

Kotlin

Kotlin is a free and open-source general-purpose programming language
that is mostly used to create Android apps. Kotlin was developed by
JetBrains initially and later picked up by Google as the language of choice
for its Android platform. Over the past few years, Kotlin has become one of
the most popular alternatives to Java language and is used by more than 80
percent of Android app developers.

Kotlin is a statically typed, advanced programming language that compiles
Kotlin code into Java byte-code and runs on a Java Virtual Machine (JVM).
It can also be compiled to native executables and JavaScript source code. It
is an object-oriented programming language that includes data types,
operators, I/O comments, control statements, functions, classes, object
expressions, and constructors, among other features. It is not a standalone
programming language; rather, is an innovative manner of coding that runs
on Java.

Kotlin is a versatile language with some interesting and cool features like
compatibility, low runtime, and efficient coding characteristics. The
features that help distinguish Kotlin from other languages are its reliability,
tool support, and interoperability. It is a simplified version of Java that is
much easier to deal with.

Why Should You Learn Kotlin?
The popularity of Kotlin is growing, and it will continue to do so in the
coming years. Kotlin has always been, and will continue to be, a cutting-
edge programming language that best meets the needs of real professionals.

Many emerging fields, including mobile, online gaming, server-side, cloud
development, data science, and education, are progressively using Kotlin.

All of this indicates that there is already a high demand for Kotlin
developers, and that demand will continue to grow in the future.
Furthermore, if you are looking to build native Android apps, Kotlin is the
language that you should be using.

Kotlin
The Ultimate Guide

Edited by
Sufyan bin Uzayr

First edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their
use. The authors and publishers have attempted to trace the copyright holders of all material
reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access
www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk

Trademark Notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Bin Uzayr, Sufyan, author.
Title: Kotlin : the ultimate guide / Sufyan bin Uzayr.
Description: First edition. | Boca Raton : CRC Press, 2023. | Includes bibliographical
references and index.
Identifiers: LCCN 2022025675 (print) | LCCN 2022025676 (ebook) | ISBN
9781032311708 (hardback) | ISBN 9781032311692 (paperback) | ISBN 9781003308447
(ebook)
Subjects: LCSH: Android (Electronic resource) | Kotlin (Computer program language) |
Application software--Development. | Mobile apps--Development. | Java (Computer
program language)
Classification: LCC QA76.73.K68 B56 2023 (print) | LCC QA76.73.K68 (ebook) | DDC
005.1/14--dc23/eng/20220917
LC record available at https://lccn.loc.gov/2022025675
LC ebook record available at https://lccn.loc.gov/2022025676

http://www.copyright.com/
mailto:mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov/2022025675
https://lccn.loc.gov/2022025676

ISBN: 9781032311708 (hbk)
ISBN: 9781032311692 (pbk)
ISBN: 9781003308447 (ebk)

DOI: 10.1201/9781003308447

Typeset in Minion
by KnowledgeWorks Global Ltd.

http://dx.doi.org/10.1201/9781003308447

Contents

Acknowledgments
About the Author

CHAPTER 1 ◾ Crash Course in Kotlin

KOTLIN PROGRAMMING LANGUAGE HAS A RICH
HISTORY
FEATURES OF THE KOTLIN PROGRAMMING
LANGUAGE
KOTLIN PROGRAMMING LANGUAGE APPLICATIONS
WHY SHOULD WE STUDY THE KOTLIN
PROGRAMMING LANGUAGE? WHAT ARE THE
BENEFITS OF LEARNING THE KOTLIN
PROGRAMMING LANGUAGE?
DISADVANTAGES OF KOTLIN
WHAT IS THE PURPOSE OF KOTLIN?

Android Development
Back-End Web Development
Full-Stack Web Development
Data Science
Mobile Development for Several Platforms

KOTLIN’S ARCHITECTURE

KOTLIN FRAMEWORKS FOR SERVER-SIDE
DEVELOPMENT
KOTLIN ENVIRONMENT FOR COMMAND LINE SETUP
Intellij IDEA IS USED TO BUILD UP A KOTLIN
ENVIRONMENT
THE FIRST PROGRAM IS WRITTEN IN KOTLIN
KOTLIN DATA TYPES

Number Data Types in Kotlin
Character Data Type in Kotlin
String Data Type in Kotlin
Boolean Data Type in Kotlin
Array Data Type in Kotlin

DATA TYPE CONVERSION IN KOTLIN
OPERATORS IN KOTLIN

Arithmetic Operators in Kotlin
Relational Operators in Kotlin
Assignment Operators in Kotlin
Unary Operators in Kotlin
Logical Operators in Kotlin
Bitwise Operations in Kotlin

BOOLEANS IN KOTLIN
Create Boolean Variables
Boolean Operators in Kotlin
Boolean Expression in Kotlin
and() and or() Functions in Kotlin
Boolean to String

STRINGS IN KOTLIN
String Templates in Kotlin
String Object in Kotlin
String Indexes in Kotlin
String Length in Kotlin
String Kotlin Last Index
String Case Changing
String Concatenation in Kotlin
Trim Characters from the String
Quotes Inside a String
Finding a String Inside a String
Comparing Two Strings
getOrNull() Function in Kotlin
toString() Function in Kotlin

ARRAYS IN KOTLIN
Creating Arrays
Arrays of the Primitive Type
Elements of an Array Can Be Get and Set
Array Length in Kotlin
Loop through an Array
Check if an Element Exists
Distinct Values from the Array
Dropping Elements from the Array
Checking an Empty Array

RANGES IN KOTLIN

Creating Ranges Using the rangeTo() Function
Creating the Ranges Using the .. Operator
Creating the Ranges Using downTo() Operator
step() Function in Kotlin
Range of Characters in Kotlin
reversed() Function in Kotlin
until() Function in Kotlin
The last, first, and step Elements
Filtering Ranges
Distinct Values in Range
Range Utility Functions

FUNCTIONS IN KOTLIN
Built-in Functions in Kotlin
User-Defined Functions
Function Parameters
Return Values
Unit-Returning Functions
Recursive Function in Kotlin
Tail Recursion in Kotlin
Higher-Order Functions
Lambda Function in Kotlin
Inline Function in Kotlin

If-else EXPRESSION IN KOTLIN
if Statement
if-else Statement

if-else Expression in Kotlin as the Ternary Operator
if-else-if Ladder Expression
nested if Expression

while loop IN KOTLIN
do-while loop IN KOTLIN

Method of do-while loop
for loop IN KOTLIN

Iterate across the Range Using a for loop
Using a for loop, Iterate over the Array
Iterate through a String Using the for loop
Iterate over the Collection Using the for loop

KOTLIN when expression
when to Use as a Statement with else
Using when as a Statement in the Absence of an else Branch
when Used as an Expression
In Kotlin, Different Ways to Use a when Block

UNLABELED BREAKS IN KOTLIN
In a while loop, Use of an Unlabeled Break
In a do-while loop, Use of an Unlabeled Break
Use of an Unlabeled Break in a for loop

LABELED BREAKS IN KOTLIN
In a while loop, Using a Labeled Break
In a do-while loop, Using a Labeled Break
Using a Labeled Break in a for loop

KOTLIN UNLABELED CONTINUE
Use of Unlabeled Continues in the while loop

In a do-while loop, Use an Unlabeled Continue
Use of Unlabeled Continues in a for loop

KOTLIN LABELED CONTINUES
Use of Labeled Continues in a while loop
Use of Labeled Continues in a do-while loop
Use of Labeled Continues in a for loop

EXCEPTIONAL HANDLING
Exceptions in Kotlin
Exception Handling in Kotlin
Avoiding NullPointerException
What If We Fail to Deal with Exceptions?
How to Throw an Exception

KOTLIN try-catch block
The try-catch block as an Expression in Kotlin
The final block in Kotlin
Kotlin throw keyword

NESTED try block AND MULTIPLE catch block
Nested try block
Multiple catch block

NULL SAFETY
Nullable and Non-Nullable Sorts in Kotlin
Checking for the null in Conditions
Safe Call operator(?.)
Elvis Operator(?:)
Not null assertion: !! Operator

TYPE CHECKING AND SMART CASTING

Type Checking
Smart Casting
Use of !is Operator

EXPLICIT TYPE CASTING
Unsafe Cast Operator: as
Safe Cast Operator: as?

REGEX AND RANGES
Regular Expressions in Kotlin
Regex Functions

RANGES IN KOTLIN
(..) operator
rangeTo() Function
downTo() Function
Range Using the forEach loop
step()
reverse() Function
Various Predefined Functions in the Range

CHAPTER 2 ◾ OOP in Kotlin

OBJECTS AND CLASSES
Object-Oriented Programming Language

Class
Object

NESTED CLASS AND INNER CLASS IN KOTLIN
Nested Class
Inner Class in Kotlin

Inner-Class Kotlin Program
SETTERS AND GETTERS

Setters and Getters
Program of Default Setter and Getter in Kotlin

Identifiers for Values and Fields
Private Modifier

Setter and Getter with Custom Parameters
CLASS PROPERTIES AND CUSTOM ACCESSORS

Property
Customer Accessors

KOTLIN CONSTRUCTOR
Primary Constructor

Primary Constructor with Initializer Block
The Default Value in the Primary Constructor

Secondary Constructor
VISIBILITY MODIFIERS IN KOTLIN

Public Modifier
Private Modifier
Internal Modifier
Protected Modifier

Overriding the Protected Modifier
Constructor Visibility

INTERFACES IN KOTLIN
Creating Interfaces
Implementing Interfaces
Default Methods and Default Values

Interface Properties
Interface Inheritance
Implementation of Multiple Interfaces

DATA CLASSES
Rules for Creating Data Classes

toString()
copy()
hashCode() and equals()

SEALED CLASSES
KOTLIN ABSTRACT CLASS

Multiple Derived Classes
INHERITANCE IN KOTLIN

Inheritance Use
Primary Constructor for an Inheritance
Secondary Constructor for an Inheritance

Overriding Member Functions and Attributes
Calling Superclass Implementation

COMPOSITION
Substitution Principle of Liskov
Antipatterns of Implementation Inheritance

Inheritance of a Single Implementation
Tight Coupling
Unnecessary Exposure of Superclass APIs
Exploding Numbers of Subclasses
Composition Refactoring

UserMediator Class Is Being Refactored

From Composition to Aggregation
Handling the Exposure Issue
Composition over Inheritance

The Kotlin Method
ENCAPSULATION
POLYMORPHISM
ENCAPSULATION AND PROCEDURAL PROGRAMMING
IN KOTLIN

Example of Procedural Programming
OOP

Tips for Choosing between Procedural and OOP
Procedural
OOP and Encapsulation
Putting Everything Together

CHAPTER 3 ◾ Usability Aspects of Kotlin

NULL SAFETY IN KOTLIN
Nullable and Non-Nullable Types in Kotlin
Nullable Types
Non-Nullable Types
Checking for Null in the Conditions

SMART CAST
Use of is for the Smart Cast
Use of !is for the Smart Cast

UNSAFE AND SAFE CAST OPERATOR
Unsafe Cast Operator: as

Safe Cast Operator: as?
(?:) Elvis Operator

EXTENSION FUNCTION
Extended Library Class Using an Extension Function
Extensions Are Resolved Statically
Nullable Receiver
Companion Object Extensions

OVERLOADING OF THE OPERATOR IN KOTLIN
Unary Operators
Increment and Decrement Operators
Binary Operators
Other Operators

Enum CLASSES IN KOTLIN
Enum Initializing
Enum Properties and Methods
Properties and Functions of the Enum Class
Enums as Anonymous Classes
Usage of when Expression with the Enum Class

KOTLIN GENERICS
Generic Usage in Our Program
Variance
The out Keyword
The in Keyword
Covariance
Contra Covariance
Type Projections

Star Projections

CHAPTER 4 ◾ Kotlin Functional Programming

LAMBDA EXPRESSIONS AND ANONYMOUS
FUNCTIONS IN KOTLIN
LAMBDA EXPRESSION

Inference in Lambda Types
Type Declaration in Lambdas
it: Implicit Name of a Single-Parameter
Returning a Value from a Lambda Expression

ANONYMOUS FUNCTION
Return Type and Parameters
The Distinction between Lambda Expressions and
Anonymous Functions

HIGHER-ORDER FUNCTIONS IN KOTLIN
Higher-Order Function
Returning a Function from a Higher-Order Function

KOTLIN LOCAL FUNCTIONS
SCOPE FUNCTION IN KOTLIN
SCOPE FUNCTIONS

Utilization of Scope Functions
Scope Function Types
Object References
Return Values

KOTLIN COLLECTIONS
Types of Collections

Immutable Collection
Mutable Collection

ArrayList IN KOTLIN
listOf() IN KOTLIN

Indexing List Elements in Kotlin
The First and Last Elements
Iteration Methods for Lists
Sorting the List’s Elements

The Functions contains() and containsAll()
setOf() in Kotlin
Set Indexing
Set Basics

The Functions contains() and containsAll()
mutableSetOf() METHOD IN KOTLIN

Set Indexing
Set the First and Last Element
Traversal in a mutableSet

The Methods contains() and containsAll()
hashSetOf() IN KOTLIN

hashSet Traversal
Indexing in a hashSet

The Functions contains() and containsAll()
mapOf () in Kotlin
Map Size
Empty Map
Get Map Values

Map Contains Keys or Values
Two Values and the Same Key

HashMap IN KOTLIN
HashMap Functions Use
HashMap Time Complexity

CHAPTER 5 ◾ Code Management and Exception
Handling

EXCEPTIONAL HANDLING | TRY, CATCH, THROW, AND
FINALLY

Exceptions in Kotlin
Exception Handling
What If We Don’t Deal with Exceptions?
How to Throw an Exception in Kotlin
NullPointerException Example
How to Avoid NullPointerException

KOTLIN try-catch block
Kotlin try-catch block as an Expression
Kotlin Finally Block
Kotlin throw Keyword

NESTED try block AND MULTIPLE catch block
Nested try block
Multiple catch block

LOGGING IN KOTLIN
The Easiest Kotlin Logging That Could Work
What Is Application Logging?

Using Logback for Kotlin Logging
Add Logback to Our Project
Calling LogBack from Kotlin

Why Log?
What Logging Method Should We Use?
Configuring Logger
Formatting Kotlin Logging Messages
Logging to a File
Setting Kotlin Logging Levels

UNIT TESTING
Simple Android Application
Project Setup
Our First Test
Test Structure
Given Block
When Block
Then Block
Running Test

NOTHING BY KOTLIN: ITS APPLICABILITY IN
GENERICS

Key Points

CHAPTER 6 ◾ Code Optimization Ideas

OPTIMIZATION TIPS
Using Static Layout Imports in Kotlin
Creating POJO Classes in Kotlin

Constructors and Inheritance in Kotlin
Using Lambda Functions in Kotlin
Tail Recursion, Sealed Classes, Local, Infix, Inline Functions,
and More Advanced Kotlin Tips

Local Functions
Infix Functions
Inline Functions
Tail Recursion
Sealed Classes

Some More Helpful Tips
Local Return
Operator Overloading
Lambda Extensions
lateinit
Companion Objects

Tips for Improving Kotlin Compilation Times
General Suggestions
Configuration of Gradle
Configuration of Windows

WRITING SECURE CODE
Set Up Source Code and Tests in Our Android Apps

How Does Kotlin Code Look?
Why Is It Superior to Java?

Adapting an Existing Android Project to Utilize Kotlin
Existing Java Files Can Convert to Kotlin
Writing Tests in the Kotlin

BEST CODING PRACTICES

Accept Immutability
Get Rid of ArrayList and HashMap
Make Use of Functional Constructs
javaClass
String Interpolation
Infer Types
Semantic Test Naming
Safe Operator?
Elvis Throws
List Literals in Annotations
Collection Helpers
No more .equals()
Method Readability – Named Parameters

HOW KOTLIN OUTPERFORMS JAVA IN SOLVING
LONG-STANDING SECURITY ISSUES

Typing, Syntax, and Speed Compared
Null Reference Exceptions Pose Security Risks
Kotlin Has Everything That Java Needs
Finally, There Is More to It Than Simply Null

WHAT EXACTLY IS APPLICATION HARDENING?
What Is the Purpose of Application Hardening?
Is Our Application in Need of Hardening?
Application Hardening Methods
Benefits of Application Hardening
Application Patches

CHAPTER 7 ◾ Kotlin for Android Development

BUILDING ANDROID Apps IN KOTLIN
Download and Install Android Studio
Create Our First Project

EXPLORE LAYOUT EDITOR
ADD COLOR RESOURCES
ADD VIEWS AND CONSTRAINTS
CHANGE THE LOOK OF THE BUTTONS AND THE
TextView
BENEFITS OF KOTLIN FOR ANDROID App
DEVELOPMENT

The Benefits of Kotlin-Based Android App Development
INTEGRATE in-app REVIEWS

Set Up Our Development Environment
Create ReviewManager
Request ReviewInfo Object
Launch in-app Review Flow

APPRAISAL

CHEAT SHEET

BIBLIOGRAPHY

INDEX

Acknowledgments

There are many people who deserve to be on this page, for this book would
not have come into existence without their support. That said, some names
deserve a special mention, and I am genuinely grateful to:

My parents, for everything they have done for me.

My siblings, for helping with things back home.

The Parakozm team, especially Divya Sachdeva, Jaskiran Kaur, and
Vartika, for offering great amounts of help and assistance during the
book-writing process.

The CRC team, especially Sean Connelly and Danielle Zarfati, for
ensuring that the book’s content, layout, formatting, and everything
else remain perfect throughout.

Reviewers of this book for going through the manuscript and
providing their insight and feedback.

Typesetters, cover designers, printers, and everyone else who has
helped develop this book.

All the folks associated with Zeba Academy, either directly or
indirectly, for their help and support.

The programming community in general, and the web development
community in particular, for all their hard work and efforts.

Sufyan bin Uzayr

About the Author

Sufyan bin Uzayr is a writer, coder, and entrepreneur with over a decade of
experience in the industry. He has authored several books in the past,
pertaining to a diverse range of topics, ranging from History to
Computers/IT.

Sufyan is the Director of Parakozm, a multinational IT company
specializing in EdTech solutions. He also runs Zeba Academy, an online
learning and teaching vertical with a focus on STEM fields.

Sufyan specializes in a wide variety of technologies, such as JavaScript,
Dart, WordPress, Drupal, Linux, and Python. He holds multiple degrees,
including ones in Management, IT, Literature, and Political Science.

Sufyan is a digital nomad, dividing his time between four countries. He
has lived and taught in universities and educational institutions around the
globe. Sufyan takes a keen interest in technology, politics, literature,
history, and sports, and in his spare time, he enjoys teaching coding and
English to young students.

Learn more at sufyanism.com.

http://sufyanism.com/

C H A P T E R 1
Crash Course in Kotlin

DOI: 10.1201/9781003308447-1

IN THIS CHAPTER
➢ What is Kotlin?
➢ Major concepts
➢ Advantages and disadvantages
➢ Syntax and code basics
➢ Additional info

Kotlin is a basic and straightforward programming language that runs on
the Java Virtual Machine (JVM). The Kotlin programming language
borrows ideas from other programming languages such as Groovy, Java,
Gosu, Scala, etc. Kotlin programming language is an open-source
programming language that may be used everywhere Java is used; however,
its syntax is not identical to that of Java programming language. Kotlin is a
multipurpose or general-purpose programming language used by developers
to create Android applications. In addition to creating Android applications,
the Kotlin programming language is employed in other domains such as
client-server web, server-side applications, etc.

https://doi.org/10.1201/9781003308447-1

The Kotlin programming language is a high-level programming language
that supports both object-oriented and functional programming styles. The
Kotlin programming language supports all of the principles associated with
the object-oriented programming model, such as class, inheritance,
abstraction, encapsulation, and polymorphism, among others. Kotlin is a
statically typed programming language that provides interoperability, code
safety, and clarity.

KOTLIN PROGRAMMING LANGUAGE HAS A RICH
HISTORY
We’re probably wondering who created the Kotlin programming language
and how the language earned its name. There are some fascinating facts
about the history of the Kotlin programming language. So let’s go into the
Kotlin programming language’s history in depth.

The development of the Kotlin programming language began in 2010 and
launched the project in July 2011. JetBrains, the company behind IntelliJ
IDEA, invented and developed the Kotlin programming language. JetBrains
established the Kotlin foundation to oversee the upkeep of the Kotlin
programming language.

The former launch of the Kotlin programming language was in 2016, and
the most recent version is Kotlin 1.5.0. JetBrains called Kotlin after “Kotlin
Island,” located near St. Petersburg.

FEATURES OF THE KOTLIN PROGRAMMING LANGUAGE
The Kotlin programming language has several qualities that make it a
popular and fast programming language. So let’s go through the primary
features of the Kotlin programming language in depth.

1. General aim: Kotlin programming language is a multipurpose or
general-purpose programming language, which implies that
programmers may use it to create various apps and programs for
Android and other operating systems. Pinterest, Uber, Corda, Gradle,
Square, and other well-known apps that use the Kotlin programming
language are examples.

2. Object-oriented programming: The Kotlin programming language
supports several paradigms, including functional, imperative, and

object-oriented programming. Because it supports all of the elements
of the object-oriented programming method, the Kotlin programming
language is considered an object-oriented programming language.
And Kotlin programming language adheres to all object-oriented
programming concepts such as class, inheritance, abstraction,
polymorphism, and encapsulation. The characteristics of the object-
oriented programming method make development and maintenance
easier.

3. Open source: Since its inception, the Kotlin programming language
has been an open-source language. It implies that anybody may get it
from its official website and use and change it for free to meet the
needs of their project. Kotlin is a computer language created under the
Apache 2 license.

4. Quick compilation: Compiling code written in the Kotlin
programming language takes relatively little time. Compared to other
programming languages, the performance of programs created in the
Kotlin programming language is better and faster.

5. Interoperability: The Kotlin programming language likewise
supports the interoperability capability. Interoperability is the ability
to utilize codes from one programming language to another or vice
versa. Kotlin programming language can utilize Java programming
language code, and Java programming language can use Kotlin
programming language code.

6. Simple to learn: The Kotlin programming language is contemporary,
straightforward, and simple. After learning the Java programming
language, novice programmers may quickly learn the Kotlin
programming language. The Kotlin programming language is simple
to read and write a programming language.

7. Platform independent: The Kotlin programming language is a
platform-independent and cross-platform programming language. The
Kotlin programming language was designed primarily for the
production of Android applications. However, developers may also
utilize Kotlin codes on other platforms such as Windows, iOS,
macOS, Linux, etc.

The following are some different characteristics of the Kotlin
programming language:

Kotlin is a programming language that is statically typed.

The Kotlin programming language also supports the extension
function.

In the Kotlin programming language, semicolons are not necessary.

The Kotlin programming language has a short execution time.

Kotlin code is straightforward and simple to read.

The Kotlin programming language supports several paradigms such as
imperative, functional, etc.

The Kotlin programming language also has null safety.

KOTLIN PROGRAMMING LANGUAGE APPLICATIONS
Kotlin is a contemporary, easy-to-learn, and powerful programming
language. The Kotlin programming language is an open-source
programming language, which means that anybody may download it from
its official website and use or change it for free. The Kotlin programming
language is a general-purpose, platform-independent programming
language. The Kotlin programming language is commonly utilized in
developing many Android applications. Still, it is used on other platforms
such as Windows, Linux, macOS, iOS, watchOS, etc. Pinterest, Coursera,
Trello, Basecamp 3, Evernote, and other well-known applications that use
the Kotlin programming language are examples.

WHY SHOULD WE STUDY THE KOTLIN PROGRAMMING
LANGUAGE? WHAT ARE THE BENEFITS OF LEARNING
THE KOTLIN PROGRAMMING LANGUAGE?
We’re probably thinking about why we should learn Kotlin programming
language or the benefits of studying Kotlin programming language are. So,
let’s go through the primary benefits of the Kotlin programming language in
depth.

Kotlin is an introductory programming language that is easy to read,
learn, and write.

The Kotlin programming language’s performance and code
compilation are speedy.

The Kotlin programming language is a general-purpose programming
language.

The Kotlin programming language is a platform-agnostic or cross-
platform programming language.

Null safety is a characteristic of Kotlin programming languages.

The Kotlin programming language also supports extension functions.

The Kotlin programming language also offers its users interoperability.

Since its creation, the Kotlin programming language has been open-
source.

The Kotlin programming language is a strong and statically typed
programming language.

Code created in the Kotlin programming language is easier to
maintain.

DISADVANTAGES OF KOTLIN

Kotlin learning opportunities are limited: While most developers
are transitioning to Kotlin, a tiny number of developers are accessible
globally. It provides basic tools for learning programming languages
and answering numerous queries during the software development
process.

Compilation time is longer: In several cases, Kotlin outperforms
Java, particularly during incremental constructions. Keep in mind that
when it comes to tidy building, Java will always create growth.

Distinct from Java: While Kotlin and Java have certain similarities,
they also differ significantly. Mobile app developers who have spent a
considerable amount of time learning Kotlin cannot switch to another
programming language.

Fewer Kotlin professionals to recruit: Despite Kotlin’s importance,
only a few programmers are now accessible in this industry. Any
mobile application developer who wants to work with Kotlin must be
well-versed in the language.

WHAT IS THE PURPOSE OF KOTLIN?
Kotlin is intended to operate on a JVM and can coexist alongside Java.
Although Kotlin began as a language for Android development, its features
soon expanded beyond the Java community, and it is now utilized for a
wide range of applications.

Android Development
Kotlin is the recommended language for Android development because it
allows developers to produce more concise, expressive, and secure code.
Android Studio, the official IDE for Android development, fully supports it,
so we can receive the same sort of code completion and type checking to
assist us in creating Kotlin code as we can with Java.

Because more people now access the Internet via mobile phones, most
companies must have a mobile presence. Because Android accounts for
more than 70% of the mobile phone market, Kotlin developers would be in
great demand even if they use Kotlin alone for Android development. It
may, however, be used for much more.

Back-End Web Development
Back-end web development in Java is common, with popular frameworks
such as Spring. However, since it was simpler to work with, Kotlin made
inroads into server-side web development.

The language’s contemporary capabilities enable Web Developers to
create apps that expand fast on commodity hardware. Because Kotlin and
Java are compatible, we may gradually migrate an application to use Kotlin
one file at a time while the remainder of the program continues to use Java.

Kotlin also works with Spring and other frameworks, so migrating to
Kotlin does not need a complete overhaul of our existing code. Google,

Amazon, and many more organizations have already replaced Java in their
server-side code with Kotlin.

Full-Stack Web Development
Kotlin makes sense for server-side web development. After all, Java has
been around since the beginning. We may still use Kotlin for front-end
programming using Kotlin/JS.

Kotlin/JS gives developers type-safe access to sophisticated browsers and
online APIs. Full-Stack Developers need to be familiar with Kotlin. They
can create front-end code in the same language as back-end code, and it will
be compiled to JavaScript to execute in the browser.

Data Science
Data Scientists have long used Java to crunch information, discover
patterns, and make predictions, so it seems to reason that Kotlin will find a
home in the field as well.

Data Scientists can utilize all of the normal Java libraries that they are
accustomed to using in Java projects, but they must develop their code in
Kotlin. Jupyter and Zeppelin, two tools that many Data Scientists regularly
utilize for data visualization and exploratory study, both support Kotlin.

Mobile Development for Several Platforms
Kotlin Multiplatform Mobile is a software development kit for building
cross-platform mobile applications. This implies that we’ll be able to
generate apps that operate not only on Android phones but also on iPhones
and the Apple Watch from a single Kotlin codebase. Even at its initial stage,
this project has a lot of potential.

KOTLIN’S ARCHITECTURE
A well-designed architecture is required for an application to grow its
features and meet the expectations of its end-user base. Kotlin has its own
proprietary architecture for allocating memory and generating high-quality
outcomes for developers and end-users.

Coroutines and classes in Kotlin build the core, resulting in reduced
boilerplate code, improved speed, and enhanced efficiency. The Kotlin
compiler can respond differently in various contexts, most notably when
distinguishing between multiple types of languages.

Long Description Unnumbered Figure 1
Architecture in Kotlin.

The architectural design demonstrates that code execution is divided into
the following three easy phases:

The first step is to include a “.kt” or kotlin file in the compiler’s path.

In the second stage, the Kotlin compiler converts the code to byte-
code.

In the third stage, the byte-code is loaded into the JVM and executed
by the JVM itself.

When two byte-code files execute on the JVM, they commence mutual
communication. This is how interoperability for Java, the feature of Kotlin,
was created.

When Kotlin targets JavaScript, it undergoes Kotlin to JavaScript
transformation.

When JavaScript is chosen as the target, any Kotlin code component of
the library that contains Kotlin is subsequently splattered with JavaScript.
However, the Java Development Kit (JDK) or any java library used is not
included.

This procedure does not take into account non-Kotlin files while
attempting to achieve JavaScript. To generate consistent JavaScript code,
the Kotlin compiler translates the kt file to ES5.1. The Kotlin compiler aims
for the smallest possible output size, compatibility with existing modules,
standard library functionality, and JavaScript readable output.

The debate has demonstrated that Kotlin compilers may generate more
efficient, competent, and independent code, leading to a high-performing
software product.

KOTLIN FRAMEWORKS FOR SERVER-SIDE
DEVELOPMENT

Spring starts with version 5.0, which uses Kotlin language features to
deliver more concise APIs. We can quickly build a new Kotlin project
using the online project generator.

Vert.x, a framework for constructing reactive Web apps on the JVM,
provides substantial documentation and Kotlin support.

Ktor is a JetBrains framework for creating Kotlin Web applications
that employ coroutines for excellent scalability and have an easy-to-
use and idiomatic API.

kotlinx.html is a DSL used to generate HTML in a Web application.
It’s a fantastic alternative to traditional templating technologies like
JSP and FreeMarker.

Micronaut is a modern, full-stack JVM-based framework for creating
modular, testable microservice and serverless applications. It includes
a wealth of handy built-in features.

http4k is a functional toolkit with a tiny footprint for Kotlin HTTP
applications written exclusively in Kotlin. Based on Twitter’s “Our
Server as a Function,” the module portrays HTTP Servers and Clients
as simple Kotlin functions together.

Javalin is a web framework written in Kotlin and Java that supports
WebSockets, HTTP2, and async requests.

Persistence options include direct JDBC access, JPA, and the usage of
NoSQL databases via Java drivers. The kotlin-jpa JPA compiler plugin
conforms Kotlin-compiled classes to the framework’s requirements.

KOTLIN ENVIRONMENT FOR COMMAND LINE SETUP

We’ll look at how to set up a Kotlin environment using a command-line
compiler.

The following conditions must be met before installing Kotlin:

We must install JDK and put the path in the local system
environment variable since Kotlin runs on the JVM.

You may get the Kotlin compiler here:

Github Releases has the most recent version of the Kotlin
standalone compiler. Version 1.3.31 is the most recent.

Configure Kotlin compiler for command line use:

First and foremost, extract the downloaded file to a write-
accessible area.

Navigate to the kotlinc bin directory.

Now navigate to my computer’s settings ->Advanced System
Settings -> Environment Variables.

In system variables, click the route, then click the edit button.

Paste the copied path to the bin directory into this field and press
OK -> OK -> OK.

To confirm the installation, run kotlinc in the command prompt.

Intellij IDEA IS USED TO BUILD UP A KOTLIN
ENVIRONMENT
JetBrains’ Kotlin is a statically typed, general-purpose programming
language that has been used to create world-class IDEs such as IntelliJ
IDEA, PhpStorm, Appcode, and others. JetBrains initially offered it in
2011. Kotlin is an object-oriented language superior to Java while
remaining completely compatible with Java code.

Let’s create a Kotlin environment with Intellij IDEA and run our first
Kotlin code.

Install the most recent version of IntelliJ IDEA to get started.
JetBrains’ free Community Edition is available for download,
https://www.jetbrains.com/idea/download/#section=windows.

Long Description Unnumbered Figure 2
Downloading IntelliJ IDEA

Create a Kotlin application after installing Intellij IDEA.

Creating a new project by selecting File -> New -> Project.

Then choose Kotlin -> JVM | IDEA.

Give our project a name and choose an SDK version. HelloEveryone is
the project’s name in this case.

HelloEveryone is our new project. Make a new Kotlin file in the
source(src) folder and call it firstpro.kt.

After we’ve created the file, write the main function. IntelliJ IDEA has
a template for doing this quickly. Simply write main and press the tab
key. Insert a line of code to print “Hello Everyone.”

Start the application. The program is now available to use. The
simplest method is to pick Run “FirstproKt” from the sidebar’s green
Run button. By hitting Ctrl + Shift + F10, we may run directly.

https://www.jetbrains.com/

The results will be displayed in the Run Tool Window if our program
compiles appropriately.

THE FIRST PROGRAM IS WRITTEN IN KOTLIN
The first fundamental program in every programming language is Hello,
Everyone. Let’s start with writing the first program in the Kotlin
programming language.

The Kotlin program “Hello, Everyone”:
Open our chosen editor, notepad or notepad++, and create a file called

firstpro.kt containing the code below.

// Kotlin Hello Everyone Program

fun main(args: Array<String>) {

 println("Hello, Everyone")

}

We can use a command-line compiler to compile the program.

$ kotlinc firstpro.kt

Run the program now to view the output in the command-line compiler.

$kotlin firstpro.kt

Hello, Everyone

The details of the “Hello Everyone” program are as follows:

Line 1: The first line is a comment that the compiler disregards.
Comments are added to programs to help readers comprehend the
source code.

Kotlin accepts two types of comments:

Single line comment:

// This is a single-line comment

Mulitple line comment:

 /* This is

Multiple-line

 comment

 */

Line 2: In the second line, the main function is defined.

fun main(args: Array<String>) {

 //

}

The main() function is at the heart of any program. All Kotlin
functions begin with the fun keyword, then the function name (here
main), a list of parameters, an optional return type, then the function
body ({…… .}).

The parameter – an array of strings and return units – is included in
the main function in this case. The unit type, equivalent to void in
Java, indicates that the function returns no value.

Line 3: The third line is a statement that prints “Hello Everyone” to
the program’s standard output.

println("Hello Everyone")

Semicolons are optional in Kotlin, as they are in most other
programming languages.

KOTLIN DATA TYPES
A Kotlin data type is a form of data categorization that tells the compiler
how the programmer intends to utilize the data. Kotlin data can be numeric,
string, boolean, and so on.

Because Kotlin interprets everything as an object, we may invoke
member functions and properties on any variable.

Because Kotlin is a statically typed language, one should know the data
type of each expression at build time.

Kotlin’s built-in data types are classified as follows:

Number

Character

String

Boolean

Array

Number Data Types in Kotlin
Number data types in Kotlin are used to construct variables that contain
numeric values and are classified into two categories: (a) Integer types are
used to hold entire integers, whether positive or negative. (b) Floating-point
numbers contain one or more decimals and have a fractional portion.

The following table lists all of the Kotlin number data types, the
keywords used to define their variable types, the amount of memory used
by the variables, and the value range stored in those variables.

Data Type Size (bits) Data Range
Byte 8 −128 to 127
Short 16 −32768 to 32767
Int 32 −2,147,483,648 to 2,147,483,647
Long 64 −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
Float 32 1.40129846432481707e-45 to 3.40282346638528860e+38
Double 64 4.94065645841246544e-324 to 1.79769313486231570e+308

Example:

fun main(args: Array<String>) {

 val x: Int = 1000

 val y: Double = 110.00

 val fz Float = 110.00f

 val a: Long = 1100000004

 val b: Short = 100

 val c: Byte = 1

 println("Int Value is " + x)

 println("Double Value is " + y)

 println("Float Value is " + z)

 println("Long Value is " + a)

 println("Short Value is " + b)

 println("Byte Value is " + c)

}

Character Data Type in Kotlin

The type Char keyword represents the Kotlin character data type, which
holds a single character. A Char value, such as ‘X’ or ‘1’, must be enclosed
by single quotes.

Below given example demonstrates how to define and use a Kotlin Char
data type:

fun main(args: Array<String>) {

 val letters: Char // defining Char variable

 letters = 'X' // Assigning value to it

 println("$letters")

}

Kotlin supports a variety of character escape sequences. When a character
is preceded by a backslash (), it is referred to as an escape sequence, and the
compiler interprets it differently. For example, in the following sentence, n
is a legitimate character known as a new line character.

println('\n') //prints newline character

println('\$') //prints dollar $ character

println('\\') //prints backslash \ character

String Data Type in Kotlin
String data types are used to hold a string of characters. String values must
be enclosed in double-quotes (“ ”) or triple quotations (“““ ”””).

Kotlin supports two types of strings: Escaped String and Raw String.
Escaped strings are stated within double quotes (“ ”) and may contain

escape characters such as ‘\n’,\’t’, ‘\b’, and so on.
Raw strings are specified within triple quotes (“““ ”””) and can include

numerous lines of text without any escape characters.

Example:

fun main(args: Array<String>) {

 val escapedStrings : String = "I'm escaped String!\n"

 var rawStrings :String = """This is going to be a

 multiline string and will not have escape sequence""";

 print(escapedStrings)

 println(rawStrings)

}

Boolean Data Type in Kotlin
Boolean, like other programming languages, is fairly simple. The Boolean
data type has two values: true or false.

Array Data Type in Kotlin
Arrays in Kotlin are collections of homogenous data. Instead of defining
distinct variables for each item, arrays hold multiple values in a single
variable.

Let’s look at one example of how to build an array of integers and then
access one of its elements.

fun main(args: Array<String>) {

 val numbers: IntArray = intArrayOf(11, 22, 33, 44, 55)

 println("The Value at third position : " + numbers[2])

}

DATA TYPE CONVERSION IN KOTLIN
Data type conversion is converting the value of one data type to another.
Kotlin does not enable direct conversion of one numeric data type to
another; for example, you cannot convert an Int type to a Long type:

fun main(args: Array<String>) {

 val a: Int = 110

 val b: Long = a // Not valid assignment

 println(b)

}

Kotlin provides a collection of methods for converting a numeric data type
to another type:

toByte()

fun main(args: Array<String>) {

 val X: Boolean = true // defining variable with true value

 val Y: Boolean = false // defining variable with false valu

 println("Value of variable X "+ X)

 println("Value of variable Y "+ Y)

}

toShort()

toInt()

toLong()

toFloat()

toDouble()

toChar()

Let’s change the previous example and test it again:

fun main(args: Array<String>) {

 val a: Int = 110

 val b: Long = a.toLong()

 println(b)

}

OPERATORS IN KOTLIN
An operator is a symbol that instructs the compiler to do particular
mathematical or logical operations. Kotlin has a plethora of built-in
operators, including the following:

Arithmetic Operators

Relational Operators

Assignment Operators

Unary Operators

Logical Operators

Bitwise Operations

Let’s take a look at these Kotlin Operators one by one.

Arithmetic Operators in Kotlin
Arithmetic operators in Kotlin are used to execute simple mathematical
operations such as addition, subtraction, multiplication, and division.

Operator Name Description Example

Operator Name Description Example
+ Addition Adds the together two values a + b
− Subtraction Subtracts the one value from another a − b
∗ Multiplication Multiplies the two values a ∗ b
/ Division Divides one value by another a / b

% Modulus Returns division remainder a % b

Example:

fun main(args: Array<String>) {

 val a: Int = 50

 val b: Int = 10

 println("a + b = " + (a + b))

 println("a - b = " + (a - b))

 println("a / b = " + (a / b))

 println("a * b = " + (a * b))

 println("a % b = " + (a % b))

}

Relational Operators in Kotlin
Relational (comparison) operators in Kotlin are used to compare two values
and return a Boolean value: true or false.

Operator Name Example
> greater than a > b
< less than a < b
>= greater than or equal to a >= b
<= less than or equal to a <= b
== is equal to a == b
!= not equal to a != b

Example:

fun main(args: Array<String>) {

 val a: Int = 50

 val b: Int = 10

 println("a > b = " + (a > b))

 println("a < b = " + (a < b))

 println("a >= b = " + (a >= b))

 println("a <= b = " + (a <= b))

 println("a == b = " + (a == b))

 println("a != b = " + (a != b))

}

Assignment Operators in Kotlin
Assignment operators in Kotlin are used to assign values to variables.

Below is an example of how we used the assignment operator = to assign
values to two variables:

fun main(args: Array<String>) {

 val a: Int = 50

 val b: Int = 10

 println("a = " + a)

 println("b = " + b)

}

Below is a complete list of all assignment operators:

Operator Example Expanded Form
= a = 10 a = 10
+= a += 10 a = a − 10
−= a −= 10 a = a – 10
*= a *= 10 a = a * 10
/= a /= 10 a = a / 10
%= a %= 10 a = a % 10

Example:

fun main(args: Array<String>) {

 var a: Int = 50

 a += 5

 println("a += 5 = " + a)

 a = 50;

 a -= 5

 println("a -= 5 = " + a)

 a = 50

 a *= 5

 println("a *= 5 = " + a)

 a = 50

 a /= 5

 println("a /= 5 = " + a)

 a = 53

 a %= 5

 println("a %= 5 = " + a)

}

Unary Operators in Kotlin

The unary operators require just one operand to execute operations like
incrementing/decrementing a value by one, negating an expression, or
inverting a boolean value.

The following are the Kotlin Unary Operators:

Operator Name Example
+ unary plus +a
− unary minus −a
++ increment by 1 ++a
−− decrement by 1 −−a
! inverts the value of a boolean !

Example:

fun main(args: Array<String>) {

 var a: Int = 50

 var b:Boolean = true

 println("+a = " + (+a))

 println("-a = " + (-a))

 println("++a = " + (++a))

 println("--a = " + (--a))

 println("!a = " + (!y))

}

Logical Operators in Kotlin
The logical operators in Kotlin are used to identify the logic between two
variables or values.

The following are the Kotlin Logical Operators:

Operator Name Description Example
&& Logical and Returns true if both the operands are true a && b

|| Logical or Returns true if either of the operands is true a || b
! Logical not Reverse result returns false if the operand is true !a

Example:

fun main(args: Array<String>) {

 var a: Boolean = true

 var b:Boolean = false

 println("a && b = " + (a && b))

 println("a || b = " + (a || b))

 println("!b = " + (!b))

}

Bitwise Operations in Kotlin
Although Kotlin lacks bitwise operators, it does provide many assistance
functions for doing bitwise operations.

Here is a list of Kotlin Bitwise Functions:

Function Description Example
shl (bits) signed shift left a.shl(b)
shr (bits) signed shift right a.shr(b)
ushr (bits) unsigned shift right a.ushr(b)
and (bits) bitwise and a.and(b)
or (bits) bitwise or a.or(b)
xor (bits) bitwise xor a.xor(b)
inv() bitwise inverse a.inv()

Example:

fun main(args: Array<String>) {

 var a:Int = 70

 var b:Int = 15

 var c:Int

 c = a.shl(2)

 println("a.shl(2) = " + c)

 c = a.shr(2)

 println("a.shr(2) = " + c)

 c = a.and(b)

 println("a.and(b) = " + c)

 c = a.or(b)

 println("a.or(b) = " + c)

 c = a.xor(b)

 println("a.xor(b) = " + c)

 c = a.inv()

println("a.inv() = " + c)

}

BOOLEANS IN KOTLIN
We are often faced with a circumstance in which we must decide whether to
answer Yes or No, or whether to declare True or False. Kotlin features a
Boolean data type that can accept the values true or false to handle such
situations.

Create Boolean Variables

The Boolean keyword can be used to construct a boolean variable, which
can only accept the values true or false:

Example:

fun main(args: Array<String>) {

 val isCold: Boolean = true

 val isSummer: Boolean = false

println(isCold)

println(isSummer)

}

Boolean Operators in Kotlin
For boolean variables, Kotlin includes the following built-in operators.
These are also known as Logical Operators:

Operator Name Description Example
&& Logical and Returns true if both the operands are true a && b

|| Logical or Returns true if either of the operands is true a || b
! Logical not Reverse result returns false if the operand is true !a

Example:

fun main(args: Array<String>) {

 var a: Boolean = true

 var b:Boolean = false

 println("a && b = " + (a && b))

 println("a || b = " + (a || b))

 println("!b = " + (!b))

}

Boolean Expression in Kotlin
A boolean expression yields either a true or false value and is commonly
used in condition checking with if…else expressions. A boolean expression
employs relational operators such as >,<, >=, and so on.

Example:

fun main(args: Array<String>) {

 val a: Int = 50

 val b: Int = 10

 println("a > b = " + (a > b))

 println("a < b = " + (a < b))

 println("a >= b = " + (a >= b))

 println("a <= b = " + (a <= b))

 println("a == b = " + (a == b))

 println("a != b = " + (a != b))

}

and() and or() Functions in Kotlin
The and() and or() functions in Kotlin are used to conduct logical AND and
logical OR operations between two boolean operands.

These functions vary from the && and || operators in that they do not
conduct short-circuit evaluation and always evaluate both operands.

fun main(args: Array<String>) {

 val a: Boolean = true

 val b: Boolean = false

 val c: Boolean = true

 println("a.and(b) = " + a.and(b))

 println("a.or(b) = " + a.or(b))

 println("a.and(c) = " + a.and(c))

}

Boolean to String
To convert a Boolean object into its string form, use the toString() method.

This translation is required when assigning a true or false value to a
String variable.

fun main(args: Array<String>) {

 val a: Boolean = true

 var c: String

 c = a.toString()

 println("a.toString() = " + a.toString())

 println("c = " + c)

}

STRINGS IN KOTLIN
In the Kotlin programming language, the string data type is used to hold a
string of characters. String values must be enclosed in double-quotes (“ ”)

or triple quotations (“““ ”””).
Kotlin supports two types of strings: Escaped String and Raw String.

Escaped strings are stated within double quotes (“ ”) and may contain
escape characters such as ‘\n’, ‘\t’, ‘\b’, and so on.

Raw strings are specified within triple quotes (“““ ”””) and can include
numerous lines of text without any escape characters.

Example:

String Templates in Kotlin
String templates in Kotlin are blocks of code evaluated, and the results are
interpolated into the string. A template expression begins with a dollar
symbol ($) and can be a name or an expression.

Example:

String Object in Kotlin
A Kotlin String is an object with various attributes and methods that may
conduct multiple actions on strings by appending a dot character (.) after the
relevant String variable.

fun main(args: Array<String>) {

 val escapedStrings : String = "I escaped String!\n"

 var rawStrings :String = """This is going to be a multilin

 string and will

 not have any escape sequence""";

 print(escapedStrings)

 println(rawStrings)

}

fun main(args: Array<String>) {

 val name : String = "Sara AliKhan"

 println("Name - $name") // Using the template with variab

 println("Name length - ${name.length}") // Using the templ

}

String Indexes in Kotlin
String in Kotlin can be thought of as a sequence of characters or an array of
characters. We can access its element by using square brackets to define the
element’s index.

String indices begin with 0; thus, if we want to access the fourth element
of a string, we need to provide an index as 3.

Example:

fun main(args: Array<String>) {

 val name : String = "Sara AliKhan"

 println(name[3])

 println(name[5])

}

String Length in Kotlin
To determine the length of a Kotlin string, we may utilize its length
attribute.

The Kotlin method count() returns the length of a given string.

Example:

fun main(args: Array<String>) {

 val name : String = "Sara AliKhan"

 println("Length of name :" + name.length)

 println("Length of name :" + name.count())

}

String Kotlin Last Index
To obtain the index of the final character in the char sequence, we may
utilize the lastIndex attribute of a Kotlin string. If a string is empty, the
function returns −1.

Example:

fun main(args: Array<String>) {

 val name : String = "Sara AliKhan"

 println("Index of last character in name :" + name.lastInde

}

String Case Changing
To transform a string into upper or lower case, Kotlin offers the
toUpperCase() and toLowerCase() methods.

Example:

fun main(args: Array<String>) {

 val name : String = "Sara AliKhan"

 println("The Upper case of name :" + name.toUpperCase())

 println("The Lower case of name :" + name.toLowerCase())

}

String Concatenation in Kotlin
We may use either the + operator or the plus() function to concatenate two
strings.

Example:

fun main(args: Array<String>) {

 var firstName : String = "Sara "

 var lastName : String = "AliKhan"

 println("The Full Name is :" + firstName + lastName)

 println("The Full Name is :" + firstName.plus(lastName))

}

Trim Characters from the String
Using the drop() and dropLast() methods, we may eliminate a string’s
beginning and final characters.

Example:

fun main(args: Array<String>) {

 var name : String = "Sara AliKhan"

 println("Remove the first two characters from name : " + na

 println("Remove the last two characters from name : " + nam

}

Quotes Inside a String
To use quotes within a string, use single quote (‘):

Example:

fun main(args: Array<String>) {

 var strg1 : String = "That's Ok"

 var strg2 : String = "It's Alright"

 println("strg1 : " + strg1)

 println("strg2 : " + strg2)

}

Finding a String Inside a String
Kotlin includes the indexOf() method for finding text inside a string. This
method returns index of the first occurrence of a string’s provided text.

Example:

Comparing Two Strings
To compare two strings, Kotlin provides the compareTo() method. If two
strings are equal, this method returns 0. Else it returns 1.

Example:

fun main(args: Array<String>) {

 var strg1 : String = "Apple"

 var strg2 : String = "Apple"

 println(strg1.compareTo(strg2))

}

getOrNull() Function in Kotlin
The getOrNull() method in Kotlin returns a character at the specified index
or null if the index is out of the bound of this char sequence.

fun main(args: Array<String>) {

 var strg : String = "Meditation & Yoga are synonymous with

 println("The Index of Yoga in the string - " + strg.indexOf

}

Example:

fun main(args: Array<String>) {

 var names : String = "Sara"

 println(names.getOrNull(0))

 println(names.getOrNull(2))

 println(names.getOrNull(100))

}

toString() Function in Kotlin
The function toString() method in Kotlin returns the object’s string
representation.

Example:

fun main(args: Array<String>) {

 var names : String = "Sara AliKhan"

 println(names.toString())

}

ARRAYS IN KOTLIN
Arrays are used to store multiple items of the same data type, such as an
integer or string, in a single variable with a single variable name.

For example, if we need to hold the names of 1000 workers, rather than
establishing 1000 individual String variables, we may simply build a string
array with a size of 1000.

Kotlin, like any other modern programming language, supports arrays
and offers a comprehensive set of array characteristics and support methods
for manipulating arrays.

Creating Arrays
In Kotlin, we use the arrayOf() method to build an array and insert the
values in a comma-separated list into it:

val fruits = arrayOf("Grapes", " Apple ", "Mango", "Kiwi")

We can optionally provide the following data type:

val fruits = arrayOf<String>("Grapes", " Apple ", "Mango", "Kiwi

Alternatively, the arrayOfNulls() method may generate an array of null
entries of a specific size.

Arrays of the Primitive Type
Kotlin also includes factory methods for creating arrays of primitive data
types. The factory method for creating an integer array, for example, is:

val num = intArrayOf(1, 2, 3, 4)

Other factory methods for creating arrays include:

byteArrayOf()

charArrayOf()

shortArrayOf()

longArrayOf()

Elements of an Array Can Be Get and Set
Use the index number inside square brackets to retrieve an array element.
The index of a Kotlin array begins with zero (0). So, if we want to retrieve
the 4th element of the array, enter 3 as the index.

Example:

Array Length in Kotlin
Kotlin has an array property called size that returns the array’s size, i.e.,
length.

Example:

fun main(args: Array<String>) {

 val fruits = arrayOf<String>("Grapes", "Orange", "Kiwi", "

 println(fruits [0])

 println(fruits [3])

}

Loop through an Array
We may use the for loop to loop through an array.

Example:

Check if an Element Exists
To check if an element in an array exists, we may use the in operator in
along with if…else.

Example:

Distinct Values from the Array
Kotlin enables us to store duplicate values in an array, but we can also use
the distinct() member function to get a set of different values stored in the
array.

fun main(args: Array<String>) {

 val fruits = arrayOf<String>("Grapes", "Orange", "Kiwi", "

 println("The Size of fruits array " + fruits.size)

}

fun main(args: Array<String>) {

 val fruits = arrayOf<String>("Grapes", "Orange", "Kiwi", "

 for(item in fruits){

 println(item)

 }

}

fun main(args: Array<String>) {

 val fruits = arrayOf<String>("Orange", " Apple ", "Grapes",

 if ("Apple" in fruits){

 println("The Apple exists in fruits")

 }else{

 println("The Apple does not exist in fruits")

 }

}

Example:

Dropping Elements from the Array
We may utilize the drop() or dropLast() member methods to drop elements
from the beginning or the end.

Example:

Checking an Empty Array
We may utilize the isEmpty() member function to determine whether or not
an array is empty. If the array is empty, this method returns true.

Example:

fun main(args: Array<String>) {

 val fruits = arrayOf<String>()

 println("The Array is empty : " + fruits.isEmpty())

}

RANGES IN KOTLIN
The range in Kotlin is defined by the two endpoint values included in the
range. Ranges in Kotlin are constructed with the rangeTo() method or by

fun main(args: Array<String>) {

 val fruits = arrayOf<String>("Grapes", "Orange", "Kiwi", "

 val distinct = fruits.distinct()

 for(item in distinct){

 println(item)

 }

}

fun main(args: Array<String>) {

 val fruits = arrayOf<String>("Grapes", "Orange", "Kiwi", "

 val result = fruits.drop(2) // drops the first two elements

 for(item in result){

 println(item)

 }

}

utilizing the downTo or (..) operators. The main range operation is
contained, which is often used in the form of in and !in operators.

Example:

Because both ends of the range are always included, the 1..4 expression
corresponds to the numbers 1,2,3, and 4.

Creating Ranges Using the rangeTo() Function
To create a Kotlin range, we use the rangeTo() method with the range start
value as an argument and the range end value as an argument.

Example:

fun main(args: Array<String>) {

 for (numb in 1.rangeTo(4)) {

 println(numb)

 }

}

Creating the Ranges Using the .. Operator
rangeTo() is frequently used in its operator form … As a result, the above
code may be rewritten using the .. operator as follows:

Example:

fun main(args: Array<String>) {

 for (numb in 1..4) {

 println(numb)

 }

}

Creating the Ranges Using downTo() Operator
We may use the downTo operator to define a backward range:

1..10 // The Range of integers starting from 1 to 10

a..z // The Range of characters starting from the a to z

A..Z // The Range of capital characters beginning from the A

Example:

fun main(args: Array<String>) {

 for (numb in 4 downTo 1) {

 println(numb)

 }

}

step() Function in Kotlin
To specify the distance between the range’s values, we may utilize the
step() method. Take a look at the following example:

fun main(args: Array<String>) {

 for (numb in 1..10 step 2) {

 println(numb)

 }

}

Range of Characters in Kotlin
Generate range for the character in the same way for integer values.

Example:

fun main(args: Array<String>) {

 for (chr in 'a'..'d') {

 println(chr)

 }

}

reversed() Function in Kotlin
To reverse the range values, use the reversed() method.

Example:

fun main(args: Array<String>) {

 for (numb in (1..5).reversed()) {

 println(numb)

 }

}

until() Function in Kotlin
The method until() generates a range, but it skips the last element given.

Example:

fun main(args: Array<String>) {

 for (numb in 1 until 5) {

 println(numb)

 }

}

The last, first, and step Elements
We can utilize the first, last, and step attributes of a range to get the range’s
first, last, or step value.

Example:

fun main(args: Array<String>) {

 println((6..10).first)

 println((6..10 step 2).step)

 println((6..10).reversed().last)

}

Filtering Ranges
The filter() method returns a list of elements that match a specified
predicate:

Example:

fun main(args: Array<String>) {

 val x = 1..10

 val y = x.filter { T -> T % 2 == 0 }

 println(y)

}

Distinct Values in Range
The distinct() method will provide a list of different values from a range of
values that contain repeated values:

Example:

fun main(args: Array<String>) {

 val x = listOf(11, 11, 22, 44,4 4, 66, 10)

 println(x.distinct())

}

Range Utility Functions
We can apply many other valuable functions to our range such as min, max,
sum, average, and count:

Example:

fun main(args: Array<String>) {

 val x = 1..10

 println(x.min())

 println(x.max())

 println(x.sum())

 println(x.average())

 println(x.count())

}

FUNCTIONS IN KOTLIN
Kotlin is a statically typed language; functions play an essential part. We
are somewhat familiar with function. A function is a piece of code written
to execute a particular purpose. All current programming languages provide
functions, sometimes known as methods or subroutines.

A function, in general, receives particular inputs called parameters,
performs specific actions on these inputs, and eventually returns a value.

Built-in Functions in Kotlin
Kotlin has a lot of built-in functions, and we’ve utilized a few of them in
our examples. For example, the most widely used built-in functions for
printing output to the screen are print() and println().

Example:

fun main(args: Array<String>) {

 println("Hello, Everyone")

}

User-Defined Functions
Using the term fun, we can define our own function in Kotlin. A user-
defined function accepts one or more parameters, performs an action, and
returns the outcome as a value.

Syntax:

fun functionName(){

 // body of the function

}

Once we’ve defined a function, we may call it as many times as we need to.
The following is a basic syntax for calling a Kotlin function:

functionName()

Here’s an example of how to define and call a user-defined function that
prints a basic “Hello, Everyone.”

fun main(args: Array<String>) {

 printHello()

}

fun printHello(){

 println("Hello, Everyone")

}

Function Parameters
A user-defined function can accept Zero or more arguments. Parameters are
options that can use based on the situation. For example, the above-defined
function made no use of a parameter.

Below is an example of how to construct a user-defined function that
adds two numbers and prints their sum:

fun main(args: Array<String>) {

 val x = 20

 val y = 10

 printSum(x, y)

}

fun printSum(x:Int, y:Int){

 println(x + y)

}

Return Values
A Kotlin function returns a value based on its parameters. Returning a value
is, once again, entirely voluntary.

Use the return keyword and provide the return type after the function’s
parentheses to return a value.

