structure selector. This will now allow you to add the cases with the
Boolean labels.

The Next_State subVI is the most important piece of code in the state machine.
This subVI makes the decision of which state to execute next. The first step in the
code diagram is to check the current state in the queue. This is the state that has

FIGURE 3.21

©2001 CRC Press LLC

just executed. This value is compared to the error state enumerated constant. If this
is a match, the state machine proceeds to the Close state to exit execution. This is
the method for this application to exit the state machine after an error if no error
handling has been performed. After verifying that the Error state was not the last
state to execute, the error cluster is checked for errors. Any errors found here would
have been created during the test that last executed. If there is an error, the Error
state enumerated constant is wired to the output array. This will allow any error
handling to be performed instead of directly exiting the state machine. If no error
has occurred, the Array Subset function will remove the top state. Wiring a one to
the index of the function performs this action. If there are no more states to execute,
an empty array is passed to the shift register. The next iteration of the state machine
will force the error state (which was made the default state) to execute. The code
diagram for the Next-State VI is shown in Figure 3.22.

The first state in this state machine is the Error state. The Error state in this
example will perform a couple of functions. The Error state can have code used to
perform testing, or clean up functions in the case of an error. This will allow the
user to be able to recover from an error if the testing will still be valid. The second
function is resetting of the states if continuous sequencing is selected. The first step
is to make this case the default case. This will allow this case to execute if the input
array is empty or doesn’t match a state in the state machine. If an error occurred,
the error cluster will cause the remainder of the state array to be passed to the Next
State subVI. If no error occurred, the VI will wire the original array of states to a
Build Array function. The other input of this function is an enumerated constant for
any state in the state machine except the Error state.

You may be asking yourself why any state would be added to the new queue.
The reasoning behind this addition was to allow the sequencer to start back at the
beginning. The Error state is only entered when there is an error or when the queue
is empty. Since the next state VI uses the Array Subset function to obtain the array
of states to be wired to the shift register, the first state in the list is removed. The
reason the Error state constant cannot be used is the first check in the Next_State
subVI. If the Error state is on the top of the array, the subVI will think that an error
has occurred and has been dealt with. The VI will then proceed to the Close state.

FIGURE 3.22

©2001 CRC Press LLC

The remainder of the test sequencer is relatively straightforward. Each state
passes the test queue from the input of the state to the output. The error cluster is
used by the test VIs and is then wired to the output of the state. Finally, a “True”
Boolean constant is wired to the output of each state. This is to allow a “False”
Boolean to be wired out of the Close state. The other states have to be wired to
close all of the tunnels. Additional functions can be added to the sequencer such as
a front panel indicator to show what state is currently executing, an indicator to
show the loop number being executed, and even results for each test displayed in
an array on the front panel. The sequencer can be modified to meet the needs of the
application. The test sequencer is a simple (relatively speaking) way to perform test
executive functionality without a lot of overhead.

3.9.3 THE PC CALCULATOR EXAMPLE

The goal is to create a VI to perform as the four-function calculator that comes on
most computer desktops. For this example, the higher-level functions will not be
added. Only the add, subtract, multiply, and divide functions will be implemented.
The idea is to use the classical-style state machine to provide the same functionality.

Again, the first step is to identify the form and function of the application.
There needs to be a user interface designed to allow the user to input the appropriate
information. For this example, an input section designed to look like the numeric
keypad section of a keyboard is designed. In addition to the input section, there
needs to be a string indicator to show the inputs and results of the operations.
Finally, a Boolean control can be created to allow a graceful stop for the state
machine. The state machine is controlled via the simulated numeric keypad.

Boolean controls will be used for the keys on our simulated keypad. The Boolean
controls can be arranged in the keypad formation and enclosed in a cluster. The
labels on the keys can be implemented by right-clicking on the control and selecting
“Show Boolean Text.” The text tool can then be used to change the Boolean text
to the key labels. The “True” and “False” values should be changed to the same
value. The text labels should be hidden to complete the display. The buttons should
be “False” as the default case. Finally, the “Mechanical Action” of the buttons will
need to be modified. This can be done by right clicking on the button and selecting
the mechanical action selection. There is a possibility of six different types of
mechanical actions. The default value for a Boolean control is “Switch when Pressed.”
The “Latch when Released” selection should be selected for each of the buttons.
This will allow the button to return to the “False” state after the selection has been
made. The front panel is shown in Figure 3.23.

After the cluster is created, the cluster order needs to be adjusted. Right-clicking
on the border of the cluster and selecting “Cluster Order” can modify the cluster
order. When this option is selected, a box is shown over each cluster item. The box
is made up of two parts: The left side is the current place in the cluster order; the
right side is the original order value. Initially, the values for each item are the same.
The mouse pointer appears like a finger. By clicking the finger on a control, the
value displayed on the top of the window frame is inserted into the left side of the
cluster order box. The controls can be changed in order, or changing the value shown

©2001 CRC Press LLC

on the top window frame can change the value of each in any order. When you are
finished modifying the cluster, the “OK” button needs to be pressed. If a mistake
has been made or the changes need to be discarded, the “X” button will reset the
values of the cluster order.

For our example, the numbers from one to nine will be given the cluster order
of zero to eight, respectively. The zero is selected as the ninth input, and the period
is the tenth input. The Divide, Add, Multiply, Subtract, and Equal keys are given
the 11th to the 15th cluster inputs, respectively. Finally, the “Clear” key is given
the 16th and final cluster position. The order of the buttons is not important as
long as the programmer knows the order of the buttons, since the order is related
to the position in the state machine.

The code diagram consists of a simple state machine. There is no code outside
of the state machine except for the constants wired to the shift registers. Inside the
While loop, the cluster of Boolean values from the control is wired to the Cluster
to Array function. This function creates an array of Boolean values in the same
order as the controls in the cluster. This is the reason the cluster order is important.
The Search 1-D Array function is wired to the output of the Cluster to Array
function. A “True” Boolean constant is wired to the element input of the search 1-
D array function. This will search the array of Boolean values for the first “True”
Boolean. This value indicates which key was pressed.

When the Search 1-D Array function is used, a no match results in a –1 being
returned. We can use this ability to our advantage. If we increment the output of the
Search 1-D Array function, the “no match” case becomes a zero. The output of the
Increment function is wired to the case statement selector. In the zero case, when no
match is found, the values in the shift registers can be passed through to the output
without any other action being taken. This will result in the state machine continually

FIGURE 3.23

©2001 CRC Press LLC

monitoring the input cluster for a keypress, only performing an action when a button
is pressed. The code diagram of the state machine is shown in Figure 3.24.

For this state machine, there are four shift registers. The first is used for the
display on the front panel. The initial input is an empty string. The resulting value
of the display string is sent to the display after the case structure executes. Inside
the case structure, the inputs decide how to manipulate the string. There will be
more discussion of this function after the remainder of the shift registers are
discussed. The second shift register is a floating-point number used to hold the
temporary data for the calculations. When one of the operators is pressed, the value
in the display is converted to a number and wired to this shift register. At the
beginning of execution, after computing the function, or after a clear, the intermediate
value shift register is set to 0. When the user presses one of the operators, the third
shift register is used to hold the value of the selected operator. After the equal sign
is pressed, the operator shift register is cleared. The final shift register is used to
hold a Boolean constant. The purpose of this constant is to decide whether to append
new inputs to the existing display, or to start a fresh display. For example, when
the user inputs a number and presses the plus key, the current number remains in
the display until a new button is pushed. When the new button is pushed, the
display starts fresh.

The easiest way to make the discussion clearer is to describe the actions performed
in the states. As stated earlier, the zero state does no action. This is the state when
nothing is pressed. States 1–11 are the inputs for the numbers and decimal point.
In these states there is a case statement driven by the value in the final shift register
(Boolean constant). If the value is “True,” the value of the input is sent to the
display discarding any previous values in the display. If the value is “False,” the
input key value is appended to the data already in the display. In each of these cases

FIGURE 3.24

©2001 CRC Press LLC

a “False” is wired to the shift register since the only time the value needs to be
“True” is when the display needs to be cleared.

In states 12 through 15, the display string is converted to a floating-point
number. This number is wired to the temporary data shift register. The string value
of the display is also wired back to the display shift register. A “True” is wired to
the Boolean shift register to force the next input to clear the display. Finally, the
value of the operator selection is wired to the operator shift register in order to be
used when the Equal button is pressed. Speaking of the Equal button, this is the
16th state. This state has a case structure inside. The case structure selector is wired
to the operator shift register. There are four cases, one for each of the operators.
The display string is converted to a floating-point number, and is wired into the
case structure. The previous input is taken from the shift register and is also wired
to the case structure. Inside each case, the appropriate function is performed on the
inputs with the result being converted to a string and wired to the display output.
The temporary data shift register and the operator shift register are cleared. The final
step in this case is to wire a “True” to the Boolean shift register to clear the display
when a new input is selected. The final state is for the Clear button. This state
clears all of the shift registers to perform a fresh start.

There are only two other components to this example: the Quit button that is
wired to the conditional terminal of the While loop allowing the user to stop the
application without using the LabVIEW Stop button, and a delay. The delay is
needed to free-up processor time. The user would not be able to input values to the
program if there was no delay because the state machine would run continuously.
A delay of a quarter second is all that is necessary to ensure that the application
does not starve out other processes from using the processor.

BIBLIOGRAPHY

LabVIEW Graphical Programming. Gary W. Johnson, McGraw-Hill, New York, 1997.
G Programming Reference, National Instruments

©2001 CRC Press LLC

LabVIEW with Style — A Guide to Better LabVIEW Applications for Experienced LabVIEW
Users. Gary W. Johnson and Meg F. Kay, Formatted for CDROM included with
"LabVIEW Graphical Programming", second ed., January 12, 1997.

Bitter, Rick et al "Application Structure"
LabVIEW Advanced Programming Techinques
Boca Raton: CRC Press LLC,2001

4

©2001 CRC Press LLC

Application Structure

This chapter provides insight into developing well-structured applications, and will
be particularly helpful for those applications that are relatively large. Several topics
will be discussed that are important to the success of a software project. First, the
various issues that must be considered before development can begin will be looked
at. Then, the role of structure, or framework, of applications and its importance will
be explained. The sections that follow will elaborate on software models, project
administration, and the significance of documentation.

The three-tiered approach will then be presented as a framework for well-
structured applications, stressing the importance of strict partitioning of levels. This
topic will include the main, test, and driver levels of an application. The chapter
will conclude with a summary example.

4.1 PLANNING

Complex architectures are not needed when the application being developed is
simple. It is relatively easy to throw together a program in LabVIEW for performing
specific functions on a small scale. But when the application becomes large in size,
several design considerations should be taken into account before coding can begin.
The following issues, among others, need to be considered: flexibility, extensibility,
maintainability, code reuse, and readability.

Flexibility and extensibility impact the ability of an application to adapt to future
needs. The ability to add functionality after the application has been released should
be designed into the code. It is almost inevitable that requirements will change after
the program is released. The architecture of large applications needs to be designed
with the ability to make additions. For example, the end user may demand additional
functionality to meet new requirements. If the application was not designed with
the capacity to evolve, incremental enhancements can prove to be very difficult. The
needs of the user evolve over time, and a well-designed application can easily adapt.

Maintainability of code is necessary for applications so that needed modifications
can be made easily. The concept of allowing for change in functionality holds true
for the ability to maintain and modify code easily. For example, if a power supply
that is being used in the current test setup will not be used in another test rack, you
may need to change to a different model. How easily your code can be modified to
reflect this change in the test setup is material. The amount of work involved in the
alteration depends on how the code is structured.

Code reuse is required for cycle-time reduction on future projects. This attribute
is often overlooked because programmers focus on accomplishing the goal of the

©2001 CRC Press LLC

current project. The time it takes to complete future projects can be reduced if even
small pieces of the code can be reused. When software is written in a way that it
cannot be reused, efforts are duplicated unnecessarily. Both time and money can be
saved when a project is developed with reuse as a design goal.

The ability of the software to provide abstraction is also significant because it
improves code readability. Not everyone interacting with the program needs the
same level of abstraction. Someone who will use the application, but knows nothing
about programming, does not need or wish to see the low level data manipulation
of the program. Operators want an easy user interface that will allow them to use
the application for their specific purpose. On the other hand, the person in charge
of writing and maintaining the application needs to see all levels of the program.
Abstraction allows the programmer to conceal subsections of the application from
those who would not benefit from seeing it. Drivers abstract the I/O so it is easier
to understand the test level. The test level abstracts the logic so the main level is
easier to read.

The concepts presented in this chapter are a good starting point for beginning
a project. “Plans are nothing; planning is everything,” is a quote by Dwight D.
Eisenhower that is applicable to software design. Without adequate planning, large
applications are not as likely to be successful. Planning provides a roadmap for
development and helps minimize the occurrence of unexpected events. You can plan
with contingencies depending on the results of the design stages.

Inadequate planning is more likely to result in problems. When designing an
application, detailed knowledge of the system — instruments, software requirements,
feature sets, etc. — plays a significant role in building a successful application.

4.2 PURPOSE OF STRUCTURE

The topics discussed on application structure may be applied to programming lan-
guages other than LabVIEW. Architecture and process are two elements that are
important in all

languages. The structure of the program or framework that is used
is important for future additions, modifications, and maintenance. If the correct
process is taken in designing the software system, the application can change as the
needs of the user change. These things should be taken into account in the early
stages of the development process. Systematically approaching the development of
an application means deciding on a process.

The importance of heuristics as discussed by Rechtin and Maier should also be
considered. Several rules of thumb that guide the development process will be
pointed out as the three-tiered approach is described. These are suggestions and
ideas that have been learned through experience.

As is the case in any programming language, the programmer must take the
time to understand the nature of the task at hand and what the purpose of the project
is. By this, we mean the project requirements should be well defined. There should
be a clear goal or end result for the project. Defining the requirements is one of the
first stages in the development of any application. Some people believe that a big
portion of the project is completed once the detailed requirements are defined and
documented. An example is writing an application to monitor process control. The

©2001 CRC Press LLC

user requirements might include the number of items to monitor as well as the
frequency of the sampling. You must decide what instruments will be used, the type
of communications (serial, GPIB, etc.), what specific measurements are needed,
where the data will be sent, and who the end users of this application are. These are
considered derived requirements. Together, these are some of the more general items
that would be included in the enumerated list of requirements.

The requirements are key deliverables for a software project. One of the most
common reasons software projects run over budget and beyond due dates involves
not having the requirements defined. There is a tendency to add new features into
the application late in the development cycle. If the requirements keep changing, it
will be difficult to adhere to limited schedules and budgets. You must lock in the
requirements to prevent “feature creep.”

When the requirements are very loosely defined or not defined at all, the end
result has many possibilities. Failing to document the needs of the customer can
prove to be very costly. A lot of time and money will be wasted in making changes
to fit customer needs. It can be avoided if time is spent earlier in the process. If
requirements are not in writing, contract payments may not be made.

The end user of the program plays a key role in development. If the end user
of the program is the person writing the code, the requirements do not have to be
defined as well because that person will know what is needed. When the code is
being written for someone else, they must be consulted at several stages in the
process in addition to the early requirements phase. The saying, “You never really
understand a person until you consider things from his point of view,” holds true
here. (See Diagram 1 on user involvement.)

4.3 SOFTWARE MODELS

There are many software models that exist, but only the waterfall model and the
spiral model will be described in this section. These are two common software
models that are widely used in the development process of a software project. They
are called “lifecycle models” because they can be applied from the beginning to the
end of the application’s existence. Both models have several variations, but only the
basic models will be presented

.

DIAGRAM 4.1

End Requirements

Design

Code

Test

End

End

End

Prog

Prog

Prog

Prog

©2001 CRC Press LLC

4.3.1 T

HE

 W

ATERFALL

 M

ODEL

The Waterfall model has been widely used for some time. It is a classic model that
consists of distinct phases in the project. In its simplest form, the waterfall model
contains the following phases: requirements, design, coding, and testing. The water-
fall model is depicted in Diagram 4.2. The modified versions that are in use some-
times include more than one step in each phase.

Documentation plays an important role in the waterfall model. In its purest form,
the focus is kept on one phase at a time. Each previous phase is thoroughly docu-
mented and approved before proceeding to the next step.

In the requirement phase, the capability and functionality needs are defined in
detail. There are many requirements that have to be outlined, such as hardware
requirements, software requirements, backward and forward compatibility require-
ments, etc. There are also user requirements and requirements that are derived.

The design phase consists of deciding on the structure of the application in
detail. This is the stage where you decide how you will implement the requirements.
It includes developing the design or architecture of the application at a high level,
and performing the description of logic to accomplish the objective. This chapter
focuses mainly on the design phase of the project.

 The coding phase includes the actual implementation and software development.
As the name suggests, the actual programming is done in this step. The plans made
in the design phase are stepping stones for programming. When working in a team
environment where several people are involved, good coordination is necessary. The
program can be separated into modules and integrated later.

 The testing phase attempts to find and fix all the bugs in the code, and includes
integration. The point of this phase is to determine if the specifications and require-
ments were met as outlined in the earlier stages. The importance of testing is not
always emphasized as much as it should be. No matter how much time is spent on
testing, finding all of the faults is very difficult. Some faults are hard to find and
may eventually slip through the cracks. Generally, test plans will be developed to
verify and validate the code’s conformance to requirements.

DIAGRAM 4.2

Requirements�
Phase

Design�
Phase

Code�
Phase

Test�
Phase

©2001 CRC Press LLC

The waterfall model heavily stresses the importance of the requirements phase
to eliminate or reduce problems early. The requirements must be explicitly outlined
in this model before work can begin on the next phase. Keep in mind that defining
detailed requirements will not always translate into a good application structure.
However, it does bring to attention the important phases that are involved in appli-
cation development. This model is aimed at getting the project completed in one
pass. Returning to a previous phase to make changes using this model can become
costly because one phase is to be completed before the next phase begins.

4.3.2 T

HE

 S

PIRAL

 M

ODEL

The second model is the Spiral model, which is essentially an iterative development
process. In this model, software is developed in cycles that include the phases
described previously. Each iteration either fixes something from the previous one,
or adds new features or functionality to the application. The importance that is
stressed in this model is that the significant issues are discovered and fixed early in
the development process. A goal for a deliverable can be defined for each iteration
of the project. The spiral model is depicted in Diagram 4.3.

Each release or version includes going through planning, evaluation of risks,
design and code, and software assessment. Planning consists of establishing the
goals, constraints, and alternatives that are available. The potential issues and alter-
natives are analyzed in the second stage. The design and coding stage involves
implementation of the design where the application is actually developed and tested.
Finally, the application is evaluated during software assessment.

The evaluation of risks related to the project is crucial in the spiral model. You
start with the most important risk and continue through one development cycle,
working to eliminate that risk. The next cycle begins with the next important issue.
Iterations continue until all issues have been resolved, or the requirements for the
finished project have been fulfilled.

DIAGRAM 4.3

Planning

Software Assessment

Evaluation of Risks

Design and Code

©2001 CRC Press LLC

The spiral model is based on the concept of incremental development during
each iteration. The highest priority items, consisting of risks or features, are
addressed and implemented first. Then, the project is reevaluated, and the highest
priority item is defined and implemented in the next iteration. The first release of
an application can consist of the first loop, and following versions add new features
as more iterations are made.

The spiral model is best when the requirements are not fully defined and devel-
opment work must begin quickly. Iterative models create an early version of the
application for demonstration purposes and further refinement. If the risks cannot
be identified easily, this model may not work very well.

4.3.3 B

LOCK

 D

IAGRAMS

Using a particular model will not guarantee success, but nevertheless provides an
orderly roadmap for the development process. Following one model strictly may not
be the best course. There should be sufficient flexibility to take the specific circum-
stances into consideration. Sometimes it is enough to keep in mind that there are
different phases in the models and adapt them to the current project.

In either model, block diagrams are useful tools that can assist in the design of
the application. When using a top-down design approach, the block diagram, or
hierarchy, helps get the structure defined. It also assists in separating tasks for the
project and developing timelines for completion. In this way the developer can get
the big picture of how the application is laid out and how to progress in the coding
phase. The top-down design is more suitable for large applications where work can
begin on the user interface and main level first. Work can then continue down to the
driver level. In the bottom-up design, the drivers that will be needed for the program
are worked on first. At most, a small team should be responsible for the architecture
of the project. This facilitates management and prevents pulling the project in various
directions.

4.3.4 D

ESCRIPTION

OF

 L

OGIC

A large application must be designed before the coding phase can begin. The require-
ments determine what the application must do. The design or architecture determines
how the application will actually do it. The design phase of a project includes devel-
oping the architecture as well as description of logic for the implementation.

The architecture consists of the framework that will be used for the application,
taking code reuse, readability, and flexibility into consideration. This can be done
by creating flow diagrams or designing the VI hierarchy for LabVIEW applications.
The software architecting is followed by definition of the logic that will be used to
perform the actual coding.

In the description of logic, the designer must describe the logic of each VI in
the hierarchy. The description of logic should capture the intention of the VIs and
provide documentation at the same time. This will prevent rework and reduce the
time it takes to develop the application. A description should include both the
purposes of the VI and how it will accomplish its objective. The purpose should

©2001 CRC Press LLC

simply be one sentence describing what the VI will do. When several sentences are
needed to describe the action of the VI, the code can possibly be broken down into
subVIs. This will increase readability and maintainability of the code. For example,
“This VI will configure the signal generator for test A,” illustrates the intent of the
VI. When describing how the objective will be accomplished, include what VIs will
be called and why they will be called.

The coding phase will utilize the description of logic for development of the
application. This is followed by the test phase where the code and the description
of logic are validated. A test plan must be used to verify the description of logic.
This is done by developing test cases designed to test different portions of the
description of logic.

4.4 PROJECT ADMINISTRATION

A single programmer project can have its process managed by the programmer.
Management of the development process may not be a big problem in this situation.
However, projects are often worked on by teams composed of several members.
When more than one person works on an assignment, the need for a team leader
arises. Someone has to drive the project and control the direction of its progress.
The whole development process needs management. Decisions must be made on
how and whether to continue to the next phase.

One team member must assume the role of project manager. Without someone
to focus on the overall goal of the project, the goals of the members can become
divergent. When a team works on all phases of the application, the team leader
becomes the lead designer and the one who ensures that the process is moving in
the right direction. When separate teams are working on each phase of the applica-
tion, a project manager is needed to work with all the teams involved. The project
manager has to make sure that the designers, programmers, and testers work together
and are synchronized. Clear roles have to be assigned to the individual members.

 Projects have constraints and risks regarding cost, schedule, and performance.
The project manager has to practice techniques to control the risks and constraints.
Scheduling is a crucial aspect of the administration of a project. Some stages have
to be finished before work can begin on the next stage. Goals and milestones have
to be achieved in a timely manner. The project manager works with all who are
involved and is made aware of problems as they arise. Resources can be shifted
where necessary to assist in problem resolution and to meet schedules. Deadlines
are strategic issues that must be dealt with in the appropriate manner. In some cases
it might be preferable to be over budget and on time than to be late but in budget
constraints. In other cases it is better to be late with a high-quality and high-reliability
product.

The administrator should have a good understanding of the complete system. If
the project manager is involved in the early idea conception and requirements stages,
then this person will have a better grasp of the purpose of the application. Better
decisions can be made on the priorities of the task at hand and how to resolve
conflicts. Information must be acquired, evaluated, interpreted, and communicated
to the group members as necessary.

©2001 CRC Press LLC

Software projects are more difficult to manage than other types of projects for
several reasons. It is difficult to make estimates on the project size, schedules, scope,
and resources needed. Software projects can fail due to inaccurate estimates on any
of these aspects. Planning plays a key role in project management.

4.5 DOCUMENTATION

When a software application is being developed, the proper documentation is often
overlooked. Many times, the documentation process will begin only after all the
coding has been completed. This results in insufficient reports on the procedures
followed and the actual code written. When you return to write documentation after
completing the project, you tend to leave out design decisions that are important to
the development. Then, the record keeping becomes more of a chore and fails to
serve its intended purpose.

Good documentation will allow someone not involved in the development to
quickly identify and understand the components of the project. It also provides a
good design history for reference purposes on future software projects. Accounts
should be kept at all of the phases in the development cycle. The requirements
documents are significant because they will guide the rest of the phases. The design
phase documentation serves as a reference for the coding phase.

Documentation during the coding phase, or Description of Logic, is critical.
Major points help understand what the code is supposed to do. Comments that are
included with the code help identify the different segments and the purpose of each
segment. They aid in the maintenance, modification, and testing of the code. Updat-
ing the code becomes easier for someone who was not involved in the development
process. The original programmers may be reallocated, transferred, or may even
leave the company. Then, problems can arise for those who use the program and
have to make modifications.

4.5.1 L

AB

VIEW D

OCUMENTATION

LabVIEW has some built-in functions to help in the documentation of code. As with
other programming languages, comments can be included in the appropriate places
with the code. This allows anyone to look at the diagram and get a better under-
standing of the code. When modifications have to be made, the comments can help
identify the different areas in addition to their functionality.

LabVIEW allows the programmer to enter descriptions for front panel controls
and indicators. When Show Help has been activated from the Help menu, simply
place the cursor over the control or indicator to display its description. To enter the
description, pop up on the control and select

Data Operations

 from the menu. Then
select

Description

 and a window appears that will allow you to type in the relevant
information. These descriptions will assist anyone who is using the application to
identify the purpose of the front panel controls and indicators

Descriptions can also be added for each VI that is developed, using the

Show VI
Info

 selection under the Windows menu. You can include relevant details of the VI,

©2001 CRC Press LLC

inputs, and the outputs. When the Show Help is activated from the Help menu, this
VI information will appear in the Help window if you place the cursor over the icon.
Help files can also be created and linked to LabVIEW in an on-line form. They have
to be created in Windows format and compiled before they can be used in LabVIEW.

4.5.2 P

RINTING

 L

AB

VIEW D

OCUMENTATION

You can also select

Print Documentation

 from the File menu and LabVIEW will
allow you to customize the way you want to print the documentation. The VI Info
that was entered will be included. A feature that has been added with LabVIEW 5.0
is the ability to print documentation to an HTML file. This file can then be published
easily on the Web. Options for saving files in RTF format or as plain text files are
also available. The user can select this from the Destination drop-down menu in the
window after

Print Documentation

 has been selected. The pictures of the code
diagram and front panels can be saved as JPEG or GIF formats for other purposes.

4.5.3 VI H

ISTORY

Another way to document LabVIEW applications is to use the

Show History

 selec-
tion under the Windows menu. This will allow the programmer to write what changes
are made each time the VI is modified. The VI history provides a good reference
when trying to track down what changes were made, why they were made, and when
they were made. You can force LabVIEW to prompt the user to input comments
into the VI History when changes are made. This is a good practice to incorporate
in the development process. Select

Preferences

 from the Edit menu, and then select

History

 from the drop-down box. You can then select the appropriate checkbox so
that LabVIEW will prompt for comments each time the VI is saved.

Some firms may desire to be ISO 9000 compliant, which requires more effort.
The items covered in this chapter are intended to help in the documentation process
for those not requiring ISO 9000. The basic documentation will include how to use
a VI, will describe the inputs and outputs, and will discuss the necessary configu-
rations for the user. ISO 9000 requires controlled master copies of all documents to
ensure that only the newest version is distributed at any time. In addition, a record
must be kept of the controlled documents and the location of their storage.

4.6 THE THREE-TIERED STRUCTURE

Once the requirements are defined and the major design decisions are made, the
programmer is ready to work on the structure of the application. An application
should be divided into three tiers. The first tier is referred to as the “Main Level.”
The Main Level consists of the user interface and the test executive. The second
level is the “Test Level” or the “Logical Level.” The Test Level is responsible for
performing any logical and decision-making activities. The lowest level is referred
to as the “Driver Level.” The Driver Level performs all communications to instru-
ments, devices under test, and to other applications.

©2001 CRC Press LLC

Before we look at each of these levels in more detail, we shall identify the
benefits of using the three-tier approach. First, this strict partitioning of levels and
functions maximizes code reuse. Specific functions or code can be immediately
identified and reused because VIs in each level have a defined scope. Drivers can
be reused when the need to communicate with another application or instrument
arises. Test and measurement VIs can be reused when that test has to be performed.
The user interface can also be reused with minor modifications for a different
application.

The reuse of code is further simplified with the use of a state machine. State
machines work well when the three-tiered approach is applied. State machines and
the variations that exist are discussed in Chapter 3. Any state within the state machine
can be reused by simple copy-and-paste methods.

A second benefit of using the three-tiered approach is that the maintenance time
of the code is minimized. Maintenance and modifications are often necessary after
the completion of an application. The application design should therefore plan ahead
for changes and make them easy to apply. Because distinct layers exist, modifications
can be made quickly and efficiently. VIs that need modification can be identified
and located easily. The code that has to be changed can be pinpointed along with
the interdependencies with little effort. When this is done, the modifications can be
made where needed.

Another notable benefit of the strict partitioning and three-tier approach is the
abstraction that is gained. Each level provides an abstraction for the layer below it.
The Driver Level abstracts the vague commands used in instrument communication.
The Driver Level provides an abstraction for Test Level. The Main Level then
provides an abstraction for the subroutines and measurements by supplying an easy-
to-understand user interface. The user interface is an abstraction that hides or dis-
guises all the lower levels involved.

The NI Test Executive serves as the Main Level for an application. It supplies
the User Interface function that allows you to select the sequence of tests that you
want to perform. The Test Executive can be customized to match the specific needs
of the situation. The Test Executive also has the structure already defined, reducing
the responsibility of the programmer.

Figure 4.1 is a diagram of a VI hierarchy that uses the three-tiered approach and
depicts the strict partitioning of different levels. A quick glance at the diagram reveals
the three distinct layers in the application. The Main Level, the Mid Level, and the
Driver Level can be distinguished easily in this example. If Test 2, shown in the
hierarchy, has to be used in another program, it can easily be cut and pasted into a
new application. Maintenance of the code is easy because changes can be made to
a specific section. Also, note how each level abstracts the level directly below it.

Now look at Figure 4.2; it displays the VI hierarchy of an application that does
not utilize the three-tiered approach. Code reuse is diminished in this case because
the tests are no longer stand-alone VIs. Modifications and maintenance become
difficult because changes made in one location may affect other things. Changes
made in Driver 1 can affect both the Main VI, Test 1 VI, and the Driver 2 VI. The
dependencies are harder to track when a definite structure is not used for the program.

©2001 CRC Press LLC

Locating a specific section of code will take longer because drivers and tests are
mixed. Also note that there is no abstraction below the user interface.

FIGURE 4.1

FIGURE 4.2

©2001 CRC Press LLC

4.7 MAIN LEVEL

Let’s first look at the Main Level, which serves as the user interface and test
executive. If the NI Test Executive is not being used, make the Main Level consist
of a single VI. Only Test Level VIs are allowed to be called from this first tier. The
Test Level will then call the needed drivers for the specific operations. The Main
Level should avoid calling drivers because the abstraction benefits are diminished.
Reuse is diminished when specific sections cannot be differentiated for copying and
pasting methods. Furthermore, the code panel and hierarchy also become difficult
to read and maintain. The use of application tiers aids reusability and readability.

The NI Test Executive serves as the Main Level and provides user interface
functions. It supplies the needed structure for adding application-specific tests, and
offers flexibility for changes. If you are using the Test Executive, you will already
have the extent of partitioning available to gain the benefits of the three-tiered
approach. You will be supplying the test and driver level VIs to incorporate into the
framework of the executive.

4.7.1 U

SER

 I

NTERFACE

The user interface is part of the main level. The user interface is significant because
it is the means by which interaction and control of the program occur. LabVIEW
provides various tools for designing an effective front panel. Its graphical nature
gives it an edge over other programs when it comes to the user interface. With
LabVIEW 5.0, ActiveX controls can now be used in addition to the basic controls.
This section will provide some tips and examples for developing effective interfaces.

Since the Test Executive already has a user interface, you would no longer have
the responsibility of creating one. You may still need to customize the interface to
suit your specific situation. The Test Executive allows the operator to select the test
sequence and control execution of the sequence through the interface. The results
of the test sequence are shown in a display that also indicates pass or fail status.

4.7.1.1 User Interface Design

The user interface should be designed with the target operators in mind. The interface
should not be designed solely to fulfill the functional requirements, but it should
also be user friendly. Unless the programmer is the one using the application, it can
be the only interaction the operator has with the program. The Main Level user
interface should allow the operator to select settings that are variable. Keep in mind
that the user inputs may have to be validated. Unexpected inputs will cause the
program to behave in an unexpected manner. Variable inputs by the user may include
choosing measurements to perform, inputting cable loss parameters, selecting device
addresses, adding file storage tags, selecting processes to monitor, etc. These vari-
ables are then passed to the Test Level, ultimately dictating the program flow. Figure
4.3 is an example of a simplified user interface.

Consider using clusters to group related controls and indicators. Not only does
it place the related controls together, but it also reduces the number of wires on the
code diagram. When you are trying to manage large amounts of data, the code

©2001 CRC Press LLC

diagram can get confusing with all of the wires of data being passed to VIs. Clusters
can be unbundled as needed, with only one wire representing the group of controls
otherwise. Even if you are not using clusters, try to use a frame decoration to group
the controls for the user.

The user interface should utilize controls and displays that are appropriate for
the situation. If you are entering a cable loss, for example, you should use a digital
control with the appropriate precision rather than a knob. This is more practical
because the value can be read and changed easily. Using descriptive labels is a good
way to differentiate the various front panel controls. Try not to clutter the main user
interface with controls or displays that are not needed. The person using the program
can easily get confused or lost if too many controls, indicators and decorations are
used on the front panel of the user interface. The use of menus will help reduce the
clutter, and will give the interface a nice appearance. Use buttons if the function
will be used frequently; otherwise, use menus. Dialog controls are also good for
user interface functions.

Remember to give the user a way to cancel or abort execution. This is easy to
overlook, but is very important to an operator. Users need a way to stop in the middle
of execution without having to use the

Abort Execution

button on the toolbar.
Graphs and charts are useful for displaying data. Sometimes just a glance at a

graph can reveal a number of things, but graphs, charts, and other graphics should
be used only as needed. Graphing while acquiring data will not only slow the
execution of the program, but will take up more memory. Memory concerns will
grow as the number of VIS written for the application grows.

FIGURE 4.3

©2001 CRC Press LLC

4.7.1.2 Attribute Node Examples

You can use your imagination to develop a professional user interface. By using
attribute nodes, tabs can be created to alleviate the clutter that can result from too
many controls. Figure 4.4 is an example of a user interface that utilizes attribute
nodes. There are three sets of controls that can be accessed through the three buttons
on the front panel cluster. When a button is pressed, the associated controls appear
for the user to manipulate.

Figure 4.5 shows what appears when the Instrument Addresses button is pressed.
Figure 4.6 captures the code diagram and the implementation of the tabs. Attribute
nodes are used to make the controls visible or to hide them. Attribute nodes can be
created by popping up on the control from the code diagram. Select

Create

 from
the menu, then select

 Attribute Node

. Once the attribute node has been created, there
are several attributes that can be selected, depending on the type of control being
used. The Visible attribute was used in the example. Some common attributes that
can be manipulated include Visible, Disabled, Key Focus, Blinking, Position,
Bounds, Caption, and Caption Visible.

Using attribute nodes once again, Figure 4.7 is an example of a menu and
submenus structure that is simple to implement. The front panel shown has the main
menu that appears on the user interface panel. A Single Selection Listbox is used
from the List & Rings palette. Figure 4.8 shows the submenu that appears when the
first item,

Select Tests

, is selected from the listbox. A Multiple Selection Listbox
becomes visible and allows the operator to select the tests that have to be executed.
When all the needed settings have been completed, the user can hit the

Start Testing

button to begin execution of the tests.
Figure 4.9 is an illustration of the code diagram for this example. The case

structure is driven by the main menu selection. The structure is placed inside a main
While loop that will repeat until the

Start Testing

 button is pressed. The Visible
Attribute node is used to make the submenus appear when a selection is made on
the main menu. Note that you must first set the Visible Attribute node for all of the
submenus to “false” before the While loop starts.

4.7.1.3 Customizing Menus

LabVIEW run-time menus can be customized to suit specific needs by using the
Menu Editor. The menus can be modified by selecting the

Edit Menu

 item from the
Edit menu. The drop-down box allows the programmer to select either the default,
minimal, or custom menus to appear during VI execution. The default selection
displays the menus that are normally available while the program is not executing.
The minimal selection is a subset of the default that appears during run-time. The
custom selection requires the programmer to create a new menu structure and save
it as a real-time menu (*.rtm) file. Once a real-time menu file is created, it can be
used for multiple VIs. A shortcut key combination can be specified for each menu
item that is created. The on-line help explains how to customize menus, including
how to add User Items.

©2001 CRC Press LLC

FIGURE 4.4

FIGURE 4.5

©2001 CRC Press LLC

Figure 4.10 is an example of how custom menus appear when a VI is executing.
Three main menus are displayed on the front panel: Test Information, Operate, and
Test Selection. The Operate menu is an application item that is normally available
if the menu is not customized. The Menu Editor allows you to utilize application
items in addition to user items.

Figure 4.11 illustrates how the custom menus may be used programmatically
once they have been created. The Current VI’s menu bar returns a refnum for the
current VI. This VI is available in the Menu subpalette of the Application Control
palette. This refnum is passed to the Get Menu Selection VI, which is available in

FIGURE 4.6

FIGURE 4.7

©2001 CRC Press LLC

the same subpalette. The Get Menu Selection VI returns the menu item that was
selected, as well as the path of the selection in the menu structure. In this diagram,
the Get Menu Selection VI is used to monitor selections that are made through the
custom menus. The menu selection is then wired to a case structure that takes the
appropriate action depending on the selection that is made. The Begin Testing case
that is shown, corresponds to a menu item in the Test Information menu from the
previous figure. When

Begin Testing

 is selected the While loop terminates and the
VI completes execution. By utilizing other VIs in the Menu subpalette, a programmer
can dynamically insert, delete, or block menu items.

FIGURE 4.8

FIGURE 4.9

©2001 CRC Press LLC

4.7.2 E

XCEPTION

-H

ANDLING

AT

THE

 M

AIN

 L

EVEL

Error handling is one element of the project that is often overlooked or not well
implemented. Planning for the possibility of something going wrong is difficult, but
necessary. A well-designed program will take into account that errors can and do
occur. Building exception handling into a program has several benefits. It is a way
to notify the operator something has gone wrong that needs attention. It is also very
useful for troubleshooting and debugging purposes, as well as for finding out where
and why the problem occurred.

There are different ways to control the error situations that can arise. One way
is to let the program attempt to correct the problem and continue execution. For
errors that cannot be corrected, the application may complete tests not dependent
on the failed subsection. Another possibility would be to halt execution of the
program and notify the user via a dialogue box, e-mail, or even a pager.

Error handling is an important task that should be managed in the Main Level.
This forces all errors to be dealt with in one central place, allowing them to be

FIGURE 4.10

FIGURE 4.11

©2001 CRC Press LLC

managed better. The Main Level controls program flow and execution. The Main
Level should also determine the course of action when faults occur. When errors
are handled in several locations, or as they occur, program control may have to be
passed to lower levels and may be difficult to troubleshoot. Also, when errors are
handled in more than one location, the code for the handling may have to be repeated.

When a state machine is used, this significant task is made easy because one
state is assigned specifically for error handling. When errors are generated, the state
machine jumps to the Error state to determine the course of action. Based on the
severity of the fault that has occurred, the Error state in the Main Level will decide
what will be done. If the error is minor, other states that might be affected will be
parsed and the remaining will be executed. If it is major fault, the program will
perform all closing duties and terminate execution in the normal manner while
notifying the user of the error. Chapter 6 discusses exception handling in more detail.

Handling execution based on pass or fail criteria should also be considered. The
Test Executive lets the user specify the course of action when a test fails. You can
continue to the next test, stop execution of the whole sequence, or repeat the same
test again. Dependencies can be created for the individual tests. A dependency, once
created, will execute a test based on the result of another test. The result can be
defined as either pass or fail.

4.8 SECOND LEVEL — TEST LEVEL

The Test Level is called by the Main Level, and the VIs in this level should be
written on a stand-alone basis to allow reuse. Each Test Level VI should perform
one test or action only. The code should be broken up so that each test that needs
to be performed can be written as a separate VI. When multiple tests are combined
in one VI, they are not easily reused because either the extra tests that are not needed
would have to be removed, or the extra tests must be executed unnecessarily. These
second tier VIs are basically test and measurement subroutines, but can also include
configuration and dialog VIs.

FIGURE 4.12

©2001 CRC Press LLC

Writing each test exclusively in its own VI facilitates reuse in cases where the
measurement subroutine has to be executed more than one time. An example of this
is making temperature measurements at multiple pressure levels. When a temperature
is measured, it will vary with the pressure conditions. A VI that performs a temper-
ature measurement can be written and called as many times as needed to test at the
different pressures. Note that the efficiency of the VI is maximized when the pressure
is set outside of the temperature measurement VI, and a call is made to it as many
times as needed.

The measurement subroutine VIs should perform the initialization of the instru-
ments and any configuration needed to make the measurement. This may include
setting RF levels, selecting the necessary instrument fields, or placing the device
under test in the appropriate state. These initialization steps must be taken within
the VI because the previous condition of the devices may not be known. This is
especially true when using a state machine because the program jumps from one
state to another; the order of execution is not necessarily predetermined.

When a state machine is being used, only one test or measurement VI should
be placed in each state. The benefit of this is that when a particular test needs to be
performed, the program executes only the associated state. Placing more than one
test in one state causes the additional tests to be executed even they are not needed.
This results in an application that takes more time to run. It also results in loss of
flexibility of the state machine. An example of a single test in each state of the state
machine is shown in Figure 4.12. The state shown will be executed whenever the
particular test has to be performed; the purpose of this state is clearly defined. This
method reduces clutter and makes the code diagram self-explanatory.

Flowcharts can assist in the implementation of subroutines and Test Level VIs.
They help in defining the execution flow of the VI and the specific decisions that it
must make. Flowcharts are especially helpful in LabVIEW because it is a dataflow-
based programming language, similar to a flowchart. Once the flowchart is formed,
it is relatively easy to code it in LabVIEW. Figure 4.13 is an example of a simple
flowchart. It is checking to see if the current draw from a source is within the limits.
This is easily coded in LabVIEW because of the similarities between the two. If
you compare the flowchart with the actual implementation in Figure 4.14, the
similarities and ease of conversion become apparent. The VI reads the current every
60 seconds to check if the value is within the specified limits. When the value is
outside the limits, it will terminate execution and the front panel indicator will notify
the user. The flowchart and the LabVIEW VI perform the same function.

4.9 BOTTOM LEVEL – DRIVERS

The Driver Level is an abstraction that makes the Test Level easier to understand.
It conceals little-known or unclear GPIB, serial, or VXI commands from the user.
This level performs any communications necessary to instruments and devices being
used. Drivers can be classified into measurement, configuration, and status catego-
ries. An efficient way to write drivers is to write each measurement command to
one VI each, group configuration commands logically into VIs, and write each status

©2001 CRC Press LLC

FIGURE 4.13

FIGURE 4.14

©2001 CRC Press LLC

command to one VI. As an example of this driver architecture, examine the HP8920A
driver set by National Instruments.

Simply put, measurement drivers are used to perform a measurement. One VI
should be used to perform one measurement to maximize the reuse of the VI. By
writing measurement drivers in this manner, the driver can be called in the same
application for different cases, or in a different application where the same measure-
ment needs to be performed. If more than one measurement is grouped into a single
VI, either one of the measurements must be stripped out for reuse or other measure-
ments will have to be performed unnecessarily.

Configuration drivers set up the instrument to make a measurement or place
it in known state at the start of an application. Configuration commands can be
grouped logically in VIs. When a measurement has to be performed, usually more
than one configuration command is needed to prepare the instrument. Sometimes
many parameters have to be configured for a single test. Writing one configu-
ration command to a VI would create difficulty in maintenance because of the
number of VIs that will result. Grouping the configuration commands according
to the type of measurement will minimize the number of VIs on the Driver Level.
In addition, memory space can also be used more efficiently by following this
style.

Drivers can range from very simple to very complicated, depending on the
instruments being used. A driver for a power supply might only need a few param-
eters and commands, but an instrument like a communication analyzer might have
upwards of 100 different commands. In this case you must group configuration
commands to reduce the number of VI drivers that need to be written.

Status drivers simply check the state of an instrument by reading status registers.
These are usually written as needed, one to a VI. An example of a status driver is
a register that holds the current state of a particular measurement. One bit will be
set if the measurement is under progress, and cleared when it is finished. You must
ensure that the measurement is finished before reading the value so the status register
is checked. Remember that drivers can be created for other types of communication
needs as well.

If you need to use TCP, DDE, ActiveX, or PPC, you can use a similar logic
when developing the lower layer of the application. When VIs are created to perform
a specific action, configuration, or status inquiry, they can be reused easily.

Figure 4.15 demonstrates a simple driver that can be used to read the voltage
from a voltmeter. It has been written so that it can be called whenever the voltage
needs to be read. The instrument handles are opened and closed inside the driver.

FIGURE 4.15

©2001 CRC Press LLC

4.10 STYLE TIPS

We have seen numerous applications in the past few years that do not incorporate
good practices that could increase the efficiency, readability, maintainability, and
reuse of the code that has been developed. Most of this chapter covers topics to
assist the reader in developing successful applications by revealing the programming
style that has been effective for the authors. This section was intended to provide
more tips on programming, this time by uncovering inefficient programming styles
and common pitfalls that can be avoided.

4.10.1 S

EQUENCE

 S

TRUCTURES

The first inefficient programming style is a result of the overuse of sequence struc-
tures in the code diagram. Sequence structures were described in Chapter 1 in detail.
The main purpose of the sequence structure is to control the execution order of the
code. Code that must execute first is placed in the first frame, and then pieces of
the code are placed in the appropriate frame in the order that execution is desired.
If your code is data-dependent, however, sequence structures are not needed. The
execution order is forced by dataflow; VIs will execute when the data they need
becomes available to them.

Overuse of sequence structures is the consequence of not utilizing the structures
as they were intended. We have seen VIs that contained sequence structures with 50
or more frames. When the architecting or design phase of the application is omitted,
an application with so many frames can be an outcome. It signals that perhaps the
VI is performing too many actions and that subVIs are not being used sufficiently.
When too many actions are performed, the code that is developed is no longer
modular. Lack of modularity hampers the ability to reuse code. Consider using the
three-tiered structure approach to your application if your sequence structures have
too many frames. The use of subVIs for tests and subroutines will reduce the need
for many frames while increasing the ability to reuse code. The frames in the
sequence structure can be easily modularized into VIs. At the same time, the code
will become more readable and maintainable. By developing the description of logic
for the VIs during the design phase, you can determine what each VI should do as
part of the whole application.

Figure 4.16 displays a sequence with only four frames, but notice how the wires
are already beginning to degrade readability of the code. The sequence locals are
not easy to follow as the data is being passed from one frame to the next. Code
reuse is also becoming difficult in this example. Now imagine what the code can
look like if there were 20 or 30 frames in the sequence structure.

If your VIs are data-dependent, you do not have to use sequence structures. For
example, execution order can be forced through VIs that utilize error I/O with error
clusters. The need for excessive sequence locals may indicate that execution order
can be forced simply through dataflow. When many locals are used, problems arise
in remembering which local is passing what data. It also degrades readability because
of the wiring that is needed to support them. You must, however, be aware of any
race conditions in your code.

©2001 CRC Press LLC

4.10.2 N

ESTED

 S

TRUCTURES

Nested case structures, sequence structures, For loops, and While loops are some-
times necessary in the code diagram to accomplish a task. However, creating too
many levels of nested structures can lead to inefficient code that lacks modularity
and readability. The arguments presented previously on the use of sequence struc-
tures apply to the use of nested structures.

Try to avoid nesting your structures more than three levels deep. When too many
levels of nesting are used, the code becomes difficult to read. Data wires being
passed into and out of the structures are not easy to follow and understand. When
case structures are being used, you must look at each case to determine how the
data is being handled. This, along with the use of sequence locals or shift registers,
For loops, and sequence structures, adds to the readability problem.

Figure 4.17 shows the code diagram of a VI that utilized nested case structures
four levels deep. Although the case structures are nested only four levels, it is difficult
for anyone looking at the code to determine how the final result was actually
obtained. You have to look at all the possible true and false combinations to figure
out how the data is being manipulated. Imagine if this VI had more than four levels,
or if there were more than just the two true and false cases used in each nest. The
readability would be degraded further, while code reuse would be impossible.

Utilizing too many levels may also be a signal that your VI is performing too
many actions. When too many actions are being performed, the resulting code has
no modularity. This hinders the capability to reuse your code. The use of subVIs
can reduce the need for excessive nesting of structures, as well as improve code reuse.

4.10.3 D

RIVERS

Another bad programming style that we have seen is that drivers are sometimes
underused. When communication with an external device or program is being per-
formed, the I/O operation is executed in the Test Level, or even in the Main Level,
instead of utilizing a driver. The concept of drivers is not fully understood by some
LabVIEW programmers. A question that was posed at one user group meeting was,
“Why do I need drivers when I can simply look up the command syntax and perform
the I/O operation where it is needed?”

FIGURE 4.16

©2001 CRC Press LLC

There are definite advantages that can be gained by creating and using drivers.
The abstraction that drivers provide is a notable benefit for the application. The
actual communication and command syntax is hidden from those who do not need
or wish to see this code. This also improves the readability of the code when these
obscure operations are not mixed with the Main and Test Level VIs.

The use of drivers also facilitates reuse of code. When drivers are not used, the
actual code that performs the communication is difficult to reuse because it is part
of another VI. Cutting and pasting part of the code is not as easy as inserting a new
VI. However, when drivers are written to perform specific actions, they can be reused
easily in any application by inserting the driver VI. Drivers must be developed in a
way that will simplify its reuse. A thorough discussion on drivers and driver devel-
opment is presented in Chapter 5.

Figure 4.18 demonstrates some of the reasons why drivers should be used. The
VI shown is performing both instrument communications and other activities, using
the results obtained. Compare this diagram to the driver shown in Figure 4.15 earlier.
Notice that the instrument communications could have been placed in a separate VI,
exactly as was done in the driver in Figure 4.15. Abstraction, readability, and reuse
could have been improved through the use of a driver.

FIGURE 4.17

FIGURE 4.18

©2001 CRC Press LLC

4.10.4 P

OLLING

 L

OOPS

Polling loops are often used to monitor the occurrence of particular events. Other
parts of the code are dependent on the execution of this event. When the event takes
place, the dependent code executes in the appropriate manner. Using polling loops
to monitor an event may not be the best way to accomplish this goal, however.

Tight polling loops can use all of the available CPU resources and degrade the
performance of a system noticeably. If you are working on Windows 95/98/NT, you
can use the System Monitor to view the kernel processor usage while you are
performing activities on the computer. We can try a simple exercise to demonstrate
this point. Open a new VI and copy the simple VI diagram shown in Figure 4.19.
Set the Boolean to “true,” run the VI, and monitor the processor usage; almost 100%
of the processor will be used for the simple polling loop shown. What happens if
we introduce a simple delay in the same polling loop? Use the

Wait until Next ms
Multiple

 in the loop with a 500-millisecond delay as shown in Figure 4.20, and
monitor the processor usage again. The resources being used are significantly lower
when a delay is introduced. Polling loops will certainly reduce the efficiency of your
application.

If you are using polling loops, try to use delays where tight polling loops are
not necessary. When loops are used for the user interface, the operator will not
perceive a delay of 250ms. If you are using polling loops to synchronize different
parts of your code, consider using the Synchronization VIs that are available in the
Advanced palette. These include Notification, Queue, Semaphore, Rendezvous, and
Occurrences VIs.

FIGURE 4.19

FIGURE 4.20

©2001 CRC Press LLC

4.10.5 A

RRAY

 H

ANDLING

The manner in which arrays are handled can affect the performance of an application
considerably. Special care should be taken when performing array operations with
For loops. A scalar multiplication of an array is a good example for demonstrating
the methods available to perform this action. Figure 4.21 illustrates one way to
perform the multiplication. The array is passed in to the For loop, where the element
is multiplied by a constant of 1.5, and then passed out. The correct result is acquired;
however, the method chosen to perform the multiplication is very inefficient. The
same result could have been acquired without using the For loop. Figure 4.22 shows
that the array could simply have been multiplied by the constant without the For
loop. The first method is inefficient because it requires the array to be broken down
into its elements, then each element of the array must be multiplied by the constant
separately, and, finally, the array must be rebuilt with the results.

Whenever possible, try to avoid passing arrays in to loops to perform necessary
operations. Passing large arrays will result in longer execution times for applications,
as well as the use of more memory during execution. Both the speed and performance
of your application will be affected.

4.11 SUMMARY

Developing an application requires good planning and a design process that should
be followed. Following a formal process helps avoid costly mistakes and revisions
to the code at the end. One software model will not be suitable for everyone.
However, following the requirements, design, code, and test phases will aid in

FIGURE 4.21

FIGURE 4.22

©2001 CRC Press LLC

developing applications. The structure of the application, which is decided on during
the design phase, is an essential piece of the process. It will determine many crucial
aspects of the program. The three-tiered approach, as described, embodies the desired
characteristics of most applications: the ability to make future modifications, the
ability to add features, ease of maintenance, the ability to reuse code, and providing
layers of abstraction. When the strict partitioning of levels is used in conjunction
with the state machine, all the characteristics are further enhanced.

A summary example will help in applying the topics and ideas presented in this
chapter. Suppose that Company A is involved in the sale and production of Widget
A. Let’s follow the steps that would be required to develop an application that would
be used in testing the widgets to determine if they meet specifications.

This first step involves defining the requirements for the test program. The goal
of this application must be defined before beginning to code. After discussing the
program with the appropriate people you enumerate the following requirements:

1. Parameters H, W, and D are to be tested using instruments H, W, and D,
respectively.

2. The operator will be a factory technician and will need the flexibility to
select individual tests as needed.

3. The program should alert the operator when one of the widgets is out of
specification limits.

4. There should be provisions for the addition of tests; measuring Parameter
Z using Instrument Z is in the foreseeable future.

5. Company A is planning to produce Widget B next year, which will be
tested for its H, W, and several other parameters.

FIGURE 4.23

©2001 CRC Press LLC

The next step is to decide on the structure of the program. We will utilize the three-
tiered approach and take advantage of the benefits it provides. The user interface of
this application should be simple but flexible enough to provide the operator the
level of control needed. Figure 4.23 shows what the User Interface looks like for
this application.

The Main Level will use the state machine. It will also abstract the lower levels
for the operator. The following states will be needed for this application: Open (to
open all communication handles to instruments), Error, Initialize (to put all instru-
ments into a known configuration), Test H, Test W, Test D, and Close (to close all
communication channels). Figure 4.24 shows this state machine.

Each test is contained in its own VI, and each state consists of a single test. The
Test Level is composed of Test H, Test W, and Test D. Each test VI calls the necessary
drivers to perform the measurement. If the operator selects a single test to perform,
the other tests will not be executed unnecessarily. An array of states will be built
using the selections made by the operator. The first state that will be executed is the
Open, and the last state is the Close.

The application takes into account that the needs may evolve over time. If
additional tests have to be added, that can be done quickly. Suppose we were asked
to add Test M to the current program. All we have to do is follow a few steps to get
the needed functionality. First we have to modify the state machine to include the
extra state for this Test M. Then we have to modify how the array of states is built
to include the new state if the test has been selected by the operator. Next, we can
modify the user interface to include the new test in the list for selection. We would
also have to add a display for the measured value, and an LED that would indicate
when a widget fails Test M.

Reuse is also made simple by the strict partitioning of levels. When the company
begins to produce Widget B, Tests H and W can be reused. Tests H and W are stand-
alone test VIs and call the appropriate drivers for performing the tests. If we decide
to write another application to test Widget B, all we have to do is place the test VIs
in the new application. If the new application were to use the state machine also,
then we can copy and paste entire states.

FIGURE 4.24

Open

"Initialize"

Array of States

Array of States

next
state

init.
 VI

T

i

?

©2001 CRC Press LLC

The VI hierarchy for this example is shown in Figure 4.25. The strict partitioning
of levels is illustrated by the distinct layers in the hierarchy. At the top is the Main
Level, which controls program execution. The second layer depicts the Test Level
VIs. The bottom layer consists of the drivers used to test the widgets. The middle
layer VI icons are in blue, and the Driver Level icons are in red. This was done
purposely to distinguish the layer that the VI belongs to.

BIBLIOGRAPHY

G Programming Reference,

 National Instruments

The Art of Systems Architecting.

 Eberhardt Rechtin and Mark W. Maier, CRC Press, Boca
Raton, 1997.

FIGURE 4.25

Bitter, Rick et al "Drivers"
LabVIEW Advanced Programming Techinques
Boca Raton: CRC Press LLC,2001

5

©2001 CRC Press LLC

Drivers

This chapter discusses LabVIEW drivers. A driver is the bottom level in the three-
tiered approach to software development; however, it is possibly the most important.
If drivers are used and written properly, the user will benefit through readability,
code reuse, and application speed.

LabVIEW drivers are designed to allow a programmer to direct an instrument,
process, or control. The main purpose of a driver is to abstract the underlying low-
level code. This allows someone to instruct an instrument to perform a task without
having to know the actual instrument command or how the instrument communi-
cates. The end user writing a test VI does not have to know the syntax to talk to an
instrument, but only has to be able to wire the proper inputs to the instrument driver.

The following sections will discuss some of the common communication meth-
ods that LabVIEW supports for accessing instruments and controls. After the dis-
cussion of communication standards, we will go on to discuss classifications, inputs
and outputs, error detection, development suggestions, and, finally, code reuse.

The standard LabVIEW driver will be discussed first. This standard driver is the
basis for most current LabVIEW applications. In an effort to improve application
performance and flexibility, a new style of driver has been introduced. The Inter-
changeable Virtual Instrument (IVI) driver is a new driver technology and will be
described in depth later in this chapter.

5.1 COMMUNICATION STANDARDS

There are many ways in which communications are performed every day. Commu-
nication is a method of sharing information. People can share information with each
other by talking, writing messages, sign language, etc. Just as people have many
different ways to communicate with each other, software applications have many
ways to communicate with outside entities. Programs can talk to each other, to
instruments, or to other computers. The following communication standards are just
some of the methods LabVIEW uses to communicate with the outside world.

5.1.1 GPIB

The General Purpose Interface Bus (GPIB) is a standard method of communication
between a computer/controller and test equipment. The GPIB consists of 16 signal
lines and 8 ground return lines. The 16 signal lines are made up of 8 data lines, 5
control lines, and 3 handshake lines. The GPIB interface was adopted as a standard
(IEEE 488). The maximum GPIB data transfer rate is about 1Mbyte/sec. A later

©2001 CRC Press LLC

version of the standard with added features was defined in 1987. This standard is
the ANSI/IEEE 488.2. This enhancement to the standard defines how the controller
should manage the bus. The new standard includes definitions of standard messages
for all compliant instruments, a method for reporting errors and other status infor-
mation, and the protocols used to discover and configure GPIB 488.2 instruments
connected to the bus.

HS488 is a new standard that has emerged. This standard is an extension of the
IEEE 488 standard and increases the GPIB data transfer rate. By using HS488
controllers and compatible instruments, the data transfer rate can be increased up
to 8 Mbytes/sec. The biggest benefit of the higher data transfer rate is the use of
instruments that return large data sets. Instruments such as oscilloscopes and spec-
trum analyzers send large amounts of data to the application computer. The HS488
standard allows you to increase your test throughput.

There are two types of GPIB commands. There are device-dependent messages
and interface messages. Device-dependent messages contain programming instruc-
tions, data measurements, and device status. Interface messages execute the follow-
ing operations: initializing the bus, configuring remote or local settings on the device,
and addressing devices.

Many current instrument manufacturers have standardized remote commands.
This allows the user of an instrument to learn how to program an instrument in a
shorter period of time and makes instruments more interchangeable. In order to try
to make programming instruments easier, an SCPI (Standard Commands for Pro-
grammable Instrumentation) command set was developed. The SCPI commands are
for basic functions that almost all instruments support. There are a number of
instruments on the market that are not SCPI compliant. These instruments have their
own command sets, and formats. This can make writing automation software diffi-
cult. One example is the T-BERD PCM analyzer. This instrument is not SCPI
compliant. If you wanted to reset the instrument, you would have to search through
the reference manual for the command, if it exists. In this instance, to reset the
instrument, you would have to write “FIRST POWER UP” to the instrument. Not
only is the command not obvious, but it would require the developer to spend time
hunting down commands. Figure 5.1 illustrates the GPIB driver.

FIGURE 5.1

©2001 CRC Press LLC

In the Instrument I/O section of the Functions palette there are two subpalettes
that contain GPIB drivers. The first subpalette (GPIB) contains the traditional GPIB
488 commands; the second subpalette (GPIB 488.2) contains GPIB 488.2 com-
mands. The VIs from these subpalettes can be used in conjunction with a GPIB
488.2 instrument. If the instrument you are using is not GPIB 488.2 compliant, you
can only use the VIs in the traditional GPIB palette.

The primary VIs in the GPIB palette are GPIB Read and GPIB Write. These
two VIs are the basis for any program using GPIB instruments. There are also VIs
used to wait for a service request from the instrument (Wait for GPIB RQS), obtain
the status of the GPIB bus (GPIB Status), and initialize a specific GPIB bus (GPIB
Initialization). Among the remaining GPIB VIs, there is a GPIB Miscellaneous VI.
This VI allows you to execute a low-level GPIB command. The GPIB palette is
shown in Figure 5.2.

The GPIB 488.2 palette contains additional functions. The GPIB functions are
broken into five categories: single device functions, multiple device functions, low-
level I/O functions, bus management functions, and general functions. The single
device functions are VIs that communicate with a specific instrument or device.
Some of the functions include Device Clear, Read Status, and Trigger. The multiple
device functions communicate with several devices at the same time. The VIs define
which devices to communicate with through an array of addresses that are input.
This category of VIs includes VIs to clear a list of devices, enable remote, trigger
a list of VIs, and VIs to perform serial or parallel polls of the devices.

Low-level I/O VIs allow you to have more control over communications. The
VIs in this category include functions to read or write bytes from a device, send
GPIB command bytes, and configure a device in preparation to receive bytes. The
Bus Management functions are VIs used to either read the status of the bus or to
perform functions over the entire GPIB. The VIs in this category include VIs to find
all listeners on the GPIB, to reset the system, to determine the state of the SRQ line,
and to wait until an SRQ is asserted. Finally, the general functions are used to make
an address or to set the timeout period of the GPIB devices. The GPIB 488.2 palette
is shown in Figure 5.3.

5.1.2 S

ERIAL

 C

OMMUNICATIONS

Serial port communications are in wide use today. One of the advantages of serial
communication versus other standards like GPIB is availability: every computer has

FIGURE 5.2

©2001 CRC Press LLC

a serial port. Another benefit to serial communications versus GPIB is the ability to
control instruments at a greater distance. The serial standard allows for a longer
cable length.

The most common serial standard is RS-232C. This protocol requires a transmit,
receive, and ground connection. There are other lines available for handshaking
functions, but they are not necessary for all applications. Macintosh serial ports use
RS-422A protocols. This protocol uses an additional pair of data lines. Due to the
additional data lines, the standard is capable of transmitting longer distances and
faster speeds reliably. There are other serial protocols available, but those are the
most widely used at this time.

The serial port VIs are in the Instrument I/O section of the Functions palette.
This subpalette consists of VIs used to read data from the serial port, write data to
the serial port, initialize the serial port, return the number of bytes available at the
serial port, and to set a serial port break. The Serial Port Initialize VI allows you to
configure the serial port’s settings. In order to have successful communications
between a serial port and a device, the settings of the port should match the device
settings. The settings available are buffer size, port number, baud rate, number of
data bits, number of stop bits, data parity, and a flow control cluster. This flow control
cluster bundles together a number of parameters, including a number of handshaking
settings. The Serial VI palette is shown in Figure 5.4.

A programmer using the serial standard must ensure that the serial write does
not overflow the buffer. Another issue is making sure all of the data is read from
the serial port. There are a number of LabVIEW built-in functions designed to
configure the buffer size and to query the number of bytes available at the serial
port. Figure 5.5 shows a VI written to read information from the serial port. This
VI performs the read until all of the desired data has been read.

There are additional serial port standards, which would require a separate dis-
cussion. These standards are the Universal Serial Bus (USB) and Firewire (IEEE
1394). USB allows you to plug devices into a common port, and gives you the ability
to “hot swap” instruments. There are a number of hardware devices available that
are USB capable. In addition, National Instruments builds devices to take advantage
of this technology, including a GPIB-to-USB Controller. This external box connects
to the PC through the USB port and allows the user to connect up to 14 GPIB
instruments without having to have a GPIB port on the PC. This is especially useful

FIGURE 5.3

©2001 CRC Press LLC

when using a laptop computer without I/O slots; the controller can plug into the
USB port.

