

JavaScript Step by Step,
Third Edition

Steve Suehring

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2013 by Steve Suehring
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-6593-4

3 4 5 6 7 8 9 10 11 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Melanie Yarbrough

Editorial Production: nSight, Inc.

Technical Reviewer: John Grieb

Copyeditor: nSight, Inc.

Indexer: nSight, Inc.

Cover Design: Twist Creative • Seattle

Cover Composition: Karen Montgomery

Illustrator: nSight, Inc.

[2013-09-09]

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

I would like to dedicate this book to Mom and Dad.
—Steve Suehring

Contents at a glance

Introduction xix

PART I JAVAWHAT? THE WHERE, WHY, AND HOW OF JAVASCRIPT

ChapTEr 1 JavaScript is more than you might think 3

ChapTEr 2 Developing in JavaScript 17

ChapTEr 3 JavaScript syntax and statements 29

ChapTEr 4 Working with variables and data types 41

ChapTEr 5 Using operators and expressions 79

ChapTEr 6 Controlling flow with conditionals and loops 93

ChapTEr 7 Working with functions 119

ChapTEr 8 Objects in JavaScript 133

ChapTEr 9 The Browser Object Model 151

ChapTEr 10 an introduction to JavaScript libraries and frameworks 169

ChapTEr 11 an introduction to jQuery 173

PART II INTEGRATING JAVASCRIPT INTO DESIGN

ChapTEr 12 The Document Object Model 193

ChapTEr 13 JavaScript events and the browser 215

ChapTEr 14 Working with images in JavaScript 235

ChapTEr 15 Using JavaScript with web forms 257

ChapTEr 16 JavaScript and CSS 277

ChapTEr 17 jQuery effects and plug-ins 289

ChapTEr 18 Mobile development with jQuery Mobile 307

ChapTEr 19 Getting data into JavaScript 327

PART III AJAX AND SERVER-SIDE INTEGRATION

ChapTEr 20 Using aJaX 335

ChapTEr 21 Developing for Windows 8 353

vi Contents at a Glance

PART IV JAVASCRIPT AND WINDOWS 8

ChapTEr 22 Using Visual Studio for Windows 8 development 363

ChapTEr 23 Creating a Windows app 381

appEnDiX a answer key to exercises 403

appEnDiX B Writing JavaScript with other tools 425

Index 439

 vii

Contents

Introduction . xix

PART I JAVAWHAT? THE WHERE, WHY,
 AND HOW OF JAVASCRIPT

Chapter 1 JavaScript is more than you might think 3
A brief history of JavaScript. 3

Enter Internet Explorer 3.0 . 4

And then came ECMAScript . 4

So many standards... 5

The DOM . 5

What’s in a JavaScript program? . 6

JavaScript placement on your webpage . 7

What JavaScript can do .10

What JavaScript can’t do .10

JavaScript can’t be forced on a client .10

JavaScript can’t guarantee data security .11

JavaScript can’t cross domains .11

JavaScript doesn’t do servers .12

Tips for using JavaScript .12

Where JavaScript fits .14

Which browsers should the site support? .15

And then came Windows 8 .15

Exercises .16

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii Contents

Chapter 2 Developing in JavaScript 17
JavaScript development options . 17

Configuring your environment .18

Writing JavaScript with Visual Studio 2012 .19

Your first web (and JavaScript) project with Visual Studio 2012 . . .19

Using external JavaScript files with Visual Studio 201223

Debugging JavaScript .27

Exercises .27

Chapter 3 JavaScript syntax and statements 29
A bit of housekeeping .29

Case sensitivity .29

White space .30

Comments .31

Semicolons .32

Line breaks .33

Placing JavaScript correctly .33

JavaScript statements .34

What’s in a statement? .34

The two types of JavaScript statements .35

Reserved words in JavaScript .35

A quick look at functions .36

JavaScript’s strict mode .38

Exercises .39

Chapter 4 Working with variables and data types 41
Data types in JavaScript . 41

Working with numbers .42

Working with strings .47

Booleans .50

Null . 50

Undefined . 50

 Contents ix

Objects .51

Arrays .51

Defining and using variables .52

Declaring variables .52

Variable types .53

Variable scope .53

The Date object .61

Using the RegExp object .70

The syntax of regular expressions .71

References and garbage collection .75

Learning about type conversions . 76

Number conversions . 76

String conversions . 76

Boolean conversions . 76

Exercises .77

Chapter 5 Using operators and expressions 79
Meet the operators .79

Additive operators .80

Multiplicative operators .80

Bitwise operators .81

Equality operators .81

Relational operators .83

The in operator .84

The instanceof operator .85

Unary operators .85

Incrementing and decrementing. .85

Converting to a number with the plus sign .86

Creating a negative number with the minus sign 86

Negating with bitwise not and logical not . 86

Using the delete operator .87

Returning variable types with the typeof operator88

x Contents

Assignment operators .90

The comma operator .91

Exercises .92

Chapter 6 Controlling flow with conditionals and loops 93
If (and how) .93

Syntax for if statements. .94

The prompt() function in Internet Explorer .95

Compound conditions .98

Using else if and else statements .101

Working with ternary conditionals .106

Testing with switch .106

Looping with while .108

The while statement .108

The do...while statement .110

Using for loops .111

The for loop .111

The for...in loop .113

The for each...in loop .115

Validating forms with conditionals .116

Exercises .118

Chapter 7 Working with functions 119
What’s in a function? .119

Function parameters .120

Variable scoping revisited .121

Return values .123

More on calling functions .124

Anonymous/unnamed functions (function literals)126

Closures .126

Methods .127

A look at dialog functions .127

Exercises .131

 Contents xi

Chapter 8 Objects in JavaScript 133
Object-oriented development .133

Objects .133

Properties .134

Methods .134

Classes .134

Creating objects .137

Adding properties to objects .138

Adding methods to objects .141

Finding out more about arrays .141

The length property .142

Array methods .142

Taking advantage of built-in objects .148

Making URIs safe .148

Using the eval() method .149

Exercises .149

Chapter 9 The Browser Object Model 151
Introducing the browser .151

The browser hierarchy .151

Events .152

A sense of self .152

Getting information about the screen .154

Using the navigator object .156

The location object .160

The history object .166

Exercises .167

Chapter 10 An introduction to JavaScript libraries
and frameworks 169

Understanding programming libraries .169

Defining your own JavaScript library .169

xii Contents

Looking at popular JavaScript libraries and frameworks171

jQuery .171

Modernizr .171

Yahoo! User Interface .171

MooTools .172

Other libraries .172

Exercises .172

Chapter 11 An introduction to jQuery 173
jQuery primer .173

Using jQuery .173

The two jQuery downloads .173

Including jQuery . 174

Basic jQuery syntax .175

Connecting jQuery to the load event .175

Using selectors .177

Selecting elements by ID .177

Selecting elements by class .177

Selecting elements by type .178

Selecting elements by hierarchy .178

Selecting elements by position .179

Selecting elements by attribute. .181

Selecting form elements .182

More selectors .183

Functions .183

Traversing the DOM .183

Working with attributes .188

Changing text and HTML .188

Inserting elements .189

Callback functions .190

More jQuery .190

Exercises .190

 Contents xiii

PART II INTEGRATING JAVASCRIPT INTO DESIGN

Chapter 12 The Document Object Model 193
The Document Object Model defined .193

DOM Level 0: The legacy DOM .194

DOM Levels 1 through 3 .194

The DOM as a tree .194

Working with nodes .196

Retrieving elements .196

Retrieving elements by ID .196

Retrieving by tag name .200

HTML collections .203

Working with siblings .203

Working with attributes .204

Viewing attributes .204

Setting attributes .206

Creating elements .208

Adding text .208

Adding an element and setting an ID .209

Deleting elements .210

Exercises .213

Chapter 13 JavaScript events and the browser 215
Understanding window events .215

The event models .215

A generic event handler .219

jQuery event handling .220

Binding and unbinding .220

Detecting visitor information .222

A brief look at the userAgent property .222

Feature testing .223

Keeping JavaScript away from older browsers224

Other navigator properties and methods .226

xiv Contents

Opening, closing, and resizing windows .226

Window opening best practices .228

Opening tabs: no JavaScript necessary .228

Resizing and moving windows. .228

Timers .229

Events .231

Mouse events and hover .231

Many more event handlers. .233

Exercises .233

Chapter 14 Working with images in JavaScript 235
Working with image hovers .235

A simple hover .235

Modern hovers with jQuery .237

A closer look at the exercise .240

Preloading images .242

Working with slide shows .244

Creating a slide show .244

Moving backward .247

A jQuery slide show .250

Working with image maps .251

Exercises .255

Chapter 15 Using JavaScript with web forms 257
JavaScript and web forms .257

Validation with JavaScript .257

Validation with jQuery. .260

Working with form information .261

Working with select boxes .261

Working with check boxes .265

Working with radio buttons .268

Pre-validating form data .269

 Contents xv

Hacking JavaScript validation .270

Validating a text field .273

Exercises .275

Chapter 16 JavaScript and CSS 277
What is CSS? .277

Using properties and selectors .278

Applying CSS .279

The relationship between JavaScript and CSS .280

Setting element styles by ID .280

Setting element styles by type .284

Setting CSS classes with JavaScript .285

Retrieving element styles with JavaScript .287

Exercises .288

Chapter 17 jQuery effects and plug-ins 289
Installing jQuery UI .289

Obtaining jQuery UI .289

Installing jQuery UI .290

Building a jQuery UI demonstration page .290

Creating a jQuery UI calendar .294

Customizing the calendar .296

Adding a dialog box .299

Creating a modal dialog .301

Adding buttons .302

More JQuery UI .305

Exercises .305

Chapter 18 Mobile development with jQuery Mobile 307
A walkthrough of jQuery Mobile .307

Getting jQuery Mobile .310

Downloading jQuery Mobile .310

Testing jQuery Mobile .311

xvi Contents

Linking with jQuery Mobile .313

Creating a link .314

Changing the page transition .315

Linking without AJAX .316

Enhancing the page with toolbars .317

Adding a navigation bar .318

Adding a footer navigation bar .319

Adding buttons to toolbars .321

Other toolbar enhancements .322

Even more jQuery Mobile .326

Exercises .326

Chapter 19 Getting data into JavaScript 327
JavaScript application architecture .327

The big three: display, behavior, data .327

JavaScript and web interfaces .329

Introduction to AJAX .329

AJAX with jQuery .330

AJAX without the X .330

What’s Next? .331

PART III AJAX AND SERVER-SIDE INTEGRATION

Chapter 20 Using AJAX 335
The XMLHttpRequest object .335

Instantiating the XMLHttpRequest object .335

Sending an AJAX request .337

Processing an AJAX response .339

Processing XML responses .343

Working with JSON .344

Processing headers .345

Using the POST method .346

AJAX and jQuery .348

 Contents xvii

AJAX errors and time-outs .351

Sending data to the server .351

Other important options .352

Exercise .352

Chapter 21 Developing for Windows 8 353
Windows 8 apps .353

Developing Windows 8 apps .354

Development guidelines .354

The development process .354

Distributing Windows apps .358

Distributing in the Windows Store .358

Distributing in an enterprise .359

Summary. .359

PART IV JAVASCRIPT AND WINDOWS 8

Chapter 22 Using Visual Studio for Windows 8 development 363
Installing Visual Studio 2012 .363

Installing Visual Studio 2012 Express for Windows 8364

Windows 8 app templates .370

Blank App template .372

Grid App template .375

Split App template .377

Setting app details in the App Manifest .377

Packaging apps for the Windows Store .379

Certification requirements .379

The technical process .380

Exercises .380

Chapter 23 Creating a Windows app 381
The app development process .381

Starting the app design and programming .382

xviii Contents

Customizing the app .385

Customize the JavaScript .385

Customize the main HTML .390

Customize the detail HTML .391

Customize the CSS .393

Finalizing the app .394

Customizing the Package Manifest .396

Adding a splash screen, logo, and tile image396

Defining capabilities .397

Testing the app .398

Summary. .402

Appendix A Answer key to exercises 403

Appendix B Writing JavaScript with other tools 425

Index 439

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xix

introduction

Much has changed since the first edition of JavaScript Step by Step was written in
2007: the underlying JavaScript specification received a major update; Microsoft

released new versions of Internet Explorer and Windows; the Chrome browser came of
age, as did mobile web usage; and JavaScript development frameworks have matured
and are now ubiquitous.

This third edition of JavaScript Step by Step builds on the foundation laid down by
the first two editions. While the underlying architecture of the JavaScript language has
remained largely the same, use of JavaScript has become pervasive, with huge year-
over-year increases and an expanded importance to developers. With that in mind,
the layout and coverage of the book have also remained largely the same, with some
notable exceptions. The book now places extra emphasis on JavaScript event handling
and the use of jQuery to speed development. The book also includes a final section on
Windows 8 development using JavaScript. However, this book is most definitely not
Microsoft-centric.

One of the first things I asked prior to accepting the offer to write JavaScript Step
by Step was whether it had to focus on Microsoft products. The answer was a firm “no.”
The book was and is intended to be a general tutorial on using JavaScript, including
best practices for using JavaScript on the web.

The biggest influence Microsoft has had on this book was to make sure that I
used the term “Internet Explorer” when referring to IE. You’ll see this absence of bias
reflected throughout the book, which includes exercises built using plain text editors
as well as full-featured development tools. While it’s true that most of the screen shots
show Internet Explorer (I almost said IE), the code was also tested across several other
browsers, including Chrome and Firefox. In fact, much of the book’s code was written in
Vim, and tested in a cross-browser fashion.

Throughout the book, you’ll find highlights and additions for the new features in
the latest version of JavaScript. Also, the examples used in the book received greater
scrutiny in multiple browsers to reflect the reality of today’s web landscape. Reader
feedback from the earlier editions is reflected in the content of this edition and was the
impetus for adding jQuery and emphasizing event handling.

Housekeeping aside, this book provides an introductory look at JavaScript, includ-
ing some of its core functions as well as features and paradigms such as Asynchronous
JavaScript and XML (AJAX).

xx introduction

The first part of the book examines JavaScript and helps you get started developing
JavaScript applications. You don’t need any specific tools for JavaScript development, so
you’ll see how to create JavaScript files in Microsoft Visual Studio, and in Appendix B, in
Eclipse and in Notepad (or any other text editor). The book examines JavaScript func-
tions and the use of JavaScript in the browser, along with the aforementioned jQuery.
Finally, the book provides coverage of Windows 8 app development using HTML, CSS,
and JavaScript.

Who should read this book
This book is for beginning JavaScript programmers or people who are interested in
learning the basics of modern JavaScript programming: the language syntax, how it
works in browsers, what the common cross-browser problems are, and how to take
advantage of AJAX and third-party libraries such as jQuery to add interactivity to your
webpages.

assumptions
This book expects that you have at least a minimal understanding of concepts sur-
rounding web development. You should be at least somewhat familiar with HTML. CSS
is also helpful to know, but neither HTML nor CSS are required prerequisite knowledge
for completing this book. The examples shown provide all the HTML and CSS whenever
necessary.

Who should not read this book
This book isn’t meant for experienced JavaScript programmers.

Organization of this book
This book is divided into four sections, each of which focuses on a different aspect of
JavaScript programming. Part I, “Javawhat? The where, why, and how of JavaScript,”
provides the foundation upon which JavaScript is programmed. Included in this part
are chapters to get you up to speed creating JavaScript programs as well as chapters
discussing the syntax of JavaScript. Part II, “Integrating JavaScript into design,” looks
closely at the interactions between JavaScript and its primary role of web programming.

 introduction xxi

Part III, “AJAX and server-side integration,” shows the use of JavaScript to retrieve and
parse information from web services. Finally, Part IV, “JavaScript and Windows 8,” shows
how to create a Windows 8 app with HTML, CSS, and JavaScript.

Conventions and features in this book
This book takes you step by step through the process of learning the JavaScript pro-
gramming language. Starting at the beginning of the book and following each of the
examples and exercises will provide the maximum benefit to help you gain knowledge
about the JavaScript programming language.

If you already have some familiarity with JavaScript, you might be tempted to skip
the first chapter of this book. However, Chapter 1, “JavaScript is more than you might
think,” details some of the background history of JavaScript as well as some of the
underlying premise for this book, both of which might be helpful in framing the discus-
sion for the remainder of the book. Chapter 2, “Developing in JavaScript,” shows you
how to get started with programming in JavaScript. If you’re already familiar with web
development, you might already have a web development program, and therefore you
might be tempted to skip Chapter 2 as well. Nevertheless, you should become familiar
with the pattern used in Chapter 2 to create JavaScript programs.

The book contains a Table of Contents that will help you to locate a specific section
quickly. Each chapter contains a detailed list of the material that it covers.

The coverage of Windows 8 app development is limited to the final section of the
book, so if you’re not interested in making a Windows 8 app (it’s really easy) then you
can safely skip that last section without missing any of the valuable information neces-
sary to program in JavaScript for the web. If you’re looking for a more comprehensive
book on Windows 8 development with HTML5 and JavaScript, a beginner’s book, Start
Here! Build Windows 8 Apps with HTML5 and JavaScript will be available from Microsoft
Press in May (pre-order here: http://oreil.ly/build-w8-apps-HTML5-JS).

In addition, you can download the source code for many of the examples shown
throughout the book.

System requirements
You will need the following hardware and software to complete the practice exercises in
this book:

http://oreil.ly/build-w8-apps-HTML5-JS

xxii introduction

■■ An operating system capable of running a web server. For the section on
Windows 8 development, you’ll need Windows 8, but none of the other
examples require Windows.

■■ A text editor such as Notepad, Vim, or an Integrated Development Environment
(IDE) such as Visual Studio or Eclipse. For Windows 8 development, you’ll specifi-
cally need Visual Studio 2012 for Windows.

■■ An Internet connection so you can download software and chapter examples.

Code Samples
Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. The code for those exercises and many other exam-
ples can be downloaded from:

http://aka.ms/JavaScriptSbS/files

Follow the instructions to download the 9780735665934_files file.

installing the Code Samples
Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book.

1. Unzip the 9780735665934_files.zip file that you downloaded from the book’s
website to a location that is accessible by your web server.

2. If prompted, review the displayed end user license agreement. If you accept the
terms, select the accept option, and then click Next.

note If the license agreement doesn’t appear, you can access it from the
same webpage from which you downloaded the 9780735665934_files.zip file.

Using the Code Samples
Unzipping the sample code creates several subfolders, one for each chapter of the
book. These subfolders may contain additional subfolders, based on the layout neces-
sary for a given chapter.

http://aka.ms/JavaScriptSbS/files

 introduction xxiii

Acknowledgments
There are so many people that help in the book writing process. I’d like to first thank
Russell Jones at Microsoft Press. He has provided excellent guidance and is always a
pleasure to work with. Thanks to John Grieb for providing excellent technical feedback
for this edition. I should also thank Jim Oliva and John Eckendorf, if for no other reason
than I do so in every other book I write.

I’d also like to thank Terry Rapp for being understanding about my scheduling
conflicts. Thanks to Chris Tuescher for years of friendship and support. Many people
have helped me through the years, and it all led to me sitting here, writing this sen-
tence. Duff Damos, Kent Laabs, Pat Dunn, and the entire Nightmare Productions Ltd
and Capitol Entertainment crews are just as responsible for getting me here as anyone.
Thanks to Dave, Sandy, Joel, and the gang at Ski’s. Thanks also to Mrs. Mehlberg and
Mrs. Jurgella for extra attention and just being great.

Finally, thank you, dear reader. This book has been highly successful (at least by my
standards) and your feedback and contact over the years has been helpful. Please fol-
low me on Twitter @stevesuehring or drop me a line by going to my website at http://
www.braingia.org.

Errata & Book Support
We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site at Oreilly.com:

http://aka.ms/JavaScriptSbS/errata

If you find an error that is not already listed, you can report it to us through the
same page.

http://www.braingia.org
http://www.braingia.org
http://aka.ms/JavaScriptSbS/errata

xxiv introduction

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 1

PART I

Javawhat? The where,
why, and how of
JavaScript

CHAPTER 1 JavaScript is more than you might think 3

CHAPTER 2 Developing in JavaScript. .17

CHAPTER 3 JavaScript syntax and statements29

CHAPTER 4 Working with variables and data types41

CHAPTER 5 Using operators and expressions79

CHAPTER 6 Controlling flow with conditionals and loops93

CHAPTER 7 Working with functions .119

CHAPTER 8 Objects in JavaScript .133

CHAPTER 9 The Browser Object Model151

CHAPTER 10 An introduction to JavaScript libraries
 and frameworks .169

CHAPTER 11 An introduction to jQuery .173

The first section of the book, by far the largest, includes just about
everything you need to know about basic JavaScript syntax. You'll
start things off by learning some of the background and history of
JavaScript. It may sound boring, but Chapter 1 will help to frame
the discussion and tone of the remainder of the book.

Chapter 2 gets you started with JavaScript development
by showing how to create a page with JavaScript using Visual
Studio. See Appendix B for information about using Eclipse or a
text editor such as Notepad.

The discussion of JavaScript syntax begins in Chapter 3 and
continues for the remainder of the first part of the book. You'll
learn about conditionals, operators, functions, loops, and even
get an introduction to jQuery.

 3

C H A P T E R 1

JavaScript is more than you
might think

After completing this chapter, you will be able to

■■ Understand the history of JavaScript.

■■ Recognize the parts of a JavaScript program.

■■ Use the javascript pseudo-protocol.

■■ Understand where JavaScript fits within a webpage.

■■ Understand what JavaScript can and cannot do.

■■ Understand how JavaScript is used in Windows 8.

A brief history of JavaScript

JavaScript isn’t Java. There! With that clarification out of the way, you can move on to bigger, more
important learning, like how to make cool sliders. In all seriousness, JavaScript is one implementation
of a specification known as ECMAScript. You’ll learn more about ECMAScript later in this chapter.

Where did JavaScript come from? You might not know the rich and storied history of JavaScript—
and you might not really care much about it, either. If that’s the case, you might be tempted to jump
ahead to the next chapter and begin coding JavaScript. Doing so, of course, would be a mistake—
you’d miss all the wonderful information that follows in this chapter. And understanding a bit about
the history of JavaScript is important to understanding how the language is implemented in various
environments today.

JavaScript was originally developed by Brendan Eich at Netscape sometime in 1995–1996. Back
then, the language was called LiveScript. That was a great name for a new language—and the story
could have ended there. However, in an unfortunate decision, the folks in marketing had their way,
and the language was renamed to JavaScript. Confusion soon ensued. You see, Java was the exciting
new language at the time, and someone decided to try to capitalize on Java’s popularity by using
its name. As a result, JavaScript found itself associated with the Java language. This was a disadvan-
tage for JavaScript, because Java, although popular in the sense that it was frequently used, was also
unpopular because it had earned a fairly bad reputation—developers used Java in websites to present

4 parT i Javawhat? The where, why, and how of JavaScript

data or to add useless enhancements (such as annoying scrolling text). The user experience suffered
because Java required a plug-in to load into the web browser, slowing down the browsing process
and causing grief for visitors and accessibility problems. Only in recent years has JavaScript begun to
separate from this negative Java association, but, almost weekly, I still hear people confuse Java and
JavaScript. You’ll hopefully no longer do that!

JavaScript is not a compiled language, which makes it look and feel like a language that lacks
power. But programmers new to JavaScript soon came to realize its strengths and usefulness for both
simulating and creating interactivity on the World Wide Web. Up until that realization, program-
mers developed many websites using only simple Hypertext Markup Language (HTML) and graphics
that often lacked both visual appeal and the ability to interact with the site’s content. With Microsoft
Windows 8, JavaScript now has an avenue for creating full-fledged applications that don’t rely on the
web browser.

Early JavaScript concentrated on client-side form validation and working with images on webpages
to provide rudimentary, although helpful, interactivity and feedback to the visitor. When a visitor
to a website filled in a form, JavaScript instantly validated the contents of the web form rather than
 making a round-trip to the server. Especially in the days before broadband was pervasive, prevent-
ing the round-trip to the server was a great way to help applications seem a little quicker and more
responsive—and it still is.

Enter internet Explorer 3.0
With the release of Microsoft Internet Explorer 3.0 in 1996, Microsoft included support for core
JavaScript, known in Internet Explorer as JScript, and support for another scripting language called
Microsoft Visual Basic, Scripting Edition, or VBScript. Although JavaScript and JScript were similar,
their implementations weren’t exactly the same. Therefore, methods were developed to detect which
browser the website visitor was using and respond with appropriate scripting. This process is known
as browser detection, and is discussed in Chapter 11, “An introduction to jQuery.” Although it is con-
sidered undesirable for most applications, you’ll still see browser detection used, especially with the
advent of mobile devices that have their own special look and feel.

and then came ECMaScript
In mid-1997, Microsoft and Netscape worked with the European Computer Manufacturers Association
(ECMA) to release the first version of a language specification known as ECMAScript, more formally
known as ECMA-262. Since that time, all browsers from Microsoft have implemented versions of the
ECMAScript standard. Other popular browsers, such as Firefox, Safari, and Opera, have also imple-
mented the ECMAScript standard.

ECMA-262 edition 3 was released in 1999. The good news is that browsers such as Microsoft
Internet Explorer 5.5 and Netscape 6 supported the edition 3 standard, and every major browser
since then has supported the version of JavaScript formalized in the ECMA-262 edition 3 standard.
The bad news is that each browser applies this standard in a slightly different way, so incompatibilities
still plague developers who use JavaScript.

 CHAPTER 1 JavaScript is more than you might think 5

The latest version of ECMAScript, as formalized in the standard known as ECMA-262, was released
in late 2009 and is known as ECMA-262 edition 5. Version 4 of the specification was skipped for a
variety of reasons and to avoid confusion among competing proposals for the standard. ECMA-262
edition 5.1 is becoming more widely supported as of this writing and will likely (I’m hopeful) be in
versions of popular browsers such as Internet Explorer, Chrome, Firefox, Opera, and Safari by the time
you read this book.

It’s important to note that as a developer who is incorporating JavaScript into web applications,
you need to account for the differences among the versions of ECMA-262, and among the many
implementations of JavaScript. Accounting for these differences might mean implementing a script
in slightly different ways, and testing, testing, and testing again in various browsers and on various
platforms. On today’s Internet, users have little tolerance for poorly designed applications that work
in only one browser.

Accounting for those differences has become much easier in the last few years, and there are two
primary reasons. First, web browsers have consolidated around the specifications for HTML, CSS, and
JavaScript, and the vendors have worked to bring their interpretation of the specifications closer to
one another. The second reason that accounting for differences has become easier is that JavaScript
libraries have become more popular. Throughout the book, I’ll show the use of the jQuery library to
make JavaScript easier.

important It is imperative that you test your websites in multiple browsers—including web
applications that you don’t think will be used in a browser other than Internet Explorer.
Even if you’re sure that your application will be used only in Internet Explorer or if that’s
all you officially support, you still should test in other browsers. This is important both for
security and because it shows that you’re a thorough developer who understands today’s
Internet technologies.

So many standards...
If you think the standards of JavaScript programming are loosely defined, you’re right. Each browser
supports JavaScript slightly differently, making your job—and my job—that much more difficult.
Trying to write about all these nuances is more challenging than writing about a language that is
implemented by a single, specific entity, like a certain version of Microsoft Visual Basic or Perl. Your
job (and mine) is to keep track of these differences and account for them as necessary, and to try to
find common ground among them as much as possible.

The DOM
Another evolving standard relevant to the JavaScript programmer is the Document Object Model
(DOM) standard developed by the World Wide Web Consortium (W3C). The W3C defines the DOM
as “a platform- and language-neutral interface that allows programs and scripts to dynamically access
and update the content, structure, and style of documents.” What this means for you is that you can

6 parT i Javawhat? The where, why, and how of JavaScript

work with a specification to which web browsers adhere to develop a webpage in a dynamic man-
ner. The DOM creates a tree structure of objects for HTML and Extensible Markup Language (XML)
documents and enables scripting of those objects. JavaScript interacts heavily with the DOM for many
important functions.

Like JavaScript, the DOM is interpreted differently by every browser, making life for a JavaScript
programmer more interesting. Internet Explorer 4.0 and earlier versions of Netscape included support
for an early DOM, known as Level 0. If you use the Level 0 DOM, you can be pretty sure that you’ll
find support for the DOM in those browsers and in all the browsers that came after.

Microsoft Internet Explorer 5.0 and Internet Explorer 5.5 included some support for the Level 1
DOM, whereas Windows Internet Explorer 6.0 and later versions include some support for the Level
2 DOM. The latest versions of Internet Explorer, Chrome, Firefox, Safari, and Opera support the Level
3 DOM in some form. Safari provides a representation of the WebKit rendering engine. The WebKit
rendering engine is also used as the basis for the browser on devices such as the iPhone and iPad and
on Android-based devices.

If there’s one lesson that you should take away while learning about JavaScript standards and the
related DOM standards, it’s that you need to pay particular attention to the code that you write (no
surprise there) and the syntax used to implement that code. If you don’t, JavaScript can fail miser-
ably and prevent your page from rendering in a given browser. Chapter 12, “The Document Object
Model,” covers the DOM in much greater detail.

Tip The W3C has an application that can test the modules specified by the various DOM
levels that your web browser claims to support. This application can be found at http://
www.w3.org/2003/02/06-dom-support.html.

What’s in a JavaScript program?

A JavaScript program consists of statements and expressions formed from tokens of various catego-
ries, including keywords, literals, separators, operators, and identifiers placed together in an order that
is meaningful to a JavaScript interpreter, which is contained in most web browsers. That sentence is a
mouthful, but these statements are really not all that complicated to anyone who has programmed in
just about any other language. An expression might be:

var smallNumber = 4;

In that expression, a token, or reserved word—var—is followed by other tokens, such as an identi-
fier (smallNumber), an operator (=), and a literal (4). (You learn more about these elements through-
out the rest of the book.) The purpose of this expression is to set the variable named smallNumber
equal to the integer 4.

Like in any programming language, statements get put together in an order that makes a program
perform one or more functions. JavaScript defines functions in its own way, which you read much

http://www.w3.org/2003/02/06-dom-support.html
http://www.w3.org/2003/02/06-dom-support.html

 CHAPTER 1 JavaScript is more than you might think 7

more about in Chapter 7, “Working with functions.” JavaScript defines several built-in functions that
you can use in your programs.

Using the javascript pseudo-protocol and a function

1. Open a web browser.

2. In the address bar, type the following code and press Enter:

javascript:alert("Hello World");

After you press Enter, you see a dialog box similar to this one:

Congratulations! You just programmed your first (albeit not very useful) bit of JavaScript code.
However, in just this little bit of code, are two important items that you are likely to use in your
JavaScript programming endeavors: the javascript pseudo-protocol identifier in a browser and, more
importantly, the alert function. You'll examine these items in more detail in later chapters; for now, it
suffices that you learned something that you’ll use in the future!

note Internet Explorer 10 in Windows 8 sometimes doesn’t display or use the javascript
pseudo-protocol correctly.

JavaScript is also event-driven, meaning that it can respond to certain events or “things that hap-
pen,” such as a mouse click or text change within a form field. Connecting JavaScript to an event is
central to many common uses of JavaScript. In Chapter 11, you see how to respond to events by using
JavaScript.

JavaScript placement on your webpage

If you’re new to HTML, all you need to know about it for now is that it delineates elements in a web-
page using a pair of matching tags enclosed in brackets. The closing tag begins with a slash char-
acter (/). Elements can be nested within one another. JavaScript fits within <SCRIPT> tags inside the
<HEAD> </HEAD> and/or <BODY> </BODY> tags of a webpage, as in the following example:

<!doctype html>
<html>
<head>

8 parT i Javawhat? The where, why, and how of JavaScript

<title>A Web Page Title</title>
<script type="text/javascript">
// JavaScript Goes Here
</script>
</head>
<body>
<script type="text/javascript">
// JavaScript can go here too
</script>
</body>
</html>

JavaScript placed within the <BODY> tags executes as it is encountered by the browser, which is
helpful when you need to write to the document by using a JavaScript function, as follows (the func-
tion calls are shown in boldface type):

<!doctype html>
<html>
<head>
<title>A Web Page Title</title>
<script type="text/javascript">
// JavaScript Goes Here
</script>
</head>
<body>
<script type="text/javascript">
document.write("hello");
document.write(" world");
</script>
</body>
</html>

Because of the way browsers load JavaScript, the current best practice for placing JavaScript in
your HTML is to position the <SCRIPT> tags at the end of the <BODY> element rather than in the
<HEAD> element. Doing so helps to ensure that the content of the page is rendered if the browser
blocks input while the JavaScript files are being loaded.

When you’re using JavaScript on an Extensible Hypertext Markup Language (XHTML) page, the
less-than sign (<) and the ampersand character (&) are interpreted as XML, which can cause problems
for JavaScript. To get around this, use the following syntax in an XHTML page:

<script type="text/javascript">
<![CDATA[
 // JavaScript Goes Here
]]>
</script>

Browsers that aren’t XHTML-compliant don’t interpret the CDATA section correctly. You can work
around that problem by placing the CDATA section inside a JavaScript comment—a line or set of lines
prefaced by two forward slashes (//), as shown here:

<script type="text/javascript">

 CHAPTER 1 JavaScript is more than you might think 9

//<![CDATA[
 // JavaScript Goes Here
//]]>
</script>

Yes, the code really is that ugly. However, there’s an easy fix for this: use external JavaScript files. In
Chapter 2, “Developing in JavaScript,” you learn exactly how to accomplish this simple task.

Document types
If you’ve been programming for the web for any length of time, you’re probably familiar with
Document Type declarations, or DOCTYPE declarations, as they’re sometimes called. One of
the most important tasks you can do when designing your webpages is to include an accurate
and syntactically correct DOCTYPE declaration section at the top of the page. The DOCTYPE
declaration, frequently abbreviated as DTD, lets the browser (or other parsing program) know
the rules that will be followed when parsing the elements of the document.

An example of a DOCTYPE declaration for HTML 4.01 looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

If you’re using a Microsoft Visual Studio version earlier than version 2012 to create a web
project, each page is automatically given a DOCTYPE declaration for the XHTML 1.0 standard,
like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR
/xhtml1/DTD/xhtml1-transitional.dtd">

HTML version 5 uses a much simpler DOCTYPE:

<!DOCTYPE html>

If you fail to declare a DOCTYPE, the browser interprets the page by using a mode known
as Quirks Mode. Falling back to Quirks Mode means that the document might end up looking
different from your intention, especially when viewed through several browsers.

If you do declare a DOCTYPE, making sure that the resulting HTML, cascading style sheet
(also known as CSS), and JavaScript also adhere to web standards is important so that the
document can be viewed as intended by the widest possible audience, no matter which inter-
face or browser is used. The W3C makes available an online validator at http://validator.w3.org/,
which you can use to validate any publicly available webpage.

Tip Use the Markup Validator regularly until you’re comfortable with coding to standards,
and always check for validity before releasing your web project to the public.

http://validator.w3.org/

10 parT i Javawhat? The where, why, and how of JavaScript

What JavaScript can do

JavaScript is largely a complementary language, meaning that it’s uncommon for an entire applica-
tion to be written solely in JavaScript without the aid of other languages like HTML and without
presentation in a web browser. Some Adobe products support JavaScript, and Windows 8 begins to
change this, but JavaScript’s main use is in a browser.

JavaScript is also the J in the acronym AJAX (Asynchronous JavaScript and XML), the darling of
the Web 2.0 phenomenon. However, beyond that, JavaScript is an everyday language providing the
interactivity expected, maybe even demanded, by today’s web visitors.

JavaScript can perform many tasks on the client side of the application. For example, it can add
the needed interactivity to a website by creating drop-down menus, transforming the text on a page,
adding dynamic elements to a page, and helping with form entry.

Before learning about what JavaScript can do—the focus of this book—you need to understand
what JavaScript can’t do, but note that neither discussion is comprehensive.

What JavaScript can’t do

Many of the operations JavaScript can’t perform are the result of JavaScript’s usage being somewhat
limited to a web browser environment. This section examines some of the tasks JavaScript can’t per-
form and some that JavaScript shouldn’t perform.

JavaScript can’t be forced on a client
JavaScript relies on another interface or host program for its functionality. This host program is usu-
ally the client’s web browser, also known as a user agent. Because JavaScript is a client-side language,
it can do only what the client allows it to do.

Some people are still using older browsers that don’t support JavaScript at all. Others won’t be
able to take advantage of many of JavaScript’s fancy features because of accessibility programs, text
readers, and other add-on software that assists the browsing experience. And some people might
just choose to disable JavaScript because they can, because of security concerns (whether perceived
or real), or because of the poor reputation JavaScript received as a result of certain annoyances like
pop-up ads.

Regardless of the reason, you need to perform some extra work to ensure that the website you’re
designing is available to those individuals who don’t have JavaScript. I can hear your protests already:
“But this feature is really [insert your own superlative here: cool, sweet, essential, nice, fantastic].”
Regardless of how nice your feature might be, the chances are you will benefit from better interoper-
ability and more site visitors. In the “Tips for using JavaScript” section later in this chapter, I offer some
pointers that you can follow for using JavaScript appropriately on your website.

 CHAPTER 1 JavaScript is more than you might think 11

It might be helpful to think of this issue another way. When you build a web application that gets
served from Microsoft Internet Information Services (IIS) 6.0, you can assume that the application will
usually work when served from an IIS 6.0 server anywhere. Likewise, when you build an application for
Apache 2, you can be pretty sure that it will work on other Apache 2 installations. However, the same
assumption cannot be made for JavaScript. When you write an application that works fine on your
desktop, you can’t guarantee that it will work on somebody else’s. You can’t control how your applica-
tion will work after it gets sent to the client.

JavaScript can’t guarantee data security
Because JavaScript is run wholly on the client, the developer must learn to let go. As you might
expect, letting go of control over your program has serious implications. After the program is on the
client’s computer, the client can do many undesirable things to the data before sending it back to the
server. As with any other web programming, you should never trust any data coming back from the
client. Even if you’ve used JavaScript functions to validate the contents of forms, you still must validate
this input again when it gets to the server. A client with JavaScript disabled might send back garbage
data through a web form. If you believe, innocently enough, that your client-side JavaScript function
has already checked the data to ensure that it is valid, you might find that invalid data gets back to
the server, causing unforeseen and possibly dangerous consequences.

important Remember that JavaScript can be disabled on your visitor’s computer. You can-
not rely on cute tricks to be successful, such as using JavaScript to disable right-clicks or
to prevent visitors from viewing the page source, and you shouldn’t use them as security
measures.

JavaScript can’t cross domains
The JavaScript developer also must be aware of the Same-Origin Policy, which dictates that scripts
running from within one domain neither have access to the resources from another Internet domain,
nor can they affect the scripts and data from another domain. For example, JavaScript can be used to
open a new browser window, but the contents of that window are somewhat restricted to the calling
script. When a page from my website (braingia.org) contains JavaScript, that page can’t access any
JavaScript executed from a different domain, such as microsoft.com. This is the essence of the Same-
Origin Policy: JavaScript has to be executed in or originate from the same location.

The Same-Origin Policy is frequently a restriction to contend with in the context of frames and
AJAX’s XMLHttpRequest object, where multiple JavaScript requests might be sent to different web
servers. With the introduction of Windows Internet Explorer 8, Microsoft introduced support for the
XDomainRequest object, which allows limited access to data from other domains.

12 parT i Javawhat? The where, why, and how of JavaScript

JavaScript doesn’t do servers
When developing server-side code such as Visual Basic .NET or PHP (a recursive acronym that stands
for PHP: Hypertext Preprocessor), you can be fairly sure that the server will implement certain func-
tions, such as talking to a database or giving access to modules necessary for the web application.
JavaScript doesn’t have access to server-side variables. For example, JavaScript cannot access data-
bases that are located on the server. JavaScript code is limited to what can be done inside the plat-
form on which the script is running, which is typically the browser.

Another shift you need to make in your thinking, if you’re familiar with server-side programming,
is that with JavaScript, you have to test the code on many different clients to know what a particular
client is capable of. When you’re programming server-side, if the server doesn’t implement a given
function, you know it right away because the server-side script fails when you test it. Naughty admin-
istrators aside, the back-end server code implementation shouldn’t change on a whim, and thus,
you more easily know what you can and cannot code. But you can’t anticipate JavaScript code that is
intended to run on clients, because these clients are completely out of your control.

note There are server-side implementations of JavaScript, but they are beyond the scope
of this book.

Tips for using JavaScript

Several factors go into good web design, and really, who arbitrates what is and is not considered
good anyway? One visitor to a site might call the site an ugly hodgepodge of colors and text created
as if those elements were put in a sack and shaken until they fell out onto the page; the next visitor
might love the design and color scheme.

Because you’re reading this book, I assume that you’re looking for some help with using JavaScript
to enhance your website. I also assume that you want to use this programming language to help
people use your site and to make your site look, feel, and work better.

The design of a website is not and will never be an entirely objective process. The goal of one web-
site might be informational, which would dictate one design approach, whereas the goal of another
website might be to connect to an application, thus requiring specialized design and functionality.
That said, many popular and seemingly well-designed sites have certain aspects in common. I try to
break down those aspects here, although I ask you to remember that I didn’t create a comprehensive
list and that the items reflect only one person’s opinions.

A well-designed website does the following:

■■ Emphasizes function over form When a user visits a website, she usually wants to obtain
information or perform a task. The more difficult your site is to browse, the more likely the
user is to move to another site with better browsing.

 CHAPTER 1 JavaScript is more than you might think 13

Animations and blinking bits come and go, but what remain are sites that have basic informa-
tion presented in a professional, easily accessible manner. Using the latest cool animation soft-
ware or web technology makes me think of the days of the HTML <BLINK> tag. The <BLINK>
tag, for those who never saw it in action, caused the text within it to disappear and reappear
on the screen. Nearly all web developers seem to hate the <BLINK> tag and what it does to a
webpage. Those same developers would be wise to keep in mind that today’s exciting feature
or special effect on a webpage will be tomorrow’s <BLINK> tag. Successful websites stick to
the basics and use these types of bits only when the content requires them.

Use elements like a site map, alt tags, and simple navigation tools, and don’t require special
software or plug-ins for viewing the site’s main content. Too often, I visit a website only to
be stopped because I need a plug-in or the latest version of this or that player (which I don’t
have) to browse it.

Although site maps, alt tags, and simple navigation might seem quaint, they are indispensable
items for accessibility. Text readers and other such technologies that enable sites to be read
aloud or browsed by individuals with disabilities use these assistive features and frequently
have problems with complex JavaScript.

■■ Follows standards Web standards exist to be followed, so ignore them at your own peril.
Using a correct DOCTYPE declaration and well-formed HTML helps ensure that your site will
display correctly to your visitors. Validation using the W3C’s Markup Validator tool is highly
recommended. If your site is broken, fix it!

■■ Renders correctly in multiple browsers Even when Internet Explorer had 90 percent
market share, it was never a good idea for programmers to ignore other browsers. Doing so
usually meant that accessibility was also ignored, so people with text readers or other add-ons
couldn’t use the site. People using operating systems other than Microsoft Windows might
also be out of luck visiting those sites.

Although Internet Explorer is still the leader among browsers used by web visitors, it isn't the
only browser your web visitors will use. Somewhere around 3 or 4 of every 10 visitors will be
using a different web browser.

You never want to turn away visitors because of their browser choice. Imagine the shopkeeper
who turned away 3 of every 10 potential customers just because of their shoes. That shop
wouldn’t be in business too long—or at the very least, it wouldn’t be as successful.

If you strive to follow web standards, chances are that you’re already doing most of what you
need to do to support multiple browsers. Avoiding the use of proprietary plug-ins for your
website is another way to ensure that your site renders correctly. You need to look only as
far as the iPad to see a device that is popular but whose use is restricted because it doesn’t
natively support Flash. For this reason, creating sites that follow standards and avoid propri-
etary plug-ins ensures that your site is viewable by the widest possible audience.

■■ Uses appropriate technologies at appropriate times Speaking of plug-ins, a well-
designed website doesn’t overuse or misuse technology. On a video site, playing videos is

14 parT i Javawhat? The where, why, and how of JavaScript

appropriate. Likewise, on a music site, playing background music is appropriate. On other
sites, these features might not be so appropriate. If you feel that your site needs to play back-
ground music, go back to the drawing board and examine why you want a website in the first
place! I still shudder when I think of an attorney’s website that I once visited. The site started
playing the firm’s jingle in the background, without my intervention. Friends don’t let friends
use background music on their sites.

Where JavaScript fits
Today’s web is still evolving. One of the more popular movements is known as unobtrusive scripting.
The unobtrusive scripting paradigm contains two components, progressive enhancement and behav-
ioral separation. Behavioral separation calls for structure to be separated from style, and for both of
these elements to be separated from behavior. In this model, HTML or XHTML provides the structure,
whereas the CSS provides the style and JavaScript provides the behavior. Progressive enhancement
means adding more features to the page as the browser’s capabilities are tested; enhancing the user
experience when possible but not expecting that JavaScript or a certain JavaScript function will always
be available. In this way, the JavaScript is unobtrusive; it doesn’t get in the way of the user experi-
ence. If JavaScript isn’t available in the browser, the website still works because the visitor can use the
website in some other way.

When applied properly, unobtrusive scripting means that JavaScript is not assumed to be available
and that JavaScript will fail in a graceful manner. Graceful degradation helps the page function with-
out JavaScript or uses proper approaches to make JavaScript available when it’s required for the site.

I’m a proponent of unobtrusive scripting because it means that standards are followed and the
resulting site adheres to the four recommendations shared in the previous section. Unfortunately, this
isn’t always the case. You could separate the HTML, CSS, and JavaScript and still end up using proprie-
tary tags, but when you program in an unobtrusive manner, you tend to pay closer attention to detail
and care much more about the end result being compliant with standards.

Throughout this book, I strive to show you not only the basics of JavaScript but also the best way
to use JavaScript effectively and, as much as possible, unobtrusively.

a note on JScript and JavaScript and this book
This book covers JavaScript as defined by the ECMA standard, in versions all the way through
the latest edition 5. This is distinct from Microsoft’s implementation of JScript, which is not
 covered in this book. For an additional reference on only JScript, I recommend the follow-
ing site: JScript (Windows Script Technologies) at http://msdn.microsoft.com/en-us/library/
hbxc2t98.aspx.

http://msdn.microsoft.com/en-us/library/hbxc2t98.aspx
http://msdn.microsoft.com/en-us/library/hbxc2t98.aspx

 CHAPTER 1 JavaScript is more than you might think 15

Which browsers should the site support?
Downward compatibility has been an issue for the web developer for a long time. Choosing which
browser versions to support becomes a trade-off between using the latest functionality available in
the newest browsers and the compatible functionality required for older browsers. There is no hard
and fast rule for which browsers you should support on your website, so the answer is: it depends.

Your decision depends on what you’d like to do with your site and whether you value visits by
people using older hardware and software more than you value the added functionality available in
later browser versions. Some browsers are just too old to support because they can’t render CSS cor-
rectly, much less JavaScript. A key to supporting multiple browser versions is to test with them. All of
this means that you need to develop for and test in an appropriate set of browsers before releasing a
website for public consumption.

Obtaining an MSDN account from Microsoft will give you access to both new and older
verions of products, including Internet Explorer. Additional resources are the Application
Compatibility Virtual PC Images, available for free from Microsoft. These allow you to
use a time-limited version of Microsoft Windows containing older versions of Internet
Explorer, too. For more information, see http://www.microsoft.com/downloads/details.
aspx?FamilyId=21EABB90-958F-4B64-B5F1-73D0A413C8EF&displaylang=en.

Many web designs and JavaScript functions don’t require newer versions of web browsers.
However, as already explained, verifying that your site renders correctly in various browsers is always
a good idea. See http://browsers.evolt.org/ for links to archives of many historical versions of web
browsers. Even if you can’t conduct extensive testing in multiple browsers, you can design the site so
that it fails in a graceful manner. You want the site to render appropriately regardless of the browser
being used.

And then came Windows 8

Microsoft Windows 8 represents a paradigm shift for JavaScript programmers. In Windows 8,
Microsoft has elevated JavaScript to the same level as other client-side languages, such as Visual
Basic and C#, for developing Windows 8 applications. Before Windows 8, if you wanted to create an
application that ran on the desktop, you’d need to use Visual Basic, C#, or a similar language. With
Windows 8, you need only use HTML and JavaScript to create a full-fledged Windows 8–style app.

Windows 8 exposes an Application Programming Interface (API), providing a set of functions that
enable the JavaScript programmer to natively access behind-the-scenes areas of the operating sys-
tem. This means that programming for Windows 8 is slightly different from programming JavaScript
for a web browser.

http://www.microsoft.com/downloads/details.aspx?FamilyId=21EABB90-958F-4B64-B5F1-73D0A413C8EF&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=21EABB90-958F-4B64-B5F1-73D0A413C8EF&displaylang=en
http://browsers.evolt.org/

16 parT i Javawhat? The where, why, and how of JavaScript

Of course, your web applications will still work in Internet Explorer, which comes with Windows 8.
These web applications are distinct and separate from the Windows 8 native applications.

This book will show how to develop for Windows 8 using JavaScript. Before you get there, you’ll
see how to create JavaScript programs that run in web browsers.

Exercises

1. True or False: JavaScript is defined by a standards body and is supported on all web browsers.

2. True or False: When a visitor whose machine has JavaScript disabled comes to your website,
you should block his access to the site because there’s no valid reason to have JavaScript
disabled.

3. Create a JavaScript definition block that would typically appear on an HTML page within the
<HEAD> or <BODY> block.

4. True or False: It’s important to declare the version of JavaScript being used within the
DOCTYPE definition block.

5. True or False: JavaScript can appear in the <HEAD> block and within the <BODY> text of an
HTML page.

 17

C H A P T E R 2

Developing in JavaScript

After completing this chapter, you will be able to

■■ Understand the options available for developing in JavaScript.

■■ Configure your computer for JavaScript development.

■■ Use Microsoft Visual Studio 2012 to create and deploy a JavaScript application.

■■ Use Eclipse to create and deploy a JavaScript application.

■■ Use Notepad (or another editor) to create a JavaScript application.

■■ Understand options for debugging JavaScript.

JavaScript development options

Because JavaScript isn’t a compiled language, you don’t need any special tools or development envi-
ronments to write and deploy JavaScript applications. Likewise, you don’t need special server software
to run the applications. Therefore, your options for creating JavaScript programs are virtually limitless.

You can write JavaScript code in any text editor; in whatever program you use to write your
Hypertext Markup Language (HTML) and cascading style sheet (CSS) files; or in powerful integrated
development environments (IDEs) such as Visual Studio. You might even use all three approaches. You
might initially develop a web application with Visual Studio but then find it convenient to use a simple
text editor such as Notepad to touch up a bit of JavaScript. Ultimately, you should use whatever tool
you’re most comfortable with.

This book doesn’t really discuss or give much specific direction on JavaScript editors; you can use
whatever you want. With that said, when you get into developing for Windows 8, which is covered in
this book, you’ll find that Visual Studio makes your life much easier by providing templates and helper
applications for creating Windows 8 apps. In any event, this chapter shows three different ways to
program with JavaScript: using Visual Studio, Eclipse, and Notepad.

18 parT i Javawhat? The where, why, and how of JavaScript

My own development environment
In case you think that this is a Microsoft-only JavaScript book, you might be surprised to

learn that many of the examples that you will see were written in Vim, and tested in both
Firefox and Internet Explorer.

Personally, I find Vim convenient, because it's readily available from just about anywhere.
It's lightweight, and gets out of the way. And Firefox provides excellent feeback through its
Firebug add-on (which you'll see later). This combination has worked for me for years. How-
ever, I don't tend to use Vim for the .NET work that I do; I find Visual Studio works better for
Microsoft-centric development and for building websites that run solely on Microsoft technol-
gies. The Windows 8 exaxmples shown in the book were created entirely in Visual Studio and
take advantage of the Windows 8 JavaScript libraries.

After you’ve been developing JavaScript for a while, you’ll notice that you do some of the same
things on every webpage. In such cases, you can just copy and paste the repeated code into the web-
page that you’re developing. Better still, you can create an external file containing common functions
that you can then use throughout the sites you develop. Chapter 7, “Working with functions,” has
more information about functions, although you’ll see functions used throughout the book.

Configuring your environment

This section looks at JavaScript development using Visual Studio 2012. If you are comfortable using
other editing tools, you might want to look at Appendix B, which discusses writing JavaScript with
Eclipse and with plain text editors.

One useful JavaScript development tool is Visual Studio 2012. A simple web server—the ASP.NET
Development Server—comes with the installation of Visual Studio 2012, which makes deploying and
testing the applications in this book a little easier. However, you can still test the JavaScript code in
this book with other IDEs, such as Eclipse. Likewise, you can test the JavaScript code even if you don’t
use an IDE at all.

Another option for web development is Visual Studio 2012 Express for Web. This tool, available at
http://www.microsoft.com/express, provides the Visual Studio interface and several tools and add-ons
in a free package made just for web development. There is also an Express version for Windows 8
development available from that same URL.

You don’t absolutely need a web server for most JavaScript development. The notable exception to
this is when you’re developing using Asynchronous JavaScript and XML (AJAX). AJAX cannot use the
file:// protocol, which, in addition to the Same-Origin Policy covered in Chapter 1, “JavaScript is more
than you might think,” prevents AJAX from working unless you use a web server. The bottom line: if
AJAX development is in your future, you need a web server.

http://www.microsoft.com/express

 CHAPTER 2 Developing in JavaScript 19

AJAX notwithstanding, development does become a little easier if you have a web server handy.
Any web server will work because all you really want to do is serve HTML and JavaScript, and maybe a
little CSS for fun.

Configuring Apache or any web server is beyond the scope of this book, and again, having a web
server is not required. The Apache website has some good tutorials for installing Apache on Windows,
and if you’re using just about any version of Linux, Apache will likely be installed already or is easily
installed. Many of the examples used in the book will work whether you’re using a web server or just
viewing the example locally. However, a web server is necessary to take advantage of examples that
use AJAX.

Writing JavaScript with Visual Studio 2012

Visual Studio 2012 lets developers quickly deploy web applications with JavaScript enhancements.
Visual Studio 2012 Express Edition is available as a free download at http://www.microsoft.com/
express, along with other tools related to development. Installation is typically a matter of executing
the downloaded file from Microsoft, possibly installing a Web Platform installer first, but you should
refer to the documentation for the latest information at the time of installation.

note The first portion of this book will use Visual Studio 2012 Express for Web, which
includes the necessary templates for web-based JavaScript development. Windows 8 devel-
opment uses a different set of templates, and those will be shown in the Windows 8 section
of the book.

Your first web (and JavaScript) project with Visual Studio 2012
It’s time to create a web project and write a little JavaScript. If you’re not using Visual Studio, skip
ahead in this chapter to the section “Writing JavaScript with Eclipse” or the section “Writing JavaScript
without an IDE” for information about working in other development environments. I won’t forget
about you, I promise!

note You can download the code found in these examples and throughout the book. See
this book’s Introduction for directions about downloading the companion content.

Creating a web project with JavaScript in Visual Studio 2012

1. Within Visual Studio, select New Web Site from the File menu. This opens the New Web Site
dialog box.

http://www.microsoft.com/express
http://www.microsoft.com/express

20 parT i Javawhat? The where, why, and how of JavaScript

2. Select ASP.NET Empty Web Site (the language selection—Visual Basic or Visual C#—is not
important), as shown here. Change the name to jsbs, with a path appropriate to your configu-
ration. When the information is correct, click OK. Visual Studio creates a new project.

3. Visual Studio 2012 creates an empty project for you... really empty, with not even so much as
a default page. Create a new file by selecting New File from the File menu. The Add New Item
dialog box opens, as shown in the following graphic. Select HTML Page, change the name to
index.html, and then click Add. Visual Studio opens the new file and automatically enters the
DOCTYPE and other starting pieces of an HTML page for you.

 CHAPTER 2 Developing in JavaScript 21

4. In the index.html page, place your cursor between the <TITLE> and </TITLE> tags, and
change the title to My First Page. Your environment should look like the one shown here:

5. Between the opening <BODY> tag and the closing </BODY> tag, add the following code:

<script type="text/javascript">
 function yetAnotherAlert(textToAlert) {
 alert(textToAlert);
 }
 yetAnotherAlert("This is Chapter 2");
</script>

22 parT i Javawhat? The where, why, and how of JavaScript

6. Select Save All from the File menu. The finished script and page should resemble the screen
shown here:

7. To view the page, select Start Debugging from the Debug menu. This starts the ASP.NET
Development Server (if it’s not already started) and takes you to the page in your default
browser. You might see a dialog, like the following, indicating that the debugging isn’t
enabled in your web.config. Click OK to dismiss this dialog (and enable debugging).

 CHAPTER 2 Developing in JavaScript 23

Now you should receive a page with an alert, similar to the alert shown here:

8. Click OK, and then close the browser.

The script works as follows. First, the script tag is opened and declared to be JavaScript, as shown
by this code:

<script type="text/javascript">

note You can declare your script is JavaScript in other ways, but the approach you see here
is the most widely supported.

Next, the script declares a function, yetAnotherAlert, which accepts one argument, textToAlert, as
follows:

function yetAnotherAlert(textToAlert) {

The function has one task: to pop an alert into the browser window with whatever text has been
supplied as the function argument, which the next line accomplishes:

alert(textToAlert);

The end of the function is delineated by a closing brace (}). The next line of the script calls the
function you just declared with a quoted string argument:

yetAnotherAlert("This is Chapter 2");

With this script, you’re ready to develop JavaScript in Visual Studio 2012. But before you celebrate,
consider sticking with me and learning about how to use external files to store your JavaScript code.

Using external JavaScript files with Visual Studio 2012
JavaScript doesn’t need to be contained wholly within the HTML files of your website. Instead, you can
take advantage of the src attribute of the <SCRIPT> tag. Attributes within tags help to further define
or provide more specifics about the element. For example, a <FORM> element might have an action
attribute that defines what action should happen when the form is submitted. Using the src attribute
of the <SCRIPT> tag, you can define the location of an external JavaScript file. The web browser then
reads the JavaScript contained within the specified file when it loads the webpage. Using external

24 parT i Javawhat? The where, why, and how of JavaScript

JavaScript files means that you can maintain common JavaScript code in one place, as opposed to
maintaining it within each individual page—which will save you a lot of work.

At this point, you should have a working webpage (built using Visual Studio) that displays an alert,
thanks to some nifty JavaScript. The webpage you developed in the previous section contains the
JavaScript code within the <BODY> portion of the page. In the following section, I show you how to
place JavaScript into an external file and then reference that code from within your HTML page.

Creating an external file for JavaScript using Visual Studio 2012

1. If the index.html file isn’t open, open it by going into Visual Studio and selecting Open Project
from the File menu. Select the project in which you saved the index.html file (available in the
companion content as firstindex.html), and open the file. Your environment should look some-
thing like the environment in step 6 in the previous example.

2. Create a new file to hold the JavaScript code by selecting New File from the File menu. The
Add New Item dialog box appears. In the list of templates, select JavaScript File and change
the name to myscript.js, as shown in the following screen, and then click Add. Note that your
list might differ depending on your Visual Studio installation. You can find this source file,
titled myscript.js, in the Chapter 2 sample code.

note If you see only JScript file instead of JavaScript file, you might not have the
Express Edition for Web of Visual Studio 2012. However, a JScript file type will work
just fine.

 CHAPTER 2 Developing in JavaScript 25

3. A new empty JavaScript file opens and is added to your web project. You should see a tab for
the new myscript.js file and another for the index.html file, as shown in the next screen. If the
index.html file isn’t opened in a tab, open it by double-clicking it in the Solution Explorer.

note The colloquial extension for JavaScript and JScript is .js, but you are not
required to use it. I chose to use a JavaScript type of file in the preceding step 2
because this file type automatically selects the correct file extension. You could just
as easily have selected Text Document from the Add New Item dialog box and then
named the file with a .js extension.

4. Click the index.html tab to make it active, and highlight the JavaScript code in between the
opening and closing <SCRIPT> tags. Don’t copy the <SCRIPT> tags themselves.

5. Copy the highlighted code to the Clipboard by selecting Copy from the Edit menu.

6. Click the myscript.js tab, move the cursor below the first line, and select Paste from the
Edit menu. The copied code is pasted at the cursor’s location. Change the text of the
 yetAnotherAlert function call parameter so that it reads as follows: “This is the Second
Example.” The code is shown here:

function yetAnotherAlert(textToAlert) {
 alert(textToAlert);
}
yetAnotherAlert("This is the Second Example.");

26 parT i Javawhat? The where, why, and how of JavaScript

7. Save the myscript.js file by selecting Save from the File menu. The file should look like the
following:

8. With the JavaScript code contained in its own file named myscript.js (you did save that file,
right?), you can just delete the code from the index.html file, including the opening and clos-
ing <SCRIPT> tags.

9. Inside the <HEAD> section, after the closing </TITLE> tag, place the following:

<script type="text/javascript" src="myscript.js"></script>

The entire contents of index.html should now be the following:

<!DOCTYPE html>
<html>
<head>
 <title>My First Page</title>
 <script type="text/javascript" src="myscript.js"></script>
</head>
<body>
</body>
</html>

10. Save index.html.

 CHAPTER 2 Developing in JavaScript 27

11. View the page in a web browser by selecting Start Debugging from the Debug menu. The
page will be served through the web server, and your browser window, if not already open,
will open to the page. The result should be an alert with the text “This is the Second Example.”
An example of this is shown here:

12. Click OK to close the alert dialog box.

You’ve developed JavaScript with Visual Studio 2012. From here, you can skip ahead to the section
on debugging or see Appendix B: Writing JavaScript with Other Tools to learn about JavaScript devel-
opment using other tools.

Debugging JavaScript

Debugging JavaScript can be an alarming experience, especially in more complex applications. Some
tools, such as Venkman (http://www.mozilla.org/projects/venkman/), can assist in JavaScript debug-
ging, but the primary tool for debugging JavaScript is the web browser. Major web browsers include
some JavaScript debugging capabilities. Among the programs you should consider using is Firebug, a
notable add-on to Firefox. Firebug is available at http://www.getfirebug.com/.

I find Firebug to be virtually indispensable for web development, especially web development with
JavaScript and AJAX. This software enables you to inspect all the elements of a webpage and to see
the results of AJAX calls and CSS, all in real time, which makes debugging much easier. Later in the
book, you’ll see more on Firebug.

I recommend using Firebug for developing JavaScript and debugging it. When debugging
JavaScript, I find that the alert() function is quite useful. A few well-placed alert() functions can show
you the values contained within variables and what your script is currently doing. Of course, because
alert() causes a dialog box to open, if you place an alert() within a loop and then mistakenly cause
that loop to repeat endlessly without exiting, you’ll find that you need to exit the web browser
uncleanly, perhaps using Task Manager.

Exercises

1. Create a new webpage, and call it mysecondpage.htm. Create a script in JavaScript within
the <BODY> portion of the page and have that script display an alert() dialog box with your
name. Try this script in at least two different web browsers.

http://www.mozilla.org/projects/venkman/
http://www.getfirebug.com/

28 parT i Javawhat? The where, why, and how of JavaScript

2. Edit the webpage that you created in Exercise 1, create a function within the <HEAD> portion
of the page, and move the alert() dialog box that you currently have in the <BODY> script into
your new function. Call the new function from the existing <BODY> script.

3. Move the function created in Exercise 2 to an external JavaScript file, and link or call this file
from within your webpage.

 29

C H A P T E R 3

JavaScript syntax and statements

After completing this chapter, you will be able to

■■ Understand the basic rules of using the JavaScript programming language.

■■ Place JavaScript correctly within a webpage.

■■ Recognize a JavaScript statement.

■■ Recognize a reserved word in JavaScript.

A bit of housekeeping

The rest of the book looks more closely at specific aspects of JavaScript and how they relate to
specific tasks. However, you must walk before you can run, so before examining JavaScript in more
depth, you should learn some of its lexical structure—that is, the rules of the language, also known as
syntax rules.

Case sensitivity
JavaScript is case sensitive. You must be aware of this when naming variables and using the language
keywords. A variable named remote is not the same as a variable named Remote or one named
REMOTE. Similarly, the loop control keyword while is perfectly valid, but naming it WHILE or While will
result in an error.

Keywords are lowercase, but variables can be any mix of case that you’d like. As long you are
consistent with the case, you can create any combination you want. For example, all the following
examples are perfectly legal variable names in JavaScript:

buttonOne
txt1
a
C

30 parT i Javawhat? The where, why, and how of JavaScript

Tip You’ll typically see JavaScript coded in lowercase except where necessary—for exam-
ple, with function calls such as isNaN(), which determines whether a value is Not a Number
(the NaN in the function name). You learn about this in Chapter 4, “Working with variables
and data types.”

Chapter 4 provides much more information about variables and their naming conventions. For
now, remember that you must pay attention to the case when you write a variable name in JavaScript.

White space
For the most part, JavaScript ignores white space, which is the space between statements in JavaScript.
You can use spaces, indenting, or whatever coding standards you prefer to make the JavaScript more
readable. However, there are some exceptions to this rule. Some keywords, such as return, can be
misinterpreted by the JavaScript interpreter when they’re included on a line by themselves. You’ll see
an example of this problem a little later in this chapter.

Making programs more readable is a good enough reason to include white space. Consider the
following code sample. It includes minimal white space and indenting.

function cubeme(incomingNum) {
if (incomingNum == 1) {
return "What are you doing?";
} else {
return Math.pow(incomingNum,3);
}
}
var theNum = 2;
var finalNum = cubeme(theNum);
if (isNaN(finalNum)) {
alert("You should know that 1 to any power is 1.");
} else {
alert("When cubed, " + theNum + " is " + finalNum);
}

Now consider the same code with indenting.

function cubeme(incomingNum) {
 if (incomingNum == 1) {
 return "What are you doing?";
 } else {
 return Math.pow(incomingNum,3);
 }
}

var theNum = 2;
var finalNum = cubeme(theNum);

if (isNaN(finalNum)) {
 alert("You should know that 1 to any power is 1.");

 CHAPTER 3 JavaScript syntax and statements 31

} else {
 alert("When cubed, " + theNum + " is " + finalNum);
}

The second code sample performs just like the first, but it’s easier to read and follow—at least it
appears so to me! I find that it takes a short amount of time to actually write code but several years
to work with it. When I visit the code a year later, I’m much happier when I’ve made the code more
readable and easier to follow.

Comments
Speaking of creating more readable code and maintaining that code over the long term: Comments
are your friends. Code that seems blatantly obvious now won’t be nearly so obvious the next time
you look at it, especially if a lot of time has passed since you wrote it. Comments can be placed into
JavaScript code in two ways: multiline and single-line.

A multiline comment in JavaScript will look familiar to you if you’ve coded in the C programming
language. A multiline comment begins and ends with /* and */, respectively, as the following code
example shows:

/* This is a multiline comment in JavaScript
It is just like a C-style comment insofar as it can
span multiple lines before being closed. */

A single-line comment begins with two front slashes (//) and has no end requirement because it
spans only a single line. An example is shown here:

// Here is a single-line comment.

Using multiple single-line comments is perfectly valid, and I use them for short comment blocks
rather than using the multiline comment style previously shown. For example, look at this block of
code:

// Here is another comment block.
// This one uses multiple lines.
// Each line must be preceded with two slashes.

Tip You might find it quicker to use the two-slash method for small comments that span
one line or a few lines. For larger comments, such as those at the beginning of a program
or script, the multiline comment style is a better choice because it makes adding or delet-
ing information easier.

32 parT i Javawhat? The where, why, and how of JavaScript

Semicolons
Semicolons are used to delineate expressions in JavaScript. Technically, semicolons are not required
for most statements and expressions. However, the subtle problems that you can encounter when
you don’t use semicolons add unnecessary errors and hence unnecessary debugging time. In some
instances, the JavaScript interpreter inserts a semicolon when you might not have wanted one at all.
For example, consider this statement:

return
(varName);

In all likelihood, you wanted to write:

return(varName);

But JavaScript, acting on its own, inserts a semicolon after the return statement, making the code
appear like this to the JavaScript interpreter:

return;
(varName);

This code won’t work; the interpreter will misunderstand your intentions. If you used this code
in a function, it would return undefined to the caller, which is unlikely to be what you want. This is
an example where free use of white space is not allowed—you can’t successfully use line breaks
(explained in the next section) to separate the return keyword from the value that it’s supposed to
return.

Tip You’ll find programming in JavaScript much easier if you use semicolons as a rule rather
than trying to remember where you might not have to use them.

But you definitely shouldn’t use semicolons in one instance: when using loops and conditionals.
Consider this bit of code:

if (a == 4)
{
 // code goes here
}

In this case, you wouldn’t use a semicolon at the end of the if statement. The reason is that the
statement or block of statements in opening and closing braces that follows a conditional is part of
the conditional statement—in this case, the if statement. A semicolon marks the end of the if state-
ment, and if improperly placed, dissociates the first part of the if statement from the rest of it. For
example, the following code is wrong (the code within the braces will execute regardless of whether a
equals 4):

if (a == 4);
{
 // code goes here
}

 CHAPTER 3 JavaScript syntax and statements 33

Tip When opening a loop or function, skip the semicolons.

Line breaks
Related closely to white space and even to semicolons in JavaScript are line breaks, sometimes called
carriage returns. Known in the official ECMA-262 standard as “Line Terminators,” these characters
separate one line of code from the next. Like semicolons, the placement of line breaks matters. As you
saw from the example in the previous section, placing a line break in the wrong position can result in
unforeseen behavior or errors.

Not surprisingly, the most common use of line breaks is to separate individual lines of code for
readability. You can also improve readability of particularly long lines of code by separating them
with line breaks. However, when doing so, be aware of issues like the one illustrated by the return
statement cited earlier, in which an extra line break can have unwanted effects on the meaning of the
code.

placing JavaScript correctly
JavaScript can be placed in a couple of locations within a Hypertext Markup Language (HTML) page:
in the <HEAD> </HEAD> section or between the <BODY> and </BODY> tags. The most common
location for JavaScript has traditionally been between the <HEAD> and </HEAD> tags near the top
of the page. However, placing the <SCRIPT> stanza within the <BODY> section is becoming more
common. Be sure to declare what type of script you’re using. Although other script types can be used,
because this is a JavaScript book, I’ll declare the following within the opening <SCRIPT> tag:

<script type="text/javascript">

One important issue to note when you use JavaScript relates to pages declared as Extensible
Hypertext Markup Language (XHTML). Therefore, JavaScript used within strict XHTML should be
declared as follows:

<script type="text/javascript">
<![CDATA[
 //JavaScript goes here
]]>
</script>

Older browsers might not parse the CDATA section correctly. This problem can be worked around
by placing the CDATA opening and closing lines within JavaScript comments, like this:

<script type="text/javascript">
//<![CDATA[
 //JavaScript goes here
//]]>
</script>

34 parT i Javawhat? The where, why, and how of JavaScript

When you place the actual JavaScript code in a separate file (as you learn how to do in Chapter 2,
“Developing in JavaScript”), you don’t need to use this ugly CDATA section at all. You’ll probably
discover that for anything but the smallest scripts, defining your JavaScript in separate files—usually
with the file extension .js—and then linking to those scripts within the page, is desirable. Chapter 2
shows this in full detail, but here’s a reminder of how you link to a file using the src attribute of the
<SCRIPT> tag:

<script type="text/javascript" src="myscript.js"></script>

Placing JavaScript in an external file has several advantages, including the following:

■■ Separation of code from markup Keeping the JavaScript code in a separate file makes
maintaining the HTML easier, and it preserves the structure of the HTML without you having
to use a CDATA section for XHTML.

■■ Easier maintenance Using JavaScript in a separate file, you can make changes to the
JavaScript code in that separate file without touching the HTML on the site.

■■ Caching Using a separate file for JavaScript enables web browsers to cache the file, thus
speeding up the webpage load for the user.

JavaScript statements

Like programs written in other languages, JavaScript programs consist of statements put together
that cause the JavaScript interpreter to perform one or more actions. And like statements in other
languages, JavaScript statements can be simple or compound. This section briefly examines JavaScript
statements, with the assumption that you’ve already seen several examples in the previous chapters
and that you’ll see others throughout the book.

What’s in a statement?
As covered in Chapter 1, “JavaScript is more than you might think,” a JavaScript statement, or expres-
sion, is a collection of tokens of various categories including keywords, literals, separators, operators,
and identifiers that are put together to create something that makes sense to the JavaScript inter-
preter. A statement usually ends with a semicolon, except in special cases like loop constructors such
as if, while, and for, which are covered in Chapter 5, “Using operators and expressions.”

Here are some examples of basic statements in JavaScript:

var x = 4;
var y = x * 4;

alert("Hello");

 CHAPTER 3 JavaScript syntax and statements 35

The two types of JavaScript statements
JavaScript statements come in two basic forms, simple and compound. I won’t spend a lot of time
discussing statements because you don’t really need to know much about them. However, you should
know the difference between simple and compound statements. A simple statement is just what you’d
expect—it’s simple, like so:

x = 4;

A compound statement combines multiple levels of logic. An if/then/else conditional such as the
one given here provides a good example of this:

if (something == 1) {
 // some code here
} else {
 // some other code here
}

Reserved words in JavaScript

Certain words in JavaScript are reserved, which means you can’t use them as variables, identifiers,
or constant names within your program because doing so will cause the code to have unexpected
results, such as errors. For example, you’ve already seen the reserved word var in previous examples.
Using the word var to do anything but declare a variable can cause an error or other unexpected
behavior, depending on the browser. Consider this statement:

// Don't do this!

var var = 4;

The code example won’t result in a direct error to a browser, but it also won’t work as you
intended, possibly causing confusion when a variable’s value isn’t what you expect.

The following table includes the words that are currently reserved by the ECMA-262 edition 5.1
specification:

break delete if this while

case do in throw with

catch else instanceof try

continue finally new typeof

debugger for return var

default function switch void

36 parT i Javawhat? The where, why, and how of JavaScript

Several other words (shown in the following table) are reserved for future use and therefore
shouldn’t be used in your programs:

class enum extends super

const export import

The following table shows the words that are reserved for the future when in strict mode:

implements let private public yield

interface package protected static

A quick look at functions

You’ve already seen examples of functions in previous chapters. JavaScript has several built-in
 functions, which are functions that are defined by the language itself. I discussed the alert() function
already, but there are several others. Which built-in functions are available depends on the language
version you’re using. Some functions are available only in later versions of JavaScript, which might not
be supported by all browsers. Detecting a browser’s available functions (and objects) is an important
way to determine whether a visitor’s browser is capable of using the JavaScript that you created for
your webpage. This topic is covered in Chapter 11, “An introduction to jQuery.”

Tip You can find an excellent resource for compatibility on the QuirksMode website
(http://www.quirksmode.org/compatibility.html).