Here’s an example of a user-defined function that will add two numbers
and return the sum:

fun main(args: Array<String>) {

 val x = 20

 val y = 10

 val result = sumTwo(x, y)

 println(result)

}

fun sumTwo(x:Int, y:Int):Int{

 val a = x + y

 return a

}

Unit-Returning Functions
If a function does not return useful value, its return type is Unit. Unit is a
type that has only one value which is Unit.

fun sumTwo(x:Int, y:Int):Unit{

 val a = x + y

 println(a)

}

The declaration of the Unit return type is also optional. The preceding code
is equivalent to:

fun sumTwo(x:Int, x:Int){

 val a = x + y

 println(a)

}

Recursive Function in Kotlin

Recursion functions are helpful in various situations, such as computing the
factorial of a number or producing the Fibonacci series. Recursion is
supported in Kotlin, which means that a Kotlin function can call itself.

Syntax:

fun functionName(){

 functionName()

}

Example:

fun main(args: Array<String>) {

 val x = 4

 val result = factorial(x)

 println(result)

}

fun factorial(x:Int):Int{

 val result:Int

 if(x <= 1){

 result = x

 }else{

 result = x*factorial(x-1)

 }

 return result

}

Tail Recursion in Kotlin
A recursive function is suitable for tail recursion if the last operation is a
function call to itself.

The following Kotlin program uses tail recursion to determine the
factorial of number 10. In this situation, we must guarantee that the
multiplication occurs before the recursive call, not after.

fun main(args: Array<String>) {

 val x = 4

 val result = factorial(x)

 println(result)

}

fun factorial(x: Int, accum: Int = 1): Int {

 val result = x * accum

 return if (x <= 1) {

 result

 } else {

 factorial(x - 1, result)

 }

}

Higher-Order Functions
A higher-order function in Kotlin accepts another function as a parameter
and/or returns another function.

The following example is a function that accepts two integer arguments,
x and y, as well as another function operation as a parameter:

Lambda Function in Kotlin
Kotlin lambda is a function with no name defined with curly braces and
accepts zero or more parameters and the body of the function.

The body of the function is written after the variable (if any) and the ->
operator.

Syntax:

{variable with type -> body of function}

Example:

fun main(args: Array<String>) {

 val upperCase = { str: String -> str.toUpperCase() }

 println(upperCase("hello, everyone"))

}

Inline Function in Kotlin

fun main(args: Array<String>) {

 val result = calculate(14, 3, ::sum)

 println(result)

}

fun sum(x: Int, y: Int) = x + y

fun calculate(x: Int, y: Int, operation:(Int, Int) -> Int): Int

 return operation(x, y)

}

The inline keyword is used to declare an inline function. Using inline
functions improves the efficiency of higher-order functions. The inline
function tells the compiler to copy arguments and functions to the call site.

Example:

fun main(args: Array<String>) {

 myFunction({println("The Inline function parameter")})

}

inline fun myFunction(function:()-> Unit){

 println("I'm inline function - A")

 function()

 println("I'm inline function - B")

}

If-else EXPRESSION IN KOTLIN
Decision-making in programming is analogous to decision-making in real
life. A particular code block must be executed when a specific condition is
satisfied in programming. In programming languages, regulated statements
control program execution flow depending on particular criteria. The
program enters the conditional block and executes the instructions if the
condition is fulfilled.

In Kotlin, there are several forms of if-else expressions:

if expression

if-else expression

if-else-if ladder expression

nested if expression

if Statement
If-statement is used to specify whether or not a block of statements should
be executed, i.e., if a specific condition is true, the statement or block of
statements should execute; else, the statement or block of statements should
not run.

Syntax:

if(condition) {

 // code to run if condition is true

}

Flowchart:

Long Description Unnumbered Figure 3
Statement of if.

Example:

fun main(args: Array<String>) {

 var c = 8

 if(c > 0){

 print("True, the number is positive")

 }

}

if-else Statement

The if-else statement is comprised of two statements blocks. When the
condition is true, the ‘if’ statement is used to execute the code block; when
the condition is false, ‘else’ statement is used.

Syntax:

if(condition) {

 // code to run if condition is true

}

else {

 // code to run if condition is false

}

Flowchart:

Long Description Unnumbered Figure 4
Statement of if-else.

Example:

fun main(args: Array<String>) {

 var a = 9

 var b = 15

 if(a > b){

 print("Number 9 is larger than 15")

 }

 else{

 println("Number 15 is larger than 9")

 }

 }

if-else Expression in Kotlin as the Ternary Operator
If-else may be used as an expression in Kotlin since it returns a result. In
Kotlin, there is no ternary operator, unlike in Java, because if-else returns
the value based on the situation.

The Kotlin program for determining the greater of two numbers using an
if-else condition is presented below:

if-else-if Ladder Expression
A user can input a variety of criteria here. All ‘if’ statements are executed.
All the conditions are checked one by one. If any of them is true, the code
associated with the if statement is executed. Otherwise, all other statements
are skipped until the block is completed. If none of the requirements are
satisfied, the final else expression is executed.

fun main(args: Array<String>) {

 var y = 90

 var z = 40

 // if-else returns value which is to be stored in the max-va

 var maxi = if(y > z){

 print("The Greater number: ")

 y

 }

 else{

 print("The Greater number:")

 z

 }

 print(maxi)

}

Syntax:

if(first-condition)

{

 // code to run if the condition is true

}

else if(second-condition)

{

 // the code to run if the condition is true

}

else

{

}

Flowchart:

Long Description Unnumbered Figure 5
Statement of if-else-if.

Example:

import java.util.Scanner

fun main(args: Array<String>) {

 // to create object for scanner-class

 val reader = Scanner(System.'in')

 print("Enter number: ")

 // to read next Integer-value

 var numb = reader.nextInt()

 var results = if (numb > 0){

 "$numb is a positive number"

 }

 else if(numb < 0){

 "$numb is negative number"

 }

 else{

 "$numb is equal to zero"

 }

 println(results)

}

nested if Expression
If statements nestled inside another if statement is referred to as nested if
statements. If the first condition is true, execute the associated block. Then
check for the if condition nested in the first block, and if it is also true,
execute the related block. It will keep going till the last condition is
satisfied.

Syntax:

if(condition1)

{

 // code1

 if(condition2)

{

 // code2

 }

}

Flowchart:

Long Description Unnumbered Figure 6
Statement of nested-if.

Example:

import java.util.Scanner

fun main(args: Array<String>) {

 // to create object for the scanner class

 val reader = Scanner(System.'in')

 print("Enter three numbers: ")

 var numb1 = reader.nextInt()

 var numb2 = reader.nextInt()

 var numb3 = reader.nextInt()

 var maxi = if (numb1 > numb2) {

 if (numb1 > numb3) {

 "$numb1 is the largest number"

 }

 else {

 "$numsb is the largest number"

 }

 }

 else if(numb2 > numb3){

 "$numb2 is the largest number"

 }

 else{

 "$numb3 is the largest number"

 }

 println(maxi)

}

while loop IN KOTLIN
A loop is a programming construct used to repeatedly execute a particular
code block until a condition is met. If we wish to print a count from 1 to
100, use the print command 100 times. On the other hand, using a loop may
save time and result in only two lines.

While loops are made up of a code block and a condition, the condition is
tested first, and, if true, the code within the block is executed. Because the
condition is tested before entering the block each time, it is repeated until
the condition becomes false. The while loop may be thought of as a
sequence of repeated if statements.

Syntax:

while(condition) {

 // code to run

}

Flowchart:

Long Description Unnumbered Figure 7
Statement of while-loop.

Using while loop, this Kotlin program prints integers from 1 to 20: We
use a while loop to show the numbers in the following code. To begin,
assign the variable numb to 1. Check whether the expression (number = 20)
is true or false in a while loop. If true, it enters the block, runs the print
statement, and adds one to the number. This step is continued until the
condition is no longer true.

fun main(args: Array<String>) {

 var numbr = 1

 while(numbr <= 20) {

 println(numbr)

 numbr++;

 }

}

Using a while loop, this Kotlin program prints the elements of an
array: In the following code, we create an array (names), populate it with a

random number of strings, and set a variable index to 0. arrayName.size is
used to determine the size of an array. Provide the condition (index <
names.size) in the while loop.

If index value is less than or equal to the array size, it enters the block
and prints the name stored at the associated index after each iteration. It
increments the index value after each iteration. This step is continued until
the condition is no longer true.

do-while loop IN KOTLIN
The do-while loops are control flow statements that run the block of code at
least once without validating the condition and then execute the block
repeatedly, or not, based entirely on a Boolean condition after the do-while
block. Unlike the while loop, which executes the block only when the
condition is true, the do-while loop executes the code first and then
evaluates the expression or test condition.

Method of do-while loop
After all of the statements in the block have been performed, the condition
is assessed. The code block is re-executed if the condition is satisfied. As
long as expression evaluates to true, the code block execution operation is
repeated. If the expression becomes false, the loop is terminated, and
control is passed to the sentence after the do-while loop.

It checks the condition after the block has been run. It is also known as a
post-test loop.

Syntax:

do {

 //code to run

fun main(args: Array<String>) {

 var names = arrayOf("Prithvi","Karan","Abhay","Ridhi","Anmol

 var index = 0

 while(index < names.size) {

 println(names[index])

 index++

 }

}

{

while(condition)

Flowchart:

Long Description Unnumbered Figure 8
Statement of do-while-loop.

Example:

fun main(args: Array<String>) {

 var numbr = 9

 var factorial = 1

 do {

 factorial *= numbr

 numbr--

 }while(numbr > 0)

 println("The Factorial of 9 is $factorial")

}

for loop IN KOTLIN
In Kotlin, the for loop is analogous to the foreach loop in other languages
such as C#. The for loop is used here to iterate through any data structure
using an iterator. In other programming languages, such as Java or C, it is
not utilized in the same way as the for a loop.

Syntax:

for(item in collection) {

 // code to execute

}

The for loop in Kotlin is used to iterate across the following because they
all provide an iterator:

Range

Array

String

Collection

Iterate across the Range Using a for loop
The range provides an iterator, allowing us to traverse it. There are various
methods for iterating through Range. In the for loop, the in operator is used
to determine whether or not the value is within the Range.

The following programs demonstrate several methods of traversing the
range, where in is the operator to validate the value in the range. If the value
falls inside one of the ranges, it returns true and prints the value.

Print the values when we iterate over the range:

fun main(args: Array<String>)

{

 for (d in 1..8) {

 print("$d ")

 }

}

Using step-3, iterate over the range to jump:

fun main(args: Array<String>)

{

 for (d in 1..20 step 3) {

 print("$d ")

 }

}

We can’t iterate across Range from top to down unless we use
DownTo:

fun main(args: Array<String>)

{

 for (d in 6..1) {

 print("$d ")

 }

 println("Print nothing")

}

Iterate over the Range from top to down using downTo:

fun main(args: Array<String>)

{

 for (d in 6 downTo 1) {

 print("$d")

 }

}

Iterate over the Range from top to down using downTo, and then
step 3:

fun main(args: Array<String>)

{

 for (d in 20 downTo 1 step 3) {

 print("$d ")

 }

}

Using a for loop, Iterate over the Array
A data structure that stores data of the same kind, such as an integer or a
string, is known as an array. An array may be browsed using a for a loop
since it has an iterator. Each array has a starting index, which is always 0.

Traverse the array in the following ways:

Without using the Index property

With using the Index property

Using the withIndex library function

Without utilizing the index property, traverse an array:

Using the Index property, traverse an array:

Using the withIndex() library function, we may traverse an array:

Iterate through a String Using the for loop
Because the for loop includes an iterator, it can traverse a string.

The string may be traversed using the following methods:

Without using the Index property

With using the Index property

fun main(args: Array<String>) {

 var numbs = arrayOf(110,220,330,440,550,660,770,880,990,

 for (numr in numbs){

 if(numr%2 == 0){

 print("$numr ")

 }

 }

}

fun main(args: Array<String>) {

 var colors = arrayOf("Grey", "Pink", "Black", "Red", "Wh

 for (c in colors.indices) {

 println(planets[c])

 }

}

fun main(args: Array<String>) {

 var colors = arrayOf("Grey", "Pink", "Black", "Red", "Wh

 for ((index,value) in colors.withIndex()) {

 println("Element at $index th index is $value")

 }

}

Using the withIndex library function

Iterate over the Collection Using the for loop
Use the for loop to iterate through the collection. There are three sorts of
collections: list, map, and set.

We may use the listOf() function to send many data types simultaneously.
The program to traverse the list using a for loop is shown below:

fun main(args: Array<String>) {

 // to read only, fix-size

 var collection = listOf(1,2,3,"listOf", "mapOf", "setOf")

 for (elements in the collection) {

 println(elements)

 }

}

KOTLIN when expression
In Kotlin, expression substitutes the switch operator in other languages such
as Java. When a particular condition is satisfied, a specific block of code
must be executed. When using the when expression option, each branch is
compared one by one until a match is discovered. When the first match is
found, the program proceeds to the end of the when block and runs the code
that follows the when block. Unlike a switch case in Java or any other
programming language, we do not require a break statement after each case.

In Kotlin, when may be used in two ways:

when as a statement

fun main(args: Array<String>) {

 var name = "TheHub"

 var name2 = "oftutorials"

 // traversing the string without using index property

 for (alphabets in name) print("$alphabets ")

 // traversing string with using the index property

 for (c in name2.indices) print(name2[c]+" ")

 println(" ")

 // traversing the string using withIndex() library funct

 for ((index,value) in name.withIndex())

 println("The Element at $index th index is $value")

}

when as an expression

when to Use as a Statement with else
When is a statement that may use with or without the else branch? When
used as a statement, the values of all individual branches are sequentially
compared with the argument. The appropriate branch is performed when the
condition is met. If none of the branches meet the criteria, the else branch is
performed.

import java.util.Scanner;

fun main(args: Array<String>) {

 var reader = Scanner(System.'in')

 print("Enter the largebody:")

 var lbt = reader.next()

 when(lbt) {

 "Sun" -> println("The Sun is Star")

 "Moon" -> println("The Moon is Satellite")

 "Earth" -> println("The Earth is planet")

 else -> println("We don't know anything")

 }

}

Using when as a Statement in the Absence of an else
Branch
In the lack of an otherwise branch, we can use when as a statement. When
used as a statement, the values of all individual branches are compared
sequentially with the argument. The relevant branch is performed when the
condition is met. If none of the branches meet the criteria, the block exits
without publishing anything to the system output.

import java.util.Scanner;

fun main(args: Array<String>) {

 var reader = Scanner(System.'in')

 print("Enterthename:")

 var lbt = reader.next()

 when(lbt) {

 "Sun" -> println("The Sun is Star")

 "Moon" -> println("The Moon is Satellite")

 "Earth" -> println("The Earth is planet")

 }

}

when Used as an Expression
When used as an expression, the value of the branch that satisfies the
condition becomes the value of the overall expression. When we use an
expression, we get a result that matches the argument, which we may keep
in a variable or simply display.

import java.util.Scanner;

fun main(args: Array<String>) {

 var reader = Scanner(System.'in')

 print("Enter month of the number:")

 var monthyear = reader.nextInt()

 var months = when(monthyear)

{

 1->"Jan"

 2->"Feb"

 3->"March"

 4->"April"

 5->"May"

 6->"June"

 7->"July"

 8->"Aug"

 9->"Sept"

 10->"Oct"

 11->"Nov"

 12->"Dec"

 else -> {

 println("Not month of the year")

 }

 }

println(months)

}

If the argument fails to meet any branch conditions, the other branch is
executed. Unless the compiler can demonstrate that branch conditions
handle all potential cases, the else branch is required as an expression. A
compiler error is raised if we cannot use the other branch.

Error:(7, 16) Kotlin: ‘when’ expression must be exhaustive, add the
necessary ‘else’ branch.

In Kotlin, Different Ways to Use a when Block
A comma is used to divide numerous branches within one: a comma can be
used to divide many branches within one. When two or more branches have
the same logic, we can combine them into a single branch. In the example
below, we need to decide whether the input largebody is a planet or not;
thus, we combined all planet names into a single branch. Anything other
than the planet name will result in the else branch is performed.

Check whether the input value is inside the range: By using the in
or !in operator, we can check the range of arguments given in the when
block. The ‘in’ operator in Kotlin is used to check for the existence of
a specific variable or attribute inside a range. The in operator returns
true if argument is within a given range; the !in operator returns true if
the argument is not within a specific range.

import java.util.Scanner;

fun main(args: Array<String>) {

 var reader = Scanner(System.'in')

 print("Enter name of the planet: ")

 var names = reader.next()

 when(names) {

 "Mercury", "Mars","Jupiter",

 "Earth","Neptune","Saturn","Venus","Uranus" -> prin

 else -> println("Neither the planet nor the star")

 }

}

import java.util.Scanner;

fun main(args: Array<String>) {

 var reader = Scanner(System.'in')

 print("Enter the month number of the year: ")

 var numbr = reader.nextInt()

 when(numbr){

 in 1..3 -> println("It is the spring season")

 in 4..6 -> println("It is the summer season")

 in 7..8 ->println("It is the rainy season")

 in 9..10 -> println("It is the autumn season")

 in 11..12 -> println("It is the winter season")

 !in 1..12 ->println("Enter the valid month of the ye

 }

}

Check whether a provided variable is of a specific type: Using the
is or !is operator, we can check the type of variable supplied as an
input in the when block. Is Int returns true if the variable is of the
integer type; otherwise, it returns false.

fun main(args: Array<String>) {

 var numbr: Any = "TheHuboftutors"

 when(numbr){

 is Int -> println("it's an Integer")

 is String -> println("it's a String")

 is Double -> println("it's a Double")

 }

}

Using when as a replacement for if-else-if chain: When might be
used instead of if-else-if. If no arguments are given, the branch
conditions are boolean expressions, and the branch is only executed
when its condition is true:

fun isOdd(d: Int) = d % 2 != 0

fun isEven(d: Int) = d % 2 == 0

fun main(args: Array<String>) {

 var numbr = 8

 when{

 isOdd(numbr) ->println("Odd")

 isEven(numbr) -> println("Even")

 else -> println("neither even or odd")

 }

}

Verify if a string includes a specific prefix or suffix: The method
below is used to look for a prefix or suffix in a string. It will return true
if the string has the prefix or suffix; otherwise, it will return false.

fun hasPrefix(compani: Any) = when (compani) {

 is String -> compani.startsWith("TheHuboftutors")

 else -> false

}

fun main(args: Array<String>) {

 var compani = "TheHuboftutors a computer science portal"

 var result = hasPrefix(compani)

 if(result) {

 println("Yes, the string started with TheHuboftutors

UNLABELED BREAKS IN KOTLIN
When working with loops, we may use either a break or a return expression
to exit the loop if we want to immediately halt the loop’s execution if a
particular condition is fulfilled.

Here we will demonstrate how to use break expression to exit a loop.
When a program encounters the break statement, it returns to the nearest
enclosing loop.

There are two kinds of break expressions in Kotlin: unlabeled break
expressions and labeled break expressions. We’ll look at how to use
unlabeled break expressions in a while, do-while, and for loops.

In a while loop, Use of an Unlabeled Break
An unlabeled break is used to exit the loop without examining the test
expression when a condition is met. The control is subsequently transferred
to the following while block statement.

Syntax:

while(test expression) {

 // code to run

 if(break condition) {

 break

 }

 // another code to run

}

Example:

fun main(args: Array<String>) {

 var sum = 0

 var d = 1

 while(i <= Int.MAX_VALUE) {

 sum += d

 d++

 }

 else {

 println("No, the String does not start with TheHubof

 }

}

 if(d == 11) {

 break

 }

 }

 print("The sum of integers from 1 to 11: $sum")

}

To compute the sum of numbers from 1 to 10, we utilize a while loop and a
break statement in the above program. Make a variable sum with a value of
0 as its initial value. Iterate through the loop once more, this time setting
variable I to 1.

Iterator now proceeds from d = 1 and runs the sum statement. When
iterator value d reaches 11, the break expression is performed, and the loop
is terminated without checking the test expression d = Int.MAX_VALUE.
The control is then transferred to the while block’s print() instruction, which
outputs the total number of integers = 55.

In a do-while loop, Use of an Unlabeled Break
We can also use the break expression to exit the loop without checking the
test expression in a do-while loop.

Syntax:

do {

 //code to run

 if(break-condition) {

 break

 }

while(test-expression)

Example:

fun main(args: Array<String>) {

 var name = arrayOf("Earth","Venus","Jupiter","Mars","Satur

 var d = 0

 do{

 println("The name of $c th planet: "+name[d])

 if(name[d]=="Jupiter") {

 break

 }

 d++

 }while(d<=name.size)

}

In the above program, we traverse the array to display the names of planets.
First, populate the array names with planet names, and d is the test
statement’s iterator. We use name.size to compute the size of an array.

The do block first prints the array’s element, then compares the array’s
value at any index to “Jupiter” every time. If it matches, increase the
iterator and run one more time. If the expressions match, the break
expression is performed, and the do-while loop ends without checking for
the test expression.

Use of an Unlabeled Break in a for loop
We may utilize a break expression when traversing a for loop within an
array or string.

Syntax:

for(iteration through iterator) {

 // code to run

 if(break-condition){

 break

 }

}

Kotlin program for printing a string up to a specific character: In
the program below, we traverse the string by comparing the char value
to break at a specific location. First, make an array with the name
“TheHubsoftutors” and the value “TheHubsoftutors” in it. Then a for
loop using iterator d to investigate. It outputs the char value and
compares it to the char ‘s’ at each stage. The loop is terminated if a
match is discovered, and control is passed to the following line.

fun main(args: Array<String>) {

 var name = "TheHubsoftutors"

 for (d in name){

 print("$d")

 if(d == 's') {

 break

 }

}

 }

}

LABELED BREAKS IN KOTLIN
Suppose we want to immediately halt the loop’s execution when engaging
with loops if a specified condition is satisfied. In this case, we may leave
the loop by using either a break or a return expression.

In this lesson, we’ll look at quitting a loop using a break expression.
When a program encounters the break statement, it returns to the nearest
enclosing loop.

In Kotlin, there are two sorts of break expressions:

Unlabeled break, as we all know, is used to terminate to the nearest
enclosing loop when a particular condition is fulfilled.

On the other hand, a named break returns to the intended loop when a
stated condition is fulfilled. It is feasible to do this through the use of
labels. An identifier followed by a @ sign, such as inner@, outer@,
first@, second@, and so on, is referred to as a label. Use any phrase
with a label, but it must be written before. We’ll look at using labeled
break expressions in a while, do-while, and for loops.

In a while loop, Using a Labeled Break
A marked break is used to exit the target block without checking the
condition in the while loop when a condition is fulfilled. The control is
subsequently passed to the following while block statement.

If we use the label outer@ to identify the outer loop, we can simply break
it in the break condition block with break@outer.

Syntax:

outer@ while(condition) {

 // code

 inner@ while(condition) {

 // code

 if(breakcondition) {

 break @outer

 }

 }

}

Example:

fun main(args: Array<String>) {

 var numbr1 = 6

 outer@ while (numb1 > 0) {

 var numbr2 = 6

 inner@ while (numb2 > 0) {

 if (numbr1==2)

 break@outer

 println("numbr1 = $numbr1, numbr2 = $numbr2")

 numbr2--

 }

 numbr1--

 }

}

In a do-while loop, Using a Labeled Break
The designated break is also executed in the do-while loop to complete the
intended loop. In this example, we’ve used outer@ for the outer do-while
loop and inner@ for the inside do-while loop.

Syntax:

outer@ do {

 // code

 inner@ do {

 // code

 if(breakcondition) {

 break@outer

 }

 } while(condition)

} while(condition)

Example:

fun main(args: Array<String>) {

 var numbr1 = 4

 outer@ do {

 var numbr2 = 4

 inner@ do {

 if (numbr1 == 2)

 break@outer

 println("numbr1 = $numbr1; numbr2 = $numbr2")

 numbr2--

 } while (numbr2 > 0)

 numbr1--

 } while (numbr1 > 0)

}

Here, we print the same output as in the while loop. When the (numbr1 ==
2) condition is true, the break@outer command is executed, which
terminates the desired outer@ loop.

Using a Labeled Break in a for loop
A labeled break may also end the desired loop if a particular condition in
the for loop is fulfilled. The outer for loop is labeled as outer@, and the
inside for loop is labeled as inner@. An iterator is used to perform iteration
in a for loop.

Syntax:

outer@ for(iteration through iterator) {

 // code

 inner@ for(iteration through iterator)

 // code

 if(breakcondition) {

 break@outer

 }

 }

}

Example:

fun main(args: Array<String>) {

 outer@ for (numbr1 in 4 downTo 1) {

 inner@ for (numbr2 in 4 downTo 1) {

 if (numbr1 == 2)

 break@outer

 println("numbr1 = $numbr1; numbr2 = $numbr2")

 }

 }

}

KOTLIN UNLABELED CONTINUE

In the following section, we will enlighten on how to utilize continue in
Kotlin. When programming with loops, it is occasionally beneficial to skip
the current iteration of the loop. In such a situation, we may utilize the
program’s continue statement. Continue is essentially used to repeat the
loop for a given condition. It skips the following statements and moves on
to the next loop iteration.

Use of Unlabeled Continues in the while loop
The unlabeled continue to function in Kotlin is used to skip the current
iteration of the nearest enclosing while loop. If the condition for continue is
true, it skips the instructions following continue and returns to the while
loop’s commencement. It will check for the condition again, and the loop
will continue until the condition is false.

Syntax:

while(condition) {

 //code

 if(condition for continue) {

 continue

 }

 //code

}

Example:

fun main(args: Array<String>) {

 var numbr = 0

 while (numbr <= 15) {

 if (numbr % 3 == 0) {

 numbr++

 continue

 }

 println(numbr)

 numbr++

 }

}

We display the numbers and skip all multiples of 3 in the prior program. If a
number is divisible by three, the statement (numbr % 3 == 0) is used to

determine if it is divisible by three. Increase the number without publishing
it to standard output if it is a multiple of three.

In a do-while loop, Use an Unlabeled Continue
We may also skip the iteration of the nearest closed loop by using the
unmarked continue in do-while. In this scenario, we must include the
continue condition in the do block. If the condition becomes false, it will
skip the next instruction and transfer the control to the while condition.

Syntax:

do{

 // code

 if(condition for continue) {

 continue

 }

}

while(condition)

Example:

fun main(args: Array<String>) {

 var numbr = 1

 do {

 if (numbr <= 5 || numbr >=25) {

 numbr++

 continue

 }

 println("$numbr")

 numb++

 } while (numbr < 10)

}

Use of Unlabeled Continues in a for loop
We can also use unlabeled continue in for loop to skip the current iteration
and go straight to the closing loop. In the following program, we traversed
the array planets utilizing an array of letters and an iterator. The equation (c
< 2) skips iterating over array indices less than two; therefore, the text
stored at indexes 0 and 1 is not shown.

Syntax:

for(iteration through iterator)

{

 //code

 if(condition for continue)

{

 continue

 }

}

Example:

KOTLIN LABELED CONTINUES
In this topic, we’ll look at how to use continue in Kotlin. It is sometimes
advantageous to skip the current loop iteration when dealing with a loop in
programming. In this case, we may use the program’s continue statement.
Continue is used to continue the loop for a given condition effectively. It
goes on to the next loop iteration after skipping the following statements.

Use of Labeled Continues in a while loop
Labeled continue is used in the while loop to skip the iteration of the
desired block when it fulfills a defined condition without examining the
condition in the while loop. We may simply skip for the provided condition
in the conditional block by using continue@outer if we mark the outside
loop with outer@ and the inside loop with inner@.

Syntax:

fun main(args: Array<String>) {

 var colors = arrayOf("Pink", "Green", "Black", "White", "G

 for (c in colors.indices) {

 if(c < 2){

 continue

 }

 println(colors [c])

 }

}

outer@ while(firstcondition) {

 // code

 inner@ while(secondcondition) {

 //code

 if(condition for continue) {

 continue@outer

 }

 }

}

Example:

fun main(args: Array<String>) {

 var numbr1 = 6

 outer@ while (numb1 > 0) {

 numbr1--

 var numbr2 = 6

 inner@ while (numbr2 > 0) {

 if (numbr1 <= 2)

 continue@outer

 println("numbr1 = $numbr1, numbr2 = $numbr2")

 numbr2--

 }

 }

}

Use of Labeled Continues in a do-while loop
We may also use the specified continue in the do-while loop. In the
following program, we used a nested do-while loop, labeling the outside
loop with outer@ and the inner loop with inner@. Within an inner do-while
loop, the continue condition is executed. If the condition is true,
continue@outer skips the following lines or expressions and returns control
to the outer do-while loop for repetition.

Syntax:

outer@ do {

 // code

 inner@ do {

 // code

 if(condition for continue) {

 continue@outer

 }

 } while(firstcondition)

} while(secondcondition)

Example:

fun main(args: Array<String>) {

 var numbr1 = 6

 outer@ do {

 numbr1--

 var numbr2 = 6

 inner@ do {

 if (numbr1 <= 2)

 continue@outer

 println("numbr1 = $numbr1; numbr2 = $numbr2")

 numbr2--

 } while (numbr2 > 0)

 } while (numbr1 > 0)

}

Use of Labeled Continues in a for loop
We may use labeled continue in a for loop. We used nested for loops in the
following program, labeling the outside loop with outer@ and the inner
loop with inner@. Within the inner for-loop, the continue condition is
executed. If the condition is fulfilled, the subsequent sentences are skipped,
and control is given to the outer for-loop for iteration.

Syntax:

outer@ for(iteration through iterator) {

 // code

 inner@ for(iteration through iterator) {

 // code

 if(condition for continue) {

 continue@outer

 }

 }

}

Example:

fun main(args: Array<String>) {

 outer@ for (numbr1 in 4 downTo 1) {

 inner@ for (numbr2 in 4 downTo 1) {

 if (numbr1 <= 3)

 continue@outer

 println("numbr1 = $numbr1; numbr2 = $numbr2")

 }

 }

}

EXCEPTIONAL HANDLING
An exception is an undesirable or unexpected occurrence that occurs during
program execution, i.e., during run time, and disrupts normal flow of the
program’s instructions. Exception handling is an approach for dealing with
errors and avoiding run-time crashes, which might cause our program to
crash.

Exceptions are classified into two types:

Checked Exception: IOException, FileNotFoundException, and other
exceptions are often added to functions and examined at build time.

Unchecked Exception: Exceptions, such as NullPointerException and
ArrayIndexOutOfBoundException, are frequently produced by logical
errors and are examined at run time.

Exceptions in Kotlin
Exceptions in Kotlin are only unchecked and may be detected only at run
time. The Throwable class is the origin of all exception classes.

To throw an exception object, we frequently use the throw-expression:

throw Exception("Throwmeexception")

Among the most common exceptions are:

NullPointerException: We receive a NullPointerException when
executing a property or method on a null object.

Arithmetic Exception: This exception is raised when numbers are
exposed to incorrect arithmetic operations. Divide by zero, for
example.

SecurityException: This exception is raised to indicate a security
breach.

ArrayIndexOutOfBoundsException: This error is generated when
we attempt to obtain the incorrect index value of an array.

Example:

fun main(args : Array<String>){

 var numb = 30 / 0 // throw an exception

 println(numb)

}

Exception Handling in Kotlin
In the example below, we divide an integer by 0 (zero), which results in an
ArithmeticException. The catch block will be performed because this code
is in the try block.

The ArithmeticException occurred in this case. Therefore, the
ArithmeticException catch block was executed, and “Arithmetic
Exception” was printed in the output.

When an exception occurs, everything beyond that point is disregarded,
and control is sent to the catch block, if one exists. The final block is always
run, regardless of whether or not an exception occurs.

fun main(args: Array<String>) {

 try {

 var numb = 50/0

 println("Beginners ")

 println(numb)

 } catch (c: ArithmeticException) {

 println("Arithmetic Exception")

 } catch (c: Exception) {

 println(c)

 } finally {

 println("in any case it'll print")

 }

}

Avoiding NullPointerException
Avoid the NullPointerException by using the following checks and
protections:

Including a null check before using an object’s methods or properties
to ensure that it is properly initialized.

Using Apache Commons StringUtils for String operations, such as
StringUtils.isNotEmpty() to ensure that a string is not empty before
using it.

Use primitives rather than objects wherever possible since they cannot
have null references, such as int instead of Integer and boolean instead
of Boolean.

What If We Fail to Deal with Exceptions?
Assume that the application will fail if we do not handle the exception in
the preceding example.

The program terminated with an error in this scenario because we did not
handle exceptions.

How to Throw an Exception
The term throw is used to throw an exception. In the following example, the
throw keyword is used to throw an exception. The statement preceding the
exception is executed, but the statement after the exception is not performed
because control is transferred to the catch block.

fun main(args: Array<String>) {

 try{

 println("Before the exception")

 throw Exception("Something went wrong ")

 println("After the exception")

 }

 catch(c: Exception){

 println(c)

 }

 finally{

 println("can't-ignore ")

 }

}

NullPointerException Example:

public class ExceptionExp {

 private static void printLength(String strg) {

 System.out.println(strg.length());

 }

 public static void main(String args[]) {

 String myString = null;

 printLength(myString);

 }

}

The printLength() function in this example utilizes the length() method of a
String without first performing a null check. Because the string returned by
the main() method has no value, the preceding code throws a
NullPointerException:

Exception in thread "main" java.lang.NullPointerException

 at ExceptionExp.printLength(ExceptionExample.java:3)

 at ExceptionExp.main(ExceptionExample.java:8)

KOTLIN try-catch block
To manage exceptions in the program, we use the try-catch block in Kotlin.
The try block contains the code that throws an exception, whereas the catch
block handles the exception. This block must include either the main or
other methods. There should be a catch block, a final block, or both after
the try block.

Syntax:

try {

 // the code that can throw an exception

} catch(c: ExceptionName) {

 // catch-exception and handle it

}

Example:

import kotlin.ArithmeticException

fun main(args : Array<String>){

 try{

 var numb = 30 / 0

 }

 catch(c: ArithmeticException){

 // caught, handles it

 println("It not allowed divide by zero")

 }

}

The try-catch block as an Expression in Kotlin
As previously stated, expressions always return a value. We may use the
Kotlin try-catch block as an expression in our program. The return result of
the expression will be either the last expression of the try block or the final
expression of the catch block. If an exception occurs in the function, the
catch block returns the value.

Example:

fun test(x: Int, y: Int) : Any {

 return try {

 x/y

 //println("The Result is: "+ x / y)

 }

 catch(e:Exception){

 println(e)

 "The Divide by zero is not allowed"

 }

}

//the main function

fun main(args: Array<String>) {

 // invoke test-function

 var results1 = test(30,2) //execute try-block

 println(results1)

 var results = test(30,0) // execute catch-block

 println(results)

}

The final block in Kotlin
Whether or not the catch block handles an exception, the final block is
always run in Kotlin. As a result, it is used to carry out crucial code
statements.

We may unite the finally and try blocks and eliminate the catch block.

Syntax:

try {

 //the code that can throw an exception

} finally {

 // the code of finally block

}

Example:

fun main(args : Array<String>){

 try{

 var ar = arrayOf(101,202,303,404,505)

 var int = ar[6]

 println(int)

 }

 finally {

 println("This will always executes")

 }

}

Syntax of Finally block with try-catch block:

try {

 // the code that can throw an exception

} catch(c: ExceptionName) {

 // catch the exception, handle it.

} finally {

 //the code of finally block

}

Example:

fun main (args: Array<String>){

 try {

 var int = 30 / 0

 println(int)

 } catch (c: ArithmeticException) {

 println(c)

 } finally {

 println("This will always executes")

 }

}

Kotlin throw keyword

In Kotlin, we use the throw keyword to throw an explicit exception. It also
can throw a custom exception.

Example:

fun main(args: Array<String>) {

 test("xyzde")

 println("executes after the validation")

}

fun test(password: String) {

 // it calculate the length of entered password and compare

 if (password.length < 6)

 throw ArithmeticException("Password is too short")

 else

 println("Password is strong ")

}

NESTED try block AND MULTIPLE catch block

Nested try block
This section will teach us about nested try-catch blocks and multiple catch
blocks. A nested try block has one try catch block within another.

When an exception occurs in the inner try-catch block that is not handled
by the inner catch blocks, the outer try-catch blocks are inspected for that
exception.

Syntax:

// the outer try-block

try

{

 //the inner try-block

 try

 {

 //the code that can throw an exception

 }

 catch(c: SomeException)

 {

 //it catch the exception, handle it

 }

}

catch(c: SomeException)

{

// it catch the exception, handle it

}

Example:

fun main(args: Array<String>) {

 val numbers = arrayOf(101,202,303,404)

 try {

 for (x in numbers.indices) {

 try {

 var nm = (0..4).random()

 println(numbers[x+1]/nm)

 } catch (c: ArithmeticException) {

 println(c)

 }

 }

 } catch (c: ArrayIndexOutOfBoundsException) {

 println(e)

 }

}

Multiple catch block
A try block may include several catch blocks. When we are unclear what
type of exception may occur inside the try block, we may insert several
catch blocks for the various exceptions. The parent exception class in the
last catch block handles all the remaining exceptions in the program that are
not described by catch blocks.

Syntax:

try {

 // the code may throw an exception

} catch(c: ExceptionNameOne) {

 // catch the exception one, handle it

} catch(c: ExceptionNameTwo) {

 // it catch the exception two, handle it

}

Example:

import java.util.Scanner

object Tests {

 @JvmStatic

 fun main(args: Array<String>) {

 val scn = Scanner(System.'in')

 try {

 val n = Integer.parseInt(scn.nextLine())

 if (812% n == 0)

 println("$n is a factor of 812")

 } catch (c: ArithmeticException) {

 println(c)

 } catch (c: NumberFormatException) {

 println(c)

 }

 }

}

Expression in catch block use: In Kotlin, an expression in a catch
block can be used to replace several catch blocks. In the part that
follows, we will show us how to use when expression.

NULL SAFETY
Kotlin’s type system aims to eliminate the possibility of null references in
code, which is a billion-dollar mistake. The program throws
NullPointerExceptions at run-time, resulting in the application or system
failure.

import java.lang.NumberFormatException

import java.util.Scanner

object Tests {

 @JvmStatic

 fun main(args: Array<String>) {

 val scn = Scanner(System.'in')

 try {

 val n = Integer.parseInt(scn.nextLine())

 if (812% n == 0)

 println("$n is a factor of 812")

 } catch (c: Exception) {

 when(c){

 is ArithmeticException -> { println("Arithmeti

 is NumberFormatException -> { println("Number

 }

 }

 }

}

If we’ve ever written code in Java or another language that has the
concept of a null reference, we’ve almost certainly seen a
NullPointerException. If the Kotlin compiler encounters a null reference
without executing any additional instructions, a NullPointerException is
thrown.

The following are some possible sources of NullPointerExceptions:

The !! Operator is used.

NullPointerException() is thrown explicitly.

Attempting to access a member on a null reference and generics types
with erroneous nullability are examples of Java interoperations.

Some data inconsistency in terms of initialization, such as using an
uninitialized this as an input.

Nullable and Non-Nullable Sorts in Kotlin
The Kotlin type system differentiates between two sorts of references: those
that may hold null (nullable references) and those that cannot (non-nullable
references).

You cannot assign value null to a String variable. We get a compiler error
when we attempt to assign a null value to the variable.

var str1: String = "Hub"

str1 = null // compilation-error

To allow it to retain null, we define a variable as a nullable string, typed
String:

var str2: String? = "TheHuboftutors"

str2 = null // ok

print(str2)

Now, if we want to acquire the length of the string str1, we can be assured
that it will not throw an NPE; hence, we can confidently say:

val l = str1.length

Accessing the length of the string str2 is not safe, and the compiler reports
an error:

non-nullable program:

fun main(args: Array<String>){

 // the variable is declared as non nullable

 var str1 : String = "Hubs"

 //str1 = null // gives compiler error

 print("length of the string str1 is: "+str1.length)

}

In this example, assigning a null value to a non-nullable variable result in a
compiler time error. However, trying to read the length of the string will
result in a NullPointerException.

Nullable type program:

Checking for the null in Conditions
The most common method for checking for null references is to utilize an
if-else expression. We may explicitly verify if the variable is null and
handle the two alternatives independently.

Example:

fun main(args: Array<String>) {

 // variable declared as nullable

 var str: String? = "TheHuboftutors"

 println(str)

 if (str != null) {

 println("String of length ${str.length}")

 } else {

 println("The Null string")

 }

 // assign null

 str = null

 println(str)

val l = str2.length // error: variable 'str2' can be nul

fun main(args: Array<String>) {

 // the variable is declared as nullable

 var str2: String? = "TheHuboftutors"

 str2 = null // no compile-error

 println(str2.length) // the compile error because string ca

}

 if (str != null) {

 println("String of length ${str.length}")

 } else {

 println("The Null String")

 }

}

Safe Call operator(?.)
Null comparisons are simple, but the number of nested if-else phrases may
be challenging. As a solution, Kotlin has a Safe call operator ?., which
removes this complexity by only executing an action when the specified
reference has a non-null value. It allows us to employ a null-check and a
method call in the same expression.

The following expression:

firstname?.toUpperCase()

is equivalent to:

if(firstname != null)

 firstname.toUpperCase()

else

 null

Example:

fun main(args: Array<String>) {

 // variable declared as nullable

 var firstname: String? = "Reena"

 var lastname: String? = null

 println(firstname?.toUpperCase())

 println(firstname?.length)

 println(lastname?.toUpperCase())

}

Elvis Operator(?:)
When the original variable is null, the Elvis operator returns a value that is
not null or a default value. In other words, the Elvis operator returns the left
expression if it is not null; else, the right expression is returned. If it is
determined that the left-hand side expression is null, the right-hand side
expression is evaluated.

The following expression:

val name = firstname ?: "Unknown"

is equivalent to:

val name1 = if(firstname!= null)

 firstname

 else

 "Unknown"

Furthermore, we may use throw and return expressions on the right side of
the Elvis operator, which is particularly handy in functions. As a result, we
can throw an exception instead of returning the default value on the Elvis
operator’s right side.

Example:

fun main(args: Array<String>) {

 var str : String? = "TheHuboftutors"

 println(str?.length)

 str = null

 println(str?.length ?: "-1")

}

Not null assertion: !! Operator
If the value is null, the not null assertion operator (!!) converts it to a non-
null type and throws an exception.

If someone needs a NullPointerException, they can use this operator to
obtain one.

fun main(args: Array<String>) {

 var str : String? = "TheHuboftutors"

 println(str!!.length)

 str = null

 str!!.length

}

TYPE CHECKING AND SMART CASTING

val name1 = firstname ?: throw IllegalArgumentException("Enter t

Type Checking
In Kotlin, we may use this operator to identify the type of a variable at run-
time. It is a way of separating the flow of multiple objects at run-time by
checking the type of a variable.

Program of Type checking in Kotlin with if-else blocks:

fun main(args: Array<String>) {

 var names = "Rishi"

 var ages = 36

 var salary = 7100.24

 val employeeDetails: List<Any> = listOf(names,ages,salary)

 for(attribute in employeeDetails) {

 if (attribute is String) {

 println("Name is: $attribute")

 } else if (attribute is Int) {

 println("Age is: $attribute")

 } else if (attribute is Double) {

 println("Salary is: $attribute")

 } else {

 println("Not an attribute")

 }

 }

}

Using when expression:

When expressions may easily replace if-else blocks.

Kotlin type checking program is used when:

fun main(args: Array<String>) {

 var names = "Ridhi"

 var ages = 30

 var salary = 6200.55

 var emp_id = 11275f

 val employeeDetails: List<Any> = listOf(names, ages, salary,

 for (attribute in employeeDetails) {

 when (attribute) {

 is String -> println("The Name is: $attribute ")

 is Int -> println("The Age is: $attribute")

 is Double -> println("The Salary is: $attribute")

 else -> println("Not an attribute")

 }

 }

}

Smart Casting
Before accessing a variable’s properties in Java or other programming
languages, explicit type casting is necessary, but Kotlin employs smart
casting. When you send a variable through a conditional operator, the
Kotlin compiler automatically converts it to a particular class reference.

Consider the following Java example. We first use the instanceOf
operator to discover the variable’s type, and then we cast it to the target
type, as seen below:

Object obj = "TheHuboftutors";

if(obj instanceof String) {

 // the Explicit type casting

 String str = (String) obj;

 System.out.println("length of String " + str.length());

}

One of the most fascinating features of Kotlin is smart type casting. We use
the is or !is operator to validate the type of a variable, and the compiler
automatically casts the variable to the required type, as seen below:

fun main(args: Array<String>) {

 val str1: String? = "TheHuboftutors"

 var str2: String? = null // prints String is null

 if(str1 is String) {

 // No Explicit-type Casting needed.

 println("length of String ${str1.length}")

 }

 else {

 println("String is null")

 }

}

Use of !is Operator
Similarly, we may use the !is operator to verify the variable.

fun main(args: Array<String>) {

 val str1: String? = "thehuboftutors"

 var str2: String? = null // prints String is null

 if(str1 !is String) {

 println("String is null")

 }

 else {

 println("The length of String ${str1.length}")

 }

}

Smart casts are ineffective if the compiler cannot guarantee that the variable
will not change between the check and the usage. The following guidelines
determine the usage of smart casts:

val local variables, except local delegated properties, always work.

val properties are only helpful if the property is private or internal or if
the check is performed in the same module as the property is defined.
Smart casts do not support open properties and properties with custom
getters.

var local variables work only if the variable has not been modified
between the check and usage, is not captured in the lambda that
modifies it, and is not a local delegated property.

var properties never work since the variable can change at any time.

EXPLICIT TYPE CASTING
In smart casting, we usually use the is or!is the operator to verify the type of
a variable, and the compiler automatically converts the variable to the target
type. Still, in explicit typecasting, we use the as operator.

Explicit type casting can be accomplished by employing:

Unsafe cast operator: as

Safe cast operator: as?

Unsafe Cast Operator: as
To manually convert a variable to the target type, we use the type cast
operator.

In the following code, variable str1 of string type is cast to target type
using as operator.

fun main(args: Array<String>){

 val str1: String = "work's okay"

 val str2: String = str1 as String // Works

 println(str1)

}

It is conceivable that we may be unable to cast a variable to the target type,
resulting in an exception at run-time, which is why it is referred to as an
unsafe casting.

A ClassCastException is thrown when an Integer type is used to cast to a
String type.

fun main(args: Array<String>){

 val str1: Any = 22

 val str2: String = str1 as String // throw-exception

 println(str1)

}

We are unable to convert a nullable string to a non-nullabe string, and an
error is thrown as TypeCastException.

fun main(args: Array<String>){

 val str1: String? = null

 val str2: String = str1 as String // throw-exception

 println(str1)

}

As a result, we must also use the target type as a nullable string to
prevent type casting from throwing an exception.

fun main(args: Array<String>){

 val str1: String? = null

 val str2: String? = str1 as String? // throw exception

 println(str1)

}

Safe Cast Operator: as?
Kotlin also supports type casting using the safe cast operator, as? If casting
is not feasible, the function returns a null value instead of raising a
ClassCastException.

Here’s an example: it works beautifully when we try to cast any string
value known to the programmer into a nullable string. When we initialize

the Any with an integer value and convert it into a nullable string, the
typecasting fails, and str3 returns null.

fun main(args: Array<String>){

 var str1: Any = "Safe casting"

 val str2: String? = str1 as? String // it works

 str1 = 22

 // the type casting not possible so returns null to st3

 val str3: String? = str1 as? String

 val str4: Int? = str1 as? Int // it works

 println(str2)

 println(str3)

 println(str4)

}

REGEX AND RANGES

Regular Expressions in Kotlin
Regular Expressions are a fundamental element of nearly every
programming language, including Kotlin. In Kotlin, regular expressions are
supported through the Regex class. The objects in this class represent
regular expressions used for string matching.

class Regex

Regular expressions may be found in various software, from the most
simple to the most complex.

Constructors:

<init>(pattern: String): Based on the pattern string, this constructor
generates a regular expression.

<init>(pattern: String, option: RegexOption): Based on the pattern
and option supplied, this constructor creates a regular expression. The
option is an enum constant from the RegexOption class.

<init>(pattern: String, options: Set<RegexOption>): This
constructor generates a regular expression from the specified string
pattern and arguments.

Properties:

val options: Set<RegexOption>: It contains the settings that must be
used while constructing a regex.

val pattern: String: It contains the descriptive string for the pattern.

Regex Functions

containsMatchIn(): This method returns a boolean indicating whether
or not it found our pattern in the input.

fun containsMatchIn(input: CharSequence): Boolean

This example will demonstrate how to utilize Kotlin’s containsMatchIn()
method:

find(): This function returns the first matched substring corresponding
to our pattern in the input starting at the specified beginning index.

This example will demonstrate how to utilize Kotlin’s find() method:

fun main()

{

 // Regex to match "ol" in a string

 val pattern1 = Regex("ol")

 val ans : MatchResult? = pattern1.find("HlloooHllooo", 6)

 println(ans ?.value)

}

findAll(): This function retrieves all matchings of the provided pattern
in the input, starting at the specified start index.

fun main()

{

 // A regex that matches any text that begins with the letter

 val pattern = Regex("^b")

 println(pattern.containsMatchIn("acbd"))

 println(pattern.containsMatchIn("bcad"))

}

fun find(input: CharSequence, start_Index: Int): MatchResult

fun findAll(

 input: CharSequence,

 start_Index: Int

): Sequence

This example will demonstrate how to utilize Kotlin’s findAll method:

matches(): This function returns a boolean indicating whether the
input string matches the pattern completely.

infix fun matches(input: Char_Sequence): Boolean

This example will demonstrate how to utilize Kotlin’s matches() method:

fun main()

{

 //to tests the demonstrating entire string match

 val patterns = Regex("p([ee]+)ks?")

 println(patterns.matches("peeks"))

 println(patterns.matches("peeeeeeeeeeks"))

 println(patterns.matches("peeksforpeeks"))

}

matchEntire(): This function tries to match the entire input string to
the specified pattern string and returns the string if it succeeds. If it
does not match the string, return null.

fun matchEntire(input: Char_Sequence): MatchResult?

This example will demonstrate how to utilize Kotlin’s matchEntire()
method:

fun main()

{

 // A regex to match a 3 pattern starting with ab

 val pattern2 = Regex("ab.")

 val ans1 : Sequence<MatchResult> = pattern2.findAll("absgffh

 // forEach loop used to display all the matches

 ans1.forEach()

 {

 matchResult -> println(matchResult.value)

 }

 println()

}

fun main()

{

 // Tests demonstrating entire string match

 var patterns = Regex("peeks?")

 println(patterns.matchEntire("peeks")?.value)

 println(patterns.matchEntire("peeeeeeeks")?.value)

 patterns = Regex("""\D+""")

 println(patterns.matchEntire("peeks")?.value)

 println(patterns.matchEntire("peeks13245")?.value)

}

replace(): This function replaces all occurrences of the given pattern
in the input string with the replacement string.

replaceFirst(): The first regular expression match in the input replaces
the replacement string.

fun replaceFirst(

 input: Char_Sequence,

 replacement: String

): String

Here’s an example of the replace() and replaceFirst() work methods in
Kotlin:

fun main()

{

 // Experiments to demonstrate replacement functions

 val pattern4 = Regex("abzz")

 // replace all abzz with xycd in the string

 println(pattern4.replace("abzzabzzzzzzzzz", "abcd"))

 // replace only first xyz with abc not all

 println(pattern4.replaceFirst("abzzddddddabzz", "abcd"))

 println()

}

split(): This function separates the input text into tokens based on the
given value.

fun split(input: Char_Sequence, limit: Int): List

fun replace(input: Char_Sequence, replacement: String): Stri

This example will demonstrate how to utilize Kotlin’s split() method:

RANGES IN KOTLIN
In Kotlin, a range is a collection of finite values defined by endpoints. A
range in Kotlin is made of a start, a stop, and a step. The Range’s start and
endpoints are inclusive, and the step value is set to 1 by default.

The range is given to comparable types.
Range may create in three ways in Kotlin:

Using the (..) operator

Using downTo() function

Using rangeTo() function

(..) operator
It is the most fundamental way to interact with range. It will construct a
beginning to end range containing both the beginning and ending values. It
is the operator form of the rangeTo() function. Using the (..) operator, we
can build ranges for integers and characters.

To create an integer range program in Kotlin, use the (..) operator:

fun main(args : Array<String>){

 println("Integer-range:")

 // creation of integer range

 for(numb in 1..6){

 println(numb)

 }

}

Kotlin character range program with the (..) operator:

fun main()

{

 // Tests demonstrating split function

 val patterns = Regex("\\s+") // separate for the white-spac

 val ans : List<String> = patterns.split("This is the class")

 ans.forEach { word -> println(word) }

}

fun main(args : Array<String>){

 println("Character-range:")

 // creation of the character range

 for(xh in 'a'..'e'){

 println(xh)

 }

}

rangeTo() Function
It is comparable to the (..) operator. It will produce a range up to the
provided value. It’s also used to make a range of numbers and characters.

In Kotlin, use the rangeTo() function to build an integer range:

fun main(args : Array<String>){

 println("Integer-range:")

 // creation of the integer range

 for(numbs in 1.rangeTo(6)){

 println(numbs)

 }

}

In Kotlin, use the rangeTo() function to build a character range:

fun main(args : Array<String>){

 println("Character -range:")

 // creation of the character range

 for(xh in 'a'.rangeTo('f')){

 println(xh)

 }

}

downTo() Function
It is the reverse of the rangeTo() or (..). It produces a range from larger to
smaller numbers in decreasing order. This section will define ranges for
integers and characters in reverse order.

Kotlin code with an integer range and the downTo() function:

fun main(args : Array<String>){

 println("The Integer range in descending order:")

 // creation of the integer range

 for(numbs in 6.downTo(1)){

 println(numbs)

 }

}

In Kotlin, use the downTo() method to program a character range:

fun main(args : Array<String>){

 println("The Character range in the reverse order:")

 // creation of the character range

 for(xh in 'f'.downTo('a')){

 println(xh)

 }

}

Range Using the forEach loop
The forEach loop may also use to iterate through the range.

fun main(args : Array<String>){

 println("Integer-range:")

 // creation integer-range

 (3..6).forEach(::println)

}

step()
To create a step between values, use the keyword step. It is mainly used in
rangeTo(), downTo(), and the (..) operator to provide the space between two
numbers. Because the step has a default value of 1, the step function cannot
have a value of zero.

A step-by-step Kotlin program is provided below:

fun main(args: Array<String>) {

 //for iterating over range

 var x = 2

 // for loop with the step keyword

 for (x in 3..10 step 2)

 print("$x ")

 println()

 // print first value of the range

 println((11..20 step 2).first)

 // print the last value of the range

 println((11..20 step 4).last)

 // print the step used in the range

 println((11..20 step 5).step)

}

reverse() Function
It is used to reverse the range type specified. To print the range in
descending order, we may use the reverse() function instead of downTo().

fun main(args: Array<String>) {

 var range = 2..8

 for (z in range.reversed()){

 print("$z ")

 }

}

Various Predefined Functions in the Range
In Kotlin Range, the following functions are predefined: min(), max(),
sum(), and average ().

Check to see whether the value is inside a range:

fun main(args: Array<String>)

{

 var x = 3

 //to check whether value lies in the range

 if(x in 6..10)

 println("$x is lie within range")

 else

 println("$x does not lie within range")

}

In this chapter, we covered what is Kotlin, its central concepts, installations,
advantages and disadvantages of Kotlin. Moreover, we also covered syntax,
control flow statements, exception handling, null safety, and regex &
ranges.

fun main() {

 val predefined = (13..20)

 println("The minimum value of the range is: "+predefined.min

 println("The maximum value of the range is: "+predefined.max

 println("The sum of all values of the range is: "+predefined

 println("The average value of the range is: "+predefined.ave

}

C H A P T E R 2
OOP in Kotlin

DOI: 10.1201/9781003308447-2

IN THIS CHAPTER
➢ Objects and classes
➢ Inheritance
➢ Composition
➢ Polymorphism
➢ Encapsulation
➢ Abstraction

In the previous chapter, we covered the crash course in Kotlin, where we
covered installation, advantages, disadvantages, control flow statement, and
exceptional handling. In this chapter, we will cover the OOPs concept.

OBJECTS AND CLASSES
Kotlin supports both functional and object-oriented programming (OOP).
We spoke about functions, higher-order functions, and lambdas in the last
section, and we mentioned Kotlin as an accessible language. This section

https://doi.org/10.1201/9781003308447-2

will cover the essential OOPs concepts that characterize Kotlin as an OOP
language.

Object-Oriented Programming Language
Class and object are the essential concepts of an OOP language. These
support OOP ideas like inheritance, abstraction, and so forth.

Class
Class, like Java, is a blueprint for objects with similar characteristics. We
must first declare a class before creating an object, and the class keyword is
used to do so.

The class declaration comprises the class name, the class header, and the
class body, which are all separated by curly brackets.

Syntax:

class className

{ // the class header

 // property

 // the member-function

}

Class name: Each class has a unique name.

Class header: Class headers are composed of the arguments and
constructors of a class.

Class body: Curly brackets surround the class body, containing
member functions and other properties.

The header and class body are optional; the class body can be deleted if
there is nothing between the curly braces.

class blankClass

We must use the term immediately after the class name if we want to
include a constructor.

Creating a constructor:

class className constructor(parameters) {

 // property

 // the member-function

}

Example:

class employe

{

 // properties

 var names: String = ""

 var ages: Int = 0

 var gender: Char = 'D'

 var salary: Double = 0.toDouble()

 //the member functions

 fun names(){

 }

 fun ages() {

 }

 fun salary(){

 }

}

Object
It is a key unit of OOP that represents real-world entities with state and
behavior. Objects are used to access the properties and member functions of
a class. In Kotlin, several instances of the same class can create. An item is
made up of the following components:

State: It is represented by the properties of an item. It also reflects an
object’s attributes.

Behavior: It is expressed by the methods of an object. It also
illustrates the interaction of a thing with other objects.

Identity: It gives an object a unique name and enables one object to
connect with other things.