Firewire allows hot-swapping of devices and can daisy-chain up to 16 devices.
The main benefit to Firewire is speed. The Firewire standard boasts speeds of 100,
200, and 400 Mbits/Sec. Revisions to the IEEE 1394 standard will increase the data
transfer rate to 3.2 Gbits/Sec.

5.1.3 VXI D

ISCUSSION

VME Extensions for Instrumentation (VXI) is a standard designed to support instru-
ment implementation on a card. VME is a popular bus architecture capable of data
rates of 40MB/s. VXI combines the speed of the VMEbus with the easy-to-use
command set of a GPIB instrument. The goal of VXI instrumentation is to produce
a small, cost-reduced hardware system with standardized configuration and program-
ming. The VXI Plug&Play standards promote multivendor interchangeability by
standardizing the instrument commands for all VXI instruments. By implementing
instruments on cards, the size necessary to implement a test station can be greatly
reduced. The ability to implement a number of instruments in a small frame allow
the test developer to create a test site in places that were not practical before, freeing
up resources for other applications. The VXI standard also gives the user the flexi-
bility of custom solutions. Cards can be made and utilized to implement solutions
that are not available off the shelf.

The VXI VIs are contained in a subpalette of the Instrument I/O palette. Within
the VXI palette, there are 12 subpalettes. Each of these subpalettes contains specific
classes of VXI drivers. The subpalettes and their contents are described in Table 5.1.

FIGURE 5.4

FIGURE 5.5

©2001 CRC Press LLC

5.1.4 VISA D

EFINITION

Virtual Instrument Software Architecture (VISA) is a standard Application Program-
ming Interface (API) for instrument I/O communication. VISA is a means for talking
to GPIB, VXI, or serial instruments. VISA is not LabVIEW specific, but is a standard
available to many languages. When a LabVIEW instrument driver uses VISA Write,
the appropriate driver for the type of communication being used is called. This
allows the same API to control a number of instruments of different types. A VI
written to perform a write to an instrument will not need to be changed if the user
switches from a GPIB to a serial device. Only the resource name must be modified
where Instrument Open is used.

Another benefit of using VISA is platform independence. Different platforms
have different definitions for items, like the size of an integer variable. The pro-
grammer will not have to worry about this type of issue; VISA will perform the
necessary conversions. Figure 5.6 is a side-by-side comparison of GPIB and a VISA
Driver.

As is seen in Figure 5.6, the main work in a VISA application is in the initial-
ization. GPIB communications require the address string to be passed everywhere
a driver is called. If there were a change in the instrument, like using a serial
instrument instead of a GPIB instrument, a large application would require consid-

TABLE 5.1
VXI Drive Palettes

Palette Name Description
System Configuration VIs in this palette are used to control the VXI library, find a

device’s local address, read a device’s information table in
multiple formats (16-bit unsigned, 32-bit unsigned, or string),
and set a device’s information table in multiple formats.

Word Serial Commander This set of VIs is used to write data to a device, read data from
a device, perform command handling, or configure timeouts.

Word Serial Servant These VIs deal with getting information from the device to the
handler/controller. They also control the interrupt functions.

High-Level VXIbus Access These VIs read or write information to a specified VXI address
or register. There is also a VI used to copy a block of memory.

Low-Level VXIbus Access Drivers are used to create a window into VXI address space
using pointers. By using the pointers, data can be read or
written. There are additional VIs for configuration settings.

Local Resource Access VIs to read and set MODID lines on the backplane of the
VXIbus, and read and write data from VXI local registers.

Shared Memory Access VIs used to control allocation of memory from the VXI shared
RAM memory area of the local CPU.

VXI Signal Drivers for using VXI signals.
VXI Interrupt VIs for VXI interrupt usage.
VXI Trigger VXI trigger functions.
System Interrupt Handler System level interrupt functions.
VXIbus Extender Maps the triggers, interrupts, or utility bus signals into or out

of the mainframe.

©2001 CRC Press LLC

erable changes. All the drivers would have to be changed. An application using VISA
would only require changing the input to the VISA Open VI. The resulting instrument
reference would still be valid for the VISA drivers, requiring no change. VISA drivers
offer flexibility.

The VISA driver VIs are located in the Instrument I/O section of the Functions
palette. The VISA subpalette contains a wide range of program functions. At the
top of the palette, there are a group of “Easy” VISA functions. These functions are
designed for performing I/O communications with devices to evaluate functionality.
These VIs are not intended for use in an application. These VIs open a session to a
device that requires closing. Each time these VIs are run, a session will be opened.
This can be very time-consuming; therefore, the VIs should only be used when
necessary. The Easy VISA Find Resources VI can be helpful for system debugging.
It will return a list of all GPIB, Serial, and VXI devices that are connected to your
machine, and their resource names.

The next set of VIs are the standard VISA drivers. These VIs allow you to open
a communication session, read and write data, assert a trigger, and close communi-
cations. In addition to the standard VISA VIs, there are four subpalettes with
additional VIs. The first subpalette is the Interface subpalette. It contains VIs used
to deal with interface-specific needs. There are VIs to set the serial buffer size, flush
the serial buffer, and send a serial break. The VISA GPIB Control REN (Remote
Enable) VI allows you to control the REN interface line based on the specified mode.

FIGURE 5.6

©2001 CRC Press LLC

The VISA VXI CMD or Query VI allows you to send a command or query, or
receive a response to a previously sent query based on the mode input.

The next subpalette is the Event Handling palette. The VIs in this palette act on
specified events. Examples of events are triggers, VXI signals, or service requests.
The High-Level Register Access subpalette allows you to read, write, and move
specified-length words of data from a specified address. The Low-Level Register
Access subpalette allows you to peek and poke specified bit length values from
specified register addresses. The VISA palette is shown in Figure 5.7.

5.1.5 DDE

Dynamic Data Exchange (DDE) is a method of communication between Windows
applications. In DDE communications, there is a server and a client application. The
DDE client is the program that is requesting data or sending a command to the DDE
server. Assuming both applications are open, the client first establishes communi-
cation with the server. Connections are called “conversations.” The client can then
request the server to send or modify any named data. The client can also send
commands or data to the server. A client can either request data or request to be
advised of data changes for monitoring purposes. Like the other forms of commu-
nication, when all tasks have been completed, the client must close communication
with the server.

LabVIEW can act as the server or the client. One example of LabVIEW acting
as a client would be a VI that obtains data from an Excel spreadsheet or writes the
data to the spreadsheet. If LabVIEW is acting as a server, another Windows program
could open and run a VI, taking the data obtained to perform a task.

There are few new applications using DDE due to DDE’s limited abilities. With
the development of OLE and ActiveX technologies, DDE is mainly around for
backward compatibility. Keep this in mind when developing future applications
using DDE.

The DDE VIs are in the Communications palette. There are VIs for opening and
closing conversations, and performing advise functions, requests, and executions. In
addition to the DDE function drivers, there is a subpalette contained in the DDE
palette. This subpalette contains the DDE server functions. These functions are used

FIGURE 5.7

©2001 CRC Press LLC

to register and unregister DDE service and items. There are also VIs used to set and
check items. The DDE subpalette is shown in Figure 5.8.

5.1.6 OLE

 Object Linking and Embedding (OLE), or automation, is the ability to place objects
from other software programs into another application. This ability allows both the
expansion of the program’s abilities and the ability to manipulate data in another
application. An example of this would be taking a movie clip (AVI file) and embed-
ding it in a Word file. Even though Word has no idea what a movie clip is, it can
display it in the word processing environment. OLE is a method by which objects
can be transferred between applications. OLE works with objects using a standard
known as the Component Object Model (COM). The COM standard defines common
ways to access application objects to determine if an object is in use, is error
reporting, or if there is object exchange between applications, and a way to identify
objects to associate them with specific applications.

OLE is a superset of the ActiveX standard and uses the same VIs. The ActiveX
subpalette is within the Communications palette. The palette contains VIs to open
and close automation refnums to objects. The specified object is chosen through the
automation refnum input, or by right-clicking on the Automation Open VI and
choosing Select ActiveX Class. In order to access an object on a remote machine,
the machine name must be specified. Accessing an object on a remote machine uses
the Distributed Component Model (DCOM). There is also a driver used to convert
an ActiveX variant to a G data type. The Property Node function and Invoke Node
function are in this palette. These functions are used to access an object’s properties
and methods. In LabVIEW 5.1, there is a subpalette inside the ActiveX palette for
ActiveX events. These event functions allow you to create event queues, perform
event functions, and destroy event queues. There is an in-depth discussion of ActiveX
with examples in Chapters 7 and 8.

5.1.7 TCP/IP

There are three main protocols for communication across networks. Transmission
Control Protocol (TCP), Internet Protocol (IP), and User Datagram Protocol (UDP).
TCP is built on top of IP. TCP breaks the data into the packets for the IP to send.

FIGURE 5.8

©2001 CRC Press LLC

TCP also performs data checking to ensure the data arrives at its destination in a
singular, complete form. TCP/IP data consists of 20 bytes of IP information, followed
by 20 bytes of TCP information, followed by the data being sent. The TCP/IP
protocol can be used on all platforms of LabVIEW and BridgeVIEW.

Every computer on an IP network has a unique Internet address. This address is
a 32-bit integer, usually represented in the IP dotted-decimal notation. The address is
separated into 8-bit integers separated by decimal points. The Domain Name Service
(DNS) system is a database of IP addresses associated with unique names. For instance,
a user looking up the National Instruments Web site (

www.natinst.com

) will be routed
to the appropriate IP address that corresponds to the name. This process is known
as “hostname resolution.”

There are a number of standards using TCP/IP that can be implemented using
LabVIEW. Telnet, SMTP, and POP3 are a few applications built using the TCP/IP
protocol. Telnet can be used for providing two-way communications between a local
and remote host. POP3 and SMTP are used to implement mail applications.

With TCP/IP, the configuration of your computer depends on the system you
are working on. With Windows 95/NT, UNIX, and Macintosh Version 7.5 and later,
TCP/IP is built in. For earlier versions of Macintosh Operating systems, the MacTCP
driver needs to be installed. For Windows 3.1, an Ethernet card, the drivers for the
card, and the Winsock DLL must be installed. Windows 3.1 needs a third-party DLL.
Win95/98/NT provide the Winsock.dll in the installation.

The TCP palette is located in the Communication section of the Function palette.
The VIs in the TCP palette allow you to open and close connections. Once the
connection is opened, you can read and write data through the VIs in the TCP palette.
There are also VIs to create a listener reference and wait on listener. The IP to string
function allows you to convert an IP address to a string. There is an input to this
function to specify if the address is using dot notation. A function to convert a string
to an IP address is also available. The VIs in this palette are shown in Figure 5.9.

5.1.8 D

ATA

S

OCKET

DataSocket is a programming technology that facilitates data exchange between
applications and computers. Data can easily be transferred between applications over
an Internet connection. DataSocket is built using TCP/IP and ActiveX/COM tech-
nologies. The DataSocket server can reside on the local machine or on another
machine on the network. You can read data using DataSocket HTTP, FTP, and local
files. DataSocket can also read in live data through a DSTP (DataSocket transfer

FIGURE 5.9

http://www.engnetbase.com/pdf/ENGnetBASE/2049/www.natinst.com

©2001 CRC Press LLC

protocol) connection. You also have the ability to control your LabVIEW application
through a Web interface by using CGI functions with DataSocket.

 The DataSocket VIs are in a subpalette of the Communication section of the
Function palette. The DataSocket VIs work in the same way VISA or other standard
LabVIEW VIs operate. There are VIs for opening and closing connections. The
Open function will open communication based on the URL input and the access
mode input. The URL input must be one of the above mentioned protocols. The
output of the Open function is a DataSocket reference. This reference is used in the
same manner as a typical connection refnum. The remaining VIs use this reference
to perform actions on the desired information. You can then read or write a string,
Boolean, integer, or a double value. If you want to read or write arrays of these data
types, the necessary VIs are available in the DataSocket Write and the DataSocket
Read subpalettes. The Advanced subpalette gives you the ability to read or write
variants. In addition to the variant functions, there are also low-level functions for
performing DataSocket communication. These functions include VIs to connect and
update data. Finally, there is a VI to control the DataSocket server programmatically.
You should also be able to access the DataSocket server from your Start menu under
the National Instruments DataSocket name. The DataSocket function palette is
shown in Figure 5.10.

 If you want to perform live data updates, you first need to determine if the
DataSocket server is running on the local machine. The typical format for a local write
data to a DataSocket server is dstp://localhost/test. This assumes that “test” is the label
for the data you are writing to the server. If you are using a local server, the DataSocket
server will need to be launched through the function in the DataSocket Advanced
subpalette. Then, you will need to open a DataSocket connection with Write Attribute
selected. You can then write the data you want to share to the DataSocket server. If
you are running the DataSocket server on another computer, the machine address will
need to be in the DSTP address.

To read the data from the server, you will again need to determine if the server
is local or on a remote machine. Once you have the server name resolved, and have
a connection open to the server with the read attribute, you can use the Read
DataSocket VIs to read the data in. You will need to use the Update data VI if you
want to read new data after it has been written to the server.

FIGURE 5.10

©2001 CRC Press LLC

To read and write static data, the process is the same. The only difference is the
URL used to connect to the DataSocket. Examples of a VI used to generate live
data to the DataSocket server, and a VI to read the data from the DataSocket server,
are shown in Figure 5.11. This example includes additional attributes. This allows
items like time and date stamps to accompany the data that is being transferred. The
DataSocket server is launched on the same PC as the Data Write VI. There are
additional examples in the LabVIEW on-line reference.

5.1.9 DAQ

Data acquisition (DAQ), in simple terms, is the action of obtaining data from an
instrument or device. In most cases, DAQ is performed using plug-in boards to
collect data. These plug-in boards are made by a number of manufacturers, including
National Instruments. These DAQ boards perform a variety of tasks, including analog
measurements, digital measurements, and timing I/O. One convenience is the ability
to obtain boards for PC, Macintosh, and Sun workstations. One of the benefits of
using National Instruments boards is the availability of NI-DAQ drivers for the
boards. While other manufacturers’ boards are compatible with LabVIEW, the DAQ
library will most likely not be compatible with the board. Most board manufacturers
do provide their own drivers for their equipment; some even have drivers written in
LabVIEW. Even if the code is not written in LabVIEW, DLLs can be implemented
by using the Call Library function. Code Interface Nodes (CINs) can be used to
implement drivers written in C source code.

FIGURE 5.11

©2001 CRC Press LLC

If the functionality required is available with a National Instruments board, the
easiest and quickest solution is to stick with the NI board. Using the NI board will
allow you to use the DAQ library. The VIs in the DAQ library are frequently updated
and are completely compatible with your LabVIEW application.

The Data Acquisition subpalette is a part of the Functions palette. The Data
Acquisition palette is made up of six subpalettes: the Analog Input VIs, Analog
Output VIs, Digital I/O VIs, Counter VIs, Calibration and Configuration VIs, and
Signal Conditioning VIs. The Data Acquisition subpalette is shown in Figure 5.12.
Each of the subpalettes is comprised of a number of VIs of varying complexity and
functionality. There are four levels of DAQ VIs. They are Easy VIs, Intermediate
VIs, Utility VIs, and Advanced VIs. As a rule, the Utility VIs are stored in their own
subpalette. The Advanced DAQ VIs are also stored in their own subpalette. The
main difference between the Easy VIs and the Intermediate VIs is the ability of the
Easy VIs to run as stand-alone functions. These VIs call the higher-level VIs to
perform the task. The Easy VIs allow you to pass in the device number and channel
numbers. The VIs will also perform error-handling functions to alert you if an error
has been encountered.

The Analog Input subpalette is shown in Figure 5.13. The palette consists of the
four types of VIs described above. The Easy VIs include functions to acquire one
or multiple waveforms from an analog input. There are also functions for acquiring
samples at the designated channels. The Intermediate VIs allow you to configure
the hardware and associated settings, start an acquisition, read the buffered data,
make single scan acquisitions, and clear the analog input task. The Analog Input
palette contains two subpalettes. The first subpalette contains the Utility VIs. These
VIs include functions to initiate a single scan, a waveform scan, or a continuous
scan. The second palette contains the Advanced functions. The Advanced function
palette contains VIs to perform configurations, read the buffer, set parameters, and
control analog input tasks. We could devote a number of chapters on DAQ functions,
but the DAQ functions are described in great detail in the

Data Acquisition

Basics

manual. We will not attempt to cover material that is concisely covered already.

5.1.10 F

ILE

 I/O

File input and output is a type of driver that people do not often think of. The ability
to read data from a file and write data to a file in many ways is similar to reading

FIGURE 5.12

©2001 CRC Press LLC

data from and writing data to a GPIB instrument. You require a means to identify
the file you want to communicate with. Instead of a GPIB address you have a file
path. You also need to be able to transfer data from one place to another. Instead of
passing data between the computer and the GPIB instrument, you are passing data
between the LabVIEW program and a file. The File I/O functions are very similar
to instrument or communication drivers.

The File I/O VIs can be found in the File I/O section of the Function palette.
This subpalette contains a number of file functions as well as subpalettes containing
VIs pertaining to binary files, file constants, configuration files, and advanced file
functions. The standard file I/O functions include VIs for opening/creating a file,
reading data from a file, writing data to a file, and closing a file. In addition to these
functions, there are VIs for writing and reading data from a spreadsheet file, writing
or reading characters from a file, and reading lines from a file. The File I/O palette
is shown in Figure 5.14.

There are two remaining functions that are included with the standard file I/O
functions. The first VI allows you to build a file path. This VI creates a new file path
by appending the file name or relative path from the string input to the base path.
The default value of the base path is an empty path. The result is the combined file
path. If there is a problem in one or both of the inputs, the VI will return “not-a-
path.” The second function takes a file path and breaks it apart. The last section of
the path is wired out as a string filename. The remainder of the path is wired out as
a path. The VI will output an empty string and “not-a-path” if there is an invalid
input. The binary file VIs allow you to read and write 1- or 2-D arrays of data to a
byte stream file. The byte stream file can be in a signed word format or a single
precision format. The configuration file palette contains VIs used to read and modify
information in the configuration files. The File Constants palette contains VIs that
allow you to access the current directories, paths, or VI library directories. In addition
to these functions, there are constants that can be used to create inputs to the file I/O
VIs.

The Advanced palette contains VIs that perform a number of file-related tasks.
The Advanced palette is shown in Figure 5.15. The File Dialog function displays
the file dialog box for the user to select a file. The output is the path of the file
selected. The Open File VI allows you to specify a datalog type. There is a function
used to find the offset of the end of file (EOF). The seek function allows you to
begin a file in a position other than the beginning of the file. There are VIs used to

FIGURE 5.13

©2001 CRC Press LLC

set access rights for a specified file, as well as to find out information on the file,
directory, or volume.

There is a set of five VIs in the Advanced palette that performs actions on
directories. There is a VI that allows you to move a file or directory. There are also
VIs that allow you to copy a file or directory, as well as delete a file or directory.
The New Directory function allows you to create a directory at the specified path.
The List Directory function lists all of the file names and directory names that are
found in the directory path.

The final set of functions in the Advanced palette are VIs used to convert between
strings and paths. The functions can perform the functions on a single string or an
array of strings. There is also a VI that converts a refnum to a path. These VIs are
useful when converting string paths created by the user in a user interface to a file
path to perform file functions.

We will now give a quick example of how to read and write data when dealing
with datalog files. The first step is to create the data type used for storing the data.
For this example we will be recording three distinct values per datalog value. The
first is the index of the data. This is simply the value of the For loop index used to
create the data. The second item in the data cluster is the data. The data for this
example is simply random numbers generated between 0 and 10. The final data type
used for the cluster is a date and time stamp. This value is written as a string. To
summarize, our data type consists of an integer, a real number, and a string.

The first step is to create the code to perform the data generation. The For loop
executes 100 iterations. Inside the For loop, the loop index, the test data, and the time
and date string are bundled into a cluster. This cluster is wired to the output of the
For loop, where auto indexing is enabled. When all the data has been collected, the

FIGURE 5.14

FIGURE 5.15

©2001 CRC Press LLC

New File VI is used. The File Path contains the name and location of the file you are
writing the data to and will be needed when you want to retrieve the data. The file
path is the only required input. There are a number of other inputs to the VI that can
be wired, or left as default. To write and read datalog files, you will need to wire a
copy of the data format to the datalog type. Wiring the actual data to the input, or
wiring a constant with the same data type, can do this. The other inputs are permis-
sions, group, deny mode, and overwrite. The overwrite input for our example will be
given a “true” value. This allows the program to overwrite an existing file with the
same name as specified in the file path input. If the input were “false,” the program
would error out when trying to create a new file that already exists.

Once the file is created, the next step is to write the data out. The Write File VI
is used to send the collected data to the datalog file. The inputs of the Write File VI
include convert eol (end of line), header, refnum, positive mode, positive offset,
error in, and the data. The only required inputs are the refnum and data inputs. The
data from the For loop is wired to the data input. The final step of this subVI is to
close the file using the Close File VI.

The next step is to create a VI to read the data back from the file. In this VI,
the Open File function is used to create a connection to the file. The File Path input
is used to point the VI to the datalog file. In addition to the file path, the data type
is wired to the Datalog Type input. This data type needs to match the data type of
the cluster we wrote to the file. This allows you to read the information back in the
appropriate format. In addition to the datalog type and file path, you can set the
open mode and deny mode for the file. This allows you to determine the file
permissions. Once the file is opened, you need to use the Read File function. This
VI is used to acquire the data from the file, and write the data to an indicator. Again,
the final step is to close the file. The code diagram for the Datalog Write VI and the
Datalog Read VI is shown in Figure 5.16.

5.1.11 C

ODE

 I

NTERFACE

 N

ODE

AND

 C

ALL

 L

IBRARY

 F

UNCTION

LabVIEW has the ability to execute code written in C as well as to execute functions
saved in a DLL. There are two methods for calling outside code. The programmer
can call code written in a text-based language like C using a Code Interface Node
(CIN). The programmer also has the ability to call a function in a DLL or shared
library through the use of the Call Library function. A short description of each will
follow.

The CIN is similar in some respects to a subVI. The CIN is an object on the
block diagram of a VI. The programmer can enter inputs required to execute a
function, and wire the outputs of the CIN to the remainder of the program. The main
difference is a subVI is code written in the G language to perform a function, while
the CIN executes text-based code to perform the function. The CIN is linked to
compiled source code. When the execution of a block diagram comes to the CIN,
LabVIEW calls the executable code, returning the final outputs to the VI.

There are a number of reasons for using the Code Interface Node. One benefit
is the ability to use existing code in your LabVIEW program. If a function is already
written in C, you have the ability to integrate the code into your LabVIEW program

©2001 CRC Press LLC

to reduce development time. Another benefit to using a CIN is to expand the
functionality of LabVIEW. Certain system functions that do not have corresponding
LabVIEW functions can be implemented using code written in C. This can help a
programmer to perform low-level programming with LabVIEW’s graphic-based
interface. A final consideration for using CINs is speed. While LabVIEW is fast
enough for most programming tasks, certain time-critical operations such as data
acquisition and manipulation can be done more efficiently in a programming lan-
guage like C. The use of the CIN allows the programmer to use the right tool for
the right job.

The ability to use prewritten code is a key to reducing development time.
Functions to perform many Windows functions have already been written. These
functions are typically written in C, and are stored in Dynamic Link Libraries
(DLLs). LabVIEW can call these Windows functions in two ways. The first way is
through the use of a Code Interface Node. An easier method for calling DLL
functions is through the use of the Call Library function. The main difference
between calling C code in a CIN and using the Call Library function to call a DLL
is the integration of the source code. When using a DLL, the code remains in its
library; it is not copied into the executable files of the application. The other obvious
difference is the fact that DLLs are Windows-specific, while the Code Interface
Node can be used across platforms.

For more information on the Code Interface Node, the

Code Interface Reference
Manual

 can be found on National Instruments’ Web site. The PDF file covers how
to integrate a CIN on any platform. For information on using DLLs, there is an
application note on the NI Web page. Application Note 087, “Writing Win32

FIGURE 5.16

©2001 CRC Press LLC

Dynamic Link Libraries (DLLs) and calling them from LabVIEW,” discusses the
methods for using DLLs.

5.2 DRIVER CLASSIFICATIONS

There are three main functions a driver performs. The three types correspond to the
three main purposes of a driver: configure an instrument, take a measurement, or
check the status. These three main types of drivers will be discussed below. When
creating driver VIs, National Instruments recommends a standard format the drivers
should follow. Driver libraries should contain the following functions: Initialize,
Configure, Action/Status, Data, Utility, and Close.

5.2.1 C

ONFIGURATION

 D

RIVERS

The first type of driver is a Configure VI. These VIs should open or close commu-
nications with the instrument, initialize the instrument, or configure the instrument
for the desired use. The Initialize driver first performs the initial communications.
This should include opening a VISA session if VISA is being used. The Initialize
driver can also perform instrument setup and initial configurations. This can allow
the instrument to begin in a known or standard state. The Configuration Instrument
drivers send the necessary commands to the instrument to place the instrument into
the state required to make the desired measurements. There may be a number of
configuration VIs for a particular instrument, logically grouped by function or related
purpose. The Close driver closes the instrument communication, the VISA handle,
and any other required items to complete the testing process. It is important to close
the instrument communications, especially when doing serial and TCP communica-
tions. When a serial port is open, no other applications can use the port. If the port
is not closed, the port is inaccessible until LabVIEW is closed. With TCP, when you
connect to another machine, the port on that machine will stay open unless you close
the session or the session time out.

5.2.2 M

EASUREMENT

 D

RIVERS

Measurement drivers are used to take measurements or read specific data from the
instrument. The user should be aware that a data driver does not always require
reading data from an instrument. The data driver could also be used to provide data
to an instrument, like sending a waveform to a signal generator. It is important to
note that only one measurement should be taken per driver. This is done to promote
reusability as well as to ensure the application speed is not compromised by taking
unneeded measurements.

5.2.3 S

TATUS

 D

RIVERS

The action/status drivers are used to start or stop a specified process, check errors,
and general instrument-related information. One example would be a VI written to
start and stop a Bit Error Rate (BER) test or a waveform capture from a spectrum

©2001 CRC Press LLC

analyzer. Another example is checking a status register to find out if a test that has
been initiated is completed so the result can be read from the instrument. The VI
would not change any of the instrument configurations, only the initiation or termi-
nation tasks are performed. Since checking the status of an instrument can require
the instrument to be reset, a set of utility drivers should also be designed. The utility
drivers are used to perform tasks such as reset, self-test, etc.

5.3 INPUTS/OUTPUTS

An important aspect of a driver is the interface with the calling VIs. There are a
number of standard inputs and outputs for drivers. The Error In and Error Out clusters
are the most important I/Os in a driver. These clusters have three components. For
the Error In cluster, the first control is a status Boolean control; a “true” indicates
there is an error. The second is a numeric control to display an error code. The final
control is a source string. This string can indicate where an error occurred. There
are two primary reasons for using the Error In and Out clusters. The first reason is
obviously error handling. If an error has already occurred in a program, the Error
In cluster will pass this information to the driver, preventing the execution of the
intended task. The error cluster can also pass error information out of the driver if
an error occurred while the driver was executing. A discussion of error handling is
described in the following section.

The second reason for using the Error In and Out clusters is flow control. The
wiring of the Error Out of one VI to the Error In of another forces the order of
execution because of data dependency. For example, an instrument needs to be
configured prior to taking a measurement. Wiring the Error Out of the configuration
driver to the Error In of the Measurement driver forces the order of execution.

The other required inputs are the instrument communication handles. Depending
on the communication VIs being used, a number of different inputs could be used.
We suggest using VISA standards in your drivers. This will allow the same driver
format regardless of what type of communication is used to address your instrument
or device. The standard method for wiring the connector pane has the VISA session
in and out in the top left and right positions, respectively. The Error In and Out are
in the bottom left and right positions, respectively. This consistency of location
makes connections easier to wire and find.

For readability and ease of use, the programmer should use as few inputs and
outputs to a driver VI as possible. The use of clusters should be avoided unless the
information is packaged in a form that other subVIs would use like the error cluster.
If the cluster is not passed on, the main program will need to bundle and unbundle
the items. This can obscure the intention of the code and complicate the code
diagram. Additionally, the complex data type will have an effect on performance.

5.4 ERROR HANDLING

Error handling is one of the most important considerations when a programming
task is begun. For this reason there is an entire chapter in this book dedicated to

©2001 CRC Press LLC

error handling. This section will just highlight some of the driver-specific error-
handling issues.

The main error handling that should be performed in the driver is the detection
of errors that are passed in. If an error is passed into a driver, the driver should not
execute any tasks. The driver should consist of a case statement controlled by the
status field of the error cluster. The driver code would then only execute if no error
passed in. When an error is passed into a driver, the instrument communication VIs
will not execute if an error cluster is passed to them. Error processing should only
occur in the upper levels of the program, as prescribed by the three-tiered design
architecture. The benefit of not processing errors in the driver is the ability of the
driver to be reused. If error processing is performed in the driver, the results of the
processing may not be applicable to a new program using this driver. Doing error
processing in the driver would cut down on code reuse. An example of the use of
this “bypass” is shown in Figure 5.17.

The next issue with error processing in drivers is the implementation of timeouts.
A driver should have a way out. If a driver is written to read the status of a register
through the use of a While loop to read the data from the device, there should be a
way to exit after a specified time if the desired response does not occur. This can
result in setting an error if the program will not function without the desired value.

In writing applications that read data from a device, you should add code to
ensure any errors that occur during the data acquisition are handled in an appropriate
manner. For example, say you are reading data from a serial instrument. In this
example you are reading the information from the serial port until the desired data
is read. To perform this task, the read operation is in a While loop that is executing
until the desired input is read. When the desired input is received, a “false” Boolean
is wired to the conditional terminal of the While loop. If an error would occur, the
desired input would never be received, resulting in the While loop continuing to
execute until you stop the application. You should check the Boolean value of the
error cluster in each iteration of the While loop to check for an error. The result of
this error check can be combined with the result of the data check to determine
whether to execute another iteration of the While Loop. The Boolean from the error
cluster and the data check can be combined through the Boolean logic functions to
control the conditional terminal of the While loop. An example showing all three
of the above-mentioned techniques is shown in Figure 5.18.

 One type of error detection that should be mentioned is the ability to set error
traps in the driver code for debugging purposes. During the development stages of
a driver, traps can be put in place to trap and isolate errors. This can lead to faster
error detection for the purpose of debugging the driver being developed. These
“traps” can be either disabled or removed when the driver development has been
completed. Some instances of error traps can be simply collecting the data being
read in from a serial port, and saving the data to be reviewed by the developer. Since
some errors will only occur when running at full speed, recording the data for later
analysis could be of great benefit. The recording of this same data would be con-
sidered unnecessary in the final driver version, hence the need for an error trap.
Once the drive has been fully debugged, the trap can be eliminated. Data logging,

©2001 CRC Press LLC

discussed in the error-handling chapter, is a similar tool that allows you to save and
view data after the VI has been executed.

When measurements are being made in a While Loop, or setup is being per-
formed in a state machine, care needs to be taken with error handling. There should
always be a shift register passing the error cluster to each iteration. When this is
forgotten, errors become difficult to track because the error cluster gets cleared with
the next iteration of the While or For loop.

5.5 NI SPY

It is difficult at times to debug drivers. Commands are sent to the instrument by the
program, but are the parameters correct, how long do the calls take, is there a problem
with the instrument, etc.? The developer performing the application debugging needs
a way to monitor and verify that the program is doing what was intended. One tool
provided by National Instruments can aid in code verification. The NI Spy utility is
an application that monitors, records, and displays API calls made by National
Instruments applications. The NI Spy can be used to locate and analyze any erroneous
API calls that your application makes, and to verify that the instrument communi-
cation is correct.

FIGURE 5.17

FIGURE 5.18

©2001 CRC Press LLC

5.5.1 NI S

PY

 I

NTRODUCTION

The NI Spy program is similar to a GPIB analyzer. The NI Spy displays function
call names, parameters, and GPIB status as the developers program executes calls.
The NI Spy allows access to information like the contents of data buffers, process
and thread IDs, and time stamps for the start and finish times of the function calls.
The spy program can also create a log of the information, although this can produce
a significant performance loss.

NI Spy requires a special version of the instrument drivers to work properly.
The Spy-enabled versions of the National Instruments drivers are loaded when Start
Capture is selected. When finished using NI Spy, you should restore the non-Spy-
enabled version of the drivers. This is because the Spy-enabled drivers can slow
down the performance of other applications. You should use NI Spy only while you
are debugging your application or when performance is not critical. To switch back
to the non-Spy-enabled drivers automatically you can select Restore Software on
Exit from the Spy menu before you exit NI Spy.

5.5.2 C

ONFIGURING

 NI S

PY

The first step is to open the NI Spy program. If you go to the Start menu of your
computer and then to the Programs folder, there should be a folder labeled “VXIpnp”
and there should be an icon for the NI Spy. When this icon is selected, the window
shown in Figure 5.19 comes up. In the title bar, the name “NI Spy” should appear,
followed by the program’s status. In parentheses, the title bar will indicate whether
capture is on or off. By default, Capture is off when you open the NI Spy application.
Figure 5.19 shows the NI Spy window with Capture on.

Before starting the NI Spy program, the first step should be to configure the
options for the application. By selecting the Spy menu, the following options are
available to you: Start Capture, Options, Restore Software on Exit, and a list of the
available API types to capture.

To modify the NI Spy capture options, select Options from the Spy menu. The
NI Spy options can only be modified when Capture is off. NI Spy, by default, displays
100 calls in the Capture window, displays buffers in Brief Buffer mode, and does
not enable file logging. The Call History Depth option identifies how many API
calls the NI Spy will display. If more than the selected number of API calls are
made, the Capture window will show the most recent calls, discarding the calls at
the beginning. If the NI Spy program is unable to display all of the API calls due
to low system memory, a message box will appear giving the user the option to stop
the capture or free up system resources before continuing.

The Data Buffer Mode selection allows you to choose between Brief or Full
Buffer mode. The Brief Buffer mode displays up to 64 bytes of data, while the Full
Buffer mode displays up to 64K bytes of data. For either of these modes, if there
is more data than the allowed buffer, the middle data will be removed. For example,
in the Full Buffer mode, the first 32K bytes and the last 32K bytes of data will be
displayed. A row of dashes between the two halves of the buffer is inserted to indicate
that part of the data has been omitted.

©2001 CRC Press LLC

The File Logging selection in the NI Spy options allows the program to record
all calls to a log file. File logging is useful when debugging an application that
causes the system to crash. If file logging in the Fail-Safe Logging mode, you can
view the API calls that were captured prior to the system crash by opening the saved
log file. In order to use this function, a file name must be provided to store the
logged API calls. There are two modes of file logging available. The first is Fail-
Safe Logging. Fail-Safe Logging is a method of guaranteeing that the log file will
not be corrupted if the system crashes. The logging is accomplished by opening the
log file, writing the data, and closing the log file after each API call. It should be
obvious that this method of logging the data is slow. If performance and time are
an issue, Fast Logging is available. This method of logging opens the file at the
start. The data from each call is written to the log file when the call is captured. The
file is not closed until the capture is stopped or logging is disabled. The Fast Logging
method of file logging is much faster than Fail-Safe Logging, but if your system
crashes, data will be lost.

If you have more than one National Instruments driver installed on your com-
puter, you can specify which APIs you want to spy on at any time. The API choices
are listed in the Spy menu below the Restore Software on Exit option. Types of
National Instruments Drivers are GPIB-488.2, VISA, and IVI-type drivers. By
default, all installed APIs are enabled. There will be a check next to the API types
selected for capture. You can omit any on the list by clicking on the name; the check
will be removed.

FIGURE 5.19

©2001 CRC Press LLC

5.5.3 R

UNNING

 NI S

PY

There are three ways to start capturing API calls. The first is to select Start Capture
from the Spy menu. The second method is to click on the arrow button on the toolbar.
Finally, the user can push F8 to turn Capture on. Once you turn Capture on, you
can run your application. When you want to view the captured information you can
return to NI Spy to view the captured calls. To turn Capture off, click on the red
“X” button on the toolbar.

You can view the API calls in the main NI Spy window as NI Spy captures
them. The captured API calls are displayed in the order in which they are received.
There is one line of information displayed for each captured call. The information
includes the number of the call, a C-style function prototype, and the start time for
the call.

By using the Properties dialog box you can see detailed call information for
every captured API call. To see the properties of a specific call, double-click on the
call in the Capture window, right-click on the call and select properties, or select
Properties from the View menu. The Properties dialog box includes one to five pages
of detailed information on the captured call. All API captured calls have a General
tab, most captured calls have Input and Output tabs, some captured calls have a
buffer page, and some IVI captures can have an Interchange Warning tab. The
General section displays the process and threads IDs, the Windows handles, and the
start and stop time statistics. The Input page displays the API call's input parameter
types and values. The Output section displays the parameters that were returned
after the call completion. The buffer page is only present for calls that involve the
transfer of a buffer of data; this page displays the contents of the data buffer. Finally,
the Interchange Warning section displays warnings about the specific call with
respect to instrument interchangeability. This option is available for IVI drivers.

To search through the list of captured calls to find a specific string in the API
function names, parameter values, or any other string, select Find from the Edit menu.
Enter the text that you want to search for in the Find What box. Press the

Find Next

button to find the next captured call containing the specified string. The Match Errors
Only selection can be used to limit the search to captured calls that have an error. If
no search string is specified, the search locates the next captured call that failed. The
Match Case selection specifies whether the search is case sensitive.

5.6 DRIVER GUIDELINES

Aside from the general driver information, there are a number of implementations
that can add robustness and reusability to a driver. This section will give an overview
of some of the functionality that should be added to a driver to accomplish the
desired results.

One guideline that should be followed is the method of only making one mea-
surement per driver. Since the programmer will want different measurements at
different times, the programmer should keep one measurement to a driver. This
allows the code to be reused easily. The user of the driver will not have to take a

©2001 CRC Press LLC

number of measurements in order to receive one desired value. Making multiple
measurements when only one measurement is desired limits performance.

When developing a driver, the programmer should try to combine configuration
settings into logical groups. If configuring an RF generator requires setting four
different parameters every time, the configuration of those parameters should be in
a common driver. This would allow the user to set the generator with the appropriate
settings through the access of one driver.

When you are linking the controls and indicators to the connector panel of the
icon, you should choose a connector configuration that will provide extra connectors.
When all of the inputs and outputs have been wired, extra connectors allow for
expansion without disconnecting all existing connections. When a driver is already
called in a program, and if the programmer adds a new input or output, the user will
not have to rewire all of the existing connections. When there are extra connectors,
the existing connections do not change, allowing the current wiring to remain
unchanged.

5.7 REUSE AND DEVELOPMENT REDUCTION

The biggest benefit of developing quality drivers is the ability to reuse the drivers.
Even when the programmer does not expect to use a specific driver again in the
future, things change quickly. There is no better feeling in software development
than, when developing an application, you realize that the underlying code has
already been written. If a driver has been properly written, applications that are
completely different could still use the same driver. The ability to reuse code is the
biggest factor in cycle-time reduction. By not having to rewrite drivers, which
includes time to learn the equipment, coding, and debugging, the user can dramat-
ically reduce the time required to develop an application. Making drivers generic
enough to reuse can require more time and effort up front, but the benefits that can
be realized are substantial.

There are many drivers for numerous instruments and manufacturers that have
already been written. The first place you can look for an instrument driver is on the
installation CD that came with your LabVIEW application. The second disk is a
disk of instrument drivers. In addition to these drivers, many of the drivers are
available on the National Instruments Web page. Not only is this resource a com-
prehensive list of drivers, but they are the most recent versions. The National
Instruments ftp site is

ftp.natinst.com

. Your login is “anonymous” and your password
is your Internet address.

Many drivers available on the National Instruments Web page have been sub-
mitted to NI and accepted for distribution. There are standards that NI requires all
drivers submitted adhere to. Many of the standards have already been discussed,
and these standards can be found in the application note, AN106. Since the drivers
have already been designed to the required standards, they should be easily inserted
into your application with no modification. This allows the programmer to concen-
trate on developing the application without concern about the underlying commu-
nications. This can lead to significant development time reduction.

©2001 CRC Press LLC

For unusual or difficult-to-find instrument drivers, there is another resource
available. The LabVIEW Info Group is a place you can try. The Info Group is a
large knowledge base that you can utilize. For subscription requests you can send
an e-mail to

info-labview-request@pica.army.mil

. To post a message to the Info
Group, send an e-mail to

info-labview@pica.army.mil

.

5.8 DRIVER EXAMPLE

To tie together some of the driver techniques and guidelines, we will present an
example set of drivers. This set of drivers will communicate with Microsoft Word
using ActiveX. This example will only create a couple of relevant drivers for illus-
tration purposes. If you want more information on ActiveX, Chapters 7 and 8 will
give a detailed description and numerous examples.

The fist step is to define the task we want to accomplish. We will want to open
Word, create a new file, set the margins, set the page size, set the page orientation,
write text to the file, save the file, and close Word. The first step is to identify the
driver types needed. You will need configuration drivers and measurement drivers.
Since configuration drivers perform instrument communication and configuration,
the VIs needed to open Word, close Word, and configure the settings will be contained
in these drivers. The action of reading or writing data to an instrument or application
requires measurement VIs. The write text to file will fall into this classification.

A driver to open an automation reference to Word will need to be created. This
action will be combined with the creation of a new file. This allows the user to open
Word with a new document in the initial step. The next driver to be created will
configure the page setup parameters. Most times when you are modifying a one-
page setup parameter, you will want to modify additional page setup parameters.
This is a good place to combine the configuration settings into one subVI to facilitate
ease of programming. Not only will the programmer be able to see all of the input
parameters that can be changed in one location, but the driver can ensure order of
execution. Some of the page setup parameters need to be modified after other
parameters have been set. For example, you need to modify the page style prior to
setting the orientation. The orientation setting will be reset after modifying the page
style. If you are placing individual VIs to set these parameters, you could forget or
be unaware of certain data dependencies, causing parameters to not be set in the
desired manor. The code diagram for the Page Setup Configuration VI is shown in
Figure 5.20. In addition to the data dependencies there are issues with data conver-
sions. For example, when writing a value to a margin input, you would attempt to
write data in inches. However, to get a margin value of one inch, a 72 needs to be
wired to the input of the property node. Inside the driver, there is a function to
convert an inch input to the required automation input. This allows you to abstract
this information from the person using the driver.

The Write Text VI takes a string input and inserts it into the file at the specified
index. If making multiple write statements, you could wire the end value from the
previous write to the start value of the current Write VI. This allows you to do
incremental data storage in the file. You would only want to have this VI write the
text to the file. Any additional functions added to this VI would limit your ability

©2001 CRC Press LLC

to reuse the VI. For example, if you wanted to perform a spell check on the document,
you would have to perform this spell check each time text is written to the file. You
may only want to check the spelling after all of the text has been written to the file.
If the spell check function is in its own VI, you can invoke this function when you
need it. There is also the possibility you do not want to perform a spell check at all.
Measurement VIs should be in their own VIs unless you are sure you will always
want to do the multiple tasks together. An example using these VIs is shown in
Figure 5.21. In the example, Word is opened; a new file is created (testfile); some
of the page setup parameters are modified; two strings are written to the file,
separated by a time delay; and the file is closed. More information on controlling
Microsoft Word using ActiveX is included in Chapter 8.

5.9 IVI DRIVERS

IVI drivers were developed to allow hardware-independent test programs. In 1997,
a number of manufacturing companies approached National Instruments to develop
generic drivers that would be interchangeable. The IVI Foundation was a direct
result of this effort. The organization, made up of representatives from National
Instruments and a number of the instrument manufacturing companies including
Hewlett Packard, Tektronix, Rohde & Schwarz, and Anritsu, has developed a set of

FIGURE 5.20

FIGURE 5.21

©2001 CRC Press LLC

standards and requirements for “generic” drivers. The IVI Foundation is an evolving
group that is open to end users and interested parties. Anyone who is interested in
joining can find more information on the IVI Foundation Web site (

www.ivifounda-
tion.org

).
The goal of the IVI Foundation was to build upon the standards set by the VXI

Plug&Play Systems Alliance. The VXI Plug&Play standards promote multivendor
interoperability by standardizing the instrument commands for all VXI instruments.
IVI instruments will go one step further by trying to standardize an instrument type
regardless of format. A power supply would have the same API regardless of the
standard (GPIB, Serial, VXI, other) or the manufacturer.

IVI drivers are not language specific. By using DLLs to convert the commands
from a uniform API to the required instrument code, there is a wide range of
programming languages that can be used. LabVIEW and LabWindows/CVI are both
capable of using IVI drivers; however, the DLLs can only be written using LabWin-
dows. Due to the use of DLLs, IVI drivers are not platform independent. If you do
not want to write your own drivers, or are not using LabWindows/CVI, a library of
IVI drivers is available from National Instruments. In order to install the IVI driver
library your PC needs to be running LabVIEW 5.1.

5.9.1 F

IVE

 C

LASSES

OF

 IVI D

RIVERS

The initial rollout of the IVI standards encompasses five classes of IVI drivers. The
five classes are the Oscilloscope, Digital Multi-Meter (DMM), Arbitrary Wave-
form/Function Generator, Switch, and Power Supply. New classes may be defined
as the technology advances.

Let’s look at the DMM class as an example. The IVI driver for the DMM class
(IviDmm) is designed to operate a typical DMM, as well as support advanced
functions found in the more complex instruments. The IVI class description divides
the DMM into two sections: fundamental capabilities and extensions. The funda-
mental capabilities cover functions like reading a measurement or setting a range.
An extended capability would be like setting auto-range, making multiple measure-
ments, or other advanced features not available on all DMMs. For the DMM, there
are three groups defined. Groups refer to the defined classification of commands.
Table 5.2 shows the groups defined for a DMM in the IVI documentation.

TABLE 5.2
IviDmm Group Names

Group Name Description

IviDmm Fundamental Capabilities: complies with the IviDmm fundamental
capabilities

IviDmmMultiPoint Extension Group: IviDmm with the capability to accept multiple
triggers and acquire multiple samples per trigger.

IviDmmDeviceInfo Extension Group: IviDmm with the capability to return attributes
that give extra information concerning the instrument’s state, such
as accuracy and aperture time.

http://www.ivifoundation.org/
http://www.ivifoundation.org/

©2001 CRC Press LLC

5.9.2 I

NTERCHANGEABILITY

This section will discuss how IVI drivers allow for instrument interchangeability.
One of the problems that has been seen in production testing for a long time is the
lack of instrument interchangeability. This problem can arise for a number of reasons.
An instrument that needs to be taken out to perform calibration or maintenance is
one example. Other possible scenarios are when an instrument needs to be replaced
and is no longer available; if the test system developer wants to use an instrument
from another manufacturer; if the test software is going to be used by a group in
another area with their own set of instruments. These issues are problems because
the test software would have to be altered to replace an instrument with one from
another manufacturer, or a newer model with new functions and commands. These
problems force test system developers to stay with the same system instead of
improving or cost reducing. The ability to change instruments would allow greater
flexibility. The first benefit of IVI drivers is the ability to interchange instruments.
A power supply from a different manufacturer can replace the existing power supply
without changing the test software. This will allow the development of a generic
test station; users would be able to change instruments based on availability and
cost. Figure 5.22 displays the IVI hierarchy for the program, class driver, and IVI-
specific driver.

5.9.3 S

IMULATION

This section will discuss how an IVI driver can be used in simulation mode to allow
debugging and input checking without the instrument being connected to the com-
puter. When a programmer is developing software, the ability to incrementally debug
the code is a technique that helps reduce development time. This would be an
implementation of the spiral software development model. There is a full discussion
of software development models (spiral and waterfall) in Chapter 4. By using IVI
drivers in simulation mode, the test code can be debugged without the instrument
being connected to the computer. The driver will return an instrument handle to

FIGURE 5.22

©2001 CRC Press LLC

allow a program using VISA to run without the instrument physically present. The
user can also use the driver in simulation mode to choose the measurement that will
be returned to the test program. This will allow the designer to test the program’s
response to common and unusual measurements returned by the instrument. The
measurement returned can be set to random number generation within a range.

When using instrument-specific drivers, another feature is realized. The devel-
oper can perform range and status checking while developing the software. The
driver will verify that the inputs sent to the instrument are within the specifications
of the instrument. These are options that can be turned on or off. Turning on the
range-checking feature helps the developer debug the test software. Turning off
range-checking allows for faster execution time when the program is run in the final
environment.

5.9.4 S

TATE

 M

ANAGEMENT

This section discusses how an IVI driver can speed up an application when state
caching is used. One problem encountered when programming a test application,
particularly when utilizing state machine architecture, is the lack of knowledge of
the instrument’s current state. The user will not know what state the instrument is
in at a given time, requiring the programmer to set all necessary configurations, even
if the instrument is already configured properly. This can add substantial time to a
test application.

The solution is to use state caching. This can be performed when using LabVIEW
or LabWindows/CVI Version 5.0. When using state caching, the last setting for
each function on an instrument is stored. When the driver goes to change the setting
of a function, the driver checks to see what the last known state of that function
was. If the setting is the same, the driver will not execute the command. The driver
also tracks changes in settings when different screens are displayed.

5.9.5 IVI D

RIVER

 I

NSTALLATION

When the IVI driver CD is inserted into the drive, the IVI Driver Library Installation
interface starts. In the interface you have the options of viewing the release notes,
installing the IVI driver library, installing instrument drivers, and browsing the CD.
To install the IVI software you will need to click the IVI Driver Library Installation
selection. This will begin the standard installation interface. After making the typical
selections, a selection screen will appear. The installer will prompt you to select the
instrument drivers to install. This is the initial place to obtain and install the IVI
instrument drivers. There are a number of items on this installer screen. On the left
of the screen is a selection for the IVI class. On the right side is a listbox containing
the specific drivers. In order to install the drivers you need to use in your develop-
ment, you must first select the desired IVI class. This will list the available IVI
drivers in the specific driver input. In the specific driver input is the list of available
drivers with a checkbox selection on the left of the individual drivers. To select the
needed driver, you need to select the appropriate checkbox.

©2001 CRC Press LLC

In addition to the IVI class input and the specific drivers input, there are three
additional options on the IVI driver installation screen. There is a button to select
all instrument drivers, a button to deselect all instrument drivers, and a control to
replace the existing drivers. This control can be set to either replace the instrument
drivers currently installed with the IVI drivers, or to leave the existing instrument
drivers. This is an important selection if you have made modifications to the
current standard drivers; it will prevent the IVI installation from overwriting your
changes.

The IVI installation will set up three categories of software. The installation
categories are instrument drivers, utilities, and driver software. The instrument driver
installation includes the IVI class drivers, the IVI class simulation drivers, and the
IVI-specific drivers. The utility installation includes NI Spy, the Virtual Bench
software, and the Measurement and Automation Explorer. The driver software
includes the IVI engine, NI VISA, NI DAQ, and the CVI run-time engine. When
the installation is complete, the computer will need to be restarted.

5.9.6 IVI C

ONFIGURATION

The first step, after installing the IVI software, is to run the IVI Configuration Utility.
The IVI Configuration Utility can be started by double-clicking the Measurement
& Automation icon on the Windows desktop, or by selecting the utility from the
National Instruments IVI Driver Library folder in the Programs folder in the Start
menu. The IVI configuration utility has a display similar to the Windows Explorer
program. Figure 5.23 shows the IVI Configuration Utility Window.

 There are four categories of IVI configuration items in the IVI folder. The main
sections are Devices, Instrument Drivers, Logical Names, and Virtual Instruments.
Inside the Virtual Instruments folder is a folder containing a Simulation Virtual
Instruments folder. Inside the Instrument Drivers folder is the Class Drivers folder
and the Simulation Drivers folder. Additionally, there is a utility for Creating a
Logical Name in the main IVI folder.

To add an item to any of the IVI configuration folders, you can either right-
click on the folder and select Insert or click on the

Insert

 button that appears when
you are inside a folder. When Insert is selected, an Insert Wizard launches. The
wizard will walk you through the steps required to add an item to the folder you
have selected. To edit the properties of an item in the IVI configuration files you
can either right-click on the item and select the Properties option, or double-click
on the item.

The configuration information for the IVI settings are stored in a file named
“ivi.ini.” The default directory of this INI file is located in is the Vxipnp folder.
By storing this information in an INI file, the ability to create multiple configu-
rations becomes possible. The developer can create multiple INI files with the
desired settings. The INI file can be opened from the IVI Configuration utility by
selecting Open from the File menu. Here you are able to open or create a new
INI file.

©2001 CRC Press LLC

5.9.7 H

OW

TO

 U

SE

 IVI D

RIVERS

IVI class drivers are used in the same manner as standard instrument drivers. The
IVI class drivers can be found in the Instrument I/O subpalette of the Functions
palette. Each type of IVI class driver has its own subpalette. Each subpalette contains
an Initialize and Close VI. There are also groups of VIs to perform instrument
configuration, instrument functions, and utility functions that are necessary for the
specific class driver. The developer can use these class drivers like typical VISA
drivers. The programmer would put an Initialize VI on the diagram first. The main
input to the Initialize VI is the logical name. The logical name is what tells the
LabVIEW program what instrument and drivers to reference. As you will recall, in
the setup of the IVI configuration items, the logical name references a particular
virtual instrument. These logical names can be altered as needed using the Config-
uration utility. It is recommended that you set the name initially after installation
and do not change it often. Applications that have been developed use this name,
and may not work once the logical name has been altered. The virtual instrument
refers to a specific driver in the Instrument Drivers folder, and a device. The specific
driver then specifies the DLL containing the code module used to communicate with
the device. The VIs associated with the instrument driver are placed in the Instrument
Drivers palette during the installation.

FIGURE 5.23

©2001 CRC Press LLC

The Initialize VI also has inputs to do an ID query and reset the instrument. The
outputs of the VI are the Instrument Handle and the Error Out. The Instrument
Handle can be passed throughout the VI and subVIs, just like a standard VISA
instrument handle. Once the instrument is initialized, the functions required to
perform the necessary programming task can be accomplished in two ways: the user
can utilize the function VIs from the class driver subpalettes or make use of the
LabVIEW Property node. When doing IVI driver configurations, the LabVIEW
Property node is used in the same manner as ActiveX controls. As with all applica-
tions using communications, the final step is calling the Close IVI Class Driver VI.
The following diagram shows an IVI example written with standard VIs and with
the Property node. The VIs perform exactly the same function. Figure 5.24 illustrates
the IVI example with and without the Property node.

5.9.8 IVI V

IRTUAL

 B

ENCH

The IVI Virtual Bench VIs were designed to simulate the front panel of an instrument.
The main use for the Virtual Bench VIs (or soft panels) is manual instrument control.
The user can use the Front Panel VI to manually control the instrument. The

TABLE 5.3
IVI Configuration File Types

Folder Description

IVI

This folder contains the application used to create logical names.
The remaining folders are also contained in this folder.

Devices This folder contains a list of devices used with the defined
instrument address included.

Instrument Drivers
Class Drivers Contains the default class driver references. The class driver uses

the default simulation virtual instrument when simulation is
enabled, unless the configuration specifies a different simulation
virtual instrument.

Simulation Drivers Contains IVI simulation driver configurations. These configurations
specify a code module (usually a DLL) that a class driver can use
to simulate a device.

Logical Names This folder contains the logical names. The logical names are used
to reference a specific virtual instrument in the Virtual Instruments
folder. The logical name is what is used to change which IVI driver
is loaded when a new reference is opened.

Virtual Instruments A virtual instrument is a reference to a specific driver in the
Instrument Drivers folder and a specific device in the Devices
folder. The properties configuration also has inputs for specifying
attribute settings.

Simulation Virtual
Instruments

The simulation virtual instrument refers to a simulation driver in
the Simulation Drivers folder and supplies the initial attribute
settings for the driver.

©2001 CRC Press LLC

similarity of the Virtual Bench VI to the actual instrument interface allows the user
to be familiar with some of the function immediately. The key is when the specific
type of instrument changes. If a Hewlett Packard oscilloscope is replaced with a
Tektronix oscilloscope, the user should still be able to control the instrument with
no noticeable change. Since the interface is the same, there are no new knobs or
menus to learn. The IVI configuration files do all the work.

5.9.9 IVI D

RIVER

 E

XAMPLE

The information above can become confusing. Every name seems to include either
virtual, instrument, or driver. In addition, each type of file references one or more
of the other IVI file types. In order to alleviate some of the confusion, an example
will be provided to help clarify things. It should be noted that there are a few
examples that come with the IVI library. The examples are contained in the following
path: labview\examples\instr\iviClass.llb.

For this example we will be simulating an oscilloscope using the IVI drivers.
The first step is to create a logical name. In the IVI Configuration utility we need
to go to the Logical Name folder and select Insert. The Logical Name Wizard will
prompt you for a name and description. For this example we will call the instrument
“scope.” After typing “scope” into the name field and entering a description, you
should click on

Next

. The Wizard will then prompt you for a virtual instrument to
associate with the name. We will use an existing virtual instrument. The selections
available in the pull down menu depend on the drivers you loaded when you installed
IVI. The virtual instrument we selected was the HP54645-Hewlett Packard Oscil-
loscope. After you click on the Next button, the Wizard will prompt you for a device
to associate with the virtual instrument. You can use an existing device, create a new
device, or choose “None” (simulate the device). For this example we will simulate
the device, so “None” was selected. The final step is to confirm the selections. You
are free to go back to any previous step at any time prior to clicking on Finish.

FIGURE 5.24

©2001 CRC Press LLC

If you go to the Logical Name folder, you will see the “Scope” name has been
added. If you right-click on the name you can access the properties. On the summary
page you can modify virtual instrument properties by clicking on the Properties
button. You also have the ability to change the virtual instrument that this name
refers to. This is where you would make the modification if an instrument were
exchanged for another in your equipment rack. If the program were written properly,
with only class drivers being used in the code, no modifications would be necessary
to the application. In the Virtual Instrument tab of the Properties window, the
programmer can change the specific driver or device. For example, if we were going
to use a real oscilloscope, the device could be changed here.

The Inherent Attributes tab of the virtual instrument properties has two sections:
Operations and Simulation. The Operation section allows the programmer to select
options such as Range Checking and Query Instrument Status. The default is All
Operations Selected. The Simulation section enables data simulation. The program-
mer has the choice of using the class driver or the specific driver for the output data
simulation. We will be using the class driver for this example. The programmer also
has the opportunity to either modify or change the simulation virtual instrument and
its settings. If you click on the Properties button, the Simulation Virtual Instrument
Properties window comes up. If you go to the Default tab, you will notice that the
instrument default settings are configured here. You can go through the list of
properties and change default values to match your instrument defaults. We will
leave the current settings.

Going back briefly, the remaining two tabs of the Virtual Instrument Properties
are the Channels and the Default Setup. The Channels tab allows the programmer
to associate a virtual channel name with the specific channel string. The Default
Setup tab allows the programmer to configure attribute settings outside of the
application. The attribute settings selected here will be applied to the instrument
after the Initialize function is called. This feature allows the programmer to set initial
settings of instruments without code in the VI. When an instrument with different
initial settings is used, the Default Setup can put the instrument into a known state
without changing the application.

Now that the IVI configurations are set up, the application can be written. As
has been mentioned before, only IVI class drivers should be used in the application
to reduce the amount of modifications if a new instrument is used. This example is
based on the IviScope example that comes with the IVI library (Acq Wfm Edge
Triggered). The first coding step is to put the Initialize VI for the IVI oscilloscope
class on the code diagram (IviScope Initialize.vi). For the logical name input, a
string constant or control with the text “Scope” should be wired to the first terminal.
The inputs for ID query and reset device are both defaulted as “true.” And, as always,
the Error In cluster should be wired to the final terminal of the input connector.

Once the instrument is initialized, the inputs for the vertical and horizontal
parameters need to be configured. In addition to the scope parameters, the triggering
inputs need to be set. For this example, we will be using the Property node to
configure the necessary parameters instead of the class drivers. The first code diagram
is shown in the following figure. The first trial of this VI used one Property node to
set all of the vertical, horizontal, and triggering parameters. Selecting the item from

©2001 CRC Press LLC

either the ActiveX subpalette or the Application Control subpalette of the Function
palette created the Property node. By using the positioning tool, you are able to
increase the number of inputs by pulling the bottom corner down. The same task
could also be accomplished by right-clicking on an input and selecting Add Element.
A control was created for each input that was necessary with the appropriate default
values being set. Figure 5.25 displays the Scope Example Code Diagram 1.

After setting the chart and triggering parameters, the class VI to determine the
actual number of data points to acquire. The output of this VI is then wired to the
IviScope Read Waveform VI. The data from the Read Waveform VI is then bundled
together and wired to the waveform graph on the front panel. Another minor change
to the National Instruments example is the insertion of the IviScope Error Query
VI. This is to illustrate the VXI Plug&Play Functions simulation. Finally, the Instru-
ment Close VI is added to the code diagram.

Now it is time to debug our driver. The best method for debugging an application
like this is to use the NI Spy utility to monitor the instrument communications. The
NI Spy was discussed earlier in this chapter. There are a couple of IVI-specific items
that need to be mentioned. When you go to the Spy menu of the NI Spy utility you
will notice the installed IVI drivers available in the monitor list. For this example
we will want to turn off the NI-VISA and the NI-488.2 monitoring options. They
are being turned off to aid in interchangeability checking. If those items are turned
off, any items with conflicts will be listed in blue. This will aid in spotting conflicts
without having to go through all of the items captured. Once Capture has been turned
on, we are ready to test our application.

When we press the Start button, the program starts executing. When the Con-
figuration VI runs, the IviScope Simulator Setup screen appears. The IviScope
Simulator Setup is shown in the following figure. There are a number of options
available to you. The first option at the top of the window is View. There are three
options to the view: Measurement Data simulation, VXI Plug&Play Functions

FIGURE 5.25

©2001 CRC Press LLC

simulation, and Status Codes simulation. For this portion of the debugging we will
be using the Measurement Data simulation only. Below the View selection is a
checkbox for always prompting for output data. If the user wants this window to
appear every time a measurement or status check is required, the checkbox should
be selected. If the user only wants to set up the parameters at the beginning and let
the program handle the rest, deselect the checkbox. For this driver simulation there
are also selections for the parameters necessary for a waveform generator. This
waveform will allow the program to receive measurable data. The IviScope Simulator
is shown in Figure 5.26.

For this testing we will leave the default sine wave and deselect the checkbox
for prompting when data is required. As you should now be aware, there is an error
in the application. A message box comes up stating that an error occurred at the
tenth argument of the Property node. The listed possible reasons are that a Null is
required for the channel name when setting an attribute that is not channel-based.
The message box also lists the bad attribute. Clicking Continue will close the
message box and complete the execution. Since the horizontal parameters and the
triggering parameters are not channel-based, they cannot be on the same property
node as the vertical parameters. Figure 5.27 shows the modified code diagram that
corrects this programming error.

 Before we move on with the testing, let’s take a look at the API captures from
the NI Spy utility. The NI Spy display is shown in Figure 5.28. The tenth entry in
the list is the attempt to write the horizontal time per record parameter to the scope.
Because an error occurred in this step, the line is in a red font. Double-clicking on
the line opens up the Properties box. In the Properties box you can see what the
inputs and outputs of the communications were. If you click on the Output tab,
you will see the instrument returned the following error statement:
(IVI_ERROR_CHANNEL_NAME_NOT_ALLOWED). This is followed by a
description in the text box below the error statement.

Now that we have modified our VI, we can attempt to run the application again.
This time we will again deselect the Prompting for Output Data checkbox. Before
clicking “OK,” change the view to the VXI Plug&Play Function Simulation selec-
tion. In the section labeled “Pass the results you want the error query function to
return” we will inject an error code and message. By doing this in a real application,
you can test your codes ability to handle specific errors. This is especially important
when doing error recovery in a state machine. This tool will allow you to test the
error paths to ensure that proper actions are taken. After pressing “OK” you should
be able to verify that the program returned the error code and message. In addition,
the desired sine wave is displayed on the front panel.

The final step in the debugging process is verifying the communications in the
NI Spy program. When you open the Capture window you should notice something
different. One of the API calls is in a blue font. This is indicating that there is an
interchangeability warning. If you double-click on the item to open the Properties
window, you will see the Interchange Warnings tab. Listed on this tab are warnings
about certain parameters that were not set. The reason this may be an issue is the
differences between instruments. Some instruments have different default values. In
order to ensure an application will work with whatever instrument is inserted, some
parameters should be set even if it is the current instrument’s default value.