JavaScript is similar to other programming languages in allowing user-defined functions. An earlier
example in this chapter defined a function called cubeme(), which raised a given number to the power
of 3. That code provides a good opportunity to show the use of JavaScript in both the <HEAD> and
<BODY> portions of a webpage.

Placing JavaScript with a user-defined function

1. Using Microsoft Visual Studio, Eclipse, or another editor, edit the file example1.html in the
Chapter 3 sample code.

2. Within the webpage, add the code in bold type:

<!doctype html>
<html>
<head>
<script type="text/javascript">
function cubeme(incomingNum) {
 if (incomingNum == 1) {
 return "What are you doing?";
 } else {

http://www.quirksmode.org/compatibility.html

 CHAPTER 3 JavaScript syntax and statements 37

 return Math.pow(incomingNum,3);
 }
}
</script>
 <title>A Chapter 3 Example</title>
</head>

<body>
<script type="text/javascript">
var theNum = 2;
var finalNum = cubeme(theNum);
if (isNaN(finalNum)) {
 alert("You should know that 1 to any power is 1.");
} else {
 alert("When cubed, " + theNum + " is " + finalNum);
}
</script>

</body>
</html>

3. Save the page, and then run the code or view the webpage in a browser. You’ll receive an alert
like the following:

The code in this example incorporates the code from the earlier example into a full HTML page,
including a DOCTYPE declaration. The code declares a function, cubeme(), within the <HEAD> section
of the document, like this:

function cubeme(incomingNum) {
 if (incomingNum == 1) {
 return "What are you doing?";
 } else {
 return Math.pow(incomingNum,3);
 }
}

This code accepts an argument called incomingNum within the function. An if/then decisional
statement is the heart of the function. When the incoming number equals 1, the function returns
the text string, “What are you doing?” When the incoming number is not equal to 1, the Math.pow
method is called, passing the incomingNum variable and the integer 3 as arguments. The call to
 Math. pow raises the incoming number to the power of 3, and this value is then returned to the calling
function. This call is shown again in Chapter 4.

38 parT i Javawhat? The where, why, and how of JavaScript

All the previous code was placed within the <HEAD> portion of the document so that it can be
called by other code, which is just what we’re going to do. The browser then renders the <BODY>
section of the document, which includes another bit of JavaScript code. This next bit of code sets a
variable, theNum, equal to the integer 2:

var theNum = 2;

The code then calls the previously defined cubeme() function using the theNum variable as an
argument. You’ll notice that the variable finalNum is set to receive the output from the call to the
cubeme() function, as follows:

var finalNum = cubeme(theNum);

The final bit of JavaScript on the page is another if/then decisional set. This code checks to deter-
mine whether the returned value, now contained in the finalNum variable, is a number. It does this by
using the isNaN() function. If the value is not a number, an alert is displayed reflecting the fact that 1
was used as the argument. (Of course, there could be other reasons this isn’t a number, but bear with
me here and follow along with my example.) If the return value is indeed a number, the number is
displayed, as you saw in the alert() dialog box shown in the preceding step 3.

JavaScript’s strict mode

ECMA-262 edition 5 introduced a strict variant, commonly referred to as strict mode, which adds
enhanced error checking and security. For example, to help fight against mistyped variable names,
variable declarations require the use of the var keyword. Additionally, changes to the eval() function
and other areas help JavaScript programmers to improve their code.

Strict mode is enabled with the following syntax, which is very similar to syntax used in Perl:

"use strict";

Strict mode is locally scoped, meaning that it can be enabled globally by placing the use strict line
at the beginning of the script; or it can be enabled only within a function by placing the line within
the function itself, like so:

function doSomething() {
 "use strict";
 // function's code goes here.
}

One strict mode enhancement that will help catch typographical errors is the prevention of
undeclared variables. All variables in strict mode need to be instantiated prior to use. For example,
consider this code:

"use strict";
x = 4; // Produces a syntax error

 CHAPTER 3 JavaScript syntax and statements 39

When used in strict mode, the preceding code would create an error condition because the vari-
able x hasn’t been declared with the var keyword, as in the following example:

"use strict";
var x = 4; // This syntax is ok

One of the notable security enhancements that strict mode provides is the change to how the
eval() function is handled. The eval() function executes a string as if it were regular JavaScript code
and can lead to security issues in certain cases. In strict mode, eval() cannot instantiate a new variable
or function that will be used outside the eval() statement. For example, consider the following code:

"use strict";
eval("var testVar = 2;");
alert(testVar); // Produces a syntax error.

In the preceding code example, a syntax error would be produced because strict mode is enabled
and the testVar variable isn’t available outside the eval() statement.

Strict mode also prevents the duplication of variable names within an object or function call:

"use strict";
var myObject = {
 testVar: 1,
 testVar: 2
};

The preceding code would produce a syntax error in strict mode because testVar is set twice within
the object’s definition. It’s worth noting that Internet Explorer 10 might not actually catch this code
as an error, depending on the view and mode in which the page is viewed. When viewed in IE10
Standards mode, the code does indeed produce an error. However, the code does produce an error
condition in other browsers like Firefox and Chrome.

Like other aspects of ECMA-262 edition 5, strict mode might not be available in all browsers and
likely won’t be available for older browsers.

Exercises

1. Which of the following are valid JavaScript statements? (Choose all that apply.)

a. if (var == 4) { // Do something }

b. var testVar = 10;

c. if (a == b) { // Do something }

d. testVar = 10;

e. var case = “Yes”;

40 parT i Javawhat? The where, why, and how of JavaScript

2. True or False: Semicolons are required to terminate every JavaScript statement.

3. Examine the following bit of JavaScript. What is the likely result? (Assume that the JavaScript
declaration has already taken place and that this code resides properly within the <HEAD>
section of the page.)

var orderTotal = 0;
function collectOrder(numOrdered) {
 if (numOrdered > 0) {
 alert("You ordered " + orderTotal);
 orderTotal = numOrdered * 5;
 }
return orderTotal;
}

 41

C H A P T E R 4

Working with variables and
data types

After completing this chapter, you will be able to

■■ Understand the primitive data types used in JavaScript.

■■ Use functions associated with the data types.

■■ Create variables.

■■ Define objects and arrays.

■■ Understand the scope of variables.

■■ Debug JavaScript using Firebug.

Data types in JavaScript

The data types of a language describe the basic elements that can be used within that language.
You’re probably already familiar with data types, such as strings or integers, from other languages.
Depending on who you ask, JavaScript defines anywhere from three to six data types. (The answer
depends largely on the definition of a data type.) You work with all these data types regularly, some
more than others.

The six data types in JavaScript discussed in this chapter are as follows:

■■ Numbers

■■ Strings

■■ Booleans

■■ Null

■■ Undefined

■■ Objects

42 parT i Javawhat? The where, why, and how of JavaScript

The first three data types—numbers, strings, and Booleans—should be fairly familiar to program-
mers in any language. The latter three—null, undefined, and objects—require some additional expla-
nation. I examine each of the data types in turn and explain objects further in Chapter 8, “Objects in
JavaScript.”

Additionally, JavaScript has several reference data types, including the Array, Date, and RegExp
types. The Date and RegExp types are discussed in this chapter, and the Array type is discussed in
Chapter 8.

Working with numbers
Numbers in JavaScript are just what you might expect them to be: numbers. However, what might be
a surprise for programmers who are familiar with data types in other languages like C is that integers
and floating point numbers do not have special or separate types. All these are perfectly valid num-
bers in JavaScript:

4
51.50
-14
0xd

The last example, 0xd, is a hexadecimal number. Hexadecimal numbers are valid in JavaScript, and
you won’t be surprised to learn that JavaScript allows math to be performed using all of the listed
number formats. Try the following exercise.

performing hexadecimal math with JavaScript

1. Using Microsoft Visual Studio, Eclipse, or another editor, edit the file example1.html in the
Chapter04 sample files folder in the companion content.

2. Within the webpage, replace the TODO comment with the boldface code shown here:

<!doctype html>
<html>
<head>
<title>Hexadecimal Numbers</title>
<script type="text/javascript">
var h = 0xe;
var i = 0x2;
var j = h * i;
alert(j);
</script>
</head>
<body>
</body>
</html>

 CHAPTER 4 Working with variables and data types 43

3. View the webpage in a browser. You should see a dialog box similar to this one:

The preceding script first defines two variables (you learn about defining variables later in this
chapter) and sets them equal to two hexadecimal numbers, 0xe (14 in base 10 notation) and 0x2,
respectively:

var h = 0xe;
var i = 0x2;

Then a new variable is created and set to the product of the previous two variables, as follows:

var j = h * i;

The resulting variable is then passed to the alert() function, which displays the dialog box in the
preceding step 3. It’s interesting to note that even though you multiplied two hexadecimal numbers,
the output in the alert dialog box is in base 10 format.

numeric functions
JavaScript has some built-in functions (and objects, too, which you learn about soon) for working with
numeric values. The European Computer Manufacturers Association (ECMA) standard defines several
of them. One more common numeric function is the isNaN() function. By common, I mean that
isNaN() is a function that I use frequently in JavaScript programming. Your usage might vary, but an
explanation follows nonetheless.

NaN is an abbreviation for Not a Number, and it represents an illegal number. You use the isNaN()
function to determine whether a number is legal or valid according to the ECMA-262 specifica-
tion. For example, a number divided by zero would be an illegal number in JavaScript. The string
value “This is not a number” is obviously also not a number. Although people might have a different
interpretation of what is and isn’t a number, the string “four” is not a number to the isNaN() func-
tion, whereas the string “4” is. The isNaN() function requires some mental yoga at times because
it attempts to prove a negative—that the value in a variable is not a number. Here are a couple of
examples that you can try to test whether a number is illegal.

Testing the isNaN() function (test 1)

1. In Microsoft Visual Studio, Eclipse, or another editor, create a new HTML file or edit the
 isnan. html file in the companion content.

44 parT i Javawhat? The where, why, and how of JavaScript

2. In the file, place the following markup. If you’ve created a new file with Vision Studio, delete
any existing contents first.

<!doctype html>
<html>
<head>
<title>isNaN</title>
</head>
<body>
<script type="text/javascript">
document.write("Is Not a Number: " + isNaN("4"));
</script>
</body>
</html>

3. View this page in a browser. In Visual Studio, press F5. You’ll see a page like this one:

The function isNaN() returns false from this expression because the integer value 4 is a number.
Remember that the meaning of this function is, “Is 4 Not a Number?” Well, 4 is a number, so the result
is false.

Now consider the next example.

Testing the isNaN() function (test 2)

1. If you’re running through Microsoft Visual Studio, stop the project. For those not running
Visual Studio, close the web browser.

2. Edit isnan.html.

3. Change the isNaN() function line to read:

document.write("Is Not a Number: " + isNaN("four"));

 CHAPTER 4 Working with variables and data types 45

View the page in a browser, or rerun the project in Visual Studio. You’ll now see a page like this:

In second test case, because the numeral 4 is represented as a string of nonnumeric characters
(four), the function returns true: the string four is not a number. I purposefully used double quotation
marks in each code example (that is, “4” and “four”) to show that the quotation marks don’t matter for
this function. Because JavaScript is smart enough to realize that “4” is a number, JavaScript does the
type conversion for you. However, this conversion can sometimes be a disadvantage, such as when
you’re counting on a variable or value to be a certain type.

The isNaN() function is used frequently when validating input to determine whether something—
maybe a form variable—was entered as a number or as text.

numeric constants
Other numeric constants are available in JavaScript, some of which are described in Table 4-1.
These constants might or might not be useful to you in your JavaScript programming, but they
exist if you need them.

TABLE 4-1 Selected numeric constants

Constant Description

Infinity Represents positive infinity

Number.MAX_VALUE The largest number able to be represented in JavaScript

Number.MIN_VALUE The smallest or most negative number able to be represented in JavaScript

Number.NEGATIVE_INFINITY A value representing negative infinity

Number.POSITIVE_INFINITY A value representing positive infinity

The Math object
The Math object is a special built-in object used for working with numbers in JavaScript, and it has
several properties that are helpful to the JavaScript programmer, including properties that return
the value of pi, the square root of a number, a pseudo-random number, and an absolute value.

46 parT i Javawhat? The where, why, and how of JavaScript

Some properties are value properties, meaning they return a value, whereas others act like func-
tions and return values based on the arguments sent into them. Consider this example of the Math.PI
value property. Place this code between the opening <SCRIPT TYPE=”text/javascript”> and closing
 </ SCRIPT> tags in your sample page:

document.write(Math.PI);

The result is shown in Figure 4-1.

FIGURE 4-1 Viewing the value of the Math.PI property.

Dot notation
Dot notation is so named because a single period, or dot, is used to access the members of
an object. The single dot (.) creates an easy visual delineator between elements. For example,
to access a property that you might call the “length of a variable room,” you would write
 room. length. The dot operator is used similarly in many programming languages.

Several other properties of the Math object can be helpful to your program. Some of them act
as functions or methods on the object, several of which are listed in Table 4-2. You can obtain a
 complete list of properties for the Math object in the ECMA-262 specification at http://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-262.pdf.

TABLE 4-2 Select function properties of the Math object

Property Definition

Math.random() Returns a pseudo-random number

Math.abs(x) Returns the absolute value of x

Math.pow(x,y) Returns x to the power of y

Math.round(x) Returns x rounded to the nearest integer value

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

 CHAPTER 4 Working with variables and data types 47

Working with strings
Strings are another basic data type available in JavaScript. They consist of one (technically zero) or
more characters surrounded by quotation marks. The following examples are strings:

■■ “Hello world”

■■ “B”

■■ “This is ‘another string’”

The last example in the preceding list requires some explanation. Strings are surrounded by either
single or double quotation marks. Strings enclosed in single quotation marks can contain double
quotation marks. Likewise, a string enclosed in double quotation marks, like the ones you see in the
preceding example, can contain single quotation marks. So basically, if the string is surrounded by
one type of quotation mark, you can use the other type within it. Here are some more examples:

■■ ‘The cow says “moo”.’

■■ ‘The talking clock says the time is “Twelve Noon”.’

■■ “‘Everyone had a good time’ was the official slogan.”

Escaping quotation marks
If you use the same style of quotation mark both within the string and to enclose the string, the
quotation marks must be escaped so that they won’t be interpreted by the JavaScript engine. A single
backslash character (\) escapes the quotation mark, as in these examples:

■■ ‘I\’m using single quotation marks both outside and within this example. They\’re neat.’

■■ “This is a \”great\” example of using \”double quotes\” within a string that’s enclosed with
\”double quotes\” too.”

Other escape characters
JavaScript enables other characters to be represented with specific escape sequences that can appear
within a string. Table 4-3 shows those escape sequences.

TABLE 4-3 Escape sequences in JavaScript

Escape character Sequence value

\b Backspace

\t Tab

\n Newline

\v Vertical tab

\f Form feed

\r Carriage return

\\ Literal backslash

48 parT i Javawhat? The where, why, and how of JavaScript

Here’s an example of some escape sequences in action.

Using escape sequences

1. In Visual Studio, Eclipse, or another editor, open your sample page.

2. Within the <SCRIPT> section, place the following line of JavaScript:

document.write("hello\t\t\"hello\"goodbye");

3. View the page in a browser. You’ll see a page like the following. Notice that the tab characters
don’t show through because the browser interprets HTML and not tab characters.

This rather contrived example shows escape sequences in action. In the code, the word hello is fol-
lowed by two tabs, represented by their escape sequence of \t, followed by an escaped double-quote
\” and then the word hello followed by another escaped double-quote \”, finally followed by the word
goodbye.

String methods and properties
JavaScript defines several properties and methods for working with strings. These properties and
methods are accessed using dot notation (“.”), explained earlier in this chapter and familiar to many
programmers.

note In the same way I describe only some of the elements of JavaScript in this book, I
cover only a subset of the string properties and methods available in the ECMA-262 specifi-
cation. Refer to the ECMA specification for more information.

The length property on a string object gives the length of a string, not including the enclosing
quotation marks. The length property can be called directly on a string literal, as in this example:

alert("This is a string.".length);

 CHAPTER 4 Working with variables and data types 49

However, it’s much more common to call the length property on a variable, like this:

var x = "This is a string.";
alert(x.length);

Both examples give the same result.

Some commonly used string methods, besides substring, include slice, substr, concat, toUpperCase,
toLowerCase, and the pattern matching methods of match, search, and replace. I discuss each of these
briefly.

Methods that change strings include slice, substring, substr, and concat. The slice and substring
methods return string values based on another string. They accept two arguments: the beginning
position and an optional end position. Here are some examples:

var myString = "This is a string.";
alert(myString.substring(3)); //Returns "s is a string."
alert(myString.substring(3,9)); //Returns "s is a"
alert(myString.slice(3)); //Returns "s is a string."
alert(myString.slice(3,9)); //Returns "s is a"

A subtle difference between slice and substring is how they handle arguments with negative values.
The substring method will convert any negative values to 0, while slice will treat negative arguments
as the starting point from the end of the string (counting backwards from the end, essentially).

The substr method also accepts two arguments: the first is the beginning position to return, and, in
contrast to substring/slice, the second argument is the number of characters to return, not the stop-
ping position. Therefore, the code examples for substring/slice work a little differently with substr:

var myString = "This is a string.";
alert(myString.substr(3)); //Returns "s is a string." (The same as substring/slice)
alert(myString.substr(3,9)); //Returns "s is a st" (Different from substring/slice)

The concat method concatenates two strings together:

var firstString = "Hello ";
var finalString = firstString.concat("World");
alert(finalString); //Outputs "Hello World"

It’s somewhat more common to use the plus sign (+) for concatenation, so the same output could
be accomplished with this:

var finalString = firstString + "World";

The toUpperCase and toLowerCase methods, and their brethren toLocaleUpperCase and
 toLocaleLowerCase, convert a string to all uppercase or all lowercase, respectively:

var myString = "this is a String";
alert(myString.toUpperCase()); // "THIS IS A STRING"
alert(myString.toLowerCase()); // "this is a string"

50 parT i Javawhat? The where, why, and how of JavaScript

note The toLocale methods perform conversions in a locale-specific manner.

As I stated, numerous string properties and methods exist. The remainder of the book features
other string properties and methods, and you can always find a complete list within the ECMA specifi-
cation at http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf.

Booleans
Booleans are kind of a hidden, or passive, data type in JavaScript. By hidden, or passive, I mean that
you don’t work with Booleans in the same way that you work with strings and numbers; you can
define and use a Boolean variable, but typically you just use an expression that evaluates to a Boolean
value. Booleans have only two values, true and false, and in practice, you rarely set variables as such.
Rather, you use Boolean expressions within tests, such as an if/then/else statement.

Consider this statement:

If (myNumber > 18) {
 //do something
}

A Boolean expression is used within the if statement’s condition to determine whether the code
within the braces will be executed. If the content of the variable myNumber is greater than the integer
18, the Boolean expression evaluates to true; otherwise, the Boolean evaluates to false.

Null
Null is another special data type in JavaScript (as it is in most languages). Null is, simply, nothing. It
represents and evaluates to false. When a value is null, it is nothing and contains nothing. However,
don’t confuse this nothingness with being empty. An empty value or variable is still full; it’s just full of
emptiness. Emptiness is different from null, which is just plain nothing. For example, defining a vari-
able and setting its value to an empty string looks like this:

var myVariable = '';

The variable myVariable is empty, but it is not null.

Undefined
Undefined is a state, sometimes used like a value, to represent a variable that hasn’t yet contained a
value. This state is different from null, although both null and undefined can evaluate the same way.
You’ll learn how to distinguish between a null value and an undefined value in Chapter 5, “Using
operators and expressions.”

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

 CHAPTER 4 Working with variables and data types 51

Objects
Like functions, objects are special enough to get their own chapter (Chapter 8, to be exact). But I
still discuss objects here briefly. JavaScript is an object-based language, as opposed to a full-blown
object-oriented language. JavaScript implements some functionality similar to object-oriented func-
tionality, and for most basic usages of JavaScript, you won’t notice the difference.

Objects in JavaScript are a collection of properties, each of which can contain a value. These prop-
erties—think of them as keys—enable access to values. Each value stored in the properties can be a
value, another object, or even a function. You can define your own objects with JavaScript, or you can
use the several built-in objects.

Objects are created with curly braces, so the following code creates an empty object called
myObject:

var myObject = {};

Here’s an object with several properties:

var dvdCatalog = {
 "identifier": "1",
 "name": "Coho Vineyard"
};

The preceding code example creates an object called dvdCatalog, which holds two properties: one
called identifier and the other called name. The values contained in each property are 1 and “Coho
Vineyard”, respectively. You could access the name property of the dvdCatalog object like this:

alert(dvdCatalog.name);

Here’s a more complete example of an object, which can also be found in the sample code in the
file object.txt:

// Create four new objects
var star = {};
// Create properties for each of four stars.
star["Polaris"] = new Object;
star["Deneb"] = new Object;
star["Vega"] = new Object;
star["Altair"] = new Object;

Examples later in the book show how to add properties to these objects and how to access prop-
erties. There’s much more to objects, and Chapter 8 gives that additional detail.

arrays
You’ve seen in the previous example how to create an object with a name. You can also use array
elements that are accessed by a numbered index value. These are the traditional arrays, familiar to
programmers in many languages. You just saw several objects, each named for a star. The following
code creates an array with four elements.

52 parT i Javawhat? The where, why, and how of JavaScript

var star = new Array();
star[0] = "Polaris";
star[1] = "Deneb";
star[2] = "Vega";
star[3] = "Altair";

The same code can also be written like this, using literal notation, represented by square brackets:

var star = ["Polaris", "Deneb", "Vega", "Altair"];

Arrays can contain nested values, creating an array of arrays, as in this example that combines the
star name with the constellation in which it appears:

var star = [["Polaris", "Ursa Minor"],["Deneb","Cygnus"],["Vega","Lyra"],
["Altair","Aquila"]];

Finally, although less common, you can call the Array() constructor with arguments:

var star = new Array("Polaris", "Deneb", "Vega", "Altair");

note Calling the Array() constructor with a single numeric argument sets the length of the
array rather than the value of the first element, which is what you might expect.

The new ECMA-262 edition 5 specification added several new methods for iterating and working
with arrays. Arrays, including methods that iterate through them and work with them, are covered in
more detail in Chapter 8.

Defining and using variables

Variables should be familiar to programmers in just about any language. Variables store data that
might change during the program’s execution lifetime. You’ve seen several examples of declaring
variables throughout the previous chapters of this book. This section formalizes the use of variables in
JavaScript.

Declaring variables
Variables are declared in JavaScript with the var keyword. The following are all valid variable
declarations:

var x;
var myVar;
var counter1;

Variable names can contain uppercase and lowercase letters as well as numbers, but they cannot
start with a number. Variables cannot contain spaces or other punctuation, with the exception of the
underscore character (_). The following variable names are invalid:

 CHAPTER 4 Working with variables and data types 53

var 1stCounter;
var new variable;
var new.variable;
var var;

Take a look at the preceding example. Whereas the first three variable names are invalid because
characters are used that aren’t valid at all (or aren’t valid in that position, as is the case with the first
example), the last variable name, var, is invalid because it uses a keyword. For more information about
keywords or reserved words in JavaScript, refer to Chapter 3, “JavaScript syntax and statements.”

You can declare multiple variables on the same line of code, as follows:

var x, y, zeta;

These can be initialized on the same line, too:

var x = 1, y = "hello", zeta = 14;

Variable types
Variables in JavaScript are not strongly typed. It’s not necessary to declare whether a given variable
will hold an integer, a floating point number, or a string. You can also change the type of data being
held within a variable through simple reassignment. Consider this example, where the variable x first
holds an integer but then, through another assignment, it changes to hold a string:

var x = 4;
x = "Now it's a string.";

Variable scope
A variable’s scope refers to the locations from which its value can be accessed. Variables are globally
scoped when they are used outside a function. A globally scoped variable can be accessed throughout
your JavaScript program. In the context of a webpage—or a document, as you might think of it—you
can access and use a global variable throughout.

Variables defined within a function are scoped solely within that function. This effectively means
that the values of those variables cannot be accessed outside the function. Function parameters are
scoped locally to the function as well.

Here are some practical examples of scoping, which you can also find in the companion code in
the scope1.html file:

<script type="text/javascript">
var aNewVariable = "I'm Global.";
function doSomething(incomingBits) {
 alert(aNewVariable);
 alert(incomingBits);
}
doSomething("An argument");
</script>

54 parT i Javawhat? The where, why, and how of JavaScript

The code defines two variables: a global variable called aNewVariable and a variable called
 incomingBits, which is local to the doSomething() function. Both variables are passed to respective
alert() functions within the doSomething() function. When the doSomething() function is called, the
contents of both variables are sent successfully and displayed on the screen, as depicted in Figures
4-2 and 4-3.

FIGURE 4-2 The variable aNewVariable is globally scoped.

FIGURE 4-3 The variable incomingBits is locally scoped to the function.

Here’s a more complex example for you to try.

Examining variable scope

1. Using Visual Studio, Eclipse, or another editor, edit the file scoping.html in the Chapter04
sample files folder, which you can find in the companion content.

2. Within the page, replace the TODO comment with the boldface code shown here (the new
code can be found in the scoping.txt file in the companion content):

<!doctype html>
<html>
<head>
 <title>Scoping Example</title>
 <script type="text/javascript">
 var aNewVariable = "is global.";
 function doSomething(incomingBits) {
 alert("Global variable within the function: " + aNewVariable);
 alert("Local variable within the function: " + incomingBits);
 }
 </script>

</head>
<body>
<script type="text/javascript">

 CHAPTER 4 Working with variables and data types 55

 doSomething("is a local variable");
 alert("Global var outside the function: " + aNewVariable);
 alert("Local var outside the function: " + incomingBits);

</script>
</body>
</html>

3. Save the file.

4. View the file in a web browser. The result is three alerts on the screen.

The first alert is this:

The second alert is this:

The third alert looks like this:

But wait a minute—examine the code. How many calls to the alert() function do you see? Hint: two
are in the <HEAD> portion, and another two are within the <BODY> portion, for a total of four calls
to the alert() function. So why are there only three alerts on the screen when four calls are made to
the alert() function in the script?

Because this is a section on variable scoping (and I already explained the answer), you might
already have figured it out. But this example demonstrates well how to troubleshoot JavaScript prob-
lems when the result isn’t what you expect.

56 parT i Javawhat? The where, why, and how of JavaScript

The next procedure requires the use of the Firebug add-on to the Mozilla Firefox web browser. If
you don’t yet have Firefox, download it from http://www.mozilla.com/firefox/.

installing Firebug

This first procedure walks you through installing Firebug in Firefox. Firebug is very powerful and
flexible.

1. With Firefox installed, it’s time to get the Firebug add-on. Accomplish this task by going to
http://www.getfirebug.com/. On that site, click the Install Firebug link. When you do so, you’ll
be asked to choose the version of Firebug to install. Install the version that corresponds to
your version of Firefox (or is as close as possible to the version of Firefox that you have).

2. When you click the install link, you’ll be sent to Mozilla’s site, where you get to click another
button, this one labeled “Add To Firefox.” A Software Installation dialog box opens, as shown
in the following screen. Click Install Now.

3. The installation completes when you restart Firefox, so click Restart Firefox after the add-on
finishes downloading.

http://www.mozilla.com/firefox/
http://www.getfirebug.com/

 CHAPTER 4 Working with variables and data types 57

4. Firefox closes and opens again, showing the installed add-on. Congratulations! Firebug is
installed. Notice a small icon in the upper-right corner of the Firefox browser window. (The
Firefox development team keeps moving buttons around, so the Firebug button might not be
in the upper right when you read this.) Click the icon to open the Firebug console, shown here:

5. Firebug’s JavaScript console is disabled, but don’t worry—the next procedure walks you
through enabling and using it. Feel free to experiment with Firebug by enabling it.

With Firebug installed, you can troubleshoot the earlier problem you encountered in the scoping
example of only three of the four expected alerts being displayed.

Troubleshooting with Firebug

1. Open Firefox and open the scoping.html example that was created earlier in this chapter. The
JavaScript code again executes as before, showing the three alerts. Close all three alerts. You
end up with a blank page loaded in Firefox.

58 parT i Javawhat? The where, why, and how of JavaScript

2. Click the Firebug icon in Firefox browser window so that Firebug opens.

3. Click the Script tab to open the Script pane, and notice that it is disabled. Click the arrow/triangle
next to the word Script, and click Enabled.

 CHAPTER 4 Working with variables and data types 59

4. Click the Console tab, click the arrow/triangle next to the word Console, and click Enabled. You
can see here that the Console is now activated:

60 parT i Javawhat? The where, why, and how of JavaScript

5. With both the Console and Script panes enabled, click the Reload button on the main Firefox
toolbar. The page reloads, and the JavaScript executes again. All three alerts are displayed
again, but notice now that Firebug has discovered an error, denoted by the red X indication in
the Firebug Console:

6. The error, as you can see, is that the variable incomingBits isn’t defined. This window also
shows the line number at which the problem occurred. However, notice that because of the
way the document is parsed, the line number in your original source code might not always be
accurate. Regardless, you can see that incomingBits is not defined within the <BODY> section
of the webpage because its scope is limited to the doSomething() function.

This procedure demonstrated not only the use of Firebug but also the effect of local versus global
scoping of variables. Firebug is an integral part of JavaScript (and webpage) debugging. I invite you
to spend some time with Firebug on just about any site to see how JavaScript, CSS, and HTML all
interact.

In this procedure, the fix would be to define the variable incomingBits so that it gets instantiated
outside the function call. (This new line of code follows and is in the file scoping-fixed.html in the
Chapter04 folder in the companion content.) Because this variable was defined only as part of the
function definition, the variable didn’t exist outside the function’s scope.

<!doctype html>
<html>
<head>
 <title>Scoping Example</title>
 <script type="text/javascript">

 CHAPTER 4 Working with variables and data types 61

 var aNewVariable = "is global.";
 function doSomething(incomingBits) {
 alert("Global variable within the function: " + aNewVariable);
 alert("Local variable within the function: " + incomingBits);
 }

 </script>

</head>
<body>
<script type="text/javascript">
 var incomingBits = " must be defined if necessary.";
 doSomething("is a local variable");
 alert("Global var outside the function: " + aNewVariable);
 alert("Local var outside the function: " + incomingBits);

</script>
</body>
</html>

You can find more information about functions in Chapter 7, “Working with functions.”

The Date object
The Date object includes many methods that are helpful when working with dates in JavaScript—too
many, in fact, to examine in any depth in a broad-based book such as this—but I do show you some
examples that you might incorporate in your projects.

One of the unfortunate aspects of the Date object in JavaScript is that the implementation of its
methods varies greatly depending on the browser and the operating system. For example, consider
this code to return a date for the current time, adjusted for the local time zone and formatted auto-
matically by the toLocaleDateString() method:

var myDate = new Date();
alert(myDate.toLocaleDateString());

When run in Internet Explorer 10 on a computer running Windows 8, the code results in a date like
that shown in Figure 4-4.

FIGURE 4-4 The toLocaleString() method of the Date object in Internet Explorer 8.

62 parT i Javawhat? The where, why, and how of JavaScript

Figure 4-5 shows what happens when that same code is executed in Firefox 12 on a Mac.

FIGURE 4-5 The toLocaleString() method of the Date object displays the message differently in Firefox on Mac.

The difference between these two dialog boxes might seem trivial, but if you were expecting to
use the day of the week in your code (Monday, in the examples), you’d be in for a surprise. And don’t
be fooled into thinking that the implementation issues are merely cross-operating system problems.
Differences in the implementation of the Date object and its methods exist in browsers on products
running Microsoft Windows as well.

The only way to resolve these and other implementation differences in your JavaScript applica-
tion is to perform both cross-browser and cross-platform tests. Doing so adds time to the application
development cycle, but finding and fixing a problem during development is probably less costly than
finding and fixing the problem after users discover it in a production environment.

The Date object can be handed a number of arguments, ranging from zero arguments to up to
seven arguments. When the Date object constructor is passed a single string argument, the string is
assumed to contain the date. When it is passed a number type of argument, the argument is assumed
to be the date in milliseconds since January 1, 1970, and when it is passed seven arguments, they’re
assumed to be the following:

new Date(year, month, day, hours, minutes, seconds, milliseconds)

note Only year and month are required arguments; the others are optional.

Remember the following points when using a Date object:

■■ The year should be given with four digits unless you want to specify a year between the year
1900 and the year 2000, in which case you’d just send in the two-digit year, 0 through 99,
which is then added to 1900. So, 2008 equals the year 2008, but 98 is turned into 1998.

■■ The month is represented by an integer 0 through 11, with 0 being January and 11 being
December.

■■ The day is an integer from 1 to 31.

■■ Hours are represented by 0 through 23, where 23 represents 11 P.M.

■■ Minutes and seconds are both integers ranging from 0 to 59.

■■ Milliseconds are an integer from 0 to 999.

 CHAPTER 4 Working with variables and data types 63

Although the following procedure uses some items that won’t be covered until later chapters,
you’re looking at the Date object now, so it’s a good time learn how to write the date and time to a
webpage—a popular operation.

Writing the date and time to a webpage

1. Using Visual Studio, Eclipse, or another editor, edit the file writingthedate.html in the
Chapter04 sample files folder in the companion content.

2. Within the page, add the code in boldface type shown here:

<!doctype html>
<html>
<head>
 <title>the date</title>
</head>
<body>
 <p id="dateField"> </p>
 <script type = "text/javascript">
 var myDate = new Date();
 var dateString = myDate.toLocaleDateString() + " " + myDate.toLocaleTimeString();
 var dateLoc = document.getElementById("dateField");
 dateLoc.innerHTML = "Hello - Page Rendered on " + dateString;
 </script>
</body>
</html>

3. When saved and viewed in a web browser, you should receive a page like this (although the
date you see will be different from what’s shown here):

The relevant JavaScript from the preceding steps is repeated here:

var myDate = new Date();
var dateString = myDate.toLocaleDateString() + " " + myDate.toLocaleTimeString();
var dateLoc = document.getElementById("dateField");
dateLoc.innerHTML = "Hello - Page Rendered on " + dateString;

64 parT i Javawhat? The where, why, and how of JavaScript

The JavaScript related to the Date object is rather simple. It takes advantage of the
 toLocaleDateString() method, which you’ve already seen, and its cousin, toLocaleTimeString(), which
returns the local time. These two methods are concatenated together with a single space and placed
into the dateString variable, like this:

var dateString = myDate.toLocaleDateString() + " " + myDate.toLocaleTimeString();

The remainder of the code writes the contents of the dateString variable to the webpage, which is
covered in more detail in Part 2.

Counting down to a certain date in the future

1. Using Visual Studio, Eclipse, or another editor, edit the file countdown.html in the Chapter04
sample files folder, which you can find in the companion content.

2. Add the following code shown in boldface type to the page:

<!doctype html>
<html>
<head>
 <title>the date</title>
</head>
<body>
 <p id="dateField"> </p>
 <script type = "text/javascript">
 var today = new Date();
 var then = new Date();
 // January 1, 2014
 then.setFullYear(2014,0,1);
 var diff = then.getTime() - today.getTime();
 diff = Math.floor(diff / (1000 * 60 * 60 * 24));
 var dateLoc = document.getElementById("dateField");
 dateLoc.innerHTML = "There are " + diff + " days until 1/1/2014";
 </script>

</body>

</html>

 CHAPTER 4 Working with variables and data types 65

3. Save the page, and view it in a web browser. Depending on the date on your computer, the
number of days represented will be different, but the general appearance of the page should
look like this:

Tip Be careful when using JavaScript dates for anything other than displaying them.
Because the dates are dependent on the visitor’s time, don’t rely on them when an accurate
time might be important—for example, in an ordering process.

The exercise you just completed used some additional functions of both the Math and Date
objects, namely floor() and getTime(). While this book covers a lot of ground, it’s not a complete
JavaScript language reference. For that and even more information, refer to the ECMA-262 standard
at http://www.ecma-international.org/publications/standards/Ecma-262.htm.

The next procedure shows how to calculate (or better yet, roughly estimate) the time it takes for a
webpage to load in a person’s browser.

note The next procedure isn’t accurate because it doesn’t take into consideration the
time required for the loading and rendering of images (or other multimedia items), which
are external to the text of the webpage. A few more bits load after the script is finished
running.

http://www.ecma-international.org/publications/standards/Ecma-262.htm

66 parT i Javawhat? The where, why, and how of JavaScript

Calculating render time

1. Using Visual Studio, Eclipse, or another editor, edit the file render.html in the Chapter04
sample files folder, which you can find in the companion content.

2. Add the following code shown in boldface type to the page:

<!doctype html>
<html>
<head>
 <title>the date</title>
 <script type = "text/javascript">
 var started = new Date();
 var now = started.getTime();
 </script>
</head>
<body>
 <p id="dateField"> </p>
 <script type = "text/javascript">
 var bottom = new Date();
 var diff = (bottom.getTime() - now)/1000;
 var finaltime = diff.toPrecision(5);
 var dateLoc = document.getElementById("dateField");
 dateLoc.innerHTML = "Page rendered in " + finaltime + " seconds.";
 </script>

</body>
</html>

3. Save the page, and view it in a web browser. Depending on the speed of your computer, web
server, and network connection, you might receive a page that indicates only 0 seconds for
the page load time, like this:

 CHAPTER 4 Working with variables and data types 67

4. If your page takes 0.0000 seconds, as mine did, you can introduce a delay into the page so
that you can test it. (I’d never recommend doing this on a live site because I can’t think of
a reason you’d want to slow down the rendering of your page! But introducing a delay can
come in handy for testing purposes.) Using a for loop is a cheap and easy way to slow down
the JavaScript execution:

for (var i = 0; i < 1000000; i++) {
 //delay

}

The value I chose, 1000000, is arbitrary. You might need to choose a larger or smaller number
to cause the desired delay. The final code looks like this:

<!doctype html>
<html>
<head>
 <title>the date</title>
 <script type = "text/javascript">
 var started = new Date();
 var now = started.getTime();
 for (var i = 0; i < 1000000; i++) {
 //delay
 }
 </script>
</head>
<body>
 <p id="dateField"> </p>
 <script type = "text/javascript">
 var bottom = new Date();
 var diff = (bottom.getTime() - now)/1000;
 var finaltime = diff.toPrecision(5);
 var dateLoc = document.getElementById("dateField");
 dateLoc.innerHTML = "Page rendered in " + finaltime + " seconds.";
 </script>

</body>
</html>

68 parT i Javawhat? The where, why, and how of JavaScript

5. Save the page, and view it again in a web browser. You should see some delay in the page
load, which causes the value to be a positive number:

When using this or similar functions to determine the page load times, to calculate the most
accurate value, place the initial variable near the top of the page or script, and then place
another one near the bottom of the page.

note The now() method of the Date() object can also be used as a substitute for getTime().

You just learned about a few of the more than 40 methods of the Date object. Many of these
methods have UTC (Coordinated Universal Time) counterparts, meaning that they can get or set the
date and time in UTC rather than local time. Table 4-4 lists the methods that return dates. With the
exception of getTime() and getTimezoneOffset(), all these methods have UTC counterparts that are
called using the format getUTCDate(), getUTCDay(), and so on.

TABLE 4-4 The get methods of the Date object

Method Description

getDate() Returns the day of the month

getDay() Returns the day of the week

getFullYear() Returns the four-digit year and is recommended in most circumstances over the getYear() method

getHours() Returns the hours of a date

getMilliseconds() Returns the milliseconds of a date

getMinutes() Returns the minutes of a date

getMonth() Returns the month of a date

getSeconds() Returns the seconds of a date

getTime() Returns the milliseconds since January 1, 1970

getTimezoneOffset() Returns the number of minutes calculated as the difference between UTC and local time

 CHAPTER 4 Working with variables and data types 69

Many of the get...() methods have siblings prefixed with set, as shown in Table 4-5. And like their
get brethren, most of the set...() methods have UTC counterparts, except for setTime().

TABLE 4-5 The set methods of the Date object

Method Description

setDate() Sets the day of the month of a date

setFullYear() Sets the four-digit year of a date; also accepts the month and day-of-month integers

setHours() Sets the hour of a date

setMilliseconds() Sets the milliseconds of a date

setMinutes() Sets the minutes of a date

setMonth() Sets the month as an integer of a date

setSeconds() Sets the seconds of a date

setTime() Sets the time using milliseconds since January 1, 1970

The Date object also has several methods for converting the date to a string in a different format.
You already reviewed some of these methods, such as toLocaleDateString(). Other similar methods
include toLocaleString(), toLocaleTimeString(), toString(), toISOString(), toDateString(), toUTCString(),
and toTimeString(). Feel free to experiment with these, noting that toISOString() is a new method in
the ECMA-262 version 5 specification and support for it might not be available in all browsers. (It’s
notably missing from most versions of Internet Explorer.) The following simple one-line code exam-
ples will get you started experimenting. Try typing them in the address bar of your browser:

javascript:var myDate = new Date(); alert(myDate.toLocaleDateString());

javascript:var myDate = new Date(); alert(myDate.toLocaleString());

javascript:var myDate = new Date(); alert(myDate.toGMTString());

javascript:var myDate = new Date(); alert(myDate.toLocaleTimeString());

javascript:var myDate = new Date(); alert(myDate.toString());

javascript:var myDate = new Date(); alert(myDate.toISOString());

javascript:var myDate = new Date(); alert(myDate.toDateString());

javascript:var myDate = new Date(); alert(myDate.toUTCString());

javascript:var myDate = new Date(); alert(myDate.toTimeString());

You can also write these code samples without creating the myDate variable, like so:

javascript: alert(new Date().toUTCString());

70 parT i Javawhat? The where, why, and how of JavaScript

Using the RegExp object

Regular expressions are the syntax you use to match and manipulate strings. If you’ve heard of or
worked with regular expressions before, don’t be alarmed. Regular expressions have an unnecessarily
bad reputation solely because of their looks. And, lucky for me, we shouldn’t judge things solely on
looks alone. With that said, if you’ve had a bad experience with regular expressions, I’d ask that you
read through this section with an open mind and see whether my explanation helps clear up some
confusion.

The primary reason that I have confidence in your ability to understand regular expressions is that
you’re a programmer, and programmers use logic to reduce problems to small and simple pieces.
When writing or reading a regular expression, the key is to reduce the problem to small pieces and
work through each.

Another reason to have confidence is that you’ve probably worked with something close to regular
expressions before, so all you need to do is extend what you already know. If you’ve worked with a
command prompt in Microsoft Windows or with the shell in Linux/Unix, you might have looked for
files by trying to match all files using an asterisk, or star (*) character, as in:

dir *.*

or:

dir *.txt

If you’ve used a wildcard character such as the asterisk, you’ve used an element akin to a regular
expression. In fact, the asterisk is also a character used in regular expressions.

In JavaScript, regular expressions are used with the RegExp object and some syntax called regular
expression literals. These elements provide a powerful way to work with strings of text or alphanumer-
ics. The ECMA-262 implementation of regular expressions is largely borrowed from the Perl 5 regular
expression parser. Here’s a regular expression to match the word JavaScript:

var myRegex = /JavaScript/;

The regular expression shown would match the string “JavaScript” anywhere that it appeared
within another string. For example, the regular expression would match in the sentence “This is a book
about JavaScript,” and it would match in the string “ThisIsAJavaScriptBook,” but it would not match
“This is a book about javascript,” because regular expressions are case sensitive. (You can change this,
as you’ll see later in this chapter.)

With that short introduction you’re now prepared to look at regular expressions in more detail.
The knowledge you gain here will prepare you for the remainder of the book, helping you not only
understand how to work with strings in JavaScript but also understand how to use regular expres-
sions in other languages. This section provides a reference for regular expression syntax and shows a
couple simple examples.

 CHAPTER 4 Working with variables and data types 71

The syntax of regular expressions
Regular expressions have a terse—and some would argue cryptic—syntax. But don’t let terse syntax
scare you away from regular expressions, because in that syntax is power. This is a brief introduction
to regular expressions. It’s not meant to be exhaustive. (There are entire books on regular expres-
sions.) However, you’ll find that this gentle introduction will serve you well for the remainder of the
book. Don’t worry if this material doesn’t sink in on the first read through. There are multiple tables
that make it easy to use as a reference later.

The syntax of regular expressions includes several characters that have special meaning, includ-
ing characters that anchor the match to the beginning or end of a string, a wildcard, and groups of
characters, among others.

Table 4-6 shows several of the special characters.

TABLE 4-6 Common special characters in JavaScript regular expressions

Character Description

^ Sets an anchor to the beginning of the input.

$ Sets an anchor to the end of the input.

. Matches any character.

* Matches the previous character zero or more times. Think of this as a wildcard.

+ Matches the previous character one or more times.

? Matches the previous character zero or one time.

() Places any matching characters inside the parentheses into a group. This group can then be referenced
later, such as in a replace operation.

{n, } Matches the previous character at least n times.

{n,m} Matches the previous character at least n but no more than m times.

[] Defines a character class to match any of the characters contained in the brackets. This character can use
a range like 0–9 to match any number or like a–z to match any letter.

[̂] The use of a caret within a character class negates that character class, meaning that the characters in
that class cannot appear in the match.

\ Typically used as an escape character, and meaning that whatever follows the backslash is treated as a
literal character instead of as having its special meaning. Can also be used to define special character
sets, which are shown in Table 4-7.

In addition to the special characters, several sequences exist to match groups of characters or
 nonalphanumeric characters. Some of these sequences are shown in Table 4-7.

TABLE 4-7 Common character sequences in JavaScript regular expressions

Character Match

\b Word boundary.

\B Nonword boundary.

\c Control character when used in conjunction with another character. For example, \cA is the escape
sequence for Control-A.

\d Digit.

72 parT i Javawhat? The where, why, and how of JavaScript

Character Match

\D Nondigit.

\n Newline.

\r Carriage return.

\s Single whitespace character such as a space or tab.

\S Single nonwhitespace character.

\t Tab.

\w Any alphanumeric character, whether number or letter.

\W Any nonalphanumeric character.

And finally, in addition to the characters in Table 4-7, you can use the modifiers i, g, and m. The i
modifier specifies that the regular expression should be parsed in a case-insensitive manner, while the
g modifier indicates that the parsing should continue after the first match, sometimes called global or
greedy (thus the g). The m modifier is used for multiline matching. You’ll see an example of modifier
use in an upcoming example.

The RegExp object has its own methods, including exec and test, the latter of which tests a regular
expression against a string and returns true or false based on whether the regular expression matches
that string. However, when working with regular expressions, using methods native to the String type,
such as match, search, split, and replace, is just as common.

The exec() method of the RegExp object is used to parse the regular expression against a string
and return the result. For example, parsing a simple URL and extracting the domain might look like
this:

var myString = "http://www.braingia.org";
var myRegex = /http:\/\/\w+\.(.*)/i;
var results = myRegex.exec(myString);
alert(results[1]);

The output from this code is an alert showing the domain portion of the address, as shown in
Figure 4-6.

FIGURE 4-6 Parsing a typical web URL using a regular expression.

A breakdown of this code is helpful. First you have the string declaration:

var myString = "http://www.braingia.org";

 CHAPTER 4 Working with variables and data types 73

This is followed by the regular expression declaration and then a call to the exec() method, which
parses the regular expression against the string found in myString and places the results into a vari-
able called results.

var myRegex = /http:\/\/\w+\.(.*)/i;
var results = myRegex.exec(myString);

The regular expression contains several important elements. It begins by looking for the literal
string http:. The two forward slashes follow, but because forward slashes (/) are special characters in
regular expressions, you must escape them by using backslashes (\),making the regular expression
http:\/\/ to this point.

The next part of the regular expression, \w, looks for any single alphanumeric character. Web
addresses are typically www, so don’t be confused into thinking that the expression is looking for
three literal ws—the host in this example could be called web, host1, myhost, or www, as shown in
the code you’re examining. Because \w matches any single character, and web hosts typically have
three characters (www), the regular expression adds a special character + to indicate that the regu-
lar expression must find an alphanumeric character at least once and possibly more than once. So
now the code has http:\/\/\w+, which matches the address http://www right up to the .braingia.org
portion.

You need to account for the dot character between the host name (www) and the domain name
(braingia.org). You accomplish this by adding a dot character (.), but because the dot is also a special
character, you need to escape it with \.. You now have http:\/\/\w+\., which matches all the elements
of a typical address right up to the domain name.

Finally, you need to capture the domain and use it later, so place the domain inside parentheses.
Because you don’t care what the domain is or what follows it, you can use two special characters: the
dot, to match any character; and the asterisk, to match any and all of the previous characters, which is
any character in this example. You’re left with the final regular expression, which is used by the exec()
method. The result is placed into the results variable. Also note the use of the i modifier, to indicate
that the regular expression will be parsed in a case-insensitive manner.

If a match is found, the output from the exec() method is an array containing the last characters
matched as the first element of the array and an index for each captured portion of the expression.

In the example shown, the second element of the array (1) is sent to an alert, which produces the
output shown in Figure 4-6.

alert(results[1]);

That’s a lot to digest, and I admit this regular expression could be vastly improved with the addi-
tion of other characters to anchor the match and to account for characters after the domain as well
as non-alphanumerics in the host name portion. However, in the interest of keeping the example
somewhat simpler, the less-strict match is shown.

The String object type contains three methods for both matching and working with strings and
uses regular expressions to do so. The match, replace, and search methods all use regular expression

74 parT i Javawhat? The where, why, and how of JavaScript

pattern matching. Because you’ve learned about regular expressions, it’s time to introduce these
methods.

The match method returns an array with the same information as the Regexp data type’s exec()
method. Here’s an example:

var emailAddr = "suehring@braingia.com";
var myRegex = /\.com/;
var checkMatch = emailAddr.match(myRegex);
alert(checkMatch[0]); //Returns .com

This can be used in a conditional to determine whether a given email address contains the string
.com:

var emailAddr = "suehring@braingia.com";
var myRegex = /\.com/;
var checkMatch = emailAddr.match(myRegex);
if (checkMatch !== null) {
 alert(checkMatch[0]); //Returns .com
}

The search method works in much the same way as the match method but sends back only the
index (position) of the first match, as shown here:

var emailAddr = "suehring@braingia.com";
var myRegex = /\.com/;
var searchResult = emailAddr.search(myRegex);
alert(searchResult); //Returns 17

If no match is found, the search method returns -1.

The replace method does just what its name implies—it replaces one string with another when a
match is found. Assume in the email address example that I want to change any .com email address to
a .net email address. You can accomplish this by using the replace method, like so:

var emailAddr = "suehring@braingia.com";
var myRegex = /\.com$/;
var replaceWith = ".net";
var result = emailAddr.replace(myRegex,replaceWith);
alert(result); //Returns suehring@braingia.net

If the pattern doesn’t match, the original string is placed into the result variable; if it does, the new
value is returned.

note You can use several special characters to help with substitutions. Please see the
ECMA-262 specification for more information about these methods.

Later chapters show more examples of string methods related to regular expressions. Feel free to
use this chapter as a reference for the special characters used in regular expressions.

 CHAPTER 4 Working with variables and data types 75

references and garbage collection
Some types of variables or the values they contain are primitive, whereas others are reference types.
The implications of this might not mean much to you at first glance—you might not even think you’ll
ever care about this. But you’ll change your mind the first time you encounter odd behavior with a
variable that you just copied.

First, some explanation: objects, arrays, and functions operate as reference types, whereas num-
bers, Booleans, null, and undefined are known as primitive types. According to the ECMA-262 speci-
fication, other primitive types exist, such as Numbers and Strings, but Strings aren’t relevant to this
discussion.

When a number is copied, the behavior is what you’d expect: The original and the copy both get
the same value. However, if you change the original, the copy is unaffected. Here’s an example:

// Set the value of myNum to 20.
var myNum = 20;
// Create a new variable, anotherNum, and copy the contents of myNum to it.
// Both anotherNum and myNum are now 20.
var anotherNum = myNum;
// Change the value of myNum to 1000.
myNum = 1000;
// Display the contents of both variables.
// Note that the contents of anotherNum haven't changed.
alert(myNum);
alert(anotherNum);

The alerts display 1000 and 20, respectively. When the variable anotherNum gets a copy of
myNum’s contents, it holds on to the contents no matter what happens to the variable myNum after
that. The variable does this because numbers are primitive types in JavaScript.

Contrast that example with a variable type that’s a reference type, as in this example:

// Create an array of three numbers in a variable named myNumbers.
var myNumbers = [20, 21, 22];
// Make a copy of myNumbers in a newly created variable named copyNumbers.
var copyNumbers = myNumbers;
// Change the first index value of myNumbers to the integer 1000.
myNumbers[0] = 1000;
// Alert both.
alert(myNumbers);
alert(copyNumbers);

In this case, because arrays are reference types, both alerts display 1000,21,22, even though only
myNumbers was directly changed in the code. The moral of this story is to be aware that object, array,
and function variable types are reference types, so any change to the original changes all copies.

Loosely related to this discussion of differences between primitive types and reference types is
the subject of garbage collection. Garbage collection refers to the destruction of unused variables by
the JavaScript interpreter to save memory. When a variable is no longer used within a program, the
interpreter frees up the memory for reuse. It also does this for you if you’re using Java Virtual machine
or .NET Common Language Runtime.

76 parT i Javawhat? The where, why, and how of JavaScript

This automatic freeing of memory in JavaScript is different from the way in which other languages,
such as C++, deal with unused variables. In those languages, the programmer must perform the gar-
bage collection task manually. This is all you really need to know about garbage collection.

Learning about type conversions

Before finishing the discussion on data types and variables, you should know a bit about type conver-
sions, or converting between data types. JavaScript usually performs implicit type conversion for you,
but in many cases, you can explicitly cast, or convert, a variable from one type to another.

number conversions
You’ve already seen a conversion between two number formats, hexadecimal to base 10, in the
example discussed in the section “Data types in JavaScript” earlier in this chapter. However, you can
convert numbers to strings as well. JavaScript implicitly converts a number to a string when the num-
ber is used in a string context.

To explicitly convert a number to a string, cast the number as a string, as in this example:

// Convert myNumString as a string with value of 100
var myNumString = String(100);

String conversions
In the same way that you can convert numbers to strings, you can convert strings to numbers. You do
this by casting the string as a number.

var myNumString = "100";
var myNum = Number(myNumString);

Tip JavaScript converts strings to numbers automatically when those strings are used in a
numeric context. However, in practice, I’ve had hit-or-miss luck with this implicit conver-
sion, so I usually just convert to a number whenever I want to use a number. The downside
of doing this is that you have to execute some extra code, but doing that is better than the
uncertainty inherent in leaving it up to a JavaScript interpreter.

Boolean conversions
Booleans are converted to numbers automatically when used in a numeric context. The value of true
becomes 1, and the value of false becomes 0. When used in a string context, true becomes “true”,
and false becomes “false”. The Boolean() function exists if you need to explicitly convert a number or
string to a Boolean value.

 CHAPTER 4 Working with variables and data types 77

Exercises

1. Declare three variables—one number and two strings. The number should be 120, and the
strings should be “5150” and “Two Hundred Thirty”.

2. Create a new array with three numbers and two strings or words.

3. Use the alert() function to display the following string, properly escaped: Steve’s response was
“Cool!”

4. Use Internet Explorer to examine three of your favorite websites, and debug the errors using
Interne Explorer tools. Look closely for any JavaScript errors reported. Bonus: Try using
Firebug to examine those same three websites.

 79

C H A P T E R 5

Using operators and expressions

After completing this chapter, you will be able to

■■ Understand the operators available in JavaScript.

■■ Use JavaScript operators to perform math, equality tests, relational tests, and assignments.

■■ Use the void operator to open a new window by using a link.

Meet the operators

The ECMA-262 specification defines assorted operators of various forms. These include the following:

■■ Additive operators

■■ Multiplicative operators

■■ Bitwise operators

■■ Equality operators

■■ Relational operators

■■ Unary operators

■■ Assignment operators

■■ The comma operator

Operators can be used both on literal values, such as the numeral 10, and on variables and other
objects in JavaScript.

80 parT i Javawhat? The where, why, and how of JavaScript

Additive operators

The term additive operators includes both addition and subtraction operators, which makes the term
seem like a misnomer. But as my fifth grade math teacher would remind me, subtraction is just addi-
tion with a negative number. As you might guess, the operators for addition and subtraction are +
and –, respectively. Here are some examples of how they are used:

4 + 5; // This would be 9.
x + y; // Adds x and y together.
5 - 1; // Results in 4.

The addition operator operates in different ways, depending on the types of the values being
added. When adding two strings, the addition operator concatenates the left and right arguments.
You can get odd results when the types being added differ because JavaScript must convert one of
the types before performing the addition (or any math operation). For example, you won’t get the
expected results when you think you have a numeric variable but the JavaScript interpreter thinks you
have a string. Here are some specific examples:

var aNum = 947;
var aStr= "Rush";
var anotherNum = 53;
var aStrNum = "43";
var result1 = aNum + aStr; // result1 will be the string "947Rush";
var result2 = aNum + anotherNum; // result2 will be the number 1000;
var result3 = aNum + aStrNum; // result3 will be 94743;

In many cases, as discussed in Chapter 4, “Working with variables and data types,” you can explic-
itly change or convert one type to another in JavaScript. Take a look at the result3 variable in the pre-
vious example. You probably want result3 to hold the result of the mathematical expression 947 + 43.
But because the second value, represented by aStrNum, is a string, the expression concatenates the
two values rather than adding them mathematically as numbers. However, using Number() converts
aStrNum to a number so that you can use it as expected in a mathematical expression, such as addi-
tion. Here’s the relevant code, corrected to do what you might think it would:

var aNum = 947;
var aStrNum = Number("43");
var result3 = aNum + aStrNum; // result3 will be 990;

Multiplicative operators

Like additive operators, multiplicative operators behave just as you might expect; they perform mul-
tiplication and division. The multiplication operator (*) multiplies two numbers, whereas the division
operator (/) divides numbers. Here’s a multiplication example:

var mult = 2 * 2;

 CHAPTER 5 Using operators and expressions 81

And division:

var divisi = 4 / 2;

The multiplicative operators include the modulo operator, which is indicated by the percent sign
(%). The modulo operator yields the remainder of the division of two numbers. For example, the
modulo of 4 divided by 3 is 1, as shown in the following bit of code:

var mod = (4 % 3);

Bitwise operators

Bitwise operators include AND, OR, XOR, NOT, Shift Left, Shift Right With Sign, and Shift Right With
Zero Fill. Each operator is represented by one or more characters, as shown in Table 5-1.

TABLE 5-1 Bitwise operators

Operator Meaning

& AND

| OR

^ XOR

~ NOT

<< Shift Left

>> Shift Right With Sign

>>> Shift Right With Zero Fill

In-depth coverage of the bitwise operators is beyond the scope of this book, although I men-
tion them in later chapters. You can find more information about bitwise operators in the ECMA-262
specification.

Equality operators

You use equality operators to test whether two expressions are the same or different. These operators
always return Boolean types: either true or false. Table 5-2 lists JavaScript’s equality operators.

TABLE 5-2 Equality operators

Operator Meaning

== Equal

!= Not equal

=== Equal using stricter methods

!== Not equal using stricter methods

82 parT i Javawhat? The where, why, and how of JavaScript

As you can see from Table 5-2, you can test for equality and inequality in two different ways. These
approaches differ in their strictness—that is, in the degree of equality they require to determine
whether two values are truly equal. The stricter of the two, represented by a triple equals sign (===),
requires not only that the values of a given expression are equal but also that the types are identical.
The strict test would determine that a string with the value “42” is not equal to a number with the
value of 42, whereas the less strict equality test would find them to be equal. The example that follows
is helpful for understanding this.

Testing the equality operators

1. Using Microsoft Visual Studio, Eclipse, or another editor, edit the file equality.html in the chap-
ter05 sample files folder in the companion content.

2. In the webpage, replace the TODO comment with the boldface code shown here. (This code
can be found in equality.txt.)

<!doctype html>
<html>
<head>
 <title>Equality</title>
 <script type = "text/javascript">
 var x = 42;
 var y = "42";
 if (x == y) {
 alert("x is equal to y with a simple test.");
 } else {
 alert("x is not equal to y");
 }
 </script>
</head>
<body>

</body>
</html>

3. Point your web browser to the newly created page. The code is fairly straightforward; it
defines two variables, x and y. The variable x is set to the number value 42, and y is set to the
string value of “42” (notice the double quotation marks). The simple test for equality is next,
using ==. This type of equality test measures only the values and ignores whether the variable
types are the same. The if block calls the appropriate alert() function based on the result. You
should receive an alert like this:

 CHAPTER 5 Using operators and expressions 83

4. Change the equality test so that it uses the strict test. To do this, first change the equality
test to use the stricter of the two equality tests (that is, ===), and then change the alert
to read strict instead of simple. The full code should look like the following example. (The
changed lines are shown in boldface type and are in the equality2.txt file in the companion
content.)

<!doctype html>
<html>
<head>
 <title>Equality</title>
 <script type = "text/javascript">
 var x = 42;
 var y = "42";
 if (x === y) {
 alert("x is equal to y with a strict test.");
 } else {
 alert("x is not equal to y");
 }
 </script>
</head>
<body>

</body>
</html>

5. Point your web browser to the page again. The test for equality now uses the stricter test,
===. The stricter test is like the simpler equality test in that it examines the values, but it is
different in that it also tests variable types. Because variable x is a number and variable y is a
string, the preceding equality test fails. The appropriate alert() function is called based on the
result. This time the alert looks like this:

Relational operators

Relational operators test expressions to find out whether they are greater than or less than each other,
or whether a given value is in a list or is an instance of a certain type. Table 5-3 lists the relational
operators in JavaScript.

84 parT i Javawhat? The where, why, and how of JavaScript

TABLE 5-3 Relational operators

Operator Meaning

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

in Contained within an expression or object

instanceof Is an instance of an object

You are probably familiar with the first four relational operators in Table 5-3, but here are some
quick examples nonetheless. Take a look at the following code:

if (3 > 4) {
 // do something
}

The integer 3 is never greater than the integer 4, so this code will never evaluate to true, and the
code inside the if block will never be executed. In a similar way, the following code tests whether the
variable x is less than y:

if (x < y) {
 // do something
}

The in operator
The in operator is most commonly used to evaluate whether a given property is contained within an
object. Be aware that the in operator searches for the existence of a property and not the value of
that property. Therefore, the following code will work because a property called star is in the myObj
object:

var myObj = {
 star: "Algol",
 constellation: "Perseus"
};

if ("star" in myObj) {
 alert("There is a property called star in this object");
}

The in operator is commonly used to iterate through an object. You see an example of this usage
in Chapter 8, “Objects in JavaScript.”

 CHAPTER 5 Using operators and expressions 85

The instanceof operator
The instanceof operator tests whether a given expression, usually a variable, is an instance of the
object or a particular data type. Yes, that’s awkward. Rather than fumble around some more trying to
explain it, I’ll just skip ahead to an example, and then it will all make sense:

var myDate = new Date();
if (myDate instanceof Date) {
 //do something
}

Because the variable myDate is an instance of the built-in Date object, the instanceof evaluation
returns true. The instanceof operator affects user-defined objects and on built-in objects, as shown in
the preceding example.

Unary operators

Unary operators have a single operand or work with a single expression in JavaScript. Table 5-4 lists
the JavaScript unary operators.

TABLE 5-4 Unary operators

Operator Meaning

delete Removes a property

void Returns undefined

typeof Returns a string representing the data type

++ Increments a number

-- Decrements a number

+ Converts the operand to a number

- Negates the operand

~ Bitwise NOT

! Logical NOT

Because the way you use unary operators isn’t obvious, I explain them a little more in this chapter.

incrementing and decrementing
You use the ++ and -- operators to increment and decrement a number, respectively, as shown in the
following code:

var aNum = 4;
aNum++;
++aNum;

The placement of the operator in relation to the operand to which it is applied determines the
value returned by the code. When appended to the variable (referred to as postfixed), as in the

86 parT i Javawhat? The where, why, and how of JavaScript

second line of code in the preceding example, the operator returns the value before it is incremented
(or decremented, as the case may be). When prefixed, as in the last line of code from the preceding
example, the operator returns the value after it is incremented (or decremented).

Here are a couple of examples showing the difference between prefixing and postfixing in code.
The following is an example of postfixing:

var aNum = 4;
var y = aNum++; // y now has the value 4, but aNum then has the value 5

The second example is prefixing:

var aNum = 4;
var y = ++aNum; // y now has the value 5, as does aNum

In practice, you use the postfix increment operator more often than the prefix increment operator
or the decrement operator because it is a convenient counter within a loop structure. You learn about
looping in JavaScript in Chapter 6, “Controlling flow with conditionals and loops.”

Converting to a number with the plus sign
The plus sign (+) is supposed to convert a value to a number. In practice, I find it to be somewhat
unreliable—or at least not reliable enough to use in production code. When I need to convert some-
thing to a number, I use the Number() function explicitly. However, you can use the plus sign as a
unary operator to attempt conversion, as follows:

var x = +"43";

This code results in the string “43” being converted to a number by JavaScript and the numeric
value 43 being stored in the variable x.

Creating a negative number with the minus sign
It might come as no surprise that when you use a minus sign (-) in front of a number, the number is
converted to its negative counterpart, as in this code:

var y = "754";
var negat = -y;
alert(negat);

negating with bitwise not and logical not
The tilde (~) character is a bitwise not, and the exclamation point (!) is a logical not. These operators
negate their counterparts. In the case of a bitwise not, its bit complement is given, so a 0 changes to a
-1 and a -1 to a 0. A logical not, which is the negation you use most frequently in JavaScript program-
ming, negates the expression. If the expression is true, the logical not operator makes it false.

For more information about bitwise operations, see http://en.wikipedia.org/wiki/Bitwise_operation.

http://en.wikipedia.org/wiki/Bitwise_operation

 CHAPTER 5 Using operators and expressions 87

Using the delete operator
The delete operator takes a property of an object or the index of an array and removes it or causes it
to become undefined. Here’s a simple example using an array:

var myArray = ["The RCMP", "The Police", "State Patrol"];
delete myArray[0]; // myArray now contains only "The Police" and "State Patrol"

The preceding code creates an array called myArray and then promptly deletes the value at the
first index, making it “undefined.” The delete operator works with objects, too, as you can see in this
next example.

Using the delete operator with objects

1. Using Visual Studio, Eclipse, or another editor, edit the file deleteop1.html in the chapter05
sample files folder in the companion content.

2. Create the contents for a base page from which you use the delete operator in a later step. In
the page, replace the TODO comments with the following code shown in boldface. (The code
can also be found in deleteop1.txt file in the companion content.)

<!doctype html>
<html>
<head>
 <title>The Delete Operator</title>
</head>
<body id="mainbody">
<script type="text/javascript">
 var polaris = new Object;
 polaris.constellation = "Ursa Minor";

 alert(polaris.constellation);
 delete(polaris.constellation);
 alert(polaris.constellation);
</script>

</body>
</html>

3. Save the file, and view it in your web browser. The first part of the output is this:

88 parT i Javawhat? The where, why, and how of JavaScript

4. Click OK, and then the following alert will be shown:

This example’s code defined a new object (which you’ll learn more about in Chapter 8) called
polaris and then added a property of Polaris’s constellation named constellation that was set to the
value “Ursa Minor”. Next, an alert was generated to show that the property did indeed exist. After
that, the delete operator was used to delete that property. Finally, another alert was generated to
show that the delete operator did its job. Don’t worry much about the object and object property
parts of this example; they’ll make more sense in Chapter 8.

returning variable types with the typeof operator
As you might expect, the typeof operator returns the variable type of the given operand. For example,
using typeof, you can determine whether a given variable was created and is being used as a string,
a number, or a Boolean; or whether that variable is a certain type of object or function. Consider this
code:

var star= {};
if (typeof(star) == "object") {
 alert("star is an object");
}

The typeof operator returns “number” if a number is evaluated, “string” if a string type is evalu-
ated, and (as you saw from the example), “object” if an object is evaluated. When you use properties,
JavaScript smartly assumes that you want to know the type of variable that the property is, rather
than the type of object, so it returns that property’s value type. Here’s an example that borrows a
little code from earlier in the chapter.

 CHAPTER 5 Using operators and expressions 89

Using the typeof operator

1. Using Visual Studio, Eclipse, or another editor, edit the file typeof.html in the chapter05
sample files folder in the companion content.

2. Within the webpage, add the following code shown in boldface (available in the file typeof.txt
in the companion content):

<!doctype html>
<html>
<head>
 <title>The Typeof Example</title>

 <script type="text/javascript">
 var polaris = new Object;
 polaris.constellation = "Ursa Minor";

 alert(typeof polaris.constellation);
 </script>

</head>
<body>

</body>
</html>

3. The code within the <SCRIPT> tags creates a new object for the star Polaris and sets its con-
stellation property to the string “Ursa Minor”. It then calls an alert dialog box using the typeof
operator to show that the type of the polaris.constellation property is a string.

4. Save the file, and view it in a web browser. You get an alert like this:

Using the typeof operator, you can also see the difference between null and undefined.

90 parT i Javawhat? The where, why, and how of JavaScript

Assignment operators

You already reviewed assignments in this chapter, and you’ve seen them throughout the book. The
primary (or most frequently used) assignment operator is the equals sign (=). This type of operator is
known as a simple assignment. JavaScript has many more assignment operators, including those listed
in Table 5-5.

TABLE 5-5 Compound assignment operators

Operator Meaning

*= Multiplies the left operand by the right operand

/= Divides the left operand by the right operand

%= Provides the division remainder (modulus) of the left and
right operand

+= Adds the right operand to the left operand

-= Subtracts the right operand from the left operand

<<= Bitwise left shift

>>= Bitwise right shift

>>>= Bitwise unsigned right shift

&= Bitwise AND

^= Bitwise XOR

|= Bitwise OR

Compound assignment operators provide shortcuts that save a few keystrokes and bytes. For
example, you can add or subtract from a number using += and -=, respectively, as in this example:

var myNum = 10;
alert(myNum);
myNum += 30;
alert(myNum);

The first alert, just after the variable has been defined and set equal to 10, is shown in the follow-
ing illustration:

 CHAPTER 5 Using operators and expressions 91

The next alert, after using a compound addition assignment, is as follows:

The importance of byte conservation (a.k.a. minification)
Conserving bytes is an important topic for every JavaScript programmer. Byte conservation refers to pro-
gramming with shortcuts so that the resulting program in JavaScript (or any other language, for that matter)
consumes less memory and bandwidth. Each time you can take advantage of features to save bytes, such as
compound assignment statements, the better off the program will be.

Fewer bytes means smaller scripts for users to download. Quantifying how many bytes you can save or
how much that can assist you is difficult. Some programmers might argue that the effect is negligible—and
for smaller scripts, that’s probably true, especially because users increasingly have broadband or faster
connections. But the positive effect smart shortcuts can have is very real for larger scripts, especially when
those scripts have to be downloaded using a dial-up or other slow type of connection.

One common approach to saving bytes during downloads is through minification of JavaScript. Minifica-
tion refers to the removal of all nonessential elements from a JavaScript file on a live or production website.
The nonessential elements include not only comments but also spaces and carriage returns. The resulting
minified files are fairly unreadable unless you reintroduce some spaces and carriage returns.

The comma operator

The comma operator separates expressions and executes them in order. Commonly, the comma is
used to separate variable declarations, which enables multiple variables to be declared on one line:

var num1, num2, num3;

Alternatively, you can also set values:

var num1=3, num2=7, num3=10;

92 parT i Javawhat? The where, why, and how of JavaScript

Exercises

1. Use the addition operator (+) to send three alert() dialog boxes to the screen. (You can use
three separate programs.) The first alert should add two numbers. The second should add a
number and a string. The third should add two strings. All should be represented by variables.

2. Use the postfix increment operator (++) to increment a number stored in a variable. Display
the value of the variable before, while, and after incrementing. Use the prefix increment
operator to increment the number and display its results before, while, and after incrementing
by using an alert.

3. Use the typeof operator to check the type of variables you created in Exercise 1.

4. True or False: Unary operators don’t appear in JavaScript very often.

5. True or False: It’s always best to save bytes (using JavaScript shortcuts whenever possible)
rather than use returns and indenting, which can slow down page loading.

 93

C H A P T E R 6

Controlling flow with conditionals
and loops

After completing this chapter, you will be able to

■■ Understand the different types of conditional statements in JavaScript.

■■ Use the if else conditional statement to control code execution.

■■ Use the switch statement.

■■ Understand the different types of loop control structures in JavaScript.

■■ Use a while loop and a do...while loop to execute code repeatedly.

■■ Use different types of for loops to iterate through ranges of values.

If (and how)

The if statement evaluates an expression and, based on the results, determines which code, if any,
executes within a program. More complex if statements can control which code executes based on
multiple conditions. If you’ve booked a flight on the Internet, you know about making decisions. For
example, you might want to go on a quick weekend getaway, so when pricing the ticket, you would
say, “If the ticket costs less than $350, I’ll book the flight; otherwise, I’ll find a different getaway spot.”
Or suppose I want to take out the trash. Should I take the garbage to the curb tonight or wait until the
morning? If the weather forecast is windy overnight, the trash might get blown all over the neighbor’s
lawn, but if I wait until morning, I might miss the garbage truck. (A third option would be to tell my
wife that it’s her turn to take out the garbage, but that’s never worked in the past.)

Although JavaScript won’t help you make these real-life decisions, it can be a great help by making
programmatic decisions like these—that is, it can control how a program acts depending on whether
a variable contains a certain value or a form field is filled in correctly. This section reviews the syntax
of the if statement in JavaScript.

94 parT i Javawhat? The where, why, and how of JavaScript

Syntax for if statements
The syntax for the if statement might be familiar to you if you’ve programmed in other languages,
including Perl or PHP. The basic structure of an if statement is this:

if (some condition) {
 // do something here
}

note The if statement is sometimes called the if conditional. I use these terms interchange-
ably within this and other chapters to get you comfortable with both terms. But don’t con-
fuse the if conditional (the entire if statement) with the if condition, which is the Boolean
expression that the if statement evaluates.

The if statement examines the validity, or truthfulness, of a condition to determine whether the
code within the conditional (inside the braces) is to be executed. The condition is a Boolean expres-
sion that, when evaluated to true, causes the if statement to execute the code in the conditional. (You
can negate an expression in the condition to cause the code to run if the expression evaluates to
false.) Recall the use of Boolean and unary operators from Chapter 5, “Using operators and expres-
sions.” Here’s an example:

if (! some condition) {
 // do something here
}

In this case, the condition starts with the negation operator, which means that the condition would
need to evaluate to false for the code inside the conditional to execute.

The real-world airline cost example from earlier in the chapter might look like this in pseudo-code:

if (flightCost < 350) {
 bookFlight();
}

If the flight costs less than $350, the code within the conditional executes. The garbage example
might look like this:

if (forecast != "windy") {
 takeGarbageOut();
}

Later in this chapter, I show you how to use an else statement to cause other code to execute when
the condition is false.