Create an object: We may build an object by using the class
reference.

var objt = className()

Accessing class’s properties: We may use an object to access the
properties of a class. First, construct an object using the class reference
and access the property.

objt.nameOfProperty

Access to a class member function: The object can use to access a
class member function.

objt.funtionName(parameters)

Example:

class employees

{// Constructor Declaration of Class

 var names: String = ""

 var ages: Int = 0

 var gender: Char = 'F'

 var salary: Double = 0.toDouble()

 fun insertValues(n: String, a: Int, g: Char, s: Double) {

 names = n

 ages = a

 gender = g

 salary = s

 println("The Name of the employees: $name")

 println("The Age of the employees: $age")

 println("The Gender: $gender")

 println("The Salary of the employees: $salary")

 }

 fun insertName(n: String) {

 this.name = n

 }

}

fun main(args: Array<String>) {

 // creating the multiple objects

 var objt = employees()

 // object 2 of class employees

 var objt2 = employees()

 //accessing the member function

 objt.insertValues("Raveen", 8, 'F', 40000.00)

 // accessing the member function

 objt2.insertName("Jlie")

 // accessing the name property of class

 println("Name of the new employees: ${objt2.name}")

}

NESTED CLASS AND INNER CLASS IN KOTLIN

Nested Class
A class is referred to as nested when declared within another class. Because
nested classes are static by default, we may use dot(.) notation to access
their attributes or variables without creating an instance of the class.

Syntax:

It is important to note that nested classes cannot access the members of the
outer class, but we may access nested class properties from the outer class
without creating an object for the nested class.

In Kotlin, use the following program to access nested class attributes:

// the outer class declaration

class outer_Class {

 var strg = "Outer class"

 // the nested class declaration

 class nested_Class {

 val firstName = "Ravi"

 val lastName = "Ridhi"

 }

}

fun main(args: Array<String>) {

 // accessing the member of Nested class

 print(outer_Class.nested_Class().firstName)

 print(" ")

 println(outer_Class.nested_Class().lastName)

}

class out_Class {

 // the properties of the outer class or a member functio

 class nest_Class {

 // the properties of the inner class or member fun

 }

}

In Kotlin, we must first create the nested class’s object and then invoke the
member function from it.

In Kotlin, the following program is used to access nested class member
functions:

In comparison to Java: When it comes to functionality and use cases,
Kotlin classes are similar to but not identical to Java classes. The Nested
class in Kotlin corresponds to a static nested class in Java, but the Inner
class corresponds to a non-static nested class in Java.

Kotlin Java
Nested class Static Nested class
Inner class Non-Static class

Inner Class in Kotlin
An “inner class” is a class that may be defined within another class using
the keyword inner. We may access the outer class property from within the
inner class by using the inner class.

class outer_Class {

// the outer class declaration

class outer_Class {

 var strg = "Outer class"

 // the nested class declaration

 class nested_Class {

 var str1 = "Nested class"

 // nested class member function

 fun nestfunc(strg2: String): String {

 var str2 = st1.plus(strg2)

 return str2

 }

 }

}

fun main(args: Array<String>) {

 // the creating object of Nested class

 val nested = outer_Class.nested_Class()

 //invoking the nested member function by passing the string

 var result = nested.nestfunc(" Member function-call successf

 println(result)

}

 // properties of the outer class or member-function

 inner class inner_Class {

 // properties of the inner class or member-function

 }

}

We try to access strg from the inner class member function in the following
program. It does not, however, work and creates a compile-time error.

Inner-Class Kotlin Program

// the outer class declaration

class outer_Class {

 var strg = "Outer class"

 // the inner_Class declaration without using inner keyword

 class inner_Class {

 var st1 = "Inner class"

 fun nestfunc(): String {

 // it can not access the outer class property strg

 var st2 = strg

 return st2

 }

 }

}

//the main function

fun main(args: Array<String>) {

 // creating the object for inner class

 val inner= outer_Class().inner_Class()

 // inner function call using the object

 println(inner.nestfunc())

}

To begin, place the inner keyword before the inner class. Then, create an
instance of outer class; otherwise, we will be unable to use inner classes.

// the outer class declaration

class outer_Class {

 var strg = "Outer class"

 // inner_Class declaration with using inner keyword

 inner class inner_Class {

 var st1 = "Inner class"

 fun nestfunc(): String {

 // can access the outer class property strg

 var st2 = strg

2

SETTERS AND GETTERS
Every programming language requires the use of properties. In Kotlin,
properties may declare in the same manner that variables can. In Kotlin,
properties may be designated as changeable or immutable by using the var
keyword.

Syntax:

The property initializer, getter, and setter are all optional in this scenario.
We may also omit the property type if we can infer it from the initializer. A
read-only or immutable property declaration differs from a mutable
property declaration in two ways:

It begins with the val rather than var.

It does not permit a setter.

fun main(args : Array) {

 var a: Int = 0

 val b: Int = 1

 a = 2 // It can be allocated unlimited number of times

 b = 0 // It'll never be allocated again

 }

Setters and Getters

 return st2

 }

 }

}

// the main function

fun main(args: Array<String>) {

 // for inner class creating the object

 val inner= outer_Class().inner_Class()

 // using object inner function call

 println(inner.nestfunc()+" property accessed successfully fr

}

var <propertyName>[: <PropertyType>] [= <property_initializer>

 [<getter>]

 [<setter>]

In Kotlin, the setter is used to set the value of a variable, whilst the getter is
used to get the discount. The code generates Getters and Setters
automatically. In the ‘company’ class, let us define a ‘names’ property.
‘names’ is of the data type String and will be set to a default value.

class companie

{

var names: String = "Defaultvalues"

}

The previous code relates to the following code:

class companie

{

 var names: String = "defaultvalues"

 get() = field // getter

 set(value) { field = value } // setter

}

We make a ‘y’ object of the type ‘companie.’ We provide the setter’s
parameter value when we initialize the ‘names’ property, which sets the
‘field’ to value. When we try to access the object’s names property, we
receive a field since the code gets () = field. We can acquire or set the
properties of a class object using the dot(.) syntax.

val y = companie()

y.names = "TheHuboftutor" // access setter

println(y.names) // access getter

Program of Default Setter and Getter in Kotlin

class companie

{

 var names: String = ""

 get() = field // getter

 set(value) { // setter

 field = value

 }

}

fun main(args: Array<String>) {

 val y = Companie()

 y.name = "TheHuboftutor" // access setter

 println(y.names) // access getter

}

Identifiers for Values and Fields
We have discovered these two Identifiers.

Value: We usually use the name of the setter parameter as the value,
but we may use whatever name we choose. The value argument
contains the value that has been assigned to a property. In the above
program, we set the property name to y.name = “TheHuboftutor” and
we set the value parameter to “TheHuboftutor.”

Backing Field (field): It allows us to save the property value in
memory. When we initialize property with value, the value is written
to the property’s backing field. In the preceding program, the value is
assigned to the field, and then the field is assigned to obtain ().

Private Modifier
If we want the public to be allowed to utilize the get function, we may use
the following code:

var names: String = ""

 private set

We can only set the name in a method within the class due to the private
modifier near the set accessor. In a Kotlin program, a method within a class
is used to set the value.

class companie () {

 var names: String = "cde"

 private set

 fun myfunc(x: String) {

 names = x // here, we set the name

 }

}

fun main(args: Array<String>) {

 var d = company()

 println("The Name of the company is: ${d.names}")

 d.myfunc("TheHuboftutor")

 println("The Name of the new company is: ${d.names}")

}

Explanation: We used the private modifier in combination with the set in
this situation. To begin, create an object of type companie() and access the
property name. The name “TheHuboftutor” is then sent as a parameter to
the method defined within the class. Once again, access is given when the
name property is changed with the new name.

Setter and Getter with Custom Parameters

class registrations(email: String, pwd: String, age: Int, gend

 var email_id: String = email

 // the Custom Getter

 get() {

 return field.toLowerCase()

 }

 var password: String = pwd

 // the Custom Setter

 set(values){

 field = if(values.length > 7) value else throw Illeg

 }

 var age: Int = age

 // the Custom Setter

 set(values) {

 field = if(values > 19) value else throw IllegalArg

 }

 var gender : Char = gender

 // the Custom Setter

 set (values){

 field = if(values == 'F') value else throw IllegalAr

 }

}

fun main(args: Array<String>) {

 val peek = registrations("ruhi1998@GMAIL.COM","Hub@123",29,'

 println("${hub.email_id}")

 peek.email_id = "HUBTUTOR@CAREERS.ORG"

 println("${hub.email_id}")

 println("${hub.password}")

 println("${hub.age}")

 println("${hub.gender}")

 // throw IllegalArgumentException("Passwords is small")

 peek.password = "abc"

 // throw IllegalArgumentException("Age should be 19+")

k 5

mailto:http://ruhi1998@GMAIL.COM

CLASS PROPERTIES AND CUSTOM ACCESSORS
Encapsulation is the most fundamental and important idea in a class. It’s a
feature that lets us merge code and data into a single object. Data in Java is
saved in fields, which are usually private. Consequently, accessor methods
– a getter and a setter – are provided to allow users of the given class to
access the data. In the setter, additional logic is included for providing
change alerts and validating the passed value.

Property
It is a combination of accessories and fields in the case of Java. In Kotlin,
properties are meant to be first-class language features. These features have
replaced fields and accessor methods. The val and var keywords are used to
specify class properties in the same manner as variables are. A var-declared
property is mutable, which means it may change.

Creating a class:

class Cbad(

 val names: String,

 val ispassed: Boolean

)

Readable Property: Generates field and trivial getter

Writable Property: A getter, setter, and field

The property declaration essentially declares the linked accessors (both
setter and getter for writable and getter for the readable property). A field is
used to hold the value.

Let’s have a look at how the class is implemented:

class Cbad(

 val names: String,

 val ispassed: Boolean

)

fun main(args: Array<String>) {

 peek.age= 5

 // throw IllegalArgumentException("User should be male")

 peek.gender = 'M'

}

 val abcd = Cbad("Bobbin",true)

 println(abcd.names)

 println(abcd.ispassed)

 /*

 In Java

 Cbad abcd = new Cbad("Bobi",true);

 System.out.println(person.getName());

 System.out.println(person.isMarried());

 */

}

In Kotlin, the constructor can be called without the requirement for a new
keyword. Instead of utilizing a getter, the property is addressed directly. The
logic is the same, but the code is much shorter. Setters of mutable properties
work in the same way.

Customer Accessors
Implementation of property accessors on a specific instance basis:

class Rect(val height: Int, val width: Int)

{

 val isSquare: Boolean

 get() {

 return height == width

 }

}

fun main(args: Array<String>) {

 val rect = Rect(22, 14)

 println(rect.isSquare)

}

KOTLIN CONSTRUCTOR
Constructor is a member function that is invoked when a class object is
created to initialize variables or properties. Every class must have a
constructor, and if we don’t define one, the compiler will create one for us.

There are kinds of constructors in Kotlin:

Primary Constructor

Secondary Constructor

A class in Kotlin can have one primary constructor and one or more
subsidiary constructors. The primary constructor is responsible for
initializing the class, whereas the secondary constructor is in charge of
initializing the class and introducing some extra logic.

Primary Constructor
After the class name, the constructor keyword is used to initialize the
primary in the class header. The main constructor’s parameters are optional.

class Addconstructor(val x: Int, val y: Int) {

 // code..

}

The constructor keyword can omit if no annotations or access modifiers are
supplied.

class Add(val x: Int, val y: Int) {

 // code..

}

Example:

//the main function

fun main(args: Array<String>)

{

 val add = Add(10, 2)

 println("The Sum of numbers 10 and 2 is: ${add.a}")

}

//the primary constructor

class Add constructor(x: Int,y:Int)

{

 var a = x+y;

}

Primary Constructor with Initializer Block
The primary constructor may not include any code; however, the
initialization code may include in a separate initializer block headed by the
init keyword.

Example:

fun main(args: Array<String>) {

 val empy = employees(27117, "Rani")

}

class employees(empy_id : Int, empy_name: String) {

 val id: Int

 var names: String

 // initializer block

 init {

 id = empy_id

 names = empy_names

 println("Employees id is: $id")

 println("Employees name: $names")

 }

}

The Default Value in the Primary Constructor
We can initialize the function constructor parameters with some default
values, similar to how we establish the default values of functions.

Example:

Secondary Constructor

fun main(args: Array<String>) {

 val empy = employees(27117, "Rani")

 // the default value for empy_name will be used here

 val empy2 = employees(10011)

 //default values for the both parameters because no argume

 val empy3 = employees()

}

class employees(empy_id : Int = 110, empy_name: String = "cba

 val id: Int

 var name: String

 // initializer block

 init {

 id = empy_id

 name = empy_name

 print("Employee id is: $id, ")

 println("Employee name: $name")

 println()

 }

}

Kotlin, as previously noted, may have one or more secondary constructors.
Secondary constructors enable variable initialization and the inclusion of
logic to the class. The keyword constructor precedes them.

Example:

//the main function

fun main(args: Array<String>)

{

 Add(10, 3)

}

//class with the one secondary constructor

class Add

{

 constructor(x: Int, y:Int)

 {

 var a = x + y

 println("The sum of numbers 10 and 3 is: ${a}")

 }

}

The compiler determines which secondary constructor will be executed
based on the arguments provided. The above program does not specify
which constructor should be called, and the compiler decides.

Example:

fun main(args: Array<String>) {

 employee(17117, "Rani")

 employee(12011,"Prithwi",52000.5)

}

class employee {

 constructor (empy_id : Int, empy_name: String) {

 var id: Int = empy_id

 var name: String = empy_name

 print("Employee id is: $id, ")

 println("Employee name: $name")

 println()

 }

 constructor (empy_id : Int, empy_name: String, empy_sal

 var id: Int = empy_id

 var name: String = empy_name

 var salary : Double = empy_salary

 print("The Employee id is: $id, ")

 print("The Employee name: $name, ")

println("The Employee name: $salary")

In a Kotlin program, there are three secondary constructors in a class:

//the main function

fun main(args: Array<String>)

{

 Add(31, 51)

 Add(31, 51, 61)

 Add(31, 51, 61, 71)

}

//class with the three secondary constructors

class Add

{

 constructor(x: Int, y: Int)

 {

 var a = x + y

 println("Sum of 31, 51 = ${a}")

 }

 constructor(x: Int, y: Int, a: Int)

 {

 var b = x + y + a

 println("Sum of 31, 51, 61 = ${b}")

 }

 constructor(x: Int, y: Int, a: Int, b: Int)

 {

 var e = x + y + a + b

 println("Sum of 31, 51, 61, 71 = ${e}")

 }

}

VISIBILITY MODIFIERS IN KOTLIN
In Kotlin, visibility modifiers are used to restrict access to classes, objects,
interfaces, constructors, methods, properties, and their setters. There is no
need to make getters visible because they are visible in the same way as the
property.

In Kotlin, there are four visibility modifiers:

Modifier Description
Public The Visible everywhere
Private The Visible inside same class only
Internal The Visible inside the same module

 println(The Employee name: $salary)

 }

}

Modifier Description
Protected The Visible inside the same class and its subclasses

If no modifier is specified, the value is set to public by default. Let’s go
through the modifiers listed above one by one.

Public Modifier
The public modifier is the default in Kotlin. It is the most commonly used
modifier in the language, and there are additional restrictions on who may
access the component being modified. Unlike Java, there is no need to
specify anything as public in Kotlin; it is the default modifier; if no other
modifier is specified, public works the same in Kotlin as it does in Java.
When the public modifier is added to top-level elements, classes, methods,
or variables written directly within a package, any other code can access
them. If the public modifier is added to a nested element an inner class or
function within a class, then any code that can access the container may
also access this element.

// by default public

class X {

 var int = 40

}

// specified with the public modifier

public class Y {

 var int2 = 20

 fun display() {

 println("Accessible-everywhere")

 }

}

Classes X and Y access from anywhere in the code, and the variables int
and int2 and the function display() can access from anything that can access
classes X and Y.

Private Modifier
In Kotlin, private modifiers limit access to code specified inside the same
scope, which makes it impossible to access the modifier variable or
function outside the scope. In contrast to Java, Kotlin allows several top-

level declarations in the same file – a private top-level element in the same
file can be accessed by everything else in the same file.

// class X is accessible from the same source file

private class X {

 private val int = 30

 fun display()

 {

 // we can access int in same-class

 println(int)

 println("Accessing int successful")

 }

}

fun main(args: Array<String>){

 var x = X()

 x.display()

 // can not access 'int': it is private in class X

 println(x.int)

}

In this situation, Class X can only access the int variable from inside the
same source file, and Class X can only access the int variable from within
Class X. We encountered a compile-time error when attempting to access
int from outside the class.

Internal Modifier
The internal modifier is a new Kotlin modifier that Java does not support.
Internal means that it will only be accessible inside the same module;
attempting to access the declaration from another module will result in an
error. A module is a group of files that have been assembled.

internal class X {

}

public class Y {

 internal val int = 30

 internal fun display() {

 }

}

Class X is only accessible from inside the same module in this situation.
Even though class Y may be accessible from everywhere, the variable int
and function display() are only available within the same module.

Protected Modifier
In Kotlin, the protected modifier restricts access to the declaring class and
its subclasses. The protected modifier cannot be shown at the top level. In
the following example, we utilized the getvalue() function of the derived
class to obtain the int variable.

// base class

open class X {

 // protected variable

 protected val int = 30

}

// derived class

class Y: X() {

 fun getvalue(): Int {

 // accessed from the subclass

 return int

 }

}

fun main(args: Array<String>) {

 var c = Y()

 println("The value of integer is: "+c.getvalue())

}

Overriding the Protected Modifier
We must use the open keyword to override the protected variable or
function in the derived class. In the following program, we override the int
variable.

// base class

open class X {

 // protected variable

 open protected val int = 30

}

// derived class

class Y: X() {

 override val int = 40

 fun getvalue():Int {

 // accessed from the subclass

 return int

 }

}

fun main(args: Array<String>) {

var c = Y()

Constructor Visibility
Constructors are always public by default, although modifiers can change
that.

class X (name : String) {

 // other-code

}

When changing the visibility, we must indicate this clearly by using the
constructor keyword.

class X private constructor (name : String) {

 // other-code

}

INTERFACES IN KOTLIN
Interfaces are Kotlin-provided custom types that cannot be directly
instantiated. These, on the other hand, indicate a style of behavior that the
implementing types must exhibit. The interface enables us to define a set of
traits and methods that concrete types must comply and implement.

Creating Interfaces
In Kotlin, the interface declaration begins with the interface keyword,
followed by the interface’s name, and lastly by the curly brackets
containing the interface’s members. The members, on the other hand, will
not have their definition. The conforming types will provide these
definitions.

Example:

interface Machine()

{

 fun start()

 fun stop()

}

 var c = Y()

 println("The overridden value of integer is: "+c.getvalue())

}

Implementing Interfaces
A class or an object can implement an interface. When we implement an
interface, we must define all of its members in the conforming type. To
implement an interface, the name of the custom-type is followed by a colon
and the name of the interface to be implemented.

class Bus: Machine

An example of an interface in Kotlin:

interface Machine {

 fun start()

 fun stop()

}

class Bus : Machine {

 override fun start()

 {

 println("The Bus is started")

 }

 override fun stop()

 {

 println("The Bus is stopped")

 }

}

fun main()

{

 val obj = Bus()

 obj.start()

 obj.stop()

}

Explanation: The user interface in this application, Vehicle defines two
methods, start() and stop(), which must be overridden. Bus implements the
interface with class-literal syntax and uses the override keyword to override
the two methods. Finally, the main function constructs a Bus object and
invokes the two functions.

Default Methods and Default Values

Methods of an interface can have default values for their parameters. If a
parameter’s value is not supplied at the function call, the default value is
used. The methods may also have default implementations. They are used
when the method is not overridden.

Example:

Explanation: In the above program, the FirstInterface exposes two
methods: add() and print(). The add() method takes two parameters, one set
to 9 by default. The print() method also has a default implementation. As a
result, when the class InterfaceDemo implements the interface, it employs
the super keyword to override both methods and invoke the default
implementation of print (). Furthermore, only one parameter is required
because the second argument is assigned to a default value when utilizing
the add method in the primary function.

interface FirstInterface {

 fun add(x: Int, y: Int = 9)

 fun print()

 {

 println("This is a default-method defined in the inter

 }

}

class InterfaceDemo : FirstInterface {

 override fun add(x: Int, y: Int)

 {

 val c = x + y

 println("Sum is $c")

 }

 override fun print()

 {

 super.print()

 println("It has overridden")

 }

}

fun main()

{

 val objt = InterfaceDemo()

 println(objt.add(9))

 objt.print()

}

Interface Properties
Attributes can be included in interfaces, just as they can in methods.
However, because the interface lacks a state, they cannot be generated, and
hence no underlying fields to store their values exist. As a result, the
interface fields are either left abstract or provided an implementation.

Example:

interface InterfaceProperties {

 val x : Int

 val y : String

 get() = "Heyyyy"

}

class PropertiesDemo : InterfaceProperties {

 override val x : Int = 5000

 override val y : String = "Property-Overridden"

}

fun main()

{

 val x = PropertiesDemo()

 println(a.x)

 println(a.y)

}

Explanation: In the above program, InterfaceProperties provide two
properties: (a) an integer and (b) a String with a getter. PropertiesDemo is a
class that implements InterfaceProperties and adds value to the two
properties. The method main creates a class object and accesses its
attributes through dot-syntax.

Interface Inheritance
Interfaces in Kotlin can inherit from other interfaces. When one interface
extends another, it may add its own properties and methods, but the
implementing type must specify all of the properties and methods in both
interfaces. An interface can inherit many interfaces.

Example:

interface Dimension {

 val len : Double

 val br : Double

}

interface CalculateParameters : Dimension {

 fun area()

 fun perimeter()

}

class CDE : CalculateParameters {

 override val len : Double

 get() = 30.0

 override val br : Double

 get()= 19.0

 override fun area()

 {

 println("Area is ${len * br}")

 }

 override fun perimeter()

 {

 println("Perimeter is ${2*(len+br)}")

 }

}

fun main()

{

 val obj = CDE()

 objt.area()

 objt.perimeter()

}

Implementation of Multiple Interfaces
Because Kotlin classes adhere to the concept of single inheritance, which
means that each class may inherit just one class, interfaces permit multiple
inheritances, referred to as multiple conformance in Kotlin. A class can
implement several interfaces as long as it defines all of the members of each
interface.

Example:

interface InterfaceProperties {

 val x : Int

 val y : String

 get() = "Heyyyy"

}

interface InterfaceMethods {

DATA CLASSES
We often create classes to store data in them. Few standard functions may
frequently be derived from the data in such classes. In Kotlin, this class is a
data class and is labeled as such.

Example:

data class Stud(val name: String, val roll_no: Int)

The compiler automatically produces the following functions:

hashCode()

toString()

copy()

equals()

Rules for Creating Data Classes
To ensure consistency, data classes must fulfill the following criteria:

The primary constructor requires at least one parameter.

All parameters to the main constructor must be denoted with val or var.

te ace te ace et ods {

 fun description()

}

class MultipleInterface : InterfaceProperties, InterfaceMethod

 override val x : Int

 get() = 80

 override fun description()

 {

 println("Multiple-Interfaces implemented")

 }

}

fun main()

{

 val objt = MultipleInterface()

 objt.description()

}

Data classes cannot be abstract, open, sealed, or inner.

Data classes may implement only interfaces.

toString()
This function returns a string containing all of the parameters to the data
class.

Example:

The compiler only utilizes the characteristics specified inside the primary
constructor for the automatically produced functions.

It excludes the properties declared in the class’s body.

Example:

fun main(args: Array<String>)

{

 //the declarion of data-class

 data class woman(val roll: Int,val name: String,val height

 //declarion of variable of the above data class and initia

 val woman1=woman(1,"woman",40)

 //print all details of the data class

 println(woman1.toString());

}

fun main(args: Array<String>)

{

 //declarion of data-class

 data class woman(val name: String)

 {

 //the property declared in class-body

 var height: Int = 0;

 }

 //declarion of variable of the above data class and initia

 val woman1=woman("Rhiana")

 //class body properties must be assigned uniquely

 woman1.height = 50

 //this method print the details of class that are declared

 println(woman1.toString());

 //printing the height of woman1

 println(woman1.height);

}

copy()
We may need to copy an object and update its characteristics while leaving
others unchanged.

In this case, the copy() function is used.

copy() properties:
All of the arguments or members defined in the main constructor are

duplicated.

When two objects are defined, they may have the same main
parameter values but different class body values.

copy() declaration:

where user is a data class: user(String, Int).

Example:

fun copy(name: String = this.x, age: Int = this.y) = user(x,

fun main(args: Array<String>)

{

 //declarion of a data class

 data class woman(val name: String, val age: Int)

 {

 //property declared in class-body

 var height: Int = 0;

 }

 val woman1 = woman("Damini",16)

 //copying details of man1 with change in name of man

 val woman2 = woman1.copy(name="Pari")

 //copying all details of woman1 to woman3

 val woman3 = woman1.copy();

 //declaring heights of individual men

 woman1.height=110

 woman2.height=92

 woman3.height=130

 //woman1 & woman3 have different class body values, but sa

//printing info all 3 men

hashCode() and equals()

The hashCode() function returns the hash code value of the object.

The equals() method returns true if two objects have the same contents
and work in the same way as “==”, but with Float and Double values.

hashCode() declaration:

open fun hashCode(): Int

hashCode() properties:

Two hash codes that are specified twice on the same item are equal.

The hash codes will be the same if two objects are equal according to
the equals() method.

fun main(args: Array<String>)

{

 //declaring a data-class

 data class woman(val name: String, val age: Int)

 val woman1 = woman("ridhi",19)

 val woman2 = woman1.copy(name="rahi")

 val woman3 = woman1.copy();

 val hash1=woman1.hashCode();

 val hash2=woman2.hashCode();

 val hash3=woman3.hashCode();

 println(hash1)

 println(hash2)

 println(hash3)

 //checking equality of these hash-codes

 println("hash1 == hash 2 ${hash1.equals(hash2)}")

 println("hash2 == hash 3 ${hash2.equals(hash3)}")

 println("hash1 == hash 3 ${hash1.equals(hash3)}")

}

 //printing info all 3 men

 println("${woman1} has ${woman1.height} cm height")

 println("${woman2} has ${woman2.height} cm height")

 println("${woman3} has ${woman3.height} cm height")

}

SEALED CLASSES
Kotlin provides a new class type that is not found in Java. These are known
as sealed classes. As the name indicates, Sealed classes adhere to confined
or bounded class hierarchies. A collection of subclasses is specified within
a sealed class. It is used when it is known in advance that a type will
conform to one of the subclass types. Sealed classes ensure type safety by
restricting the types that can match at compile time rather than at runtime.

Declaration of sealed class:

sealed class Demo1

To define a sealed class, just use the sealed keyword before the class
modifier. Another feature that distinguishes sealed classes is that their
constructors are, by default, private.

A sealed class cannot instantiate since it is inherently abstract.

sealed class Demoo1

fun main(args: Array)

{

 var x = Demoo1() //compiler error

}

Example:

sealed class Demo1 {

 class X : Demo1() {

 fun display()

 {

 println("Subclass X of sealed class Demo")

 }

 }

 class Y : Demo1() {

 fun display()

 {

 println("Subclass Y of sealed class Demo")

 }

 }

}

fun main()

{

 val objt = Demo1.Y()

 objt.display()

 val objt1 = Demo1.X()

 objt1.display()

}

It should note that all sealed class subclasses must specify in the same
Kotlin file. However, they do not have to be declared within the sealed
class; instead, they can be defined anywhere the sealed class is accessible.

Example:

Sealed class with when: Because the types to which a sealed class
reference can conform are limited, it is usually used in combination with a
when clause. This completely eliminates the requirement for the otherwise
clause.

Example:

//sealed class with the single subclass defined inside

sealed class CDEF {

class X: CDEF(){...}

}

// Another subclass of the sealed class defined

class Y: CDEF() {

 class Z: CDEF() // This will result in an error. The seale

}

// A sealed class with string-property

sealed class Fruit

 (val a: String)

{

 // Two subclasses of sealed-class defined within

 class Banana : Fruit("Banana")

 class Grapes : Fruit("Grapes")

}

// A subclass defined outside the sealed-class

class Apple: Fruits("Apple")

// A function to take in an object of type Fruit

// And to display an appropriate message depending on the type

fun display(fruits: Fruits){

 when(fruits)

 {

 is Fruits.Banana -> println("${fruits.a} is good for i

 is Fruits.Grapes -> println("${fruits.a} is yummy")

 is Apple -> println("${fruits.a} is good for vitamin d

KOTLIN ABSTRACT CLASS
In Kotlin, the abstract keyword is used in front of class to declare an
abstract class. We cannot create objects because an abstract class cannot
instantiate.

Declaration of an abstract class:

abstract class className {

}

Keep the following in mind:

We can’t create an object for the abstract class.

By default, all variables (properties) and member functions of an
abstract class are non-abstract. As a result, we must use the open
keyword to override these members in the child class.

Because member functions are open by default, we don’t need to
annotate them with the open keyword when we designate them as
abstract.

Because it lacks a body, a derived class must implement an abstract
member function.

Abstract class can have both the abstract and non-abstract members, as seen
below:

 }

}

fun main()

{

 // Objects of different subclasses created

 val objt = Fruits.Banana()

 val objt1 = Fruits.Grapes()

 val objt2 = Apple()

 // Function called with the different objects

 display(objt)

 display(objt1)

 display(objt2)

}

abstract class class Name(val c: String) { // Non-Abstract-Pro

Example:

Explanation: The previous computer’s Engineer class is developed from
the Employee class. Object eng is generated for the Engineer class. We sent
two arguments to the primary constructor while building it. This sets the
non-abstract properties name and experience of the Emp class.

The empDetails() method is then called using the eng object. The name,
experience, and override wage of the emp will print.

Finally, we call dateOfBirth() on the eng object and provide the
parameter date to the primary. It overrides the Emp class’s abstract fun and

abstract class class_Name(val c: String) { // Non Abstract Pro

 abstract var y: Int // Abstract-Property

 abstract fun method1() // Abstract-Methods

 fun method2() { // Non-Abstract-Method

 println("Non-abstract-function")

 }

}

//abstract-class

abstract class Emp(val name: String,val experience: Int) { /

 // Abstract-Property (Must be overridden by Subclasses)

 abstract var salary: Double

 // Abstract-Methods (Must be implemented by Subclasses)

 abstract fun dateOfBirth(date:String)

 // Non-Abstract-Method

 fun empDetails() {

 println("Name of the employee: $name")

 println("Experience in years: $experience")

 println("Annual Salary: $salary")

 }

}

// derived-class

class Engineer(name: String,experience: Int) : Emp(name,experi

 override var salary = 610000.00

 override fun dateOfBirth(date:String){

 println("Date of Birth is: $date")

 }

}

fun main(args: Array<String>) {

 val eng = Engineer("Praniti",3)

 eng.empDetails()

 eng.dateOfBirth("02 Jan 1993")

}

writes the value to standard output.
Use of an abstract open member in place of a non-abstract open member:

To override the non-abstract open member function of the open class in
Kotlin, use the override keyword followed by an abstract in the abstract
class. This will accomplish in the following program.

Example:

open class Livebeing {

 open fun breathe() {

 println("All live being breathe")

 }

}

abstract class Creature : Livebeing() {

 override abstract fun breathe()

}

class Cat: Creature(){

 override fun breathe() {

 println("Cat breathe")

 }

}

fun main(args: Array<String>){

 val lb = Livebeing()

 lb.breathe()

 val c = Cat()

 c.breathe()

}

Multiple Derived Classes
All derived classes can override an abstract member of an abstract class. In
the program, we override the cal function in three derived classes of
calculators.

Example:

// abstract-class

abstract class Calculation {

 abstract fun cal(e: Int, f: Int) : Int

}

// addition of two-numbers

class Add : Calculation() {

 override fun cal(e: Int, f: Int): Int {

 return e + f

 }

}

// subtraction of two-numbers

class Sub : Calculation() {

 override fun cal(e: Int, f: Int): Int {

 return e - f

 }

}

// multiplication of two-numbers

class Mul : Calculation() {

 override fun cal(e: Int, f: Int): Int {

 return e * f

 }

}

fun main(args: Array<String>) {

 var add: Calculation = Add()

 var e1 = add.cal(15, 26)

 println("Addition of two numbers $e1")

 var sub: Calculation = Sub()

 var e2 = sub.cal(21,36)

 println("Subtraction of two numbers $e2")

 var mul: Calculation = Mul()

 var e3 = mul.cal(32,61)

 println("Multiplication of two numbers $e3")

}

INHERITANCE IN KOTLIN
Inheritance is a major concept in OOP. Inheritance enables code reuse by
allowing a new class to inherit (derived-class) all of the characteristics of an
existing class (base-class). The derived class can add its own features.

Syntax:

open class baseClass (x:Int) {

}

class derivedClass(x:Int) : baseClass(x) {

}

All Kotlin classes are final by default. To allow the derived class to inherit
from the base class, we must use the open keyword in front of it.

The following properties and methods are inherited from the base class:

We inherit all of its attributes and functionalities when we inherit a
class. Variables and functions from the base class can use in the
derived class, and functions from the derived class object can call.

//base-class

open class baseClass{

 val name = "TheHubtutor"

 fun X(){

 println("BaseClass")

 }

}

//derived class

class derivedClass: baseClass() {

 fun Y() {

 println(name) //inherit name property

 println("Derivedclass")

 }

}

fun main(args: Array<String>) {

 val derived = derived-Class()

 derived.X() // inheriting base-class function

 derived.Y() // calling derived-class function

}

Explanation: There is a base class and a derived class in this situation.
When we instantiate the derived class, we create an object that is then used
to invoke the functions of the base and derived classes. The derived.X()
function is used to call the X() method, which returns the string “Base
Class.” The derived.Y() method calls the Y() function, which outputs the
variable name inherited from the base class and the “Derived class.”

Inheritance Use
Assume a company employs three people: a webDeveloper, an
iOSDeveloper, and an androidDeveloper. They all share some traits, such as
a name, an age, and specific special skills.

First, we split the individuals into three classes, each with its own set of
standard and unique talents.

Long Description Unnumbered Figure 9
Use of Inheritance with example.

Although all three developers have the same name and age, their
programming abilities are vastly different. We would use the same code for
each character’s name and age in each class.

If we want to add a salary() method, we must replicate the code in each
of the three classes. This results in multiple duplicate copies of code in our
program, which nearly always leads to more intricate and chaotic code.

The use of inheritance makes the work more approachable. We could
create a new base class Employee with the same characteristics as the three
original kinds. These three classes can then inherit the base class’s shared
attributes while adding their own. Without duplicating, we can easily add
salary functionality to the Employee class.

Long Description Unnumbered Figure 10
Inherit class.

In this scenario, webDeveloper inherits all of the base class’s features and
its feature website(). The same is true for the two other classes,
iOSDeveloper and androidDeveloper. It increases our code’s readability and
extensibility.

Example:

//baseclass

open class Employ(names: String,age: Int,salary : Int) {

 init {

 println("Name is $names, $age years old and earning $s

 }

}

//derivedclass

class web_Developers(names: String,age: Int,salary : Int): Em

 fun website() {

 println("website-developer")

 println()

 }

}

//derived-class

class android_Developer(names: String,age: Int,salary : Int):

 fun android() {

 println("android-app-developer")

 println()

 }

}

//derived class

class ios_Developers(names: String,age: Int,salary : Int): Em

 fun iosapp() {

 println("iOS-app-developer")

 println()

 }

}

//the main method

fun main(args: Array<String>) {

 val wd = web_Developers("Rheinna", 21, 13000)

 wd.website()

 val ad = android_Developers("Payal", 24,15000)

 ad.android()

 val iosd = ios Developers("Pranav", 27,19000)

Explanation: In this scenario, we have a base class called Employ, which is
prefixed with the open keyword and contains the common properties of the
derived classes. Employ has a primary constructor that accepts three
parameters: ‘name, age, and salary.’ There are three derived classes:
webDevelopers, androidDevelopers, and iOSDevelopers, each with three
variables and a primary constructor.

First, we construct an object for the webDevelopers class and pass the
name, age, and salary as parameters to the derived class. It will set the local
variables’ values and transmit them to the base class. Then, with the object
‘wd,’ we call the member function website(), which prints the string to
standard output.

Similarly, we create objects for the last two classes and call their member
functions.

Primary Constructor for an Inheritance
If derived class has a primary constructor, we must use the parameters from
the derived class to initialize the base class constructor. In the following
program, we have two parameters in the primary constructor of the base
class and three parameters in the derived class.

_ p

 iosd.iosapp()

}

//baseclass

open class Employ(names: String,age: Int) {

 init{

 println("Name of Employee is $names")

 println("Age of an Employee is $age")

 }

}

// derivedclass

class CEO(names: String, age: Int, salary: Double): Employ(name

 init {

 println("Salary per annum is $salary crore rupees")

 }

}

fun main(args: Array<String>) {

 CEO("Damini Rai", 33, 120.00)

}

Explanation: In this scenario, we instantiate the derived class CEO using
the parameters names, age, and salary. The local variables of the derived
class are initialized with the proper values, and the variable name and age
are sent as arguments to the Employee class.

Before passing control to the derived class, the employ class prints the
variable names and values to standard output. Following the execution of
the println() command, the derived class ends.

Secondary Constructor for an Inheritance
If the derived class lacks the main constructor, we must use the super
keyword to invoke the secondary constructor of the base class from the
secondary constructor of the derived class. We must also use the inputs
from the derived class to initialize the base class’s secondary constructor.

Explanation: In this scenario, we instantiate the class CEO and provide the
parameter values to the secondary constructor. It will initialize the local
variables and give them to the base class Employees through super
(names,ages).

Overriding Member Functions and Attributes
If member function with the same name exists in both the base and derived
classes, we can override the base member function in the derived class

//baseclass

open class Employ {

 constructor(names: String,age: Int){

 println("Name of Employee is $names")

 println("Age of Employee is $age")

 }

}

// derived class

class CEO : Employ{

 constructor(names: String,age: Int, salary: Double): super(

 println("Salary per annum is $salary million dollars")

 }

}

fun main(args: Array<String>) {

 CEO("Raniti Dela", 59, 320.00)

}

using the override keyword, but we should also mark the member function
of the base class with the open keyword.

First example:

Similarly, we may override the property of the base class in the derived
class.

Second example:

// baseclass

open class Animals {

 open var name: String = "Cat"

 open var speed = "30 km/hr"

}

// derivedclass

class Tiger: Animals() {

 override var name = "Lion"

 override var speed = "100 km/hr"

}

fun main(args: Array<String>) {

 val tg = Tiger()

 println(tg.name+" can run at speed "+tg.speed)

}

Calling Superclass Implementation

// baseclass

open class Animals {

 open fun run() {

 println("Animals runs")

 }

}

// derivedclass

class Tiger: Animals() {

 override fun run() { // it overrides the run method

 println("Tiger runs very fast")

 }

}

fun main(args: Array<String>) {

 val tg = Tiger()

 tg.run()

}

We may invoke the base class’s member methods or attributes from the
derived class using the super keyword. We call the base class’s property
color and function displayCompany() in the superclass using the super
keyword.

// baseclass

open class Phones() {

 var color = "Rose Gold"

 fun displayCompany(names:String) {

 println("The Company is: $names")

 }

}

// derivedclass

class iphone: Phones() {

 fun displayColor(){

 // calling the base-class property color

 println("Color is: "+super.color)

 // calling the base-class member function

 super.displayCompany("Blackberry")

 }

}

fun main(args: Array<String>) {

 val ps = iphone()

 ps.displayColor()

}

COMPOSITION
The concepts of inheritance and composition are used to construct
relationships between classes and objects. It is critical to understand which
of them to prioritize to create a successful software design.

Composition is method in which we compose a class by adding private
fields to it that refer to an instance of an existing class rather than extending
it. As a result, a “has-a” relationship is created between the constructed
class and the instances it contains. The class fulfills its obligation by
forwarding to or calling non-private methods of its private fields.

Recognize inheritance and composition.

Write classes using an inheritance-based approach and learn about
their limitations.

Discover the patterns of delegation.

The composition may be used to restructure inheritance-based classes.

Discover Kotlin’s by keyword.

We may modify the User_Mediator using a composition-based method, as
demonstrated below:

Take note of how a private instance of the UserCacheService and the
UserApiService are combined to form UserMediator.

Now that we have a fundamental knowledge of composition, let’s look at
how it may use to tackle design problems caused by implementation
inheritance.

Substitution Principle of Liskov
The foundation of LSP is that subclasses must be interchangeable with their
superclasses. And for this to happen, the superclass’s contracts must be
honored by its subclasses. Statically typed languages such as Java and
Kotlin enforce contracts such as function signatures (function name, return
types, and parameters) as compile-time errors.

However, operations that violate this concept include unconditionally
throwing exceptions, such as UnsupportedOperationException, in
overridden methods when not anticipated in the superclass.

We may see if the modification needs every invocation of the method in
question to be wrapped with if statement to test whether the method in
question should be called or not based on the newly added subclass.

Antipatterns of Implementation Inheritance
Implementation inheritance is a valuable technique for code reuse, but it
may not be appropriate in many situations. Using implementation
inheritance when it is not suitable may cause maintenance issues. These
will be covered in the following sections.

class User_Mediator {

 private val cacheService: UserCacheService = UserCacheService(

 private val apiService: UserApiService = UserApiService()

 …

}

Inheritance of a Single Implementation
Class cannot inherit from more than one parent class in Java Virtual
Machine languages such as Kotlin and Java.

Increase the userservice package’s size. It includes two service classes:
UserCacheService, which keeps User records in an in-memory data
structure, and UserApiService, which simulates a network call with a delay.
For the time being, disregard UserMediator.

Assume we need to create a class that communicates with the
UserCacheService and the UserApiService to obtain a User record. We
must do the task quickly; therefore, we search for the user in
UserCacheService and return if it exists. Otherwise, we must make a slow
“network” call. When UserApiService produces a User, it is cached for later
use. Is it possible to do this using implementation inheritance?

First and foremost, the code above will not compile. The relationship would
be meaningless even if it did since UserMediator utilizes UserCacheService
and UserApiService as implementation details rather than an is-a
relationship. Later, we’ll see how to solve this.

Tight Coupling
Implementation Inheritance establishes a close bond between a parent and
their children. Inheriting a class binds the child class to the parent class’s
implementation details. As a result, if the parent class changes – that is, if it
becomes unstable – the child class may fail even though its code remains
unchanged. As a result, each child class must grow with the parent class.

This necessitates making a broad assumption about future requirements.
We must establish the hierarchy early on and maintain the relationship with

// Error: Only one class may appear in supertype list

/**

* Mediates repository between the cache and server.

* In case of the cache hit, it returns data from the cache;

* else it fetches data from API and updates cache before return

**/

class User_Mediator: UserApiService(), UserCacheService() {

}

each new demand. As a result, we may have to use a Big Design Up Front
(BDUF) approach, resulting in over-engineering and complicated design.

Unnecessary Exposure of Superclass APIs
Implementation inheritance is only suitable when the subclass is truly a
subtype of the superclass. In other words, class B should extend class A
only if they have “is-a” connection. Otherwise, we unnecessarily expose the
superclass’s implementation information to the user. This allows our class’s
clients to break its internal invariants by directly altering the superclass.

Examine Exposure_Demo.kt, which is included in the exposuredemo
package. The variable property is an instance of the java.util package’s
Properties class. It is derived from the concrete Hashtable. This implies
that, in addition to its public fields and methods, we may access Hashtable’s
public fields and methods, such as put() and get(), through the instance of
Properties.

Go to Properties.java (found under java.util) in our IDE and select the
Structure tab to obtain an overview of the APIs offered by Properties.

Deselect “Show non-public” and select “Show inherited” using the icons
at the top of the window. The light grayish methods are the inherited public
methods that may access through a Properties instance.

// [Properties] class is an extend from Hashtable. As a result, the
Hashtable methods can also be used.

val properties = Properties()

// Using the [Hashtable]'s methods

properties.put("put1", "val1")

properties.put("put2", 110)

// Using [Properties]'s methods

properties.setProperty("setProperty1", "val1")

properties.setProperty("setProperty2", "110")

Property’s getProperty() method performs additional safety checks that
Hashtable’s get() method does not. Properties users might circumvent these
checks and read straight from Hashtable.

Using Hashtable's get() setProperty2: 110

Using Properties' getProperty() setProperty2 : 110

Using Hashtable's get() setProperty1: val1

Using Properties' getProperty() setProperty1 : val1

Using Hashtable's get() put2: 110

Using Properties' getProperty() put2 : null

Using Hashtable's get() put1: val1

Using Properties' getProperty() put1 : val1

When the value is not of the type String, the functions getProperty() and
get() in the above example provide different results for the same key. As a
result, the resultant API is perplexing and prone to incorrect invocations.

Exploding Numbers of Subclasses
Kotlin does not allow multiple inheritance. However, it does enable
multilevel inheritance, which is often utilized. For example, the Android
SDK includes a TextView class derived from View. To make TextView
support HTML, build an HtmlTextView that derives from TextView.

abstract class VegPizza {

 abstract fun prepare()

}

abstract class CheesePizza : VegPizza()

abstract class VeggiesPizza : VegPizza()

class SmallCheesePizza : CheesePizza() {

 override fun prepare() {

 println("Prepared small cheese burst pizza")

 }

}

class MediumCheesePizza : CheesePizza() {

 override fun prepare() {

 println("Prepared medium cheese pizza")

 }

}

class LargeCheesePizza : CheesePizza() {

 override fun prepare() {

 println("Prepared large cheese pizza")

 }

}

class SmallVeggiePizza : VeggiesPizza() {

 override fun prepare() {

 println("Prepared small veggie pizza")

 }

}

class MediumVeggiePizza : VeggiesPizza() {

 override fun prepare() {

 println("Prepared medium veggie pizza")

 }

}

class LargeVeggiePizza : VeggiesPizza() {

 override fun prepare() {

 println("Prepared large veggie pizza")

 }

}

Composition Refactoring
Composition is the utilization of tiny elements to create a complex entity.
This section will show us how to utilize this composition-based method to
minimize or alleviate the design challenges caused by implementation
inheritance.

UserMediator Class Is Being Refactored
Because we can’t extend more than one parent class, the easiest fix for the
broken User_Mediator would be to remove the open keyword from
UserApiService and UserCacheService and replace it with private instance
fields of User_Mediator, as seen in the example below:

From Composition to Aggregation

class User_Mediator {

 private val cacheService: UserCacheService = UserCacheService(

 private val apiService: UserApiService = UserApiService()

 /**

 * Search for [User] with the [username] on cache first. If no

 * make API calls to fetch [User] and persist it in server.

 *

 * @throws UserNotFoundException if it is not in "server".

 */

 fun fetchUser(username: String): User {

 return cacheService.findUserById(username)

? : apiService.fetchUserByUsername(username)?.also { cacheS

? : throw UserNotFoundException(username)

 }

}

Remove these two fields and write a constructor for User_Mediator that
takes these two instance variables as arguments:

class User_Mediator(

 private val cacheService: UserCacheService,

 private val apiService: UserApiService

) {

 // methods

}

And, in the main() function of User_Demo.kt, use the following code to
initialize the mediator:

val mediator = UserMediator(

 cacheService = UserCacheServiceImpl(),

 apiService = UserApiServiceImpl()

)

User_Mediator now relies on the class’s user to provide its dependencies.
Furthermore, during testing, we may pass in test stubs specific to our test
circumstance, making testing much easier.

Place the focus on the User_Mediator class definition and hit Control-
Enter. Then, choose Create test. This produces a file in the test directory
named User_MediatorTest.kt.

internal class User_MediatorTest {

 private lateinit var mockApi: UserApiService

 private lateinit var realCache: UserCacheService

 @BeforeEach

 fun setup() {

 // 1

 realCache = UserCacheServiceImpl()

 // 2

 mockApi = object : UserApiService {

 private val db = mutableListOf<User>()

 init {

 db.add(User("test_user1", "Test User"))

 }

 override fun fetchUserByUsername(username: String): User?

 return db.find { username == it.username }

 }

 }

 }

 @Test

fun 'Given username when fetchUser then should return the user

Here’s how the code above is broken down:
Create a new instance of UserCacheServiceImpl for realCache. We do

not need to mock this class because it only uses in-memory data structures.
However, UserApiServiceImpl makes a “network” call, and we don’t

want the outcome of our test cases to depend on the server’s response or
availability. As a result, it is preferable to mimic or stub it. We’ve replaced
it with a solution that leverages an in-memory data structure, allowing us to
control the outcome and alter it to meet our test scenario.

Handling the Exposure Issue
In OOP, the general rule is to write shy class. The shy class does not divulge
needless implementation to others. The Properties of java.util contriadict
this. Instead, a composition-based method would have been an ideal way to
accomplish it.

We will not be allowed to edit Properties because it is a built-in class
given by JDK. So, using a reduced version as an example, we’ll discover
how it may have been improved.

class Hashtable_Store {

 // 1

 private val store: Hashtable<String, String> = Hashtable()

 // 2

 fun getProperty(key: String): String? {

 return store[key]

 }

 fun setProperty(key: String, value: String) {

 store[key] = value

 }

 fun 'Given username when fetchUser then should return the user

 // 3

 val mediator = User_Mediator(realCache, mockApi)

 val inputUsername = "test_user1"

 val user = mediator.fetchUser(inputUsername)

 assertNotNull(user)

 assertTrue { user.username == inputUsername }

 // Check if saved in the cache

 assertNotNull(realCache.findUserById(inputUsername))

 }

}

 fun propertyNames() = store.keys

}

Here’s how the code works:
Using a composition-based technique, we build a private field in

HashtableStore and initialize it as a Hashtable instance. We must interact
with this instance to offer data storage functionality. Remember the
following rule of thumb: Write shy classes. Making the instance private
prohibits others from accessing it, which aids in encapsulation.

We expose public methods that the class’s user can utilize. This class
exposes three such methods, each passing its operation to the private field.

Create main() in the same file and paste the following code within it:

val properties = Hashtable_Store()

properties.setProperty("setProperty1", "val1")

properties.setProperty("setProperty2", "110")

properties.propertyNames().toList().forEach {

 println("$it: ${properties.getProperty(it.toString())}")

}

If we want all of Properties’ capabilities while still having control over the
“exposure area,” we may put a wrapper over it and expose our methods.
Make a new class called PropertiesStore and add the following code into it:

class Properties_Store {

 private val properties = Properties()

 fun getProperty(key: String): String? {

 return properties.getProperty(key)

 }

 fun setProperty(key: String, value: String) {

 properties.setProperty(key, value)

 }

 fun propertyNames() = properties.propertyNames()

}

Composition over Inheritance
In OOP, composition takes precedence over inheritance. Instead of
implementing all of the required interface’s features in a single monolithic
class, these functionalities should be built separately in several instances,
and then used to finally empower the target class with all of the offered

functionalities. This idea improves the reusability and maintainability of the
code.

Example: Let me illustrate the concept with a simple example. Assume
you work at an automotive firm and our job is to build automobiles
depending on several specifications such as the color of the car
(appearance), the maximum speed (performance), and the number of
seats (interior).

The Kotlin Method
Before we continue, there are two fundamental Kotlin keywords that we
must understand: object and by. The object keyword tells the Kotlin
compiler to produce only one instance of the defined class. And the by
keyword is mainly seen in the lazy loading examples and the lazy function.
It is less common knowledge (at least to me) that we may also use the by
keyword to delegate implementation of an interface to another object. Let’s
look at some codes in action.

First, we declare and implement functionality classes as objects.

object Yellow: Appearance {

 override fun getColor(): String {

 return "Yellow"

 }

}

object SixSeat: Interior {

 override fun getNumberOfSeats(): Int {

 return 6

 }

}

object Slow: Performance {

 override fun getMaxSpeed(): Int {

 return 180;

 }

}

Then we can create our Car class with only one line of code:

class YellowSlowSUV: Appearance by Yellow,

 Interior by SixSeat, Performance by Slow

Because the objects delegate the required interface implementations via the
by keyword, we don’t need to explicitly declare those methods already
delegated by objects because the Kotlin compiler is sophisticated enough to
build the required code for us under the hood. Let’s look at them using the
Kotlin byte code viewer.

ENCAPSULATION
Encapsulation is the union of data and logic into a single unit that conceals
data from external access. As a consequence, we have fewer couplings
between software components, as well as more understandable and reliable
code.

The following access modifiers are available:

Private: name is only available within the class where it was declared.

Protected: name is only accessible within the class and its subclasses.

Internal: name is accessible to everyone within the same module.

/// Decompiled code in Kotlin byte code viewer

public final class YellowSlowSUV implements Appearance, Interior

 // $FF: synthetic-field

 private final Yellow $$delegate_0;

 // $FF: synthetic-field

 private final SixSeat $$delegate_1;

 // $FF: synthetic-field

 private final Slow $$delegate_2;

 public YellowSlowSUV() {

 this.$$delegate_0 = Yellow.INSTANCE;

 this.$$delegate_1 = SixSeat.INSTANCE;

 this.$$delegate_2 = Slow.INSTANCE;

 }

 public String getColor() {

 return this.$$delegate_0.getColor();

 }

 public int getNumberOfSeats() {

 return this.$$delegate_1.getNumberOfSeats();

 }

 public int getMaxSpeed() {

 return this.$$delegate_2.getMaxSpeed();

 }

}

Public: name is open to the public; this is the default modification to
omit it.

It is worth noting that in Kotlin, the outer class does not view the private
members of its inner classes.

Protected members are not permitted within interfaces or objects in
Kotlin.

Kotlin does not provide abstract private functions; only body functions
are supported.

If we override a protected member without explicitly specifying the
visibility, the overriding member will also have protected visibility.

Modifiers can apply to the class constructor.

POLYMORPHISM
Unlike Python, Kotlin needs the use of the override keyword when an
element in a class/interface is being overridden, and tests are done at build
time to verify if the element may override. Any class that may inherit from
must be open, as any of its declared components can override. In src, add a

open class Outer {

 private val c = 1

 protected open val d = 2

 internal val e = 3

 val f = 4 // public by default

 protected class Nested {

 public val e: Int = 5

 }

}

class Subclass : Outer() {

 // c is not visible

 // d, e and f are visible

 // Nested and g are visible

 override val d = 5 // 'd' is protected

}

class Unrelated(o: Outer) {

 // o.c, o.d are not visible

 // o.e and o.f are visible (same module)

 // Outer.Nested is not visible, and Nested::g is not visible

}

class C private constructor(c: Int) { ... }

new package called org.example.enpoly.doggie. Create a new Kotlin file
named Dog in the package with the following contents:

The absence of the open keyword in the stats function in the above example
indicates that the function cannot alter. Create a new Kotlin file called
SmallDoggie in the same package with the following contents:

Create a new Kotlin file named LargeDoggie in the same package with the
following contents:

Now it’s time for several classes that will cover two dog breeds. Create a
new Kotlin file called Chiwawa in the same package with the following
contents:

package org.example.enpoly.doggie

internal class Chiwawa(petName: String) : SmallDoggie() {

 override fun makeSound() = "Yaap, yaap, yaap"

 init {

 this.petName = petName

 }

}

Create new Kotlin file called GreatDane in the same package with the
following contents:

package org.example.enpoly.doggie

import org.example.enpoly.AnimalBase

internal open class Doggie(var petName: String = "", open protec

 open protected val energy: Int) : Animal

 override val MAX_AGE = 20

 override fun doMove() = "Walks/runs"

 override fun makeSound() = "Wooff"

 fun stats() = "Coat: $coat, Energy: $energy"

}

package org.example.enpoly.doggie

internal open class SmallDoggie : Doggie(coat = "Fluffy", energy

package org.example.enpoly.doggie

internal open class LargeDoggie : Dog(coat = "Raggy", energy = 2

package org.example.enpoly.doggie

internal class GreatDane(petName: String) : LargeDoggie() {

 override val MAX_AGE = 13

 override val coat = "Smooth"

 init {

 this.petName = petName

 }

}

Finally, a main Kotlin file must be written to link everything. Create a new
Kotlin file named main in the org.example.enpoly package with the
following contents:

ENCAPSULATION AND PROCEDURAL PROGRAMMING
IN KOTLIN
Encapsulation is a term used by software developers to describe the process
of grouping related data and behavior into a single unit, usually referred to
as a class. The class is the polar opposite of procedural-based programming,
in which data and behavior are considered as separate concerns. It should
highlight that both OOP and procedural programming have different
benefits, and neither is superior to the other. Kotlin supports both types of
programming, and it’s not unusual to see a combination of procedural and
OOP.

package org.example.enpoly

import org.example.enpoly.doggie.*

fun main(args: Array<String>) {

 val chiwawa = Chiwawa("Fiifi")

 val greatDane = GreatDane("Earles")

 println("Chiwawa - Name: ${chiwawa.petName}, Max Age: ${chi

 println("Chiwawa Stats - ${chiwawa.stats()}")

 println("Chiwawa Sound - ${chiwawa.makeSound()}")

 println("Chiwawa Move - ${chiwawa.doMove()}")

 chiwawa.petName = "Rippy"

 println("Chiwawa's New Name - ${chiwawa.petName}\n")

 println("Great Dane: Name - ${greatDane.petName}, Max Age: $

 println("Great Dane Stats - ${greatDane.stats()}")

 println("Great Dane Sound - ${greatDane.makeSound()}")

 println("Great Dane Move - ${greatDane.doMove()}")

}

Example of Procedural Programming
Let’s look at a procedural programming example. In this example, we’ll use
rectangle object. Its data is stored in a map (data structure that allows key-
value pairs), and it is subsequently consumed by functions.

So we start with the rectangle object, which stores our rectangle’s width,
height, and color. Following the formation of the rectangle, there are two
functions. They are calcArea and function toString(), respectively. It’s
worth noting that these are global functions that can accept any Map. This
is risky since we cannot ensure that the map will include “Width,”
“Height,” or “Color” keys. Another concern is that we have lost our type
safety. Because we need to store both Integers and Strings in the rectangular
map, our value must type Any, Kotlin’s basic type.