©2001 CRC Press LLC

FIGURE 5.26

FIGURE 5.27

©2001 CRC Press LLC

Additional simulations can be accomplished using the third and final option of the
IviScope Simulator. The third view is the Status Codes Simulation display. By default,
the status codes are not simulated. If the checkbox is selected, the list of functions
becomes visible. In the column next to the function list is the corresponding status
macro. This is the response the simulated driver returns to the program when the
corresponding function is executed. The default setting is ALL VI_SUCCESS with a
status value of 0. In order to change the return value, you first need to select a function.
After a function is selected you can select a status macro to assign to the function by
using the Status Code Macro ring control. The new status macro you select along with
the default status value will be passed to the program when the specified function is
called. You can change the status value as well by using the Custom Status Code input.
This can add even more error checking to your arsenal. Give it a try.

BIBLIOGRAPHY

LabVIEW Graphical Programming- Practical Applications in Instrumentation and Control.
Gary W. Johnson, McGraw-Hill, New York, 1997.

G Programming Reference, National Instruments
Data Acquisition Basics Manual, National Instruments
Code Interface Reference Manual, National Instruments
IVI-1: Charter Document, IVI Foundation
IVI-5: IviDmm Class Specification, IVI Foundation
Developing COM/ActiveX Components with Visual Basic 6, Dan Appleman, SAMS, 1998.
Using TCP/IP. John Ray, QUE Corporation, Indianapolis, 1999.
Application Note No. AN006, Developing a LabVIEW Instrument Driver, National Instruments

FIGURE 5.28

©2001 CRC Press LLC

Application Note No. AN087, Writing Win32 Dynamic Link Libraries (DLLs) and Calling
Them from LabVIEW, National Instruments.

Application Note No. AN111, LabVIEW Instrument Driver Standards, National Instruments.
Application Note No. AN120, Using IVI Drivers to Simulate Your Instrumentation Hardware

in LabVIEW and LabWindows/CVI, National Instruments.
Application Note No. AN121, Using IVI Drivers to Build Hardware-Independent Test Systems

with LabVIEW and LabWindows/CVI, National Instruments.
Application Note No. AN122, Improving Test Performance through Instrument Driver State

Management, National Instruments.

Bitter, Rick et al "Exception Handling"
LabVIEW Advanced Programming Techinques
Boca Raton: CRC Press LLC,2001

6

©2001 CRC Press LLC

Exception Handling

Code is often written without considering the potential that an error might occur.
When events occur that an application is not expecting, problems arise. Then, during
the debugging phase, an attempt is made to go back to the code and implement some
error traps and correction. However, this is usually not sufficient. Exception handling
must be taken into account during the early stages of application development. The
implementation of an error handler leads to more robust code.

This chapter discusses errors and the topic of exception handling in LabVIEW.
First, exception handling will be defined along with its role in applications. This
explanation will also clarify the importance of exception handling. Next, the different
types of errors that can occur will be discussed. This will be followed by a description
of the available LabVIEW tools for exception handling, as well as some of the
debugging tools. Finally, several different ways to deal with errors in applications
will be demonstrated.

6.1 EXCEPTION HANDLING DEFINED

Exceptions are unintended or undesired events that occur during program execution.
An exception can be any event that normally should not take place. This does not
mean that the occurrence of the exception is unexpected, but simply should not
happen under normal circumstances. An error results when something you did not
want to happen, does. Therefore, it makes sense to make alternate paths of execution
when exceptions take place. When exceptions or errors occur, they must be dealt
with in an appropriate manner.

Suppose that you have written a program in which you divide two variables,
Integer x by Integer y. The resulting quotient is then used for some other purpose.
On some occasion, y may be set to zero. Some programs do not trap errors such as
dividing by zero and allow the CPU to throw an exception. In LabVIEW the result
of this division is undefined. LabVIEW returns the result Inf, or infinity, in this case.
This is an example of an unexpected and unintended outcome. Infinity can be
converted successfully into a word integer in LabVIEW. If the value is converted
for other uses, several other errors can result. This is an example of a simple error
that has to be managed using exception handling.

Exception handling is needed to manage the problems or errors that occur. It is
a mechanism that allows a program to detect and possibly recover from errors during
execution. Exception handling leads to more sound code by planning ahead for
potential problems. The ability of an application to respond to unexpected events is
critical. The implementation of an error handler increases the reliability of the code.

©2001 CRC Press LLC

It is difficult to prepare for all the possible errors that might occur, but preparing
for the most probable errors can be done without much effort.

You can write your code to try to catch as many errors as possible, but that
requires more code to implement. After a certain point you will have more code
involved in catching errors than you do for performing the task that you originally
set out to do. The exception handling code itself may sometimes contain errors. You
also create a problem of what to do when the error is caught.

Error detection and error correction are two different activities, but are both part
of exception handling. Error detection consists of writing code for the purpose of
finding errors. Error correction is the process of managing and dealing with the
occurrence of specific errors. First you have to catch the error when it occurs, then
you have to determine what action to take.

Performing error detection is useful for debugging code during the testing or
integration phase. Placing error checks in the code will help find where the faults
lie during the testing phase. The same detection mechanisms can play a dual role.
The detection mechanism can transfer control to the error handler once the handler
has been developed. This will be beneficial if you are using an iterative development
model, where specific features can be added in each cycle.

Exception handling is performed a little differently in each programming lan-
guage. Java uses classes of exceptions for which the handler code can be written.
For example, an exception is represented by an instance of the class “Throwable”
or one of its subclasses. This object is used to carry information from the point at
which an exception occurs to the handler that catches it. Programmers can also
define their own exception classes for their applications.

C++ uses defined keywords for exception handling: Try, Catch, and Throw. The
Try and Catch keywords identify blocks of code. Try statements force the application
to remember their current location in the call stack and perform a test to detect an
error. When an exception occurs, execution will branch directly to the catch block.
After the catch block has executed, the call stack will be "rolled back" to the point
where the program entered the Try block.

LabVIEW provides some tools for error detection. But just like other program-
ming languages, implementation of exception handling code is left to the program-
mer. The following sections will guide you in creating error handling code for your
application. Chapter 10 covers topics relating to Object-Oriented Programming,
including definitions for object, class, and subclass, but exception handling in Java
and C++ are beyond the scope of this book.

6.2 TYPES OF ERRORS

Errors that occur in LabVIEW programs can be categorized into either I/O-related or
logic-related. I/O errors are those that result when a program is trying to perform
operations with external instruments, files, or other applications. A logical error is the
result of a bug in the code of the program. The previous example of dividing an integer
value by zero is a logical error. These types of errors can be very tricky to find and
correct. Both I/O- and logic-related errors are discussed in the following sections.

©2001 CRC Press LLC

6.2.1 I/O E

RRORS

Input/Output encompasses a wide range of activities and VIs within LabVIEW.
Whether you are using communication VIs (TCP, UDP, DDE, ActiveX, OLE, PPC,
AppleEvent), data acquisition, instrument I/O, or file I/O, there is a possibility that
you will encounter related errors.

I/O errors can be the consequence of several things. The first circumstance that
can cause this type of error is improper initialization or configuration of a device or
communication channel. For example, when performing serial communication, the
baud rate must match between the external device and the controller. If this initial-
ization is performed incorrectly an error will result. For some devices a command
must be sent to put them into remote mode, which will allow communication with
the controller. When reading or writing to a file, the file must be opened first.
Similarly, when writing to a database, a connection has to be established before
records can be inserted. Initialization can also include putting an instrument or device
into a known state. Sometimes this can be done by simply sending a reset command,
after which the device will enter a default state.

A second cause of I/O errors is simply sending the wrong commands or data to
the instrument or application. When invalid data is sent, a write error will result.
Some devices simply ignore the data while others return an acknowledgment. This
can play a role in what type of correction and handling you perform. When data is
being communicated to an external device, you have to ensure both the correct data
and the correct format are being sent. You must adjust the information you are
sending to suit what the device is expecting to receive. Typographical errors can
also be classified in this section.

Another I/O-related error takes place when there is a problem with the instrument
or application being used. When dealing with applications or files, this can occur
for several different reasons. The file may not be in the specified path or directory.
Alternatively, you may not have the needed file permissions to read or write to the
file. Instrument I/O errors of this nature usually occur if the instrument is not
powered-on or not functioning properly. A similar problem happens when the instru-
ment locks up or freezes. Power cycling may return it to a known state and make
it operational again. These types of errors can also be a result of incorrectly config-
uring the external device. Instruments can give odd measurements when they are
not configured appropriately.

Missing hardware or software options can be a source of I/O errors. You may
also need to check if you have the correct interface drivers installed. Interface
incompatibility and component incompatibility should be investigated.

6.2.2 L

OGICAL

 E

RRORS

Logical errors happen when there are faults in the code itself. The code diagram in
Figure 6.1 illustrates an innocent mistake that can occur. In the While loop, the
programmer intends the loop to stop executing when the temperature reaches 75.0
degrees or higher. However, the loop, as it stands currently, will stop when the
temperature is lower than 75.0. This is an example of an easy mistake that can cause

©2001 CRC Press LLC

an error in applications. These types of problems can be difficult to find and are also
very time consuming. Debugging tools are invaluable when looking for the source
of faults.

Errors can sometimes occur when the inputs specified by the user are not
validated. If the user does not provide reasonable inputs expected by the program,
an error can occur. The application must validate the data to ensure it is within the
acceptable range. For example, the user may have to specify which unit number,
between one and ten, to perform a sequence of tests on. The program has to verify
that only the acceptable range is entered before beginning execution. Unit zero may
not exist for test purposes, therefore the code must check for the appropriate inputs.
Be aware of numeric precision errors and conversion errors which can also be
difficult to track down.

LabVIEW allows the programmer to set acceptable ranges for Numeric, Boolean,
and List & Ring controls. This can be done by popping up on the control and selecting
Data Range from the menu. The programmer also has the option of coercing the input
value so that it is within the valid range. This option is available in the drop-down
box. The coercion option reduces the need to write code for performing the same task.

6.3 BUILT-IN ERROR HANDLING

LabVIEW notifies the user of some run-time errors for instrument and file I/O
operations through dialog boxes. LabVIEW does not deal with the errors and, in
general, leaves exception handling to the programmer. However, LabVIEW does
provide some tools to aid the programmer in exception handling. The first tool that
will be discussed is the error cluster. The error cluster is used in transporting
information from the detection mechanism to the handler. After the error cluster, a
brief description of VISA error handling will be presented. Next, the error-handling
VIs will be considered. There are three error-handling VIs in particular: the Simple
Error Handler VI, the General Error Handler VI, and the Find First Error VI. Section
6.4 will then discuss the implementation of exception handling code.

6.3.1 E

RROR

 C

LUSTER

The error cluster is a detection mechanism provided for programmers. The cluster
consists of a status, code and source. Each of these provides information about the

FIGURE 6.1

©2001 CRC Press LLC

occurrence of an error. The status is a Boolean that returns “true” if an error has
occurred. The code is a signed 32-bit integer that distinguishes the error. The source
is simply a string that gives information on where the error originated. The error
cluster as a whole provides basic details about the error that can be used for exception
handling purposes.

Figure 6.2 shows the Error In and Error Out clusters as they appear on the front
panel. The Error In and Error Out clusters can be accessed through the Array &
Cluster subpalette in the Controls palette. The error clusters are based on National
Instruments’ concept of error I/O. VIs that utilize this concept have both an Error
In control and Error Out indicator, which are usually located on the bottom of the
front panel. The cluster information is passed successively through VIs in an appli-
cation, consistent with data flow programming.

The error clusters can serve a dual purpose in your application. By using error
I/O, the order of execution of VIs can be forced. This eliminates the need for sequence
structures to control the order of execution. Simply pass error clusters through VIs
for detection and order.

When the cluster is passed in to a VI, the VI checks if an error has occurred. If
there is no existing error, execution will continue. The cluster picks up information
on whether an error has occurred during the VI’s execution and passes this infor-
mation to the next VI, which performs the same check. In the simplest case, when
an error does occur in any VI, the VIs that follow and use the cluster should not
execute. When the program completes, the error is displayed on the front panel.

The error I/O concept and the error clusters are easy to use and incorporate in
applications. Many of the LabVIEW VIs that are available in the Functions palette
are based on this concept: the Communication palette VIs (TCP, UDP, DDE, ActiveX,
HiQ), most of the Instrument I/O VIs (VISA, GPIB, GPIB 488.2), and some Data
Acquisition and File I/O VIs use error I/O. By using these VIs and wiring in the
error clusters, much of the error detection work is already done for the programmer.
These built-in VIs provide the detection needed in the lower-level operations. When

FIGURE 6.2

©2001 CRC Press LLC

wiring these VIs on the code diagram, you will notice that the Error In terminal is
on the lower left side of the VI, while the Error Out terminal is on the lower right
side. This is a convention followed by most VIs developed by National Instruments,
and is also recommended when creating drivers.

Figure 6.3 is an example of how the error clusters can be used. The VI uses
GPIB Write and GPIB Read from the Instrument I/O palette. It is a simple instrument
driver that can be used to write data to and read data from an instrument. To perform
error detection, the programmer only has to use the Error In and Error Out clusters
and wire them accordingly in the code diagram. The error detection work is left to
the Instrument I/O VIs. When this driver is needed as part of a larger application,
the error I/O concept is used. Figure 6.4 uses two drivers with the Error In and Error
Out wired. The second VI in the diagram will not execute if an error occurs during
the execution of the first VI. Execution order is forced, causing the second driver to
wait for the error cluster data from the first one. This approach can be applied
successfully to larger applications.

The error clusters can also be used to perform error checks other than those
done by the available LabVIEW VIs. Suppose you are communicating to a device
or application that returns acknowledgments when sending commands and data. An
“OK” value is returned when the data is accepted and valid, and an “NOK” is
returned if the data is invalid or the command is unknown. The LabVIEW VIs do
not perform any check on instrument- or application-specific acknowledgments, only
on general communication errors. Returning to the VI in the previous example, we
can implement our own error check. Figure 6.5 shows how this is done.

The Bundle by Name was used from the Cluster palette to accomplish this. If
the acknowledgment returned does not match “OK,” then the error cluster informa-
tion is altered. The Boolean is made true, the code assigned is 6000, and the source
description is also wired in. LabVIEW reserves error codes 5000 to 9999 for user
defined errors. If the acknowledgment returned matches the expected value, we wire
the error cluster through the “true” case directly to Error Out without any alterations.
The error detection for the correct acknowledgment will now be performed every
time this driver is called.

FIGURE 6.3

FIGURE 6.4

©2001 CRC Press LLC

Figure 6.6, Extra Source Info.vi, shows an example of how to get more infor-
mation out of the error cluster for debugging and error-handling purposes. This VI
adds extra information to the source string of the error cluster. First, the error cluster
is unbundled using Unbundle by Name. The extra pieces of information that will
be added include the time the error was generated and the call chain. Call Chain,
available on the Application Control palette, returns the VI’s call chain all the way
to the top level in string format. The call chain information is useful for user-defined
errors to indicate where the error was generated. These two pieces of data will then
be bundled together with the original source information generated by the error
cluster. You can put any other type of information you would like returned with the
error cluster in a similar manner. It can be used to give the programmer more facts
on the error that may be helpful for debugging. The errors can then be logged in a
text file or database for reference. Error logging is demonstrated in Section 6.4.6
through a basic example.

6.3.2 E

RROR

 C

ODES

A list of possible LabVIEW-generated errors is accessible through the Online Ref-
erence in the Help menu. The errors are listed by the error code ranges and the types
of possible errors. Error codes can be either positive or negative values, depending
on the type of error that is generated. When a zero error code is returned, it indicates
that no error has occurred. Warnings are indicated with a code that is nonzero, while
the status returned is “false.” Table 6.1 contains a list of the error code ranges. Note
that if you are using LabVIEW 5.1, there is an additional list of error codes for VISA
provided in the

LabVIEW Version 5.1 Addendum Manual

 that is shipped with the CD.

FIGURE 6.5

FIGURE 6.6

©2001 CRC Press LLC

A handy tool for looking up error codes is also available through the Help menu
in LabVIEW Version 5.0 and later. When Explain Error is selected, a new window
appears with the error cluster on the left side and a text box on the right side. The
error code can be input either in hexadecimal or decimal format. An explanation of
the error will be provided for the error code in the text box. This tool provides a
quick way to get additional information on an error for debugging purposes.

6.3.3 VISA E

RROR

 H

ANDLING

VISA is a standard for developing instrument drivers and is not LabVIEW-specific.
It is an Application Programming Interface (API) that is used to communicate with
different types of instruments. VISA translates calls to the lower-level drivers,
allowing you to program nonsimilar interfaces with one API. See Chapter 5 on
instrument drivers for more information on VISA.

VISA is based on the error I/O concept, thus VISA VIs have both Error In and
an Error Out clusters. When an error occurs, the VIs will not execute. There is a set
of VISA-specific error codes that can be found in LabVIEW Help. The VISA Status
Description VI can be used in error-handling situations. This VI is available in the
VISA subpalette of the Instrument I/O palette. The VISA Status Description VI takes
the VISA session and error cluster as inputs and returns the status description of the
error that was generated.

When you are using instrument drivers that utilize VISA, there are some addi-
tional errors you may encounter. The first cause may be the result of VISA not being
correctly installed on your computer. If you choose the typical install, NI-VISA is
selected for installation by default. If you have performed the custom install, you
must make sure the selection has been checked. You will not be able to use any

TABLE 6.1
Error Codes

Error Type Code Range

G Function Error Codes 0 to 85
Data Acquisition VI Error Codes -10001 to -10920
Analysis Error Codes -20001 to -20065
TCP and UDP Error Codes 53 to 66
DDE Error Codes 14001 to 14020
PPC Error Codes -900 to -932
LabVIEW Specific PPC Error Codes 1 to 5
AppleEvent Error Codes -1700 to -1719
LabVIEW Specific Error Codes for Apple Events 1000 to 1004
GPIB Error Codes 0 to 32
Instrument Driver Error Codes -1200 to -13xx
Serial Port Error Codes 61 to 65

VISA Error Codes
-1073807360 to -1073807202

1073676290 to 107367443

©2001 CRC Press LLC

VISA VIs unless your system has this option installed. Another cause can be related
to the lower-level serial, GPIB, or VXI drivers that VISA calls to perform the
instrument communication. For example, if you have a GPIB card installed on your
computer for controlling instruments, make sure the software for the card has also
been installed correctly to allow the use of VISA VIs. You can use NI-Spy to monitor
calls to the installed National Instrument drivers on your system. NI-Spy is briefly
explained in Section 5.5.

When using VISA in your application, remember to close all VISA sessions or
references you may have opened during I/O operations. Leaving open sessions can
degrade the performance of your system. You can use Open VISA Session Monitor.vi
to find out the sessions that you have open, and to close the ones that are not being
used. This VI is available in the following directory: \LabVIEW\Vi.lib\Util-
ity\visa.llb. This VI can be helpful while you are debugging an applicaton.

6.3.4 S

IMPLE

 E

RROR

 H

ANDLER

The Simple Error Handler can be found in the Time & Dialog palette in the Functions
menu. This VI is used for error reporting. It is used with LabVIEW VIs that utilize
error I/O and the error cluster. The purpose of the Simple Error Handler is to notify
the operator that an error has occurred, but it can be customized for added function-
ality. It takes the error cluster as input and determines if an error was generated. If
an error has been generated, the VI displays a dialog box with the error code, a brief
description of the error, and the location of the error. The Simple Error Handler
utilizes a look-up table to display the description of the error based on the error code.

As mentioned one of the uses of the Simple Error Handler is for error notification
purposes. The programmer can select the type of dialog box to display by wiring
the corresponding integer or enumerated constant. A value of 1 displays the dialog
box with only the

OK

 button for acknowledgment. A value of 2 displays a button
dialog box with

Continue

 and

Stop

 buttons. This allows the operator to stop execution
of the program. A value of 0 gives no notification to the operator, even when an
error has been generated. This might be used when exception handling is to be
performed elsewhere by using the error?, code out, or source out, outputs from the
Simple Error Handler.

You must keep in mind that this VI will halt execution until the operator responds
to the dialog box. If your intention is to start the program and walk away, the program
will not continue if an error is generated. Dialog boxes should only be used when
the program is being monitored. Consider using e-mail for notification using the
SMTP add-on package as an alternative. Chapter 8 also shows you how to incorporate
the e-mail feature using ActiveX.

Figure 6.7 shows how the Simple Error Handler can be used. This is the same
VI shown in Figure 6.3. Notice that the Simple Error Handler has been merely added
as the last VI in the flow. The value of 2, which corresponds to the two-button dialog
box (Continue and Stop), is being passed to the VI. If an error is detected in either
GPIB Read or GPIB Write, the dialog box will appear displaying the error code,
description, and the source of the error.

©2001 CRC Press LLC

6.3.5 G

ENERAL

 E

RROR

 H

ANDLER

The General Error Handler essentially performs the same task as the Simple Error
Handler. The Simple Error Handler offers fewer choices when used in an application.
The Simple Error Handler is a wrapper for the General Error Handler. The General
Error Handler can be used in the same situations as the Simple Error Handler, but
since the General Error Handler has a few more options, it can be used for other
purposes where more control is desired.

The General Error Handler allows the addition of programmer-defined error
codes and corresponding error descriptions. When these arrays are passed in, they
are added to the look-up table used for displaying error codes and descriptions.
When an error occurs, the possible LabVIEW-defined errors are searched first,
followed by the programmer-defined errors. The dialog box will then show the error
code description and specify where it occurred.

The General Error Handler also offers limited exception handling options. The
programmer can set the error status or cancel an error using this VI. An error can
be canceled by specifying the error code, source, and the exception action. Set the
exception action to Cancel Error on Match. The look-up tables are searched when
an error occurs. When a match is found, the error status is set to “false.” In addition,
the source descriptor is also cleared and the error code is set to zero in the output
cluster. Similarly, when the status of the Error In is “false,” it can be set to “true”
by passing the exception action for the error code and source.

6.3.6 F

IND

 F

IRST

 E

RROR

The Find First Error VI is also found in the Time & Dialog palette in the Functions
menu. The purpose of this VI is to create an Error Out cluster. It takes the following
inputs: Error Code Array, Multiline Error Source, and Error In Cluster. When the
Error In status is “false” or is not wired in, the VI tests to see if the elements of the
error code array are nonzero. The VI bundles the first nonzero element, the source,
and a status value of “true” to create the Error Out cluster for passing back out.
Since the source is a multiline string, the index from the array of error codes is used
to pick the appropriate error source for bundling. If an Error In cluster is passed in,
then a check is first performed on the cluster’s status. When the status is “true,” the
Error In cluster will be passed back out and the array check will not be performed.

Find First Error is practical for use with LabVIEW VIs that do not utilize error
I/O but pass only the error code value out. The following are some VIs that output

FIGURE 6.7

©2001 CRC Press LLC

only the error code: serial I/O VIs, PPC VIs, AppleEvent VIs, and some Analysis
VIs. The Find First Error VI can be used to convert the error code from these VIs
to a cluster. The error cluster can then be used in conjunction with other VIs that
utilize error I/O.

Figure 6.8 is an example of how the Find First Error can be used. Both the Bytes
at Serial Port.vi and the Serial Port Read.vi pass an error code out. An array is built
with the two error codes that are passed out. A multiline string for the source is also
created in the example. The source will give information on the origin of the error.
The Find First Error.vi assembles the error cluster and passes it to Error Out. If an
error has occurred, the first error that occurred will be sent to the Error Out cluster. If
no error was generated, the Error Out cluster will contain a “false” status Boolean, no
error code, and an empty source string. The error cluster can then be passed to the
General Error Handler or the Simple Error Handler to display a dialog box if needed.

6.4 PERFORMING EXCEPTION HANDLING

Exception handling encompasses both the detection of errors and the treatment of
the errors once they have been found. The previous sections presented several types
of errors that can occur, as well as the built-in LabVIEW functions that are available
for exception handling. This section will illustrate different approaches that are
effective for managing errors. The effectiveness of an error handler can be improved
by building it into your application during the early stages of development. It will
support the readability and maintainability of your code, as well as code reuse. When
error handling is not considered while you are architecting the application, the
handling code will consist of patches for each exception.

You may have some questions about the implementation of exception handling
code in order to make the handler both efficient and effective. When should error
detection, reporting, and handling be performed? What should the application do
when an exception is detected? Where and how should it be implemented? The
following subsections will address the where, how, and what on exception handling
approaches for your application.

6.4.1 W

HEN

?

The question of when to implement is a little bit trickier and depends on the specific
situation or application being developed. This may vary depending on the objective

FIGURE 6.8

©2001 CRC Press LLC

of the application, the amount of time available, the programmers’ intent, and several
other factors. Some areas of an application that need handling may be easier to
identify than others. You may be able to identify areas where errors cannot be
tolerated, or where errors are prone to occur, through past experience. These are
definite targets for error detection, reporting, and handling.

To answer this question as completely as possible, you must also look at specific
instances in an application to determine what alternative scenarios are foreseeable
as well as their possible consequences. To illustrate this point, consider an example
in which you must open and read or write to a file using an I/O operation. To answer
if exception handling code is needed, and maybe even what is needed, think about
the following scenarios and consequences. What will happen if the file that is being
written to cannot be opened? What happens if the read or write operation fails?
What happens if the file cannot be closed? Answering these questions will help put
the need for handling into perspective for the application. It will also help you look
at the application and determine where the exception handling activities are needed
by asking similar questions. Error handling will definitely need to be implemented
if the file I/O operation is crucial to the application, and if other parts of the program
are dependent on this activity being successful.

6.4.2 E

XCEPTION

-H

ANDLING

AT

 M

AIN

 L

EVEL

To answer the “where” question, exception handling should be managed at the Main
Level or Test Executive level. The Main Level controls and dictates program flow.
By performing exception handling at the Main Level, the program execution and
control can be maintained by the Top Level. This is important because the exception
handler code may alter the normal flow of the program if an error is detected. You
may want the code to perform several different actions when an error has occurred.
When exception handling is performed at lower levels, program control must also
be passed to the lower levels. This is a good reason why the implementation of an
exception handler should be considered when architecting the application. Applica-
tion structure and processes for application development are discussed in Chapter
4. Reading Chapter 4 will help you get a better perspective on how to approach the
development of an application and other topics that must be considered before you
begin.

Performing exception handling at the Main Level also eliminates the need for
duplicating code in several subVIs. This permits the error handler code to be located
in one place. The separation of error handler code from the rest of the code reduces
confusion and increases readability and maintainability. Logical flow of the program
will be lost in the clutter when error handling is performed with the rest of the code.
This is explained further in Section 6.4.6 on exception handling with state machines.

The suggested style is similar to other programming languages where Error
Information is sent to a separate piece of code for handling purposes. As mentioned
earlier, both Java and C++ have a separate section that performs the error handling
after the evaluation of an error is completed. There is no such mechanism inherent
in LabVIEW, but this approach resembles it.

©2001 CRC Press LLC

6.4.3 P

ROGRAMMER

-D

EFINED

 E

RRORS

Defining errors was briefly discussed in Section 6.3.1 along with the error cluster.
The ability to define errors is significant because LabVIEW leaves application-
specific error handling to the programmer. As mentioned earlier, error codes 5000-
9999 are dedicated for use by the programmer. The programmer must perform error
checking in circumstances where faults cannot be tolerated, as was shown in Figure
6.5. An error code must then be assigned to the error check as well as a source string
to indicate the origination.

When implementing a programmer-defined Error In a subVI or driver, you must
make sure that an error was not passed in. Simply unbundle the error cluster and
check the value of the status Boolean. If an error was passed in, but you fail to check
the status, you may overwrite the error cluster with the new Error Information that
you implemented. This will make it nearly impossible to find the root of the problem
during the debugging phase. You must also make use of shift registers when using
error clusters within loop structures to pass data from one iteration to the next. If
shift registers are not used, error data will be lost on each iteration.

Records must be kept of the error codes that have been assigned by the user. A
look-up table can be created that contains all of the error codes and sources assigned.
This can then be used with the General Error Handler or with other exception
handling procedures. It may be a good practice to maintain a database or spreadsheet
of user-defined error codes. A database facilitates the management as the number
of codes grows in size.

When you are assigning error codes, you can group similar errors into specified
ranges. This is helpful when deciding the course of action when errors occur. For
instance, you can set aside error codes 6000-6999 for incorrect acknowledgments
from instrument I/O operations. When an error in this range occurs, you can identify
it and decide how to deal with it easily. LabVIEW-generated errors are grouped in
a similar manner to facilitate their identification and management.

User-defined warnings can also be assigned codes to indicate that an undesired
event has occurred. You can use these to signal that the data taken may not be entirely
valid due to the occurrence of some event during application execution. The user
can investigate the source of the warning further to determine the validity of the
data. Multiple errors can be reported and handled by unbundling the error cluster
and appending the new information.

6.4.4 M

ANAGING

 E

RRORS

Once you have a list of the errors that you want to deal with that can be detected,
you have to decide what to do with them if they occur. When an error occurs it
should passed to the exception handling code. The exception handling code can deal
with the errors in different ways. Expanding on the idea of grouping similar errors,
the code can check to see what range the error has fallen in to determine the course
of action. Figure 6.9, Error Range Example.vi, is an example of grouping ranges of
error codes for handling purposes. When a set of exceptions is considered to be
logically related, it is often best to organize them into a family of exceptions.

©2001 CRC Press LLC

The easiest way to deal with an error is to simply display a dialog box to notify
the user that an error has occurred. This dialog box can be as simple as the one
displayed by the General Error Handler. You can create your own VI to display a
dialog box to include more information, including what the user can do to trouble-
shoot the error. This usually results in halting execution of the program.

You can get more involved by attempting to correct an error in the exception
handling code. In this case, the more general range checking technique will not
suffice because the exact error code will be used to determine how to correct it. It
also requires detailed knowledge of the error and exactly how it can be corrected.
Suppose, for example, that you get a specific error telling you that the device under
test did not respond to the commands sent to it. You also know that this happens
when the device is not powered-on or has not been initialized properly. You can then
attempt to correct this error by power cycling the device and initializing it. Then
you can retry the communications and continue with the program if successful.

Figure 6.10 illustrates a technique for dealing with specific error codes as an
alternative to the general range-checking method. This method can be used in
LabVIEW 4.1 or older. However, LabVIEW 5.0 has a default case permitting you
to wire the code directly to the selector terminal of the case structure. You can use
the pop-up menu to select the default case, which is normally Case 0. This case will
then execute for error codes for which no case has been defined.

The method displayed is similar to a look-up table described earlier. An array
that contains all of the error codes is used with the Search 1D Array VI. The error
code is passed to it and the index of the error code is searched for. The index drives
the case statement, which takes the right course of action for the error code. If there
is no match for the error code, the Search 1D Array returns a value of –1. By adding
1 to the result, Case 0 is selected from the structure. This case will serve as the
default case when no match is found. In the example shown, a dialog box is displayed
indicating that the error code was not defined

Another alternative available in LabVIEW 5.0 is the use of strings to drive case
structures. You can implement the previous example by unbundling the cluster to
retrieve the source information. This string can then be used to determine the course
of action by wiring it to the case selector terminal.

FIGURE 6.9

©2001 CRC Press LLC

6.4.5 S

TATE

 M

ACHINE

 E

XCEPTION

 H

ANDLING

The use of a state machine offers several advantages for exception handling code.
One advantage is that the exception handling code can be located in one place. This
is done through the use of an Error state. The Error state is responsible for all
exception handling in the application. This eliminates the need for exception han-
dling code in several places. Maintaining the code becomes easier when the code
resides in one location. Using a state machine also facilitates exception handling
management at the Main or Test Executive Level. The Error state is part of the Main
Level, so control is maintained at the upper level.

Another advantage is that duplication of error handling code is reduced when
the code is placed in one location. Similar errors may be generated in different parts
of your code. If you do not perform exception handling in one place, you may have
to write code in several places for the same type of error.

Conditional execution of code can be implemented without creating a complex
error handler through the use of a state machine. Exception handling code determines
program execution based on the severity of the error that was generated. You may
want your code to skip execution of the parts of the code that are affected by the
error, and continue execution of the rest of the program. For example, suppose you
have a series of ten different tests you want to perform on a device under analysis.
If an error occurs in Test 1 and that same error will affect Tests 5, 6, and 7, you
may still want to execute Tests 2, 3, and 4. In this case, using a queued state machine
will simplify the procedure for performing this task. The Error state can parse out
the states that correspond to Tests 5, 6, and 7 from the list of states to execute. In
cases where the error can be corrected, the program needs to remember where
execution was halted so it can return to the same location and continue. The use of
state machines facilitates implementation of this feature into exception handling
code. Proper logic for diagnosing state information must be kept to make this
possible. In addition, proper logging and saving routines should be incorporated to
ensure that data is not lost.

The conditional execution can also be applied to tests that fail. You can design
the application to execute a test depending on the outcome of another test. If Test
1 fails, you may want to skip Tests 2 and 3 but continue with the remaining tests.
Again, you can parse the tests that should not be executed. Chapter 3 discusses the

FIGURE 6.10

©2001 CRC Press LLC

various state machines in depth. The example in Section 6.4.9 will help demonstrate
the implementation of exception handling in a state machine context.

6.4.6 L

OGGING

 E

RRORS

Error logging is useful for keeping records of faults that have occurred during the
execution of a program. The error log should report the code, the origin, a brief
description, and when the error occurred. Upon the occurrence of an error, the log
file is opened, written to, and closed. If further exception handling code exists, the
error can be dealt with in the appropriate manner.

Error logging is beneficial in cases where the exception handling code has
already been implemented and when there is no exception handler in the application.
When exception handling has been implemented, error logging gives the programmer
insight into the types of errors that are being generated and whether the code is
handling them properly. The log can be used as a feedback mechanism to determine
areas of the exception handling code that are unsatisfactory. These areas can then
be enhanced to build a more robust application.

In instances when the exception handling code has not yet been developed, the
error log can be used in a similar manner. The log can serve as a basis for developing
the error handling code. The errors that occur more frequently can be addressed
first. This method attempts to strike a balance in the amount of effort spent in
developing an exception handler. The concept here is to gain the maximum benefit
by attacking the most common errors.

Figure 6.11 is an example of a VI that logs errors. First, the status in the error
cluster is checked to determine whether an error has occurred. If an error has been
generated, the date, time, error code, and source are written out to a file that serves
as the error log. The Write Characters to File VI is used to perform the logging.
This VI can be used in multiple places where logging is desired, or in a central
location along with other exception handling code. Since the error information has
been converted into a tab-delimited set of strings, it can be imported into Excel for
use as a small database.

FIGURE 6.11

©2001 CRC Press LLC

6.4.7 E

XTERNAL

 E

RROR

 H

ANDLER

An exception handler that is external to the application can be written to manage
the errors that are generated during program execution. The application must then
make a call to the external error handler. This can be beneficial when using the NI
Test Executive. The error handler VI will be loaded when it is referenced in the
application. The error handler VI can be written to perform all the relevant tasks,
similar to carrying out exception handling within an application.

If the error handler is written to accomodate general exceptions, it can be called
in as many applications as needed. Figure 6.12, Load External Handler.vi, shows
how a VI can be loaded and run from an application. First, a reference to the VI
must be opened using Open VI Reference. This VI can be accessed through the
Application Control palette. You must specify the path or directory in which the
error handler resides. Set the VI Server Class to “Virtual Instrument” by popping
up on the VI Refnum. The Invoke node is used to run the external VI. The Invoke
node is also available in the Application Control palette. When the VI reference is
passed to the Invoke node, the VI Server Class will automatically change to Virtual
Instrument. Then, by popping up on “Methods,” you can select the Run VI method
from the menu. Data can be passed to the error handler VI using the Invoke node
and selecting the Set Control Value method. The functions available on the Appli-
cation Control palette are described in Chapter 2.

Example:

An example of how an external exception handler is implemented is shown in Figure
6.13. This code diagram demonstrates the steps involved in using an external handler:
opening a VI reference, passing the input values, running the external VI, and closing
the reference. Opening a VI reference and running an external VI has already been
described. In this example, the error cluster is passed to the external exception
handler which determines the course of action.

 First, a VI reference is opened to External Handler.vi as shown in the VI path.
Then, the error cluster information is passed to External Handler.vi using the Set
Control Value method on the Invoke Node. This method requires the programmer to
specify the Control Name, the Type Descriptor, and the Flattened Data. The error
cluster is passed to this method by flattening it using Flatten to String from the Data
Manipulation subpalette in the Advanced palette. The flattened data string and the type
descriptor are then wired directly from Flatten to String to the Set Control Value
method. The Control Name is a string that must match identically the control name
on the front panel of the VI to which the data is being passed. The name specified on
the code diagram is

Error In

 (

No Error

), as it appears on the front panel of the External
Handler.vi. The VI is run using the Run VI method, and, finally the reference is closed.

FIGURE 6.12

©2001 CRC Press LLC

Figure 6.14 illustrates the code diagram of External Handler.vi. This VI is similar
to an exception handler shown previously. It takes the error cluster information and
decides the course of action based on the error code. The Error Information is logged
using Error Log.vi, and the case structure is driven by the error code. Case 0 is used
as the default for error codes the handler is not prepared for.

In this example, the error cluster data was passed to the external VI. Similarly,
data can be retrieved from the controls or indicators from the VI if it is desired. The
Get All Control Values method can be used to perform this action. This method will
retrieve all control or all indicator values from the external VI. The data is returned
in an array of clusters, one element for each front panel control or indicator. The
cluster contains the name of the control or indicator, the type descriptor, and the
flattened data, similar to the way the values were passed to the External Handler VI
in the example.

6.4.8 P

ROPER

 E

XIT

 P

ROCEDURE

In situations where fatal or unrecoverable errors occur, the best course of action may
be to terminate execution of the program. This is also true when it is not reasonable
to continue execution of the program when specific errors are generated. However,
abnormal termination of the program can cause problems. When you do decide that
the program should stop due to an error, you must also ensure that the program exits
in a suitable manner.

All instrument I/O handles, files, and communication channels must be closed
before the application terminates. Performing this task before exiting the program
minimizes related problems. Consider, for example, a file that is left open when a
program terminates. This may cause problems when others are attempting to write
to the file because write privileges will be denied.

FIGURE 6.13

FIGURE 6.14

©2001 CRC Press LLC

Upon the occurrence of an error, control is passed to the error handler. Therefore,
it is the responsibility of the error handler to guarantee that all handles, files, and
communication channels are closed. The easiest way to implement this is to have the
error handler first identify the error. If the error that was generated requires termination
of the program, code within the handler can perform this task. Figure 6.15, Close
Handles.vi, is an example of a VI that is used solely to close open communication
channels. A VISA session, file refnum, TCP connection ID, and an Automation
Refnum are passed to this VI, which then proceeds to close the references.

A program should be written to have only one exit point, where all necessary
tasks are executed. The best way to implement this is to utilize a state machine. By
using a state machine, only one exit point is needed and will serve as the Close
state. Correspondingly, there is only one place where all exception handling is
performed: the Error state. When an error is identified as fatal, the Error state will
force the state machine to the Close state. The Close state will be responsible for
terminating the program in the appropriate manner. All handles, files, and commu-
nication channels will be closed in this state. Since only one Close state is needed,
it will also be the last state executed during normal execution of the program when
no error exists. This style makes the code easier to read and maintain.

6.4.9 E

XCEPTION

 H

ANDLING

 E

XAMPLE

Several methods of performing exception handling were provided in this section. A
closing example that utilizes some of the topics that were discussed is presented in
Figure 6.16. The example utilizes the state machine structure with an Error state for
error handling.

The purpose of Next State.vi is simply to determine which state will be executed
next. The Next State VI is also responsible for checking if an error has occurred
after the completion of each state. When an error has occurred, the next state that
will be executed is the Error state. The Error state first logs the error using the Error
Log VI. The error code is checked to determine if it falls in a certain range that
corresponds to instrument driver errors. If the error code is within that range, it is
being considered as unrecoverable or fatal in this example. When a fatal error is
detected, the Close state is wired out to the Next State VI to execute the proper exit
procedure.

If the error code does not fall in the range specified, the code is again
compared to an array of user-defined error codes. This drives the case structure,
which will take the action that is appropriate depending on the error that was
generated. When no match results from this comparison, Case 0 is executed as
illustrated in Figure 6.17.

FIGURE 6.15

©2001 CRC Press LLC

When a match results for Case 1, the Remove States VI will remove the states
that cannot be executed due to the error that was generated. Then, the program will
continue with the states that can be executed according to the elements in the states
array. This is shown in Figure 6.18.

Figure 6.19 shows the Close state of the state machine. This state is executed
during normal termination of the program, and also when a determination is made
that a fatal error has occurred. As shown in Figure 6.16, the Error state will force the
Close state to execute when an unrecoverable error has been found. The only task of
the Close Handles VI is to close any references and communication channels that
have been opened. This will minimize problems when the application is run again.

This example demonstrates the ideas presented in this section. First, exception
handling was performed at the Main Level so that program control did not have to
be passed to lower levels. Second, the error handler code was separated from the
rest of the code to increase readability. Not only does this reduce confusion, it also

FIGURE 6.16

FIGURE 6.17

©2001 CRC Press LLC

reduces the need for duplicating code in several places. Next, the use of a state
machine allowed the placement of exception handling code in one location to
increase maintainability and conditional parsing of tests. Error logging was per-
formed to keep a record of exceptions that occurred. Finally, a proper exit procedure
for the application was implemented. Following good practices in the creation of an
exception handler will lead to sound and reliable code.

6.5 DEBUGGING CODE

The techniques described in the previous sections for exception handling can be
utilized for debugging LabVIEW code. Error detection is very valuable during the
testing phase of code. Detection assists in finding where and why errors occurred.
Bugs are faults in the code that have to be eliminated. The earlier bugs are found,
the easier they are to fix. This section covers some LabVIEW tools that facilitate

FIGURE 6.18

FIGURE 6.19

©2001 CRC Press LLC

the process of debugging VIs. First, broken VIs and the error list will be discussed.
A description on how to utilize execution highlighting along with the step buttons
will follow. Then, the probe tool, the use of breakpoints, and suspending execution
will be described. Data logging and NI Spy will then be presented. Finally, tips on
utilizing these tools to debug programs will be provided.

6.5.1 E

RROR

 L

IST

A broken

Run

button indicates that a VI cannot be executed. A VI cannot be run
when one or more errors exist in the code. Errors can be the result of various events
such as bad wires or unwired terminals in the code diagram. You may also see a
broken

Run

 button when you are editing the code diagram. However, when you are
finished coding, the

Run

 button should no longer be broken. If the

Run

 button is
broken, you can find out more information on the errors that are preventing the VI
from executing by pressing the

Run

 button. Figure 6.20 shows the Error List window
that appears.

At the top of the Error List window is a drop-down box that lists all of the VIs
that contain errors. A box that lists all of the errors in each VI can be found just
under this. Both front panel and block diagram errors will be listed. The list describes
the nature of the errors. When an item in the list is selected, a text box below the
list gives more information on the error and how it can be fixed. The

Find

 button
will find and highlight the cause of the error that is selected. There is also a checkbox,
Display Warnings, which will list the warnings for the VI. The warnings do not
prevent the VI from executing, but are recommendations for programming. You can
set it to display warnings by default by selecting the corresponding checkbox in
your Preference settings in the Edit menu.

Using the Error List, you can effectively resolve all of the errors that prevent
the VI from running. Once all of the errors have been dealt with, the

Run

 button
will no longer be broken. The Error List provides an easy way to identify the errors
in your code and determine the course of action to eliminate them.

FIGURE 6.20

©2001 CRC Press LLC

6.5.2 E

XECUTION

 H

IGHLIGHTING

The Error List described above helps you to resolve the errors that are preventing
a VI from running. But it does not assist in identifying bugs that are causing the
program to produce unintended results. Execution Highlighting is a tool that can be
used to track down bugs in a program. Execution Highlighting allows you to visually
see the data flow from one object to the next as the VI runs. The data, represented
by bubbles moving along the wires, can be seen moving through nodes in slow
motion. The

G Reference Manual

 calls this “animation.” This is a very effective tool
that National Instruments has incorporated into LabVIEW for debugging VIs. Since
LabVIEW is a visual programming language, it makes sense to incorporate visual
debugging tools to aid programmers.

If you do not see data bubbles, perhaps your Preference settings have not enabled
this option. By default, this option is activated. Select Preferences from the Edit
pull-down menu, and choose Debugging from the drop-down menu. Make sure the
box is checked to show data bubbles during Execution Highlighting.

Pressing the button with the light bulb symbol, located on the code diagram
toolbar, will turn on Execution Highlighting. When the VI is run, the animation
begins. Execution Highlighting can be turned on or off while the VI is running.
Highlighting becomes more valuable when it used in single-stepping mode. The
speed of execution of the program is greatly reduced so you can see the animation
and use other debugging tools while it is running.

6.5.3 S

INGLE

-S

TEPPING

Single-Stepping mode can be enabled by pressing the

Pause

 button. This mode
allows you to utilize the step buttons to execute one node at a time from the code
diagram. Additionally, when Execution Highlighting is activated, you can see the
dataflow and animation of the code while executing one node at a time. The

Pause

button can be pressed or released at any time while the VI is running, or even before
it starts running. You can also press one of the step buttons located next to the

Execution Highlight

button to enter Single-Stepping mode. The

Pause

 button will
become active automatically when these are used.

When the VI is in Single-Stepping mode, the three step buttons on the code
diagram toolbar are used to control execution of the program. Depending on the
code diagram, the step buttons will perform different actions. Use the Simple Help
to determine what each button will do at a specific node on the code diagram. Simple
Help can be accessed through the Help menu. When the cursor is placed over the
step buttons, a description of their function will pop up. Figure 6.21 shows the Error
Log VI in single-stepping mode with Execution Highlighting activated. The three
step buttons can also be seen in this diagram.

The first step button on the toolbar is used for stepping into a particular structure
or subVI. The structure or subVI will also be in Single-Stepping mode. You must
then use the step buttons to complete the structure or subVI. The second button is
used for stepping over objects, structures, and subVIs. If this button is pressed, the
structure or subVI will execute and allow you to begin stepping again after its

©2001 CRC Press LLC

completion. The third button is used to complete execution of the complete code
diagram. Once pressed, the remaining code will execute and not allow you to step
through single objects unless

 Pause

 is pressed again.

6.5.4 P

ROBE

 T

OOL

The Probe Tool can be accessed through the Tools palette or through the menu by
popping up on a wire. The Probe Tool is used to examine data values from the wires
on the code diagram. When a wire is probed, the data will be displayed in a new
window that appears with the name of the value as the title. The probes and wires
are numbered to help keep track of them when more than one is being used. You
can probe any data type or format to view the value that is being passed along the
wire. For example, if a cluster wire is being probed, a window with the cluster name
appears displaying the cluster values. The values will be displayed once the data
has passed the point on the wire where the probe was placed when the VI was
running.

The Probe Tool is very valuable when debugging VIs because it allows you to
examine the actual data values that are being passed along the wires. If you are
getting unexpected results or errors, you can audit values to ensure that they are
correct. This tool helps you find the root of the problem. Figure 6.22 illustrates a
probe on the error cluster being between the VISA Close VI and the File Close VI.
The wire is marked with a number, as is the window displaying the cluster values.

By default, auto probing is active in Execution Highlighting mode. This causes
LabVIEW to display data values at nodes while Execution Highlighting is on.
However, the complete data cannot always be viewed in this manner and is only
useful for simple verification purposes. The Probe Tool will still be needed for data

FIGURE 6.21

©2001 CRC Press LLC

types such as clusters and arrays. Auto probing can be enabled or disabled from the
same Preferences window as the data bubbles discussed earlier.

6.5.5 B

REAKPOINT

 T

OOL

The Breakpoint Tool is another debugging device accessible through the Tools
palette. As the name suggests, the Breakpoint Tool allows you to set a breakpoint
on the code diagram. Breakpoints can be set on objects, VIs, structures, or wires. A
red frame around an object or structure indicates a breakpoint has been set, while
a red dot represents a breakpoint on a wire. Breakpoints cause execution of the code
to pause at the location it has been set. If it is a wire, the data will pass the breakpoint
before execution is paused. A breakpoint can be cleared using the same tool that is
used to set it.

Breakpoints are valuable because they let the user pause the program at specific
locations in the code. The program will execute in its normal manner and speed
until it reaches the breakpoint, at which point it will pause. The code that is suspect
can then be debugged using Single-Stepping mode, Execution Highlighting, and the
Probe Tool.

Once a breakpoint has been set, the program will pause at the break location
every time it is executed. You must remember to clear the breakpoint if you do not
want the program to pause during the next iteration or execution. If you save the VI
while a breakpoint has been set, the breakpoint will be saved with the VI. The next
time you open the VI and run it, execution will pause at the break location. You can
use the Find function to locate any breakpoints that have been set.

FIGURE 6.22

©2001 CRC Press LLC

6.5.6 S

USPENDING

 E

XECUTION

You can force a subVI to suspend execution, for debugging purposes, when it is
called. This can be done using one of the following three methods. The first method
is to select Suspend when Called from the Operate menu. The second method is to
pop up on the subVI from the code diagram of the caller and select SubVI Node
Setup. Then, check the box Suspend when Called. Alternatively, you can pop up on
the icon while the subVI is open and select VI Setup. Then check the box Suspend
When Called.

When you cause a subVI to suspend execution, its front panel will be displayed
when it is called. The subVI also enters a special execution mode when it is
suspended. The

Run

 button begins execution of the subVI. When a subVI is sus-
pended, it can be executed repeatedly by using the

Run button. To the right of the
Run button is the Return to Caller button. Once suspended, you can use Execution
Highlighting, Single-Stepping, and the Probe Tool to debug the subVI. When you
use Single-Stepping while a subVI is suspended, you can skip to the beginning and
execute the VI as many times as needed.

6.5.7 DATA LOGGING

Data Logging is another LabVIEW built-in tool that can be used for debugging
purposes. Front panel data can be logged automatically by enabling Log at Com-
pletion from the Operate menu. When the VI is run the first time, a dialog box will
appear, prompting the user to enter a filename for storage. Alternatively, a log file
can be selected before running the VI, by selecting Log from the Data Logging
submenu in the Operate menu. When the filename is selected prior to running the
VI, the dialog box will not appear. The front panel data is entered into that log file
after the VI executes.

The Data Logging feature is a method for saving data from tests, similar to a
database. LabVIEW enters a date and time stamp, along with the data for the
indicators and controls from the front panel. The data can then be viewed by selecting
Retrieve from the Data Logging submenu. Figure 6.23 illustrates how the data
appears when data is logged and retrieved using this feature. This is a simple front
panel with two controls and two indicators. The multiplication and addition results
of the two integer controls are displayed in the indicators. This is how the data will
be displayed when it is retrieved from the log file. The time and date stamp appears
at the top, along with controls for scrolling through the records and deleting records.

Data Logging is useful for saving data values from tests and for debugging VIs.
It serves as a mechanism for quickly saving data from specific VIs that are being
debugged. The saved data log can then be reviewed for suspect values. The data log
is also useful for monitoring intermittent problems with VIs. The front panel data
can be saved, retrieved, and purged as needed.

6.5.8 NI SPY/GPIB SPY

These two utilities are very similar and are both used as debugging tools on Windows
95/98/NT operating systems. NI Spy monitors the calls that are made by applications

©2001 CRC Press LLC

to NI-488.2, NI-VISA, IVI, and NI-VXI drivers. Similarly, GPIB Spy tracks any
calls that are made to GPIB drivers. They are useful for determining the source of
communication errors, whether they are related to general communication problems
or are application specific. They help you verify that communications with an
instrument are correct. However, when either of these applications are running, they
will degrade the speed of your application. Use them only when you are debugging
your program to free up system resources, especially if execution time is a consid-
eration for the application.

NI Spy displays the index number assigned to the call, a description of the
operation and parameters, and the time that it occurred. The tool displays the calls
as they are made during the execution of your application. Errors are immediately
highlighted to indicate failures. NI Spy also allows you to log the activity for review
at a later time.

GPIB Spy monitors calls to the Windows GPIB driver by Win32, and displays
them while your application is executing. All errors or failures are highlighted for
quick identification. You can view each call as it is made and see the results, including
any timeouts. This utility can be used to verify that your application is sending the
right calls to the Windows GPIB driver. GPIB Spy lists an index number of the call,
the names of the GPIB calls, output of the status word ibsta after the call, output
of the error word iberr, output of the count variable ibcntl, and the time of each
call. All of these contain useful information on the performance of the application.
You can view detailed information by using the Properties button on the toolbar.

Familiarization with GPIB, NI-488.2, and the ANSI/IEEE 488.2 communication
protocol may be necessary to fully utilize and understand the debugging features on
both GPIB Spy and NI Spy. A discussion of IEEE 488.2 is beyond the scope of this
book.

FIGURE 6.23

©2001 CRC Press LLC

6.5.9 UTILIZATION OF DEBUGGING TOOLS

The Error List, Execution Hhighlighting, Single-Stepping mode, Probe Tool, Break-
point Tool, and suspending execution were described in the previous sections. These
built-in LabVIEW features are very effective for debugging code when they are used
in conjunction with on-line Help. Each one is a weapon the programmer can use
for tracking down and resolving problems. These tools are summarized in the table.
Table 6.2 lists the tool, its application or use, and how to access or enable it.

The software process model being followed determines when the debugging or
testing phase for the code begins. In an iterative model, debugging is involved in
each cycle of the process. In the Waterfall model, debugging is done only during
one phase of the development cycle. In either case, the first action is to eliminate
the errors that prevent the VI from running. As already described, the Error List will
assist in removing these errors to allow the VI to run. This part of debugging should
be performed as the application is being developed, regardless of the model being
used. Getting rid of errors that prevent VI execution should be considered part of
the coding phase in LabVIEW. This is analogous to syntax errors in traditional
languages that are pointed out to the programmer during coding. The Error List
makes this easy for even the novice programmer. It guides the programmer in
resolving errors quickly.

If it is possible, try to test one VI at a time. Test the individual drivers and subVIs
separately before attempting to run the main or executive. You may be overwhelmed

TABLE 6.2
Debugging Tools

Tool Application Accessing
Error List Used to list, locate, and resolve

errors that prevent a VI from
running.

Press broken Run
button.

Execution
Highlighting

Used to animate, visualize data flow
along wires on code diagram.

Press highlight button
with bulb.

Single-Stepping Mode Allows execution of one node at a
time.

Use Pause button.

Probe Tool Displays data values passed along
wires.

Available from Tools
palette.

Breakpoint Tool Halts execution of program at
specific location.

Available from Tools
palette.

Suspending Execution Suspends subVI for repeated
execution during debugging.

Use Operate menu,
SubVI node setup by
popping up on icon,
or VI setup while VI
is open.

Data Logging Enables front panel data logging to
file.

Use Operate menu and
Data Logging
submenu.

GPIB Spy/NI Spy Monitor calls to Windows drivers. Run application.

©2001 CRC Press LLC

when you try to debug a large program with many subVIs. Not only is it easier to
concentrate on smaller parts of the program, but you reduce the errors that may be
caused through the interaction of the subVIs with each other. A modular design
approach with VIs that are specific and self-contained simplifies testing. This inter-
action through data flow may make it appear that more errors exist. You may also
be able to create a simulator for I/O or other portions of the code that have not yet
been prepared. Again, this will help in isolating problems related to the specific code
at hand without having to deal with I/O errors.

Once the VI can be executed, the next step is to run it with Execution High-
lighting enabled. The animation helps you see the data flow on the code diagram.
Execution Highlighting will help you find bugs caused by incorrectly wired objects.
While the VI is running, make sure that the code executes in the order that was
intended, which can be identified with highlighting.

You may also want to probe certain wires with Execution Highlighting and make
sure that the values are correct by using the Probe Tool. For instance, probing the
error cluster between two objects or VIs will help narrow down where the error is
being generated. You will see the value of the Probe Tool for debugging once you
begin to use it. The Probe Tool and Execution Highlighting can be used in Single-
Stepping mode. Single-stepping mode lets you look at a section of code in even
more detail to find the problems that exist.

If problems persist, a few suggestions are offered here for you to consider. These
might seem basic, but they are the ones that are easy to overlook. First, make sure
that the input values provided by the user controls are valid. The Probe Tool can be
used to perform this check from the code diagram. When these input values are out
of the acceptable range, the code will not execute as intended.

If you are performing communications with an external device, file, or applica-
tion, check the commands or data being sent. The device may not respond to
unexpected commands. During this process, also check for correct file names,
handles, and addresses. Examine the external device to see if it is functioning
properly, and manually perform the actions you are trying to take through automa-
tion. Consider using delays in the program if the external device is not responding
quickly. Investigate the execution order of your code to ensure that the correct
sequence of events is occurring. Race conditions can result if the code is not
executing as intended.

Inspect arrays for correct usage of indices. Arrays, lists, rings, and enumerated
types all start off at zero and can cause potential problems if not accounted for.
During this inspection, check case structures that are driven by these values to see
if they correspond. Also make sure that you have a default case set up to ensure the
correct code is executing. You should also examine loop structures to make proper
use of shift registers so data is not lost. This includes proper initialization of the
shift registers.

Set personal time limits for how long you will attempt to determine where an
error exists in code. It becomes very frustrating to attempt to debug a section of
code for hours. When your time limit expires, a second opinion should be brought
in. This second perspective will see the programming problem differently and may
well propose a solution or at least ask questions that may lead you to a solution.

©2001 CRC Press LLC

6.6 SUMMARY

When you are developing an application, it may be easier to just omit code to perform
error detection and handling because it requires extra work. However, exception
handling is needed to manage the problems that may arise during execution. An
exception is something that might occur during the execution of a program. These
unintended events, or exceptions, must be dealt with in the appropriate manner. If
exceptions are left unattended, you can lose control over the program, which may
result in more problems.

An exception handler allows programmers to deal with situations that might
arise when an application is running. It is a mechanism to detect and possibly correct
errors. LabVIEW provides some built-in tools to aid the programmer in error detec-
tion and handling, but it is the responsibility of the programmer to implement the
exception handling code. Several methods for dealing with errors were described in
this chapter. The topics discussed will assist the programmer in writing more robust
code through the implementation of exception handlers.

Exception handling should be considered at an early phase of application devel-
opment. It is appropriate to take exception handling into account when the structure
or architecture of the application is being decided upon. Better applications can be
developed when exception handling is a forethought, not an afterthought. Exception
handling, when built into an application, will lead to sound and reliable code.

BIBLIOGRAPHY

G Programming Reference, National Instruments
Professional G Developers Tools Reference Manual, National Instruments
LabVIEW Function and VI Reference Manual, National Instruments
LabVIEW On-line Reference, National Instruments

Bitter, Rick et al "ActiveX"
LabVIEW Advanced Programming Techinques
Boca Raton: CRC Press LLC,2001

7

©2001 CRC Press LLC

ActiveX

As many readers have known and suspected, there is a lot more to ActiveX than a
LabVIEW interface. ActiveX is a relatively new technology that wraps around
several other technologies, namely OLE and COM. This chapter gives a general
outline of ActiveX, COM, and OLE technologies and how they may be applied by
the LabVIEW programmer using versions 5.0 and 5.1.

This chapter covers only the Windows 95, 98, NT, and 2000 versions of Lab-
VIEW; Windows 3.1 does not support COM, ActiveX, or OLE Version 2. The core
of ActiveX, COM, is currently being ported to other operating systems. As the COM
subsystem is ported to other operating systems, support for ActiveX will follow. The
political nature of competing operating systems’ vendors suggest that one shouldn’t
hold one’s breath, however.

Component Object Model (COM) is a new programming paradigm for software
development. Microsoft is providing a path for developers to practice component-
based development. The mechanical and electrical engineering communities have
long practiced this. When designing a circuit board, resistors (components) are
chosen from a catalog and purchased for use on the circuit board. Software devel-
opers have never truly had a component-based development environment.

Libraries, both static and dynamically linked, have been available for quite some
time, but were never well suited for component development and sale. Many com-
panies are unwilling to distribute information about code modules such as header
files or the source code itself. Dynamically-linked libraries have proven difficult to
work with since no mechanisms for version control are provided. Libraries may be
upgraded and older applications may not be able to communicate with the upgraded
versions. The ActiveX core, COM, is a standard that attempts to address all the
major issues that have prevented software component development and sale. The
result is expected to be a large pool of components that programmers may assemble
to create new applications. Ultimately, this chapter will provide the background
needed for Win32 LabVIEW developers to take advantage of the new component
architecture.

LabVIEW itself may be called as an ActiveX component, and may call other
components. The VI Server has two implementations, one as an ActiveX control for
Win32 usage, and a TCP-based server that may be used by LabVIEW applications
on non-Windows platforms for remote control. The VI Server feature will also be
covered in this chapter.

©2001 CRC Press LLC

7.1 INTRODUCTION TO OLE, COM, AND ACTIVEX

In the beginning, there was Windows 3.1 and the clipboard. The clipboard was
the only means for Windows applications to exchange data. Windows 3.1 then
supported DDE and OLE Version 1. Dynamic Data Exchange, DDE, was a means
for applications to communicate and control each other. OLE represented Object
Linking and Embedding, a mechanism for applications to present data belonging
to other applications to users. OLE also provided support for drag-and-drop files.
These were fairly significant advancements.

Visual Basic also introduced the .vbx file, Visual Basic eXtension. A Visual
Basic Extension was generally a control, similar to the controls we use in LabVIEW.
These controls helped expand the range of applications that could be written in
Visual Basic. The functionality of the VBXs proved to be wildly popular. VBXs
worked well in the 16-bit Windows 3.1 world, but were only usable by Visual Basic.
When 32-bit Windows 95 and NT 4.0 came out, it turned out to be difficult to port
the 16-bit VBX controls. The decision to redesign the VBX control was made, and
it was determined that OLE was the mechanism that would support it. Beneath OLE
was COM, the component object model

.

COM, OLE, and ActiveX have become somewhat stable these days. Program-
ming in Windows with new technologies can be

troublesome, as Microsoft tends
to evolve technologies after they have been released. ActiveX developers know
and understand that the COM standard is well defined and has not changed much,
but the implementation of this technology has changed quite a bit in the last few
years. Support for ActiveX and COM development now exists in the Microsoft
Foundation Classes (MFC) and the ActiveX Template Library (ATL). The ATL
has evolved in the last couple of years, and developers also understand that code
development between Visual C++ 5.0 and 6.0 has changed. As ActiveX users, we
do not need to be concerned with the implementation issues; all we care about is
that properties and methods can be invoked regardless of what the developers need
to do to make it work. If you choose to develop your own ActiveX controls, you
will need to do some research on which development tools and libraries to use,
such as Visual Basic or C++. Additionally, be aware that COM+ has been released
with Windows 2000. There are potential issues for developers with this new release
of COM.

7.1.1 D

EFINITION

OF

 R

ELATED

 T

ERMS

This section will introduce a few definitions that are commonly used when working
with COM technologies. Several terms are introduced in Chapter 9, Multithreading,
and will be used again in Chapter 10, Object-Oriented Programming.

7.1.1.1 Properties and methods

All ActiveX controls have some combination of Properties and Methods that are
available for other applications to control. Properties are variables that are exposed
to outside applications. Properties can be configured to be readable only, writable
only, and read-write. The act of reading a property is referred to as a GET; writing

©2001 CRC Press LLC

a variable is a SET. The ActiveX control maintains a list of properties that may be
accessed by external applications.

Methods are functions that are executable to external applications. Methods may
require arguments and have return values. Not all functions internal to an ActiveX
control may be called by external code. The Active X control maintains a list of
functions it exports. Calling a method is referred to as “invoking” the method.

7.1.1.2 Interfaces

An interface is a group of properties and methods. ActiveX controls may support
(and always do) more than one interface. One such interface that all COM objects
support is IUnknown. This interface is used to identify the location of other inter-
faces, properties, and methods. The rules of COM require that once an interface is
published, it cannot be changed. If programmers want to add functionality to a COM
object, they must add a new interface and make changes there.

All COM objects have one interface that is identified as the default interface. The
interface LabVIEW uses is selected when the user inserts the control into LabVIEW.
Some controls have a single interface; other controls, such as for Microsoft Access,
support hundreds of functions spread across dozens of possible interfaces.

7.1.1.3 Clients and Servers

COM and its derivative technologies, OLE and ActiveX, use a client and server
connection to communicate with LabVIEW. When LabVIEW is accessing an
ActiveX control, LabVIEW is the client application and the ActiveX control is the
server. As a client, LabVIEW becomes capable of executing methods and accessing
properties of the ActiveX controls that LabVIEW “owns.”

When LabVIEW is being controlled via an external application, LabVIEW
becomes the server. Other applications, which may or may not be running on the
same machine, use LabVIEW’s services. Other clients can include Visual Basic
applications, applications written in C++, and even Microsoft Office documents with
scripting support that can control LabVIEW.

7.1.1.4 In-Process and Out-of-Process

An In-Process ActiveX control is equivalent to a DLL that is loaded into the same
memory space as LabVIEW. Chapter 9, Multithreading, discusses protected memory.
When an ActiveX control is loaded into the same memory space as LabVIEW, it
falls under the complete control of LabVIEW. When LabVIEW exits, the ActiveX
control must also exit, and the memory space it resides in will be reclaimed by the
system.