 CHAPTER 6 Controlling flow with conditionals and loops 95

You use if statement with many of the operators you learned about in Chapter 5, especially rela-
tional operators that test whether one value is greater than or less than another value and equality
operators that test whether two values are equal to each other. Take a look at these examples:

var x = 4;
var y = 3;
// Equality test
if (x == y) {
 // do something
}

Because the value in variable x (4) does not equal the value in variable y (3), the code within the if
conditional (inside the braces) doesn’t execute. Here’s an example with a relational operator:

var x = 4;
var y = 3;
// Relational test
if (x > y) {
 // do something
}

In this case, because the value in variable x (4) is greater than the value in variable y (3), the code
within the braces executes.

The next section shows an example that you can perform yourself. This example takes advantage
of the prompt() function to get input from a visitor through a simple interface.

The prompt() function in internet Explorer
With the introduction of Windows Internet Explorer 7, the prompt() function is no longer enabled
by default. If you attempt to use the prompt() function with Internet Explorer, you receive a security
warning or possibly a page with the word null.

You can reliably get around this feature either by clicking the information bar and selecting an
option to allow scripts or changing the security settings. For example, you can change security set-
tings in Internet Explorer by selecting Internet Options from the Tools menu, clicking the Security tab,
clicking Custom Level, and enabling the Allow Websites To Prompt For Information Using Scripted
Windows option within the Scripting section, shown in Figure 6-1.

96 parT i Javawhat? The where, why, and how of JavaScript

FIGURE 6-1 Enabling the prompt() function in Internet Explorer.

However, you can’t rely on your visitors doing the same with their Internet Explorer settings.
Therefore, the prompt() function is no longer as useful as it was before Internet Explorer 7 was intro-
duced. Some programmers might argue that the prompt() function was annoying (and I agree that
it created problems sometimes), but it did have its advantages, and disabling it does very little to
enhance security. But sometimes it’s useful for test purposes, such as in the following exercise.

Using if to make decisions about program flow

1. Using Microsoft Visual Studio, Eclipse, or another editor, edit the ifexample.html file in the
Chapter06 sample files folder, which you can find in the companion content.

2. In the page, replace the TODO comment with the following code shown in boldface type.

<!doctype html>
<html>
<head>
 <title>An If Example</title>
</head>
<body>

<script type="text/javascript">
var inputNum = prompt("Please enter a number below 100:");
if (inputNum > 99) {
 alert("That number, " + inputNum + ", is not below 100.");
}
</script>

 CHAPTER 6 Controlling flow with conditionals and loops 97

<p>This is an example from Chapter 6.</p>

</body>
</html>

3. Save the page, and view it in a web browser.

note If you receive a security warning when viewing the page in Internet Explorer, you will
need to change your security settings as described previously.

4. When you view the page, you see a prompt asking for a number below 100. Internet Explorer
typically fills in the text box with “undefined” in the dialog box. Type a number and click OK.
I typed 50, as you can see in the following illustration. (tt is the name of the server on which
this code is running.)

5. Click OK. You see a page like the following:

6. Reload the page in the browser, and this time, when prompted, type a number greater than
100. You receive an alert like this one:

98 parT i Javawhat? The where, why, and how of JavaScript

Aside from the Hypertext Markup Language (HTML) and opening script tags, which you’ve seen in
previous examples, the code works as follows:

■■ The first line within the body’s <SCRIPT> tag establishes a variable, inputNum, and then sets it
equal to the result from the prompt() function:

var inputNum = prompt("Please enter a number below 100:");

■■ The next lines of code use an if statement to examine the value in the inputNum variable. If
the value is greater than 99, an alert is shown:

if (inputNum > 99) {
 alert("That number, " + inputNum + ", is not below 100.");
}

This example needs improvements in many areas, and later examples show how to improve the
code, taking advantage of what you’ve already learned and using some new techniques you learn
later on in this chapter.

Compound conditions
Often, you need to test for more than one condition within the same if statement. Consider the previ-
ous example. Suppose you wanted to have the visitor enter a number between 51 and 99 inclusive.
You could combine those tests within one if statement like this:

if ((inputNum < 51) || (inputNum > 99)) {
 alert("That number, " + inputNum + ", is not between 50 and 100.");
}

note You could also write that if statement without the extra parentheses around each
evaluation on the first line; however, I find that adding them improves readability.

You can see the full code from the earlier example, with a compound if statement shown in bold-
face, in Example 6-1.

 CHAPTER 6 Controlling flow with conditionals and loops 99

EXAMPLE 6-1 A compound if statement

<!doctype html>
<html>
<head>
 <title>An If Example</title>
</head>
<body>
<script type="text/javascript">
var inputNum = prompt("Please enter a number between 50 and 100:");
if ((inputNum < 51) || (inputNum > 99)) {
 alert("That number, " + inputNum + ", is not between 50 and 100.");
}
</script>
<p>This is an example from Chapter 6.</p>
</body>
</html>

The statement in Example 6-1 uses the logical OR operator and reads, “If inputNum is less than 51
or inputNum is greater than 99, do this.”

Consider again the example we’ve been using for much of this chapter. If you enter a number
greater than 99 or less than 51, you receive an alert. But what if the input is not a number at all? What
if you entered the word boo? You wouldn’t receive the alert because the condition being used checks
only whether the variable is above or below specified numbers.

Therefore, the code should check whether the value contained in the variable is a number. You can
accomplish this task with the help of the isNaN() function and by nesting the decision, like this:

if (isNaN(inputNum) || ((inputNum > 99) || (inputNum < 51))) {
 alert("That number, " + inputNum + ", is not between 50 and 100.");
}

The conditional is now evaluated to first check whether the value in the inputNum variable is a
number. If this initial check proves true (the user did not enter a number), no further processing is
done, preventing the rest of the statement from being evaluated. If the user did enter a number,
the isNaN check fails, and the if statement performs the checks for the range of numbers, which are
nested together between parentheses, creating their own conditional set. The result, when run with
the input value of boo, is shown in Figure 6-2.

100 parT i Javawhat? The where, why, and how of JavaScript

FIGURE 6-2 Running the example with the isNaN() function in a nested conditional.

The full code is shown in Example 6-2 (in the ifexample2.html file in the companion content). The
nested condition is shown in boldface.

EXAMPLE 6-2 A nested if statement

<!doctype html>
<html>
<head>
 <title>An If Example</title>

</head>
<body>

<script type="text/javascript">
var inputNum = prompt("Please enter a number between 50 and 100:");

if (isNaN(inputNum) || ((inputNum > 99) || (inputNum < 51))) {
 alert("That number, " + inputNum + ", is not between 50 and 100.");
}

</script>

<p>This is an example.</p>

</body>
</html>

 CHAPTER 6 Controlling flow with conditionals and loops 101

Using else if and else statements

The next problem with the code example used so far is that the alert dialog box text in Figure 6-2
always indicates that a number was entered. That obviously isn’t always the case—I entered the word
boo. What you really need is a way to perform multiple separate conditional checks. How can you do
this? Here’s where else if and else become useful.

Else if
Most modern programming languages have the if/else if/else conditional constructs, but they
differ in how they use those constructs, especially the way they spell or construct the else if
statement. Some languages define it as elsif, all one word (and misspelled). Others define it as
elseif—all one word but spelled correctly. Remembering these different constructs is a chal-
lenge, and this discussion hasn’t even considered the different ways that languages use braces
to define the code to be executed. In JavaScript programming, you use else if—two words,
both spelled correctly.

Using else if and else, you can create multiple levels of conditions, each of which is tested in turn.
The code within the first matching condition is executed. If nothing matches, the code inside the else
condition, if present, is executed. Example 6-3 (ifexample3.html in the companion content) shows
code that first checks to see whether the inputNum variable contains a number. If the value is indeed
a number, the else if statement performs the checks to make sure the input value is within the appro-
priate range. The code calls an appropriate alert() function based on the matching condition. If you’ve
entered a number, the else condition fires and displays an alert showing the number.

102 parT i Javawhat? The where, why, and how of JavaScript

EXAMPLE 6-3 Using an else if and else condition

<!doctype html>
<html>
<head>
 <title>An If Example</title>

</head>
<body>

<script type="text/javascript">
var inputNum = prompt("Please enter a number between 50 and 100:");

if (isNaN(inputNum)) {
 alert(inputNum + " doesn't appear to be a number.");
}
else if ((inputNum > 99) || (inputNum < 51)) {
 alert("That number, " + inputNum + ", is not between 50 and 100.");
}
else {
 alert("You entered a number: " + inputNum);
}

</script>

<p>This is an example from Chapter 6.</p>

</body>
</html>

In the same way that you can use else if and else to test several conditions, you can (sometimes
even must) use multiple levels of conditions. For example, you can test for a certain condition, and
when successful, execute additional conditions. Here’s an example that takes advantage of the
match() function and a regular expression. For more information about regular expressions, see
Chapter 4, “Working with variables and data types.”

Using multiple levels of conditionals and a regular expression

1. Open an editor and—if you followed the earlier procedure in this chapter—open the file you
updated, ifexample.htm (in the companion content).

The file should have the following code. (If you didn’t follow the earlier example, just create an
empty file, paste in the following code, and go on to the next step.)

<!doctype html>
<html>
<head>
 <title>An If Example</title>
</head>

 CHAPTER 6 Controlling flow with conditionals and loops 103

<body>

<script type="text/javascript">
var inputNum = prompt("Please enter a number below 100:");

if (inputNum > 99) {
 alert("That number, " + inputNum + ", is not below 100.");
}

</script>

<p>This is an example from Chapter 6.</p>

</body>
</html>

2. Save the file with a different file name, such as myexample.html.

3. In the newly saved file, enter the following code shown in boldface. Note that I’ve included the
changes from the earlier example in boldface:

<!doctype html>
<html>
<head>
 <title>A Multi-Level Example</title>

</head>
<body>
<script type="text/javascript">
var inputNum = prompt("Please enter a number between 50 and 100:");
if (isNaN(inputNum)) {
 if (inputNum.match(/one|two|three|four|five|six|seven|eight|nine|ten/)) {
 alert("While this is a number, it's not really a number to me.");
 } else {
 alert(inputNum + " doesn't appear to be a number.");
 }
} else if ((inputNum > 99) || (inputNum < 51)) {
 alert("That number, " + inputNum + ", is not between 50 and 100.");
}

</script>

<p>This is an example from Chapter 6.</p>

</body>

</html>

104 parT i Javawhat? The where, why, and how of JavaScript

4. Test all these conditions. Start by visiting the page in a web browser. You are prompted to
enter a number. For this first test, type the word four, as follows:

Click OK. The first if condition matches, and then the nested if examines the input. The input
matches the string “four”, resulting in this dialog box:

5. Click OK to close the dialog box. Reload the page. Now type the word pizza, as shown here:

6. Click OK. As with the previous load of the page, the first condition (isNaN()) matches.
However, because the inner if test doesn’t match the phrase pizza, the else condition of the
nested if will match, resulting in this dialog box:

7. Click OK to close the dialog box, and once again, reload the page. This time, type the numeral
4 into the text box, as shown here:

 CHAPTER 6 Controlling flow with conditionals and loops 105

8. Click OK. Now the first if condition fails because the number 4 really is a number. Therefore,
the else if condition is evaluated. Because the number 4 is less than 51 and not greater than
99, the else if condition is a match and displays this alert:

9. Good testing practices dictate that you also test a number above 99. Feel free to do so. When
you’re ready, just click OK to close the dialog box and reload the page once more. This time,
type the number 64, like this:

10. When you click OK, you won’t receive any alerts because the number 64 is between 50 and
100 and doesn’t match any of the test conditions.

I explained the code you’re reviewing in this procedure and in previous procedures, but I did not
address the regular expression contained in the nested if. That statement was:

if (inputNum.match(/one|two|three|four|five|six|seven|eight|nine|ten/) {

The regular expression is used with the match() function (or property) of the inputNum variable.
The match() function accepts a regular expression as its argument. In this case, the argument is this:

/one|two|three|four|five|six|seven|eight|nine|ten/

The expression is delineated with two forward slashes (/), one on each end (like quote characters
delineate a string). After that, the regular expression looks for any one of the strings one, two, three,
four, five, six, seven, eight, nine, or ten. The pipe character (|) between each string indicates a logical
OR, meaning that this regular expression will match any one of those strings but not more than one.

Interestingly, although this regular expression is very simple, it’s also very flawed. For this regular
expression to be better, it would need to mark, or anchor, the position of the matching strings. As the
code is written now, the string sixty would match just as the word six matches now.

My intention here wasn’t to show a perfect regular expression, but rather to expose you to one so
that when you need to work with them, you don’t run away screaming!

106 parT i Javawhat? The where, why, and how of JavaScript

Working with ternary conditionals

Another style of conditional construct is called a ternary conditional. This type of conditional uses
the question mark (?) operator to create a compact if/else construct. The basic structure of a ternary
conditional expression is quite simple:

(name == "steve") ? "Hello Steve" : "Hello Unknown Person";

This statement might read as follows, “If name is steve, then “Hello Steve,” else “Hello Unknown
Person.”

You might use a ternary expression in a statement like the following (this code is in the ternary.txt
file in the companion content):

var greeting = (name == "steve") ? "Hello Steve" : "Hello Unknown Person";
alert(greeting);

This code sets the variable greeting to the value from the outcome of the ternary test. If the value
of the name variable is “steve”, the greeting variable gets the string value “Hello Steve”; otherwise, the
greeting variable gets the string value “Hello Unknown Person”. Here’s that same code in the tradi-
tional if/else form:

if (name == "steve") {
 var greeting = "Hello Steve";
}
else {
 var greeting = "Hello Unknown Person";
}

alert(greeting);

The ternary construct can sometimes be confusing if you’ve never seen it before. There’s no shame
in sticking to the traditional if/else syntax if you think it will help the readability of your programs in
the future—especially if the person reading them doesn’t know about the ternary construction!

Testing with switch

The switch statement is an easy and efficient way to test a variable for several values and then execute
code based on whichever case matches. Although you can accomplish the task by using if/else if
statements, doing so can be cumbersome; the switch statement is more useful for this situation.

Consider the example of a website that needs to execute certain code based on the language that
the user chooses. For this exercise, assume that the visitor has chosen his or her language through a
form. (Chapter 9, “The Browser Object Model,” examines a way to detect the default language of the
visitor’s browser.)

 CHAPTER 6 Controlling flow with conditionals and loops 107

If this site needed to execute code for several languages, we could use a giant set of if/else if/else
conditionals. Assuming a variable called languageChoice with the value of the chosen language, the
code might look like this:

if (languageChoice == "en") {
 // Language is English, execute code for English.
}
else if (languageChoice == "de") {
 // Language is German, execute code for German.
}
else if (languageChoice == "pt") {
 // Language is Portuguese, execute code for Portuguese.
}
else {
 // Language not chosen, use Swedish.
}

This code works OK when only a few languages are selected, but imagine this scenario with 20
or more languages selected. Then add more code to be executed for each condition, and it quickly
becomes a maze. Here’s the same code within a switch statement:

switch(languageChoice) {
 case "en":
 // Language is English, execute code for English.
 break;
 case "de":
 // Language is German, execute code for German.
 break;
 case "pt":
 // Language is Portuguese, execute code for Portuguese.
 break;
 default:
 // Language not chosen, use Swedish.
}
// Back to code outside the switch statement

The switch statement looks for each language case and then executes code for that case. The
break statement indicates the end of the code that executes when a matching case is found. The
break statement causes the code execution to break out of the switch statement entirely and continue
executing after the closing brace of the switch statement.

For example, if the variable languageChoice was de and the break statement was missing, the code
for German would be executed, but the switch statement would continue executing the code for
the subsequent languages until it encountered a break statement or reached the end of the switch
statement.

You almost always use the break statement with each case in a switch statement. However, part of
the elegance of the switch statement is apparent when you have multiple cases that should execute
the same code. Consider an example where a visitor chooses which country or region he or she is
from. On such a site, visitors from the United States, Australia, and Great Britain would probably want
their page to be displayed in English, even though people in these three countries spell (and pro-
nounce) many words differently. Here’s an example switch statement for this scenario:

108 parT i Javawhat? The where, why, and how of JavaScript

switch(countryChoice) {
 case "US":
 case "Australia":
 case "Great Britain":
 // Language is English, execute code for English
 break;
 case "Germany":
 // Language is German, execute code for German.
 break;
 case "Portugal":
 // Language is Portuguese, execute code for Portuguese.
 break;
 default:
 // Locale not chosen, use Swedish.
}
// Back to code outside the loop

note As my friends from Montreal would point out and as I would recommend, visitors
from any country or region should be able to choose another language that the site sup-
ports, such as French. Ignore that feature for this example, but take it into account when
designing your site.

If the visitor chooses Australia as her country, the case for Australia will match, thus executing the
code for English. Thanks to the break statement, JavaScript then breaks out of the switch statement
and executes the first line of code following the switch statement.

Looping with while

The while statement creates a loop in which code is executed as long as some condition is true. This
section examines the while statement and the related do...while statement.

The while statement
A while loop executes the code contained within its braces until a condition is met. Here’s an example:

var count = 0;
while (count < 10) {
 // Do something in here.
 // Multiple lines are fine.
 // Don't forget to increment the counter:
 count++;
}

 CHAPTER 6 Controlling flow with conditionals and loops 109

Always keep in mind two important aspects of while loops, listed here and discussed in turn:

■■ The code contained within a while statement might never execute, depending on the starting
value of the variable or condition being tested.

■■ The condition being tested by the while statement must be changed within the loop.

Making sure the code executes at least once
In the preceding code example, the variable count is initially set to the number 0. The while statement
then runs as follows: the evaluation of the while statement examines the value of the count variable to
see whether it is less than 10. Because it is, the code within the braces executes. (However, if the value
of the count variable was not less than 10, the code within the while statement’s braces would never
execute—not even once.)

In JavaScript, the do...while loop executes code once, no matter what the initial condition is. The
do...while loop is discussed a little later in this chapter.

Changing the condition
As previously stated, the evaluation of the while statement in the example examines the variable to
see whether it’s less than 10. If count is less than 10, the code within the while loop executes.

One of the lines of code within the while loop increments the count variable using the ++ unary
operator, as follows:

count++;

When the code in the while statement finishes executing, the evaluation repeats. Without the code
to increment the count variable, count would always be less than 10, so you would have an endless
loop on your hands—not what you want.

Tip When you use a generic counter variable, as I did in the example, where you increment
that variable is not important as long as you do it within the while statement’s braces or
within the while statement test. Here’s an example: while (i++ < 10). See Chapter 5 for more
information about the postfix operator.

The moral of this story is to make sure that you increment or change whatever condition that you
evaluate in the while statement.

110 parT i Javawhat? The where, why, and how of JavaScript

The do...while statement
Unlike the while statement, the do...while statement executes the code contained in its braces at least
once. The while statement might read like this: “While the condition is met, run this code.” However,
the do...while statement might read like this: “Do (or run) this code while the condition is met.”
Consider the following code:

<!doctype html>
<html>
<head>
 <title>Do While</title>
</head>
<body>
<script type="text/javascript">
var count = 0;
do {
 alert("Count is " + count);
 count++;
}
while (count < 3);

</script>
</body>
</html>

When this code executes, three dialog boxes appear. During the first run, the count variable holds
a value of 0 because the variable is still set to the initial value, and the dialog box indicates that, as
shown in Figure 6-3.

FIGURE 6-3 The count is zero during the first execution.

After running once, the count variable gets incremented. When the while statement is evaluated,
count is still less than 3, so the code is executed again, resulting in the dialog box shown in Figure 6-4.

FIGURE 6-4 When running, the code increments the counter and shows the result of the next execution.

 CHAPTER 6 Controlling flow with conditionals and loops 111

The same process occurs again. The count variable is incremented, and the while condition is
evaluated. The value of count is still less than 3, so the code within the braces runs again, showing
another dialog box that looks like Figure 6-5.

FIGURE 6-5 The count variable after another run.

Experiment with while and do...while statements until you’re comfortable with the differences
between them.

Using for loops

A for loop is frequently used in the same way a while loop is, namely, to execute code a certain num-
ber of times. The for loop has two cousins in JavaScript: the for...in loop and the for each...in loop. This
section examines both loop types.

The for loop
You use a for loop to create a loop in which the conditions are initialized, evaluated, and changed in a
compact form. Here’s an example:

for (var count = 0; count < 10; count++) {
 // Execute code here
}

A for statement has three clauses in parentheses. The first clause sets the initial expression, as
shown in the preceding example and also here:

var count = 0;

The next clause of a for statement specifies the test expression, represented by the following code
from the example:

count < 10;

The final expression is usually used to increment the counter used for the test. In the code exam-
ple, this expression is the final clause in the parentheses:

count++

112 parT i Javawhat? The where, why, and how of JavaScript

note The last expression in a for loop construct does not require a semicolon.

Here’s an example that you can try. It uses a for loop to iterate over an array.

Using a for loop with an array

1. Using Microsoft Visual Studio, Eclipse, or another editor, edit the forloop.html file in the
Chapter06 sample files folder in the companion content.

2. Within the page, replace the TODO comment with the following boldface code (you can find
the code in the forloop.txt file in the companion content):

<!doctype html>
<html>
<head>
 <title>For Loop Example</title>
</head>
<body>
<script type="text/javascript">
var myArray = ["Vega","Deneb","Altair"];
var arrayLength = myArray.length;
for (var count = 0; count < arrayLength; count++) {
 alert(myArray[count]);
}
</script>
</body>
</html>

3. Save the page, and view it in a web browser. You receive three successive alert() dialog boxes:

 CHAPTER 6 Controlling flow with conditionals and loops 113

As you can see from the dialog boxes, the code iterates through each of the values within the
myArray array. I’d like to highlight some of the code from this example. Recall from Chapter 4, where
you learned how to create an array, that arrays in JavaScript are indexed by integer values beginning
at 0. (This knowledge will come in handy in a little while.) Here’s the pertinent line from the preceding
code example:

var myArray = ["Vega","Deneb","Altair"];

The code creates a variable called arrayLength and sets it to the length of the array. Obtaining the
length of the myArray array illustrates the use of the array object property named length. (I explain
objects in more depth in Chapter 8, "Objects in JavaScript.") Obtaining the length within a separate
variable (arrayLength in this case, as shown in the following code) rather than by using the length
property within the for loop improves performance.

var arrayLength = myArray.length;

The for loop first creates and initializes the count variable and next checks whether the count vari-
able is less than the length of the myArray array as set in the arrayLength variable. Finally, it incre-
ments the value of the count variable after the body of the loop is executed. The code within the body
of the for loop shows an alert, using the value of the count variable to iterate through the indexes of
the myArray array. Here’s the code:

for (var count = 0; count < arrayLength; count++) {
 alert(myArray[count]);
}

The for...in loop
The for...in loop iterates through the properties of an object, returning the names of the properties
themselves. Here’s an example:

for (var myProp in myObject) {
 alert(myProp + " = " + myObject[myProp]);
}

114 parT i Javawhat? The where, why, and how of JavaScript

In this code, the variable myProp gets set to a new property of myObject each time the loop is
executed. Here’s a more complete example that you can try.

Using a for...in loop

1. Using Microsoft Visual Studio, Eclipse, or another editor, edit the forinloop.html file in the
Chapter06 sample files folder, which you can find in the companion content.

2. Within the page, replace the TODO comments with the following code shown in boldface (the
code is in the forinloop.txt file in the companion content):

<!doctype html>
<html>
<head>
 <title>For In Loop Example</title>
</head>
<body>
<script type="text/javascript">
 var star = new Object;

 star.name = "Polaris";
 star.type = "Double/Cepheid";
 star.constellation = "Ursa Minor";

 for (var starProp in star) {
 alert(starProp + " = " + star[starProp]);
 }
</script>

</body>
</html>

3. Save the file, and view it in a web browser. You receive three dialog boxes:

 CHAPTER 6 Controlling flow with conditionals and loops 115

As you can see from the code in the example, the variable starProp receives the name of the prop-
erty, whereas using starProp as the index of the star object yields the value of that property.

Tip You sometimes see for...in loops used to iterate through an array in much the same
way you saw them used in the previous section. However, using for...in to iterate through
an array can have mixed results. One of the more visible problems of this approach is that a
for...in loop doesn’t return the properties in any particular order. This behavior can be trou-
blesome, especially when you want to write text to a webpage with JavaScript! The point
here is that when you want to loop through a simple array, use the for loop rather than the
for...in loop.

The for each...in loop
A newer construct available in JavaScript is the for each...in loop. Because it's new, this construct is not
yet supported in all browsers.

Whereas the for...in construct returns the name of the property, the for each...in loop returns the
value of the property. The syntax is essentially the same, but with the addition of the word each:

for each (var myValue in myObject) {
 alert(myValue " is in the object.");
}

Replacing the for...in loop from the earlier example with a for each...in loop results in the following
code:

<!doctype html>
<html>
<head>
 <title>For Each In Loop Example</title>
</head>
<body>
<script type="text/javascript">

 var star = new Object;

 star.name = "Polaris";
 star.type = "Double/Cepheid";
 star.constellation = "Ursa Minor";

116 parT i Javawhat? The where, why, and how of JavaScript

 for each (var starValue in star) {
 alert(starValue + " is in the star object.");
 }
</script>

</body>
</html>

When you view the page in Internet Explorer, you see an error screen (or maybe just a blank
screen). However, viewing the page in Firefox 3.0 or greater (or Chrome) reveals the correct behavior.

You might want to refrain from using the for each...in loop construction because it is not supported
in (still widely used) versions of Internet Explorer.

Validating forms with conditionals

Earlier in this chapter, you used the prompt() function to obtain input from the user. Using the
prompt() function is somewhat uncommon, and it’s fast becoming even less common because
Internet Explorer 7 blocks it. This section previews using web forms with JavaScript. Web forms can be
used (things like validation, changing the form, and so on) by JavaScript without having to be posted
back to the server. All of Chapter 15, “Using JavaScript with web forms,” is devoted to this subject.

Using an if else... if else conditional to validate input is a common task, so let’s do that.

Validating input with a conditional statement

1. Open Microsoft Visual Studio, Eclipse, or another editor and create a new webpage. Name this
one form1example.htm.

2. Within the page, enter the following markup and add the code shown in boldface, replacing
the TODO comment:

<!doctype html>
<html>
<head>

 <title>Just Your Basic Form</title>
 <script type="text/javascript">
 function alertName() {
 var name = document.forms[0].nametext.value;
 if (name == "steve") {
 alert("Hello Steve. Welcome to Machine");
 }
 else if (name == "tim") {
 alert("Hello Tim.");
 }

 CHAPTER 6 Controlling flow with conditionals and loops 117

 else {
 alert("Hello " + name);
 }
 return true;
 } //end function

 </script>
</head>
<body>
<form id="myform" action="#" onsubmit="return alertName();">
<p>Username: <input id="nametext" name="username" type="text" /></p>
<p><input type="submit" /></p>
</form>
</body>
</html>

3. Save the page, and view it in a web browser. You should see a page like this:

4. In the form, type the name steve, being sure to use lowercase letters. Click Submit Query, and
you receive a dialog box like this:

5. Click OK, and now type in the name tim, again without the quotation marks and in lowercase
letters. When you click Submit Query, you receive a dialog box like this:

118 parT i Javawhat? The where, why, and how of JavaScript

6. Click OK to close the dialog box. Type your name (or an entirely different name if your name
happens to be one of those already tested), and click Submit Query. You receive this dialog
box:

7. Click OK to close this dialog box.

You created a basic web form, accessed that form using JavaScript, and used a conditional to
take an action based on user input. Don’t worry if everything used in this example doesn’t quite
make sense yet. The main goal of the example was just to give some context for the conditionals you
learned about in this chapter.

Chapter 7, “Working with functions,” examines using functions within JavaScript. Chapter 15 shows
additional form validation with JavaScript.

Exercises

1. Use a prompt() function to collect a person’s name. Use a switch statement to execute a dialog
box displaying the phrase “Welcome <the entered name>“ if the name entered is yours, “Go
Away” if the name entered is Steve, and “Please Come Back Later <the entered name>“ for all
other cases.

2. Use a prompt() function to collect the current temperature as input by the visitor. If the tem-
perature entered is above 100, tell the visitor to cool down. If the temperature is below 20, tell
the visitor to warm up.

3. Use a ternary statement to accomplish the same task as in Exercise 2.

4. Use a for loop to count from 1 to 100. When the number is at 99, display an alert dialog box.

5. Use a while loop to accomplish the same task described in Exercise 4.

 119

C H A P T E R 7

Working with functions

After reading this chapter, you’ll be able to

■■ Understand the purpose of functions in JavaScript.

■■ Define your own functions.

■■ Call functions and receive data back from them.

■■ Understand some of the built-in functions in JavaScript.

What’s in a function?

A JavaScript function is a collection of statements, either named or unnamed (anonymous), that can
be called from elsewhere within a JavaScript program. Functions can accept arguments, which are
input values passed into the function. Within a function, those arguments passed into the function
can be acted upon and the results returned to the caller of the function via a return value.

Functions are perfect when you have something that needs to happen multiple times within a pro-
gram. Rather than defining the same code multiple times, you can use a function (which is really just
like a mini-program inside a program) to perform that action. Even if you have bits of code that are
very similar—but not identical—throughout the program, you might be able to abstract them into a
single function.

A good example of abstracting similar code is using a function to verify that required form fields
have been filled in. You could write JavaScript code to verify each individual named field in the form,
or you could use a function.

You’ve already seen functions at work through examples in earlier chapters. A function is defined
with the keyword function, usually followed by the name of the function, and then by parentheses
that contain optional parameters to be used. Use braces to surround the statements to be executed as
part of the function:

function functionName() {
 // Statements go here;
}

120 parT i Javawhat? The Where, Why, and how of JavaScript

Tip It’s important to note that when a function is defined (you can see this in the preced-
ing basic function definition), the code isn’t actually executed until the function is invoked,
or called. You see how to call a function later in this chapter.

Function parameters
Place parameters passed to a function within the parentheses of the function definition. Here’s a brief
example of using function arguments:

function myFunction(parameter1, parameter2, ..., parameterN) {

}

Here's an example with two parameters:

function myFunction(parameter1, parameter2) {
 // Do something
}

Calling, or invoking, the function is as simple as:

myFunction(val1,val2);

One of the differences between JavaScript (the ECMA-262 specification) and other languages is
that in JavaScript you don’t need to specify the number of parameters or arguments being passed
into a function, and the number of arguments being passed in does not need to match those that are
defined in the function definition. When invoked, the function is given an array object named argu-
ments. The arguments object holds the arguments sent into the function, which can be helpful when
you don’t know the number of arguments being sent in. Here’s an example of how this is done:

function myFunction() {
 var firstArg = arguments[0];
 var secondArg = arguments[1];
}

Better still, you could get the length of the arguments object and loop through each argument, as
follows (also in the functionbasics.txt file in the companion content):

function myFunction() {
 var argLength = arguments.length;
 for (var i = 0; i < argLength; i++) {
 // Do something with each argument (i)
 }
}

 CHAPTER 7 Working with functions 121

Here’s a more complete example showing the results from a simple use of the arguments object:

<!doctype html>
<html>
<head>
 <title>Arguments Array</title>
</head>
<body>
<script type="text/javascript">
function myFunction() {
 var firstArg = arguments[0];
 var secondArg = arguments[1];
 alert("firstArg is: " + firstArg);
 alert("secondArg is: " + secondArg);
}
myFunction("hello","world");
</script>
</body>
</html>

When the code executes, it displays two alerts, as depicted in Figures 7-1 and 7-2.

FIGURE 7-1 Using the arguments object within a function to access the first argument.

FIGURE 7-2 Using the arguments object within a function to access the second argument.

Using the arguments object and its length property as in the previous example, you can extrapo-
late to any number of arguments, not only to the two shown in this example.

Variable scoping revisited
Function parameters are variable names and shouldn’t be named the same as the variables that are
used to invoke the functions. I purposefully use “shouldn’t” rather than “can't,” because you could
use the same name for the variables in the function and the variables in the function invocation, but
doing that could create some confusing code and confusing scoping, as you’ll learn.

122 parT i Javawhat? The Where, Why, and how of JavaScript

Chapter 4, “Working with variables and data types,” contains a section about variable scoping,
including an exercise dealing with scoping inside and outside functions. The page from one of the
variable scoping examples in Chapter 4 looks like this:

<!doctype html>
<html>
<head>
 <title>Scoping Example</title>
 <script type="text/javascript">
 var aNewVariable = "is global.";
 function doSomething(incomingBits) {
 alert("Global variable within the function: " + aNewVariable);
 alert("Local variable within the function: " + incomingBits);
 }
 </script>
</head>
<body>
<script type="text/javascript">
 doSomething("is a local variable");
 alert("Global var outside the function: " + aNewVariable);
 alert("Local var outside the function: " + incomingBits);
</script>
</body>
</html>

This example shows how you can globally and locally declare and scope variables from inside and
outside a function. However, the example keeps the variables logically separate, in that it doesn’t use
the same variable name, and then changes the variable’s value. Here’s an example in which using the
same variable name might cause confusion. I find that the code I wrote years ago is confusing enough
without introducing weird scoping issues, so try to avoid code like this:

function addNumbers() {
 firstNum = 4;
 secondNum = 8;
 result = firstNum + secondNum;
 return result;
}
result = 0;
sum = addNumbers();

You might already have spotted the problem with this code. The var keyword is missing every-
where. Even though the code explicitly initializes the result variable to 0 outside the function, the vari-
able gets modified by the call to the addNumbers() function. This in turn modifies the result variable
to 12, the result of adding 4 and 8 inside the function.

If you added an alert to display the result variable right after the initialization of the result variable,
the alert would show 0. And if you added another alert to display the result variable after the call to
the addNumbers() function, the result would show 12. I leave it to you in an exercise later to add these
alerts in the right places.

 CHAPTER 7 Working with functions 123

The bottom line is that your life is easier when you use different names for variables inside and
outside functions and always use the var keyword to initialize variables. Depending on the code
contained in the function, the function might or might not have a return value. That return value is
passed back to the caller, as you see in the next section.

return values
When a function finishes executing its code, it can return a value to the caller by using the return
keyword. Take a look at Example 7-1 (in the listing7-1.html file in the companion content).

EXAMPLE 7-1 A simple return value example

function multiplyNums(x) {
 return x * 2;
}
var theNumber = 10;
var result = multiplyNums(theNumber);
alert(result);

Example 7-1 creates a function called multiplyNums with an intended input value, which will be
assigned to the variable x. The function performs one task: it returns its argument multiplied by 2, as
follows:

function multiplyNums(x) {
 return x * 2;
}

The code then creates a variable called theNumber, as follows:

var theNumber = 10;

Next, the code creates another variable called result. This variable holds the result of the call to the
multiplyNums function. The multiplyNums function uses the variable theNumber as an argument:

var result = multiplyNums(theNumber);

When run, the code results in a dialog box, like the one shown in Figure 7-3.

FIGURE 7-3 This alert shows the return value from the function call.

124 parT i Javawhat? The Where, Why, and how of JavaScript

You can place the return value anywhere within a function, not just at the end. Using a return
within a conditional or after a loop is common, as shown here:

function myFunction(x) {
 if (x == 1) {
 return true;
 } else {
 return false;
 }
}

However, be careful where you place the return statement, because when the function execution
gets to the return statement, the function returns immediately and won’t execute any code after that.
For example, code such as this (you can find this in the morereturnexamples.txt file in the companion
content) probably won’t do what you want:

function myFunction() {
 var count = 0;
 var firstNum = 48;
 return;
 var secondNum = 109;
}

This code never reaches the initialization of the variable secondNum.

More on calling functions
You nearly always invoke a function with some arguments or with empty parentheses, like this:

var result = orderFruit();

If arguments were required for that function, the function might look like this:

var result = orderFruit(type,quantity);

Omitting the parentheses to call a function can result in actions that are entirely different from
what you want. Calling a function without parentheses results in the function name being returned,
rather than whatever the function was supposed to return. Just as important, the function isn’t actu-
ally executed.

Here’s an example. Example 7-2 (which you can find in the listing7-2.html file in the companion
content) shows some basic JavaScript code.

EXAMPLE 7-2 Invoking a function

<!doctype html>
<html>
<head>
 <title>Order Fruit</title>

 CHAPTER 7 Working with functions 125

 <script type="text/javascript">
 function orderFruit() {
 var total = 0;
 // Call another function to place order
 return total;
 }
 </script>
</head>
<body>
<script type="text/javascript">
 var result = orderFruit();
 alert("The total is " + result);
</script>
</body>
</html>

When executed, this code invokes the orderFruit() function. The orderFruit() function invokes
another function (not shown) to place an order. The total is then calculated and sent back to the
caller. As written, the code works fine and results in a dialog box like that shown in Figure 7-4.

FIGURE 7-4 Invoking the orderFruit() function with parentheses yields the results you’d expect.

A slight modification to the code—specifically, changing the function call to remove the parentheses—
changes the entire result:

var result = orderFruit;

The result is shown in Figure 7-5.

FIGURE 7-5 Calling orderFruit without parentheses probably doesn’t turn out the way you want.

Regardless of whether a function returns a value or accepts any arguments, calling the function by
using parentheses to execute its code is important.

126 parT i Javawhat? The Where, Why, and how of JavaScript

Anonymous/unnamed functions (function literals)
The functions you’ve seen so far are formally defined. However, JavaScript doesn’t require functions
to be formally defined in this way. For example, with a function literal—also known as an unnamed, or
anonymous, function—the function is defined and tied to a variable, like this:

var divNums = function(firstNum,secondNum) { return firstNum / secondNum; };

You can easily test this functionality with the javascript pseudo-protocol. Type the following code
in the address bar of your browser:

javascript:var divNums = function(firstNum,secondNum) { return firstNum / secondNum; };
alert(divNums(8,2));

Anonymous functions are frequently used in object-oriented JavaScript and as handlers for events.
You see an example of this usage in Chapter 8, “Objects in JavaScript,” and in later chapters.

Closures
In JavaScript, nested functions have access to the outer function’s variables. Closures refer to the
existence of variables outside a function’s normal execution context. Closures are frequently created
by accident and can cause memory leak problems in web browsers if they're not handled properly.
However, closures are one of the more powerful (and advanced) areas of JavaScript.

Here’s an example of a closure:

function myFunction() {
 var myNum = 10;
 function showNum() {
 alert(myNum);
 }
 return showNum;
}
var callFunc = myFunction();
callFunc();

In this example, the function showNum has access to the variable myNum created in the outer
(myFunction) function. The variable callFunc is created in the global context and contains both the
variable myNum and the function showNum().

When the callFunc variable is created, it immediately has access to the myNum variable.

Closures can be used to emulate private methods inside objects, and they have other uses, such as
in event handlers. Closures are one of the more powerful and advanced concepts in JavaScript and as
such aren’t appropriate to discuss at length in an introductory book. You can find more information
about closures at http://msdn.microsoft.com/en-us/scriptjunkie/ff696765.aspx and elsewhere on the
Internet.

http://msdn.microsoft.com/en-us/scriptjunkie/ff696765.aspx

 CHAPTER 7 Working with functions 127

Methods

The easiest way to think about methods is that they are functions defined as part of an object. That’s
an oversimplification, but it suffices for now. You access a method of an object by using the dot
operator (“.”). Built-in objects, such as the Math, Date, and String objects, all have methods that you’ve
seen (or will soon see) in this book. Functions such as the alert() function are actually just methods of
the window object, and could be written as window. alert() rather than just alert(). Chapter 8 covers
objects and methods in greater detail.

note In much of the book, I use the terms method and function interchangeably. I’ll con-
tinue to do so just so that you better understand that the line between these two is blurry
for most uses. When a function is used in an object-oriented manner, using the term
method is often clearer. When not used directly in an object-oriented manner—for exam-
ple, the way you use the alert() function—using the term function is acceptable.

Defining your own functions vs. using built-in functions
As you’ve seen throughout the book, JavaScript has numerous built-in functions, or methods.
In addition to using these built-in functions, you will frequently find yourself defining your own
functions. Except for trivial scripts, most scripts you write will involve your own functions.

In some cases, however, you might define a function and then later discover that JavaScript
already has an equally good built-in function for that same purpose. If you find that a
 JavaScript built-in function performs the same task as your own function, using the JavaScript
function is usually a better idea.

A look at dialog functions

By now, you know all about the alert() function in JavaScript because you’ve seen many examples of
it in previous chapters. You’ve also learned that the alert() function is just a method of the window
object. This section looks at the everyday use of the alert() function in JavaScript, and two related
functions of the window object.

More info The window object is important enough to get some additional attention in
Chapter 9, “The Browser Object Model.” That chapter discusses numerous other methods of
the window object.

128 parT i Javawhat? The Where, Why, and how of JavaScript

Although the window object has several methods, for now I’d just like to highlight these three
(which I call functions): alert(), confirm(), and prompt(). Because you’ve already seen too many alert()
dialog boxes in the book, I won’t include another one here (thank me later). Although the prompt()
function is blocked by default beginning with Internet Explorer 7, the confirm() function is still avail-
able in Internet Explorer.

The confirm() function displays a modal dialog box with two buttons, OK and Cancel, like the one
shown in Figure 7-6. (A modal dialog box prevents other activity or clicks in the browser until the visi-
tor closes the dialog box—in this case, by clicking OK or Cancel.)

FIGURE 7-6 The confirm() JavaScript function provides a dialog box for confirming user actions.

When you click OK, the confirm() function returns true. As you might guess, when you click Cancel,
the confirm() function returns false.

Like alert() and prompt(), the confirm() function creates a modal dialog box on most platforms. This
can get annoying if these functions are overused or used in the wrong place. But used properly, to
provide important feedback and obtain vital information, these functions can be quite useful.

Tip Don’t use the confirm() function in place of a web form to obtain user input. The web
form is much better for navigation and will keep your visitors happier.

The next exercise walks you through using the confirm() function to obtain input and make a deci-
sion based on that input.

Obtaining input with confirm()

1. Using Microsoft Visual Studio, Eclipse, or another editor, edit the file confirm.html in the
Chapter07 sample files folder in the companion content.

2. In the page, replace the TO DO comments with the following code shown in boldface (you can
find this code in the confirm.txt file in the companion content):

<!doctype html>
<html>
<head>
 <title>Confirming Something</title>

 <script type="text/javascript">

 CHAPTER 7 Working with functions 129

 function processConfirm(answer) {
 var result = "";
 if (answer) {
 result = "Excellent. We'll play a nice game of chess.";
 } else {
 result = "Maybe later then.";
 }
 return result;
 }
 </script>
</head>
<body>
<script type="text/javascript">
var confirmAnswer = confirm("Shall we play a game?");
var theAnswer = processConfirm(confirmAnswer);
alert(theAnswer);
</script>
</body>
</html>

3. Save the page, and view it in a web browser. You are presented with a dialog box that looks
like this:

4. Click OK. You see an alert() dialog box:

5. Click OK, and then reload the page.

130 parT i Javawhat? The Where, Why, and how of JavaScript

6. You are again shown the original dialog box from the confirm() function, which asks if you’d
like to play a game. This time, click Cancel. You are presented with a different alert() dialog
box:

7. Click OK to close the dialog box.

The code has two major areas to examine, one within the <HEAD> portion and the other within the
<BODY> portion. The function processConfirm(answer) is created in the <HEAD> portion of the page:

function processConfirm(answer) {
 var result = "";
 if (answer) {
 result = "Excellent. We'll play a nice game of chess";
 } else {
 result = "Maybe later then.";
 }
 return result;
}

This function evaluates the value contained in the argument held in the variable answer. If the
value in the answer variable evaluates to true, as it does when the visitor clicks OK, the function
creates the variable result and assigns to result a string value of “Excellent. We’ll play a nice game
of chess.” But, if the value in the answer variable evaluates to false, as it does when the visitor clicks
Cancel, the function still creates the result variable but now assigns it the value of “Maybe later
then.” Regardless of what’s held in the answer variable, processConfirm returns the result variable
to the caller by using the return statement within the function. You could write this function more
succinctly as:

function processConfirm(answer) {
 if (answer) {
 return "Excellent. We'll play a nice game of chess.";
 } else {
 return "Maybe later then.";
 }
}

And even more succinctly as:

function processConfirm(answer) {
 var result;
 (answer) ? result = "Excellent. We'll play a nice game of chess." : result = "Maybe
later then.";
 return result;
}

 CHAPTER 7 Working with functions 131

note In all likelihood, I would use the last function example to perform this task. However,
I’ve found many programmers who aren’t comfortable with the ternary logic of the last
example. So for readability, I’d choose the more explicit of the two:

function processConfirm(answer) {
 if (answer) {
 return "Excellent. We'll play a nice game of chess.";
 } else {
 return "Maybe later then.";
 }
}

The JavaScript contained within the <BODY> section of the code creates the confirmation dialog
box, calls the processConfirm() function, and displays the result:

var confirmAnswer = confirm("Shall we play a game?");
var theAnswer = processConfirm(confirmAnswer);
alert(theAnswer);

Like the alert() function, the confirm() function accepts a single argument, which is the message
to be displayed in the dialog box. Although not necessary with the alert() function, with the confirm()
function, phrasing your prompt in the form of a question or other statement that gives the visitor a
choice is best. If the user really doesn’t have a choice, use the alert() function instead. An even more
succinct version combines all three lines, like this:

alert(processConfirm(confirm("Shall we play a game?")));

Exercises

1. Define a function that takes one numeric argument, increments that argument, and then
returns it to the caller. Call the function from within the <BODY> section of a page, and dis-
play the result on the screen.

2. Define a function that accepts two numeric parameters. If the value of the first parameter is
greater than the second, show an alert to the visitor. If the value of the first parameter is less
than or equal to the second, return the sum of both parameters.

3. Add appropriate alert() functions to the following code so that you can see the value in the
result variable both before and after the function call:

function addNumbers() {
 firstNum = 4;
 secondNum = 8;
 result = firstNum + secondNum;
 return result;
}
result = 0;
result = addNumbers();

132 parT i Javawhat? The Where, Why, and how of JavaScript

4. Create an array with seven string values, initialized to the names of the following stars: Polaris,
Aldebaran, Deneb, Vega, Altair, Dubhe, and Regulus. Create an array with seven additional
string values, initialized to the names of the constellations in which the stars are found: Ursa
Minor, Taurus, Cygnus, Lyra, Aquila, Ursa Major, and Leo. Next, create a function that accepts
a single string parameter. Within the function, iterate through the first array, searching for the
star. When the star is found, return the value contained in that index within the second array.
That is, return the constellation name for that star. Within the <BODY> section of the page,
use a prompt to gather the name of the star from the visitor, and then call the function with
that input. Don’t forget to include code that executes when the star isn’t found. Display the
result on the screen.

 133

C H A P T E R 8

Objects in JavaScript

After completing this chapter, you will be able to

■■ Understand objects in JavaScript, including object properties, object methods, and classes.

■■ Create objects.

■■ Define properties and methods for objects.

■■ Understand arrays in JavaScript.

■■ Use several array methods.

Object-oriented development

For those who are new to object-oriented programming concepts or might need a refresher, read
on. If you’re already comfortable with object-oriented programming, skip ahead to the section titled
“Creating objects.”

A programming paradigm describes a methodology for solving the problems you encounter. More
than 25 different programming paradigms exist, some of which might be challenging to find used in
an actual program. You might have heard of others or even used them without knowing it. Among
these paradigms are functional programming, event-driven programming, component-oriented pro-
gramming, and structured programming.

Programming paradigms come and go. However, object-oriented programming is one that has
been around for many years and doesn’t appear to be going away any time soon. This section can’t
do much more than give you an overview of this subject, but you need to be familiar with object-ori-
ented techniques and terminology so that you’re comfortable with the subset of those typically used
by a JavaScript programmer.

Objects
Objects are things. In the real world—as opposed to the virtual and sometimes surreal world of
computer programming—a ball, a desk, and a car are all objects. An object is something that has
describable characteristics, that you can affect, and that behaves in a particular way. An object in the

134 parT i Javawhat? The Where, Why, and how of JavaScript

object-oriented programming paradigm is a combination of code and data that exhibits characteris-
tics and behavior in a similar manner.

properties
Objects have properties—defined as their attributes. Going back to the real world again, a ball has a
color property—perhaps red, white, or multicolored. It also has a size property—perhaps it is small
like a baseball or bigger like a basketball, or like something else entirely. These properties might be
represented like this:

ball.color
ball.size

Methods
Just as objects can have properties, they can also have methods. Methods define the way an object
behaves. A ball might have a roll method, which calculates how far the ball will roll. In theory, not all
objects have methods and not all objects have properties, although in practice most objects have at
least one method or one property.

Remember from Chapter 7, “Working with functions,” that a method is just a function that belongs
to an object. A method definition that uses a function literal for the roll method might look like this:

ball.roll = function() {
 var distance = this.size * this.forceApplied;
}

What’s this?
The ball.roll example used something new—the keyword this, which refers to the object to
which the current function or property belongs. In the context of objects, the keyword this
refers to the calling object. The keyword this can be used to set properties of objects within a
function call.

The this keyword is a boon to JavaScript developers looking to validate web forms, of which
you see more in Chapter 11, “An introduction to jQuery,” and Chapter 15, “Using JavaScript
with web forms.”

Classes
In object-oriented programming, an object is an instance of a class, which defines the set of prop-
erties and methods it exposes. Classes simplify the creation of multiple objects of the same type.
However, ECMA-262 has no concept of classes in its object interface. Therefore, to take advantage
of the benefits of class-based programming, you have to use a pattern to create pseudo-classes.

 CHAPTER 8 Objects in JavaScript 135

Consider the star example, which I used in earlier chapters. Example 8-1 (in the listing8-1.txt file in the
companion content) shows what you need for a comprehensive webpage that includes information
about 14 important stars.

EXAMPLE 8-1 Assembling a star object

var star = {};

star["Polaris"] = new Object;
star["Mizar"] = new Object;
star["Aldebaran"] = new Object;
star["Rigel"] = new Object;
star["Castor"] = new Object;
star["Albireo"] = new Object;
star["Acrux"] = new Object;
star["Gemma"] = new Object;
star["Procyon"] = new Object;
star["Sirius"] = new Object;
star["Rigil Kentaurus"] = new Object;
star["Deneb"] = new Object;
star["Vega"] = new Object;
star["Altair"] = new Object;

star["Polaris"].constellation = "Ursa Minor";
star["Mizar"].constellation = "Ursa Major";
star["Aldebaran"].constellation = "Taurus";
star["Rigel"].constellation = "Orion";
star["Castor"].constellation = "Gemini";
star["Albireo"].constellation = "Cygnus";
star["Acrux"].constellation = "Crux";
star["Gemma"].constellation = "Corona Borealis";
star["Procyon"].constellation = "Canis Minor";
star["Sirius"].constellation = "Canis Major";
star["Rigil Kentaurus"].constellation = "Centaurus";
star["Deneb"].constellation = "Cygnus";
star["Vega"].constellation = "Lyra";
star["Altair"].constellation = "Aquila";

star["Polaris"].type = "Double/Cepheid";
star["Mizar"].type = "Spectroscopic Binary";
star["Aldebaran"].type = "Irregular Variable";
star["Rigel"].type = "Supergiant with Companion";
star["Castor"].type = "Multiple/Spectroscopic";
star["Albireo"].type = "Double";
star["Acrux"].type = "Double";
star["Gemma"].type = "Eclipsing Binary";
star["Procyon"].type = "Double";
star["Sirius"].type = "Double";
star["Rigil Kentaurus"].type = "Double";
star["Deneb"].type = "Supergiant";
star["Vega"].type = "White Dwarf";
star["Altair"].type = "White Dwarf";

136 parT i Javawhat? The Where, Why, and how of JavaScript

star["Polaris"].spectralClass = "F7";
star["Mizar"].spectralClass = "A1 V";
star["Aldebaran"].spectralClass = "K5 III";
star["Rigel"].spectralClass = "B8 Ia";
star["Castor"].spectralClass = "A1 V";
star["Albireo"].spectralClass = "K3 II";
star["Acrux"].spectralClass = "B1 IV";
star["Gemma"].spectralClass = "A0 V";
star["Procyon"].spectralClass = "F5 IV";
star["Sirius"].spectralClass = "A1 V";
star["Rigil Kentaurus"].spectralClass = "G2 V";
star["Deneb"].spectralClass = "A2 Ia";
star["Vega"].spectralClass = "A0 V";
star["Altair"].spectralClass = "A7 V";

star["Polaris"].mag = 2.0;
star["Mizar"].mag = 2.3;
star["Aldebaran"].mag = 0.85;
star["Rigel"].mag = 0.12;
star["Castor"].mag = 1.58;
star["Albireo"].mag = 3.1;
star["Acrux"].mag = 0.8;
star["Gemma"].mag = 2.23;
star["Procyon"].mag = 0.38;
star["Sirius"].mag = -1.46;
star["Rigil Kentaurus"].mag = -0.01;
star["Deneb"].mag = 1.25;
star["Vega"].mag = 0.03;
star["Altair"].mag = 0.77;

As you can see, Example 8-1 contains a lot of repeated code. Each star is defined as an element of
the “star” object, essentially making it an array that contains other objects. Each of those objects is
then given four properties: the constellation in which it appears; the star’s type; its spectral class; and
its magnitude (represented by the word mag in the code listing).

Consider the code in Example 8-2 (in the listing8-2.txt file in the companion content). It accom-
plishes the same result as the code in Example 8-1 but with the help of a constructor pattern to create
a pseudo-class.

EXAMPLE 8-2 Assembling a Star object using a pseudo-class

var star = {};
function Star(constell,type,specclass,magnitude) {
 this.constellation = constell;
 this.type = type;
 this.spectralClass = specclass;
 this.mag = magnitude;
}

star["Polaris"] = new Star("Ursa Minor","Double/Cepheid","F7",2.0);

 CHAPTER 8 Objects in JavaScript 137

star["Mizar"] = new Star("Ursa Major","Spectroscopic Binary","A1 V",2.3);
star["Aldebaran"] = new Star("Taurus","Irregular Variable","K5 III",0.85);
star["Rigel"] = new Star("Orion","Supergiant with Companion","B8 Ia",0.12);
star["Castor"] = new Star("Gemini","Multiple/Spectroscopic","A1 V",1.58);
star["Albireo"] = new Star("Cygnus","Double","K3 II",3.1);
star["Acrux"] = new Star("Crux","Double","B1 IV",0.8);
star["Gemma"] = new Star("Corona Borealis","Eclipsing Binary","A0 V",2.23);
star["Procyon"] = new Star("Canis Minor","Double","F5 IV",0.38);
star["Sirius"] = new Star("Canis Major","Double","A1 V",-1.46);
star["Rigil Kentaurus"] = new Star("Centaurus","Double","G2 V",-0.01);
star["Deneb"] = new Star("Cygnus","Supergiant","A2 Ia",1.25);
star["Vega"] = new Star("Lyra","White Dwarf","A0 V",0.03);
star["Altair"] = new Star("Aquila","White Dwarf","A7 V",0.77);

The Star function, shown in boldface in Example 8-2, creates an interface for constructing Star
objects quickly.

When called, the function returns a new star object:

star["Polaris"] = new Star("Ursa Minor","Double/Cepheid","F7",2.0);

Even though Example 8-1 and Example 8-2 are functionally equivalent, the code in Example 8-2 is
much shorter and easier to understand. Imagine an object that had nine properties instead of just the
four shown here.

The creation of a class-like interface in this section used the constructor pattern. The constructor
pattern is helpful but results in multiple instances of the same method being created each time the
object is instantiated. A better and more advanced way to create multiple objects is to use a prototype
pattern. For more information about creating objects using prototypes, see http://msdn.microsoft.
com/en-us/magazine/cc163419.aspx.

Creating objects

You can create an object in JavaScript in two ways:

■■ Using the new keyword, as shown here:

var star = new Object;

■■ Using curly braces, as shown here:

var star = {};

The version you use depends largely on personal preference; they both accomplish the same task.

http://msdn.microsoft.com/en-us/magazine/cc163419.aspx
http://msdn.microsoft.com/en-us/magazine/cc163419.aspx

138 parT i Javawhat? The Where, Why, and how of JavaScript

adding properties to objects
After creating an object, you can start assigning properties and methods to it. If you have just one
star object, you could assign properties directly to it, like this:

star.name = "Polaris";
star.constellation = "Ursa Minor";

When you need to create multiple related objects, you can assign properties efficiently by follow-
ing the example shown in the previous section.

Displaying object properties
With a for...in loop, you can loop through each of the properties in an object. Try it out.

Looping through object properties

1. Using Microsoft Visual Studio, Eclipse, or another editor, edit the file proploop.html, which you
can find in the Chapter08 sample files folder in the companion content.

2. In the page, replace the TO DO comment with the for loop shown here in boldface (you can
find this code in the proploop.txt file in the companion content):

<!doctype html>
<html>
<head>
<title>Properties</title>

<script type="text/javascript">
 var star = {};

 function Star(constell,type,specclass,magnitude) {
 this.constellation = constell;
 this.type = type;
 this.spectralClass = specclass;
 this.mag = magnitude;
 }

 star["Polaris"] = new Star("Ursa Minor","Double/Cepheid","F7",2.0);

 star["Vega"] = new Star("Lyra","White Dwarf","A0 V",0.03);
 star["Altair"] = new Star("Aquila","White Dwarf","A7 V",0.77);

</script>
</head>
<body>
<script type="text/javascript">
for (var element in star) {
 for (var propt in star[element]) {
 alert(element + ": " + propt + " = " + star[element][propt]);
 }
}

 CHAPTER 8 Objects in JavaScript 139

</script>
</body>
</html>

3. View this page in a web browser. You are presented with an alert() dialog box for each of the
properties for each of the elements in the Star object. (Yes, it’s a lot of clicking. Sorry about
that.) Here’s an example of the type of dialog box you see:

This step-by-step exercise builds on the earlier example of using pseudo-classes to define proper-
ties of objects. In this case, a Star object was created with the following code:

var star = {};

That object was then given several elements, each containing a star name, which then was created
as an object by using a call to create a new Star object (using the pseudo-class):

star["Polaris"] = new Star("Ursa Minor","Double/Cepheid","F7",2.0);

Each element of the original Star object, now essentially an array, in this case the name of each
star, was then enumerated within the <BODY> section of the code by using a for...in loop:

for (var element in star) {

With each element (each individual star) now represented by the element variable, that individual
element’s properties could be enumerated. This enumeration is accomplished with another for...in
loop. Within that loop, the alert is generated, showing the star’s name, the property name, and the
value of the property:

for (var propt in star[element]) {
alert(element + ": " + propt + " = " + star[element][propt]);
}

Looking for a property
Sometimes you don’t want or need to loop through every property. Sometimes you just want to know
whether a given property already exists within an object. You can use the in operator to test for the
property, as in this pseudo-code:

if (property in object) {
 // do something here
}

140 parT i Javawhat? The Where, Why, and how of JavaScript

This in operator also works when examining an array to see whether there’s a given element within
it. Example 8-3 shows a more complete example (available in the listing8-3.txt file in the companion
code). It examines the Star object’s elements for one of the star names, “Polaris,” and if found, adds
a new property to it. The example then iterates through each of the stars in a for...in loop looking for
the new property called aka (an abbreviation for “also known as”). If the aka property is found, some
information is sent in an alert.

EXAMPLE 8-3 Looking for a property

var star = {};

function Star(constell,type,specclass,magnitude) {
 this.constellation = constell;
 this.type = type;
 this.spectralClass = specclass;
 this.mag = magnitude;
}

star["Polaris"] = new Star("Ursa Minor","Double/Cepheid","F7",2.0);
star["Mizar"] = new Star("Ursa Major","Spectroscopic Binary","A1 V",2.3);
star["Aldebaran"] = new Star("Taurus","Irregular Variable","K5 III",0.85);
star["Rigel"] = new Star("Orion","Supergiant with Companion","B8 Ia",0.12);
star["Castor"] = new Star("Gemini","Multiple/Spectroscopic","A1 V",1.58);
star["Albireo"] = new Star("Cygnus","Double","K3 II",3.1);
star["Acrux"] = new Star("Crux","Double","B1 IV",0.8);
star["Gemma"] = new Star("Corona Borealis","Eclipsing Binary","A0 V",2.23);
star["Procyon"] = new Star("Canis Minor","Double","F5 IV",0.38);
star["Sirius"] = new Star("Canis Major","Double","A1 V",-1.46);
star["Rigil Kentaurus"] = new Star("Centaurus","Double","G2 V",-0.01);
star["Deneb"] = new Star("Cygnus","Supergiant","A2 Ia",1.25);
star["Vega"] = new Star("Lyra","White Dwarf","A0 V",0.03);
star["Altair"] = new Star("Aquila","White Dwarf","A7 V",0.77);

if ("Polaris" in star) {
 star["Polaris"].aka = "The North Star";
 alert("Polaris found and is also known as " + star["Polaris"].aka);
}

for (var element in star) {
 if ("aka" in star[element]) {
 alert(element + " is in " + star[element].constellation);
 }
}

note There are other approaches for checking property existence that aren’t covered in
this book, such as the !== operator.

 CHAPTER 8 Objects in JavaScript 141

adding methods to objects
In the same way you can add properties to self-defined objects, you can add methods. For example,
suppose you want to extend the Star pseudo-class used in earlier examples to include a method
called show(), which just presents an alert() dialog box. You could add to this method to do whatever
you need it to do. For example, look at this code:

function Star(constell,type,specclass,magnitude) {
 this.constellation = constell;
 this.type = type;
 this.spectralClass = specclass;
 this.mag = magnitude;
 this.show = function() {
 alert("hello, this is a method.");
 }
}

To call the method, you write code that looks like this:

star["Polaris"].show();

Object-oriented programming in JavaScript doesn’t end here. More advanced features of the
object-oriented programming paradigm, such as inheritance, super-classing, and prototypes, are all
possible with JavaScript, but they are beyond the scope of this book. MSDN Magazine published
an article about some of the more advanced concepts, and you can find that article at http://msdn.
microsoft.com/en-us/magazine/cc163419.aspx.

Finding out more about arrays

Chapter 4, “Working with variables and data types,” introduced arrays and provided some examples
of ways to define them. With arrays, you can group a set of values into an object and then access
those values through a numbered index value. For example, you can use the new Array() explicit
constructor as follows:

var star = new Array();
star[0] = "Polaris";
star[1] = "Deneb";
star[2] = "Vega";
star[3] = "Altair";

You also can perform the same task using the implicit array constructor (denoted by square brack-
ets), like so:

var star = ["Polaris", "Deneb", "Vega", "Altair"];

http://msdn.microsoft.com/en-us/magazine/cc163419.aspx
http://msdn.microsoft.com/en-us/magazine/cc163419.aspx

142 parT i Javawhat? The Where, Why, and how of JavaScript

The length property
The length property of an array returns the number of elements in the array. There’s an important
distinction between how many elements the array contains and how many have been defined. Here’s
a simple example. Consider the implicit star array definition discussed previously. You can count four
star names: Polaris, Deneb, Vega, and Altair. The length property returns the same result:

var numStars = star.length; // star.length is 4.

Elements can be counted by the length property that have not yet been defined or initialized.
Here’s an example that creates an array with more elements than were assigned:

var myArray = new Array(5);

array methods
This section introduces you to some of the methods of the array object. You can find more infor-
mation within the ECMA-262 specification at http://www.ecma-international.org/publications/files/
ECMA-ST/Ecma-262.pdf.

You can add elements to an array by using two different methods, by either prepending them to
the front of the array or appending them to the end of it.

Using concat() to add elements
The concat() method appends elements to the end of the array on which it is invoked. To use it, you
supply the concat() method with arguments containing the items to append. The method returns a
new array, as follows:

var myArray = new Array();
myArray[0] = "first";
myArray[1] = "second";
var newArray = myArray.concat("third");
// newArray is now [first,second,third]

You can also concatenate one array to another, like this:

var myFirstArray = [51,67];
var mySecondArray = [18,"hello",125];
var newArray = myFirstArray.concat(mySecondArray)
// newArray is [51,67,18,"hello",125]

adding elements with concat()

1. Using Visual Studio, Eclipse, or another editor, edit the concat.html file in the Chapter08
sample files folder in the companion content.

2. Within the page, add the code shown in boldface type (found in concat.txt):

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

 CHAPTER 8 Objects in JavaScript 143

<!doctype html>
<html>
<head>
 <title>Concat</title>
 <script type="text/javascript">

 var star = ["Polaris", "Deneb", "Vega", "Altair"];

 for (var i = 0; i < star.length; i++) {
 alert(star[i]);
 }

 </script>
</head>
<body>

</body>
</html>

3. Save the page, and view it in a web browser. You receive an alert() dialog box (like the one
shown here) for each of the four star names defined in the star array.

4. Alter the code to concatenate some additional stars onto the star array. (Yes, I realize that
you could just add them directly to the star array, but that’s cheating.) Here’s the code (the
changes are shown in boldface and are found in concat2.txt file):

<!doctype html>
<html>
<head>
 <title>Concat</title>
 <script type="text/javascript">

 var star = ["Polaris", "Deneb", "Vega", "Altair"];

 var newstars = ["Aldebaran", "Rigel"];
 var morestars = star.concat(newstars);
 var mStarLength = morestars.length;
 for (var i = 0; i < mStarLength; i++) {
 alert(morestars[i]);
 }

 </script>
</head>
<body>

</body>
</html>

144 parT i Javawhat? The Where, Why, and how of JavaScript

5. Save and view the page in a web browser. You receive six alert() dialog boxes (sorry!), one for
each star, like this one for Aldebaran:

Joining and concatenating with join
The join() method converts all the elements of an array to a joined string. This method is unlike the
concat() method, which concatenates elements to an array and does not perform any type conver-
sions. Here’s the code (also found as starstring.html in the companion content):

var star = ["Polaris", "Deneb", "Vega", "Altair"];
var starString = star.join();

The starString variable contains Polaris,Deneb,Vega,Altair, as shown in Figure 8-1.

FIGURE 8-1 Using join() to join an array.

The join() method enables you to specify the join delimiter as well. Instead of just using a comma,
you might want to use an asterisk, like this (found as aststring.html in the companion content):

var star = ["Polaris", "Deneb", "Vega", "Altair"];
var starString = star.join("*");

The result would be Polaris*Deneb*Vega*Altair, as shown in Figure 8-2.

 CHAPTER 8 Objects in JavaScript 145

FIGURE 8-2 Joining with a different delimiter.

Tip The join() method is a quick way to see the contents of an array without creating an
entire for loop structure.

Using push and pop to add and remove elements
Whereas concat() concatenates two arrays, push() and pop() add and remove individual elements.
The push() method returns the length of the new array, and pop() returns the removed element. The
methods push() and pop() operate on the end of the array, as shown in the following code:

var star = ["Polaris", "Deneb", "Vega", "Altair"];
star.push("Aldebaran");

Running the preceding code results in the star object containing five elements: Polaris, Deneb,
Vega, Altair, and Aldebaran.

The pop() method removes the last element and returns the element that is removed:

var star = ["Polaris", "Deneb", "Vega", "Altair"];
var removedElement = star.pop();

The removedElement variable contains the string “Altair” because that was the last element of the
array. The length of the array is also shortened (or decremented) by 1.

Using shift and unshift to add and remove elements
The push() and pop() methods operate on the end of the array. The shift() and unshift() methods per-
form the same functions as push() and pop(), except the former do it at the beginning of the array. In
this code, the unshift() method adds an element to the beginning of an array:

var star = ["Polaris", "Deneb", "Vega", "Altair"];
star.unshift("Aldebaran");

146 parT i Javawhat? The Where, Why, and how of JavaScript

The star array is:

["Aldebaran", "Polaris", "Deneb", "Vega", "Altair"]

Use shift() to remove an element from the beginning of an array. Notice that shift() returns the
removed element, just like pop():

var star = ["Polaris", "Deneb", "Vega", "Altair"];
var removedElement = star.shift();

The star array now contains:

["Deneb", "Vega", "Altair"]

Using slice() to return parts of an array
The slice() method is useful when you need to return specific portions of an array, but you must be
careful because unless you make a copy of the array, slice() does not change the original array. For
example, the following code returns and places into the cutStars variable the value “Vega,Altair”,
because Vega and Altair are the third and fourth elements of the star array (remember that arrays
start counting from zero) and slice() ends at but doesn’t include the end argument.

var star = ["Polaris", "Deneb", "Vega", "Altair"];
var cutStars = star.slice(2,4);

Sorting elements with sort()
It’s sometimes helpful to sort the elements of an array. Look at this code:

var star = ["Polaris", "Deneb", "Vega", "Altair"];
var sortedStars = star.sort();

The result is shown in Figure 8-3 (and produced with sort.html in the companion content), and
as you can see, the elements of the star array are sorted alphabetically, even though they weren’t
ordered alphabetically in the array initializer. Notice that both the original star array and the
 sortedStars variable contain the sorted list.

FIGURE 8-3 The result of a sorted array using the sort() method.

 CHAPTER 8 Objects in JavaScript 147

Be careful not to use the sort() method to sort numbers. Consider this code:

var nums = [11,543,22,111];
var sortedNums = nums.sort();

You might expect the sortedNums variable to contain 11,22,111,543, but instead it sorts the values
alphabetically, as shown in Figure 8-4.

FIGURE 8-4 Attempting to sort numbers with sort() doesn’t work—at least not if you want them sorted in numeri-
cal order.

iterating through arrays
Two primary methods exist for iterating through array elements in JavaScript. As of this writing, the
primary cross-browser method for doing so is the for() method, which you’ve seen throughout the
book so far. Here’s a quick reminder of its syntax:

var candies = ["chocolate","licorice","mints"];
for (var i = 0; i < candies.length; i++) {
 alert(candies[i]);
}

Introduced with ECMA-262 edition 5 and supported in all major browsers with the exception of
Internet Explorer 8 and earlier and Firefox 1.5 and earlier, the forEach() method walks through array
elements as well. The syntax for forEach() is similar to that of a for loop (found as foreach.html in the
companion content):

var candies = ["chocolate","licorice","mints"];
candies.forEach(function(candy) {
 alert(candy);
});

note Use the forEach() method (and other new methods) with caution because they aren’t
yet widely supported and aren’t supported at all by older browsers.

148 parT i Javawhat? The Where, Why, and how of JavaScript

The array object has other methods that you should know about. Some that you might encounter
are listed in Table 8-1, but you should refer to the ECMA-262 specification available at http://www.
ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf for a full list. Methods that are new
to the ECMA-262 edition 5 standard are noted.

TABLE 8-1 Select methods of the array object

Method Description New to ECMA-262 Edition 5

reverse() Reverses the order of the elements. No

map() Executes a function on each array item and returns an array. Yes

indexOf() Returns the index of the first occurrence of the argument. Yes

lastIndexOf() Returns the last index of the argument in the array. Yes

every() Executes a function on each array item and returns true
while every element in the array satisfies the provided test-
ing function.

Yes

filter() Executes a function on each array item and returns an array
containing only the items for which the function returns true.

Yes

some() Executes a function and returns true if at least one element
in the array satisfies the function.

Yes

splice() Inserts or removes elements from an array. Returns an array
containing the deleted items.

No

Taking advantage of built-in objects

The JavaScript language makes several useful objects available to assist with tasks common to the
JavaScript program. You’ve already seen some of these, such as the Date, Number, and Math objects,
which were covered in Chapter 4.

JavaScript has a global object, named window, that contains some of the methods already dis-
cussed, such as isNaN(). Another three commonly used global object methods are encodeURI(),
 encodeURIComponent(), and eval(), which are discussed in this section.

Making Uris safe
The encodeURI() method takes a Uniform Resource Identifier (URI) that contains characters that are
not allowed in a given URI scheme, and it encodes them so that they can be used according to the
standard. For example, RFC (Request For Comments) 2396 defines a generic syntax for URIs. The
 encodeURI() method can be used to correct the following URI:

http://www.braingia.org/a uri with spaces.htm

The preceding URI contains spaces—which are not allowed in an HTTP URI—and therefore the URI
needs to be encoded (found as encode.html in the companion content):

alert(encodeURI("http://www.braingia.org/a uri with spaces.htm"));

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf

 CHAPTER 8 Objects in JavaScript 149

Figure 8-5 shows the result.

FIGURE 8-5 Using the encodeURI() method to properly encode a URI in JavaScript.

Whereas the encodeURI() method works on an entire URI, like the one shown in Figure 8-5, the
encodeURIComponent() method also encodes special characters such as slash (/), question mark (?),
ampersand (&), and others.

Both the encodeURI() and encodeURIComponent() methods have decoding counterparts, deco-
deURI() and decodeURIComponent(), respectively.

Using the eval() method
The eval() method is one of the most powerful and dangerous methods you can use in JavaScript
because it executes the code passed to it using the privileges of the caller. The eval() method takes a
single argument that is interpreted as JavaScript and executed, for example:

eval("alert('hello world')");

The eval() method executes the alert code, just as it would if the code were executed directly.
Typically, you use the eval() method during Asynchronous JavaScript and XML (AJAX) calls, but doing
so poses a security problem because the code returned from the AJAX call is executed just as if it
were normal code, and that code could be malicious.

Exercises

1. Create code to loop through a simple array of four objects, shown here, and display those in
an alert() dialog box, one for each element of the array:

var star = ["Polaris", "Deneb", "Vega", "Altair"];

2. Create an object to hold the names of three of your favorite songs. The objects should have
properties containing the artist, the song length, and the title for each song.

3. The first step-by-step exercise in this chapter used a list of stars and a class to populate those
objects, shown here:

function Star(constell,type,specclass,magnitude) {
 this.constellation = constell;
 this.type = type;

150 parT i Javawhat? The Where, Why, and how of JavaScript

 this.spectralClass = specclass;
 this.mag = magnitude;
}
star["Polaris"] = new Star("Ursa Minor","Double/Cepheid","F7",2.0);
star["Mizar"] = new Star("Ursa Major","Spectroscopic Binary","A1 V",2.3);
star["Aldebaran"] = new Star("Taurus","Irregular Variable","K5 III",0.85);
star["Rigel"] = new Star("Orion","Supergiant with Companion","B8 Ia",0.12);
star["Castor"] = new Star("Gemini","Multiple/Spectroscopic","A1 V",1.58);
star["Albireo"] = new Star("Cygnus","Double","K3 II",3.1);
star["Acrux"] = new Star("Crux","Double","B1 IV",0.8);
star["Gemma"] = new Star("Corona Borealis","Eclipsing Binary","A0 V",2.23);
star["Procyon"] = new Star("Canis Minor","Double","F5 IV",0.38);
star["Sirius"] = new Star("Canis Major","Double","A1 V",-1.46);
star["Rigil Kentaurus"] = new Star("Centaurus","Double","G2 V",-0.01);
star["Deneb"] = new Star("Cygnus","Supergiant","A2 Ia",1.25);
star["Vega"] = new Star("Lyra","White Dwarf","A0 V",0.03);
star["Altair"] = new Star("Aquila","White Dwarf","A7 V",0.77)

The code then used a simple for loop to move through each of the star objects and displayed
the names of the stars, as shown here:

for (var element in star) {
 for (var propt in star[element]) {
 alert(element + ": " + propt + " = " + star[element][propt]);
 }

}

Your task is to modify this code to display one single dialog box containing all the star names
rather than display one dialog box for each star.