OOP
Here’s an example of the same problem tackled using an OOP approach.

Because the data and the activity associated with the data are gathered into
a single object called a class, the OOP approach displays encapsulation. The
data associated with a class is commonly referred to as “properties,” and the
actions described in the class are commonly referred to as “methods.”
Because all objects based on the Rectangle class contain width, height, and

val rect = mutableMapOf("Width" to 12, "Height" to 12, "Color" t

fun calcArea(shape : Map<String, Any>) : Int {

 return shape["Height"] as Int * shape["Width"] as Int

}

fun toString(shape : Map<String, Any>) : String {

 return "Width = ${shape["Width"]}, Height = ${shape["Height"

}

class Rect(

 var width : Int,

 var height : Int,

 var color : String){

 fun calcArea() = this.width * this.height

 override fun toString() =

 "Width = ${this.width}, Height = ${this.height}, Col

}

color, the calcArea() and function toString() methods are always guaranteed
to function. We also keep our type safety since we may define each property
as a separate variable within the class, along with its type.

When invoking the calcArea() and function toString() methods, the term
‘this’ relates to the object called. Unlike the preceding procedural program,
we’ll observe that no Rectangle parameter is sent to calcArea() or function
toString(). Instead, the ‘this’ keyword is modified to refer to the presently
active object.

Tips for Choosing between Procedural and OOP
It should mention that many software projects use both procedural and
OOP. It’s also worth noting that practically anything that can be done using
OOP can almost certainly be done with procedural code, and vice versa.
However, certain issues are easier to address when using procedural rather
than OOP, while others are better solved with OOP.

Procedural
When we operate in terms of pure mathematical functions, a function
receives certain inputs and returns specific outputs without any side effects.

Multithreading: Procedural programming can assist in resolving
many issues that arise in a multithreading environment. Because the
integrity of changeable data is always an issue in multithreading,
functional programming works well as long as the functions are pure
functions that do not modify data.

Input and output: Using a class to persist or retrieve an item from a
data storage is often unnecessary. The same may be said for printing to
ordinary IO. Java has been widely chastised for writing text to the
console via System.out.println(). Kotlin simplified this to println().

OOP and Encapsulation

GUI toolkits: Objects such as buttons, windows, and web pages are
extremely well represented as classes.

Grouping state or behavior: We frequently find that entities in
software have qualities or methods shared by other entities with
comparable properties or methods. All road vehicles, for example,
have wheels and move. Trucks are specialized vehicles with a box.
Four-wheel drive trucks are specialist vehicles that have four wheels of
drive. We can utilize OOP to organize all of the components shared by
all cars into a Vehicle class. All things common to Vehicles may be
classified as Trucks, while all items used solely in four-wheel drive
trucks can be classified as FourByFourTruck.

Modularization: OOP enables developers to modularize code into
smaller, reusable software components. Because the code units in a
system are small, the code is typically easier to maintain.

Putting Everything Together
A working program demonstrating both procedural programming and OOP
is provided below.

package ch1

/**

* This is a form object that lacks OOP. Take note of how the dat

* data. The information is saved in a Map object, which employs

* alter the data.

*/

val rect = mutableMapOf("Width" to 12, "Height" to 12, "Color" t

fun calcArea(shape : Map<String, Any>) : Int {

 // How can we ensure that this map object contains the "Heig

 return shape["Height"] as Int * shape["Width"] as Int

}

fun toString(shape : Map<String, Any>) : String {

 return "Width = ${shape["Width"]}, Height = ${shape["Height"

}

/**

* This class represents a Rectangle. You’ll see it contains less

* non-OOP implementation right away. This is because the state (

* Kotlin goes this a step further by allowing us to adjust our c

* we know width and height will always exist. Similarly, we know

* for the same reason!

*/

This chapter introduced the notion of OOP, where we learned about Class
and Object, Nested classes, Constructors, and Inheritances. In addition, we
discussed Interfaces, Abstract classes, and Generics in Kotlin. Moreover,
Composition, Polymorphism, and Encapsulation.

class Rect(

 var width : Int,

 var height : Int,

 var color : String){

 fun calcArea() = this.width * this.height

 override fun toString() =

 "Width = ${this.width}, Height = ${this.height}, Col

}

fun main(args : Array<String>){

 println("Using procedural programming")

 println(toString(rect))

 println("Changing width")

 rectangle["Width"] = 15

 println(toString(rect))

 println("Changing height")

 rectangle["Height"] = 80

 println(toString(rect))

 println("Changing color")

 rectangle["Color"] = "Blue"

 println(toString(rect))

 println("\n***********\n")

 println("Now-using-OOP")

 val square = Rect(12, 12, "Yellow")

 println(square)

 println("Changing height")

 square.height = 80

 println(square)

 println("Changing width")

 square.width = 50

 println(square)

 println("Changing color")

 square.color = "Black"

 println(square)

}

C H A P T E R 3
Usability Aspects of Kotlin

DOI: 10.1201/9781003308447-3

IN THIS CHAPTER
➢ Nullable types
➢ Extension methods
➢ Overloading
➢ Enumeration and generics

In the previous chapter, we covered Objects and Classes, Inheritance, and
Composition. Moreover, Polymorphism, Encapsulation, and Abstraction.
This chapter will cover Nullable types, Extension methods, Overloading,
Enumeration, and Generics.

NULL SAFETY IN KOTLIN
Null safety in Kotlin is a process that eliminates the possibility of a null
reference in the code. If null argument is given, the Kotlin compiler
instantly raises a NullPointerException without executing more lines.

Kotlin’s type system aims to eliminate NullPointerException from the
code. Only the following causes can result in a NullPointerException:

https://doi.org/10.1201/9781003308447-3

An uninvited call to throw NullPointerException();

An uninitialized version of this operator can find in a constructor and
used someplace.

The use of external Java code as Kotlin is an example of Java
interoperability.

Nullable and Non-Nullable Types in Kotlin
The Kotlin types system distinguishes between references that can hold null
(nullable references) and references that cannot contain null (non-null
reference). String types are not normally nullable. To create a string with a
null value, we must explicitly declare it by inserting a? behind the String as:
String?

Nullable Types
Nullable types are declared by adding a? to the end of a String, as in:

var strg1: String? = "hello"

strg1 = null // ok

Example:

Non-Nullable Types
Non-nullable types are regular strings that are specified as String types,
such as:

val strg: String = null // compile error

strg = "hello" // compile error Val cannot be reassign

var strg2: String = "hello"

strg2 = null // compile error

fun main(args: Array<String>){

var strg: String? = "Hello" // variable is declared as nullabl

strg = null

 print(strg)

}

What happens when we add a null value to a string that is not nullable?

fun main(args: Array<String>){

var strg: String = "Hello"

strg = null // compile-error

 print(strg)

}

Checking for Null in the Conditions
The if expression in Kotlin is used to check the condition and return the
value.

SMART CAST
We have seen how to declare a nullable type in the previous course Kotlin
nullable types and non-nullable types. We have the option of using smart
casts to use these nullable classes. Smart cast is a feature that allows the
Kotlin compiler to track circumstances within if expressions. If the
compiler discovers that a variable is not null of type nullable, it will enable
access to the variable.

Example: We get a compile error when attempting to access a nullable
type of String without using safe cast.

var string: String? = "HelloEveryone"

 print(string.length) // Compile-error

We use a safe cast to solve the above expression:

fun main(args: Array<String>){

var strg: String? = "Hello" // variable is declared as nulla

var len = if(strg!=null) str.length else -1

println("strg is : $strg")

println("strg length is : $len")

strg = null

println("strg is : $strg")

len = if(strg!=null) strg.length else -1

println("b length is : $len")

}

fun main(args: Array<String>){

var string: String? = "HelloEveryone"

 if(string != null) { // smart cast

print(string.length) // It works now

 }

}

When we use is or !is to verify a variable, the compiler records this
information and internally casts the variable to the target type. If is or !is
returns true, something is done within the scope.

Use of is for the Smart Cast

Use of !is for the Smart Cast

Smart cast function under the following conditions:

A val variable always has a local property aspect.

If a val property is private or internal, the check is done in the same
module defined by the property.

If the local var variable is not changed between the check and the
usage, it will not be recorded in a lambda that updates it.

fun main(args: Array<String>){

val objt: Any = "The variable objt is automatically cast to a St

 if(objt is String) {

 // No Explicit-Casting needed.

println("String length is ${objt.length}")

 }

}

fun main(args: Array<String>){

val objt: Any = "The variable objt is automatically cast to a St

 if(objt !is String) {

println("objt is not string")

 } else

 // No Explicit-Casting needed.

println("String length is ${objt.length}")

}

UNSAFE AND SAFE CAST OPERATOR

Unsafe Cast Operator: as
When a variable cannot cast and an exception is thrown, this is referred to
as an unsafe cast. The infix operator as performs the unsafe cast.

If a nullable string (String?) is cast to a non-nullable string (String), an
exception is thrown.

fun main(args: Array<String>){

val objt: Any? = null

val strg: String = objt as String

println(strg)

}

The preceding program throws an exception:
Exception in thread “main” kotlin.TypeCastException: null cannot be

cast to non-null type kotlin.String at ExampleKt.main.
When attempting to cast an integer value of any type into a string value, a

ClassCastException is thrown.

For casting to work, the source and target variables must be nullable:

fun main(args: Array<String>){

val objt: String? = "String unsafe cast"

val strg: String? = objt as String? // Works

println(strg)

}

Safe Cast Operator: as?
For safe cast to a type, Kotlin includes a safe cast operator as? If casting is
not feasible, it returns null rather than raising a ClassCastException
exception.

Consider the following example: attempting to cast any kind of string
value that is initially understood by the programmer but not by the compiler
into nullable string and nullable int. If casting is feasible, it will cast the

val objt: Any = 321

val strg: String = objt as String

// Throws java.lang.ClassCastException: java.lang.Integer cannot

value or return null instead of throwing an exception if casting is not
possible.

fun main(args: Array<String>){

val location: Any = "KotlinAdvanced"

val safeString: String? = location as? String

val safeInt: Int? = location as? Int

println(safeString)

println(safeInt)

}

(?:) Elvis Operator
Elvis operator (?:) is used to return a value that is not null even if the
conditional expression is null. It is also used to ensure that values are not
null.

We can declare a variable storing a null reference in specific instances.
Assume a variable strg has a null reference; before utilizing strg in a
program, we shall check its nullability. If variable strg is found to be non-
null, its property will use; otherwise, another non-null value will be used.

var strg: String? = null

var strg2: String? = "May be declare nullable string"

In the above code, the String strg includes a null value; thus, before
accessing the value of strg, we must run a safety check to see if the string
contains a value or not. Traditionally, we conduct this safety check with an
if… else sentence.

var len1: Int = if (strg != null) strg.length else -1

var len2: Int = if (strg2 != null) strg.length else -1

fun main(args: Array<String>){

var strg: String? = null

var strg2: String? = "May be declare nullable string"

var len1: Int = if (strg != null) strg.length else -1

var len2: Int = if (strg2 != null) strg2.length else -1

println("Length of strg is ${len1}")

println("Length of strg2 is ${len2}")

}

The Elvis operator(?:) in Kotlin returns a result that is not null even if the
conditional expression is null. The following Elvis operator may be used to

express the above if… else operator:

var len1: Int = strg?.length ?: -1

var len2: Int = strg2?.length ?: -1

The Elvis operator returns the expression to the left to ?:, i.e. −1. (strg?.
length) If it is not null, it returns the expression right to (?:) i.e. (−1). The
expression on the right side of Elvis operator is evaluated only if the
expression on the left side returns null.

Example:

fun main(args: Array<String>){

var strg: String? = null

var strg2: String? = "May be declare nullable string"

var len1: Int = strg ?.length? : -1

var len2: Int = strg2 ?.length? : -1

println("Length of strg is ${len1}")

println("Length of strg2 is ${len2}")

}

Because Kotlin throw and return expressions, they may also be used on the
Elvis operator’s right side. This may be used to check functional arguments
such as:

Elvis Kotlin Operator using the throw and return expression:

funfunctionName(node: Node): String? {

val parent = node.getParent() ?: return-null

val name = node.getName() ?: throw IllegalArgumentException("nam

//

}

fun main(args: Array<String>){

val fruitName: String = fruit()

println(fruitName)

}

fun fruit(): String{

val strg: String? ="xyz"

val strgLength: Int = if(strg!= null) strg.length else -1

val strgLength2: Int = strg?.length ?: -1

var string = "strg = $strg\n"+

 "strgLength = $strgLength\n"+

 "strgLength2 = $strgLength2\n\n"

EXTENSION FUNCTION
The Kotlin programming language enables the programmer to enhance the
functionality of existing classes without inheriting them. This is performed
by utilizing a feature known as extension. A function that is added to an
existing class is referred to as an Extension Function.

Create a new function that is tied to the classname, as shown in the
example below, to add an extension function to class:

Explanation: In this scenario, a new function with the function class
Circle.perimeter() and a return type of Double is added to the class using

fun check(textOne: String?, textTwo: String?): String?{

val textOne = textOne ?: return null

val textTwo = textTwo ?: IllegalArgumentException("text exceptio

 return "\ntextOne = $textOne\n"+

 "textTwo = $textTwo\n"

 }

 string += "check(null,\"grapes\") = ${check(null,"grapes")}\

 "check(\"apple\",\"kiwi\") = ${check("apple","kiwi")

 return string

}

// A example class demonstrating extension functions

class Circle (val radius: Double){

 // the member function of class

 fun area(): Double{

 return Math.PI * radius * radius;

 }

}

fun main(){

 // Created an extension method for the Circle class.

 fun Circle.perimeter(): Double{

 return 2*Math.PI*radius;

 }

 // create a object for the class Circle

 val newCircle = Circle(13.4);

 // invoke the member function

 println("The Area of the circle: ${newCircle.area()}")

 //invoke the extension function

 println("The Perimeter of the circle: ${newCircle.perimeter(

}

dot notation. In the primary function, an object is created to instantiate the
class Circle, and the function is called with the println() line. When the
member function is invoked, it returns the circle’s area, whereas the
extension function returns the circle’s perimeter.

Extended Library Class Using an Extension Function
Not only can user-defined classes be extended in Kotlin, but so can library
classes. The extension function may be added to library classes and used the
same way it can add to user-defined classes.

Example:

fun main(){

 // Extension function defined for the Int type

 fun Int.abs() : Int{

 return if(this < 0) -this else this

 }

 println((-8).abs())

 println(8.abs())

}

Explanation: We utilized an extension function to extend the library
function in this situation. To do the modulus procedure, we utilized an
Integer value. We entered the integer numbers −8 and 8 and got positive
results for both. If argument value is less than zero, it returns − (value), else
it returns the same value.

Extensions Are Resolved Statically
The extension functions are resolved statically, which means that whichever
extension function is performed is fully dependent on the type of the
expression on which it is called, rather than the type resolved during the
expression’s final execution at runtime.

Example:

// An Open class created to be inherited

open class E(val e:Int, val f:Int){

}

// Class F inherits E

class F():E(6, 6){}

fun main(){

 // Extension function operate defined for E

 fun E.operate():Int{

 return e+f

 }

 // Extension function operate defined for F

 fun F.operate():Int{

 return e*f;

 }

 // Function to display static dispatch

 fun display(e: E){

 print(e.operate())

 }

 // Calling the display function

 display(F())

}

Explanation: If we’re aware with Java or any object-oriented programming
language, you’ll see that class D is an ancestor of class E. In the above
program, the parameter sent to the display function is an instance of class
D. The output should be 36 according to the dynamic method dispatch
paradigm; however, because the extension functions are statically resolved,
the operate function is called on type E. As a consequence, the outcome is a
value of 12.

Nullable Receiver
The nullable class type can also use to construct extension functions. The
correct value is returned when the check for null is inserted inside the
extension method.

Example:

// A sample class to display name

class CDE(val name: String){

 override fun toString(): String {

 return "Name is $name"

 }

}

 fun main(){

 // An extension function as a nullable receiver

 fun CDE?.output(){

 if(this == null){

 println("Null")

 }else{

 println(this.toString())

 }

 }

 val a = CDE("Charch")

 // Extension function called using an instance

 a.output()

 // Extension function called on null

 null.output()

}

Companion Object Extensions
If a class has a companion object, we may also provide extension methods
and properties for the companion object.

Declaration of companion object:

class mynewClass {

 // the companion object declaration

 companion object {

 fun display(){

 println("The companion object's defined function")

 }

 }

}

fun main(args: Array<String>) {

 // invoking the member function

 val obj = mynewClass.display()

}

Like regular member functions of the companion object, extension
functions can be invoked with just the class name as the qualifier.

Example:

class mynewClass {

 companion object {

 //member function of the companion object

 fun display(strg :String) : String{

 return strg

 }

}

OVERLOADING OF THE OPERATOR IN KOTLIN
Because Kotlin enables user-defined types, it may also overload
conventional operators, making dealing with user-defined types easier. All
unary, binary, and relational operators can be overloaded. Overloading the
operators is accomplished by using either member functions or extension
functions. The operator modifier precedes these functions. Every operator
has typical functions that can be overloaded depending on the situation.

Unary Operators
The table below lists the many functions that may define for unary
operators. These functions modify the caller instance.

Operator Expression Corresponding Function
+r r.unaryPlus()
−r r.unaryMinus()
!r r.not()

The type for which the operator is defined is represented by r in this
example. The overloaded functionality is defined within the functions.

Unary operator overloading is demonstrated in the following Kotlin
program:

 }

}

 // the companion object's extension function

fun mynewClass.Companion.abc(){

 println("The companion object's Extension function ")

}

fun main(args: Array<String>) {

 val objt = myClass.display("The Function declared in the c

 println(objt)

 // invoking extension-function

 val objt2 = myClass.abc()

}

class OverloadUnary (var str:String) {

 // the overloading function

 operator fun unaryMinus() {

 strg1 = strg1.reversed()

 }

}

// main-function

Increment and Decrement Operators
The following methods can use to define type’s increment and decrement
operators. These methods return a new instance with the expression’s result.

Operator Expression Corresponding Function
++r r.inc()
− − r r.dec()

These functions work well in either postfix or prefix notation, delivering the
same expected output in both circumstances.

Kotlin program to demonstrate operator overloading:

// main-function

fun main(args : Array<String>) {

 val objt1 = OverloadUnary ("HELLOEVERYONE")

 println("Initial string is ${objt1.strg}")y

 //calling the overloaded function unaryMinus()

 -objt1

 println("String after applying unary operator ${objt1.strg1}

}

class OverloadIncDec(var strg:String) {

 // overloading the increment-function

 operator fun inc():OverloadIncDec {

 val objt1 = IncDecOverload(this.str)

 objt.strg1 = objt1.strg1 + 'a'

 return objt1

 }

 // overloading the decrement-function

 operator fun dec(): IncDecOverload {

 val objt1 = IncDecOverload(this.strg)

 objt.strg1 = objt1.strg1.substring(0,objt1.strg1.length-

 return objt1

 }

 override fun toString(): String {

 return strg1

 }

}

// main-function

fun main(args: Array<String>) {

 var objt1 = OverloadIncDec("Helloeveryone")

 println(objt1++)

 println(objt1--)

 println(++objt1)

i tl (bjt1)

Binary Operators
The binary operators and their equivalent functions are shown in the table
below. All of these functions affect the instance that is being called.

Operator Expression Corresponding Function
r1 + r2 r1.plus(r2)
r1 − r2 r1.minus(r2)
r1 ∗ r2 r1.times(r2)
r1/ r2 r1.div(r2)
r1 % r2 r1.rem(r2)
r1..r2 r1.rangeTo(r2)

Overload the plus function with the following code:

class Objects(var objtName: String) {

 // Overloading-function

 operator fun plus(r: Int) {

 objtNames = "Name is $objtNames and data is $r"

 }

 override fun toString(): String {

 return objtNames

 }

}

//main-function

fun main() {

 val objt1 = Objects("Chairs")

 // Calling-overloaded-function

 objt1+9

 println(objt1)

}

Although the relational operators have no predefined functions, the type
must implement the Comparable interface to use relational operators on
instances of a user-defined type.

Other Operators
Because Kotlin has many operators, declaring each for a type is not a good
programming practice. The below table lists some of the other useful Kotlin

 println(--objt1)

}

operators that may be overloaded.

Operator Expression Corresponding Function
r1 in r2 r2.contains(r1)
r1 !in r2 !r2.contains(r1)
r[i] r.get(i)
r[i, j] r.get(i, j)
r[i] = b r.set(i, b)
r[i, j] = b r.set(i, j, b)
r() r.invoke()
r(i) r.invoke(i)
r(i, j) r.invoke(i, j)
r1 += r2 r1.plusAssign(r2)
r1 -= r2 r1.minusAssign(r2)
r1 *= r2 r1.timesAssign(r2)
r1 /= r2 r1.divAssign(r2)
r1 %= r2 r1.remAssign(r2)

Enum CLASSES IN KOTLIN
It is sometimes important for a type to hold only specific values in
programming. To do this, the concept of enumeration was developed. An
enumeration is a named list of constants.

In Kotlin, as in many other programming languages, an enum is a
specific type that indicates that something has several desirable properties.
In contrast to Java enums, Kotlin enums are classes.

Some important things to note about Kotlin enum classes:

Enum constants are more than simply collections of constants; they
can also have attributes, methods, and other properties.

A comma represents each enum constant function as a separate class
and instance.

Enums improves code readability by giving constants predefined
names.

Constructors are not permitted to construct an instance of the enum
class.

Enums are defined by appending the term ‘enum’ to the beginning of a
class name, as seen below:

enum class TIMEOFWEEK{

 MONDAY,

 TUESDAY,

 WEDNESDAY,

 THURSDAY,

 FRIDAY,

 SATURDAY,

 SUNDAY

}

Enum Initializing
Kotlin enums, like Java enums, can have constructors. Enum constants may
initialize by passing particular values to the main constructor since they are
Enum class objects.

Here’s an example of how to color-code cards:

enum class ColorCard(val colors: String) {

 Diamond("pink"),

 Heart("green"),

}

We can quickly determine the color of a card by using:

val colors = ColorCard.Diamond.colors

Enum Properties and Methods
Enum classes in Kotlin, like those in Java and other programming
languages, contain a variety of built-in attributes and functions that the
programmer may use. Some of the essential techniques and attributes are
listed here.

Properties:

ordinal: This property stores the ordinal value of the constant, which
is usually a zero-based index.

name: This property contains the name of the constant.

Methods:

values: This method returns a list of all the constants in the enum
class.

valueOf(): The enum constant defined in enum that matches the input
string is returned. If the constant is not found in the enum, an
IllegalArgumentException is thrown.

Example:

Properties and Functions of the Enum Class
Kotlin’s enum class introduces a new type. This sort of class has its own set
of properties and methods. The properties can offer a default value;
however, each constant must specify its value for the property if no default
value is provided. Functions are frequently defined within companion
objects to avoid dependence on particular class instances. However, they
may define without the need of companion objects.

Example:

enum class WEEKDAY {

 MONDAY,

 TUESDAY,

 WEDNESDAY,

 THURSDAY,

 FRIDAY

}

fun main()

{

 // A straightforward demonstration of properties and metho

 for (day in WEEKDAY.values()) {

 println("${day.ordinal} = ${day.name}")

 }

 println("${WEEKDAY.valueOf(" FRIDAY ")}")

}

// A default value is provided for the property

enum class WEEKS(val isWeekend: Boolean = false){

 SUNDAY(true),

 MONDAY,

TUESDAY

Enums as Anonymous Classes
Enum constants, like anonymous classes, implement their methods and
override the class’s abstract functions. The most important aspect is that
each enum constant is overridden.

 TUESDAY,

 WEDNESDAY,

 THURSDAY,

 FRIDAY,

 // Default-value-overridden

 SATURDAY(true);

 companion object{

 fun today(obj: WEEKS): Boolean {

 return obj.name.compareTo("SATURDAY") == 0 || obj.

 }

 }

}

fun main(){

 // A simple demonstration of properties and methods

 for(day in WEEKS.values()) {

 println("${day.ordinal} = ${day.name} and is weekend $

 }

 val today = WEEKS.MONDAY;

 println("Is today a weekend ${WEEKS.today(today)}")

}

// enum-class defining

enum class Seasons(var weather: String) {

 Summer("cold"){

 // if not override the function foo() compile time error

 override fun fooo() {

 println("The cold days of year")

 }

 },

 Winter("hot"){

 override fun fooo() {

 println("The Hot days of year")

 }

 },

 Rainy("moderate"){

 override fun fooo() {

 println("The Rainy days of year")

 }

 };

 abstract fun fooo()

Usage of when Expression with the Enum Class
When enum classes in Kotlin are combined with the when expression, they
provide considerable benefits. Because enum classes limit the values that a
type can take when paired with the when expression and all of the constant
definitions are given, the else clause is unnecessary. As a result, a compiler
warning will be produced.

enum class WEEKDAYS{

 MONDAY,

 TUESDAY,

 WEDNESDAY,

 THURSDAY,

 FRIDAY,

 SATURDAY

 SUNDAY;

}

fun main(){

 when(WEEKDAYS.SUNDAY){

 WEEKDAYS.SUNDAY -> println("Today is Sunday")

 WEEKDAYS.MONDAY -> println("Today is Monday")

 WEEKDAYS.TUESDAY -> println("Today is Tuesday")

 WEEKDAYS.WEDNESDAY -> println("Today is Wednesday")

 WEEKDAYS.THURSDAY -> println("Today is Thursday")

 WEEKDAYS.FRIDAY -> println("Today is Friday")

 WEEKDAYS.SATURDAY -> println("Today is Saturday")

 // Adding an else clause will generate a warning

 }

}

KOTLIN GENERICS
Generics are helpful features that allow us to create classes, methods, and
properties that may be accessed using a variety of data types while still
ensuring compile-time type safety.

()

}

// the main function

fun main(args: Array<String>) {

 // calling fooo() function override be Summer constant

 Seasons.Summer.fooo()

}

Creating parameterized classes: A type-parameterized class or function is
a generic type. We always use angle brackets () to define the type parameter
in the program.

The following is the generic class definition:

class mynewClass<E>(text: E) {

 var name = text

}

To create an instance of this class, we must specify the following type
arguments:

The type arguments can remove if the parameters can deduce from the
constructor arguments:

The generic has the following advantages:

Avoiding typecasting: The object does not need to be typecast.

Type safety: Generic allows just one type of object at a time.

Compile-time safety: To avoid run-time problems, generics code is
checked for parameterized types at build time.

Generic Usage in Our Program
We define a Company class with a single parameter and a primary in the
following example. We try to send different data kinds, such as String and
Integer, through the Company class object. The Company class’s primary
constructor accepts string types (“TheHubtutors”) but returns a compile-
time error when an Integer type is passed (19).

class Companie (text: String) {

 var d = text

 init{

val my : mynewClass<String> = Mynewclass<String>("TheHubtutors")

val my = mynewClass("TheHubtutors ")

Because TheHubtutors has the type String, the compiler figures o

 println(d)

 }

}

fun main(args: Array<String>){

 var name: Companie = Companie("TheHubtutors")

 var rank: Companie = Companie(19)// compile-time-error

}

To address the issue raised above, we may create a user-defined generic
type class that accepts many arguments in a single class. The Company type
class is a general type class that accepts arguments of both int and String
types.

Example:

Variance
Unlike Java, Kotlin makes arrays invariant by default. By extension,
generic types are invariant in the Kotlin. The out and in keywords may be
useful here. Invariance is the property that prevents a standard generic
function/class written for a single data type from taking or returning another
data type. Any is the supertype of all extra datatypes.

There are several types of variation:

Declaration-site variance (using in and out)

Use-site variance: Type projection

The out Keyword

class Companie<E> (text : E){

 var d = text

 init{

 println(d)

 }

}

fun main(args: Array<String>){

 var name: Companie<String> = Companie<String>("Thehubtutor

 var rank: Companie<Int> = Companie<Int>(19)

}

In Kotlin, we may use the out keyword on the generic type to assign this
reference to any of its supertypes. The out value can only be generated and
consumed by the defined class:

class OutClass<out E>(val value: E) {

 fun get(): E {

 return value

 }

}

Above, we defined an OutClass class that may return a value of type E.
Then, for the reference that is a supertype of it, we create an instance of the
OutClass:

val out = OutClass("string")

val ref: OutClass<Any> = out

The in Keyword
To assign it to the reference of its subtype, we might use the keyword in on
the generic type. The in keyword may only use on parameters that are
consumed rather than produced:

class InClass<in E> {

 fun toString(value: E): String {

 return value.toString()

 }

}

In this scenario, we’ve defined a function toString() function that accepts
only D values. Then we may assign a Number reference to its subtype – int:

val inClassObject: InClass<Number> = InClass()

val ref<Int> = inClassObject

Note: The following statement would result in a compiler error if we had
not used the in type in the preceding class.

Covariance
Subtypes is permitted but not supertypes, i.e., the generic function/class
may take subtypes of the datatype for which it is already defined, e.g., a

generic class made for Number can accept int, but a generic class built for
int cannot accept Number. This may be done in Kotlin by using the out
keyword, as seen below:

By appending the out keyword to the declaration site, we may instantly
allow covariance. The code below is completely functional.

Contra Covariance
It is used to substitute a supertype value in subtypes, implying that the
generic function or class may take supertypes of the datatype for which it is
already defined. A generic class designed for Number, for example, cannot
accept int, but a generic class defined for int can accept Number. It is
performed in Kotlin by using the in keyword as follows:

Type Projections
It is possible to copy all of the elements of an array of some type into an
array of Any type, but for the compiler to compile our code, the input

fun main(args: Array<String>) {

 val c: MyClass<Any> = MyClass<Int>() // Error: Type-m

 val d: MyClass<out Any> = MyClass<String>() // Works since S

 val e: MyClass<out String> = MyClass<Any>() // Error since A

}

class MyClass<X>

fun main(args: Array<String>) {

 val d: MyClass<Any> = MyClass<String>() // Compiles-with

}

class MyClass<out X>

fun main(args: Array<String>) {

 var c: Container<Dog> = Container<Animal>() //compiles-

 var d: Container<Animal> = Container<Dog>() //gives-com

}

open class Creature

class Cat : Animal()

class Container<in C>

argument must annotate with the out keyword. Consequently, the compiler
decides that the input argument can be of Any type.

Kotlin code for copying array members into another array:

fun copy(from: Array<out Any>, to: Array<Any>) {

 assert(from.size == to.size)

 // copying (from) array to (to) array

 for (d in from.indices)

 to[d] = from[d]

 // printing elements of array in which copied

 for (d in to.indices) {

 println(to[d])

 }

}

fun main(args :Array<String>) {

 val ints: Array<Int> = arrayOf(11, 22, 33,44)

 val any :Array<Any> = Array<Any>(44) { "" }

 copy(ints, any)

}

Star Projections
The star(*) projection is used when we don’t know what kind of value
we’re looking for and just want to output all the elements in an array.

Example:

// star-projection in array

fun printArray(array: Array<*>) {

 array.forEach { print(it) }

}

fun main(args :Array<String>) {

 val name = arrayOf("Worst","for","Good")

 printArray(name)

}

In this chapter, we learned Usability aspects where we discussed Nullable
Types, Extension methods, Overloading and Enumeration, and Generics.

C H A P T E R 4
Kotlin Functional Programming

DOI: 10.1201/9781003308447-4

IN THIS CHAPTER
➢ Lambdas
➢ Higher-Order functions
➢ Local functions
➢ Scope functions
➢ Lists and maps

In the previous chapter, we covered Usability Aspects. This chapter will
cover functional programming with its relevant syntax and examples.

LAMBDA EXPRESSIONS AND ANONYMOUS FUNCTIONS
IN KOTLIN
This topic will cover lambda expressions and anonymous functions in
Kotlin. While they are syntactically similar, Kotlin and Java lambdas have
vastly distinct characteristics.

Lambda expressions and Anonymous functions are function literals,
which imply they are not declared but supplied as an expression.

https://doi.org/10.1201/9781003308447-4

LAMBDA EXPRESSION
As we all know, the syntax of Kotlin lambdas is quite similar to that of Java
lambdas. An anonymous function does not have a name. We may call
lambda expressions anonymous functions.

Example:

fun main(args: Array<String>) {

 val company = { println("PeeksforPeeks")}

 // invoking the function method1

 company()

 // invoking the function method2

 company.invoke()

}

Syntax:

val lambda_names : Data_type = { argument_List -> code_body }

Curly braces always enclose a lambda expression, argument declarations
are enclosed by curly braces and have optional type annotations, and an
arrow -> sign encloses the code body. If the lambda’s inferred return type is
not Unit, the final expression inside the lambda body is considered the
return value.

Example:

val sum = {x: Int, y: Int -> x + y}

Except for the code body, the lambda expression in Kotlin has optional
parts. The lambda expression is shown below after the optional component
has been removed.

val sum:(Int,Int) -> Int = { x, y -> x + y}

It’s worth noting that we don’t always need a variable because it can be
supplied directly as an argument to a method.

Program:

// with the type annotation in lambda expression

val sum1 = { x: Int, y: Int -> x + y }

// without type annotation in lambda expression

val sum2:(Int,Int)-> Int = { x, y -> x + y}

fun main(args: Array<String>) {

 val result1 = sum1(1,4)

 val result2 = sum2(2,5)

 println("Sum of two numbers is: $result1")

 println("Sum of two numbers is: $result2")

 // directly print return value of the lambda

 // without storing in variable.

 println(sum1(4,6))

}

Inference in Lambda Types
Type inference in Kotlin assists the compiler in determining the type of a
lambda expression. The lambda expression used to compute the sum of two
numbers is shown below.

val sum = {x: Int, y: Int -> x + y}

In this case, the Kotlin compiler evaluates it as a function that takes two Int
parameters and returns an Int value.

(Int,Int) -> Int

If we want to return a String value, we may use the inbuilt function
toString() method.

val sum1 = { x: Int, y: Int ->

 val num = x + y

 num.toString() //convert the Integer to String

}

fun main(args: Array<String>) {

 val result1 = sum1(12,7)

 println("Sum of two numbers is: $result1")

}

The Kotlin compiler self-evaluates the preceding program into a function
that accepts two integer values and returns a String.

Type Declaration in Lambdas

The type of our lambda expression must explicitly declare. If lambda does
not return a value, we can use: Unit.

Pattern: (Input) -> Output

Lambdas examples with return type:

val lambda1: (Int) -> Int = (x -> x * x)

val lambda2: (String,String) -> String = { x, y -> x + y }

val lambda3: (Int)-> Unit = {print(Int)}

Lambdas can be used as class extension:

val lambda4: String.(Int) -> String = {this + it}

It represents implicit name of single parameter.
Program when lambdas used as class extension:

val lambda4 : String.(Int) -> String = { this + it }

fun main(args: Array<String>) {

 val result = "Peeks".lambda4(40)

 print(result)

}

Explanation: The preceding example uses the lambda expression as a class
extension. We used the format mentioned above to pass the parameters.
This keyword is used for string and the Int parameter given in the lambda.
The code body then concatenates both values and returns to the variable
result.

it: Implicit Name of a Single-Parameter
In most cases, lambdas only have one parameter. It is used here to indicate
the single parameter passed to the lambda expression.

Program utilizing lambda function shorthand:

val numb = arrayOf(1,-2,3,-4,5)

fun main(args: Array<String>) {

 println(numb.filter { it > 0 })

}

Program with lambda function in longhand:

val numb = arrayOf(1,-2,3,-4,5)

fun main(args: Array<String>) {

 println(numb.filter {item -> item > 0 })

}

Returning a Value from a Lambda Expression
The final value returned by lambda expression after execution. The lambda
function can return any Integer, String, or Boolean values.

Kotlin program that uses a lambda function to return a String value:

val find =fun(numb: Int): String{

if(numb % 2==0 && numb < 0) {

 return "The number is even and negative"

 }

 else if (numb %2 ==0 && numb >0){

 return "The number is even and positive"

 }

 else if(numb %2 !=0 && numb < 0){

 return "The number is odd and negative"

 }

 else {

 return "The number is odd and positive"

 }

}

fun main(args: Array<String>) {

 val result = find(112)

 println(result)

}

ANONYMOUS FUNCTION
An anonymous function is quite similar to a regular function except for the
omission of the function’s name from the declaration. The anonymous
function’s body can be either an expression or a block.

First Example: Function body as an expression

fun(x: Int, y: Int) : Int = x * y

Second Example: Function body as a block

fun(x: Int, y: Int): Int {

 val mul = x * y

 return mul

}

Return Type and Parameters
The return type and parameters are also supplied in the same way as regular
functions, although the parameters can be omitted if they can be deduced
from the context.

If the function is an expression, the return type can be automatically
deducted; otherwise, the anonymous function must explicitly provide a
body block.

The Distinction between Lambda Expressions and
Anonymous Functions
The only difference is how non-local returns behave. A return statement
without a label always returns from the function declared function. This
implies that a return within a lambda expression returns from the enclosing
function, but a return within an anonymous function returns from the
anonymous function itself.

Program to call the anonymous function:

// the anonymous function with body as an expression

val anonymous1 = fun(a: Int, b: Int): Int = a + b

// the anonymous function with body as a block

val anonymous2 = fun(x: Int, y: Int): Int {

 val mul = x * y

 return mul

 }

fun main(args: Array<String>) {

 //invoking functions

 val sum = anonymous1(13,4)

 val mul = anonymous2(5,6)

 println("Sum of two numbers is: $sum")

 println("Multiply of two numbers is: $mul")

}

HIGHER-ORDER FUNCTIONS IN KOTLIN
The Kotlin programming language provides excellent support for functional
programming. Kotlin functions can be kept in variables and data structures,

and they can be passed as parameters to and returned from Higher-Order
functions.

Higher-Order Function
Higher-Order functions in Kotlin are functions that can receive a function
as an argument or return a function. We shall pass anonymous functions or
lambdas instead of passing Integer, String, or Array as function parameters.
Lambdas are frequently passed as parameters in Kotlin functions for
simplicity.

The lambda expression is passed as an argument to the Higher-Order
function: A lambda expression can pass as a parameter to Higher-Order
function.

There are two kinds of lambda expressions that may be passed:

A lambda expression returns a unit.

Lambda expression returns any of the values integer, string, etc.

Kotlin lambda expression program that returns Unit:

Explanation: Let’s go over the above program step by step:

In the top, we define a lambda expression that includes print() to print
a string to standard output.

After that, we define a Higher-Order function with one parameter.

// lambda expression

var lambda = {println("Huboftutors: A Computer Science portal fo

 //the higher-order function

fun higherfunc(lmbd: () -> Unit) { // accepting lambda as

 lmbd() //invokes the lambda ex

}

fun main(args: Array<String>) {

 //invoke higher-order function

 higherfunc(lambda) // passing the lambda as

}

var lambda = {println("Huboftutors: A Computer Science porta

lmbd: () -> Unit

The receiving lambda parameter is known locally as lmbd.

The symbol () indicates that the function does not accept any
parameters.

The unit symbol symbolizes that the function does not return any
value.

We called the Higher-Order function in the main function by supplying
the lambda expression as a parameter.

higherfunc(lambda)

Kotlin lambda expression program that returns an integer value:

Explanation: Let’s go over the program above step by step:

At the top, we define a lambda expression that returns an integer value.

var lambda = int x, int y -> x + y

Then we defined a Higher-Order function that takes the lambda
expression as an argument.

lmbd: (Int, Int) -> Int

The receiving lambda argument is known locally as lmbd.

(Int,Int) indicates that the function accepts two integer parameters.

 // lambda expression

var lambda = {x: Int, y: Int -> x + y }

 // the higher order function

fun higherfunc(lmbd: (Int, Int) -> Int) { // accepting the

 var results = lmbd(2,4) // invokes lambda expression by p

 println("Sum of two numbers is: $results")

}

fun main(args: Array<String>) {

 higherfunc(lambda) //passing lambda as parameter

}

Int indicates that the function returns an integer value.

We called the Higher-Order function in the main function by passing the
lambda as a parameter.

higherfunc(lambda)

Passing function as a parameter to a Higher-Order function: A function can
pass as a parameter to a Higher-Order function.

Two kinds of functions may pass:

method that returns Unit

function that returns any of the values integer, string, etc.

Kotlin function passing program that returns Unit:

Explanation: At the top, we build a normal method printMe(), which
receives a String parameter and returns a Unit.

fun printMe(s1:String): Unit

(s1: String) is the only parameter

Unit represents the return type

The Higher-Order function is thus defined as:

fun higherfunc(str1 : String, myfunc: (String) -> Unit)

// the regular function definition

fun printMe(s1:String): Unit{

 println(s1)

}

 // the higher-order function definition

fun higherfunc(str1 : String, myfunc: (String) -> Unit){

 // invoke the regular function using local name

 myfunc(str1)

}

fun main(args: Array<String>) {

 // invoke the higher-order function

 higherfunc("Huboftutors: A Computer Science portal for Hub",

}

It is given two parameters. One is the String type, and the other is the
function:

Str1: String denotes a string parameter.

myfunc: (String) -> Unit indicates that it accepts function as a
parameter and returns Unit.

The higher function is invoked from the main function by supplying the
string and function as arguments.

Program of passing function which returns integer value:

// the regular function definition

fun add(x: Int, y: Int): Int{

 var sums = x + y

 return sums

}

 //the higher-order function definition

fun higherfunc(addfunc:(Int,Int)-> Int){

 // invoke the regular function using local name

 var results = addfunc(13,6)

 print("The sum of two numbers is: $results")

}

fun main(args: Array<String>) {

 // invoke the higher-order function

 higherfunc(::add)

}

Returning a Function from a Higher-Order Function
A function can return from a Higher-Order function. When returning the
function, we must define the normal function’s argument types and return
type in the Higher-Order function’s return type.

Program of a function in Kotlin that returns another function:

higherfunc("Huboftutors: A Computer Science portal for Hub",::pr

 // the function declaration

fun mul(x: Int, y: Int): Int{

 return x*y

}

 //the higher-order function declaration

fun higherfunc() : ((Int,Int)-> Int){

return ::mul

KOTLIN LOCAL FUNCTIONS
The concept of functions is pretty simple: divide a huge program into
smaller portions that can be reasoned about more efficiently and allow code
reuse to minimize duplication. This second idea is known as the DRY
principle, which stands for Don’t Repeat Yourself. The more times we write
the same code, the more likely a bug will creep in.

When we apply this theory to its logical conclusion, we will have
produced a program that consists of many little functions, each of which
accomplishes a single thing; this is analogous to the Unix principle of small
programs, in which each program does a single job. The same principle
applies to code included within a function. In Java, for example, a huge
function or method may split down by calling many support functions
defined in the same class or a helper class with static methods.

Example: Kotlin allows us to take this step further by defining functions
inside other functions. These are referred to as local or nested functions.
Functions can even be nested on top of each other. The following style
may use to write an example of a printing area:

As we can see, the calculateArea function is now included within
printAreaone, and hence inaccessible to code outside of it. This is handy
when we wish to hide functions that are only needed as details in
implementing a bigger function. A similar result might obtain by marking a

 return ::mul

}

fun main(args: Array<String>) {

 // invoke the function and store the returned function into

 val multiply = higherfunc()

 // invokes the mul() function by passing arguments

 val results = multiply(12,4)

 println("Multiplication of two numbers is: $results")

}

fun printAreaone(width: Int, height: Int): Unit {

 fun calculateArea(width: Int, height: Int): Int = width * he

 val area1 = calculateArea(width, height)

 println("Area is: $area1")

}

member function as private. So, are there any additional benefits to using
local functions? They do, the parameters and variables declared in the outer
scope can be accessed by local functions:

fun printAreatwo(width: Int, height: Int): Unit {

 fun calculateArea(): Int = width * height

 val area1 = calculateArea()

 println("Area is: $area1")

}

We’ve eliminated the arguments from the calculateArea function, and it
now utilizes the parameters provided in the enclosing scope directly. This
makes the nested function more legible and eliminates the need to repeat
parameter descriptions, which is especially important for functions with
many arguments. Let’s look at an example of a function that might be
decomposed using local functions:

fun fizzbuzz(start: Int, end: Int): Unit {

 for (x in start..end) {

 if (x % 2 == 0 && x % 4 == 0)

 println("Fizz Buzz")

 else if (x % 2 == 0)

 println("Fizz")

 else if (x % 4 == 0)

 println("Buzz")

 else

 println(x)

 }

}

This is known as the Fizz Buzz issue. The requirement instructs us to print
the integers from the beginning to the finish value. However, if integer is a
multiple of 2, we should print Fizz. We should print Buzz if it is a multiple
of four. Print Fizz Buzz together if it is a multiple of 2 and 4.

The first solution is short and readable; however, it has some duplicated
code. Because the modulo checks are coded twice, an error is likely
doubled. Obviously, this example is relatively simple, so the possibilities of
a typo are minimal; yet, it helps to show the issue for more complex issues.
We may declare a local function for each modulo test, using only one line
of code. This gets us to our next solution iteration:

fun fizzbuzz2(start: Int, end: Int): Unit {

 fun isFizz(x: Int): Boolean = x % 2 == 0

 fun isBuzz(x: Int): Boolean = x % 4 == 0

 for (x in start..end) {

 if (isFizz(x) && isBuzz(x))

 println("Fizz Buzz")

 else if (isFizz(x))

 println("Fizz")

 else if (isBuzz(x))

 println("Buzz")

 else

 println(x)

 }

}

In this case, our if…else branches now call the nested methods isFizz and
isBuzz. However, passing x to the function each time is still a bit verbose.
Is there any way to avoid this? Local functions can be defined not just
directly within other functions, but also in for loops, while loops, and other
blocks:

fun fizzbuzz3(start: Int, end: Int): Unit {

 for (x in start..end) {

 fun isFizz(): Boolean = x % 2 == 0

 fun isBuzz(): Boolean = x % 4 == 0

 if (isFizz() && isBuzz())

 println("Fizz Buzz")

 else if (isFizz())

 println("Fizz")

 else if (isBuzz())

 println("Buzz")

 else

 println(x)

 }

}

We’ve moved the function definitions within the for loop in this third
iteration of our function. As a result, we may skip the parameter definitions
and immediately access x. Finally, we could use Kotlin Basics to reduce
some of the noise from the if…else keywords:

fun fizzbuzz4(start: Int, end: Int): Unit {

 for (x in start..end) {

 fun isFizz(): Boolean = x % 2 == 0

 fun isBuzz(): Boolean = x % 4 == 0

 when {

 isFizz() && isBuzz() -> println("Fizz Buzz")

 isFizz() -> println("Fizz")

 isBuzz() -> println("Buzz")

 else -> println(x)

 }

 }

}

This results in our final solution, which avoids code repetition and is more
understandable than the initial iteration.

SCOPE FUNCTION IN KOTLIN
The Kotlin standard library has numerous methods that aid in executing a
block of code within the context of an object. Using a lambda expression to
call these functions on an object generates a temporary scope. These are
known as Scope Functions. We can get to the object of these functions even
if we don’t know what it’s named. That’s perplexing! Let’s look at the
examples.

Without utilizing the scope function:

class Companie() {

 lateinit var name: String

 lateinit var objective: String

 lateinit var founder: String

}

fun main() {

 // without using the scope function

 // creating instance of the Companie Class

 val hft = Companie()

 // initializing members of the class

 hft.name = "Thehuboftutorials"

 hft.objective = "Computer science tutorials for Students"

 hft.founder = "Akshita Jain"

 println(hft.name)

}

Using the scope function

class Companie() {

 lateinit var name: String

 lateinit var objective: String

 lateinit var founder: String

}

fun main() {

 // using the scope function

 val hft = Companie().apply {

 // don't need to use-object

 // name to refer members

 name = "Thehuboftutorials"

 objective = "Computer science tutorial for Students"

 founder = "Akshit Jain"

 }

 println(hft.name)

}

Explanation: We’ve probably observed that when we don’t use the scope
function, we have to specify the object name every time we refer to a class
member. We may use the scope function to refer to members without
specifying the object name. This is one method of using the scope function.

SCOPE FUNCTIONS
Every scope function has well-defined use cases, even though they all have
roughly the same conclusion. Let’s take a closer look at each scope function
and its associated use cases.

Utilization of Scope Functions
Scope functions make code more clear, legible, and succinct, which are key
qualities of the Kotlin language.

Scope Function Types
Scope functions are classified into five types:

let

run

with

apply

also

With a few exceptions, each function is relatively similar. It is sometimes
difficult to choose which function to utilize and when. As a result, we must
understand the distinctions between these functions and their cases.

Distinctions between these functions: There are primarily two
distinctions between these functions:

Return value (i.e. returns either ‘context-object’ or ‘lambda-result’)
method of referring to a context object (i.e. using either ‘this’ or ‘it’
keyword).

Please remember that the term “context object” refers to the object on
which the scope functions are being used. As in the last example, our
context object is ‘hft.’

Table of scope functions:

Function Object Reference Return Value
let it Lambda-result
run this Lambda-result
with this Lambda-result
apply this Context-object
also it Context-object

1. let function

Context object: it

Return value: lambda result

Case in point: The let function is frequently used to give null
safety checks. Use the safe call operator(?.) with ‘let’ for null
safety. It only performs the block with a non-zero value.

Example:

fun main() {

 // nullable variable

 // with the value as null

 var x: Int? = null

 // using let function

 x?.let {

 // statements will

 // not execute as x is null

 print(it)

 }

 // re-initializing value of x to 2

 x = 2

 x?.let {

 // statements will execute

 // as x is not null

 print(x)

 }

}

Explanation: As we can see, if the value of ‘a’ is ‘null,’ the let
function simply skips the code block. As a result, the
programmers’ worst fear – NullPointerException – is no longer a
nightmare.

2. apply function

Context object: this

Return value: context object

Case in point: “Apply these to the object,” as the name
suggests. It may be used to perform operations on receiver object
members, primarily to initialize members.

Example:

3. with function

class Companie() {

 lateinit var name: String

 lateinit var objective: String

 lateinit var founder: String

}

fun main() {

 Companie().apply {

 // same as founder = "Akshit Jain"

 this.founder = "Akshit Jain"

 name = "thehuboftutorials"

 objective = "Computer science tutorials for Stu

 }

}

Context object: this

Return value: lambda result

Case in point: ‘with’ is recommended for invoking functions
on context objects without passing the lambda result.

Example:

4. run function

Context object: this

Return value: lambda result

The ‘run’ function is a mix of the ‘let’ and ‘with’ functions.

Case in point: When the object lambda comprises both
initialization and the computation of the return value, this
method is used. We may use run to do null safety checks and
other computations.

Example:

class Companie() {

 lateinit var name: String

 lateinit var objective: String

 lateinit var founder: String

}

 fun main() {

 val hft = Companie().apply {

 name = "thehuboftutorials"

 objective = "Computer science tutorials for Stu

 founder = "Akshit Jain"

 }

 // with function

 with(hft) {

 // similar to println("${this.name}")

 println(" $name ")

 }

}

Explanation: The body of the run is simply ignored when the
‘company’ parameter is null. The body executes when it is non-
null.

5. also, function

Context object: it

Return value: context object

Case in point: It is used when further operations must
perform after the object members have been initialized.

Example:

class Companie() {

 lateinit var name: String

 lateinit var objective: String

 lateinit var founder: String

}

fun main(args: Array<String>) {

 println("Companie Name : ")

 var companie: Companie? = null

 // body only executes if

 // company is non-null

 companie?.run {

 print(name)

 }

 print("Companie Name : ")

 // re-initialize companie

 companie = Companie().apply {

 name = "thehuboftutorials"

 founder = "Akshit Jain"

 objective = "Computer science tutorials for Stu

 }

 // body executes as

 // 'companie' is non-null

 companie?.run {

 print(name)

 }

}

Object References
In scope functions, there are two methods for referring objects:

1. this: A lambda receiver keyword – ‘this’ can refer to the context
object. This keyword performs object reference in the functions ‘run,’
‘with,’ and ‘apply.’

Example:

It is crucial to note that we can omit this keyword when referring to
class members.

2. it: The ‘let’ and ‘also’ functions refer to the object’s context as a
lambda parameter.

Example:

fun main() {

 // initialized

 val list = mutableListOf<Int>(11, 22, 33)

 // later if we want to perform multiple-operations

 list.also {

 it.add(44)

 it.remove(22)

 // more operations if needed

 }

 println(list)

}

Company().apply {

 // same as : name = "thehuboftutorials"

 this.name = "thehuboftutorials"

 this.founder = "Akshit Jain"

 this.objective = "Computer science tutorials for Student

}

Company().let {

 it.name = "thehuboftutorials"

 it.founder = "Akshit Jain"

 it.objective = "Computer science tutorials for Students"

}

Return Values
A scope function can return one of two sorts of return values:

1. Lambda result: If we write any expression after the code block, it
becomes the scope function’s return value. The lambda result is the
return value for the ‘let’, ‘run’, and ‘with’ functions.

Example:

2. Context object: The context object is returned by the ‘apply’ and
‘also’ functions. We don’t need to define the return value in this case.
The context object is returned automatically.

Example:

Notes:

class Companie {

 var name: String = "thehuboftutorials"

 var founder: String = "Akshit Jain"

 var objective: String = "Computer science tutorials for

}

fun main() {

 val founderName: String = with(Companie()) {

 // 'founder' is returned by 'with' function

 founder

 }

 println("HfT's Founder : $founderName")

}

class Companie {

 var name: String = "thehuboftutorials"

 var founder: String = "Akshit Jain"

 var objective: String = "Computer science tutorials for

}

fun main() {

 val hft = Companie().apply {

 // any statements

 }

 // hft is an object of class Companie as

 // return of apply() is the context object

 print("HfT's Founder : ${hft.founder}");

}

Scope functions improve the readability, clarity, and conciseness of
code.

“This” and “it” are object references.

The context object and lambda result are returned as the return value.

To prevent NullPointerException, operate with nullable objects.

Change the configuration of an item.

run: execute lambda expressions on a nullable object.

Additionally, other procedures can add.

with: working with non-null items.

KOTLIN COLLECTIONS
The concept of collections is introduced in Kotlin, as it is in Java
Collections. A collection frequently consists of several things of the same
sort, known as elements or items in the collection. The Kotlin Standard
Library includes a comprehensive set of collection managing functions.

Types of Collections
In Kotlin, collections are categorized into two kinds:

1. Immutable Collection

2. Mutable Collection

Immutable Collection
It denotes that it solely offers read-only capabilities and that its elements are
not editable. Immutable collections and the strategies related to them are as
follows:

List – listOf() and listOf<T>()

Set – setOf()

Map – mapOf()

1. List: A list is an ordered collection in which we may access items or
objects by using indices – integer numbers that identify the location of
each entry. A list’s elements can be repeated an infinite number of
times. The immutable list cannot be added or removed. The
immutable list is demonstrated in the following Kotlin program:

// example of an immutable list

fun main(args: Array<String>) {

 val immutableLists = listOf("Minakshi","Nitin","Pihu")

 // gives compile-time-error

 // immutableLists.add = "Ranidhi"

 for(item in immutableLists){

 println(item)

 }

}

2. Set: A set is an unordered collection of elements in which duplicates
are not permitted. It is made up of one-of-a-kind components. In
general, the order of set components has no significant impact. We
cannot perform add or remove actions on it since it is an immutable
Set. The immutable set is demonstrated in the following Kotlin
program:

3. Map: Each key in a map is distinct and stores just one value; it is a
collection of key-value pairs. Each key represents a single value.
Values can duplicate, but keys must be unique. Maps are used to store
the logical relationship between two objects, such as a student’s ID
and name. Because it is immutable, its size is fixed, and its methods
give read-only access. The immutable map is demonstrated in the
following Kotlin application:

fun main(args: Array<String>) {

 // initialize with the duplicate-values

 // but the output with no-repeatition

 var immutableSets = setOf(17,88,88,11,0,"Ruhi","prithvi

 // gives the compile-time-error

 // immutableSets.add(17)

 for(item in immutableSets){

 println(item)

 }

}

// example for the immutable map

Mutable Collection
It is capable of both read and write. The following are examples of mutable
collections and the strategies that go with them:

List – mutableListOf(),arrayListOf() and ArrayList

Set – mutableSetOf(), hashSetOf()

Map – mutableMapOf(), hashMapOf() and HashMap

1. List: Because mutable lists may be read and written to, declared list
elements can be removed or added. The mutable list is demonstrated
in the following Kotlin program:

2. Set: The mutable Set supports read and write operations. We may
simply add or remove elements from the collections while keeping the
order of the components. Write the following Kotlin code to
demonstrate the mutable set:

fun main(args: Array<String>) {

 var mutableSets = mutableSetOf<Int>(61,20)

 // adding-elements in set

 mutableSets.add(14)

// e a p e o t e utab e ap

fun main(args : Array<String>) {

 var immutableMaps = mapOf(19 to "Mayank",18 to "Pari",1

 // gives compile-time-error

 // immutableMaps.put(19,"Radhika")

 for(key in immutableMaps.keys){

 println(immutableMaps[key])

 }

}

fun main(args : Array<String>) {

 var mutableLists = mutableListOf("Rahil","Lalita","Pihu

 // we modify element

 mutableLists[0] = "Rajni"

 // add one more element in the list

 mutableLists.add("Anmol")

 for(item in mutableLists){

 println(item)

 }

}

 mutableSets.add(55)

 for(item in mutableSets){

 println(item)

 }

}

3. Map: It can do operations such as put, remove, and clear since it is
changeable. Create a Kotlin application to display the mutable map.

ArrayList IN KOTLIN
The ArrayList class in Kotlin is used to create a dynamic array. The phrase
“dynamic array” refers to an array’s ability to expand or decrease its size
depending on its demands. It also can read and write. ArrayList is a non-
synchronized list that may include duplicates. We use ArrayList to get the
index of a specific item, convert an ArrayList to a string or another array,
and other things.