Out-of-Process controls are independent applications that are controlled through
the COM subsystem. A special DLL called a “proxy” is loaded into LabVIEW’s
memory space. Calls to the external object are made through this proxy. The purpose
of the proxy is to make it transparent to programmers whether the control that is
being programmed is in-process or out-of-process. Passing data between processes
is a much more difficult task than many people appreciate, especially when data

©2001 CRC Press LLC

with unknown size (strings) are being transported across process boundaries. The
proxy uses a mechanism called “marshalling” to pass data between processes. For
more information on processes and protected memory space, refer to Chapter 9.

7.2 COM

The core of the Component Object Model is a binary interface specification. This
specification is language- and operating system-independent. Attempts are currently
underway to port the COM specification to other operating systems such as UNIX.
COM is the foundation of a new programming paradigm in the Win32 environment.
ActiveX and OLE2 are currently based on the COM specification. Neither technol-
ogy replaces or supercedes COM. In fact, both OLE and ActiveX are supersets of
COM. Each technology addresses specific programming issues, which will be dis-
cussed shortly.

Because COM is intended to be platform- and machine-independent, data types
are different in COM than standard types in the C/C++ language. Standard C/C++
data types are anything but standard. Different machines and operating systems
define the standard types differently. A long integer has a different interpretation on
a 32-bit microprocessor than on a 64-bit microprocessor. Types such as

char

 are not
defined in COM interfaces; a short, unsigned data type is defined instead. COM
defines its types strictly and independently from hardware.

COM does define a couple of data types in addition to primitive types used by
nearly every language. Date and currency definitions are provided as part of the
interface. Suprisingly, color information is also defined in COM. OLE and ActiveX
controls have the ability to have their background colors set to that of their container.
The information identifying background colors is defined in the COM specification.
COM also uses a special complex data type, the variant.

7.2.1 T

HE

 V

ARIANT

Programmers with experience in Visual Basic, Visual Basic for Applications, and
Visual Basic Script have heard of a data type called the variant. Variants do not have
a defined type; these variables are meant to support every data type. In high-level
languages such as VBScript, the variant allows for simple, fast, and sloppy program-
ming. Programmers are never required to identify a variable type. The variant will
track the type of data stored within it. If a variant is reassigned a value of a different
type, it will internally polymorph to the new type. ActiveX, COM, and OLE controls
allow the usage of variants, and therefore they must be supported in LabVIEW.
We’ve encountered a number of issues with the variant type in LabVIEW, and this
section will help explain what this data type is and how it works “under the hood.”

From a low-level language such as C++, variant programming can be difficult.
The variant type has a number of binary flags that are used to indicate what type of
data it contains. For example, variants can contain integers or arrays of integers. A
C++ programmer needs to check binary flags to determine which primitive type
(integers) and if any flags such as array are set. LabVIEW programmers go through
similar problems; we need to know what type of data the variant is supposed to

©2001 CRC Press LLC

contain and convert it to G data. The “To G Data” function is explained later in this
chapter. LabVIEW programmers do not need to check for unions and bit-flags to
work with Variants. We do need to know what type of data an ActiveX control is
going to pass back, however. If you choose the wrong type, LabVIEW will convert
it and give you something back you probably do not want.

Variants do not support every type of data. For example, it is not possible to
represent defined pointers, C++ class objects, or structures in a variant. Advanced
programmers will understand that void pointers can be contained in variants. Void
pointers are pointers to memory addresses that do not contain information as to what
is being pointed at. The programmer must know what a void pointer references
before they can use it. The reason pointer operations are not supported in COM is
because not every language supports the use of pointers. For example, LabVIEW
programmers never need to concern themselves with memory addresses. To support
COM’s design to be platform- and language-independent, variants support primitive
data types and a number of types defined in the COM standard. For example, dates
and currencies are defined data types that COM supports.

Strong words of warning need to be communicated if you are dealing with
variant strings. The problem that needs to be understood by the LabVIEW program-
mer relates to Unicode versus ANSI strings. The standard string type is ANSI, a
string being represented by an array of 8-bit unsigned integers. A new standard,
Unicode, was introduced because eight-bit strings are not very useful for languages
other than English. Unicode strings consist of 16-bit unsigned integers. When con-
verting strings to LabVIEW strings, you may have the unpleasant surprise of finding
that the variant flattened out into an empty string. This is because LabVIEW was
trying to convert a 16-bit array into an 8-bit array. This will not work in LabVIEW,
and it took us several days of examining code to identify the nature of the problem.

Windows 95 and 98 are built on handling ANSI strings (eight bits), with one
exception. Windows NT is built entirely on Unicode strings (16-bit). Windows NT
will do Unicode-to-ANSI string conversions internally when necessary. The string
translation will be transparent to the programmer and user. The one exception to
ANSI strings in Windows 95 and 98 is the OLE2 library. COM, ActiveX, and OLE
use this library, which is built entirely on Unicode string handling.

When using variant strings in LabVIEW, they MUST be converted to arrays of
eight-bit integers and then converted to strings. If this is not done, you will always
receive empty strings from a variant conversion. LabVIEW will otherwise try to
convert the 16-bit string as an 8-bit string. When this is attempted, the string will
always return empty. The variant’s first eight-bit value will be hex 0; the zero will
be interpreted as a NULL string, a string with zero length. Converting the variant
to an 8-bit array will force the conversion of the 16-bit numbers to 8-bit numbers,
and the string will be recovered.

Communications applications rarely use 16-bit characters. UDP, TCP, Serial,
and GPIB data is always an eight-bit character base. Microsoft built Windows NT
and the OLE2 library on Unicode strings to address another issue that is important
in the world today. ASCII strings work well when your primary language is English.
If your primary language is not English, but is based on the same alphabet as English,
such as Spanish, then ASCII is not that bad. If you happen to be from the Far East,

©2001 CRC Press LLC

then ASCII strings can be quite difficult. You are required to either wait for custom
versions of Windows for your native language to become available or use English
versions. Unicode addresses this, by providing a base character that can cover over
65,000 possible letters. This is not a perfect solution, but it does address computer
issues that impact a majority of the world’s population.

7.2.2 P

ROBLEMS

THAT

 COM A

DDRESSES

COM addresses a number of component development issues. One such issue is
interface requirements. The COM specification demands that once an interface has
been shipped, the interface is “cast in stone.” If additional functionality is desired,
it must be added in an additional interface. COM does allow an object to present
multiple interfaces. This has been a characteristic problem with DLL development.
When a DLL interface is changed, many older applications will not be able to cope
with the new interface and will crash. All COM objects provide IUnknown, a specific
interface. This allows a COM-based application to have a guaranteed entrance point
to the object to identify what functionality the object provides. LabVIEW program-
mers who develop or use custom DLLs can implement the DLL functionality as
ActiveX/COM objects and use the code in multiple applications. Environments such
as Visual Basic have shown that ActiveX component programming is fairly easy,
easier than using DLLs. The interface defined by COM and expanded on by ActiveX
is intended to simplify programming.

Since the COM specification defines a common interface, why not expand the
model to distributed computing? Microsoft did, and the result is DCOM—Distrib-
uted COM. This is a concept that DLLs alone could never have provided. Without
the common DCOM specification, developers would have to develop custom inter-
faces for distributed application development. The use of a distributed object model
offers many potential benefits to LabVIEW developers who program in an environ-
ment utilizing multiple computers.

7.2.3 I

N

-P

ROCESS

AND

 O

UT

-

OF

-P

ROCESS

 COM O

BJECTS

COM objects may be represented in one of two manners: DLLs and executable
applications. A DLL is linked into an application when it is started up. A COM
object implemented as a DLL is referred to as an in-process COM object. In-process
COM objects are loaded into the same memory space as the client application. A
COM object implemented as an executable application is an out-of-process COM
object. In order for the client application to access the COM object’s methods, an
interprocess communication must occur. In general, communication with in-process
COM objects is faster than out-of-process COM objects. When data crosses a process
boundary, the operating system must become involved. As processes are switched
into and out of physical memory, different threads of execution take over the CPU.
This procedure generates additional overhead. This does not happen with in-process
COM objects. The fact that out-of-process communication occurs should not dis-
suade a LabVIEW programmer from using COM servers. This is something that
developers will need to be aware of when developing time-critical applications.

©2001 CRC Press LLC

One advantage out-of-process servers have is stability. When an application is
started, it is given its own address space and threads of execution. In the event that
one process crashes, the other processes will continue to execute. These other
processes may experience problems because a peer crashed, but good exception
handling will keep other processes alive to accomplish their tasks. It is possible to
crash peer processes, but defensive programming can always mitigate that risk. Out-
of-process servers can also be run on different machines using DCOM, which allows
for the process to continue executing even if one machine crashes. There are appli-
cations in monitoring and production software for distributed computing.

7.2.4 COM O

BJECT

 I

DENTIFICATION

COM Objects have two forms of names: a text-based name that programmers and
users can identify, and a Globally Unique ID (GUID). The GUID is a 128-bit number
that is unique. The compiler assigns the GUID when the control is initially generated.
Among other pieces of information that are used are the time and machine address
of the computer that generated the control. This is not a completely foolproof scheme,
but to a very high probability, the GUID number will be unique in the world. The
GUID is stored in the user computer’s registry and is used by the COM subsystem
to identify the object and its location on a hard drive or on the Internet. Programmers
rarely, if ever, use the GUID, and this will not be discussed further.

COM Objects have an object-type library file associated with them. This library
file identifies methods, properties, and interfaces the object supports. COM objects
must also be registered with the system. The Win32’s registry will contain an entry
identifying the path to the object and type library. When an application requests a
connection to the object, it contacts the operating system, and the operating system
provides the linkage. The application will read the type library, which identifies the
methods that the object supports. The type library uses a specified language called
IDL, Interface Description Language. IDL descriptions are compiled to become the
type library. The use of COM objects and the type library is more stable than the
standard use of DLLs. When a bad link is made to a DLL, the application will
probably crash. If your application contacts the operating system to link to a COM
object, and something is not working, the operating system will respond with an
error message. The COM object itself may be in a different process or machine, and
can also provide extra levels of isolation.

When a programmer identifies an ActiveX class while programming, the appli-
cation shows a list of interfaces the control supports. This information is read from
the type library. In reality, the operation is much more complicated and beyond the
scope of this discussion.

Readers familiar with C and C++ recall the use of pointers. COM uses a virtual
table that is exposed by the IUnknown interface. This table is not built of the
functions the COM object supports, but is built of pointers to the functions. This
double indirection actually gives COM an advantage. One of the rules of the COM
specification requires that interfaces never be changed once they are published. Each
and every ActiveX object you use in your LabVIEW applications will not need to
be changed, ever. Regardless of what developers do to the objects you use, the

©2001 CRC Press LLC

interfaces will not change. COM does give the developers flexibility as to what
happens internally to the COM object. The virtual table can point to different
functions. The table itself will change structure. Again, standard DLLs do not have
this requirement; you may have to make changes to each application that uses a
DLL that has been changed.

7.2.5 H

OW

 COM O

BJECTS

ARE

 C

ALLED

AND

 U

SED

All COM objects present an interface called IUnknown. This interface is used to
describe the COM object itself, and performs a multitude of functions. Most of the
IUnknown interface is well beyond the scope of this book. In fact, the average
ActiveX programmer does not write their own IUnknown interface; they use code
generated by Microsoft tools. For example, when writing a control in Visual Basic,
the programmer never sees code related to the IUnknown interface. COM also has
several other interfaces, but as LabVIEW programmers we do not need to be
concerned with these other interfaces’ existence.

COM objects export their functions in a type library. The type library defines
what properties and methods are available. Each property defines if it can be read
or written, and functions indicate their argument lists and return types. The type
library is compiled and cannot be read by a programmer. Type libraries are written
in either Object Description Language (ODL) or Interface Description Language
(IDL). IDL is the more recent language and is generated by compilers for COM
objects. The IDL files are compiled into the type libraries.

This section will discuss two methods that applications use when linking to
ActiveX controls: early and late binding. Binding is a process by which sections of
code integrate themselves. There is a lot of behind-the-scenes pointer handling, and
the process can get quite messy. Early binding means that the application and
ActiveX control are linked together when the application is compiled. This is a fairly
fast startup, functionally the ActiveX control (an .ocx file) is a DLL that is being
merged at startup. The compiler uses the type library to build the application.

Late binding is the process by which the ActiveX control is loaded in while the
application is executing. As mentioned in the last paragraph, an OCX file is a DLL
with some specific interface functions. In general, this is a slower process than early
binding. Late binding is an important concept for LabVIEW programmers, because
this is how LabVIEW binds to ActiveX controls. When an application performs late
binding, the operating system is asked to query the registry about the component.
Late binding uses a different interface, and a Virtual Table is set up. A “vtable” is
simply a list of pointers that are used to identify functions contained inside the control.

Conceptually, this is an extremely messy operation, and it is generally covered
up by the programming language’s code. For example, LabVIEW and Visual Basic
programmers never need to know or worry about the pointer tables being set up.
Suprisingly, C++ programmers have little to worry about also. The MFC classes

©2001 CRC Press LLC

provide a lot of this functionality. The C++ programmer has the freedom to replace
the supplied interface code, however.

Late binding is not significantly slower than early binding. What can hurt the
programmer is the registry query and loading the control into memory. Disk access
can be slow when compared to the execution speed of the application. The actual
overhead of a late-bound control is going through the virtual table to identify the
starting memory address of a function. With modern CPUs running at speeds over
300 MHz, a few extra clock cycles is negligible in a vast majority of applications.
Real-time programmers are the only ones who should be considering this. This is
important to the LabVIEW programmer because all ActiveX controls you use will
be bound late. When writing applications using ActiveX, always start up the controls
at the start of your VI. This will eliminate the chance that an ActiveX control will
slow down the application at sensitive times.

7.3 OLE

We will demonstrate in Section 7.4 that OLE interfaces are in fact, ActiveX objects.
The reverse is not always true; some ActiveX objects are not OLE interfaces. OLE
is an interfacing technology used for automation, the control of one application by
another. Many programmers subscribe to the myth that ActiveX has replaced
OLE—this is not true. OLE is a subset or specialization of ActiveX components. In
general, ActiveX will be more widely used. LabVIEW applications that are control-
ling applications like Microsoft Word and Excel are using OLE, not ActiveX.

A document is loosely defined as a collection of data. One or more applications
understand how to manipulate the set of data contained in a document. For example,
Microsoft Word understands how to manipulate data contained in *.doc files and
Microsoft Excel understands .xls files. There is no legitimate reason for the Word
development team to design in Excel functionality so that Word users can manipulate
graphs in their word documents. If they did, the executable file for Word would be
significantly larger than it currently is. OLE automation is used to access documents
that can be interpreted by other applications.

7.3.1 O

RIGINS

AND

 A

PPLICATIONS

OLE once meant “Object Linking and Embedding,” but this is no longer the case.
OLE was initially designed to allow embedded documents, and still serves this
purpose. To an extent, OLE was designed to replace Dynamic Data Exchange.
LabVIEW 5.0 still supports DDE, but it no longer has an OLE palette. The OLE
palette is no longer necessary because OLE functions operate exactly like ActiveX
functions. While DDE is still available to the LabVIEW programmer, its use should
not be designed into new applications. DDE is a legacy communications protocol,
which means it could disappear from the world of Windows with little warning.

©2001 CRC Press LLC

7.4 ACTIVEX

As described earlier in this chapter, the component object model is the key to
developing applications that work together, even across multiple platforms. ActiveX,
like OLE, is based on COM. This section will discuss what ActiveX is, why it was
developed, and how it can be used to improve your applications.

7.4.1 D

ESCRIPTION

OF

 A

CTIVE

X

ActiveX controls were formerly known as OLE controls or OCX controls. An
ActiveX control is a component that can be inserted into a Web page or application
in order to reuse the object's functionality programmed by someone else. ActiveX
controls were created to improve on Visual Basic extension controls. ActiveX con-
trols provide a way to allow the tools and applications used on the Web to be
integrated together.

The greatest benefit of ActiveX controls is the ability to reduce development
time, and to enhance Internet applications. With thousands of reusable controls
available, a developer does not have to start from scratch. The controls available to
the developer also aid in increased functionality. Some controls that have already
been developed will allow the developer to add options to the Web site without
having to know how to implement functions. The ability to view movie files, PDF
files, and similar interactive applications is made possible through the use of ActiveX.

ActiveX is currently supported in the Windows 95/98/NT platforms, as well as
Web browsers for UNIX and the Mac. ActiveX, which is built on COM, is not
Win32-specific. This provides the ability to be cross-platform compatible, making
ActiveX available to the widest possible group of users.

ActiveX controls can be developed in a number of programming languages,
including Microsoft Visual Basic and Visual C++. The key to compatibility is the
COM standard that ActiveX is built with. Since a developer can use the language
that is most convenient, the development time is reduced. The programmer will not
have to learn a new programming language to develop the control.

Some of the definitions of ActiveX technology have roots in object-oriented
(OO) design. COM is not completely OO; however, much of the OOP design
methodology is used in COM. The main benefits of OO are Encapsulation, Inher-
itance, and Polymorphism. For more information on these subjects, see Chapter 10.

7.4.2 A

CTIVE

X D

EFINITIONS

First, we will discuss some of the main ActiveX technologies. The main divisions
of ActiveX include automation, ActiveX documents, ActiveX controls, and ActiveX
scripting. After the discussion of these technologies, we will discuss some of the
terms used with ActiveX as well as COM. These terms include properties, methods,
events, containers, persistence, servers, clients, linking, and embedding.

©2001 CRC Press LLC

7.4.2.1 ActiveX Technologies

ActiveX automation is one of the most important functions of ActiveX. Automation
is the ability of one program to control another by using its methods and properties.
Automation can also be defined as the standard function that allows an object to
define its properties, methods, and types, as well as provide access to these items.
The automation interface, Idispatch, provides a means to expose the properties and
methods to the outside world. An application can access these items through its
“Invoke” method. Programs being able to work together is critical to software reuse.
Automation allows the user to integrate different software applications seamlessly.

ActiveX documents (previously called OLE documents) are the part of ActiveX
that is involved in linking, embedding, and editing objects. ActiveX documents deals
with specific issues relating to "document-centric" functionality. One example is in-
place editing. When a user wants to edit an Excel spreadsheet that is embedded in
a Word document, the user double-clicks on the spreadsheet. Unlike previous ver-
sions of OLE documents, the spreadsheet is not opened in Excel for editing. Instead,
Word and Excel negotiate which items in the toolbar and menus are needed to
perform the editing. This function of ActiveX allows the user to edit the sheet in
Word while still having all the necessary functionality. Another example of ActiveX
documents is Web page viewing. When someone viewing a Web page opens a file,
like a PDF file, the file can be displayed in the Web browser without having to save
the file and open it separately in a PDF reader.

ActiveX controls (which replace OCX controls) are reusable objects that can be
controlled by a variety of programming languages to provide added functionality,
including support for events. If you listen to the Microsoft information, ActiveX
controls are designed for the World Wide Web; however, ActiveX controls can be
used in other languages, including Visual Basic and LabVIEW (Version 5.0 or later).

ActiveX scripting is a means to drive an ActiveX control. This is mainly used
in Web page development. An ActiveX control is lifeless without code to operate it.
Since code cannot be embedded in the Web page, another method of control is
necessary. That method is scripting languages. There are two common scripting
languages supported in Web pages that are ActiveX compliant. The first is JScript
(a type of JavaScript), and Microsoft Visual Basic Scripting Edition (VBScript).

7.4.2.2 ActiveX Terminology

Simply put, a method is a request to perform a function. Let’s say we are programming
a baseball team. The baseball team is made up of players. A pitcher is a specific type
of player. The pitcher must have a ThrowBall method. This method would describe
how to throw the ball. A full description is included at the beginning of this chapter.

A property is the definition of a specific object's parameters or attributes. For
instance, in our baseball example, the player would have a uniform property. The user
would be able to define whether the player was wearing the home or road uniform.

©2001 CRC Press LLC

An event is a function call from an object that something has occurred. To
continue the baseball analogy, an event could be compared to the scoreboard. When
a pitch is made, the result of the pitch is recorded on the scoreboard. The scoreboard
will show ball or strike depending on the event that occurred. Events, as well as
methods and properties, occur through automation mechanisms. Events are covered
in more detail in the following section.

A container is an application in which an object is embedded. In the example
of an Excel spreadsheet that is embedded in a Word document, Microsoft Word is
the container. LabVIEW is capable of being a container as well.

When an object is linked in a container, the object remains in another file. The
link in the container is a reference to the filename where the object is stored. The
container is updated when the object is updated. The benefit of linking is the ability
to link the same object in multiple files. When the object is updated, all of the files
that are linked to the object are updated.

When an object is embedded in a container, the object's data is stored in the
same file as the container. If an Excel worksheet is embedded in a Word document,
that data is not available to any other application. When the worksheet is edited, the
changes are saved in the data stream within the Word document. With both linking
and embedding, a visual representation of the data in the container is stored in the
container's file. This representation, called presentation data, is displayed when the
object is not active. This is an important feature because it allows the file to be
viewed and printed without having to load the actual data from the file or data stream.
A new image of the data is stored after the object has been edited.

Persistence is the ability of a control to store information about itself. When a
control is loaded, it reads its persistent data using the IPersistStorage interface.
Persistence allows a control to start in a known state, perhaps the previous state,
and restores any ambient properties. An ambient property is a value that is loaded
to tell the control where to start. Examples of ambient properties are default font
and default color.

7.4.3 E

VENTS

An event is an asynchronous notification from the control to the container. There
are four types of events: Request events, Before events, After events, and Do events.
The Request event is when the control asks the container for permission to perform
an action. The Request event contains a pointer to a Boolean variable. This variable
allows the container to deny permission to the control. The Before event is sent by
the control prior to performing an action. This allows the container to perform any
tasks prior to the action occurring. The Before event is not cancelable. The After
event is sent by the control to the container indicating an action has occurred. An
example of this is a mouse-click event. The After event allows the container to
perform an action based on the event that has occurred. The final event is the Do
event. The Do event is a message from the container to the control instructing it to
perform an action before a default action is executed.

There are a number of standard ActiveX control events that have been defined.
Some standard events include Click, DblClick, Error, and MouseMove. These events

©2001 CRC Press LLC

have Dispatch Identifications and descriptions associated with them. DispIDs have
both a number and name associated with them to make each event, property, and
method unique. Microsoft products use the dispatch ID numbers, where LabVIEW
uses the dispatch ID names. The standard events have been given negative DispIDs.

7.4.4 C

ONTAINERS

An ActiveX container is a container that supports ActiveX controls and can use the
control in its own windows or dialogs. An ActiveX control cannot exist alone. The
control must be placed in a container. The container is the host application for an
ActiveX control. The container can then communicate with the ActiveX control
using the COM interfaces. While a number of properties are provided, a container
should not expect a control to support anything more than the IUnknown interface.
The container must provide support for embedded objects from in-process servers,
in-place activation, and event handling. In addition to the container providing a way
for the application to communicate with the ActiveX control, the container can also
provide a number of additional properties to the control. These properties include
extender properties and ambient properties.

The container provides extender properties, methods, and events. They are written
to be extensions of the control. The developer using the control should not be able
to tell the difference between an extender property and the control’s actual property.
There are a few suggested extender properties that all containers should implement.
These controls are Name, Visible, Parent, Cancel, and Default. The Name property
is the name the user assigns to the control. The Visible property indicates whether
the control is visible. The Parent property indicates what the parent of the control is.
The Cancel property indicates if the control is the cancel button for the container.
The Default property indicates if the control is the default button for the container.
There are a number of additional extender properties that are available to be used.

Ambient properties are "hints" the container gives the control with respect to
display. An example of an ambient property is the background color. The container
tells the control what its background color is so the control can try to match. Some
of the most used ambient properties are UserMode, LocaleID, DisplayName, Fore-
Color, BackColor, Font, and TextAlign. The UserMode property defines whether the
control is executing at run time or design time. The LocaleID is used to determine
where the control is being used. This is mainly for use with international controls.
The DisplayName property defines the name set for the control. The ForeColor and
BackColor define the color attributes for matching the control’s appearance to the
container.

7.4.5 H

OW

 A

CTIVE

X C

ONTROLS

 A

RE

 U

SED

The first requirement for using an ActiveX control or a COM object is that it be
registered in the system. When applications like Microsoft Word are installed on a
computer, the installer registers all of the COM objects in the system registry. Each
time the application is started, the information in the registry is verified. There is a
slightly different mechanism when the COM object or ActiveX control is contained

©2001 CRC Press LLC

in a Dynamic Link Library (DLL). The specifics will not be mentioned here; the
important concept is that the item is known in the system.

The next issue is the interfaces to the control being used. The program using
the control needs to be able to access the controls interfaces. Since the ActiveX
control is built using COM objects, the interfaces are the common interfaces to the
COM object. Some of the most common interfaces are mentioned in the section on
COM. These include IDispatch and IUnknown. Most of the interfaces can be created
automatically by programming tools without having to do the coding directly.

7.5 LABVIEW AND ACTIVEX

The previous sections discussed OLE, COM, and ActiveX to give you a better under-
standing of how they are used. The terminology, evolution, significance, and operation
of these technologies were explained to give you the needed background for using
ActiveX effectively. This section will go one step further to define how LabVIEW
works with ActiveX. This includes discussions of how ActiveX can be used in Lab-
VIEW, the ActiveX container, and the functions available for use in the code diagram.
The goal of this section is to show you LabVIEW’s ActiveX interfaces by describing
the tools that are accessible to programmers. This chapter will conclude with a brief
review of the VI Server and the related functions. The ActiveX and VI Server functions
are very similar, making it an appropriate topic to include in this chapter.

The next chapter provides numerous ActiveX examples to demonstrate how to
utilize this feature in LabVIEW programs. It opens the door to a whole new set of
possibilities that you may not have thought about before. The examples will provide
the foundation for successfully implementing ActiveX through the illustration of
applications that are practical.

7.5.1 T

HE

 L

AB

VIEW A

CTIVE

X C

ONTAINER

The ability to act as an ActiveX control container was first added to LabVIEW 5.0.
By adhering to specifications for interacting with ActiveX controls, LabVIEW has
become a client for these controls. It allows LabVIEW to utilize the functionality
that the controls have to offer. To the user, an ActiveX control appears as any other
control on the user interface. The operation of the control is seamless and unnotice-
able to the end user. When used in conjunction with the available LabVIEW controls
and indicators on the front panel, it becomes an integrated part of the application.

7.5.1.1 Embedding Objects

LabVIEW allows ActiveX controls and documents to be embedded on the front
panel of a VI by using the container. Once the control or document has been placed
inside the container, it is ready for use and can be activated in place. Additionally,
the objects’ properties, methods, and events (supported in LabVIEW 5.1 or later)
are made available to the programmer for use in the application.

A container can be placed on the front panel by accessing the ActiveX subpalette
from the Controls palette. Then, to drop a control or document inside the container,

©2001 CRC Press LLC

pop up on the container and select

 Insert ActiveX Object

 from the menu. Figure 7.1
displays the dialog box that appears with the options that are available to the
programmer once this is selected. Three options are presented in the drop down box:
Create Control, Create Document, and Create Object from File. The first option is
used to drop a control, such as a checkbox or slide control, into the container. The
other two are used to drop ActiveX documents into the container.

When Create Control is selected in the drop-down box, a list of ActiveX controls
along with a checkbox, Validate Servers, will appear. The list consists of all ActiveX
controls found in the system registry when the servers are not validated. If the box
is checked, only registered controls that LabVIEW can interface to will be listed.
For instance, some controls that come with software packages that you purchase
may have only one license for a specific client. Any other client will not have access
to this control’s interfaces. Sometimes third-party controls do not adhere to ActiveX
and COM standards. LabVIEW’s container may not support these interfaces, which
prevents it from utilizing their services. After a registered control is dropped into
the container, its properties, methods, and events can be utilized programmatically.
A refnum for the container will appear on the code diagram.

Selecting Create Document also produces a list of registered document types
that can be embedded on the front panel. These are applications that expose their
services through an interface, allowing LabVIEW to become a client. When Create
Object from File is selected, the user must select an existing file to embed on the
front panel with an option to link to it directly.

In both cases, the embedded object behaves as a compound document. Com-
pound documents were described earlier in the OLE section of this chapter. Double-
clicking on the object launches the associated application. The user can then edit
the document using the application. The automation interfaces that are supported
by the application can be utilized from the code diagram once the object is placed
inside the container. Once again, a refnum representing the container will appear on
the code diagram. If Link to File is checked, the embedded object will reflect any

FIGURE 7.1

©2001 CRC Press LLC

modifications that are made directly to the file. This functionality is referred to as
“OLE Automation.”

7.5.1.2 Inserting ActiveX Controls and Documents

This section will demonstrate how to insert and use ActiveX documents and controls
within LabVIEW’s container. Figure 7.2 shows the front panel of a VI with the
Microsoft Slider Control, Version 5.0 (SP2), inserted into the container following
the procedure described in the previous section. This control is similar to LabVIEW’s
built-in Horizontal Slide control.

The properties of the slide control can be modified by right-clicking on it and
selecting Properties under the Slider submenu. Figure 7.3 illustrates the window that
appears for setting the slide’s properties. The Appearance tab allows the programmer
to alter the orientation, tick style, tick frequency, and mouse style of the control.
Essentially, every ActiveX control defines properties for which you can either set
or retrieve the current value.

Figure 7.4 displays the code diagram of the same VI. Note that the ActiveX
control appears as a refnum on the diagram. This is a simple example in which the
Property node, detailed further in Section 7.5.2.2, is used to retrieve the value of
the control set from the front panel. With LabVIEW’s ActiveX container, numerous
other controls can be integrated into an application. The programmer is no longer
limited to the built-in controls.

ActiveX documents are embedded into LabVIEW’s container by either inserting
an existing file or creating a new document with an application that exposes its
services. Figure 7.5 illustrates the front panel of a VI with a Microsoft Excel
worksheet dropped into the ActiveX container. This was done by choosing

Create
Document

from the drop-down menu, then selecting

 Microsoft Excel Worksheet

from
the list of available servers. The text shown was entered in the cell by double-clicking
on the worksheet to launch Microsoft Excel. Alternatively, you can pop up on the
container worksheet and select

Edit

 from the Worksheet submenu. Figure 7.6 shows
the same VI, but the Excel sheet is white, the way you are probably used to looking
at it. This was done by simply using the paintbrush to color the embedded object.
The container refnum can now be utilized programmatically to interface with the
worksheet’s properties and methods.

7.5.2 T

HE

 A

CTIVE

X/OLE

PALETTE

The Functions palette holds the ActiveX/OLE subpalette (ActiveX subpalette in
LabVIEW 5.1). This subpalette contains the automation functions that can be used
to interface with ActiveX servers. This section briefly describes these functions:
Automation Open, Automation Close, Invoke Node, Property Node, and (Variant)
to G Data. The OLE Variant control will also be explained. With these functions,
you have everything you need to work with and utilize ActiveX within LabVIEW.
You really do not need to know the details of how COM works to use the services
provided by servers. It is similar to using GPIB Read or Write in an application.

©2001 CRC Press LLC

These functions provide a layer of abstraction so programmers do not have to learn
the intricacies that are involved.

FIGURE 7.2

FIGURE 7.3

FIGURE 7.4

©2001 CRC Press LLC

7.5.2.1 Automation Open and Close

The function of Automation Open is to open a refnum to an ActiveX server. This
refnum can then be passed to the other functions in the palette to perform specific
actions programmatically. To create the Automation Refnum, first pop up on the
Automation Open VI to choose the ActiveX class. Select

Browse

 in the Select

FIGURE 7.5

FIGURE 7.6

©2001 CRC Press LLC

ActiveX Class submenu to see a list of the available controls, objects, and interfaces
that LabVIEW has found on the system. Figure 7.7 shows the dialog box that appears
with the drop-down menu for the type library, and the selection box for the object.
LabVIEW gets information on the server’s objects, methods, properties, and events
through the type libraries. Additionally, a

Browse

 button lets the programmer find
other type libraries, object libraries, and ActiveX controls that are not listed in the
drop-down box.

Once you have found the object that you want to perform automation functions
on, select

OK

 on the dialog box and the refnum will be created and wired to Automation
Open. If you wire in a machine name, a reference to an object on a remote computer
will be opened using DCOM. If it is left unwired, the reference will point to the object
locally. DCOM objects can only be instantiated from the Automation Open VI. Lab-
VIEW 5.0 does not have the option to wire-in the machine name. Only Version 5.1
or later can utilize DCOM to open references to objects on remote computers. DCOM
must be installed with LabVIEW to be able to use remote objects on Windows 95.

As the name suggests, Automation Close is used to close an automation refnum.
You should always remember to close refnums when they will not be used further
or before termination of the application in order to deallocate system resources.

7.5.2.2 The Property Node

The Property node is used to get or set properties of an ActiveX object. A refnum
must be passed to the Property node to perform the Get or Set action on the object.
The automation refnum, either from Automation Open or the refnum created from
inserting a control into the front panel container, can be passed to the node. Note
that this is the same Property node that is available in the Application Control
subpalette to read or write properties for an application or VI. When performing
application control, however, a reference must first be opened to an application or
VI using the Open Application Reference function.

FIGURE 7.7

©2001 CRC Press LLC

Once a refnum has been passed to the Property node, you can pop up on the
node and select a property that you wish to perform a read or write action on. The
list of properties the object supports will be listed in the Properties submenu. If you
wish to get or set more than one property, simply add elements from the pop-up
menu, or drag the node to include as many as are needed. Then, select a property
for each element. To change, or toggle, the action from read to write (or vice versa),
select the associated menu item by popping up on the node. Some properties are
read only, so you may not be able to set these properties. In this case, the selection
in the pop-up menu will be disabled.

Figure 7.8 is an example in which the Property node is used to get the default
file path that Microsoft Excel uses. Automation Open is used to open a reference to
Microsoft Excel; Microsoft Excel 8.0 Object Library Version 1.2 was selected from
the type library drop-down box, and Application (Excel.Application.8) from the
object list. DefaultFilePath is one of the items that is available for the application
in the Properties submenu of the node. C:\My Documents was returned as the default
file path that Excel uses when

Save

 or

Open

 is selected from the File menu.
Alternatively, this property can easily be used to set the default file path that you
want Excel to look in first when

Open

 or

Save

 is selected. First, you must pop up
on the Property node and select

Change to Write

 from the menu. Then a file path
can be wired into the node. This is depicted in Figure 7.9, where C:\National
Instruments is set as the default path.

FIGURE 7.8

FIGURE 7.9

FIGURE 7.10

©2001 CRC Press LLC

7.5.2.3 The Invoke Node

The Invoke node is the function used to execute methods that an ActiveX control
makes available to a client. The number of methods that a particular control offers
can vary depending on its complexity. Simple controls such as the Microsoft Slider
Control, shown earlier in Figure 7.2, has only five methods. Complex objects like
Microsoft Excel, may have upwards of several hundred methods available. Virtually
all actions that can be performed using Microsoft Excel can also be performed using
automation.

An automation refnum, either created from a control placed in the front panel
container or from Automation Open, must be passed to Invoke node. Once an
automation refnum has been wired to Invoke node, you can pop up on it and select
an action from the Methods submenu. The method selected may have input or output
parameters that must be considered. Some inputs are required while others are
optional. The data from output parameters can be wired to indicators or used for
other purposes as part of the code.

Figure 7.10 shows the code diagram of an example using the Invoke node to
execute a method in Microsoft Excel. As before, Automation Open is used to open
a reference to Microsoft Excel. Then, the refnum is passed to the Invoke node, and
CheckSpelling is selected from the Methods submenu. When the method is selected,
the input and output parameters appear below it. The CheckSpelling method checks
the spelling of the word passed to it using Excel’s dictionary. If the spelling is correct,
a “true” value is returned. If the spelling is incorrect, a “false” value is returned.
The only required input for this method is Word; the rest are optional. In a similar
manner, you can utilize the services offered by any object that supports automation.
This is a very effective way to realize code reuse in applications.

Complex ActiveX servers arrange their accessible properties and methods in a
hierarchy. This requires the programmer to use properties and methods of a server
to get to other available properties and methods. Applications such as Microsoft
Excel and Word operate in a similar manner. After you have opened a reference to
one of these applications, the Invoke node and Property node can be used to get to
other properties and methods that are not directly available. The first reference
opened with Automation Open is also known as a “createable object.” Note that
when you are selecting the ActiveX class for Automation Open, the dialog box
(shown in Figure 7.7) gives you the option to show only the createable objects in
the selection list. When the option is enabled, LabVIEW lists those objects that are
at the top of the hierarchy. What does this mean to a programmer who wants to use
ActiveX and automation? For simple objects, a programmer is not required to know
the details about the hierarchy to use them. They have relatively few properties and
methods, and are simple to use programmatically. When complex objects or appli-
cations are being used, however, a programmer needs to know how the hierarchy
of services is arranged to get the desired result in a program. This means that you
have to refer to the documentation on the server, or help files, to use them effectively.
The documentation will help guide you in utilizing ActiveX in your applications.

©2001 CRC Press LLC

Figure 7.11 illustrates the hierarchy of Microsoft Word through an example.
This VI opens a Microsoft Word document, named test.doc, and returns the number
of total characters in the document. First, a reference to Microsoft Word Application
is opened using Automation Open. Then, Documents is the first property selected
with the Property node. Documents is a refnum with a set of properties and methods
under its hierarchy. The Open method is then used to open the file by specifying its
path. Next, Characters is a property whose Count property is executed to retrieve
the number of characters contained in the document. Observe that all references are
closed after they are no longer needed. The Microsoft Word hierarchy used in this
example proceeds as shown in Figure 7.12. Microsoft Word application is at the top
of the hierarchy with its properties and methods following in the order shown.

FIGURE 7.11

FIGURE 7.12

©2001 CRC Press LLC

7.5.2.4 To G Data (Variants)

A variant is a data type that varies to fit whatever form is required of it. A variant
can represent strings, integers, floating points, dates, currency, and other types,
adjusting its size as needed. Variants are explained in more detail in Section 7.2.1.
This data type does not exist within LabVIEW; however, many ActiveX controls
do make use of it. Variants are valid data types in Visual Basic, which is often
used to create ActiveX controls. Therefore, with the addition of ActiveX function-
ality, LabVIEW must be able to deal with variants in order to pass and retrieve
data with objects.

LabVIEW supplies a control and a function VI to handle variants when working
with ActiveX because it does not interpret variants. The OLE Variant is a control
available in the ActiveX subpalette provided to facilitate passing variant data types
to servers. The To G Data function converts variant data to a valid data type that
LabVIEW can handle and display programmatically. To use this function, simply
wire in the Variant data to be converted and the type that you want it converted to.
A table of valid data types can be accessed from the on-line help by popping up on
the function. You can wire in any constant value among the valid data types to which
you need the Variant converted.

Figure 7.13 shows an example using To G Data. The code diagram shown is a
subVI in which the value of the active cell in a Microsoft Excel workbook is being
read. Its caller, which opens a reference to Excel and the workbook, also passes in
the Application refnum for use. As shown, the data type for the cell value is a variant.
The actual data in the spreadsheet is a string, therefore, the variant passed from
Excel must be converted to a valid LabVIEW data type using To G Data. An empty
string constant is wired to the type input and a string indicator is wired to its output.
If the data in the workbook is a number, a numeric constant (integer or floating
point) can be wired to the type input for conversion.

When an ActiveX object requires a variant data type as input, the programmer
is usually not required to perform any conversion from the valid LabVIEW types.
Section 7.2.1 discusses Unicode and possible conversion problems of data types
between LabVIEW and controls. Look back at Figure 7.11, the example in which
a Microsoft Word document was opened and the number of characters retrieved.
The Open method required a file name of variant type. A string constant was wired
to this input without any conversion. If you look closely, you will see a coercion
dot, indicating that LabVIEW coerced the data to fit the type required.

FIGURE 7.13

©2001 CRC Press LLC

7.5.2.5 Using the Container versus Automation

When you first begin to work with ActiveX in LabVIEW, it may be unclear whether
to use the front panel container or Automation Open to utilize the services of an
object. For instance, some servers can either be used by dropping them into the
container or by creating a refnum with Automation Open. The general rule of thumb,
when using ActiveX is to utilize the front panel container when working with controls
or embedded documents that the user needs to view. The CW Knob Control (eval-
uation copy that is installed with LabVIEW 5.0) is an example of a control that
needs to be placed in the front panel container so that the user can set its value. If
Automation Open is used to create the refnum for the knob, the user will not be
able to set its value. This applies to controls, indicators, or documents that the user
must be able to view or manipulate in an application. Once placed in the container,
the Invoke node and Property node can be used to perform necessary actions pro-
grammatically, as demonstrated in previous examples.

When you need to use ActiveX automation to work with applications like
Microsoft Word or Excel, it should be done from the code diagram, without using
the container. Use Automation Open to create a refnum by selecting the ActiveX
Class to make use of the available services. Then, use Invoke node and Property
node to perform needed actions, as shown in Figure 7.11. A front panel container
was not used in that example. You may need to refer to documentation on the objects’
hierarchy of services. On the other hand, if a specific document’s contents need to
be displayed and edited, then you can embed the document on the front panel and
perform the actions needed.

7.5.3 E

VENT

 S

UPPORT

IN

 L

AB

VIEW 5.1

LabVIEW 5.1 is the first version that supports ActiveX event handling. Section 7.4.3
described the various events in detail. Many ActiveX controls define a set of events,
in addition to properties and methods that are associated with it. These events are
then passed to the client, or container, when they occur. When a specific event is
passed back, the client can deal with the event by executing code to perform any
necessary actions. This is significant because LabVIEW can now interface to prop-
erties, methods, and events to fully utilize all of the services that ActiveX objects
have to offer. This section will explain and demonstrate how to use the functions
available in the ActiveX Events subpalette.

7.5.3.1 List Event Descriptions

In order to be able to use the events that a control passes back to LabVIEW, the
programmer needs to know all of the events that a control supports. Documentation
or reference material for the control must be consulted to determine the events that
are supported. Alternatively, List Event Descriptions.vi can be used to retrieve the
supported events from a control. This VI reads the event information from the
control’s type library and retrieves it for use by the programmer.

©2001 CRC Press LLC

Figure 7.14 shows the information that is returned from the List Event Descrip-
tions.vi. The Microsoft Forms 2.0 CommandButton was used in this example. After
the control was placed in the front panel container, the refnum was passed to this
VI. An array of event descriptions supported by the control was returned as shown
in the illustration. These events, upon occurrence, are passed back to LabVIEW for
use programmatically.

7.5.3.2 ActiveX Event Queues

ActiveX event queues are used to retrieve the occurrence of a specific event from a
control. The purpose of Create ActiveX Event Queue.vi is to create this queue which
holds instances of the event. The automation refnum and the event name of the
queue to be created must be wired in to the VI. Consult the documentation for the
event names available for the controls. A Wait option is also provided for the queue.
A Non Queued Mode captures a single instance of the event, while the Queued
Mode stores multiple occurrences of the event.

The event queue created for a particular event, using Create ActiveX Event
Queue.vi, can then be passed to Wait on ActiveX Event.vi. Wait on ActiveX Event.vi
waits for an occurrence of the event for which the queue is created, or until the wait
time is exceeded. It passes out a cluster of Event Data that contains the Event Name,
Event ID, and the associated parameters for the event and their data.

Figure 7.15 is an example of how these two VIs are employed to take advantage
of ActiveX events in LabVIEW 5.1. Once again, the Microsoft Forms 2.0 Com-
mandButton is used as the front panel ActiveX control. First, the Caption property
for the button is modified to describe the button for the user. The string “Play Sound

FIGURE 7.14

©2001 CRC Press LLC

File” is passed to the Property node to modify the caption. Then, a queue is created
for the Click event, which is one of the events supported by the control. Creating
the event queue notifies the ActiveX control that the client will provide a function
to deal with the event. The Wait on ActiveX Event.vi is used to wait for the user to
click on the button from the front panel. Once the button is clicked, a sound file is
played. This is a simple example of how useful events can be in a program. A polling
loop would have to be used to determine if the button was pressed if event capability
did not exist. Events are more efficient because the code “sleeps” until the event
occurs. Figure 7.16 displays the front panel of the VI. The ActiveX control is shown
along with the Event Data cluster, which shows the information that is returned by
the Wait on ActiveX Event.vi. This information can be used programmatically as
needed to perform other functions.

ActiveX controls usually have support for more than one event that can be used
in an application. The CommandButton, for example, supports 11 different events.
Queues need to be created for all events you want to support. When you want to
wait for an instance of any one event among several, Wait on ActiveX Event from
Multiple.vi can be used. Create an event queue for each event, as shown in the
previous example. Then, form an array using these event queues’ output from Create
ActiveX Event Queue.vi and wire it in to this VI. The Event Data will be returned
as a cluster containing the information described earlier. You can then unbundle the
Event Name from the cluster and use this output to drive a case statement. Different
actions can be performed depending on the event passed back from the control.

Destroy ActiveX Event Queue.vi destroys the event queue passed to it, as the
name suggests. Any other functions that are waiting when the event queue is
destroyed are aborted. If you wish to clear event data from a queue instead, Clear
ActiveX Event Data.vi is also available in the subpalette. Simply wire in the queue
that you need cleared to this VI. You should flush and destroy the event queues when
you are finished using them.

7.5.4 L

AB

VIEW

AS

 A

CTIVE

X S

ERVER

LabVIEW has both ActiveX client and server capabilities. This means that you can
call and use external services inside LabVIEW’s environment, as well as call and
use LabVIEW services from other client environments such as Visual Basic. This
functionality enhances the ability to reuse LabVIEW code, by being able to call and
run VIs from other programming languages. It also gives you flexibility to use the
language that best suits your needs without having to worry about code compatibility.

FIGURE 7.15

©2001 CRC Press LLC

When using LabVIEW as an ActiveX server, the Application and Virtual Instru-
ment classes are available to the client. Consult the on-line reference for details on
the methods and properties that these classes expose to clients. To use LabVIEW
as an ActiveX server, you must first ensure that this functionality has been initiated.
Select Preferences from the Edit menu, and VI Server: Configuration from the drop-
down box as shown in Figure 7.17. Check the ActiveX protocol selection and the
appropriate Server Resources as needed. You can allow VI calls, VI methods and
properties, and Application methods and properties. The on-line reference also has
an ActiveX example to demonstrate how this feature can be used. It is an example

FIGURE 7.16

FIGURE 7.17

©2001 CRC Press LLC

of a Visual Basic macro in which a VI is loaded, run, and its results retrieved for
further use.

7.6 THE VI SERVER

VI Server functionality allows programmers to control LabVIEW applications and
VIs remotely. The functions available for use with the VI Server are on the Appli-
cation Control subpalette. You must first ensure that LabVIEW is configured cor-
rectly to be able to use this capability. Figure 7.17 displays the VI Server configu-
ration dialog box. Activate the TCP/IP protocol, then enter the port and enable the
appropriate server resources you wish to use. In the VI Server: TCP/IP menu item,
you can enter a list of computers and IP addresses that you wish to allow or deny
access to the VI Server. Finally, the VI Server: Exported VIs item allows you to
create a list of VIs that you want to allow or deny access to remotely. The wildcard
character (*) allows or restricts access to all VIs on the machine.

The Open Application Reference function is used to open a reference to LabVIEW
on a remote machine. The machine name, or IP address, must be wired to the function
along with a TCP port number. This should coincide with the TCP port number that
was specified in the configuration for VI Server on the remote machine. If a machine
name is not wired to the function, a local reference to LabVIEW will be opened.
Once the reference is opened, the programmer can manipulate the properties and
methods of the local or remote LabVIEW application. Use Close Application or VI
Reference when you are finished using the reference in an application.

The Property node is used to get or set properties and the Invoke node is used
to execute any methods. These functions are identical to the ones described previ-
ously while discussing ActiveX functions. The Property node and Invoke node from
both ActiveX and Application Control subpalettes can be used interchangeably.

The code diagram in Figure 7.18 demonstrates how to make use of the VI Server.
This example simply retrieves the version number of the LabVIEW application on
a remote computer. First, a reference to the application is opened and the machine
name and port number are wired in. Then the Property node is used to get the version
number, and the reference is subsequently closed. The on-line help describes all of
the properties and methods that can be utilized programmatically.

FIGURE 7.18

©2001 CRC Press LLC

The Open VI Reference function is used to open a reference to a specific VI on
either a local or remote machine. Simply wire in the file path of the VI to which
you wish to open the reference. If the VI is on a remote computer, use Open
Application Reference first, and wire the refnum to the Open VI Reference input.
Figure 7.19 shows an example first introduced in the Exception Handling chapter.
It opens a reference to External Handler.vi and sends it the error cluster information
using the Set Control Value method. Then the External Handler is executed using
the Run VI method. Finally, the reference to the VI is closed with Close Application
or VI Reference.

BIBLIOGRAPHY

Understanding ActiveX and OLE: A guide for developers and managers. David Chapell.
Microsoft Press, Redmond, 1996, ISBN 1572312165.

G Programming Reference, National Instruments

FIGURE 7.19

Bitter, Rick et al "ActiveX Examples"
LabVIEW Advanced Programming Techinques
Boca Raton: CRC Press LLC,2001

8

©2001 CRC Press LLC

ActiveX Examples

This chapter is a follow-up to Chapter 7 on ActiveX. In Chapter 7, you were introduced
to OLE, COM, DDE, ActiveX, and their significance to programming. The related
terminology was defined along with a description on how these technologies work.
The chapter concluded by showing LabVIEW’s ActiveX interface and the related tools
available to the programmer for developing applications.

In this chapter we will provide several examples that utilize ActiveX controls
and automation. The material here serves two purposes. The first is to give you
enough exposure to ActiveX so that you will be comfortable using it in your own
applications effectively. By employing the services offered by ActiveX objects, code
reuse is significantly enhanced. This is a key advantage that was gained by the
introduction of COM. The second intent is to give you some practical examples that
you can modify and utilize in your applications. Even if the examples are not directly
applicable to your situation, they will give you a new way of thinking to apply
ActiveX that you may not have considered before.

8.1 COMMON DIALOG CONTROL

The Common Dialog control is familiar to almost every Visual Basic programmer.
Microsoft elected to provide a uniform interface to the dialog boxes for printing,
opening, saving, and color selection. These were wrapped into a single dialog box
and became known as the Common Dialog control. Every application you use, you
can see the familiar Print, Open, and Save Boxes is using this control. Being a user
interface element, it was desirable for Microsoft to have standard mechanisms for
users to perform common tasks. This allows the Windows operating system to
provide a consistent look and feel to end users regardless of which company was
developing software to use on the operating system.

We can use the Common Dialog control to keep the Windows look and feel
consistent for our end users. This control is useful if you are using file saving and
not using the high-level interfaces provided by LabVIEW. If you are using the high-
level interfaces, you do not need to use this control; LabVIEW is using it for you!

This example uses the Microsoft Common Dialog Control Version 6.0. The
Common Dialog Control is relatively simple to use and will serve as the introductory
example. It is useful for prompting the operator to select a specific file for opening
and saving purposes, while also allowing them to navigate through the Windows
directories.

©2001 CRC Press LLC

Figure 8.1 displays the code diagram of Common Dialog.vi. The Common
Dialog control was placed in the front panel ActiveX container, and is represented
by the refnum on the diagram. The objective of this VI is to display the dialog box
and instruct the user of the application to select a file. The name of the file that the
user selects is then retrieved from the control and used elsewhere. In this example,
the first action taken is to set the InitDir property to C:\. This causes the dialog box
to display the contents of C:\ when it appears. Next, the DialogTitle property is set
to prompt the user to select a specification file. Then the Show Open method is
executed, which simply displays the dialog box. Finally, the FileName property is
read back to find out the name of the file that was selected. The Common Dialog.vi
can be used as a subVI whenever a similar function needs to be performed. Figure
8.2 shows the dialog box as it appears when the VI is executed.

The front panel container was used to insert the Common Dialog Control in this
example, but we could just as easily have used Automation Open. The reason for
using the container was to have the control displayed instead of the automation
refnum. This allows the programmer to modify properties of the control quickly, by
popping up on it. On the block diagram, the InitDir and DialogTitle properties could
have been set in the same step, by popping up on the Property node and selecting

Add Element

. Since this is the first example presented, it was done with two separate
property nodes to simplify the block diagram.

FIGURE 8.1

FIGURE 8.2

©2001 CRC Press LLC

8.2 PROGRESS BAR CONTROL

The Microsoft Progress Bar can be used to keep a consistent look and feel in your
applications. Programmers have been using slide controls for years to emulate the
Microsoft Progress Bar. Now that the control is available through ActiveX, we can
use it without any workarounds. As we mentioned, a strong advantage to using this
control is that it will always have the same look and feel of other applications running
on Windows. In the event that Microsoft releases a new version of Windows con-
taining a new look to the Progress Bar, the change will be automatically updated
into your application if you replace the older control with the new one on your
system. The way the Progress Bar looks could potentially change with a new release
of Windows; however, the interface for this control is not likely to change.

Since this is a user interface element, there are two different methods that we
can use to create it: we can insert it into an OLE container, or we can use the ActiveX
Open. User interface elements are typically created with an OLE container so there
are no issues regarding the location of the control of the display. Therefore, we will
not have an open VI for this control; users will need to place an OLE container on
the front panel and insert this object. Once the OLE container is placed on the front
panel, right-clicking on the control allows you to insert an ActiveX object. Insert a
Microsoft Progress Bar control. You may notice that there are several different
Progress Bar controls listed with different version numbers. Each release of lan-
guages like Visual Basic will have a new version of the Progress Bar control.
Typically, we use the “latest and greatest” version of each control, but you may feel
free to use any of the versions currently listed. According to the rules of COM, each
version of the control should have the same interface. Additional functionality can
only be added to new interfaces. This ensures that you will not have compatibility
issues if another version of the control is updated on your system.

Once the control is placed on the front panel, you can resize it to dimensions
that are appropriate for your application. The control itself has 14 properties and 3
methods. The methods are About Box, OLEDrag, and Refresh. The About box simply
displays a window showing the copyright information for this control. Users may
be impressed with the quality of the Progress Bar, but not impressed enough to want
to see the credits for the control. We will also not need the OLEDrag or Refresh
methods. The control is capable of updating itself, and there is no need to manually
update it.

Properties for this control include display concerns such as appearance, orien-
tation, mouse information, and border style. If you want the typical 3-D look and
feel, the appearance property should be set to 3-D. This control uses enumerated
types to make it easy for programmers to determine which values the control will
accept. All appearance properties for the control use enumerated types. Orientation
allows programmers to have the control move horizontally or vertically. The default
value is horizontal, but it is possible to have the Progress Bar move up and down,
as is done in Install Shield scripts for hard drive space remaining.

The mouse information allows you to determine which mouse style will be
shown when the user locates the mouse over the control. An enumerated type will
identify which mouse styles are defined in the system; all we need to do is select one.

©2001 CRC Press LLC

Min, Max, and Value properties are used to drive the control itself. Min and
Max define the 0% and 100% complete points. These values are double-precision
inputs to allow for the most flexibility in the control. Setting the value allows the
control to determine what percentage complete the bar should display. This simplifies
the task of displaying progress bars over the old technique of using a LabVIEW
numerical display type; the calculations are performed for us.

The driver for this control is fairly simple. We will have a few property-setting
inputs for the configuration-related properties, and a VI to support setting the Value
property. Default values will be assigned to the properties on the VI wrapper so
inputs do not need to be applied every time we configure a control. The code diagram
for this VI appears in Figure 8.3.

8.3 MICROSOFT CALENDAR CONTROL

This example uses the Microsoft Calendar Control, Version 8.0. In order to use this
control you will need to place an ActiveX container on the front panel of your VI.
You can select the Calendar control by right-clicking on the container and selecting

Insert ActiveX Object

. When the dialog box comes up you will need to select

Calendar Control 8.0

. The properties and methods for this control are very man-
ageable. There are 22 properties and 11 methods. The example used here will
exercise a majority of the methods and controls.

The first method displays the About box for the control. There is no input for
this method. Actually, none of the methods for the calendar control have inputs. The
actions are initiated by simply invoking the methods. There are methods for advanc-
ing the calendar control to the next day, week, month, and year. By invoking these
methods you will increment the Calendar control by the specified value. These
methods will also refresh the calendar display. There are methods for moving the
calendar control to the previous day, week, month, and year. There is a separate
method for refreshing the calendar control. Finally, there is a method for selecting
the current date on the control.

If you were implementing these methods in an application, you could make a
front panel selector that would drive a state machine on the code diagram. The state
machine would contain a state for each method. The user of the application would
be able to interactively move around the calendar through the use of these front
panel controls.

FIGURE 8.3

©2001 CRC Press LLC

The background color is the first property available in the Property node. This
input requires a long number representing the RGB color for the control’s back-
ground color. The valid range of typical RGB colors is 0 to 16,777,215. The next
set of properties relate to configuring the day settings. You can read or write the
value for the currently selected Day, set the Font, set the FontColor, and the Day-
Length. The DayLength property designates whether the name of the day in the
calendar heading appears in short, medium, or long format. For example, to set the
DayLength property to long, you would have to wire a 2 to the property input. This
would result in the day being displayed as Monday instead of Mon. or M. The
property after DayLength is First Day, which will specify which day is displayed
first in the calendar.

The next set of properties relates to the grid style. The GridCellEffect property
sets the style of grid lines. They can be flat, raised, or sunken. The GridFont property
sets the font for the days of the month. You can also set the font color and line color
for the grid. There are five properties relating to visibility. They allow you to show
or hide items such as the title. The Value property allows you to select a day on the
calendar or read the currently selected date from the calendar. The data type of the
Value property is a variant. A Null value corresponds to no day being selected. The
ValueIsNull property forces the control to not have data selected. This is useful for
clearing user inputs in order to obtain a new value.

In the following example we will configure the Calendar control to use user-
selected properties for a number of attributes. The user will be able to set the length
of the day and month, as well as the grid attributes. After configuring the display
settings, we will prompt the user to select a date. Using ActiveX events, the program
waits for the user to click on a date. After the date has been selected, we read in
the value of the control and convert the value to the date in days. The program will
then calculate the current date in days. The current date will be subtracted from the
selected date to calculate the number of days until the specified date. This value will
be displayed on the front panel. The code diagram and front panel for this example
are shown in Figure 8.4. The day, month, and year are all returned as integers. The
month needs to be converted to a string by performing a Pick Line and Append
function. This function selects a string from a multiline string based on the index.

8.4 WEB BROWSER CONTROL

This example utilizes the Microsoft Web Browser control. The Web Browser control
can be used to embed a browser into the front panel of a VI, and has various
applications. This control must be dropped into LabVIEW’s front panel container.
It is part of a collection of createable objects included with Microsoft Internet
Controls Version 1.1. The Web Browser control corresponds to the Internet Explorer
(InternetExplorer.Application.1) object. It allows you to navigate the Web program-
matically through the COM interface and see the pages displayed on the front panel
window.

The Web Browser control can be very useful as part of an application’s user
interface. This example will illustrate how to utilize the control in a user interface
to display on-line documentation or technical support for an operator. A simplified

©2001 CRC Press LLC

user interface is displayed in Figure 8.5 that shows an enumerated control and the
Microsoft Forms 2.0 CommandButton. Obviously, this would be only one control
among several that you may want to make available in your user interface. The
enumerated control lets the operator select the type of on-line support that is desired.
When the

Go!!

button is pressed, another window appears with the Web page selected
from the control. This is ideal for use in a company’s Intranet, where the Web-based
documentation is created and saved on a Web server.

Figure 8.6 shows the code diagram of this user interface. After setting the Caption
property of the CommandButton, an event queue is created for Click. The VI sleeps
until

Go!!

 is clicked, after which Web Browser.vi executes. The Web Browser VI
was configured to display the front panel when a call is made to it. This option is
made available if you pop up on the icon in the upper right corner of a VI panel or

FIGURE 8.4

©2001 CRC Press LLC

diagram. Select

VI Setup

 from the pop-up menu and the window shown in Figure
8.7 appears. Note that checkboxes have been selected to show the front panel when
the VI is called and to close it after execution if it was originally closed.

The front panel window with the embedded browser appears loading the URL
specified, as shown in Figure 8.8. National Instruments’ home page is displayed in
the browser window in this example. The Browser control allows the user to click
on and follow the links to jump to different pages. When the operator is finished
navigating around the documentation on-line, the

Done

 CommandButton is pressed
to return to the main user interface.

Figure 8.9 illustrates the code diagram of the Web Browser VI. Based on the
support type selected from the user interface, the appropriate URL is passed to the
Navigate method on the Browser control. As the front panel is displayed when the
VI is called, the URL will begin loading in the browser window. Once again, the
Caption property is modified, this time to display “Done” on the CommandButton.
Next, an event queue is created and the VI waits for the Click event. When

Done

 is
clicked, the queue is destroyed and the window closes, returning to the user interface.

FIGURE 8.5

FIGURE 8.6

©2001 CRC Press LLC

The Browser control does not have many methods or properties in its hierarchy
of services, making it relatively simple to use. The CommandButton is also a simple
control to use in an application. The button’s support of several ActiveX events
makes it an attractive control for use. The Click event is convenient because it
eliminates the need for a polling loop.

FIGURE 8.7

FIGURE 8.8

©2001 CRC Press LLC

8.5 MICROSOFT SCRIPTING CONTROL

The scripting control is a unique control that was used to add functionality to both
Visual Basic and Visual Basic script. One of the internal components of this control
is the dictionary. The dictionary is very useful for storing and retrieving data via a
key. When working with objects such as clusters that store configuration information
for an application, it may be desired to access the clusters by a key. The key can be
a number such as an array index. It might be desirable to use a string for the key.
Humans tend to identify strings better than numbers, which is why enumerated types
are popular in every programming language.

As an example of why a dictionary might be useful, consider a very simple
application that stores basic information about people, such as their names, phone
numbers, and e-mail addresses. We tend to remember our friends’ names, but their
phone numbers and e-mail addresses might elude us. We want to be able to enter
the name of one of our friends and have their name and e-mail address returned to us.

One solution is to store all the names and addresses in a two dimensional array.
This array would store names, phone numbers, and e-mail addresses in columns.
Each row of the array represents an individual. Implementing this solution requires
that we search the first column of the array for a name and take the row if we find
a match. Elegance is not present, and this approach has problems in languages such
as C, where array boundaries do not just grow when we exceed the bounds. Also,
consider that if we have a lot of friends and add one past the array boundaries, the
entire array will be redimensioned, which will cause performance degradation. The
big array solution does have a benefit; it can be easily exported to a tab-delimited
text file for presentation and sorting in an application like Microsoft Excel.

It would be easier if we could use a cluster to store all the information, and
search the clusters by the name to find the information. We can use clusters and a
one-dimensional array, but we still have the problem of arrays and resizing. The
next problem we encounter is when we want to remove people from the array. This
involves splitting the array and rebuilding it without the undesired row. Memory hits
will again show up because we need to allocate two subarrays and one new array.

Linked lists are a possible solution, but searching the list is not particularly
efficient. We would have to search the elements one at a time, from beginning to
end, or use sorting algorithms to implement other search patterns. Regardless of the

FIGURE 8.9

©2001 CRC Press LLC

method chosen, we will spend time implementing code or will waste CPU time
executing the code. Enter the scripting control and its Dictionary component.
Microsoft describes the dictionary as an ActiveX equivalent to a PERL associative
array. Associative arrays take two values: one value you want to store, and a value
that you want to reference it with. We are not being very specific about the values
that are stored and used for reference because the item types are very flexible. If we
want to store clusters of information and refer to them by strings, we can. If we are
interested in referring to strings by numbers, we can do that, too.

The interface to Dictionary is fairly simple, and a small collection of VIs to use
the control are provided on the companion CD. First, we need an open Dictionary
VI to create a reference to the ActiveX control. This VI will not be documented
because it is a simple automation open command wrapped in a VI. A Close VI is
provided; it is an automation close in a wrapper.

To insert a pair of items, called the “key and item,” we invoke the Add Item method.
This method is wrapped in a VI for ease of use. The control accepts variants, and we
will use the variants with this control. The other option is to have wrappers that accept
each data type and polymorph the LabVIEW type into a variant. This would require
a lot of work, and the benefits are not very high. Either way, the types need to be
polymorphed. Each cluster of personal information we want to insert into the dictionary
is added to the map with the Add Item VI. The use of this VI is shown in Figure 8.10.

To verify that an item exists, the Key Exists VI is used. This VI asks the dictionary
if a certain key is defined in the dictionary. A Boolean will be returned indicating
whether or not the key exists.

Removing items is also very easy to accomplish; the Remove Item VI is invoked.
The key value is supplied and the item is purged from the array. Removing all items
should be done before the dictionary is closed, or memory leaks will occur. This VI
calls the Remove All method and every element in the dictionary is deleted.