 151

C H A P T E R 9

The Browser Object Model

After completing this chapter, you will be able to

■■ Understand the different objects available as part of the window object.

■■ Use the navigator object to view properties of the visitor’s browser.

■■ Obtain information about the visitor’s screen, including available height and width.

■■ Use JavaScript to detect whether Java is enabled in the browser.

■■ Parse the query string sent by the browser.

Introducing the browser

Until this chapter in the book, you reviewed JavaScript mainly in the abstract. This chapter starts to
examine JavaScript as you’d apply it in the real world.

I feel rather silly about writing this, but it’s important, so I’m going to say it anyway: the browser is
central to JavaScript programming. Projects like Rhino (http://www.mozilla.org/rhino/) want to change
that, but understanding the environments that browsers provide is central to writing good JavaScript
code that works well on multiple browsers running on multiple platforms. This section introduces you
to the Browser Object Model.

The browser hierarchy
The Browser Object Model creates a tree-like hierarchy of objects, many of which provide properties
and methods for the JavaScript programmer. The browser itself is represented by one object, called
the window object. The window object is the parent of several child objects:

■■ document

■■ frames

■■ history

■■ location

■■ navigator

http://www.mozilla.org/rhino/

152 parT i Javawhat? The Where, Why, and how of JavaScript

■■ screen

■■ self/window/parent

The document child of the window object is special because it has several child and even grand-
child objects that provide access to all HTML elements within a page. The window object, its children,
and their place in the browser hierarchy are illustrated in Figure 9-1.

FIGURE 9-1 The window object and its children.

I discuss the document object in Chapter 12, “The Document Object Model.” You learn about the
other children of the window object in the remainder of this chapter.

Events
Events are briefly described in Chapter 1, “JavaScript is more than you might think.” You use events
in many areas of JavaScript programming, and quite a bit when working with web forms. Events are
triggered when actions occur. The action can be initiated by users, when they click a button or link
or move the mouse into or out of an area, or by programmatic events, such as when a page loads.
Chapter 13, “JavaScript events and the browser,” goes into detail about events related to the window
object; Chapter 15, “Using JavaScript with web forms,” provides more information about web forms.

A sense of self

The window object is a global object that represents the currently open window in the browser. The
window object has several properties, methods, and child objects. You already used some of these
methods, such as alert() and prompt(). Because the window object is a global object, you don’t need
to preface its properties and methods with window. Instead, you can call them directly, as you already
saw done in the examples that made calls to the alert() method.

 CHAPTER 9 The Browser Object Model 153

Direct descendants of the window object don’t require the window prefix, but when you deal with
objects beyond the window object’s direct descendants, you need to precede them with the window
object name. For example, the document object is a direct descendant of the window object and
therefore doesn’t need the window prefix, but descendants of the document object do need it, as
shown in the following example:

alert("something"); // note no window. prefix.
document.forms[0] // note the document. prefix but still no window. Prefix.

note You often see child objects of the window object referred to as properties of the
 window object—for example, the screen property rather than the screen object.

The window object also has properties and methods. Among its properties is the self property,
which refers to the window object (and gave me the idea for the title for this section). Table 9-1 lists
some of the widely used properties of the window object. You examine many of these in examples
throughout the book.

TABLE 9-1 Selected properties of the window object

Property Description

closed Set to true when the window has been closed

defaultStatus Used to set the text that appears by default in the status bar of a browser

name The name of the window as set when the window is first opened

opener A reference to the window that created the window

parent Frequently used with frames to refer to the window that created a particular window or is
one level up from the frame

status Frequently used to set the text in the status bar when a visitor hovers over an element such
as a link

top Refers to the highest or topmost parent window

Tables 9-2 and 9-3 describe some of the window object’s methods. You see examples of how to use
many of these throughout the remainder of this book.

TABLE 9-2 Selected methods of the object

Method Description

addEventListener() Cross-browser (with support added in Internet Explorer 9) method to add event handlers. See
Chapter 11, “An introduction to jQuery,” for more information.

attachEvent() The version of addEventListener() in Internet Explorer. See Chapter 11 for more information.

blur() Changes the focus of keyboard input away from the browser window.

focus() Changes the focus of keyboard input to the browser window.

close() Closes the browser window.

detachEvent() The version of removeEventListener() in Internet Explorer.

154 parT i Javawhat? The Where, Why, and how of JavaScript

Method Description

removeEventListener() Cross-browser event handler removal method. Internet Explorer versions 9 and later support
this.

open() Opens a window.

print() Causes the browser’s print function to be invoked; behaves just as though someone clicked
Print in the browser.

Some methods of the window object deal with moving and resizing the window and are described
in Table 9-3.

TABLE 9-3 Selected methods of the object for moving and resizing

Method Description

moveBy() Used to move the window to a relative location

moveTo() Used to move the window to a specific location

resizeBy() Used to change the size of the window by a relative amount

resizeTo() Used to change the size of the window to a certain size

Timers are found in some JavaScript applications and are discussed in Chapter 11. The window
object methods related to timers are the following:

■■ clearInterval()

■■ clearTimeout()

■■ setInterval()

■■ setTimeout()

The rest of the chapter looks more closely at some of the direct children of the window object.

Getting information about the screen

The screen object provides a way to obtain information about the visitor’s screen. You might need this
information to determine which images to display or how large the page can be. Whether or not you
use the screen object, you need to create a good CSS-based design (CSS stands for Cascading Style
Sheets) that gracefully handles screens of all sizes.

The available properties of the screen object are as follows:

■■ availHeight

■■ availWidth

■■ colorDepth

 CHAPTER 9 The Browser Object Model 155

■■ height

■■ width

You might be wondering what the difference is between the availHeight and availWidth properties
and the height and width properties. The availHeight and availWidth properties return the avail-
able height and width of the screen minus the space used by other controls, such as the taskbar in
Microsoft Windows. The height and width properties return the gross height and width. This might
make more sense with an example.

Determining a visitor’s screen height and width

1. Using Microsoft Visual Studio, Eclipse, or another editor, edit the screen.html file in the
Chapter09 sample files folder in the companion content.

2. In the page, add the boldface code shown here (you can find this in the screen.txt file in the
companion content):

<!doctype html>
<html>
<head>
 <title>Screen</title>

</head>
<body>

 <script type="text/javascript">
 alert("Available Height: " + screen.availHeight);
 alert("Total Height: " + screen.height);
 alert("Available Width: " + screen.availWidth);
 alert("Total Width: " + screen.width);
 </script>

</body>
</html>

3. Save and view the page in a web browser. You receive four alert() dialog boxes, one for each
of the properties called. The following sample screen shots reflect a 1,024 × 768 pixel display.

156 parT i Javawhat? The Where, Why, and how of JavaScript

As you can see from these screen shots, the total width and height are 1,027 pixels and 768
pixels, respectively. Notice that the available width remains 1,024, whereas the available height
is reduced to 728 from 768 because of the taskbar.

Using the navigator object

The navigator object provides several properties that assist in the detection of various elements of
the visitor’s browser and environment. One of the most popular operations JavaScript can perform is
detecting which browser the visitor is using. (Well, this section isn’t about that—but it could be. See
the sidebar “Problems with browser detection” for more information.)

problems with browser detection
For a long time, websites used the navigator object to detect which browser the visitor was
using. (Well, a long time in Internet years—which could be several years or as short as a few
months, depending on the technology you’re talking about.) Browser detection was used so
that browser-specific JavaScript code could be executed. Although simple browser detection
had its uses, some poorly designed sites used this technique as a means to lock out visitors who
had particular browsers.

 CHAPTER 9 The Browser Object Model 157

Little did they know that the information sent by a browser can be easily fooled. The User
Agent Switcher add-on for Firefox is one such way to alter this information, thus rendering
browser detection with the navigator object useless.

Tip I’ve said it before in this book and I’ll say it now (and probably will repeat it again
later): never rely on anything sent from the visitor’s browser to your website. Always verify.
Assuming that the browser is Internet Explorer just because it says so is not sufficient.
Chapter 13 provides a better method for detecting whether the browser is capable of han-
dling the JavaScript on your website.

When you use the navigator object to detect the visitor’s browser, you encounter another
problem because there are so many browsers out there. A web developer can spend too much
time keeping track of which browsers might support which functions and trying to account for
all those browsers in the code. However, all is not lost for the navigator object—it’s still useful,
as you will soon see.

In this exercise, you walk through the properties of the navigator object and their values.

Looking at the navigator object

1. Using Visual Studio, Eclipse, or another editor, edit the naviprops.html file in the Chapter09
sample files folder in the companion content.

2. Within the page, replace the TODO comment with the boldface code shown here (this code is
in the naviprops.txt file in the companion content):

<!doctype html>
<html>
<head>
 <title>The navigator Object</title>
</head>
<body>
 <script type="text/javascript">
 var body = document.getElementsByTagName("body")[0];
 for (var prop in navigator) {
 var elem = document.createElement("p");
 var text = document.createTextNode(prop + ": " + navigator[prop]);
 elem.appendChild(text);
 body.appendChild(elem);
 }
 </script>

</body>
</html>

158 parT i Javawhat? The Where, Why, and how of JavaScript

3. Save and view the page in a web browser of your choice. If you choose Internet Explorer, the
page will look similar to this:

4. If you chose Firefox, the page will look similar to this. Note that the available properties are
different.

 CHAPTER 9 The Browser Object Model 159

I just couldn’t bring myself to use yet another alert() dialog box for this exercise, so I had to
use some functions that I haven’t yet introduced. (The elements in this example are introduced in
Chapters 12 and 13.)

The code for this exercise employs a function that uses the document object to create Hypertext
Markup Language (HTML) elements within the webpage. A for loop is used to iterate through each of
the properties presented by the navigator object:

var body = document.getElementsByTagName("body")[0];
 for (var prop in navigator) {
 var elem = document.createElement("p");
 var text = document.createTextNode(prop + ": " + navigator[prop]);
 elem.appendChild(text);
 body.appendChild(elem);
 }

If the JavaScript you’re using doesn’t work for a certain version of a web browser, you could detect
the browser by implementing a workaround based on using the navigator object, but understand that
this strategy isn’t reliable and you really shouldn’t use it as standard practice. But sometimes, you just
need to use it.

If your site uses Java, you can use the navigator object to check whether Java is enabled. The fol-
lowing exercise shows you how.

Using the navigator object to detect Java

1. Using Visual Studio, Eclipse, or another editor, edit the file javatest.html in the Chapter09
sample files folder.

2. Within the page, replace the TODO comment with the boldface code shown here (also located
in the javatest.txt file in the companion content):

<!doctype html>
<html>
<head>
 <title>Java Test</title>
 <script type="text/javascript">
 if (navigator.javaEnabled()) {
 alert("Java is enabled");
 } else {
 alert("Java is not enabled");
 }
 </script>
</head>

<body>

</body>
</html>

160 parT i Javawhat? The Where, Why, and how of JavaScript

3. Save the page, and view it in Internet Explorer (if you have it installed). By default, Java is
enabled in Internet Explorer, so you should see a dialog box like this:

4. Switch to Firefox, if you have it available, and disable Java. (In the Windows version of Firefox,
you can do this by selecting Add-Ons, clicking Plugins, and then clicking Disable For The Java
Plugins.) When you disable Java and refresh the page, you see a dialog box like this:

The location object

The location object gives you access to the currently loaded Uniform Resource Identifier (URI), includ-
ing any information about the query string, the protocol in use, and other related components. For
example, a URI might be:

http://www.braingia.org/location.html

If the webpage at that URI contains the JavaScript code to parse the URI that is presented in the
next example, the output would look like that shown in Figure 9-2.

 CHAPTER 9 The Browser Object Model 161

FIGURE 9-2 The location object being used to display the various properties.

The protocol in this case is http:, the host is www.braingia.org (as is the host name), and the path-
name is location.html. Nothing was entered as a query string, so the search value remains empty. The
port is not explicitly specified (it uses the standard port for HTTP traffic, tcp/80), so that, too, is empty.

Here’s an exercise that examines the query string.

Looking at the location object

1. Using Visual Studio, Eclipse, or another editor, edit the location1.html file in the Chapter09
sample files folder in the companion content.

2. This first bit of HTML and JavaScript creates the page that you saw in Figure 9-2. (Actually, it
steals the code from an earlier exercise that used the navigator object but with a slight modi-
fication for the location object.) We build upon that code for this exercise, so add the boldface
code shown here to the location1.html page:

<!doctype html>
<html>
<head>
 <title>Location, Location, Location</title>
</head>
<body>
 <script type="text/javascript">
 var body = document.getElementsByTagName("body")[0];
 for (var prop in location) {
 var elem = document.createElement("p");

162 parT i Javawhat? The Where, Why, and how of JavaScript

 var text = document.createTextNode(prop + ": " + location[prop]);
 elem.appendChild(text);
 body.appendChild(elem);
 }
 </script>
</body>
</html>

3. View the page in a web browser. Your results will vary, depending on how you set up your web
server. This example shows that the webpage was retrieved from a server named tt. Also note
that my example uses a file called location1-full.html, which contains all of the code for this
exercise.

4. Modify the URI that you use to call the page by adding some query string parameter value
pairs. For example, the URI used for my local environment is http://tt/jsbs3e/Chapter09/
location1-full.html. (Your environment and the location from which you serve the file will likely
be different from this.) I’m going to modify the URL and add two parameters, name=Steve
and country=US. Feel free to change the value for the name parameter to your name and
change the country value to your home country (if you’re not from the United States, that
is). The values you choose aren’t all that important here—what matters is that you use more
than one parameter/value pair. Here’s my final URI: http://tt/jsbs3e/Chapter09/location1-full.
html?name=Steve&country=US.

 CHAPTER 9 The Browser Object Model 163

5. When you load the page with the parameters you added, the search property has a value, as
shown here:

6. Open the location1.html file again, and save it as location2.html.

7. Alter the code in location2.html so that it examines the search property, like this (the changes
are shown in boldface type and are in the location2.txt file in the companion content):

<!doctype html>
<html>
<head>
 <title>Location, Location, Location</title>

</head>
<body>
 <script type="text/javascript">
 var body = document.getElementsByTagName("body")[0];
 for (var prop in location) {
 var elem = document.createElement("p");
 var text = document.createTextNode(prop + ": " + location[prop]);
 elem.appendChild(text);
 body.appendChild(elem);
 }
 if (location.search) {
 var querystring = location.search;
 var splits = querystring.split('&');
 for (var i = 0; i < splits.length; i++) {
 var splitpair = splits[i].split('=');
 var elem = document.createElement("p");
 var text = document.createTextNode(splitpair[0] + ": "

164 parT i Javawhat? The Where, Why, and how of JavaScript

+splitpair[1]);
 elem.appendChild(text);
 body.appendChild(elem);
 }
 }
 </script>
</body>
</html>

8. Execute this code by pointing your browser to location2.html?name=Steve&country=US. (Alter
the name and country as appropriate.) Again, note that the location2-full.html version is the
full version. If you’ve followed along with the exercise, yours will still be called location2.html.
When viewed in a browser, you now receive a page that lists the normal properties that you
saw earlier but also lists (near the bottom) the parameter/value pairs parsed from the query
string, like this:

9. Notice that the first parameter, name, contains the question mark (?) from the query string,
which is not what you want. You can solve this problem in several ways. One of the simplest is
to use the substring() method. Change the querystring variable definition line to read:

var querystring = location.search.substring(1);

The substring() method returns the string starting at the point specified. In this case, the first
character of location.search (at index 0) is the question mark; therefore, use substring() starting
at index 1 to solve the problem. The final code (with the change shown in boldface type) looks
like the following (you can find this in the location3.html file in the companion content):

<!doctype html>
<html>
<head>

 CHAPTER 9 The Browser Object Model 165

 <title>Location, Location, Location</title>

</head>
<body>
 <script type="text/javascript">
 var body = document.getElementsByTagName("body")[0];
 for (var prop in location) {
 var elem = document.createElement("p");
 var text = document.createTextNode(prop + ": " + location[prop]);
 elem.appendChild(text);
 body.appendChild(elem);
 }
 if (location.search) {
 var querystring = location.search.substring(1);
 var splits = querystring.split('&');
 for (var i = 0; i < splits.length; i++) {
 var splitpair = splits[i].split('=');
 var elem = document.createElement("p");
 var text = document.createTextNode(splitpair[0] + ": " +
 splitpair[1]);
 elem.appendChild(text);
 body.appendChild(elem);
 }
 }
 </script>
</body>
</html>

10. Save this code as location3.html, and run it again. You see from the results that you’ve solved
the problem of the question mark:

166 parT i Javawhat? The Where, Why, and how of JavaScript

The URI that the browser displays can also be set using JavaScript and the location object. Typically
you accomplish this using the assign() method of the location object. For example, to redirect to my
website (always a good idea), I might use this code:

location.assign("http://www.braingia.org");

Calling the assign() method is essentially the same as setting the href property:

location.href = "http://www.braingia.org";

You can also change other properties of the location object, such as the port, the query string, or
the path. For example, to set the path to /blog, you can do this:

location.pathname = "blog";

To set the query string to ?name=Steve, do this:

location.search = "?name=Steve";

You can reload the page by calling the reload() method:

location.reload();

When you call location.reload(), the browser might load the page from its cache rather than re-
request the page from the server; however, if you pass a Boolean true to the method, the browser
reloads the page directly from the server:

location.reload(true);

note Be careful using the reload() method. Trying to reload the page within a script, as
opposed to through a function call triggered by an event, is likely to cause a loop condition.

The history object

The history object provides ways to move forward and backward through the visitor’s browsing his-
tory. (However, for security reasons, JavaScript cannot access the URIs for sites that the browser visits.)
Specifically, you can use the back(), forward(), and go() methods. It probably goes without saying, but
back() and forward() move one page backward and forward, respectively. The go() method moves to
the index value specified as the argument.

note If an application doesn’t go to a different page or location in the address bar, the
application won’t be part of the browser’s history and thus won't be accessible with these
functions.

 CHAPTER 9 The Browser Object Model 167

Here’s some example code for moving backward and forward that can be adapted as needed.
Examples in later chapters show more detail about how this kind of code might be used in the real
world.

<!doctype html>
<html>
<head>
 <title>History</title>
 <script type="text/javascript">
 function moveBack() {
 history.back();
 return false;
 }
 function moveForward() {
 history.forward();
 return false;
 }
 </script>
</head>
<body>
<p>Click to go back</p>
<p>Click to go forward</p>
</body>
</html>

This code uses an inline event handler (onclick), which is not recommended for use in unobtrusive
JavaScript, because the event handler inserts behavior in the page markup. The use of onclick here
is for illustrative purposes only, to avoid introducing the event handler concept, which gets its own
chapter—Chapter 13.

registering handlers
HTML 5.0 introduced two new methods of the navigator object: registerContentHandler()
and registerProtocolHandler(). Using these methods, a website can register a URI for handling
certain types of information, such as an RSS feed. However, these methods are not yet widely
supported and therefore aren’t covered in this book.

Exercises

1. Use the availHeight and availWidth methods to determine whether a screen is at least 768
pixels high and 1,024 pixels wide. If it’s not, display an alert() dialog box stating the size of the
available screen.

2. Alter the step-by-step exercise that used the location object to display an alert() dialog box
based on the values of the query string. Specifically, display the word “Obrigado” if the coun-
try/region is specified as Brazil, and display “Thank you” if the country/region is Great Britain.
Test these conditions.

168 parT i Javawhat? The Where, Why, and how of JavaScript

3. Install the User Agent Switcher add-on to Firefox or a similar add-on to Internet Explorer.
Then use the code from the “Looking at the navigator object” exercise earlier in this chapter
to experiment with the different values that you find. This exercise helps show why using the
navigator object as the sole means of determining compatibility is not recommended. Bonus:
Define your own user agent.

 169

C H A P T E R 1 0

an introduction to JavaScript
libraries and frameworks

After completing this chapter, you will be able to

■■ Understand the role of JavaScript programming libraries and frameworks.

■■ Understand how to define your own library.

■■ Understand the role of third-party JavaScript libraries and frameworks and how to find more
information about them.

Understanding programming libraries

In programming terms, a library is a grouping of code that provides common or additional func-
tionality. Typically, libraries consist of one or more files that expose objects and functions. Within a
program, a developer includes or calls the library to use these additional objects and functions. In this
way, JavaScript libraries and frameworks are useful because they offload the maintenance and devel-
opment of additional and enhanced functions. They help make common programming tasks easier
and can also aid in smoothing out the differences and nuances in cross-browser development.

This chapter explores libraries in JavaScript, including the process of defining your own library, and
takes a look at some of the more popular JavaScript libraries and frameworks available.

Defining your own JavaScript library

Developers working in any language find themselves performing common functions repeatedly in
many of their coding tasks, so creating a personal library, or grouping, of common functions that you
can use in future projects is helpful.

Libraries don’t have to be large to be useful. In this next example, you create your own library.

170 parT i Javawhat? The Where, Why, and how of JavaScript

Creating a library

1. Using Microsoft Visual Studio, Eclipse, or the editor of your choice, open the library.js file,
which you can find in the Chapter10 folder of this book’s companion content.

2. Within library.js, add the following code (replacing the TODO comment), and then add a
function:

var MyLibrary = {};

MyLibrary.sendAlert = function(mesg, elm) {
 alert(mesg);
};

3. Save the file and close it.

4. Open the file librarypage.html. Within librarypage.html, add the boldface code shown here
(replacing the TODO comment):

<!doctype html>
<html>
<head>
<title>A Basic Example</title>
<script type="text/javascript" src="library.js"></script>
</head>
<body>
<script type="text/javascript">

 MyLibrary.sendAlert("hello, this is the message");

</script>
</body>
</html>

5. Load the page librarypage.html in a web browser. You should receive an alert like this:

Tip If you don’t receive an alert like the one just shown, be sure you have specified the
path to the library.js file correctly. The example shown in the preceding librarypage.html
code assumes that the JavaScript file library.js is in the same directory as the HTML file.

 CHAPTER 10 An introduction to JavaScript libraries and frameworks 171

Take care when defining and using your own libraries so that you don’t overlap or collide with
existing functions and reserved words from the ECMA-262 specification. Additionally, if you use an
external library or framework such as jQuery or YUI, you need to make sure that your library doesn’t
collide with the naming conventions used for those.

Looking at popular JavaScript libraries and frameworks

There are numerous publicly available libraries and frameworks for JavaScript. Their goal is to take
difficult tasks and make them easier for programmers developing JavaScript-centric web applications.

Web developers spend a great deal of time trying to make pages look and act the same way
across browsers. A significant advantage to using many JavaScript libraries or frameworks is that they
remove the cross-browser compatibility headaches. All the popular JavaScript libraries and frame-
works include code to make their respective functions work across all the browsers they support.

jQuery
jQuery provides a rich feature set, powerful options, extensibility, and excellent community support.
Using jQuery, which is contained in a single JavaScript file, you can add effects to your webpages,
enhance usability, and make processing of data with Asynchronous JavaScript and XML (AJAX) easier.
Additionally, Microsoft shipped jQuery beginning with Visual Studio 2010. Chapter 11, “An introduc-
tion to jQuery,” examines jQuery in greater detail. You can find more information about jQuery at
http://jquery.com.

Modernizr
Modernizr enables developers to use some of the more advanced features of HTML5 and CSS3 in
older browsers. It uses feature detection to determine whether a given browser supports a certain
widget or effect and provides an alternative means of accomplishing the task at hand. More informa-
tion about Modernizr can be found at http://modernizr.com/.

Yahoo! User interface
Yahoo! User Interface (YUI) provides both JavaScript and Cascading Style Sheets (CSS), which sim-
plifies developing web applications. Like jQuery, YUI includes features for enhancing usability and
improving the web application. As an added bonus, YUI’s documentation is excellent. You can find
more information about YUI at http://developer.yahoo.com/yui/.

http://jquery.com
http://modernizr.com/
http://developer.yahoo.com/yui/

172 parT i Javawhat? The Where, Why, and how of JavaScript

MooTools
MooTools is a very small, highly optimized library for JavaScript. MooTools differs from YUI and
jQuery because it is an object-oriented framework that concentrates on providing greater modu-
larity and code reuse, whereas YUI and jQuery focus on effects, CSS, and direct user-experience
 interactions. That’s definitely not to say that MooTools doesn’t have effects—MooTools also offers
many of the same effects (such as an accordion and a slider) that you find in YUI and jQuery.
MooTools is recommended for intermediate to advanced JavaScript programmers and is available
from http://mootools.net/.

Other libraries
There are numerous other libraries and frameworks available for JavaScript—too many to cover
or even mention in this book. As a starting point, see http://en.wikipedia.org/wiki/Comparison_of
_JavaScript_frameworks to find out more information about JavaScript frameworks.

Exercises

1. Examine each of the libraries and frameworks shown in this chapter. Which do you think is
easiest for the new JavaScript programmer to learn? Why?

2. Create your own JavaScript library with an external JavaScript file. Include that file in an HTML
page and call it.

http://mootools.net/
http://en.wikipedia.org/wiki/Comparison_of _JavaScript_frameworks
http://en.wikipedia.org/wiki/Comparison_of _JavaScript_frameworks

 173

C H A P T E R 1 1

an introduction to jQuery

After completing this chapter, you will be able to

■■ Understand how to include jQuery in your HTML.

■■ Understand important jQuery concepts and syntax.

■■ Use jQuery with your webpages.

jQuery primer

jQuery is a popular and easy-to-use JavaScript framework. jQuery makes difficult JavaScript tasks
easy, often by taking the pain out of cross-browser JavaScript.

The entire jQuery library consists of only a single JavaScript file, which simplifies its inclusion in
your JavaScript. jQuery syntax is also easy to learn; it uses a simple namespace and consistent func-
tionality. Used together with the jQuery User Interface (UI) add-on (covered in Chapter 18, “Mobile
development with jQuery Mobile),” you can create powerful, highly interactive web applications.

This chapter provides an introduction to jQuery, including how to download and use it in your
JavaScript.

Using jQuery

You can obtain jQuery from http://www.jquery.com/. In this section, you’ll see how to download
jQuery and integrate it into a webpage.

The two jQuery downloads
On the jQuery home page, two downloads are available: a production version and a development
version. Unless you’re planning to develop jQuery plug-ins or need to look at the internals of jQuery,
you should download and use the minified production version.

As another viable option, especially for working through this chapter, you could use a content
delivery network (CDN) to access a hosted version of jQuery. Google hosts jQuery and other librar-
ies through its API website. This means that you can include jQuery in your webpages and JavaScript

http://www.jquery.com/

174 parT i Javawhat? The Where, Why, and how of JavaScript

programs without having to host the file locally on your server. See http://code.google.com/apis
/libraries/devguide.html for more information.

note For almost all scenarios in which you are working with jQuery, I recommend down-
loading and hosting the jQuery file locally. Using the local version can be faster and more
reliable than using the CDN version. For example, if you use a CDN-hosted version and the
CDN server goes down, anything on your site that uses the library won’t work! However, for
development tasks in this chapter, using a CDN-hosted file is perfectly acceptable.

Performing the exercises and following along in this chapter requires that you have jQuery down-
loaded to your local development computer or are connected to it from a CDN.

including jQuery
You include jQuery in a webpage in the same manner as you would any other external JavaScript
file—with a <SCRIPT> tag pointing to the source file. Consider the code in Example 11-1, found in the
companion content as listing11-1.html.

EXAMPLE 11-1 Including jQuery in a webpage

<!doctype html>
<html>
<head>
<title>Adding jQuery</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body>
</body>
</html>

Now that you have jQuery downloaded or referenced from a CDN site and you’ve looked at
the preceding example showing how to include jQuery in a file, it’s time to move into learning
jQuery syntax.

important Version 1.7.2 is the latest as of this writing. However, the version available from
the jQuery website will almost certainly be different by the time you read this, so you’ll
need to change the src attribute appropriately for the version of the jQuery script that you
download.

http://code.google.com/apis /libraries/devguide.html
http://code.google.com/apis /libraries/devguide.html

 CHAPTER 11 An introduction to jQuery 175

Basic jQuery syntax
When you include the jQuery library in a page, jQuery adds a function called jquery(). You might
think that you’d make all calls to jQuery functions through this jquery() function interface, but there’s
a shortcut to the jquery() function: $(). Rather than typing jquery() each time, you access the jQuery
library by using a dollar sign followed by parentheses, as shown in the examples in Table 11-1. Don’t
worry if this syntax doesn’t quite make sense yet; you’ll see more about selectors a little later in this
chapter.

TABLE 11-1 A few jQuery selectors

Syntax Description

$(“a”) All <a> elements in the document

$(document) The entire document, frequently used to access the ready()
function shown later in this chapter

$(“#elementID”) The element identified by ID elementID

$(“.className”) The element or elements that have the className class

Like all JavaScript code, jQuery statements should end with a semicolon. It is also worth noting that
you can use either single or double quotation marks as selectors within jQuery. For example, both of
these statements are equally valid:

$("a")

$('a')

When you see examples of jQuery usage in the real world (not that this book isn’t in the real
world), both single and double quotation marks are used. Examples throughout this chapter use a mix
of the two to get you familiar with seeing both cases; however, in your real-world programming, it’s
best to choose one style and stick with it.

Connecting jQuery to the load event
One of the most common ways to work with jQuery is by connecting to elements during the load (or
onload) event of the page. (This chapter discusses events and functions in more detail later.) In jQuery,
you do this through the .ready() utility function of the document element.

Recall from the brief example shown in the previous section that jQuery accesses elements with
the $() syntax. Keeping that in mind, you can access the document element like this:

$(document)

And you can then access the ready() function like this:

$(document).ready()

176 parT i Javawhat? The Where, Why, and how of JavaScript

The following exercise requires either that you have jQuery downloaded to your local develop-
ment computer or that you use a CDN. The example shows version 1.7.2 of jQuery, but the version
number will likely be different when you perform the exercise.

Using $(document).ready()

1. Using Microsoft Visual Studio, Eclipse, or another editor, edit the file docready.html in the
Chapter11 sample files folder in the companion content.

2. Within that file, add the following code shown in boldface in place of the TODO comment:

<!doctype html>
<html>
<head>
<title>Document Ready</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body>
<script type="text/javascript">
 $(document).ready(function() {
 alert('hi');
 });
</script>
</body>
</html>

3. Save the file, and view the page in a web browser. You’ll see an alert like this one:

The code in this step-by-step exercise combines jQuery through the $(document).ready() function
and also regular, plain old JavaScript, represented by the alert() function in this example. This mix-
ture of jQuery and JavaScript is an important concept to understand: you use jQuery to supplement
normal JavaScript. jQuery makes many of the difficult and sometimes mundane tasks easy—so easy,
in fact, that you can spend your time building features rather than worrying about cross-browser
nuances.

The $(document).ready() function removes the need for you to use the browser’s load event or to
insert a function call into the load event. With $(document).ready(), all the elements of the Document
Object Model (DOM) are available before the .ready() function executes, although not necessarily all
images.

 CHAPTER 11 An introduction to jQuery 177

Tip The $(document).ready() function is central to much of the programming that you do
with jQuery.

Using selectors

Selectors are key to working with jQuery and the DOM. You use selectors to identify and group the
elements on which a jQuery function is executed. As shown in Table 11-1, you use selectors to gather
all the elements of a certain tag, of a certain ID, or with a certain class applied to them. You can
also use selectors in much more powerful ways, such as to select a specified number of elements or
to select only elements with a particular ancestry—for example, only those <P> tags that follow a
<DIV> tag. This section introduces selectors in more detail.

Tip Selectors and the way they work in jQuery are based on selectors in CSS. If you are
comfortable with using them in CSS (discussed in Chapter 16, “JavaScript and CSS”), you will
feel right at home with this model.

Selecting elements by iD
The example in Table 11-1 showed the general syntax for selecting an element by its ID attribute:

$("#elementID")

For example, consider this bit of HTML:

Link

With normal JavaScript, you access this element like so:

getElementById("linkOne")

With jQuery, you access the element using this:

$("#linkOne")

Selecting elements by class
You select elements by class by prefixing a dot (.) to the class name. The syntax is this:

$(".className")

For example, here’s a <DIV> element with a class applied:

<div class="specialClass">

178 parT i Javawhat? The Where, Why, and how of JavaScript

You would access that element through jQuery like this:

$(".specialClass")

Bear in mind that you might not be accessing a single element; the class selector accesses all
elements for which the specified class is applied. That is, if several elements in the page have the
“ specialClass” class applied, jQuery accesses all of them using the $(“.specialClass”) selector. You see
more about this later when working with functions that iterate through each element retrieved with
such a selector.

Selecting elements by type
You can also use selectors to access elements by type, such as all <DIV> elements, all <A> elements,
and so on. For example, you would access all <DIV> elements in a document like this:

$('div')

Similarly, to access all the <A> elements, you would write:

$('a')

Using a type selector provides access to all the elements of the specified type on a page. Like the
class selector, type selectors can return multiple elements.

Selecting elements by hierarchy
As mentioned earlier, you can select elements by their position in relation to other elements on
the page. For example, to select all the <A> elements that are within <DIV> elements, you use this
syntax:

$("div a")

You can get more specific than that as well. For example, if you want all the anchors within a spe-
cific <DIV> element, you combine the type selector with the ID selector syntax. Consider this HTML:

<div id="leftNav">
Link 1
Link 2
</div>

Here’s the jQuery selector syntax to retrieve the two anchor elements within the leftNav <DIV>
element:

$("#leftNav a")

More generically, if you want only the direct descendants of an element, use the greater-than sign:

$("div > p")

 CHAPTER 11 An introduction to jQuery 179

This syntax yields all the <P> elements that are direct descendants of a <DIV> element but does
not include any <P> elements within the selected <P> elements.

You can also choose the nth child in a set with the :nth-child() selector. This example chooses the
third child of every <P> element:

$("p:nth-child(3)")

Several other hierarchical selectors exist. You can find more in the jQuery selector reference docu-
mentation at http://api.jquery.com/category/selectors/.

Selecting elements by position
As you’ve seen, the selectors in jQuery are greedy. For example, the $(‘a’) syntax selects all anchor
tags. jQuery offers several ways to select more specific elements within a group. One such method is
to use the first and last selectors. The following code selects the first <P> element within the page:

$("p:first")

Likewise, the last element is selected like this:

$("p:last")

You can also select elements by their direct position. As another example, consider this HTML:

<p>First P</p>
<p>Second P</p>
<p>Third P</p>

To select the second <P> element, you use this syntax:

$("p")[1]

Note that the array index begins with 0 for this type of selector, so the first element is index 0, the
second is index 1, and so on. Using this syntax is a little dangerous because it relies on the strict posi-
tioning of the elements within the hierarchy. If someone adds another <P> tag to the page before
the element you’re trying to select, the addition causes the array index to change, so you would be
choosing the wrong element from the selector. When possible, it’s better to use an ID selector to
choose an individual or specific element than to rely on an element’s position.

An alternative way of selecting by index is to use the :eq syntax. For example, to choose the third
paragraph, you could write:

$("p:eq(3)")

Finally, another sometimes useful set of positional selectors are even and odd, which select every
other element in a set:

$("p:even")

http://api.jquery.com/category/selectors/

180 parT i Javawhat? The Where, Why, and how of JavaScript

The even and odd selectors are quite helpful when working with tabular data to alternate row
colors. Example 11-2 shows how to use the odd selector to differentiate the background color of alter-
nating rows in a table. You can find this code as listing11-2.html in the companion content.

note The code from Example 11-2 uses two items that haven’t yet been formally intro-
duced: a user-defined function and the .css() function. Don’t worry about that now. You
examine each of these items in more detail later in the chapter.

EXAMPLE 11-2 Tabular data and jQuery

<!doctype html>
<html>
<head>
<title>Table Test</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body>
<table>
 <tr>
 <td>Row 1 Column 1 of the table</td>
 <td>Row 1 Column 2 of the table</td>
 </tr>
 <tr>
 <td>Row 2 Column 1 of the table</td>
 <td>Row 2 Column 2 of the table</td>
 </tr>
 <tr>
 <td>Row 3 Column 1 of the table</td>
 <td>Row 3 Column 2 of the table</td>
 </tr>
 <tr>
 <td>Row 4 Column 1 of the table</td>
 <td>Row 4 Column 2 of the table</td>
 </tr>
 <tr>
 <td>Row 5 Column 1 of the table</td>
 <td>Row 5 Column 2 of the table</td>
 </tr>
 <tr>
 <td>Row 6 Column 1 of the table</td>
 <td>Row 6 Column 2 of the table</td>
 </tr>
</table>
<script type="text/javascript">
$(document).ready(function() {
 $('tr:odd').css("background-color", "#abacab");
});
</script>

</body>
</html>

 CHAPTER 11 An introduction to jQuery 181

This main portion of this code is contained in the JavaScript section within the body of the HTML:

$(document).ready(function() {
 $('tr:odd').css("background-color", "#abacab");
});

The code uses the $(document).ready() function along with the :odd selector to set the background
color to hexadecimal #abacab—a light gray color. Figure 11-1 shows an example of the output.

FIGURE 11-1 A table colorized with the help of jQuery.

You’ve seen some of the most common positional selectors, but there are many more positional
selectors available. Refer to http://api.jquery.com/category/selectors/ for more information.

Selecting elements by attribute
As you might suspect from the class selector you’ve already seen, jQuery lets you select elements that
merely contain an attribute or those that contain an attribute with a specific value. For example, to
select all images that have an alt attribute, you write this:

$("img[alt]")

Selecting only images that have an alt attribute set to a certain value looks like this:

$("img[alt='alternate text']")

The preceding code selects an image only if the alt text is the word alternate text. Note the use
of alternating single and double quotation marks within this example. The img selector is wrapped
in double quotation marks, whereas the internal alt attribute selector is wrapped in single quotation
marks, but the example could just as easily have been in the reverse, with single quotation marks used
on the img selector and double quotation marks used on the alt attribute selector:

$('img[alt="alternate text"]')

http://api.jquery.com/category/selectors/

182 parT i Javawhat? The Where, Why, and how of JavaScript

You could also use the same quotation mark scheme for both, but if you do that, you need to
escape the internal quotation marks, as follows:

$("img[alt=\"alternate text\"]")

important This type of selector expects an exact match. In the preceding example, the alt
attribute needs to be the string “alternate text”. Any variation of that, such as “alternate text
2” or “alternate text2” would not match.

jQuery includes wildcard selectors that don’t require an exact match on attributes. Consider the
examples in Table 11-2.

TABLE 11-2 Attribute selector matching

Syntax Description

attribute*=value Selects elements that contain the attribute for which the attribute value contains the
specified value as a substring

attribute~=value Selects elements that contain the attribute for which the attribute value contains the
specified value as a word delimited by spaces

attribute!=value Selects elements that either do not contain the attribute or for which the attribute value
does not match the specified value

attribute$=value Selects elements that contain the specified attribute for which the attribute’s value ends
with the specified string

attribute^=value Selects elements that contain the attribute for which the attribute’s value begins with the
specified string

Selecting form elements
jQuery contains native selectors related to web forms. Table 11-3 lists some of these selectors, some
of which are used in remainder of this chapter.

TABLE 11-3 Form-related selectors

Selector Description

:checkbox Selects all check boxes

:checked Selects all elements that are checked, such as check boxes

:input Selects all input elements on a page

:password Selects all password inputs

:radio Selects all radio button inputs

:reset Selects all input types of reset

:selected Selects all elements that are currently selected

:submit Selects all input types of submit

:text Selects all input types of text

 CHAPTER 11 An introduction to jQuery 183

More selectors
There are many more selectors in jQuery, such as those that select all hidden elements (:hidden)
or all visible elements (:visible) as well as enabled elements, disabled elements, and others. See
http://api.jquery.com/category/selectors/ for a complete and up-to-date list of selectors in jQuery.

Tip Rather than devising a complex and fragile selector syntax to get at a certain element,
refer to the jQuery selector reference (http://api.jquery.com/category/selectors/) to see
whether someone has already solved the selector problem.

Functions

So far, you’ve seen a lot of examples that select elements with jQuery, but only a couple of examples
that show what you can do with those elements after selecting them. jQuery uses functions to per-
form actions on selected elements. Functions can be built in to jQuery or user-defined. You almost
always end up using both at the same time.

Traversing the DOM
The nature of programming on the web using JavaScript and now jQuery frequently requires loop-
ing or iterating through several elements—for example, the .each() function takes a list of selected
elements and iterates over each of them, doing something (or nothing) to each as it loops through
the list. jQuery contains numerous functions for looping and iterating. This process is known in jQuery
parlance as traversing. You can find more information about the traversing-related functions at http://
api.jquery.com/category/traversing/.

When using traversal functions, you almost always do so with the help of a user-defined wrapper
function along with the $(this) selector. Like the this keyword in object-oriented programming, the
$(this) selector refers to the current object—in this case, the item currently being traversed.

An example might be useful here. The following HTML builds a standings page for a fictitious
volleyball league:

<!doctype html>
<html>
<head>
<title>Iteration Test</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body>
<table>
 <th>Team Name</th>
 <th>W-L Record</th>
 <th>Win Percentage</th>
 <tr>
 <td>Team 1</td>

http://api.jquery.com/category/selectors/
http://api.jquery.com/category/selectors/
http://api.jquery.com/category/traversing/
http://api.jquery.com/category/traversing/

184 parT i Javawhat? The Where, Why, and how of JavaScript

 <td>12-8</td>
 <td class="percentage">.600</td>
 </tr>
 <tr>
 <td>Team 5</td>
 <td>11-9</td>
 <td class="percentage">.550</td>
 </tr>
 <tr>
 <td>Team 4</td>
 <td>10-10</td>
 <td class="percentage">.500</td>
 </tr>
 <tr>
 <td>Team 2</td>
 <td>9-11</td>
 <td class="percentage">.450</td>
 </tr>
 <tr>
 <td>Team 6</td>
 <td>6-14</td>
 <td class="percentage">.300</td>
 </tr>
 <tr>
 <td>Team 3</td>
 <td>2-18</td>
 <td class="percentage">.100</td>
 </tr>
</table>
<script type="text/javascript">
$(document).ready(function() {
 $('tr:odd').css("background-color", "#abacab");
});
</script>

</body>
</html>

When viewed in a web browser, the page looks like Figure 11-2.

FIGURE 11-2 Standings page for a fictitious volleyball league.

 CHAPTER 11 An introduction to jQuery 185

So far, this example does essentially the same thing as Example 11-2. The next example iterates
through all the elements that contain a class attribute called percentage—a class that’s applied to
the cells in the Win Percentage column in the table. For any team whose win/loss percentage is at or
above .500 (meaning the team won at least half of its games), this example applies a boldface font to
its field. You can accomplish this with the following jQuery code, added just below the other jQuery
code already in the page:

$('.percentage').each(function() {
 if ($(this).text() >= .5) {
 $(this).css('font-weight', 'bold');
 }
});

This code uses a selector to gather all the elements that have the percentage class applied to
them. It then accesses each of these elements using the .each() function in jQuery. Within the .each()
function, a user-defined function performs a conditional to determine whether the value in the Win
Percentage column is greater than or equal to .5. If it is, the code calls the .css() function to add a
font-weight property set to bold for that element. After adding this code to the page, the result looks
like Example 11-3, found as listing11-3.html in the companion content.

EXAMPLE 11-3 Adding jQuery to the volleyball league page

<!doctype html>
<html>
<head>
<title>Iteration Test</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body>
<table>
 <th>Team Name</th>
 <th>W-L Record</th>
 <th>Win Percentage</th>
 <tr>
 <td>Team 1</td>
 <td>12-8</td>
 <td class="percentage">.600</td>
 </tr>
 <tr>
 <td>Team 5</td>
 <td>11-9</td>
 <td class="percentage">.550</td>
 </tr>
 <tr>
 <td>Team 4</td>
 <td>10-10</td>
 <td class="percentage">.500</td>
 </tr>

186 parT i Javawhat? The Where, Why, and how of JavaScript

 <tr>
 <td>Team 2</td>
 <td>9-11</td>
 <td class="percentage">.450</td>
 </tr>
 <tr>
 <td>Team 6</td>
 <td>6-14</td>
 <td class="percentage">.300</td>
 </tr>
 <tr>
 <td>Team 3</td>
 <td>2-18</td>
 <td class="percentage">.100</td>
 </tr>
</table>
<script type="text/javascript">
$(document).ready(function() {
 $('tr:odd').css("background-color", "#abacab");
 $('.percentage').each(function() {
 if ($(this).text() >= .5) {
 $(this).css('font-weight', 'bold');
 }
 });
});
</script>

</body>
</html>

When you view this page in a browser, you see that the Win Percentage column is now boldface
for those teams that have won at least half of their games, as depicted in Figure 11-3.

FIGURE 11-3 Some Win Percentage column entries are now boldface with the help of jQuery.

Looking at the output from Figure 11-3, you see that it would be even nicer to apply the boldface
font weight to the entire table row rather than to just the Win Percentage column. Doing that might

 CHAPTER 11 An introduction to jQuery 187

seem difficult, because logically the code is already past that HTML table row by the time the test is
applied to find out the win percentage. Fortunately, jQuery has a function that can help: the .parent()
function. (Actually, there are several ways to accomplish this. The .parent() function is just one way.)

Applying the parent() function essentially moves up the DOM tree to find the parent tag that
encloses this particular <TD> element, which is the <TR> element. By applying the CSS style change
to the <TR> element, you can make the entire row boldface. The new code looks like this, with the
change highlighted in boldface:

$('.percentage').each(function() {
 if ($(this).text() >= .5) {
 $(this).parent().css('font-weight', 'bold');
 }
});

When added to the code from Example 11-3, the output becomes similar to that in Figure 11-4.

FIGURE 11-4 Applying CSS style at the table row level.

note This revised code is available in the listing11-4.html file in the companion content.

The use of the .parent() function introduces a new concept called chaining. Chaining is a power-
ful construct in jQuery because it enables additional levels of selection and multilevel application of
functions. In this example, the $(this) selector is chained to the .parent() function, which selects the
parent element of the tag referenced by $(this). Only then does the code execute the .css() function.

With the power of chaining comes a bit of danger. It’s quite possible to chain your way into
difficult-to-read and difficult-to-maintain code. In addition, chaining can create fragile code when the
elements in a chained selector change. Chaining is powerful, so I recommend using it when possible
but not at the expense of readability or maintainability.

The examples shown so far in the chapter have all accessed and changed the CSS directly, using
JavaScript. As you’ll see in Chapter 16, changing the style or presentational aspects of a webpage
through JavaScript is not recommended. It’s better practice to apply or remove styles through CSS

188 parT i Javawhat? The Where, Why, and how of JavaScript

rather than change attributes directly. Several methods exist to work with CSS style classes using
jQuery, including .hasClass(), .addClass(), .removeClass(), and .toggleClass(). See http://api.jquery.com/
category/css/ for more information about working with classes by using these and other functions.

Working with attributes
In addition to the class-related attribute functions, jQuery has functions to work with attributes of
the DOM. The most generic of these is the .attr() function, although others, such as .html() and .val(),
are useful as well. This section looks at the .attr() function, saving .html(), .val(), and others for a later
section.

You use the .attr() function to both retrieve and set attributes. For example, you can both retrieve
and set an image’s alt attribute using this syntax:

// Get the alt attribute:
$("#myImageID").attr("alt")
// Set the alt attribute:
$("#myImageID").attr("alt", "new text")

note Retrieving the value of the element before setting it is unnecessary.

Changing text and hTML
You can completely rewrite a page using functions such as .text() and .val(). Of course, just because it’s
possible doesn’t mean it’s a good idea. However, you sometimes find that you need to rewrite por-
tions of HTML within a page or change text or values.

The .html() function retrieves or changes the entire HTML within a selected element. For example,
consider this HTML:

<div id="myDiv">Here is a div; it's quite nice</div>

And here’s the jQuery:

$("#myDiv").html('This is the new content of the div');

The outcome of this bit of jQuery is that the <DIV> element identified by myDiv would now con-
tain a element with new text in it, as shown in the code example. This is a rather simplistic
example, but imagine that the <DIV> element contained an entire content section. Using jQuery, you
could essentially rewrite that entire section, HTML and all.

Like the .html() function, the .text() function supports both retrieval and setting of the text within
a selected element. Unlike HTML, the .text() function gets or sets only text, so it’s not possible to alter
the actual HTML of the selected element, although it is possible to replace any HTML within the ele-
ment itself.

http://api.jquery.com/category/css/
http://api.jquery.com/category/css/

 CHAPTER 11 An introduction to jQuery 189

<div id="myDiv">Here is a div; it's quite nice</div>
$("#myDiv").text('This is the new content of the div');

In the preceding example, only the text changed; the code didn’t add a span or apply styling. In
fact, any HTML added using text would actually be encoded and wouldn’t be very helpful at all.

inserting elements
You can easily use jQuery to add elements to a page. Two primary functions for doing this are the
.after() and .before() functions. As their names suggest, they add HTML either after or before a
selected element, respectively.

For example, here’s that <DIV> element again:

<div id="myDiv">Here is a div, it's quite nice</div>

And here’s some jQuery that inserts another <DIV> element before it:

$("#myDiv").before("<div>This is a new div</div>");

The .after() function works in a similar fashion:

$("#myDiv").after("<div>This is a new div, it appears after myDiv</div>");

When run, the page containing this code would have three <DIV> elements:

<div>This is a new div</div>
<div id="myDiv">Here is a div, it's quite nice</div>
<div>This is a new div, it appears after myDiv</div>

The examples shown insert additional <DIV> elements—but of course you could use any valid ele-
ment within these functions.

The .append() function works in much the same manner as the .after() function, with the differ-
ence being that the .append() function inserts the HTML within the element to which it’s appended.
Consider this code:

 $(document).ready(function() {
 $('body').append('<div id="myDiv">Adding an element</div>');
 });

This example produces the HTML output with the <DIV> element inside the <BODY> element:

<body>
 <div id="myDiv">Adding an element</div>
</body>

Here’s that example code using the after() function:

 $(document).ready(function() {
 $('body').after('<div id="myDiv">Adding an element</div>');
 });

190 parT i Javawhat? The Where, Why, and how of JavaScript

This produces the following HTML:

<body>
</body>
<div id="myDiv">Adding an element</div>

As you can see, .after() places the <DIV> element outside the <BODY> element, which is probably
not desirable for this particular example.

Callback functions
Sometimes you need to run a function when another function completes, a construct called a callback
function. A callback function is a function that is passed as an argument to another function that
executes after its parent function completes. jQuery uses callback functions heavily, especially in
AJAX. You already saw an example of a callback function when iterating using the .each() function.

For more information about callback functions, see http://docs.jquery.com/Tutorials:How_jQuery_Works.

For those of you who are beginner or intermediate JavaScript programmers, it’s important that you
don’t overthink callback functions. They’re merely a grouping of code that gets called within another
function.

More jQuery

You’ve seen only a small portion of what jQuery can do. As you learn more about JavaScript and how
it can help activate your websites, consider using jQuery or another JavaScript library to help you
with those development efforts. Later chapters will show how to use jQuery for event handling and to
retrieve data, as well as several other uses.

For more jQuery learning and reference material, see the resources at http://www.jquery.com.

Exercises

1. Using the code in listing11-1.html (from the chapter’s first example) as a base, add a <DIV>
HTML element using jQuery.

2. Using the code from Exercise 11-1, change the background color of the <DIV> element to any
color other than white.

http://docs.jquery.com/Tutorials:How_jQuery_Works
http://www.jquery.com

 191

PART II

Integrating JavaScript
into Design

CHAPTER 12 The Document Object Model193

CHAPTER 13 JavaScript events and the browser215

CHAPTER 14 Working with images in JavaScript235

CHAPTER 15 Working with images in JavaScript235

CHAPTER 16 JavaScript and CSS .277

CHAPTER 17 jQuery effects and plug-ins289

CHAPTER 18 Mobile development with jQuery Mobile307

CHAPTER 19 Getting data into JavaScript.327

This part of the book focuses on JavaScript and its use in the
web browser. This section begins with a look at the Document
Object Model (DOM), which is central to JavaScript program-
ming. Browser events are discussed next, which leads into a dis-
cussion of images and web forms and how to work with those
using JavaScript.

CSS is integral to design, and you can manipulate CSS using
JavaScript. That's shown in this section, as is the use of jQuery
Mobile and jQuery UI.

 193

C H A P T E R 1 2

The Document Object Model

After completing this chapter, you will be able to

■■ Use the Document Object Model (DOM) to retrieve elements from a document.

■■ Create new elements in a document.

■■ Make changes to elements in a document.

■■ Remove elements from a document.

The Document Object Model defined

The Document Object Model (DOM) provides a way to access and alter the contents of Hypertext
Markup Language (HTML) documents. The DOM is a standard defined by the World Wide Web
Consortium (W3C). Most Internet browsers implement the DOM in various forms—and with varying
degrees of success.

Like many other standards, especially those related to web programming, the DOM has evolved
over the years. It has three specifications, known as levels in DOM-speak, with a fourth specification
on the way.

The DOM is much more powerful than this chapter or even this book can convey, and there’s much
more to it than I attempt to cover. You can use the DOM for more than just JavaScript programming.
This book focuses on how you can use JavaScript to access and manipulate the DOM.

When I refer to the DOM in this chapter (and throughout this book), I emphasize how it relates
to the current task rather than to the broader relevant concepts or what might be possible with the
DOM. For example, this book concentrates on how the DOM represents HTML documents as trees.
The DOM does so for HTML and Extensible Markup Language (XML) alike, but because this is a book
about JavaScript, it’s most important that you understand the DOM’s relation to HTML.

For more information about the DOM, refer to its specification at the W3C site:
http://www.w3.org/DOM/.

http://www.w3.org/DOM/

194 parT ii integrating JavaScript into Design

note Some of the examples in this chapter use the inline event handlers, such as the
onload event attached directly to the <BODY> tag, and the onclick event handler attached
to various HTML tags. Use of inline event handlers is not best practice, and they are used
here for illustrative purposes only. Chapter 13, “JavaScript events and the browser,” intro-
duces a better approach for attaching events to HTML.

DOM Level 0: The legacy DOM
DOM Level 0 is also known as the legacy DOM. DOM Level 0 was implemented before formal speci-
fications of the DOM. After DOM Level 1 was specified, the previous technology related to document
scripting was codified (although not in any formal way by any standards body) as the legacy DOM
Level 0. Today, every major browser supports DOM Level 0 components for downward compatibility.
You don’t want all those scripts you wrote back in 1998 to break!

The DOM Level 0 concentrated mainly on giving access to form elements, but it also incorporated
providing access to links and images. Chapter 15, “Using JavaScript with web forms,” covers forms and
how you access them with the DOM. Rather than spend time on examples of DOM Level 0, I concen-
trate on DOM Levels 1 and 2, which you’re more likely to use when you program in JavaScript.

DOM Levels 1 through 3
The W3C issued Level 1 of the DOM as a specification in 1998. Like the legacy DOM, Level 1 is sup-
ported, in various forms, by all the major browsers. Level 2 of the DOM was formally released in 2000.
Support of Level 2 DOM varies more widely among browsers. Finally, Level 3 of the DOM was codified
in 2004 and has various levels of support in the major browsers. However, support of all DOM levels
varies from browser to browser and from version to version.

Older browsers offer varying levels of support for the DOM; therefore, you need to be aware that
the DOM feature or function you're using or attempting to use in your JavaScript code might not
work, or might work in some browsers but not in others. Windows Internet Explorer version 9 is a step
in the right direction, but you still need to account for compatibility issues among browsers. Where
applicable, I point out the places where browsers implement the DOM differently and some work-
arounds for such events.

Luckily, jQuery helps reduce much of the effort necessary in working with the DOM by making
access to elements easy. You saw examples of this in the previous chapter and will continue to see
jQuery used in this chapter and beyond.

The DOM as a tree
The DOM represents HTML documents in a tree-like structure—or rather, an uprooted tree-like
structure—because the root of the tree is on top. For example, consider the simple HTML document
shown in Example 12-1.

 CHAPTER 12 The Document Object Model 195

EXAMPLE 12-1 A simple HTML document

<!doctype html>
<html>
<head>
<title>Hello World</title>
</head>
<body>
<p>Here's some text.</p>
<p>Here's more text.</p>
<p>Link to the W3</p>
</body>
</html>

Figure 12-1 shows the HTML from Example 12-1 when viewed in the tree structure of the DOM.

FIGURE 12-1 A simple document represented as a tree structure.

Many HTML elements can have attributes, such as the href attribute of the <A> element shown in
Example 12-1. You can both retrieve and set these attributes using the DOM, as you will see later in
this chapter.

When working with the DOM, you should be aware of the distinction among retrieving elements,
setting elements and items related to elements, and removing or deleting elements. The methods for
working with DOM elements reflect this distinction.

196 parT ii integrating JavaScript into Design

Working with nodes
The elements within the tree structure are sometimes referred to as nodes or node objects. Nodes
at the level below a given node are known as children. For example, in the structure shown in
Figure 12-1, the <BODY> node has three child nodes, all <P> elements, and one of the <P> elements
has a child of its own, an <A> element. The <BODY> node is said to be a parent of the <P> nodes.
Any nodes under a given node are known as descendants of that node. The three <P> nodes in
Figure 12-1 are known as siblings because they’re on the same level.

In the same way you use methods to work with elements of the DOM, you use methods to work
with nodes that reflect the parent/child and sibling relationships. For example, you can use methods
such as appendChild(), shown later in this chapter, to add nodes to an existing parent.

Retrieving elements

Retrieving the elements of a document is an essential way you use the DOM when programming
with JavaScript. This section examines two of the primary methods you use to retrieve elements:
getElementById() and getElementsByTagName().

retrieving elements by iD
The getElementById() method is a workhorse method of the DOM. It retrieves a specified element of
the HTML document and returns a reference to it. To retrieve an element, it must have an id attribute.
For example, you can modify the HTML from Example 12-1 to add an id attribute to the <A> element,
as shown in boldface here:

<!doctype html>
<html>
<head>
<title>Hello World</title>
<body>
<p>Here's some text.</p>
<p>Here's more text.</p>
<p>Link to the W3</p>
</body>
</html>

Now that the <A> element has an id attribute, you can retrieve it using the getElementById()
method, as follows:

var a1 = document.getElementById("w3link");

The reference for the element with the ID w3link would be placed inside the JavaScript variable a1.

All HTML elements support id attributes, which makes them all retrievable by JavaScript. In this
example, all the <P> elements get IDs, thus making them retrievable using the getElementById()
method, too. Take a look at this code:

 CHAPTER 12 The Document Object Model 197

<!doctype html>
<html>
<head>
<title>Hello World</title>
<body>
<p id="sometext">Here's some text.</p>
<p id="moretext">Here's more text.</p>
<p id="linkp">Link to the W3</p>
</body>
</html>

You can retrieve the <P> elements in the same way:

var p1 = document.getElementById("sometext");
var p2 = document.getElementById("moretext");
var plink = document.getElementById("linkp");

But what can you do with those elements after you retrieve them? For elements such as <A>, you
can access their attributes by retrieving the value of the href attribute, as in this example:

<!doctype html>
<html>
<head>
 <title>Get By Id</title>
 <script type="text/javascript">
 function checkhref() {
 var a1 = document.getElementById("w3link");
 alert(a1.href);
 }
 </script>
</head>
<body onload="checkhref();">
<p id="sometext">Here's some text.</p>
<p id="moretext">Here's more text.</p>
<p id="linkp">Link to the W3</p>
</body>
</html>

The page containing this code displays a dialog box showing the href attribute from the <A> ele-
ment, like the one in Figure 12-2. This code can be found as example2.html in the companion content.

FIGURE 12-2 The href attribute retrieved with the help of getElementById().

Later in this chapter, you see how to change elements and attributes.

198 parT ii integrating JavaScript into Design

a note on the innerHTML property
One way to change the text of elements is to use the innerHTML property. The innerHTML
property enables fast and simple access to the HTML in such elements as a <P> element. This
property generally works well—so well, in fact, that although it wasn’t well liked in many web
programming circles for some time, I find it difficult to skip it entirely in this book. So I won’t.

The problem with innerHTML is that it wasn’t formally defined as a standard by the W3C, so
it’s not necessarily supported in all browsers in the way that other DOM-specified objects are.
However, innerHTML is a part of the HTML 5.0 specification, and with the sometimes unpre-
dictable implementations of the actual DOM specification, innerHTML is still desirable. The
major browsers support innerHTML—and they do so fairly consistently.

Take a look at this example, found as getbyid.html in the companion content.

<!doctype html>
<html>
<head>
 <title>Get By Id</title>
 <script type="text/javascript">
 function changetext() {
 var p1 = document.getElementById("sometext");
 alert(p1.innerHTML);
 p1.innerHTML = "Changed Text";
 }
 </script>
</head>
<body onload="changetext()">
<p id="sometext">Here's some text.</p>
<p id="moretext">Here's more text.</p>
<p id="linkp">Link to the W3</p>
</body>
</html>

The changetext() function retrieves the element with an ID of sometext and places a refer-
ence to it in the variable p1, using this code:

var p1 = document.getElementById("sometext");

Next, it calls the innerHTML property, sending the result to an alert() dialog box.

 CHAPTER 12 The Document Object Model 199

Notice not only the alert() dialog box but also the text of the first line in the background
window. When the user clicks OK, the alert() dialog box disappears, and the next line of
 JavaScript executes, using the innerHTML property to change the text of the first <P> element
to “Changed Text”. The result is shown here:

Here’s that same code, except this time with jQuery. This code is similar to that which you saw in
Chapter 11, “An introduction to jQuery,” retrieving an element by its ID and then changing HTML on
the element.

<!doctype html>
<html>
<head>
 <title>Get By Id</title>
 <script type="text/javascript" src="jquery-1.7.2.min.js"></script>
 <script type="text/javascript">
 $(document).ready(function() {
 function changetext() {
 alert($("#sometext").html());
 $("#sometext").html("Changed Text");
 }
 changetext();
 });
 </script>
</head>
<body>
<p id="sometext">Here's some text.</p>
<p id="moretext">Here's more text.</p>

<p id="linkp">Link to the W3</p>
</body>
</html>

200 parT ii integrating JavaScript into Design

Notable changes in the jQuery version of this code, which can be found as getbyid-jquery.html in
the companion content, include the addition of the jQuery script itself and then the use of the ready()
function instead of the onload method. The changetext() function has been changed to simply alert
the results of the text() function and to then change the text.

retrieving by tag name
The getElementById() method works well when you’re retrieving only one or just a few
 elements, but when you need to retrieve more than one element at a time, you might find the
 getElementsByTagName() method to be more appropriate.

The getElementsByTagName() method returns all the elements of the specified tag type in an array
or in a list format. For example, to retrieve all the images (tags) in a document, you write the
following code:

var images = document.getElementsByTagName("img");

You could then examine the properties of the elements stored in the images variable by
looping through them.

Here’s an example that modifies a table. This code changes the background color of each <TD>
element within the table when the user clicks the Click To Change Colors link. You can find this code
in the companion content, in the file getbytag.html:

<!doctype html>
<html>
<head>
 <title>Tag Name</title>
 <script type="text/javascript">
 function changecolors() {
 var a1 = document.getElementsByTagName("td");

 var a1Length = a1.length;
 for (var i = 0; i < a1Length; i++) {
 a1[i].style.background = "#aaabba";
 }
 }

 </script>
</head>
<body>
<table id="mytable" border="1">
<tr><td id="lefttd0">Left column</td><td id="righttd0">Right column</td></tr>
<tr><td id="lefttd1">Left column</td><td id="righttd1">Right column</td></tr>
<tr><td id="lefttd2">Left column</td><td id="righttd2">Right column</td></tr>
</table>
Click to Change Colors
</body>
</html>

 CHAPTER 12 The Document Object Model 201

Figure 12-3 shows how this page looks when viewed in a web browser.

FIGURE 12-3 Using getElementsByTagName() to format elements from a table.

Clicking the link causes the table elements to change background color, which you can see in
Figure 12-4.

FIGURE 12-4 After a user clicks the link, the table elements change background color.

Examining the code, you see that the JavaScript in the <HEAD> portion of the page creates a func-
tion called changecolors():

function changecolors() {

That function retrieves all the <TD> elements by using the getElementsByTagName() method, plac-
ing them into the a1 array:

var a1 = document.getElementsByTagName("td");

The code then enumerates this array using a for loop, starting at element 0, and continuing to the
end of the array. It uses the a1Length variable, which obtained the length of the a1 array in the line
preceding the for loop.

202 parT ii integrating JavaScript into Design

Within the for loop, one line of code changes the background style of each element to #aaabba,
a shade of blue. It’s normally better to change the actual style by applying it through CSS (Cascading
Style Sheets) than to explicitly change an attribute, as shown in the example. However, until you read
about CSS and JavaScript in Chapter 16, “JavaScript and CSS,” this approach suffices:

for (var i = 0; i < a1Length; i++) {
 a1[i].style.background = "#aaabba";
}

The link calls the changecolors() function because of an onclick event:

Click to Change Colors

note The onclick event, along with onload and other events, are covered in detail in
Chapter 13.

Here’s the same code using jQuery:

<!doctype html>
<html>
<head>
 <title>Tag Name</title>
 <script type="text/javascript" src="jquery-1.7.2.min.js"></script>
 <script type="text/javascript">
 function changecolors() {
 $("td").each(function() {
 $(this).css("background-color","#aaabba");
 });
 }
 </script>
</head>
<body>
<table id="mytable" border="1">
<tr><td id="lefttd0">Left column</td><td id="righttd0">Right
column</td></tr>
<tr><td id="lefttd1">Left column</td><td id="righttd1">Right
column</td></tr>
<tr><td id="lefttd2">Left column</td><td id="righttd2">Right
column</td></tr>
</table>
Click to Change Colors
</body>
</html>

This code changes the changecolors() function to use jQuery. Specifically, the each() function is
used to iterate through the elements collected with the $(“td”) selector. It then changes the back-
ground color using the css() function that you saw in Chapter 11.

 CHAPTER 12 The Document Object Model 203

note This code still uses the legacy onclick handler. Chapter 13 will show you how to han-
dle click events more gracefully with jQuery.

hTML collections
A number of objects contain groups of elements from a document. These include the following:

■■ document.anchors A group containing all the named <A> elements (that is, those with a
name attribute assigned to them)

■■ document.forms A group containing all the <FORM> elements within a document

■■ document.images A group containing all the elements

■■ document.links A group containing all the <A> and <AREA> elements that contain an
href attribute

Working with siblings
JavaScript contains methods and properties for working with the parent/child and sibling relationship
of an HTML document. For example, the childNodes property contains a group of nodes comprising
the children of the given element. The group is similar to an array, though it’s not a true Array type
in JavaScript—for example, assume a <DIV> element with an ID of mydiv and several <A> anchor
 elements as its children. The following line of code retrieves the first child and places it into the
 childOne variable:

var childOne = document.getElementById("mydiv").childNodes[0];

Just as the parent node can have one or more children, each child has a parent node, which you
retrieve using its parentNode property. You can iterate through a set of child nodes using the their
nextSibling and previousSibling properties. If there are no more siblings, the property returns null. For
example, the previousSibling property returns null when used on the first child, and the nextSibling
property returns null when used on the last child.

Finally, the firstChild and lastChild properties contain the first child (childNodes[0]) and last child of
a given element, respectively. When an element contains no children, these properties are both null.

In jQuery, the children() function returns the children of the matched element, while the next()
and prev() functions return the next sibling and previous sibling, respectively. The parent() function
returns the parent. jQuery has several traversal functions that are helpful for working with the DOM
tree. See http://api.jquery.com/category/traversing/tree-traversal/ for more information about the tree
traversal functions in jQuery.

http://api.jquery.com/category/traversing/tree-traversal/

204 parT ii integrating JavaScript into Design

Working with attributes

The attributes of elements are both gettable and settable through JavaScript. This section looks at
both tasks.

Viewing attributes
Sometimes, especially when first programming with JavaScript, you might not know what attributes
are available for a given element. But you don’t have to worry about that, because of a loop that calls
the getAttribute() method. Here’s a generic function that displays all the attributes of a given element:

function showattribs(e) {
 var e = document.getElementById("braingialink");
 var elemList = "";
 for (var element in e) {
 var attrib = e.getAttribute(element);
 elemList = elemList + element + ": " + attrib + "\n";
 }
 alert(elemList);
}

A little JavaScript with the getElementById() method is all you need to invoke this function, as you
see in this exercise.

retrieving element attributes

1. Using Microsoft Visual Studio, Eclipse, or another editor, edit the file showattribs.html in the
Chapter12 sample files folder in the companion content.

2. Within the page, replace the TODO comment with the following code shown in boldface type.
(The code is in the showattribs.txt file in the companion content.)

<!doctype html>
<html>
<head>
 <title>Show Attribs</title>
 <script type="text/javascript">
 function showattribs(e) {
 var e = document.getElementById("braingialink");
 var elemList = "";
 for (var element in e) {

 CHAPTER 12 The Document Object Model 205

 var attrib = e.getAttribute(element);
 elemList = elemList + element + ": " + attrib + "\n";
 }
 alert(elemList);
 }
 </script>
</head>
<body>
<a onclick="return showattribs();" href="http://www.braingia.org"
id="braingialink">Steve Suehring's Web Site
<script type="text/javascript">

</script>
</body>
</html>

3. Save the code, and view it in a web browser. You see a page like this:

206 parT ii integrating JavaScript into Design

4. Click the link. The JavaScript function executes. The function retrieves the <A> element’s attri-
butes and loops through them, appending them to a variable. Finally, that variable displays in
an alert() dialog box, like the partial one shown here:

Setting attributes
You saw how the getAttribute() method retrieved the values of attributes. You can also set attribute
values using the setAttribute() method.

The setAttribute() method takes two arguments or parameters: the name of the attribute you want
to change and the intended value for that attribute. Here’s an example that changes the href attribute
value, which you can also find in the companion code in the setattrib.html file:

<!doctype html>
<html>
<head>
 <title>Set Attrib</title>

 CHAPTER 12 The Document Object Model 207

</head>
<body>
Steve Suehring's Web Site
<script type="text/javascript">
 var a1 = document.getElementById("braingialink");
 alert(a1.getAttribute("href"));
 a1.setAttribute("href","http://www.microsoft.com");
 alert(a1.getAttribute("href"));
</script>
</body>
</html>

When you view this page in a web browser, you see an alert() dialog box that displays the current
value of the href attribute, as shown in Figure 12-5.

FIGURE 12-5 The initial value of the href attribute.

When the dialog box closes, the setAttribute() method executes and the href attribute changes, as
shown in Figure 12-6.

FIGURE 12-6 The new value of the href attribute.

The setAttribute() method doesn't work consistently in Internet Explorer prior to version 8.0, but a
reliable workaround is to use dot notation to access an element's properties. For example, you can set
the href in the following code in the same way you used it in the previous code example:

a1.href = "http://www.braingia.org";

If your web application doesn’t need to support earlier versions of Internet Explorer, using setAt-
tribute() and getAttribute() is preferable. Additionally, you can use the removeAttribute() method to
remove an attribute from an element entirely.

208 parT ii integrating JavaScript into Design

You’ve already seen examples of jQuery’s method for setting attributes, the attr() function. Here’s
the same page written using jQuery:

<!doctype html>
<html>
<head>
 <title>Set Attrib</title>
 <script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body>
Steve Suehring's Web
Site
<script type="text/javascript">
 alert($("#braingialink").attr("href"));
 $("#braingialink").attr("href","http://www.microsoft.com");
 alert($("#braingialink").attr("href"));
</script>
</body>
</html>

This code uses the attr() function in jQuery to both retrieve and set the href attribute.

Creating elements

You aren’t limited to interacting with the elements that already exist on a page. You can add elements
to a document using the DOM. This section examines some ways to do that.

adding text
In its most basic form, the createElement() method of the document object creates or adds an element
to a document. Here’s some example code:

var newelement = document.createElement("p");

The variable newelement now has a reference to the new element. To make the element visible,
you need to append the element to the document—although usually only after adding text to it. You
add an element to a document using the appendChild() method, as follows:

document.body.appendChild(newelement);

But what good is a <P> element if it doesn’t have any text? The appendChild() element can help
there, too, in conjunction with the createTextNode() method. You can append a text node to the <P>
element, as follows:

newelement.appendChild(document.createTextNode("Hello World"));

 CHAPTER 12 The Document Object Model 209

You can use the three lines of code you’ve seen so far at any time after the body of the document
has been declared. Here’s the code in the context of a webpage. You can find this example in the
companion code in the file create.html:

<!doctype html>
<html>
<head>
 <title>Create</title>

</head>
<body>
 <script type="text/javascript">
 var newelement = document.createElement("p");
 document.body.appendChild(newelement);
 newelement.appendChild(document.createTextNode("Hello World"));
 </script>
</body>
</html>

When viewed in a browser, the result is a simple <P> element containing the text Hello World, as
shown in Figure 12-7.

FIGURE 12-7 Using createElement, createTextNode, and appendChild() to create an element.

adding an element and setting an iD
The previous example showed how to add an element. Usually you want to set some attributes, such
as the ID for that element, as well. This code expands on the previous example to add an id attribute
(you can find this code in the companion code in the file createid.html):

<!doctype html>
<html>
<head>
 <title>Create</title>
</head>

210 parT ii integrating JavaScript into Design

<body>
 <script type="text/javascript">
 var newelement = document.createElement("p");
 newelement.setAttribute("id","newelement");
 document.body.appendChild(newelement);
 newelement.appendChild(document.createTextNode("Hello World"));
 </script>
</body>
</html>

Chapter 11 shows how to create an element using jQuery. Setting an ID would then be simply a
matter of using the attr() function on the element.

Deleting elements

You can remove nodes from a document by using the removeChild() method. Recall the code from
the previous section, which added an element. Expanding on that code by adding a few <P> ele-
ments simplifies your work with it:

<!doctype html>
<html>
<head>
 <title>Create</title>

</head>
<body>
 <script type="text/javascript">
 for (var i = 0; i < 3; i++) {
 var element = document.createElement("p");
 element.setAttribute("id","element" + i);
 document.body.appendChild(element);
 element.appendChild(document.createTextNode("Hello World, I'm Element " + i + "."));
 }
 </script>
</body>
</html>

When viewed in a web browser, the document creates a page that looks like the one in
Figure 12-8.

 CHAPTER 12 The Document Object Model 211

FIGURE 12-8 Creating and adding three elements using a for loop and the DOM.