Constructors:

1. ArrayList<E>(): – It creates empty ArrayList.

2. ArrayList(capacity: Int): – It creates ArrayList of the specified size.

3. ArrayList(elements: Collection<E>): – It create ArrayList filled by
collection elements.

Among the most important methods are:

add(index:Int, element: E): Boolean: It adds a specified element to
the ArrayList. The second input is the element to be added, which is
necessary, and the first argument is the index to which the element is to
be added, which is optional and defaults to 1 + the array’s last index.

fun main(args : Array<String>) {

 var mutableMaps = mutableMapOf<Int,String>(1 to "Ruhi",

 // we modify the element

 mutableMaps.put(1,"Pooja")

 // add one more element in the list

 mutableMaps.put(4,"Abhinav")

 for(item in mutableMaps.values){

 println(item)

 }

}

Example:

fun main(args: Array<String>) {

 // creation of empty arraylist using the constructor

 var arraylists = ArrayList<String>()

 //adding the String elements in the list

 arraylists.add("Piiks")

 arraylists.add("Piiks")

 // iterating-list

 println("Array list ---->")

 for(x in arraylists)

 println(x)

 arraylists.add(1, "of")

 println("Arraylists after the insertion:")

 for(x in arraylists)

 println(x)

}

addAll(index: Int, elements: Collection): Boolean: It is used to
insert into the current list all elements of the given collection at the
specified index. The first argument, which is also optional, is the index
value.

get(index: Int): E: Its purpose is to return the element in the list at the
specified index.

fun main(args: Array<String>) {

 // creating the empty arraylist using constructor

 var arraylist=ArrayList<String>()

 //adding the String elements in the list

 arraylists.add("Piiks")

 arraylists.add("of")

 arraylists.add("Piiks")

 // creation of new arraylist1

 var arraylists1=ArrayList<String>()

 //adding all the elements from arraylists to arraylists1

 println("Elements in the arraylist1:")

 arraylist1.addAll(arraylists)

 for(c in arraylists1)

 println(c)

}

fun main(args: Array<String>) {

 // creating the empty arraylists using constructor

var arraylists=ArrayList<Int>()

set(index: Int, element: E): E: It is used to replace the elements in the
current list at the given location with the elements passed as
arguments.

indexOf(element: E): Int: It is used to return the index of the list’s
first occurrence of the given element, or −1 if the specified element
does not appear in the list.

 var arraylists=ArrayList<Int>()

 // adding the elements

 arraylists.add(22)

 arraylists.add(14)

 arraylists.add(99)

 arraylists.add(17)

 arraylists.add(56)

 // iterating through elements

 for(r in arraylists)

 print("$r")

 println()

 println("Accessing the index 2 of arraylists: "+arraylis

}

fun main(args: Array<String>) {

 // creating the empty arraylist using the constructor

 var arraylists=ArrayList<String>()

 // adding- elements

 arraylists.add("Piiks")

 arraylists.add("of")

 arraylists.add("Piiks:")

 arraylists.add("Portal")

 // iterating through the elements

 for(r in arraylists)

 print("$r")

 println()

 // set element at index 3 with the new string

 arraylist.set(3,"Computer Science tutorials for students

 // iterating through the elements

 for(r in arraylist)

 print("$r")

}

fun main(args: Array<String>) {

 // creating the empty arraylists using constructor

 var arraylists=ArrayList<String>()

// adding-elements

remove(element: E): Boolean: If it is present, it is used to remove the
first occurrence of the specified element from the current collection.
Similarly, removeAt(index) is used to remove the element at index c.

fun main(args: Array<String>) {

 // creating the empty arraylists using constructor

 var arraylists=ArrayList<String>()

 // adding-elements

 arraylists.add("Piiks")

 arraylists.add("for")

 arraylists.add("Piiks")

 arraylists.remove("of")

 // iterating through the elements

 for(r in arraylists)

 print("$r ")

}

clear(): Clear is used to remove all of the items from a list.

 // adding elements

 arraylists.add("Piiks")

 arraylists.add("of")

 arraylists.add("Piiks")

 // iterating through elements

 for(r in arraylists)

 print("$r ")

 println()

 println("Index of the element is: "+arraylist.indexOf("P

}

fun main(args: Array<String>) {

 // creating the empty arraylists using constructor

 var arraylists=ArrayList<Int>()

 // adding-elements

 arraylists.add(40)

 arraylists.add(80)

 arraylists.add(10)

 arraylists.add(20)

 arraylists.add(30)

 // iterating through the elements

 for(r in arraylist)

 print("$r")

 arraylist.clear()

 println()

 println("Size of arraylist after clearing all the elemen

}

listOf() IN KOTLIN
List is a collection of elements that have been sorted in a specified order.
Lists in Kotlin can be immutable (non-modifiable) or mutable (modifiable)
(can be modified).

Read-only lists are created with listOf(), and their items cannot edit, but
mutable lists are created with mutableListOf(), and their contents may be
amended or modified.

In the Kotlin program list, integers are used:

fun main(args: Array<String>) {

 val r = listOf('1', '2', '3')

 println(r.size)

 println(r.indexOf('2'))

 println(r[2])

}

Strings are utilized in a Kotlin application using a list:

Indexing List Elements in Kotlin
An index is assigned to each list element. The first element has an index of
zero (0), and the last element has an index of len – 1, where ‘len’ is the
length of the list.

fun main(args: Array<String>)

{

 val numbs = listOf(13, 43, 29, 22, 0, 9, 23, 54, 11)

 val numb1 = numbs.get(0)

}

fun main(args: Array<String>) {

 //creating the list of strings

 val r = listOf("Veena", "Shivam", "Pihu", "Rajat")

 println("The size of the list is: "+r.size)

 println("The index of the element Rajat is: "+r.indexOf("Raj

 println("The element at index "+r[2])

 for(i in r.indices){

 println(r[i])

 }

}

 println(numb1)

 val numb2 = numbs[7]

 println(numb2)

 val index1 = numbs.indexOf(1)

 println("The first index of number is $index1")

 val index2 = numbs.lastIndexOf(1)

 println("The last index of number is $index2")

 val index3 = numbs.lastIndex

 println("The last index of the list is $index3")

}

The First and Last Elements
The list’s first and last members can retrieve without using the get()
method.

fun main(args: Array<String>)

{

 val numbs1 = listOf(14, 65, 33, 31, 0, 22, 9, 64, 19)

 println(numbs1.first())

 println(numbs1.last())

}

Iteration Methods for Lists
This process goes over each element of a list one by one.

There are several ways to achieve this in Kotlin.

fun main(args: Array<String>)

{

 val names1 = listOf("Guarav", "Rashmi", "Sneha", "Payal",

 "Danih", "Isha", "Elisa")

 // method1

 for (name in names1) {

 print("$name, ")

 }

 println()

 // method2

 for (r in 0 until names1.size) {

 print("${names1[r]} ")

 }

 println()

 // method-3

 names.forEachIndexed({r, s -> println("names1[$r] = $s")})

 // method 4

 val it: ListIterator<String> = names1.listIterator()

 while (it.hasNext()) {

 val r = it.next()

 print("$r ")

 }

 println()

}

Explanation:

for (name in names1) {

 print("$name, ")

 }

The for loop traverses the list. In each cycle, the variable ‘name’ refers to
the next element of the list.

for (r in 0 until names1.size) {

 print("${names[r]} ")

 }

This method makes use of the size of the list. The til keyword generates a
collection of list indexes.

names1.forEachIndexed({r, s -> println("names1[$r] = $s")})

Using the forEachIndexed() function, we loop over the list with index and
value accessible in each iteration.

val it: ListIterator = names1.listIterator()

 while (it.hasNext()) {

 val r = it.next()

 print("$r ")

 }

To iterate across the list, we utilize a ListIterator.

Sorting the List’s Elements
The following examples show how to sort a list in ascending or descending
order.

fun main(args: Array<String>)

{

 val lists = listOf(33, 54,87, 32,92, 13, 0, 15, 69)

 val asc1 = lists.sorted()

 println(asc1)

 val desc1 = lists.sortedDescending()

 println(desc1)

}

Explanation:

val asc1 = list.sorted()

The sorted() function is used to sort the list in ascending order.

val desc1 = lists.sortedDescending()

Using the sortedDescending() method, the list is sorted in descending order.

The Functions contains() and containsAll()
This method checks to see if element exists in the list.

fun main(args: Array<String>)

{

 val lists = listOf(81, 24, 37, 11, 27, 43, 0, 55,7 6)

 val rest1 = lists.contains(0)

 if (rest1)

 println("list contains 0")

 else

 println("list doesnt contain 0")

 val results = lists.containsAll(listOf(3, -1))

 if (results)

 println("list contains 3 and -1")

 else

 println("list does not contain 3 and -1")

}

Explanation:

val rest = lists.contains(0)

Checks if the lists include 0 and returns true or false, saving the result in
rest1.

val result = list.containsAll(listOf(3, -1))

This function determines if the list contains the numbers 3 and –1.

setOf() in Kotlin
The Kotlin Set interface is a general, unordered collection of items
containing duplicates. Sets are classified as changeable or immutable in
Kotlin.

setOf() is immutable, which means it can only perform read-only
operations.

SetOf() is mutable, suggesting that it can read and write operations.

Syntax:

fun <C> setOf(vararg elements: C): Set<C>

Description:

This function creates a new read-only set of the specified items.

The objects are iterated over in the order they were stored.

setOf() function Kotlin program:

fun main(args: Array<String>)

{

 //declaring set of strings

 val seta1 = setOf("Piiks", "of", "Piiks")

 //declaring set of characters

 val setb1 = setOf("P", "o", "P")

 //declaring set of integers

 val setc1 = setOf(01, 02, 03, 04)

 //traversing through the set of strings

 for(item in seta1)

 print(item)

 println()

 //traversing through the set of characters

 for(item in setb1)

 print(item)

 println()

 //traversing through the set of integers

 for(item in setc1)

 print("$item ")

}

Set Indexing
The index functions indexOf() and lastIndexOf() can be used to determine
the index of the specified element. We may alternatively use the
elementAt() function to find elements at a certain index.

Index-using the Kotlin program:

Set the first() and last() element: To get the first and last element in a set,
use the first() and last() functions.

Example:

Set Basics
We’ll go through basic functions like count(), max(), min(), sum(), and
average ().

Basic functions are used in Kotlin program:

fun main(args: Array<String>) {

 val captain = setOf("Kamal","Sidhi","Ritu","Payal","Aman","K

 println("The element at index 2 is: "+captain.elementAt(2))

 println("The index of element is: "+captain.indexOf("Smridhi

 println("The last index of element is: "+captain.lastIndexOf

}

fun main(args: Array<String>){

 val captain = setOf(01,02,03,04,"Smriti","Raman",

 "Pihu","Kalash","Rita","Disha")

 println("the first element of the set is: "+captain.first(

 println("the last element of the set is: "+captain.last())

}

fun main(args: Array<String>) {

 val nums = setOf(101, 202, 303, 404, 505, 606, 707, 808)

 println("Number of element in the set is: "+nums.count())

 println("Maximum element in the set is: "+nums.max())

 println("Minimum element in the set is: "+nums.min())

 println("Sum of the elements in the set is: "+nums.sum())

 println("Average of elements in the set is: "+nums.average()

}

The Functions contains() and containsAll()
To determine whether or not element exists in the set, both procedures are
employed.

Kotlin code that makes use of the contains() and containsAll() functions:

fun main(args: Array<String>){

 val captain = setOf(01,02,03,04,"Rashmi","Smriti",

 "Pihu","Koyal","Radhika","Disha")

 var names = "Disha"

 println("set contains element $name or not?" +

 " "+captain.contains(names))

 var nums = 5

 println("set contains element $nums or not?" +

 " "+captain.contains(nums))

 println("set contains given elements or not?" +

 " "+captain.containsAll(setOf(1,3,"Ruhi")))

}

Using the isEmpty() methods to check the equality of empty sets:

fun <C> setOf(): Set<C>

This syntax yields an empty set of the given type.
Kotlin code that employs the isEmpty() function:

fun main(args: Array<String>) {

 //the creation of an empty set of strings

 val seta1 = setOf<String>()

 //the creation of an empty set of integers

 val setb1 =setOf<Int>()

 //checking if the set is empty or not

 println("seta1.isEmpty() is ${seta1.isEmpty()}")

 // since Empty sets are equal

 //check if 2 sets are equal or not

 println("seta1 == setb1 is ${seta1 == setb1}")

 println(seta1) //printing first set

}

mutableSetOf() METHOD IN KOTLIN
The Kotlin Set interface is a generic, unordered collection of items
containing duplicates. Kotlin distinguishes between two types of sets:
changeable and immutable.

setOf() is immutable, which means it can only perform read-only
operations.

SetOf() is mutable, which means it may do both read and write
operations.

Syntax:

fun <C> mutableSetOf(vararg elements: C): MutableSet<C>

Description:

This function returns a collection of objects that can be read and
written that were provided.

The items’ iteration order is kept in the returned set.

The mutableSetOf() method is implemented with the following Kotlin code:

Adding and deleting components from a set: To add elements to a
mutable set, we may use the add() method, and to remove elements, we can
use the remove() function.

Example:

fun main(args: Array<String>)

{

 //declaring the mutable set of integers

 val mutableSetA1 = mutableSetOf<Int>(101, 202, 303, 404,

 println(mutableSetA1)

 //declaring the mutable set of strings

 val mutableSetB1 = mutableSetOf<String>("Piiks","of", "Piik

 println(mutableSetB1)

 //declaring the empty mutable set of integers

 val mutableSetC1 = mutableSetOf<Int>()

 println(mutableSetC1)

}

fun main(args: Array<String>)

{

 //declaring the mutable set of integers

 val seta1 = mutableSetOf(101, 202, 303, 404, 303);

 println(seta1);

 //adding the elements 606 & 707

t 1 dd(606)

Set Indexing
The index methods indexOf() and lastIndexOf() can be used to determine
the index of the provided element (). To discover elements at a certain
index, we may also utilize the elementAt() function.

Index-using the Kotlin program:

Set the First and Last Element
The first() and last() methods can use to get the first and last element of a
set, accordingly.

Example:

Traversal in a mutableSet

 seta1.add(606);

 seta1.add(707);

 println(seta1);

 //removing the 303 from the set

 seta1.remove(303);

 println(seta1);

 //another way to add the elements is by using listOf() fun

 seta1 += listOf(808,909)

 println(seta1)

}

fun main(args: Array<String>) {

 val captain = mutableSetOf("Radha","Smriti","Pihu","Maya","K

 println("The element at index 2: "+captain.elementAt(2))

 println("The index of element: "+captain.indexOf("Smriti"))

 println("The last index of element: "+captain.lastIndexOf("K

}

fun main(args: Array<String>){

 val captain = mutableSetOf(01,02,03,04,"Karishma","Smriti"

 "Pihu","Maya","Rita","Disha")

 println("first element of the set: "+captain.first())

 println("last element of the set: "+captain.last())

}

To explore all the elements in a mutableSet, we may use a for loop and an
iterator.

fun main(args: Array<String>)

{

 //declaring mutable set of the integers

 val seta1 = mutableSetOf(101, 202, 303, 404, 303);

 //traversal of the seta1 using iterator 'item'

 for(item in seta1)

 println(item)

}

The Methods contains() and containsAll()
To determine whether or not an element exists in the set, both procedures
are employed.

Kotlin code that makes use of the contains() and containsAll() functions:

fun main(args: Array<String>){

 val captain = mutableSetOf(01,02,03,04,"Ridhi","Disha",

 "Pihu","Kama;","Raman","Alka")

 var names = "Raman"

 println("The set contains element $names or not?" +

 " "+captain.contains(names))

 var nums = 5

 println("The set contains element $nums or not?" +

 " "+captain.contains(nums))

 println("the set contains given elements or not?" +

 " "+captain.containsAll(setOf(01,03,"Root")))

}

Checking equality of empty sets and employing the isEmpty() functions:

fun <C> mutableSetOf(): mutableSet<C>

This syntax yields an empty set of the given type.
Kotlin code that employs the isEmpty() function:

fun main(args: Array<String>) {

 //creation empty set of strings

 val seta1 = mutableSetOf<String>()

 //creation empty set of integers

 val setb1 = mutableSetOf<Int>()

 //checking if tset is empty or not

 println("seta1.isEmpty() is ${seta1.isEmpty()}")

 // empty sets are equal

 //checking if two sets are equal or not

 println("seta1 == setb1 is ${seta1 == setb1}")

 println(seta1) //printing first set

}

hashSetOf() IN KOTLIN
Kotlin HashSet is a general, unordered collection of items with no
duplicates. It is responsible for implementing the set interface. hashSetOf()
is a function that returns a mutable hashSet that may be read and written to.
To hold all of the components, the HashSet class use hashing.

Syntax:

fun <C> hashSetOf(vararg elements: C): HashSet<C>

It returns a new HashSet with the requested elements but offers no
assurances about the order sequence specified when storing.

Example:

fun main(args: Array<String>)

{

 //declaring hash set of integers

 val seta1 = hashSetOf(11,22,33,33);

 //printing the first-set

 println(seta1)

 //declaration of hash set of strings

 val setb1 = hashSetOf("Piiks","of","piiks");

 println(setb1);

}

Adding and deleting elements from hashset:

To add elements to a hashset, use the add() and addAll() methods.

We may remove an element with the remove() function.

The following program use the add() and delete() methods:

fun main(args: Array<String>)

{

 //declaration of hash set of integers

 val seta1 = hashSetOf<Int>();

 println(seta1)

 //adding-elements

 seta1.add(101)

 seta1.add(202)

 //making extra set to add it in the seta

 val newsets = setOf(404,505,606)

 seta1.addAll(newsets)

 println(seta1)

 //removing 202 from the set

 seta1.remove(202)

 println(seta1)

}

hashSet Traversal
We can traverse hashSet in a loop using an iterator.

fun main(args: Array<String>)

{

 //declaration of hash set of integers

 val seta1 = hashSetOf(101,202,303,505);

 //traversing in set using a for loop

 for(items in seta1)

 println(items)

}

Indexing in a hashSet
The index of the specified element can be obtained using the index methods
indexOf() and lastIndexOf(). We may alternatively utilize the elementAt()
function to find elements at a certain index.

Index-using the Kotlin program:

The Functions contains() and containsAll()

fun main(args: Array<String>) {

 val captain = hashSetOf("Karishma","Sunita","Pihu","Maya","R

 println("element at index 2: "+captain.elementAt(3))

 println("index of element: "+captain.indexOf("Sunita"))

 println("last index of element: "+captain.lastIndexOf("Ritu"

}

Both techniques are used to determine whether or not a Hashset element
exists.

Kotlin code that makes use of the contains() and containsAll() functions:

Using the isEmpty() methods to check the equivalence of empty hash sets:

fun <C> hashSetOf(): hashSet<C>

This syntax yields an empty hash set of the specified type.
Kotlin code that employs the isEmpty() function:

fun main(args: Array<String>) {

 //creation of empty hash set of strings

 val seta1 = hashSetOf<String>()

 //creation of empty hashset of integers

 val setb1 =hashSetOf<Int>()

 //checking if set is empty or not

 println("seta1.isEmpty() is ${seta1.isEmpty()}")

 // Since the Empty hashsets are equal

 //checking if two hash sets are equal or not

 println("seta1 == setb1 is ${seta1 == setb1}")

}

mapOf () in Kotlin
A Kotlin map is a set of object pairs. A map’s data is kept in the form of
pairs, each of which has a key and a value. Map keys are unique, and the
map maintains just one value for each key.

Kotlin distinguishes between immutable and mutable maps. Immutable
maps produced by mapOf() are read-only, but mutable maps produced by

fun main(args: Array<String>){

 val captain = hashSetOf(01,02,03,04,"Raman","Smriti",

 "Naman","Maya","Ritu","Daman")

 var names = "Ritu"

 println("set contains the element $name or not?" +

 " "+captain.contains(names))

 var nums = 5

 println("the set contains the element $nums or not?" +

 " "+captain.contains(nums))

 println("the set contains the given elements or not?" +

 " "+captain.containsAll(setOf(11,33,"Daman","Waner

}

mutableMapOf() may be read and write.

Syntax:

fun <C, D> mapOf(vararg pairs: Pair<C, D>): Map<C, D>

The first value in the pair is the key, and the second is the value of the
related key.

If several pairs have the same key, the map will return the value of the
last pair.

The map entries are traversed in the specified order.

mapOf() Kotlin program:

fun main(args: Array<String>)

{

 //declaration of map of integer to string

 val map1 = mapOf(1 to "Piiks", 2 to "of", 3 to "Piiks")

 //printing-map

 println(map1)

}

Map keys, values, and entries:

Map Size
A map’s size may determine in two ways. Using size property of the map
and the count() function.

fun main(args: Array<String>)

{

 //declaration of map of integer to string

 val map1 = mapOf(1 to "One", 2 to "Two", 3 to "Three", 4 to

 println("Map Entries : "+map1)

 println("Map Keys: "+map1.keys)

 println("Map Values: "+map1.values)

}

fun main() {

 val ranks1 = mapOf(1 to "Canada",2 to "WestAfrica",3 to "Rus

 //method-1

 println("size of the map: "+ranks1.size)

//method-2

Empty Map
We can build an empty serializable map using mapOf ().

MapOf() Example:

Get Map Values
The different methods indicated in the following code can be used to obtain
values from a map.

Map Contains Keys or Values
We can determine if a map has a key or a value by using the containsKey()
and containsValue() methods.

 // et od

 println("size of the map: "+ranks1.count())

}

fun main(args: Array<String>)

{

 //creation of an empty map using the mapOf()

 val map = mapOf<String, Int>()

 println("The Entries: " + map.entries) //entries of the m

 println("The Keys:" + map.keys) //keys of the map

 println("The Values:" + map.values) //values of the map

}

fun main() {

 val ranks1 = mapOf(1 to "Kashmir",2 to "London",3 to "Russia

 //method-1

 println("The Team having rank #1: "+ranks1[1])

 //method-2

 println("The Team having rank #3: "+ranks1.getValue(3))

 //method-3

 println("The Team having rank #4: "+ranks1.getOrDefault(4, 0

 // method-4

 val teams = ranks1.getOrElse(2, { 0 })

 println(teams)

}

fun main() {

Two Values and the Same Key
If two values have the same key value, the map will display the most recent
value of those numbers.

Example:

fun main(args: Array<String>)

{

 //let's make the two values with the same key

 val map1 = mapOf(1 to "piiks1",2 to "of", 1 to "piiks2")

 // return-map-entries

 println("Entries of map is: " + map1.entries)

}

Explanation: In this scenario, key value 1 contains two values: piiks1 and
piiks2, but because mapOf() can only have one value for a single key item,
the map only keeps the most recent value, and piiks1 is erased.

HashMap IN KOTLIN
Kotlin HashMap is a collection of object pairings. Hash Tables are used to
construct MutableMap in Kotlin. It stores information in the form of a key
and value pair. Map keys are unique, and the map maintains just one value
for each key. HashMap<key, value> or HashMap<K, V> is how it’s written.

 val colorsTopToBottom = mapOf("pink" to 1, "orange" to 2, "g

 "purple" to 4, "grey" to 5, "brown" to 6, "blue" to 7)

 var colors = "orange"

 if (colorsTopToBottom.containsKey(colors)) {

 println("Yes, it contains color $colors")

 } else {

 println("No, it does not contain color $colors")

 }

 val values = 9

 if (colorsTopToBottom.containsValue(values)) {

 println("Yes, it contains value $values")

 } else {

 println("No, it does not contain value $values")

 }

}

The hash table-based implementation of HashMap offers no assurances
about the order of provided key, value, and collection items.

Kotlin HashMap class constructors are available:
Each of Kotlin HashMap’s constructors has a public access modifier:

HashMap(): The built-in constructs for creating an empty HashMap
object.

HashMap(initialCapacity: Int, loadFactor: Float = 0f): This
function is used to create a HashMap with the capacity specified. They
will disregard if initialCapacity and loadFactor are not used.

HashMap(initialCapacity: Int): This method generates a HashMap
with capacity specify. If initialCapacity is not used, it will be ignored.

HashMap(original: Map <out K, V>): This method creates a
HashMap with the same mappings as the provided map.

HashMap Functions Use
Kotlin code that use the HashMap(), HashMap(original: Map), Traversing
Hashmap, and HashMap.get() functions:

fun main(args: Array<String>) {

 //example of the HashMap class define

 // with empty "HashMap of <String, Int>"

 var hashMap1 : HashMap<String, Int>

 = HashMap<String, Int> ()

 //print empty hashMap

 printHashMap(hashMap1)

 //adding the elements to the hashMap1 using

 // put() function

 hashMap1.put("IronMan", 5200)

 hashMap1.put("Thor", 100)

 hashMap1.put("SpiderMan", 1100)

 hashMap1.put("NickFury", 1000)

 hashMap1.put("HawkEye", 1800)

 //print the non-Empty-hashMap1

 printHashMap(hashMap1)

 //using the overloaded print function of

 //Kotlin language to get the same results

 println("hashMap1 : " + hashMap1 + "\n")

 //hashMap1 traversal using a for loop

 for(key in hashMap1.keys){

println("Element at key $key is : ${hashMap1[key]}")

Program of HashMap initial capacity, HashMap.size:

 println(Element at key $key is : ${hashMap1[key]})

 }

 //creation of another hashMap1 object with the

 //previous version of the hashMap1 object

 var secondHashMap : HashMap<String, Int>

 = HashMap<String, Int> (hashMap1)

 println("\n" + "Second HashMap : ")

 for(key in secondHashMap.keys){

 //using hashMap1.get() function to fetch values

 println("The Element at key $key : ${hashMap1.get(key)}"

 }

 //this will clear whole map and make it empty

 println("hashMap1.clear()")

 hashMap1.clear()

 println("After Clearing : " + hashMap1)

}

//function to print the hashMap1

fun printHashMap(hashMap1: HashMap<String, Int>){

 // isEmpty() function to check whether the

 // hashMap1 is empty or not

 if(hashMap1.isEmpty()){

 println("hashMap1 is empty")

 }else{

 println("hashMap1: " + hashMap1)

 }

}

fun main(args: Array<String>) {

 //HashMap can also be initializing

 // with the initial capacity.

 //The capacity can be changed by

 // adding and replacing the element.

 var hashMap1 : HashMap<String, Int>

 = HashMap<String, Int> (4)

 //adding the elements to the hashMap1 using put() function

 hashMap1.put("Iron-Man", 1300)

 hashMap1.put("Thor", 300)

 hashMap1.put("Spider-Man", 1900)

 hashMap1.put("Nick-Fury", 1200)

 for(key in hashMap1.keys) {

 println("Element at the key $key : ${hashMap1[key]}")

 }

 //return the size of hashMap1

 println("\n" + "hashMap1.size : " + hashMap1.size)

Kotlin code that makes use of the HashMap.get(key), HashMap.replace(),
and HashMap.put() methods:

fun main(args: Array<String>) {

 var hashMap1 : HashMap<String, Int>

 = HashMap<String, Int> ()

 //adding the elements to the hashMap1

 // using the put() function

 hashMap1.put("Iron-Man", 3100)

 hashMap1.put("Thor", 150)

 hashMap1.put("Spider-Man", 1700)

 hashMap1.put("Cap", 1200)

 for(key in hashMap1.keys) {

 println("Element at the key $key : ${hashMap1[key]}")

 }

 //the hashMap1's elements can be accessed like this

 println("\nhashMap1[\"Iron-Man\"] : "

 + hashMap1["Iron-Man"])

 hashMap1["Thor"] = 2200

 println("hashMap1.get(\"Thor\") : "

 + hashMap1.get("Thor") + "\n")

 //replacing some value

 hashMap1.replace("Cap", 909);

 hashMap1.put("Thor", 2100);

 println("hashMap1.replace(\"Cap\", 909)" +

 " hashMap1.replace(\"Thor\", 2100)) :")

 for(key in hashMap1.keys) {

 println("Element at key $key : ${hashMap1[key]}")

 }

}

HashMap Time Complexity
Kotlin HashMap provides constant time or O(1) complexity for
fundamental operations like get and put if the hash function is properly built
and the objects are effectively distributed. When searching in a HashMap,

p (\ p p)

 //adding new element in the hashMap

 hashMap1["Black-Widow"] = 3100;

 println("hashMap1.size : " + hashMap1.size + "\n")

 for(key in hashMap1.keys) {

 println("Element at key $key : ${hashMap1[key]}")

 }

}

containsKey() is simply a get() that discards the returned result; hence, it is
O(1) (assuming the hash function works properly).

The Kotlin HashMap class also has the following features:

Boolean consistsKey(key: K): If the map contains the specified key,
this method returns true.

Boolean containsValue(value: V): True is returned if the map maps
one or more keys to the provided value.

void clear(): It removes all map items.

remove(key: K): It removes the specified key and value from the map.

We discussed Lambdas Expressions and Anonymous Functions, the
distinction between Lambdas expressions and Anonymous functions, the
Local Function and the Scope Function in this chapter. Collections,
Arraylist, setOf(), mutableSetOf(), hashSetOf(), mapOf(), and Hashmap
were also discussed.

C H A P T E R 5
Code Management and
Exception Handling

DOI: 10.1201/9781003308447-5

IN THIS CHAPTER
➢ Exception handling
➢ Logging
➢ Unit testing
➢ “Nothing” type

We studied Functional Programming with its subparts and related examples
in the previous chapter. This chapter will cover Exceptional Handling,
Logging, Unit Testing, and the nothing type.

EXCEPTIONAL HANDLING | TRY, CATCH, THROW, AND
FINALLY
An exception is an undesirable or unexpected occurrence that occurs during
program execution, i.e., during run time, and disrupts normal flow of the
program’s instructions. Exception handling is an approach for dealing with

https://doi.org/10.1201/9781003308447-5

errors and avoiding run-time crashes, which might cause our program to
crash.

Exceptions are classified into two types:

Checked Exception: IOException, FileNotFoundException, and other
exceptions are often added to functions and verified at build time.

Unchecked Exception: Exceptions, such as NullPointerException and
ArrayIndexOutOfBoundException, are frequently produced by logical
errors and are examined at run time.

Exceptions in Kotlin
Exceptions in Kotlin are unchecked and can only be discovered at run time.
Throwable is the parent of all exception classes.

We frequently use the throw-expression to throw an exception object:

throw Exception("Throw-me")

Some of the more common exceptions are as follows:

NullPointerException: We receive a NullPointerException when
executing a property or method on a null object.

Arithmetic Exception: This exception is raised when numbers are
given to incorrect arithmetic operations. Divide by zero, for example.

SecurityException: This exception is raised to indicate a security
problem.

ArrayIndexOutOfBoundsException: This exception is generated
when we attempt to obtain the wrong index value of an array.

An arithmetic exception is thrown in a Kotlin program:

fun main(args : Array<String>){

 var numb = 40 / 0 // throws-exception

 println(numb)

}

Although we know that division by zero is not permitted in arithmetic, we
begin the numb variable with 40/0 in the preceding program. An exception

is raised when we attempt to launch the program.
To solve this problem, we must use the try-catch block.

Exception Handling
In the example below, we divide an integer by 0 (zero), which results in an
ArithmeticException. The catch block will be performed because this code
is in the try block.

The ArithmeticException occurred in this case; therefore, the
ArithmeticException catch block was executed, and “Arithmetic
Exception” was printed in the output.

When an exception occurs, everything beyond that point is disregarded,
and control is sent to the catch block, if one exists. The finally block is run
always, regardless of whether or not an exception occurs.

fun main(args: Array<String>) {

 try {

 var numb = 50/0

 println("Beginners ")

 println(numb)

 } catch (c: ArithmeticException) {

 println("Arithmetic-Exception")

 } catch (c: Exception) {

 println(c)

 } finally {

 println("in any of case it will print.")

 }

}

What If We Don’t Deal with Exceptions?
Assume that the program will crash if we do not handle the exception in the
previous example.

The program terminated with an error in this scenario since we did not
handle exceptions.

How to Throw an Exception in Kotlin
The term throw can also use to throw an exception. In the following
example, the throw keyword is used to throw an exception. The statement
preceding the exception was executed, but the statement after the exception
was not performed since control was transferred to the catch block.

fun main(args: Array<String>) {

 try{

 println("Before-exception")

 throw Exception("Something wrong ")

 println("After-exception")

 }

 catch(c: Exception){

 println(c)

 }

 finally{

 println("can't-ignore ")

 }

}

NullPointerException Example
Here’s an example of a NullPointerException raised when the length()
method of a null String object is called:

public class Exception_Example {

 private static void printLength(String strg) {

 System.out.println(strg.length());

 }

 public static void main(String args[]) {

 String myString = null;

 printLength(myString);

 }

}

In this example, the printLength() function utilizes the length() method of a
String without first performing a null check. Because the string returned by
the main() method has no value, the preceding code throws a
NullPointerException:

Exception in the thread "main" java.lang.NullPointerException

 at Exception_Example.printLength(Exception_Example.java:3)

 at Exception_Example.main(Exception_Example.java:8)

How to Avoid NullPointerException
The NullPointerException can avoid by using the following checks and
protections:

Include a null check before referring to them to verify that an object’s
methods or properties are properly initialized.

Using Apache Commons StringUtils for String operations, such as
StringUtils.isNotEmpty(), to ensure that a string is not empty before
using it.

Use primitives rather than objects wherever possible since they cannot
have null references, such as int instead of Integer and boolean instead
of Boolean.

KOTLIN try-catch block
To manage exceptions in the program, we use the try-catch block in Kotlin.
The try block contains the code that throws an exception, whereas the catch
block handles the exception. This block must be present in either the main
or other methods. There should be a catch block, a finally block, or both
after the try block.

Syntax:

try {

 // the code that throw exception

} catch(c: ExceptionName) {

 // catch exception, handle it

}

A try-catch block program in Kotlin is used to handle arithmetic exceptions:

import kotlin.ArithmeticException

fun main(args : Array<String>){

 try{

 var numb = 40 / 0

 }

 catch(e: ArithmeticException){

 // caught, handles it

 println("not allowed divide by zero")

 }

}

Explanation: We used a try-catch block in the previous application.
Because division by zero is not specified in arithmetic, the numb variable,

which may throw an exception, is enclosed within the try block’s braces.
The catch block will execute the println() method when an exception is
thrown.

Kotlin try-catch block as an Expression
As previously stated, expressions always return a value. We may use the
Kotlin try-catch block as an expression in our software. The return result of
the expression will be either the last expression of the try block or the final
expression of the catch block. If an exception occurs in the function, the
catch block returns the value.

In a Kotlin code, use try-catch as an expression:

fun test(x: Int, y: Int) : Any {

 return try {

 x/y

 //println("The Result is: "+ x / y)

 }

 catch(e:Exception){

 println(e)

 "Divide by zero not allowed"

 }

}

// the main function

fun main(args: Array<String>) {

 // invoke the test function

 var results1 = test(30,3) //execute try-block

 println(results1)

 var results = test(30,0) // execute catch-block

 println(results)

}

In the preceding code, we used try-catch as an expression. Declare a
function test at the program’s top and return a value via a try-catch block.
The main method invoked the test function and provided the input values to
it (30,3). After considering the parameters, the test method returns the try
result (30/3 = 10). However, in the next call, we passed (b = 0), and this
time the exception is caught and the expression of the catch block is
returned.

Kotlin Finally Block

Whether or not the catch block handles an exception, the finally block is
always run in Kotlin. As a result, it is used to carry out crucial code
statements.

We may merge the finally and try blocks and eliminate the catch block.

Syntax:

try {

 //the code that can throw-exception

} finally {

 // code of finally-block

}

Kotlin program that includes a finally block and a try block:

fun main(args : Array<String>){

 try{

 var ar = arrayOf(11,22,33,44,55)

 var int = ar[6]

 println(int)

 }

 finally {

 println("This block will executes always")

 }

}

We used the try with finally block instead of the catch block in the previous
program. In this scenario, the catch block ignores the exception and
performs the finally block instead.

Finally block with the try-catch block Syntax:

try {

 // the code that throw-exception

} catch(c: ExceptionName) {

 // catch the exception, handle it.

} finally {

 // code of finally-block

}

Kotlin program that includes a finally block and a try-catch block:

fun main (args: Array<String>){

 try {

 var int = 30 / 0

 println(int)

 } catch (c: ArithmeticException) {

 println(c)

 } finally {

 println("This block will executes always ")

 }

}

Kotlin throw Keyword
In Kotlin, we use the throw keyword to throw an explicit exception. It also
can throw a custom exception.

Program of throw keyword in Kotlin:

fun main(args: Array<String>) {

 test("cdefg")

 println("executes after the validation")

}

fun test(password: String) {

 // it calculate the length of entered password and compare

 if (password.length < 6)

 throw ArithmeticException("Password short")

 else

 println("Password is strong ")

}

NESTED try block AND MULTIPLE catch block

Nested try block
This section will teach us about nested try-catch blocks and multiple catch
blocks. A nested try block has one try-catch block within another try-catch
block.

When an exception occurs in the inner try-catch block that is not handled
by the inner catch blocks, the outer try-catch blocks are inspected for that
exception.

Syntax:

// the outer try-block

try

{

 //the inner try-block

 try

 {

 //the code that can throw an exception

 }

 catch(c: SomeException)

 {

 //it catch the exception, handles it

 }

}

catch(c: SomeException)

{

// it catch the exception, handles it

}

nested try block Kotlin program:

fun main(args: Array<String>) {

 val numbs = arrayOf(11,22,33,44)

 try {

 for (i in numbs.indices) {

 try {

 var n = (0..4).random()

 println(numbs[i+1]/n)

 } catch (c: ArithmeticException) {

 println(c)

 }

 }

 } catch (c: ArrayIndexOutOfBoundsException) {

 println(e)

 }

}

Remember that this result is generated for a random integer. Don’t be
concerned if we get a different outcome because it will be decided by the
random number generated at the time.

Multiple catch block
A try block may include several catch blocks. When we are unclear what
type of exception may occur inside the try block, we may insert several
catch blocks for the various exceptions and the parent exception class in the
last catch block to handle all the remaining exceptions in the program that
are not described by catch blocks.

Syntax:

try {

 // the code may throw-exception

} catch(c: ExceptionNameOne) {

 // catch the exception one, handle it

} catch(c: ExceptionNameTwo) {

 // it catch the exception two, handle it

}

Multiple catch blocks program in Kotlin:

import java.util.Scanner

object Tests {

 @JvmStatic

 fun main(args: Array<String>) {

 val scn = Scanner(System.'in')

 try {

 val n = Integer.parseInt(scn.nextLine())

 if (612% n == 0)

 println("$n is a factor of 612")

 } catch (c: ArithmeticException) {

 println(c)

 } catch (c: NumberFormatException) {

 println(c)

 }

 }

}

Expression in the catch block use: In Kotlin, an expression in a catch
block can be used to replace several catch blocks. In the section that
follows, we will demonstrate how to utilize when expression.

import java.lang.NumberFormatException

import java.util.Scanner

object Tests {

 @JvmStatic

 fun main(args: Array<String>) {

 val scn = Scanner(System.'in')

 try {

 val n = Integer.parseInt(scn.nextLine())

 if (612% n == 0)

 println("$n is a factor of 612")

 } catch (c: Exception) {

 when(c){

 is ArithmeticException -> { println("Arithmetic-Ex

 is NumberFormatException -> { println("Number Form

LOGGING IN KOTLIN
Kotlin is a new programming language. JetBrains, the firm behind IntelliJ,
Resharper, and other prominent development tools, released it as open
source in 2012. Kotlin is a statically typed language with extensive
functional programming features. It is frequently executed on the Java
Virtual Machine (JVM) and supports Java libraries, although it may also be
compiled to Javascript or native code.

We’ll begin with the most basic example of Kotlin logging that can use.
After that, we’ll utilize better logging tools after exploring why logging is
important and how it affects our ability to maintain our code. We’ll also
show how appropriate logging increases our capacity to troubleshoot issues,
monitor our app, and provide better support to our clients.

The Easiest Kotlin Logging That Could Work

Because the JetBrains team designed Kotlin, using IntelliJ for this
lesson makes logical. We’ll locate the community edition here if we
don’t already have it.

Begin by making a new project. In the welcome page, select the new
project menu option.

Next, under the project settings, pick Kotlin and Kotlin JVM.

Next, enter a name for our project and click Next.

After we click Finish, IntelliJ will build our project.

It’s now time to make our first file and log a message. Right-click on
the src folder in the project directory.

This will open up a window where we can enter the file name. It
should be called logging.

 s u be o at cept o { p t (u be o

 }

 }

 }

}

Click OK, and we’re ready to start writing code.

We’ve already completed the difficult part by building the simplest
Kotlin logging example that will run. Here’s our first program’s code:

import java.io.File

fun main() {

 File("application.log").writeText("Hello-Logging")

}

Enter that, and start our program by right-clicking the source file and
selecting run.

IntelliJ will compile and execute our code.

The findings are shown at the bottom of the IDE window by IntelliJ.
Because we told Kotlin to create it there, our log file will locate in the
project’s working directory. To open our log file in the editor, double-click
it, and we’ll see the log message.

This code is adequate for simple logging, but it is not a long-term
solution. Is the Kotlin keeping fit open in the background, or does it open it
for each call? What would happen if hundreds of messages were sent? Is it
threadsafe, or does accessing the file every time cause the application to
crash? Would the file be corrupted if numerous threads ran concurrently?

After a quick explanation of what logging is, let’s look at a better
approach to do Kotlin logging.

What Is Application Logging?
Before we enhance logging in Kotlin, let’s define it.

“Application logging is the process of writing information about our
application’s runtime activity to a more permanent media.”

There’s a lot packed into that sentence. Logging is used to record
behavior. Messages are used to record events that occur within our app.
Furthermore, because the term refers to runtime, it indicates that we
generate logs with a time component. We should record the messages as
they appear, together with information about when they occurred.

We also keep logs on a long-term medium. Why? As a result, we will
review events as they occur. This is required for tasks that happen too
rapidly to follow. A record of occurrences is helpful when trying to track

out a mistake. Persistent storage may even require if we need to keep an
audit trail. A disk, a relational database, or search platform like Scalyr is
examples of persistent mediums.

Using Logback for Kotlin Logging

Add Logback to Our Project

Our code may access any Java library when we execute Kotlin in the
JVM. So, let’s configure your application with Logback, one of Java’s
most popular logging frameworks.

To begin, access the module settings for our project by right-clicking
on the project name and selecting the module settings menu entry.

Then, choose Add Library and locate the Plus button toward the top of
the window.

This button displays a menu. Choose from maven.

A conversation will begin. Use this search feature to find and add the
following three libraries:

org.slf4j:slf4j-api:1.7.26

ch.qos.logback:logback-classic:1.2.3

ch.qos.logback:logback-core:1.2.3

After entering a name, click the disclosure indication to the right.
IntelliJ will search maven for libraries and populate the list. Choose
the proper one.

IntelliJ will include it in the module. Rep for the last three libraries.

We included the Simple Logging Facade for Java and two Logback
libraries. The library we’ll need from Kotlin is the Simple Logging
Facade. Logback will handle the logging.

Calling LogBack from Kotlin

Logback may now call from Kotlin. Add new Kotlin file to the project.
Utilities are what it’s named.

The code is as follows:

These two methods return instances of the Simple Logging Facade
Logger. The first obtains the top-level or root logger. The second one
looks for one based on an arbitrary name. We’ll explain the distinction
further down.

Then, change the logging.kt to use a logger and rerun the code.

fun main() {

 getLogger().debug("Hello, Logging")

}

Our output will look like this:

17:23:55.984 [main] DEBUG ROOT - Hello-Logging

We now have a timestamp, the name of the function, the logging level, the
name of the logger, and the message. So, we’ve already enhanced our
logging with only a few lines of code.

Why Log?
Kotlin is a valuable programming language. With more concise syntax and
support for functional and object-oriented programming, it has full access to
Java’s vast ecosystem. That doesn’t imply our Kotlin code is impenetrable.
We’ll still need the means to observe what’s going on within the app. Even
the finest Kotlin code contains flaws and will encounter unexpected
circumstances. Kotlin logging is required.

The Kotlin is a popular programming language for Android. Android
apps encounter a variety of unexpected scenarios. We may launch our app
in a simulator to catch mistakes while it is still in development. A system
for recording logs as part of problem reports, on the other hand, is a helpful
tool. On our client devices, we may launch a remote debugging session.
Logs are the closest thing to being there.

fun getLogger(): Logger = LoggerFactory.getLogger(Logger.ROO

fun getLogger(name: String): Logger = LoggerFactory.getLogge

Logs may use for more than just isolating issues. We may use them to
monitor our application while running and identify areas for improvement.
And, of course, the use of logs does not end there. Logs are a business
necessity if our code processes financial transactions.

What Logging Method Should We Use?
We’ve already transformed a single print statement into a complete log
message. Let’s speak about what we need in our log messages before
concluding the work. How can we ensure that our logs are useful when it
comes time to troubleshoot? In most logging systems, each log entry
contains at least the following information:

Timestamp: the time when the event in the log entry occurred. We’ll
see how to include this into messages in the section following.

The location of the event: where did it take place? Whom are you
addressing? During a debugging session, saying “It worked” or “It’s
broken” may be beneficial or funny. “Failed to connect to the database
at 192.9.168.3:5000” is more useful in production.

Severity level: Each entry requires a flag in context with other
messages. ERROR, WARN, INFO, DEBUG, and TRACE are all
defined by Logback.

Configuring Logger
We configure the Logback file, which we supply to the library through a
Java property or by including it in the classpath. To make things easy, we’ll
utilize the classpath in this lesson.

Make a new file in our project’s source directory. The default
configuration file name is logback.xml. Include the following information:

<configuration>

 <appender name="FILE" class="ch.qos.logback.core.FileAppende

 <file>my_App.log</file>

 <encoder>

 <pattern>%date %level [%thread] %logger{12} [%file:%

 </encoder>

 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAp

 <encoder>

<pattern>%msg%n</pattern>

Logback will detect this file at runtime since the directory from where you
execute your code is part of the project’s classpath. It is divided into three
pieces. They are all log appenders, save for two. The root logger is defined
by the other.

A log appender is exactly what its name suggests. It’s an item that adds to
the end of a log. The first appender writes to a file, while the second writes
to standard output; the terminal. Logback makes it simple to deliver logs to
many destinations; simply add another appender. Each appender is
equipped with an encoder. The encoder prepares the message before the
appender sends the message to the logger. In a minute, we’ll see how the
two encoders vary.

Finally, the root logger is specified in the settings. When we introduced
Logback to our code, we specified several loggers. Logback organizes
logger instances into a hierarchical structure resembling an object-oriented
hierarchy. The property of a logger is inherited from the hierarchy. We
define the properties for all loggers in the application by configuring the
root logger. Logback builds it with these attributes unless a logger overrides
explicitly them.

This root logger will log all messages sent to it with a DEBUG or higher
level. Both log appenders will get entries from Logback.

Formatting Kotlin Logging Messages
Restart the program using the configuration file.

The terminal output is as follows:

Hello-Logging

The program also produces log file called my_App.log in the project root. It
is only one line:

 <pattern>%msg%n</pattern>

 </encoder>

 </appender>

 <root level="debug">

 <appender-ref ref="FILE" />

 <appender-ref ref="STDOUT" />

 </root>

</configuration>

2019 06 15 22 44 03 105 DEBUG [i] ROOT [l i kt 3] H ll L

Both appenders received the logging output, but the messages were
specified differently. The encoders are distinct.

Here’s the STDOUT encoder:

<encoder>

 <pattern>%msg%n</pattern>

</encoder>

The encoder for the file is as follows:

Logback includes a large number of conversion words for formatting log
messages. Because we only see the log message’s content in the terminal
output, we can safely assume that %msg is the formatter for the log data.
Here’s a table with the rest of the information.

Word Description
%date date, including a timestamp
%level log message level
%thread thread logging the message
%logger name of logger
%file source code file name
%line source code line number
%msg Message contents
%n Platform-specific linefeed character

Although these are merely the fundamental formatters, we’ve already met
the requirements for useful log messages using the file encoder. It explains
where the message originated in our source code. It has a date and time, as
well as the log level.

Logging to a File
Our log files are also being stored to a persistent media.

2019-06-15 22:44:03,105 DEBUG [main] ROOT [logging.kt:3] Hello-L

<encoder>

 <pattern>

%date %level [%thread] %logger{12} [%file:%line] %msg%n</pattern

</encoder>

<appender name="FILE" class="ch.qos.logback.core.FileAppender">

With each program’s execution, the file appender creates the file and opens
and closes it. If we rerun it, we’ll notice that a second line has been added.

Logback also features a RollingFileAppender. It will produce a new file
and rename the old one for us so that our log files do not get too large to
manage or create a new file at regular intervals.

Setting Kotlin Logging Levels
Make changes to the Logback configuration file.

<root level="info">

 <appender-ref ref="FILE" />

 <appender-ref ref="STDOUT" />

 </root>

Restart the program. The log message is suppressed because we set the root
logger to INFO.

Messages can be routed to specified destinations using appenders and
loggers. Assume we want to send just debug messages to the console and
only information or higher to a file. Make a new logger and assign it the file
appender:

<root level="debug" >

 <appender-ref ref="STDOUT" />

</root>

<logger name="productions" level="info">

 <appender-ref ref="FILE" />

</logger>

Modify the application such that it log two messages.

fun main() {

 getLogger("productions").info("Start log test")

 getLogger("test").debug("w00t")

}

pp q g pp

 <file>my_App.log</file>

 <encoder>

 <pattern>%date %level [%thread] %logger{10} [%file:%line]

 </encoder>

</appender>

We’re replacing the root logger with two named loggers. One of these is the
Logback configuration’s production logger. Restart the program.

Both messages are sent to the console:

Start log test

w00t

However, just the first message is recorded in the log file:

The output to terminal was sent down from the root logger to the new
logger. However, because we changed its level to information, it did not
inherit the debug messages. That’s a lot of power in only a few lines of
code.

UNIT TESTING
A unit test is a piece of code separate from our application. It can generate
and invoke our application’s public classes and methods. But why would
we want to build code that we would never use in our application? Simply
because we want to ensure that the application code works as expected. And
we want to double-check it to ensure that you don’t disrupt any current
functionality. And, like me, we’re probably lazy and don’t want to do it
manually. As a result, we may build test code to check our application
behavior. Unit Tests are here to help.

Unit testing focuses on testing only a small number of classes (one or
more) that perform a single function (domain) and do not rely on libraries
or framework code. We don’t want to test the libraries we use (at least not
in a unit test); they should just function. We want to concentrate solely on
our valuable code and demonstrate no hidden issues.

Simple Android Application
Before we begin writing any tests, we’d want to show us a simple Android
app with a login screen. It accepts two inputs for login and password and
validates them. When the inputs are accurate, we can sign in with the proper
data or receive an error indicating wrong credentials. We chose MVP design

2019-06-15 23:20:16,969 INFO [main] production [logging.kt:3] St

since it would allow us to develop tests that are not dependent on the
Android framework.

Project Setup
We can now write our first test when we have an application to test. The
JUnit4 test runner and the Kotlin programming language will use. A test
runner is a library that executes our test code and gathers the results in a
user-friendly manner.

Our First Test
To begin, under the/src/test/kotlin folder, build a class with a public
function annotated with @org.junit.Test. This tells JUnit4 where to find the
test code. We may begin by determining whether our app allows us to login
with the right info. To instrument LoginRepository, I must construct a
LoginRepositoryTest class with a test function. At first want to see whether
we can sign in with the right credentials, so we built a test function called
login using the correct username and password.

class Login_Repository_Test {

 @Test

 fun 'login with the correct login and password'() {

 }

}

We may name tests in Kotlin with natural names, such as login with the
right username and password; however, this only applies to code that runs
on the JVM. Fortunately, unit tests are run on the JVM, utilizing such
descriptive names.

Test Structure
Each test should be built using the following blocks:

Arrange/Given: We will prepare the necessary data for the test
Act/When – we will invoke a single method on the tested object.

Assert/Then: We will check the test result, whether it is pass or fail.

Because JUnit4 does not split test blocks, it is easy to add comments to test
code, especially if we are starting off with testing.

@Test

fun 'login with the correct login and password'() {

 //given

 //when

 //then

}

Given Block
Our test will start with the supplied block, in which we will prepare our test
data and build the tested object.

We’re making a new instance of the tested object LoginRepository and
assigning it to the read-only attribute. It’s easier to distinguish between
tested objects and test parameters, thus I’m naming it objectUnderTest. It
can also be referred to as sut, topic, or target. Choose a name that best
describes us, but keep it constant throughout our project.

When we have an instance of the tested object, we may proceed to testing
the parameters. That is correctLogin with the value ‘dabcisski’ and
correctPassword with the value ‘correct’. It is critical to give each test
parameter meaningful names; it must be evident what sort of values each
one contains.

@Test

fun 'login with the correct login and password'() {

 //given

 val objectUnderTest = LoginRepository()

 val correctLogin = 'dabcisski'

 val correctPassword = 'correct'

 //when

 //then

}

When Block
In the when block, we must call the method we want to test using the
parameters we prepared in the previous block. As a result, we invoke the
function objectUnderTest.login (correctLogin, correctPassword). We should

just have one line of code in the when block to make it obvious what is
being tested.

@Test

fun 'login with the correct login and password'() {

 //given

 val objectUnderTest = LoginRepository()

 val correctLogin = 'dabcisski'

 val correctPassword = 'correct'

 //when

 objectUnderTest.login(correctLogin, correctPassword)

 //then

}

Then Block
It’s time to see if the tested object returns the expected result. However, we
must first store the result of the tested method in a property val result and
then analyze it in the then block. Now we can do an assertion to see
whether the return value matches what we anticipate. If the assertion is not
met, it will throw an error, and the test will fail.

In this situation, the returned object is a RxJava 2 Observable, but we can
simply convert it to TestObserver, a class that includes assertion methods.
I’m testing to see if the result value is true; otherwise, the test will fail.

@Test

fun 'login with the correct login and password'() {

 //given

 val objectUnderTest = LoginRepository()

 val correctLogin = 'dabcisski'

 val correctPassword = 'correct'

 //when

 val result = objectUnderTest.login(login, password)

 //then

 result.test().assertResult(true)

}

Running Test
We can run a test in Android Studio/IntelliJ by hitting Ctrl + Shift + F10, or
from a Terminal by typing ./gradlew test.

After running the test that we just wrote, we should see a green bar in the
IDE or BUILD SUCCESSFUL in the Terminal.

NOTHING BY KOTLIN: ITS APPLICABILITY IN GENERICS
This section explores the use of Kotlin’s Nothing type in generics. We’ll
look at how it relates to Java. Let’s have a look at a linked list as an
example.

Long Description Unnumbered Figure 11
A LinkedList.

A LinkedList encloses a type C. The linked list can be either.

A Node<C> with two properties: a T payload and a LinkedList<C>
next.

It’s an empty list.

A sealed class requires the LinkedList to be of type 1 or type 2.
The sealed class and the Node<C> may be easily coded as follows:

Coding the empty list is a little more difficult. Every empty list is the same.
As a result, an empty list is an object. EmptyList must be a subclass of
LinkedList<T> as well. We could attempt to write.

Kotlin objects do not support type arguments. The above code will not
compile. Instead, we may try to delete the type parameter from the
EmptyList.

sealed class LinkedList<out C> {

 data class Node<C>(val payload: C, var next: LinkedList<C>)

}

sealed class LinkedList<out C> {

 data class Node<C>(val payload: C, var next: LinkedList<C>)

 object EmptyList : LinkedList<C>() // won't-compile

}

The code continues to fail to build. The C reference remains uncertain. We
must provide a specific type for C.

C denotes the kind of payload wrapped by a node. See the diagram
above. An empty list, on the other hand, encloses no payload. As a result,
correct coding is required.

What does the Kotlin Nothing type look like? Select Tools -> Kotlin ->
Kotlin REPL from the Android Studio menu. Enter and run the command
println in the REPL window (Nothing::class.java). As a result,

println(Nothing::class.java)

class java.lang.Void

Java’s Void type backs up Kotlin’s Nothing type. Nothing is a type in Kotlin
that represents the absence of type.

Nothing’s constructor is private. Contrast the preceding code with the
Java equivalent:

public class GetVoidExamples {

 public Void getVoid() {

 return new Void(); // won't-compile

 }

}

The Void class in Java has a private constructor. Void cannot create. We are
unable to return a Void. As a result, it appears reasonable that we cannot
return Nothing in Kotlin.

Key Points
Nothing:

Nothing is a non-open (final class) that cannot be expanded, and its
constructor is also private, implying that we cannot create the object.

sealed class LinkedList<out C> {

 data class Node<C>(val payload: C, var next: LinkedList<> =

 object EmptyList : LinkedList<Nothing>()

}

val nonEmptyList = LinkedList.Node(payload = "D", next = LinkedL

This is typically used to represent a function’s return type, which will
always throw an exception.

Nothing is the superclass of Any.

This chapter covered Exception Handling, Logging, Unit Testing, and
“nothing” type in Kotlin with its relevant examples.

C H A P T E R 6
Code Optimization Ideas

DOI: 10.1201/9781003308447-6

IN THIS CHAPTER
➢ Optimization tips
➢ Best coding practices
➢ Security and hardening ideas

In the previous chapter, we covered code management which we Learned
Logging, Exceptional Handling, Unit Testing, and nothing type in Kotlin.
This chapter will cover Optimization Tips, Writing Secure Code, Best
Coding Practices and Security, and Hardening Ideas.

OPTIMIZATION TIPS
This chapter discusses approaches for building Android code in Kotlin that
is both efficient and simple. JetBrains, the company behind the IntelliJ IDE,
created Kotlin, a general-purpose language that compiles to Java bytecode.

Using Static Layout Imports in Kotlin

https://doi.org/10.1201/9781003308447-6

When we need to use one of the views in the activity, it is one of the most
challenging aspects of dealing with Android. We must call the
‘findViewById()’ function and then typecast it to the correct view type.
Kotlin uses a different approach, allowing us to import all views in our
layout file. Assume we have the layout file shown below.

And the activity code that uses static imports to change the text of the
maintextview:

package kotlineffiecienttechniques

import android.support.v7.app.ActionBarActivity

import android.os.Bundle

import android.view.Menu

import android.view.MenuItem

import android.widget.Toast

import kotlinx.android.synthetic.main.activity_main_activity2.*

public class MainActivity2 : ActionBarActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main_activity)

 maintextview.text = "Helloo Static Import!"