If we want to know how many items are in the dictionary, the Count property
can be retrieved. Count will tell us how many entries are in the dictionary, but does
not give us any information as to what the key names are. A list of all key names
can be obtained with the Get Keys VI. This VI will return a variant that needs to be
converted to an array of the key type. For example, if you had a dictionary mapping
integers to clusters, the output of Get Keys would have to be converted to an array
of integers. An example of the conversion is shown in Figure 8.11. Our driver will
not convert values for us because this would require a large number of VIs to
accomplish, or would not be as reusable if we do not cover all the possible data
types. In this case, variant usage is working in our favor.

FIGURE 8.10

©2001 CRC Press LLC

The array returned by Get Keys can be used with a For loop to get each and
every item back out of the dictionary if this is required. We will have an array of
elements, which is generally undesirable, but there are cases where we will need to
do this. Using the For loop to develop the array is efficient, because auto indexing
will allow the For loop to predetermine the size of the output array. This array can
then be dumped to a file for storage.

This example demonstrated a simple application of the Dictionary control. This
control can be very useful in programming applications where an unknown number
of data items needs to be stored for use at a later time. Applications that should
consider using this control would have storage requirements for which arrays cannot
be practical, and for which using a database would be overkill. Database program-
ming can be challenging, and interfacing to the database may not be very fast. The
Dictionary is an intermediate solution to this type of programming power, and
variants allow this tool to be very flexible.

8.6 MICROSOFT WINSOCK CONTROL

This section discusses the use of the Microsoft Winsock control. LabVIEW has a
native API for TCP and UDP functionality, but LabVIEW’s API does not support
events. Event support makes the Winsock control desirable when efficient commu-
nications code is needed. LabVIEW’s TCP and UDP APIs do not support events,
so receiving data must be done in polling loops. Polling loops are inefficient uses
of CPU time. When efficiency is a requirement, the Winsock control can be used
for receiving traffic.

Before using this control, we need to verify that a correct resource DLL is
available to LabVIEW. The resource directory inside the LabVIEW directory needs
to have a DLL named “ax-events.DLL.” The version of this DLL can be determined
by right-clicking on the file and selecting

Properties

. The properties box should have
a version tab. The correct version should be 1,0,0,2. If the version number is 1,0,0,1
or earlier, you will experience problems with ActiveX events. This DLL can be
downloaded from National Instruments’ Web site, www.natinst.com.

The ActiveX Winsock control is an ActiveX wrapper around the Winsock DLL.
LabVIEW’s TCP and UDP VI collection is also a wrapper around this DLL. Winsock
is Microsoft’s implementation of the UNIX Sockets standard. Sockets have been a
primary means of communications for applications. Without sockets, concepts such
as e-mail, WWW, and network news would never have been implemented.

FIGURE 8.11

http://www.natinst.com/

©2001 CRC Press LLC

Before we go into the details of using the control, we will present a very brief
overview of TCP and UDP. TCP is the Transmission Control Protocol; it is a
connection-based protocol. A TCP address is a combination of two numbers: the IP
address of the machine and the port (socket) number that is receiving the data. TCP
maintains a connection between two computers until either the local or remote
machine closes the connection.

User Datagram Protocol (UDP) is a connectionless protocol. UDP does not
maintain active connections or provide retry mechanisms. If a packet does not arrive
at the remote computer or is corrupted upon arrival, no notification is returned to
the sending machine. Despite this limitation, UDP is preferable in applications that
maintain numerous connections or have high-speed requirements. It is possible to
implement a custom acknowledgment routine where the remote machine would send
a reply to each message it received. This seems like a lot of work considering that
TCP does this type of work for you. High-speed applications may need to consider
the latency in the TCP communications stack. TCP’s communication stack is geared
to message reliability and there is a fair amount of code needed to perform TCP
communications. If an application does not explicitly require notification that a
message has arrived, UDP is a lighter and faster protocol.

We will need to develop a driver to use this control; the driver does an excellent
job of covering up the ActiveX API with a native set of LabVIEW commands. The
driver will also combine a number of common tasks. The first tasks that need to be
done at startup are opening the ActiveX refnum and preliminary configurations. As
previously stated, the Winsock control supports both UDP and TCP through a single
interface. The protocol is selectable with an enumerated type. It stands to reason
that the control should be configured with this protocol at startup, this will be a
property that is used in the Winsock Open VI. In addition to the protocol, a local
port number is not likely to change during the use of this control. Local port will
be the second input. If a value not specified, zero will be fed into the control. The
control will not let us use a local port value of zero, and will assign a new value
for us. The last property that needs to be configured at startup is whether or not we
want to bind to the port number. “Bind” informs the operating system that we are
reserving that particular port number and no other applications should be allowed
access to it. This property is useful for TCP/UDP servers, and will be necessary if
a UDP connection is being used. Bind will be given a default value of “false.” The
code diagram for the open VI appears in Figure 8.12.

FIGURE 8.12

©2001 CRC Press LLC

The next method we will need to support in order to use the Winsock control
is the Connect method. The Connect method takes a remote host and port number
as variant arguments. LabVIEW programmers will likely use a string for the host
name and an integer for the port number. There are string-to-IP and IP-to-string
functions in the TCP palette for easy conversion between the addressing methods if
programmers require them. Connect works differently for TCP and UDP. UDP is a
connectionless protocol. It does not make a lot of sense to establish a connectionless
link with a connection, but this starts up the control for use with UDP. Connect
contacts the remote host and port when the control is using TCP. The common
interface makes it easier for programmers to use one control and API for two
communications tasks. We will not show the code diagram for this VI; it is available
on the companion CD-ROM.

Sending data is a prime purpose for this control, and it supports a method to do
just that. Send Data will accept data types of any kind, but our driver example will
only support strings. Writing additional wrappers for other data types is a trivial
exercise. Send Data should not be invoked unless the Connect method has been
called previously. Without the Connect method, a TCP conversation has not been
started, and for UDP there is no destination information available. The control will
generate an error if you attempt to send data without establishing a connection first.

Receiving data is accomplished with the Get Data method. This method should
be used in conjunction with the Data Arrival event. This event will notify an appli-
cation that data has arrived at the port the control has specified. We will cover
Winsock control’s events shortly. In the meantime, the command to retrieve data
from the control is Get Data. Get Data supports multiple data types. The three
arguments to the Get Data method are data, type, and maximum length. We wired
an empty string into the data argument. In languages such as C++ where pointers
are used, the control expects the user to supply a location to copy the data. LabVIEW
does all of this under the hood, so wiring an empty string supplies a location to use.
It is important to understand that LabVIEW quietly discards this information; you
just need to give a location for the ActiveX interface to use. Type is a variant argument
that would specify the type of data that should be returned, such as integer, string,
or floating-point numbers. The data returned is stored in a variant that can be
converted to any of the desired types by the To G Data function. This example will
only use string data types, but similar to Send Data, it is a trivial exercise to support
other data types with this driver.

8.6.1 U

SING

 W

INSOCK

 C

ONTROL

WITH

 TCP

Using the Winsock control for TCP communications is not complicated, but the
control behaves a bit differently for TCP and UDP communications. This section
will outline using the control for TCP. The first property that is optional for TCP
connections is Bind; binding is not necessary for TCP connections.

Events such as Connection Request need to be used with TCP server applications.
This event is analogous to the TCP Listen VI. The corresponding method to a
Connection Request event is the Accept method. Accept informs the Winsock control

©2001 CRC Press LLC

that we will grant the connection, and the Deny method informs Winsock that we
are not interested in talking to the other system.

8.6.2 U

SING

 W

INSOCK

 C

ONTROL

WITH

 UDP

The Winsock control uses one API for UDP and TCP programming, but the methods
and properties behave a bit differently when programming for UDP communications.
First, the Bind command is not optional. Since UDP is connectionless, there must
be some mechanism for maintaining the port. Recall that “Binding” means informing
the operating system that your application is going to camp out at this particular
port number. If you do not issue the Bind command, your application will not receive
any data, and the application will not give any reasons why data was not received.
The Connect method is still used to specify the remote host and port, but unlike
TCP there is no network traffic sent because there is no true connection being
established.

Sending data can be done after the connect is issued; the datagram is transmitted
to the destination computer, and there will be no acknowledgment that the message
was received. If it is necessary to know that the message was, in fact, received, you
could have the destination computer send back a reply indicating that. In high-speed
applications or applications that are running over very slow links, this method is
preferable because there is significantly less overhead to UDP packets. Both TCP
and UDP packets will be sent using Internet Protocol (IP). The IP header is 20 bytes
long (possibly longer), and a TCP packet has an additional 20 bytes of overhead.
UDP only has 8 bytes of overhead, which makes it much more efficient over slow
communications channels. In addition, the TCP call stack uses a lot more overhead
to process acknowledgments, where UDP has nothing. High-speed applications
benefit because you are using the lightweight protocol.

UDP servers will not use the Connection Request event. The Data Arrival event
would be used to handle connection requests; it is a simple matter to identify the
remote machine and port number. When processing the data arrival event, examine
the properties for remote host and remote port to identify where a datagram came
from. Additionally, it is possible to use multiple instances of Winsock to improve
the capacity of a server. A Winsock control will be created and will bind to a port
number known to all clients. Clients will send a datagram to the server. When the
server receives the datagram, it opens another Winsock control and sends a reply
back to the client from the new Winsock control. The client can then send traffic to
the new, private Winsock control. Throughput can be improved by using multiple
ports; this is inherently true for TCP connections because they must have unique
ports for each connection.

8.6.3 U

SING

 W

INSOCK

IN

 C

LIENT

 A

PPLICATIONS

Client applications are easier to program than server applications, so we will develop
a simple client application first. For direct comparison, we will develop a client that
requests the current time from a server. This is an ActiveX version of the LabVIEW

©2001 CRC Press LLC

example code. The LabVIEW API VI can be found in the following path: C:\Exam-
ples\COMM\tcpex.llb\Date Client.vi.

To begin, we will need to open an ActiveX refnum for this control. The Winsock
Open VI opens the ActiveX control and configures the local port and binding
information. We will not bind to this port; it is not necessary in the client application.
No local port will be specified; we will let the operating system select one for us.
In client applications it is preferable to use a selected port, which allows multiple
instances of the application to be used without creating port conflicts.

Once we have a reference to a Winsock control, we will create an event queue
for data arrival. We have written a VI wrapper for this specific event because we
intend to use it often. This queue will be used to keep a receiving loop idle until
data arrives at the port. Keeping sections of the code diagram idle until necessary
minimizes CPU utilization.

Now that we have a reference to the control and data arrival queue, we will issue
a connect command to the remote machine. Since this is a TCP application, the
Connect routine will contact the remote machine and request a connection. This
basically ends half of the application; there is no need to issue any additional
commands until the client is ready to terminate.

A While loop will be used to wait on the data arrival event; this allows the
application to continuously listen for traffic. A Wait on Event VI will be used to
keep the loop idle until data arrives. Once data arrives, the loop will execute the Get
Data VI and post the returned string to the date time indicator. A shift register is
used to loop back error information. The loop is driven by the

 Stop Button

control,
and will exit the loop when a user sets the control value to “false.” Once this loop
terminates, the character “z” will be sent to the server to indicate that we would like
to close the connection. The code diagram for this application appears in Figure 8.13.

8.6.4 U

SING

 W

INSOCK

IN

 S

ERVER

 A

PPLICATIONS

To complete the client example, we will develop an ActiveX-based timeserver
application. One issue with the Winsock control is that it can only handle a single
connection at a time. This could potentially be a problem with TCP-based server
applications because a connection is needed for each instance. The solution is to
have multiple instances of the Winsock control to handle multiple connections. This
is pretty much in line with the LabVIEW TCP API. We will need to support the
Connection Request event. Connection Request returns a connection ID, and any
instance of the Winsock control can accept the connection. When a connection

FIGURE 8.13

©2001 CRC Press LLC

request occurs, we generate an instance of the control and call its Accept method
with the ID of the requesting connection. An array will be used to track all the
instances of the control. When one instance of Winsock is loaded into memory, the
system will not need to reload the ActiveX control from the hard drive. This is true
of all ActiveX controls, but it is not very common to use multiple instances of
ActiveX controls and generate them on the fly. A Winsock server is an example of
an application that needs to generate copies of itself on the fly.

8.6.5 U

SING

 W

INSOCK

FOR

 M

ULTIPLE

-C

ONNECTION

 S

ERVERS

When you have multiple copies of the Winsock control running, events will come
back from each of the control copies. There are two alternatives to handle event
cutbacks. One is to have a fixed number of loops, one per Winsock control. This is
fairly easy to implement, but requires a fair amount of space on the block diagram
and limits the number of Winsock controls you can create to the number of handling
loops that you create. The second technique is to use a polling loop (ack!) and cycle
through an array of event refnums with short timeout values for the Wait On event.
The second technique allows more flexibility, but does not allow you to suspend the
code diagrams as effectively because of the polling loops.

To illustrate using two Winsock controls without polling loops, examine Figure
8.14. This type of configuration has two Winsock controls. The first control is used
to handle incoming connections, and the second to handle the requests. If a second
connection request is received it will be denied because the worker control and
listener control are busy.

To use the short timeout polling loop for multiple connections, check out Figure
8.15. The short timeout allows each connection to have the opportunity to check for
new event occurrences. Internally, a Handler function that has access to the individual
Winsock control refnums and other state information can be used to process indi-
vidual messages. Depending on the application, the handlers can be simple to fairly
elaborate. The main Winsock control is used to listen to a known port, and passes
off connection requests to new Winsock controls. The “child” Winsock controls can
be created and reused in a pool, or can be created and destroyed on the fly. The
advantage of a pool of Winsock controls is that your code does not spend any time
creating or destroying instances, but it does have a strict limit on how many con-
nections can exist. Creating and destroying controls on the fly allows more flexibility
in the amount of memory used and the number of connections that can be handled.

8.7 MICROSOFT SYSTEM INFORMATION CONTROL

It has always been possible through API calls to identify which version of the
Windows operating system your code was executing. An easy interface to gather
this information is presented by the Sysinfo control. This control has a variety of
information regarding the operating system, power status, and work area. The Sys-
info control does not have any methods, but does have a list of interesting properties
and events. The events are not necessary to use the control; all properties can be
accessed without needing to respond to events.

©2001 CRC Press LLC

Designing this driver collection will require four VIs for the properties. We will
have one VI to open the control, one to handle power status, one to give operating
system information, and the last to give work area information. No Close VI will

FIGURE 8.14

FIGURE 8.15

©2001 CRC Press LLC

be built. There is no obvious need to wrap the automation close in a VI; that will
just add extra overhead.

NASA-certified rocket scientists would not be needed to verify that the code
diagram in Figure 8.16 simply creates a connection to the control. We will not be
asking for any properties from the control at this time. Opening ActiveX controls
should be done as soon as possible when an application starts up. This allows us to
open the control at the beginning of a run and query information from the control
when it becomes necessary.

The Power Information VI code diagram in Figure 8.17 is nearly as simple as
the Open statement. The values that can be returned are AC Status, Battery Full
Time, Battery Status, Battery Percentage, and Battery Life. All return values are in
integers, and we will now explain why and what they mean. AC Status has three
possible values: 0, 1, and 255. Zero means that AC power is not applied to the
machine, 1 means that AC power is being supplied, and 255 means the operating
system cannot determine if power circuitry is active. Battery Full Time is actually
the number of seconds of life the battery supports when fully charged; a value of
–1 will be returned if the operating system cannot determine the lifetime the battery
is capable of. Battery Percentage is the percentage of power remaining in the battery.
A return value of 100 or less is the percentage of power remaining. A value of 255
or –1 means that the system cannot determine the amount of battery life left. Battery
Life returns the number of seconds remaining of useful power from the battery. A
value of –1 indicates that the system cannot determine this information.

This information is only useful for laptop or battery-powered computers. The
average desktop computer has two power states: AC on or AC off. If the desktop is
hooked up to an uninterruptible power supply (UPS), we will not be able to get to
the information from the Sysinfo control. Some UPS devices have interfaces to the
computers they support, and a different driver would be needed for that type of
monitoring. Consult the documentation with your UPS to determine if a driver is
possible.

The next set of properties, the operating system information, may be useful when
applications you are running are on different variants of Windows. Currently, there
are more variations of Windows than most people realize. Consider that there are
three versions of Windows 95 that could be run: the original Windows 95, Windows
95 with Service Pack 1 applied, and Windows 95 Operating System Release 2 (OSR
2). Windows 98 has two releases at the time of this writing, and there are a total of
five service packs available for Windows NT 4.0. If you are doing hard-core pro-
gramming involving ActiveX, OLE, or custom DLLs, the operating system infor-
mation may be useful for troubleshooting an application. A second option is to
dynamically change your code based on the operating system information.

FIGURE 8.16

©2001 CRC Press LLC

Operating system properties available are the version, build number, and plat-
form. “Platform” indicates which Win32 system is running on the machine: 0
represents Win32, 1 represents Windows 95, and 2 indicates Windows NT. The
“Build Number” indicates which particular compile number of the operating system
you are running. Actually, this property will not be tremendously useful because the
build number is not likely to change. Service packs are applied to original operating
systems to fix bugs. The version number also indicates which version number of
Windows you are currently running. Windows 95 is considered Windows version
4.0 (it followed Windows 3.0 and 3.1).

The work area properties are useful if you programmatically resize the VI. This
information gives the total pixel area available on the screen considering the task
bar. This way, panels can be scaled and not occupy the area reserved for the task bar.

LabVIEW 5.1 users can take advantage of the events this control supports. Many
of the commands are not going to be of use to most programmers. The operating
system will trigger events when a number of things are detected. One good example
is that when a PCMCIA card is removed from a laptop, the operating system will
detect this (although not as quickly as many programmers would want). Once the
system has detected the removal of a PCMCIA card, and you have an event queue
for this control, you will be informed by the operating system that a PCMCIA card
has been removed. This type of functionality will be useful for developers who need
to support portable computer designs. PCMCIA card removal notification would
allow an application to stop GPIB or DAQ card-handling and would be useful for
adding robustness to an application. For example, code that could be executed once
this event happens would be to halt reads, writes, or commands that route to the
PCMCIA card until a PCMCIA Card Inserted event is generated. The event handling
for this control is left up to the reader to look up. The system control should be
supplied with most systems.

8.8 MICROSOFT MAPI SERVICES

Microsoft MAPI is Messaging Application Programming Interface. This set of
controls is used to enable mail aware-applications. Two controls are used: the
message and connection controls. Both must be used to develop the messaging driver.
This driver is useful for e-mailing results of code execution. Some paging services
also route text e-mail messages to pagers. E-mail code is significantly easier to

FIGURE 8.17

©2001 CRC Press LLC

develop than code to control a modem and dial a pager. MAPI does not use events,
therefore this driver is usable in LabVIEW 5.0.

The MAPI interface requires that Microsoft Exchange or Outlook be installed
on your system. Configuration information, such as the mail server, needs to be
configured prior to using the controls. Configuration information can be located
in the Control Panels folder under “Mail.” Documentation for this control suggests
MAPI configuration is temperamental—errors that are encountered could be con-
figuration issues.

The MAPI Session control is used to log into the messaging subsystem of Win32.
Without a valid connection, the controls will not do anything useful. The purpose
of the Session control is to give the application access to the server, and information
such as the contents of the user’s inbox. First, we need to create the MAPI session,
then log into the network. The MAPI Session Open VI presented below takes a user
name and password as inputs. In addition to the user name and password properties,
we will set the new session property to be “true,” indicating that this is a new session.
A Logon VI property is set to “false.” This property determines if the MAPI session
should prompt a user for the logon information. This driver is intended for automated
mail generation for user feedback; we are not implementing user prompts in this
example. Next is to call the Sign On method. This method causes the MAPI sub-
system to attempt a login to the mail server. If authentication fails, an error will be
generated and returned in the error cluster. If user dialog was enabled, a dialog box
would pop up asking the user to reattempt authentication. Again, this driver is
intended for automated mail generation; dialog boxes are not desirable. The last step
in the Open VI is to get the Session ID property. This property will be returned as
an output of the MAPI Session Open VI. It will be needed by the messages control.
Session ID has a default value of zero and is used to provide a unique handle to the
control. It is possible to have multiple messaging sessions open concurrently.

The Session Close VI performs one step in addition to closing the automation
refnum. We need to sign off or risk leaving resources on the server hanging. Busy
server administrators might not appreciate this. Finally, a third method supported
by the MAPI Session control is the About box. We are figuring that the average user
will be impressed by a mail-aware application, but will not be impressed enough to
read the credits. Therefore, the About Box method is left as an exercise for the reader.

The supporting session driver is not completed yet. There are a handful of
properties that programmers may find useful. Other properties that could be useful
are the Download Mail and Action properties. The Download Mail property deter-
mines if the MAPI session should download mail from the server when it arrives.
We are leaving this at the value configured in the Control Panel. Some automated
applications will want to force this value to be “false.” If the session does not process
the mail, it could become lost or otherwise not respond. To prevent a potential
problem, a MAPI No Download VI should be written.

8.9 MAPI MESSAGES CONTROL

Assuming that a valid connection to a mail server is established, it is time to put the
session to good use. The Message control allows an application to generate new mail,

©2001 CRC Press LLC

process received mail, and parse mail currently in the mailbox. This is quite a bit of
power for a control; we encourage caution when using this type of control with your
personal Outlook folders. This does not mean we discourage using this control, but
when parsing the Inbox folder care should be used with the Delete function.

We will focus this driver collection on sending e-mail. The intended purpose is
to e-mail automated reports, notify users that problems have occurred, and possibly
send automated responses. The Open Message VI will use one argument: the session
ID. We output this information from the Session Open VI, and here is where it is
needed. The Message control needs to be bound to a particular session, and this
information is carried in the session ID. Figure 8.18 shows the code diagram for
this VI. We will leave configuration information such as recipient address, subject,
and text to additional VIs. This is being done to leave flexibility in the driver. The
driver can be used for sending and reading e-mail.

Before we proceed, we will explain how the MAPI Messages control is intended
to work. Once the Session control has authenticated itself to the server, the Session
control can give access to the user’s inbox. Two buffers are created: Compose and
Read buffers. The Read buffer is read-only; you cannot alter the contents of messages
currently in the inbox. The Message Index property identifies which e-mail in the
inbox is currently being pointed to. When Message Index is set to –1, the Compose
buffer is being pointed to. When generating an e-mail message, the Message Index
property must be set to –1. Not to worry, the Message Index property will be set to
–1 when the Compose method is called.

When writing the Open VI it should be obvious that there are 34 properties for
the Message control. Many of these will not be implemented in our driver since we
are intending it for message generation only. In fact, the process of generating a
message is fairly simple: call the Compose method. Once this is done, set the
recipient address, subject, add text, and then call the Send method. The driver uses
a recipient name in addition to the recipient address. Both properties must have valid
data. An empty string fed into the Name property will generate an error. Up to this
point we have not mentioned anything about how mail is being transported through
the MAPI subsystem. It does not matter which mail transfer protocol is being used,
it is handled by the MAPI subsystem. We do not need to know or care how IMAP,
SMTP, or POP3 work. To this point we have done everything except invoke the
Send method.

It is possible with the Message control to set attachments. We left the possibility
that a report may be generated in another application such as Word or Excel. By

FIGURE 8.18

©2001 CRC Press LLC

not invoking the Send method, we are leaving room for attaching these files to the
e-mail and sending it afterward. Figure 8.19 shows the Attach Document VI. It is a
simple matter of setting the Attachment Path Name property. Do not confuse the
Path Name property with the Name property. The Attachment Name property simply
allows the programmer to specify a name to appear in the body of the message for
the attachment. This parameter is optional, and support for it is left as an exercise
to the reader. The Send method is called in a separate VI. This is a simple VI that
invokes the Send method of the control; its code diagram does not warrant an
illustration.

Figure 8.20 shows the VIs in action to send a simple e-mail message. Bill Gates
is informed that the control works well, and is thanked for giving the control away
with the operating system.

This control does have a number of error codes that it can return that are not
defined in winerror.h (these are error codes specific to this control). They are well
documented in the compiled Help file that is associated with the control. Compiled
Help files have CHM extensions and require a viewer from Microsoft to examine.
Unfortunately, this viewer is installed as part of a Visual Basic, C++ or MSDN
installation.

A few notes about this control should be presented before we move on to the
next example. This control can be very useful, but there are a few potential problems
you need to be aware of before you integrate it into your applications. First, when
the Send method is called, the message is placed in the outbox of your mail
application. This does not guarantee when the message is going to be routed to the
mail server. If Outlook or Exchange is currently running, the application will begin
routing the message immediately. When the mail application is not running, and
nothing is waking up the application, outbound mail will simply gather in the outbox.
A simple workaround is to start Outlook either manually or programmatically.
Outlook has an OLE interface that will start the application if you open a refnum
to it. This can be done at the start of an application to guarantee that your mail client
is active before you try to send mail.

FIGURE 8.19

FIGURE 8.20

©2001 CRC Press LLC

8.10 MICROSOFT STATUS BAR CONTROL

The Microsoft Status Bar control is used to provide familiar status bar information
to users. This control can be used in test applications to show the current status of
processes currently running. The Status Bar control allows programmers to define
different panels to supply basic information to users during execution. Many of the
features of this control are useful for user interface designs, including concepts such
as tool tips. When a user holds a mouse over an individual panel, a yellow text box
will give basic information as to what the panel is describing. This type of infor-
mation makes it easier for users to interface with applications. Most hardcore
programmers consider this type of programming to be “fluff,” but user interfaces
are the only aspect of an application the end users work with. Giving users the ability
to see and understand more about what the application is doing is a relevant topic
in any design. This control is being presented to lead us into the next control, the
Tree View control. The Tree View control uses more complicated nesting and rela-
tionships between data members, so the Status Bar is a beginning point that leads
into more complex controls.

The Status Bar is yet another user interface element, and its strong point is the
standard Windows look with little programming needed. Selecting the properties of
the control can configure many of the details on the bar’s appearance. Figure 8.21
shows the menu selection leading us to the status bar’s properties. We can select
general properties to configure basic appearance information such as two- or three-
dimensional separators for the control.

The Panels tab allows us to configure the panels that we wish to display to the
users. Panels may contain text, tool tips, and images. Figure 8.22 shows the Tabs
Configuration window for this control. Each panel is flexible in the sense that
individual panels can be enabled and disabled without impacting the rest of the
control. Panels can be beveled, which causes them to appear to “stick out” from the
rest of the control, or inserted, which makes them appear to be “pushed in” relative
to the other panels. Text can be centered, or right-, or left-justified for appearances.
All of these properties can be configured for startup and altered during run-time.

In order to work with the control at run-time, we will require some kind of driver
to interface to the control. The Status Bar control has a few methods and properties.
The only property of the status bar we are interested in is the Panels property. This
property returns an ActiveX refnum that give us access to the complete list of panels
of the control. The Panels property is accessed like an ActiveX control, and Panels
itself has properties and methods we can work with.

The Panels object has a single property: Count. Count indicates that it is a read
and write property. You can set the count to any number you desire; the control will
simply ignore you. This is an error in the interface in terms of the interface descrip-
tion: Count should be an “out” property, meaning that you can only read the value.
Count returns the number of panels the bar is currently holding.

Methods for the Panels object include Add, Clear, Control Default, Control
Default(1), Item, Item(1), and Remove. The Add method adds a new panel for you
to place information. Clear removes all of the panels that are currently defined. The
Control default has two different versions. The (1) that appears after the name

©2001 CRC Press LLC

indicates that there are two sets of inputs that can be given to the method. ActiveX
does not allow methods to have the same name and different arguments to the
function. The function name and argument list is referred to as the “signature” of
the method. ActiveX only allows the function name to have a single signature. The
(1) makes the name different, so we are not violating the “one function, one signa-
ture” rule. The Control default gives access to the default panel of the control. We
will not be using this method in our driver. The Remove method takes a variant
argument similar to the Item method. This method removes the specified method
from the status bar.

FIGURE 8.21

FIGURE 8.22

©2001 CRC Press LLC

Item and Item(1) allow us to modify a single panel item. Both methods return
a refnum to the specific panel. The Item method takes a variant argument that
indicates which particular panel we want to work with. Our driver will assume you
are referencing individual panels by numbers. The Item(1) method takes an addi-
tional parameter, a refnum to the replacement panel. For the most part, we will not
be building new items to insert into the control, and we will not support the Item(1)
method in our driver. Item returns yet another refnum pointing to the individual
panel object for us to manipulate.

The Item object gives us access to the properties and methods for individual
panels in the status bar. Items have no methods and 13 individual properties. We
will be using most of these properties, or at least make them programmable in the
driver. The Alignment property is an enumerated type that allows us to select
Centered, or Right/Left Justified. The Autosize property configures the panel to
automatically adjust its size to accommodate what is currently displayed. Bevel gives
us the ability to have the panel “stick out” or to look “pushed in” relative to the
other panels. Enabled allows us to make specific panels disabled while the rest of
the control remains enabled. Index and Key allow us to set the index number for
the panel or a text “key” which identifies the panel. We can use the key in place of
the index number to reference the panel. This is desirable because, programmatically,
it is easier to work with descriptive strings than integers. The Picture properties
allow you to hand a picture reference to the control to change the currently displayed
image. We will not be using the Tag items in this driver.

The driver itself is going to consist of a number of VIs to set the individual
tasks. It is not likely that programmers will want to set each property of a panel
every time they access it. Therefore, the driver collection should be structured with
each property to a VI in order to maximize flexibility.

One design decision we need to reach before writing the driver is how we access
the individual items in the control. We will generally be dealing with the item
property of the Panels item of the control. There are a number of steps in the control,
and we may decide that we are too lazy to continuously reference the control to
reference the panels to reference the item. It makes sense to write a wrapper VI to
encapsulate the traversal of the ActiveX objects. This type of wrapper will save us
a bit of coding time, but an extra VI will create some performance hits on execution
time. What we can do is write a VI that takes the status bar refnum and the item
and traverses the objects, returning a refnum to the specific key. This VI can be run
with subroutine priority to eliminate a lot of the VI overhead that is incurred when
we use subVIs. We will use the variant argument as the front panel control so
programmers will be free to work with either the index or a key name. The code
diagram for this VI appears in Figure 8.23.

The VI to set the Tool Tip text for an individual panel item is shown in Figure
8.24. We call our get Item VI to return the refnum to the specific panel for us.
This VI will be used in all of our driver VIs to obtain a reference to the desired
panel item. We will not show the rest of the drivers because there is little additional
information to learn from them, but they do appear on the companion CD to this
book.

©2001 CRC Press LLC

8.11 MICROSOFT TREE VIEW CONTROL

Assuming that you have worked with Windows Explorer, you are familiar with the
basics of what the Tree View control does. Tree View is a mechanism to present
data to users in an orderly, nested fashion. Information is stored into the control in
the form of nodes. A node is simply a text field and optional bitmap. The Tree View
control is capable of displaying images in addition to simple text fields. Potential
applications of this control to LabVIEW developers are displaying configuration or
test result information in a nested format. This control is part of the Windows
common controls, and is arguably one of the most complex controls in this set.

Before we begin going into the details of how the Tree View control works, we
need to get some background information on how the tree data type works. The Tree
control stores data in a similar fashion to the tree data structure. As a data structure,
trees store data in the form of leaves and branches. Each data point will be a leaf,
a branch, or the root. Data items that point to yet other data items will be branches.
The root is the first data element in the tree and is both the root and a branch. We
will not display any illustrations of what a tree looks like; the easiest way to explain
the data type is to instruct you to use Windows Explorer. This is a Tree View-based
application and demonstrates well what the Tree View control looks like. At the root,
you would have Desktop. All other elements in Explorer descend from the Desktop
item. Desktop, in turn, has children. In the case of the computer on which I am
currently typing, the desktop has six children. The children are My Computer,
Network Neighborhood, Recycle Bin, My Briefcase and a folder titled, “LabVIEW
Advanced Programming.” Each of these children, in turn, are branches and contain
other data items which may or may not point to children of their own. This is how
a tree data structure is set up. A special case of the tree structure has two children
for each branch. This is known as a “binary tree.”

Each element in a tree contains some type of data and references to its parent
and children objects. Data that can be stored in trees is not defined; this is an abstract
data structure. Trees can be used to store primitive types such as integers, or complex

FIGURE 8.23

FIGURE 8.24

©2001 CRC Press LLC

data types such as dispatch interfaces to ActiveX controls. In fact, the Tree View
control stores dispatch interfaces to ActiveX controls. The Tree View control uses
the dispatch interfaces to store references to its children and parent. Data stored in
the Tree View control is a descriptive string and a reference to a bitmap.

Now that we have an idea how a tree structure works, we may begin exploring
the operation of this control. A Tree View control needs to be inserted in an ActiveX
container on a VI’s front panel. This control has short list of methods that we will
not be using ourselves. Most of the methods of this control are related to OLE
dragging and dropping. We do not intend to perform any of this type of programming,
and do not need to implement driver VIs to support it.

The property listing for this control has a number of configuration items for the
control itself, such as display options and path separator symbols. The Windows
Explorer uses the plus and minus signs as path separator symbols. We will use them
by default, but we have the ability to change them to whatever we desire. The main
property that we will need access to is the Nodes property. In the Tree View control,
each of the leaves and branches has been titled a “node.” The nodes contain all
information that we need, such as the data we are storing and the location of parent,
children, and siblings (nodes at the same level as the current node). Nodes serve as
gateways to access individual data elements similar to the Items property in the
Status Bar control. This is a fairly common theme to the archeciture of many of
Microsoft’s controls. You have not seen this type of design for the last time in this
chapter.

The Nodes property is itself an ActiveX refnum. This refnum has the methods
Add, Clear, Control Default, Item, and Remove. This configuration, again, is very
similar to the Status Bar control, which will make learning this control much easier
for us. Item and Control Default have properties with the (1) following them because
they have two different sets of arguments that go with them. We will “stick to our
guns,” and not use the methods that have the (1) following them because we are not
going to track around different refnums for each of the nodes in this control. It is
possible for us to have several hundred or even thousand items, and we will use the
control itself to store the information.

Most methods use a variant argument called “Key.” Key is used to perform a
fast lookup for the individual node that we want. The command for Clear does not
use the Key argument, it simply dumps all of the contained nodes, not just a particular
one. The Add method requires a few additional arguments, most of which are
optional. Add has the arguments Relative, Relationship, Key, Text, Image, and
Selected Image. We only need to specify Text if we desire. The control will go ahead
and, by default, stuff the element at the end of the current branch. Item allows us
to gain access to individual data elements stored in the tree control. This method
takes a variant argument called Index and returns an ActiveX reference to the item
we are requesting.

The Item object has only two methods that are related to OLE: dragging and
dropping. We will not be using this method in this driver. There are a number of
methods, however, that give us complete control of navigating the tree. We can
identify the siblings of this item. Properties for first and last sibling give us the top
and bottom element of the branch we are currently on. The next property gives us

©2001 CRC Press LLC

a reference to the sibling that is below the current item in the list. This allows us to
not track the keys for the individual elements in the tree and still work our way
around it. The driver VI for this will be a single VI that has an enumerated type to
allow a programmer to select which relationship is desired and return a refnum to
that object. The code diagram is shown in Figure 8.25.

Individual elements can have text strings to identify their contents in addition
to bitmap references. Users tend to appreciate graphical displays, and the bitmaps
will make it easier for them to navigate the tree in search of the information they
are interested in. For example, Windows Explorer uses bitmaps of folders and files
to differentiate between listed items. Inserting images into the Tree View control is
a bit of work. We need an associated Image View control that has the image, and
we will pass an ActiveX refnum into the control. The Image View control is struc-
tured with the same item properties and methods as the Tree View and Status Bar
Controls, and will not be covered in this book.

Now that we have mentioned how this control works, what properties and
methods it has, and skipped out on the Image List control, we should begin to write
and use the driver. We started this example by stating that this is only a user interface
element. That is not really the case. You can use the Automation Open function to
create the element, not display it and systematically store all configuration informa-
tion into it. Functionally, it will operate very similar to the Dictionary control we
presented earlier. Flattening any configuration information into a stirng will allow
you to use this hive structure to store information. Unlike the Dictionary control,
the Tree View control will allow you to have a directory-like structure to the
information. One of the biggest problems we have seen with large-scale applications
is having a good design for basic information storage. This control offers an inter-
esting solution to this problem.

8.12 MICROSOFT AGENT

Microsoft Agent is a free ActiveX control that we can use to generate animated
characters that can speak and decode audio input. These characters provide another
element of a user interface design and behave somewhat similar to the Help char-
acters in Microsoft Office. Unlike the Office characters, Agent’s characters do not
reside in their own window; they are free-floating and may be set up anywhere on
the screen. In addition, Microsoft Agent characters can be used by any application.

FIGURE 8.25

©2001 CRC Press LLC

This type of user interface element is not something we expect to appear in require-
ment documents, but the control itself is a great example of COM programming.

This section will provide an overview of how this control works, and develop
a driver collection to utilize it. All of the details on this control cannot be presented;
enough information exists that a separate book can be written on this control. In
fact, a book has been written for programming Microsoft Agent. Microsoft Press
published

Programming for Microsoft Agent

, and additional information is available
on Microsoft’s Web site.

Microsoft Agent is a service, meaning that it uses an out-of-process server and
a control to reference the server itself. The server is responsible for controlling and
managing the characters for different applications. This makes it possible to control
Agent as a DCOM object. The characters can be made to appear on different
machines to provide up-to-the-second status information.

Before we begin the design of the Microsoft Agent driver, we need to examine
the design of Microsoft Agent itself. Microsoft Agent uses aggregated controls,
meaning there are multiple controls for us to work with. The Agent control is a base
starting point to interface to the server object, but most of the operations we will
perform will be handled through ActiveX interfaces created by the Agent control.

Each of the aggregated controls represents a subset of the functionality of
Microsoft Agent. Programming is simplified because each of the methods and
properties are contained in appropriately-named controls. This design is similar to
SCPI instrument command sets, where commands are logically grouped into a
hierarchy of commands. Agent happens to follow the COM design methodology,
and each of the branches in the hierarchy happens to be a COM object.

We will first present the embedded controls with their methods and properties.
Events will be covered after the main driver has been developed. This will allow
LabVIEW 5.0 users to benefit from the driver, and allow LabVIEW 5.1 or later
programmers to select which events they are interested in supporting.

8.12.1 R

EQUEST

 O

BJECTS

 — F

IRST

 T

IER

The first object that is of use to most programmers, but not as useful to LabVIEW
programmers, is the Request object. The Request object is analogous to the error
cluster in LabVIEW. All Agent commands return a Request object to indicate the
status of the operation. This object is not as useful for LabVIEW programmers
because each method and property invocation returns an error cluster, which contains
similar information as the Request object. Languages such as Visual Basic do not
have built-in error cluster-type support, and objects such as Request are trying to
make up for that limitation. None of the elements of our driver will use the Request
object. Each time we are passed a Request object we will issue an ActiveX Close on it.

The use of ActiveX Close is important when it comes to dealing with objects
such as Request. If we do not close the object, LabVIEW will not call release on
the Request object and a memory leak will result. All of the Request objects we do
not close will reside in memory, and over long periods of time this will cause
Windows to crash. This is not the fault of Windows, COM, ActiveX, or LabVIEW;

©2001 CRC Press LLC

programmers need to release objects when they are finished working with them so
memory can be reclaimed by the system.

Programmers who are interested in using the Request object in their work will
want to know that its properties include Status, Number, and Description properties.
Status is an enumerated type that is similar to the status code in the stock LabVIEW
error cluster. The Status property has four values instead of two, and includes
information such as Successfully Completed, Failed, In Progress, and Request is
Pending. The Number property is supposed to contain a long integer that contains
an error code number. Description contains a text explanation of the current problem
or status. As we mentioned, the Request object is an imitation of LabVIEW’s stock
error cluster.

8.12.2 O

THER

 F

IRST

-T

IER

 C

ONTROLS

The next four objects that are mentioned for completeness, but not used in our driver,
are the Speech Input, Audio Output, Commands Window, and Property Sheet objects.
Each of these serve purposes directly related to their names, but are not necessary
to successfully program Microsoft Agent. Additional information on them can be
located on Microsoft’s Web site, or in the book Programming for Microsoft Agent.

Properties that are available at the Agent control base are Connected, Name, and
Suspended. The Connected property is a Boolean that we will need to inform the
local control that we wish to establish a connection to the Agent server. We will set
this property in our Agent Open VI. Name returns the current name assigned to the
ActiveX control. This may be useful to Visual Basic programmers who can name
their controls, but LabVIEW programmers work with wires. We will not make use
of the name property. The Suspended property is also a Boolean and will indicate
the current status of the Agent server. We will not make use of this property, but
programmers should be aware of it as it would be useful for error-handling routines.

8.12.3 T

HE

 C

HARACTERS

 O

BJECT

The first tier object in the hierarchy that is of use to us is the Characters property.
Again, this is an embedded ActiveX control that we need to access in order to get
to the individual characters. The Characters object has three methods, and we will
need to be concerned with all of them. The Character method returns a refnum to
a Character control. The Character control is used to access individual characters,
and is the final tier in the control. Most of our programming work will be done
through the Character object. The Character method returns a refnum, and we need
to keep this refnum.

The Load method is used to inform the Agent server to load a character file into
memory. Agent server is an executable that controls the characters. For flexibility,
the characters are kept in separate files and can be loaded and unloaded when
necessary. We will need the Load method to inform the server to load the character
we are interested in.

Unload is the last method of the Characters control. Agent server will provide
support for multiple applications simultaneously. When we are finished with a

©2001 CRC Press LLC

character, we should unload it to free up resources. Not unloading characters will
keep the character in memory. This is not a mission-critical error, but it does tie up
some of the system’s resources.

The last method is the Character method. This method simply returns a refnum
to a character object in memory. An assumption is made that this character has
already been loaded into memory. If this is not the case, an error will be returned.
The refnum returned by this function is covered next.

8.12.4 T

HE

 C

HARACTER

 C

ONTROL

We finally made it. This is the control that performs most of the methods that we
need for individual character control. The Character control requires the name of
the character as an argument to all properties and methods. This will become a
consideration when we develop the driver set for this control. There are a number
of embedded controls, and we need to track and keep references to the controls we
will need.

The Character control supports methods for character actions. The Activate
method allows the programmer to set a character into the active state. Active has an
optional parameter, State, that allows the programmer to select which character is
to be activated. We will assume the topmost character is to be activated in our driver.

Our driver will use the methods Speak, MoveTo, Play, Show, and Hide. These
methods all cause the characters to take actions and add a new dimension to our
application’s user interface. The method names are fairly self-explanatory, but we
will briefly discuss the methods and their arguments. Speak takes a string argument
and causes the character to display a dialog bubble containing the text. The control
can also be configured to synthesize an audio output of the text. MoveTo requires
a coordinate pair, in pixels, for the character to move towards. An animation for
moving will be displayed as the character moves from its current position to the
new coordinate pair. Play takes a string argument and causes the character to play
one of its animations. Animations vary among characters, and you need to know
which animations are supported by characters with which you choose to develop.
Each of the Play arguments causes the character to perform an animation such as
smile, sad, greet, and others. Hide and Show require no arguments and cause the
character to be displayed or not displayed by the server.

There are a number of properties that can be set for Agent, but we are only
going to need two of them. Visible returns a Boolean indicating whether or not the
character is visible. This is a read-only property. If we want the character to be
displayed, we should use the Show method. The other property we will make use
of is the Sound Effects property. This property determines whether or not the Agent
server will generate audio for the characters.

Now that we have identified all the relevant methods and properties we need to
use Microsoft Agent, it is time to make design decisions as to how the driver set
will be structured. Unlike the other controls presented in this chapter, Agent uses
aggregated controls, and it is possible to have several different refnums to internal
components of the control. This is not desirable; having programmers (including
yourself) needing to drag around half a dozen different refnums to use the control

©2001 CRC Press LLC

is far more work than necessary. We can pass around a refnum to the base control
and the character name and rebuild the path of refnums back to the character as we
use the control. Potentially, there are performance hits every time we go through
the COM interfaces, but for user interfaces, performance is not an issue. Users still
needs to drag around two pieces of information. We really only need one: the
character name.

It stands to reason that the control should keep an ActiveX refnum as an internal
global variable. This will allow programmers to keep names for multiple characters
and run them through the same Agent control. This would be efficient on memory,
because we only need to instantiate the control once. This also allows for different
VIs that are running independently to use the same server connection, which is more
efficient for the Agent server.

We will rebuild the paths back to aggregated controls for all calls, but as we
decided before, performance is not a significant issue for this control. Most other
controls do not support multiple connections; programmers need to make other
instances of the control. Agent does not need multiple copies to run multiple char-
acters. This example is going to show a different way of handling ActiveX controls.
We will make this driver DCOM-enabled by allowing the programmer to supply a
machine name for the control.

The first problem we encounter with using a global variable for a reference is
multiple calls to our Open VI. We will use a technique called “reference counting.”
Each time a user calls the Open VI, an integer count stored in the global variable
will be incremented. If the number equals zero before we perform the increment,
we will call ActiveX Open. If the number is nonzero, we will increment the reference
count and not call ActiveX Open. This VI is shown for both cases in Figures 8.26
and 8.27. The Open VI returns only an error cluster; all other VIs will use the control
through the global variable, and perhaps need to know the character name. When
we need to open the control, we will set one property of the control. Connected will
be set to “true.”

The Close VI works in a similar fashion, except we use the decrement operator.
The decrement is performed before the comparison. If the comparison shows the
number is not greater than zero, then we know we need to close the control. When
the comparison after the decrement is greater than zero, we know that we need to
store the new reference count value and not to close the control. C++ programmers
typically use reference counting, and this technique has applications for LabVIEW
programmers with ActiveX controls.

The first method we will write is the Load Character method. This method requires
the name of the character to load and the load key. The load key we will use is a
path to a file on a hard drive. Agent defines this as the load key, so the control can
be used in ActiveX-enabled Web pages. The Load key can also be a URL pointing
to a character file. Agent character files use an ACS extension. This VI simply builds
the Load key from the character name and supplied path. We use the global variable
to access the agent refnum, and then we access the character’s property. This property
is used to gain access to the Load method. Once the Load method is performed, we
close off the returned load value. Load’s return value is a Request object. We do not
need this object, because any errors generated would be reported back in the error

©2001 CRC Press LLC

cluster. Folks like Visual Basic programmers who do not have an error cluster to
work with need Request objects. This VI is shown in Figure 8.28.

It is important to note that we only closed off the Request object’s refnum. We
are not finished with either the control or the character refnums; in fact, we have
only begun to use both of these objects. Our next function to implement will be the
Unload method.

The Unload VI will operate in a similar fashion to the Load VI. Again, we do
not close off either the characters refnum or the agent control refnum; both of these
objects are still necessary. The characters refnum is needed by other VIs that are
making use of the Agent control, and the Agent control itself requires access to the
Characters object. Dropping the reference count on this object could cause the buried
control to be unloaded from memory, which would be a surprise to the main Agent
control. The Unload VI is shown in Figure 8.29. Unlike the Load VI, Unload does
not need the path to the character file, and does not return a Request object.

FIGURE 8.26

FIGURE 8.27

FIGURE 8.28

©2001 CRC Press LLC

The last method of the Characters object is the Character method. We will not
need a VI for this method; the driver will always handle it under the hood. Character
is only needed when passing instructions to specific characters. Programmers will
only need to pass the character name to our driver; the driver will handle the rest
of the details.

Now that we have mentioned passing the character names in, it is time to start
implementing the individual character controls for the driver. Characters need Show
and Hide methods to enable them to be seen or hidden. The VI to perform this work
is shown in Figure 8.30. Show and Hide will be implemented in a single VI to cut
down on the total number of VIs that are necessary. Both commands return a Result
object, and we promptly close this object.

 Moving the Agent character around the screen will be easy to accomplish with
the Move Character VI. We need three inputs from the user: the name of the character
and the coordinates for the character to move to. You have probably noticed the
cascading access to each of the elements. There is not much we can do about this;
there is no diabolical plot by Microsoft to wreck the straight paths of our VIs. Visual
Basic handles aggregated controls nicely. The LabVIEW method of tracking the
error cluster clutters up our diagrams a bit. The Move To command in Visual Basic
would look like this: result = Agent.Characters.Character(“Taqi”).MoveTo(100,100).
This is easy to read in Visual Basic, and the SCPI-like structure of the commands
makes it very easy to understand what the command is doing with what portion of
the Agent control.

The next command that can be implemented is the Speak command. This is
going to be one of the more widely used commands for this driver. Speak causes
the character to display a bubble containing the text, and, if configured, to generate
synthesized audio for the text. Speak.vi is structured very similar to Move To but
requires two strings for input. This VI is shown in Figure 8.31.

The last animation command we are going to support is Play. Play is a generic
command that all characters support. Agent allows for flexibility by not defining
what animations the characters must support. Different characters can have anima-
tions that are related to the specific character. For example, a dog character could
have an animation named Bark, while Bark would not be of much use to a President
Clinton character. The VI implementing this function is shown in Figure 8.32.
Programmers will need to know which animations their characters support.

Now that we have an intact driver for Agent, we shall put it to work. The VI
shown in Figure 8.33 shows a simple application that opens Agent, loads the Robby
character, and has it speak. The 20-second pause makes sure that the character has
time to speak before we unload the character and release the control. It is important

FIGURE 8.29

©2001 CRC Press LLC

to let the character have time to complete its actions, or the server will cut out the
character mid-sentence!

What makes the agent driver very easy to work with is that we encapsulated all
details regarding ActiveX into wrapper VIs. The user’s application looks like any
standard LabVIEW VI. It is not obvious that the COM subsystem is in use, or even
that Agent is running on another machine. Good driver development for ActiveX
controls can make some of ActiveX’s complexities a nonissue for programmers.
When working with ActiveX, it is best to write a solid driver that makes the control
look and feel like a standard LabVIEW VI.

FIGURE 8.30

FIGURE 8.31

FIGURE 8.32

FIGURE 8.33

©2001 CRC Press LLC

This example may not be practical for many applications; dancing parrots may
not be suitable for many production applications. We did manage to demonstrate
programming techniques for advanced ActiveX controls. We saw a control that uses
aggregation, and eliminated complexity from the driver for the benefit of the driver’s
users. Reference counting was presented and used to minimize the number of
instances we need of the control.

8.13 REGISTRY EDITING CONTROL

The Registry Editing control is perhaps the most dangerous control that will appear
in this chapter. The Registry Editing control allows a programmer to get, edit, delete,
and modify Registry keys. Only programmers who understand what the Registry is,
and what not to do with it, should use this control. If you do not understand the
Registry or are not comfortable with editing and modifying its contents, feel free to
skip over this control. Folks who like to tinker with new ActiveX controls may want
to backup the System Registry and some of their valuable data.

The Win32 Registry contains information necessary for booting the system and
identifying the location of applications, components, and system services. Histori-
cally, most information needed to start an application was stored in an INI file. The
System registry provides a new database storage mechanism to allow for a single file
to handle major initialization of applications. Individual data items are stored in the
form of keys. Each key takes on a particular value, such as a string or integer. ActiveX
controls have several keys that are stored in the Registry. One of the parameters that
each control must store is the location of the control itself. When LabVIEW uses an
ActiveX Open, it has a name for a control, and that is about it. LabVIEW talks to
the COM subsystem, which in turn contacts the System Registry to locate a compo-
nent. Keys are grouped into directories called “hives.” There are five base hives:
HKEY_CLASSES_ROOT, HKEY_USER, HKEY_CURRENT_USER,
HKEY_LOCAL_MACHINE, HKEY_CURRENT_CONFIG, and
HKEY_DYN_DATA. App l i ca t ion in fo rma t ion i s s to red in the
HKEY_CLASSES_ROOT hive, and generic user information is HKEY_USER.
Information specific to the current ly logged-in user is s tored in
HKEY_CURRENT_USER. The current configuration and dynamic data hives store
information that we

really

,

really

 do

 not

want to look at or modify.
HKEY_CLASSES_ROOT stores information about all applications and components
in the system. If you examine the registry using the Registry Editor (Regedit) you
will see the six base classes. Expanding the root key will show a hierarchy of folders
that start with file extensions. Each file extension is listed in the Registry, and the
system uses these keys each time you double-click on a file. When you double-click
on a file with a VI extension, the system searches the root classes for the .vi key and
determines that labview.exe is the file that should be used to open it. Needless to say,
when s to r ing in fo rma t ion abou t your pa r t i cu la r app l i ca t ions ,
HKEY_CLASSES_ROOT is the place to store it. It is strongly recommended that
you not access other hives, it is possible to completely confuse a system and seriously
confused systems need their operating systems reinstalled.

©2001 CRC Press LLC

 Many large-scale LabVIEW applications can take advantage of the Registry to
store startup information. Information that is typically stored in the Registry would
be information that is needed at application startup, and configuration information
that does not change frequently. Examples of startup data that could be stored in a
Registry is the name of the last log file used, which GPIB board the application is
configured to use, and calibration factors if they do not change frequently during
execution of an application. Data that should not be stored in the Registry are items
that change frequently, such as a counter value for a loop. Accessing the Registry
takes more time than standard file access, which is why it should be used at
application startup and shutdown. Key values should be read once, stored locally in
LabVIEW, and written back to the Registry when the application is exiting. During
normal execution, Registry access would cause a performance hit.

The drivers for this control are amazingly simple. The Open Registry VI simply
calls ActiveX Open and returns the handle to the control. It is perfectly safe to open
this control; the refnum does not explicitly mean you are accessing the Registry. The
Delete Key VI is one that should be rarely used, but it is included for completeness.

8.14 CONTROLLING MICROSOFT WORD

This example will give a brief overview of programming Microsoft Word through
LabVIEW. Microsoft Office is designed to be programmable and extensible through
Visual Basic for Applications (VBA). Complete coverage of all of Word’s automation
abilities is well beyond the scope of this book, but we will try to give you a starting
point for using Microsoft Word to add to your current applications. Controlling any
of the components of Microsoft Office is not true ActiveX programming, it is actually
OLE Automation.

Microsoft Word 97 and 2000 (Versions 8.0 and 9.0) have two main createable
objects that LabVIEW can use. The first is the Application object and the second is
a Document object. The Application object alone has 91 properties and 69 methods.
The Document object has a whopping 125 properties and 60 methods. Obviously,
we will not be covering all the properties and methods of these controls in this book.
Also consider that a number of these properties and methods are aggregated controls
of their own, which leaves the possibility of another couple hundred methods and
properties for each control!

This dizzying array of methods, properties, and objects seems to make control-
ling Microsoft Word impossible. It really and truly is not. One of the Document
properties is “Password.” Unless you are using password protection for your docu-
ments, you do not need to use this property. The Versions property is another almost-
never used property; in fact, many Word users do not even know that Word has a
version control system built in. What this proves to us is that we need to figure out
which methods and properties we need to get up and running.

Both the Application and Document controls are available to perform different
tasks. The Application object is intended to provide control for applications to the
entire Word application, where the Document control is meant to allow a program
the ability to work with a specific document. This control in particular tends to be

©2001 CRC Press LLC

fussy about when components are closed off. ActiveX Close does not necessarily
remove the DLL or EXE from memory it calls a function named Release. The
Release function uses reference counting, similar to what we did in the Microsoft
Agent driver, to determine if it is time to unload itself from memory. Microsoft Word
itself will maintain reference for itself on all documents, but having multiple refer-
ences open on some components seems to cause problems. Releasing references as
soon as possible seems to be the best way to deal with this particular control.

To start with, we need to gain access to Microsoft Word. We do this by using
ActiveX Open to create an instance of the Microsoft Word Application object. This
will start Microsoft Word if it is not presently running (this is a strong clue that you
are performing OLE automation and not ActiveX programming). We can make the
application visible so we can see things happening as we go along. To do this, set
the Visible property of Microsoft Word to “true.” Word just became visible for us
(and everyone staring at our monitor) to see. Word sitting idle without any documents
being processed is not a very interesting example, so we need to get a document
created with data to display.

There are a number of ways we can go about getting a document available.
Possible methods are to create one from any of the templates that Word has to work
with, or we can open an existing text file or Rich Text Format (RTF) document. This
brief example will assume that we want to create a new document based on the
Normal template. The Normal template is the standard template that all Word
documents derive from.

Since we have already opened a communications link with Word, we need to
gain access to its document collection. The documents commands for Word are
located in the Documents property. Like Microsoft Agent, Word uses aggregated
controls to encapsulate various elements of the application’s functionality. Docu-
ments is analogous to the Characters property of the Agent control. Major document
commands are available through this control, including the ability to select which
of the active documents we are interested in working with. Methods available from
the Documents object are Open, Close, Save, Add, and Item. Open, Close, and Save
work with existing documents and Close and Save work with existing documents
that are currently loaded into Word. The Item method takes a variant argument and
is used to make one of the documents currently open the active document.

Our example will focus on creating new documents, so we will invoke the Add
method to create a new document. Optional arguments to Add are Template and
New Template. The Template argument would contain the name of a document
template we would want to use as the basis for the file we just created. New Template
indicates that the file we are creating is to be a document template and have a file
extension of “DOT.” We will not be using either of these arguments in this example.
The Add method returns an ActiveX refnum for a Document object. This refnum is
used to control the individual document.

To save the document, we invoke the Save As method of the document refnum.
The only required argument to this method is the file name to save the document
as. There are a total of 11 arguments this function can take, and we have only made
use of the File Name property. Other methods are there to allow programmers
complete control of the application. The operations we have just described are shown
in the code sample presented in Figure 8.34.

©2001 CRC Press LLC

Thus far, we have managed to get control of Word, create a document, and save
the document. We have yet to address the topic of putting text into the document to
make it worth saving. Considering that the primary purpose of Word is to be a word
processor, you would be amazed at how challenging it is to put text into a document.
One issue that makes inserting text into Word documents difficult is the complexity
of Word documents themselves. You are allowed to have images, formatting options,
word art, and embedded documents from other applications—how do you specify
where to put the text? Navigating through paragraphs is a trivial task when you are
working with the application yourself, but programming the application is another
story.

To insert text into the document we need the Range object. The range object is
analogous to the mouse for applications. When users determine that they want to
insert text at a particular location, they put the mouse at the location and click. This
is much more difficult for a program to do. Selecting the Range method with the
Invoke node produces a new reference. Once you have a reference to the range
object, you can access its properties. To insert text in a particular location, you would
select the Start property. This indicates where to start the insertion. Now that you
have programmatically clicked your mouse on the desired location, you need to
insert your text. By using the Text property for the Range object, you can enter a
string containing the text you want to insert. If you will be making multiple insertions
of text, you can use the End property. This property provides the index to the end
of the text insertion. The index read here could be used to start the next text insertion.

Let’s assume that for some reason you need to perform a series of tests, take
the results, and e-mail them to a group of users. We could use the MAPI control
that we presented earlier, the SMTP driver we developed in chapter 3, the Internet
toolkit, or Microsoft Word. Insert the test results into a Word document and then
attach a routing slip to it. This will allow us to send the other users a Word document
containing the test results, and we would only need to use one ActiveX control to
perform the task. Using the Routing Slip property gives us access to the document’s
routing recipient list.

If there is anything the preceding snippet shows us it is that anything we can
do with Word on our own, we can do through the OLE interface. Typically, this is
how application automation is intended to work. The VIs used to control Word appear
on the companion CD.

FIGURE 8.34

©2001 CRC Press LLC

8.15 MICROSOFT ACCESS CONTROL

This section will cover an example using ActiveX automation to write to a Microsoft
Access database. Microsoft Access 8.0 Object Library Version 8.0 is used in this
example. Access has many properties and methods in its hierarchy of services and
can be complicated to use. This example will simply open an existing database,
insert records into a table, and close the database. If you wish to perform additional
operations with Access, you should find other reference material on controlling
Access through automation. Because of its complexity, you can spend hours trying
to accomplish a simple task.

Figure 8.35 displays the Upper Level VI, Insert Records into Access.vi, that is
used to insert records into the Access database. The block diagram makes calls to
the following VIs: Open Database.vi, Insert Records.vi, and Close Database.vi. The
code for this task was broken up logically into these subVIs. The required inputs
include Database Name, Table Name, and Data Cluster In. The Data Cluster is simply
a cluster containing one control for each field in the database. The front panel with
this data cluster is displayed in Figure 8.36. Since each control in the cluster is an
array, this VI can be used after collection of each data point or after accumulation of
all data to be shipped to the database. It is more appropriate for use after all data is
accumulated to maintain efficiency since the references to Access are opened and
closed each time this VI is called. Since this VI can be used if you have an existing
database, it assumes you are familiar with Microsoft Access. Table 8.1 defines the
steps you can use to create a new database and table with the fields used in this
example.

After the database and corresponding table have been created, you can use the
Open Database.vi to open a reference. The block diagram for this VI is shown in
Figure 8.38. Microsoft Access 8.0 Object Library Version 8.0 was selected from the
Object Type Library list from the dialog window for selecting the ActiveX class.
There is only one createable object in this type library, Application (Applica-
tion.Access.8). This indicates that this object is at the top of the hierarchy of services
for the Access ActiveX server.

The Invoke node is then used to call the procedure to open the database.
OpenCurrentDatabase is the name of the method selected from the long list of
methods available. This method opens an existing database as the current database.
The file path is the only required input. A database that resides on a remote machine
can be specified if desired. The Exclusive input can be left unwired and defaults to
“false” to open the database in shared mode.

The next method that is executed is CurrentDb. This function returns a database
object which is essentially a reference to the database that is currently open. The
reference, or pointer, can then be used to perform numerous operations on an open
database. Both the Access._Application and CurrentDb refnums are passed out of
this VI. The CurrentDb refnum is passed to the Insert Records.vi as a reference for
the function. The block diagram of this VI is shown in Figure 8.39. This VI is
responsible for generating and executing the SQL (Structured Query Language)
string for inserting the records into the database.

The data cluster is sent to the database using the INSERT INTO command. This
command is used to insert single records into the destination table. The syntax for

©2001 CRC Press LLC

this command is as follows: INSERT INTO table name (field 1, field 2, ..) VALUES
(‘data 1’, ‘data 2’, ..). The first half of the statement is generated outside of the For
loop because it is constant. The data values are added to the statement inside the
For loop. Each of the elements of the cluster is an array. The loop is auto-indexed
to execute as many times as there are elements. The second half of the command is
generated only as many times as needed to get the data across to the table.

FIGURE 8.35

FIGURE 8.36

TABLE 8.1
Steps to create a Database and Table in MS Access

Step 1.) Launch Access application
Step 2.) Select

New Database

 from the File pull-down menu.
Step 3.) Select

Blank Database

,

Name

, and

Save the Database

 using the file dialog box. TestDB.mdb
is the name used in this example

Step 4.) Select the

Tables tab

, select

New

 to create a table, and select

Design View
Step 5.) Enter the field names as shown in Figure 8.37.
Step 6.) Name and save the table. TestData is the name of the table used in this example. A Primary
key is not needed.

Step 7.) Close the database. LabVIEW will not be able to write to the database while it is open.

©2001 CRC Press LLC

Inside the For loop is an Invoke node with the Execute method selected. The
Execute method performs an operation on the database pointer passed to it. Query
is the only required input for this method. Any valid SQL Query action expression
wired to the method will be executed. SQL expressions are used by various databases
to perform actions. Examples of some SQL statements include INSERT INTO,
SELECT, DELETE, and ORDER BY. The CurrentDb reference is then passed out
of the VI.

Finally, the database and the refnums are closed in the Close Database.vi. The
block diagram for this VI is displayed in Figure 8.40. The CloseCurrentDatabase
method is executed to close the pointer to the current database that is open in
Microsoft Access.

Other procedures are available if you want to write to databases through Lab-
VIEW. One alternative is to utilize Microsoft DAO (Data Access Objects) in your

FIGURE 8.37

FIGURE 8.38

©2001 CRC Press LLC

LabVIEW VIs. DAO objects are used to represent and access a remote database and
perform the necessary actions on the database. These objects use COM and can be
called through LabVIEW using Automation and the ActiveX container. ADOs
(ActiveX Data Objects) are also available to perform similar actions with databases.

Another alternative available is the SQL Toolkit, an add-on package that can be
purchased to perform database operations on various commercial databases. The
toolkit simplifies the process of creating databases, inserting data, and performing
queries. The SQL Toolkit comes with drivers for many popular databases. It requires
you to configure your ODBC (Open Database Connectivity) settings by specifying
a data source. This DSN (Data Source Name) is then used as a reference or pointer
to the database. The DSN is a user-defined name that represents the database that
will be used. This user-defined name is used in the SQL Toolkit VIs to perform the
necessary actions programmatically. The toolkit comes with several template VIs
that can be customized to get you up and running quickly with a database.