You can then add a couple lines of code that remove one of the newly created elements. You can
use removeChild() to remove any element from your documents, not just elements that you create.
The two added lines of code are:

var removeel = document.getElementById("element1");
document.body.removeChild(removeel);

For this example, add the lines of code right after the code that creates the elements. In practice,
you can place the call to removeChild() anywhere, as long as the element has already been created.
The final code with the new lines shown in boldface type follows. You can find it in the companion
code as del.htm:

<!doctype html>
<html>
<head>
 <title>Del</title>
</head>
<body>
 <script type="text/javascript">
 for (var i = 0; i < 3; i++) {
 var element = document.createElement("p");
 element.setAttribute("id","element" + i);
 document.body.appendChild(element);
 element.appendChild(document.createTextNode("Hello World, I'm Element " + i + "."));
 }
 var removeel = document.getElementById("element1");
 document.body.removeChild(removeel);
 </script>
</body>
</html>

212 parT ii integrating JavaScript into Design

Figure 12-9 shows the result. The for loop still creates three elements, but the code above in bold
removes the middle one immediately.

FIGURE 12-9 Using removeChild() to remove an element from a document.

Here’s the final code written using jQuery. jQuery uses the remove() function to delete an element.

<!doctype html>
<html>
<head>
 <title>Del</title>
 <script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body>
 <script type="text/javascript">
 $(document).ready(function() {
 for (var i = 0; i < 3; i++) {
 $("body").append("<p id=\"element" + i + "\">Hello World, I'm Element " + i + ".</p>");
 }

 $("#element1").remove();
 });
 </script>
</body>
</html>

note The jQuery empty() function clears child elements as well.

 CHAPTER 12 The Document Object Model 213

Exercises

1. Create a document containing a paragraph of text that you create and append using the
DOM. Create a link immediately after this paragraph that links to a site of your choice, also
using the DOM. Make sure that all the elements have id attributes.

2. Create a document with any elements you like, or use an existing HTML document that
contains id attributes in its elements. Retrieve two of those elements, make changes to them,
and put them back into the document. The type of change you make depends on the type of
element you choose. For example, if you choose an <A> element, you might change the href;
if you choose a <P> element, you might change the text.

3. Create a document by using the DOM that contains a table with at least two columns and two
rows. Add some text in the table cells.

 215

C H A P T E R 1 3

JavaScript events and the browser

After completing this chapter, you will be able to

■■ Understand the legacy event model.

■■ Understand the W3C JavaScript event model.

■■ Add event handlers to a webpage by using JavaScript.

■■ Open new windows by using JavaScript.

■■ Open new tabs in a web browser.

■■ Create a timer by using JavaScript.

Understanding window events

You’ve seen event handling used a few times in earlier chapters to respond to user actions or docu-
ment events. To review, the window object’s events include mouseover() and mouseout(), and load()
and click(). These events are fairly well standardized across all browsers, but other events and event
handling are not as easy to implement. This section explores events and how you use them in
JavaScript programming.

The event models
Your first challenge in understanding events is to understand the two distinct models: the model used
by Windows Internet Explorer versions prior to version 9 and the model defined by the World Wide
Web Consortium (W3C). An older model—the earlier Document Object Model 0 (DOM 0)—includes
the events you saw throughout earlier chapters. (You can learn a little about DOM 0 in Chapter 12,
“The Document Object Model.”) DOM 0 is the most cross-browser-compatible model and is sup-
ported by all JavaScript-capable browsers. In this discussion, I provide a brief overview of the DOM 0
event model and then explore the competing W3C and Internet Explorer event models.

216 parT ii integrating JavaScript into Design

Using the DOM 0 model
The DOM 0 event model is by far the easiest model to use (as you learned in previous chapters),
and it is the most compatible one to use for event handling in JavaScript. (As mentioned earlier, it is
supported in all major web browsers.) So why not just use the DOM 0 event model everywhere? The
reason is simple: it lacks the flexibility needed for complex event handling. For example, the DOM
0 model can’t handle multiple event actions on the same element. Still, there’s nothing wrong with
using it for simple scripts, as shown throughout the book so far.

The DOM 0 event model includes several events that multiple Hypertext Markup Language (HTML)
tags raise in response to various user actions or state changes. Table 13-1 describes each event.

TABLE 13-1 DOM 0 events

Event Name Description

onblur() The element lost focus. (That is, it is no longer selected by the user.)

onchange() The element has changed (for example, a user typed into a text field) and lost focus.

onclick() The mouse clicked an element.

ondblclick() The mouse double-clicked an element.

onfocus() The element got focus.

onkeydown() A keyboard key is pressed (as opposed to released) while the element has focus.

onkeypress() A keyboard key is pressed while the element has focus.

onkeyup() A keyboard key is released while the element has focus.

onload() The element is loaded (a document, a frameset, or an image).

onmousedown() A mouse button is pressed while the element has focus.

onmousemove() The mouse is moved while the pointer is over the element.

onmouseout() The mouse is moved off or away from an element.

onmouseover() The mouse is over an element.

onmouseup() A mouse button is released.

onreset() The form element is reset, such as when a user presses a form reset button.

onresize() The window’s size is changed.

onselect() The text of a form element is selected (for file, password, text, and textarea types).

onsubmit() The form is submitted.

onunload() The document or frameset is unloaded.

newer event models: W3C and internet Explorer
The W3C codified an event model that allows powerful event handling, and almost all later versions
of major browsers support it, with the notable exception of Internet Explorer prior to version 9, which
uses a different model. Because the standard W3C event model and the earlier Internet Explorer

 CHAPTER 13 JavaScript events and the browser 217

event model differ, you must account for each in any JavaScript that uses either event handling
approach rather than only the approach provided by the DOM 0 event model.

Conceptually, the process of event handling is similar in the W3C model and Internet Explorer
model. In both models, you register the event first, associating a function with the event.

When a registered event gets triggered, the event’s function gets called. However, the location at
which the event occurs is one important difference between them.

To understand this difference, imagine a document with a <BODY> element and another element
in the body, for example, an element. If a visitor moves the mouse over the image, should the
onmouseover() event be handled first by the element or by the <BODY> element? The two
models diverge in determining where the event should be processed first.

The W3C model supports two forms for locating where the event should be handled: Event
Capture and Event Bubbling. With Event Capture, the search for a handler begins at the top level (the
document level) and proceeds downward through the DOM tree to more specific elements. If you
used Event Capture in the example from the last paragraph, an event would be processed first by the
<BODY> element and then by the element. Processing occurs in exactly the reverse order
for Event Bubbling; the element in which the event occurred gets searched for a handler first, and the
search proceeds upward from there.

As previously stated, the W3C model—and therefore all browsers that adhere to it (that is, all
browsers except older versions of Internet Explorer)—can use both forms of event handling (you
learn about this soon), whereas older versions of Internet Explorer use only Event Bubbling. With the
W3C model, you register an event by using the addEventListener() method. With the earlier Internet
Explorer model, you use attachEvent() for the same purpose. In practical terms, this means that you
need to use both methods in every script you write that handles events, choosing at runtime the one
appropriate for the browser in which the script is running—or use a library like jQuery. In practical
terms, most event handling that I see in the wild today uses a library to abstract these nuances (and
repetitive code) away. However, this being a book on JavaScript, you should see the JavaScript way.

The basic structure of the addEventListener() method is this:

addEventListener(event,function,capture/bubble);

The capture/bubble parameter is a Boolean value, where true indicates that the event should use
top-down capturing and false indicates that the event should use bubbling. Here’s a typical call to the
addEventListener() method for a Submit button. The call registers the submit event, specifying a func-
tion named myFunction() (that would be defined elsewhere in the code), and uses top-down event
capturing:

window.addEventListener("submit",myFunction(),true);

To register the same event using bubbling, you write this:

window.addEventListener("submit",myFunction(),false);

218 parT ii integrating JavaScript into Design

The attachEvent() method used in the earlier Internet Explorer model doesn’t require the third
argument, because you don’t have to decide whether to use capturing or bubbling; the earlier
Internet Explorer model offers only bubbling.

Here’s an example of registering the submit event in earlier versions of Internet Explorer, associat-
ing it with myFunction() by calling attachEvent():

window.attachEvent("onsubmit",myFunction());

You might have noticed a subtle difference in the name of the event to which the event handlers
were added—submit, as opposed to onsubmit in the DOM Level 0 model. Many of the events in the
DOM Level 2 changed names. Table 13-2 shows the names of several DOM Level 0 events and their
W3C DOM Level 2 counterparts. The DOM 2 events simply remove the word “on” from the event
name. (The earlier Internet Explorer model uses the DOM 0 names.)

TABLE 13-2 DOM Level 0 and DOM Level 2 events

DOM 0 Event DOM 2 Event

onblur() Blur

onfocus() Focus

onchange() Change

onmouseover() Mouseover

onmouseout() Mouseout

onmousemove() Mousemove

onmousedown() Mousedown

onmouseup() Mouseup

onclick() Click

ondblclick() Dblclick

onkeydown() Keydown

onkeyup() Keyup

onkeypress() Keypress

onsubmit() Submit

onload() Load

onunload() Unload

Both the W3C and earlier Internet Explorer models include methods to remove event listeners. In
the W3C model, the method is called removeEventListener() and takes the same three arguments as
addEventListener():

removeEventListener(event,function,capture/bubble)

 CHAPTER 13 JavaScript events and the browser 219

The earlier Internet Explorer model uses detachEvent() for this same purpose:

detachEvent(event,function);

You might find it necessary to stop event handling from propagating upward or downward after
the initial event handler is executed. The W3C model uses the stopPropagation() method for this pur-
pose, whereas the earlier Internet Explorer model uses the cancelBubble property.

a generic event handler
Adding event listeners for each event that you need to handle quickly can become too cumbersome.
Instead, you can use a generic event handler for this purpose so that you can abstract the cross-
browser incompatibilities. Example 13-1 shows a generic event handler. You can find this code in the
companion content, in the ehandler.js file in the Chapter13 folder.

EXAMPLE 13-1 A generic event handler

var EHandler = {};
if (document.addEventListener != "undefined") {
 EHandler.add = function(element, eType, eFunc) {
 if (eType == "load") {
 if (typeof window.onload == "function") {
 var existingOnload = window.onload;
 window.onload = function() {
 existingOnload();
 eFunc();
 } //end existing onload handler
 } else {
 window.onload = eFunc;
 }
 } else {
 element.addEventListener(eType, eFunc, false);
 }
 };

 EHandler.remove = function(element, eType, eFunc) {
 element.removeEventListener(eType, eFunc, false);
 };
}
else if (document.attachEvent) {
 EHandler.add = function(element, eType, eFunc) {
 if (eType == "load") {
 if (typeof window.onload == "function") {
 var existingOnload = window.onload;
 window.onload = function() {
 existingOnload();
 eFunc();
 } //end existing onload handler
 } else {
 window.onload = eFunc;

220 parT ii integrating JavaScript into Design

 }
 } else {
 element.attachEvent("on" + eType, eFunc);
 }
 };
 EHandler.remove = function(element, eType, eFunc) {
 element.detachEvent("on" + eType, eFunc);
 };
}

This generic event handler creates an object called EHandler (which stands for event handler),
which then has two methods added to it, add() and remove(), both available in the W3C and the
earlier Internet Explorer models. The add() method in each model determines whether the event type
is a load event, meaning that the function needs to be executed on page load. If the function does,
the add handler needs to determine whether any existing onload functions are already defined. If they
are, the handler must set the onload functions to run with the newly defined function.

Luckily, Windows Internet Explorer 9 uses the W3C compatible model, and as that new browser
version becomes more popular in the market, attachEvent will slowly be replaced. However, sites that
support earlier browsers will still need to use the older Microsoft model for years to come.

You can improve on this event handler script so that it is more suitable for situations you might
encounter when building more powerful JavaScript applications. (You can find more information
about this topic at John Resig’s website: http://ejohn.org/blog/flexible-javascript-events/.) However, a
better solution is to use a JavaScript framework or library, such as jQuery, to abstract the event model
even more.

jQuery event handling
jQuery can also be used for event handling without the need for creating your own event handling
library. Of course, you have to load up jQuery, but you were going to be doing that anyway, right?

Binding and unbinding
The .on() function connects an event handler to an event, such as a mouse click:

.on(event [, selector][, data], handler(eventObject))

In this instance, event is the event to which you want to respond, selector is an optional filter used
on the descendants of the selected element(s), data is an optional object containing additional data
to be passed into the event handler, handler is the function that you want to run in response to this
event, and eventObject is the event object being handled.

For example:

A link
$("#myLink").on("click", function() {

http://ejohn.org/blog/flexible-javascript-events/

 CHAPTER 13 JavaScript events and the browser 221

alert("clicked the link");
});

The result of this code is that after the click event is captured for the anchor tag, the page displays
an alert. Notice that this example didn’t use the optional data parameter within the call to the .on()
function.

The ehandler.js script that you saw earlier in this chapter is essentially what jQuery’s .on() function
is doing. The difference is that jQuery’s .on() function is much better at cross-browser event handling
and much more powerful than the ehandler.js script.

Although you can use .on() for event handling, jQuery also provides shortcut functions that
perform the same way as .on(). Instead of writing .on(“click”, function())..., you can just write
.click(function().... For example, you could rewrite the earlier .on() example as:

$("#myLink").click(function() {
alert("clicked the link");
});

To stop responding to events, you can unbind them using the .off() function:

.off(events, [selector], handler(eventObject)])

The events argument is the event or events to which you want to stop responding, and both selec-
tor and handler(eventObject) match the respective items used with the call to the .on() function.

Not only can you respond to events such as clicking a link, but you can also trigger events. The
trigger() function is used for this purpose. For example, consider the code in Example 13-2.

EXAMPLE 13-2 Responding to events

<!doctype html>
<html>
<head>
<title>Trigger Test</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body>
<div id="myDiv">
Here is some text.

It goes inside this div

</div>
<p>
Steve Suehring
</p>
<script type="text/javascript">
$(document).ready(function() {

$('#braingiaLink').on("click", function() {
 alert("hello");
 });

222 parT ii integrating JavaScript into Design

$('#myDiv').on("click",function() {
 $('#braingiaLink').trigger("click");
});
});
</script>

</body>
</html>

When this page is loaded into a web browser, clicking anywhere within the <DIV> element triggers
the click event for the anchor as if you had clicked the anchor itself.

note You can pass data into the trigger() function, and you can bind multiple event
 handlers to the same event by calling .on() multiple times for that event. See http://api.
jquery.com/on/ for more information about the .on() function and similar event handling
functions.

Detecting visitor information

JavaScript programming often requires browser detection—that is, the detection of which browser a
visitor to a website is using. For several years, browser detection was accomplished largely by using
the userAgent property of the navigator object. The userAgent property is available through the
navigator object and shows information about the user’s browser. However, relying on the userAgent
property is no longer recommended, because visitors can so easily forge it. In addition, maintain-
ing accurate userAgent information for every version of every browser is incredibly difficult. Even so,
userAgent detection is frequently used for redirecting to mobile sites.

With its use for mobile in mind, the userAgent property is discussed, albeit only briefly, and then
the discussion moves on to show the newer methods for determining whether the JavaScript that
you’re using will work in the visitor’s browser. This section also examines other properties of the
 navigator object that are helpful, if not 100 percent reliable.

a brief look at the userAgent property
As mentioned, the userAgent string is a property of the navigator object. It contains information
about the user’s browser. The following code, found as useragent.html in the companion content,
displays the user agent information:

<!doctype html>
<html>
<head>
<title>user agent</title>
</head>
<body>

http://api.jquery.com/on/
http://api.jquery.com/on/

 CHAPTER 13 JavaScript events and the browser 223

<script type="text/javascript">

 alert(navigator.userAgent);

</script>
</body>
</html>

If you’re using Windows Internet Explorer 10, you might see an alert like the one in Figure 13-1.

FIGURE 13-1 The userAgent property of the navigator object.

Other browsers report different information. For example, one version of Firefox reports itself
as this:

Mozilla/5.0 (Windows NT 6.2; rv:12.0) Gecko/20100101 Firefox/12.0

This string usually changes as each new version of a browser is released, which in the case of
Firefox seems like daily. If you tried to track each released version of each browser and then tried to
track which version of each browser supported which feature of JavaScript, you’d be spending a lot of
time (and possibly a lot of your employer’s or client’s time as well) maintaining that list.

A much better way to track what is and is not supported in the visitor’s browser is a technique
known as feature testing, discussed in the next section.

Feature testing
Using feature testing, sometimes referred to as object detection, a JavaScript program attempts to
detect whether the browser that is visiting the webpage supports a given feature.

Fortunately, you don’t have to test whether every function and method you want to use is sup-
ported in the visitor’s browser. The DOM Level 0 model and other earlier functions of JavaScript are
so widely supported, and their cross-browser implementations are so close, that testing for particular
features isn’t necessary. However, you must still test whether JavaScript is available, because not all
browsers support JavaScript and not all visitors have the JavaScript support option turned on.

The typeof operator is the primary mechanism used to implement feature testing. In general terms,
you use the operator as follows:

if (typeof featureName != "undefined") {
 // Do Something Fun With That Feature
}

224 parT ii integrating JavaScript into Design

Try an example. To test for the existence of the getElementById() method, which indicates that the
browser supports the more advanced DOM interface, you might use this code:

if (typeof document.getElementById != "undefined") {
 alert("getelembyid is supported");
} else {
 alert("no getelembyid support");
}

You might be tempted to skip the use of typeof within the test, and you might see examples on the
web where a feature test looks like this:

if (document.getElementById) { ... }

Unfortunately, this method of feature testing isn’t as reliable as the typeof test. The problem is that
the shorter syntax runs the method. When you omit typeof, the method or property being tested
might return 0 or false by default, which makes the test fail; that is, it appears that the browser doesn’t
support that method or property—when it actually does. Therefore, testing using typeof is safer and
more reliable.

Another way to accomplish this task that looks a bit cleaner is to use the ternary operator to set
a flag early in the code. Script that runs later can use a standard if conditional to check the flag, as
shown here:

// test for getElmementById, set getElem to the result
var getElem = (typeof document.getElementById == "function") ? true : false;

// now you can test getElem
if (getElem) {
 // We know getElementById is supported,
 // so let’s use it.
}

Keeping JavaScript away from older browsers
One of the most discouraging problems you face as a web programmer is dealing with the pres-
ence of older browsers. Writing webpages that have any sort of current look and feel and still display
reasonably well in older browsers is becoming increasingly difficult. What defines an older browser?
Ask three different web designers, and you’ll probably get three different answers. To me, an older
browser is one that is more than three years old, although I lean toward saying two years rather
than three.

Given the fact that browsers even older than Microsoft Internet Explorer 6.0 are sometimes still
in use, accepting that your code might fail in these browsers is a good idea. However, you can try
to make your code fail gracefully, although doing even that might not always be possible. I recently
installed a copy of Netscape 3 (which, if I remember correctly, was released in 1997). The browser
had trouble with most JavaScript and also had problems displaying HTML and CSS (Cascading Style
Sheets) on basic websites. This was to be expected, because that version of Netscape was released
well before many of the standards in use today were codified. The point is that no matter how hard

 CHAPTER 13 JavaScript events and the browser 225

you try, your website is probably never going to fail gracefully in really old versions of browsers. I rec-
ommend that you choose a minimum browser level to support and design for that target, keeping in
mind that the later the minimum level, the more visitors you shut out of the site. The goal is to strike a
balance between being a welcoming site and being a cutting-edge site.

There are two primary techniques for keeping JavaScript away from older browsers: inserting
HTML-style comments into the JavaScript and using the <NOSCRIPT> </NOSCRIPT> tags.

To use HTML comments in your JavaScript, you surround them within <!-- and --> marks, as shown
in this example:

<script type="text/javascript">
<!-- //Begin Comment
var helloelem = document.getElementById("hello");
alert(helloelem.innerHTML);
// End Comment-->
</script>

Unfortunately, not every browser obeys these HTML comments, so you still encounter errors
sometimes. This style of commenting, or protection, is becoming less and less common. As the old
browsers slowly get cycled out, this type of workaround isn’t really necessary.

Whatever falls between the <NOSCRIPT> </NOSCRIPT> tag pairs is displayed only when the page
detects no JavaScript support in the browser. Here’s an example of <NOSCRIPT>:

<noscript>
<p>This Web Page Requires JavaScript</p>
</noscript>

When visitors whose browsers don’t accept JavaScript visit the webpage, they see whatever falls
between the <NOSCRIPT> </NOSCRIPT> tag pair. In this example, they’d see the text “This Web Page
Requires JavaScript.” Note that using <NOSCRIPT> doesn’t halt execution or parsing of the remainder
of the document, so other HTML within the page is displayed, but using it does provide you with a
good opportunity to fail gracefully by offering a text-only page or a site map link.

I recommend keeping the use of <NOSCRIPT> to a minimum, using it only in those applications
where JavaScript is an absolute necessity for functionality, rather than in applications where your
JavaScript provides only behavioral aspects, such as rollovers. You can easily overuse JavaScript or use
it incorrectly, hindering the user experience rather than enhancing it. There’s nothing worse than to
have visitors come to your site only to have their browsers crash, lock up, or become otherwise unre-
sponsive because of some unnecessary JavaScript widget.

Tip Remember that there are several legitimate reasons that a visitor might not have
JavaScript capability, not the least of which is that she or he is using an accessible/assistive
browser or text reader. You should strive to allow text capabilities on your site and provide
a site map for usability.

226 parT ii integrating JavaScript into Design

Other navigator properties and methods
Although the userAgent string is falling out of favor, the navigator object does provide some help-
ful information that JavaScript programmers can retrieve. Chapter 9, “The Browser Object Model,”
explores the navigator object in detail, showing all the navigator object’s properties and how to
determine whether Java is enabled in the browser.

note Use the navigator object with caution. Sometimes the results might not be entirely
accurate. Worse yet, the navigator object might not be available when JavaScript isn’t sup-
ported on the visitor’s browser. For example, relying on navigator object properties for the
functionality of your page would definitely be a problem!

Opening, closing, and resizing windows

One of the most maligned uses of JavaScript is its ability to open, close, and resize browser windows.
The act of opening a browser window in response to or as part of the onload event was one of the
most frequent and annoying operations that Internet advertisers employed (and still do). Mozilla
Firefox, Opera, and others give their users the ability to block all these annoyances by default without
sacrificing usability. Windows Internet Explorer 6.0 with Service Pack 2 and later has that capability
as well.

I have yet to see an automatic pop-up window that actually enhances the usability of a website
without being intrusive. If you believe that your site requires a component that opens a new window,
I recommend rethinking the navigation before creating that component. Not only will your visitors
thank you because your site has simplified navigation and is more intuitive, but your site will also work
better because it will rely less on JavaScript, which might be disabled. Additionally, pop-up windows
typically don’t play nice in a mobile environment, possibly not working at all or making it impossible
for the user to navigate.

Despite those annoying windows, your visitors sometimes might want to open new windows in
response to events like a mouse click. For example, clicking a link might open a small side window that
allows visitors to choose an option from a menu or that displays Help text about the various options.

 CHAPTER 13 JavaScript events and the browser 227

The window object contains several methods helpful for opening, closing, and resizing browser
windows. The open() method, as you might guess, is used to open a new browser window. The basic
syntax of the open() method is this:

window.open(url, name, features)

The url parameter is a string representing the Uniform Resource Locator (URL) to load. If this
parameter is left blank, the browser opens a default about:blank page. The name parameter is a string
representing the name of the window to open. If a window with the same name is already open, the
URL opens in that named window; otherwise, a new window opens.

The features parameter is a string of comma-separated options that represents various features
you want the new window to have, such as the window’s height and width, and a scroll bar. Table 13-3
lists some of the features available. This list is not comprehensive, because browsers support differ-
ent features and feature names. See http://msdn2.microsoft.com/library/ms536651.aspx for informa-
tion about Internet Explorer, and https://developer.mozilla.org/en/DOM/window.open for information
about Firefox and the Mozilla family.

TABLE 13-3 Some features used in the method of the object

Feature Description

height The height in pixels of the new window.

left The location in pixels from the left edge of the screen where the new window is to be
placed.

location Determines whether the location bar will be displayed. This is always displayed in Internet
Explorer 9 and earlier and can be changed to always be displayed in other major browsers..

menubar Determines whether the menu bar appears in the new window but has special behavior in
Internet Explorer 7 and later where the menu bar is hidden unless revealed by the ALT key.

resizable Determines whether the window is resizable by the visitor. Firefox always allows the window
to be resized for accessibility (and just general friendliness, too).

scrollbars Determines whether scroll bars are displayed.

status Determines whether the status bar is displayed in the new window. User-configurable in
Firefox.

toolbar Determines whether the toolbar appears in the new window.

top The location in pixels from the top edge of the screen where the new window is to be
placed.

width The width in pixels of the new window.

Some browsers give users control over whether the options in Table 13-3 have any effect. For
example, attempting to hide the location bar from a new window doesn’t work in Internet Explorer or
in Firefox (depending on how the user has configured Firefox).

The close() method of the window object has no parameters. To use close(), just call it like this:

window.close()

http://msdn2.microsoft.com/library/ms536651.aspx
https://developer.mozilla.org/en/DOM/window.open

228 parT ii integrating JavaScript into Design

This method doesn’t always work reliably, so you should never assume that the window was actu-
ally closed. At best, you can hope it was.

Window opening best practices
Include in any new open windows the menus, navigational elements, and the address bar. Firefox,
Chrome, and increasingly Internet Explorer don’t allow JavaScript to disable functionality such as
resizing and interface components such as the status bar. Those elements are important for enabling
visitors to use the site and application in a way that works for them based on their needs rather than
on the developer’s needs. Including those options and designing your pages and site so that visitors
aren’t affected by those user interface elements is the best approach.

You’ll find window.open() increasingly unnecessary. With the advent of tabbed browsing, window.
open() is near the end of its useful life. The next section moves outside the realm of a JavaScript book
to show how you can open a new tab without any JavaScript.

Opening tabs: no JavaScript necessary
Actually, you don’t need any JavaScript to open a new tab, which is really what most developers are
looking for anyway. Instead, you can open a new tab using the target attribute of anchor (<A>) ele-
ments. Using the target attribute is preferable, because it won’t interfere with the visitor’s experience
in later browsers such as Firefox, Chrome, Safari, and Internet Explorer 7 or later. It also works well in
a mobile environment. However, Internet Explorer 10 in the new Windows 8 user interface will open a
new window.

Here’s an example of the target attribute in action:

Go To Microsoft

Another example to open the page in a new unnamed tab:

Go To Microsoft

resizing and moving windows
JavaScript also supports resizing the browser window. However, browsers like Firefox include an
option to prevent window resizing by JavaScript. For this reason, I strongly recommend against resiz-
ing windows using JavaScript, and this book introduces you to the methods and properties for doing
so only briefly. For more information about resizing or moving browser windows, refer to http://
support.microsoft.com/kb/287171.

Chapter 9 includes a section titled “Getting information about the screen,” which shows properties
of the window’s screen object, including availHeight and availWidth. These properties are sometimes
used to assist with changing the size of a browser window. Other helpful properties and methods in
the window object related to resizing and moving windows are listed in Table 13-4.

http://<00AD>support.microsoft.com/kb/287171
http://<00AD>support.microsoft.com/kb/287171

 CHAPTER 13 JavaScript events and the browser 229

TABLE 13-4 Selected properties and methods related to moving and resizing windows

Property/Method Description

moveBy(x,y) Move the window by the amount of x and y in pixels.

moveTo(x,y) Move the window to the coordinates specified by x and y.

resizeBy(x,y) Resize the window by the amount of x and y in pixels.

resizeTo(x,y) Resize the window to the size specified by x and y

Timers

JavaScript includes functions called timers that (as you might guess) time events or delay execution of
code by a given interval.

Four global functions are involved in JavaScript timers:

■■ setTimeout()

■■ clearTimeout()

■■ setInterval()

■■ clearInterval()

At their most basic, the two timer-related functions for setting the timer—setTimeout() and
 setInterval()—expect two arguments: the function to be called or executed and the interval. With
setTimeout(), the specified function is called when the timer expires. With setInterval(), the specified
function is called each time the timer interval has elapsed. The functions return an identifier that
you can use to clear or stop the timer with the complementary clearTimeout() and clearInterval()
functions.

Timer-related functions operate in milliseconds rather than in seconds. Keep this in mind when
using the functions. There’s nothing worse than setting an interval of 1, expecting it to execute every
second, only to find that it tries to execute 1,000 times a second.

Tip One second is 1,000 milliseconds.

Examples 13-3 and 13-4 (in the example13-3.html and example13-4.html files in the compan-
ion content) show an example of the setTimeout() function set to show an alert after three seconds.
Example 13-3 uses the ehandler.js script, and Example 13-4 uses jQuery’s .on() function.

230 parT ii integrating JavaScript into Design

EXAMPLE 13-3 An example of setTimeout()

<!doctype html>
<html>
<head>
<title>timer</title>
<script type="text/javascript" src="ehandler.js"></script>
</head>
<body id="mainBody">
<p>Hello</p>
<script type="text/javascript">
function sendAlert() {
 alert("Hello");
}
function startTimer() {
 var timerID = window.setTimeout(sendAlert,3000);
}
var mainBody = document.getElementById("mainBody");
EHandler.add(mainBody, "load", function() { startTimer(); });
</script>
</body>
</html>

Example 13-3 includes two functions, sendAlert() and startTimer(). The onload event of the page
calls the startTimer() function, which has one line that calls the setTimeout() function. The setTimeout()
function in this case calls another function called sendAlert() after 3 seconds (3,000 milliseconds).

The timerID variable contains an internal resource that points to the setTimeout() function call. You
could use this timerID variable to cancel the timer, like this:

cancelTimeout(timerID);

The setTimeout() function can accept raw JavaScript code rather than a function call; however,
using a function call is the recommended approach. Choosing to include raw JavaScript code rather
than a function call can result in JavaScript errors in some browsers.

EXAMPLE 13-4 The jQuery version of the timer example

<!doctype html>
<html>
<head>
<title>timer</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body id="mainBody">
<p>Hello</p>

 CHAPTER 13 JavaScript events and the browser 231

<script type="text/javascript">
function sendAlert() {
 alert("Hello");
}
function startTimer() {
 var timerID = window.setTimeout(sendAlert,3000);
}
$(window).load(function() {
 startTimer();
});
</script>
</body>
</html>

The jQuery version of the file begins in much the same way as Example 13-3, although obviously
loading jQuery instead of the ehandler.js file. The primary difference is in the code:

$(window).load(function() {
 startTimer();
});

This code uses the load() event of the window to start the timer by calling startTimer(). The load()
event handler function is different from the traditional $(document).ready() function that you’ve seen
throughout the book. The load() function is like ready() except that ready() waits only for the DOM to
be available, but load() waits for the DOM and all of the other elements, like images, to be available.

Events

You’ve now seen several examples of selectors and scratched the surface of functions in jQuery.
The final piece of your initial look at jQuery involves a couple more events. Just like the event han-
dling you already saw in JavaScript, jQuery enables your programs to respond to mouse clicks, form
submissions, keystrokes, and more. Unlike JavaScript, cross-browser event handling in jQuery is quite
easy. jQuery thrives in a cross-browser environment. This is especially true in event handling, which
saves you the hassle of trying to figure out how each browser will respond to certain functions.

Mouse events and hover
You already saw how to bind and handle the click event in the preceding examples, but you can also
work with mouse events such as mouseover and mouseout. One fun thing to do is to make items
disappear when a user moves the mouse over them (although doing so can lead to user frustration,
so you shouldn’t use it on a live site). Example 13-5 shows some code that makes an anchor disappear
when the mouse moves over its containing paragraph.

232 parT ii integrating JavaScript into Design

EXAMPLE 13-5 Working with mouse events

<!doctype html>
<html>
<head>
<title>Trigger Test</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
<style type="text/css">
#braingiaLink {
 border: solid 1px black;
 padding: 3px;
}
#wrapperP {
 padding: 50px;
}
</style>
</head>
<body>
<div id="myDiv">
Here is some text.

It goes inside this div

</div>
<p id="wrapperP">
Steve Suehring
</p>
<script type="text/javascript">
$(document).ready(function() {
$(‘#braingiaLink’).click(function() {
 alert("hello");
 return true;
});

$(‘#myDiv’).click(function() {
 $(‘#braingiaLink’).click();
});

$(‘#wrapperP’).mouseover(function() {
 $(‘#braingiaLink’).hide();
});

$(‘#wrapperP’).mouseout(function() {
 $(‘#braingiaLink’).show();
});

});
</script>

</body>
</html>

 CHAPTER 13 JavaScript events and the browser 233

The keys to this code are the .mouseover() and .mouseout() event handlers, which in turn use two
additional jQuery functions, .hide() and .show(). The .mouseover() and .mouseout() events are con-
nected to the paragraph with ID wrapperP. When the mouse enters this paragraph, the anchor identi-
fied by braingiaLink disappears, only to reappear when the mouse leaves the paragraph area. It’s
worth noting that the link can still be activated using keyboard navigation. Always keep in mind that
there’s more than one way around a webpage.

jQuery also has a .hover() function that performs much like a combination of the .mouseover() and
.mouseout() events. See http://api.jquery.com/hover/ for more information about the .hover() function.

Many more event handlers
As the earlier list shows, there are numerous other event handlers in jQuery—too many to cover in a
single introductory chapter on jQuery. I recommend the excellent documentation on jQuery events
available at http://api.jquery.com/category/events/.

Exercises

1. Create a webpage that contains an onclick event handler connected to a link using a DOM 0
inline event. The event handler should display an alert stating “You Clicked Here.”

2. Change the webpage created in Exercise 1 to use the jQuery .on() style of event handling and
connect the same click/onclick event to display the alert created in Exercise 1.

3. Create a webpage with a link to http://www.microsoft.com. Make that link open in a new tab.

http://api.jquery.com/hover/
http://api.jquery.com/category/events/

 235

C H A P T E R 1 4

Working with images in JavaScript

After completing this chapter, you will be able to

■■ Understand both new and old methods for creating rollover or hover images using JavaScript.

■■ Preload images using JavaScript.

■■ Create a slide show of images.

■■ Enhance image maps using JavaScript.

Working with image hovers

The term image rollover refers to changing an image when a user moves the mouse over it, to provide
visual feedback about the mouse location on the screen. The more common term for rollover is now
hover. Although this technique has been largely supplanted by Cascading Style Sheets–based solu-
tions, because this is a JavaScript book, I show you only the JavaScript methods for creating hovers.
You can still benefit from learning how JavaScript-based hovers work, even if you use Cascading Style
Sheets to create them.

Hovers take advantage of certain events that relate to mouse movement on a computer, primarily
mouseover and mouseout.

a simple hover
Placing mouseover and mouseout event handlers within the tag creates the hover effect. The
handlers display images that differ only slightly from each other. The following HTML creates a hover
effect using the old DOM event handling model:

<!doctype html>
<html>
<head>
<title>hover example</title>
</head>
<body>
<img id="home" name="img_home" src="home_default.png" alt="Home"
onmouseover="window.document.img_home.src='home_over.png'"

236 parT ii integrating JavaScript into Design

onmouseout="window.document.img_home.src='home_default.png'">
</body>
</html>

The important parts of this tag are its name (img_home); the mouseover and mouseout
events; and code that runs when those events fire. The tag’s name allows you to access the image
easily through the window.document object call, and the mouseover and mouseout events make
the action happen. When viewed in a web browser, the preceding code loads the image called
 home _ default.png, as shown in Figure 14-1.

FIGURE 14-1 The initial load of the default graphic through a webpage.

When you move the mouse over the graphic, the mouseover event fires, and the following code
changes the source of the graphic to home_over.png:

window.document.img_home.src='home_over.png'

While the mouse is over the graphic, the image changes to the one shown in Figure 14-2, in which
the direction of the gradient is reversed.

FIGURE 14-2 The graphic changes when the mouse moves over it.

 CHAPTER 14 Working with images in JavaScript 237

When the mouse moves away from the graphic, the image changes back to home_default.png,
thanks to the mouseout event, which calls this JavaScript:

window.document.img_home.src='home_default.png'

Modern hovers with jQuery
A newer method for creating hovers with JavaScript is to use the Document Object Model (DOM) and
the load event of the window object. (The load event of the window object was covered in Chapter 13,
“JavaScript events and the browser.”) With the DOM in use, when the page calls the load event, the
load handler calls a JavaScript function that populates the mouseover and mouseout events for all the
images in the document.

Using Modern hovers
Although using the DOM with the load event is called “modern hovers,” and it does accomplish
the goal of unobtrusive scripting, the technique can be somewhat cumbersome. Using the
DOM with the load event can also be slightly less compatible when used across various brows-
ers and platforms.

The pragmatist in me wants to say that using the example that was just shown is acceptable,
especially if your webpage has just a few graphics, but I feel like I’m teaching a bad practice if I
tell you to use it. Therefore, I leave it up to you to choose which approach works best for you. If
you have a lot of graphics that require the hover effect, you’ll find that this second, more cur-
rent approach, which uses a generic function to handle the hover events, is easier to maintain.

Example 14-1 works exactly the same as the example in the preceding section, but uses different
code. (See listing14-1.html in the sample code in the companion content.)

EXAMPLE 14-1 A different approach to hover

<!doctype html>
<html>
<head>
<title>hover example</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body>

<script type="text/javascript">
$(window).load(function () {
 $('#home').hover(function() {
 $("#home").attr("src","home_over.png");
 }, function() {
 $("#home").attr("src","home_default.png");

238 parT ii integrating JavaScript into Design

 });
});
</script>
</body>
</html>

The preceding code, coupled with a load event handler, creates a simple mouseover effect. The
jQuery hover() function gets called during the load event to make sure that all of the images are
ready. The hover() function takes two arguments, the function to handle the mouseover event and the
function to handle the mouseout event. With that in mind, the code loads two anonymous functions,
both named function(), which merely change the src attribute of the image.

Even though the functionality is the same as the preceding example, the code in Example 14-1 is
not very portable. This is fine if all you have is one image and its accompanying hover state, as in this
example. However, if you have a page full of images, as is more likely the case in the real world, this
code breaks. Therefore, the script needs improving.

This example code does show the basic theory of how to implement hovers. Retrieve the image
with its ID and set the hover() function to use specific functions, which in turn should set the src attri-
bute to the name of the image to use for that event. Now it’s your turn to make the function more
portable so that you can use it in the future.

This exercise uses six images (three graphics, each of which has a default and a hover image), but
the code is written to support any number of images. I included the images used in this exercise with
the downloadable code for this book, so you don’t have to reinvent the wheel just to make this exer-
cise work.

Creating portable hovers

1. Using Microsoft Visual Studio, Eclipse, or another editor, edit the file hover.html in the
Chapter14\hover sample files folder in the companion content. This folder includes six images:
home_default.png, home_over.png, about_default.png, about_over.png, blog_default.png,
and blog_over.png. The file names containing _default are the images to display initially; the
file names containing _over are the hover images.

2. Within the webpage, add the boldface code shown here into hover.html (to replace the TODO
comments):

<!doctype html>
<html>
<head>
<title>hover exercise</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body>

 CHAPTER 14 Working with images in JavaScript 239

<script type="text/javascript">
$(window).load(function () {
 $('img').hover(function() {
 $(this).attr("src",$(this).attr("id") + "_over.png");
 }, function() {
 $(this).attr("src",$(this).attr("id") + "_default.png");
 });
});
</script>
</body>
</html>

3. View the page in a browser. You should see a page similar to the following screen shot. If you
run into problems, make sure that each of the images and jQuery are located in the current
directory, because that’s where the tag is looking for them.

4. Move the mouse over the buttons one at a time. Each image should change to its correspond-
ing hover image. Here’s what the screen looks like when the mouse is over the Blog graphic:

240 parT ii integrating JavaScript into Design

a closer look at the exercise
The portable hover exercise you performed in the preceding section shows a better hover implemen-
tation. Like the example that preceded it, the code used in the exercise creates a function and then
calls it using the window.load event. Unlike the preceding example, the exercise’s code gathers all the
images using the jQuery $(‘img’) selector and then adds a mouseover and a mouseout event handler
to each through the hover() function. This code, as shown in the exercise, is as follows:

 $('img').hover(function() {
 $(this).attr("src",$(this).attr("id") + "_over.png");
 }, function() {
 $(this).attr("src",$(this).attr("id") + "_default.png");
 });
 });

This code still changes the src attribute of the image, now by using the $(this) selector. A notable
change is that the id attribute is retrieved and used as the name of the src attribute.

Making sure that the file names and the tags’ id attributes match is important. For exam-
ple, here’s one of the tags from the example:

<p></p>

Because these file names are generated in the event handlers based on the element IDs, the file
names for the About graphic must be about_default.png and about_over.png. Similarly, the image file
names must be home_default.png and home_over.png for the Home graphic, and so on.

note Of course, you could use an entirely different naming convention—the important
issue is that the naming convention you use for the hover graphics files must match what
you coded in the JavaScript.

The hover() function shown in the exercise gathers all the images on the page. For real-world
pages, that means there’s a good chance that the images collection list contains graphics and images
that don’t have a hover action. Therefore, a further improvement on this script is to create a condi-
tional to check whether the graphic should be a hover. One of the simplest solutions is to refine the
naming convention for hover graphics to include the word hover in the tag’s name attribute,
like this:

<p></p>

The new code iteration uses a jQuery selector to examine whether the name attribute starts
with the word hover. If it does, the code continues the hover action; otherwise, it simply returns.
Figure 14-3 shows an example page with four images, three of which have hover behavior.

 CHAPTER 14 Working with images in JavaScript 241

FIGURE 14-3 An example with only certain images being hover capable.

When you move the mouse over any of the top three images on the page, the hover image
loads. However, because the name of the last image doesn’t contain the word hover, it doesn’t get a
mouseover or mouseout event handler. Here’s the full code (but note that the script still needs a little
more improvement before it’s done). This code is included in the companion content sample files in
as hover-jquery.html.

<!doctype html>
<html>
<head>
<title>hover regular expression</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body>

<script type="text/javascript">
$(window).load(function () {
 $('img[name^=hover]').hover(function() {
 $(this).attr("src",$(this).attr("id") + "_over.png");
 }, function() {
 $(this).attr("src",$(this).attr("id") + "_default.png");
 });
});
</script>
</body>
</html>

The differences between this code and the earlier code are slight and exist within the selector
and the elements in the HTML. Instead of simply $(‘img’) as the selector, the selector is now
$(‘img[name^=hover]’), which indicates that the name needs to begin with the string “hover” to
match.

See Also See http://api.jquery.com/category/selectors/ for more information about selectors with jQuery.

http://api.jquery.com/category/selectors/

242 parT ii integrating JavaScript into Design

Preloading images

You might have noticed an issue when you first began working with the hover examples in the previ-
ous section. When the hover image is first loaded, it can take a second to render. This delay occurs
because the image has to be loaded through the web server and network before it is displayed in the
browser.

This isn’t a huge issue; it’s more of an annoyance when using the application across a super-fast
network connection. However, the lag is noticeable in real-world web applications, especially for users
who might be running on slow dial-up connections or through a mobile device. Luckily, you can pre-
load the images using a little JavaScript. Preloading stores the images in the browser’s cache so that
they are available almost instantly when a visitor moves the mouse over an image.

The basic premise behind preloading an image is to create an image object and then set the src()
property on that object, pointing to the image you’d like to preload. What you do with that object
after you set the src() property isn’t important. JavaScript makes the call to load the image asynchro-
nously, so the rest of the script continues to execute while the image loads in the background.

The asynchronous nature of preloading does have an important implication when you’re working
with multiple images: you must create a new image object for each image that you need to preload.
If you have a batch of hover images, as is often the case, each image needs its own object and its own
src() property set.

The final version of the hover code incorporates preloading. Example 14-2 shows the hover script
and the HTML page for context; the preload elements of the code are shown in boldface. This code is
included in the companion content sample files in the hover\preload folder.

EXAMPLE 14-2 Preloading images with jQuery

<!doctype html>
<html>
<head>
<title>hover regular expression</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>

<body>

<script type="text/javascript">

 CHAPTER 14 Working with images in JavaScript 243

$(window).load(function () {
 $('img[name^=hover]').each(function() {
 var image = $('').attr('src',$(this).attr("id") + "_over.png");
 });

 $('img[name^=hover]').hover(function() {
 $(this).attr("src",$(this).attr("id") + "_over.png");
 }, function() {
 $(this).attr("src",$(this).attr("id") + "_default.png");
 });
});
</script>
</body>
</html>

Example 14-3 shows the same preload script, written with the use of the ehandler.js script and
JavaScript, for environments where jQuery is not available. This code is found in the preload-js folder
in Chapter 14’s companion content.

EXAMPLE 14-3 Preloading and hover

<!doctype html>
<html>
<head>
<title>Rollover</title>
<script type="text/javascript" src="ehandler.js"></script>
<script type="text/javascript">
function rollover() {
 var images = document.getElementsByTagName("img");
 var imgLength = images.length;
 var preLoad = [];
 for (var i = 0; i < imgLength; i++) {
 if (images[i].id.match(/rollover/)) {
 preLoad[i] = new Image();
 preLoad[i].src = images[i].id + "_over.png";
 EHandler.add(images[i],"mouseover", function(i) {
 return function() {
 images[i].src = images[i].id + "_over.png";
 };
 }(i));
 EHandler.add(images[i],"mouseout", function(i) {
 return function() {
 images[i].src = images[i].id + "_default.png";
 };
 }(i));
 }
 }
}

244 parT ii integrating JavaScript into Design

</script>
</head>
<body>
<p><img id="rollover_home" name="img_home" src="rollover_home_default.png"
 alt="Home"></p>
<p><img id="rollover_about" name="img_about" src="rollover_about_default.png"
 alt="About"></p>
<p><img id="rollover_blog" name="img_blog" src="rollover_blog_default.png"
 alt="Blog"></p>
<p></p>
<script type="text/javascript">
var bodyEl = document.getElementsByTagName("body")[0];
EHandler.add(bodyEl,"load", function() { rollover(); });
</script>
</body>
</html>

To review, the code from Example 14-3 uses the image tag naming convention to construct the
image names, so all the same warnings about synchronizing the id attributes with your JavaScript
code discussed earlier in this chapter apply.

Working with slide shows

You can use JavaScript to create a “slide show” effect in which one image is swapped for another in
the browser window. For the purposes of this chapter, you build a visitor-controlled slide show—that
is, one in which the visitor controls the image changes by clicking buttons to move forward and
backward through them, as opposed to a timed slide show, in which the application swaps the images
automatically after a certain interval.

Creating a slide show
You can implement slide show functionality through JavaScript in several ways. One approach might
be to use a for loop to iterate through the images, but this section illustrates another, more straight-
forward slide show variation.

Most slide shows are rather simple in design, although I’ve seen some overly complex ones.
Example 14-4, which I explain, shows the slide show in its first version, with just forward capability.
The first versions of the slide show use simple JavaScript along with the ehandler.js script. A later ver-
sion in this chapter will utilize jQuery.

 CHAPTER 14 Working with images in JavaScript 245

EXAMPLE 14-4 A basic (but slightly incomplete) slide show

<!doctype html>
<html>
<head>
<title>Slideshow</title>
<script type="text/javascript" src="ehandler.js"></script>
<script type="text/javascript">
var images = ['home_default.png','about_default.png','blog_default.png','logo.
png'];
function nextImage() {
 var img = document.getElementById("slideimage");
 var imgname = img.name.split("_");
 var index = imgname[1];
 if (index == images.length - 1) {
 index = 0;
 } else {
 index++;
 }
 img.src = images[index];
 img.name = "image_" + index;
}
</script>
</head>
<body>
<p></p>
<form name="slideform">
<input type="button" id="nextbtn" value="Next">
</form>
<script type="text/javascript">
var nextBtn = document.getElementById("nextbtn");
EHandler.add(nextBtn,"click",function() { nextImage(); });
</script>
</body>
</html>

I might as well discuss the HTML portion of this code, because it’s short. Here it is:

<p></p>
<form name="slideform">
<input type="button" id="nextbtn" value="Next">
</form>

This HTML code displays an image and sets its ID and name to specific values that will be used
later by the JavaScript. Next, it creates a form button that has a value of Next. That’s all there is to it.

The JavaScript portion of the code first links to the EHandler object script developed in Chapter 13:

<script type="text/javascript" src="ehandler.js"></script>

246 parT ii integrating JavaScript into Design

The heart of the code that moves forward through the slide show is next:

var images = ['home_default.png','about_default.png','blog_default.png','logo.png'];
function nextImage() {
 var img = document.getElementById("slideimage");
 var imgname = img.name.split("_");
 var index = imgname[1];
 if (index == images.length - 1) {
 index = 0;
 } else {
 index++;
 }
 img.src = images[index];
 img.name = "image_" + index;
}

The JavaScript creates an array of images.

note The image array created in the preceding script contains only the file names, so
the image files must be located in the same directory as the JavaScript being executed.
Otherwise, the image file names within this array will also need to include the appropriate
path(s).

Next, a script in the body of the document connects the nextImage() function to the click event of
the Next button by using the EHandler.add() method:

<script type="text/javascript">
var nextBtn = document.getElementById("nextbtn");
EHandler.add(nextBtn,"click",function() { nextImage(); });
</script>

At this point, when a user clicks the Next button, the script will call the nextImage() func-
tion. The nextImage() function retrieves the image object from the HTML tag, using the
 getElementById() function. Next, it splits the name attribute of that image at the underscore character,
so the function can obtain the number from the ending characters of the name attribute. It stores
that number in the index variable.

The next portion of the code performs a conditional test that checks whether the index value
equals the length of the images array minus 1. If this condition is true, the user has reached the end
of the slide show, so the script sets the index value back to 0 to start over. If the slide show has not yet
reached the end of the available images, the code increments the index value by 1.

The final two lines of JavaScript set the src attribute to the new image and set its name appropri-
ately so that the next time the code goes through the function, the current index can be determined.

 CHAPTER 14 Working with images in JavaScript 247

Moving backward
You might think that adding a button to enable backward traversal through the slide show should just
be a matter of copying and pasting the code you just created, altering it slightly to implement the
Previous button’s functionality. In most instances, you’d be right. However, consider the special case
of trying to go backward from the first image. Contending with that scenario makes using a Previous
button a bit more challenging.

This next exercise reuses some of the graphics you’ve already seen in previous exercises and
examples in this chapter. They might make the slide show rather boring, so feel free to replace them
with whatever other images you have handy. I didn’t select four images for this example for any spe-
cial reason, so you’re welcome to use more. However, be sure to use at least three images so that you
can fully test the backward and forward capabilities of the JavaScript.

Creating a previous button

1. Using Visual Studio, Eclipse, or another editor, edit the file slideshow.html in the Chapter14
\slideshow-js sample files folder, which you can find in the companion content.

2. Within that page, replace the TODO comments in slideshow.txt with the boldface code
shown here:

<!doctype html>
<html>
<head>
<title>Slideshow</title>
<script type="text/javascript" src="ehandler.js"></script>
<script type="text/javascript">
var images = ['home_default.png','about_default.png','blog_default.png','logo.png'];
function nextImage() {
 var img = document.getElementById("slideimage");
 var imgname = img.name.split("_");
 var index = imgname[1];
 if (index == images.length - 1) {
 index = 0;
 } else {
 index++;
 }
 img.src = images[index];
 img.name = "image_" + index;
}
</script>
</head>
<body>
<p></p>
<form name="slideform">
<input type="button" id="nextbtn" value="Next">
</form>
<script type="text/javascript">
var nextBtn = document.getElementById("nextbtn");
EHandler.add(nextBtn,"click",function() {
 nextImage();

248 parT ii integrating JavaScript into Design

});
</script>
</body>
</html>

3. View the page in a web browser. You should see a page like this:

4. Click Next to scroll through all the images. Notice that the slide show wraps back to the first
image after the slide show gets to its end.

5. Now alter the code to add a Previous button (the new code and HTML is shown in boldface):

<!doctype html>
<html>
<head>
<title>Slideshow</title>
<script type="text/javascript" src="ehandler.js"></script>
<script type="text/javascript">
var images = ['home_default.png','about_default.png','blog_default.png','logo.png'];
function nextImage() {
 var img = document.getElementById("slideimage");
 var imgname = img.name.split("_");
 var index = imgname[1];
 if (index == images.length - 1) {
 index = 0;
 } else {
 index++;
 }
 img.src = images[index];
 img.name = "image_" + index;
}
function prevImage() {
 var img = document.getElementById("slideimage");
 var imgname = img.name.split("_");
 var index = imgname[1];
 if (index == 0) {
 index = images.length - 1;
 } else {
 index--;
 }

 CHAPTER 14 Working with images in JavaScript 249

 img.src = images[index];
 img.name = "image_" + index;
}

</script>
</head>
<body>
<p></p>
<form name="slideform">
<input type="button" id="prevbtn" value="Previous">
<input type="button" id="nextbtn" value="Next">
</form>
<script type="text/javascript">
var nextBtn = document.getElementById("nextbtn");
var prevBtn = document.getElementById("prevbtn");
EHandler.add(nextBtn,"click",function() {
 nextImage();
});
EHandler.add(prevBtn,"click",function() {
 prevImage();
});
</script>
</body>
</html>

6. View the page in a browser again. You see that there’s a Previous button.

7. Test the page’s functionality by using both buttons in any combination to move backward and
forward through the slide show.

The code for this exercise added a new button within the HTML for the Previous function:

<input type="button" id="prevbtn" value="Previous">

In addition, the JavaScript added a new function called prevImage() to go backward through the
images:

function prevImage() {
 var img = document.getElementById("slideimage");
 var imgname = img.name.split("_");

250 parT ii integrating JavaScript into Design

 var index = imgname[1];
 if (index == 0) {
 index = images.length - 1;
 } else {
 index--;
 }
 img.src = images[index];
 img.name = "image_" + index;
}

The code is strikingly similar to the nextImage() function, except for the conditional. If the index
is 0, the slide show is at the first image; therefore, the function needs to loop back to the last image.
Otherwise, the code moves backward by one index, showing the previous image.

a jQuery slide show
There are many versions of slide show plugins for jQuery, offering varying levels of functionality and
complexity. The one shown here mirrors the functionality seen in the previous section to provide a
Previous button and a Next button. The code shown in Example 14-5 still creates a function for load-
ing the next and previous images but does so with the help of a jQuery selector. Two other notable
changes are to the id and name attributes of the element and to the use of the jQuery on()
function for event handling.

EXAMPLE 14-5 A simple jQuery slide show

<!doctype html>
<html>
<head>
<title>Slideshow</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
<script type="text/javascript">
var images = ['home_default.png','about_default.png','blog_default.png','logo.
png'];
function nextImage() {
 var index = $('img[name=slideimage]').attr("id");
 if (index == images.length - 1) {

 index = 0;
 } else {
 index++;
 }
 $('img[name=slideimage]').attr("src",images[index]);
 $('img[name=slideimage]').attr("id",index);
}
function prevImage() {
 var index = $('img[name=slideimage]').attr("id");
 if (index == 0) {
 index = images.length - 1;
 } else {
 index--;

 CHAPTER 14 Working with images in JavaScript 251

 }
 $('img[name=slideimage]').attr("src",images[index]);
 $('img[name=slideimage]').attr("id",index);
}
</script>
</head>
<body>
<p></p>
<form name="slideform">
<input type="button" id="prevbtn" value="Previous">
<input type="button" id="nextbtn" value="Next">
</form>
<script type="text/javascript">
$(window).load(function() {
 $("#prevbtn").on("click",function() {
 prevImage();
 });
 $("#nextbtn").on("click",function() {
 nextImage();
 });
});
</script>
</body>
</html>

See Also I’ve had good luck deploying the jQuery Cycle plug-in for more advanced slide shows. See
http://jquery.malsup.com/cycle/ for more information about Cycle. Another popular slide show is SlidesJS at
http://slidesjs.com/.

Working with image maps

Image maps are images that have particular areas defined to behave in specific ways, such as link-
ing to another document. Image maps are frequently used in maps to pick out the country or region
in which the visitor resides. They also are used within menus, although less so with the advent of
Cascading Style Sheets.

Unfortunately, I’m not nearly a good enough artist to draw a map of the Earth. Instead, I cre-
ated a wildly out-of-scale representation of a small piece of the night sky facing north from
44.52 degrees North latitude, -89.58 degrees West longitude, during the summer months. This
graphic is included within the sample code for this chapter (in the companion content) and is called
 nightsky _ map_default.gif.

In the illustration shown in Figure 14-4 are four constellations: Ursa Minor, Cepheus, Draco, and
Cassiopeia.

http://jquery.malsup.com/cycle/
http://slidesjs.com/

252 parT ii integrating JavaScript into Design

FIGURE 14-4 A small piece of the night sky as seen from Stevens Point, Wisconsin.

I made this graphic into an image map so that when visitors click any of the constellations, they’re
taken to the Wikipedia page about that constellation. The code for this image map is shown in
Example 14-6 (and is included in the sample files in the Chapter 14 folder in the companion content).

EXAMPLE 14-6 An image map for the night sky graphic

<!doctype html>
<html>
<head>
<title>Night Sky</title>
<script type="text/javascript">
</script>
</head>
<body>
<p><img id="nightsky" name="nightsky" src="nightsky_map_default.gif" isMap
useMap="#sky" alt="The Night Sky"></p>
<p><map name="sky">
<area coords="119,180,264,228" alt="Ursa Minor" shape="RECT"
 href="http://en.wikipedia.org/wiki/Ursa_Minor">
<area coords="66,68,193,170" alt="Draco" shape="RECT"
 href="http://en.wikipedia.org/wiki/Draco">
<area coords="36,170,115,246" alt="Draco" shape="RECT"
 href="http://en.wikipedia.org/wiki/Draco">
<area coords="118,249,174,328" alt="Draco" shape="RECT"
 href="http://en.wikipedia.org/wiki/Draco">

 CHAPTER 14 Working with images in JavaScript 253

<area coords="201,47,298,175" alt="Draco" shape="RECT"
 href="http://en.wikipedia.org/wiki/Cepheus_(constellation)">
<area coords="334,95,389,204" alt="Cassiopeia" shape="RECT"
 href="http://en.wikipedia.org/wiki/Cassiopeia_(constellation)">
</map></p>
</body>
</html>

Example 14-6 creates a simple image map using pixel coordinates that represent small rectangu-
lar shapes for each constellation and using three rectangles to account for the constellation Draco’s
shape and tail. This code alone is functional and creates a working image map, but you can enhance it
with JavaScript.

The <AREA> tag of an image map supports mouseover and mouseout events. Using these events
and some JavaScript, you can improve the usability of the image map. For example, when a visitor
moves the mouse over one of the mapped areas, you could load a new image that highlights the con-
stellation. The following code demonstrates using the mouseover and mouseout events in this manner.
Example 14-7 shows the code.

EXAMPLE 14-7 An image map with JavaScript functionality

<!doctype html>
<html>
<head>
<title>Night Sky</title>
<script type="text/javascript" src="ehandler.js"></script>
<script type="text/javascript">
function loadConst() {
 var areas = document.getElementsByTagName("area");
 var areaLength = areas.length;
 for (var i = 0; i < areaLength; i++) {
 EHandler.add(areas[i],"mouseover", function(i) {
 return function() {
 document.getElementById("nightsky").src = "nightsky_
map_" +
 areas[i].id + ".gif";
 };
 }(i));
 EHandler.add(areas[i],"mouseout", function(i) {
 return function() {
 document.getElementById("nightsky").src =
 "nightsky_map_default.gif";
 };
 }(i));
 } //end for loop
} // end function loadConst
</script>
</head>
<body>

254 parT ii integrating JavaScript into Design

<p><img id="nightsky" name="nightsky" src="nightsky_map_default.gif" isMap
useMap="#sky"
alt="The Night Sky"></p>
<p><map name="sky">
<area id="ursaminor" coords="119,180,264,228" alt="Ursa Minor" shape="RECT"
 href="http://en.wikipedia.org/wiki/Ursa_Minor">
<area id="draco" coords="66,68,193,170" alt="Draco" shape="RECT"
 href="http://en.wikipedia.org/wiki/Draco">
<area id="draco" coords="36,170,115,246" alt="Draco" shape="RECT"
 href="http://en.wikipedia.org/wiki/Draco">
<area id="draco" coords="118,249,174,328" alt="Draco" shape="RECT"
 href="http://en.wikipedia.org/wiki/Draco">
<area id="cepheus" coords="201,47,298,175" alt="Cepheus" shape="RECT"
 href="http://en.wikipedia.org/wiki/Cepheus_(constellation)">
<area id="cassie" coords="334,95,389,204" alt="Cassiopeia" shape="RECT"
 href="http://en.wikipedia.org/wiki/Cassiopeia_(constellation)">
</map></p>
<script type="text/javascript">
var bodyEl = document.getElementsByTagName("body")[0];
EHandler.add(bodyEl,"load", function() { loadConst(); });
</script>
</body>
</html>

When you view the page in a web browser, as you move the mouse over each constellation, the
constellation’s outline appears, as shown in Figure 14-5. The JavaScript that enhances the image map
is really just a variation of the mouseover code you saw earlier in this chapter, although it reacts to
moving the mouse over <AREA> elements rather than elements:

var areas = document.getElementsByTagName("area");

An obvious improvement to this script would be to preload all the rollover images for the image
map. (You do this later in one of the chapter exercises.) Another improvement would be to convert
this to jQuery.

note The HTML used in this example isn’t entirely valid according to the HTML standard,
because the <AREA> tags for the Draco constellation all use the same id value. To make
this HTML valid, each tag would need its own id value. However, this would complicate the
JavaScript because each ID would need to be split or otherwise parsed to make sure that
Draco’s outline is loaded; otherwise, you’d need to load three different images or find some
other workaround.

 CHAPTER 14 Working with images in JavaScript 255

FIGURE 14-5 Adding JavaScript to the image map to implement a rollover.

Exercises

1. Create a preloaded rollover image, making sure to keep the JavaScript functions separate
from the HTML.

2. Using the image map example from this chapter (or an image map of your own if you prefer),
preload all the images used within the image map so that they don’t need to be downloaded
when the visitor moves the mouse over the different areas of the map.

 257

C H A P T E R 1 5

Using JavaScript with web forms

After completing this chapter, you will be able to

■■ Understand how to validate the input to a web form using JavaScript.

■■ Work with radio buttons, select boxes, and check boxes, both to get their values and to set
their state.

■■ Provide feedback based on validation, both through an alert() dialog box and inline within the
document.

■■ Understand the limitations of JavaScript form validation, and see an example of validation
gone wrong.

JavaScript and web forms

JavaScript has been used with web forms for a long time—typically, to quickly verify that a user has
filled in form fields correctly before sending that form to the server, a process called client-side valida-
tion. Prior to JavaScript, a browser had to send the form and everything in it to the server to make
sure that all the required fields were filled in, a process called server-side validation.

important When using JavaScript, you must perform server-side validation, just in case a
user has disabled JavaScript or is purposefully doing something malicious.

Validation with JavaScript
Remember the alert() function you examined in earlier chapters, which was used to illustrate simple
examples? It’s back. The alert() function is sometimes used to provide user feedback during form vali-
dation, although newer techniques use Cascading Style Sheets (CSS) and the Document Object Model
(DOM) to display friendlier feedback.

258 parT i integrating JavaScript into Design

A webpage with a basic form might look like the one in Figure 15-1.

FIGURE 15-1 A basic web form.

When a user submits this form, the JavaScript code in the background checks to make sure that the
Name text box was filled in. When filled out correctly, with the name “Steve,” for example, the page
displays the entered name, as shown in Figure 15-2.

FIGURE 15-2 When the web form is filled out correctly, the alert displays a greeting.

If a user fails to enter any data in the Name text box, the script displays an alert() dialog box indi-
cating that the field is required, as you can see in Figure 15-3.

FIGURE 15-3 The form displays an alert when the Name text box is empty.

The code that does all this follows. You can find it in the example1.html file in the companion con-
tent. The file includes the Hypertext Markup Language (HTML) shown here:

<!doctype html>
<html>
<head>
<title>A Basic Example</title>
<script type="text/javascript" src="ehandler.js"></script>

 CHAPTER 15 Using JavaScript with web forms 259

<script type="text/javascript">
function formValid(eventObj) {
 if (document.forms[0].textname.value.length == 0) {
 alert("Name is required.");
 if (eventObj.preventDefault) {
 eventObj.preventDefault();
 } else {
 window.event.returnValue = false;
 }
 return false;
 } else {
 alert("Hello " + document.forms[0].textname.value);
 return true;
 }
}
</script>
</head>
<body>
<p>A Basic Form Example</p>
<form action="#">
<p>Name (Required): <input id="textbox1" name="textname" type="text" /></p>
<p><input id="submitbutton1" type="submit" /></p>
<script type="text/javascript">
var formEl = document.getElementsByTagName("form")[0];
EHandler.add(formEl,"submit", function(eventObj) { formValid(eventObj); });
</script>
</form>
</body>
</html>

The JavaScript within the <HEAD> element first links to the event handler script ehandler.js, which
was developed in Chapter 13, “JavaScript events and the browser.” Next, it defines a function called
formValid() to process the input from the simple form, as shown in the following code:

function formValid(eventObj) {
 if (document.forms[0].textname.value.length == 0) {
 alert("Name is required.");
 if (eventObj.preventDefault != "undefined") {
 eventObj.preventDefault();
 } else {
 window.event.returnValue = false;
 }
 return false;
 } else {
 alert("Hello " + document.forms[0].textname.value);
 return true;
 }
}

Within the formValid() function, an if conditional test uses the document.forms[] array. By examin-
ing the first index value (0) of that array, the code finds the only form on this webpage. The condi-
tional tests whether the length of the input element’s value property on the form is 0. If it is, the script
indicates the error using an alert() dialog box. If it is not, it displays whatever is in the input element’s
value property.

260 parT i integrating JavaScript into Design

The return value is important. When the submit or click event handlers are called and return
false, the browser halts the form submission process. This is why returning false is important when
validation fails. Without returning false, the default action is to continue and submit the form. You
can stop the default action in most browsers by calling the preventDefault() method. However,
 preventDefault() is not available in Windows Internet Explorer prior to version 9, so the script executes
a conditional test to see first whether the preventDefault() method is available. If it is, the script calls
 preventDefault(); otherwise, the script sets the returnValue property of the window.event object to
false to account for Internet Explorer.

The next bit of JavaScript, which appears in the <BODY> HTML element, adds the submit event to
the form by using the EHandler event handler script:

var formEl = document.getElementsByTagName("form")[0];
EHandler.add(formEl,"submit", function(eventObj) { formValid(eventObj); });

Notice that to retrieve the form, the formValid() function uses the first index value of the
 document . forms[] list, whereas the var formEl definition uses the getElementsByTagName method.
Both of these approaches work fine when only one form is on the page. You’ll also frequently see
script that accesses the form through its name, as shown in the next section.

Validation with jQuery
jQuery form validation is a bit less complex than validation with plain JavaScript. Recreating the
same functionality from example1.html by using jQuery results in the code you see here (found as
 example1-jquery.html in the companion content).

<!doctype html>
<html>
<head>
<title>A Basic Example</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
 $("#myForm").submit(function(eventObj) {
 if ($("#textbox1").val() == "") {
 alert("Name is required.");
 eventObj.preventDefault();
 return false;
 } else {
 alert("Hello " + $("#textbox1").val());
 return true;
 }
 });
});
</script>
</head>
<body>
<p>A Basic Form Example</p>
<form id="myForm" action="#">
<p>Name (Required): <input id="textbox1" name="textname" type="text" /></p>
<p><input id="submitbutton1" type="submit" /></p>

 CHAPTER 15 Using JavaScript with web forms 261

</form>
</body>
</html>

This code first includes jQuery instead of ehandler.js, and then the code attaches a function that
is fired when the document has been loaded. This function is the ready() function, and you’ll use it
frequently. Within the ready() function, another function is attached to the form’s submit event. (An
id attribute was added to the form tag to help make the jQuery selector easier.) The if conditional is
essentially the same as you saw in the first example. The exception is that the jQuery preventDefault()
function is used, along with returning false, to prevent the form from submitting. However, in Internet
Explorer prior to version 9, you should check for the existence of the preventDefault() function. You
can do so with a conditional such as if (eventObj.preventDefault != "undefined"). Doing
so will keep the browser from showing a JavaScript error.

Notable also is use of the val() function. The val() function in jQuery enables you to either retrieve
the value, as is the case in the if conditional, or set the value too, as you’ll see in the next section.

Working with form information

You can access all individual elements of web forms through the DOM. The exact method for access-
ing each element differs depending on the type of element. For text boxes and select boxes (also
known as drop-downs), the value property holds the text that a visitor types in or selects. This is
accessed using the value property when using JavaScript or with the val() function when using jQuery.

You use a somewhat different approach from value to determine the state of radio buttons and
check boxes, which this section explains.

Working with select boxes
A select box holds groups of options. Here’s an example of the HTML used to create a select box. The
full page will be shown later.

<form id="starform" action="">
Select A Constellation:
<select name="startype" id="starselect">
<option selected="selected"> </option>
<option value="Aquila">Aquila</option>
<option value="Centaurus">Centaurus</option>
<option value="Canis Major">Canis Major</option>
<option value="Canis Minor">Canis Minor</option>
<option value="Corona Borealis">Corona Borealis</option>
<option value="Crux">Crux</option>
<option value="Cygnus">Cygnus</option>
<option value="Gemini">Gemini</option>
<option value="Lyra">Lyra</option>
<option value="Orion">Orion</option>
<option value="Taurus">Taurus</option>
<option value="Ursa Major">Ursa Major</option>
<option value="Ursa Minor">Ursa Minor</option>

262 parT i integrating JavaScript into Design

</select>
</form>

This code produces a select box like the one shown in Figure 15-4.

FIGURE 15-4 A select box based on the HTML example.

When a user selects an option, the select box’s value property is set to the value of the particular
option chosen. For this example, the select box named startype holds in its value property whatever
the visitor selects. With JavaScript, you can access this property as follows:

document.forms["starform"].startype.value

With jQuery, you access the value like this:

$("#starselect").val();

For this particular example, you need to connect an event handler to the change event of the
select box, which you can do with the help of the change event handler function in jQuery. The
change event triggers a function each time the selection in the select box changes, such as when
the user selects an option using the drop-down menu. The page attaches the change event to the
<SELECT> element.

EXAMPLE 15-1 Attaching a change event to a <SELECT> element using jQuery

$(document).ready(function() {
 $("#starselect").change(function(eventObj) {
 alert($("#starselect").val());
 });
});

This code uses the jQuery ready() function and the jQuery change() function to add a function to
the change event of the <SELECT> element. The code then retrieves the value through the <SELECT>
element’s ID, starselect, and displays it in an alert.

This bit of JavaScript simply shows the value selected from the drop-down menu. For example,
choosing Ursa Minor from the drop-down menu causes the alert() dialog box in Figure 15-5 to be
shown.

 CHAPTER 15 Using JavaScript with web forms 263

FIGURE 15-5 Choosing a constellation through a form and then sending an alert() dialog box.

note The finished code for this example is in the selectbox.html file, which is included with
the Chapter 15 companion code.

The HTML for the select box includes an attribute named selected, which indicates which option is
shown. The example selects an empty option so that the initial value of the select box is blank:

<option selected="selected"> </option>

It’s also possible to select an option using JavaScript and the DOM. Programmatically selecting
options is common on forms that have multiple inputs, where one choice automatically causes other
options to be selected.

In the following exercise, you build a web form that a pizza company might use to take orders. The
company makes just a few special pizzas: one with vegetables; one with a variety of meats; and one
that is Hawaiian style, with ham and pineapple toppings. The company would like a webpage with
three buttons to help their pizza makers keep track of the pizza types ordered. The buttons preselect
the main topping on the pizza.

Selecting an option with JavaScript

1. Using Microsoft Visual Studio, Eclipse, or another editor, edit the file pizza.html in the
Chapter14 sample files folder (in the companion content).

2. Within the page, add the code shown here in boldface type (this is in pizza.txt in the compan-
ion content):

<!doctype html>
<html>
<head>
 <title>Pizza</title>
 <script type="text/javascript" src="jquery-1.7.2.min.js"></script>
 <script type="text/javascript">
 function flip(pizzatype) {
 if (pizzatype.value == "Veggie Special") {
 $("#topping").val("veggies");
 } else if (pizzatype.value == "Meat Special") {
 $("#topping").val("meat");
 } else if (pizzatype.value == "Hawaiian") {

264 parT i integrating JavaScript into Design

 $("#topping").val("hampineapple");
 }
 }
 </script>
</head>
<body>
<form id="pizzaform" action="#">
<p>
<input id="vegbutton" type="button" name="special_veg" value="Veggie Special">
<input id="meatbutton" type="button" name="special_meat" value="Meat Special">
<input id="hawbutton" type="button" name="special_hawaiian" value="Hawaiian">
</p>
Main Topping: <select id="topping" name="topping">
<option value="cheese" selected="selected">Cheese</option>
<option value="veggies">Veggies</option>
<option value="meat">Meat</option>
<option value="hampineapple">Ham & Pineapples</option>
</select>
</form>
<script type="text/javascript">
 $(document).ready(function() {
 $('input[name^=special]').each(function() {
 $(this).on("click",function() {
 flip(this);
 });
 });
 });
</script>
</body>
</html>

3. View the page within a web browser. You’ll see a page like this:

4. Choose one of the buttons. (Notice that the select box for Main Topping changes accordingly.)

 CHAPTER 15 Using JavaScript with web forms 265

The heart of the example is twofold, the click event handler and the flip() function. Each input
element that begins with the string special is selected with a jQuery selector. These are then looped
through with the jQuery each() function, and a click event handler is added to each using the jQuery
on() function. The click event handler calls the flip() function. The resulting code looks like this:

 $(document).ready(function() {
 $('input[name^=special]').each(function() {
 $(this).on("click",function() {
 flip(this);
 });
 });
 });

The flip() function looks like this:

 function flip(pizzatype) {
 if (pizzatype.value == "Veggie Special") {
 $("#topping").val("veggies");
 } else if (pizzatype.value == "Meat Special") {
 $("#topping").val("meat");
 } else if (pizzatype.value == "Hawaiian") {
 $("#topping").val("hampineapple");
 }
 }

This function examines the value of the pizzatype variable that gets passed into the function and
then, using the conditional, changes the value of the select box, called topping, accordingly.

The preceding example shows how to obtain information from a form and how to set information
within a form. Although the form doesn’t look like much, and the pizza company isn’t making many
pizzas right now, it’s growing because of the popularity of its pizzas. Future examples in this chapter
expand on this form.

Working with check boxes
The previous example showed select boxes, and you saw text boxes used earlier in this chapter, too.
Another type of box—a check box—allows users to select multiple items. The pizza-ordering scenario
introduced in the previous section serves as a good example for illustrating the check box.