 }

}

If we look at the code above, we’ll notice that we’ve ‘statically imported’
all views using the import line.

import kotlinx.android.synthetic.main.activity_main_activity.*

After that, we may change the text view as follows:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/re

 xmlns:tools="http://schemas.android.com/tools" android:layou

 android:layout_height="match_parent" android:paddingRight="@

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context="kotlineffiecienttechniques">

 <TextView android:id="@+id/maintextview"

 android:text="@string/helloo_world"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

</RelativeLayout>

http://schemas.android.com/
http://schemas.android.com/

maintextview.text = "Helloo Static Import"

To get the preceding code to compile, add the following to our build.gradle
dependencies:

Apply plugin:

apply plugin: 'kotlin-android-extension'

Also, include the following in our buildscript::dependencies:

Creating POJO Classes in Kotlin
When converting JSON/XML to objects in several apps. When using REST
services, we require classes that retain the contents of the JSON/XML. In
Kotlin, defining such objects (also known as POJO in Java) is more
convenient. Assume we want to create a POJO in Java to represent a book;
the code follows:

public class Books {

 private String ISBN;

 private float prices;

 private int quantites;

 private String title;

 private String descriptions;

 public String getISBN() {

 return ISBN;

 }

 public void setISBN(String ISBN) {

 this.ISBN = ISBN;

 }

 public float getPrices() {

 return prices;

dependencies {

 compile 'org.jetbrains.anko:anko-sdk21:0.9' // sdk19, sdk21,

 compile 'org.jetbrains.anko:anko-support-v4:0.9' // In case

 compile 'org.jetbrains.anko:anko-appcompat-v7:0.9' // For ap

}

dependencies {

 classpath "org.jetbrains.kotlin:kotlin-android-extension

 }

 }

 public void setPrice(float prices) {

 this.prices = prices;

 }

 public int getQuantities() {

 return quantities;

 }

 public void setQuantities(int quantities) {

 this.quantities = quantities;

 }

 public String getTitle() {

 return title;

 }

 public void setTitle(String title) {

 this.title = title;

 }

 public String getDescriptions() {

 return descriptions;

 }

 public void setDescriptions(String descriptions) {

 this.descriptions = descriptions;

 }

}

If we want to define the same POJO with the same functionality in Kotlin,
we may do it as follows:

public class Books {

 public var ISBN: String = ""

 public var prices: Float = 0.toFloat()

 public var quantities: Int = 0

 public var title: String = ""

 public var descriptions: String = ""

}

To be more specific, it may be defined as a data class as follows:

This POJO differs from the previous one because it has a main contractor.
All arguments must be passed to the constructor when the object is created.
Defining a data class includes the methods ‘equals’, ‘hashCode’, and

data class Books2(var ISBN: String, var prices: Float, var quant

 var title: String, var descriptions: String)

contructor. This should be the preferable method for defining a POJO in
Kotlin.

Constructors and Inheritance in Kotlin
Kotlin simplifies the creation of constructors for your classes. The primary
constructor is included in the class header. It comes after the class’s name.
So, if we had a primary constructor for our Book class, the code would look
like this:

The above code defines a primary constructor to which values are passed.
The values are assigned to the members.

To construct an object of the Books class, do the following:

This eliminates the need for boilerplate code in the form of distinct
constructor functions. The constructor just copies the parameters supplied
to it into the member variables. If we were writing our Android app in Java,
we would need to build such a constructor.

Inheritance in Kotlin is also safer; it cannot expand unless a class is
specified as open.

So, if we want to expand Book, we should define it as follows:

Assume we have a HardCoverBooks subclass that extends the Books class
and overrides the getShippingPrices method. That would be coded as
follows:

public class Books (var ISBN: String, var prices: Float, var qua

 var title: String, var descriptions: String)

}

Val books1 = Books("564321", 43.0f, 4, "Kotlin for us", " Kotlin

open public class Books (var ISBN: String, var prices: Float, va

 var title: String, var descriptions: String)

 open fun getShippingPrices():Float {

 return prices;

 }

}

class HardCoverBooks(ISBN: String, prices: Float, quantities: In

Using Lambda Functions in Kotlin
We frequently have functions in Android that accept one interface as a
parameter. Very such instances, the Kotlin lambda functions come in handy.
Look at how we can add an onClickListner to a view.

It’s only one line. We don’t even need to define the type of argument view
because it can be deduced statically. In Java, the same code would be:

Tail Recursion, Sealed Classes, Local, Infix, Inline Functions,
and More Advanced Kotlin Tips

Local Functions
Local functions are useful for code reuse; nevertheless, they should not be
used excessively to avoid confusion.

fun fooo(x: Int) {

 fun local(y: Int) {

 return x + y

 }

 return local(1)

}

c ass a dCo e oo s(S : St g, p ces: oat, qua t t es:

 title: String, descriptions: String) :

 Book(ISBN, prices, quantities, title, descriptions) {

 override fun getShippingPrice():Float {

 return prices + 3.0f;

 }

}

maintextview.setOnClickListener({ view -> Toast.makeText(this, "

maintextview.setOnClickListener(new OnClickListener() {

 @Override

 public void onClick(View v) {

 Toast.makeText(this, "Showing-Toast", Toast.LENGTH_SHORT

 }

});

Infix Functions
Infix functions are useful for readability since they allow us to type things
like “test” foo “c” for example, which is pretty awesome.

infix fun String.fooo(s: String) {

}

// Call the extension function.

"test".fooo("c")

// Or call extension function using the infix notation.

"test" fooo "c"

Infix functions can only have one parameter.

Inline Functions
An overhead occurs when a lambda expression in Kotlin is converted to
Java anonymous classes in Java 6 or 7. Lambda calls affect the call stack,
which influences performance.

Instead of initiating another method call and adding it to the call stack,
inline functions can utilize to make direct calls. When we pass in the
lambdas, it makes logical to utilize inline functions.

inline fun callBlock(block: () -> Unit) {

 println("Before-calling the block")

 block()

 println("After calling the block")

}

When we call the callBlock, it is converted into something like this:

callBlock { println("The block operation") }

// Rough java-bytecode

String var1 = "Before calling the block";

System.out.println(var1)

String var2 = "Block operation";

System.out.println(var2);

var1 = "After calling the block";

System.out.println(var1);

in comparison to the following if the function was not declared as inline

callBlock { println("Block operation") }

// Rough java-bytecode

callBlock((Functinos0)null.INSTANCE);

However, we must tread cautiously when using inline functions since it
literally duplicates the method content when it is called, which is
undesirable if the body of the functions is too lengthy.

Knowing that, the following will make no sense because it has no effect.

Tail Recursion
We tell compiler that we want to replace the method call with a for loop or
goto expression by using tailrec.

It can only use if the last call of a function is simply calling itself.

Sealed Classes
According to the Kotlin reference, we should use sealed classes to express
restricted class hierarchies, which occur when an item has a limited set of
types but cannot have any other type.

In other words, they are useful for returning types that are not identical
but are related.

inline fun fooo(noinline block: () -> Unit) {// Single lambda ma

inline fun fooo() { // No-lambdas

tailrec fun findFixPoint(r: Double = 1.0): Double

 = if (r == Math.cos(r)) r else findFixPoint(Math.cos(r))

sealed class Responses

data class Success(val content: String) : Responses()

data class Error(val code: Int, val message: String) : Responses

fun getUrlPage(url: String) : Responses {

 val valid = // Some logic here!

 if (valid) {

 return Success("Content found")

 else {

 return Error("Not found")

 }

}

// Here is the beauty

val responses = getUrlPage("/")

when (responses) {

 is Success -> println(responses.content)

The definition of sealed classes must include in a single file.

Some More Helpful Tips

Local Return
They are most useful with lambdas, but let us explain with a simple code
example.

fun fooo(list: List<String>): Boolean {

 list.forEach {

 if (...) {// Some-condition.

 return true

 }

 }

 return false

}

It gets fooo to return true. We may also limit the forEach scope just to
return values.

fun fooo(list: List<String>): Boolean {

 list.forEach {

 if (...) {// Some-condition.

 return@forEach // Just like calling-break

 }

 }

 return false

}

If it doesn’t make sense, consider the following code:

fun fooo() {

 Observable.just(1)

 .map{ intValue ->

 return@map intValue.toString()

 }

 ...

...

}

p p

 is Error -> println(responses.message)

}

If we used return in the above code piece, it would return to foo, which
makes no sense in this context. The return@map, on the other hand, returns
the result of the map function, which is the desired behavior.

Operator Overloading
To override supported operators, use operator.

operator fun plus(time: Time) {

}

// This will allow following statement.

time1 + time2

It is important not to overuse operator overloading; it does not make sense
to utilize it most of the time. Check out the list of conventions that govern
operator overloading for various operators.

Lambda Extensions
They are just easier to read and type, much like markup.

class Status(var code: Int, var descriptions: String)

fun status(status: Status.() -> Unit) {}

// This will allow the following statement

status {

 code = 403

 descriptions = "Not-found"

}

lateinit
If a lateinit property is attempted to be used before it has been initialized, it
will throw an exception of type UninitializedPropertyAccessException.

Companion Objects
Companion Objects are the equivalent of Java static methods.

class MykotlinClass {

 @Jvmstatic

 companion object Factory {

 fun create(): MyKotlinClass = MyKotlinClass()

 }

}

Members of the companion object may access by using the class name as
the qualifier:

Val instance = MyKotlinClass.create()

Tips for Improving Kotlin Compilation Times
The Kotlin/Native compiler is regularly updated to increase speed. We may
dramatically increase the compilation times of your projects with
Kotlin/Native targets by using the newest Kotlin/Native compiler and a
correctly configured build environment.

General Suggestions
Use the latest current Kotlin version. This way, we’ll always get the most
recent performance enhancements.

Avoid making large courses. During execution, they require a lengthy
time to build and load.

Between builds, keep downloaded and cached components. Kotlin/Native
downloads the necessary components and saves some of the results to the
$USER HOME/.konan directory when we compile a project. The compiler
uses this directory for subsequent compilations, helping them run faster.

When building in containers (such as Docker) or using continuous
integration systems, the compiler may recreate the ∼/.konan directory for
each build. Configure your environment to keep ∼/.konan between builds to
avoid this step. For example, use the KONAN DATA DIR environment
variable to change its location.

Configuration of Gradle
Due to the requirement to download dependencies, construct caches, and
execute additional stages, the first Gradle compilation frequently takes
longer than subsequent ones. To accurately assess the real compilation
times, we need to compile your project at least twice.

Here are some suggestions for customizing Gradle to improve
compilation performance:

Increase the size of the Gradle heap. To gradle.properties, add
org.gradle.jvmargs=-Xmx3g. If we use parallel builds, we may need to
increase the heap size or use org.gradle.parallel.threads to select the
appropriate number of threads.

Create just the binaries we require. Run Gradle tasks that create the
entire project, such as build or assemble, only when absolutely
necessary. These jobs generate the same code several times,
lengthening compilation times. The Kotlin tooling prevents conducting
extraneous activities in common instances, such as running tests from
IntelliJ IDEA or launching the program from Xcode.

If we have a non-typical scenario or build setup, we may need to select the
job ourselves.

linkDebug*: To execute our code during development, we normally
only need one binary, therefore executing the associated linkDebug*
task should suffice. Keep in mind that creating a release binary
(linkRelease*) takes longer than compiling a debug binary.

packForXcode: Because iOS simulators and devices have various
processor architectures, it’s usual to deliver a Kotlin/Native binary as a
universal (fat) framework. Building the .framework for only the
platform we’re using will be faster during local development.

To create a platform-specific framework, use the packForXcode task
provided by the Kotlin Multiplatform Mobile project wizard.

Don’t turn off the Gradle daemon unless we have a compelling cause
to. By default, Kotlin/Native is executed by the Gradle daemon. When
it is enabled, the same JVM process is utilized for all compilations,
and there is no need to warm it up.

Enable previously disabled Kotlin/Native functionality. The Gradle
daemon and compiler caches can be disabled using the
kotlin.native.disable option. CompilerDaemon=true and
kotlin.native.cacheKind=none are set. Whether you had problems with
these features in the past and put these lines to your gradle.properties
or Gradle arguments, delete them and see if the build succeeds. It’s

conceivable that some characteristics were introduced in the past to
work around concerns that have since been resolved.

Make use of the Gradle build caches:

Local build cache: Add org.gradle.caching=true to your
gradle.properties file or use the command line option – build-
cache.

In continuous integration systems, remote build cache is used.
Discover how to set up the remote build cache.

Configuration of Windows
Operating System Set up Windows Security. The Kotlin/Native compiler
may slow by Windows Security. We may circumvent this by adding the
.konan directory, which is by default placed in %USERPROFILE%, to
Windows Security exclusions.

WRITING SECURE CODE
This codelab will develop our first Kotlin program using an interactive
editor that we can run from our browser.

A program may be thought of as a set of instructions for the system to
follow for it to do an action. We could, for example, develop a program that
generates a birthday card. We could build the application to print
congratulations text or compute someone’s age based on their birth year.

Just like we use human language to interact with another person, we use
a programming language to communicate with our computer’s operating
system (OS). Programming languages, fortunately, are less complicated
than human languages and relatively reasonable.

Kotlin is the programming language used to create Android applications.
Kotlin is a new language designed to help developers write code more
effectively and fewer mistakes.

Learning to construct an app while also learning the fundamentals of
programming will difficult; therefore, we will begin with programming
before moving on to app creation. Learning the fundamentals of
programming is not simply a necessary initial step in developing apps.

Set Up Source Code and Tests in Our Android Apps
Kotlin is a statically typed programming language for creating Android
apps.

How Does Kotlin Code Look?
In Kotlin, we would declare a function like follows:

fun sum(x: Int, y: Int): Int {

 return x + y

}

As we can see, there are a few notable differences between Java and
Python:

The absence of semicolons (Yay right?)

The return type is declared after function specification.

After the parameter name, the type of the parameter is defined.

Why Is It Superior to Java?
Here’s a brief rundown of Kotlin’s advantages versus Java:

Null Safety

Lambdas

Extension Methods

Adapting an Existing Android Project to Utilize Kotlin
1. Install the Kotlin Android Studio plugin:

Navigate to “Preferences” “Plugins,” and then “Install JetBrains
Plugin.” In the search box, type “Kotlin.” Install “Kotlin” by
selecting it. We will most likely need to restart Android Studio
for the adjustments to take effect.

2. Add the following line to the classpath section of our project’s
build.Gradle file.

3. Add the following to our app level build.gradle:

4. Make a kotlin folder in our app/src/main/folder. We may create a
folder with our package name, such as org.bookdash. Android. (We
may put Kotlin files in the same directory as Java files; we just like to
keep them distinct per language.)

5. To create a new Kotlin class, right-click the package name and select
“New -> Kotlin File or class.” Give it a name, choose a type, and
begin writing Kotlin code.

buildscript {

 repositories {

 jcenter()

 }

 dependencies {

 classpath "com.android.tools.build:gradle:2.0.0-alp

 classpath 'com.github.dcendents:android-maven-gradl

 classpath "org.jetbrains.kotlin:kotlin-gradle-plugi

 }

}

buildscript {

 repositories {

 maven { url 'https://maven.fabric.io/public' }

 }

 dependencies {

 classpath 'io.fabric.tools:gradle:1.+'

 }

}

apply plugin: 'com.android.application'

apply plugin: 'kotlin-android'

android {

 sourceSets {

 main.java.srcDirs += 'src/main/kotlin'

 }

}

dependencies {

 compile 'org.jetbrains.kotlin:kotlin-stdlib:1.0.0-beta-

}

Existing Java Files Can Convert to Kotlin
To convert a Java class to Kotlin in Android Studio, perform the following:

Open the file that we want to convert.

Execute the command. (Continue to Action):

CMD + Shift + A on a Mac

CTRL + Shift + A on Linux and Windows

Then, type “kotlin,” and we should see an option to convert an existing
Java file to Kotlin.

This will convert the Java file you are now in into a Kotlin class. We’d
double-check that the resulting code is correct.

We converted the AboutActivity from my Book Dash App to Kotlin,
and the outcome is as follows:

class About_Activity : BaseAppCompatActivity(), AboutContrac

 private var aboutPresenter: AboutPresenter? = null

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_about)

 aboutPresenter = AboutPresenter(this)

 val toolbar = findViewById(R.id.toolbar) as Toolbar

 setSupportActionBar(toolbar)

 val actionBar = supportActionBar

 if (actionBar != null) {

 actionBar.setDisplayHomeAsUpEnabled(true)

 actionBar.setTitle(R.string.about_heading)

 }

 val textViewWhyBookDash = findViewById(R.id.text_why

 textViewWhyBookDash.text = Html.fromHtml(getString(R

 Linkify.addLinks(textViewWhyBookDash, Linkify.ALL)

 }

 override fun showLearnMorePage(url: String) {

 val intent = Intent(Intent.ACTION_VIEW)

 intent.setData(Uri.parse(url))

 startActivity(intent)

 }

}

Writing Tests in the Kotlin
After writing some Kotlin code, we thought it would be cool to see if we
could write some Android tests in Kotlin. Here’s how to go about it:

Make a kotlin folder in our androidTest folder.

Make a package name that corresponds to the package we’re testing.

In our app build.Gradle file, add following:

After that, we may begin adding code to that folder. Here’s an example
of my AboutActivityTest in Kotlin, which performs some basic
espresso testing.

android {

 sourceSets {

 main.java.srcDirs += 'src/main/kotlin'

 androidTest.java.srcDirs += 'src/androidTest/kotlin'

 }

}

@RunWith(AndroidJUnit4::class)

@SmallTest

class AboutActivityTest {

 @Rule

 fun getRule() = ActivityTestRule(AboutActivity::class.ja

 @Before

 fun setUp() {

 Intents.init()

 }

 @After

 fun tearDown() {

 Intents.release()

 }

 @Test

 @Throws(Throwable::class)

 fun loadAboutBookDash_SeeInformation() {

 val about = Html.fromHtml(InstrumentationRegistry.ge

 val headingAbout = InstrumentationRegistry.getTarget

 onView(withText(headingAbout)).check(matches(isDispl

 onView(withText(about.toString())).perform(scrollTo

 }

 @Test

@ h (h bl l)

BEST CODING PRACTICES
It’s normal for many Kotlin adopters from Java to begin writing Kotlin in
the same way. After all, many of the techniques and libraries are the same,
so it’s simple to keep creating code in the same way. These Java standards
typically detract from Kotlin’s goal of saving time and enhancing code
maintainability through readability.

Accept Immutability
Immutability is not explicitly stated in Java. While the final operator might
be useful, it isn’t usually employed consistently. Given that immutable
programming is generally easier and less error-prone, it’s a good idea to get
into the habit of keeping everything immutable and only resorting to
mutable objects when absolutely required.

public void main() {

 String someData = "Data";

 int someNumber = 63

 someData = null; // NPE!

 someNumber = 3;

}

Nothing in this example prevents the values inside someData and
someNumber from being changed; they are mutable variables. If later code
uses such values, there may be unforeseen effects. Long this is great for a
single developer working on a project, teams or even individuals who have
been away from a piece of code for a while might lose track of the usages
of a value and accidentally create a problem.

Instead, Kotlin makes it extremely simple to declare things immutable
from the start. In fact, if the value of a var variable isn’t being changed

 @Throws(Throwable::class)

 fun clickLearnMore_OpenBrowser() {

 onView(withText(R.string.learn_more)).perform(scroll

 intended(allOf(hasAction(Intent.ACTION_VIEW),

 hasData(Uri.parse("http://bookdash.org"))))

 }

}

http://bookdash.org/

elsewhere, IntelliJ Idea would often offer a quick-fix to convert it to val.

In general, the presence of var in code should raise a red warning. There are
situations when it is required; however, the vast majority of use cases may
be refactored to be immutable.

Get Rid of ArrayList and HashMap
ArrayList and HashMap are perhaps two of the most often used collections
among Java developers. However, we don’t think either term is especially
beneficial. We understand that these collections might change, but it’s not
natural or simple to read.

fun oldCollection() {

 val myLists = ArrayList<Int>()

 myLists.add(1)

 myLists.add(2)

 myLists.add(3)

 val myMap = HashMap<Int, Int>()

 myMap[0] = 0

}

Instead, Kotlin provides several handy tools over collection interfaces to
abstract the underlying complexity in favor of readability.

fun main() {

 val someData = "Data"

 var someMutableNumber = 63

 someData = "some other data" // Compiler-error, val cannot b

 // This is ok since someMutableNumber was specified as a mut

 someMutableNumber = 3

}

fun newCollections() {

 val myLists = listOf(1, 2, 3)

 my mutableList = mutableListOf(4, 5)

 myList.add(4) // Error: List<Int> doesn't have the method ad

 mutableList.add(4)

 val myMap = mapOf(0 to 0, 1 to 1)

 val mutableMap = mutableMapOf(2 to 2)

 mutableMap[3] = 3

}

We will admit that this conceals some details that may be relevant for
performance on huge collections. We’ll probably want to employ more
particular implementations in specialized instances. However, it’s probably
not critical enough to sacrifice code readability most of the time.

Make Use of Functional Constructs
Functional structures aid in the integration of immutability and collections
while also cleaning the code. When working with a collection, we
frequently write code that looks something like this:

fun doubleList(values: Array<Int>) {

 for (x in 0..values.count()) {

 values[x] = values[x] * 3

 }

}

This method not only mutates the array that was handed in, but it also has a
low signal-to-noise ratio. The for syntax is clear, but it introduces
unnecessary noise that detracts from the “signal” in the method where the
value multiplication occurs. This is a great location for an operation such
as. map():

fun doubleList(values: Array<Int>): Array<Int> {

 return values.map { it * 3 }

}

This example is considerably shorter, with much less “noise” code
surrounding the key multiplication part. The Another essential aspect to
note here is that the original array is not altered in any way, but rather a
duplicate of the array with the alterations is returned. Using different
functional techniques such as .map() can frequently eliminate the need to
abstract collection operations out to another method because using them in-
line is usually sufficient.

Bonus:

fun getName(people: List<Person>): List<String> {

 return people.map { it.name }

}

Extraction of values from complicated objects is another area where. map()
thrives. This is another case where we may loop over the complex objects
and create a new list with the appropriate values, which .map() can perform
in a single call.

Java does include these features, beginning with the Streams API in Java
8, and they are absolutely useful in Java applications. Unfortunately, the
Streams API isn’t available to individuals who must use earlier versions of
Java, and the API itself isn’t as user-friendly as Kotlin’s.

javaClass
This one, in particular, falls into the category of “here’s a neat suggestion”
rather than “best practice.” Some Java libraries, especially loggers, require a
reference to the current class. This is done rather simply in Java:

LoggerFactory.getLogger(My_Class.getclass());

// Or

LoggerFactory.getLogger(this.getclass());

In Kotlin, :

LoggerFactory.getLogger(My_Class:class.java)

// Or

LoggerFactory.getLogger(this::class.java)

Both of them function perfectly. The first is prone to copy/paste difficulties,
and both have a lot going on otherwise. Kotlin has a handy little shorthand
for this, javaClass:

LoggerFactory.getLogger(javaClass)

String Interpolation
Concatenating strings is not just one of the core programming concepts that
individuals learn early on, but it is also employed in some way in
practically every programming project. Many languages offer a few variants
to normal concatenation to aid in formatting or efficiency, but there is
usually a cost in readability.

System.out.println("The Processing error at " + DateTime.now() +

 " with message : " + ex.message + ".");

Concatenation is simple: take these string sections and put them together,
but this comes with a slew of extra symbols that can be difficult to
remember. Finally, the most legible aspect of string concatenation is the
overall end string; thus the code should get as near as possible. To do this,
Kotlin offers string interpolation (also known as string templating), which
makes string composition considerably easier to read.

Infer Types
This is a nice feature in Kotlin, but it might be a bit tricky if you’re not used
to a language where types aren’t explicitly specified. The Kotlin compiler is
intelligent enough to infer the type of most things while retaining the power
of those types in reality (unlike JavaScript where the type system is
somewhat rudimentary). We won’t get into whether static or dynamic
typing is preferable, but it should go without saying that type checking can
assist eliminate issues, although at the expense of readability. As an
example:

User currentUsers = new User(usernames, email, profileUrl);

Declaring currentUsers as a type User here is superfluous. The variable is
instantly initialized to a User object, which a maintainer may see while
reading through. Kotlin is both flexible enough to enable the type to be
omitted in this scenario and smart enough to infer the type in most other
cases.

Val currentUsers = User(usernames, email, profileUrl)

Of course, this is a contrived and rather simplistic example. At the end of
the day, “User” isn’t that many more letters, and limited keystrokes apart, it
doesn’t take long. Remember that readability is important, and time spent
mentally filtering out redundant types is not spent deciphering the meaning
of a piece of code. Furthermore, Java class names can get extremely
lengthy; consider the following example of obtaining the settings of an
AWS Lambda function:

println("The Processing error at ${DateTime.now()} with message:

public String getLambdaArn(String functionNames) {

GetFunctionConfigurationRequest req = new GetFunctionConfigu

This code isn’t doing anything particularly complicated, and the types
themselves make sense, but repeating GetFunctionConfigurationRequest
isn’t a wise use of time or mental capacity. Furthermore, while knowing that
the result would be of type GetFunctionConfigurationResult is useful,
someone reading this code could probably infer relatively simply that it will
hold the result of retrieving the function configuration without the type
declaration. Remember that we are writing code for humans, not machines.

fun getLambdaArn(functionNames: String): String {

 val req = GetFunctionConfigurationRequest()

 .withFunctionNames("myFunction")

 val results = client.getFunctionConfiguration(req)

 return results.functionArn

}

Semantic Test Naming
While ordinary method naming conventions call for short and descriptive
names, test methods typically have extensive names that reflect the specific
situation covered by the test. For example, we’ve probably all created and
combed through tests that look something like this:

This is detailed and difficult to read. The rules of Kotlin allow for the
naming of test methods in natural language style with spaces (or
underscores).

Safe Operator?

 GetFunctionConfigurationRequest req = new GetFunctionConfigu

 .withFunctionName(functionNames);

 GetFunctionConfigurationResult results = client.getFunctionC

 return results.getFunctionArn();

}

@Test

fun handlerShouldSaveRecordToDbOnUpdatedEventProcessed() {

fun 'handler should save the record to db on updated event proce

One of the most notable aspects of Kotlin is its handling of compile-time
null safety. Kotlin includes a number of utilities to make dealing with
nullable types simple and clean by implementing its null system. The
following is an example of traditional Java convention in Kotlin:

fun getNameFromDb(): String? {

 val dbRow: DbRow? = selectFromDbById(3)

 if (dbRow != null) {

 if (dbRow.person != null) {

 if (dbRow.person.names != null) {

 return dbRow.person.names

 }

 }

 }

 return null

}

Instead, Kotlin includes aids that are comparable to those found in other
languages that enable nullable types:

fun getNameFromDb(id: Int): String? {

 val dbRow: DbRow? = selectFromDbById(id)

 return dbRow?.person?.names

}

If the parent container is not null, the? access operator will continue to
access the field. If any of values in the chain are null, the entire line returns
null.

Elvis Throws
Following the lead of safe calls, the Elvis Operator may convert a nullable
value to a non-null value. In the above example, getNameFromdb() returns
a nullable string and expects the caller to handle the scenario where a null
result is returned. We may assert that getNameFromDb() will always return
a non-null string or throw a more thorough error if the value cannot retrieve
using the Elvis operator.

fun getNameFromDb(id: Int): String {

 val dbRow: DbRow? = selectFromDbById(id)

 return dbRow?.person?.names

 ?: throw NotFoundException("Unable to find user with the

}

List Literals in Annotations
Some controller annotations in Spring can accept multiple values for a field.
@RequestMapping, for example, may accept several values for the method
of the call, and the Kotlin code for it would look like this:

The use of arrayOf() is required here; however, it is lengthy. Kotlin, on the
other hand, supports list literals in annotations:

Collection Helpers
Collections in Kotlin contain strong helper methods that may make working
with collections cleaner and more “Kotlin-y.” Looping is a common
operation on collections, sometimes with a changeable accumulator
collection that saves the result.

@RequestMapping(value = "/endpoint", method = arrayOf(RequestMet

fun updateEndpoint() {}

@RequestMapping(value = "/endpoint", method = [RequestMethod.POS

fun updateEndpoint() {}

fun searchForElemt(searchElemt: Any, list: List<Any>): Any? {

 for (elemt in list) {

 if (searcnElemt == elemt) {

 return elemt

 }

 }

 return null

}

fun profilesWithPictures(profiles: List<Profile>): List<Profile>

 var foundProfiles: List<Profile> = mutableListOf()

 for (profile in profiles) {

 if (profile.picture != null) {

 foundProfiles.add(profile)

 }

 }

 return foundProfiles

}

These and other procedures are frequent, and they usually result in the
creation of some form of utility class or library so that they may reuse.
ProfilesWithPictures(), the latter of the instances, also necessitates the usage
of a changeable list, which deviates from immutability as a best practice.
Kotlin’s standard library includes many utility methods on built-in
collections to save time and encourage immutable practices. These accept a
function reference or a lambda that is executed on each element of the
collection. We usually use lambda syntax:

On Kotlin collections, there are many additional operations available, such
as .contains(), .isEmpty(), .filter(), and others. The Kotlin documentation
for List covers them, and most of them are transferable to other sorts of
collections.

No more .equals()
As someone from a Python and C# background, the way Java handles
equality testing caused me a lot of agony and debugging. In those
languages, the == operator determines value equality or invokes an equals
method on a complicated object. This means that == can be used to check
the equality of everything, from integers to strings to objects.

Because there are no operator overloads in Java, == determines reference
equality (which I’ve never been inclined to check for). This means that only
primitives may be tested using ==, whereas complicated objects (such as
Strings) require the usage of .equals (). Consider sorting through code that
looks something like this:

if (input.equals("some other string")) {}

if (numberInput == 8) {}

fun searchForElemt(searchElemt: Any, list: List<Any>): Any? {

 return list.firstOrNull { it == searchElemt }

}

fun profilesWithPictures(profiles: List<Profile>): List<Profile>

 return profiles.find { it.pictures != null }

}

fun checkAllProfilesHavePictures(profiles: List<Profile>): List<

 return profiles.all { it.pictures != null }

}

Because Kotlin supports operator overloading, == effectively becomes an
alias for .equals(). This enables the operator to use both built-in Java and
custom types that have previously implemented the .equals() method. Data
classes will implement a default.equals() function for us for new Kotlin
objects, which will check the equality of each field.

In the end, this makes Kotlin code easier to comprehend, pick up, and
transfer for those who are used to non-Java equality.

if (input == "some other string") {}

if (my_Class == other_Class) {}

Method Readability – Named Parameters
When building objects with several fields, object-oriented approaches,
notably in Java, require using what is known as the builder pattern. While
this improves a constructor’s call-site readability, it results in a sprawl of
code that must write in another class whose primary goal is to build other
classes more cleanly. By allowing named arguments on constructors and
standard methods, Kotlin eliminates this requirement.

val profile = Profile(

 firstName = "Bobby",

 lastName = "Sharma",

 profileUrl = "https://google.com/",

 email = "bob.sharma@test.com"

)

Rather than depending on positional indexing, this may make what value is
going where on a constructor extremely apparent. While methods with a
high number of arguments are often considered an anti-pattern, named
parameters allow you to add more parameters as needed without sacrificing
readability.

Val apiResults = getFromApi(

 client = apiClient,

 baseUrl = API_URL,

 endpoint = API_ENDPOINT,

 headers = customHeaders,

 authToken = token,

 queryString = null

)

This is a contrived example that probably lends itself to better design. Still,
it demonstrates how a method with that many arguments may become
challenging to comprehend and debug if the parameter names aren’t
helpful.

HOW KOTLIN OUTPERFORMS JAVA IN SOLVING LONG-
STANDING SECURITY ISSUES
Java is a well-known name. According to PYPL’s study of Google Trends,
it ranks second after Python in terms of popularity, accounting for 17.17
percent of total language tutorials searches. Because of its lengthy history,
general stability, and ongoing support, Java has been a staple of application
stacks since 1995.

It is the language of choice for Android programming and server-side and
back-end development projects. Java is well-established in desktop, mobile,
and gaming environments. So, where does Kotlin enter come in?

JetBrains introduced Kotlin in 2011 as a cross-platform, statically typed,
general-purpose programming language meant to interoperate with Java
completely. Unlike other types of ‘cross-platform’ compatibility, Kotlin’s is
at the machine code level. This implies that Kotlin is not packaged in a
container and does not require bridging to run on supported systems.
JavaScript frameworks that claim to be cross-platform, for example,
nonetheless require some type of container to function. Cross-platform
JavaScript apps are not native programs; instead, they operate in a created
container with APIs that connect them to the different hardware
characteristics.

Kotlin, on the other hand, is native by design and can run on every
platform that Java can. Kotlin, along with Java, has been considered a first-
class and supported language for Android development since October 2017.

But Kotlin is not Java; in fact, it is considered safer than Java. This leads
to the issue of how and why and what this means for the security of our
projects when utilizing Java or Kotlin.

Typing, Syntax, and Speed Compared
Android has changed its attention from Java to Kotlin in recent years. So,
what makes Kotlin unique?

Kotlin app development, it turns out, takes less time to build and is
physically lighter than Java. Kotlin code is substantially smaller, resulting
in fewer defects and faster debugging. The main advantage of Kotlin is that
its bytecode can be executed with the JVM, allowing it to leverage and
access Java-based libraries and frameworks without significant
compromise. It also includes coroutines, making it compatible and
interoperable with JavaScript and thus web development.

In Kotlin, security against NullPointerException is implemented via a
null safety mechanism, but the developer must write catches in Java.
NullPointerException is a security concern since it can crash a program and
is frequently regarded as a significant bug when null is permitted in areas
where it should not be, vulnerabilities in Java increase.

Null Reference Exceptions Pose Security Risks
Null reference exceptions, also known as null dereference, are one of the
top security vulnerabilities to watch for in an application, according to
OWASP. The issue with null is that it is a value that has no meaning. It
lacks an intrinsic data type in Java and needs specific processing.

For example, suppose we’re creating a function to locate a user in a
database. The terrible but typical approach is to return null when nothing is
discovered. While it appears to make logical because null is meant to
symbolize the absence of anything, it distorts the anticipated object returned
type, which might lead to possible crashes further down the code.

When it comes to object-oriented thinking, the consensus opinion is that
objects should design with immutability in mind. When an object’s state
changes, it exposes data structures and integrity to vulnerabilities. The
object is both incomplete and changeable when null is used. When null is
raised, Java crashes the program by default, resulting in a null pointer
exception. However, developers frequently include catch exception
handling to mitigate this issue, which helps the program avoid the
possibility of null being accepted in areas where it should not be.

The code below, for example, is an example of a developer dismissing
the possibility of a null slipping through by creating a NullPointerException
catch. This catch discreetly fails the application, allowing it to continue
running.

boolean isName(String s1) {

try {

The correct pattern for preventing a null is to explicitly make tests
against the existence of null. Here’s how the code should look:

boolean isName(String s1) {

 if (s1 == null) {

 return false;

 }

 String names[] = s1.split(" ");

 if (names.length != 3) {

 return false;

 }

 return (isCapitalized(names[0]) && isCapitalized(names[1]));

}

We don’t have this problem with null handling in Kotlin since it
incorporates the idea of null safety into its general design and
implementation. While null pointer exceptions can still arise in Kotlin, there
are only a few methods for this to happen.

One method is to invoke the NullPointerException() function in the code
directly. Another approach is to use them!! (not null) operators. Finally, null
pointers appear in Kotlin only when there is data discrepancy during
startup.

The Kotlin type system is designed to throw exceptions if a cast is
deemed unsafe, hence rendering the type un-nullable.

In Java, this is impossible. Unsafe casts are considered because they
provide an erroneous definition of the typed item, resulting in undefined
errors on static targets.

Kotlin Has Everything That Java Needs
In addition to null safety, Kotlin has a vast range of features that Java lacks.
This includes the following:

 try {

 String names[] = s1.split(" ");

 if (names.length != 3) {

 return false;

 }

 return (isCapitalized(names[0]) && isCapitalized(names[1]));

 } catch (NullPointerException e) {

 return false;

 }

lambda expressions and inline functions

smart casting

string templates

extension functions

primary constructors

first-class delegation

type inference for variable and property types

range expressions

operator overloading

singletons

data classes

companion objects

separate interfaces for read-only and mutable collections

coroutines

In comparison, the list of Java capabilities that aren’t accessible in Kotlin is
substantially less. However, Kotlin’s replacement and alternative features
compensate for the ‘missing’ functionalities.

These features are as follows: static members in Java are replaced by
companion objects, top-level functions, extension functions in Kotlin
wildcard-types are replaced by declaration site variance and type
projections, and ternary operators are replaced by if expressions.

Finally, There Is More to It Than Simply Null
The problem with null is only one of numerous security flaws that come
with Java by default. While Kotlin does not prohibit the use of null, its
handling of it is far superior and makes it less attractive for developers just
to use a NullPointerException catch.

Raw types, for example, are still supported in Java for compatibility
reasons but are strongly discouraged since the advent of generics. While
raw types are acceptable during runtime, they constitute a security risk

since manual checks are necessary when they include anything other than
the intended type. In some ways, it’s just another muddled form of null, but
with types involved.

Raw type is only one example of something Java knows it should no
longer support or have, but it does for various reasons. Because it is a newer
language, Kotlin can mitigate this by looking at everything Java is excellent
at, taking the best aspects, and removing the harmful and unnecessary. As a
result, Kotlin’s overall security is far superior to Java.

WHAT EXACTLY IS APPLICATION HARDENING?
Application hardening is similar to system hardening. It is possible to
remove any unnecessary functions or components by restricting access and
ensuring the application is maintained up to date with updates. Maintaining
application security is critical to make apps available to users. Most apps
contain buffer overflow issues invalid user input areas; therefore, fixing the
application is only to protect it from assault.

What Is the Purpose of Application Hardening?
Here are some of the reasons why application hardening is important:

Application hardening is a critical component of the protective
business infrastructure for building a secure mobile environment with
a safe software development lifecycle process.

Determine what measures to take if the app is attacked or a tool is
determined to be hacked.

To safeguard user credentials, allow your application to execute in zero
trust contexts.

Prevent hackers from studying internal values, monitoring, or
interfering with the program.

Protect the program against a hacker attempting to reverse engineer it
back to an ASCII text file.

Is Our Application in Need of Hardening?

Determine whether or not it is essential to protect the application from
hackers based on the application’s needs. For this purpose, several criteria
are also used to make a decision, such as:

If the application has a cost-effective property to protect.

If the program has access to the user’s sensitive info.

Application hardening is primarily useful in the early phases of
security considerations.

If our application involves financial transactions or business data that
we do not want others to see.

Today’s applications operate on a variety of devices in a variety of
situations. It’s difficult to keep an eye on all of those gadgets and
environments, which are putting our copyrights and expertise outside the
control of our company. Application hardening also helps defend the
company’s image; data breaches can have significant consequences for the
company’s brand.

Application Hardening Methods
We’d want to employ several strategies to safeguard our application from
various threats. Among them are the following:

1. Data Obfuscation: The substitution of difficult-to-decipher
identifiers within the code for simple identifiers. Renaming class and
variable names to something else. Encrypt some code to prevent
attackers from easily deciphering it. To prevent attackers from seeing
a functional representation of an application, binary-level code
obfuscation might be utilized.

2. Anti-Debug: A debugger is software that analyzes other programs
while they are executing. A debugger might be attached to a mobile
banking application method and analyzed how it works. Typically,
debuggers will use a debug API within the OS. They’ll also set
various flag registers. To avoid this, an app should prepare to
recognize and respond to the presence of a debugger.

3. Binary Packing: Binary packing is a strategy to guard against static
analysis. The software downloaded from the app store is encrypted
and is only unpacked at runtime, making static analysis exceedingly
difficult.

4. Arithmetic Obfuscation: Converting basic arithmetic and logical
phrases into complicated equivalent expressions that are difficult to
interpret using simple procedures.

5. Android Rooting Detection: Rooting an Android smartphone allows
an attacker to get root access to the device. Rooting an Android
smartphone successfully may pose a security risk to applications that
affect sensitive data or impose specific limitations. Android rooting
detection methods use anti-rooting techniques to determine the
validity of the OS and deploy security measures appropriately.

Benefits of Application Hardening
The following are some of the advantages of application hardening:

1. To prevent financial loss: If the program accesses sensitive
information of users or organizations, data breaches can cost the
corporation millions of dollars. If attackers use corporate financial
information, they will frequently execute a number of acts, including
openly selling information on the Internet.

2. Protect brand image: If attackers regularly infiltrate a corporation,
the company’s brand image will suffer in the future.

3. Increase software sales: Numerous users may use secure software
with little or no impact on security concerns.

4. Close security gaps: Hardening adds to the several levels of
protection that protect users and their servers. Hardening also
eliminates deactivated files and frequently overlooked applications,
providing attackers with veiled access to the application.

Application Patches
Application patches are likely to come in three flavors: hotfixes, patches,
and upgrades.

1. Hotfixes: These are often tiny bits of code intended to repair a
specific problem. As an example, a hotfix may be provided to address
a buffer overflow within an application’s login procedure.

2. Patches: These are generally sets of fixes that are significantly bigger
in size and are generally provided regularly or when sufficient
problems have been solved to allow a patch release.

3. Upgrades: These are another common technique of patching apps,
and they are more likely to be accepted than patches. The phrase
“upgrade” has a positive role. We’re progressing to a lot better, more
useful, and safer application.

In this chapter, we explored code optimization, where we learned about
Optimization Tips, Writing Secure Code, Best Coding Practices, and
Security and Hardening.

C H A P T E R 7
Kotlin for Android Development

DOI: 10.1201/9781003308447-7

IN THIS CHAPTER
➢ Building Android apps in Kotlin
➢ Advantages and features
➢ Integration with Android Studio

In the previous chapter, we covered Code Optimization in Kotlin. This
chapter will discuss Building Android apps in Kotlin, Advantages and
Features, and Integration with Android Studio.

BUILDING ANDROID Apps IN KOTLIN
In this codelab, we’ll learn how to use the Kotlin programming language to
create and launch our first Android app. Kotlin is a Java-compatible
statically typed programming language that runs on the JVM. Along with
Java, Kotlin is an officially recognized language for creating Android apps.

What we must already be aware of: This codelab is intended for
programmers and assumes that are familiar with the Java or Kotlin
programming languages. Even though we don’t have much expertise

https://doi.org/10.1201/9781003308447-7

with Kotlin, if we’re experienced programmers who can read code, we
should follow this codelab.

What we’ll discover:

How to create an App using Android Studio

How to execute our application on a device or in an emulator

How to include Interactive Buttons

When a button is pressed, how to display a second screen

To create Android apps, use Android Studio with Kotlin: Android
apps are written in the Kotlin or Java using Android Studio, an
integrated development environment. Android Studio is an IDE for
Android programming based on JetBrains’ IntelliJ IDEA software.

Download and Install Android Studio
Android Studio 3.6 may be downloaded from the Android Studio website:
https://developer.android.com/studio/.

Android Studio includes a complete IDE, a sophisticated code editor, and
app templates. It also provides development, debugging, testing, and
performance tools to make app development faster and easier. Android
Studio allows us to test our apps on various preset emulators or mobile
devices. We may also create production applications and publish them on
Google Play.

Android Studio is accessible for Windows and Linux PCs and Macs
running macOS. Android Studio includes the OpenJDK (Java Development
Kit).

The installation process is same for all the systems. Any discrepancies
are listed below:

To download and install Android Studio, go to the Android Studio
download page and follow the instructions.

Accept the default configurations for all steps and check that all
components are installed.

https://developer.android.com/

Following the completion of the installation, the setup wizard
downloads and installs other components, including the Android SDK.
Be patient, since this procedure may take some time depending on our
internet speed.

When the installation is finished, Android Studio will launch, and we
will build our first project.

Create Our First Project
We will establish a new Android project for our first app in this stage. This
basic app displays the string “Hello Everyone” on an Android virtual or real
device’s screen.

Step 1: Begin by creating a new project

Launch Android Studio.

Click Start a new Android Studio project in the Welcome to
Android Studio window.

Choose Basic Activity (not the default). Next, click the button.

Name your application, e.g., My First App.

Check that the Language is set to Kotlin.

Leave the other fields at their default values.

Finally, click Finish.

Following these steps, Android Studio:

This command creates a folder for your Android Studio project.
This is normally in a folder named AndroidStudioProjects, which
is located beneath our home directory.

Constructs our project (this may take a few moments). Gradle is
the build mechanism used by Android Studio. The build progress
may be seen at the bottom of the Android Studio window.

Opens the code editor showing our project.

Step 2: Get our screen set up
When we initially launch our project in Android Studio, there may

be several windows and panes open. Here are some recommendations
for customizing the layout to help us get started with Android Studio.

To conceal a Gradle window open on the right side, click the
minimize button (—) in the top right corner.

Consider adjusting the pane on the left that displays the project
folders to take up less space, depending on the size of our screen.

Our screen should be less busy at this stage.

Step 3: Investigate the project’s structure and layout
The upper left side of the Android Studio window.

Android Studio has created several files for us based on our
selection of the Basic Activity template for our project. We may
examine the file structure for our app in various ways, one of which is
under Project view. Project view organizes our files and folders to
make working with an Android project easier. (This may not always
correspond to the file hierarchy! Select the Project files view by
clicking to examine the file structure.

Double-click the app folder to expand the app file structure.

We may hide or reveal the Project view by clicking Project.

The currently selected Project view is Project > Android.

In the Project > Android view, three or four top-level files
appear beneath our app folder: manifests, java, java (generated),
and res. It’s possible that we won’t see java (produced)
immediately away.

I. Expand the manifests directory. AndroidManifest.xml is located in this folder.
This file specifies all Android app’s components and is read by the Android
runtime system when your app is performed.

II. Expand java folder. All of our Kotlin language files are stored in this folder;
Android projects store all Kotlin language files in this folder, along with any Java
sources. The java subdirectory is divided into three subfolders:

com.example.myfirstapp (or whatever domain name we’ve chosen): This
folder includes our app’s Kotlin source code files.
(androidTest) com.example.myfirstapp: This is the location for
instrumented tests, which run on an Android smartphone. It begins with a
skeleton test file.

com.example.myfirstapp (test): This is the location for your unit tests. Unit
tests do not require the use of an Android smartphone to execute. It all
begins with a skeleton unit test file.

III. Unzip the res folder. This folder holds all of our app’s resources, including photos,
layout files, strings, icons, and style. It contains the following subfolders:

Drawable: This folder will hold all of our app’s pictures.
layout: The UI layout files for our activities are stored in this folder. Our
app currently has one activity with a layout file called activity_main.xml.
The content_main.xml, fragment first.xml, and fragment_second.xml are
also included.

menu: In this folder, we’ll find XML files that describe any menus in our
program.
mipmap: This folder holds our app’s launcher icons.

navigation: This folder includes the navigation graph, which instructs
Android Studio on how to move between various portions of your
application.
values: Contains resources utilized in our app, such as strings and colors.

Step 4: Construct a virtual device (emulator)

This work will develop a virtual device (or emulator) that
replicates the setup of a specific type of Android device using the
Android Virtual Device (AVD) manager.

The first step is to establish a configuration for the virtual device.

Select Tools > AVD Manager in Android Studio, or click the
AVD Manager icon in the toolbar.

Click the +Create Virtual Device button. (If we’ve already created
a virtual device, the window displays all of our current devices,
with the +Create Virtual Device button at the bottom.) The Select
Hardware window displays a list of hardware device definitions
already been setup.

Select a device definition, such as Pixel 2, and press the Next
button.

–

–

–

–
–

–

–

–

–

Select the most recent version from the Recommended option in
the System Image dialog.

If a Download link appears next to a recent release, it is not yet
installed and must be downloaded. If required, click the link to
begin the download and click Next after it is completed.
Depending on our connection speed, this may take some time.

Accept the defaults in the following dialogue box, then click
Finish.

The virtual device we installed is now visible in the AVD
Manager.

Close the Virtual Devices AVD Manager window if it is still
open.

Step 5: Run our app on our new emulator

Select Run > Run ‘app’ in Android Studio, or click the Run
button in the toolbar. When our app is operating, the icon
changes.

If a dialogue box appears stating, “Instant Run requires that the
platform matching to our target device be installed,” click Install
and proceed.

Select the virtual device configured under Available devices in
Run > Select Device. In addition, a dropdown menu is displayed
in the toolbar.

The emulator begins and boots in the same way as a hardware
device would. This may take some time, depending on the speed
of your machine. To view the progress, look for messages in the
little horizontal status bar at the very bottom of Android Studio.

EXPLORE LAYOUT EDITOR
Each screen in our Android app is often coupled with one or more pieces.
One fragment, named FirstFragment, creates the single screen that displays
“Hellofirstfragment.” When we created our new project, this was generated

for us. Each visible fragment in an Android app has a layout that specifies
the fragment’s user interface. We can design and specify layouts with
Android Studio’s layout editor.

XML is used to define layouts. The layout editor allows us to design and
alter our layout using either XML code or the interactive visual editor.

A view is an element of a layout. In this work, we’ll look at some of the
layout editor’s panels and learn how to adjust the characteristics of views.

Step 1: Open layout editor

i. Locate and access the layout folder (app > res > layout) in the
Project panel’s left side.

ii. fragment first.xml should be double-clicked.
The layout editor is comprised of the panels to the right of the

Project view. They may organize differently in our version of
Android Studio, but the purpose remains the same.

A Palette of views that we may add to our app can be seen on
the left.

Under that is a Component Tree that shows the views
currently in this file and how they are organized about one
another.

The Design editor is in the middle, and it displays a visual
depiction of what the contents of the file will look like when
combined into an Android app. We have the option of seeing the
visual representation, the XML code, or both.

iii. The three icons are located in the top right corner of the Design
editor, above Attributes:

These are the views for Code (code only), Split (code +
design), and Design (design just).

iv. Try with the various modes. Depending on our screen size and
our working style, we may opt to switch between Code and
Design or stay in Split view. Hide and expose the Palette if our
Component Tree vanishes.

v. The + and − buttons for zooming in and out are located in the
lower right corner of the Design editor. Adjust the size of what
we see using these buttons, or use the zoom-to-fit button to make
both panels fit on our screen.

The design layout displays how our app will appear on the
device on the left. The schematic representation of the layout is
presented on the right in the Blueprint layout.

vi. Try with displaying the design view, the blueprint view, and both
views side by side using the layout menu in the upper left of the
design toolbar.

Depending on our screen size and our preferences, we may
choose to show simply the Design view or the Blueprint view
rather than both.

vii. To modify the direction of the layout, click the orientation
symbol. This allows us to see how our design will look in
portrait and landscape orientations.

View the layout on different devices by using the device menu.
(This is fantastic for testing!)

The Attributes panel is on the right.

Step 2: Navigate and resize the Component Tree

i. Examine the Component Tree in fragment_first.xml. If it isn’t
visible, change the mode to Design rather than Split or Code.

This panel displays the view hierarchy in our layout, or how
the views are organized about one another.

ii. Resize the Component Tree if required to read at least some of
the strings.

iii. In the upper right corner of the Component Tree, click the Hide
symbol.

The Component Tree is now closed.
iv. Click the vertical label Component Tree on the left to restore the

Component Tree.

Step 3: Evaluate view hierarchies

i. Notice that the root of the view hierarchy in the Component Tree
is a ConstraintLayout view.

Every layout must include a root view that includes all other
views. A view group, which is a view that contains other views,
is always the root view. A view group is an example of a
ConstraintLayout.

ii. Take note that the ConstraintLayout includes a TextView named
textview first and a Button named button first.

iii. If the code isn’t visible, use the icons in the upper right corner to
switch to Code or Split view.

iv. The root element in the XML code is

Step 4: Modify the property values

i. Examine the TextView element’s attributes in the code editor.

<TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hellofirst fragment"

 ...

 />

ii. When we click on the string in the text property, we’ll see that it
corresponds to a string resource called hellofirst_fragment.

<androidx.constraintlayout.widget.ConstraintLayout>. A

<androidx.constraintlayout.widget.ConstraintLayout

 ...

 >

 <TextView

 ...

 />

 <Button

 ...

 />

</androidx.constraintlayout.widget.ConstraintLayout>

android:text="@string/hellofirst_fragment"

iii. Go To > Declaration or Usages values/strings.xml opens with the
string highlighted when we right-click on the property.

iv. Change the string property’s value to Hello Everyone.
v. Return to fragment first.xml.

vi. In the Component Tree, choose textview_first.
vii. Examine the Attributes panel on the right, and, if necessary, open

the Declared Attributes section.
viii. Notice that the string resource @string/hellofirst_fragment is still

referred to in the text field of the TextView in Attributes. There
are various advantages to storing the strings in a resource file.
We may modify the value of string without changing any other
code. Because our translators don’t need to know anything about
the app code, this simplifies translating our app to different
languages.

ix. To view the modification we made in strings.xml, restart the
program. “Hello Everyone” appears in our app now.

Step 5: Modify the text display settings

i. With textview_first still selected in the Component Tree, expand
the textAppearance field in the layout editor’s list of attributes,
under Common Attributes.

ii. Modify the text’s appearance attributes. Change the font family,
raise the text size, and pick the bold style, for example. (We may
need to scroll across the panel to see all fields.)

Change the color of the text. Enter g in the textColor field by
clicking on it.

iii. A menu appears with possible completion values beginning with
the letter g. Predefined colors are included in this list.

<string name="hellofirst_fragment">Hellofirst fragment<

iv. Press Enter after selecting @android:color/darker_gray.
v. Examine the TextView’s XML. The additional homes have been

added, as we can see.

<TextView

 android:id="@+id/textview_first"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:fontFamily="sans-serif-condensed"

 android:text="@string/hellofirst_fragment"

 android:textColor="@android:color/darker_gray"

 android:textSize="25sp"

 android:textStyle="bold"

vi. Run the app again and see the changes applied to our Hello
Everyone.

Step 6: Show all attributes

i. Scroll down until we locate All Attributes in the Attributes panel.
ii. Scroll through the list to get a sense of the properties a TextView

may have.

ADD COLOR RESOURCES
So far, we’ve learned how to update the values of properties. We will then
learn how to construct more resources, such as the string resources we dealt
with previously. Using resources allows us to reuse data in numerous
locations and specify values and have the UI update automatically anytime
the value changes.

Step 1: Include color resources
To begin, we’ll discover how to add new color resources.

Change the TextView’s text color and backdrop color.

i. In the left-hand Project panel, double-click res > values >
colors.xml to view the color resource file.

<resources>

 <color name="colorPrimary"> #7e43e6</color>

 <color name="colorPrimaryDark"> #9c8cba</color>

 <color name="colorAccent"> #75154f</color>

</resources>

The editor opens the colors.xml file. Three colors have been
defined thus far. These are the colors we’ll see in our app’s
design (e.g., purple for the app bar).

ii. Return to fragment_first.xml to view the layout’s XML code.
iii. Add a new android:background property to the TextView and

begin typing to change its value to @color. This attribute may
add anywhere in the TextView code.

A menu appears, displaying the predefined color resources.
iv. Select @color/colorPrimaryDark.
v. Change the value of the android:textColor property to

@android:color/white.
We don’t have to specify white because the Android

framework provides a variety of colors, including white.
vi. In the layout editor, we can observe that the TextView now has a

dark blue or purple background with white text.

Step 2: Create a new color to use as the screen backdrop

i. Create a new color resource named screenBackground in
colors.xml.

<color name="screenBackground"> #FFEE59</color>s

A color is defined as three hexadecimal digits (#00-#FF, or 0-
255) representing the red, blue, and green (RGB) components.
The colors associated with the code are displayed in the editor’s
left margin.

It’s worth noting that a color may also be defined with an
alpha value (#00-#FF), which signifies transparency (#00 = 0% =
entirely transparent, #FF = 100% = fully opaque). When the

alpha value is included, it is the first of four hexadecimal
numbers (ARGB).

The alpha value measures transparency. #88FFEE58, e.g.,
makes the color semi-transparent, whereas #00FFEE58 makes it
completely translucent and disappears from the left-hand bar.

ii. Return to fragment_first.xml.
iii. Select the ConstraintLayout component from the Component

Tree.
iv. Select the background property in the Attributes window and hit

Enter. In the field that displays, type “c.”
v. Select @color/screenBackground from the color choice that

opens. To finish the selection, press Enter.
vi. Click on the yellow patch.

It displays a list of the colors specified in colors.xml. Click the
Custom tab to use an interactive color chooser to select a custom
color.

vii. Change the value of the screenBackground color as desired, but
make sure that the final color is visibly different from the colors
colorPrimary and colorPrimaryDark.

Step 3: Investigate the width and height parameters

i. Now that we have a new screen backdrop color, we will adjust
the width and height parameters of views to see what happens.

Select ConstraintLayout component in the Component Tree of
fragment first.xml.

ii. Locate and expand the Layout section in the Attributes panel.
Both the layout width and layout height attributes have the

value match parent. Because the ConstraintLayout is the
Fragment’s root view, the “parent” layout size is the size of our
screen.

iii. Note that the screenBackground color is used across the
background.

iv. Choose textview first. The width and height of layout are now
wrap content, which tells the view to be only large enough to
contain its content (plus padding).

v. Set both the layout width and layout height to match constraint,
which instructs the view to be as large as the constraint.

The width and height show 0dp, and the text is moved to the
upper left, while the TextView expands to meet the
ConstraintLayout except for the button. Because the button and
the text view are on the same level of the view hierarchy within
the constrained layout, they share space.

vi. Try with what occurs when the width is match constraint and the
height is wrap_content, and vice versa. The width and height of
the button_first can also adjust.

vii. Return the TextView and the Button’s width and height to
wrap_content.

ADD VIEWS AND CONSTRAINTS
We will add two more buttons to our user interface and update the existing
button in this task.