8.16 CONTROLLING LABVIEW FROM OTHER
APPLICATIONS

It is time to discuss using other languages to control LabVIEW. From time to time
it may be desirable to reuse good code you wrote in LabVIEW to expand the abilities

FIGURE 8.39

FIGURE 8.40

©2001 CRC Press LLC

of an application that was written in another language. Control of LabVIEW VIs is
through OLE automation. We will be using the same ActiveX interfaces that we
have been working with for the last two chapters. As we mentioned in Chapter 7,
OLE interfaces are a superset of ActiveX interfaces. Both technologies rely upon
COM’s specification.

We will be controlling LabVIEW through Microsoft Word. Word 97 and Word
2000 both have Visual Basic for Applications (VBA) built into their cores. Users
still working with Word 6.0 will not be able to perform any of these examples
because Word 6.0 relies upon Word Basic, which does not support COM interfaces.

The first issue we learn about quickly is that Visual Basic and Visual Basic for
Applications have no idea where LabVIEW’s type library is. By default, you will
not be able to use Intellisense to parse through the commands available. This is
easily fixed; we need to import a reference to LabVIEW, and then we can get into
the Intellisense feature that makes VBA a great language to write scripts with. Start
by bringing up Word 97 or 2000. Make the Visual Basic toolbar active by right-
clicking in an empty space next to the Word menu. Select Visual Basic, and a floating
toolbar will make an appearance. The first available button is the Visual Basic Editor
button. Click this button to start up the VBA editor. The VBA editor is shown in
Figure 8.41. When performing this type of Word programming, we STRONGLY
recommend that you do not append macros to the Normal template. The Normal
template is the standard template that all Word documents begin with. Adding a
macro to this template is likely to set virus detection software off every time you
create a document and hand it over to a co-worker. This template is monitored for
security reasons; it has been vulnerable to script viruses in the past. Right-click on
Document 1 and add a code module. Code modules are the basic building blocks
of executable code in the world of Visual Basic. Visual Basic forms are roughly
equivalent to LabVIEW’s VIs; both have a front panel (called a form in Visual Basic)
and a code diagram (module in Visual Basic). This new module will be where we
insert executable code to control LabVIEW.

Now that we have a module, we will enable Intellisense to locate LabVIEW’s
objects. Under the tools menu, select References. Scroll down the list of objects
until you locate the LabVIEW 5.0 or 5.1 type library (depends on which version of
LabVIEW you are running). Click on this box, and hit OK. The reference box is
shown in Figure 8.42.

LabVIEW exposes two main objects for other applications. The first is the
Application object, which exposes methods and properties global to LabVIEW, and
the Virtual Instrument object, which gives access to individual VIs. In order to have
an object pointing to the LabVIEW application you need to create an object. Objects
in VBA are created with the DIM statement, with the format DIM <name> as
<object>. When you type “DIM view as…” you will get a floating menu of all the
objects that VBA is currently aware of. Start by typing “L” and LabVIEW should
appear. The word “LabVIEW” is simply a reference to the type library and not a
meaningful object. When the word LabVIEW is highlighted in blue in the pull-down
menu, hit the Tab key to enter this as your selection. You should now see DIM view
as LabVIEW. Hitting the Period key will enable a second menu that you maneuver
through. Select the word “Application” and we have created our first object of type

©2001 CRC Press LLC

LabVIEW application. Here is a helpful hint that gave the authors fits while trying
to make a simple VBA script work: just because you have created a variable of type
LabVIEW application does not mean the variable contains a LabVIEW application!
Surprise! You need to inform VBA to set the contents of the variable, and you need
the CreateObject method to do this. The next line of code needs to read “Set view =
CreateObject(“LabVIEW.Application.5”).” This will cause VBA to open LabVIEW
and create the OLE link between the applications. Now we are in business to open
a VI. Dimension a new variable of type LabVIEW.VirtualInstrument. This is, again,
an empty variable that expects to receive a dispatch interface pointer to a real VI. We
can do this with a simple Set command. The Set command needs to look like “Set

FIGURE 8.41

FIGURE 8.42

©2001 CRC Press LLC

vi = view.GetViReference(“Test.VI”).” this command will instruct LabVIEW to load
the VI with this name. The line of code we gave did not include a path to the VI.
Your application will need to include the path. The GetViReference returns a dispatch
interface pointer to the variable. The interface pointer is what VBA uses to learn what
methods and properties the Virtual Instrument object exposes.

Now that we have our channel to LabVIEW and a VI loaded into memory, we
can set front panel controls and run the application. LabVIEW does not provide a
mechanism to supply the names and types of front panel controls that exist on a
particular VI. You need to know this information in advance.

There are a couple of methods that we can use to read and set the controls for
a front panel. We can set them individually using a Set Control method. Set Control
requires two properties; a string containing the name of the control to set and a
variant with the control value. This is where variants can be a pleasure to deal with.
Since variants can contain any type, we can pass integers, strings, arrays of any
dimension, and clusters as well. Did we say you can pass clusters out of LabVIEW
code? Yes, we did. Unlike dealing with CINs and DLLs, the OLE interface treats
clusters like arrays of variants. Popping up on the cluster and selecting Cluster Order
will tell you the order in which the cluster items appear.

Higher-performance applications may take issue with all of the calls through
the COM interface. To set all parameters and run the VI at the same time, the Call
method can be invoked. Call takes two arguments; both are arrays of variants. The
first array is the list of controls and indicators and the second array is the data values
for controls and the location to store the indicators’ values when the call is done.
Call is a synchronous method, meaning that when you execute a Call method, the
function will not return until the VI has completed execution.

To call VIs in an asynchronous method, use Run, instead. The Run method
assumes that you have already set the control values in advance and requires a single
Boolean argument. This argument determines if the call will be synchronous or
asynchronous. If you do not want this function call to hold up execution of the VBA
script, set this value to “true.” The VI will start executing and your function call
will return immediately.

LabVIEW exposes all kinds of nifty methods and properties for dealing with
external applications. It is possible to show front panels and find out which subVIs
a VI reference is going to call. You can also find out which VIs call your current VI
reference as a subVI. Configuring the preferred execution subsystem is also possible
if you are in a position to change the threading setup of LabVIEW. This is discussed
in Chapter 9.

To find out more information on what methods and properties LabVIEW
exposes, consult LabVIEW’s on-line reference. There is complete documentation
there for interfacing LabVIEW to the rest of the COM-capable community.

8.17 UNDERSTANDING ACTIVEX ERROR CODES

ActiveX and the COM subsystem have their own set of error codes. Virtually every
ActiveX function has a return type that LabVIEW programmers cannot see. In C
and C++, functions can only have one valid return type. COM functions generally

©2001 CRC Press LLC

use a defined integer called an HRESULT. The HRESULT is a 32-bit number that
contains information about how well the function call went. Similar to LabVIEW
error codes, there are possibilities for errors, warnings, informative messages, and
no error values. The first two bits of an HRESULT contain the type of message. If
the leading bit of the number is set, then an error condition is present. The lower
16 bits contain specific error information. In the event an ActiveX call goes south
on you, you can get access to the HRESULT through the error cluster. The cluster
will contain a positive error condition, the HRESULT will be the error code, and
some descriptive information will be in the error description.

If you have access to Microsoft Visual C++, the error code can be located in
winerror.h. Winerror.h lists the errors in a hexadecimal format. To locate the error
in the file, you must convert the decimal error code to hex value and perform the
search. The dispatch interface error (0x8000FFFF) is one of the more commonly
returned error types, a “highly descriptive” error condition that is used when none
of the other codes applies. Debugging ActiveX controls can be challenging because
the error codes may be difficult for LabVIEW programmers to locate.

Some error codes are specific to the control. This will be made obvious when
the string return value in the error cluster has information regarding where to find
help. As a general troubleshooting rule, it helps when documentation for the control
is available, and possibly the use of Visual Basic. LabVIEW has a custom imple-
mentation of the ActiveX specification and does not always behave the same as
Visual Basic and Visual C++. We have seen cases in custom ActiveX controls where
LabVIEW’s interface was more accepting of a control than Visual Basic or the
ActiveX test container supplied with Visual C++.

When troubleshooting an ActiveX problem, the obvious issue is that it is impos-
sible to see inside the control. The first step is obvious: check the documentation!
Verify all inputs are within spec, and that all needed properties are set. A number
of controls have requirements that certain properties be initialized before a Method
call can be successful. For example, in the Winsock driver, a call to connect must
be made before a string can be written. Obvious, yes, but one author forgot to do
this when testing the driver. After several reloads of LabVIEW and rebooting the
system, the error was identified.

One thing to understand when looking at error codes is that Automation Open
usually does not fail. The reason for this is that this VI will only report problems if
the OCX could not be loaded. An ActiveX control is simply a fancy DLL. The act
of calling Automation Open loads this DLL into LabVIEW’s memory space (consult
the multi-threading chapter for more information on memory space). Close usually
will not generate errors either. The Automation Close does not unload the DLL from
memory, which came as a surprise to the authors. ActiveX controls keep a reference
count; the Automation Close VI calls the Release function, but does not eliminate
the control from LabVIEW’s memory space. It is possible to get a control into an
odd state, and exiting and restarting LabVIEW may resolve problems that only occur
the second time you run a VI. Unfortunately, the only method we have found to
force an ActiveX control out of LabVIEW’s memory space is to destroy LabVIEW’s
memory space. The solution you need to look for is what properties/methods are
putting the control into an odd state and prevent it from happening.

©2001 CRC Press LLC

National Instruments had to supply its own implementation of the ActiveX
specification. This is not a bad thing, but it does not always work identically to
Microsoft’s implementation in Visual Basic. The second recommended step of esca-
lation is to try equivalent code in Visual Basic. When writing the MAPI driver, we
discovered that example code written in LabVIEW just did not work. We tried the
equivalent code in Visual Basic and, surprise! It also did not work. Reapplying the
first rule, we discovered that we were not using the control correctly.

In a different scenario, I was developing an ActiveX control in Visual C++.
While hacking some properties out of the control, I did not pay attention to the
modifications I made in the interface description file. The control compiled and
registered correctly; LabVIEW could see all the controls and methods, but could
not successfully set any properties. When I tested the control in Visual Basic and
C++, only a few of the properties were available or the test application crashed. It
appears that when National Instruments implemented the ActiveX standard it prior-
itized LabVIEW’s stability. LabVIEW would not crash when I programmed it to
use a bad control, but Visual Basic and C++ test applications crashed. The moral to
this story is directed to ActiveX control developers: do not develop ActiveX controls
and test them only in LabVIEW. LabVIEW processes interface queries differently
than Visual Basic’s and C++’s generated wrappers (.tlh files or class wizard generated
files).

Programmers who do not “roll their own” controls can omit this paragraph. If
you are using controls that you have programmed yourself, make sure the control
supports a dual interface. Recall that LabVIEW only supports late binding. If the
Idispatch interface is not implemented or behaves differently than the Iunknown
interface, the control can work in Visual Basic, but will not work the same (if at all)
in LabVIEW.

If a control does not work in either LabVIEW or Visual Basic, it is possible that
the documentation for the control is missing a key piece of information. You will
need to try various combinations of commands to see if any combinations work.
This is not the greatest bit of programming advice, but at this point of debugging a
control there are not many options left. Be aware of odd-looking error codes. If you
get an error such as hex code 0x8000FFFF, varying the order of commands to the
control is probably not going to help. This error code is the dispatch interface error
and indicates that the control itself probably has a bug.

As a last resort, verify the control. If you cannot get a control to work properly
in Visual Basic or LabVIEW, some sanity checks are called for. Have you recently
upgraded the control? We experienced this problem when writing the Microsoft Agent
driver. Apparently, Registry linkages were messed up when the control was upgraded
from Version 1.5 to Version 2.0. Only the Automation Open VI would execute without
generating an error. If possible, uninstall and reinstall the control, rebooting the
machine between the uninstall and reinstall. It is possible that the Registry is not
reflecting the control’s location, interface, or current version correctly. Registry con-
flicts can be extremely difficult to resolve. We will not be discussing how to hack
Registry keys out of the system because it is inherently dangerous and recommended
as a desperate last resort (just before reinstalling the operating system).

©2001 CRC Press LLC

If none of the above methods seem to help, it is time to contact the vendor (all
options appear to now be exhausted). The reason for recommending contacting the
vendor last is some vendors (like Microsoft, for example) will charge “an arm and
a leg” for direct support. If the problem is not with the component itself, vendors
such as Microsoft will ask for support charges of as much as $99/hr of phone
support.

8.18 CONTROLS THAT DO NOT WORK WELL WITH
LABVIEW

This is a topic we will briefly cover so readers know a handful of controls that will
not work with LabVIEW, and also why LabVIEW cannot support the controls. Top
on the list of controls that LabVIEW programmers may not use are Container
controls. Any control that allows for additional ActiveX controls to be placed inside
of it is not useful to us. An example of this is the Tab control. The Tab control gives
programmers the ability to make tabs and place components onto the corresponding
pages of each tab. We do not have the ability to insert controls into the tab strip,
therefore we cannot make use of it.

If you are hellbent on making a tab strip work in LabVIEW, you do have a few
possible workarounds to use. The first is to lay out the tab strip with the appropriate
tabs. Lay out all of the controls for the first tab on the front panel. Creating an
Attribute node for each control will allow you to manually make the control visible
and invisible. Each time a user selects an option on the tab, you will need to toggle
all of the Attribute nodes. We did not say this was a pretty solution, but it can allow
you to work with the control.

The second, and potentially easier, workaround is to generate a custom ActiveX
control in Visual Basic. Lay out the tab strip and embed the ActiveX controls into
the custom control’s tab strip. Very large numbers of elements will make for a huge
property listing for the control, and you will need to write your own event code to
handle clicks and tab changes. Again, this can be a significant amount of work, but
it is possible to work with the tab control if you really need to.

Microsoft’s Cool Bar control is another control that we cannot directly work
with; in fact, the control will identify that LabVIEW cannot support nesting controls
and will not allow itself to be loaded. We do not have a workaround to present on
this control, and users are going to have to wait for a future version of LabVIEW
to work with it.

A handful of third-party controls may not appear to work correctly with Lab-
VIEW. Troubleshooting these controls can be difficult. The easiest way to start is
to try to get Visual Basic to work with the control. We are not suggesting that you
need to spend $500 on Visual Basic if you do not have a copy of the application.
You can try to get the control to work with an application that supports Visual Basic
for Applications, such as any of the Microsoft Office applications. Assuming one of
these applications is installed on your machine, try to get the control to work with
VBA. If the control works, then we can assume that the control works (kind of).

The suspect control obviously does not completely support the ActiveX speci-
fication or it should work without issue in LabVIEW. A workaround that you can

©2001 CRC Press LLC

use to try to get the control working in LabVIEW is to wrap the ActiveX call in a
wrapper VI. Each parameter passed should be linked to a variant input on the front
panel of the wrapping VI. Your code passes data to the variant inputs on the wrapper,
and the variants will be passed to the control. Hopefully, the control will handle the
variant inputs and we might just get the control working.

8.19 ADVANCED ACTIVEX DETAILS

This section is intended to provide additional information on ActiveX for program-
mers who are fairly familiar with this technology. LabVIEW does not handle inter-
faces in the same manner as Microsoft products such as Visual C++ and Visual
Basic. Some of these differences are significant and we will mention them to make
ActiveX development easier on programmers who support LabVIEW. Intensive
instruction as to ActiveX control development is well beyond the scope of this book.
Some information that applies strictly to LabVIEW is provided.

The three major techniques to develop ActiveX controls in Microsoft develop-
ment tools are Visual Basic, Visual C++’s ATL library, and Visual C++’s MFC
ActiveX Control Wizard. Each of the techniques has advantages and disadvantages.

Visual Basic is by far the easiest of the three tools in which to develop controls.
Visual Basic controls will execute the slowest and have the largest footprint (code
size). Visual Basic controls will only be OCX controls, meaning Visual Basic strictly
supports ActiveX. Controls that do not have code size restrictions or strict execution
speed requirements can be written in Visual Basic.

The ActiveX Template Library (ATL) is supported in Visual C++. This library
is capable of writing the fastest and smallest controls. Learning to develop ATL
COM objects can be quite a task. If a developer chooses to use custom-built com-
ponents for a LabVIEW application, budgeting time in the development schedule is
strongly recommended if ATL will be used as the control development tool. ATL is
capable of developing simple COM objects that LabVIEW can use. LabVIEW
documentation only lists support for ActiveX, but ATL’s simple objects can be used
in LabVIEW. Simple objects are the smallest and simplest components in the ATL
arsenal of component types. Simple objects are DLLs, but we have used them in
LabVIEW. The interesting aspect of simple controls is that they will appear in
LabVIEW’s list of available controls. They do not appear in Visual Basic’s list of
available controls; they must be created using Visual Basic’s CreateObject command.

The MFC support for ActiveX controls will generate standalone servers or .ocx
controls. When designing your own controls, MFC support may be desirable, but
developing the object itself should be done with the ATL library. Going forward,
ATL seems to be the weapon of choice that Microsoft is evolving for ActiveX control
development. As we mentioned, it is possible to get the support of the MFC library
built into an ATL project.

Components that will be used by LabVIEW must be built with support for dual
interfaces. Single interface controls will not work well in LabVIEW. Visual C++
will support the dual interface by default in all ActiveX/COM projects. A word of
caution is to not change the default if your control will be used in LabVIEW. We

©2001 CRC Press LLC

have previously mentioned that LabVIEW only supports late binding. Controls that
only have one interface will not completely support late binding.

ActiveX controls have two methods used to identify properties and methods: ID
number and name. LabVIEW appears to address properties and methods by name,
where Microsoft products use ID. This tidbit was discovered when one of the authors
hacked a property out of a control he was working on. This property happened to
have ID 3. LabVIEW could see all the properties in the control, but Visual Basic
and C++ could only see the first two properties in the list. The Microsoft products
were using ID numbers to identify properties and methods, but LabVIEW was using
names. The lesson to learn here is that you need to exercise caution when hacking
Interface Description Language (.idl) files.

It is possible to write components that accept LPDISPATCH arguments. LPDIS-
PATCH is a Microsoft data type that means Dispatch Interface Pointer. LabVIEW
can handle these types of arguments. When an LPDISPATCH argument appears in
a method, it will have the coloring of an ActiveX refnum data type. All of the
aggregated controls shown in this chapter use LPDISPATCH return types. You, as
the programmer, will need to make it clear to users what data type is expected. The
workaround for this type of issue is to have the control accept VARIANTS with
LPDISPATCH contained inside. This will resolve the problem.

Bitter, Rick et al "Multithreading in LabVIEW"
LabVIEW Advanced Programming Techinques
Boca Raton: CRC Press LLC,2001

9

©2001 CRC Press LLC

Multithreading in
LabVIEW

This chapter discusses using multithreading to improve LabVIEW applications’
performance. Multithreading is an advanced programming topic, and its use requires
the programmer to posses a fundamental understanding of this technology. Lab-
VIEW provides two significant advantages to the programmer when working with
multitasking and multithreading. The first advantage is the complete abstraction of
the threads themselves. LabVIEW programmers never create, destroy, or synchronize
threads. The second advantage is the dataflow model used by LabVIEW. This model
provides G a distinct advantage over its textual language counterparts because it
simplifies a programmer’s perception of multitasking. The fundamental concept of
multitasking can be difficult to grasp with text-based languages.

Multithreading adds a new dimension to software engineering. Applications can
perform multiple tasks somewhat simultaneously. A good example of an application
that has added multithreading is Microsoft Word for Windows 95 (Version 7.0).
Word for Windows 95 uses multithreading to perform spell-checking and grammar
validation. The threads added to perform this task allow the application to perform
these tasks while the user is typing. The previous version, Word 6.0 for Windows
3.1, cannot do this because it runs only one task at a time; a user would have to
stop typing and select

Check Spelling

. The first six sections of this chapter provide
the basic knowledge of multithreading. This discussion focuses on definitions, mul-
titasking mechanics, multithreading specific problems, and information on various
thread-capable operating systems.

A brief section on multithreading myths is presented. The impact of multithread-
ing on applications is misunderstood by a number of programmers. Section 9.6
explains precisely what the benefits of multithreading are. Many readers will be
surprised to learn that multithreading does little to increase the speed of an appli-
cation. Multi-threading does provide the illusion that sections of an application run
faster.

The last three sections of this chapter are devoted to the effective use of multi-
threading in LabVIEW. A strategy to estimate the maximum number of useful threads
will be presented. The focal point of this chapter is using subroutine VIs to maximize
application performance. The use of threads adds a new dimension of benefits to
both subroutine VIs and DLLs.

©2001 CRC Press LLC

9.1 MULTITHREADING TERMINOLOGY

The following terminology will be used throughout this chapter. Programmers who
require additional information on any of these topics should consult the chapter
bibliography.

9.1.1 W

IN

32

Win32 is an Application Programming Interface (API) that is used by Microsoft’s
32-bit operating systems: Windows 95, Windows 98, and Windows NT. All three
operating systems look very similar at the user interface. The common API for
programming also makes the three operating systems look comparable to the pro-
grammer. Win32 replaces the Win16 API used in Windows 3.1.

Windows NT is designed to perform differently than Windows 95 and Windows
98. The primary focus of Widows 95 is to be as backward compatible as possible
with Windows 3.1. Windows NT is designed to be as stable as possible. The differ-
ences in behavior of Windows NT and Windows 95/98 are usually not obvious to
most users. For example, many users do not know that Windows 95/98 will stop
preemptive multithreading for certain Windows 3.1 applications while Windows NT
will not.

9.1.2 UNIX

UNIX is an operating system that was conceived by AT&T Bell Labs. Like Win32,
UNIX is a standard, but the Open Systems Foundation maintains the UNIX standard.
Unlike Win32, UNIX is supported by a number of vendors who write and maintain
operating systems to this standard. The most popular are Sun Microsystems’ Solaris,
IBM’s AIX, Hewlett Packard’s HP-UX, and LINUX.

Threads are specified in UNIX with the Portable Operating System Interface
(POSIX) threads standard (pthread). At a low-level programming interface, pthreads
are different than Win32 threads. This does not impact the LabVIEW programmer.
Fundamentally, pthreads and Win32 threads operate in the same fashion. Their
application-programming interfaces (API) are different, but, conceptually, threads
are threads.

9.1.3 M

ULTITASKING

Multitasking simply means to coordinate multiple tasks, which is a familiar concept
to the LabVIEW programmer. As a dataflow-based language, LabVIEW has always
supported multitasking. Operating systems, such as Windows 3.1 and MacOS, mul-
titask operations such as multiple applications. The act of coordinating multiple
tasks should not be confused with multithreading; multithreading is fundamentally
different, and this section will help to explain why.

The best example of multitasking is

you

. At work, you have a priority list of tasks
that need to get accomplished. You will work on tasks one at a time. You may only
accomplish some parts of a task, but not all before working briefly on another task.
This is simple multitasking; you work on one thing for a while and then work on

©2001 CRC Press LLC

another topic. The process of switching between tasks is not multithreading, it is
simply multitasking. The act of deciding how long to work on a task before working
on a different one is your scheduling algorithm. This is the principle that Windows
3.1 and MacOS are built on. The applications in Windows 3.1 and MacOS decide
how long they will run before surrendering the CPU to another process. Figure 9.1
demonstrates time utilization of a CPU when cooperative multitasking is used.

A simple demonstration of multitasking in LabVIEW is independent While
loops. It is important for the reader to clearly understand that multitasking has always
been available, and multithreading does not add or subtract from LabVIEW’s ability
to multitask operations. One of the key questions this chapter hopes to answer for
the LabVIEW programmer is when multithreading will be of benefit.

9.1.3.1 Preemptive Multithreading

Taking the previous example of multitasking, you at work, we will explain the
fundamental concept of multithreading. Imagine that your hands were capable of
independently working. Your right hand could be typing a memo while the left dialed
a phone number. Once the left hand completed dialing the number, it began to solder
components on a circuit board. If you were capable of talking on the phone, typing
a memo, and soldering components at the same time, you would be multithreading.
Your body is effectively a process, and your hands and mouth are threads of execu-
tion. They belong to the same process, but are functioning completely independent
of each other.

This is fundamentally what multithreading is doing in a computer program. Each
thread has a task it works on regardless of what the rest of the program is doing.
This is a difficult concept for many programmers to grasp. When programming with
text-based languages such as C/C++, programmers associate lines of code as oper-
ating sequentially. The concept that is difficult to grasp is that threads behave as
their own little program running inside a larger one. LabVIEW’s graphical code
allows programmers to visualize execution paths much easier.

Preemptive multithreading uses CPU hardware and an operating system capable
of supporting threads of execution. Preemption occurs at the hardware level; a
hardware timer interrupt occurs and the CPU takes a thread of execution off the
CPU and brings in another one. A lot of interesting things happen with CPUs that
support multithreading operating systems. First, each program has a memory map.

FIGURE 9.1

Time

©2001 CRC Press LLC

This memory map is unique to each application. The memory maps are translated
into real memory addresses by hardware in the CPU. When preemption occurs, the
timer in the CPU informs the CPU to change maps to the operating system’s
management. The operating system will then determine which thread is next to run
and inform the CPU to load that thread’s memory map. Operating systems that
support LabVIEW and multithreading are Win32, Solaris, HP-UX, and Concurrent
PowerMax. Windows 3.1and MacOS do not support multithreading for applications.
The act of scheduling threads and processes will be explained in Section 9.2. Figure
9.2 shows the timelines for multiple processes.

9.1.4 K

ERNEL

 O

BJECTS

Kernel objects are small blocks of memory, often C structures, that are owned by
the operating system. They are created at the request of programs and are used to
protect sections of memory. Later in this chapter the need for protection will be
clearly explained, but a short definition of this term is provided now.

9.1.5 T

HREAD

Before we begin describing a thread, a few terms used for programs must be quickly
defined. A program that has one thread of execution, which is a single-threaded
program, must have a call stack. The call stack retains items like variables and what
the next instruction is to be executed. C programmers will quickly associate variables
placed on the stack as local variables. In some operating systems, the program will
also have a copy of CPU registers. CPU registers are special memory locations inside
the CPU. The advantage of using CPU registers is that the CPU can use these
memory locations significantly faster than standard memory locations. The disad-
vantage is that there are relatively few memory locations in the registers. Each thread
has its own call stack and copy of CPU registers.

Effectively, a thread of execution is a miniature program running in a large, shared
memory space. Threads are the smallest units that may be scheduled time for execu-
tion on the CPU and possess a call stack and set of CPU registers. The call stack is
a First-In-First-Out (FIFO) stack that is used to contain things like function calls and
temporary variables. A thread is only aware of its own call stack. The registers are
loaded into the CPU when the thread starts its execution cycle, and pulled out and
loaded back into memory when the thread completes its execution time.

FIGURE 9.2

©2001 CRC Press LLC

9.1.6 P

ROCESS

The exact definition of a process depends on the operating system, but a basic
definition includes a block of memory and a thread of execution. When a process
is started by the operating system, it is assigned a region of memory to operate in
and has a list of instructions to execute. The list of instructions to begin processing
is the “thread of execution.” All applications begin with a single thread and are
allowed to create additional threads during execution.

The process’s memory does not correlate directly to physical memory. For
example, a Win32 process is defined as four gigabytes of linear address space and
at least one thread of execution. The average computer has significantly less memory.
Notice that there is no mention made of things like conventional memory, extended
memory, and high memory. This is referred to as a memory map, or protected
memory. The operating system is responsible for mapping the addresses the program
has into the physical memory. The concept behind protected memory is that a process
cannot access memory of other processes because it has no idea where other memory
is. The operating system and CPU switch memory in and out of physical memory
and hard disk space. Memory mapped to the hard disk is referred to as “virtual
memory” in Windows and “swap space” in UNIX.

A process also has security information. This information identifies what the
process has authorization to do in the system. Security is used in Windows NT and
UNIX, but is completely ignored in Windows 95 and 98.

9.1.7 A

PPLICATION

An application (or program) is a collection of processes. With concepts like Dis-
tributed Computing Environments (DCE) and Distributed Component Object Model
(DCOM), applications are not required to execute in one process, or even on one
computer. With the lower cost of computers and faster network speeds, distributed
computing is becoming feasible and desirable in many applications. Applications
that use processes on multiple machines are “distributed applications.”

As an example of a distributed application, consider LabVIEW. With ActiveX
support and the new VI Server functionality, VIs can control other VIs that are
not resident and executing on the same computer. Component Object Model
(COM) and Distributed Component Objects (DCOM) were discussed in Chapter
7 on ActiveX.

9.1.8 P

RIORITY

Every process and thread has a priority associated with it. The priority of the process
or thread determines how important it is when compared to other processes or
threads. Priorities are numbers, and the higher the number, the more important the
process. Process priorities are relative to other processes while thread priorities are
relative only to other threads in the same process. LabVIEW programmers have
access to priority levels used by LabVIEW. Configuring LabVIEW’s thread usage
will be discussed in Section 9.7.4.

©2001 CRC Press LLC

9.1.8.1 How Operating Systems Determine which Threads

Both Win32 and POSIX have 32-integer values that are used to identify the priority
of a process. The implementation of priority and scheduling is different between
Win32 and pthreads. Additional information on both specifications appears in Sec-
tions 9.3 and 9.4.

9.1.9 S

ECURITY

Windows NT and UNIX systems have security attributes that need to be verified by
the operating system. Threads may only operate within the security restrictions the
system places on them. When using Distributed COM objects, and in some cases
ActiveX containers, security permissions can become an issue. The default security
attributes associated with an application are the level of permissions the user who
started the application has. System security can limit access to files, hardware
devices, and network components.

9.1.10 T

HREAD

 S

AFE

Programmers often misunderstand the term “thread safe.” The concept of thread-
safe code implies that data access is atomic. “Atomic” means that the CPU will
execute the entire instruction, regardless of what external events occur, such as
interrupts. Assembly-level instructions require more than one clock cycle to execute,
but are atomic. When writing higher-level code, such as LabVIEW VIs or C/C++
code, the concept of executing blocks of code in an atomic fashion is critical when
multiple threads of execution are involved. Threads of execution are often required
to have access to shared data and variables. Atomic access allows for threads to have
complete access to data the next time they are scheduled.

The problem with preemption is that a thread is removed from the CPU after
completion of its current machine instruction. Commands in C can be comprised of
dozens of machine-level instructions. It is important to make sure data access is
started and completed without interference from other threads. Threads are not
informed by the operating system that they were preemptively removed from the
CPU. Threads cannot know shared data was altered when it was removed from the
CPU. It is also not possible to determine preemption occurred with code; it is a
hardware operation that is hidden from threads. Several Kernel objects can be used
to guarantee that data is not altered by another thread of execution.

Both UNIX Pthreads and Win32 threads support semaphores and mutexes. A
Mutual Exclusion (mutex) object is a Kernel object that allows one thread to take
possession of a data item. When a thread requires access to a data item that is
protected by a mutex, it requests ownership from the operating system. If no other
threads currently own the mutex, ownership is granted. When preemption occurs,
the owning thread is still shifted off the CPU, but when another thread requests
ownership of the mutex it will be blocked. A thread that takes possession of a mutex
is required to release the mutex. The operating system will never force a thread to
relinquish resources it has taken possession of. It is impossible for the operating

©2001 CRC Press LLC

system to determine if data protected by the mutex is in a transient state and would
cause problems if another thread were given control of the data.

A semaphore is similar to a mutex, but ownership is permitted by a specified
number of threads. An analogy of a semaphore is a crowded nightclub. If capacity
of the club is limited to 500 people, and 600 people want to enter the club, 100 are
forced to wait outside. The doorman is the semaphore, and restricts access to the
first 500 people. When a person exits, another individual from outside is allowed to
enter. A semaphore works the same way.

Mutexes and semaphores must be used in DLLs and code libraries if they are
to be considered thread-safe. LabVIEW can be configured to call DLLs from the
user interface subsystem, its primary thread, if it is unclear that the DLL is thread
safe. A programmer should never assume that code is thread safe; this can lead to
very difficult issues to resolve.

9.2 THREAD MECHANICS

All activities threads perform are documented in an operating system’s specification.
The actual behavior of the threads is dependent on a vendor’s implementation. In
the case of Windows, there is only one vendor, Microsoft. On the other hand, UNIX
has a number of vendors who implement the standard in slightly different ways.
Providing detailed information on operating system-specific details for all the UNIX
flavors is beyond the scope of this book.

Regardless of operating system, all threads have a few things in common. First,
threads must be given time on the CPU to execute. The operating system scheduler
determines which threads get time on the CPU. Second, all threads have a concept
of state; the state of a thread determines its eligibility to be given time on the CPU.

9.2.1 T

HREAD

 S

TATES

A thread can be in one of three states: Active, Blocked, or Suspended. Active threads
will be arranged according to their priority and allocated time on the CPU. An active
thread may become blocked during its execution. In the event an executing thread
becomes blocked, it will be moved into the inactive queue, which will be explained
shortly.

Threads that are blocked are currently waiting on a resource from the operating
system (a Kernel object or message). For example, when a thread tries to access the
hard drive of the system, there will be a delay on the order of 10 ms for the hard
drive to respond. The operating system blocks this thread because it is now waiting
for a resource and would otherwise waste time on the CPU. When the hard drive
triggers an interrupt, it informs the operating system it is ready. The operating system
will signal the blocked thread and the thread will be put back into a run queue.

Suspended threads are “sleeping.” For example, in C, using the Sleep statement
will suspend the thread that executed the command. The operating system effectively
treats blocked and suspended threads in the same fashion; they are not allowed time
on the CPU. Both suspended and blocked threads are allowed to resume execution
when they have the ability to, when they are signaled.

©2001 CRC Press LLC

9.2.2 S

CHEDULING

 T

HREADS

The operation of a scheduling algorithm is not public knowledge for most operating
systems, or at least a vendor’s implementation of the scheduling algorithm. The
basic operation of scheduling algorithms is detailed in this section.

The operating system will maintain two lists of threads. The first list contains
the active threads and the second list contains blocked and suspended threads. The
active thread list is time-ordered and weighted by the priority of the thread in the
system. The highest priority thread will be allowed to run on the CPU for a specified
amount of time, and will then be switched off the CPU. This is referred to as a
“Round Robin” scheduling policy.

When there are multiple CPUs available to the system, the scheduler will deter-
mine which threads get to run on which CPU. Symmetric Multiprocessing (SMP)
used in Windows NT allows for threads of the same process to run on different
CPUs. This is not always the case. A dual-CPU machine may have threads of
different processes running on the pair of CPUs, which is determined by the sched-
uling algorithm. Some UNIX implementations only allow a process’s threads on a
single CPU.

The blocked/suspended queue is not time-ordered. It is impossible for the oper-
ating system to know when a signal will be generated to unblock a thread. The
scheduling algorithm polls this list to determine if any threads have become available
to execute. When a thread becomes unblocked and has higher priority than the
currently running thread, it will be granted control of the CPU.

9.2.3 C

ONTEXT

 S

WITCHING

The process of changing which thread is executing on the CPU is called “context
switching.” Context switching between threads that are in the same process is
relatively fast. This is referred to as a “thread context switch.” The CPU needs to
offload the current thread’s instruction pointer and its copy of the CPU registers into
memory. The CPU will then load the next thread’s information and begin executing
the next thread. Since threads in the same process execute in the same protected
memory, there is no need to remap physical memory into the memory map used by
the process.

When context switching occurs between threads of different processes, it is
called a “process context switch.” There is a lot more work that is required in a
process context switch. In addition to swapping out instruction pointers and CPU
registers, the memory mapping must also be changed for the new thread.

As mentioned in Section 9.2.2, when a thread becomes signaled (eligible to run)
and has a higher priority than the currently running thread, it will be given control
of the CPU. This is an involuntary context switch. This is a potential problem for
LabVIEW programmers. Section 9.5 will discuss multithreading problems such as
starvation and priority inversion that can be caused by poorly-designed configura-
tions of LabVIEW’s thread pools. Configuring the threads that LabVIEW uses is
discussed in Section 9.7.4.

©2001 CRC Press LLC

9.3 WIN32 MULTITHREADING

The Win32 model expands the capabilities of the Win16 model. Threading and
security are two of the features that were added to Windows. Windows NT and
Windows 95 operate differently when threads are considered. The API for the two
operating systems is the same. Windows 95 and 98 ignore several attributes given
to a thread. For example, Windows 95 and 98 ignore security attributes. Windows
95 and 98 are designed for home usage so thread/process security is not used in
these operating systems. Issues involving security and permissions are usually not
a problem in LabVIEW applications. Some issues may surface when using the VI
server or DCOM objects.

Windows NT will always operate using preemptive multithreading. The primary
design goal of Windows NT was stability. Windows 95 and 98 were designed with
backward compatibility in mind. Windows 95 and 98 will run as cooperative mul-
tithreaded environments, similar to Windows 3.1. This is a consideration for Lab-
VIEW programmers to remember when they anticipate end users running legacy
applications such as Microsoft Office Version 4. Older versions of Microsoft Word
(Version 6.0) may be given cooperative multitasking support so they feel at home
in a Windows 3.1 environment. Legacy DOS applications may behave the same way.
Either way, when Windows 95 drops into a cooperative multitasking mode it will
not inform the user that this decision was made. Performance degradation may be
seen in Windows 95 environments when legacy applications are run. If users raise
issues related to performance of LabVIEW applications on Windows 95 systems,
ask if any other applications are being used concurrently with LabVIEW.

Another difference between Windows 95 and NT is hardware accessibility.
Windows 95 allows applications to directly access hardware. This allows drivers to
have faster access to devices such as GPIB cards and DAQ boards. Windows NT’s
model for stability forbids direct hardware access. Drivers must be written specifi-
cally to act as operating system components. Many DAQ programmers have observed
that hardware access is slower under Windows NT.

9.4 PTHREADS

Many topics on UNIX multithreading are well beyond the scope of this book. The
chapter bibliography lists a number of sources that contain additional information.
One of the difficulties in writing about UNIX is the number of vendors writing
UNIX. The POSIX standard is intended to provide a uniform list of design require-
ments for vendors to support. This does not translate directly to uniform behavior
of UNIX operating systems. Vendors write an operating system that conforms to
their interpretation of the specification.

Priority and scheduling are different for Pthreads. Pthreads have defined sched-
uling policies, round robin; first-in, first-out; and other. The FIFO policy lets a thread
execute until it completes its execution or becomes blocked. This policy is multi-
tasking by any other name, because there is no preemption involved. The round-
robin policy is preemptive multithreading. Each thread is allowed to execute for a
maximum amount of time, a unit referred to as a “quantum.” The time of a quantum

©2001 CRC Press LLC

is defined by the vendor’s implementation. The “other” policy has no formal defi-
nition in the POSIX standard. This is an option left up to individual vendors. Pthreads
expand on a concept used in UNIX called “forking.” A UNIX process may duplicate
itself using a fork command. Many UNIX daemons such as Telnet use forking.
Forking is not available to the Win32 programmer. A process that generates the fork
is called the Parent process, while the process that is created as a result of the fork
command is referred to as the Child process. The Child process is used to handle a
specific task, and the Parent process typically does nothing but wait for another job
request to arrive. This type of multitasking has been used for years in UNIX systems.

As an example of forking, consider a Telnet daemon. When a connection request
is received, the process executes a fork. The Telnet daemon is replicated by the
system and two copies of the daemon are now running in memory; the Parent process
and Child process. The Parent continues to listen on the well-known Telnet port.
The Child process takes over for the current Telnet connection and executes as an
independent process. If another user requests another Telnet session, a second Child
process will be spawned by another fork. The Parent process, the original Telnet
daemon, will continue to listen to the well-known Telnet port. The two Child
processes will handle the individual Telnet sessions that users requested.

Forking has both advantages and disadvantages. The major disadvantage to
forking is that Parent and Child processes are independent processes, and both Parent
and Child have their own protected memory space. The advantage to having inde-
pendent memory spaces is robustness; if the Child process crashes, the Parent process
will continue to execute. The disadvantage is that since Parent and Child are inde-
pendent processes, the operating system must perform process context switches, and
this requires additional overhead.

9.5 MULTITHREADING PROBLEMS

This section will outline problems that multithreading can cause. This is an important
section and will be referenced in Multithreading Myths. Some of these problems do
not occur in LabVIEW, but are included for completeness. Many of these problems
can be difficult to diagnose because they occur at the operating system level. The
OS does not report to applications that cause these problems. Some issues, such as
race conditions and deadlock, cannot be observed by the operating system. The
operating system will not be able to determine if this is normal operation or a problem
for the code.

It is important to understand that any multitasking system can suffer from these
problems, including LabVIEW. This section is intended to discuss these problems
relative to LabVIEW’s multithreading abilities. As a programmer, you can create
race conditions, priority inversion, starvation, and deadlock in LabVIEW’s VIs when
working with VI priorities. We will identify which problems you can cause by poor
configuration of LabVIEW’s thread counts.

©2001 CRC Press LLC

9.5.1 R

ACE

 C

ONDITIONS

Many LabVIEW programmers are familiar with the concept of a “Race Condition.”
Multithreading in general is susceptible to this problem. Fortunately, when writing
LabVIEW code, a programmer will not create a race condition with LabVIEW’s
threads. A race condition in multithreaded code happens when one thread requires
data that should have been modified by a previous thread. Additional information
on LabVIEW race conditions can be found in the LabVIEW documentation or
training course materials. LabVIEW execution systems are not susceptible to this
problem. The dedicated folks at National Instruments built the threading model used
by LabVIEW’s execution engine to properly synchronize and protect data. LabVIEW
programmers cannot cause thread based race conditions; however, there is still plenty
of room for LabVIEW programmers to create race conditions in their own code.

Thread-based race conditions can be extremely hazardous. If pointer variables
are involved, crashes and exception errors are fairly likely. This type of problem can
be extremely difficult to diagnose because it is never made clear to the programmer
the order in which the threads were executing. Scheduling algorithms make no
guarantees when threads get to operate.

9.5.2 P

RIORITY

 I

NVERSION

A problem occurs when two threads of different priority require a resource. If the
lower-priority thread acquires the resource, the higher-priority process is locked out
from using the resource until it is released. Effectively, the higher-priority process
has its priority reduced because it must now wait for the lower-priority process to
finish. This type of blocking is referred to as

Priority Inversion

. The resource could
be in the application, or the resource could be external to the application, such as
accessing a shared file on the hard drive. Internal resources include things like
variables. External resources include accessing the hard drive, waiting on ActiveX
components, and waiting on Kernel-level operating system components such as
mutexes and semaphores.

Priority inversion will degrade an application’s performance because high-pri-
ority threads do not execute as such. However, the program will still execute properly.
Inversion is a problem that can be caused by a LabVIEW programmer who errantly
alters the priority level of LabVIEW’s thread pools. Priority levels of “Normal”
should be used, and this will prevent priority inversion problems. When threads have
no active work to do, they will be blocked.

Most LabVIEW applications should not require modification of priority levels
of threads. Errant priority levels can cause a number of problems for a LabVIEW
application. An example of when a programmer would consider adjusting the priority
level of a subsystem is a high-speed data acquisition program. If the DAQ subsystem
required a majority of the CPU time, then a programmer may need to raise priority
levels for the DAQ subsystem. If a common queue were used to store data brought
in from the DAQ card, priority inversion would occur. VIs performing numerical
processing or data display that are resident in the user subsystem will execute with

©2001 CRC Press LLC

lower priority than the DAQ threads. This becomes a problem when the user interface
threads have access to the queue and spend a lot of time waiting for permission to
execute. The DAQ threads trying to put data into the queue become blocked until
lower-priority interface threads complete. The lesson to learn here is important: when
priority inversion occurs, the high-priority threads end up suffering. This type of
problem can seriously impact application performance and accuracy. If the DAQ
card’s buffer overflows because the DAQ subsystem was blocked, application accu-
racy would become questionable.

9.5.3 S

TARVATION

Starvation is essentially the opposite of priority inversion. If access to a resource that
two threads need is for very short periods of time, then the higher-priority thread will
almost always acquire it before the lower priority thread gets the opportunity to do
so. This happens because a higher-priority thread receives more execution time.
Statistically, it will get the resource far more often than the lower-priority thread.

Like, priority inversion, “Starvation” is resolved differently by Windows NT and
95. Again, like priority inversion, a LabVIEW programmer can cause this multi-
threading problem. We will discuss prevention of both priority inversion and star-
vation issues later in this chapter.

If Windows will actively seek to resolve starvation and priority inversion, then
why bother to prevent them from happening? The reason you do not want to cause
either problem is that both reduce the efficiency of an application. It is poor pro-
gramming practice to design an application that requires the operating system to
resolve its deficiencies.

If there is a valid reason for a thread to execute at a higher priority than others,
then the program design should make sure that its execution time is not limited by
priority inversion. Lower-priority threads can suffer from starvation. This is highly
undesirable because execution time of the higher-priority threads will become limited
while Windows allows the lower threads to catch up. A balanced design in thread
priorities is required. In multithreaded code, it is often best just to leave all threads
at the same priority.

9.5.4 D

EADLOCKING

Deadlock is the most difficult multithreading problem that is encountered. Deadlock
can only occur when two or more threads are using several resources. For example,
there are two threads, A and B. There are also two resources, C and D. If both
threads need to take ownership of both resources to accomplish their task, deadlock-
ing occurs when each thread has one resource and is waiting for the other. Thread
A acquires resource C, and thread B acquires resource D. Both threads are blocked
until they acquire the other resource.

 The bad news as far as deadlocking is concerned: Windows has no mechanism
to resolve this type of problem. The operating system will never force a thread to
release its resources. Fortunately, deadlocking is highly unlikely to be caused by a
LabVIEW programmer. This is a thread-level problem and would be caused by the
execution engine of LabVIEW. Once again, the dedicated folks at National Instruments

©2001 CRC Press LLC

have thoroughly tested LabVIEW’s engine to verify that this problem does not exist.
This eliminates the possibility that you, the programmer, can cause this problem.

9.5.5 O

PERATING

 S

YSTEM

 S

OLUTIONS

Operating systems try to compensate for starvation and priority inversion. Requiring
the operating system to compensate is poor programming practice, but here is how
UNIX and Win32 try to resolve them.

Priority inversion is resolved differently by Windows 95 and NT. Windows NT
will add a random number to the priority of every thread when it orders the active
queue. This obviously is not a complete solution, but a well-structured program does
not require the operating system to address thread problems.

Windows 95 will actually increase the priority of the entire process. Increasing
the priority of the process gives the entire application more of the CPU time. This
is not as effective a solution as the one used by NT. The reason for this type of
handling in Windows 95 is for backward compatibility. Win16 programs are only
aware of one thread of execution. Elevating the entire process’s priority makes Win16
applications feel at home in a Windows 3.1 environment.

9.6 MULTITHREADING MYTHS

This section discusses some common myths about multithreading. We have heard
many of these myths from other LabVIEW programmers. Multithreading is one of
the exciting new additions to LabVIEW 5.0; unfortunately, it is also one of the most
dangerous. The following myths can lead to performance degradation for either a
LabVIEW application or the entire operating system. The single biggest myth
surrounding multithreading is that it makes applications run faster. This is entirely
false, and the case is outlined below.

9.6.1 T

HE

 M

ORE

 T

HREADS

,

THE

 M

ERRIER

The first myth that needs to be addressed is “more threads, better performance.”
This is just not in line with reality; application speed is not a function of the number
of running threads. When writing code in languages like C++, this is an extremely
dangerous position to take. Having a thread of execution for every action is more
likely to slow an application down than speed it up. If many of the threads are kept
suspended or blocked, then the program is more likely to use memory inefficiently.
Either way, with languages like C++ the programmer has a lot of room to cause
significant problems.

LabVIEW abstracts the threading model from the programmer. This threading
model is a double-edged sword. In cases like the number of threads available,
LabVIEW will not always use every thread it has available, and the programmer
will just waste memory. When applications are running on smaller computers, such
as laptops where memory might be scarce, this could be a problem.

The rule of thumb for how many threads to have is rather vague: do not use too
many. It is often better to use fewer threads. A large number of threads will introduce

©2001 CRC Press LLC

a lot of overhead for the operating system to track, and performance degradation
will eventually set in. If your computer has one CPU, then no matter what threading
model you use, only one thread will run at a time. We’ll go into customizing the
LabVIEW threading model later in this chapter. We will give guidelines as to how
many threads and executions systems programs might want to have.

9.6.2 A

LWAYS

 M

AKES

 M

Y

 P

ROGRAM

 R

UN

 F

ASTER

This myth is not as dangerous as “the more threads the merrier,” but still needs to
be brought back to reality. The basic problem here is that threads make sections of
a program appear to run

at the same time

. This illusion is not executing the program
faster. When the user interface is running in its own thread of execution, the appli-
cation’s GUI will respond more fluidly. Other tasks will have to stop running when
the user interface is updating. When high performance is required, a nicely updated
GUI will degrade the speed that other subsystems operate.

The only true way to have a program run faster with multiple threads is to have
more than one CPU in the computer. This is not the case for most computers, and,
therefore, threads will not always boost application performance. In the world of
Windows, this requires Windows NT. Windows 95 and 98 do not support Symmetric
Multiprocessing, and will only make use of one CPU in the system.

Later in this chapter, we will show how performance gains can be made without
making significant changes to the thread configuration. As a rule of thumb, threads
are always a difficult business. Whenever possible, try to tweak performance without
working with threads. We will explain the mechanics of multithreading in the next
sections, and it will become clear to the reader that multithreading is not a “silver
bullet” for slow applications.

9.6.3 M

AKES

 A

PPLICATIONS

 M

ORE

 R

OBUST

There is nothing mentioned in any specification regarding threads that lends stability
to an application. If anything, writing multithreaded code from a low level is far more
difficult than writing single-threaded code. This is not a concern for the LabVIEW
programmer because the dedicated folks at National Instruments wrote the low-level
details for us. Writing thread-safe code requires detailed design and an intimate
understanding of the data structures of a program. The presence of multiple threads
does not add to the stability of an application. When a single thread in a multithreaded
application throws an exception, or encounters a severe error, it will crash the entire
process. In distributed application, it could potentially tear down the entire application.
The only way to ensure the stability of a multithreaded application is a significant
amount of testing. The folks at National Instruments have done this testing, so there
is no need to spend hours doing so to verify your threading models.

9.6.4 C

ONCLUSION

ON

 M

YTHS

Multithreading gives new abilities to LabVIEW and other programming languages,
but there is always a price to be paid for gains. It is important to clearly understand
what multithreading does and does not provide. Performance gains will not be

©2001 CRC Press LLC

realized with threads running on a single-processor system. Large numbers of threads
will slow an application down because of the overhead the system must support for
the threads to run. Applications’ graphical interfaces will respond more fluidly
because the graphics subsystems’ threads will get periodic time to execute. Intensive
computational routines will not block other sections of code from executing.

9.7 MULTITHREADED LABVIEW

Fundamentally, the dataflow operation of LabVIEW is not impacted by multithread-
ing. The real differences are abstracted from the programmer. In this section we
discuss the architecture of multithreaded LabVIEW, the main run queue, and how
to configure the thread systems. Understanding how threads interact with the Lab-
VIEW subsystems will allow a programmer to use threading effectively. Threads in
one subsystem may access VIs you thought were operating in another subsystem.
The topic is somewhat abstract, and this section intends to clarify the interactions
of VIs and threads. Once the reader understands the subsystem architecture and main
run queue, an introduction to thread configuration will be presented.

9.7.1 E

XECUTION

 S

UBSYSTEMS

The various activities that LabVIEW performs are handled by six subsystems. The
LabVIEW subsystems are User, Standard, I/O, DAQ, Other 1, and Other 2. The
original design of LabVIEW 5.0 used these subsystems to perform tasks related to
the system’s name. This rigid partitioning did not make it into the release version
of LabVIEW 5.0, and tasks can run in any LabVIEW subsystem. Figure 9.3 depicts
LabVIEW broken up into its constituent subsystems.

Each subsystem has a pool of threads and task queue associated with it. Lab-
VIEW also maintains a main run queue. The run queue stores a priority-sorted list
of tasks that are assigned to the threads in the subsystem. A LabVIEW subsystem
has an “array” of threads and priorities. The maximum number of threads that can
be created for a subsystem is 40; this is the maximum of 8 threads per priority and
5 priority levels. Section 9.7.4 discusses thread configuration for subsystems. Figure
9.4 shows a subsystem and its array of threads.

FIGURE 9.3

(Courtesy National Instruments)

©2001 CRC Press LLC

The User subsystem is the only subsystem that is required for LabVIEW to run,
because all other subsystems are optional to running LabVIEW. Configuring thread
counts and priorities for subsystems is covered in 9.7.4. The User subsystem main-
tains the user interface, compiles VIs, and holds the primary thread of execution for
LabVIEW. When a DLL or code fragment with questionable thread safety is run,
the User subsystem is where it should always be called. Single threaded LabVIEW
5.0 still has one thread of execution, and it rides on this subsystem.

The Standard subsystem was intended to be the default subsystem for LabVIEW
executable code. If a programmer is interested in keeping dedicated execution time
to the user interface, assign the main level VIs to this subsystem. This will guarantee
that the User subsystem threads have plenty of time to keep the display updated.
Like the User subsystem, the Standard subsystem can be configured to run with an
array of threads.

The DAQ subsystem was originally intended to run data acquisition-specific tasks.
It is currently available to any VI. The I/O subsystem was intended for VXI, GPIB,
Serial, and IP communications (TCP and UDP). This design is interesting when the
programmer considers using the VISA communication suite,.VISA is a communica-
tions subsystem, and a dedicated thread pool is certainly a good idea. Remember that
having dedicated threads guarantees some amount of execution time. On single CPU
systems there is still a “borrow from Peter to pay Paul” issue, but communications
is fundamental to many LabVIEW applications and justification for guaranteed exe-
cution time is sometimes appropriate. The priority levels of a subsystem’s threads
relative to the other subsystem threads would serve as a rough gauge of the amount
of execution time available. Other 1 and Other 2 were intended for user-specified
subsystems. Again, these two subsystems can be used for any purpose desired.

Most applications do not need to assign VIs to specific subsystems. A simple
litmus test to decide if a VI should be dedicated to a subsystem is to write a one-
paragraph description of why the VI should only be executed in a specific subsystem.

FIGURE 9.4

Background Priority

Low Priority

Normal Priority

High Priority

Real-Time Priority

Next Task To Do

New Tasks

Run�Run�
QueueQueue

©2001 CRC Press LLC

This is a simple Description Of Logic (DOL) statement that should be included in
any application design. Description of Logic was discussed in Chapter 4. If the DOL
cannot describe what the benefits of the assignment are, then the assignment is not
justified. Valid reasons for dedicating a set of VIs to a specific subsystem include
the need to guarantee some amount of execution time. If a programmer decides to
modularize the execution of an application, then assignment of a VI to a subsystem
can be done in VI Setup as shown in Figure 9.5.

When a new VI is created, its default priority is normal and the system is “same
as caller.” If all VIs in a call chain are listed as run under “same as caller,” then any
of the subsystems could potentially call the VI. The default thread configuration for
LabVIEW is to have one thread per subsystem with normal priority. The subsystem
that calls a VI will be highly variable; during execution it is impossible to determine
which threads were selected by the scheduler to execute. When a VI is assigned to
a particular subsystem, only threads belonging to the specified subsystem will
execute it.

Now that a simple definition of the LabVIEW subsystems has been presented,
let’s consider threads. Subsystem threads execute in a round-robin list and are
scheduled by the operating system. When a VI is listed to execute in a specific
subsystem, only threads assigned to that subsystem can execute it. As an example,
a VI, test_other1.vi is only permitted to be executed by the Other 1 subsystem. When
test2_other2.vi is executed and told to call test_other1.vi, the thread that is executing
test2_other2.vi will block. The data flow at the call is blocked until a thread from
the Other 1 subsystem is available to execute it. This is up to the scheduler of the
operating system, and also one of the points where errant priorities can cause priority
inversion or starvation. LabVIEW cannot directly switch to a thread in Other 1 to
execute the thread. Only the operating system can decide which thread gets to execute

FIGURE 9.5

©2001 CRC Press LLC

when. Other 1 threads will not be considered special to the operating system, and
they must wait in the thread queue until it is their turn to execute.

When assigning VIs to particular subsystems, use caution when assigning thread
priorities. If VIs are called by two subsystems, there should not be large differences
in the priorities of the threads belonging to these subsystems. An example is if the
subsystem Other 1 has 2 threads at “Above Normal” priority and Other 2 has a
“Background” priority thread. If a VI called in subsystem Other 1 calls a subVI in
Other 2, not only does the thread in Other 1 block, it has to wait for a background
priority thread in Other 2 to get scheduled time to execute! This is a simple example
of priority inversion that can be caused by a LabVIEW programmer. If Other 1 and
Other 2 were both executing with “Normal” priority, the scheduling algorithm would
have mixed the scheduling of the threads and no priority inversion would occur. The
thread in Other 1 would have needed to wait on the thread context switches, but
those delays are relatively minor.

Another threading problem that can be caused by errant priority settings is
starvation. Consider the following case: VIs other1.vi, other2.vi, and io.vi. The Other
1 VI is listed with “time-critical” priority level, Other 2 VI is listed with “back-
ground” priority, and io.vi is listed “same as caller.” Same as caller allows a VI to
execute in any subsystem with the same priority thread that executed the calling VI.
Both other1.vi and other2.vi need to call io.vi. Since other1.vi is running in a
subsystem with a time-critical priority thread, it is going to get a significant amount
of execution time compared with other2.vi. Access to io.vi will be granted to
other1.vi far more often than other2.vi. Other2.vi will become starved because it
does not get enough access to io.vi. Scheduling algorithms are notoriously unfor-
giving when they schedule threads. If a thread is available to execute, it will get put
in the active list based entirely on its priority. If a thread with low priority is always
available, it will still make the active list, but will always be near the bottom.

9.7.2 T

HE

 R

UN

 Q

UEUE

LabVIEW maintains several run queues consisting of a main run queue and a run
queue for each subsystem. A run queue is simply a priority-ordered list of tasks that
are executed. When a VI is executed, the LabVIEW execution engine determines
which elements in the block diagram have the needed inputs to be executed. The
engine then orders inputs by priority into the run queues. The run queue is not strictly
a First In First Out (FIFO) stack. VIs have priorities associated with them (the default
priority is “normal”). After execution of each element, the run queue is updated to
reflect elements (subVIs or built-in LabVIEW functions, such as addition, subtrac-
tion, or string concatenation) that still need to be executed. It is possible for VIs to
take precedence over other VIs because they have higher priority. Wildly changing
VI priorities will likely result in performance issues with LabVIEW. One key point
to understand is that VI priorities are in no way associated with thread priorities.
The thread that pulls it off the run queue will execute a VI with high priority. If the
thread has background priority, a slow thread will execute the high-importance VI.
The execution engine will not take a task away from one thread and reassign it to
a thread with a more suitable thread priority.

©2001 CRC Press LLC

To help illustrate the use of run queues, consider the In Box on your desk. With
LabVIEW 4.1 and earlier, there was a single in box, and each time a VI was able
to run it would be put into the in box and you would be able to grab the task and
perform it. LabVIEW 5.0 and later has multiple run queues which equates to one
in box for each of your hands. As tasks become available they get put into an
appropriate in box and the hand that corresponds to that in box can grab the task.
Another comparison for Windows programmers is the message pump. Windows 3.1
had a single message loop. Each time an event occurred, such as a mouse click, the
event would be put into the system-wide message loop. All applications shared the
same message loop, and numerous problems were caused because some applications
would not return from the message loop and would lock up windows. Windows 95
and later has message loops for each application. Every application can continue to
run regardless of what other applications are doing. We have the same benefit in
LabVIEW now. VIs assigned to different subsystems can now operate with their
own threads and their own run queues.

A thread will go to the run queue associated with its subsystem and pull the top
task off the list. It will then execute this task. Other threads in the subsystem will
go to the run queue and take tasks. Again, this is not a FIFO stack — the highest-
priority VI will be handed to a thread. This leaves a lot of room for both performance
tweaking and performance degradation. Priorities other than “normal” should be the
exception, and not status quo.

When a VI is configured to run only in a particular subsystem, it will be put
onto the run queue of that particular subsystem, and then the VI must wait for a
thread belonging to this system to be assigned to execute it. This can cause perfor-
mance degradation when thread priorities are different between subsystems. Section
9.8.2 discusses thread configurations in multisubsystem LabVIEW applications.

Figure 9.6 shows the run queues that are developed when a LabVIEW code
diagram is run. When VIs are scheduled to run in the “same as caller subsystem,”
a thread belonging to the subsystem will end up executing the VI. A subtle point is
that if there are multiple threads belonging to the subsystem, there are no guarantees
which thread will execute which VI.

FIGURE 9.6

User Interface I/O Other 1 Other 2DAQ

©2001 CRC Press LLC

9.7.3 DLL

S

IN

 M

ULTITHREADED

 L

AB

VIEW

Special care must be taken when working with DLLs in multithreaded LabVIEW.
DLLs can potentially be called from several different threads in LabVIEW. If the
DLL has not been written to handle access by multiple threads, it will likely cause
problems during execution. Recall thread safe in Section 9.1.10. If mutexes, sema-
phores, or critical sections are not explicitly designed into the DLL, then it is not
guaranteed to be thread safe.

Threading problems are not always obvious. Several million calls may need to
be made to the DLL before a problem surfaces. This makes troubleshooting thread
problems extremely difficult. Bizarre program operation can be extremely difficult
to troubleshoot, especially when the code can execute for days at a time without
failure. When working with DLLs and crashes occur only occasionally, suspect a
thread problem.

When writing C/C++ code to be called by LabVIEW, you need know if it will
possibly be called by multiple threads of execution. If so, then you need to include
appropriate protection for the code. It is fairly simple to provide complete coverage
for small functions. The Include file that is needed in Visual C++ 5.0 and 6.0 is
process.h. This file contains the definitions for Critical Sections, Mutexes, and Sema-
phores. This example is fairly simple and will use Critical Sections for data protection.
A Critical Section is used to prevent multiple threads from running a defined block
of code. Internal data items are protected because their access is within these defined
blocks of code. Critical Sections are the easiest thread protection mechanism available
to the Windows programmer, and their use should be considered first.

#

include

 <process.h>
//Sample code fragment for CriticalSections to be used by a //LabVIEW function.
CRITICAL_SECTION Protect_Foo
Void Initialize_Protection(void)
{

INITIALIZE_CRITICAL_SECTION(&Protect_Foo);
}
Void Destroy_Protection(void)
{

DELETE_CRITICAL_SECTION(&Protect_Foo);
}
int foo (int test)
{

int special_Value;
ENTER_CRITICAL_SECTION(&Protect_Foo); //Block other

threads from accessing
Special_Value = Use_Values_That_Need_Protection(void);
LEAVE_CRITICAL_SECTION(&Protect_Foo);//Let other threads

access Special Value, I’m finished.
Retun special_Value;

}

©2001 CRC Press LLC

The fragment above does not do a lot of useful work as far as most programmers
are concerned, but it does illustrate how easy thread protection can be added. When
working with Critical Sections, they must be initialized prior to use. The
INITIALIZE_CRITICAL_SECTION must be called. The argument to this function
is a reference to the Critical Section being initialized. Compile errors will result if
the Critical Section itself is passed. The Critical Section must also be destroyed
when it will no longer be used. Initialization and destruction should be done at the
beginning and end of the application, not during normal execution.

Using a Critical Section requires that you call the Enter and Leave functions.
The functions are going to make the assumption that the Critical Section that is
being passed was previously initialized. It is important to know that once a thread
has entered a Critical Section, no other threads can access this block until the first
thread calls the Leave function.

If the functions being protected include time-consuming tasks, then perhaps the
location of the Critical Section boundaries should be moved to areas that access
things like data members. Local variables do not require thread protection. Local
variables exist on the call stack of the thread and each thread has a private call stack,
which makes local variables completely invisible to other threads.

C++ programmers must also remember that LabVIEW uses C naming conven-
tions. The keyword

extern C

 must be used when object methods are being exposed
to LabVIEW. LabVIEW does not guarantee that C++ DLLs will work with Lab-
VIEW. In the event you encounter severe problems getting C++ DLLs to operate
with LabVIEW, you may have hit a problem that cannot be resolved.

A few additional notes on DLLs being called from LabVIEW before we complete
this section. Windows 3.1 DLLs must be 16-bit DLLs. Considering that Windows
3.1 is a 16-bit programming interface, this rule seems to make sense. LabVIEW for
Windows NT, 95, and 98 can only call DLLs compiled as 32-bit applications. If 16-
bit DLLs need to be called, then you must write a “wrapper DLL” that is compiled
as a 32-bit DLL, which then calls your legacy 16-bit DLL. This involves a process
called “thunking.” There is a performance hit that occurs when calling 16-bit DLLs.
High-performance applications may need old DLLs to be rebuilt.