Recall that in the initial pizza ordering system, when the pizza order taker selected one of three
pizza types, the “Main Topping” select box changed to reflect the main ingredient of the pizza.
However, allowing more flexibility, such as more pizza types, would be nice.

Figure 15-6 shows a new pizza prep form. The order taker can now select from a variety of ingre-
dients, in any combination.

266 parT i integrating JavaScript into Design

FIGURE 15-6 Changing the order prep form to include check boxes.

Selecting the various ingredients and clicking the Prep Pizza button displays the selected pizza
toppings on the screen, as shown in Figure 15-7.

FIGURE 15-7 Ordering a pizza through the new form and adding elements by using jQuery.

The code for this functionality is shown in Example 15-2 (pizza-checkbox.html in the companion
content).

 CHAPTER 15 Using JavaScript with web forms 267

EXAMPLE 15-2 Using check boxes with the order form

<!doctype html>
<html>
<head>
 <title>Pizza</title>
 <script type="text/javascript" src="jquery-1.7.2.min.js"></script>
 <script type="text/javascript">
 function prepza() {
 $("#orderheading").text("This pizza will have:");
 $("input[name=toppingcheck]:checked").each(function() {
 $("#orderheading").append('<p id="newelement' + $(this).val() + '">'
 + $(this).val() + '</p>');
 });
 return false;
 }
 </script>
</head>
<body>
<form id="pizzaform" action="#">
<p>Toppings:</p>
<input type="checkbox" id="topping1" value="Sausage"
 name="toppingcheck">Sausage

<input type="checkbox" id="topping2" value="Pepperoni"
 name="toppingcheck">Pepperoni

<input type="checkbox" id="topping3" value="Ham"
 name="toppingcheck">Ham

<input type="checkbox" id="topping4" value="Green Peppers"
 name="toppingcheck">Green Peppers

<input type="checkbox" id="topping5" value="Mushrooms"
 name="toppingcheck">Mushrooms

<input type="checkbox" id="topping6" value="Onions"
 name="toppingcheck">Onions

<input type="checkbox" id="topping7" value="Pineapple"
 name="toppingcheck">Pineapple

<p><input type="button" id="prepBtn" name="prepBtn" value="Prep Pizza"></p>
<p id="orderheading"></p>
</form>
<script type="text/javascript">
 $(document).ready(function() {
 $("#prepBtn").on("click",function() {
 return prepza(this);
 })
 });
</script>
</body>
</html>

The heart of the page is the function prepza(), which starts by gathering the number of check
boxes contained within the form pizzaform. These are selected using the name attribute toppingcheck
along with the :checked filter, all part of a jQuery selector, as follows:

 $("input[name=toppingcheck]:checked").each(function() {

268 parT i integrating JavaScript into Design

Each of the checked elements is looped through, and a new <P> element is created. Like the previ-
ous example, a click event handler is added using jQuery’s on() function.

Keep this example in mind, because one of the exercises at the end of the chapter asks you to
combine it with functionality that automatically selects toppings when a user presses a button, as in
the select box example you saw earlier.

Working with radio buttons
Radio buttons also create a group of options, but unlike check boxes, only one radio button from the
group can be selected at any given time. In the context of the pizza restaurant example, visitors might
use a radio button to select the type of crust for the pizza: thin, deep dish, or regular. Because a pizza
can have only one kind of crust, using radio buttons for this selection type makes sense. Adding radio
buttons to select a crust type results in a page like that shown in Figure 15-8.

FIGURE 15-8 Adding radio buttons for selecting the crust type.

The HTML that adds these radio buttons and a simple table to hold them looks like this (the full
code for this example is found in pizza-radio.html in the companion content):

<table>
<tr><td>Toppings</td><td>Crust</td></tr>
<tr>
 <td><input type="checkbox" id="topping1" value="Sausage"
 name="toppingcheck">Sausage</td>
 <td><input type="radio" name="crust" value="Regular"
 checked="checked" id="radio1">Regular</td>
</tr>
<tr>
 <td><input type="checkbox" id="topping2" value="Pepperoni"
 name="toppingcheck">Pepperoni</td>

 CHAPTER 15 Using JavaScript with web forms 269

 <td><input type="radio" name="crust" value="Deep Dish"
 id="radio2" />Deep Dish</td>
</tr>
<tr>
 <td><input type="checkbox" id="topping3" value="Ham"
 name="toppingcheck">Ham</td>
 <td><input type="radio" name="crust" value="Thin" id="radio3">Thin</td>
</tr>
<tr>
 <td><input type="checkbox" id="topping4" value="Green Peppers"
 name="toppingcheck">Green Peppers</td>
 <td></td>
</tr>
<tr>
 <td><input type="checkbox" id="topping5" value="Mushrooms"
 name="toppingcheck">Mushrooms</td>
 <td></td>
</tr>
<tr>
 <td><input type="checkbox" id="topping6" value="Onions"
 name="toppingcheck">Onions</td>
 <td></td>
</tr>
<tr>
 <td><input type="checkbox" id="topping7" value="Pineapple"
 name="toppingcheck">Pineapple</td>
 <td></td>
</tr>
</table>

The code that processes the radio buttons is similar to the code you saw that processed the check
boxes. The main difference is that radio buttons all share the same name and logical grouping, mean-
ing that they are grouped together and only one can be checked at a time. The code for processing
the radio buttons is added to the prepza() function, like this:

 $("#orderheading").append('<p>' + $("input[name=crust]:checked").val() + ' Crust</p>');

Pre-validating form data

JavaScript is frequently used to validate that a given form field is filled in correctly. You saw an exam-
ple of this behavior earlier in this chapter, when a form asked you to fill in a name. If you didn’t put
anything in the field, an error alert appeared. JavaScript is good at pre-validating data to make sure
that it resembles valid input. However, JavaScript is poor at actually validating the data that makes it
to your server.

You should never assume that what gets to the server is valid. I can’t count the number of web
developers whom I’ve heard say, “We have a JavaScript validation on the data, so we don’t need to
check it on the server.” This assumption couldn’t be further from the truth. People can and do have
JavaScript disabled in their browsers; and people also can send POST-formatted and GET-formatted
data to the server-side program without having to follow the navigation dictated by the browser

270 parT i integrating JavaScript into Design

interface. No matter how many client-side tricks you employ, they’re just that—tricks. Someone will
find a way around them.

The bottom line is that you can and should use JavaScript for pre-validation. Pre-validation is a
small sanity check that can be helpful for providing quick feedback to users when your code notices
something blatantly wrong with the input. But you must perform the actual validation of all input on
the server side, after users have submitted their input completely.

This section looks at some ways to use JavaScript for pre-validation, but to frame that discussion, I
first illustrate the dangers of using JavaScript as the sole validator for your site.

hacking JavaScript validation
This section uses a server-side program to create a catalog order system that has three simple ele-
ments: a product, a quantity, and a price. The items to be sold are blades of grass from my lawn. My
area has had an extremely dry summer, so there’s not much lawn left at this point—lots of weeds and
sand, but not much of what I would call proper lawn. Because blades of grass from my lawn are so
rare, orders are limited to three blades per household, and the price is high. I limit the order quantity
by using some JavaScript code.

I created a page to sell the blades of grass. When viewed in a browser, the page looks like
Figure 15-9.

FIGURE 15-9 A small catalog order form.

 CHAPTER 15 Using JavaScript with web forms 271

Here’s the HTML and JavaScript to produce the page (also present in the /validating folder in the
file grass.html file, in the companion content). Note also that you won’t be able to submit the form
because the form action, catalog.php, doesn’t actually exist. The action of the form isn’t that impor-
tant to this example.

<!doctype html>
<html>
<head>
<title>Catalog Example</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body>
<form name="catalogform" id="catalogform" action="catalog.php" method="POST">
<p>Order Blades of Grass From Steve Suehring's Lawn</p>
<div id="lawndiv"><img alt="steve suehring's lawn is dead" src="lawn.png"
id="lawnpic">
</div>
<p>Description: Steve is terrible at lawn care, therefore there's not much
 grass on his lawn. Quantities are extremely limited.</p>
<p>Price: $100.00 per blade</p>
<p>Quantity to order (Limit 3 per Household): <input type="text" name="quantity"></p>
<p><input type="submit" value="Place Order"></p>
</form>
<script type="text/javascript">
 $(document).ready(function() {
 $("#catalogform").on("submit",function(event) {
 if ($("input[name=quantity]").val() > 3) {
 alert("Limit 3 per Household.");
 event.preventDefault();
 return false;
 } else {
 return true;
 }
 });
 });
</script>
</body>
</html>

note One improvement you could make to this validation would be to ensure that the visi-
tor doesn’t try to order fewer than one blade of grass, either!

With JavaScript enabled in my browser, the user’s attempt to order a quantity of three or fewer
blades of grass is acceptable, so the form gets submitted to the server-side script, which handles the
request and returns an order total, shown in Figure 15-10.

272 parT i integrating JavaScript into Design

FIGURE 15-10 Ordering a quantity of three blades of grass or fewer gives the expected results, including an order
total.

If the user goes back to the page, still with JavaScript enabled, and attempts to order a quantity of
four blades of grass, he or she sees an alert() dialog box, like the one shown in Figure 15-11.

FIGURE 15-11 An error occurs through JavaScript when the user attempts to order more than three blades.

So far, so good. Now imagine that I disabled JavaScript in my browser. There’s no noticeable
change in the page when I go to the order form, so the page looks exactly like the one in Figure
15-9. However, I’m now able to order a quantity of 1,500. Simply entering 1500 into the quantity and
clicking Place Order results in the server-side web form happily receiving and processing the order, as
shown in Figure 15-12.

FIGURE 15-12 Because JavaScript is disabled, nothing validated this order before it hit the server.

 CHAPTER 15 Using JavaScript with web forms 273

Because no validation existed on the server side, this input was perfectly valid, and the order could
be processed. The only problem is that I don’t have 1,500 blades of grass on my lawn (I counted), so I
can’t possibly fulfill this order.

You might be tempted to dismiss this scenario as contrived, but it represents an all-too-common
occurrence in web applications. In fact, this example is relatively tame compared to some situations
in which a site actually lets a visitor change the price of an item during the ordering process and
never bothers to validate that input—because “no one will ever do that.” Well, people have done that
before, and they will again—if you don’t stop them.

You might be tempted to try to solve the problem by requiring that all visitors have JavaScript
enabled in their browsers before they can place an order—but that doesn’t work. You can attempt to
figure out if JavaScript is enabled, but you can never be 100 percent certain.

The only correct way to solve this issue is to validate and to enforce valid rules on the server side.
The back-end script should check the business rule of the quantity limitation. Doing this won’t be a
problem the vast majority of the time, but it takes only that one time—and then I’d be outside trying
to dig up 1,500 blades of grass for my customers.

This section showed how easy it is to bypass JavaScript validation by simply turning off JavaScript
in the browser. The next section shows you how to use JavaScript for pre-validation. JavaScript should
be used only for pre-validation and never as the sole means of ensuring that input is valid.

note If you’ve disabled JavaScript in your browser, now’s a good time to turn it back on.

Validating a text field
At the beginning of this chapter, you saw one example of how to validate a text field. If the field
wasn’t filled in, an alert() dialog box appeared. In this section, you see how to provide feedback inline,
next to the form field, rather than using an alert() dialog box.

The following code achieves this. (You can find this code in the sample file grass-inline.html in the
companion content.) If you followed the previous section’s example and turned off JavaScript, be sure
to turn it back on before trying this example!

<!doctype html>
<html>
<head>
<title>Catalog Example</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body>
<form name="catalogform" id="catalogform" action="catalog.php" method="POST">
<p>Order Blades of Grass From Steve Suehring's Lawn</p>
<div id="lawndiv"><img alt="steve suehring's lawn is dead" src="lawn.png"
id="lawnpic">
</div>

274 parT i integrating JavaScript into Design

<p>Description: Steve is terrible at lawn care, therefore there's not much
 grass on his lawn. Quantities are extremely limited.</p>
<p>Price: $100.00 per blade</p>
<p>Quantity to order (Limit 3 per Household): <input type="text" name="quantity"></p>
<p><input type="submit" value="Place Order"></p>
</form>
<script type="text/javascript">
 $(document).ready(function() {
 $("#catalogform").on("submit",function(event) {
 if ($("input[name=quantity]").val() > 3) {
 $("input[name=quantity]").after(' Limit 3 per \
 household');
 $("#errorSpan").css("background-color","grey");
 event.preventDefault();
 return false;
 } else {
 return true;
 }
 });
 });
</script>
</body>
</html>

Tip It’s worth noting that the JavaScript validation in these last examples uses the submit
event to trigger validation. The submit event of the entire form is preferred over the click
event of the Submit button, because the form’s submit event fires regardless of whether
the visitor clicks the Submit button or presses the Enter key on the keyboard. Welcome to
JavaScript programming!

Basically, this code doesn’t do anything that you haven’t already seen done. The code just checks
whether the form is valid. If the form is not valid, the code creates and appends an HTML span ele-
ment with the text “Limit 3 per Household,” as shown in Figure 15-13, rather than show an alert()
dialog box. The code does set a CSS property using the jQuery css() function, which provides a nice
lead-in to the next chapter, which discusses CSS and JavaScript.

 CHAPTER 15 Using JavaScript with web forms 275

FIGURE 15-13 Providing inline feedback on a webpage rather than an alert() dialog box.

Exercises

1. Create a web form that displays an alert() dialog box based on a select box input type.

2. Add a set of radio buttons to the pizza form exercise seen earlier in this chapter to accept
three pizza sizes: small, medium, and large. Display the results along with the result of the
pizza order.

3. Redesign the pizza order system to add the buttons from the original pizza example, enabling
the order taker to select the Veggie Special, Meat Special, or Hawaiian pizza types. These but-
tons should then select the correct topping check boxes for the particular type of pizza to be
made. For the Veggie Special pizza, select Green Peppers, Mushrooms, and Onions. For the
Meat Special pizza, select Sausage, Pepperoni, and Ham; and for the Hawaiian pizza, select
Pineapple and Ham.

 277

C H A P T E R 1 6

JavaScript and CSS

After completing this chapter, you will be able to

■■ Understand the basics of Cascading Style Sheets (CSS).

■■ Understand the relationship between JavaScript and CSS.

■■ Use JavaScript to change the style of an individual element.

■■ Use JavaScript to change the style of a group of elements.

■■ Use JavaScript to provide visual feedback on a web form using CSS.

What is CSS?

Using CSS, you can specify the look and feel of a webpage: you can apply color, fonts, and layout to
the elements of a page.

Figure 16-1 shows a basic webpage. It’s fairly boring—or at least the layout is.

FIGURE 16-1 A basic webpage with no styles applied.

By using CSS, you can add styling that improves the look of the page in Figure 16-1 without
altering the page’s content. For example, you can change the font for the heading and emphasize a
particular portion of the page using some boldface text markup, as shown in Figure 16-2.

278 parT ii integrating JavaScript into Design

FIGURE 16-2 The same webpage from Figure 16-1 with CSS styles applied to it.

Using properties and selectors
The basic structure of a CSS statement is a list of CSS property names, each followed by a colon and
then its value, as in the following example:

property: value

The style attribute is one of many different properties you can set. In Figure 16-2, for example, the
font-weight CSS property changed to boldface for the second line. You can find a full list of proper-
ties and their acceptable values on the World Wide Web Consortium (W3C) website at http://www.
w3.org/TR/CSS21/propidx.html.

You can apply CSS properties to a group of document elements based on the element type (<P>,
<H1>, <A>, and so on), or to a subset of elements by specifying the class or id attribute values of the
element(s). Collectively, these groupings are known as selectors.

A selector tells CSS to which element or elements the specified properties and values should be
applied. The basic structure for CSS statements with a selector is as follows:

selector { property: value; }

For example, the code to apply the Arial font to all <H1> elements within the document looks like
this:

h1 { font-family: arial; }

http://www.w3.org/TR/CSS21/propidx.html
http://www.w3.org/TR/CSS21/propidx.html

 CHAPTER 16 JavaScript and CSS 279

Although applying a style to a whole element type is often useful, you will run across situations in
which you want to style some elements of a certain type but not others, or you want to style elements
of the same type in different ways. You do this more selective styling by using the class or id attri-
butes of an element. These attributes enable granular control over the display of any elements within
the document. For example, the document might have many <P> elements, but you want to give only
certain <P> elements a boldface font. By using a class attribute with the appropriate CSS, you can
give the <P> elements belonging to that class a specific style. For example, to apply a boldface font
to all elements with a class of boldParagraphs, you write the CSS like this:

.boldParagraphs { font-weight: bold; }

Notice that class selectors start with a period. The boldface style is then applied to any HTML ele-
ment that includes a class attribute with the “boldParagraphs” value:

class="boldParagraphs"

Here’s a complete tag example:

<p class="boldParagraphs">This would be bold text.</p>

You can gain even more granular control with the id attribute, which enables you to select a
specific element with its particular ID and apply a style to it, as was done in the example shown in
Figure 16-2. Both the text “JavaScript Step by Step is a book by Steve Suehring, published by Microsoft
Press” and the text “The book emphasizes standards-based JavaScript that works on multiple platforms
through different browsers” are enclosed within <P> elements. However, the first sentence is given an
ID of tagline, which allows it to be given a boldface font through a CSS.

Here’s the Hypertext Markup Language (HTML):

<p id="tagline">JavaScript Step by Step is a book by Steve Suehring, published by Microsoft
Press.</p>

And the CSS:

#tagline { font-weight: bold; }

Note that individual ID selectors start with a hash symbol (#).

applying CSS
Several approaches exist for applying styles to a document using CSS, including the following:

■■ You can apply a style directly to an HTML element within the element itself.

■■ You can include a <STYLE> element within the <HEAD> portion of a document.

■■ You can link to an external CSS file, in much the same way you link to JavaScript in external
files.

280 parT ii integrating JavaScript into Design

By far the best approach is to use an external CSS file—just as the best practice with JavaScript
is to use an external JavaScript file. Using external CSS promotes reusability and greatly simplifies
ongoing maintenance of the site. Suppose that you manage a site with hundreds of pages, and your
boss calls telling you that the new design for the company now requires the font to change for page
headings. If the site uses a common external CSS file, the change is quick and easy, and you can make
the change by modifying only a single file. If the CSS is contained in each document, such a change
can be quite time-consuming.

There’s much more to the subject of CSS than a JavaScript book can realistically cover. If you’re
unfamiliar with CSS, you can find more information on the “CSS Overviews and Tutorials” page (http://
msdn2.microsoft.com/library/ms531212.aspx) on the Microsoft website.

The relationship between JavaScript and CSS

You can use JavaScript to manipulate document styles dynamically using the Document Object Model
(DOM) 2 (which you encountered earlier in Chapter 12, “The Document Object Model”). Using the
DOM, you can retrieve an element by its tag name or ID and then set that element’s style property.

For example, the heading text shown in Figure 16-1 is contained in an <H1> element. If you
give that <H1> element a descriptive ID, such as heading, you can retrieve it using JavaScript’s
 getElementById() method or with the # selector in jQuery. You then use the style property of the ele-
ment to retrieve its style object, which is JavaScript’s way of altering the style of an element. Here’s an
example that changes the style to use a different font:

var heading = document.getElementById("heading");
heading.style.fontFamily = "arial";

The jQuery way is to use the css() function, like so:

$("#heading").css("font-family","arial");

Setting element styles by iD
Using getElementById() and the style object to set the style for an element, as you just saw, is an easy
and effective way to change a style, as is the css() function. You set styles individually by using their
JavaScript style name, which is usually similar to—but not always the same as—the corresponding
CSS property. In JavaScript, the style property name is usually the same as the official CSS style name
when the property is a single word, such as margin; however, when the CSS property is a hyphenated
word, such as text-align, the property name becomes textAlign. Notice that the hyphen was removed
and an uppercase letter used to separate the main word from the subordinate words within the name.
Spelling a property name in this way is called camelCase.

Table 16-1 shows selected CSS properties and their JavaScript counterparts.

http://msdn2.microsoft.com/library/ms531212.aspx
http://msdn2.microsoft.com/library/ms531212.aspx

 CHAPTER 16 JavaScript and CSS 281

TABLE 16-1 CSS and JavaScript property names compared

CSS Property JavaScript Property

background background

background-attachment backgroundAttachment

background-color backgroundColor

background-image backgroundImage

background-repeat backgroundRepeat

border border

border-color borderColor

color color

font-family fontFamily

font-size fontSize

font-weight fontWeight

height height

left left

list-style listStyle

list-style-image listStyleImage

margin margin

margin-bottom marginBottom

margin-left marginLeft

margin-right marginRight

margin-top marginTop

padding padding

padding-bottom paddingBottom

padding-left paddingLeft

padding-right paddingRight

padding-top paddingTop

position position

float styleFloat (in Windows Internet Explorer); cssFloat (in other
browsers and beginning with Internet Explorer 9)

text-align textAlign

top top

visibility visibility

width width

One common use of JavaScript is to validate form entries. Using CSS with JavaScript can help you
avoid using alert() dialogs and instead provide visual feedback directly in the page, right next to the
area of the form that is filled out incorrectly. The next exercise shows you how to implement this
feature.

282 parT ii integrating JavaScript into Design

Using CSS and JavaScript for form validation

1. Using Microsoft Visual Studio, Eclipse, or another editor, edit the file form.html in the
Chapter16 sample files folder (in the companion content). That code looks like this:

<!doctype html>
<html>
<head>
<title>Form Validation</title>
</head>
<body>
<form name="formexample" id="formexample" action="#">
<div id="citydiv">
 City: <input id="city" name="city">
</div>
<div>
 <input id="submit" type="submit">
</div>
</form>
</body>
</html>

2. View the page in a web browser. The page should look like this:

3. Create a JavaScript source file in the same folder where you saved the form.html file. Name
this new JavaScript source file form.js.

4. Within form.js, place the following code (found as form_js.txt in the companion content). If
you like, you can change the value against which the city is being validated to a city other
than Stevens Point (my hometown). Save the file.

$(document).ready(function() {
 $("#formexample").on("submit",function(event) {
 if ($("#city").val() != "Stevens Point") {
 $("#citydiv").css("font-weight","bold");
 $("#citydiv").css("border","1px solid black");

 CHAPTER 16 JavaScript and CSS 283

 event.preventDefault();
 return false;
 } else {
 return true;
 }
 });
});

5. Reopen form.html, and alter it to add a reference to the external JavaScript file and jQuery.
The form.html file should look like this (changes shown in boldface):

<!doctype html>
<html>
<head>
<title>Form Validation</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
<script type="text/javascript" src="form.js"></script>
</head>
<body>
<form name="formexample" id="formexample" action="#">
<div id="citydiv">
 City: <input id="city" name="city">
</div>
<div>
 <input id="submit" type="submit">
</div>
</form>
</body>
</html>

6. Reload form.html in your browser. Within the City text field, type the word test and click
Submit Query. You should immediately see the label City change to boldface and a border get
added around the div.

7. Change the input for the City text field to Stevens Point (or whatever you used for the value
in step 5), and click Submit Query. The background changes, and the field is empty. This
is because the form continues along its submission path. (In this case, the form doesn’t do
anything.)

The code used in this example is merely a variation on code used earlier in the book with the addi-
tion of an external JavaScript file to perform the validation and provide the feedback through CSS.
Inside the external JavaScript file is the validation code, which first retrieves the text input element
from the form. Next, this field is examined to see whether its value matches Stevens Point. If the value
isn’t Stevens Point, the code changes the font-weight style property of the text field to boldface and
adds a border property.

The problem with this approach is that the CSS styling for the element is now set within the
JavaScript code. Maintenance is far easier when you keep markup, styles, and behavior separate. You
can improve this example by setting a style with an element type selector or by creating a common
error class in the CSS and then applying that error class using the JavaScript code. The next sections
examine each of these approaches in turn.

284 parT ii integrating JavaScript into Design

Setting element styles by type
Although setting an element’s style by ID is a common approach to changing styles in JavaScript, you
might also find it necessary to set properties on all the elements of a particular type.

Recall the screenshots shown earlier in this chapter, Figure 16-2 in particular. Example 16-1 shows
the HTML for that page, found in css1.html in the companion content.

EXAMPLE 16-1 The HTML for Figure 16-2

<!doctype html>
<html>
<head>
<title>JavaScript Step by Step</title>
<style type="text/css">
h1 { font-family: arial; }
#tagline { font-weight: bold; }
</style>
</head>
<body>
<h1 id="heading">JavaScript Step by Step</h1>
<p id="tagline">JavaScript Step by Step is a book by Steve Suehring, published
by Microsoft Press.</p>
<p>The book emphasizes standards-based JavaScript that works on multiple
platforms through different brow
ers.</p>
</script>
</body>
</html>

Notice two <P> elements in Example 16-1. The first <P> element has a style applied to it,
 font-weight: bold. You can use JavaScript to apply additional styles to all <P> elements. Consider the
code in Example 16-2, which adds some JavaScript code (shown in boldface type) to change the <P>
element’s font family.

EXAMPLE 16-2 Using JavaScript plus HTML to change element style

<!doctype html>
<html>
<head>
<title>JavaScript Step by Step</title>
<style type="text/css">
h1 { font-family: arial; }
#tagline { font-weight: bold; }
</style>
</head>
<body>
<h1 id="heading">JavaScript Step by Step</h1>

 CHAPTER 16 JavaScript and CSS 285

<p id="tagline">JavaScript Step by Step is a book by Steve Suehring, published by
Microsoft Press.</p>
<p>The book emphasizes standards-based JavaScript that works on multiple
platforms
through different browsers.</p>
<script type="text/javascript">
 var pElements = document.getElementsByTagName("p");
 for (var i = 0; i < pElements.length; i++) {
 pElements[i].style.fontFamily = "arial";

 }
</script>
</body>
</html>

When viewed in a web browser, the page shows that the two <P> elements are in the Arial font, as
depicted in Figure 16-3.

The JavaScript used for this example is rather simple insofar as it uses functions that you’ve
already seen throughout the book. First, it retrieves the <P> elements using the DOM’s
 getElementsByTagName() method and stores them in a variable called pElements. Then it iterates over
the pElements variable list using a for loop, changing each element’s style.fontFamily property to Arial.

FIGURE 16-3 Using JavaScript to change the font of several elements at once.

The code, written with jQuery, looks like this (found in css2-jq.html in the companion content):

$("p").css("font-family","arial");

Setting CSS classes with JavaScript
In keeping with the development guideline to separate content and markup from style (the CSS)
and behavior coding (JavaScript), an even better solution for changing styles of elements is to create
a class in the CSS markup and then, where necessary, apply that class using JavaScript rather than

286 parT ii integrating JavaScript into Design

change specific attributes such as font-weight and size using JavaScript. This section shows how to
both add and remove CSS classes from elements, using both JavaScript and jQuery.

Recall that you create a CSS class like this:

.errorClass {
 font-weight: bold;
 border: 1px solid black;
}

You can apply that class through JavaScript using the className property, like this:

var tagLineElement = document.getElementById("tagline"); //retrieve the tagline element
tagLineElement.className += "errorClass";

Notice the use of the += operator within this code. The operator causes the class to be added to
any existing classes to which the element might already belong rather than overwrite classes that were
already applied classes.

jQuery’s addClass() function is used to add a class. Using jQuery to add a class for the HTML ele-
ment with the id tagline looks like this:

$("#tagline").addClass("errorClass");

With JavaScript, removing a class from an element involves the replace() method and regular
expressions. You retrieve the element as before, and then you retrieve the list of classes to which the
element belongs by using the className property. Finally, you replace the class name you want to
remove by using a regular expression:

var tagLineElement = document.getElementById("tagline"); //retrieve the tagline element
tagLineElement.className = tagLineElement.className.replace(/\berrorClass\b/,"");

This example removes the errorClass class name from the className property of the
 tagLineElement with the help of the regular expression. The regular expression looks for a word
boundary (\b), followed by the string errorClass, followed by another word boundary (\b). It replaces
any match with an empty string (““).

As you might expect, jQuery’s version is simpler. The removeClass() function is used to remove a
class. Again, using that tagline element as an example:

$("#tagline").removeClass("errorClass");

 CHAPTER 16 JavaScript and CSS 287

jQuery also has a function called toggleClass(), which either adds or removes the specified class,
depending on whether the class is already applied to the element. For example, if the errorClass class
wasn’t already applied to the tagline element, this code would add it:

$("#tagline").toggleClass("errorClass");

However, if the class was already applied, it could be toggled off or removed with that same line of
code.

retrieving element styles with JavaScript
The aggregate styles applied to a given element are also accessible using JavaScript; however,
the method for retrieving the styles differs between Internet Explorer and other browsers.
For most browsers (including Internet Explorer 9 and later), you retrieve the styles using the
 getComputedStyle() method; for Internet Explorer earlier than version 9, you use the currentStyle array
property. The style retrieved is the final style applied, because it is the composite style calculated
from all possible CSS locations, including external style sheet files and all CSS styles applied within the
document. You’ll see the jQuery way shortly.

Example 16-3 shows an example of retrieving the computed CSS color property of an element with
the ID of heading. In this example, the heading is an <H1> element:

<h1 style="font-family: arial; color: #0000FF;" id="heading">JavaScript Step by Step</h1>

In Example 16-3, an alert() dialog box displays the result.

EXAMPLE 16-3 Using JavaScript to retrieve a CSS color property

var heading = document.getElementById("heading");
if (typeof heading.currentStyle != "undefined") {
 var curStyle = heading.currentStyle.color;
else if (typeof window.getComputedStyle != "undefined") {
 var curStyle =
 document.defaultView.getComputedStyle(heading,null).
 getPropertyValue("color");
}
alert(curStyle);

When you view the result through a web browser, you see an alert() dialog box, as shown in
Figure 6-4. The getComputedStyle() method accepts two parameters: the element to retrieve and a
pseudo-element. In most cases, you use only the element itself, so you can ignore the second param-
eter by setting it to null, as shown in the example. This entire code is found as example16-3.html in
the companion content.

288 parT ii integrating JavaScript into Design

FIGURE 16-4 The currently applied style for an element.

note Firefox returns rgb(0, 0, 255) for this same code to represent the color value.

jQuery uses the css() function to retrieve the current value for a given property. You’ve seen the
css() function already used to set a given CSS property. The same JavaScript code that you saw for
retrieving the current property is condensed to this with jQuery:

alert($("#heading").css("color"));

Exercises

1. Create a basic HTML document that uses a style sheet, either within the document itself or
through an external file. Make sure the page has at least two <P> elements and one <H1>
element. Give each of the elements ID attributes.

2. Use JavaScript to alter the style of one of the <P> elements, changing its color property to
blue.

3. Use JavaScript or jQuery to alter the style of all the <P> elements to change their visibility to
hidden. (Refer to Table 16-1 for assistance on the property for visibility.)

4. Use JavaScript or jQuery to retrieve the current style for the <P> element’s visibility, and dis-
play the current visibility setting using an alert() dialog box.

 289

C H A P T E R 1 7

jQuery effects and plug-ins

After completing this chapter, you will be able to

■■ Understand how to install jQuery UI.

■■ See how to create a sample jQuery UI page.

You’ve seen how jQuery is used to help JavaScript programming by alleviating many of the mun-
dane tasks and helping to make some of the more difficult tasks easy. jQuery has a strong and active
plug-in community as well. These plug-ins work alongside jQuery to provide specialized functional-
ity to help solve specific problems. For example, there are plug-ins for helping with form validation,
plug-ins for photo slide shows, and plug-ins to create enhanced visual effects. It’s the enhanced visual
effects that will be the focus of this chapter. The jQuery UI plug-in will be examined in this chapter.

Installing jQuery UI

jQuery UI is a set of customizable JavaScript and CSS files that enable advanced visual and behavioral
effects on a webpage. Using jQuery UI, you can create enhanced drag-and-drop-like effects, sliders,
and much more, all through an interface that operates just like other jQuery functions.

Because jQuery UI is a set of JavaScript and CSS files, installing it is a bit more involved than just
installing jQuery, which is a single JavaScript file. That said, the installation is still relatively easy, and in
this section you’ll see just how to do it.

Obtaining jQuery Ui
jQuery UI is downloaded from http://jqueryui.com. At the jQuery UI home page, you’ll see a link to
download. Inside that link you have the opportunity to build a custom download. You’d do this so
that you can use only the effects that you need, thereby reducing the code footprint and, along with
that, reducing the number of potential bugs and the size of the files themselves.

note Like jQuery itself, jQuery UI can also be used through a CDN.

For the testing you’ll do in this chapter it’s best to just grab the full download package from jQuery
UI. This essentially means leaving all the components in their default (checked) state on the page,

http://jqueryui.com

290 parT ii integrating JavaScript into Design

choosing a theme (UI Lightness will be the theme used in this chapter), and selecting Download.
When you do so, the jQuery UI site will build a zip file containing the effects and widgets that you’ve
specified, along with the theme that you specified.

installing jQuery Ui
Unzipping the downloaded file reveals three folders: css, development-bundle, and js. The CSS files
for jQuery UI are included in the css folder, and the JavaScript, including a version of jQuery itself,
is included in the js folder. The development-bundle folder contains samples, documentation, and
other ancillary files for jQuery UI. When deploying jQuery UI to a live or production environment, the
development-bundle directory doesn’t need to (and probably shouldn’t) be included.

The files for jQuery UI should be placed appropriately on your web server. This means that you
place them in your document root or within your project. For example, Figure 17-1 shows the folder
hierarchy for the default download of jQuery UI.

FIGURE 17-1 The folders within the jQuery UI download.

Adding the appropriate directories and files to a project in Microsoft Visual Studio typically
involves the following steps:

1. Right-click within Solution Explorer, select Add, and then select Existing Item.

2. In the Add Existing Item dialog box, navigate to the file (for example, the jQuery or jQuery UI
file) and select Add. You might need to select Script or All Files from the file type drop-down
to see the appropriate file types.

3. Select the js and css folders to add all the files.

Building a jQuery Ui demonstration page
jQuery UI has a number of different effects, widgets, and interface enhancements—enough that it’s
difficult to try to describe all of them in words. It’s more effective to show you how to build a dem-
onstration page that enables you to experiment with the various things that jQuery UI can do. The
 index. html page included with jQuery UI provides a good sample page as well, but implementing one
for yourself will help you to learn the structure and usage pattern for jQuery UI.

 CHAPTER 17 jQuery effects and plug-ins 291

With that in mind, the following exercise helps build a jQuery UI demonstration page. To com-
plete this exercise, you should already have jQuery UI installed. This exercise assumes that jQuery and
jQuery UI are installed in the js folder within your current folder or project and that the jQuery UI CSS
is installed in a css folder within your current folder or project.

Building a demonstration page

1. Within Visual Studio, Eclipse, or another editor, open the file test.html in the Chapter17 com-
panion content.

2. Inside test.html, add the code shown in bold, noting particularly to change the version num-
bers of jQuery UI’s css and js file and the main jQuery JavaScript file’s version, too.

<!DOCTYPE html>
<html>
<head>
 <title>jQuery UI Test Page</title>
 <link type="text/css" rel="stylesheet"
 href="css/ui-lightness/jquery-ui-1.8.22.custom.css" />
 <link type="text/css" rel="stylesheet"
 href="css/style.css" />
 <script type="text/javascript"
 src="js/jquery-1.7.2.min.js">
 </script>
 <script type="text/javascript"
 src="js/jquery-ui-1.8.22.custom.min.js">
 </script>
 <script type="text/javascript"
 src="js/custom.js">
 </script>
</head>
 <body>
 <div id="mainContainer">
 <div id="mainHeadingContainer">
 <div id="header">
 <h1>jQuery UI Test Page</h1>
 Here's some text!
 </div>
 </div>
 <form action="#" method="POST">
 <select name="effect">
 <option value="bounce">Bounce</option>
 <option value="drop">Drop</option>
 <option value="explode">Explode</option>
 <option value="fade">Fade</option>
 <option value="fold">Fold</option>
 <option value="highlight">Highlight</option>
 <option value="puff">Puff</option>
 <option value="pulsate">Pulsate</option>
 <option value="shake">Shake</option>
 <option value="slide">Slide</option>
 <option value="transfer">Transfer</option>
 </select>

292 parT ii integrating JavaScript into Design

 <input type="submit" name="submit" value="Run Effect">
 <input type="button" name="reset" value="Reset Page">

 </form>
 </div> <!-- end mainContainer -->
 </body>
</html>

3. Save test.html.

4. Create a new CSS file. If you’re using an editor or integrated drive electronics (IDE) like Visual
Studio that requires you to add a new file to the project, add it within the css folder.

5. Inside the CSS file, place the following contents:

body {
 font-family: arial, helvetica, sans-serif;
}
#mainContainer {
 border: 3px solid black;
 padding: 10px;
}
#mainHeadingContainer {
 width: 300px;
 background: #999999;
 text-align: center;
}
#header {
 width: 300px;
 height: 200px;
 background: #CCCCCC;
 margin-bottom: 25px;
}
.transfer {
 border: 2px solid black;
}

6. Save the file as style.css (within your css folder). This file can be found as style.css in the css
folder of the Chapter 17 companion content.

7. Create a new JavaScript file. If you’re using an editor or IDE like Visual Studio that requires you
to add a new file to the project, add the file within the js folder.

8. Inside the JavaScript file, place the following JavaScript. This file can also be found as custom.js
in the Chapter 17 companion content.

$(document).ready(function () {
 $("form").on('submit', function () {
 var effect = $(":input[name=effect]").val();
 var options = {};
 var effectTime = 1000;
 if (effect === "transfer") {
 options = { to: "#trash", className: "transfer" };
 effectTime = 500;

 CHAPTER 17 jQuery effects and plug-ins 293

 }
 $("#header").effect(effect, options, effectTime);
 return false;
 });
 $(":input[name=reset]").on('click', function () {
 $("#header").removeAttr("style");
 });
});

9. Save the file as custom.js in your js folder.

10. View test.html in your browser. You should see a page like that shown here:

11. Use the drop-down menu to select different effects, and note how each interacts with the
page.

If you don’t receive the page shown, here are some troubleshooting tips:

■■ Make sure that you have the right versions of jQuery UI’s CSS and JS files, as well as the correct
version of jQuery itself. The version numbers shown in the example will be out of date by the
time you read this.

■■ Make sure the paths to the files are correct. You should have the file test.html in your project
or document root, and there should also be a css and js folder in the same directory. Inside
the css folder are the jQuery UI CSS files as well as your own style.css created in this exercise.
The js folder contains the main jQuery file as well as the jQuery UI JavaScript file and your
custom.js file created as part of this exercise.

The custom JavaScript used for this page was contained in the file custom.js in your js folder. That
JavaScript began with the jQuery ready() function called as part of $(document).

$(document).ready(function () {

294 parT ii integrating JavaScript into Design

Within the ready() function, a submit event handler was added to the form:

$("form").on('submit', function () {

Within the submit event handler’s function, the name of the effect being requested was obtained
using the :input[name=effect] selector’s val() function:

var effect = $(":input[name=effect]").val();

Many of the jQuery UI effects accept options as well as the amount of time (in milliseconds) to
perform the effect. These variables are set up next:

var options = {};
var effectTime = 1000;

The “transfer” effect looks better with a quicker effectTime value and requires some additional
options, such as the destination for the transfer effect. Therefore, a conditional tests whether the
effect was transfer and if it was, the options and effectTime values were set accordingly:

if (effect === "transfer") {
 options = { to: "#trash", className: "transfer" };
 effectTime = 500;
}

With all the initial setup out of the way, the jQuery UI effect() function is called, using the name of
the effect, any options, and the time to run the effect.

$("#header").effect(effect, options, effectTime);

The remaining area within the code sets a click event handler onto the reset button found on the
page. This reset button removes any styles applied to the area of the page used by the jQuery UI
effect function.

$(":input[name=reset]").on('click', function () {
 $("#header").removeAttr("style");
});

Creating a jQuery UI calendar

A common widget when building a webpage is a calendar to enable the visitor to select a date rather
than having to type the date into the form manually. jQuery UI includes a type of calendar known as
a datepicker. The jQuery UI datepicker lets you create a calendar that displays when the visitor clicks
within the form field on the page, like the one shown in Figure 17-2.

 CHAPTER 17 jQuery effects and plug-ins 295

FIGURE 17-2 A jQuery UI datepicker.

Adding the jQuery UI datepicker is just about as easy as anything you’ll do in JavaScript, assuming
that you have jQuery UI and jQuery installed and ready to go. Assume that you have a text field in a
form, like this:

<input type="text" name="cal" id="cal">

You turn this input into a datepicker by using one line of jQuery in your JavaScript:

$('#cal').datepicker();

Example 17-1 shows the HTML to create the page shown in Figure 17-2. You can also find this code
in the file cal.html in the companion content.

EXAMPLE 17-1 HTML to create a basic datepicker page

<!DOCTYPE html>
<html>
<head>
 <title>jQuery UI Datepicker</title>
 <link type="text/css" rel="stylesheet"

 href="css/ui-lightness/jquery-ui-1.8.22.custom.css" />
 <link type="text/css" rel="stylesheet"
 href="css/cal.css" />
 <script type="text/javascript"
 src="js/jquery-1.7.2.min.js">
 </script>
 <script type="text/javascript"
 src="js/jquery-ui-1.8.22.custom.min.js">
 </script>
 <script type="text/javascript"

296 parT ii integrating JavaScript into Design

 src="js/cal.js">
 </script>
</head>
 <body>
 <div id="mainContainer">
 <form action="#" method="POST">
 <input type="text" name="cal" id="cal">
 </form>
 </div> <!-- end mainContainer -->
 </body>
</html>

The JavaScript used to create the page (saved as cal.js in the js folder) is shown in Example 17-2.

EXAMPLE 17-2 JavaScript to create a datepicker

$(document).ready(function () {
 $('#cal').datepicker();
});

The CSS, which is really used only to create the border, to make it easier to see in the book, is
shown in Example 17-3.

EXAMPLE 17-3 CSS to add a border for the example

#mainContainer {
 border: 3px solid black;
 padding: 10px;
}

Customizing the calendar
The datepicker widget is highly customizable. You can change the format of the date, show the week
of the year, show drop-down lists for the month and year for quicker navigation, show multiple
months at once, and much more. Customizations are added by placing options (as an array) within
the call to the datepicker function.

This section examines a few of the customizations. For more information about others, see the
datepicker demo page at http://jqueryui.com/demos/datepicker/.

http://jqueryui.com/demos/datepicker/

 CHAPTER 17 jQuery effects and plug-ins 297

adding buttons
You can add buttons for quick access to the current date and also to indicate that the visitor is done
choosing a date. This is accomplished with the showButtonPanel option. The JavaScript shown in
Example 17-2 to add the showButtonPanel option looks like this (note the addition of opening and
closing braces within the datepicker() function):

 $('#cal').datepicker({
 showButtonPanel: true
 });

The result is a calendar that looks like Figure 17-3.

FIGURE 17-3 A datepicker with a button panel.

Displaying multiple months
For certain applications, it can be helpful to display multiple months at once. This is accomplished
with the numberOfMonths option, which is then further configured to determine the number of
months to display.

 $('#cal').datepicker({
 showButtonPanel: true,
 numberOfMonths: 2
 });

298 parT ii integrating JavaScript into Design

The resulting calendar looks like Figure 17-4.

FIGURE 17-4 A calendar displaying multiple months and buttons.

adding month and year drop-down lists
You can add drop-down lists for the month and/or the year to make navigation across large date
ranges easier. This is accomplished with the changeMonth and changeYear options, respectively:

 $('#cal').datepicker({
 changeMonth: true,
 changeYear: true
 });

The resulting calendar looks like Figure 17-5.

FIGURE 17-5 A calendar with drop-down lists for month and year.

Limiting the date range
If you attempt to use the year drop-down list from the previous example, you’ll notice that you can
choose dates from 10 years ago. However, calendars are frequently used in forward-looking mode
only, where, for example, people can pick a date for a reservation in the future.

You can limit the date range for the calendar, both backward and forward. Doing so is a bit more
complex than merely setting an option because you need to choose the date range from a number of
formats.

 CHAPTER 17 jQuery effects and plug-ins 299

To solve the immediate problem identified, where a date well into the past can be chosen, the
minDate option is used with -0D as the option’s value, to exclude dates previous to today. The code
looks like this:

 $('#cal').datepicker({
 changeMonth: true,
 changeYear: true,
 minDate: "-0D"
 });

The resulting calendar looks just like the one in Figure 17-6. Notice that dates previous to today
are no longer available for selection.

FIGURE 17-6 Excluding dates in the past with minDate.

Both the minDate and maxDate options accept values of D to indicate days, M to indicate months,
and Y to indicate years. For example, allowing dates beginning with today (as you saw) and no later
than one year and one day in the future looks like this:

 $('#cal').datepicker({
 changeMonth: true,
 changeYear: true,
 minDate: "-0D",
 maxDate: "+1Y +1D"
 });

Adding a dialog box

jQuery UI has various dialog boxes available through its dialog() function. The default dialog is an
overlaid dialog with a title bar and main window for content. The default dialog is resizable and can
be closed as well.

Example 17-4 shows the HTML involved in making a dialog. It’s similar to that found in previous
examples in this chapter, with the main change being the addition of a <DIV> element for the dialog
itself. This HTML is found as dialog.html in the Chapter 17 companion content.

300 parT ii integrating JavaScript into Design

EXAMPLE 17-4 HTML to create a dialog with jQuery UI

<!DOCTYPE html>
<html>
<head>
 <title>jQuery UI Dialog</title>
 <link type="text/css" rel="stylesheet"
 href="css/ui-lightness/jquery-ui-1.8.22.custom.css" />
 <script type="text/javascript"
 src="js/jquery-1.7.2.min.js">
 </script>
 <script type="text/javascript"
 src="js/jquery-ui-1.8.22.custom.min.js">
 </script>
 <script type="text/javascript"
 src="js/dialog.js">
 </script>
</head>
 <body>
 <div id="dialog" title="My Dialog">
 <p>Here's a dialog</p>
 </div>
 </body>
</html>

The JavaScript used to create the dialog is shown in Example 17-5.

EXAMPLE 17-5 JavaScript to create a dialog with jQuery UI

$(document).ready(function () {
 $('#dialog').dialog();
});

When viewed in a browser, the result is shown in Figure 17-7.

 CHAPTER 17 jQuery effects and plug-ins 301

FIGURE 17-7 Creating a basic dialog.

Like the datepicker from the previous section, the dialog() function can also take advantage of
options that customize its behavior and appearance.

Creating a modal dialog
A modal dialog is one that prevents the user from interacting with the parent window until the dialog
is dismissed. Creating a modal dialog is accomplished using the modal option, as in this example:

$(document).ready(function () {
 $('#dialog').dialog({
 modal: true
 });
});

When added as an option, the resulting page and dialog are shown in Figure 17-8. Notice the
effect applied to the background, graying it out to indicate that no input is allowed in that area of the
page.

302 parT ii integrating JavaScript into Design

FIGURE 17-8 A modal dialog with jQuery UI.

adding buttons
Buttons can be added to the dialog. This might be done to obtain a confirmation from the user.
Consider this JavaScript:

 $('#dialog').dialog({
 resizable: false,
 modal: true,
 buttons: {
 "Confirm": function() {
 // Perform actions here based on
 // receiving confirmation
 // Then close the dialog:
 $(this).dialog("close");
 },
 "Cancel": function() {
 $(this).dialog("close");
 }
 } //end buttons option
 });

This JavaScript uses the buttons option, which accepts an array of the buttons to add. When
viewed through a browser, Figure 17-9 is the result.

 CHAPTER 17 jQuery effects and plug-ins 303

FIGURE 17-9 Creating a confirmation dialog with jQuery UI.

When viewed in a browser, the dialog opens immediately. A more likely scenario is that the dialog
will be opened when a visitor clicks an element within a page. The dialog() function can be opened
and closed on a click of another element. Example 17-6 shows the HTML to create this scenario.

EXAMPLE 17-6 HTML for opening a dialog when a page element is clicked

<!DOCTYPE html>
<html>
<head>
 <title>jQuery UI Dialog</title>
 <link type="text/css" rel="stylesheet"
 href="css/ui-lightness/jquery-ui-1.8.22.custom.css" />
 <script type="text/javascript"
 src="js/jquery-1.7.2.min.js">
 </script>
 <script type="text/javascript"
 src="js/jquery-ui-1.8.22.custom.min.js">
 </script>

 <script type="text/javascript"
 src="js/dialog-open.js">
 </script>
</head>
 <body>
 <div id="opener">Click here to open the dialog</div>
 <div id="dialog" title="My Dialog">
 <p>Here's a dialog</p>
 </div>
 </body>
</html>

304 parT ii integrating JavaScript into Design

The JavaScript for this scenario is where the bulk of the additional work is needed. In JavaScript,
the dialog is first told not to automatically open through its autoOpen option. Next, a click event
handler is created and added to the “opener” <DIV> section on the page. This click event, when fired,
sets up the dialog and then opens it. The JavaScript is shown in Example 17-7.

EXAMPLE 17-7 Opening a dialog with a click event

$(document).ready(function () {
 $("#dialog").dialog({ autoOpen: false,
 resizable: false,
 modal: true
 });
 $('#opener').on('click', function() {

 $("#dialog").dialog("open");
 });
});

When viewed through a browser, the page looks like Figure 17-10.

FIGURE 17-10 Creating a page to hold a dialog that displays with a click event.

Clicking anywhere within the text “Click here to open the dialog” shows the dialog, like that in
Figure 17-11.

 CHAPTER 17 jQuery effects and plug-ins 305

FIGURE 17-11 The dialog opened after clicking the text message.

note This code can be found as dialog-open.html and dialog-open.js in the companion
content.

More JQuery UI

There’s quite a bit more to jQuery UI than this chapter could convey. For example, jQuery UI has an
autocomplete function and several other widgets, with more being added all the time.

A good place to start for more information about jQuery UI, with a special focus on how to make
things work, is on the jQuery UI demo site at http://jqueryui.com/demos/.

Exercises

1. Create a jQuery UI datepicker on a webpage and allow the date range to be from 1 month
prior to the current date up to 12 months ahead of the current date.

2. Refer to the jQuery UI documentation and implement a page with at least one widget not
shown in this chapter.

http://jqueryui.com/demos/

 307

C H A P T E R 1 8

Mobile development with
jQuery Mobile

After completing this chapter, you will be able to

■■ Understand mobile development with jQuery Mobile.

■■ Create a mobile-friendly page.

Ask executives in an organization what they want their website to do, and they’ll say “be mobile.” Of
course, they’ll say that without any inkling of what exactly the phrase means, as if there’s some magic
potion to make a site work well in a mobile web browser, such as a phone or an iPad. Selling the
magic potion to executives is already a multimillion-dollar business. Luckily for you, you’ll soon find
out that there’s really no magic potion involved in making a site mobile. So when the boss wants to
outsource the “mobile development project” for $250,000, you can step in and say, “I think we can do
it for less.”

This chapter looks at jQuery Mobile, which, like jQuery UI, is a complementary project to the main
jQuery library. jQuery Mobile helps to make sites work well in a mobile environment. However, jQuery
Mobile isn’t the only way to go. You could also change the HTML and CSS in such a way as to make
the site work better in a mobile environment. However, because this is a book on JavaScript, the focus
will center on the JavaScript way to accomplish the task.

A walkthrough of jQuery Mobile

jQuery Mobile is a framework that enables advanced webpage design optimized for the touch experi-
ence that people would experience if they were using a website through a mobile phone or an iPad.
jQuery Mobile takes care of the layout and the transition between pages of a site to make the site
more like a mobile app. For example, Figure 18-1 shows a simple site created with jQuery Mobile.
I use a page similar to this to store my personal bookmarks so that I can use them from a mobile
device when I’m traveling.

308 parT ii integrating JavaScript into Design

FIGURE 18-1 A simple bookmark page created with jQuery Mobile.

jQuery Mobile makes use of the HTML data- attributes. Example 18-1 shows the main portion of
the HTML used to create the page for Figure 18-1.

EXAMPLE 18-1 HTML to create a bookmark page with jQuery Mobile

<div id="page1" data-role="page">
<div id="header" data-role="header">
<h1>Bookmarks</h1>
</div>
<div data-role="content">
<ul data-role="listview" id="bookmarkList">
Steve Suehring's Home Page
JavaScript Step by Step</
li>
O'Reilly

</div> <!-- end content div -->
</div> <!-- end page1 main page div -->

Notice the use of four different data-role attributes in the HTML shown in Example 18-1. There’s
the data-role called “page”, another called “header”, one called “content”, and another called “list-
view”. jQuery Mobile uses these data-role attributes to apply special formatting and behavior. If there
is any magic potion, that’s where the magic happens: by applying different data-role (and other data-)
attributes throughout a page, you control how jQuery Mobile renders the page and how the page
behaves. You’ll see other data- attributes throughout this chapter.

 CHAPTER 18 Mobile development with jQuery Mobile 309

jQuery Mobile is available as a download or through a Content Delivery Network (CDN). Later in
this chapter, you’ll see how to download jQuery Mobile. Like jQuery UI (and jQuery, for that matter),
jQuery Mobile is added to a page by placing references to its CSS and JavaScript within your page.
This is the same concept that you’ve been using throughout the book, so no surprises here.

Example 18-2 shows the entire HTML used to create the page shown in Figure 18-1.

EXAMPLE 18-2 The entire HTML to create a bookmark page with jQuery Mobile

<!DOCTYPE html>
<html>
<head>
 <title>bookmarks</title>
 <link media="only screen and (max-device-width: 480px)" href="mobile-bookmarks.
css"
 type="text/css" rel="stylesheet">
<link rel="stylesheet" href="http://code.jquery.com/mobile/1.0b1/jquery.mobile-
1.0b1.min.css" />
<script src="http://code.jquery.com/jquery-1.6.1.min.js"></script>
<script src="http://code.jquery.com/mobile/1.0b1/jquery.mobile-1.0b1.min.js"></
script>
</head>
<body>
<div id="page1" data-role="page">
<div id="header" data-role="header">
<h1>Bookmarks</h1>
</div>
<div data-role="content">
<ul data-role="listview" id="bookmarkList">
Steve Suehring's Home Page
JavaScript Step by Step</
li>
O'Reilly

</div> <!-- end content div -->
</div> <!-- end page1 main page div -->
</body>
</html>

note If you attempt to re-create this page, the version of jQuery and jQuery Mobile should
be updated to the latest version. See http://jquerymobile.com for more information about
the latest version.

There’s also a CSS file used in Example 18-2. The CSS just increases the font size to account for my
lack of skill at accurately tapping a small item through my phone! Here’s the CSS:

body {
 font-size: 4em;
}

http://jquerymobile.com

310 parT ii integrating JavaScript into Design

jQuery Mobile can also use themes, in much the same way that jQuery UI does. Themes change the
appearance of jQuery Mobile to be more customized to the look and feel you’d like to present to the user.

Getting jQuery Mobile

jQuery Mobile can be downloaded from http://jquerymobile.com. Alternatively, jQuery Mobile can
be used through a CDN, as shown in Example 18-2. This section looks at downloading and installing
jQuery Mobile for use on your computer and in your websites.

Downloading jQuery Mobile
Downloading jQuery Mobile is very similar to the process used for jQuery UI. Refer to Chapter 17,
“jQuery effects and plug-ins,” for information about downloading and using jQuery UI. jQuery Mobile
comes as a set of JavaScript and CSS and accompanies jQuery. Downloading jQuery Mobile means
heading to http://jquerymobile.com and clicking the Download link.

At the time of this writing, the folks at jQuery Mobile are testing a Download Builder to enable you
to select the various components to be included in your download. If you don’t need a certain widget
or effect, you don’t need to include it, thus reducing the amount of code (and reducing the number
of potential bugs) that you need to use to deliver your site to the browser. The Download Builder
concept is similar to jQuery UI’s download process.

Unfortunately, at the time of this writing, the resulting download built with Download Builder was
incomplete. Therefore, the process described here recommends downloading the compressed zip file
from the main Download page, shown in Figure 18-2, rather than using the Download Builder.

FIGURE 18-2 The jQuery Mobile Download page is used to download jQuery Mobile.

http://jquerymobile.com
http://jquerymobile.com

 CHAPTER 18 Mobile development with jQuery Mobile 311

Within the Download page, look for the latest stable version. Within that section you’ll see a link
likely called “ZIP File.” That’s the one you want. Click it and the download will begin. jQuery Mobile
is downloaded as a compressed zip file. Inside the file is a directory called jquery-mobile, along with
the version number. Within that directory are the CSS, images, and JavaScript files for jQuery Mobile,
shown in Figure 18-3.

FIGURE 18-3 The jQuery Mobile files.

As you can see from Figure 18-3, the CSS and JavaScript files are all contained within the same
folder; there’s no hierarchical structure placing CSS in a css folder and JavaScript in a js folder.
Therefore, placing the files correctly is up to the developer.

If you’re using css and js folders, copy the CSS and JavaScript files to their respective folders within
your project or server’s document root and be sure to point to the appropriate place from within your
code, too.

note The versions of these files will change by the time you read this.

Testing jQuery Mobile
With jQuery Mobile downloaded, it’s time to walk through an exercise to test jQuery Mobile.

Walking through a jQuery Mobile test exercise

1. Open the compressed (zip) file containing the jQuery Mobile files.

2. Unzip or uncompress the contents of the jQuery Mobile download. If you’re using a css folder
and a js folder to organize your CSS and JavaScript, place the CSS files into the css folder and
JavaScript files into the js folder as appropriate. Otherwise, uncompress the files into your
server’s document root. Keep the images directory underneath the CSS files, hierarchically.
The images directory should be within whatever folder in which you place the CSS files, as
shown in Figure 18-3.

312 parT ii integrating JavaScript into Design

3. Place a copy of jQuery into your project or document root. For instructions about how to
obtain jQuery, see Chapter 11, “An introduction to jQuery.”

4. Open Visual Studio, Eclipse, or another editor. If you’re using an editor that requires files
to be added to the project (such as Visual Studio), add the CSS and JavaScript files from
jQuery Mobile to the project. In Visual Studio, this is typically accomplished using the File |
Add Existing Item menu option. Repeat this process as necessary to get all of the CSS and
JavaScript files imported, and import the images directory and its contents, too.

5. Create a new HTML file or edit test.html in the Chapter18 companion content.

6. If you’re using a new file, place the following HTML in the file. If you’re editing test.html, add
the HTML shown in boldface here. You’ll likely need to change the version of jQuery Mobile
and jQuery itself to match the version that you downloaded.

<!doctype html>
<html>
<head>
 <title>Test Page for jQuery Mobile</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
 href="jquery.mobile-1.1.1.css">
 <script type="text/javascript"
 src="jquery-1.7.2.min.js">
 </script>
 <script type="text/javascript"
 src="jquery.mobile-1.1.1.js">
 </script>
</head>
<body>
<div data-role="page">
 <div data-role="header">
 <h1>Test Page</h1>
 </div>
 <div data-role="content">
 <p>This is some nice content.</p>
 </div>
 <div data-role="footer">
 <h2>Footer content</h2>
 </div>
</div> <!-- end page div -->
</body>
</html>

7. Save test.html.

8. View test.html in a web browser. You should see a page similar to that in the following
graphic.

 CHAPTER 18 Mobile development with jQuery Mobile 313

If your page didn’t work as expected, here are some troubleshooting tips:

■■ Make sure the versions of jQuery’s JavaScript file and the jQuery Mobile CSS and JavaScript
files are all correct.

■■ Make sure that the paths to the files are correct. You could use Firebug’s Net console tab to
see whether all of the files were loaded.

■■ Make sure that the files are loaded in the correct order. The CSS files should be loaded before
the JavaScript, and jQuery should be loaded before the jQuery Mobile JavaScript.

■■ Make sure that the data-roles are defined as shown in the HTML example.

With jQuery Mobile tested in your own web environment, it’s time to see what else the framework
can do.

Linking with jQuery Mobile

Links in pages within a jQuery Mobile site work essentially the same as links within a normal web-
site. However, when the link is to a page within the same site, jQuery Mobile adds special animations
called transitions while the page is being loaded. Transitions help the user experience by providing
visual feedback that something is happening while the page loads. This section looks at the various
forms of links in jQuery Mobile.

314 parT ii integrating JavaScript into Design

Creating a link
By default, links to other documents or pages within the same site are loaded using AJAX
(Asynchronous JavaScript and XML). You’ll learn more about AJAX in Chapter 19, “Getting data into
JavaScript.” For now, what you need to know is that when you link to another page, it can be loaded
using a special method that will enable page transitions and animations—essentially, letting jQuery
Mobile do what it’s designed to do.

There’s nothing special that you need to do to make links trigger the transition effect, because
it’s the default behavior. When an anchor tag (<A>) is clicked or tapped, jQuery Mobile takes over
and attempts to fetch the page. While the page is loading, an animation will be displayed, and when
loaded, the page will be displayed to the user.

Example 18-3 shows a page called link.html (in the companion content) that contains a link to the
test.html page created in the previous exercise.

EXAMPLE 18-3 A jQuery Mobile page with a link

<!doctype html>
<html>
<head>
 <title>Test Page for jQuery Mobile</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
 href="jquery.mobile-1.1.1.css">
 <script type="text/javascript"
 src="jquery-1.7.2.min.js">
 </script>
 <script type="text/javascript"
 src="jquery.mobile-1.1.1.js">
 </script>
</head>
<body>
<div data-role="page">
 <div data-role="header">
 <h1>Link Page</h1>
 </div>
 <div data-role="content">
 <p>Load the test page</p>
 </div>
 <div data-role="footer">
 <h2>Footer content</h2>
 </div>
</div> <!-- end page div -->
</body>
</html>

Loading this page in a browser reveals a page with a single link. When that link is clicked or
tapped, the test.html page loads.

 CHAPTER 18 Mobile development with jQuery Mobile 315

Changing the page transition
The default page transition is called fade, which fades the current page out of view and fades the new
page into view quickly. This transition is configurable on a per-link or global basis. Some of the transi-
tions that you can use include the following:

■■ fade (the default)

■■ flip

■■ flow

■■ none

■■ pop

■■ turn

■■ slide

■■ slidedown

■■ slideup

■■ slidefade

The type of page transition is changed with the data-transition attribute placed on a link. For
example, the link from Example 18-3 was this:

Load the test page

Changing the transition to something different, like turn, looks like this:

Load the test page

You can also set the data-transition to none, for no transition effect on load.

note Changing the page transition globally involves working with the auto-initialization
event. See http://jquerymobile.com/demos/1.2.0/docs/api/globalconfig.html for more infor-
mation about the mobileinit function and how to use it, and see http://jquerymobile.com/
demos/1.2.0/docs/pages/page-transitions.html for more information about the option to set
for configuring the default transition.

http://jquerymobile.com/demos/1.2.0/docs/api/globalconfig.html
http://jquerymobile.com/demos/1.2.0/docs/pages/page-transitions.html
http://jquerymobile.com/demos/1.2.0/docs/pages/page-transitions.html

316 parT ii integrating JavaScript into Design

Linking without aJaX
Certain links won’t load with the AJAX behavior. For example, links outside the current site won’t use
AJAX. You can also change the default behavior so that the link, even if it’s within the same site, won’t
use AJAX. The following four scenarios will prevent the link from using the AJAX load method:

■■ Links outside the site (to another domain)

■■ Links defined with the rel="external" attribute

■■ Links defined with the data-ajax="false" attribute

■■ Links defined with a target attribute

Example 18-4 shows the HTML to create five different links (also included as links.html in the
companion content). The first link opens using the default AJAX method, while the next three all use
methods for changing the default linking behavior to not use AJAX. The final link in the example
won’t load with AJAX because it goes to an external domain.

EXAMPLE 18-4 Loading links in various ways

<!doctype html>
<html>
<head>
 <title>Test Page for jQuery Mobile</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
 href="jquery.mobile-1.1.1.css">
 <script type="text/javascript"
 src="jquery-1.7.2.min.js">
 </script>
 <script type="text/javascript"
 src="jquery.mobile-1.1.1.js">
 </script>
</head>
<body>
<div data-role="page">
 <div data-role="header">
 <h1>Link Page</h1>
 </div>
 <div data-role="content">
 <p>Load the test page (default behavior)</p>
 <p>Load the test page (data-
ajax = false)</p>
 <p>Load the test page (rel =
external)</p>
 <p>Load the test page (in new
tab)</p>
 <p>Braingia.org</p>
 </div>

 CHAPTER 18 Mobile development with jQuery Mobile 317

 <div data-role="footer">
 <h2>Footer content</h2>
 </div>
</div> <!-- end page div -->
</body>
</html>

When loaded in a browser, the page looks like that in Figure 18-5.

FIGURE 18-5 A jQuery Mobile page demonstrating link behaviors.

More info See http://jquerymobile.com/demos/1.2.0/docs/pages/page-links.html for more
information about page linking.

Enhancing the page with toolbars

Toolbars are commonly used to provide page-level and navigation information. In the examples
you’ve seen in this chapter (Figure 18-5, for example), the header and footer are both toolbars, with
the easy-to-remember data-role values of header and footer, respectively. You can also add a navi-
gation bar. This section looks at just that. The examples in this section show navigation bars being
added to the header and the footer, but there’s nothing special that says you need to do that. You can
add a navbar just about anywhere on the page using data-role=“navbar” and the correct HTML.

http://jquerymobile.com/demos/1.2.0/docs/pages/page-links.html

318 parT ii integrating JavaScript into Design

adding a navigation bar
The navigation bar uses the data-role of “navbar”, as in this example:

<div data-role="navbar">

 Link 1
 Link 2

</div>

jQuery Mobile automatically sizes the resulting buttons so that they fill the width of the screen,
with each button taking up an equal portion of the size. Example 18-5 shows a full-page example with
a two-item navbar in the header area. This is also included as navbar.html in the companion content.

EXAMPLE 18-5 Creating a top navbar

<!doctype html>
<html>
<head>
 <title>Test Page for jQuery Mobile</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
 href="jquery.mobile-1.1.1.css">
 <script type="text/javascript"
 src="jquery-1.7.2.min.js">
 </script>
 <script type="text/javascript"
 src="jquery.mobile-1.1.1.js">
 </script>
</head>
<body>
<div data-role="page">
 <div data-role="header">
 <h1>Navbar Page</h1>
 <div data-role="navbar">

 Link 1
 Link 2

 </div>
 </div>
 <div data-role="content">
 <p>Content. Yay!</p>
 </div>
 <div data-role="footer">
 <h2>Footer content</h2>
 </div>
</div> <!-- end page div -->
</body>
</html>

 CHAPTER 18 Mobile development with jQuery Mobile 319

The resulting page is shown in Figure 18-6. Notice the Link 1 and Link 2 buttons immediately
below the header.

FIGURE 18-6 A basic page with a navbar.

adding a footer navigation bar
A common item seen in mobile applications is a navigation or tab bar on the bottom of the screen.
This effect can be created with jQuery Mobile. Adding the navbar in the footer is the same as adding
it to the header section, except that the HTML goes into the footer section instead of the header:

 <div data-role="footer">
 <h2>Footer content</h2>
 <div data-role="navbar">

 Link 1
 Link 2

 </div>
 </div>

One common pattern in mobile apps is to have a tab bar or navigation bar on the bottom that
contains icons and names. This effect can be created with the help of a couple additional attributes
added to the footer. Specifically, the data-icon and data-iconpos attributes define the icons to use and
their position relative to the text (top or bottom, for example). Figure 18-7 shows an example of this
design pattern.

320 parT ii integrating JavaScript into Design

FIGURE 18-7 Creating a footer navigation bar effect with icons in jQuery Mobile.

Example 18-6 shows the HTML to create this effect. This is also included as footerbar.html in the
companion content.

EXAMPLE 18-6 HTML to create an icon navigation bar

 <!doctype html>
<html>
<head>
 <title>Test Page for jQuery Mobile</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
 href="jquery.mobile-1.1.1.css">
 <script type="text/javascript"
 src="jquery-1.7.2.min.js">
 </script>
</head>
<body>
<div data-role="page">
 <div data-role="header">
 <h1>Navbar Page</h1>
 </div>
 <div data-role="content">
 <p>Content. Yay!</p>
 </div>

 CHAPTER 18 Mobile development with jQuery Mobile 321

 <div data-role="footer">
 <div data-role="navbar">

 <a data-icon="home" data-iconpos="top" href="#">Link 1</
li>
 <a data-icon="star" data-iconpos="top" href="#">Link 2</
li>

 </div>
 </div>
</div> <!-- end page div -->
</body>
</html>

There are numerous icons included with jQuery Mobile. See http://jquerymobile.com/test/docs/
buttons/buttons-icons.html for more information about the available icons and their names.

adding buttons to toolbars
jQuery Mobile has built-in space for buttons to appear on both the left and right side of the header
element. You add buttons by just placing links within the <DIV> element with the data-role of header.
For example:

 <div data-role="header">
 Go Back
 <h1>My Buttons</h1>
 Go Forward
 </div>

That HTML (when added to the HTML from Example 18-6) reveals a page like the one in
Figure 18-8. Notice the addition of the buttons in the header section. This HTML is included as
 headerbutton.html in the companion content.

http://jquerymobile.com/test/docs/buttons/buttons-icons.html
http://jquerymobile.com/test/docs/buttons/buttons-icons.html

322 parT ii integrating JavaScript into Design

FIGURE 18-8 Adding header buttons with jQuery Mobile.

See the previous section for information about changing the icons used for the buttons.

Other toolbar enhancements
Toolbars have other enhancements that you can use to change the behavior of the toolbar. This sec-
tion looks at two such enhancements.

Changing the toolbar color
You can change the theme or color of the navigation bar by applying the data-theme attribute to the
elements. For example, changing the theme of the navbar buttons shown in Example 18-6 looks like
this (also included as footerbarb.html in the companion content):

 <a data-theme="b" data-icon="home" data-iconpos="top" href="#">Link 1
 <a data-theme="b" data-icon="star" data-iconpos="top" href="#">Link 2

 CHAPTER 18 Mobile development with jQuery Mobile 323

The resulting page looks like Figure 18-9.

FIGURE 18-9 Changing the theme of footer elements.

There are currently five themes included in jQuery Mobile. They use letters a through e with the
theme at letter a being the default. You can visit http://jquerymobile.com/test/docs/toolbars/bars-
themes.html to see how each theme looks.

persistent toolbar
One final toolbar customization covered in this chapter is a persistent toolbar. This design pattern is
frequently used to make the footer navigation bar always stay on the bottom of the user’s viewport,
no matter how short or long the page’s actual content. You’ll work through an exercise to see this in
action.

This exercise assumes that you’ve followed the earlier exercise in the chapter and have jQuery
Mobile working in your development environment.

Creating a persistent toolbar

1. Open Visual Studio, Eclipse, or your text editor.

2. In your editor, create a new page or edit pers.html in the Chapter18 companion content.

3. In the pers.html file, add the code shown in bold:

<!doctype html>
<html>
<head>
 <title>Test Page for jQuery Mobile</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">

http://jquerymobile.com/test/docs/toolbars/bars-themes.html
http://jquerymobile.com/test/docs/toolbars/bars-themes.html

324 parT ii integrating JavaScript into Design

 <link rel="stylesheet"
 href="jquery.mobile-1.1.1.css">
 <script type="text/javascript"
 src="jquery-1.7.2.min.js">
 </script>
 <script type="text/javascript"
 src="jquery.mobile-1.1.1.js">
 </script>
</head>
<body>
<div data-role="page">
 <div data-role="header">
 <h1>Persistent Footer</h1>
 </div>
 <div data-role="content">
 <p>I love creating content.</p>
 <p>I love creating content.</p>
 <p>I love creating content.</p>
 <p>I love creating content.</p>
 <p>I love creating content.</p>
 <p>I love creating content.</p>
 </div>
 <div data-role="footer" data-id="persistent" data-position="fixed">
 <div data-role="navbar">

 <a data-icon="home" data-iconpos="top" href="#">Link 1
 <a data-icon="star" data-iconpos="top" href="#">Link 2

 </div>
 </div>
</div> <!-- end page div -->
</body>
</html>

4. Save the file as pers.html.

5. View pers.html in your browser.

 CHAPTER 18 Mobile development with jQuery Mobile 325

You should see a page like that in Figure 18-10. You might need to resize your browser to see the
scroll effect and how the bottom footer navbar sticks to the bottom no matter where you scroll.

FIGURE 18-10 Creating a persistent footer.

This persistence was created by adding two attributes to the footer, data-id and data-position.
Setting data-position to fixed created the effect, and the data-id attribute is used to share the same
footer among several pages, as you might do if you have multiple pages in a site that need the same
footer.

You can also change the appearance of one of the navigation elements to give a “current page” or
“active item” look and feel, as shown in Figure 18-11.

FIGURE 18-11 Setting an active item in a persistent toolbar.

This effect is accomplished by adding the class ui-btn-active and ui-state-persistent on the appro-
priate anchor, as in this example:

326 parT ii integrating JavaScript into Design

Even more jQuery Mobile

Like jQuery UI, jQuery Mobile is an expansive subject area, worthy of an entire book by itself. This
chapter touched on jQuery Mobile and hopefully gave you enough information to get started so that
you can see how valuable jQuery Mobile can be when creating a mobile website.

Additional areas that you can look into include creating buttons and button effects, adding forms
and accepting input, creating lists, and formatting content, just to name a few. See http://jquerymobile.
com/test/ for more information about the various effects that can be created with jQuery Mobile.

Exercises

1. Use a different theme for jQuery Mobile to change the appearance of the header.

2. Change the code from the final exercise (persistent footer) to set one of the items as active.

3. Examine the jQuery Mobile site and implement a demo page for one of the areas identified
and not covered in this chapter.

http://jquerymobile.com/test/
http://jquerymobile.com/test/

 327

C H A P T E R 1 9

Getting data into JavaScript

After completing this chapter, you will be able to

■■ Understand the architecture of a JavaScript-based web application.

■■ Understand the basics of AJAX.

The JavaScript you’ve seen so far in this book works with page events to change the behaviors and
look and feel of pages, and does a little validation of forms. A widely used feature of JavaScript is
to be able to obtain and work with data, sending it and receiving it from a server. The “data“ in this
case can be anything: flight times, prices, lists of the types of insects found in a region, or even entire
webpages. This chapter examines Asynchronous JavaScript and XML, the method known as AJAX, to
obtain and work with data to and from a server.

JavaScript application architecture

Building a browser-based application with the sophisticated look and feel of a desktop application
frequently involves using JavaScript. Such an application has some of the same features and respon-
siveness of a desktop application, as though it were sitting on the local computer rather than operat-
ing through a web browser.

This brief chapter provides an overview of the components that constitute an application based on
JavaScript. The goal is to help you understand the underlying architecture and some of the complex-
ity necessary to create this type of application at the enterprise level.