Step 1: View the constraint properties

i. View the constraint attributes for the TextView in fragment
first.xml.

app:layout_constraintBottom_toTopOf="@id/button_first"

app:layout_constraintEnd_toEndOf="parent"

app:layout_constraintStart_toStartOf="parent"

app:layout_constraintTop_toTopOf="parent"

ii. In the Component Tree, choose textview_first and look at the
Constraint Widget in the Attributes panel.

The square represents the selected view. Each gray dot
indicates a constraint, from top to bottom, left to right; in this
case, from the TextView to its parent, ConstraintLayout, or the
Next button for the bottom constraint.

iii. When a specific view is selected, the limitations are also
displayed in the blueprint and design views. Some limitations are
jagged lines, but the one closest to the Next button is a squiggle
since it’s unusual. We’ll find out more about that in a moment.

Step 2: Add the buttons and constrain their positions
We will add buttons to the layout to understand how to utilize

constraints to connect the locations of views. Our first objective is to
create a button and some limitations and update the constraints on the
Next button.

i. Take note of the Palette in the layout editor’s upper left corner. If
necessary, adjust the edges so that we can see most of the objects
in the palette.

ii. Select some of the categories and, if necessary, peruse through
the listed items to get a sense of what’s available.

iii. Drag and drop Button, which is toward the top, into the design
view, positioning it beneath the TextView near the other button.

Step 3: Add a constraint for the new button
The top of the button will now constrain to the bottom of the

TextView.

i. Move the mouse over the top of the Button’s circle.
ii. Click and drag the top circle of the Button onto the bottom circle

of the TextView.
Because top of the button is now confined to the bottom of the

TextView, it moves up to sit just below it.
iii. Examine the Constraint Widget in the Attributes panel’s Layout

pane. It displays certain Button limitations, such as Top ->
BottomOf textView.

iv. Check the XML code for the button. It now has the property that
restricts the button’s top to the bottom of the TextView.

app:layout_constraintTop_toBottomOf="@+id/textview_firs

v. We may get the message “Not Horizontally Constrained.” Add
constraint from the left side of the button to the left side of the
screen to remedy this.

vi. Add a constraint to keep the bottom of the button at the bottom
of the screen.

Before adding another button, rename this one, so it’s easier to
tell which one is which.

i. Click on the newly added button in the design layout.
ii. Notice the id field in the Attributes tab on the right.

iii. Rename the button to the toast button.

Step 4: Make changes to the Next button
We will change the Next button that Android Studio built for us

when we created the app. The restriction between it and the TextView
is a wavy line rather than a jagged one, with no arrow. This denotes a
chain, in which the constraints connect two or more items rather than
simply one. For the time being, we will remove the chained restrictions
and replace them with regular constraints.

To delete a constraint:

In the design or blueprint view, hold the Ctrl key (Command on a
Mac) and drag the cursor over the constraint’s circle until it
highlights, then click the circle.

Alternatively, choose one of the constrained views, then right-
click on the constraint and select Delete from the menu.

Alternatively, in the Attributes panel, slide the mouse over the
constraint’s circle until it shows an x, then click it.

If we delete a constraint and then want it back, we must either
undo the operation or establish a new constraint.

Step 5: Remove the chain limitations
Click the Next button, then erase the constraint from the button’s top

to the TextView.

Remove the constraint from the bottom of the text to the Next
button by clicking on the TextView.

Step 6: Add new constraints

i. If it isn’t already, move the right side of the Next button to the
right side of the screen.

ii. Delete the constraint located to the left of the Next button.
iii. Now, constrain the Next button’s top and bottom such that the

top is confined to bottom of the TextView and bottom is
constrained to bottom of the screen. The button’s right side is
restricted to the screen’s right side.

Constrict the TextView to the bottom of the screen as well.
iv. The views may appear to hop around a lot, but this is typical as

we add and remove restrictions.

Step 7: Gather string resources

i. Locate the toast button’s text attribute in the fragment_first.xml
layout file.

<Button

 android:id="@+id/toast_button"

 android:layout_width=

 "wrap_content"

 android:layout_height=

 "wrap_content"

 android:text="Button"

ii. Take note that the text “Button” is directly in the layout field,
rather than referring to a string resource as the TextView does.
This will make translating our application into other languages
more difficult.

iii. To correct this, click the highlighted code. On the left, a light
bulb emerges.

iv. Click the lightbulb. Select Extract string resource from the option
that appears.

v. In the resulting dialogue box, update the resource name to
toast_button_text and the resource value to Toast, then click OK.

vi. Notice how the android:text property’s value has changed to
@string/toast_button_text.

<Button

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/toast_button_text"

vii. Navigate to the file res > values > strings.xml. A new string
resource entitled toast button text has been added.

<resources>

 <string name="toast_button_text">Toast</string>

</resources>

viii. Run the app to ensure that it displays as expected.
We now understand how to generate new string resources from

existing field values. (We may also manually add additional
resources to the strings.xml file.) We also understand how to
alter the id of a view.

Step 8: Update Next button
The text for the Next button is already in a string resource, but we’ll

update it to reflect its new role, which is to produce and show a
random number.

i. In the Attributes panel, change the Next button’s id from button
first to random button, just like we did with the Toast button.

ii. If a dialog box appears requesting you to update all button
usages, click Yes. Any additional references to the button in the
project code will Fix.

iii. Right-click on the next string resource in strings.xml.
iv. Go to Refactor > Rename… and rename the file random button

text.

v. To rename our string and exit the window, click Refactor.
vi. Change the string’s value from Next to Random.
vii. We may relocate random button text underneath toast button text

if we ike.

Step 9: Add third button
Our final layout will have three buttons that are vertically

constrained and evenly separated from one another.

i. In fragment_first.xml, add another button to the layout and place
it below the TextView, between the Toast and Random buttons.

ii. Use the same vertical constraints as the other two buttons.
Constrain the third button’s top to the bottom of TextView and
the bottom of the screen.

iii. Apply horizontal restrictions to the other buttons from the third
button. Constrain the third button’s left side to the right side of
the Toast button, and the third button’s right side to the left side
of the Random button.

iv. Examine the fragment first.xml XML code.
When both sides are bound in opposing directions, the “bias”

constraints enable us to alter the location of a view to be more on
one side than the other. For example, if both top and bottom sides
of a view are confined to the top and bottom of the screen, we
may apply a vertical bias to shift the view to the top rather than
the bottom.

Here is the completed layout’s XML code. Our layout may
include varying margins as well as vertical or horizontal bias
limits. For our project, the precise values of the properties for the
look of the TextView may change.

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout <?xm

<androidx.constraintlayout.widget.ConstraintLayout xmln

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

android:layout height="match parent"

http://schemas.android.com/
http://schemas.android.com/

Step 10: Get our UI for the next task

 android:layout_height= match_parent

 android:background="@color/screenBackground"

 tools:context=".FirstFragment">

 <TextView

 android:id="@+id/textview_first"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:background="@color/colorPrimaryDark"

 android:fontFamily="sans-serif-condensed"

 android:text="@string/hello_first_fragment"

 android:textColor="@android:color/black"

 android:textSize="34sp"

 android:textStyle="bold"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

 <Button

 android:id="@+id/random_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/random_button_text"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/textvi

 <Button

 android:id="@+id/toast_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/toast_button_text"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/textvi

 <Button

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Button"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toStartOf="@+id/random_

 app:layout_constraintStart_toEndOf="@+id/toast_b

 app:layout_constraintTop_toBottomOf="@+id/textvi

</androidx.constraintlayout.widget.ConstraintLayout>

The following job is to make the buttons perform something when
pressed. First, we must prepare the user interface.

i. Modify the TextView’s text to show 0 (the number zero).
ii. Move the text alignment to the middle.

iii. In the design editor’s Attributes panel, change the id of the last
button we inserted, button2, to count_button.

iv. Extract the string resource to count_button_text in the XML and
update the value to Count.

The following text and ids should now appear on the buttons:

Button Text id

Left-button Toast @+id/toast_button

Middle-button Count @+id/count_button

Right-button Random @+id/random_button

v. Run app.

Step 11: Fix errors if necessary
The issues arise because the id of the buttons has changed, and these
constraints are now referring to non-existent views.

If we see any of these issues, just update the buttons’ id in the
restrictions shown in red.

app:layout_constraintEnd_toStartOf="@+id/random_button"

app:layout_constraintStart_toEndOf="@+id/toast_button"

CHANGE THE LOOK OF THE BUTTONS AND THE
TextView
Our app’s layout is nearly complete, but it may be enhanced with a few
minor changes.

Step 1: Add new color resources

i. In colors.xml, set screenBackground to #2196F3, a blue color
from the Material Design palette.

ii. Add a new color to the palette called buttonBackground. Use the
color #BBDEFC, which is a paler tone of blue.

<color name="buttonBackground">#BBDEFC</color>

Step 2: Change the background color of the buttons
Fill in the background color for each of the buttons in the layout.

(We may either change the XML in fragment first.xml or utilize the
Attributes panel, whichever we want.)

android:background="@color/buttonBackground"

Step 3: Modify the left and right button margins
Give the Toast button a 24dp left (start) margin and the Random

button a 24dp right (end) margin. (Using start and finish rather than
left and right, these margins work in all language directions.)

The Constraint Widget in the Attributes panel is one method to
accomplish this. The number on each side represents the margin on
that side of the chosen view. Enter the number 24 into the slot and hit
Enter.

Step 4: Update the TextView appearance

i. Remove the TextView’s background color by deleting the value
in the Attributes panel or removing the android:background
property from the XML code.

When the backdrop is removed, the view background becomes
translucent.

ii. Increase the TextView’s text size to 74sp.

android:textSize="74sp"

iii. If it isn’t already, change the font-family of the TextView to sans-
serif.

iv. Add an app:layout constraintVertical bias attribute to the
TextView to slightly bias the view’s position upward so that it is
more uniformly spaced vertically on the screen. We are allowed

to change the value of this restriction as we like. (We can see
how the arrangement appears in the design view.)

app:layout_constraintVertical_bias="0.4"

v. We can also use the Constraint Widget to set the vertical bias.
Click and drag number 50 that appears on the left side, then slide
it upward until it says 30.

BENEFITS OF KOTLIN FOR ANDROID App
DEVELOPMENT
Kotlin is becoming a popular programming language among Android
developers. Despite Java’s overwhelming dominance as the go-to platform
for Android app development, Kotlin has emerged as a formidable
competitor. Java is still a popular development language for creating
Android apps. Nonetheless, Kotlin is making significant inroads into the
app development business. Java and Kotlin are now Android’s official
programming languages.

This section will discuss the most notable advantages of adopting Kotlin
over Java for Android app development. The advantages are numerous,
from ease of learning to code structure to correctness. Continue reading to
learn more.

The Benefits of Kotlin-Based Android App Development
Developers are increasingly choosing Kotlin over Java.

Kotlin compiles the same byte code as Java and may interact with it
naturally. Despite Java’s familiarity and dependability, an increasing
number of Android app developers are switching to Kotlin for its more
sophisticated capabilities. Here’s a selection of the most eye-catching.

1. Simplified and shorter code: Kotlin provides both shorter code and
improved readability. Kotlin’s official developers have been working
hard to keep the language as compact as feasible. Shorter codes offer
fewer risks of coding mistake. We may concentrate on the code’s
quality and logic rather than avoiding lengthy code-related faults.

Kotlin is statically typed programming language that is simple to
understand and write. The brevity and simplicity of the programs also
make debugging easier. Katlin’s codes can streamline the
programming process more effectively than Java. Katlin’s smooth
integrated development environment makes it feasible.

2. Java compatibility: Kotlin is entirely compatible with all Java
libraries and development frameworks. This makes it easy for
Android app development businesses to transition from Java to
Kotlin. If we are an Android developer, you may simply utilize Katlin
without making any substantial modifications, such as rewriting a
whole app. This is, in fact, one of the most significant benefits in
terms of the time and work required to change the present coding
language.

Furthermore, Katlin’s simplicity makes it exceedingly simple for
developers to understand and code. We’ll have no trouble writing
code with Katlin if we’re comfortable with Java. We may also quickly
translate Java code to Katlin. We only need lntelliJ or Android studio
to convert Java to Katlin. That’s why Katlin is being used for so many
Android development projects.

3. Elimination of null references: This is the most significant
advantages of using Katlin versus Java. Null references, called “the
billion-dollar mistake” by computer scientist Sir Tony Hoare, are a
serious impediment to high-quality code.

In Java, null references can cause a null reference exception known
as the NullPointerException (NPE). The Kotlin programming
language is intended to eliminate NPE from code. NPE might be
caused by:

A call to throw NullPointerException().

Initialization-related data consistency.

Among other things, Java interoperation attempts to access a
member of the null reference.

4. Solution for Java’s shortcomings: Kotlin improves and smartens
coding for Android app development by solving several typical Java

faults. For example, it allows us to avoid the null pointer problem.
Kotlin has effectively taken several fantastic aspects from other
languages like C# and Scala. These modifications are intended to
address some of Java’s long-standing faults. Kotlin’s coding
components, such as parameter lists and variable declarations, make it
an ideal tool for coping with Java’s problems.

5. Development of cross-platform apps: Kotlin’s development skills
extend beyond Android app development and even mobile apps.
Kotlin’s support for JavaScript interoperability allows you to move
frontend development to Kotlin. Kotlin also allows you to create
Gradle code in Kotlin. This also allows mobile app developers to
develop iOS apps. As a result, Kotlin-written cross-platform apps
offer native-like performance.

Aside from this, Kotlin supports efficient multithreading. It allows us to
synchronize many threads while simultaneously changing data. Pure
functions and immutable objects can reduce the requirement for continual
change.

INTEGRATE in-app REVIEWS
This section will show us how to add in-app reviews into our project using
Kotlin.

Set Up Our Development Environment
The Play Core SDK includes the In-App Review API. Follow the
instructions in the Kotlin section of the Play Core library documentation to
set up our development environment.

Create ReviewManager
The ReviewManager interface allows our app to initiate an in-app review
flow. Create an instance of the ReviewManagerFactory to obtain it.

val managers = ReviewManagerFactory.create(context)

Request ReviewInfo Object

To establish suitable moments in our app’s user flow to prompt the user for
a review, follow the recommendations on when to seek in-app reviews (e.g.,
when the user completes a level in a game). When our app reaches one of
these stages, create a request task using the ReviewManager object. The
API delivers the ReviewInfo object required to begin the in-app review
procedure if the request is successful.

Launch in-app Review Flow
To launch the in-app review cycle, use the ReviewInfo instance. Wait until
the user has finished in-app review flow before continuing with the usual
user flow of our app (such as advancing to the next level).

In this chapter, we covered Building Android apps in Kotlin, Benefits of
Kotlin for Android app development, and Integration with Android Studio.

val request = manager.requestReviewFlow()

request.addOnCompleteListener { task ->

 if (task.isSuccessful) {

 // We got ReviewInfo object

 val reviewInfo = task.result

 } else {

 // There was problem, log or handle error code.

 @ReviewErrorCode val reviewErrorCode = (task.getExceptio

 }

}

Val flow = manager.launchReviewFlow(activity, reviewInfo)

flow.addOnCompleteListener { _ ->

 // flow has finished. The API does not indicate whether use

 // reviewed or not, or even whether review dialog is shown.

 // Thus, no matter the result, we continue our app flow.

}

Appraisal

DOI: 10.1201/9781003308447-8

Kotlin is a popular cross-platform and statically typed programming
language. The Java Virtual Machine (JVM) is used for programming
implementations in application development. As an alternative to Java
programming, Kotlin is increasingly employed in Android app and
constructors. Because of its compatibility, low run time, and efficient
coding capabilities, Kotlin is a popular programming language.

WHAT EXACTLY IS KOTLIN?
Kotlin is one of the most significant subjects in social media and the new
future for software developers; let us go through it in depth. Kotlin is a
cross-platform statically typed programming language based on the JVM.
The JVM is widely used for developing java computer programs. Now, let’s
talk about history and development of Kotlin. Jet-brains designed and
developed it. The programming language is named Kotlin after the island of
the same name near St. Petersburg. The Java computer language was named
after the Indonesian island of Java. In the current industry, it might be
considered the successor of Java.

HISTORY
The Kotlin language was initially introduced in 2011 by the business
JetBrains; if we’re unfamiliar with them, they were previously known as the
creators of the popular IntelliJ IDEA and are now equally well-known as
the inventors of the Kotlin language.

https://doi.org/10.1201/9781003308447-8

Although their initial release was in 2011, it wasn’t until 2016 that Kotlin
v1.0 was released, the first official release for which JetBrains would
guarantee backward compatibility; the Kotlin release versioning method
can be seen here. Kotlin is presently at version 1.5, and the following
timelines compare Kotlin’s release cycle to JDK’s release cycle.

UNDERSTANDING
These may be executed on an open-source platform and are mostly regarded
as a Java substitute. It may combine with both Java and Javascript programs
and Java libraries. Kotlin has its libraries that may access via the
Application programming interface. The program in Java is redundant and
repeated in nature, resulting in long code, whereas Kotlin is more simple
and current, making it readily accessible by newcomers. It primarily
focuses on decreasing functional code while also removing repetitive code.
Kotlin protects null points by removing null point exceptions and the
semicolons (;) required in Java code but can be ignored. There is no
problem if the user uses it by default.

HOW DOES KOTLIN MAKE WORK SO SIMPLE?
Google officially announced it as the programming language used for
Android development. Please explain how Kotlin can make our work more
accessible and more comfortable. The Kotlin language program is short and
gives the programmer greater conveniences through built-in apps. Lengthy
Java applications may develop in a short time with the help of Kotlin. That
is, it consumes less code while producing the same outputs. Shortcode
needs less time to write, which is directly related to financial
considerations.

WHAT IS THE IMPORTANCE OF KOTLIN?
Understanding the usage of Kotlin, the successor to Java, would be simpler
when learned by comparing Java with Kotlin. This may use both on the
source and client sides. It is simple to use on any operating systems,
including iOS, macOS, and embedded systems. People utilize it in server-
side apps, java scripts, and data science.

Kotlin requires less code and has fewer bugs. It also allows test-driven
development, which further minimizes the number of bugs. Even if you
make a mistake when coding the code, we can quickly correct it. Because of
its shortcode and fewer issues, it is simple to maintain and can thus be
handled by a new team. It also supports multiple plugins, making life much
easier. With so many applications, any developer prefers this language.

WHAT ARE THE POSSIBILITIES FOR KOTLIN?
In reality, there are several domains where Kotlin may play a major role. It
may utilize in practically every situation where Java is used.

Let us look at some examples of how it may utilize:

In scientific Game creation

Data examination

Reusing code from Android apps in iOS

Systems that are embedded

Web apps such as Netflix

KOTLIN FOR THE SERVER-SIDE
Kotlin is a fantastic choice for creating server-side apps since it enables us
to create expressive and simple code while staying completely interoperable
with current Java-based technology stacks and having a short learning
curve:

Expressivity: The innovative language features of Kotlin, like type-
safe constructors and delegated properties, enable the creation of
robust and simple abstractions.

Scalability: Kotlin supports, step-by-step transfer of large Java
codebases to Kotlin. We could start writing new code in Kotlin while
keeping current pieces of our system in Java.

Tooling: Via addition to generic IDE support, Kotlin offers
framework-specific tooling (e.g., Spring) in the IntelliJ IDEA Ultimate
plugin.

Learning Curve: For Java developer, getting started with the Kotlin is
pretty straightforward. The automated Java to Kotlin converter in the
Kotlin plugin helps in the early stages. Kotlin Koans guide us through
the main aspects of the language through a series of interactive games.

WORKING WITH KOTLIN?
It mainly works with:

Data types, operators, and I/O comments

Expressions such as if, when, while, for, break, and continue

Function calls, recursions, and arguments

Constructors, Classes, Objects, Companions, Extensions, and so on.

WHAT ARE THE BENEFITS OF KOTLIN?
Kotlin was created due to Lead Developer Dmitry Jemerov’s search for
functionality that he couldn’t find in the Java. Scala, another language that
runs on the JVM, came close, but compiling took too long.

Jemerov desired a language with all of the characteristics of more recent
programming languages, which could operate on the JVM and compile as
quickly as Java. As a result, he developed his language, Kotlin.

On the Android operating system, Kotlin was designed to replace Java. In
2019, Google ultimately agreed with Jemerov and most Android developers
and proclaimed that Kotlin was the ideal language for Android app
development eight years after it was launched.

Here are some of the reasons why developers choose Kotlin over Java:

Kotlin is succinct, which saves time spent creating boilerplate code in
Java.

A script may use to convert a Java file to a Kotlin file.

There is no runtime overhead with Kotlin. Adding features to a
language can sometimes result in increased overhead, which reduces
efficiency. Not the case with Kotlin.

Kotlin has a large community. If we get stuck, we may obtain support
from other developers on coding forums and social networks.

Kotlin makes asynchronous programming more accessible. Making
asynchronous network and database calls in Java is cumbersome and
inconvenient. Coroutines in Kotlin make asynchronous programming
efficient and straightforward.

Nulls are handled in Kotlin. If we don’t plan for a null in Java, it might
cause a program to crash. To avoid these problems, we may add a
simple operator to variables null in Kotlin.

Kotlin can operate on a variety of systems. Kotlin can run everywhere
Java can, allowing us to create cross-platform programs.

It is simple to transition to Kotlin. Because Kotlin is entirely
compatible with Java, we do not need to replace all of our code at
once. We may gradually move an application to Kotlin.

WHAT IS THE PURPOSE OF KOTLIN?
Kotlin is intended to operate on a JVM and can coexist alongside Java.
Although Kotlin began as a language for Android development, its features
quickly spread beyond the Java community, and it is now utilized for a wide
range of applications.

Android Development
Kotlin is the recommended language for Android development because it
allows developers to produce more concise, expressive, and secure code.
Android Studio, the official IDE for Android development, fully supports it,
so we can receive the same sort of code completion and type checking to
assist us to create Kotlin code as we can with Java.

Because more people now access the Internet via mobile phones, most
companies must have a mobile presence. Because Android accounts for
more than 70% of the mobile phone market, Kotlin developers would be in
great demand even if Kotlin was solely used for Android development. It
may, however, be used for much more.

Web Development on the Back-End
Back-end web development in Java is common, with popular frameworks
such as Spring. However, since it was simpler to work with, Kotlin made
inroads into server-side web development.

The language’s contemporary capabilities enable Web Developers to
create apps that expand fast on commodity hardware. Because Kotlin and
Java are compatible, we may gradually migrate an application to use Kotlin
one file at a time while the remainder of the program continues to use Java.

Kotlin works with the Spring and other frameworks, so migrating to
Kotlin does not need to redesign our existing code completely. Google,
Amazon, and many more organizations have already replaced Java in their
server-side code with Kotlin.

Full-Stack Web Development
Kotlin makes sense for server-side web development. After all, Java has
been around since the beginning. We may still use Kotlin for front-end
programming using Kotlin/JS.

Kotlin/JS gives developers type-safe access to a sophisticated browser
and online APIs. Full-Stack Developers simply need to be familiar with
Kotlin. They can create front-end code in the same language as back-end
code, and it will be compiled to JavaScript to execute in the browser.

Data Science
Data Scientists have long used Java to crunch information, discover
patterns, and make predictions, so it seems to reason that Kotlin will find a
home in the field as well.

Data Scientists can utilize all of the normal Java libraries used in Java
projects, but they must develop their code in Kotlin. Jupyter and Zeppelin,
two tools that many Data Scientists regularly utilize for data visualization
and exploratory study, support Kotlin.

Mobile Development for Multiple Platforms
Kotlin Multi-platform Mobile is a software development kit for building
cross-platform mobile applications. This implies that we’ll be able to

generate apps that operate not only on Android phones but also on iPhones
and the Apple Watch from a single Kotlin codebase. This is still in its early
stages, but it has a lot of potential.

Features Java Kotlin
Primitive
Type

In Java, primitive types are not objects. Objects are primitive types.

Product It is an Oracle Corporation product. It is a JetBrains product.
Used For It is used to create both standalone and

enterprise applications.
It is used to create server-side apps as
well as Android applications.

Compilation
Time

Java’s compilation time is relatively short. Its compilation time is slower than that of
Java.

File
Extensions

Java employs the following file extensions:
.java (for source files), .class (for class
files), and .jar (for archived file).

Kotlin utilizes the following file
extensions: .kt (for Kotlin source files),
.kts (for Kotlin script file), and .ktm (for
Kotlin module).

Checked
Exceptions

The try-catch block in Java is used to handle
the checked exception.

It is not necessary to catch or declare any
exceptions.

Concise In comparison to Kotlin, the code is not as
concise.

It decreases the amount of boilerplate
code.

Extension
Function

If we want to enhance the functionality of an
existing class, we must build a new class
and inherit from it. As a result, Java does not
support the extension function.

Using the extension method, we may add
additional functionality to a class.

Widening
Conversion

Java enables implicit conversion, which
allows us to convert a smaller type to a
larger one.

Kotlin does not support implicit
conversion. As a result, we cannot
transform the smaller type into a larger
one.

Code
Comparison

The line of code is just doubled in
comparison to Kotlin.

It cuts the code line in half.

Community
Support

Java has a sizable user community. Its community is not as large as that of
Java.

Casting In Java, we must identify and execute the
casting.

Kotlin enables smart casting, which
implies that it automatically detects
immutable types and executes implicit
casting.

Type
Interface

The data type must specify explicitly. It is not necessary to explicitly indicate
the type of variable.

Null Values We can provide variables with null values,
but we can’t give objects null values.

We are unable to assign null values to
any variables or objects.

Ternary
Operator

It’s only accessible in Java. The ternary operator is not supported.

Features Java Kotlin
Coroutines
Support

Java’s multithreading functionality
complicates matters since controlling several
threads is a demanding process. If we start a
long-running demanding task, such as
network I/O or CPU activities, Java stops
the thread.

We can create many threads (long-
running heavy activities) in Kotlin just
like we do in Java, but coroutine can stop
a thread execution at a certain point
without blocking the other threads.

Functional
Programming

Java is not a functional programming
language.

It is a programming language that
combines functional and procedural
elements.

Data Classes If we merely require a class to contain data,
we must define getter and setter methods,
constructors, and other functions.

In Kotlin, we accomplish the same thing
by declaring the class with the keyword
Data. The compiler handles the rest of
the job, such as constructing constructor,
getter, and setter methods for the fields.

IS KOTLIN STILL VALUABLE IN 2022?
Yes, considering the ubiquity of Android and the beginner-friendly nature
of Kotlin, it is unquestionably worthwhile to learn in 2022. Learning Kotlin
will take us only a few weeks if we are seasoned programmers fluent in
Java. Indeed, Kotlin is beginning to outperform several popular languages,
including Java. As a result, 2022 is an excellent year to study Kotlin.

The need for mobile developers grows in tandem with the demand for
Android apps. Android applications provide a wide range of functions in
the digital industry, from data retrieval to security to provide a pleasing user
experience.

So, if we want to be a successful Android developer, we need to know
Kotlin.

FIVE REASONS WHY WE SHOULD LEARN KOTLIN
We may be wondering why we should learn Kotlin instead of other popular
programming languages such as Python, C++, and Java as a programmer.
Continue reading to discover the top five reasons Kotlin is worthwhile to
learn.

Simple to Understand
Compared to more sophisticated programming languages, Kotlin’s grammar
is simple to grasp. As a newbie, we will rapidly learn and use it for app

development. Kotlin will help us improve our programming abilities if
we’re seasoned developers. It’s straightforward to know if we’ve worked
with Python or Java before.

Ample Resources
If we want to study Kotlin, there are several resources available online. We
will have no trouble finding resources to learn Kotlin whether we join in a
Bootcamp, sign up for an online course, or self-study through online
tutorials.

Community
When it comes to Kotlin, there is a sizable developer community. There are
Kotlin communities throughout the world, and these platforms allow
professionals of different skill levels to help one another. Furthermore, we
will have the opportunity to network with experienced programmers who
may give free mentorship.

Prospective Careers
Kotlin developers are in great demand. As Kotlin developers, we will have
a wide range of job options accessible to us. We will discover a suitable job
opportunity whether we seek work in mobile development, game
development, or web development. Furthermore, Kotlin developers may
expect to earn between $120,000 and $166,000 per year.

Modern Programming Language
Kotlin is a contemporary programming language that combines object-
oriented and functional programming to produce a robust, feature-rich
language. Among these benefits include easy syntax, general-purpose
application, and cyber security. Furthermore, Kotlin may utilize cross-
platform programming.

IS IT WORTHWHILE TO LEARN KOTLIN?

Yes, Kotlin is worth learning, especially if we design mobile apps. Kotlin is
an easy-to-learn, flexible programming language that is the leading force in
Android app development. Kotlin provides a strong foundation for future
potential as Google’s preferred programming language. Additionally, Kotlin
developers are in great demand.

ADVANTAGES OF KOTLIN FOR MULTIPLATFORM

Modular integration: Kotlin is a SDK rather than a framework is
perhaps its most important benefit. This means that teams with existing
apps may add a module or relocate a tiny section to explore its
possibilities without making a significant commitment. This greatly
assists Kotlin in overcoming the most major obstacle to transitioning
to a new codebase.

Learning curve: Kotlin is already a popular programming language,
and its syntax is strikingly similar to those of other popular languages
like Swift and Java. This lowers the barrier to entry and encourages
developers to utilize Kotlin as an alternative.

A unified codebase for business logic: By definition, cross-platform
development solutions allow us to utilize a single code base across
many systems, and Kotlin Multiplatform is no exception. The
advantage of adopting Kotlin is that we can share functionality and
libraries behind the UI layer. This enables developers to interface with
their local environment directly.

Native UI experience: Unlike other cross-platform options like
Flutter, Kotlin Multiplatform does not impose a UI on developers. It
allows us to use native UI components as if we were creating natively.

Improved performance: By utilizing native components, Kotlin-
written apps may perform as well as natively developed apps. This is a
widely desired advantage for many developers that want to produce
anything more significant than an MVP.

POTENTIAL REASONS TO USE KOTLIN

Write Less Code: Every developer wants to write the least amount of
code feasible while still accomplishing the goal. Kotlin lets us write
the least amount of code possible, enhancing app speed.

Adoption Ease: It is relatively simple to migrate the existing Android
app code to Kotlin.

Supports Functional Programming: Kotlin supports functional
programming by allowing developers to simply and swiftly handle
tasks.

Complete Java Compatibility: Developers may utilize all Java
libraries and frameworks when working in Kotlin.

No Runtime Overhead: There is no runtime overhead since Kotlin
has a minimal library, and most of the hard lifting is done during
compilation.

Multi-Platform Compatibility: Kotlin is compatible with Android
development and with JavaScript and Gradle.

Less Error-Prone: Kotlin is less error-prone because the language
itself removes a few frequent coding errors; also, the developer’s error
risks are lowered when a developer needs to write less code.

HOW COULD KOTLIN BECOME ANDROID’S NEW
“PYTHON” FOR MACHINE LEARNING?
If we enjoy programming, creating ML algorithms will sound exciting. First
and foremost. Assume you’re about to build a Decision Tree Classifier in
Python. Why would we do that? We’ll most likely use NumPy for array
manipulation and Pandas for data processing. Some people may employ
scikit-DecisionTreeClassifier. Learn’s If we want to build a decision tree
from scratch, Python is an excellent choice.

Like other programming languages, Python does not need us to identify a
variable’s data type explicitly.

It also has many programs available via pip, so save our lives! However,
as the number of edge devices around us grows, we will likely have to build
ML algorithms for iOS, Android, and Rasberry Pi. Working with arrays on
Java might be a pain when it comes to Android. Then there’s Kotlin.

Android now has a new programming language. It includes simple array
manipulation techniques, making it powerful and developer-friendly. Its
syntax is also similar to Python’s. This section will learn about several
fantastic Kotlin functions that can help us in our ML adventure on Android.

1. Element mapping in an array: We can utilize Kotlin’s map function
to do picture categorization or detection on some of our users’ photos.

In Java, we’ll most likely need to construct a for loop that iterates
over the files, converting them to Bitmap one by one.

Various ML methods rely on computing the minimum, maximum, and
average of integers contained in an array. We can have the argmax
function, as well as the max and min functions in Python, in Kotlin.

// Create File object for images directory

val imageDir = File("path_to_image_dir").listFiles()

// Map files to the Bitmaps.

val bitmaps = imageDir.map { file -> BitmapFactory.decodeFi

// at once resize them.

val resizedBitmaps = bitmaps.map { image -> Bitmap.createSc

val p1 = floatArrayOf(8f, 2f, 2.3f, 0.001f)

// Compute-mean

val mean = p1.average()

// Compute sum of all the elements

val sum = p1.sum()

// Compute-min/max

val max = p1.max()

val min = p1.min()

// Normalize values

val normalizedValues = p1.map { ai -> (ai - min) / max }

// Index of max element (useful in classification)

val argmax = p1.indexOf(max)

// Filter elements greater than 2

p1.filter { xi -> xi > 2f }

// Use the map() successively to normalize multi dim arrays

// An image (W * H * 3) could be an example

val multiDimArray = arrayOf(

 arrayOf(

 floatArrayOf(1f, 2f, 3f)

),

 arrayOf(

 floatArrayOf(4f, 5f, 6f)

2. Array filtering: For example, in a decision tree method, the
probability of a certain element in an array is required for computing
information gain. Similarly, term frequencies and IDFs must be
calculated for TF-IDF. The count and filter methods in Kotlin make it
easy to work with probabilities and frequencies of array elements.

Filtering is also beneficial when preparing data for an NLP model.
The filter function might use to do tokenization, stop word removal,
and punctuation tasks.

An example of creating a (word, frequency) vocabulary and storing it
as a HashMap<String,Int>

),

 arrayOf(

 floatArrayOf(9f, 10f, 2f)

)

)

val normalizedMultiDimArray = multiDimArray.map {

 column -> column.map {

 row -> row.map {

 element -> element / 255f

} } }

val labels = arrayOf("Rainy", "Cloudy", "Thunder", "Cloud

// Compute the probability of "Rainy"

val p1 = labels.count { it == "Rainy" } / labels.size

// Compute probabilities of all the elements

val p1Labels = labels.map {

 label -> labels.count { it == label } / labels.size

}

// s1 -> The sentence provided by the user

val sentence = s1.trim().toLowerCase()

// Tokenize sentences

var tokens = sentence.split(" ")

// Remove all the punctuation/numbers

tokens = tokens.map { Regex("[^A-Za-z0-9]").replace(it,

// Remove all the stopwords

tokens = tokens.filterNot { !englishStopWords.contains(it.

// Filter the empty tokens

tokens = tokens.filter { it.trim().isNotBlank() }

// Build (word frequency) table given 'words'

3. Coroutines in Kotlin: Kotlin Coroutines can assist us in running ML
models on background threads, resulting in a superior user
experience. We’ll want to execute it asynchronously if we’re using a
model to improve an image’s resolution (super-resolution).

WHY SHOULD WE USE KOTLIN INSTEAD OF JAVA?
It is a compiled language, so we must compile the code before running it.
The source code is kept in a file with the extension .kt. Developers prefer
Kotlin over Java because it offers less coding risks. The language enables
developers to write less code while maintaining project quality.

Kotlin developers are in great demand in the IT industry. Almost every
mobile app development business prefers to hire developers to create apps
in Kotlin for Android. These businesses strive to capitalize on every
available opportunity. The need for Kotlin developers is really strong.

To become a Kotlin developer, we must have the following skills:

We must be familiar with OOPs principles such as design patterns,
extension functions, invariant arrays, etc.

It is necessary to be familiar with the Android features such as APIs,
Android Studio, Flutter, and the NDK.

It is required to have a basic grasp of XML files, JSON, and online
services.

It is necessary to be familiar with multithreading, navigation
components, data binding libraries, cloud services, and automated
testing.

Data structure and algorithm knowledge are also required.

// Build (word, frequency) table given 'words'

fun buildVocabs(words : Array<String>) : HashMap<String,I

 val sortedWords = words.toSet()

 val vocabs = HashMap<String,Int>()

 for (word in sortedWords){

 vocabs[word] = words.count { it.equals(word) }

 }

 return vocabs

}

WHY DID GOOGLE SEEK SOMETHING MORE
ADVANCED THAN JAVA?
To begin with, Google does not want to eliminate the entire Java ecosystem,
though it wishes it could. However, it has always sought better alternatives
to the Java programming language for android app development.

It may have started in 2010, when Oracle, the new owner of Sun
Microsystems, sued Google for stealing the Java API used to construct the
Android operating system. The nine-year-old court struggle has taken many
twists and turns. Google’s most effective defense in the lawsuit was that the
APIs were not copyrighted. On the other hand, Oracle argued that they were
not and that Google did not license the Java API before utilizing it.

This does not imply that we will lose Android if Oracle wins the case
because Google avoided such a scenario by creating all versions of
Android, beginning with Android 7.0 (Nougat) with an open-sourced
version of the JDK (Java Development Kit).

Nonetheless, Google has long desired to distance itself from the
ecosystem. Java is a nearly ubiquitous programming language. But, whether
android developers detest it or avoid it, the need for Java persists in some
form or another. That is why they needed to discover something that
complements rather than replaces Java. A language that is more enjoyable
to use than Java and is compatible with it, Kotlin was born.

WHY DID GOOGLE CHOOSE KOTLIN AS THE
PREFERRED LANGUAGE FOR DEVELOPING ANDROID
APPS?
Kotlin isn’t a brand-new language created by Google. It is an open-source
language developed in 2011 by JetBrains (a well-known Google
development partner). But it didn’t get the respect it deserved until Google
announced Kotlin, along with Java and C++, as an official language for
Android app development at its annual I/O event in 2017.

There has been no turning back for the Kotlin since then. What made the
meal even better was that Kotlin received full support from the IDE. This
was because JetBrains, the firm responsible for Kotlin, also created the core
of Android Studio, namely IntelliJ.

Google and JetBrains’ involvement and support for Kotlin guaranteed
that Android developers could simply transition from Java to Kotlin. Soon
after, Android developers began to recognize the advantages of Kotlin over
Java for Android app development, including the following:

In contrast to the verbosity of Java coding, developers may write
succinct yet expressive code.

The NullPointerException was a big source of contention for Java for
Android app development. Kotlin addresses this issue by requiring
developers to allow null variables, eliminating any potential
difficulties expressly.

It’s difficult for developers to switch to new languages, mainly when
writing Android apps in an old language like Java. The Android
Studio’s Java to Kotlin conversion functionality, allowing developers
to transform Java code directly into Kotlin, quickly fixed this issue.

These and other significant features finally led to 50 percent of Professional
Android developers switching to Kotlin and embracing the transition.
Kotlin is one of today’s most popular programming languages, according to
the findings.

THE FUTURE OF ANDROID APP DEVELOPMENT USING
KOTLIN
Google’s intention in releasing Kotlin and pushing its adoption in Android
app development is not to replace Java. But it just requires something to
accompany the former.

Kotlin runs on the JVM; therefore, the new programming language won’t
make much of a difference for end-users. As a result, comparing Kotlin to
Java, as has recently occurred, is not even fair. Java is Kotlin. We can have
our Kotlin code translated to Java, and your Kotlin code will still execute
on the JVM.

However, it is undeniable that Kotlin is one of the fastest developing
programming languages. Kotlin has risen to the top 50 programming
languages in the TIOBE ranking in just six years. This demonstrates
Kotlin’s promise as a fun, productive programming language for producing
Android apps.

Is this increase sustainable, or will another future language surpass
Kotlin? For the time being, it appears that such a situation is unlikely. On
the other hand, Oracle understands the importance of Java in android app
development and beyond. So it shouldn’t be too difficult for them to launch
Java with a few enhancements in its next version to compete with Kotlin.

To sum, Kotlin became Google’s recommended mobile app development
language because Google wanted it to! Kotlin was created to be superior to
Java. It was intended to be a rung on which android app development firms
might climb to move away from Java and onto something purportedly
superior.

KOTLIN FEATURES SURVEY 2021 RESULTS

The Most Desired Characteristics
The following are the top three features:

Types of multicatch and union (45 percent)

Literals from a collection (32 percent)

Extension functions and attributes have many recipients (30 percent)

The features in the fourth through ninth positions on the list, on the other
hand, received a lot of support from the community. The six features at the
bottom of the list garnered much less votes. Some of them, such as Lateinit
for nullable and basic types and Overloadable bitwise operators like I and
&, ended up in the top three most disliked features.

Because there are other ways to implement the Multicatch and union
types functionality, we asked the Kotlin community to vote on which of the
two options they preferred:

Eighty-seven percent voted in favor of union types, which would allow
you to write a function that returns one of the available values without
introducing a separate ParseResult type at all.

Because current Java APIs don’t exploit exceptions as extensively as
they used to, 13 percent proposed that we make no special adjustments
for exceptions (and older ones will eventually supersede). They would

prefer a succinct enum-like syntax for defining sealed classes, making
it easier to build Kotlin-style error-returning methods.

EXAMPLES IN KOTLIN FOR MULTIPLATFORM

Apps for Android and iOS
One of the most common Kotlin Multiplatform use cases is code sharing
between mobile platforms. We may use Kotlin Multiplatform Mobile to
create cross-platform mobile apps and share common code between
Android and iOS, such as business logic and connections.

Full-Stack Web Apps
A linked application where the logic may reuse on both the server and the
client-side running in the browser is another example where code sharing
may be advantageous. Kotlin Multiplatform also handles this.

Cross-Platform Libraries
Library writers can also benefit from Kotlin Multiplatform. We may build a
multiplatform library with shared code and platform-specific
implementations for the JVM, JS, and Native platforms. Once released, a
multiplatform library can utilize as a dependency in other cross-platform
applications.

Mobile and Web Applications Use the Same Code
Sharing same code across Android, iOS, and web apps is another prominent
use case for Kotlin Multiplatform. It decreases the amount of business logic
coded by frontend developers and aids in effectively implementing products
by reducing coding and testing requirements.

Cheat Sheet

DOI: 10.1201/9781003308447-9

IN THIS CHAPTER
➢ Kotlin cheat sheet
➢ Interoperability with Java

In this section, we provide some useful Kotlin code snippets, as well as
discuss its interoperability with Java.

BASICS
“Hello, Everyone” program

fun main(args: Array<String>) {

println("Hello, Everyone")

}

Declaring function

fun sum(x: Int, y: Int): Int {

 return x + y

}

Single-expression function

fun sum(x: Int, y: Int) = x + y

Declaring variables

https://doi.org/10.1201/9781003308447-9

val name = "Mehak" // Can't be changed

var age = 12 // Can be changed

age++

Variables with nullable types

var name: String? = null

val length: Int

length = name?.length? : 0

// length, or 0 if the name is null

length = name?.length? : return

// length, or return when the name is null

length = name?.length? : throw Error()

// length, or throw error when the name is null

CONTROL STRUCTURES
If as an expression

fun bigger(x: Int, y: Int) = if (x > y) x else y

For loop

val list = listOf("X", "Y", "Z")

for (element in list) {

 println(element)

}

When expression

When expression with predicates

fun signAsString(a: Int)= when {

a < 0 -> "Negative"

 a == 0 -> "Zero"

 else -> "Positive"

}

fun numberTypeName(a: Number) = when(a) { 0 -> "Zero" // Equalit

in 1..5 -> "Five or less" // Range check

6, 7, 8 -> "Six to eight" // Multiple-values

is Byte -> "Byte" // Type check

 else -> "Some number"

}

CLASSES
Primary constructor

val declares read-only property, var mutable one

class Persons(val names: String, var ages: Int)

// names is read-only, ages is mutable

Inheritance

open class Persons(val names: String) {

 open fun hello() = "Hello, My name is: $name"

 // Final by default so, we need open

}

class PolishPersons(name: String) : Persons(names) {

 override fun hello() = "Rzein’ robry, kestem $names"

}

Properties with assessors

class Persons(var names: String, var surnames: String) {

 var fullName: String

 get() = "$names $surnames" set(values) {

 val (first, rest) = values.split(" ", limit = 2)

 names = first

 surnames = rest

 }

}

Data classes

data class Persons(val names: String, var ages: Int)

val mike = Persons("Kiran", 29)

Modifier data adds

1. toString that displays all the primary constructor properties

print(kiran.toString()) // Person(name=Kiran, age=29)

2. equals that compares all the primary constructor properties

print(kiran == Persons("Kiran", 29)) // True

print(kiran == Persons("Kiran", 24)) // False

3. hashCode that is based on all the primary constructor properties

val hash = kiran.hashCode()

print(hash == Persons("Kiran", 23).hashCode()) // True

print(hash == Persons("Kiran", 21).hashCode()) // False

4. component1, component2 etc. that allows the deconstruction

5. copy that returns copy of object with the concrete properties changed

val drake = kiran.copy(name = "Drake")

COLLECTION LITERALS

COLLECTION PROCESSING
students

 .filter { it.passing && it.averageGrade > 5.0 }

 // Only passing-students

 .sortedByDescending { it.averageGrade }

 // Starting from ones with the biggest grades

 .take(10) // Take-first 10

 .sortedWith(compareBy({ it.surnames }, { it.names }))

 // Sort by surnames and then names

val (names, ages) = kiran print("$names $ages") // Kiran 29

listOf(1,5,2,4) // List

<Int> mutableListOf(1,5,2,4) // MutableList<Int>

setOf("X", "Y", "Z") // Set<String>

mutableSetOf("X", "Y", "Z") // MutableSet<String>

arrayOf('x', 'y', 'z') // Array<Char>

mapOf(1 to "X", 2 to "Y") // Map<Int, String>

mutableMapOf(1 to "X", 2 to "Y")

// MutableMap<Int, String> sequenceOf(4,6,2,1) // Sequence<Int>

1 to "X" // Pair<Int, String>

List(4) { it * 2 } // List<Int>

generateSequence(4) { it + 2 } // Sequence<Int>

generateSequence(0) { it + 1 }

// Infinitive sequence of the next numbers starting on 0

 .filter { it % 2 == 0 } // Keep even only

 .map { it * 3 } // Triple-every one

 .take(100) // Take-first 100

 .average() // Count-average

Most important functions for collection processing

val l = listOf(11,22,33,44)

filter - returns only the elements matched by predicate

l.filter { it % 2 == 0 }

map - returns elements after the transformation l.map { it * 2 }

flatMap - returns elements yielded from the results of trans.

l.flatMap { listOf(it, it + 10) }

fold/reduce – accumulates-elements

l.fold(0.0) { acc, i -> acc + i }

l.reduce { acc, i -> acc * i }

forEach/onEach - performs an action on every element l.forEach {

l.onEach { print(it) }

partition - splits into the pair of lists

val (even, odd) = l.partition { it % 2 == 0 }

print(even)

print(odd)

min/max/minBy/maxBy

l.min()

l.minBy { -it }

l.max()

l.maxBy { -it }

l.first { it % 2 == 0 }

count - count the elements matched by predicate l.count { it % 2

sorted/sortedBy - returns the sorted collection listOf(2,3,1,4).

l.sortedBy { it % 2 }

groupBy - group elements on the collection by key

l.groupBy { it % 2 }

distinct/distinctBy - returns unique elements only

listOf(1,1,2,2).distinct()

Mutable vs immutable collection processing functions

val list = mutableListOf(3,4,2,1)

val sortedResult = list.sorted() // Returns sorted println(sorte

println(list)

val sortResult = list.sort() // Sorts mutable collection println

println(list)

EXTENSION FUNCTIONS TO ANY OBJECT
val dialog = Dialog().apply {

title = "Dialog-title"

onClick { print("Click") }

}

Returns Reference to Receiver Receiver Result of Lambda
it also let
this apply run/with

FUNCTIONS
Function types

Function literals

Extension functions

fun Int.isEven() = this % 2 == 0

print(2.isEven()) // true

()->Unit - takes no-arguments and returns nothing (Unit).

(Int, Int)->Int - takes two-arguments of type Int and returns In

(()->Unit)->Int - takes the another function and returns Int.

(Int)->()->Unit - takes the argument of type Int

and returns function.

val add: (Int, Int) -> Int = { x, y -> x + y }

// Simple lambda-expression

 val printAndDouble: (Int) -> Int = {

 println(it)

 // When the single-parameter, we can reference it using 'it

 it * 2 // In lambda, last expression is returned

}

// Anonymous function alternative

val printAndDoubleFun: (Int) -> Int = fun(x: Int): Int {

println(x) // Single argument can't be referenced by 'it'

return x * 2 // Needs return like any function

}

val x = printAndDouble(10) // 10

print(x) // 20

fun List<Int>.average() = 1.0 * sum()

print(listOf(1, 2, 3, 4).average())

DELEGATES

VISIBILITY MODIFIERS
Modifier Class members Top-level
Public Visible-everywhere Visible-everywhere
Private Visible only in

same class
Visible only in
same class

Protected Visible only in same class and subclasses Not-allowed
Internal Visible in the same module if the class is accessible Visible in the same module

VARIANCE MODIFIERS

Lazy - calculates the value before first usage

val x by lazy { print("init "); 10 }

print(x) // Prints: init 10

print(x) // Prints: 10

notNull - returns the last setted value or throws an error if no

observable/vetoable - calls the function every time value change

var name by observable("Unset") { r, old, new ->

println("${r.name} changed $old -> $new")

}

name = "Mehak"

// Prints: name changed Unset -> Mehak

Map/MutableMap - finds the value on map by property name

val map = mapOf("a" to 10) val a by map

print(a) // Prints: 10

Long Description Unnumbered Figure 12

Interoperability of Java
Kotlin code is entirely interchangeable with Java code. Existing Java code
can readily call from Kotlin code, and Kotlin code may also call usually
from Java code.

Calling Java Code from the Kotlin
Invoking a Java void function from a Kotlin file.

When you call java code from Kotlin, and the return type is void, it will
return Unit in the Kotlin file. If you wish to return that value, the Kotlin
compiler will allocate it to a Kotlin file and return Unit. As an example:

Kotlin code: (My_Kotlin_File.kt)

fun main(args: Array<String>) {

val sum= My_Java_Class.add(15, 20)

println("printing sum inside Kotlin: "+sum)

}

Java code: (My_Java_Class.java)

public class My_Java_Class {

 public static void main(String[] args){

 }

 public static void add(int x,int y){

int result = x + y;

System.out.println("printing inside the Java class :"+result);

 }

}

Invoking the Java int Function from a Kotlin Code
When a java code of int or another type (rather than void) is called from a
Kotlin file, the result is returned in the same kinds. Calling an area() method
of a Java class from a Kotlin file, for example, produces an int result.

Kotlin code: (My_Kotlin_File.kt)

fun main(args: Array<String>) {

val area: Int = MyJavaClass.area(13, 24)

println("printing area from java insideKotlin file: "+area)

}

Java code: (My_Java_Class.java)

public class My_Java_Class {

 public static void main(String[] args){

 }

 public static int area(int l, int a){

int result = l * a;

 return result;

 }

}

Kotlin Code Invokes a Java Class Included within the Package
If we want to call Java programs from Kotlin files in separate packages, we
must import the package name together with the Java class within the
Kotlin file.

For example, a Java class My_Java_Class.java is contained within the
package myjavapackage, and a Kotlin file My_Kotlin_File.kt is included
within the package mykotlinpackage. In this example, importing
myjavapackage is required when invoking Java code from a Kotlin file.
My_Java_Class is included within a Kotlin file.

Kotlin code: (My_Kotlin_File.kt)

package mykotlinpackage

import myjavapackage.My_Java_Class

fun main(args: Array<String>) {

val area: Int = My_Java_Class.area(3, 4)

println("printing area from java inside Kotlin: "+area)

}

Java code: (My_Java_Class.java)

package myjavapackage;

public class My_Java_Class {

 public static void main(String[] args){

 }

 public static int area(int l, int a){

int result = l * a;

 return result;

 }

}

Kotlin Code Access the Java Getter and Setter
We can use Java classes’ getter and setter capabilities since Kotlin is totally
interoperable with Java (or POJO class). For example, in Java class
MyJava.java, add a getter and setter function with the attributes firstNames
and lastNames. These attributes are available from the Kotlin file
My_Kotlin.kt via the My_Java.java object created in the Kotlin file.

Java code: (My_Java.java)

public class My_Java{

 protected String firstNames;

 protected String lastNames;

 public String getfirstNames() {

 return firstNames;

 }

 public void setfirstNames(String firstNames) {

this.firstNames = firstNames;

 }

 public String getlastNames() {

 return lastNames;

 }

 public void setlastNames(String lastNames) {

this.lastNames = lastNames;

 }

}

Kotlin code: (My_Kotlin.kt)

fun main(args: Array<String>) {

val myJava = My Java()

Kotlin Code Access Java Array
We may simply invoke a Java class method that accepts an array as an
argument from the Kotlin code. Create a method sumValue() in Java class
My_Java.java that accepts an array element as an argument, calculates
addition, and returns the result. This function is invoked from the Kotlin file
My_Kotlin.kt with an array as an argument.

Java code: (My_Java.java)

public class MyJava {

 public intsumValues(int[] nums) {

int result = 0;

 for (int x:nums) {

 result+=x;

 }

 return result;

 }

}

Kotlin code: (My_Kotlin.kt)

fun main(args: Array<String>){

val myJava = My_Java()

val numArray = intArrayOf(01, 02, 03,04,05)

val sum = myJava.sumValues(numArray)

println(sum)

}

Kotlin Code Access Java Varargs
We may give any number of arguments to a method using the Java varargs
feature. The ellipsis, i.e., three dots (…) following the data type, is used to
specify the varargs argument in Java.

val myJava = My_Java()

myJava.lastNames = "Sharma"

myJava.setfirstNames("Karan")

println("accessing the value using property: "+myJava.firstNames

println("accessing the value using property: "+myJava.lastNames)

println("accessing the value using method: "+myJava.getfirstName

println("accessing the value using method: "+myJava.getlastNames

}

When utilizing the varargs option, keep the following considerations in
mind:

A method has just one varargs parameter.

Varargs argument must come at the end of the argument.

We must use the spread operator * to pass the array while accessing Java
varargs from Kotlin; we must use the spread operator *.

Let’s look at an example of a Java function that utilizes an int type
varargs and is called from a Kotlin file.

Java code: (My_Java.java)

public class My_Java {

 public void display(int... values) {

 for (int s1 : values) {

System.out.println(s1);

 }

 }

}

Kotlin code: (My_Kotlin.kt)

fun main(args: Array<String>){

val myJava = My_Java()

val array = intArrayOf(0, 1, 2, 3)

myJava.display(*array)

}

Let’s look at another example that accepts two parameters in a Java
function and utilizes them as String and int type varargs called from a
Kotlin code.

Java code: (My_Java.java)

public class My_Java {

 public void display(String message,int... values) {

System.out.println("string is " + message);

 for (int s1 : values) {

System.out.println(s1);

 }

 }

}

Kotlin code: (My_Kotlin.kt)

fun main(args: Array<String>){

val myJava = My_Java()

val array = intArrayOf(0, 1, 2, 3)

myJava.display("Hello",*array)

}

Kotlin and Java Mapped Types
Kotlin and Java types are mapped differently, yet they are mapped to the
same types. Mapping of these types is only relevant at build time; run time
stays unaltered.

Java primitive types are converted to Kotlin types.

Java type Kotlin type
int kotlin.Int
Byte kotlin.Byte
Short kotlin.Short
Char kotlin.Char
Double kotlin.Double
Long kotlin.Long
Boolean kotlin.Boolean

Java’s non-primitive types are converted to Kotlin types.

Java type Kotlin type
java.lang.Object kotlin.Any!
java.lang.Comparable kotlin.Comparable!
java.lang.Cloneable kotlin.Cloneable!
java.lang.Enum kotlin.Enum!
java.lang.Deprecated kotlin.Deprecated!
java.lang.CharSequence kotlin.CharSequence!
java.lang.String kotlin.String!
java.lang.Annotation kotlin.Annotation!
java.lang.Number kotlin.Number!
java.lang.Throwable kotlin.Throwable!

Java’s boxed primitive types to their nullable equivalents Types of
Kotlin.

Java type Kotlin type
java.lang.Byte kotlin.Byte?
java.lang.Integer kotlin.Int?
java.lang.Long kotlin.Long?

Java type Kotlin type
java.lang.Short kotlin.Short?
java.lang.Character kotlin.Char?
java.lang.Float kotlin.Float?
java.lang.Boolean kotlin.Boolean?
java.lang.Double kotlin.Double?

Java collection types are converted to read-only or mutable Kotlin types.

Java type Kotlin read-only type Kotlin mutable type
Iterable<T> Iterable<T> MutableIterable<T>
Iterator<T> Iterator<T> MutableIterator<T>
Collection<T> Collection<T> MutableCollection<T>
List<T> MutableList<T> MutableList<T>
ListIterator<T> ListIterator<T> MutableListIterator<T>
Set<T> MutableSet<T> MutableSet<T>
Map<K, V> Map<K, V> MutableMap<K, V>
Map.Entry<K, V> Map.Entry<K, V> MutableMap.MutableEntry<K, V>

Java Interoperability: Calling Kotlin Code from the Java
Because Kotlin is compatible with the Java programming language; the
Java-coded program may readily invoke Kotlin. Similarly, Kotlin code is
called from Java code.

Before we get into how to call Kotlin code from Java code, let’s look at
how a Kotlin file looks inside.

The Internal Representation of a Basic Kotlin Program
In a My_Kotlin.kt file, let’s write a basic main function:

fun main(args: Array<String>){

//code..

}

fun area(l: Int,a: Int):Int{

 return l*a

}

After building the previously mentioned Kotlin file My_Kotlin.kt, which
internally looks like:

public class My_KotlinKt{

public static void main(String[] args){

 //code..

 }

 public static int area(int l, int a){

 return l*a;

 }

}

Internally, the Kotlin compiler inserts a wrapper class with the name
My_KotlinKt. The Kotlin file My_Kotlin.kt gets transformed to
My_KotlinKt default and made public. The high-level function’s default
modifier is public, and the process is converted to static by default. Because
the return type of My_Kotlin.kt is Unit, it is changed to void in
My_KotlinKt.