LabVIEW 5.0 uses color-coding to identify DLLs that are executed by the user
interface thread from DLLs that are listed as “reentrant.” If a DLL call is shown in
an orange icon, this identifies a DLL call that will be made from the User Interface
subsystem. If the standard off-yellow color is shown, it will be considered reentrant
by LabVIEW and will allow multiple threads to call the DLL. Library call functions
default to User Interface subsystem calls. If a DLL was written to be thread safe,
then changing this option to reentrant will help improve performance. When a User
Interface Only DLL call is made, execution of the DLL will wait until the user
interface thread is available to execute the call. If the DLL has time-consuming
operations to perform, the user interface’s performance will degrade.

When working with DLLs of questionable thread safety, always call them from
the user interface. When it is known that threading protection has been built into a
DLL, make the library call reentrant. This will allow multiple threads to call the
DLL and not cause performance limitations. If you are stuck with a DLL that is not
known to be thread safe, be careful when calling the DLL from a loop. The number

©2001 CRC Press LLC

of thread context switches will be increased, and performance degradation may set
in. We did get a tip from Steve Rogers, one of the LabVIEW development team
members, on how to minimize the number of context switches for DLLs. This tip
works when you are repeatedly calling a DLL from a loop that is not assigned to
the user subsystem. Wrap the DLL call in a VI that is assigned to the user subsystem.
The thread context switches have been moved to the VI call and not the DLL call.
Effectively, this means that the entire loop will execute in the user subsystem, and
the number of needed context switches will drop dramatically.

Execution of a DLL still blocks LabVIEW’s multitasking. The thread that begins
executing the DLL will not perform other operations until the DLL call has com-
pleted. Unlike LabVIEW 4.0 and earlier, other threads in the subsystem will continue
to perform tasks.

9.7.4 C

USTOMIZING

THE

 T

HREAD

 C

ONFIGURATION

The number of threads in each LabVIEW execution subsystem is specified in the
labview.ini file. This information should not be routinely altered for development
workstations. The default configuration will work just fine for most applications.
The default configuration for a multithreaded platform is one thread of execution
per subsystem of normal priority.

In situations where a LabVIEW application is running on a dedicated machine,
tweaking the thread configuration can be considered. National Instruments provides
a useful VI for configuring the ini file used by LabVIEW: threadconf.vi. The Thread
Configuration VI should be used to alter LabVIEW’s thread configuration. Vendors
are expected to supply tools to easily modify application configurations. The most
difficult aspect of using this VI is locating it! The VI can be found in vi.lib\utili-
ties\sysinfo.llb. Figure 9.7 shows the front panel of this VI.

To change the configuration of the thread engine, select

Configure

. A second
dialog box will appear, as shown in Figure 9.8. Each execution subsystem may be
configured for up to eight threads per priority. Some readers may feel compelled to
review Section 9.5. A plethora of options are available, and the advice is not to alter
most of them. In the next section, information on estimating the maximum number
of useful threads is presented.

A few words about thread priorities — time-critical priorities are, in general,
hazardous. Consider Windows NT and time-critical threads. Mouse clicks and key-
pad activity is reported to the operating system; the operating system then sends a
message to the application that should receive the user input. In the event that time-
critical threads are running, they may take priority over operating system threads.
The commands you enter to Quit may never arrive, and the machine will need to
be power-cycled.

Background priorities may be useful, but, in general, keeping all threads at
normal priority is best. If all threads are running on normal priority, none of them
will suffer from starvation or priority inversion. The easiest way to avoid complex
threading issues is to avoid creating them. This is the biggest caveat in this section;
review Section 9.5 for descriptions on priority inversion and starvation. If more
threads are available than can be used, LabVIEW’s execution engine will allow the

©2001 CRC Press LLC

thread to continue checking the queue for VIs that belong to its subsystem. This
will require a minimal amount of CPU time and avoids thread problems.

LabVIEW Versions 5.0 and 5.1 operate somewhat differently when it comes to
application startup. LabVIEW 5.0 will create all of the threads specified in the
LabVIEW ini file at startup. LabVIEW 5.1 will start only the threads specified for
the user subsystem. The reason for the difference is system resource usage. We do
not want to create more threads than necessary because that would cause extra

FIGURE 9.7

FIGURE 9.8

©2001 CRC Press LLC

overhead for the operating system to track. We also do not want to create threads
during normal application execution. Thread creation takes a quantifiable amount
of time, on the order of several milliseconds. This may seem like a minor amount
of time, but the thread that is requesting creation of the second thread is halted
during this time. Applications requiring high performance would certainly be dis-
appointed with this type of behavior. LabVIEW 5.1 will create threads for other
subsystems when it loads a VI that is assigned to a subsystem into memory. The
LabVIEW INI file specifies the number of threads created for any particular sub-
system. All threads specified will be created, regardless if they will all be used. This
is really not a problem for a vast majority of programmers. The act of loading a VI
into memory takes significantly longer than starting new threads of execution. The
amount of time involved is therefore negligible to start up new threads. Generally,
starting new threads during execution is undesirable for high-performance applica-
tions, but since we are also performing file access, creating threads at this time is
not an issue.

Windows users may see an additional thread created when dialog boxes are used.
The dialog boxes for Printers, Save File, Save File As, and Color Dialog are actually
the same dialog box. This dialog box is called the common dialog and is responsible
for creating that extra thread. This is normal operation for Windows 95, 98, and NT.
The common dialog thread is created by the dialog box, and is also destroyed by
the dialog box. High-performance applications should refrain from displaying dialog
boxes during execution except when absolutely necessary.

When working with the Application Builder, the thread information will be
stored in a file that is located with the executable generated by LabVIEW. The same
rules apply to application builder programs as mentioned above. Normal priority
threads are all that a programmer should ever need; do not create more threads than
an application can use. Recall that the existence of threads only translates to per-
formance gains when multiple processors are available on the machine.

Another word of caution when configuring the threads LabVIEW uses. Since
LabVIEW is an application like any other running on the system, its threads are
scheduled like any other, including many operating system components. When
LabVIEW threads are all high priority, they just might steal too much time from the
operating system. This could cause system-wide inefficiency for the operating sys-
tem, and the performance of the entire computer will become degraded or possibly
unstable. The fundamental lesson when working with thread priorities is that your
application is not the only one running on the system, even if it is the only application
you started.

9.8 THREAD COUNT ESTIMATION FOR LABVIEW

When discussing thread count, this section will refer exclusively to the maximum
number of useful threads, which is the number of threads that will be of benefit to
the execution systems without any threads being left idle. The minimum number of
useful threads to the LabVIEW execution engine is always one. If one thread of
execution is specified, then LabVIEW 5.0 will behave very much like LabVIEW 4.0.

©2001 CRC Press LLC

Consider the VI code diagram presented in Figure 9.9. The number of useful
threads for this VI is one. This VI obviously does not consider events such as errors,
fewer than 100 bytes read, or the spreadsheet String-to-Array function. In spite of
the fact that it is not well-thought-out, it is an excellent dataflow example. Everything
will happen in the VI in a well-established order: the TCP Read function will execute,
and then the While loop will execute. There is only one path of execution, and multiple
threads will do nothing to optimize the execution of this VI. The fact that the While
loop will execute multiple times does not suggest multiple threads can help. It does
not matter which thread in which subsystem is currently processing this VI, execution
will still happen in a defined order. Thread context switches will do nothing to help
here. The lesson learned in this simple example: if order of execution is maintained,
multithreading is not going to improve application performance.

Alert readers would have noticed the location of the String Length function. In
the While loop it is possible for two threads to perform work, but one will only need
to return a string length, which is a very simple function. This is not a significant
amount of work for a thread to do. Also, it would be far more efficient to locate the
String Length function outside the While loop and feed the result into the loop.
When optimizing code for threading, look for all performance enhancements, not
just the ones that impact threading potential. Having an additional thread for this
example will not improve performance as much as moving the string length outside
the While loop.

The VI code diagram presented in Figure 9.10 presents a different story. The
multiple loops shown provide different paths of execution to follow. Threads can
execute each loop and help maintain the illusion that all loops seem to execute at
the same time. If multiple CPUs are involved, application speed will improve. The
number of useful threads for this example is three. If the internal operations of the
loops are time-intensive operations, then a fourth thread may be desirable. This
fourth thread will be added to help support the front panel. If there are graphs or
other intensive operations, consider an additional thread for supporting the display.
Recall that additional threads will take some time away from other threads.

Now consider the VI code diagram shown in Figure 9.11. There appears to be
a single path for this VI to take, but considering that several of the VIs are not
waiting on inputs, they can be scheduled to run right away. There are four paths of
execution that merge into one at the end of the code diagram. Threads can help here,
and the maximum number of useful threads will be equal to the number of paths of
execution. In this case, the maximum number is four. If several of these subVIs are

FIGURE 9.9

©2001 CRC Press LLC

expected to execute quickly, then they do not require a thread to exist on their behalf,
and you should consider reducing the number of threads. Recall that each thread is
going to be scheduled and requires some time on the CPU. The lower the thread
count, the more execution time per thread.

The code diagram presented in Figure 9.12 is basically a mess. Multiple threads
could potentially be beneficial here, but if the operations splattered about the display
were modularly grouped into subVIs, then the benefit seen in Figure 9.11 would
still exist. You can consider prioritizing the subVIs as subroutines; the benefit of
reduced overhead would make the VI run nearly as fast, and a lot of readability will
be gained. Section 9.9 describes criteria for using subroutine VIs in multithreaded
LabVIEW.

We have gone through a few simple examples concerning only a single VI. When
a large-scale application is going in development, the maximum number of useful
threads will probably not skyrocket, but the determination can be much more diffi-
cult. An application consisting of 250 subVIs will be time-intensive for this type of
analysis. The programmer’s intuition will come into play for application wide anal-
ysis. Also, never forget that at some point, adding threads is not going to make an

FIGURE 9.10

FIGURE 9.11

©2001 CRC Press LLC

improvement. Unless you are working with a quad-CPU system, having 200 threads
of execution is not going to buy much in terms of performance!

9.8.1 S

AME

AS

 C

ALLER

OR

 S

INGLE

 S

UBSYSTEM APPLICATIONS

When attempting to determine the maximum number of useful threads for an appli-
cation, the maximum number of execution paths for the application must be deter-
mined. This can be difficult to accomplish. For example, look at the hierarchy
window of a medium to large-scale application. Each branch of a hierarchy window
does not equate to one branch of execution. A programmer who is familiar with the
functionality of each subVI will have an understanding of the tasks performed in
the subVI. Look at subVIs that have descriptions that suggest parallel operations.
This is a difficult piece of advice to generalize, but the programmer should be familiar
with their application. Order of execution may be forced in a number of branches,
and this will limit the number of useful threads. Having more threads than necessary
will cause minor performance hits. The number of thread context switches that will
be incurred when threads are given time will be increased. If the thread configuration
includes threads of differing priority, then lower-priority threads may receive little
execution time and not be of much help to the application.

The simplest case to analyze is when all threads are running in a single LabVIEW
subsystem or all VIs are assigned to a “same as caller” subsystem. Then there are no
needed considerations to be made regarding which subsystems require threads. On a
system dedicated to running an application of this type, consider modifying the thread
configuration so that only one subsystem has threads — the User subsystem.

The following VI code diagram simply demonstrates a main level VI and its
three independent loops. Obviously, three threads may support this VI. If the three
loops require heavy numerical processing, then a fourth thread may be desired if a
lot of display updates are also desired. Since the three subVIs are going to keep
busy running numerical calculations, a fourth thread could be brought in for GUI
updates. Understand that LabVIEW is not going to allocate a thread to each loop
and the fourth to the VI, but there will always be four threads looking into the run
queue for a new task. If threads take a lot of time to complete one iteration of a

FIGURE 9.12

©2001 CRC Press LLC

loop, then three threads may periodically become bogged down in a loop. The fourth
thread exists to help out when circumstances like this arise. When no intensive GUI
updates are required, the fourth thread is not desirable. Additional thread context
switches can be avoided to improve performance.

Reconsidering the above example, if one of the loops performs a very simple
operation, then reducing the number of threads to two may also be beneficial. Having
fewer threads means less work for the operating system to do. This is a judgment
call the programmer is going to have to consider. The fundamental trade-off is going
to be parallel operation versus operating system overhead. The general guideline is
to have fewer threads and minimize overhead. When looking to estimate the number
of threads, look for operations that are time-consuming. Examples of time-consum-
ing operations are large array manipulation, DLL calls, and slow data communica-
tions, such as serial ports.

9.8.2 MULTIPLE SUBSYSTEM APPLICATIONS

Determining how many threads can support a LabVIEW application with VIs run-
ning in dedicated subsystems requires additional work. The number of useful threads
per subsystem must now be considered. The solution to this problem is to analyze
the number of paths of execution per subsystem. Considerations must be made that
threads may become blocked while waiting for VIs to be assigned to other sub-
systems. Again, an additional thread may be considered to help out with display
updates. Do not forget that an additional thread will take some time away from other
threads in LabVIEW. High-performance applications may still need to refrain from
displaying graphs during run-time.

It is still possible to write many multithreading-optimized applications without
resorting to using multiple subsystems. LabVIEW’s configuration allows for a max-
imum of eight threads per subsystem. When you conclude that the maximum number
of useful threads is well beyond eight, then forcing some VIs to execute in different
subsystems should be considered. If fewer than nine threads can handle a VI, do
not force multiple subsystem execution. Performance limitations could arise with
the extra contact switching.

A special case of the multiple subsystem application is a distributed LabVIEW
application. Optimization of this application should be handled in two distinct parts.
Since LabVIEW is executing independently on two different machines, you have
two independent applications to optimize. Each machine running LabVIEW has two
separate processes and each will have their own versions of subsystems. When the
threading model is being customized, each machine should have its own threading
configuration. One machine may be used solely for a user-interface, and the other
machine may be executing test or control code. Consider using the standard config-
uration for the user interface machine. It is unlikely that sophisticated analysis of
the user interface is required. Consider investing engineering time in the more
important task of the control code. In situations where each instance of LabVIEW
is performing some hard-core, mission-critical control code, both instances of Lab-
VIEW may have their threading configurations customized.

©2001 CRC Press LLC

Your group should deploy a coding standard to indicate information regarding
the subsystem a VI is assigned to. When trying to identify problems in an application,
the subsystem a VI is assigned to is not obvious. A programmer must actively look
for information regarding that. A note above or below the VI should clearly indicate
that the VI has been forced into a subsystem. An alternative to using notes is to
color-code the icon, or portion of it, to clearly indicate that the VI has been forced
into a nonstandard mode of execution. This will simplify debugging and maintenance.
Multiple subsystem applications will almost always be very large-scale applications;
these types of techniques will simplify maintenance of such large applications.

9.8.3 OPTIMIZING VIS FOR THREADING

When you are writing code for which you would like to have the maximum benefit
of the threading engine, avoid forcing the order of execution whenever possible.
When a VI is coded for tasks to happen in a single-file fashion, the tasks assigned
to the run queue must also be assigned in a single-file fashion. This limits the ability
of the threads to handle tasks because they will always be waiting for a task to
become available. If possible, avoid the use of sequences; they are going to force
an order of execution. Obviously, the sequence diagram was put in the code for a
reason. Let the error clusters force an order of execution for things like read and
write operations. Operations that are handled, such as loading strings into a VI and
determining the value of some inputs, can be done in a very parallel fashion. This
will maximize the ability of the threads to handle their jobs. All simple operations
will have their data available and will be scheduled to run.

As an example of maximizing dataflow, consider the code diagram in Figures
9.13, 9.14, and 9.15. These three diagrams describe three sequences for a simple
data acquisition program. The items in the first sequence must be handled and
completed before the second can be executed. The second sequence is fairly simple,
and the waveform is shipped out. The third sequence reads in a signal and filters it.
The DAQ experts may criticize the appearance of this VI, but it serves as an example
of how sequences limit the thread’s ability to operate.

In the first sequence there are two paths of execution to follow. The first is the
generation of the sine waveform to be used. The second path to follow is the Analog
Output and Analog Input VIs. Please note that the error cluster forces an order of
execution; the Output VI must be executed, then the Input VI. There is some initial
loading of values on the wire table that needs to be done. The threads will also handle this.

The second sequence diagram simply sends out the waveform. The inputs here
cannot be processed and moved on the wire table until this sequence starts executing.
Had this VI been in the first sequence, the constants could have already been shifted
in LabVIEW’s wire table.

The third sequence reads an input waveform and runs it through a Butterworth
filter. Many DAQ experts will argue about the timing delays and choice of a But-
terworth filter, but we are putting emphasis on the threading issues. The constants
in this sequence also may not be loaded into new sections of the wire diagram until
this sequence begins execution.

©2001 CRC Press LLC

 Let us quickly rethink our position on the number of paths that could be followed
in the first sequence. Two was the decided number, one for the signal generation,
and one for the Configuration VIs. Recall the Setup VIs have multiple subVIs with
the possibility of dozens of internal paths. We are unable to maximize the number
of executable paths because the order of execution is strongly forced.

The “thread friendly” version is shown in Figure 9.16. Wrapping the Output
Generation VI in a sequence was all that was needed to force the Configuration,
Generation, and Read functions. The one-step sequence cannot execute until the
error cluster output becomes available.

The Configuration VIs are set in parallel with a little VI inserted to add any
errors seen in the clusters. This is a handy little VI that is included on the companion
CD to this book. The multiple execution paths internal to these VIs are now available
to the threading engine.

FIGURE 9.13

FIGURE 9.14

©2001 CRC Press LLC

All constants on the block diagram can be loaded into appropriate slots on the
wire table without waiting for any sequences to start. Any of these functions can be
encapsulated into subVIs to make readability easier. VIs that easily fit on a 17-inch
monitor should not require 46-inch flat-panel displays for viewing after modification.

The lesson of this example is fairly simple, do not force order of execution in
multithreaded LabVIEW. If you want to take full advantages of the threading engine,
you need to leave the engine a little room to have execution paths. Obviously, some
order must exist in a VI, but leave as many execution paths as possible.

This next part of optimization has less to do with threads than the above example,
but will stress good programming practice. Polling loops should be minimized or
eliminated whenever possible. Polling loops involve some kind of While loop con-
tinuously checking for an event to happen. Every time this loop is executed, CPU
cycles are burned while looking for an event. In LabVIEW 4.1 and earlier versions,

FIGURE 9.15

FIGURE 9.16

X

AI
HVLT PT

+

channel (0)
abc AO

HVLT PT
+

+

+

I16

I32

DBL

[abc]

frequency

Amplitude

DBL

i

DBL

N

SIN

device

channels

error in (no error)

Points

Phase Offset

AI

AO

CONFIG

CONFIG

Add
Error

DBL

device

sampling freq:fs

high cutoff freq:fh

low cutoff freq

order

number of samples

filter type

I32

DBL

DBL

+1

+1

XX

I32

+

©2001 CRC Press LLC

you may have noticed that the CPU usage of your machine ran up to 100%. That
is because the polling loop was “tight.” Tight loops do very little in a cycle. This
allows the loop to complete its execution quickly and take more time. Because there
is always something in LabVIEW’s run queue to do (run the loop again), LabVIEW
appears to be a very busy application to the system. LabVIEW will get all kinds of
time from the scheduling algorithms, and the performance of the rest of the system
may suffer. In LabVIEW 5.0 the threads that are assigned tasks for the loop will be
just as busy, and therefore make LabVIEW again look like a very busy application.
Once more, LabVIEW is going to get all kinds of time from the operating system
which will degrade performance of the system.

Figure 9.17 shows a simple loop that increments a counter. This is a short
example of a tight loop. There is very little activity going on inside the loop, and
millions of iterations happen in very little time. If the value of the loop iterator is
wired to a terminal, the execution speed will slow down because of the volume of
graphics updates that need to happen. The System Monitor (Windows 95), Task
Manager (Windows NT), or an application such as Top or Monitor (UNIX) will
show a significant amount of CPU usage. The problem is there isn’t much useful
happening, but the amount of CPU usage will top out the processor. Other applica-
tions will still get time to run on the CPU, but they will not receive as much time
because the tight loop will appear to always need time to run.

Tight loops and polling loops cannot always be avoided. When an application
is looking for an external event, polling may be the only way to go. When this is
the case, use a Wait Milliseconds command if possible. It is unlikely that every
polling loop needs to check a value at CPU speeds. If this is the case, the selection
of LabVIEW may only be appropriate on Concurrent PowerMAX systems, which
are real-time operating systems. If the event does not absolutely need to be detected,
make the loop sleep for a millisecond. This will drastically reduce the CPU utiliza-
tion. The thread executing the wait will effectively be useless to LabVIEW while
sleeping, but LabVIEW’s other threads do not need to fight for CPU time while the
thread is executing the tight loop.

When waiting on events that will be generated from within LabVIEW, using
polling loops is an inefficient practice. Occurrence programming should be used for
this. This will prevent any of LabVIEW’s threads from sitting in polling loops. The
code that is waiting on an occurrence will not execute until the occurrence is
triggered. No CPU cycles are used on nonexecuting code.

FIGURE 9.17

©2001 CRC Press LLC

9.8.4 USING VI PRIORITIES

The priority at which the VI executes may also be considered when configuring VIs.
The VI execution priority is not directly related to the threads that execute the VI,
or the priority of the threads that execute the VI. Figure 9.18 shows the configuration
of a VI. The priority levels assigned to a VI are used when LabVIEW schedules
tasks in the run queue. The priority of the VI has nothing to do with the priority of
the thread that is executing it. When a thread with high priority is assigned a VI
with background priority, the thread will not reduce its priority to accommodate the
VI. The background importance VI will be executed with blazing speed. The reverse
is also true.

When working with VI priorities, recall multithreading problem definitions;
several of them can be caused in LabVIEW’s scheduling routines. Starvation is the
easiest problem to cause. When a VI is listed as background priority, VIs with higher
priorities will be put into the run queue ahead of the low-priority VI. This will cause
the execution of the low-priority VI to be delayed. This could impact the performance
of the code diagram. What will end up happening is that all other eligible tasks will
be run until the low-priority VI is the only available task to be executed. This would
form a bottleneck in the code diagram, potentially degrading performance. The use
of VI priorities should not be used to force the order of execution. Techniques using
error clusters should be used instead. LabVIEW’s engine makes no promises regard-
ing execution time, much like a multithreaded operating system’s scheduling algo-
rithm. In the event that parallel executing loops are involved, it is possible for the
background priority VI to never be executed.

Priority inversion can also be caused by VI priorities. Recall that the priority of
a VI does not impact or change the priority of the thread(s) executing it. If a VI with
high priority depends on the outputs of a VI with lower priority, execution of the
high-priority VI will be delayed until the low-priority VI has completed execution.
This potential for performance limitations should be avoided.

FIGURE 9.18

©2001 CRC Press LLC

Race conditions can also be induced with VI priorities. The threading model
used does not induce these race conditions. These would be race conditions caused
by the code diagram itself.

The best logic to use to prevent VI priority problems is similar to preventing
problems with the threading engine. A priority other than “normal” should be an
exception, not the norm. If a convincing case cannot be put into the Description of
Logic of the VI, then its execution priority should be normal. In general, we avoid
changing VI priorities. Forcing the order of execution is a better mechanism to
accomplish control of a code diagram. In addition, it is much easier for a programmer
to look at a VI and understand that the order of execution is forced. VI priority is
somewhat hidden in the VI’s configuration; a programmer must actively search for
this information. Assuming that programmers will examine your code and search
the configuration is unwise; most people would not suspect problems with VI priority.

As a coding standard, when a VI has an altered priority, a note should be located
above or below to clearly indicate to others who may use the VI that there is
something different about it. Another flag that may be used is to color-code the icon
or portion of the icon indicating that its priority is something other than normal.

If you absolutely insist on keeping a VI as a priority other than normal, then
use the following tip from Steve Rogers (LabVIEW developer extraordinaire): VIs
of high priority should never be executing continuously. High-priority VIs should
be kept in a suspended mode, waiting on something such as an occurence, before
they are allowed to execute. Once the VI completes executing, it should be suspended
again and wait for the next occurence to happen. This allows for the high-priority
VI to execute as the most important VI when it has valid data to process, and to not
execute at all when it is not needed. This will prevent programmers from creating
priority inversion or starvation issues with LabVIEW’s run queue management.

9.9 SUBROUTINES IN LABVIEW

As hinted to throughout the chapter, subroutine VIs have strong advantages when
using multithreading. First, we need to review the rules on subroutine priority VIs:

1. Subroutine VIs may not have a user interface.
2. Subroutine VIs may only call other subroutine-priority VIs.
3. Subroutines may not call asynchronous nodes (dialog boxes, for example;

nodes that do not have a guaranteed return time).

It is important to understand that subroutine classification is not a true priority.
“Subroutine” denotes that this VI is no longer a standard VI and that its execution
and compilation are radically different from other VIs. Subroutine priority Vis do
not have a priority associated with them, and they are never placed into the run
queues of LabVIEW. Once all inputs for the subroutine are available, the subroutine
will execute immediately, bypassing all run queues. The subsystem associated with
the subroutine will stop processing tasks until the subroutine has completed execu-
tion. This might sound like a bad idea, but it is not. Having a routine complete
execution ASAP is going to get its operation over as quickly as possible and allow

©2001 CRC Press LLC

LabVIEW to do other things fairly quickly. Subroutines are a bad idea when very
time-intensive tasks need to be done because you will block the run queue for a
subsystem for an extended amount of time.

Subroutines execute faster than standard VIs because they use less overhead to
represent instructions. You may not have a user interface on subroutine priority VIs
because, technically, a subroutine does not have a user interface. This is part of the
reduced overhead that subroutines have.

Subroutine VIs may only call other subroutines because they are executed in an
atomic fashion. Once execution of a subroutine VI starts, single-threaded LabVIEW
execution engines will not do anything else until this subroutine has finished. Mul-
titasking becomes blocked in single-threaded LabVIEW environments. Multi-
threaded LabVIEW environments will continue multitasking when one thread enters
a subroutine. The thread assigned to work on the subroutine may do nothing else
until the subroutine is executed. Other threads in the system are free to pull jobs off
the run queue. In the next section, we will discuss the data types that LabVIEW
supports; this is relevant material when subroutine VIs are considered.

9.9.1 LABVIEW DATA TYPES

Every LabVIEW programmer is familiar with the basic data types LabVIEW sup-
ports. This section introduces the low-level details on variables and data storage.
Table 9.1 shows the LabVIEW data types. Of concern for application performance
is how fast LabVIEW can process the various data types. Most numerical processing
can always be assumed to be relatively fast.

As stated in Table 9.1, Booleans are simply 16-bit integers in LabVIEW 4.0 and
earlier, and 8-bit integers in LabVIEW 5.0 and later. Their storage and creation is
fairly quick; arrays of Booleans can be used with minimal memory requirements.
It must be noted that current computers are minimum 32-bit machines. Four bytes
is the minimum amount of memory that can be addressed at a time. One- and two-
byte storage is still addressed as four-byte blocks, and the upper blocks are ignored.

Integer sizes obviously depend on byte, word, or long word selections. Integer
arithmetic is the fastest numerical processing possible in modern hardware. We will
show in the next section that it is advantageous to perform integer processing in one
thread of execution.

Floating-point numbers also support three precision formats. Single- and double-
precision numbers are represented with 32- or 64-bit numbers internal to LabVIEW.
Extended precision floating-point numbers have sizes dependent on the platform
you are using. Execution speed will vary with the types of operations performed.
Extended-precision numbers are slower than double-precision, which are slower than
single-precision numbers. Floating-point calculations are always slower than integer
arithmetic. The selection of precision for floating point numbers needs to be deter-
mined based on the numerical accuracy required and the execution speed needed.
Each floating point stores sections of a number in various parts of the memory
allocated. For example, one bit is used to store the sign of the number, several bytes
will be used to store the mantissa, one byte will store the sign of the exponent, and
the rest will store the integer exponent of the number. The format for single- and

©2001 CRC Press LLC

double-precision numbers is determined by National Instruments, and they are
represented internally in LabVIEW. Extended-precision number formats depend on
the hardware supporting your system.

Complex numbers use a pair of floating-point numbers for representation. Com-
plex numbers use the same precision as floating-point numbers, but they are slower
for processing. Each complex multiplication involves four floating-point calcula-
tions. Additions and subtractions involve two floating-point calculations. When
necessary, complex calculations need to be done, but their execution speed must be
considered in performance-critical applications.

String processing can be very slow. LabVIEW uses four bytes to indicate the
length of the string internally, and the contents of the string following the length
preamble. This is an advantage LabVIEW programmers have over their C counter-
parts. C style strings must end with an ASCII 0 (NULL); these NULL-terminated
strings assume that there are no NULL values occurring in the middle of the string.
LabVIEW strings do not have this requirement. This is advantageous when working
with devices such as serial instruments.

Any time you perform an operation on a string, a duplication of the string will
be performed. In terms of C programming, this will involve a “memcopy.” Memory
copies involve requesting an allocation of memory from the memory manager and
then duplicating the memory used. This is a performance hit and, although it cannot
be entirely avoided, performance hits can be minimized. Whenever possible, major
string manipulation should be avoided when application performance is required.
Examine Figure 9.19 for an illustration for where memory copies are made. Memory

FIGURE 9.19

FIGURE 9.20

©2001 CRC Press LLC

copies will be made for other variable types, but sizes for integers are 4 bytes,
floating points are a maximum of 8 bytes, and booleans require a minimum of 32
bits for storage. The shortest string representation in LabVIEW is an empty string,
which requires five bytes, the four-byte preamble, and one blank byte. Most strings
contain information, and longer strings require more time to copy internally.

Array processing can be significantly faster than string processing, but can also
be hazardous to application performance. When using arrays in performance-critical
applications, predimension the array and then insert values into it. When predimen-
sioning arrays, an initial memory allocation will be performed. This prevents Lab-
VIEW from needing to perform additional allocations, which will cause performance
degradation. Figure 9.20 illustrates two array-handling routines. Array copying can
be as CPU-intensive as string manipulation. Array variables have four bytes for
storage of the array dimensions, and a number of bytes equivalent to the size of the
dimensions times the storage size of the type.

9.9.2 WHEN TO USE SUBROUTINES

Now that we know the benefits and penalties of using threads and are familiar with
implications of data type choices, it is time to determine when subroutines should
be used. Knowing that numerical operations are fast and that string and dynamic
arrays are slow, the obvious conclusion is that numerical-intensive VIs are prime
candidates for subroutine priority.

TABLE 9.1
LabVIEW Data Types

Data Type Size
Processing

Speed Notes
Boolean 16 bits (LabVIEW 4) 8

bits (LabVIEW 5), high
bit determines true/false

Fast High bit determines true
or false.

Integers 8, 16, or 32 bits Fast Signed and Unsigned
Floating Point Depends on type and

platform
Fast Extended precision size is

machine-dependent;
single and double are 32-
and 64-bit numbers

Complex Depends on type and
platform

Medium? Slower than floating
points.

String 4 bytes + length of string Slow First 4 bytes identify
length of string

Array Variable on type Slow Faster than strings, but can
be slow, especially when
the array is dimensioned
often.

Cluster Depends on contents Slow Processing speed depends
heavily on contents of
cluster.

©2001 CRC Press LLC

When handling strings or variable-dimension arrays, do not use subroutines.
When LabVIEW tries to copy strings, the thread performing the copying will incur
overhead while the memory allocation is being performed. If this thread is running
in a subroutine, other threads may become blocked waiting for one thread to cycle
through the subroutine. It is preferable in these situations to have multiple threads
working in a VI to minimize blocking points.

Numerical processing is fairly fast; it is possible for threads to completely
execute most subroutines in a single timeslice. The following example demonstrates
calculation speeds to help illustrate the volume of computations a modern CPU can
handle.

How many integer additions can a thread execute in a 10-ms timeslice? Assume
that the CPU runs at 400 MHz. Integer operations require 3 clock cycles, and access
to the integers require an additional 50 clock cycles. The 50 extra clock cycles are
needed for access to extended memory.

Solution: A 400-MHz CPU will execute a clock cycle in 1/400 000 000 seconds.
This is 0.0000000025 seconds, and 53 clock cycles require 53 * 0.0000000025 =
0.0000001375. If one timeslice is 10 ms, then 10 ms/1.375 ns = 75,471 arithmetic
operations!

This example does not correlate well with reality, but it demonstrates the mag-
nitude of numbers that can be crunched during a single timeslice. We are ignoring
the threading model; what if the thread’s quantum expired and the thread was booted
off the CPU? The 50-clock cycle access to memory was an assumption, but should
be fairly close to the amount of activity needed to access extended memory. Floating-
point calculations require a significantly higher number of CPU cycles to calculate.
Assuming the calculation was an order of magnitude slower, that would still result
in over 7, 000 floating-point operations in a timeslice. Memory copying requires
even more time because the heap manager becomes involved in the memcopy. This
is why it is suggested that strings and arrays be handled in fully-threaded VIs. As
an example of this, we will consider the following problem: the VI depicted in Figure
9.21 shows a simple string-generation routine. The counter is converted to a string
and then concatenated to another string and fed through the shift register. Consider
the copying and memory allocations that need to be done. Every time the integer is
converted to a string, five to six bytes are allocated from heap memory to store the
number; five bytes are used when the number is between zero and nine, and six
bytes when the number has two digits. Recall that four bytes of length information
are stored in a string preamble. The string concatenation requires an additional
allocation of length: four bytes + length of old string + length of new string. These
allocations are relatively small but add overhead. Figure 9.22 shows the VI profile
from numerous runs of this VI. Execution was performed on a Pentium MMX 200
MHz CPU running Windows 95 with 64 MB of memory.

The timing profile demonstrates that at least one execution required 15 ms to
complete. In terms of CPU time, this is significant. A thread may not have enough
time in a quantum to always complete this operation. The thread may then be
preempted for higher-priority threads and take some time before it can resume
execution. This is what happened when the 15 ms sample occurred. During at least
one execution, the thread was preempted and took an order of magnitude more time

©2001 CRC Press LLC

to complete. Larger string manipulation routines will even take longer. If a single
thread is dedicated to performing all the manipulations, this could reduce perfor-

FIGURE 9.21

FIGURE 9.22

FIGURE 9.23

100

©2001 CRC Press LLC

mance of the application. Outputs of this VI will probably be required by other VIs.
These other VIs would be blocked from execution while this current VI is completed.
The conclusion this example demonstrates is that intensive string manipulations
should be performed in VIs that are not subroutines. This will allow multiple threads
to perform tasks contained inside the VI. Other threads will not become blocked
waiting on a single thread to perform large amounts of memory allocations.

Integer operations require significantly less time to complete, and are often good
candidates for subroutine priority. The VI shown in Figure 9.23 shows a simple 100-
element manipulation. This type of manipulation may not be common in everyday
computing, but it serves as a similar example to the one mentioned above. Figure
9.24 shows the profile window for a large number of runs. Notice the significantly
lower timing requirements. It is much less likely that a thread will become blocked
during execution of this subVI; therefore, it is desirable to give this subVI subroutine
priority because subroutine VIs have less overhead and will execute faster than
standard VIs.

When working with arrays in LabVIEW, try to use fixed-length or predimen-
sioned arrays as much as possible. When using the Initialize Array function, one
block of memory will be taken from the heap memory. Replacing individual elements
in the array will not require the array to be reallocated. Once a fixed array size is
defined, then a VI manipulating this array can be a candidate for subroutine priority.
There will not be significant memory allocations that need to be performed. The
overhead on the VI will be reduced, improving the performance of the VI.

FIGURE 9.24

©2001 CRC Press LLC

9.10 CHAPTER SUMMARY

This chapter began with core multithreading terminology. Threads, processes, appli-
cations, and several operating systems were explained. The basics of multithreading
— scheduling, priorities, processes, and thread basics — were discussed and defined.

Major myths involving multithreading were addressed. It should never be
assumed that threads would improve application performance. Many dataflow appli-
cations force a serial order of execution; this is precisely where multithreading will
be of the least benefit. Another common misunderstanding regarding threads is the
idea that the application performance is proportional to the number of threads
running. This is only true if multiple processors are available. Rotating threads of
execution in and out of the CPU will cause more performance problems than
solutions.

Estimating the optimum number of threads is challenging, but not entirely
impossible. The programmer must identify where the maximum number of execut-
able elements is generated in the code. Using this number as the maximum number
of useful threads will prevent performance limitations.

Subroutine priority VIs can lead to performance gains.

BIBLIOGRAPHY

Microsoft Press, Windows Architecture for Developers Training. Redmond: Microsoft Press,
1998.

Aeleen Frisch. Essential System Administration, Second Edition. Cambridge: O'Reilly, 1995.
Bardford Nichols, Dick Buttler, and Jacqueline Prowly Farrel. Pthreads. Cambridge: O'Reilly,

1996.
Aaron Cohen and Mike Woodring, Win32 Multithreaded Programming. Cambridge: O'Reilly,

1998.

Bitter, Rick et al "Object-Oriented Programming in LabVIEW"
LabVIEW Advanced Programming Techinques
Boca Raton: CRC Press LLC,2001

10

©2001 CRC Press LLC

Object-Oriented
Programming
in LabVIEW

This chapter applies a different programming paradigm to G: Object-Oriented Pro-
gramming (OOP). New languages like Java and its use on the Internet have created
a lot of interest in this programming paradigm. This chapter explains the concepts
that make object-oriented programming work, and applies them to programming in
LabVIEW.

This chapter begins with definitions of objects and classes. These are the fun-
damental building blocks of OOP. Key definitions that define OOP are then presented
which give a foundation for programmers to view applications in terms of their
constituent objects.

Once the basics of OOP are described, the first stage of objects is presented--
object analysis. Fundamentally, the beginning of the design is to identify the objects
of the system. Section 10.4 discusses Object Design, the process by which methods
and properties are specified. The interaction of objects is also defined in the design
phase. The third and last phase is the Object Programming phase. This is where the
code to implement the methods and properties is performed.

This type of structuring seems foreign or even backward to many programmers
with experience in structured languages such as LabVIEW. Object-oriented is how
programming is currently being taught to computer science and engineering students
around the world. A significant amount of effort has been put into the design of a
process to produce high-quality software. This section introduces this type of phi-
losophy to LabVIEW graphical programming.

Object-oriented design is supported by a number of languages, including C++
and Java. This book tries to refrain from using rules used specifically by any
particular language. The concept of object-oriented coding brings some powerful
new design tools, which will be of use to the LabVIEW developer. The concept of
the VI has already taught LabVIEW programmers to develop applications modularly.
This chapter will expand on modular software development.

This chapter discusses the basic methodology of object coding, and also dis-
cusses a development process to use. Many LabVIEW programmers have back-
grounds in science and engineering disciplines other than software engineering. The
world of software engineering has placed significant emphasis into developing basic
design processes for large software projects. The intent of the process is to improve

©2001 CRC Press LLC

software quality and reduce the amount of time it takes to produce the final product.
Team development environments are also addressed in this methodology.

As stated in the previous paragraph, this chapter only provides a primer on object
design methodology. There are numerous books on this topic, and readers who decide
to use this methodology may want to consult additional resources.

10.1 WHAT IS OBJECT-ORIENTED?

Object-oriented is a design methodology. In short, object-oriented programming
revolves around a simple perspective: divide the elements of a programming problem
into components. This section defines the three key properties of object-oriented:
encapsulation, inheritance, and polymorphism. These three properties are used to
resolve a number of problems that have been experienced with structured languages
such as C.

It will be shown that LabVIEW is not an object-oriented language. This is a
limitation to how much object-oriented programming that can be done in LabVIEW,
but the paradigm is highly useful and it will be demonstrated that many benefits of
object-oriented design can be used successfully in LabVIEW. This chapter will
develop a simple representation for classes and objects that can be used in LabVIEW
application development.

10.1.1 T

HE

 C

LASS

Before we can explain the properties of an object-oriented environment, the basic
definition of an object must be explained. The core of object-oriented environments
is the “class.” Many programmers not familiar with object-oriented programming
might think the terms “class” and “object” are interchangeable. They are not. A
“class” is the core definition of some entity in a program. Classes that might exist
in LabVIEW applications include test instrument classes, signal classes, or even
digital filters. When performing object programming, the class is a definition or
template for the objects. You create objects when programming; the objects are
created from their class template. A simple example of a class/object relationship is
that a book is a class; similarly,

LabVIEW Advanced Programming Techniques

 is an
object of the type “book.” Your library does not have any book classes on its shelves;
rather, it has many instances of book classes. An object is often referred to as an
instance of the class. We will provide a lot more information on classes and objects
later in this chapter. For now, a simple definition of classes and objects is required
to properly define the principles of object-oriented languages.

A class object has a list of actions or tasks it performs. The tasks objects perform
are referred to as “methods.” A method is basically a function that is owned by the
class object. Generally speaking, a method for a class can only be called by an instance
of the class, an object. Methods will be discussed in more detail in Section 10.2.1.

The object must also have internal data to manipulate. Data that are specified
in the class template are referred to as “properties.” Methods and properties should
be familiar terms now; we heard about both of those items in Chapter 7, ActiveX.
Active X is built on object-oriented principals, and uses the terminology extensively.

©2001 CRC Press LLC

Experienced C++ programmers know the static keyword can be used to work
around the restriction that objects must exist to use methods and properties. The
implementation of objects and classes in this chapter will not strictly follow any
particular implementations in languages. We will follow the basic guidelines spelled
out in many object-oriented books. Rules regarding objects and classes in languages
like C++ and Java are implementations of object-oriented theory. When developing
objects for non-object-oriented languages, it will be helpful to not strictly model the
objects after any particular implementation.

LabVIEW does not have a built-in class object. Some programmers might
suspect that a cluster would be a class template. A cluster is similar to a structure
in C. It does not directly support methods or properties, and is therefore not a class
object. We will use clusters in the development of class objects in this chapter. One
major problem with clusters is that data is not protected from access, which leads
us to our next object-oriented principal, encapsulation.

10.1.2 E

NCAPSULATION

Encapsulation, or data hiding, is the ability for an object to prevent manipulation of
its data by external agents in unknown ways. Global variables in languages like C
and LabVIEW have caused numerous problems in very large-scale applications.
Troubleshooting applications with many global variables that are altered and used
by many different functions is difficult, at best. Object-programming prevents and
resolves this problem by encapsulating data. Data that is encapsulated and otherwise
inaccessible to outside functions is referred to as “private data.” Data that is acces-
sible to external functions is referred to as “public data.”

The object-oriented solution to the problem of excessive access to data is to
make most data private to objects. The object itself may only alter private data. To
modify data private to an object, you must call a function, referred to as a method,
that the object has declared public (available to other objects). The solution that is
provided is that private data may only be altered by known methods. The object that
owns the data is “aware” that the data is being altered. The public function may
change other internal data in response to the function call. Figure 10.1 demonstrates
the concept of encapsulated data.

Any object may alter data that is declared public. This is potentially dangerous
programming and is generally avoided by many programmers. Since public data
may be altered at any time by any object, the variable is nearly as unprotected as a
global variable. It cannot be stressed enough that defensive programming is a
valuable technique when larger scale applications are being written. One goal of
this section is to convince programmers that global data is dangerous. If you choose
not to pursue object-oriented techniques, you should at least gather a few ideas on
how to limit access to and understand the danger of global data.

A language that does not support some method for encapsulation is not object-
oriented. Although LabVIEW itself is not object-oriented, objects can be developed
to support encapsulation. Encapsulation is extremely useful in large-scale LabVIEW
applications, particularly when an application is being developed in a team environ-
ment. Global data should be considered hazardous in team environments. It is often

©2001 CRC Press LLC

difficult to know which team member’s code has accessed global variables. In
addition to having multiple points where the data is altered, it can be difficult to
know the reason for altering the data. Using good descriptions of logic (DOL) has
minimized many problems associated with globals. Using encapsulation, program-
mers would have to change the variable through a subVI; this subVI would alter
variables in a known fashion, every time. For debugging purposes, the subVI could
also be programmed to remember the call chain of subVIs that called it.

Encapsulation encourages defensive programming. This is an important mindset
when developing large-scale applications, or when a team develops applications.
Application variables should be divided up into groups that own and control the
objects. A small degree of paranoia is applied, and the result is usually an easier to
maintain, higher quality application. Global variables have been the bane of many
college professors for years. This mindset is important in languages like C and C++;
LabVIEW is another environment that should approach globals with a healthy degree
of paranoia.

10.1.3 A

GGREGATION

Objects can be related to each other in one of two relationships: “is a” and “has a.”
A “has a” relationship is called “aggregation.” For example, “a computer has a CD-
ROM drive” is an aggregated relationship. The computer is not specialized by the
CD-ROM, and the CD-ROM is not interchangeable with the computer itself. Aggre-
gation is a fundamental relationship in object design. We will see later in the chapter
that an aggregated object is a property of the owning object.

Aggregation is a useful mechanism to develop complex objects. In an object
diagram, boxes represent classes, and aggregation is shown as an arrow connecting
the two objects. The relationship between the computer and CD-ROM is shown in
Figure 10.2.

FIGURE 10.1

©2001 CRC Press LLC

10.1.4 I

NHERITANCE

“Inheritance” is the ability for one class to specialize another. A simple example of
inheritance is a software engineer is a specialization of an engineer. An engineer is
a specialization of an employee. Figure 10.3 shows a diagram that demonstrates the
hierarchy of classes that are derived from an employee class. Common in object-
oriented introductions is the “is a” relationship. A class inherits from another if it
is a specialization or is a type of the superclass. This is a fundamental question that
needs to be asked when considering if one class is a specialization of another.
Examples of this relationship are engineer “is a” employee, and power supply “is
a” GPIB instrument.

When one class inherits from another, the definition of the class is transferred
to the lower class. The class that is inherited from is the “superclass” and the inheriting
class is the “subclass.” For example, consider a class employee. An engineer “is a”
employee (please excuse the bad grammar, but its difficult to be grammatically correct
and illustrate an “is a” relationship!). This means that the definition of an employee
is used by and expanded by the engineer class. An engineer is a specialization of
employee. Other specializations may be vice-president, human resources personnel,
and managers. Everything that defines an employee will be used by the subclasses.
All employees have a salary; therefore, engineers have salaries. The salary is a
property of employee and is used by all subclasses of employee.

All employees leave at the end of the day, some later than others. The function
of leaving is common, and is a function that all employee subclasses must use. This
method is directly inherited, the same leave function may be used by engineers,
vice-presidents, and marketing subclasses.

All employees work. Engineers perform different jobs than human resource
employees. A definition in the employee class should exist because all employees
do some kind of work, but the specifics of the function vary by class. This type of
function is part of the employee specification of the employee class, but must be
done differently in each of the subclasses. In C++ this is referred to as a “pure virtual
function.” When a class has a pure virtual function, it is referred to as an “abstract
class.” Abstract classes cannot be created; only their subclasses may be created. This
is not a limitation. In this example, you do not hire employees, you hire specific
types of employees.

There is another manner in which classes acquire functions. If employee has a
method for taking breaks, and normal breaks are 15 minutes, then most subclasses
will inherit a function from employee that lets them take a 15-minute break. Vice-
presidents take half-hour breaks. The solution to implementing this method is to
have a pure virtual method in employee, and have each subclass implement the break
function. Object programming has virtual functions. The employee class will have

FIGURE 10.2

©2001 CRC Press LLC

a 15-minute break function declared virtual. When using subclasses such as engineer
and the break function is called, it will go to its superclass and execute the break
function. The vice-president class will have its own version of the break function.
When the vice-president class calls the break function, it will use its own version.
This allows for you to write a single function that many of the subclasses will use
in one place. The few functions that need to use a customized version can without
forcing a rewrite of the same code in multiple places.

Inheritance is one of the most important aspects of object-oriented programming.
If a language cannot support inheritance, it is not object-oriented. LabVIEW is not
an object-oriented language, but we will explore how many of the benefits of this
programming paradigm can be supported in LabVIEW.

10.1.5 P

OLYMORPHISM

Polymorphism is the ability for objects to behave appropriately. This stems from
the use of pointers and references in languages like C++ and Java (Java does not
support pointers). It is possible in C++ to have a pointer to an employee class, and
have the object pointed to be an engineer class. When the work method of the pointer
is called, the engineer’s work method is used. This is polymorphism; this property
is useful in large systems where collections of objects of different type are used.

LabVIEW does not support inheritance, and cannot support polymorphism. We
will show later in this chapter how many of the benefits of object-oriented program-
ming can be used in LabVIEW, despite its lack of support for object-oriented
programming. Polymorphism will not be used in our object implementation in this
chapter. It is possible to develop an object implementation that would support
inheritance and polymorphism, but we will not pursue it in this chapter.

10.2 OBJECTS AND CLASSES

The concept of OOP revolves around the idea of looking at a programming problem
in terms of the components that make up the system. This is a natural perspective
in applications involving simulation, test instruments, and data acquisition (DAQ).
When writing a test application, each instrument is an object in the system along

FIGURE 10.3

�

Employee

Manager Engineer Administrative Assistant

Software EngineerVice President

©2001 CRC Press LLC

with the device under test (DUT). When performing simulations, each element being
simulated can be considered one or more classes. Recall from Section 10.1.1 that
an instance of a class is an object. Each instrument in a test rack is an instance of
a test instrument class or subclass.

10.2.1 M

ETHODS

Methods are functions; these functions belong to the class. In LabVIEW, methods
will be written as subVIs in our implementation. The term “method” is not indige-
nous to object-oriented software, but recall from Chapter 7, ActiveX, that ActiveX
controls use methods. Methods may be encapsulated into a class. Methods are
considered private when only an instance of the class may use the method.

Methods that are public are available for any other object to call. Public methods
allow the rest of the program to instruct an object to perform an action. Examples
of public methods that objects should support are Get and Set functions. Get and
Set functions allow an external object to get a copy of an internal variable, or ask
the object to change one of its internal variables. The Get functions will return a
copy of the internal data; this would prevent an external object from accidentally
altering the variable, causing problems for the owning object later. Public methods
define the interface that an object exposes to other elements of the program. The
use of defensive programming is taken to individual objects in object-oriented
programming. Only public methods may be invoked, which allows objects to protect
internal data and methods.

Only the object that owns itself may call private methods. These types of
functions are used to manipulate internal data in a manner that could be dangerous
to software quality if any object could alter the internal data. As an example of using
objects in a simulation system, consider a LabVIEW application used to simulate a
cellular phone network. A class phone has methods to register to the system, make
call, and hang up. These methods are public so the program can tell phone objects
to perform those actions. Each method, in turn, calls a Transmit method that sends
data specific to registration, call setup, or call teardown. The information for each
type of message is stored in the specific methods and is passed to the Transmit
function. The Transmit function is private to the object; it is undesirable for any
other part of the program to tell a phone to transmit arbitrary information. Only
specific message types will be sent by the phones. The transmit method may be a
common use function internal to the class.

10.2.1.1 Special Method — Constructor

Every class requires two special methods. The first is the Constructor. The Construc-
tor is called whenever an instance of the class is created. The purpose of the
Constructor is to properly initialize a new object. Constructors can effectively do
nothing, or can be very elaborate functions. As an example, a test instrument class
for GPIB instruments would have to know their GPIB address. The application may
also need to know which GPIB board they are being used on. When a test instrument
object is instantiated, this information is passed to the function in the Constructor.

©2001 CRC Press LLC

This allows for the test instrument object to be initialized when it is created, requiring
no additional configuration on the part of the programmer. Constructors are useful
when uninitialized objects can cause problems. For example, if a test instrument
object ends up with default GPIB address of 0 and you send a message to this
instrument, it goes back to the system controller. In Section 10.7.1 we will implement
Constructor functions in LabVIEW.

The Constructor method is something that cannot be done with simple clusters.
Clusters can have default values, but a VI to wrap around the cluster to provide
initialization will be necessary. The Constructor function in LabVIEW will be
discussed in Section 10.7. Initialization will allow an object to put internal data into
a known state before the object becomes used. Default values could be used for
primitive data types such as integers and strings, but what if the object contains data
that is not a primitive type, such as a VISA handle, TCP handle, or another object?
Constructors allow us to set all internal data into a known state.

10.2.1.2 Special Method — Destructor

The purpose of the Destructor is the opposite of the Constructor. This is the second
special method of all classes. When an object is deleted, this function gets called to
perform cleanup operations such as freeing heap memory. LabVIEW programmers
are not concerned with heap memory, but there are cases when LabVIEW objects
will want to have a Destructor function. For instance, if when an object is destroyed
it is desirable to write information on this object to a log file. If a TCP conversation
were encapsulated into a class object, the class Destructor may be responsible for
closing the TCP connection and destroying the handle.

In languages such as C++, it is possible to have an object that does not have a
defined Constructor or Destructor. The compiler actually provides default functions
for objects that do not define their own Constructor and Destructor. Our implemen-
tation does not have a compiler that will graciously provide functions that we are
too lazy to write on our own. The object implementation presented later in this
chapter requires Constructors for all classes, but Destructors will be optional. This
is not usually considered good programming practice in object-oriented program-
ming, but our implementation will not support the full features of OOP.

10.2.2 P

ROPERTIES

Properties are the object-oriented name for variables. The variables that are part of
a class belong to that class. Properties can be primitive types such as Booleans, or
can be complex types such as other classes. Encapsulating a class inside of another
class is “aggregation.” We will discuss aggregation later in this chapter. An example
of a class with class properties is a bookshelf. The bookshelf itself is a class with
an integer property representing the number of shelves. If the shelf were defined to
have a single book on the “A” shelf, then a property to describe the book would be
necessary. The description of the book is defined as a class with its own properties,
such as number of pages.

Properties defined for a class need to have some relevance to the problem to be
solved. If your shelf class had a color constant to represent the color of the shelf,

©2001 CRC Press LLC

this information should be used somewhere in the program. Future considerations
are acceptable; for instance, we do not use the color information now, but the next
revision will definitely need it. If extra properties are primitive types, such as
Booleans, there will not be any significant problems. When extra properties are
complex types or use resources such as TCP conversations, performance issues could
be created because of the extra resources the classes use in the system.

The values of an object’s properties make the object unique. All objects of a
class have the same methods and property types. Differentiation between objects
can only be done with the property values. An example of this would be a generic
GPIB instrument class. This class may have properties such as GPIB board and
GPIB address. The values of board and address make different GPIB instruments
unique. All GPIB objects would have the same methods and property types (address
and board number). The value of the address and board make the particular GPIB
object unique.

Most properties are private to the class. This means that the class may only
modify the member variables (properties) itself. This is another measure of defensive
programming. Global data has caused countless headaches for C programmers, and
encapsulation is one solution to preventing this problem in object-oriented applica-
tions. The implementation for objects in this chapter will effectively make all prop-
erties private. This means that we will have to supply methods for modifying data
from outside the class.

10.3 OBJECT ANALYSIS

Object analysis is the first stage in an object-oriented design process. The objects
that comprise the system are identified. The object analysis phase is the shortest
phase, but is the most important. Practical experience has shown us that when the
object analysis is done well, many mistakes made in the design and program phases
have reduced impacts. Good selection of objects will make the design phase easier.
Your ability to visualize how objects interact will help you define the needed
properties and methods.

When selecting objects, every significant aspect of an application must be rep-
resented in one of the objects. Caution must be exercised to not make too many or
negligible-purpose objects. For example, when attempting to perform an object
analysis on a test application using GPIB instruments, an object to represent the
GPIB cables will not be very useful. Since none of the GPIB interfaces need to
know about the cables, encapsulating a cable description into an object will not be
of any benefit to the program. No effort is being made at this point to implement
the objects; a basic understanding of which objects are necessary is all that should
be needed. The design and interactions should be specified well in advance of coding.
Having the design finalized allows for easier tracking of scheduling and software
metric collection. This also eliminates the possibility of “feature creep,” when the
definition of what a function is supposed to do keeps getting changed and expanded.
Feature creep will drag out schedules, increase the probability of software defects,
and can lead to spaghetti code. Unfortunately, spaghetti code written in LabVIEW
does have a resemblance to noodles.

©2001 CRC Press LLC

Example 1:

This example attempts to clarify the purpose of the object analysis on the design of
an application to control an Automated Test Equipment (ATE) rack. This example
will start out with a relatively simple object analysis. We will be testing Meaningless
Objects in Example (MOIE). Table 10.1 identifies the equipment used in the rack.
The MOIE has two signal lines, one input line and one output line.

Solution 1:

We will attempt to make everything available an object. Figure 10.4 shows a model
of the objects that exist in the rack. This model is not very useful; there are far too
many objects from which to build a solution.

The objects for the GPIB cables are not necessary since the test application will
not perform any operations directly with the cables. GPIB read and write operations
will be performed, but the application does not need to have internal representations
for each and every cable in the system. The objects for the input voltages to the test
instruments also make for thorough accounting for everything in the system. Nev-
ertheless, if the software is not going to use an object directly, there is no need to
account for it in the design.

We are not using objects to represent GPIB cables, but there are times when a
software representation of a cable is desirable. If you are working with cables for
signal transmission or RF/microwave use, calibration factors may be necessary. An
object would be useful because you can encapsulate the losses as a function of cable
length, current supplied, or any other relevant factors.

Solution 2:

The easiest object analysis to perform is to declare the three items in the test rack
to be their own objects. The simple diagram in Figure 10.5 shows the object relation.
This could be an acceptable design, but it is clearly not sophisticated. When per-
forming object analysis, look for common ground between objects in the system. If
two or more objects have common functions, then look to make a superclass that
has these methods or properties, and have the objects derive from them. This is code
reuse in its best form, you only need to write the code once.

FIGURE 10.4

©2001 CRC Press LLC

Solution 3:

Working from Solution 1 with the three objects (the DUT, waveform generator, and
multimeter objects), consider the two GPIB instruments. Both obviously read and
write on the GPIB bus, there is common ground between the instruments. A GPIB
instrument class could be put into the model, and the meter and waveform generator
could inherit the read and write functions of the superclass. Figure 10.6 shows the
model with the new superclass.

Which is the best solution, 2 or 3? The answer to that question is — it depends.
Personal preferences will come into play. In this example, GPIB control is not
necessarily a function that needs to be encapsulated in an object. LabVIEW functions
easily supply GPIB functions, and there may be little benefit to abstracting the
control to a superclass. The GPIB instrument object needs to be implemented, and
this may become more work for the programmer.

Example 2:

This example will perform an object analysis on generic test instruments. We will
be using the results of this example throughout the chapter. The analysis here will
be the focus of a design example in the next section. We have a need to design a
hierarchy of classes to support the development of test instrument drivers. An object
analysis starting this vaguely needs to start with a base class named “instrument.”
This base class defines the basic properties and methods that all test instruments
would have. Base classes such as this typically have a few properties and methods,
and that is about it. Making common ground can be difficult.

A common property would be an address. This address could be used for the
GPIB primary address, or a COM port number for a serial instrument. If we define
an address to be a 32-bit number, then it could also be the IP address for Ethernet
instruments (should they come into existence soon). This is really the only required
property in the abstract base class because it is the only common variable to the
major communications protocols. For example, we would not want a baud rate
property because TCP/IP or GPIB instruments would not use it. Information on the

FIGURE 10.5

TABLE 10.1
Object Analysis Example #1

Equipment Purpose

Multimeter Measure DC bias on output signal line to Device under
Test(DUT)

Arbitary Waveform Generator Generate test signal stimuli. The signal is generated on the input
signal line to the DUT.

Device under Test The Meaningless Object in Example (MOIE).

©2001 CRC Press LLC

physical cable lengths is not necessary because only high-speed GPIB has any need
for this type of information.

All instruments will likely need some type of read and write methods. These
methods would be “pure virtual.” Pure virtual means that every subclass must support
these methods, and the base class will supply no implementation, just the requirement
that subclasses have these methods. Pure virtual methods allow each of the base
classes to supply custom functionality to the read and write method, which is
inherently different for a serial-, GPIB-, or TCP/IP-based instrument. By defining
read and write methods, we have effectively standardized the interface for the objects.
This is essentially what the VISA library did for LabVIEW; we are repeating this
effort in an object-oriented fashion.

The subclasses of instruments for this example will be serial, GPIB, and IP
instruments. Obviously, IP is not a common communication protocol for the test
industry, but its representation in the object diagram allows for easy future expansion.
The GPIB class will only cover the IEEE 488 standard (we will make 488.2 instru-
ments a subclass of GPIB). The following paragraphs will identify the properties
and methods that are required for each of the subclasses.

Serial instruments need to implement the read and write methods of the instru-
ment class. Their COM port information will be stored in the address property, which
is inherited from instrument. Specific to serial instruments are baud rates and flow
control information. These properties will be made private to serial instruments. A
Connect method will be supplied for serial instruments. This method will allow for
the object to initialize the serial port settings and send a string message if desired
by the programmer. The Connect method will not be required in the base class
instrument because some instrument subclasses do not require a connection or
initialization routine to begin operation—namely GPIB instruments.

GPIB instruments require a GPIB board and have an optional second address.
These two properties are really the only additional items for a GPIB instrument.
GPIB instruments do not require a Connect method to configure their communica-
tions port. This object must supply Read and Write methods because they derive
from “instrument.” Other than read, write, board number, and secondary address,
there is little work that needs to be done for GPIB instruments.

As we mentioned previously, we intend to have an IEEE 488.2 class derived
from the GPIB instrument class. Functionally, this class will add the ability to send
the required commands (such as *RST). In addition to read and write, the required
commands are the only members that need to be added to the class. Alert readers

FIGURE 10.6

©2001 CRC Press LLC

will have noticed that we have not added support for high-speed GPIB instruments.
Not to worry, this class makes an appearance in the exercises at the end of this
chapter.

IP instruments are going to be another abstract base class. This consideration is
being made because there are two possible protocols that could be used beneath IP,
namely UDP and TCP. We know that both UDP- and TCP-based instruments would
require a port number in addition to the address. This is a property that is common
to both subclasses, and it should be defined at the higher-level base class. Again, IP
will require that UDP and TCP instruments support read and write methods. An
additional pair of properties would also be helpful: destination port and address.
These properties can again be added to the IP instrument class.

To wrap up the currently fictitious IP instruments branch of the object tree, UDP
and TCP instruments need an initialization function. We will call UDP’s initialization
method “initialize,” and TCP’s method will be called “connect.” We are making a
differentiation here because UDP does not maintain a connection and TCP does.
TCP instruments must also support a disconnect method. We did not include one in
the serial instrument class because, in general, a serial port can effectively just go
away. TCP sockets, on the other hand, should be cleaned up when finished with
because they will tie up resources on a machine. The object diagram of this example
can be seen in Figure 10.7. Resulting from this object analysis is a hierarchy
describing the instrument types. This hierarchy can be used as the base for deriving
classes for specific types of instruments. For example, a Bitter-2970 power supply
may be a particular serial instrument. Serial Instrument would be the base class for
this power supply, and its class could be put into the hierarchy beneath the serial
instrument. All properties — COM port, methods, read and write — would be
supported by the Bitter-2970 power supply, and you would not need to do a signif-
icant amount of work to implement the functionality.

FIGURE 10.7

©2001 CRC Press LLC

Example 3:

This example is going to be a bit more detailed than the previous one. We are going
to perform the object analysis for the testing of a Communications Analyzer. This
is a compound test instrument that has the functionality of an RF analyzer, RF
generator, Audio Analyzer, and Audio Generator. The instrument has a list of other
functions that it is capable of doing, but for the purposes of this example we will
only consider the functions mentioned.

The first step in the object analysis is to determine what the significant objects
are. The RF generator, AF generator, RF analyzer, and AF analyzer are fairly obvious.
The HP8920 is compliant with IEEE 488.2, so it has GPIB control with a couple
of standard instrument commands. Since the instrument is GPIB-based, we will start
with abstract classes for instrument and GPIB instrument. A GPIB instrument is a
specialization of an instrument. Further specification results in the 488.2 GPIB
Instrument subclass. Figure 10.8 shows how our hierarchy is progressing. Some
communication analyzers have additional capabilities, including spectrum analyzers,
oscilloscopes, and power supplies for devices under test. These objects can also be
added to the hierarchy of the design.

An HP-8920 is a communications test set. There are a number of communica-
tions analyzers available on the market, for example, the Anritzu 8920 and Motorola
2600 are competitive communications analyzers. All of the instruments have com-
mon subsystems, namely the RF analyzers and generators, and the AF analyzers and
generators. The preceding sentences suggest that having an HP-8920 as a subclass
of a 488.2 instrument is not the best placement. There is a communications analyzer
subclass of 488.2 instrument. There may also be other subclasses of the 488.2
instrument, such as power supplies. Figure 10.9 shows the expanding hierarchy.

All of the frequency generators have common elements, such as the frequency
at which the generator is operating. The RF generator is going to use a much higher
frequency, but it is still generating a signal at a specified frequency. This suggests
that a generator superclass may be desirable. Our communications analyzer is going
to have several embedded classes. Recall that embedded classes are referred to as

FIGURE 10.8

©2001 CRC Press LLC

aggregated classes in object-oriented terminology. We have a new base class to start
working with, namely Generator. The AF and RF analyzers have similar starting
points, and their analysis is left as an exercise for the reader. Figure 10.10 shows a
breakdown of the Analyzer, Generator, and Instrument classes. The dotted line
connecting the communications analyzer and the generator/analyzers symbolizes

FIGURE 10.9

FIGURE 10.10

©2001 CRC Press LLC

aggregation, encapsulating one class into another. We have a basic design on the
core objects. Each class should have a paragraph or so description of the purpose
for their design. This would complete an object analysis on this project.