The big three: display, behavior, data
Three primary components exist in a web application:

■■ Display The look and feel of the page

■■ Behavior What the application interface does—that is, what happens when the user clicks
an element on the page or otherwise interacts with the page

■■ Data The server component that contains the data and performs the actions, the results of
which appear on the page

328 parT ii integrating JavaScript into Design

JavaScript code typically handles the first two components in the preceding list—display and
behavior—to affect the interface or react when a user performs an action on a page. JavaScript works
with the data returned from the server as well, but usually does so only to alter the display in some
manner. For example, a call to a web service that returns the current temperature or sky condition
might use JavaScript to change an icon when the weather is sunny. The following sections examine
each of these three elements in a little more detail.

Display: page layout
The webpage display encompasses the page layout and anything related to the look and feel of the
page and site, including the color scheme, images, styling of menus (whether they have rounded
corners or square ones, and so on), the placement of buttons and content, font colors, and use of
images. JavaScript can affect all these items, as you’ve seen in previous chapters on Cascading Style
Sheets (CSS) and form validation. These elements are the primary focus of web design and receive the
most attention from users, and you should consider these elements when determining requirements
for your site.

Behavior: controlling what happens when
One of the most important factors in determining the user experience is also one of the most often
overlooked elements of a web application design: the behavior of the application interface, which
controls what happens when users interact with a given element. Consider the following two simple
scenarios:

■■ When a visitor clicks the Submit button on a web form, does that Submit button stay active or
become disabled?

■■ When an input text field gains focus, should it change color or be highlighted?

Even these minor behaviors can greatly enhance the user experience when designed properly.
However, when working through a design of a site, these behaviors are also frequently forgotten,
ignored, or discounted in favor of the look and feel or raw design of the site.

Data: consume, display, and validate
JavaScript, at least its use as far as this book is concerned, doesn’t interact directly with a database or
server. Obviously, JavaScript does so through AJAX and through web services, but those processes
require server-side code to return data back to the calling JavaScript.

Like the display portion of the site, the back-end server-side data components should receive a fair
share of attention when you design a web application. From database design to programming the
business logic, this back-end coding needs careful attention.

 CHAPTER 19 Getting data into JavaScript 329

JavaScript and web interfaces

Programmers use JavaScript to create front ends that provide a quality user experience. Microsoft
Bing Maps (formerly Live Search Maps) is an example of a web application that relies heavily on
JavaScript.

With Bing Maps, and other applications like it, users can drag the map display around in much
the same way they would when interacting with a desktop application. The map is composed of tiles
at various resolutions. When a user drags the map, the browser sends several HTTP requests to the
Virtual Earth web server, requesting additional tiles that the browser then quickly displays.

The Bing search engine also uses a type-ahead search similar to that of other search engines like
Google. If you begin typing in the main text box on http://www.bing.com, the browser immediately
sends an HTTP request to the server to find similar searches.

All of these elements from the Bing search engine use JavaScript. Countless other web interfaces
rely on JavaScript to enhance the user experience by controlling the behavior layer of the page.

You’ve seen a lot about the first two parts of the application architecture, display and behavior.
The remainder of this chapter and the next chapter examine the third element, data, in depth.

Introduction to AJAX

AJAX describes the programming paradigm that combines JavaScript and a web server. Developers
use AJAX to create highly interactive web applications such as Microsoft Virtual Earth.

Without AJAX, a web application might make the visitor wait while a response is gathered from the
web server. An AJAX-based application sends requests from the web browser to the web server in the
background (asynchronously) while the visitor is using the application. This makes the application feel
much more responsive to the user.

In an AJAX application, JavaScript processes the response and presents the data to users. When
combined with CSS and a good layout, an AJAX application provides excellent usability and the por-
tability that only a web application can.

As complex as some AJAX applications might seem, the actual process of sending a request and
handling the response is not terribly complicated. Using AJAX revolves around a fundamental AJAX
object: XMLHttpRequest.

One central concept in AJAX is that you call server-side applications to return data. The next chap-
ter contains a brief overview of how to create such an application using both ASP.NET and PHP. (PHP
is a recursive acronym for PHP Hypertext Preprocessor.) If you need additional assistance in creating
the server-side portion of an AJAX application, you can get help from several sources.

330 parT ii integrating JavaScript into Design

If you’re creating a server-side application using Microsoft technologies, the Microsoft Developer
Network provides a great resource with many tutorials and an introductory article on AJAX (http://
msdn.microsoft.com/en-us/magazine/cc163363.aspx). Microsoft Press also publishes several excel-
lent books on building applications for the web. One such title is Microsoft ASP.NET 4 Step By Step
(Microsoft Press, 2010). For others, look at http://www.microsoft.com/mspress for more information.

If you’re developing a server-side application using other technologies such as the LAMP (Linux,
Apache, MySQL, Perl/PHP/Python) stack, searching the web for tutorials is likely the easiest way to
get up to speed quickly on development on the platform. The book Learning Perl (O’Reilly, 2011) is a
great resource for learning the basics of the Perl programming language.

note If you like my writing style, I wrote Beginning Perl Web Development (Apress, 2005),
which focuses on using Perl to work with web applications.

PHP’s main website (http://www.php.net) is a good place to start for information about PHP, and
for Python, take a look at the Python website (http://www.python.org).

AJAX with jQuery

The next chapter will show how to create, send, and receive data using the standard XMLHttpRequest
object. However, a much more robust method for working with server-side data is to use jQuery’s
AJAX-related methods.

jQuery includes a built-in function called $.ajax() that greatly simplifies the process of sending and
receiving data with JavaScript. The problem is that XMLHttpRequest, while simple to use for standard
requests, starts to become cumbersome when nonstandard items need to be addressed.

When you begin to program with XMLHttpRequest, you’ll soon find yourself wanting to create
your own standard library to instantiate the XMLHttpRequest object and handle errors, and so on.
Therefore, rather than walk down the path of reinventing the wheel, you’ll see how to use jQuery for
AJAX, which alleviates the need to create your own library just for AJAX.

AJAX without the X

Extensible Markup Language (XML) is a highly structured language for exchanging data. XML works
very, very well for what it is. However, XML is very, very verbose. This verbosity means that there is a
good amount of extraneous information exchanged for each and every request sent.

As the amount of data transferred using AJAX increases, so does this extra data. The more data
exchanged, the more that needs to be downloaded by the user (especially noteworthy on slow mobile
connections). Luckily there’s another way.

http://msdn.microsoft.com/en-us/magazine/cc163363.aspx
http://msdn.microsoft.com/en-us/magazine/cc163363.aspx
http://www.microsoft.com/mspress
http://www.php.net
http://www.python.org

 CHAPTER 19 Getting data into JavaScript 331

JavaScript Object Notation (JSON) provides a lightweight way to exchange data over AJAX without
losing any of the fidelity or descriptive nature provided by XML. For example, consider this XML to
represent a person and the person's details:

<person>
 <firstname>Steve</firstname>
 <lastname>Suehring</lastname>
 <emailAddresses>
 <primaryEmail>suehring@braingia.com</primaryEmail>
 </emailAddresses>
 <twitter>@stevesuehring</twitter>
</person>

Represented through JSON, that same data is compacted down to this:

 "person": {
 "firstname": "Steve",
 "lastname": "Suehring",
 "emailAddresses": {
 "primaryEmail": "suehring@braingia.com"
 },
 "twitter": "@stevesuehring"
 }

While the JSON version is less verbose, it’s still clear what each element represents. However, the
same data was conveyed with about 25 percent less extraneous information. The example here is sim-
ple, with a small amount of data. Imagine this example expanded 100 times. Suddenly that 10 p ercent
data savings starts to add up.

What’s Next?

You’ve now seen some information about the overall architecture of a JavaScript-based web applica-
tion. You’ve also been introduced to the concepts surrounding AJAX, including the XMLHttpRequest
object and jQuery’s $.ajax() function. Finally, you saw how JSON can be used to exchange informa-
tion in a more efficient manner than XML for web applications. The next chapter expands on these
concepts to show how to send and receive AJAX requests.

 333

PART III

AJAX and
Server-Side
Integration

CHAPTER 20 Using AJAX .335

CHAPTER 21 Developing for Windows 8.353

Asynchronous JavaScript and XML (AJAX) is a key technology
for making responsive, dynamic web pages with JavaScript. This
section focuses on AJAX and accompanying technologies.

 335

C H A P T E R 2 0

Using aJaX

After completing this chapter, you will be able to

■■ Create an AJAX Request.

■■ Retrieve data from the server using AJAX.

■■ Use jQuery’s AJAX function to retrieve data from the server.

The XMLHttpRequest object

The XMLHttpRequest object is central to building an Asynchronous JavaScript and XML (AJAX)
application. Although implementations of JavaScript differ, the ECMAScript and the World Wide Web
Consortium (W3C) have standardized many aspects of it. Even with differences between browsers,
since the release of Windows Internet Explorer 7, you use the XMLHttpRequest object in the same way
across all major browsers.

Microsoft first implemented the XMLHttpRequest object in Microsoft Internet Explorer 5.0. If a
visitor is using a browser version earlier than that, applications using XMLHttpRequest won’t work.
In Internet Explorer versions prior to version 7, the XMLHttpRequest object was instantiated as an
ActiveXObject object, but other browsers implemented the XMLHttpRequest object as a JavaScript
object built into the browser. This means that if your applications need to work with versions of
Internet Explorer earlier than version 7, you need to instantiate the XMLHttpRequest object for those
browsers in a different way, as I show you later in the chapter. The next section, “Instantiating the
XMLHttpRequest object,” shows how you can test for the existence of XMLHttpRequest and how to
instantiate it in all versions of Internet Explorer.

instantiating the XMLHttpRequest object
Internet Explorer 7 and later versions, and all other major browsers that support XMLHttpRequest,
instantiate the XMLHttpRequest object in the same way:

var req = new XMLHttpRequest();

For Internet Explorer versions earlier than version 7, you must instantiate an ActiveXObject instead.
However, the way you do this varies depending on the version of the XMLHTTP library installed on

336 parT iii aJaX and Server-Side integration

the client. Therefore, you need to do a bit of code juggling to instantiate an XMLHttpRequest object
in these earlier versions of Internet Explorer.

The code in Example 20-1 is a cross-browser function that instantiates an XMLHttpRequest object
across multiple browsers.

EXAMPLE 20-1 Instantiating an XMLHttpRequest object across browsers

function readyAJAX() {
 try {
 return new XMLHttpRequest();
 } catch(e) {
 try {
 return new ActiveXObject("Msxml2.XMLHTTP");
 } catch(e) {
 try {
 return new ActiveXObject("Microsoft.XMLHTTP");
 } catch(e) {
 return "A newer browser is needed.";
 }
 }
 }
}

The function in Example 20-1 uses multiple levels of try/catch blocks to instantiate an
XMLHttpRequest object, regardless of whether the visitor is using Internet Explorer or another
browser. If the native call to XMLHttpRequest fails, it means that the visitor is using an Internet
Explorer browser older than version 7. In such a case, the error is caught and one of the methods for
instantiating XMLHttpRequest that is based on ActiveXObject is tried. If none of these methods suc-
ceeds, the likely reason is that the browser is too old to support XMLHttpRequest.

Using try/catch
The try portion of the try/catch set of statements encapsulates a block of JavaScript. When the
script executes, any exceptions that are thrown in the try block are caught by the catch state-
ment. You can then handle the error within the JavaScript placed in the catch block. The code
to do this follows this format:

try {
 // Execute some code
}
catch(errorObject) {
 // Error handling code goes here
}

As the code within the try clause executes, any errors encountered cause processing to be
immediately handed over to the catch clause. In Example 20-1, if XMLHttpRequest is not
available, the catch clause executes, which creates another try/catch block. When using a catch

 CHAPTER 20 Using AJAX 337

clause, it’s common to perform multiple tasks, such as call another function to log an error, or
handle a condition using a general, or generic, approach. Using catch is particularly helpful in
problematic areas of code or in areas where the nature of the code can lead to errors (such as
in code that processes user input).

An optional complementary statement in JavaScript, called finally, works with try/catch. The
finally statement contains code that gets executed regardless of whether the try statement’s
code succeeded or the catch handler executed. Typically, you use a finally block to make sure
that some code (such as cleanup code) executes every time.

The article “About Native XMLHTTP” on MSDN describes some of the version history and security
nuances of the XMLHttpRequest object in Internet Explorer. This article can be found at http://msdn2.
microsoft.com/en-us/library/ms537505.aspx.

You call the readyAJAX() function shown in Example 20-1 like this:

var requestObj = readyAJAX();

The requestObj variable now contains the XMLHttpRequest object returned by the function, or, if
the function couldn’t create the object, the requestObj variable contains the string “A newer browser
is needed.”

Sending an aJaX request
With a newly created XMLHttpRequest object in hand, you can send requests to the web server and
get responses. To send the request, you use a combination of the open() and send() methods of the
XMLHttpRequest object.

There are two fundamentally different ways to send AJAX requests: synchronously and asynchro-
nously. When sent in a synchronous manner, the requesting code simply waits for the response—a
process called blocking. So, for a synchronous request, the requesting code will block, effectively
preventing further processing or execution of other JavaScript while the script waits for the response
from the web server. This process has obvious disadvantages when the request or response gets lost
in transit or is just slow. With asynchronous requests, the requesting code doesn’t block. Instead, the
caller can check the request status to discover when the request has completed. You see more about
asynchronous requests later in this chapter; it’s easier to work with synchronous requests first.

Before you can send a request, you have to build it. To do that, you use the open method, which
has three arguments: the request method (GET, POST, HEAD, or others), the Uniform Resource Locator
(URL) to which the request will be sent, and a Boolean true or false, indicating whether you want to
send the request asynchronously or synchronously, respectively.

http://msdn2.microsoft.com/en-us/library/ms537505.aspx
http://msdn2.microsoft.com/en-us/library/ms537505.aspx

338 parT iii aJaX and Server-Side integration

Assuming that your request object has been retrieved using the readyAJAX() function and placed
into a variable named requestObj, a typical asynchronous call to the open method might look like this:

var url = "http://www.braingia.org/getdata.php";
requestObj.open("GET", url, true);

That same call, sent synchronously, looks like this:

var url = "http://www.braingia.org/getdata.php";
requestObj.open("GET", url, false);

You actually send the request with the send method, as follows:

requestObj.send();

note If the parameters sent with the request have any special characters, such as spaces or
other characters reserved by the URI RFC, you must first escape those characters using the
% notation. This is discussed further in RFC 3986, which you can find at ftp://ftp.rfc-editor.
org/in-notes/rfc3986.txt. You can also find more information at http://msdn2.microsoft.com/
en-us/library/aa226544(sql.80).aspx.

how the web works in 500 words or fewer
The Hypertext Transfer Protocol (HTTP) is the language of the web. HTTP is currently defined
by RFC 2616 and describes a protocol for exchanging information by using requests from cli-
ents and responses from servers.

Requests from clients such as web browsers contain a specific set of headers that define
the method used for retrieval, the object to be retrieved, and the protocol version to be used.
Other headers contain the web server host name, languages requested, the name of the
browser, and other information that the client deems relevant to the request.

Here’s a basic HTTP version 1.1 request that shows only the most important of these
headers:

GET / HTTP/1.1
Host: www.braingia.org

This request specifies the GET method to retrieve the document located at the / (root) direc-
tory location using HTTP version 1.1. The second line, commonly called the Host header, is the
URL http://www.braingia.org. This header tells the web server which website is being requested.
Several different methods can be used in a request; the three most common are GET, POST,
and HEAD. The client and server also exchange HTTP cookies as part of the headers. Cookies
are sent in the request, and others might be received in the response.

ftp://ftp.rfc-editor.org/in-notes/rfc3986.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3986.txt
http://msdn2.microsoft.com/en-us/library/aa226544(sql.80).aspx
http://msdn2.microsoft.com/en-us/library/aa226544(sql.80).aspx

 CHAPTER 20 Using AJAX 339

When the web server for http://www.braingia.org receives a request like this, the web server
sends response headers that indicate how it has handled the request. In this case, the web
server sends response headers similar to these:

HTTP/1.1 200 OK
Date: Sat, 12 Mar 2011 01:04:34 GMT
Server: Apache/1.3.33 (Debian GNU/Linux) mod_perl/1.29 PHP/4.3.10-22
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1

The requested document follows the response headers. The first and most important header
indicates the status of the response. In the example, the response is 200, which is synonymous
with OK. Other common responses include 404 (which indicates that the requested document
was not found), 302 (which indicates a redirect), and 500 (which indicates that a server error
occurred).

Understanding these basics of HTTP is important for understanding how to build AJAX
requests and how to troubleshoot those requests when things go wrong. You can find more
information about HTTP, including the various response codes, in RFC 2616 at ftp://ftp.rfc-
editor.org/in-notes/rfc2616.txt.

processing an aJaX response
It’s easier to work with the response when the request is sent synchronously, because the script’s
execution stops while awaiting the response. The requestObj variable provides helpful methods for
processing a response, including giving access to the status codes and text of the status sent from the
server. Regardless of whether the request is synchronous or asynchronous, you should evaluate the
status code to ensure that the response was successful (usually indicated by a status of 200).

The responseText method contains the text of the response as received from the web server.

For example, assume a server application returns the sum of two numbers. Calling the application
to add the numbers 2 and 56 looks like this:

http://www.braingia.org/addtwo.php?num1=2&num2=56

Here’s a synchronous call and response retrieval:

requestObj.open("GET", "http://www.braingia.org/addtwo.php?num1=2&num2=56", false);
requestObj.send();
if (requestObj.status == 200) {
 alert(requestObj.responseText);
} else {
 alert(requestObj.statusText);
}

ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt

340 parT iii aJaX and Server-Side integration

In this example, assume that the requestObj variable was created using the readyAJAX() function
that you saw earlier. The preceding code then calls the open method using a GET request to the speci-
fied URL (http://www.braingia.org/addtwo.php?num1=2&num2=56). The request is sent synchronously
because the last argument to the open method is false. Next, the code calls the send method, which
actually sends the request to the web server.

When the client receives the response from the web server, it calls the status property to check
the status value. If the response code is 200, indicating success, the code displays the responseText
method, which holds the response from the server. If the response status code is anything other than
200, the code displays the status text.

Processing an asynchronous response is a bit more complex. When a request is sent asynchro-
nously, script execution continues. Therefore, it is unpredictable when the script will be notified that
the response has been received. To know the response status, you can use the onreadystatechange
event to trigger code that checks the event’s readyState property to determine the state of the
request/response cycle. The readyState property has five states, as shown in Table 20-1.

TABLE 20-1 readyState properties

Value Description

0 Uninitialized. Open but has yet to be called.

1 Open. Initialized but not yet sent.

2 Sent. The request has been sent.

3 Receiving. The HTTP response headers have been received, but
the response body has not yet been completely received.

4 Loaded. The response has been fully received.

For practical purposes, the only state that matters to the JavaScript and AJAX programmer is
state 4—Loaded. Attempting to process a response that has a readyState value other than 4 results in
an error.

You typically use an anonymous function to handle the onreadystatechange event for asynchro-
nous AJAX calls. The function checks to see whether the readyState property has reached 4 and then
checks to ensure that the status is 200, indicating success. The code follows this format:

requestObj.onreadystatechange = function() {
 if (requestObj.readyState == 4) {
 if (requestObj.status == 200) {
 alert(requestObj.responseText);
 } else {
 alert(requestObj.statusText);
 }
 }
}

In this next exercise, you create an XMLHttpRequest object and send a request to a web server
to retrieve a book title based on its ISBN. You need a web server and web server code to print the

 CHAPTER 20 Using AJAX 341

response, because requests sent using XMLHttpRequest are subject to the JavaScript same-origin
policy.

The same-origin policy requires that requests go only to servers within the same domain from
which the calling script was loaded. That is, because I’m executing the script in this exercise directly
from my web server at http://www.braingia.org, my script can call that server and retrieve a response.
However, if you tried to call a URL on another web server, the same-origin policy would prevent the
script from retrieving the response.

note One way to get around the same-origin security feature is to use an HTTP proxy or
to write the server-side program so that it sends a request on behalf of the calling program;
however, learning how to do that is beyond the scope of this book.

For the upcoming exercise, the script or program running on the server needs to return the phrase
“JavaScript Step by Step” when it receives a GET request with a name/value argument with the follow-
ing value:

isbn=9780735624498

For example, at its most basic, the server-side program could look like this when implemented
inside an Active Server Pages (ASP) page based on VBScript:

<%
dim isbn
isbn=Request.QueryString("isbn")
If isbn<>"" Then
 If isbn=="9780735624498" Then
 Response.Write("JavaScript Step by Step")
 End If
End If
%>

A functionally similar program looks like this if written in PHP:

<?php

$isbn = $_GET['isbn'];

if (! $isbn) {
 print "That request was not understood.";
} else if ($isbn == "9780735624498") {
 print "JavaScript Step by Step";
}

?>

In the following exercise, the URL to which the request will be sent is predefined, but you must
replace that URL with the URL where your server-side program is located. Because of the same-origin
policy, the server-side program needs to be within the same domain as the page that calls it.

342 parT iii aJaX and Server-Side integration

Sending and receiving with XMLHttpRequest

1. Create your server-side program to return the book title when it receives the isbn argument
shown earlier. You can do this in your choice of languages. (If you need to, look at the two
examples shown earlier.)

2. Using Microsoft Visual Studio, Eclipse, or another editor, edit the file isbn.html in the
Chapter20 sample files folder (in the companion content).

3. Within the webpage, replace the TODO comment with the following code shown in boldface.
Be sure to replace the url variable with the appropriate URL for your server-side program:

<!doctype html>
<html>
<head>
<title>ISBN</title>
</head>
<body>
<div id="data"></div>
<script type="text/javascript">
function readyAJAX() {
 try {
 return new XMLHttpRequest();
 } catch(e) {
 try {
 return new ActiveXObject("Msxml2.XMLHTTP");
 } catch(e) {
 try {
 return new ActiveXObject("Microsoft.XMLHTTP");
 } catch(e) {
 return "A newer browser is needed.";
 }
 }
 }
}
var requestObj = readyAJAX();
var url = "http://www.braingia.org/isbn.php?isbn=9780735624498";

requestObj.open("GET",url,true);
requestObj.send();
requestObj.onreadystatechange = function() {
 if (requestObj.readyState == 4) {
 if (requestObj.status == 200) {
 alert(requestObj.responseText);
 } else {
 alert(requestObj.statusText);
 }
 }
}
</script>
</body>
</html>

4. Save and view the page in a web browser. You should receive an alert like the following:

 CHAPTER 20 Using AJAX 343

Congratulations! You’ve now processed your first XMLHttpRequest object.

processing XML responses
The AJAX example that you just saw used plain Hypertext Markup Language (HTML) and a text
response from the web server, so you could retrieve them using the XMLHttpRequest object’s
 responseText method. However, server applications can also return XML responses, which you can
process natively using the responseXML method.

Earlier in this chapter, the sidebar titled “Describing how the web works in 500 words or fewer”
discussed an example web server response. The server response contained this Content-Type header:

Content-Type: text/html; charset=iso-8859-1

To retrieve a response using the responseXML method, the web server needs to send a
 Content-Type of text/xml or application/xml (or really anything +xml) like this:

Content-Type: application/xml

When the XMLHttpRequest object receives native XML as the response, you can use Document
Object Model (DOM) methods to process the response.

The responseXML method has been somewhat quirky historically, and using it can result in
unexpected behavior, depending on the browser and operating system. In addition, responseXML
isn’t as widely supported as other JavaScript methods. Using responseXML means combining the
XMLHttpRequest techniques already seen in this chapter with the XML parsing techniques described
in Chapter 17, “jQuery effects and plug-ins.” For example, consider this XML document (call it book.
xml):

<?xml version="1.0" encoding="ISO-8859-1"?>
<book>
 <title>JavaScript Step by Step</title>
 <isbn>9780735624498</isbn>
</book>

Combining the XMLHttpRequest object and XML parsing leads to the following code, which
retrieves and displays the ISBN from the book.xml document:

var requestObj = readyAJAX();
var url = "http://www.braingia.org/book.xml";
requestObj.open("GET",url,false);
requestObj.send();

344 parT iii aJaX and Server-Side integration

if (requestObj.status == 200) {
 var xmldocument = requestObj.responseXML;
 alert(xmldocument.getElementsByTagName("isbn")[0].childNodes[0].nodeValue);
} else {
 alert(requestObj.statusText);
}

When the request completes successfully, requestObj.responseXML contains the requested XML
document (book.xml). The xmldocument.getElementsByTagName(“isbn”) code retrieves an array of
the <ISBN> tags in the document. There’s only one of those in this document; the [0] indicates the
first one. The .childNodes[0] portion of the code retrieves the first child node from that <ISBN> tag.
In this case, that’s the text node, which contains the ISBN number. Finally, the .nodeValue portion of
the code retrieves the value of that text node, the ISBN itself, which the preceding code displays with
an alert call.

Working with JSOn
JavaScript Object Notation (JSON) is a way to pass data as native JavaScript objects and arrays, rather
than encode data within XML (or HTML) responses. JSON is a more efficient way to pass data from
server to client. Parsing XML using the DOM is more complex and thus slower, whereas parsing
 JSON-encoded data is done directly in JavaScript.

Recall the book.xml document from an earlier example in this chapter. That same data in JSON
looks like this:

{
"book":
 {
 "title": "JavaScript Step by Step",
 "isbn": "9780735624498"
 }
}

Retrieving an individual element is somewhat easier with JSON than with XML. You use the
JavaScript eval() function to parse the JSON-formatted response. For example, here’s the code to
retrieve and display the book title:

var requestObj = readyAJAX();
var url = "http://www.braingia.org/json.php";
requestObj.open("GET",url,false);
requestObj.send();
if (requestObj.status == 200) {
 var jsondocument = eval('(' + requestObj.responseText + ')');
 alert(jsondocument.book.title);
} else {
 alert(requestObj.statusText);
}

Using JSON carries an inherent security risk, because it uses the eval() function to parse the
response. The eval() function essentially executes the JavaScript code received, so if that code were
malicious, it would execute in the context of the application being run. It is your responsibility to

 CHAPTER 20 Using AJAX 345

ensure that the data your application is using with JSON is clean and free of malicious code that could
cause problems when executed using eval().

Using a JavaScript framework such as jQuery alleviates much of this concern, as does the addition
of native JSON into ECMA-262 edition 5. You learn how to use jQuery and how to use it for process-
ing JSON later in this chapter.

processing headers
The HTTP HEAD method returns just the response headers from the server, rather than the headers
and the body in the way the GET method does. The HEAD method is sometimes helpful for determin-
ing whether a given resource has been updated or changed.

One frequently sent HTTP header is Expires, which indicates when the client should request a
refreshed copy of a document rather than read it from the client’s cache. If the server sends the
Expires header, the HEAD method is an efficient way to view and parse the Expires header because
the HEAD method retrieves only the response header rather than the entire body of the requested
resource.

To obtain only the response headers from the XMLHttpRequest object, whether using a HEAD
request or any other type of request such as GET or POST, use the getAllResponseHeaders() method of
the XMLHttpRequest object, as follows:

requestObj.getAllResponseHeaders();

Example 20-2 shows how to retrieve the response headers from the default page of my website.

EXAMPLE 20-2 Retrieving headers

<!doctype html>
<html>
<head>
<title>Response Headers</title>
</head>
<body>
<div id="data"></div>
<script type="text/javascript">
function readyAJAX() {
 try {
 return new XMLHttpRequest();
 } catch(e) {
 try {
 return new ActiveXObject("Msxml2.XMLHTTP");
 } catch(e) {
 try {
 return new ActiveXObject("Microsoft.XMLHTTP");
 } catch(e) {
 return "A newer browser is needed.";

346 parT iii aJaX and Server-Side integration

 }
 }
 }
}
var requestObj = readyAJAX();
var url = "http://www.braingia.org/";
requestObj.open("HEAD",url,true);
requestObj.send();
requestObj.onreadystatechange = function() {
 if (requestObj.readyState == 4) {
 if (requestObj.status == 200) {
 alert(requestObj.getAllResponseHeaders());
 } else {
 alert(requestObj.statusText);
 }
 }
}
</script>
</body>
</html>

Tip The same-origin policy that you came across during the exercise earlier in the chapter
applies equally to the HEAD method in Example 20-2. When writing Example 20-2, I forgot
about the same-origin policy and originally set the url variable to http://www.microsoft.
com/, thinking I’d get that site’s default page. However, upon receiving an error, I realized
the problem and changed the url variable to match the domain on which the script was
running (my site). You are likely to encounter the same problem. Remember to change the
url variable to your server of origin when attempting to run the code in Example 20-2.

Using the POST method
Up to this point, the examples you’ve seen have used the GET and HEAD methods to retrieve data
from the server. To submit queries through HTTP, you often use the POST method. Using the POST
method with XMLHttpRequest is a bit more complex than using either the GET or HEAD methods.
However, the POST method offers two specific advantages over the GET method. First, parameters
you send with a POST request are contained in the body of the request rather than in the URL, as they
are with the GET method, and therefore are less likely to be seen by the casual observer trying to find
ways into your application. Second, the POST method supports larger requests. Some servers limit the
amount or size of a GET request to a certain number of characters, and although those servers might
also limit the size of a POST request, the limitation for POST requests is almost always much greater.

The HTTP POST method requires an additional header to be set within the request. You set that
additional header with the setRequestHeader() method:

requestObj.setRequestHeader(header, value);

 CHAPTER 20 Using AJAX 347

For example, to set the Content-Type header for a web form, as you would do for a POST request,
you could write:

requestObj.setRequestHeader("Content-type", "application/x-www-form-urlencoded");

When you saw the AJAX requests sent earlier using the GET method, the URL included the param-
eters or name/value pairs for the application, like so:

http://www.braingia.org/books/javascriptsbs/isbn.php?isbn=9780735624498

In the preceding example, the isbn parameter has the value 9780735624498. However, when
working with POST requests, the URL contains only the document or resource requested—it doesn’t
contain any parameters. Therefore, you must send the parameters as part of the send() method.

Example 20-3 presents an AJAX request using the POST method, shown in boldface type. It uses
two parameters—see whether you can spot them.

EXAMPLE 20-3 Constructing a POST request

<!doctype html>
<html>
<head>
<title>Post</title>
</head>
<body>
<div id="xmldata"></div>
<script type="text/javascript">
function readyAJAX() {
 try {
 return new XMLHttpRequest();
 } catch(e) {
 try {
 return new ActiveXObject("Msxml2.XMLHTTP");
 } catch(e) {
 try {
 return new ActiveXObject("Microsoft.XMLHTTP");
 } catch(e) {
 return "A newer browser is needed.";
 }
 }
 }
}
var requestObj = readyAJAX();
var url = "http://www.braingia.org/books/javascriptsbs/post.php";
var params = "num1=2&num2=2";
requestObj.open("POST",url,true);
requestObj.setRequestHeader("Content-type", "application/x-www-form-urlencoded");
requestObj.send(params);
requestObj.onreadystatechange = function() {

348 parT iii aJaX and Server-Side integration

 if (requestObj.readyState == 4) {
 if (requestObj.status == 200) {
 alert(requestObj.responseText);
 } else {
 alert(requestObj.statusText);
 }
 }}
</script>
</body>
</html>

Example 20-3 creates two parameters placed into a variable called params:

var params = "num1=2&num2=2";

After constructing the request object (requestObj), the parameters are passed as an argument to
the send() method:

requestObj.send(params);

AJAX and jQuery

The previous section showed how to write and use AJAX. This section shows how to use AJAX with
jQuery.

jQuery offers several functions for working with data from and sending data to a server. Among
these are the .load() function, the .post() function, and the .get() function. jQuery also includes a spe-
cific AJAX function, aptly titled .ajax().

Using the .ajax() function, you can set several parameters, including which HTTP method the call
should use (GET or POST), the time-out, and what to do when an error occurs (as well as when the
code succeeds, of course).

note See http://api.jquery.com/jQuery.ajax/ for a full list of the available parameters for use
with the .ajax() function.

The basic syntax of the .ajax() function is:

$.ajax({
 parameter: value
});

You can pass a number of parameter: value pairs to the .ajax() function, but you typically specify
the method, the URL, and a callback function. It’s also quite common to specify the data type to be

http://api.jquery.com/jQuery.ajax/

 CHAPTER 20 Using AJAX 349

returned, whether to cache the response, the data to be passed to the server, and the function to call
when an error occurs.

note The .ajaxSetup() function lets you set defaults for AJAX-related parameters, such as
for caching, methods, and error handling, among others.

Here’s a real-world example of the .ajax() function in action:

$.ajax({
 url: "testajax.aspx",
 success: function(data) {
 alert("Successful load");
 }
});

jQuery also includes a function called .getJSON() that performs the same essential function as
the other AJAX-related functions, but it works specifically with JSON-encoded data from the server.
The .getJSON() function is the equivalent of calling the .ajax() function with the additional parameter
dataType: ‘json’.

For example, consider this JSON-encoded list of a few states:

["Wisconsin","California","Colorado","Illinois","Minnesota","Oregon","Washington","New
York","New Jersey","Nevada","Alabama","Tennessee","Iowa","Michigan"]

For this example, assume that the JSON-encoded data is returned when the file json.php is called
on the local server. The following use of the .ajax() function retrieves the data and calls a function
named showStates when successful:

$.ajax({
 type: "GET",
 url: "json.php",
 dataType: "json",
 success: showStates
});

The function showStates creates a list and adds it to a form’s <SELECT> drop-down box.

Using aJaX with jQuery

To complete this step-by-step exercise, you need to have a file called json.php available in the same
directory as the file you’ll use in this exercise. (A json.php file is included with the book’s compan-
ion content.) Like the examples from the previous section, the json.php file must reside in the same
domain as the file that’s making the AJAX request. Additionally, you need jQuery available. This
example assumes that jQuery resides in the same directory as the file.

1. Edit the file ajax.html file (included with this book’s companion content) using your editor of
choice.

350 parT iii aJaX and Server-Side integration

2. Within the file, replace the TODO comment with the code shown in boldface (ajax.txt in the
companion content):

<!doctype html>
<html>
<head>
<title>AJAX Test</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body>
<div id="states">
</div>
<script type="text/javascript">
$(document).ready(function() {

$.ajax({
 type: "GET",
 url: "json.php",
 dataType: "json",
 success: showStates
});
function showStates(data,status) {
 $.each(data, function(item) {;
 $("#states").append("<div>" + data[item] + "</div>");
 });}

});
</script>
</body>
</html>

3. Save the file, and view it in a web browser. You see a list of states, like the one shown here:

 CHAPTER 20 Using AJAX 351

aJaX errors and time-outs
The .ajax() function lets you handle errors and time-outs gracefully. In addition to the success handler,
you can specify an error handler with the error parameter. The value of the error parameter is usually
a callback function. Here’s an example, with the newly added error parameter in boldface:

$.ajax({
 type: "GET",
 url: "json.php",
 dataType: "json",
 success: successFunction,
 error: errorFunction
});

The callback function used for error handling (errorFunction in the code example) receives three
arguments: the XMLHTTPRequest object; a string representing the error encountered; and string
containing the HTTP error code, if there was one. Therefore, an error handler function should accept
these three arguments and then do something with the results. This example shows an alert:

function errorFunction(xhr, statusMessage, httpErrorCode) {
 alert("An error was encountered " + statusMessage);
}

You might find it necessary to set a time-out for an AJAX request. You can set a generic AJAX
time-out value through the default $.ajaxSetup, but you can also specify a time-out value for any
individual call using the timeout parameter. Here’s an example:

$.ajax({
 type: "GET",
 url: "json.php",
 dataType: "json",
 success: successFunction,
 error: errorFunction,
 timeout: 5000
});

It’s important to realize that the time-out is in milliseconds. Therefore, the example shown sets the
time-out at five seconds.

Sending data to the server
You not only need to receive data from a server in an AJAX call, but you also need to send data to
a server and receive a response. You use the data parameter to the .ajax() function for this, sending
data using either GET or POST.

You can format the data as ampersand-separated key=value pairs (key1=value1&key2=value2) or
as mapped pairs {key1: value1, key2: value2}. The example here uses the key=value option, also known
as the query string option.

352 parT iii aJaX and Server-Side integration

This example calls a server-side program titled statefull.php, which, given a two-letter state abbre-
viation, returns the full name of the state.

 $.ajax({
 type: "POST",
 url: "statefull.php",
 dataType: "json",
 success: successFunction,
 data: "state=WI"
});

Other important options
There are numerous options to the .ajax() function. You’ve seen how to use many of them already, but
I’d like to highlight two more options:

■■ async

■■ cache

The async option, which is set to true by default, informs the script whether it should wait (and
block further input in the browser) while the AJAX transaction is sent, received, and processed. When
set to true, the AJAX transaction is done asynchronously, so it does not block.

The cache setting, which defaults to true in most instances, controls whether jQuery will cache the
AJAX transaction. This is useful when the data being received doesn’t change often, because cach-
ing speeds up the transaction, but caching can cause problems when your application is using older
cached data that has changed on the server. I’ve found it helpful to set this option to false so that the
response is not cached, especially in cases where you encounter problems when data is apparently
not refreshing.

Exercise

1. Create a form with a submit event handler such that when the user enters a two-letter abbre-
viation for a state, the full name is returned using AJAX. The solution will require using some
of the items you’ve learned throughout the book so far to create a form and add a handler.
You can use jQuery for this exercise (that’s how the solution will show it), or you can use the
standard XMLHttpRequest object.

 353

C H A P T E R 2 1

Developing for Windows 8

After completing this chapter, you will be able to

■■ Understand apps in Windows 8.

■■ Understand the guidelines used when developing for Windows 8.

■■ Understand distribution mechanisms for Windows Apps.

Windows 8 introduces a new user interface to the operating system and simultaneously promotes
JavaScript to a more prominent role within the operating system. This chapter looks at development
for Windows 8 using JavaScript.

Windows 8 apps

Windows 8 introduces a new Start screen, shown in Figure 21-1, that changes the paradigm from one
of a traditional desktop interface to one that’s more touch and gesture friendly.

FIGURE 21-1 The Windows 8 Start screen.

Apps used through the Windows 8 interface utilize tiles, and these tiles are interesting in that
they can be dynamically updated. For example, the Weather tile in Windows 8 automatically updates
based on current conditions.

354 parT iii aJaX and Server-Side integration

Developing Windows 8 apps

Developing and distributing apps has become much easier with Windows 8, especially for small
developers. This section looks at some of the ins and outs of app development.

Development guidelines
Microsoft has developed a strong set of guidelines for Windows Apps that helps to ensure a positive
and consistent user experience. As discussed within the “Windows 8 Product Guide for Developers”
(http://msdn.microsoft.com/windows/apps/hh852650), the following principles govern apps in
Windows 8:

■■ Use strong content—content first. The content of an app is the most important thing
about the app and is the reason that users choose an app.

■■ Responsive design. Interactions with the user are designed to be intuitive and responsive.

■■ State-aware. The app should be able to run in various states, including as a full-screen app
or in a snapped view where the app is secondary on the screen.

■■ Contract support. App contracts give multiple apps the ability to work together.

■■ Live tiles. Tiles can be updated in the background to enhance the user experience even
when they’re not working with the app.

■■ Cloud support. Windows 8 features cloud-based resources and settings prominently, and
apps should take advantage of cloud support wherever possible.

When an app is submitted for approval in the Windows Store it goes through several tests, includ-
ing a manual test, to ensure that the guidelines have been followed. The process for distribution is
discussed later in this chapter. Microsoft does this to ensure a consistent and high-quality user experi-
ence for apps delivered in the Windows Store.

The development process
The overall development process for apps is roughly the same as it is for all apps, with the exception
of some extra steps necessary for approval if the app needs to be sold through the Windows Store.
The overall steps are:

1. Plan and design the app.

2. Develop the app.

3. Package and test the app.

4. Distribute the app.

http://msdn.microsoft.com/windows/apps/hh852650

 CHAPTER 21 Developing for Windows 8 355

planning and designing the app
Prior to jumping into development, Microsoft stresses the importance of following good design
principles for apps. Doing so helps to ensure that the app will pass validation checks and ultimately
provide a good user experience.

Microsoft has identified several planning steps when designing the user experience (UX) for apps.
The first and foremost of these steps is deciding what the app will do and how users will interact with
it. While this sounds obvious, when you start actually laying out (using pen and paper, for example) an
app’s design, you’ll find out the best way to present information and how the user might best interact
with the app.

note See “Designing UX for apps” at http://msdn.microsoft.com/en-us/library/windows/
apps/hh779072.aspx for more information about the design recommendations for apps.

Developing the app
Apps are developed using the Windows 8 Software Development Kit (SDK). This SDK, available as a
separate download or as part of Microsoft Visual Studio 2012, provides the interface through which
apps interact with the Windows user interface. While Visual Studio isn’t required for JavaScript devel-
opment, it certainly does help when developing for Windows 8.

Using Visual Studio, apps can be developed in several different languages, including:

■■ Visual Basic

■■ Visual C++

■■ Visual C#

■■ JavaScript

This being a book on JavaScript, the focus will be on using JavaScript for app development.
However, if you have expertise in any of the other languages, those also provide options for app
development.

The use of JavaScript for app development is a great step forward for the language. Although so
far this book has shown JavaScript being used in a browser, its use for Windows 8 moves JavaScript
into the role of full-fledged client-side development language. This means that using nothing more
than JavaScript, along with some HTML and CSS, you can create an app that can access all of the fea-
tures available in Windows 8, such as the following:

■■ Access to media such as music, movies, and images

■■ Access to Internet-based resources

■■ Use of built-in Windows functions for controlling devices

http://msdn.microsoft.com/en-us/library/windows/apps/hh779072.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh779072.aspx

356 parT iii aJaX and Server-Side integration

When an app has been created, it gets assembled into an app package, which is a collection of files
needed to run the file.

packaging and testing the app
When development is complete, there is a packaging step that needs to occur with all apps, whether
distributed through the Windows Store or within an organization. The app packaging process includes
all of the files necessary for your app to run on another Windows 8–based computer. It’s during the
app packaging stage that you choose the architectures on which your program will run, such as the
version number and so on.

You can also set several items about the app through its manifest file, part of which is shown
in Figure 21-2. This manifest file is discussed in more detail in Chapter 22, “Using Visual Studio for
Windows 8 development.”

FIGURE 21-2 Setting items about the app through its manifest in Visual Studio.

App packaging is accomplished through the Create Your Package Wizard, the first step of which is
shown in Figure 21-3.

The app package contains several files, including a security certificate and any dependencies
necessary for your app to run. As you can see by the first step of the Create Your Package Wizard, you
can choose whether the app will be distributed through the Windows Store or internally. App distri-
bution is the focus of the next section.

After an app has been packaged, it can be tested on other devices and also by using the Windows
App Certification Kit, which is part of the SDK. The Windows App Certification Kit is used by Microsoft
during the app approval process but can also be used by the developer prior to submitting to the
Windows Store or distributing internally. Doing so helps to ensure that the app will be approved by
giving you a chance to eliminate any related errors prior to submittal.

 CHAPTER 21 Developing for Windows 8 357

FIGURE 21-3 Creating an app package in Visual Studio.

The Windows App Certification Kit, shown in Figure 21-4, runs several tests on the app, including
executing it on the computer on which the wizard is run.

FIGURE 21-4 The Windows App Certification Kit.

When the wizard completes successfully, shown in Figure 21-5, the app is ready to be distributed,
which is discussed in the next section.

note Microsoft has developed a checklist for app submission that you can use prior to
 submitting the app to the Windows Store. The checklist is available at http://msdn.microsoft.
com/library/windows/apps/hh694062.aspx.

http://msdn.microsoft.com/library/windows/apps/hh694062.aspx
http://msdn.microsoft.com/library/windows/apps/hh694062.aspx

358 parT iii aJaX and Server-Side integration

FIGURE 21-5 Results of app certification.

Distributing Windows apps

There are two means for distributing apps, through the Windows Store and by sideloading. The
Windows Store is the primary means for distributing apps, and doing so makes your app available
to the public. Sideloading is a process by which Line of Business (LOB) apps are distributed within an
organization.

Distributing in the Windows Store
Distributing in the Windows Store means accepting the developer and other related licenses and
agreements and submitting each app for an approval process. After the app has been built and tested
locally, you can upload it to the Windows Store. When submitted, an app goes through the phases
described in Table 21-1.

TABLE 21-1 App testing for the Windows Store

Phase Description

Security Testing Microsoft tests the app package for malware and other security issues.

Technical Compliance Testing Microsoft uses the Windows App Certification Kit to test the app.

Content Compliance The app is tested manually by Microsoft personnel and its content is examined.

Release The app is queued for release to the public, either as soon as possible or at a
time specified by you when the app was submitted.

When an app has been fully tested, it gets signed by Microsoft to prevent tampering, and you also
receive a certification report on the results.

 CHAPTER 21 Developing for Windows 8 359

note See http://msdn.microsoft.com/en-us/library/windows/apps/br230835.aspx for an
overview of the app submission process.

Distributing in an enterprise
As mentioned in the preceding section, another method for app distribution is by sideloading. In
the context of Windows, sideloading refers to the process of installing an app within an enterprise.
Sideloading is typically used for enterprises to distribute apps that are specific to the organization and
that the enterprise wouldn’t release to the public. When an app is sideloaded, it doesn’t need to be
submitted to Microsoft for approval, although the Windows App Certification Kit should still be used
to ensure that the app is stable and usable.

Sideloading an app has several requirements, including changing Group Policy, using a specific
version of Windows, and other related items. The process and requirements for doing so are dis-
cussed at http://technet.microsoft.com/en-us/library/hh852635.aspx. Explaining how to sideload an
app is beyond the scope of this book.

Summary

This chapter doesn’t have exercises for you to work through. By way of a summary, your takeaways
from this chapter should be that Windows 8 changes the landscape on which apps are developed for
Windows. JavaScript can be used to develop full-fledged, powerful apps for Windows 8.

Microsoft has developed numerous design principles surrounding good app development for
Windows 8, and there are also overall platform requirements of which you should be aware when
designing an app for Windows 8, especially if you want to distribute the app in the Windows Store.

Developing an app for Windows 8 is much like development for other programs. The app needs to
be planned and designed, programmed, packaged, and tested. Visual Studio 2012 helps immensely
with the tasks related to packaging and testing the app.

After the app has been tested, it can be submitted for approval through Windows Store. This pro-
cess involves several stages including manual testing by Microsoft personnel. You can also distribute
an app within an enterprise using a process called sideloading.

http://msdn.microsoft.com/en-us/library/windows/apps/br230835.aspx
http://technet.microsoft.com/en-us/library/hh852635.aspx

 361

PART IV

JavaScript and
Windows 8

CHAPTER 22 Using Visual Studio for
 Windows 8 development .363

CHAPTER 23 Creating a Windows app .381

APPENDIX A Answer key to exercises .403

The combination of HTML, CSS, and JavaScript can be used to
build Windows 8 apps. This elevates JavaScript from more than
a web-centric language and fully into the realm of cli-ent-side
programming. The final section of the book looks at creating a
Windows 8 app using HTML, CSS, and JavaScript.

 363

C H A P T E R 2 2

Using Visual Studio for Windows 8
development

After completing this chapter, you will be able to

■■ Install Visual Studio for Windows 8 development.

■■ Understand some of the Windows App templates available with Visual Studio.

■■ Create a new project and run a templated app.

The theme throughout the book has been that JavaScript development doesn’t require an Integrated
Development Environment (IDE) and that you should use whatever tool with which you’re most com-
fortable for development. I tend to use Vim for writing HTML, CSS, and JavaScript for web applica-
tions. With the release of Windows 8, JavaScript can now be used to create full-fledged applications
that run natively in Windows, freed from the web browser. Microsoft has updated Visual Studio to
include tools that help in developing Windows 8 apps with JavaScript. Among the changes are tem-
plates for common layouts and packaging tools to help test apps and sell apps in the Windows Store.
Therefore, when developing for Windows 8, it makes sense to use Visual Studio.

Installing Visual Studio 2012

Visual Studio comes in several forms, from a free version called Express to an enterprise-level version
that stresses team-based development. This chapter will focus on the Express edition for Windows
8. There are actually several Express editions, including one focusing on web development and one
focusing on Windows 8 development. For this chapter, you’ll want the Express edition for Windows 8.

note Microsoft has a comparison of the different editions of the enterprise-level Visual
Studio available at http://www.microsoft.com/visualstudio/eng/products/compare.

The various versions of Visual Studio can be downloaded at http://www.microsoft.com/visualstudio/
eng/downloads#d-2012-express. When you find the edition you want, you can choose how to install
it: either by clicking an Install Now link or a Download Now link. This chapter will show the use of
the Download Now link, which downloads an entire installation package. This link is highlighted in
Figure 22-1.

http://www.microsoft.com/visualstudio/eng/products/compare
http://www.microsoft.com/visualstudio/eng/downloads#d-2012-express
http://www.microsoft.com/visualstudio/eng/downloads#d-2012-express

364 parT iV JavaScript and Windows 8

FIGURE 22-1 Downloading the entire Visual Studio Express for Windows 8 installer.

Installing Visual Studio 2012 Express for Windows 8

When the download completes, the next task is to install Visual Studio. The full download is an
ISO file, which can be opened natively in Windows 8. Doing so reveals the ISOs contents, shown in
Figure 22-2.

FIGURE 22-2 The contents of the Visual Studio download file.

The following step-by-step exercise will walk you through installing Visual Studio 2012 Express for
Windows 8.

1. With the ISO file opened in Windows 8, begin the installation process by double-clicking the
win8express_full file. The first screen of the installation process is displayed, as in the following
graphic:

 CHAPTER 22 Using Visual Studio for Windows 8 development 365

2. Within that first screen, read the license terms and, if you find them agreeable, mark your
consent accordingly. When you do so, the “Install” area will become available, as shown in the
following graphic:

366 parT iV JavaScript and Windows 8

3. Click INSTALL to begin the installation process. If you’re logged in as a normal user, you’ll be
prompted to allow the installation process to continue. Click Yes. The installation process will
begin, with progress noted as shown in the following:

When the installation completes, the Setup Successful dialog box shown next will appear:

 CHAPTER 22 Using Visual Studio for Windows 8 development 367

4. Click Launch. Visual Studio will start.

Even though this edition of Visual Studio is free, you still must register it, so the registration
process begins next, as shown in the following:

5. Click Register Online. Your browser will open, and you’ll be directed to a Microsoft website
where you can fill in your information and register to receive a product key.

6. Enter the product key that you receive from Microsoft into the dialog box from the preceding
graphic, and click Next. If you’re running as an account without administrative privileges you’ll
be prompted to allow the process to continue. If that’s the case, click Yes.

7. After the key has been entered and you’ve clicked Next, a dialog box will be shown to confirm
that a product key has been entered. This dialog box is shown in the following graphic:

368 parT iV JavaScript and Windows 8

Click Close to dismiss this dialog box.

8. Visual Studio will now begin a preparation, after which time it will open. Another dialog box
will be displayed to obtain yet another license. This time the license is for Windows 8 devel-
opment. The dialog box is shown in the following figure. Read through its terms, and if you
agree, click I Agree. As before, if you’re not logged in as administrator, you’ll be prompted to
allow this program to run. Click Yes.

 CHAPTER 22 Using Visual Studio for Windows 8 development 369

9. To obtain the license, you need to log in with a Microsoft account, as shown here:

Enter your credentials, and click Sign In.

370 parT iV JavaScript and Windows 8

10. After you click Sign In, a license will be obtained and a confirmation dialog box will be shown.
Click Close on that dialog box, and you’ll be allowed into Visual Studio, shown here:

That’s it! Enjoy your shiny new IDE. The next sections walk through Visual Studio to help get you
familiar with the process of Windows 8 development. However, Visual Studio is a vast and powerful
(and complex) piece of software. I encourage you to spend time in the Help section of Visual Studio,
which is excellent.

Windows 8 app templates

Visual Studio includes multiple templates that help to kickstart the development process for Windows
8. The templates provide a good starting point, using common design patterns. This section looks at
some of the templates available with Visual Studio 2012.

The templates are found by creating a new project, which is accomplished either by clicking New
Project within the Start section of the Visual Studio’s home screen (shown in the previous graphic) or
by selecting New Project from the File menu. Doing so reveals the New Project dialog box, as shown
in Figure 22-3.

 CHAPTER 22 Using Visual Studio for Windows 8 development 371

FIGURE 22-3 The New Project dialog box in Visual Studio 2012.

As you can see from Figure 22-3, there are four languages available and, within the JavaScript
section, there are five templates currently installed. If you click to expand the Online section and
then expand the Samples section, you can browse various code samples for JavaScript, shown in
Figure 22-4.

FIGURE 22-4 JavaScript samples are available online in Visual Studio.

Now, within the Installed JavaScript Templates section, it’s time to explore a few of the various
templates that are installed within Visual Studio.

372 parT iV JavaScript and Windows 8

Blank app template
The Blank App template creates just what it says, a blank app. The app has limited base functionality
when compared with other templates but still includes base functionality to connect to the libraries
and CSS necessary for an app. However, with the limited base functionality, you get greater flexibility
to implement the features and the look and feel that you need for the app. The Blank App template
also provides an easy way to get started with Windows 8 development because it contains a mini-
mum number of files, so it’ll be the focus of the following step-by-step exercise.

1. Begin the exercise from within Visual Studio 2012. Click File | New Project.

2. In the New Project dialog box, select Blank App from the JavaScript Templates. Name the app
BlankApp1 and click OK. This dialog box is shown in the following graphic:

A new blank application will be created, and the default.js JavaScript file will be opened, as
shown in the following:

 CHAPTER 22 Using Visual Studio for Windows 8 development 373

3. Run the app by selecting Start Debugging from the Debug menu or by pressing F5. The app
will compile and start, showing the splash screen and finally the main page in full-screen
mode, looking similar to this:

4. Close the app by dragging it from the top to the bottom of the screen. Switch back to the
classic desktop to find Visual Studio.

5. Verify that the app has stopped, or select Stop Debugging from the Debug menu to stop
the app.

6. Within the Solution Explorer, open default.html to reveal the HTML for the landing page for
the app (from Figure 22-16).

7. In default.html, locate the <P>Content goes here</P> section within the <BODY> section,
and delete it. In its place, add:

<h1>Here's my app!</h1>

374 parT iV JavaScript and Windows 8

The following graphic shows the new tag and its location:

8. Save default.html.

9. Run the solution by selecting Start Debugging from the Debug menu. The app will execute,
and when it loads, you’ll see your content, as shown here:

10. Stop the project by dragging the app off the screen, switching to the desktop, and selecting
Stop Debugging from the Debug menu.

Congratulations! You’ve created and slightly modified an app in Windows 8.

The real heart of the app is in the JavaScript. It’s through JavaScript that you can make the app
interactive, just like JavaScript does for webpages. In the next chapter, you’ll build a more complex
app. For now, feel free to experiment with the default.html and also to use the samples available with
Visual Studio.

 CHAPTER 22 Using Visual Studio for Windows 8 development 375

Grid app template
The Grid App template is used to convey information that needs to be grouped for ease of browsing
by the user. For example, multiple items such as news stories would be a good candidate for a Grid
app. The grid layout is shown in Figure 22-5.

FIGURE 22-5 A Grid app in Windows 8.

You can see the grid layout in action by selecting New Project from the File menu and selecting
Grid App from the templates. Just building the app by selecting Start Debugging from the Debug
menu starts the app, and you can see how the various interactions take place within a Grid app.

Whereas the Blank App template included a single JavaScript file (default.js), a single CSS file
(default.css), and a single HTML file (default.html), the Grid App template includes several other files
that are used to create the layout.

376 parT iV JavaScript and Windows 8

The Grid App template includes four HTML files (three of which are found within their own folders
in the pages folder):

■■ default.html

■■ groupDetail.html

■■ groupedItems.html

■■ itemDetail.html

Six JavaScript files are used, three of which are found alongside their corresponding HTML files
within the pages folder hierarchy:

■■ default.js

■■ data.js

■■ navigator.js

■■ groupedItems.js

■■ groupDetail.js

■■ itemDetail.js

Four CSS files are used, one in the css folder and three with their corresponding HTML files in the
pages folder hierarchy:

■■ default.css

■■ groupDetail.css

■■ groupedItems.css

■■ itemDetail.css

The design pattern that you see in this app is a good practice for your apps because it keeps each
page or screen of the app and all of its code in separate containers, making it easy to maintain sepa-
ration for each page.

When the Grid app loads, it first loads the default.html file. Within default.html, there’s a <DIV>
element that then references another page by using HTML data- attributes:

<div id="contenthost" data-win-control="Application.PageControlNavigator" data-win-
options="{home: '/pages/groupedItems/groupedItems.html'}"></div>

These data- attributes are custom attributes that can be used to define additional behavior. In this
case, they load a PageControlNavigator attribute, which references the groupedItems.html page. In
essence, default.html loads and then the page groupedItems.html is loaded within the Content Host
<DIV> element.

 CHAPTER 22 Using Visual Studio for Windows 8 development 377

note The page that loads by default can be changed using the app manifest, which will be
discussed later in this chapter.

Split app template
The Split App template is useful for displaying a listing of information, such as products in a catalog
or real estate listings. The Split app layout is shown in Figure 22-6.

FIGURE 22-6 The Split app layout.

Like the Grid app layout, the Split app layout includes several HTML and CSS files, some of which
are housed within the pages folder within the app. Also like the Grid app, the Split app layout loads
default.html and then loads another file to take over control. An exercise at the end of this chapter
asks you to determine which file is loaded from default.html.

Setting app details in the App Manifest

As previously stated, you can set the page that gets loaded first by using the app’s Package Manifest,
sometimes called the App Manifest, file. Visual Studio includes an editor for this file, which you can
find within your solution as the file package.appxmanifest.

378 parT iV JavaScript and Windows 8

Double-clicking package.appxmanifest reveals the contents of the file loaded into a custom editor,
like the one shown in Figure 22-7.

FIGURE 22-7 Editing the Package Manifest file in Visual Studio 2012.

As you can see from Figure 22-7, you can change the name of the app and its default page, along
with several other items related to the app, such as the logo that will be used on its Start screen tile.
There are several tabs in the editor, including one that enables you to declare the app’s capabilities.
For example, if your app needs to access the webcam or the Documents library, that needs to be
declared on the Capabilities tab, shown in Figure 22-8.

FIGURE 22-8 The Capabilities tab of the Package Manifest editor in Visual Studio 2012.

Using the Package Manifest editor is a common task when packaging your app for distribution
through the Windows Store. That distribution is the subject of the next and last section of this chapter.

 CHAPTER 22 Using Visual Studio for Windows 8 development 379

Packaging apps for the Windows Store

You’ve got your shiny new app ready, you’ve done all the testing you can locally, and you’re ready to
sell it to the world, or just about all of the world, anyway. Apps are sold through the Windows Store.
The Windows Store has its own set of policies and procedures that need to be followed before your
app can be sold. This chapter concentrates on the technical aspects of packaging an app. Refer to
Chapter 21, “Developing for Windows 8,” for more information about the overall process for app
packaging and distribution.

Certification requirements
Selling an app in the Windows Store means getting the app approved by Microsoft. The approval and
certification process ensures that apps provide a consistent and secure environment that’s in line with
the quality assurance standards for the Windows Store.

The certification process involves several requirements, as discussed at http://msdn.microsoft.com
/library/windows/apps/hh694083.aspx. The highlights include the following:

■■ The app must provide value.

■■ Any ads displayed mustn’t be the sole focus of the app.

■■ The app must be implemented in a manner consistent with the design principles set forth by
Microsoft.

■■ The app must behave in a predictable manner.

■■ The app must have appropriate content.

Speaking in general terms, Microsoft wants to ensure the highest-quality experience for users of
apps downloaded through the Windows Store. Apps that are clearly low quality, crash, or try to do
unexpected things won’t make it into the Windows Store.

how do i make money?
Apps in the Windows Store can be offered through numerous pricing models that enable you to
make money. You can offer your app for free, completely free, which can be rewarding in its own way.
You can also offer the app for sale, with various price tiers available. When offered this way, the users
prepay for the app before using it. Apps can also be offered on a limited trial basis, with additional
features becoming available through in-app purchases.

Another method for monetizing the app is to include advertisements within the app. When doing
so, Microsoft allows you to use any ad platform that adheres to the Windows Store requirements.
This gives you flexibility to use an ad network that has the highest return for you. If you’ve sold apps
through another app store, you’ll find that Microsoft offers the same types of options as the other
app stores. See http://msdn.microsoft.com/library/windows/apps/hh694084.aspx for more information
about making money with your app.

http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh694084.aspx

380 parT iV JavaScript and Windows 8

The technical process
The technical process for getting an app into the Windows Store involves several stages, beginning
with the upload of the app to the Windows Store. During the upload phase, the package passes
through some initial checks for compliance. When the upload phase is complete, the app begins its
gauntlet of tests.

The first tests after upload are a series of security tests, where the package is checked for obvious
malware and virus-related traits. Assuming you’re not uploading a virus, the app will then pass into
a series of technical compliance tests. The technical compliance tests should be easy for the app to
pass because Microsoft uses the same tool, the Windows App Certification Kit, that you have in Visual
Studio. So assuming that you ran (and passed) those tests when packaging your app, you should pass
them again here.

Passing the technical compliance tests means the end of the automated testing processes. It also
means the beginning of the manual processing test, known as content compliance. The content com-
pliance phase is where a human inspector looks at your app to make sure that it meets the content
criteria defined by Microsoft.

When your app passes content compliance, it gets signed and queued for release. The release can
be immediate or on a certain date that you set during the submission of the app.

Exercises

1. Change the blank app created in this chapter’s second exercise to add a link that opens a web-
page, such as http://www.microsoft.com.

2. Create a Split app by using the Split App template, and determine which HTML file gets con-
trol from the default.html page.

 381

C H A P T E R 2 3

Creating a Windows app

After completing this chapter, you will be able to

■■ Use Visual Studio 2012 to build a Windows app.

The previous chapters have shown what’s involved in creating and distributing an app for Windows
8. You’ve seen a fair amount about the overall design process for apps, and you’ve seen how Visual
Studio 2012 makes development of Windows apps easier through its use of templates and tight inte-
gration with the Windows Store. This chapter builds an app with Visual Studio 2012.

The app development process

In this chapter, you’ll work through an extended example that will show how to customize one of the
app templates included with Visual Studio. The app will use the U.S. National Weather Service data
feeds to build a weather app that provides current conditions for six locations. As a step in the cre-
ation process, you’ll customize the app’s tile and splash screen, too. After the app has been created,
it will be packaged and tested using the Windows App Certification Kit. The end result of the app will
be something like the one shown in Figure 23-1.

382 parT iV JavaScript and Windows 8

FIGURE 23-1 The weather app when it’s complete.

When building apps for Windows 8, you’ll use a combination of HTML, CSS, and JavaScript.
The primary focus of this example will be on JavaScript, but there’s also a good amount of content
devoted to making the CSS and HTML work with the JavaScript for the app.

In much of the web programming you’ve seen so far in this book, you used various JavaScript
functions and sometimes the jQuery library. When programming for Windows 8, you’ll still use the
same JavaScript functions that you’ve seen in the book, but instead of jQuery, you’ll use the WinJS
library. The WinJS library provides an interface into core Windows functionality and also provides
many helper functions and objects that aid in programming a Windows 8 app. For example, using the
WinJS library, you can make AJAX calls or access the Documents library on a user’s computer.

The process used here will be divided into several logical steps with checkpoints along the way so
that you can verify everything’s working. There will be no exercises at the end of this chapter; you’ll
be exhausted, and I’m not that cruel.

Starting the app design and programming

You’ll begin the app’s design and programming within Visual Studio, although there’s not much to
designing this app because it’ll use a template, and the specification is to use the layout included
within that template.

 CHAPTER 23 Creating a Windows app 383

1. Begin by opening Visual Studio and selecting New Project from the File menu.

2. Within the New Project dialog box, select Split App from the JavaScript templates. Call the
app MyWX, as shown in the following image, and click OK.

3. Visual Studio will open and show the default.js file. Your environment will look like this.

4. Close default.js.

384 parT iV JavaScript and Windows 8

5. Explore the files within this template by expanding the various folders within Solution
Explorer. You’ll see several JavaScript, HTML, and CSS files in the solution, as shown here.

6. Run the app in debug mode by pressing F5 or selecting Start Debugging from the Debug
menu. You’ll see a screen like the following.

 CHAPTER 23 Creating a Windows app 385

7. Stop the app by dragging it from the top to the bottom of the screen.

8. Switch back to the classic desktop, and, if the app hasn’t stopped, select Stop Debugging from
the Debug menu.

With that, the app’s initial creation is complete. Time to customize the app.

Customizing the app

So far you’ve created the initial app and made sure that it can execute. This section will work through
the customizations needed to grab current weather conditions and display them within the app.
You’ll add customizations to only four files as part of this process, with the bulk of the work being in
JavaScript and HTML.

Customize the JavaScript
The first thing to do is to customize the JavaScript. This is the most detailed and complex piece of
the app, but showing the simple CSS changes, for example, won’t help to give you context, so it’ll be
good to see the app built from the foundation. The JavaScript is somewhat long for this example, so
the exercise will have you add it in sections.

The following exercise assumes that you have Visual Studio open and that you have the MyWX
solution open as well. If you don’t, open the MyWX solution within Visual Studio before beginning
this exercise.

1. Open data.js from within the js folder.

2. Within data.js, remove the generateSampleData() function. You won’t need sample data,
because you’re going to be working with real data! That function looks like this (remember to
remove the closing brace, too):

 // TODO: Replace the data with your real data.
 // You can add data from asynchronous sources whenever it becomes available.
 generateSampleData().forEach(function (item) {
 list.push(item);
 });

3. Within data.js, place the following code immediately below the “use strict” line:

 var weatherStations;
 var wxPromises = [];
 var wxData = new WinJS.Binding.List();

 function getWXData() {

 weatherStations = [
 {
 key: "kste",
 url: "http://w1.weather.gov/xml/current_obs/KSTE.xml",

386 parT iV JavaScript and Windows 8

 title: "Unavailable", // To be filled in dynamically,
 summary: "Unavailable", // To be filled in dynamically
 dataPromise: null,
 getData: callAJAX
 }
];

 weatherStations.forEach(function (station) {
 station.dataPromise = station.getData(station.url);
 wxPromises.push(station.dataPromise);
 }); //end foreach
 return WinJS.Promise.join(wxPromises);

 } //end function getWXData

4. Save data.js.

note The JavaScript you just added sets up three variables for later use and then
creates a function called getWXData. The getWXData function sets up an array
with an object to hold the weather location from which the data will be gathered.
Inside of that object is a key, the URL of the National Weather Service’s XML for
that location, along with the title and summary that will be filled in later. There’s a
promise object and getData function also added to this object, both of which will be
explained after the exercise.

After the weatherStations array has been created, a forEach loop is created for the
members of the array. Each member is called “station” within the loop. Inside the
forEach loop, a promise object is created to retrieve the weather data. These promise
objects are pushed onto an array of promise objects. Finally, that array of promise
objects is linked and returned to end the function. Essentially, what you’ve done
here is set up a series of objects corresponding to each of the weather stations
from which you’ll gather information. For now, there’s only one weather station, but
there’ll be more later.

5. Below the closing brace for the getWXData function, add the following function:

 function callAJAX(url) {
 return WinJS.xhr({ url: url });
 }

6. Save data.js

note This function issues a call to the XHR function, which is used to make AJAX
requests. In this example, the callAJAX function is attached to the weatherStations
object created in an earlier step. As you can see, the callAJAX function and the XHR
function accept an argument of the URL to call.

 CHAPTER 23 Creating a Windows app 387

7. The third and final (and most complex) function is a function to parse the weather data.
Add this code after the closing brace of the callAJAX function that you just added in the
previous step.

 function parseWXData() {
 getWXData().then(function () {
 weatherStations.forEach(function (station) {
 station.dataPromise.then(function (wxResponse) {
 var wxDataItem = wxResponse.responseXML;

 station.title =
 wxDataItem.querySelector("current_observation > location")
 .textContent;

 var summary =
 wxDataItem.querySelector("current_observation > weather")
 .textContent;

 station.temp =
 wxDataItem.querySelector("current_observation > temperature_
 string") .textContent;

 station.summary = summary + " | " + station.temp;

 var imageBase =
 wxDataItem.querySelector("current_observation > icon_url_base")
 .textContent;

 var imageName =
 wxDataItem.querySelector("current_observation > icon_url_name")
 .textContent;

 station.wxImage = imageBase + imageName;

 station.updated =
 wxDataItem.querySelector("current_observation > observation_time")
 .textContent;

 station.wind = wxDataItem.querySelector("current_observation > wind_
 string") .textContent;
 }); //end dataPromise

 wxData.push({
 group: station,
 key: station.key,
 title: station.title,
 wxImage: station.wxImage,
 summary: station.summary,
 temp: station.temp,
 updated: station.updated,
 wind: station.wind
 }); //end wxData.push
 }); // end forEach weatherStations

388 parT iV JavaScript and Windows 8

 }); //end getWXData call

 return wxData;

 } //end function parseWXData

8. Save data.js.

note This function is responsible for gathering all of the data from all of the
weather stations in the weatherStations array. The function begins by calling the
 getWXData() function, which sets up the objects in the weatherStations array and
issues the AJAX requests to the U.S. National Weather Service. When the AJAX
requests have all completed (as denoted by the “then” statement attached to
getWXData), each of the objects in the weatherStation array is looped using a
forEach loop.

During the loop, the response from the AJAX request is obtained from the prom-
ise objects attached to each of the weather stations, and then (as denoted by the
“then” statement attached to station.dataPromise in the code) the result is parsed.
This is where the heart of the code exists. Each of the XML-formatted responses
from the National Weather Service is examined for various elements within the XML.
For example, the name of the weather station is found in the XML as <LOCATION>.
This, and related items, are found and parsed using the querySelector method and
 textContent property. For certain areas, like the summary and the weather image, a
bit of extra work is involved to format the item.

Still within the loop for each of the weather stations, the results are pushed onto
an array called wxData. The wxData variable is actually a data binding to a listView
object, which is a special object available for Windows app programming. This vari-
able was declared in an earlier step in this exercise. Finally, when the forEach loop is
complete, the wxData variable is returned.

9. You’ll make one last change to data.js. After the parseWXData object, you should see a line
that looks like this:

 var list = new WinJS.Binding.List();

Comment that line out with two slashes in front of it, so it looks like this:

 // var list = new WinJS.Binding.List();

10. Directly below that newly commented-out line, place the following code:

 var list = parseWXData();

 CHAPTER 23 Creating a Windows app 389

note Now, instead of the list variable being set to a new instance of WinJS.Binding.
List() as before, it’ll be set to your parseWXData() function that returns wxData,
which is itself a WinJS.Binding.List instance.

11. Save data.js.

12. Execute the app in debug mode by selecting Start Debugging from the Debug menu or by
pressing F5. You should see a screen like the following.

You’ll notice that the image is missing and that there’s also an “undefined” listed in the app. That’s
because you haven’t connected the data from the JavaScript to the HTML; you haven’t told the HTML
where to find the shiny new data that you have in JavaScript.

390 parT iV JavaScript and Windows 8

promises, promises
A promise is a special object accessed through the WinJS library. Promise objects enable you to
set up a control, such as a list of images, prior to the actual images being available. Essentially,
you’re promising the app that those images will be there by the time they’re needed. More
formally, you’re representing that the data will be available at a later date.

Promise objects enable you to make AJAX calls in an asynchronous manner and retrieve
data while at the same time continuing with the work of the app. The app that you’re build-
ing uses promise objects to retrieve weather information. Each of the weatherStation objects
contains a property (dataPromise) that eventually gets set to the actual promise object within
the getWXData function.

See http://msdn.microsoft.com/library/windows/apps/br211867.aspx for more information
about promise objects.

Customize the main hTML
Aside from the default.html file that simply loads another file, Split apps have two HTML files,
 items. html and split.html. When default.html is loaded, it immediately refers to items.html within the
pages folder hierarchy. The items.html file is what displays the item or items that you see when you
run the app.

As you can see from the final output of step 12 in the preceding exercise, there are some unde-
fined items and the image is apparently missing. This is because the HTML for items.html is still
related to the original data. Therefore, the task here is to update items.html to reflect the changes
you’ve made to the source data, specifically to the names of the data elements. As it stands right now,
items.html is trying to access data by variable names that no longer exist, so changing those is really
all that needs to happen to make items.html work.

As before, the following exercise assumes that you have Visual Studio loaded and the MyWX proj-
ect open. If not, now’s a good time to do so.

1. Open items.html from within the pages -> items folder.

2. Within items.html, change the data-win-bind attribute in the first element to use
wxImage instead of backgroundImage. It should look like this when you’ve made the change:

3. Immediately below the element, create a new element. The element will display the
weather summary within the image itself. Add this HTML directly below the tag and
before the item-overlay <DIV>:

<h3 id="summary" data-win-bind="textContent: summary"></h3>

http://msdn.microsoft.com/library/windows/apps/br211867.aspx

 CHAPTER 23 Creating a Windows app 391

4. Below the <DIV CLASS=“item-overlay”> element, change the <H4> element to an <H3>
 element. It should look like this when you’re done:

<h3 id="title" data-win-bind="textContent: title"></h3>

5. The final change is to the <H6> element. Instead of using subTitle, change it to use the vari-
able updated. The HTML should look like this when you’ve made the change:

<h6 class="item-subtitle win-type-ellipsis" data-win-bind="textContent: updated"></h6>

6. Save items.html.

7. Run the solution by selecting Start Debugging from the Debug menu or by pressing F5. You
should see a page similar to the following image.

Customize the detail hTML
Each of the items inside the items.html file is clickable (or tappable). When clicked, the split.html page
is loaded with additional information about each. The example we’re building will use some of the
data to show how it’s done, but you could, as your own learning exercise, add even more information
from the weather feed, such as the relative humidity, and so on.

392 parT iV JavaScript and Windows 8

As before, the following exercise assumes that you have Visual Studio loaded and the MyWX proj-
ect open. If not, now’s a good time to do so.

1. Open split.html, found within the pages -> split folder.

2. Within split.html, change the first element to use wxImage, as you did in items.html:

3. Below the <DIV CLASS=“item-info”> element, change the <H6> and <H4> elements to use
the variables that you’ve set up as part of your data. This means changing the data-win-bind
attributes as you’ve done before. When complete, the code should look like the following.
(I’ve included the surrounding code for reference; the two changed lines are boldface.)

<div class="item-info">
 <h3 class="item-title win-type-ellipsis" data-win-bind="textContent: title"></h3>
 <h6 class="item-subtitle win-type-ellipsis" data-win-bind="textContent: updated"></h6>
 <h4 class="item-description" data-win-bind="textContent: summary"></h4>
</div>

4. Scroll down within the split.html file to locate the <ARTICLE> section. Within that section,
remove the first <DIV CLASS=“text”> and all of its contents.