Calling Kotlin Code from the Java Code
Kotlin code: (My_Kotlin.kt)

fun main(args: Array<String>){

//code…

}

fun area(l: Int,a: Int):Int{

 return l*a

}

Java code: My_Java.java

Java Code Invokes the Kotlin File Included within the Package
If we want to call the Kotlin code from a Java class presents in distinct
packages, we must import the package name with the Kotlin file name
within the Java class and then call the Kotlin code from the Java class.
Another option is to provide the complete path as the package name.
KotlinFileKt.methodName().

Kotlin code: (My_Kotlin.kt)

public class My_Java {

 public static void main(String[] args) {

int area = My_KotlinKt.area(14,25);

System.out.print("printing area inside the Java class returning

 }

}

package mykotlinpackage

fun main(args: Array<String>) {

}

fun area(l: Int,a: Int):Int{

 return l*a

}

Java code: My_Java.java

Using the Annotation @JvmName, We May Change the Name of a
Kotlin File
The @JvmName annotation may modify the name of a Kotlin file as the
wrapper class name.

Kotlin code: (My_Kotlin.kt)
Create a Kotlin program and add the annotation @file:

JvmName("My_Kotlin_FileName") at the start. Following the compilation
of Kotlin code, the file name is changed to the name (specified _FileName).
We must utilize the file name My_Kotlin_FileName when accessing the
code of My_Kotlin.kt.

@file: JvmName("My_Kotlin_FileName")

package mykotlinpackage

fun main(args: Array<String>) {

}

fun area(l: Int,a: Int):Int{

 return l*a

}

Java code: My_Java.java

package myjavapackage;

import mykotlinpackage.MyKotlinFileKt;

public class My_JavaClass {

 public static void main(String[] args){

int area = My_KotlinKt.area(4,5);

System.out.println("printing area inside the Java class returnin

 }

}

package myjavapackage;

import mykotlinpackage.My_Kotlin_FileName;

public class My JavaClass {

Using @JvmMultifileClass to Invoke a Method from Many Files That
Have the Same Generated Java Class Name
If multiple Kotlin files have the same produced Java file name using the
@JvmName annotation, the call from Java file will generally fail. However,
the Kotlin compiler outputs a single Java façade class that contains the
produced Java file and all declarations from files with the same names. We
utilize the @JvmMultifileClass annotation in all files to activate this
generation façade.

Kotlin code: (My_Kotlin1.kt)

@file: JvmName("My_Kotlin_FileName")

@file:JvmMultifileClass

package mykotlinpackage

fun main(args: Array<String>) {

}

fun area(l: Int,a: Int):Int{

 return l*a

}

Kotlin code: (My_Kotlin2.kt)

@file: JvmName("MyKotlinFileName")

@file:JvmMultifileClass

package mykotlinpackage

fun volume(l: Int,b: Int,h: Int):Int{

 return l*b*h

}

Java code: (My_Java.java)

p y_ {

 public static void main(String[] args){

int area = My_Kotlin_FileName.area(14,25);

System.out.println("printing area inside the Java class returnin

 }

}

package myjavapackage;

import mykotlinpackage.My_Kotlin_FileName;

public class My_JavaClass {

 public static void main(String[] args){

int area = My_Kotlin_FileName.area(14,25);

Property Access in Kotlin Is Access Using the Const Modifier
Kotlin properties tagged with the const modifier at the top level and in
classes are translated to static fields in Java. These attributes are accessed as
static properties from the Java file. As an example:

Kotlin code: (My_Kotlin2.kt)

constval MAX = 189

object Obj {

constval CONST = 1

}

class D {

 companion object {

constval VERSION = 8

 }

}

Java code: (My_Java.java)

public class My_Java {

 public static void main(String[] args) {

int c1 = Obj.CONST;

int m1 = My_KotlinKt.MAX;

int v1 = D.VERSION;

System.out.println("const "+c1+"\nmax "+m1+"\nversion "+v1);

 }

}

In this chapter, we learned about Kotlin cheat sheets and Java
interoperability.

_ _

System.out.println("printing area inside the Java class returnin

int vol = My_Kotlin_FileName.volume(14,5,36);

System.out.println("printing volume inside the Java class return

 }

}

Bibliography

Agrawal, S. (2020, October 26). The Nothing Type : Kotlin. Suneet
Agrawal; agrawalsuneet.github.io.
https://agrawalsuneet.github.io/blogs/the-nothing-type-kotlin/

Akhin, M., & Belyaev, M. (n.d.). Kotlin language specification. Kotlin
Language Specification; kotlinlang.org. Retrieved July 11, 2022, from
https://kotlinlang.org/spec/introduction.html

Baeldung. (2021, February 8). Kotlin-Java Interop. Kotlin Java
Interoperability. https://www.baeldung.com/kotlin/java-interoperability

Baeldung. (2022, May 31). Baeldung Kotlin. Extension Functions in Kotlin.
https://www.baeldung.com/kotlin/extension-methods

Balauag, T. (2019, May 17). Idiomatic Kotlin: Local functions | by Tompee
Balauag | Familiar Android | Medium. Medium; medium.com.
https://medium.com/tompee/idiomatic-kotlin-local-functions-
4421f86ac864

Basic types | Kotlin. (2022, July 8). Kotlin Help; kotlinlang.org.
https://kotlinlang.org/docs/basic-types.html

Build Your First Android App in Kotlin | Android Developers. (n.d.).
Android Developers; developer.android.com. Retrieved July 11, 2022,
from https://developer.android.com/codelabs/build-your-first-android-
app-kotlin#8

Collections overview | Kotlin. (2022, July 8). Kotlin Help; kotlinlang.org.
https://kotlinlang.org/docs/collections-overview.html#collection-types

Control Flow Statements in Kotlin. (n.d.). CherCherTech; chercher.tech.
Retrieved July 11, 2022, from https://chercher.tech/kotlin/control-flow-
kotlin

Dehghani, A. (2021, October 25). Baeldung Kotlin. Operator Overloading
in Kotlin. https://www.baeldung.com/kotlin/operator-overloading

Destructuring Declarations in Kotlin | raywenderlich.com. (n.d.).
Destructuring Declarations in Kotlin | Raywenderlich.Com;

https://agrawalsuneet.github.io/
http://kotlinlang.org/
https://kotlinlang.org/
https://www.baeldung.com/
https://www.baeldung.com/
http://medium.com/
https://medium.com/
http://kotlinlang.org/
https://kotlinlang.org/
http://developer.android.com/
https://developer.android.com/
http://kotlinlang.org/
https://kotlinlang.org/
https://chercher.tech/
https://www.baeldung.com/
http://raywenderlich.com/
http://raywenderlich.com/

www.raywenderlich.com. Retrieved July 11, 2022, from
https://www.raywenderlich.com/22178807-destructuring-declarations-
in-kotlin

Ebel, N. (2021, June 22). A complete guide to Kotlin lambda expressions –
LogRocket Blog. LogRocket Blog; blog.logrocket.com.
https://blog.logrocket.com/a-complete-guide-to-kotlin-lambda-
expressions/

EPS Software Corp., Wei-Meng Lee, C. M. (n.d.). Introduction to Kotlin.
Introduction to Kotlin; www.codemag.com. Retrieved July 11, 2022,
from https://www.codemag.com/Article/1907061/Introduction-to-
Kotlin

Equality checks in Kotlin (Difference between “==" and “==="
Operators). (n.d.). Equality Checks in Kotlin (Difference between
“==" and “===" Operators); www.tutorialspoint.com. Retrieved July
11, 2022, from https://www.tutorialspoint.com/equality-checks-in-
kotlin-difference-between-and-operators

Equality evaluation in Kotlin – GeeksforGeeks. (2019, August 2).
GeeksforGeeks; www.geeksforgeeks.org.
https://www.geeksforgeeks.org/equality-evaluation-in-
kotlin/#:∼:text=The%20referential%20equality%20in%20Kotlin,the%
20same%20location%20in%20memory

Exceptions | Kotlin. (2022, July 8). Kotlin Help; kotlinlang.org.
https://kotlinlang.org/docs/exceptions.html

Extensions | Kotlin. (2022, July 8). Kotlin Help; kotlinlang.org.
https://kotlinlang.org/docs/extensions.html#extensions-are-resolved-
statically

Generics & Enums. (2017, June 28). Kotlin Discussions;
discuss.kotlinlang.org. https://discuss.kotlinlang.org/t/generics-
enums/3538

Get started with Kotlin/Native in IntelliJ IDEA | Kotlin. (2022, July 8).
Kotlin Help; kotlinlang.org. https://kotlinlang.org/docs/native-get-
started.html

How to develop your first Android app with Kotlin. (n.d.). Educative:
Interactive Courses for Software Developers; www.educative.io.
Retrieved July 11, 2022, from https://www.educative.io/blog/android-
development-app-kotlin

http://www.raywenderlich.com/
https://www.raywenderlich.com/
http://blog.logrocket.com/
https://blog.logrocket.com/
http://www.codemag.com/
https://www.codemag.com/
http://www.tutorialspoint.com/
https://www.tutorialspoint.com/
http://www.geeksforgeeks.org/
https://www.geeksforgeeks.org/
http://kotlinlang.org/
https://kotlinlang.org/
http://kotlinlang.org/
https://kotlinlang.org/
http://discuss.kotlinlang.org/
https://discuss.kotlinlang.org/
http://kotlinlang.org/
https://kotlinlang.org/
http://www.educative.io/
https://www.educative.io/

How to use Kotlin for back end development | Quokka Labs. (2021, August
9). Quokka Labs; quokkalabs.com. https://quokkalabs.com/blog/how-
to-use-kotlin-for-back-end-
development/#:∼:text=As%20we%20know%2C%20Kotlin%20is,is%2
0used%20front%2Dend%20widely

Introduction to Kotlin – GeeksforGeeks. (2019, May 7). GeeksforGeeks;
www.geeksforgeeks.org. https://www.geeksforgeeks.org/introduction-
to-kotlin/

Introduction to Kotlin Lambdas: Getting Started | raywenderlich.com.
(n.d.). Introduction to Kotlin Lambdas: Getting Started |
Raywenderlich.Com; www.raywenderlich.com. Retrieved July 11,
2022, from https://www.raywenderlich.com/2268700-introduction-to-
kotlin-lambdas-getting-started

Kaseb, K. (2020, March 10). Software Development.
Https://Medium.Com/Kayvan-Kaseb/Calling-Java-Codes-from-Kotlin-
B74890fb4a78. https://medium.com/kayvan-kaseb/calling-java-codes-
from-kotlin-b74890fb4a78

Kotlin – Control Flow. (n.d.). Kotlin – Control Flow;
www.tutorialspoint.com. Retrieved July 11, 2022, from
https://www.tutorialspoint.com/kotlin/kotlin_control_flow.htm#:∼:text
=Kotlin%20flow%20control%20statements%20determine,do%20are%
20flow%20control%20statements

Kotlin – Destructuring Declarations. (n.d.). Kotlin – Destructuring
Declarations; www.tutorialspoint.com. Retrieved July 11, 2022, from
https://www.tutorialspoint.com/kotlin/kotlin_destructuring_declaration
s.htm

Kotlin – Exception Handling. (n.d.). Kotlin – Exception Handling;
www.tutorialspoint.com. Retrieved July 11, 2022, from
https://www.tutorialspoint.com/kotlin/kotlin_exception_handling.htm

Kotlin – Override Method of Super Class. (n.d.). TutorialKart;
www.tutorialkart.com. Retrieved July 11, 2022, from
https://www.tutorialkart.com/kotlin/kotlin-override-method/

Kotlin Array – javatpoint. (n.d.). Www.Javatpoint.Com;
www.javatpoint.com. Retrieved July 11, 2022, from
https://www.javatpoint.com/kotlin-array

Kotlin cheatsheet. (n.d.). Devhints.Io Cheatsheets; devhints.io. Retrieved
July 11, 2022, from https://devhints.io/kotlin

http://quokkalabs.com/
https://quokkalabs.com/
http://www.geeksforgeeks.org/
https://www.geeksforgeeks.org/
http://raywenderlich.com/
http://raywenderlich.com/
http://www.raywenderlich.com/
https://www.raywenderlich.com/
https://medium.com/
https://medium.com/
http://www.tutorialspoint.com/
https://www.tutorialspoint.com/
http://www.tutorialspoint.com/
https://www.tutorialspoint.com/
http://www.tutorialspoint.com/
https://www.tutorialspoint.com/
http://www.tutorialkart.com/
https://www.tutorialkart.com/
http://www.javatpoint.com/
http://www.javatpoint.com/
https://www.javatpoint.com/
https://devhints.io/

Kotlin Class and Object – javatpoint. (n.d.). Www.Javatpoint.Com;
www.javatpoint.com. Retrieved July 11, 2022, from
https://www.javatpoint.com/kotlin-class-and-object

Kotlin Collections – Studytonight. (n.d.). Kotlin Collections – Studytonight;
www.studytonight.com. Retrieved July 11, 2022, from
https://www.studytonight.com/kotlin/kotlin-collections

Kotlin Control Flow – if else, for loop, while, range – JournalDev. (2018,
February 4). JournalDev; www.journaldev.com.
https://www.journaldev.com/18483/kotlin-control-flow-if-else-for-
while-range

Kotlin Data Types. (n.d.). Kotlin Data Types; www.w3schools.com.
Retrieved July 11, 2022, from
https://www.w3schools.com/kotlin/kotlin_data_types.php

Kotlin Environment setup in Windows – bbminfo. (n.d.). Kotlin
Environment Setup in Windows – Bbminfo; www.bbminfo.com.
Retrieved July 11, 2022, from https://www.bbminfo.com/kotlin/kotlin-
environment-setup.php

Kotlin Environment setup in Windows – bbminfo. (n.d.). Kotlin
Environment Setup in Windows – Bbminfo; www.bbminfo.com.
Retrieved July 11, 2022, from https://www.bbminfo.com/kotlin/kotlin-
environment-setup.php

Kotlin Exception Handling | try, catch, throw and finally – GeeksforGeeks.
(2019, June 25). GeeksforGeeks; www.geeksforgeeks.org.
https://www.geeksforgeeks.org/kotlin-exception-handling-try-catch-
throw-and-finally/

Kotlin Hello World – You First Kotlin Program. (n.d.). Kotlin Hello World –
You First Kotlin Program; www.programiz.com. Retrieved July 11,
2022, from https://www.programiz.com/kotlin-programming/hello-
world

Kotlin Higher-Order Functions – GeeksforGeeks. (2019, June 3).
GeeksforGeeks; www.geeksforgeeks.org.
https://www.geeksforgeeks.org/kotlin-higher-order-
functions/#:∼:text=Higher%2DOrder%20Function%20%E2%80%93,p
ass%20anonymous%20function%20or%20lambdas

Kotlin Lambdas – javatpoint. (n.d.). Www.Javatpoint.Com;
www.javatpoint.com. Retrieved July 11, 2022, from
https://www.javatpoint.com/kotlin-

http://www.javatpoint.com/
http://www.javatpoint.com/
https://www.javatpoint.com/
http://www.studytonight.com/
https://www.studytonight.com/
http://www.journaldev.com/
https://www.journaldev.com/
http://www.w3schools.com/
https://www.w3schools.com/
http://www.bbminfo.com/
https://www.bbminfo.com/
http://www.bbminfo.com/
https://www.bbminfo.com/
http://www.geeksforgeeks.org/
https://www.geeksforgeeks.org/
http://www.programiz.com/
https://www.programiz.com/
http://www.geeksforgeeks.org/
https://www.geeksforgeeks.org/
http://www.javatpoint.com/
http://www.javatpoint.com/
https://www.javatpoint.com/

lambdas#:∼:text=Lambda%20is%20a%20function%20which,)%20foll
owed%20by%20%2D%3E%20operator

Kotlin Map – javatpoint. (n.d.). Www.Javatpoint.Com;
www.javatpoint.com. Retrieved July 11, 2022, from
https://www.javatpoint.com/kotlin-map

Kotlin Map : mapOf() – GeeksforGeeks. (2019, August 9). GeeksforGeeks;
www.geeksforgeeks.org. https://www.geeksforgeeks.org/kotlin-map-
mapof/

Kotlin Null Safety – GeeksforGeeks. (2019, July 3). GeeksforGeeks;
www.geeksforgeeks.org. https://www.geeksforgeeks.org/kotlin-null-
safety/#:∼:text=Nullable%20and%20Non%2DNullable%20Types,varia
ble%2C%20it%20gives%20compiler%20error

Kotlin Null Safety – Studytonight. (n.d.). Kotlin Null Safety – Studytonight;
www.studytonight.com. Retrieved July 11, 2022, from
https://www.studytonight.com/kotlin/kotlin-null-safety

Kotlin Nullable Non Nullable Safety – javatpoint. (n.d.).
Www.Javatpoint.Com; www.javatpoint.com. Retrieved July 11, 2022,
from https://www.javatpoint.com/kotlin-nullable-and-non-nullable-
types

Kotlin Operator Overloading – GeeksforGeeks. (2019, August 1).
GeeksforGeeks; www.geeksforgeeks.org.
https://www.geeksforgeeks.org/kotlin-operator-overloading/

Kotlin Operator Overloading (With Examples). (n.d.). Kotlin Operator
Overloading (With Examples); www.programiz.com. Retrieved July
11, 2022, from https://www.programiz.com/kotlin-
programming/operator-overloading.

Kotlin Operator Overloading (With Examples). (n.d.). Kotlin Operator
Overloading (With Examples); www.programiz.com. Retrieved July
11, 2022, from https://www.programiz.com/kotlin-
programming/operator-overloading

Kotlin Regular Expression – GeeksforGeeks. (2019, July 9).
GeeksforGeeks; www.geeksforgeeks.org.
https://www.geeksforgeeks.org/kotlin-regular-expression/

Kotlin String Operations. (n.d.). TutorialKart; www.tutorialkart.com.
Retrieved July 11, 2022, from
https://www.tutorialkart.com/kotlin/kotlin-string-operations/

https://www.javatpoint.com/
http://www.javatpoint.com/
http://www.javatpoint.com/
https://www.javatpoint.com/
http://www.geeksforgeeks.org/
https://www.geeksforgeeks.org/
http://www.geeksforgeeks.org/
https://www.geeksforgeeks.org/
http://www.studytonight.com/
https://www.studytonight.com/
http://www.javatpoint.com/
http://www.javatpoint.com/
https://www.javatpoint.com/
http://www.geeksforgeeks.org/
https://www.geeksforgeeks.org/
http://www.programiz.com/
https://www.programiz.com/
http://www.programiz.com/
https://www.programiz.com/
http://www.geeksforgeeks.org/
https://www.geeksforgeeks.org/
http://www.tutorialkart.com/
https://www.tutorialkart.com/

Miu, M. (2020, March 16). Collections in Kotlin. The subject covered in
this new post is… | by Magda Miu | ProAndroidDev. Medium;
proandroiddev.com. https://proandroiddev.com/collections-in-kotlin-
a2bd8649f697

Nullable Types and Null Safety in Kotlin | CalliCoder. (2018, February 15).
CalliCoder; www.callicoder.com. https://www.callicoder.com/kotlin-
nullable-types-null-safety/

Operator overloading | Kotlin. (2022, July 8). Kotlin Help; kotlinlang.org.
https://kotlinlang.org/docs/operator-overloading.html

Operator overloading | Kotlin. (2022, July 8). Kotlin Help; kotlinlang.org.
https://kotlinlang.org/docs/operator-overloading.html

PACKT. (2019, January 24). Interoperability between Java and Kotlin |
Codementor. Interoperability between Java and Kotlin | Codementor;
www.codementor.io.
https://www.codementor.io/@packt/interoperability-between-java-and-
kotlin-rifmhfip0

Placona, M. (2018, June 12). Local functions in Kotlin | Real Kotlin. Real
Kotlin; realkotlin.com. https://realkotlin.com/tutorials/2018-06-12-
local-functions-in-kotlin/

Placona, M. (2018, June 12). Local functions in Kotlin | Real Kotlin. Real
Kotlin; realkotlin.com. https://realkotlin.com/tutorials/2018-06-12-
local-functions-in-kotlin/

Raj, M. (2019, October 30). Logging in Kotlin— the right way. Let’s see
how we typically log… | by Muthu Raj | Medium. Medium;
muthuraj57.medium.com. https://muthuraj57.medium.com/logging-in-
kotlin-the-right-way-d7a357bb0343

Singh, C. (2019, March 8). Kotlin Class and Objects – Object Oriented
Programming (OOP). BeginnersBook; beginnersbook.com.
https://beginnersbook.com/2019/03/kotlin-class-and-objects-oop/

Soroker, T. (2020, December 6). Best Practices for Logging in Kotlin –
Coralogix. Coralogix; coralogix.com. https://coralogix.com/blog/best-
practices-for-logging-in-kotlin/

Technologies, M. (2021, April 22). Kotlin vs Python | What are the
differences? Mindmajix; mindmajix.com.
https://mindmajix.com/kotlin-vs-python

http://proandroiddev.com/
https://proandroiddev.com/
http://www.callicoder.com/
https://www.callicoder.com/
http://kotlinlang.org/
https://kotlinlang.org/
http://kotlinlang.org/
https://kotlinlang.org/
http://www.codementor.io/
https://www.codementor.io/
http://realkotlin.com/
https://realkotlin.com/
http://realkotlin.com/
https://realkotlin.com/
http://muthuraj57.medium.com/
https://muthuraj57.medium.com/
http://beginnersbook.com/
https://beginnersbook.com/
http://coralogix.com/
https://coralogix.com/
http://mindmajix.com/
https://mindmajix.com/

Index

A
Abstract class, 128–130, 142

multiple derived classes, 130–131
And() function in Kotlin, 22
Android and iOS, apps for, 335
Android development, 5–6, 293, 323

adapting existing Android project to utilize Kotlin, 270–272
benefits of, 314–316
buttons and TextView, changing the look of, 313–314
choosing Kotlin as preferred language for, 333
color resource file, 303–305
downloading and installing Android Studio, 294
first project, creating, 295–298
future of, using Kotlin, 334
in-app reviews, integrating, 316

development environment, setting up, 316
launching in-app review flow, 317
ReviewInfo object, requesting, 316–317
ReviewManager, creating, 316

Java programming language, alternatives to, 332–333
layout editor, exploring, 298–303
setting up source code and tests in, 270
views and constraints, 305–313

Android rooting detection, 290
Android tests in Kotlin, 273–274
Anonymous function, 187

lambda expressions and, 188
return type and parameters, 188

Anti-debug, 290
Application hardening, 289

application patches, 291
benefits of, 291
methods, 290
protecting applications from hackers, 289–290
purpose of, 289

Application logging, 244
Applications of Kotlin, 4
Architecture of Kotlin, 7–8

ArithmeticException, 69
Arithmetic obfuscation, 290
Arithmetic operators in Kotlin, 16–17
Array data type in Kotlin, 15
Array filtering, 330–331
ArrayList in Kotlin, 207–211, 276
Arrays in Kotlin, 27

array length, 28–29
to check if an element exists, 29
creating, 27–28
distinct values from, 29–30
dropping elements from, 30
elements of, 28
empty array, checking, 30
loop through, 29
of primitive type, 28

Assignment operators in Kotlin, 17–18

B
Back-end web development, 6, 323
BDUF approach, see Big Design Up Front approach
Benefits of Kotlin, 4–5, 322–323
Big Design Up Front (BDUF) approach, 141
Binary operators, 170–171
Binary packing, 290
Bitwise operations in Kotlin, 19–20
Boolean data type in Kotlin, 14–15
Boolean expression in Kotlin, 21–22
Boolean operators in Kotlin, 21
Booleans in Kotlin, 20

and() and or() functions in Kotlin, 22
conversion into string form, 22
creating Boolean variables, 20–21

Built-in functions in Kotlin, 34

C

Character data type in Kotlin, 13–14
Characteristics of Kotlin, 3–4
ClassCastException, 84, 161
Classes, 96–97, 339–340
Class properties, 106–107
Code optimization, 257

application hardening, 289
application patches, 291
benefits of, 291
methods, 290

protecting applications from hackers, 289–290
purpose of, 289

best coding practices, 275
ArrayList and HashMap, getting rid of, 276
collection helpers, 282–283
Elvis operator, 281
.equals() method, 283–284
functional constructs, making use of, 276–277
immutability, accepting, 275–276
infer types, 279–280
javaClass, 278
list literals in annotations, 281–282
named parameters, 284
safe operator, 280–281
semantic test naming, 280
string interpolation, 278

companion objects, 267
compilation times, 267

general suggestions, 267–268
Gradle, configuration of, 268–269
Windows, configuration of, 269

constructors and inheritance in Kotlin, 261–262
infix functions, 263
inline functions, 263–264
Java, Kotlin outperforming, 285

Kotlin’s features that Java lacks, 287–288
null, problem with, 288
null reference exceptions pose security risks, 286–287
typing, syntax, and speed compared, 285–286

lambda extensions, 266–267
lambda functions in Kotlin, 262
lateinit, 267
local functions, 263
local return, 265–266
operator overloading, 266
POJO classes in Kotlin, 259–261
sealed classes, 264–265
secure code, writing, 269

adapting existing Android project to utilize Kotlin, 270–272
existing Java files’ conversion to Kotlin, 272–273
setting up source code and tests in Android apps, 270
writing tests in Kotlin, 273–274

static layout imports in Kotlin, 257–259
tail recursion, 264

Collection helpers, 282–283
Collection literals, 340
Collection processing, 340–342
Collections, 204

immutable collection, 204–206
mutable collection, 206–207

Color resource file, 303–305
Command line setup, Kotlin environment for, 9
Companion objects, 174, 267, 288
Component Tree, 300
Composition, 138

from composition to aggregation, 144–145
exploding numbers of subclasses, 142–143
exposure issue, handling, 146–147
implementation inheritance, antipatterns of, 140

single implementation, inheritance of, 140
inheritance, composition over, 147

Kotlin method, 147–149
Liskov, substitution principle of, 139–140
refactoring, 143

UserMediator class, 143–144
superclass APIs, unnecessary exposure of, 141–142
tight coupling, 141

Constructors in Kotlin, 108, 261–262
primary constructor, 108–109

default value in, 109–110
with initializer block, 109

secondary constructor, 110–112
Constructor visibility, 116
Contains() function, 218–219, 221–222, 224–225
ContainsAll() function, 218–219, 221–222, 224–225
containsMatchIn(), 86
Contra covariance, 180
Control structures, 338
Copy() function, 123–124
Coroutines in Kotlin, 331
Covariance, 179–180
Cross-platform libraries, 335
Custom accessors, 107–108

D
Data classes, 121

copy() function, 123–124
equals() function, 124–125
hashCode() function, 124–125
toString() function, 122–123

Data obfuscation, 290
Data science, 6, 324
Data types, 12

array, 15
Boolean, 14–15
character, 13–14
conversion, in Kotlin, 15–16
number, 12–13

string, 14
Debugger, 290
Decrement operators, 169–170
Delegates, 343–344
Disadvantages of Kotlin, 5
displayCompany() function, 138
Do-while loop, 47

labeled continue in, 66–67
unlabeled continue in, 64
working of, 47–48

DownTo() function, 91
DownTo() operator, creating ranges using, 31–32
Dynamic array, 207

E
EachIndexed() function, 214
Element mapping in an array, 329–330
Else branch, 53
Elvis opeartor, 80, 162–164, 281
Empty array, checking, 30
Encapsulation, 106, 149–150

OOP and, 154
procedural and OOP, choosing between, 153–154
procedural programming, 154

Enum classes, 171
as anonymous classes, 175
initializing, 172
properties and functions, 174
properties and methods, 173
usage of when expression with, 175–176

equals() method, 124–125, 283–284
Exception handling, 68–69, 233, 234–235

failing to deal with exceptions, 70
how to throw an exception, 70–71
NullPointerException

avoiding, 70, 236
example, 236

throwING an exception in Kotlin, 235–236
Explicit type casting, 82–84

safe cast operator, 85
unsafe cast operator, 84–85

Extension function, 164
to any object, 342
companion object extensions, 167–168
extended library class using, 165
nullable receiver, 166–167
resolved statically, 165–166

F
Features of Kotlin, 2–4, 334–335
Final block in Kotlin, 72–74, 238–239
find() function, 87
findAll() function, 87
First() and last() methods, 221
First program is written in Kotlin, 11–12
Fizz Buzz issue, 194
forEach loop, 91
For loop, 48

iterating across range using, 49–50
iterating over array, 50–51
iterating over collection using, 52
iterating through a string using, 51–52
labeled continues in, 67–68
unlabeled break in, 59–60
unlabeled continues in, 64–65

Full-stack web apps, 335
Full-stack web development, 6, 323–324
Function, declaring, 337
Functional constructs, making use of, 276–277
Functional programming, 183

anonymous function, 187
lambda expressions and anonymous functions, distinction between, 188
return type and parameters, 188

ArrayList in Kotlin, 207–211
HashMap in Kotlin, 228

functions use, 229–232
time complexity, 232

hashSetOf() in Kotlin, 222
empty map, 226–227
get map values, 227
hashSet traversal, 224
indexing in a HashSet, 224–225
map contains keys or values, 227–228
mapOf () in Kotlin, 225–226
map size, 226
two values and the same key, 228

higher-order functions in Kotlin, 188
higher-order function, 189–192
returning a function from a higher-order function, 192–193

Kotlin collections, 204
immutable collection, 204–206
mutable collection, 206–207

Kotlin local functions, 193–196
lambda expression, 184

implicit name of single-parameter, 186
inference in lambdas types, 185
returning a value from, 187

type declaration in lambdas, 185–186
listOf() in Kotlin, 211

first and last elements, 212–213
indexing list elements in Kotlin, 212
iteration methods for lists, 213–214
set basics, 217–219
set indexing, 217
setOf in Kotlin (), 216
sorting the list’s elements, 214–215

MutableSetOf() method, 219
first() and last() methods, 221
set indexing, 220–221
traversal in, 221

scope functions, 196–197
object references, 202–203
return values, 203–204
types, 198–202
utilization of scope functions, 197

Function parameters, 35, 189
Functions in Kotlin, 34, 342–343

built-in functions in Kotlin, 34
function parameters, 35
higher-order functions, 38
inline function in Kotlin, 38–39
lambda function in Kotlin, 38
recursive function in Kotlin, 36–37
return values, 35–36
tail recursion in Kotlin, 37
unit-returning functions, 36
user-defined functions, 34–35

G
Generics, 176

contra covariance, 180
covariance, 179–180
generic usage in program, 177–178
in keyword, 179
out keyword, 178–179
star projections, 181
type projections, 180–181
variance, 178

GetFunctionConfigurationRequest, 279
getNameFromdb(), 281
GetOrNull() Function in Kotlin, 26–27
Given block, 252–253
Google

choosing Kotlin as preferred language, 333
seeking alternatives to Java programming language, 332–333

H
HashCode() function, 124–125
HashMap in Kotlin, 228, 276

functions use, 229–232
time complexity, 232

HashSetOf() in Kotlin, 222
empty map, 226–227
get map values, 227
hashSet traversal, 224
indexing in a hashSet, 224

contains() and containsAll() functions, 224–225
map containing keys or values, 227–228
mapOf () in Kotlin, 225–226
map size, 226
two values and same key, 228

“Hello, Everyone” program, 11, 337
Higher-order functions, 38, 188–192

returning a function from, 192–193
History of Kotlin, 2, 319
Http4k, 8

I

If-else expression in Kotlin, 39
if-else-if ladder expression, 42–44
if-else statement, 40–41

as ternary operator, 42
if statement, 39–40
nested if expression, 44–45

Immutability, accepting, 275–276
Immutable collection, 204–206
Importance of Kotlin, 320
In-app reviews, integrating, 316

development environment, setting up, 316
launching in-app review flow, 317
ReviewInfo object, requesting, 316–317
ReviewManager, creating, 316

Increment and decrement operators, 169–170
IndexOf() function, 26, 217
Infer types, 279–280
Infix functions, 263
Inheritance in Kotlin, 131, 132, 261–262

overriding member functions and attributes, 137–138
primary constructor for, 135–136
secondary constructor for, 136
superclass implementation, calling, 138

In keyword, 179
Inline function in Kotlin, 38–39, 263–264

Inner class, 100–102
Intellij IDEA, 9–10
Interfaces in Kotlin, 116

creation, 116
default methods and default values, 117–118
implementing, 116–117
inheritance, 119–120
multiple interfaces, implementation of, 120–121
properties, 118–119

Internal modifier, 114
!is operator, use of, 56, 82, 83

J
Java

existing Java files’ conversion to Kotlin, 272–273
Kotlin outperforming, 270, 285, 331–332

Kotlin’s features that Java lacks, 287–288
null, problem with, 288
null reference exceptions pose security risks, 286–287
typing, syntax, and speed compared, 285–286

and Python, 270
javaClass, 278
Java class, Kotlin code invoking, 346
Java code, 344–345

calling Kotlin code from, 351–352
invoking Kotlin file included within the package, 352

Java Development Kit (JDK), 8
Java getter and setter, Kotlin code accessing, 346–348
Java Interoperability, 350–355
Java int function, 345
Javalin, 8
Java mapped types, Kotlin and, 349–350
Java varargs, Kotlin code accessing, 348–349
Java Virtual Machine (JVM), 1, 319
JDK, see Java Development Kit
JetBrains, 285, 333
JVM, see Java Virtual Machine

K

Kotlin method, 147–149
Kotlin/Native compiler, 267
Kotlinx.html, 8
Ktor, 8

L

Labeled break, 60
in do-while loop, 61–62
in for loop, 62–63
in while loop, 60–61

Labeled continue, 65
in do-while loop, 66–67
in for loop, 67–68
in while loop, 65–66

Lambda expression, 184
and anonymous functions, 188
implicit name of single-parameter, 186
inference in lambdas types, 185
returning a value from, 187
type declaration in lambdas, 185–186

Lambda extensions, 266–267
Lambda function in Kotlin, 38, 262
LastIndexOf() function, 217
Lateinit, 267
Layout editor, exploring, 298–303
Learning Kotlin

ample resources, 326
community, 326
in 2022, 326
modern programming language, 327
prospective careers, 327
simplicity to understand, 326
worthwhile, 327

List, 205, 206
List literals in annotations, 281–282
ListOf() in Kotlin, 211

first and last elements, 212–213
indexing list elements, 212
iteration methods for lists, 213–214
set basics, 217

contains() and containsAll() functions, 218–219
set indexing, 217
setOf in Kotlin (), 216
sorting list’s elements, 214

contains() and containsAll() functions, 215
Local functions, 193–196, 263
Local return, 265–266
Logging in Kotlin, 243

application logging, 244
configuring logger, 247–248
easiest Kotlin logging, 243–244
to a file, 249
formatting Kotlin logging messages, 248–249
logging, 246
logging method, 246–247
setting the Kotlin logging Levels, 249–250

using Logback for, 244
add Logback to project, 244–245
calling Logback from Kotlin, 245–246

Logical operators, 16, 19, 21

M
Machine learning, Kotlin as Android’s new “Python” for, 328

array filtering, 330–331
Coroutines in Kotlin, 331
element mapping in an array, 329–330

Map, 207
matchEntire() function, 87
matches() function, 87
Micronaut, 8
Mobile and web applications use same code, 335
Mobile development for multiple platforms, 7, 324
Multiplatform, Kotlin for

advantages of, 327–328
Android and iOS, apps for, 335
cross-platform libraries, 335
full-stack web apps, 335
mobile and web applications use same code, 335

Multiple catch block, 75–76, 241–242
Mutable collection, 206–207
MutableSetOf() method in Kotlin, 219

first() and last() methods, 221
set indexing, 220–221
traversal in, 221

contains() and containsAll() methods, 221–222

N

Named parameters, 284
Nested class, 98–100
Nested if expression, 44–45
Nested try block, 74–75, 240–241
Non-nullable sorts in Kotlin, 77–78
Non-nullable types, 158–159
Nothing type in generics, 254–256
Not null assertion operator, 80–81
Nullable and non-nullable sorts in Kotlin, 77–78
Nullable receiver, 166–167
Nullable types, variables with, 338
NullPointerException function, 68, 77, 157, 286, 287, 333

avoiding, 70, 236
example, 236

Null references, elimination of, 315

Null safety, 77, 157
checking for the null in conditions, 78–79, 159
Elvis operator, 80
non-nullable types, 158–159
not null assertion, 80–81
nullable and non-nullable sorts in Kotlin, 77–78, 158
nullable types, 158
safe call operator(?.), 79

Number data types in Kotlin, 12–13

O
Object, 97–98
Object-oriented programming (OOP), 1, 2, 95

abstract class, 128
multiple derived classes, 130–131

class, 96–97
class properties, 106–107
composition, 138

from composition to aggregation, 144–145
exploding numbers of subclasses, 142–143
exposure issue, handling, 146–147
implementation inheritance, antipatterns of, 140
Kotlin method, 147–149
over inheritance, 147–149
refactoring, 143–144
substitution principle of Liskov, 139–140
tight coupling, 141
unnecessary exposure of superclass APIs, 141–142
UserMediator class, 143–144

custom accessors, 107–108
data classes, 121

copy(), 123–124
hashCode() and equals(), 124–125
toString(), 122–123

and encapsulation, 149–150, 154
inheritance in Kotlin, 131

inheritance use, 132–136
overriding member functions and attributes, 137–138
superclass implementation, calling, 138

inner class, 100–102
interfaces in Kotlin, 116

creation, 116
default methods and default values, 117–118
implementing, 116–117
inheritance, 119–120
multiple interfaces, 120–121
properties, 118–119

nested class, 98–100

object, 97–98
OOP, 153, 154–156

choosing between procedural and OOP, 153–154
and encapsulation, 154
procedural programming, 154

polymorphism, 150–152
primary constructor, 108–109

with initializer block, 109–110
procedural and, 153–154
procedural programming, example of, 152–153
sealed classes, 125–127
secondary constructor, 110–112
setters and getters, 102, 103

with custom parameters, 105–106
identifiers for values and fields, 104
private modifier, 104–106
program of default setter and getter Kotlin, 103–104

visibility modifiers in Kotlin, 112
constructor visibility, 116
internal modifier, 114
private modifier, 113–114
protected modifier, overriding of, 115
public modifier, 112–113

OOP, see Object-oriented programming
Operator overloading, 168, 266

binary operators, 170–171
increment and decrement operators, 169–170
unary operators, 168–169

Operators in Kotlin, 16
arithmetic operators in Kotlin, 16–17
assignment operators in Kotlin, 17–18
bitwise operations in Kotlin, 19–20
logical operators in Kotlin, 19
relational operators in Kotlin, 17
unary operators in Kotlin, 18–19

Or() function in Kotlin, 22
Out keyword, 178–180

P
POJO classes in Kotlin, 259–261
Polymorphism, 150–152
Possibilities for Kotlin, 320–321
Primary constructor, 108–109

default value in, 109–110
for inheritance, 135–136
with initializer block, 109

printLength() function, 71
Private modifier, 113–114

Procedural and OOP, choosing between, 153–154
Procedural programming, 154

example of, 152–153
ProfilesWithPictures(), 282
Property access in Kotlin, 354–355
Protected modifier, 114

constructor visibility, 116
overriding of, 115

Public modifier, 112–113
Purpose of Kotlin, 5, 323

Android development, 5–6, 323
back-end web development, 6
data science, 6, 324
full-stack web development, 6, 323–324
mobile development for multiple platforms, 7, 324
web development on back-end, 323

R
Range of characters in Kotlin, 32
Ranges in Kotlin, 30, 89

(..) operator, 31, 90
distinct values in, 33
downTo() function, 31–32, 91
filtering, 33
forEach loop, 91
last, first, and step elements, 33
predefined functions in the range, 92–93
range of characters in Kotlin, 32
rangeTo() function, 31, 90–91
range using forEach loop, 91
reversed function(), 32, 92
step() function, 32, 92
until() function, 32–33

RangeTo() function, 90–91
creating ranges using, 31

Range utility functions, 34
Raw type, 288
Reasons to use Kotlin, 328
Recursive function in Kotlin, 36–37
Regex and ranges, 85

regex functions, 86–89
regular expressions in Kotlin, 85–86

Regular expressions in Kotlin, 85–86
Relational operators in Kotlin, 17
replace() function, 87
replaceFirst() function, 87
Return values, 35–36
Reversed() function, 32, 92

ReviewInfo object, requesting, 316–317
ReviewManager, creating, 316
RollingFileAppender, 249
Running test, 254

S
Safe cast operator, 79, 85, 161
Safe operator, 280–281
Scope functions, 196–197

object references, 202–203
return values, 203–204
types, 198–202
utilization of, 197

Sealed classes, 125–127, 264–265
Secondary constructor, 110–112

for inheritance, 136
Secure code, writing, 269

adapting existing Android project to utilize Kotlin, 270–272
existing Java files’ conversion to Kotlin, 272–273
setting up source code and tests in Android apps, 270
writing tests in Kotlin, 273–274

Semantic test naming, 280
Server-side development, Kotlin for, 8–9, 321
Set, 205, 206–207
SetOf in Kotlin (), 216
Setters and getters, 102, 103

with custom parameters, 105–106
identifiers for values and fields, 104
private modifier, 104–106
program of default setter and getter Kotlin, 103–104

Single-expression function, 337
Smart casting, 82–83, 159

use of !is for, 160
use of is for, 160

split() function, 87
Star projections, 181
Static layout imports in Kotlin, 257–259
Step() function, 32, 92
String case changing, 24–25
String concatenation in Kotlin, 25
String data type in Kotlin, 14
String indexes in Kotlin, 23–24
String interpolation, 278
String Kotlin last index, 24
String length in Kotlin, 24
String object in Kotlin, 23
Strings in Kotlin, 22

comparing two strings, 26

finding a string inside string, 26
getOrNull() Function in Kotlin, 26–27
quotes inside string, 26
toString() Function in Kotlin, 27
trim characters from string, 25

String templates in Kotlin, 23
Superclass APIs, unnecessary exposure of, 141–142
Superclass implementation, calling, 138

T
Tail recursion, 37, 264
Ternary operator, if-else expression in Kotlin as, 42
TextView, 313–314
Then block, 253–254
Throw keyword, 74, 239–240
ToString() function, 27, 122–123
Trim characters from string, 25
Try block, 75
Try-catch block, 71, 237

as an expression, 72, 237–238
finally block, 72–74, 238–239
throw keyword, 74, 239–240

Type checking, 81–82
Type projections, 180–181

U

Unary operators, 18–19, 168–169
Understanding Kotlin, 320
Unit-returning functions, 36
Unit testing, 251

first test, 251–252
given block, 252–253
project setup, 251
running test, 254
simple Android application, 251
test structure, 252
then block, 253–254
when block, 253

Unlabeled break, 57
in do-while loop, 58–59
in for loop, 59–60
in while loop, 57–58

Unlabeled continue, 63
in do-while loop, 64
in for loop, 64–65
in while loop, 63–64

Unsafe cast operator, 84–85, 160–161
Until() function in Kotlin, 32–33
Usability aspects of Kotlin, 157

Elvis operator, 162–164
enum classes, 171

as anonymous classes, 175
initializing, 172
properties and functions, 174
properties and methods, 173
usage of when expression with, 175–176

extension function, 164
companion object extensions, 167–168
extended library class using an extension function, 165
nullable receiver, 166–167
resolved statically, 165–166

generics, 176
contra covariance, 180
covariance, 179–180
generic usage in program, 177–178
in keyword, 179
out keyword, 178–179
star projections, 181
type projections, 180–181
variance, 178

null safety in Kotlin, 157
checking for null in the conditions, 159
non-nullable types, 158–159
nullable and non-nullable types in Kotlin, 158
nullable types, 158

overloading of operator in Kotlin, 168
binary operators, 170–171
increment and decrement operators, 169–170
other operators, 171
unary operators, 168–169

safe cast operator, 161
smart cast, 159

use of !is for, 160
use of is for, 160

unsafe cast operator, 160–161
UserApiService, 139–140, 143–145
UserApiServiceImpl, 145
UserCacheService, 139
User-defined functions, 34–35
UserMediator class, 143–144

V
Variables, declaring, 337
Variance modifiers, 344

Java Interoperability, 344–355
Vert.x, 8
Visibility modifiers, 112, 344

internal modifier, 114
private modifier, 113–114
protected modifier, 114

constructor visibility, 116
overriding of, 115

public modifier, 112–113
Void class, 256

W
Web development on back-end, 323
When block, 52, 54–56, 253
When expression in Kotlin, 52

different ways to use when block, 54–57
else branch, 53

using when as a statement in the absence of, 53
when used as an expression, 53–54

While loop, 45–47
labeled continue in, 65–66
unlabeled continues in, 63–64

Working with Kotlin, 321–322

	Cover Page
	Half-Title Page
	Title Page
	Copyright Page
	Contents
	Acknowledgments
	About the Author
	Chapter 1 Crash Course in Kotlin
	Kotlin Programming Language has a Rich History
	Features of the Kotlin Programming Language
	Kotlin Programming Language Applications
	Why Should We Study the Kotlin Programming Language? What are the Benefits of Learning the Kotlin Programming Language?
	Disadvantages of Kotlin
	What is the Purpose of Kotlin?
	Android Development
	Back-End Web Development
	Full-Stack Web Development
	Data Science
	Mobile Development for Several Platforms

	Kotlin’S Architecture
	Kotlin Frameworks For Server-Side Development
	Kotlin Environment For Command Line Setup
	Intellij Idea is Used To Build Up a Kotlin Environment
	The First Program is Written in Kotlin
	Kotlin Data Types
	Number Data Types in Kotlin
	Character Data Type in Kotlin
	String Data Type in Kotlin
	Boolean Data Type in Kotlin
	Array Data Type in Kotlin

	Data Type Conversion in Kotlin
	Operators in Kotlin
	Arithmetic Operators in Kotlin
	Relational Operators in Kotlin
	Assignment Operators in Kotlin
	Unary Operators in Kotlin
	Logical Operators in Kotlin
	Bitwise Operations in Kotlin

	Booleans in Kotlin
	Create Boolean Variables
	Boolean Operators in Kotlin
	Boolean Expression in Kotlin
	and() and or() Functions in Kotlin
	Boolean to String

	Strings in Kotlin
	String Templates in Kotlin
	String Object in Kotlin
	String Indexes in Kotlin
	String Length in Kotlin
	String Kotlin Last Index
	String Case Changing
	String Concatenation in Kotlin
	Trim Characters from the String
	Quotes Inside a String
	Finding a String Inside a String
	Comparing Two Strings
	getOrNull() Function in Kotlin
	toString() Function in Kotlin

	Arrays in Kotlin
	Creating Arrays
	Arrays of the Primitive Type
	Elements of an Array Can Be Get and Set
	Array Length in Kotlin
	Loop through an Array
	Check if an Element Exists
	Distinct Values from the Array
	Dropping Elements from the Array
	Checking an Empty Array

	Ranges in Kotlin
	Creating Ranges Using the rangeTo() Function
	Creating the Ranges Using the .. Operator
	Creating the Ranges Using downTo() Operator
	step() Function in Kotlin
	Range of Characters in Kotlin
	reversed() Function in Kotlin
	until() Function in Kotlin
	The last, first, and step Elements
	Filtering Ranges
	Distinct Values in Range
	Range Utility Functions

	Functions in Kotlin
	Built-in Functions in Kotlin
	User-Defined Functions
	Function Parameters
	Return Values
	Unit-Returning Functions
	Recursive Function in Kotlin
	Tail Recursion in Kotlin
	Higher-Order Functions
	Lambda Function in Kotlin
	Inline Function in Kotlin

	If-else Expression in Kotlin
	if Statement
	if-else Statement
	if-else Expression in Kotlin as the Ternary Operator
	if-else-if Ladder Expression
	nested if Expression

	while loop in Kotlin
	do-while loop in Kotlin
	Method of do-while loop

	for loop in Kotlin
	Iterate across the Range Using a for loop
	Using a for loop, Iterate over the Array
	Iterate through a String Using the for loop
	Iterate over the Collection Using the for loop

	Kotlin when expression
	when to Use as a Statement with else
	Using when as a Statement in the Absence of an else Branch
	when Used as an Expression
	In Kotlin, Different Ways to Use a when Block

	Unlabeled Breaks in Kotlin
	In a while loop, Use of an Unlabeled Break
	In a do-while loop, Use of an Unlabeled Break
	Use of an Unlabeled Break in a for loop

	Labeled Breaks in Kotlin
	In a while loop, Using a Labeled Break
	In a do-while loop, Using a Labeled Break
	Using a Labeled Break in a for loop

	Kotlin Unlabeled Continue
	Use of Unlabeled Continues in the while loop
	In a do-while loop, Use an Unlabeled Continue
	Use of Unlabeled Continues in a for loop

	Kotlin Labeled Continues
	Use of Labeled Continues in a while loop
	Use of Labeled Continues in a do-while loop
	Use of Labeled Continues in a for loop

	Exceptional Handling
	Exceptions in Kotlin
	Exception Handling in Kotlin
	Avoiding NullPointerException
	What If We Fail to Deal with Exceptions?
	How to Throw an Exception

	Kotlin try-catch block
	The try-catch block as an Expression in Kotlin
	The final block in Kotlin
	Kotlin throw keyword

	Nested try block And Multiple catch block
	Nested try block
	Multiple catch block

	Null Safety
	Nullable and Non-Nullable Sorts in Kotlin
	Checking for the null in Conditions
	Safe Call operator(?.)
	Elvis Operator(?:)
	Not null assertion: !! Operator

	Type Checking And Smart Casting
	Type Checking
	Smart Casting
	Use of !is Operator

	Explicit Type Casting
	Unsafe Cast Operator: as
	Safe Cast Operator: as?

	Regex And Ranges
	Regular Expressions in Kotlin
	Regex Functions

	Ranges in Kotlin
	(..) operator
	rangeTo() Function
	downTo() Function
	Range Using the forEach loop
	step()
	reverse() Function
	Various Predefined Functions in the Range

	Chapter 2 Oop in Kotlin
	Objects And Classes
	Object-Oriented Programming Language
	Class
	Object

	Nested Class And Inner Class in Kotlin
	Nested Class
	Inner Class in Kotlin
	Inner-Class Kotlin Program

	Setters And Getters
	Setters and Getters
	Program of Default Setter and Getter in Kotlin

	Identifiers for Values and Fields
	Private Modifier
	Setter and Getter with Custom Parameters

	Class Properties And Custom Accessors
	Property
	Customer Accessors

	Kotlin Constructor
	Primary Constructor
	Primary Constructor with Initializer Block
	The Default Value in the Primary Constructor

	Secondary Constructor

	Visibility Modifiers in Kotlin
	Public Modifier
	Private Modifier
	Internal Modifier
	Protected Modifier
	Overriding the Protected Modifier
	Constructor Visibility

	Interfaces in Kotlin
	Creating Interfaces
	Implementing Interfaces
	Default Methods and Default Values
	Interface Properties
	Interface Inheritance
	Implementation of Multiple Interfaces

	Data Classes
	Rules for Creating Data Classes
	toString()
	copy()
	hashCode() and equals()

	Sealed Classes
	Kotlin Abstract Class
	Multiple Derived Classes

	Inheritance in Kotlin
	Inheritance Use
	Primary Constructor for an Inheritance
	Secondary Constructor for an Inheritance

	Overriding Member Functions and Attributes
	Calling Superclass Implementation

	Composition
	Substitution Principle of Liskov
	Antipatterns of Implementation Inheritance
	Inheritance of a Single Implementation

	Tight Coupling
	Unnecessary Exposure of Superclass Apis
	Exploding Numbers of Subclasses
	Composition Refactoring
	UserMediator Class is Being Refactored

	From Composition to Aggregation
	Handling the Exposure Issue
	Composition over Inheritance
	The Kotlin Method

	Encapsulation
	Polymorphism
	Encapsulation And Procedural Programming in Kotlin
	Example of Procedural Programming
	Oop
	Tips for Choosing between Procedural and Oop
	Procedural
	Oop and Encapsulation
	Putting Everything Together

	Chapter 3 Usability Aspects of Kotlin
	Null Safety in Kotlin
	Nullable and Non-Nullable Types in Kotlin
	Nullable Types
	Non-Nullable Types
	Checking for Null in the Conditions

	Smart Cast
	Use of is for the Smart Cast
	Use of !is for the Smart Cast

	Unsafe And Safe Cast Operator
	Unsafe Cast Operator: as
	Safe Cast Operator: as?
	(?:) Elvis Operator

	Extension Function
	Extended Library Class Using an Extension Function
	Extensions are Resolved Statically
	Nullable Receiver
	Companion Object Extensions

	Overloading of the Operator in Kotlin
	Unary Operators
	Increment and Decrement Operators
	Binary Operators
	Other Operators

	Enum Classes in Kotlin
	Enum Initializing
	Enum Properties and Methods
	Properties and Functions of the Enum Class
	Enums as Anonymous Classes
	Usage of when Expression with the Enum Class

	Kotlin Generics
	Generic Usage in Our Program
	Variance
	The out Keyword
	The in Keyword
	Covariance
	Contra Covariance
	Type Projections
	Star Projections

	Chapter 4 Kotlin Functional Programming
	Lambda Expressions And Anonymous Functions in Kotlin
	Lambda Expression
	Inference in Lambda Types
	Type Declaration in Lambdas
	it: Implicit Name of a Single-Parameter
	Returning a Value from a Lambda Expression

	Anonymous Function
	Return Type and Parameters
	The Distinction between Lambda Expressions and Anonymous Functions

	Higher-Order Functions in Kotlin
	Higher-Order Function
	Returning a Function from a Higher-Order Function

	Kotlin Local Functions
	Scope Function in Kotlin
	Scope Functions
	Utilization of Scope Functions
	Scope Function Types
	Object References
	Return Values

	Kotlin Collections
	Types of Collections
	Immutable Collection
	Mutable Collection

	ArrayList in Kotlin
	listOf() in Kotlin
	Indexing List Elements in Kotlin
	The First and Last Elements
	Iteration Methods for Lists
	Sorting the List’s Elements
	The Functions contains() and containsAll()

	setOf() in Kotlin
	Set Indexing
	Set Basics
	The Functions contains() and containsAll()

	mutableSetOf() Method in Kotlin
	Set Indexing
	Set the First and Last Element
	Traversal in a mutableSet
	The Methods contains() and containsAll()

	hashSetOf() in Kotlin
	hashSet Traversal
	Indexing in a hashSet
	The Functions contains() and containsAll()

	mapOf () in Kotlin
	Map Size
	Empty Map
	Get Map Values
	Map Contains Keys or Values
	Two Values and the Same Key

	HashMap in Kotlin
	HashMap Functions Use
	HashMap Time Complexity

	Chapter 5 Code Management and Exception Handling
	Exceptional Handling | Try, Catch, Throw, And Finally
	Exceptions in Kotlin
	Exception Handling
	What If We Don’t Deal with Exceptions?
	How to Throw an Exception in Kotlin
	NullPointerException Example
	How to Avoid NullPointerException

	Kotlin try-catch block
	Kotlin try-catch block as an Expression
	Kotlin Finally Block
	Kotlin throw Keyword

	Nested try block And Multiple catch block
	Nested try block
	Multiple catch block

	Logging in Kotlin
	The Easiest Kotlin Logging That Could Work
	What is Application Logging?
	Using Logback for Kotlin Logging
	Add Logback to Our Project
	Calling LogBack from Kotlin

	Why Log?
	What Logging Method Should We Use?
	Configuring Logger
	Formatting Kotlin Logging Messages
	Logging to a File
	Setting Kotlin Logging Levels

	Unit Testing
	Simple Android Application
	Project Setup
	Our First Test
	Test Structure
	Given Block
	When Block
	Then Block
	Running Test

	Nothing by Kotlin: Its Applicability in Generics
	Key Points

	Chapter 6 Code Optimization Ideas
	Optimization Tips
	Using Static Layout Imports in Kotlin
	Creating Pojo Classes in Kotlin
	Constructors and Inheritance in Kotlin
	Using Lambda Functions in Kotlin
	Tail Recursion, Sealed Classes, Local, Infix, Inline Functions, and More Advanced Kotlin Tips
	Local Functions
	Infix Functions
	Inline Functions
	Tail Recursion
	Sealed Classes

	Some More Helpful Tips
	Local Return
	Operator Overloading
	Lambda Extensions
	lateinit
	Companion Objects

	Tips for Improving Kotlin Compilation Times
	General Suggestions
	Configuration of Gradle
	Configuration of Windows

	Writing Secure Code
	Set Up Source Code and Tests in Our Android Apps
	How Does Kotlin Code Look?
	Why is It Superior to Java?

	Adapting an Existing Android Project to Utilize Kotlin
	Existing Java Files Can Convert to Kotlin
	Writing Tests in the Kotlin

	Best Coding Practices
	Accept Immutability
	Get Rid of ArrayList and HashMap
	Make Use of Functional Constructs
	javaClass
	String Interpolation
	Infer Types
	Semantic Test Naming
	Safe Operator?
	Elvis Throws
	List Literals in Annotations
	Collection Helpers
	No more .equals()
	Method Readability – Named Parameters

	How Kotlin Outperforms Java in Solving Long-Standing Security Issues
	Typing, Syntax, and Speed Compared
	Null Reference Exceptions Pose Security Risks
	Kotlin has Everything That Java Needs
	Finally, There is More to It Than Simply Null

	What Exactly is Application Hardening?
	What is the Purpose of Application Hardening?
	Is Our Application in Need of Hardening?
	Application Hardening Methods
	Benefits of Application Hardening
	Application Patches

	Chapter 7 Kotlin for Android Development
	Building Android Apps in Kotlin
	Download and Install Android Studio
	Create Our First Project

	Explore Layout Editor
	Add Color Resources
	Add Views And Constraints
	Change the Look of the Buttons And the TextView
	Benefits of Kotlin For Android App Development
	The Benefits of Kotlin-Based Android App Development

	Integrate in-app Reviews
	Set Up Our Development Environment
	Create ReviewManager
	Request ReviewInfo Object
	Launch in-app Review Flow

	Appraisal
	Cheat Sheet
	Bibliography
	Index