The last objects, oscilloscope, spectrum analyzer, and power supply, are inde-
pendent objects. There are no base objects necessary to simplify their description.
The power supply properties and methods should be fairly easy to decide. The
oscilloscope and spectrum analyzer are significantly more complex and we are going
to leave their analysis and design to the reader.

Object analysis is the first step in object programming, but it is arguably the
most important. Good selection of objects makes understanding their interrelations
much easier. Now that the basic objects in this system are defined, it is time to focus
our attention on how the objects interrelate. The process of analysis and design is
iterative; the spiral design model allows you to select your objects, design the objects,
and program them. Once you complete one cycle, you can start over and tweak the
object list, the function list, and the resulting code.

10.4 OBJECT DESIGN

Object design is where the properties, methods, and interactions of classes are
defined. Like object analysis, this phase is pure paperwork. The idea is to have a
clearly designed application before code is written. Schedules for coding can be
developed with better precision because definitions of functions are well defined. It
is much more difficult to estimate code schedules when VIs are defined ad hoc.
Coordination of medium to large-scale applications requires project management in
addition to a solid game plan. Object designs are well suited for project management
processes. Chapter 4, Application Architecture, goes through the details of the
waterfall and spiral design models.

A full application design forces architects and programmers to put a significant
amount of thought into how the application will be built in the startup phase of a
project. Mistakes commonly made during the analysis phase are to neglect or miss
application details such as exception handling. Focus at this point of an application
should revolve around the interaction of the objects. Implementing individual func-
tions should not be performed unless there are concerns about feasibility.

It is not acceptable to write half the application at this phase of the design unless
you are concerned about whether or not a concept is possible. For example, if you
were designing a distributed application and had concerns about the speed of DCOM,
by all means build a prototype to validate the speed of DCOM. Prototyping is
acceptable at this phase because it is much easier to change design decisions when
you have not written 100 VIs.

In this section we will explain identifying methods and properties for a class.
Once the methods and properties are defined, their interactions can then be consid-
ered. The actual implementation of the specified methods and properties will not be
considered until the next section. It is important to go through the three distinct
phases of development. Once this phase of design is completed, an application’s
“innards” will be very well defined. The programmers will know what each object
is for, how it should function, and what its interactions are with other objects in the

©2001 CRC Press LLC

system. The idea is to make programming as trivial an exercise as possible. Con-
ceptually, programmers will not have to spend time thinking about interactions of
objects because we have already done this. The last phase of the design, program-
ming, should revolve around implementing objects on a method-by-method basis.
This allows programmers to focus on the small tasks at hand.

Before we begin a full discussion of object design techniques, we need to expand
our class understanding: Sections 10.4.1 and 10.4.2 introduce two concepts to
classes. The Container class is useful for storing information that will not be used
often. Section 10.4.2 discusses the Abstract class. Abstract classes are useful for
defining classes and methods that are used to define interfaces that subclasses must
support.

10.4.1 C

ONTAINER

 C

LASSES

Most, but not all, objects in a system perform actions. In languages such as C++ it
is often desirable to encapsulate a group of properties in a class to improve code
readability. These container classes are similar in purpose to C structures (also
available in C++) and clusters in LabVIEW. Container classes have an advantage
over structures and clusters, known as “constructors.” The constructor can provide
a guaranteed initialization of the container object’s properties. Knowing from Chap-
ter 6, Exception Handling, that one of the most common problems seen are config-
uration errors, the object constructor of a container class helps prevent many con-
figuration errors.

Container classes need to support Set and Get functions in addition to any
constructors that are needed. If a class performs other actions, then it is not a
container class. Container classes should be considered when large amounts of
configuration information are needed for objects. Putting this information into an
embedded class will improve the readability of the code because the property list
will contain a nested class instead of the 20 properties it contains.

10.4.2 A

BSTRACT

 C

LASSES

Some classes exist to force a structure on subclasses. Abstract classes define methods
that all subclasses use, but cannot be implemented the same way. An example of an
abstract class is an automobile class. A sport utility has a different implementation
for Drive than a subcompact car. The automobile class requires that all subclasses
define a Drive method. The actual implementation is left up to the subclass. This
type of method is referred to as “pure virtual.” Pure virtual methods are useful for
verifying that a group of subclasses must support common interfaces. When a class
defines one or more pure virtual methods, it is an abstract class. Abstract classes
may not be instantiated by themselves. An abstract class has at least one method
that has no code supporting it.

An abstract class available to the LabVIEW programmer is the Instrument
abstract class we designed in Section 10.3. This class requires several methods be
supported. Methods to read and write should be required of all instrument derivatives,
but serial instruments have different write implementations than GPIB instruments.

©2001 CRC Press LLC

Therefore, the Write method should be specified as a pure virtual function in the
instrument base class. A pure virtual function is defined, but not implemented. This
means that we have said this class has a function, but we will not tell you how it
works. When a pure virtual function is defined in a class, the class cannot be
instantiated into an object. A subclass may be instantiated, but the subclass must
also provide implementation for the method.

Continuing on the instrument base class, consider adding a Connect method.
Future TCP-based instruments would require a Connect method. Considering future
expansions of a class is a good design practice, but a Connect method is not required
by all subclasses. Some serial devices may have connect routines, but some will not.
GPIB instruments do not require connections to be established. Connections to the
VISA subsystem could be done in the constructor. The conclusion is that a Connect
method should not be defined in the instrument base class. This method may become
a required interface in a subclass, for example, the Connect method can be defined
in a TCP Instrument subclass.

The highest class defined in many hierarchies is often an abstract class. Again,
the main purpose of the top class in a hierarchy is to define the methods that
subclasses must support. Using abstract classes also defines the scope of a class
hierarchy. A common mistake made by many object designers is to have too many
classes. The base class in a hierarchy defines the scope of that particular class tree.
This reduces the possibility of introducing too many classes into a design.

To expand on the object analysis begun in the previous section, consider Example
2. We have the base class “Instrument.” All instruments have a primary address,
regardless of the communications protocol they use. For a GPIB instrument, the
address is the primary address. For a serial instrument, the COM port number can
be the primary address. Leaving room for the future possibility of Ethernet and USB
instruments, the address property will be a 32-bit number and will be used by all
instruments. A 32-bit number was chosen because IP addresses are actually four 8-
bit numbers. These 8-bit numbers can be stored in a single 32-bit number. This is
actually what the String to IP function does in LabVIEW. Because the address is
common to all major subsystems, we will define it as a property of the Instrument
base class.

We have identified one property that is common to all instruments; now on to
common methods. We know that all instruments must read and write. The Read and
Write functions will be different for each type of instrument, therefore, the Instru-
ment class must have two pure virtual methods, Read and Write. Languages like
C++ use strong type checking, which means you must also define the arguments to
the function and the return types. These arguments and return types must match in
the subclass. The good news for us is that we are not required to follow this rule.
All instruments so far must read and write strings and possess an address. This seems
like a good starting point to the instrument architecture. Figure 10.11 shows a
Rational Rose drawing of the Instrument class.

The subclass of Instrument that we will design now is the GPIB instrument
subtype. Here we are forced with a decision, which properties does a GPIB instru-
ment require? Earlier, we decided to use the VISA subsystem for communications.
VISA will handle the communications for our GPIB instruments in this example

©2001 CRC Press LLC

also. The property that a GPIB instrument class requires is a VISA handle. To
generate the handle, the primary address, secondary address, and GPIB board must
be given in the constructor. The GPIB Instrument class now has one required
constructor. Support for read and write must be provided. Read and Write functions
are abstract in the Instrument base class, so we must provide the functionality in
this class. These methods and properties pretty much encapsulate the functionality
of most GPIB (IEEE 488) instruments.

Some instruments, namely IEEE 488.2-compliant instruments have standard
commands, such as Reset (*RST), Identity (*IDN?), and Options (*OPT?). Literally,
IEEE 488.2 instruments are a subclass of GPIB instruments, and they will be in this
object design. The 13 standard commands will be encapsulated as functions in the
488.2 Instrument subclass. The problem that we are developing is that we are in the
second phase of the programming, object design. This class should have been thought
of during the object analysis. When following a waterfall design methodology, we
should stop performing the design and return to the analysis phase. After a moment
of thought, several new features for the 488.2 subclass could become useful. For
example, the Identification (*IDN?) command could be used in the constructor. This
would allow the application to validate that the instrument on the GPIB bus is, in
fact, a 488.2 instrument. If the instrument did not respond, or responds incorrectly
to the *IDN? command, an error could be generated by the constructor. This type
of functionality could be very useful in an application, better user validation without
adding a lot to the program.

Now that methods required of Instrument, GPIB Instrument, and IEEE 488.2
Instrument have been defined, it is time to make use of them. Any instruments built
using objects will be subtypes of either IEEE 488.2 or GPIB Instrument. If the
physical instrument complies to the 488.2 standard, it will be a subclass of the 488.2
Instrument class. In the event we are working with an older, noncompliant instru-
ment, then it will descend directly from GPIB Instrument. This will allow us to
make sure that 488.2 commands will never be sent to a noncompliant instrument.

As far as defensive programming goes, we have made excellent progress in
defending the communications ports. Each instrument class encapsulates the com-
munications port information and does not directly give access to any of the external
code. This will make it impossible for arbitrary commands to be sent to any of the
instruments. We will limit the commands that are sent to instruments to invoke the
objects issue. Assuming the objects are written correctly, correct commands can only
be sent on the communications lines.

Another set of methods that you can define for classes is operators. If you had
an application that used vector objects, how would you perform addition? An

FIGURE 10.11

©2001 CRC Press LLC

Addition operator that accepts two vector objects can be written. It is possible to
specify operators for all the arithmetic operators such as Addition, Subtraction,
Multiplication, and Division. Also, Equality operators can be defined as methods
that a class can support. It may be possible to use LabVIEW’s Equality operator
to directly compare the string handles to our objects, but there are some instances
where comparing the flattened strings may not yield the results desired.

We have just identified a number of methods that will exist in the Instrument
class hierarchy. To help visualize the interaction among these objects, we will use
an interaction diagram. Software design tools such as Rational Rose, Microsoft
Visual Modeler, and Software through Pictures provide tools to graphically depict
the interaction among classes.

Since the implementation of classes that we will be using later in this chapter
does not support inheritance, we will aggregate the superclasses. The interaction
diagram will capture the list of VI calls necessary to accomplish communication
between the objects. In an interaction diagram, a class is a box at the top of the
diagram. A vertical line going down the page denotes use of that class. Arrows
between class objects descend down the vertical lines indicating the order in which
the calls are made. Interaction diagrams allow programmers to understand the
intended use of classes, methods, and their interactions. As part of an object design,
interaction diagrams provide a lot of information that class hierarchies cannot.

If we had an application that created an IEEE 488.2 Instrument object and wanted
to send an *RST to the physical instrument, the call chain would be fairly simple.
At the upper left of the interaction diagram, an object we have not defined appears
— Application. This “class” is a placeholder we are using to indicate that a method
call is happening from outside an object. Next in line appears IEEE 488.2 Instrument.
The arrow connecting the two classes indicates that we are invoking the *RST method.
When the *RST method is called, a string *RST will be created by the object and
sent to the GPIB Write function. This encapsulation allows us to control what strings
will appear on the GPIB bus. In other words, what we have done is defined a set of
function calls that will only allow commands to be sent that are valid. This is
effectively an Application Programming Interface (API) that we are defining through
this method. The diagram for this interaction appears in Figure 10.12.

This diagram is just one of possibly hundreds for a large-scale application.
Interaction diagrams do not clearly define what the methods are expected to do,
however; a description of logic (DOL) is required. In addition to interaction diagrams
for every possible sequence of function calls, a written description of each call is
required. In the DOL should appear function inputs and outputs and a reasonable
description of what the function is expected to accomplish. DOLs can be simple, as
in the case of the *RST command:

*RST-
inputs: error cluster, string handle for object
outputs: error cluster
This function sends a string, *RST on the GPIB bus to the instrument defined

in the string handle.

©2001 CRC Press LLC

For complex functions, the description may become a bit more complicated.
Remember that the interaction diagrams are there to help. In a DOL you do not
need to spell out an entire call sequence, that is what the interaction diagrams are
there for. The DOL and interaction diagrams should leave no ambiguity for the
programmers. Together, both pieces of information should minimize the thought
process needed to program this particular sequence of events.

The class hierarchy, interaction diagrams, and DOL provide a complete picture
for programmers to follow. The interaction diagrams provide graphical direction for
programmers to follow in the next phase of development, object programming. Thus
far we have managed to define what objects exist in the system, and what methods
and properties the objects have. Object interactions are now defined, and each method
and property has a paragraph or so describing what it is expected to do. This leaves
the small matter of programming the methods and objects. This is not a phase of
development for taking shortcuts. Leaving design details out of this phase will cause
ambiguities in the programming phase. Any issues or possible interactions that are
not covered in the design phase will also cause problems in the programming phase.
Software defects become a strong possibility when the design is not complete. Some
programmers may neglect any interactions they do not see, and others may resolve
the issue on their own. This could well cause “undocumented features,” which can
cause well-documented complaints from customers. When the software model is
complete and up to date it is an excellent resource for how an application behaves.
In languages like C++ when an application can have over 100 source code files, it
is often easier to look at interaction diagrams and get an idea of where a problem
is. Surfing through thousands of lines of source code can be tedious and cause
programmers to forget the big picture of the application.

FIGURE 10.12

©2001 CRC Press LLC

If you do not choose to follow an object-oriented software design methodology,
a number of concepts in this chapter still directly apply to your code development.
Start with a VI hierarchy — determine what pile of VIs will be necessary to
accomplish these tasks. Then write out the interaction diagrams for the possible
sequences of events. When writing out interaction diagrams, be sure to include paths
that occur when exception handling is in process. Once the interactions are defined,
write out descriptions of logic for each of the VIs, and

voila

! All that is left is to
code the individual VIs. Writing the code may not be as easy as just described, but
much of the thought process as to how the application should work has been decided.
All you have to do is code to the plan.

10.5 OBJECT PROGRAMMING

This section concludes our discussion of the basic process of developing object-
oriented code. This is the last phase of the programming, and should be fairly easy
to do. You already know what every needed object is, and you know what all the
methods are supposed to do. The challenge is to keep committed to the waterfall
model design process. Waterfall design was discussed in Chapter 4, Application
Structure. Object programming works well in large-scale applications, and program-
ming technique should be coordinated with a process model for control of develop-
ment and scheduling.

Once the object analysis and design are done, effort should be made to stick to
the design and schedule. In the event that a defect is identified in the design of an
application, work on the particular function should be halted. The design should be
reviewed with a list of possible solutions. It is important in a large-scale application
to understand the effects a design change can have on the entire application. Making
design changes at will in the programming phase can cause issues with integration
of the application’s objects or subsystems. Software quality can become degraded
if the impact of design changes is not well understood. If objects’ instances are used
throughout a program, it should be clearly understood what impact a design change
can have on all areas of the application.

In a general sense, there are two techniques that can be followed in assembling
an object-oriented application. The first technique is to write one object at a time.
The advantage of this technique is that programmers can be dispersed to write and
test individual objects. Once each object is written and tested, the objects are
integrated into an application. Assuming that all the objects were written and properly
tested, the integration should be fairly simple. If this technique is being used,
programmers must follow the object design definitions precisely; failure to do so
will cause problems during integration.

The second technique in writing an object-oriented application is to write enough
code to define the interfaces for each of the objects. This minimally functional set
of objects is then integrated into the application. The advantage of this technique is
to have the skeleton of the entire application together, which minimizes integration
problems. Once the skeleton is together, programmers can fill in the methods and
internal functionality of each of the objects. Before embarking on this path, define

©2001 CRC Press LLC

which need to be partially functional and which need to be fully functional. External
interfaces such as GPIB handles may need to be fully functional, while report
generation code can only be functional enough to compile and generate empty
reports.

10.6 DEVELOPING OBJECTS IN LABVIEW

This section begins to apply the previous information to programming in LabVIEW.
Our object representations will use clusters as storage containers for the properties
of an object. SubVIs will be used as methods. We will develop VIs to function as
constructors and destructors, and to perform operations such as comparison. In
addition, methods identified in the object design will be implemented.

Cluster type definitions will be used as containers, but we will only present
strings to the programmer. Strings will be used as a handle to the object. Clusters
will be used for methods because this prevents programmers from “cheating.” The
idea here is to encapsulate the data and prevent access as a global variable. Pro-
grammers will need to use the Get/Set or other defined methods for access to object
“innards.” This satisfies the requirement that data be encapsulated. This may seem
like a long-winded approach, but it is possible to add functionality to the Set methods
that log the VI call chain every time this method is invoked. Knowing which VI
modified which variable at which time can be a tremendous benefit when you need
to perform some emergency debugging. This is generally not possible if you have
a set of global variables that are modified in dozens of locations in the application.

This implementation will not provide direct support for inheritance. Inheritance
would require that the flattened string be recognizable as one of a list of possible
clusters. Having a pile of clusters to support this functionality is possible, but the
parent class should not need to maintain a list of possible child classes. In languages
like C++, a virtual function table is used “under the hood” to recognize which
methods should be called. Unfortunately, we do not have this luxury. Identifying
which method should be called when a virtual method is invoked would be a
significant undertaking. This book has a page count limit, and we would certainly
exceed it by explaining the logistics of object identification. We will simulate
inheritance through aggregation. Aggregation is the ability for one object to contain
another as a property. Having the parent class be a property of the child class will
simulate inheritance. This technique was used with Visual Basic 4.0 and current
versions; Visual Basic does not directly support inheritance. Polymorphism cannot
be supported directly because inheritance cannot be directly supported. This is a
limitation on how extensive our support for objects can be.

The object analysis has shown us which classes are necessary for an application,
and the object design has identified the properties and methods each object has. The
first step in implementing the object design is to define the classes. Since LabVIEW
is not an object-oriented language, it does not have an internal object representation.
The implementation we are developing in this section is not unique. Once you
understand the underlying principles behind object-oriented design, you are free to
design your own object representations.

©2001 CRC Press LLC

10.6.1 P

ROPERTIES

All objects have the same properties and methods. What makes objects of the same
type unique are the values of the properties. We will implement our objects with
separated properties and methods. The methods must be subVIs, and the class
templates for properties will be type definitions using clusters. The cluster is the
only primitive data type that can encapsulate a variety of other primitive types, such
as integers. Class definitions will be encapsulated inside clusters. The internal rep-
resentation for properties is clusters, and the external representation will actually be
strings. Since it is impossible for a programmer to access a member variable without
invoking a Get or Set method, our implementation’s properties are always private
members of the class.

When you program a class definition, the cluster should be saved as a type
definition. We will use this type definition internally for all the object’s methods.
The type definition makes it convenient for us to place the definition in class methods.
The cluster definition will only be used in internal methods to the class; programmers
may not see this cluster in code that is not in direct control of the class. External to
the object, the cluster type definition will be flattened to a string. There are a number
of reasons why this representation is desirable, several of which will be presented
in the next section.

Some readers may argue that we should just be passing the cluster itself around
rather than flattening it into a string. The problem with passing the class data around
as a cluster is that it provides temptation to other programmers to not use the class
methods when altering internal data. Flattening this data to a string makes it difficult,
although not impossible, for programmers to cheat. Granted, a programmer can
always unflatten the cluster from a string and cheat anyway, but at some point we
are going to have to make a decision to be reasonable. Flattening the cluster to a
string provides a reasonable amount of protection for the internal data of the object.

10.6.2 C

ONSTRUCTORS

An object design may determine that several constructors will be necessary. The
purpose of the constructor is to provide object initialization, and it may be desirable
to perform initialization in several different manners. Our class implementation will
require that each object have at least one available constructor. The constructor will
be responsible for flattening the Typedef cluster into a string as an external handle
to the object. Object-oriented languages such as C++ do not require absolutely that
each class have a constructor. Like Miranda rights, in C++, if you do not have a
constructor, the compiler will appoint one for you. We are supplying an object
implementation for LabVIEW, and our first rule is that all objects must have at least
one constructor.

A simple example for a class and its constructor is a point. A point has two
properties, an

x

 and

y

 coordinate. Figure 10.13 shows the front panel for a constructor
function for a point class. The required two inputs, the

x

 and

y

 coordinates are
supplied, and a flattened string representing the points is returned. The code diagram
is shown in Figure 10.14. A simple Build Cluster function was used. For more

©2001 CRC Press LLC

complicated functions, you want to build a cluster and save it as a control. This
control can be placed on the front panel and not assigned as a connector. This would
facilitate the cluster sizing without giving up the internals to external entities.

Another object we will develop using the point is the circle. A circle has a radius
and an origin. The circle object will have the properties of a point for origin and a
double-precision number for its radius. The cluster control for a circle is shown in
Figure 10.15. The circle object constructor, like the point constructor, uses floating-
point numbers for radius,

x

, and

y

. The front panel is shown in Figure 10.16, and
the code diagram is shown in Figure 10.17.

The front panel uses type definitions for the contents of the clusters. Point
coordinates are fed into the point constructor and the string input is fed into the
circle’s cluster definition. The clusters are used only as inputs to the Bundle function.
Next, the cluster is then flattened and returned as a string. The circle uses a nested
class as one of its properties.

Now, say that a programmer has the radius and the point itself in a string. Another
constructor can be built using the string point object and the radius as inputs. The
block diagram for this VI is shown in Figure 10.18. Note that the first thing the
constructor does is validate the point object. The error clusters are included in this
VI; it is a trivial matter to include them in the other constructors. The circle object
demonstrates where multiple constructors are desirable. Functions that have the same
purpose, but use different arguments can be called “overloaded.” In C++ and Java,
a function name can be used many different times as long as the argument list is
different for each instance of the function. The function name and argument list is
the function’s signature in C++; this does not include the return type. As long as
different signatures are used, function name reuse is valid. LabVIEW does not have
this restriction if desired multiple constructors with the same input list can be used.

FIGURE 10.13

FIGURE 10.14

©2001 CRC Press LLC

FIGURE 10.15

FIGURE 10.16

FIGURE 10.17

FIGURE 10.18

©2001 CRC Press LLC

Example 10.6.1

Develop a constructor for a GPIB instrument class. All GPIB instruments have
primary addresses, secondary addresses, and GPIB boards they are assigned to. All
instrument communications will be performed through the VISA subsystem.

Solution:

First, we need to consider the design of the object. The problem statement made it
obvious that addresses and GPIB boards are to be used by the object. The statement
also says that the communications will be performed via VISA calls. The cluster
really needs just one item, a VISA handle. The inputs of addresses and board number
can be formatted into a VISA descriptor. The VISA Open VI will open the connection
and return the needed VISA handle. Figure 10.19 shows the constructor. Not shown
is the front panel, in which the only notable features are the limitations placed on
the GPIB address: the primary and secondary addresses must be between 1 and 31.
If the secondary address is zero, then we will use the primary address as the
secondary address. In addition, the GPIB board number must be between 0 and 7.
Since this VI will perform communications outside LabVIEW and into the VISA
subsystem, error clusters are used to indicate the success or failure of the operation.
If VISA Open returns an error, then an empty string is returned as the object in
addition to setting the error cluster. Our implementation of objects will return empty
strings when objects cannot be created.

10.6.3 D

ESTRUCTORS

Destructors in our object implementation only need to exist when some activity for
closing the object needs to be done. Any objects used to encapsulate TCP, UDP,
VISA, ActiveX (automation), or synchronization objects should destroy those con-
nections or conversations when the object is destroyed. If the object’s string is
allowed to go out of scope without calling the destructor, LabVIEW’s engine will
free up the memory from the no-longer-used string. The information holding the
references to the open handles will not be freed up. Over long periods of time, this
will cause a memory leak and degrade LabVIEW’s performance.

Classes such as the point and circle do not require a destructor. The information
they hold will be freed up by the system when they are eliminated; no additional
handles need to be closed. This is actually consistent with other programming
languages such as C++ and Java. Programmers need to implement destructors only
when some functionally needs to be added.

FIGURE 10.19

©2001 CRC Press LLC

Example 10.6.2

Implement a destructor for the GPIB class object created in Example 10.6.1.

Solution:

All that needs to be done for this example is to close the VISA handle. However,
when we recover the cluster from the object string, we will verify that it is a legitimate
instance of the object. The destructor code diagram is shown in Figure 10.20.

The significance of destructors is important for objects that communicate with
the outside world. For internally used objects, such as our point and circle, or for
objects simulating things like signals, no destructor is necessary. Unlike constructors,
there is only one destructor for an object. In our implementation it is possible to
construct multiple destructors, but this should be avoided. It will be obvious in the
object design what items need to be closed out; this should all be done in one point.
The act of destroying an object will require the use of only one destructor. Having
multiple destructors will serve to confuse programmers more than it will help clarify
the code.

10.6.4 M

ETHODS

In this section we will begin implementing methods that objects will use. The two
distinct classifications of methods will be Public and Private methods. Protected
methods will not be supported; their implementation will be much more difficult. A
stronger class design in the future may allow for protected interfaces. Private and
public methods will be handled separately because their interfaces will be different.

Our object implementation will use methods to interface with the outside appli-
cation exclusively. Setting or retrieving the values of properties will be handled
through methods called Set and Get. This is how ActiveX is implemented. Each
property that you have read and/or write access to is handled through a function call.

10.6.4.1 Public Methods

Public methods take a reference to the object in the form of a string. This prevents
outside code from modifying private properties without a defined interface. A special
example of a Public function is the constructor. The constructor takes inputs and
returns a string reference to the object. This is a public method because it was called
from outside the object and internal properties were configured by a method the
object supports.

FIGURE 10.20

©2001 CRC Press LLC

Class designs may have many public methods, or just a few. Object design tools
like Rational Rose generate code that, by default, will include Get and Set functions
for access to object properties. We will be using Get and Set functions to alter
properties of our objects. The Get/Set functions will form the protective interface
for member variables. Set methods will allow us to control or force rules on setting
internal data members. This gives us the ability to perform a lot of intelligent coding
for the object users. From our previous example, a For GPIB Instrument, we could
have a Set GPIB Address method as public. This method allows programmers to
allow the object to determine if its GPIB address has been changed during execution.
If this is the case, the object could be made capable of refusing to make the change
and generate an error, or of closing its current VISA session and creating a new one.
Public methods enable the object to make intelligent decisions regarding its actions
and how its private data is handled. This is one of the strengths of encapsulation.
When designing objects, consideration can be made as to how the Get and Set
interfaces will operate. Intelligent objects require less work of programmers who
use them because many sanity-checking details can be put into the code, freeing
object users from trivial tasks.

10.6.4.2 Private Methods

The major distinction between public and private methods in our LabVIEW imple-
mentation is that private methods may use the type definition cluster as input. Private
methods are considered internal to the class and may directly impact the private
properties of the class. The extra step of passing a string reference is unnecessary;
basically, a private method is considered trustable to the class. When using this
object implementation in a LabVIEW project, a private method should always appear
as a subVI to a public method VI. This will enable you to verify that defensive
programming techniques are being followed. As a quick check, the VI hierarchy can
be examined to verify that private methods are only called as subVIs of public
methods. Public methods serve as a gateway to the private methods; private methods
are generally used to simplify reading the code stored in public methods.

By definition, private methods may only be invoked by the object itself. When
can an object call an internal method? Public methods may call private methods. When
a public method is executing, it may execute private methods. This may seem to be
a waste, but it really is not. This is a good defensive programming practice. The public
method is an interface to the external program, and the private methods will be used
to accomplish tasks that need to be performed.

As an example of a private method that an object would use, consider imple-
menting a collection of VIs to send e-mail using Simple Mail Transfer Protocol
(SMTP). To send mail using SMTP, a TCP connection must be established to a
server. The Read and Write TCP functions are not something you would want a user
of the SMTP mail object to directly have access to. Implementing the SMTP protocol
is done internally to the SMTP object. Again, this is defensive programming. Not
allowing generic access to the TCP connection means that the SMTP object has
complete control over the connection, and that no other elements of code can write
data to the mail server that has not been properly formatted.

©2001 CRC Press LLC

Simple objects may not require private methods to accomplish their jobs. A
simple object such as vector does not require a private method to determine its
magnitude. In our implementation, private methods are only necessary if they sim-
plify code readability of a public method. There are a number of places where this
is desirable. In our GPIB Instrument class, public methods would store the strings
needed to send a given command. The common ground between all the public
methods would be the need to send a string through the GPIB bus. A Write VI can
be made as a private method so you do not need to place GPIB write commands
and addressing information in each of the VIs. This can be done in the single private
method and dropped into public methods.

10.7 EXAMPLE, DEVELOPING INSTRUMENT DRIVERS

This section will develop several instrument drivers to illustrate the benefits of object
modeling in LabVIEW. This technique works very well with SCPI instruments. SCPI
command sets are modularized and easily broken down into class templates. Object-
based instruments can be considered alternatives to standard instrument drivers and
IVI Instruments. Our first example will concentrate on power supplies, specifically
one of the IVI-based instruments.

A simple object model for a power supply would have the core definition of a
power supply. It would be fair to assume that GPIB controllers will control a vast
majority of power supplies. It would make sense to reuse the core GPIB Instrument
class to control GPIB behavior. This design will use a one-class-fits-all approach.
In a true object-oriented implementation, it would make sense to have a power supply
abstract base class that defines voltage and current limit properties. In addition to
the current limit property, we will be supplying a read only property: current. This
will allow users to read the current draw on the supply as a property. Since we are
adding object implementations to a non-object-oriented language, many of the
advantages of abstract base classes do not apply. Instead, we will define the methods
and properties that are used by the vast majority of power supplies and implement
them with the addition of a model property. This technique will work well for simple
instruments, but complex instruments such as oscilloscopes would be extremely
difficult. Multiple combinations of commands that individual manufacturer’s scopes
would require to perform common tasks would be an involving project, which it is
for the IVI Foundation.

The purpose of the Model property is to allow users to select from an enumerated
list of power supplies that this class supports. Internally, each time a voltage or
current is set, a Select VI will be used to choose the appropriate GPIB command
for the particular instrument model. From a coding standpoint, this is not the most
efficient method to use to implement an instrument driver, but the concepts of the
objects are made clear.

The first step in this object design is to determine which properties go inside the
cluster Typedef for this class. Obvious choices are values for current limit and voltage.
This will allow the power supply driver to provide support for caching of current
limit and voltage. No values will be retained for the last current measurement made;
we do not want to cache that type of information because current draw is subject to

©2001 CRC Press LLC

large changes and we do not want to feed old information back to a user. Other values
that need to be retained in this class are the strings for the parent classes, GPIB
Instrument, and IEEE 488.2 Instrument. The cluster definition is shown in Figure
10.21. The constructor for power supply will call the constructor for IEEE 488.2
Instrument. We need to retain a handle for this object, which will take the GPIB
address information as an argument. The GPIB addressing information does not need
to be retained in the Typedef for power supply. The IEEE 488.2 Instrument will, in
turn, call the constructor for GPIB Instrument, which takes the GPIB address infor-
mation to its final destination, the VISA handle it is used to generate.

The Constructor VI for the power supply takes several inputs: the GPIB board
number, GPIB primary address, GPIB secondary address, and the power supply
model. The power supply constructor will then call the constructor for the IEEE
488.2 Instrument. Since we have a higher base class, the IEEE 488.2 Instrument
will call the constructor for the GPIB Instrument class. This class will initialize the
VISA session and return a string burying this information from users and lower
classes. This defensive programming restricts anyone from using this handle in a
mechanism that is not directly supported by the base class. Constructor functions
for each of the three classes in the chain are shown in Figure 10.22.

The next items that need to be developed are the Get and Set VIs for the
properties’ voltage and current. Get and Set methods will be supplied for voltage
and current limits, but only a Get command needs to be supplied for the current
draw property. Current draw is actually a measurement, but from an object design
standpoint it is easily considered to be a property. Set Voltage is shown in Figure
10.23. The Get Current Draw method is shown in Figure 10.24.

We are not supplying Get or Set functions for the GPIB address or instrument
model information. It is not likely that a user will switch out power supplies or
change addressing information at run-time, so we will not support this type of
operation. It is possible to supply a Set Address method that would close off the
current VISA handle and create a new GPIB Instrument class to reflect the changes.
This sounds like an interesting exercise for the reader, and it appears in the exercises
at the end of this chapter.

One issue that we face is the lack of inheritance in our classes. The code to
support inherited methods is somewhat bulky and limiting. The GPIB Write com-
mands need to propagate from power supply to IEEE 488.2 Instrument to GPIB
Instrument. This is a fairly large call chain for an act of writing a string to a GPIB
bus. The wrapper VIs do not take a significant amount of time to write, but larger

FIGURE 10.21

©2001 CRC Press LLC

instruments with several hundred commands could require several hundred wrappers,
which would take measurable engineering time to write and is a legitimate problem.
In true object-oriented languages, the inherited functions are handled in a more
elegant fashion.

The two interaction diagrams presented in Figures 10.25 and 10.26 show the
sequence of VI calls needed to set the voltage of the power supply. The first diagram

FIGURE 10.22

FIGURE 10.23

©2001 CRC Press LLC

shows what happens when the Voltage Set method gives a value equal to the
currently-cached voltage. The function simply returns without issuing the command.
The second diagram shows that the Voltage Set method had an argument other than
the currently-cached command and triggers the writing of a command to the GPIB
instrument class.

In the next example, we consider a more complicated instrument. This example
will introduce another concept in programming, “Friend classes.” Friend classes are
the scourge of true object-oriented purists, but they present shortcuts to solving some
of our implementation problems.

10.7.1 C

OMPLEX

 I

NSTRUMENT

DESIGNS

In this example we will implement the communications analyzer we performed the
object analysis on in Section 10.3. Now that we understand how our object imple-
mentation works in LabVIEW, we can review some of the analysis decisions and
move forward with a usable driver.

FIGURE 10.24

FIGURE 10.25

©2001 CRC Press LLC

Some limitations arose in the power supply example we did previously, and we
will need to address these limitations. First, power supplies are generally simple
instruments on the order of 20 GPIB commands. Modern communications analyzers
can have over 300 instrument commands and a dizzying array of screens to select
before commands can be executed. The one driver model for a group of instruments
will not be easily implemented; in fact, the IVI Foundation has not addressed
complex test instruments at this time. The matrix of command combinations to
perform similar tasks across different manufacturer’s instruments would be difficult
to design, and an amazing amount of work to implement. In other words, standard-
izing complex instruments is a significant undertaking, and it is not one that the
industry has completely addressed. It is also not a topic we should address.

The object analysis presented in Section 10.3 works very well in object-oriented
languages. Our implementation does have some problems with inheritance, and we
will have to simplify the design to make implementation easier. Abstract classes for
the analyzers and generators have a single property and a handful of pure virtual
methods. Since virtual methods are not usable in our implementation, we will remove
them. We will still make use of the IEEE 488.2 class and the GPIB Instrument class.
The object hierarchy is greatly simplified. The communications analyzer descends
from IEEE 488.2 Instrument, which is a natural choice. The generators, RF and AF,
appear on the left side of the communications analyzer. This is an arbitrary choice
since there is no special significance to this location. The analyzers appear on the
right. The arrow connecting the communications analyzer to the component objects
denotes aggregation. Recall that aggregated classes are properties of the owning
class; they do not exist without the owning class. This is a natural extension of the
object model; this model reflects the real configuration of the instrument. At this
point we can claim a milestone in the development: the object analysis is now
complete.

FIGURE 10.26

©2001 CRC Press LLC

Hewlett Packard’s HP-8920A communications analyzer will be the instrument
that is implemented in this design. We are not endorsing any manufacturer’s instru-
ments in this book; its standard instrument driver appears on the LabVIEW CDs
and allows us to easily compare the object-based driver to the standard driver.

The next difficulty that we need to address is the interaction between the aggregated
components and the communications analyzer. This example will implement a rela-
tively small subset of the HP-8920’s entire command set. This command set is approx-
imately 300 commands. Each component object has between 20 and 50 commands.
A significant number of wrapper VIs need to be implemented since the aggregated
components are private data members. This author is not about to write 300 VIs to
prove an example and is not expecting the readers to do the same. We will need to
find a better mechanism to expose the aggregate component’s functionality to outside
the object. The solution to this particular problem is actually simple. Since the analyzers
and generators are properties of the communications analyzer, we can use Get methods
to give programmers direct access to the components. This does not violate any of our
object-oriented principals, and eliminates the need for several hundred meaningless
VIs. Figure 10.27 shows the list of the properties and methods the communications
analyzer has. Properties and methods with a lock symbol next to them are private
members and may only be accessed directly by the class itself.

Now that we have a basic design down for the core object, it is time to examine
a small matter of implementation. Since we will give programmers access to the
analyzers and generators, it stands to reason that the programmers will set properties
and expect the components to send GPIB commands to the physical instrument.
Reexamining the class hierarchy shows us that we do not have the ability to access
the GPIB Instrument class directly from the generator and analyzers because they
do not derive from GPIB Instrument. This presents a problem that needs to be
resolved before we proceed with the design.

We require that the component objects be capable of accessing the GPIB Read
and Write methods of the communications analyzer. It does not make sense to have
each of the components derive from the communications analyzer — this does not
satisfy the “is a” relationship requirement for subclasses. In other words, the phrase,
“an RF generator ‘is a’ communications analyzer,” is not true. Having the component
objects derive from the communications analyzer is not a solution to this problem.

We can give the component objects a property for the communications analyzer.
Then they can invoke its GPIB Write method. This solution does not realize the

FIGURE 10.27

©2001 CRC Press LLC

class hierarchy we developed in the object analysis phase, either. It is possible to
go back and change the class hierarchy, but now we do not satisfy the “has a”
requirement for aggregated components. An audio generator “has a” communications
analyzer is not a true statement and, therefore, having a property of a communications
analyzer does not make much sense.

Since none of our solutions thus far make it in our given framework, we will
need to expand it somewhat. An RF analyzer is a component in a communications
analyzer and it does have access to the onboard controller (more or less). When
performing an object analysis and design, it often helps to have the objects interact
and behave as the “real” objects do. For the communications analyzer to give access
to the GPIB Read and Write methods would violate the encapsulation rule, but it
does make sense as it models reality. The keyword for this type of solution in C++
is called “friend.” The friend keyword allows another class access to private methods
and properties. We have not discussed it until this point because it is a technique
that should be used sparingly. Encapsulation is an important concept and choosing
to violate it should be justified. Our previous solutions to GPIB Read and Write
access did not make much sense in the context of the problem, but this solution fits.
In short, we are going to cheat and we have a legitimate reason for doing so. The
moral to this example is to understand when violating programming rules makes
sense. Keywords such as friend are included in languages like C++ because there
are times when it is reasonable to deviate from design methodologies.

Now that we have the mechanism for access to the GPIB board well understood,
we can begin implementation of the methods and properties of the component
objects. We shall begin with the audio generator. Obvious properties for the audio
generator are Frequency, Enabled, and Output Location. We will assume that users
of this object will only be interested in generating sinusoids at baseband. Enabled
indicates whether or not the generator will be active. Output Location will indicate
where the generator will be directing its signal. Choices we will consider are the
AM and FM modulators and Audio Out (front panel jacks to direct the signal to an
external box). The last property that we need to add to the component is one for
GPIB Instrument. Since the communications analyzer derives from IEEE 488.2
Instrument, we do not have direct access to the GPIB Instrument base class. It will
suffice to have the IEEE 488.2 Instrument as a property.

Methods for the audio generator will be primarily Get and Set methods for the
Frequency, Enabled, and Output Location properties. Programmers have a need to
change and obtain these properties. Since this component borrowed the information
regarding the GPIB bus, it is not appropriate to provide a Get method to IEEE 488.2
Instrument. A Set method for IEEE 488.2 Instrument does not make much sense
either. The audio generator is a component of a communications analyzer and cannot
be removed and transferred at will. The IEEE 488.2 Instrument property must be
specified at creation as an argument for the constructor. The complete list of prop-
erties and methods for the audio generator appear in Figure 10.28.

The two last issues to consider for the audio generator are the abilities to cache
and validate its property values. This is certainly possible and desirable. We will
require the Set methods to examine the supplied value against that last value supplied.
We also need to consider that the values supplied to amplitude are relative to where

©2001 CRC Press LLC

the generator is routing its output. A voltage is used for the audio out jacks, where
FM deviation is used when the signal is applied to the FM modulator. When a user
supplies an amplitude value, we need to validate that it is in a range the instrument
is capable of supporting. This is not a mission-critical, show-stopping issue; the
instrument will limit itself and generate an error, but this error will not be propagated
back to the user’s code. It makes more sense to have the object validate the inputs
and generate an error when inputs are outside of acceptable ranges. RF generator
will be subjected to similar requirements.

Last is the destructor for the function. Most of the properties are primitive,
floating-point numbers and do not require a destructor. The IEEE 488.2 property
has an embedded handle to a VISA session. It would make sense for the control to
clean this up before it exits. In this case it is undesirable for the component objects
to clean up the VISA handle. A total of five components have access to this property,
and only one of them should be capable of destroying it. If we destroy the VISA
handle in this object, it will be impossible to signal the other components that the
GPIB interface is no longer available. Since this component has “borrowed” access
to the GPIB object, it stands to reason that only the communications analyzer object
should have the ability to close out the session. Therefore, this object does not need
a destructor; everything including the GPIB object property can simply be released
without a problem. We must be certain, however, that the destructor for the com-
munications analyzer terminates the VISA session.

The audio and RF generators have a fair amount in common, so it is appropriate
to design the RF generator next. The RF generator will need to have an IEEE 488.2
property that is assigned at creation, like the audio generator. In addition, the RF
generator will require a Frequency, Amplitude, and Output Port property. Without
rewriting the justification and discussion for the audio generator, we will present the
object design for the RF generator in Figure 10.29.

Next on the list will be the audio analyzer. This component will not have any
cached properties. The Get methods will be returning measurements gathered by
the instrument. Caching these types of properties could yield very inaccurate results.
The IEEE 488.2 Instrument will be a property that does not have a Get or Set method;
it must be specified in the constructor. The audio analyzer will need a property that
identifies where the measurement should be taken from. Measurements can be made
from the AM and FM demodulator in addition to the audio input jacks. Measurements

FIGURE 10.28

©2001 CRC Press LLC

that are desirable are Distortion, SINAD, and Signal Level (Voltage). The Distortion
and SINAD measurements will be made only from the demodulator, while the Signal
Level measurement can only be made at the audio input jacks. These are require-
ments for this object.

The object should change the measurement location property when a user
requests a measurement that is not appropriate for the current setting. For example,
if a user requests the Signal Level property when the measurement location is
pointing at the FM demodulator, the location property should be changed to Audio
In before the measurement is performed. Measurement location can and should be
a cached property. Since measurement location is the only cached property, it is the
only one of the measurement properties that should be included in this class. SINAD,
Distortion, and Signal Level will not be stored internally, and there is no reason why
they need to appear in the cluster Typedef. The list of properties and methods for
this class appears in Figure 10.30.

The analysis and design for the RF analyzer will be very similar to the audio
analyzer. All measurement-related properties will not be cached, and the IEEE 488.2
method will not be available to the user through Get and Set methods. The properties
that users will be interested in are Power Level,

x

, and

y

. Object Analysis is pretty
much complete. The logic regarding the design of this component follows directly
from the preceding three objects. The class diagram appears in Figure 10.31.

Now that we have a grasp on what properties and methods the objects have
available, it is time to define their interactions. A short series of interaction diagrams
will complete the design of the communications analyzer. First, let’s consider con-
struction of this object. The constructor will need to create the four component
objects in addition to the IEEE 488.2 Instrument. Component constructors will be
simple; they do not need to call other subVIs to execute. The IEEE 488.2 Instrument
needs to call the constructor for GPIB Instrument. Sequentially, the communications
analyzer constructor will need to call the IEEE 488.2 constructor first; this property
is handed to the component objects. The IEEE 488.2 constructor will call GPIB
Instrument’s constructor, and, lastly, the other four component constructors’ can be
called in any order. The sequence diagram for this chain of events is presented in
Figure 10.32.

FIGURE 10.29

©2001 CRC Press LLC

FIGURE 10.30

FIGURE 10.31

FIGURE 10.32

©2001 CRC Press LLC

Figure 10.33 and 10.34 depict how the audio generator should behave when the
audio generator’s Set Frequency method is invoked. First, we will consider the call
chain that should result when the new frequency value is equal to the old value. The
method should determine that the property value should not be altered and the
function should simply return. Figure 10.33 shows this interaction. Secondly, when
the property has changed and we need to send a command to the physical instrument,
a nontrivial sequence develops. First is the “outside” object placeholder. Set Fre-
quency will then call IEEE 488.2’s Write method to send the string. IEEE 488.2
will, in turn, call GPIB Instrument to send the string. This is a fairly straightforward
call stack, but now that we have a description of the logic and sequence diagram
there is absolutely no ambiguity for the programming. Figure 10.34 shows the second
call sequence. Most of the call sequences for the other methods and properties follow
similar procedures.

Now that each class, property, and method have been identified and specified in
detail, it is time to complete this example by actually writing the code. Before we
start writing the code, an e-mail should be sent to the project manager indicating
that another milestone has been achieved. Writing code should be fun. Having a
well-documented design will allow programmers to implement the design without
having numerous design details creep up on them. Looking at the sequence diagrams,
it would appear that we should start writing the constructors for the component
objects first. Communication analyzer’s constructor requires that these VIs be avail-

FIGURE 10.33

©2001 CRC Press LLC

able, and we have already written and reused the IEEE 488.2 and GPIB Instrument
objects. Audio generator’s constructor diagram appears in Figure 10.35. The other
constructors will be left to the exercises at the end of the chapter. Using skeleton
VIs for these three constructors, we are ready to write the communication analyzer’s
constructor. The error cluster is used to force order of execution and realize the
sequence diagram we presented in Figure 10.32. So far, this coding appears to be
fairly easy; we are simply following the plan.

In implementing some of the functions for the analyzers and generators, we will
encounter a problem. The Get and Set methods require that a particular screen be
active before the instrument will accept the command. We left this detail out of the
previous analysis and design to illustrate how to handle design issues in the pro-
gramming phase. If you are collecting software metrics regarding defects, this would
be a design defect. Coding should be stopped at this point and solutions should be
proposed and considered. Not to worry, we will have two alternatives.

 One possible solution is to send the command changing the instrument to the
appropriate screen in advance of issuing the measurement command. This is plau-
sible if the extra data on the GPIB bus will not slow the application down consid-
erably. If GPIB bus throughput is not a limiting factor for application speed, this is
the easiest fix to put in. Changes need to be made to the description of logic and
that is about it. We can finish the coding with this solution.

Another alternative is to include a screen property in the communications ana-
lyzer object. This property can cache information regarding which screen is active.

FIGURE 10.34

©2001 CRC Press LLC

If this is the case, programmers can Get/Set Screen before invoking the methods of
the component objects. This will require us to go back and change all the sequence
diagrams, the property list of communications analyzer, and document that users
are responsible for the status of the screen.

The last alternative is to have communications analyzer define a global variable
that all the component objects can access to check the status of the physical instru-
ment’s screen. This solution is going to be tossed out because it is a “flagrant
technical foul” according to the object-oriented programming paradigm. Global data
such as this can be accessed by anyone in any location of the program. Defensive
programming is compromised and there is no way for the component objects to
validate that this variable accurately reflects the state of the physical instrument.
Having considered these three alternatives, we will go with the first and easiest
solution. Measurement settling times will be orders of magnitude longer than the
amount of time to send the screen change command. The transit time for the screen
command is close to negligible for many applications. With this simple solution we
present Figure 10.36, the code diagram for setting the audio generator’s frequency.
Remaining properties are implemented in a similar fashion.

FIGURE 10.35

FIGURE 10.36

©2001 CRC Press LLC

10.8 OBJECT TEMPLATE

Many of the VIs that need to be implemented for an object design need to be custom
written, but we can have a few standard templates to simplify the work we need to
do. Additionally, objects we have written will begin to comprise a “trusted code
base.” Like other collections of VIs, such as instrument drivers, a library of VIs will
allow us to gain some reduction in development time by reuse. The template VIs
built in this section are available on the companion CD.

The template for constructors needs to be kept simple. Since each constructor
will take different inputs and use a different Typedef cluster, all we can do for the
boilerplate is get the Flatten to String and Output terminals wired. Each constructor
should return a string for the object and an error cluster. Simple objects such as our
geometric shapes may not have any significant error information to return, but
complex classes that encapsulate TCP conversations, Active X refnums, or VISA
handles would want to use the error cluster information. Figure 10.37 shows the
template constructor.

Get properties will be the next template we set up. We know that a string will
be handed into the control. It will unflatten the string into the Typedef cluster and
then access the property. This operation can be put into a VI template. It will not
be executable, since we do not know what the Typedef cluster will be in advance,
but a majority of the “grunt work” can be performed in advance. Since return types
can be primitive or complex data types, we will build several templates for the more
common types. Figure 10.38 shows the Get template for string values. This template
will be useful for returning aggregated objects in addition to generic strings. Error
clusters are used to allow us to validate the string reference to the object.

Set property templates will work very much like Get templates. Since we do
not have advance information about what the cluster type definition will be, these
VIs will not be executable until we insert the correct type definition. Again, several
templates will be designed for common data types. Error clusters are used to validate
that the string handed into the template is the correct flattened cluster.

FIGURE 10.37

©2001 CRC Press LLC

10.9 EXERCISES

1. An object-based application for employee costs needs to be developed.
Relevant cost items are salary, health insurance, dental insurance, and
computer lease costs.

2. What properties should be included for a signal simulation object? The
application will be used for a mathematical analysis of sinusoidal signals.

3. Construct an object-based instrument driver for a triple-output power
supply based on the example power supply in Section 10.7.

BIBLIOGRAPHY

Bertand Meyer.

 Object-Oriented Software Construction.

 Prentice Hall, 1998

.

FIGURE 10.38

	LabVIEW Advanced Programming Techinques
	Preface and Acknowledgments
	The Authors
	Contents
	Chapter 1: Introduction to LabVIEW
	LabVIEW Advanced Programming Techinques
	Contents
	Chapter 1: Introduction to LabVIEW
	1.1 Virtual Instruments
	1.1.1 The Front Panel
	1.1.2 Block Diagram
	1.1.3 Executing VIs
	1.1.4 LabVIEW File Extensions

	1.2 Help
	1.2.1 Built-in Help
	1.2.2 Web Sites

	1.3 Data Flow Programming
	1.4 Menus and Palettes
	1.5 Front Panel controls
	1.5.1 Numeric
	1.5.2 Boolean
	1.5.3 String & Table
	1.5.4 List & Ring
	1.5.5 Array & Cluster
	1.5.6 Graphs and Charts
	1.5.7 Path & Refnum

	1.6 Block Diagram Functions
	1.6.1 Structures
	1.6.1.1 Sequence Structure
	1.6.1.2 Case Structure
	1.6.1.3 For Loop
	1.6.1.4 While Loop
	1.6.1.5 Formula Node

	1.6.2 Numeric, Boolean, String, and Comparison
	1.6.3 Array and Cluster
	1.6.4 Time & Dialog
	1.6.5 File I/O
	1.6.6 Instrument I/O, Data Acquisition, and Communication
	1.6.7 Creating Connectors
	1.6.8 Editing Icons
	1.6.9 Using SubVIs
	1.6.10 VI Setup
	1.6.11 Hierarchical nature

	1.7 Setting Preferences
	1.7.1 Paths
	1.7.2 Block Diagram
	1.7.3 History
	1.7.4 VI Server and Web Server
	1.7.5 Palettes

	Bibliography

	Chapter 2: LabVIEW Features
	LabVIEW Advanced Programming Techinques
	Contents
	Chapter 2: LabVIEW Features
	2.1 Global and Local Variables
	2.2 Customizing Controls
	2.2.1 Custom Controls
	2.2.2 Type Definitions
	2.2.3 Strict Type Definitions

	2.3 Attribute Nodes
	2.4 Reentrant VIs
	2.5 Libraries (.llb)
	2.6 File Manager
	2.7 Web Server
	2.8 Web Document Tool
	2.9 Instrument Wizard
	2.10 Profile Window
	2.11 Auto SubVI Creation
	2.12 Graphical Comparison Tools
	2.12.1 Compare VIs
	2.12.2 Compare VI Hierarchies
	2.12.3 SCC Compare Files

	2.13 Report Generation Palette
	2.14 Application Builder
	2.15 Sound VIs
	2.16 Application Control
	2.16.1 VI Server VIs
	2.16.2 Menu VIs
	2.16.3 Help VIs
	2.16.4 Other Application Control VIs

	2.17 Advanced Palette
	2.17.1 Data Manipulation
	2.17.2 Calling External Code
	2.17.3 Synchronization

	2.18 Source Code Control
	2.18.1 Configuration
	2.18.2 Adding and Modifying Files
	2.18.3 Advanced Features

	2.19 Graphs
	2.19.1 Standard Graphs
	2.19.2 3-D Graphs
	2.19.3 Picture Graphs

	2.20 Data Logging
	2.21 Find Feature
	2.22 Print Documentation
	2.23 VI History
	2.24 Key Navigation
	Bibliography

	Chapter 3: State Machines
	LabVIEW Advanced Programming Techinques
	Contents
	Chapter 3: State Machines
	3.1 Introduction
	3.1.1 State Machines in LabVIEW
	3.1.2 When to Use a State Machine
	3.1.3 Types of State Machines

	3.2 EnumerateD Types and Type Definitions
	3.2.1 Type Definitions Used with State Machines
	3.2.2 Creating Enumerated Constants and Type Definitions
	3.2.3 Converting between Enumerated Types and Strings
	3.2.4 Drawbacks to Using Type Definitions and Enumerated Controls

	3.3 Sequence-style state machine
	3.3.1 When to Use a Sequence-Style State Machine
	3.3.2 Example

	3.4 Test executive style state machine
	3.4.1 When to Use a Test Executive Style State Machine
	3.4.2 Recommended States for a Test Executive State Machine
	3.4.3 Determining States for Test Executive State Machines
	3.4.4 Example

	3.5 Classical-style state machine
	3.5.1 When to Use a Classical Style State Machine
	3.5.2 Example

	3.6 Queued-style state machine
	3.6.1 When to Use the Queued-Style State Machine
	3.6.2 Example Using LabVIEW Queue Functions
	3.6.3 Example Using an Input Array

	3.7 Drawbacks to using state machines.
	3.8 Recommendations and suggestions
	3.8.1 Documentation.
	3.8.2 Ensure Proper Setup
	3.8.3 Error, Open, and Close States
	3.8.4 Status of Shift Registers
	3.8.5 Typecasting an Index to an Enumerated Type
	3.8.6 Make Sure You Have a Way Out

	3.9 Problems
	3.9.1 The Blackjack Example
	3.9.2 The Test Sequencer Example
	3.9.3 The PC Calculator Example

	Bibliography

	Chapter 4: Application Structure
	LabVIEW Advanced Programming Techinques
	Contents
	Chapter 4: Application Structure
	4.1 Planning
	4.2 Purpose of structure
	4.3 Software models
	4.3.1 The Waterfall Model
	4.3.2 The Spiral Model
	4.3.3 Block Diagrams
	4.3.4 Description of Logic

	4.4 Project Administration
	4.5 Documentation
	4.5.1 LabVIEW Documentation
	4.5.2 Printing LabVIEW Documentation
	4.5.3 VI History

	4.6 The Three-Tiered Structure
	4.7 Main Level
	4.7.1 User Interface
	4.7.1.1 User Interface Design
	4.7.1.2 Attribute Node Examples
	4.7.1.3 Customizing Menus

	4.7.2 Exception-Handling at the Main Level

	4.8 Second Level — Test Level
	4.9 Bottom Level – Drivers
	4.10 Style Tips
	4.10.1 Sequence Structures
	4.10.2 Nested Structures
	4.10.3 Drivers
	4.10.4 Polling Loops
	4.10.5 Array Handling

	4.11 Summary
	Bibliography

	Chapter 5: Drivers
	LabVIEW Advanced Programming Techinques
	Contents
	Chapter 5: Drivers
	5.1 Communication Standards
	5.1.1 GPIB
	5.1.2 Serial Communications
	5.1.3 VXI Discussion
	5.1.4 VISA Definition
	5.1.5 DDE
	5.1.6 OLE
	5.1.7 TCP/IP
	5.1.8 DataSocket
	5.1.9 DAQ
	5.1.10 File I/O
	5.1.11 Code Interface Node and Call Library Function

	5.2 Driver classifications
	5.2.1 Configuration Drivers
	5.2.2 Measurement Drivers
	5.2.3 Status Drivers

	5.3 Inputs/Outputs
	5.4 Error Handling
	5.5 NI Spy
	5.5.1 NI Spy Introduction
	5.5.2 Configuring NI Spy
	5.5.3 Running NI Spy

	5.6 Driver Guidelines
	5.7 Reuse and Development reduction
	5.8 Driver Example
	5.9 IVI Drivers
	5.9.1 Five Classes of IVI Drivers
	5.9.2 Interchangeability
	5.9.3 Simulation
	5.9.4 State Management
	5.9.5 IVI Driver Installation
	5.9.6 IVI Configuration
	5.9.7 How to Use IVI Drivers
	5.9.8 IVI Virtual Bench
	5.9.9 IVI Driver Example

	Bibliography

	Chapter 6: Exception Handling
	LabVIEW Advanced Programming Techinques
	Contents
	Chapter 6: Exception Handling
	6.1 Exception Handling Defined
	6.2 Types of Errors
	6.2.1 I/O Errors
	6.2.2 Logical Errors

	6.3 Built-in Error Handling
	6.3.1 Error Cluster
	6.3.2 Error Codes
	6.3.3 VISA Error Handling
	6.3.4 Simple Error Handler
	6.3.5 General Error Handler
	6.3.6 Find First Error

	6.4 Performing Exception Handling
	6.4.1 When?
	6.4.2 Exception-Handling at Main Level
	6.4.3 Programmer-Defined Errors
	6.4.4 Managing Errors
	6.4.5 State Machine Exception Handling
	6.4.6 Logging Errors
	6.4.7 External Error Handler
	Example:

	6.4.8 Proper Exit Procedure
	6.4.9 Exception Handling Example

	6.5 Debugging Code
	6.5.1 Error List
	6.5.2 Execution Highlighting
	6.5.3 Single-Stepping
	6.5.4 Probe Tool
	6.5.5 Breakpoint Tool
	6.5.6 Suspending Execution
	6.5.7 Data Logging
	6.5.8 NI Spy/GPIB Spy
	6.5.9 Utilization of Debugging Tools

	6.6 Summary
	Bibliography

	Chapter 7: ActiveX
	LabVIEW Advanced Programming Techinques
	Contents
	Chapter 7: ActiveX
	7.1 Introduction to OLE, COM, and ActiveX
	7.1.1 Definition of Related Terms
	7.1.1.1 Properties and methods
	7.1.1.2 Interfaces
	7.1.1.3 Clients and Servers
	7.1.1.4 In-Process and Out-of-Process

	7.2 COM
	7.2.1 The Variant
	7.2.2 Problems that COM Addresses
	7.2.3 In-Process and Out-of-Process COM Objects
	7.2.4 COM Object Identification
	7.2.5 How COM Objects are Called and Used

	7.3 OLE
	7.3.1 Origins and Applications

	7.4 ActiveX
	7.4.1 Description of ActiveX
	7.4.2 ActiveX Definitions
	7.4.2.1 ActiveX Technologies
	7.4.2.2 ActiveX Terminology

	7.4.3 Events
	7.4.4 Containers
	7.4.5 How ActiveX Controls Are Used

	7.5 LabVIEW and ActiveX
	7.5.1 The LabVIEW ActiveX Container
	7.5.1.1 Embedding Objects
	7.5.1.2 Inserting ActiveX Controls and Documents

	7.5.2 The ActiveX/OLE palette
	7.5.2.1 Automation Open and Close
	7.5.2.2 The Property Node
	7.5.2.3 The Invoke Node
	7.5.2.4 To G Data (Variants)
	7.5.2.5 Using the Container versus Automation

	7.5.3 Event Support in LabVIEW 5.1
	7.5.3.1 List Event Descriptions
	7.5.3.2 ActiveX Event Queues

	7.5.4 LabVIEW as ActiveX Server

	7.6 The VI Server
	Bibliography

	Chapter 8: ActiveX Examples
	LabVIEW Advanced Programming Techinques
	Contents
	Chapter 8: ActiveX Examples
	8.1 Common Dialog Control
	8.2 Progress Bar Control
	8.3 Microsoft Calendar Control
	8.4 Web Browser Control
	8.5 Microsoft Scripting Control
	8.6 Microsoft Winsock Control
	8.6.1 Using Winsock Control with TCP
	8.6.2 Using Winsock Control with UDP
	8.6.3 Using Winsock in Client Applications
	8.6.4 Using Winsock in Server Applications
	8.6.5 Using Winsock for Multiple-Connection Servers

	8.7 Microsoft System Information Control
	8.8 Microsoft MAPI services
	8.9 MAPI Messages Control
	8.10 Microsoft Status Bar Control
	8.11 Microsoft Tree View Control
	8.12 Microsoft Agent
	8.12.1 Request Objects — First Tier
	8.12.2 Other First-Tier Controls
	8.12.3 The Characters Object
	8.12.4 The Character Control

	8.13 Registry Editing Control
	8.14 Controlling Microsoft Word
	8.15 Microsoft Access Control
	8.16 Controlling LabVIEW from Other Applications
	8.17 Understanding ActiveX Error Codes
	8.18 Controls that do not work well with LabVIEW
	8.19 Advanced ActiveX details

	Chapter 9:Multithreading in LabVIEW
	LabVIEW Advanced Programming Techinques
	Contents
	Chapter 9: Multithreading in LabVIEW
	9.1 Multithreading Terminology
	9.1.1 Win32
	9.1.2 UNIX
	9.1.3 Multitasking
	9.1.3.1 Preemptive Multithreading

	9.1.4 Kernel Objects
	9.1.5 Thread
	9.1.6 Process
	9.1.7 Application
	9.1.8 Priority
	9.1.8.1 How Operating Systems Determine which Threads

	9.1.9 Security
	9.1.10 Thread Safe

	9.2 Thread Mechanics
	9.2.1 Thread States
	9.2.2 Scheduling Threads
	9.2.3 Context Switching

	9.3 Win32 Multithreading
	9.4 Pthreads
	9.5 Multithreading Problems
	9.5.1 Race Conditions
	9.5.2 Priority Inversion
	9.5.3 Starvation
	9.5.4 Deadlocking
	9.5.5 Operating System Solutions

	9.6 Multithreading Myths
	9.6.1 The More Threads, the Merrier
	9.6.2 Always Makes My Program Run Faster
	9.6.3 Makes Applications More Robust
	9.6.4 Conclusion on Myths

	9.7 Multithreaded LabVIEW
	9.7.1 Execution Subsystems
	9.7.2 The Run Queue
	9.7.3 DLLs in Multithreaded LabVIEW
	9.7.4 Customizing the Thread Configuration

	9.8 Thread Count Estimation for LabVIEW
	9.8.1 Same as Caller or Single Subsystem Applications
	9.8.2 Multiple Subsystem Applications
	9.8.3 Optimizing VIs for Threading
	9.8.4 Using VI Priorities

	9.9 Subroutines in LabVIEW
	9.9.1 LabVIEW Data Types
	9.9.2 When to Use Subroutines

	9.10 Chapter Summary
	Bibliography

	Chapter 10: Object-Oriented Programming in LabVIEW
	LabVIEW Advanced Programming Techinques
	Contents
	Chapter 10: Object-Oriented Programming in LabVIEW
	10.1 What is Object-Oriented?
	10.1.1 The Class
	10.1.2 Encapsulation
	10.1.3 Aggregation
	10.1.4 Inheritance
	10.1.5 Polymorphism

	10.2 Objects and Classes
	10.2.1 Methods
	10.2.1.1 Special Method — Constructor
	10.2.1.2 Special Method — Destructor

	10.2.2 Properties

	10.3 Object Analysis
	Example 1:
	Solution 1:
	Solution 2:
	Solution 3:
	Example 2:
	Example 3:

	10.4 Object Design
	10.4.1 Container Classes
	10.4.2 Abstract Classes

	10.5 Object Programming
	10.6 Developing Objects in LabVIEW
	10.6.1 Properties
	10.6.2 Constructors
	Example 10.6.1
	Solution:

	10.6.3 Destructors
	Example 10.6.2
	Solution:

	10.6.4 Methods
	10.6.4.1 Public Methods
	10.6.4.2 Private Methods

	10.7 Example, developing instrument drivers
	10.7.1 Complex Instrument designs

	10.8 Object Template
	10.9 Exercises
	Bibliography