5. Change the tag so that it uses wxImage.

6. After the closing </HEADER> tag, remove the <DIV CLASS=“article-content” and add the
following:

Temperature: <div class="article-content" data-win-bind="textContent: temp"></div>
Wind: <div class="article-content" data-win-bind="textContent: wind"></div>

That final section should look like this. Notice that none of other HTML around this changes;
this is showing the contents of the <ARTICLE> element only:

<article>
 <header class="header">

 </header>
 Temperature: <div class="article-content" data-win-bind="textContent: temp"></div>
 Wind: <div class="article-content" data-win-bind="textContent: wind"></div>
</article>

7. Save split.html.

8. Run the project by selecting Start Debugging from the Debug menu or by pressing F5.

9. Click the icon for Stevens Point’s weather conditions. Behind the scenes, split.html will load
and you’ll see a screen similar to the following.

 CHAPTER 23 Creating a Windows app 393

Customize the CSS
With the HTML and JavaScript working, it’s time to tweak the layout a bit. Using CSS, you can make
large-scale changes to the layout of the entire app. For our purposes, the change will merely show
how to change some text positioning. In Figure 23-2, you’ll notice that the current conditions and
temperature are very close to the edge of the image. It would be nice to move this down and more
toward the middle and maybe add a little color.

FIGURE 23-2 An expanded view of an individual item.

394 parT iV JavaScript and Windows 8

Moving this text can be accomplished by adding to the default.css file. When you changed
 items. html, you added an <H3> element like this:

<h3 id="summary" data-win-bind="textContent: summary"></h3>

As you can see, that <H3> has an ID already, so accessing it in CSS will be quite easy.

Before beginning the following exercise, open the MyWX project in Visual Studio.

1. Open default.css.

2. On the top of default.css, add the following code:

#summary {
 margin: 15px;
 color: orangered;
}

3. Save default.css.

4. Run the app in Debug mode, as you’ve done in previous exercises.

You should see that the text has moved down and toward the middle slightly, as in the zoomed
example shown here in Figure 23-3.

FIGURE 23-3 Moving the text using CSS.

Finalizing the app
With the CSS complete, the app’s development is complete. However, one of the reasons for
using the Split App template is so that more than one weather station can be shown in summary
view. Therefore, one last change, should you elect to do it, is to add more weather stations to the
 weatherStations array found in data.js.

The example shown here adds five more weather stations from cities chosen by the author. Feel
free to choose your own. You can find a listing of the sites and the corresponding URLs at http://
w1.weather.gov/xml/current_obs/.

Begin the following exercise by opening data.js in the MyWX project.

http://w1.weather.gov/xml/current_obs/
http://w1.weather.gov/xml/current_obs/

 CHAPTER 23 Creating a Windows app 395

1. Within data.js, find the getWXData function. Change the weatherStations array to the follow-
ing, being careful not to alter anything outside the weatherStations array:

weatherStations = [
 {
 key: "kste",
 url: "http://w1.weather.gov/xml/current_obs/KSTE.xml",
 title: "Unavailable", // To be filled in dynamically,
 summary: "Unavailable", // To be filled in dynamically
 dataPromise: null,
 getData: callAJAX
 },
 {
 key: "klax",
 url: "http://w1.weather.gov/xml/current_obs/KLAX.xml",
 title: "Unavailable", // To be filled in dynamically,
 summary: "Unavailable", // To be filled in dynamically
 dataPromise: null,
 getData: callAJAX
 },
 {
 key: "phnl",
 url: "http://w1.weather.gov/xml/current_obs/PHNL.xml",
 title: "Unavailable", // To be filled in dynamically,
 summary: "Unavailable", // To be filled in dynamically
 dataPromise: null,
 getData: callAJAX
 },
 {
 key: "kpdx",

 url: "http://w1.weather.gov/xml/current_obs/KPDX.xml",
 title: "Unavailable", // To be filled in dynamically,
 summary: "Unavailable", // To be filled in dynamically
 dataPromise: null,
 getData: callAJAX
 },
 {
 key: "pafa",
 url: "http://w1.weather.gov/xml/current_obs/PAFA.xml",
 title: "Unavailable", // To be filled in dynamically,
 summary: "Unavailable", // To be filled in dynamically
 dataPromise: null,
 getData: callAJAX
 },
 {
 key: "kbos",
 url: "http://w1.weather.gov/xml/current_obs/KBOS.xml",
 title: "Unavailable", // To be filled in dynamically,
 summary: "Unavailable", // To be filled in dynamically
 dataPromise: null,
 getData: callAJAX
 }
];

2. Save data.js.

396 parT iV JavaScript and Windows 8

3. Run the app. You should see a screen like the one shown here:

Customizing the Package Manifest

You might have noticed the intermediate screen that loads after you run the app but before the app’s
content actually loads. This is called the splash screen. It’s a good practice to have a splash screen for
an app because it sets up a positive user experience. Also, if you’ve gone to the Start screen, you’ve
probably noticed that you have a new tile there called MyWX. You should also customize the tile as
part of the app preparation process. There are other customizations that you can perform, as defined
in the Package Manifest file, called package.appxmanifest, within Solution Explorer. This section
examines some customizations.

adding a splash screen, logo, and tile image
Adding a splash screen and tile is accomplished within the Package Manifest file. You open the
Package Manifest file by double-clicking package.appxmanifest in Solution Explorer. Doing so opens
the file in a customized editor provided by Visual Studio.

The splash screen and tile definitions are found within the Application UI tab. The images need to
be of a specific size, depending on where they’ll be used. For example, splash screen images must be
620 × 300 pixels, while the main logo tile needs to be 150 × 150 pixels. Other tiles have their specific

 CHAPTER 23 Creating a Windows app 397

sizes as well. The wide logo tile needs to be 310 × 150 pixels, and the small logo tile needs to be
30 × 30 pixels. All images need to be PNG (.png) or JPEG (.jpg or .jpeg) formatted.

The process for adding a splash screen or tile is as follows:

1. Create or access an appropriately sized and formatted image.

2. Add the image to your project, typically in the images folder, by right-clicking images and
selecting Add | Add Existing Item within the Visual Studio Solution Explorer.

3. Open the Package Manifest in Visual Studio, and scroll to the Splash Screen or Tile section.

4. Choose the image from the image folder of your project.

The app’s logo as it will appear in the Windows Store is defined on the Packaging tab and needs
to be 50 × 50 pixels. The process for changing the app’s logo is the same as for the splash screen and
tile. The only difference is that it’s found on the Packaging tab.

Defining capabilities
When your app will access the user’s Documents library, you must declare that as part of the app’s
capabilities, defined in the Capabilities tab of the Package Manifest editor.

Figure 23-4 shows the Capabilities tab for the MyWX app. Notice that these capabilities were
defined by default.

FIGURE 23-4 The Capabilities tab in the Package Manifest editor.

There is also a Declarations tab that’s used to declare extensions that your app will use to work
with the system.

398 parT iV JavaScript and Windows 8

More info See http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx for
information about capabilities, and see http://msdn.microsoft.com/en-us/library/windows
/apps/hh464906.aspx for more information about declarations and extensions.

Testing the app

With the app’s splash screen, tile, logo, and other meta information configured for the app, you can
prepare it for release in the Windows Store. Part of this process is to create an app package and to
test the app with the Windows App Certification Kit.

Packages are created by using the Create App Packages option found in the Store menu in Visual
Studio. However, prior to creating the package, you should set the build type to Release. This is
accomplished by using the drop-down menu in Visual Studio. Specifically, you can change it from
Debug to Release on the toolbar, as shown in Figure 23-5.

FIGURE 23-5 Changing from Debug to Release.

Making this change enables you to run the Windows App Certification Kit. If you forget or don’t do
this step, the app package will be built using the wizard described in this section, but when it com-
pletes you won’t be given the option to certify the application. Therefore, changing this option now
means that you’ll be able to run the Windows App Certification Kit later.

Begin the packaging processing by selecting Create App Packages from the Project/Store menu.
When you do so, the Create App Packages Wizard begins, shown in Figure 23-6.

http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
http://msdn.microsoft.com/en-us/library/windows /apps/hh464906.aspx
http://msdn.microsoft.com/en-us/library/windows /apps/hh464906.aspx

 CHAPTER 23 Creating a Windows app 399

FIGURE 23-6 Beginning the Create App Packages Wizard.

If you have a developer account, leave this dialog as-is for release into the Windows Store; other-
wise, select No and then click Next. This chapter discusses app packaging outside the Windows Store.

Within the Create App Packages Wizard, you can set the location for the outputted package,
change the version number of the package, and also select the architectures on which it’ll be avail-
able, as shown in Figure 23-7.

400 parT iV JavaScript and Windows 8

FIGURE 23-7 Selecting the architectures and version for the package.

When the package creation process is complete, you’ll be shown a dialog box similar to that in
Figure 23-8, noting that the next step is to launch the Windows App Certification Kit. If you don’t see
that option, it’s likely that you still have the build type set to Debug.

 CHAPTER 23 Creating a Windows app 401

FIGURE 23-8 Successful package creation.

The Windows App Certification Kit runs several tests on the app, including executing the app
and closing it. The tests run by the kit are exactly the same as those run by Microsoft during the app
certification process. Even though these tests aren’t required for apps distributed in-house, it’s a good
idea to run them because doing so can reveal issues that might occur when the app is executed.

On the last screen of the Create App Packages Wizard, clicking Launch Windows App Certification
Kit begins the process of testing, shown in Figure 23-9.

FIGURE 23-9 Running the Windows App Certification Kit.

402 parT iV JavaScript and Windows 8

When complete, the results will be displayed, as shown in Figure 23-10.

FIGURE 23-10 The results of the Windows App Certification Kit.

Now that the app has been tested, you could take the next step and submit it to the Windows
Store for approval through the Upload process. See http://msdn.microsoft.com/library/windows/apps/
jj193603.aspx for more information about submitting your app—and good luck!

Summary

This chapter built a Windows app using Visual Studio. The app was built using the Split App template
and added JavaScript to retrieve weather conditions by using XML from the U.S. National Weather
Service. As part of the app build process, you saw how to use promise objects, which enable work to
be done while data is gathered. You also saw how data from the JavaScript is displayed through the
HTML pages in an app.

The chapter also showed how to change information about the app, such as its splash screen, tile,
and logo. Finally, you saw a bit about the testing and certification process using tools provided in
Visual Studio.

http://msdn.microsoft.com/library/windows/apps/jj193603.aspx
http://msdn.microsoft.com/library/windows/apps/jj193603.aspx

 403

A P P E N D I X A

answer key to exercises

This appendix shows the answers and explanations for the exercises that have appeared through-
out the book. In many cases, there is more than one way to solve a problem. Therefore, unless the

question specified a particular way to solve the problem, any working implementation is acceptable.
It’s also expected that your function names could differ from the ones in this appendix.

Chapter 1

1. False. Although JavaScript is indeed defined by a standards body, ECMA International, it is not
supported on all web browsers. And the support that does exist varies (sometimes widely)
among browsers.

2. False. There are many reasons why a visitor to your website might have JavaScript disabled.
The browser they’re using might not support it; they might have special software installed that
doesn’t support it; or they simply might have JavaScript disabled as a personal preference. You
should strive to make your site work without JavaScript, or at least have it fail gracefully for
those visitors who don’t have JavaScript enabled.

3. A typical JavaScript definition block looks like this:

<script type="text/javascript">
// JavaScript code goes here
</script>

4. False. The version of JavaScript isn’t placed within the DOCTYPE definition. In fact, it’s quite
uncommon to declare the version of JavaScript being used at all.

5. True. JavaScript code can appear in both the head and the body of a Hypertext Markup Lan-
guage (HTML) document.

Chapter 2

1. The code of mysecondpage.htm looks similar to this, though yours may differ slightly (and of
course will contain your name instead of mine!):

<!doctype html>
<html>

404 APPENDIX A Answer key to exercises

<head>
<title>My Second Page</title>
</head>
<body>
<script type="text/javascript">
alert("Steve Suehring");
</script>
<p>My Second Page</p>
</body>
</html>

2. Here’s the new code, with the changes shown in bold type:

<!doctype html>
<html>
<head>
<title>My Second Page</title>
<script type="text/javascript">
function callAlert() {
 alert("Steve Suehring");
}
</script>
</head>
<body>
<script type="text/javascript">
callAlert();
</script>
<p>My Second Page</p>
</body>
</html>

3. I created a file called 3.htm and a file called 3.js. Here they are (the reference in 3.htm to 3.js is
shown in boldface type).

3.js:

function callAlert() {
 alert("Steve Suehring");
}

3.htm:

<!doctype html>
<html>
<head>
<title>My Second Page</title>
<script type="text/javascript" src="3.js"> </script>
</head>
<body>
<script type="text/javascript">
callAlert();
</script>
<p>My Second Page</p>
</body>
</html>

 APPENDIX A Answer key to exercises 405

Chapter 3

1. The valid statements are b, c, and d. Both a and e are invalid, because they both use reserved
words.

2. False. Not all JavaScript statements require a semicolon at the end. In fact, semicolons are usu-
ally optional.

3. The orderTotal variable is changed after the visitor is alerted to how many of each item was
ordered, but before the value is returned from the function. The lesson here is that you must
be careful not to alter the value or contents of variables unexpectedly. The visitor is expecting
to order a certain quantity, but the code clearly changes that quantity after telling the visitor
how many he or she ordered!

Chapter 4

1. Variable declarations:

var first = 120;
var second = "5150";
var third = "Two Hundred Thirty";

2. Array (your values will probably be different, but the data types and syntax are the important
part):

var newArray = new Array(10, 20, 30, "first string", "second string");

3. Escaped string:

alert("Steve's response was \"Cool!\"");

4. This exercise is for the reader to follow. There is no right or wrong answer.

Chapter 5

1. Alerts (your values will probably be different, but the data types and syntax are the important
part):

var num1 = 1;
var num2 = 1;
var num3 = 19;
var fourthvar = "84";
var name1 = "Jakob";
var name2 = "Edward";
alert(num1 + num2);
alert(num3 + fourthvar);
alert(name1 + name2);

406 APPENDIX A Answer key to exercises

2. Postfix:

var theNum = 1;
alert(theNum);
alert(theNum++);
alert(theNum);

Prefix:

var theNum = 1;
alert(theNum);
alert(++theNum);
alert(theNum);

3. Code:

var num1 = 1;
var num2 = 1;
var num3 = 19;
var fourthvar = "84";
var name1 = "Jakob";
var name2 = "Edward";
alert(typeof num1);
alert(typeof num2);
alert(typeof num3);
alert(typeof fourthvar);
alert(typeof name1);
alert(typeof name2);

This should result in three alerts with the word number followed by three others with the word
string.

4. False. Unary operators appear fairly often in JavaScript, especially within for loops that incre-
ment a variable using the ++ postfix operator.

5. False. Even though saving a few bytes is helpful, especially for web applications, it’s almost
always preferable to spend those same few bytes making the code readable and maintainable.
This is largely a matter for your style and coding standards, however. In a later chapter, you
are introduced to jQuery. That library’s typical “minified” version is an example of taking the
byte saving to an extreme.

Chapter 6

1. Replace YOUR NAME in the following code with the appropriate content:

var inputName = prompt("Please enter your name:");
switch(inputName) {
 case "YOUR NAME":
 alert("Welcome " + inputName);
 break;
 case "Steve":
 alert("Go Away");

 APPENDIX A Answer key to exercises 407

 break;
 default:
 alert("Please Come Back Later " + inputName);
}

2. Here’s the code:

var temp = prompt("Please enter the current temperature");
if (temp > 100) {
 alert("Please cool down");
} else if (temp < 20) {
 alert("Better warm up");
}

Note that it would also be a good idea to provide a default action in case the temperature is
between 20 and 100!

3. This exercise is actually impossible to accomplish as specified. Because ternary operators
 expect a single test condition and Exercise 2 required two conditions, a ternary operator can-
not be used to accomplish exactly the same task. The following code creates an alert that tells
the visitor to cool down when the temperature is above 100 and to warm up when the temp is
less than or equal to 100:

var temp = prompt("Please enter the current temperature");
temp > 100 ? alert("Please cool down") : alert("Better warm up");

4. Here’s the code:

for (var i = 1; i < 101; i++) {
 if (i == 99) {
 alert("The number is " + i);
 }
}

Note that because the variable i began counting at 1 (as was called for in the exercise), the
counter needs to go to 101 to meet the requirement of counting from 1 to 100.

5. Here’s the code:

var i = 1;
while (i < 101) {
 if (i == 99) {
 alert("The number is " + i);
 }
 i++;
}

Note the placement of the postfix increment of the i variable within the loop. You could also
use i=i+1, but the postfix operator is preferred.

408 APPENDIX A Answer key to exercises

Chapter 7

1. It's important to note that this code uses the isNaN function to check whether the input was
a number. This is a best practice that may not always be obvious. Another way to accomplish
the ultimate return value here is to use return theNumber++; as the final return, rather than as
shown. Here’s the code:

<head>
 <title>Chapter 7 Exercise 1</title>
 <script type="text/javascript">
 function incrementNum(theNumber) {
 if (isNaN(theNumber)) {
 alert("Sorry, " + theNumber + " isn't a number.");
 return;
 }
 return theNumber + 1;
}
</script>
</head>
<body>
 <script type="text/javascript">
 alert(incrementNum(3));
</script>
</body>

2. Here’s the code:

function addNums(firstNum,secondNum) {
 if ((isNaN(firstNum)) || (isNaN(secondNum))) {
 alert("Sorry, both arguments must be numbers.");
 return;
 }
 else if (firstNum > secondNum) {
 alert(firstNum + " is greater than " + secondNum);
 }
 else {
 return firstNum + secondNum;
 }
}

3. This exercise is meant to show variable scoping problems. Note how the value of the result
variable changes outside the function—even though the change is made only within the func-
tion. The two locations for alerts are shown in boldface in the following code:

function addNumbers() {
 firstNum = 4;
 secondNum = 8;
 result = firstNum + secondNum;
 return result;
}
result = 0;
alert(result);
result = addNumbers();
alert(result);

 APPENDIX A Answer key to exercises 409

4. Here’s the code:

<head>
<title>Chapter 7 Exercise 4</title>
<script type="text/javascript">
var stars = ["Polaris","Aldebaran","Deneb","Vega","Altair","Dubhe","Regulus"];
var constells = ["Ursa Minor","Taurus","Cygnus","Lyra","Aquila","Ursa Major","Leo"];

function searchStars(star) {
 var starLength = stars.length;
 for (var i = 0; i < starLength; i++) {
 if (stars[i] == star) {
 return constells[i];
 }
 }
 return star + " Not Found.";
}
</script>
</head>
<body>
<script type="text/javascript">
var inputStar = prompt("Enter star name: ");
alert(searchStars(inputStar));
</script>
<p>Stars</p>
</body>

Chapter 8

1. Here’s the code:

var star = ["Polaris", "Deneb", "Vega", "Altair"];
var starLength = star.length;
for (var i = 0; i < starLength; i++) {
 alert(star[i]);
}

2. Here’s one way:

function Song(artist,length,title) {
 this.artist = artist;
 this.length = length;
 this.title = title;
}

song1 = new Song("First Artist","3:30","First Song Title");
song2 = new Song("Second Artist","4:11","Second Song Title");
song3 = new Song("Third Artist","2:12","Third Song Title");

3. Assuming you are using the code given in the exercise, this code in the body would concat-
enate all the names into one long string, as follows:

var names = new Array;
for (var propt in star) {

410 APPENDIX A Answer key to exercises

 names += propt;
}
alert(names);

The code to comma-delimit the names would look like this:

var names = new Array;
for (var propt in star) {
 if (names != "") {
 names += "," + propt;
 } else {
 names = propt;
 }
}
alert(names);

Chapter 9

1. Here’s the code:

if (screen.availHeight < 768) {
 alert("Available Height: " + screen.availHeight);
}
if (screen.availWidth < 1024) {
 alert("Available Width: " + screen.availWidth);
}

2. The full code is shown here, including the code from the step-by-step exercise. The additional
code for this exercise is shown in boldface. Note the use of the unescape() function to remove
the URL-encoded %20 (space) character from the country name. This is necessary because
the country name “Great Britain” specified in this exercise must be URL-escaped for HTTP GET
requests.

<!doctype html>
<html>
<head>
 <title>Location, Location, Location</title>

</head>
<body>
 <script type="text/javascript">
 var body = document.getElementsByTagName("body")[0];
 for (var prop in location) {
 var elem = document.createElement("p");
 var text = document.createTextNode(prop + ": " + location[prop]);
 elem.appendChild(text);
 body.appendChild(elem);
 }
 if (location.search) {
 var querystring = location.search.substring(1);
 var splits = querystring.split('&');
 for (var i = 0; i < splits.length; i++) {

 APPENDIX A Answer key to exercises 411

 var splitpair = splits[i].split('=');
 var elem = document.createElement("p");
 var text = document.createTextNode(splitpair[0] + ": " +
splitpair[1]);
 if (splitpair[0] == "country") {
 switch(unescape(splitpair[1])) {
 case "Brazil":
 alert("Obrigado");
 break;
 case "Great Britain":
 alert("Thank You");
 break;
 }
 }
 elem.appendChild(text);
 body.appendChild(elem);
 }
 }
 </script>
</body>
</html>

3. This exercise doesn’t have an answer in the answer key. You can install the User Agent Switcher
to complete the exercise.

Chapter 10

1. Both jQuery and MooTools offer a small learning curve, though PrototypeJS is also fairly easy
to learn. Dojo doesn't aim for the beginner-level JavaScript programmer, and I've encountered
more than one developer confused by YUI, even though it has extensive documentation.
However, everyone learns differently, so I’d recommend trying each one yourself rather than
taking my word for it!

2. The Step by Step exercise in this chapter provides an example of creating your own library and
including it in a page.

Chapter 11

1. Here's one way to do it:

<!doctype html>
<html>
<head>
<title>Adding jQuery</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body>
<script type="text/javascript">
 $(document).ready(function() {
 $('body').html('<div>Adding an element</div>');

412 APPENDIX A Answer key to exercises

 });
</script>
</body>
</html>

2. Here's an example:

<!doctype html>
<html>
<head>
<title>Adding jQuery</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body>
<script type="text/javascript">
 $(document).ready(function() {
 $('body').html('<div id="myDiv">Adding an element</div>');
 $('#myDiv').css('background-color','#abacab');
 });
</script>
</body>
</html>

Chapter 12

1. Here’s the code:

var newelement = document.createElement("p");
newelement.setAttribute("id","pelement");
document.body.appendChild(newelement);
newelement.appendChild(document.createTextNode("This is a paragraph, albeit a short
one."));
var anchorelem = document.createElement("a");
anchorelem.setAttribute("id","aelement");
anchorelem.setAttribute("href","http://www.braingia.org/");
document.body.appendChild(anchorelem);
anchorelem.appendChild(document.createTextNode("Go To Steve Suehring's Web Site."));

2. Here’s the code:

// create the initial elements (if you use an existing HTML file, you won’t need to do
this)
var newelement = document.createElement("p");
newelement.setAttribute("id","pelement");
document.body.appendChild(newelement);
newelement.appendChild(document.createTextNode("This is a paragraph, albeit a short
one."));
var anchorelem = document.createElement("a");
anchorelem.setAttribute("id","aelement");
anchorelem.setAttribute("href","http://www.braingia.org/");
document.body.appendChild(anchorelem);
anchorelem.appendChild(document.createTextNode("Click Here"));

// make the change

 APPENDIX A Answer key to exercises 413

var existingp = document.getElementById("pelement");
existingp.firstChild.nodeValue="This is the new text.";
var newanchor = document.getElementById("aelement");
newanchor.setAttribute("href","http://www.microsoft.com/");

3. Here’s the code:

<head>
<title>Chapter 10 Exercises</title>
</script>
</head>
<body>
<div id="thetable"></div>
<script type="text/javascript">
var table = document.createElement("table");
table.border = "1";
var tbody = document.createElement("tbody");

// Append the body to the table
table.appendChild(tbody);
var row = document.createElement("tr");

// Create table row
for (i = 1; i < 3; i++) {
 var row = document.createElement("tr");
 // Create the row/td elements
 for (j = 1; j < 3; j++) {
 // Insert the actual text/data from the XML document.
 var td = document.createElement("td");
 var data = document.createTextNode("Hello - I'm Row " + i + ", Column " + j);
 td.appendChild(data);
 row.appendChild(td);
 }
 tbody.appendChild(row);
}
document.getElementById("thetable").appendChild(table);
</script>
</body>

Chapter 13

1. Here’s the code:

<!doctype html>
<html>
<head>
<title>Onclick</title>
<script type="text/javascript">
function handleclick() {
 alert("You Clicked Here");
 return false;
}

</script>

414 APPENDIX A Answer key to exercises

</head>
<body>
<p>Click Here</p>
</body>
</html>

2. Here’s the code:

 <!doctype html>
<html>
<head>
<title>Onclick</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
<script type="text/javascript">
function handleclick() {
 alert("You Clicked Here");
 return false;
}
</script>
</head>
<body>
<p>Click Here</p>
<script type="text/javascript">
$(document).ready(function() {
 $("#clickMe").on("click",function() {
 return handleclick();z
 });

 });
</script>
</body>
</html>

3. No JavaScript is necessary for this exercise. The HTML code looks as follows:

<!doctype html>
<html>
<head>
<title>New Tab</title>
</head>
<body>
<p>Go To Microsoft
</p>
</body>
</html>

Chapter 14

1. See Example 14-2 in Chapter 14 for an example of this exercise.

2. See Listing 14-2 in this chapter for an example of preloading images. You would apply that
same code logic to the image map that you make for this exercise.

 APPENDIX A Answer key to exercises 415

Chapter 15

1. See the section titled “Working with Select Boxes” in Chapter 15 for an example solution for
this exercise.

2. Based on the pizza.htm example, the <head> portion of code now looks like this, with the
 additions shown in boldface:

<head>
 <title>Pizza</title>
 <script type = "text/javascript">

 function prepza() {
 var checkboxes = document.forms["pizzaform"].toppingcheck.length;
 var crusttype = document.forms["pizzaform"].crust;
 var size = document.forms["pizzaform"].size;
 var crustlength = crusttype.length;
 var sizelength = crusttype.length;
 var newelement = document.createElement("p");
 newelement.setAttribute("id","orderheading");
 document.body.appendChild(newelement);
 newelement.appendChild(document.createTextNode("This pizza will have:"));

 for (var c = 0; c < crustlength; c++) {
 if (crusttype[c].checked) {
 var newelement = document.createElement("p");
 newelement.setAttribute("id","crustelement" + i);
 document.body.appendChild(newelement);
 newelement.appendChild(document.createTextNode(
 crusttype[c].value + " Crust"));
 }
 }

 for (var s = 0; s < sizelength; s++) {
 if (size[s].checked) {
 var newelement = document.createElement("p");
 newelement.setAttribute("id","sizeelement" + i);
 document.body.appendChild(newelement);
 newelement.appendChild(document.createTextNode(size[s].value + "
 Size"));
 }
 }

 for (var i = 0; i < checkboxes; i++) {
 if (document.forms["pizzaform"].toppingcheck[i].checked) {
 var newelement = document.createElement("p");
 newelement.setAttribute("id","newelement" + i);
 document.body.appendChild(newelement);
 newelement.appendChild(document.createTextNode(
 document.forms["pizzaform"].toppingcheck[i].value));
 }
 }
 }
 </script>
</head>

416 APPENDIX A Answer key to exercises

The HTML follows. This particular solution uses a three-column table, though that’s not tech-
nically required for this answer to be correct; that's just one way to do it. The additions are
again shown in boldface:

<form id="pizzaform" action="#">
<table>
<tr><td>Toppings</td><td>Crust</td><td>Size</td></tr>
<tr>
<td><input type="checkbox" id="topping1" value="Sausage" name="toppingcheck" />Sausage</
td>
<td><input type="radio" name="crust" value="Regular" checked="checked" id="radio1"
/>Regular</td>
<td><input type="radio" name="size" value="Small" checked="checked" id="radiosize1"
/>Small</td>
</tr>
<tr>
<td><input type="checkbox" id="topping2" value="Pepperoni" name="toppingcheck"
/>Pepperoni</td>
<td><input type="radio" name="crust" value="Deep Dish" id="radio2" />Deep Dish</td>
<td><input type="radio" name="size" value="Medium" id="radiosize2" />Medium</td>
</tr>
<tr>
<td><input type="checkbox" id="topping3" value="Ham" name="toppingcheck" />Ham</td>
<td><input type="radio" name="crust" value="Thin" id="radio3" />Thin</td>
<td><input type="radio" name="size" value="Large" id="radiosize3" />Large</td>
</tr>
<tr>
<td><input type="checkbox" id="topping4" value="Green Peppers" name="toppingcheck"
/>Green Peppers</td>
<td></td>
<td></td>
</tr>
<tr>
<td><input type="checkbox" id="topping5" value="Mushrooms" name="toppingcheck"
/>Mushrooms</td>
<td></td>
<td></td>
</tr>
<tr>
<td><input type="checkbox" id="topping6" value="Onions" name="toppingcheck" />Onions
</td>
<td></td>
<td></td>
</tr>
<tr>
<td><input type="checkbox" id="topping7" value="Pineapple"
name="toppingcheck">Pineapple</td>
<td></td>
<td></td>
</tr>
</table>
<p><input type="submit" id="prepBtn" name="prepBtn" value="Prep Pizza"></p>
</form>

 APPENDIX A Answer key to exercises 417

3. Add the following code to the <head> portion of the pizza application from the previous
exercise:

 function flip(pizzatype) {
 if (pizzatype == "veggiespecial") {
 document.getElementById("peppers").checked = "true";
 document.getElementById("onions").checked = "true";
 document.getElementById("mushrooms").checked = "true";
 } else if (pizzatype == "meatspecial") {
 document.getElementById("sausage").checked = "true";
 document.getElementById("pepperoni").checked = "true";
 document.getElementById("ham").checked = "true";
 } else if (pizzatype == "hawaiian") {
 document.getElementById("ham").checked = "true";
 document.getElementById("pineapple").checked = "true";
 }
 }

Use the following HTML form. (Note the addition of the three buttons and the change to each
ingredient’s id attribute.)

<form id="pizzaform" action="#">
<p>
<input type="button" id="veggiespecial" name="veggiespecial" value="Veggie Special" />
<input type="button" id="meatspecial" name="meatspecial" value="Meat Special" />
<input type="button" id="hawaiian" name="hawaiian" value="Hawaiian" />
</p>
<table>
<tr><td>Toppings</td><td>Crust</td><td>Size</td></tr>
<tr>
<td><input type="checkbox" id="sausage" value="Sausage" name="toppingcheck" />Sausage</
td>
<td><input type="radio" name="crust" value="Regular" checked="checked" id="radio1"
/>Regular</td>
<td><input type="radio" name="size" value="Small" checked="checked" id="radiosize1"
/>Small</td>
</tr>
<tr>
<td><input type="checkbox" id="pepperoni" value="Pepperoni" name="toppingcheck"
/>Pepperoni</td>
<td><input type="radio" name="crust" value="Deep Dish" id="radio2" />Deep Dish</td>
<td><input type="radio" name="size" value="Medium" id="radiosize2" />Medium</td>
</tr>
<tr>
<td><input type="checkbox" id="ham" value="Ham" name="toppingcheck" />Ham</td>
<td><input type="radio" name="crust" value="Thin" id="radio3" />Thin</td>
<td><input type="radio" name="size" value="Large" id="radiosize3" />Large</td>
</tr>
<tr>
<td><input type="checkbox" id="peppers" value="Green Peppers" name="toppingcheck" />Green
Peppers</td>
<td></td>
<td></td>
</tr>
<tr>
<td><input type="checkbox" id="mushrooms" value="Mushrooms" name="toppingcheck"

418 APPENDIX A Answer key to exercises

/>Mushrooms</td>
<td></td>
<td></td>
</tr>
<tr>
<td><input type="checkbox" id="onions" value="Onions" name="toppingcheck" />Onions</td>
<td></td>
<td></td>
</tr>
<tr>
<td><input type="checkbox" id="pineapple" value="Pineapple" name="toppingcheck"
/>Pineapple</td>
<td></td>
<td></td>
</tr>
</table>
<p><input type="submit" id="prepBtn" name="prepBtn" value="Prep Pizza"
onclick="prepza();" /></p>
</form>

Add handlers to the JavaScript section found within the <body> of the page:

var veggieBtn = document.getElementById("veggiespecial");
EHandler.add(veggieBtn,"click",function() { flip("veggiespecial"); });
var meatBtn = document.getElementById("meatspecial");
EHandler.add(meatBtn,"click",function() { flip("meatspecial"); });
var hawaiiBtn = document.getElementById("hawaiispecial");
EHandler.add(hawaiiBtn,"click",function() { flip("hawaiian"); });

Chapter 16

1. Here’s an example page; there are many ways to complete this exercise correctly:

<!doctype html>
<html>
<head>
<title>CSS</title>
<link href="exercise1.css" rel="stylesheet" type="text/css">
</head>
<body>
<h1 id="h1element">The Title</h1>
<p id="firstelement">The first element.</p>
<p id="secondelement">The second element.</p>
</body>
</html>

Here is the stylesheet exercise1.css:

#h1element {
background-color: #abacab;
}

#firstelement {
color: red;

 APPENDIX A Answer key to exercises 419

}

#secondelement {
 color: blue;
}

2. This code changes the element named firstelement so that its font color is blue:

<script type="text/javascript">
var element1 = document.getElementById("firstelement");
element1.style.color = "#0000FF";
</script>

3. This code hides all the <P> elements using the Cascading Style Sheets (CSS) visibility property:

<script type="text/javascript">
var pelements = document.getElementsByTagName("p");
var pelmLength = pelements.length;
for (var i = 0; i < pelmLength; i++) {
 pelements[i].style.visibility = "hidden";
}
</script>

4. This code shows the visibility setting both before and after it has been set within the script.
When you run the code, notice that the alert is empty before the property is set.

<script type="text/javascript">
var pelements = document.getElementsByTagName("p");
var pelmLength = pelements.length;
for (var i = 0; i < pelmLength; i++) {
 alert(pelements[i].style.visibility);
 pelements[i].style.visibility = "hidden";
 alert(pelements[i].style.visibility);
}
</script>

Chapter 17

1. This solution uses the same HTML from Listing 17-1 but another other valid HTML that solves
the problem would suffice.

<!DOCTYPE html>
<html>
<head>
 <title>jQuery UI Datepicker</title>
 <link type="text/css" rel="stylesheet"
 href="css/ui-lightness/jquery-ui-1.8.22.custom.css" />
 <link type="text/css" rel="stylesheet"
 href="css/cal.css" />
 <script type="text/javascript"
 src="js/jquery-1.7.2.min.js">
 </script>
 <script type="text/javascript"

420 APPENDIX A Answer key to exercises

 src="js/jquery-ui-1.8.22.custom.min.js">
 </script>
 <script type="text/javascript"
 src="js/cal-ex1.js">
 </script>
</head>

 <body>
 <div id="mainContainer">
 <form action="#" method="POST">
 <input type="text" name="cal" id="cal">
 </form>
 </div> <!-- end mainContainer -->
 </body>
</html>

The JavaScript is similar to that seen in the chapter as well. Note that the only required options
are the minDate and maxDate options:

$(document).ready(function () {
$('#cal').datepicker({
 changeMonth: true,
 changeYear: true,
 minDate: "-1M",
 maxDate: "+12M
 });

});

2. Choosing any widget from the jQuery UI demo site (http://jqueryui.com/demos/) and imple-
menting it with valid HTML provides the solution for this exercise.

Chapter 18

1. I used theme 'e', added as a data-theme attribute on the <div> identified with the data-role of
header, as in this code (also found as themee.html in the Chapter 18 companion content):

<!doctype html>
<html>
<head>
 <title>Test Page for jQuery Mobile</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
 href="jquery.mobile-1.1.1.css">
 <script type="text/javascript"
 src="jquery-1.7.2.min.js">
 </script>
 <script type="text/javascript"
 src="jquery.mobile-1.1.1.js">
 </script>
</head>
<body>

http://jqueryui.com/demos/

 APPENDIX A Answer key to exercises 421

<div data-role="page">
 <div data-theme="e" data-role="header">
 <h1>Test Page</h1>
 </div>
 <div data-role="content">
 <p>This is some nice content.</p>
 </div>
 <div data-role="footer">
 <h2>Footer content</h2>
 </div>
</div> <!-- end page div -->
</body>
</html>

2. Adding the two classes discussed in the chapter to one of the anchors in the footer does the
trick here (also found as pers-active.html in the Chapter 18 companion content):

<!doctype html>
<html>
<head>
 <title>Test Page for jQuery Mobile</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
 href="jquery.mobile-1.1.1.css">
 <script type="text/javascript"
 src="jquery-1.7.2.min.js">
 </script>
 <script type="text/javascript"
 src="jquery.mobile-1.1.1.js">
 </script>
</head>
<body>
<div data-role="page">
 <div data-role="header">
 <h1>Persistent Footer</h1>
 </div>
 <div data-role="content">
 <p>I love creating content.</p>
 <p>I love creating content.</p>
 <p>I love creating content.</p>
 <p>I love creating content.</p>
 <p>I love creating content.</p>
 <p>I love creating content.</p>
 </div>
 <div data-role="footer" data-id="persistent" data-position="fixed">
 <div data-role="navbar">

 <a class="ui-btn-active ui-state-persist" data-
icon="home"
 data-iconpos="top" href="#">Link 1
 <a data-icon="star" data-iconpos="top" href="#">Link
2

 </div>
 </div>
</div> <!-- end page div -->

422 APPENDIX A Answer key to exercises

</body>
</html>

3. Implementing any of the examples from http://jquerymobile.com/test/ using valid HTML meets
the requirements for this exercise.

Chapter 19

There are no exercises for Chapter 19.

Chapter 20

1. This solution uses HTML that you've seen throughout the book, in various forms. Whatever
valid HTML you use is fine, as long as the end result enables the user to type in an abbrevia-
tion and receive back a full name. Here's the HTML and JavaScript that I used:

<!doctype html>
<html>
<head>
<title>Solution 1</title>
<script type="text/javascript" src="jquery-1.7.2.min.js"></script>
</head>
<body>
<form action="#" method="POST" id="myForm">
State Abbreviation: <input type="text" name="state" id="state">

<input type="submit" name="submitForm" id="submitForm">
</form>
<div id="output"></div>
<script type="text/javascript">

function successFunction(data,status) {
 $("#output").text("State: " + data);
}

$(document).ready(function() {
 $("#myForm").on("submit", function() {
 var myState = $("#state").val();
 var myData = "state=" + myState;
 $.ajax({
 type: "POST",
 url: "statefull.php",
 dataType: "json",
 success: successFunction,
 data: myData
 });
 return false;
 });
});
</script>
</body>
</html>

http://jquerymobile.com/test/

 APPENDIX A Answer key to exercises 423

2. The PHP file used (statefull.php) looks like this:

<?php

$stateAbbrev = trim($_POST['state']);

if ($stateAbbrev == "WI") {
 print json_encode("Wisconsin");
}

?>

Chapter 21

There are no exercises for Chapter 21.

Chapter 22

1. This task is accomplished by adding an anchor within the default.html page. I added one be-
low the <H1> element, resulting in this HTML:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>BlankApp1</title>

 <!-- WinJS references -->
 <link href="//Microsoft.WinJS.1.0/css/ui-dark.css" rel="stylesheet" />
 <script src="//Microsoft.WinJS.1.0/js/base.js"></script>
 <script src="//Microsoft.WinJS.1.0/js/ui.js"></script>

 <!-- BlankApp1 references -->
 <link href="/css/default.css" rel="stylesheet" />
 <script src="/js/default.js"></script>
</head>
<body>
 <h1>Here's my app!</h1>
 Microsoft
</body>
</html>

2. The file that gets loaded is items.html found in pages\items within Solution Explorer.

Chapter 23

There are no exercises for Chapter 23.

 425

A P P E N D I X B

Writing JavaScript with other tools

Writing JavaScript with Eclipse

Another popular IDE among web developers (and developers who use other languages) is Eclipse.
Developers using Eclipse can install different frameworks to assist in specific development tasks. For
example, web developers might use the Web Tools Platform or PHP (PHP Hypertext Preprocessor)
development tools to create an environment that simplifies many common tasks for them. Discussion
of the many potential Eclipse projects is beyond the scope of this book, but I discuss how to use the
base Eclipse installation to develop JavaScript.

If you want to develop JavaScript with Eclipse, take a moment to download the software and,
if necessary, the Java runtime environment. Details and download locations are available from the
Eclipse website (http://www.eclipse.org). In this section of the book, I assume that you’ve never used
Eclipse and are learning it for the first time. However, this section does not include a tutorial on in-
stalling Eclipse. I recommend you read the documentation included with Eclipse and available on the
Eclipse website for the most up-to-date information.

Your first web (and JavaScript) project with Eclipse
It’s now time to create a webpage with JavaScript using Eclipse. If you’re not using Eclipse, this section
isn’t for you, and you can skip it. Later in the chapter, I show you how to develop without using any
IDE, and give you some tips for debugging JavaScript.

note This section reviews how to use the version of Eclipse known as Eclipse Classic. Your
Eclipse environment might look a little different from the screen shots included in this section.
The first time you open Eclipse, you are asked to select a workspace. Choose the default.

Creating a web project with JavaScript in Eclipse

1. Create a new project by selecting File | New | Project. The New Project dialog box appears.

2. Select Project from within the General Wizards area, and click Next.

http://www.eclipse.org

426 APPENDIX B Writing JavaScript with other tools

3. Enter Chapter2 in the Project Name text box, and click Finish, as shown here:

 APPENDIX B Writing JavaScript with other tools 427

4. The Chapter2 project folder opens in Package Explorer without files listed, as depicted here:

428 APPENDIX B Writing JavaScript with other tools

5. Right-click the Chapter2 folder, click New, and then click File. The New File dialog box opens.
In the File Name text box, type index.html, as shown in the next screen, and click Finish. You
can find this file, titled firstindex.html, in the Chapter 2 sample code. If you’d like to use this
file, rename it to index.html for the remainder of this exercise.

 APPENDIX B Writing JavaScript with other tools 429

6. After you click Finish, Eclipse opens the page in its own web browser. However, you want to
edit the page, not view it, so right-click index.html in Package Explorer, select Open With, and
click Text Editor. The page opens in an editor directly in Eclipse, as shown here:

7. At last it’s time to write some code! In the editor, type the following:

<!DOCTYPE html>
<html>
<head>
 <title>My First Page</title>
</head>
<body>
 <script type="text/javascript">
 function yetAnotherAlert(textToAlert) {
 alert(textToAlert);
 }
 yetAnotherAlert("This is Chapter 2");
 </script>
</body>
</html>

430 APPENDIX B Writing JavaScript with other tools

8. Select Save from the File menu. If you receive an error about character encoding, select “Save
as UTF-8.” The finished script and page should resemble the one shown in the following
graphic:

9. To view the page, right-click the file in Project Explorer, select Open With, and then click Web
Browser. You will see the file locally through the Eclipse browser, and you should receive a
page with an alert, similar to the following:

Alternatively, you can view the file through a different web browser on your computer, such
as your system’s default web browser. To do this, browse to the file (for example, my copy of
the file is located in the C:\Users\Steve\workspace\Chapter2\ folder), and then double-click
the file.

In this example, you created a basic webpage with some embedded JavaScript. The JavaScript
portion of the page contains just a few elements. First, the script tag is opened and declared to be
JavaScript, as shown in this code:

<script type="text/javascript">

note You can declare that your script is JavaScript in other ways, but the approach you see
here is the most widely supported.

 APPENDIX B Writing JavaScript with other tools 431

Next, the script declares a function, yetAnotherAlert, which accepts one argument, textToAlert:

function yetAnotherAlert(textToAlert) {

The function has one task: to pop up an alert into the browser window with whatever text has
been supplied as the function argument, which the next line accomplishes:

alert(textToAlert);

The function is delineated by a closing brace:

}

The script then calls the function you just declared with a quoted string argument, as follows:

yetAnotherAlert("This is Chapter 2");

In this brief example, you saw how to code JavaScript using Eclipse. The next section shows how to
place the JavaScript in an external file, a common approach to using JavaScript.

Using external JavaScript files with Eclipse
By the time you read this, you should have a working webpage (created with Eclipse) that displays
an alert. The webpage you developed in the previous section contains the JavaScript code within the
<BODY> tag portion of the page. In this section, I describe how to place JavaScript into an external
file and then refer to that code from within your HTML page.

Creating an external file for JavaScript using Eclipse

1. If the index.html code isn’t already open in Eclipse, open it. (You can find this file in the com-
panion content as firstindex.html.) Select the project in which you saved the index.html file,
and open the file in an editor by right-clicking the file, selecting Open With, and then clicking
Text Editor.

432 APPENDIX B Writing JavaScript with other tools

2. Create a new file to hold the JavaScript code by selecting New and then File from the File
menu. The New File dialog box opens. Type myscript.js in the File Name text box, as shown
here, and click Finish:

3. Eclipse adds a new empty JavaScript file to your project. If this file doesn’t open automatically,
right-click the myscript.js file in Project Explorer, select Open With, and then click Text Editor.
You should now see tabs for both the new myscript.js file and the index.html file. You might
also see the My First Page webpage.

note Although you are not required to use the colloquial extension for JavaScript,
which is .js, doing so might help you more easily identify files later.

4. Click the index.html tab to make it active, and highlight the JavaScript code you wrote earlier,
highlighting just the code between the opening <SCRIPT> and closing </SCRIPT> tags, not
the tags themselves. (You don’t need those right now, but you’ll revisit the topic shortly.)

5. Copy the highlighted code to the Clipboard by selecting Copy from the Edit menu.

 APPENDIX B Writing JavaScript with other tools 433

6. Click the myscript.js tab, and paste the code by selecting Paste from the Edit menu. Change
the text of the function call to “This is the Second Example.” The code looks like this:

function yetAnotherAlert(textToAlert) {
 alert(textToAlert);
}
yetAnotherAlert("This is the Second Example.");

7. Save the myscript.js file by selecting Save from the File menu. The file should look similar to
the screen shown here:

8. With the JavaScript code contained in its own file named myscript.js (you did save that file,
right?), you can just delete the code from the index.html file, including the opening and clos-
ing <SCRIPT> tags.

9. Inside the <HEAD> section, after the closing </TITLE> tag, place the following:

<script type="text/javascript" src="myscript.js"></script>

The entire contents of index.html should now be the following:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>My First Page</title>
 <script type="text/javascript" src="myscript.js"></script>
</head>
<body>
</body>
</html>

434 APPENDIX B Writing JavaScript with other tools

10. Save index.html.

11. View the page in a web browser by right-clicking index.html in Package Explorer, pointing to
Open With, and then clicking Web Browser. The page is served locally, and a browser window
opens to the page. The result should be an alert with the text “This is the Second Example,” as
shown here:

This basic primer about JavaScript development with Eclipse is complete. However, there’s much
more to it, and I recommend visiting the Eclipse website for more information about development
with the Eclipse platform.

Writing JavaScript without an IDE

You can just as easily forgo the IDEs in favor of a simpler approach to JavaScript development. Any
text editor like Notepad or Vim will work fine for JavaScript development. However, I recommend
against using word processors such as Microsoft Office Word for JavaScript development because
they can leave artifacts within the resulting file, which in turn can wreak havoc on the resulting
 website.

Your first web (and JavaScript) project with Notepad
This section shows an example of JavaScript development with Notepad.

Creating a webpage with JavaScript in notepad

1. In Microsoft Windows 8, you can open Notepad by using Search and typing Notepad, and
then clicking Notepad to open it.

2. Enter the following HTML into Notepad; this can be found in the companion content as
 firstindex.html:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>My First Page</title>
</head>
<body>
 <script type="text/javascript">
 function yetAnotherAlert(textToAlert) {

 APPENDIX B Writing JavaScript with other tools 435

 alert(textToAlert);
 }
 yetAnotherAlert("This is Chapter 2");
 </script>
</body>
</html>

3. Select Save from the File menu. You are presented with a Save As dialog box. By default,
Notepad adds a .txt extension to the document name unless you use double quotation marks.
Therefore, be sure to place double quotation marks around the file name—for example,
“index.html”. If you omit the quotation marks, Notepad will add the .txt extension and save the
file as “index.html.txt” instead. The following image shows an example of using double quota-
tion marks around the file name. Be sure to note where you save this document.

4. To view the page, use the web browser of your choice to browse to the location where you
saved the file. (If, as in the screen shown in the previous step, you saved the file to the desk-
top, browse there.)

note If you are using Internet Explorer, you might receive an alert about viewing
blocked content. To view the page, click Allow Blocked Content.

436 APPENDIX B Writing JavaScript with other tools

So far in this example, you created a basic webpage with some embedded JavaScript. The JavaS-
cript portion of the page contains just a few elements. First, the script tag is opened and declared to
be JavaScript, as shown by this code:

<script type="text/javascript">

note You can declare that your script is JavaScript in other ways, but the approach you see
here is the most widely supported.

Next, the script declares a function, yetAnotherAlert, which accepts one argument, textToAlert:

function yetAnotherAlert(textToAlert) {

The function has one task: to pop up an alert in the browser window with whatever text has been
supplied as the function argument, which the next line accomplishes:

alert(textToAlert);

The function is delineated by a closing brace (}). The script then calls the function you just declared
with a quoted string argument:

yetAnotherAlert("This is Chapter 2");

In this brief example, you’ve seen how to code JavaScript without an IDE. The next section shows
how to place the JavaScript in an external file, a quite common approach to JavaScript usage.

Using external JavaScript files without an IDE
By the time you read this, you should have a working webpage (created in Notepad) that displays an
alert() dialog box. The webpage you developed in the previous section contains the JavaScript code
within the <BODY> tag portion of the page. This section shows how to place JavaScript into an exter-
nal file and then refer to that code from within your HTML page.

 APPENDIX B Writing JavaScript with other tools 437

Creating an external file for JavaScript using Notepad

1. If the index.html file isn’t open, open it. If you’re using Notepad, you might need to right-click
the file and select Open With, and then select Notepad.

2. Highlight the JavaScript code you wrote earlier, highlighting just the code between the open-
ing <SCRIPT> and closing </SCRIPT> tags, not the tags themselves. (You don’t need those
right now, but you’ll revisit the topic shortly.)

3. Copy the highlighted code to the Clipboard by selecting Copy from the Edit menu.

4. Create a new file to hold the JavaScript code by selecting New from the File menu. The new
file opens. Paste the JavaScript code into the file by selecting Paste from the Edit menu.
Change the text of the parameter to the function call so that it reads “This is the Second Ex-
ample.” This code is shown here:

function yetAnotherAlert(textToAlert) {
 alert(textToAlert);
}
yetAnotherAlert("This is the Second Example.");

5. Save the file by selecting Save from the File menu. Type myscript.js in the File Name text box,
and be sure to include double quotation marks because the extension needs to be .js and not
.txt.

note The colloquial extension for JavaScript files is .js, but you don’t have to use it.
However, doing so might help you identify files more easily later.

6. With the JavaScript code contained in its own file named myscript.js (you did save that file,
right?), you can just delete the code from the index.html file, including the opening and clos-
ing <SCRIPT> tags.

7. Inside the <HEAD> section, after the closing </TITLE> tag, place the following:

<script type="text/javascript" src="myscript.js"></script>

The entire contents of index.html should now be the following:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>My First Page</title>
 <script type="text/javascript" src="myscript.js"></script>
</head>
<body>
</body>
</html>

8. Save index.html.

438 APPENDIX B Writing JavaScript with other tools

9. View the page in a web browser. The result, shown in the following screen, should be an alert
with the text “This is the Second Example.":

This primer on JavaScript development without an IDE is complete. Although this example used
Notepad, several other editors might be more suited to basic development, including the afore-
mentioned Vim and Textpad from Helio Software Solutions, both of which are more powerful than
Notepad.

 439

ActiveXObject object, 335
addClass() function (jQuery), 286
addEventListener() method, 153, 217
additive operators, 80
add() method, 220
Add New Item dialog box (Visual Studio), 20, 24
addNumbers() function, 122
.after() function (jQuery), 189–190
AJAX (Asynchronous JavaScript and XML), 10, 18, 327,

335–352
basics, 329–330
eval() method in, 149
jQuery and, 330, 348–352
jQuery Mobile linking without, 316–317
for loading jQuery Mobile links, 314
POST method and, 346–348
processing headers, 345–346
processing response, 339
processing XML responses, 343–344
sending data to server, 351–352
sending request, 337–338
without XML, 330–331
XMLHttpRequest object, 335–348

instantiating, 335–337
.ajax() function (jQuery), 330, 348–349, 351

data parameter, 351
options, 352

alert() function, 7, 21, 23, 25, 43, 429, 431, 433, 436
for debugging, 27
for feedback during form validation, 257
scope and, 55

alt tags, 13
anchor (<A>) elements, target attribute of, 228
anonymous functions, 126, 238
appendChild() method, 208
.append() function (jQuery), 189
Application Compatibility Virtual PC Images, 15

index

Symbols
$.ajax() function, 330
$(), as jquery() function shortcut, 175
$, in regular expressions, 71
$(this) selector, 240
/* and */, for multiline comment, 31
* (asterisk)

as multiplication operator, 80
in regular expressions, 71

\ (backslash), for escaping character, 47
~ (bitwise NOT operator), 86
^ character, in regular expressions, 71
{ } (curly braces), for objects, 51, 137
. (dot) in regular expressions, 71
! (exclamation point), as logical NOT operator, 86
(hash symbol), for ID selectors, 279
- (minus sign), to create negative number, 86
% (percent sign), as modulo operator, 81
| (pipe character), for logical OR, 105
+ (plus sign)

for concatenation, 49
converting to number with, 86
in regular expressions, 71

? (question mark)
in regular expressions, 71
as ternary operator, 106

; (semicolon), to delineate expressions, 32–33, 34
// (slashes) for single-line comment, 31

A
about:blank page, opening default, 227
abs function property of Math object, 46
action attribute of <form> element, 23
Active Server Pages (ASP) page, for server-side

program, 341

Application Programming Interface (API)

440 index

Application Programming Interface (API), 15
app package, creating, 398
<AREA> tag of an image map, 253
arguments for functions, 23
arguments object, 120
Array() constructor, 52
arrays, 51–52, 141–148

converting elements to joined string, 144–145
deleting index of, 87
for...in loops to iterate through, 115
of images, 246
iterating through, 147–148
length property, 142
methods, 142–148
push and pop methods to add and remove

elements, 145
shift and unshift to add and remove

elements, 145–146
slice() to return parts, 146
sorting elements, 146–147
using for loop with, 112–113
for weather app, 388

ASP.NET Development Server, 18
starting, 22

assignment operators, 90–91
asynchronous AJAX requests, 337–338

processing response, 340
async option, for .ajax() function, 352
attachEvent() method, 153, 217, 218
attr() function (jQuery), 208
attributes

Document Object Model and, 204–208
of HTML elements, 195
selecting elements by, 181–182

auto-initialization event, global change to
transitions, 315

availHeight property of screen object, 155
availWidth property of screen object, 155

B
back-end server-side data components, 328
background music, 14
back() method, 166
backslash (\), for escaping character, 47
backspace, 47
.before() function (jQuery), 189
behavioral separation, 14
behavior component in web application, 327, 328

binding event handlers, 220–222
Bing Maps, 329
bitwise NOT operator (~), 85, 86
bitwise operators, 81
Blank App template (Visual Studio), 372–374
<BLINK> tag (HTML), 13
blocked content, Internet Explorer alert about

viewing, 435
blur() method, 153
<BODY> tag (HTML), JavaScript within, 7, 33
bookmark page

CSS for, 309
HTML for, 309
jQuery Mobile for, 308

Boolean data type, 50
conversions, 76

Boolean expressions, for if statement, 94
Boolean() function, 76
border, CSS to create, 296
break statement, 107
Browser Object Model, 151–168

hierarchy of objects, 151–152
history object, 166–167
location object, 160–166
navigator object, 156–160
screen object, 154–156

browsers
avoiding JavaScript in older, 224–225
for debugging JavaScript, 27
decision to support, 15
detection, 4, 222
detection problems, 156
feature testing, 223–224
using multiple, 13
viewing web page in, 430, 434

built-in functions, 36
user-defined vs., 127

built-in objects, 148–149
buttons

adding to calendar, 297
adding to dialog, 302–305
adding to toolbar, 321–322

byte conservation, 91

C
cache option, for .ajax() function, 352
caching, external JavaScript file and, 34
calendar

 currentStyle array property

 index 441

customizing, 296–299
adding buttons, 297
adding month and year drop-down lists, 298
displaying multiple months, 297–298
limiting date range, 298

jQuery UI for creating, 294–299
callAJAX function, 386
callback functions (jQuery), 190
camelCase, 280
cancelBubble property, 219
carriage return, 33, 47

in regular expressions, 72
Cascading Style Sheets (CSS)

applying, 279–280
basics, 277–280
customizing in weather app, 393–394
for bookmark page, 309
in Grid App templates, 376
for jQuery UI demonstration file, 292
properties and selectors, 278–279
property names, vs. JavaScript, 281
relationship between JavaScript and, 280–288
retrieving styles with JavaScript, 287–288
selectors in, 177
setting classes with JavaScript, 285–287
setting element styles by type, 284–285
web standards for, 9

case sensitivity
of JavaScript, 29–30
of regular expressions, 70

catch clause, 336
CDATA section, in JavaScript comment, 8, 33
certification requirements for Microsoft

approval, 379
chaining, 187
change() function (jQuery), 262
changetext() function, 198
check boxes on web forms, 265–268
:checkbox selector, 182
:checked selector, 182
children() function, 203
Chrome

DOM support, 6
class attribute for CSS, 278–279
classes, 134–137

setting with JavaScript, 285–287
className property, 286
click event, opening dialog with, 304–305
client-side form validation, 4, 257

client-side language, JavaScript as, 10
client-side tasks, 10
closed property of window object, 153
close() method of window object, 153, 227–228
closures, 126
collections in HTML, 203
color of toolbar, 322–323
comma operator, 91
comments, 31, 388

in HTML, 225
in JavaScript, for CDATA section, 8

compound assignment operators, 90–92
compound conditionals, 98–101
compound statement, 35
concatenating strings, 80
concat() method, 49

to add elements to end of array, 142–144
conditionals

for checking graphic as hover, 240
compound, 98–101
else if and else statements, 101–108
if statement, 93–101

syntax, 94–95
multiple levels of, 102–105
semicolon (;) and, 32
ternary, 106
testing

switch statement for, 106–108
for testing end of slide show, 246
validating forms with, 116–118

confirm() function, 128–131
constructor pattern, 137
content compliance, 380
Content Delivery Network (CDN)

for accessing jQuery, 173
for jQuery Mobile, 309

Control character, in regular expressions, 71
cookies, 338
counting down to future date, 64
Create App Packages wizard, 398–402
createElement() method of document object, 208
createTextNode() method, 208
Create Your Package Wizard, 356–358
.css() function (jQuery), 185, 280
cubeme() function, 36–38
curly braces ({ }), for objects, 51, 137
current object, 183
currentStyle array property, 287

databases

442 index

D
databases, 12
data component in web application, 327, 328
data-id attribute, for footer, 325
data-position attribute, for footer, 325
data-role attributes (HTML), 308

footer, 319
navbar, 318

data-roles, 313
data security, 11
data-theme attribute (HTML), 322
data-transition attribute, for link, 315
data types, 41–52

Boolean, 50
conversions, 76
Null, 50
numbers, 42–46
strings, 47–50

data-win-bind attribute, of img element, 390
date

converting to string, 69
counting down to future date, 64
writing to webpage, 63–64

Date object, 61–69
get methods, 68
now() method of, 68
set methods, 69
toLocaleString() method of, 61

datepicker page, HTML to create, 295–296
debugging JavaScript, 27
Debug menu (Visual Studio), Start Debugging, 22,

373, 384, 389
declaration

of functions, 37, 431
of variables, 52–53

decrementing, 85–86
defaultStatus property of window object, 153
delay in pageload for testing, 67
delete operator, 87–88
delete unary operator, 85
deleting DOM elements, 210–212
descendants of DOM tree node, 196
detachEvent() method of window object, 153
developer account, 399
developer license for Windows 8 development, 368
development version of jQuery, 173
dialog box

adding, 299–305

adding buttons, 302–305
alert() function to display, 7
modal, creating, 301–302

dialog() function, 299, 303
dialog functions, 127–131
digit, in regular expressions, 71
directories. See folders
display component in web application, 327, 328
distributing Windows 8 apps, 358–359

in enterprise, 359
division operator, 80
DOCTYPE declarations, 9
document child of window object, 152
document object, 236

anchors collection, 203
createElement() method, 208
forms collection, 203
images collection, 203
links collection, 203
to create HTML, 159

Document Object Model (DOM), 5–6
attributes in, 204–208
creating elements, 208–210
defined, 193–196

as tree, 194
level 0, 194
levels 1-3, 194

deleting elements, 210–212
and hover, 237
methods to process XML response, 343
nodes in tree structure, 196
retrieving elements, 196–203

by ID, 196–200
by tag name, 200–203

setting ID, 209–213
siblings, 203
traversing with jQuery, 183–188

DOM 0 event model, 216
domains, JavaScript and, 11
dot notation, 46, 48
dot operator (“.”), for methods, 127
do...while statement, 110–111
Download Builder, for jQuery Mobile, 310
downloading

jQuery, 173–174
jQuery Mobile, 310–311
Visual Studio Express for Windows 8

installer, 364
downward compatibility, 15
drop-downs, 261. See also select boxes

 <FORM> elements

 index 443

Extensible Hypertext Markup Language (XHTML)
JavaScript and, 8
JavaScript declaration within, 33

Extensible Markup Language (XML), 6
AJAX without, 330–331

external CSS file, 279
external JavaScript files

advantages, 34
using without IDE, 436–438
Visual Studio and, 23–27

F
fade page transition, 315
File menu (Visual Studio)

New File, 20, 24
New Project, 370, 383
New Web Site, 19
Open Project, 24

file names in Notepad, 435
filter() method, 148
finally statement (JavaScript), 337
Firebug add-on, 27, 56

Console tab, 59
installing, 56–57
Script tab, 58
troubleshooting with, 57–61

Firefox, 4
DOM support, 6
navigation object properties for, 158
User Agent Switcher add-on, 157

firstChild property, 203
floor() function, 65
focus() method, 153
folders

for jQuery Mobile, 311
in jQuery UI download, 290

footer navigation bar, 319–321
for each...in loop, 115–116
forEach loop, in weather app, 386, 388
forEach() method, array iteration with, 147
for...in loop, 113–115

for displaying properties, 138–139
for loop, 111–116

to slow down JavaScript execution, 67
using with arrays, 112–113

<form> elements
selecting, 182

<FORM> elements, 23

DTD (DOCTYPE declaration), 9

E
.each() function (jQuery), 183, 185
Eclipse

external JavaScript files in, 431–434
writing JavaScript with, 425–434

Eclipse Classic, 425
ECMA-262 specification, 4, 65, 142
ECMAScript, 3, 4–5, 335
effect() function, 294
EHandler.add() method, 246
ehandler.js script, 243, 245, 259
Eich, Brendan, 3
else if statements, 101–108
else statements, 101–108
empty() function (jQuery), 212
empty string, null vs., 50
encodeURIComponent() method, 149
encodeURI() method, 148, 149
endless loop, 109
enterprise, Windows 8 app distribution, 359
equality operators, 81–83
error handling, .ajax() function for, 351
escape sequences, 47–48
escaping characters, in AJAX request, 338
European Computer Manufacturers Association

(ECMA), 4
eval() function, 38, 39, 149
Event Bubbling, 217
Event Capture, 217
event-driven, JavaScript as, 7
event handlers

binding and unbinding, 220–222
generic, 219–220
registering, 167

event models, 215–219
DOM 0, 216
W3C and Internet Explorer, 216

events, 152
in jQuery, 220, 231–233
of window object, 215–222

every() method, 148
exceptions, try/catch block and, 336–337
exclamation point (!), as logical NOT operator, 86
exec method, of RegExp object, 72
expressions, 6

; (semicolon) to delineate, 32–33

for() method, array iteration with

444 index

for() method, array iteration with, 147
form feed, 47
form, function vs., 12
form validation

client-side, 4
with conditionals, 116–118
with jQuery, 260–275

formValid() function, 259
forward() method, 166
function, form vs., 12
function keyword, 119
function literals, 126
functions, 6–7, 36–38

anonymous/unnamed, 126
basics, 119
calling, 124–125
declaring, 23, 37, 431
dialog, 127–131
in jQuery, 183–190

for attributes, 188
methods and, 127
parameters, 120–121
return keyword, 123–124
user-defined vs. built-in, 127

G
garbage collection, 75–76
generateSampleData() function, 385
getAllResponseHeaders() method, for

XMLHttpRequest object, 345
getAttribute() method, 204–206
getComputedStyle() method, 287
getDate() method, 68
getDay() method, 68
getElementById() function, 177, 196, 280

testing for, 224
getElementsByTagName() method, 285
getFullYear() method, 68
.get() function (jQuery), 348
getHours() method, 68
.getJSON() function (jQuery), 349
GET method (HTTP), 338

POST method vs., 346
getMilliseconds() method, 68
getMinutes() method, 68
getMonth() method, 68
getSeconds() method, 68
getTime() function, 65, 68

getTimezoneOffset() method, 68
getWXData() function, 386, 388
global object, window object as, 152
global scope, 53
go() method, 166
Google, hosting of jQuery, 173
graceful degradation, 14
Grid App template (Visual Studio), 375–377

H
hacking validation, 270
hash symbol (#), for ID selectors, 279
HEAD method (HTTP), 345
<HEAD> tag (HTML), JavaScript within, 7, 33
height feature of window object, 227
height property of screen object, 155
hexadecimal numbers, 42
.hide() function (jQuery), 233
history object, 166–167
Host header, 338
hover, 235
hover() function, 233, 238, 240
hovers

modern with jQuery, 237–239
portable, 238–241
preloading images for, 242–244

HTML
applying style directly to element, 279
basics, 7
collections, 203
document object to create, 159
in Grid App template, 376
setting element styles by type, 284–285

HTML 4.01, DOCTYPE declaration for, 9
HTML 5, DOCTYPE declaration for, 9
.html() function, 188
HTTP HEAD method, 345
Hypertext Transfer Protocol (HTTP), 338

I
id attribute

for CSS, 278–279
DOM element retrieval by, 196–200
of element, 250

if statement, 32, 93–101
Boolean expression in, 50
compound conditions, 98

 jQuery

 index 445

for decisions about program flow, 96–98
syntax, 94–95

image hovers, 235–241
image maps, 251–255
image rollover, 235
images

adding to tiles, 396–397
preloading for hovers, 242–244

 tag (HTML)
data-win-bind attribute of, 390
mouseover and mouseout event handlers in, 235
name and id attributes of, 250

i modifier, for regular expressions, 73
implicit array constructor, 141
incrementing, 85–86

in while loop, 109
indenting JavaScript code, 30
index.html file, with external JavaScript file, 433
index of array, deleting, 87
indexOf() method, 148
infinity, 45
innerHTML property, 198
in operator, 84–92

testing for property with, 139–140
:input selector, 182
input, validating with conditional statement, 116–

118
inserting elements in page, jQuery for, 189–190
installing

Firebug, 56–57
jQuery UI, 289–294
Visual Studio 2012, 363–364
Visual Studio 2012 Express, 364–370

instanceof operator, 84, 85
instantiating XMLHttpRequest object, 335–337
Internet Explorer

access to older versions, 15
alert about viewing blocked content, 435
navigation object properties for, 158
prevent Default() method and, 260
prompt() function and, 95–98
XMLHttpRequest object and, 335

Internet Explorer 3.0, 4
Internet Explorer 5.0/5.5, 6
Internet Explorer 10, pseudo-protocol and, 7
Internet Options dialog box

Security tab, 95
invoking functions, 124–125
isNaN() function, 37, 38, 43, 99

testing, 43–45

iteration
through arrays, 147–148
through child nodes set, 203
jQuery functions for, 183

J
Java, 3–4

detection with navigator object, 159
JavaScript

avoiding in older browsers, 224–225
capabilities, 10
correct placement, 33–34
customizing for weather app, 385–390
debugging, 27
development options, 17–18
disabling, 10
in Grid App template, 376
history, 3–6
limitations, 10–12
placement on webpage, 7–9
program contents, 6–7
property names, vs. CSS, 281
relationship between CSS and, 280–288
samples in Visual Studio 2012, 371
strict mode, 38–39
syntax rules, 29–34
testing for availability, 223
tips for using, 12–15
for Windows 8 apps, 355
writing

with Eclipse, 425–434
with Notepad, 434–438
with Visual Studio, 19–27

JavaScript language reference, 65
JavaScript Object Notation (JSON), 331, 344–345
javascript pseudo-protocol, 7
join() method, 144
jQuery, 171

AJAX and, 330, 348–352
basics, 173
callback functions, 190
connecting to load event, 175–177
downloads, 173–174
event handling with, 220
events, 231–233
form validation with, 260–275
functions, 183–190
including in webpage, 174

jQuery Cycle plug-in

446 index

for inserting elements in page, 189–190
modern hovers with, 237–239
selectors, 177–183

by class, 177–178
by ID, 177

syntax, 175
tabular data and, 180

jQuery Cycle plug-in, 251
jquery() function, 175
jQuery Mobile, 307–326

basics, 307–310
downloading, 310–311
linking with, 313–317
resources for, 326
testing, 311–313
for toolbars, 317–325
troubleshooting, 313

jQuery UI
building demonstration page, 290–294
calendar creation, 294–299
dialog box, 299–305
installing, 289–294
obtaining, 289–290
troubleshooting, 293

JScript, 4, 14
.js extension, 25
JSON (JavaScript Object Notation), 331, 344
json.php file, 349

K
keyboard, DOM 0 events, 216
key=value pairs, 351
keywords, case sensitivity and, 29

L
landing page, Solution Explorer to view HTML, 373
lastChild property, 203
lastIndexOf() method, 148
Launch Windows App Certification Kit, 401
left feature of window object, 227
length property

of array, 142
of string object, 48

lexical structure, 29
libraries, 169

defining personal, 169–171

line breaks, 33
return keyword and, 32

Line Terminators, 33
linking with jQuery Mobile, 313–317

changing page transition, 315
without AJAX, 316–317

literal backslash, 47
literals, 6
LiveScript, 3
load event

connecting jQuery to, 175–177
of window object, 240

load event of window object, 237
load() function (jQuery), 231, 348
local scope, 38
location feature of window object, 227
location object, 160–166
logical NOT operator, 85

! (exclamation point) as, 86
logical OR operator, 99
logo, adding to app, 396–397
looping

do...while statement, 110–111
for each...in loop, 115–116
for...in loop, 113–115

for displaying properties, 138–139
for loop, 111–116
jQuery functions for, 183
semicolon (;) and, 32
while statement for, 108–109

M
malware, app security testing for, 380
map() method, 148
Markup Validator, 9
match() function, 102

regular expressions in, 105
match method, of String object, 74
Math object, 45–46

PI value property of, 46
pow method of, 37
properties, 46

MAX_VALUE, 45
memory

consumption, 91
garbage collection to free, 75

menubar feature of window object, 227
methods, 134

adding to objects, 141

 objects

 index 447

of arrays, 142–148
functions and, 127
of window object, 153–154

Microsoft. See also Windows 8
Bing Maps, 329
guidelines for Windows apps, 354

Microsoft Developer Network, 330
Microsoft Visual Basic, Scripting Edition, 4
minification, 91
minus sign (-), to create negative number, 86
MIN_VALUE, 45
modal dialog box, 128–131

creating, 301–302
modern hovers, 237
Modernizr, 171
modifiers, for regular expressions, 72
modulo operator, 81
months

adding drop-down list to calendar, 298
displaying multiple in calendar, 297–298

MooTools, 172
mouse, DOM 0 events, 216
mouseout event, 231–233

handlers, 235–237
image map support, 253

mouseover event, 231–233
image map support, 253

mouseover event handlers, 235–237
moving backward in slide show, 247–250
moving window object, 154, 228–229
MSDN account, 15
MSDN Magazine, 141
multiline comment, 31
multiplicative operators, 80–81
music, background, 14

N
name attribute of element, 250
name property of window object, 153
names

CSS vs. JavaScript, 281
of DOM events, 218
for JavaScript style properties, 280
for libraries, 171
for variables, 52, 122, 123

case sensitivity and, 29
NaN (Not a Number), 43

navigation bar, 318–319
footer, 319–321

navigation tools, 13
navigator object, 156–160

Java detection with, 159
properties and methods, 226
userAgent property, 222

negation operator, 94
NEGATIVE_INFINITY, 45
negative numbers, 86
nested functions, 126
nested if statements, 100

regular expressions in, 105
new Array() explicit constructor, 141
New File dialog box (Eclipse), 428, 432
new keyword, 137
newline, 47

in regular expressions, 72
New Project dialog box (Eclipse), 425
New Project dialog box (Visual Studio), 370–371
New Web Site dialog box (Visual Studio), 19
next() function, 203
nextImage() function, 246
nextSibling property, 203
night sky graphic, image map for, 252
nodes in DOM tree structure, 196
nondigit, in regular expressions, 72
<NOSCRIPT> tag (HTML), 225
Not a Number (NaN), 43
Notepad

external JavaScript file created in, 437
writing JavaScript in, 434–436

not equal operator, 81
now() method of Date() object, 68
null data type, 50
Number() function, 80, 86
numbers, 42–46

converting strings to, 76
converting to strings, 76
converting to, with plus sign, 86
incrementing and decrementing, 85

numeric constants, 45
numeric functions, 43–45

O
object-oriented development, 133–137
objects, 51, 133–134. See also methods

adding methods to, 141
built-in, 148–149
creating, 137–141

.off() function

448 index

{ } (curly braces) for, 51
current, 183
detection, 223
properties of, 134

adding, 138–140
deleting, 87

.off() function, 221
onblur() event, 216
onchange() event, 216
onclick event, 202, 216

handler, 167
ondblclick() event, 216
onfocus() event, 216
.on() function, 220
onkeydown() event, 216
onkeypress() event, 216
onkeyup() event, 216
onload() event, 216
onmousedown() event, 216
onmousemove() event, 216
onmouseout() event, 216
onmouseover() event, 216
onmouseup() event, 216
onreadystatechange event, 340
onreset() event, 216
onresize() event, 216
onselect() event, 216
onsubmit() event, 216
onunload() event, 216
opener property of window object, 153
open() method, 154

of window object, 227
of XMLHttpRequest object, 337, 340

Opera, 4
DOM support, 6

operators, 6, 79
additive, 80
assignment, 90–91
bitwise, 81
comma, 91
division, 80
equality, 81–83
multiplicative, 80–81
relational, 83, 83–85
subtraction, 80
typeof, 88–89
unary, 85–89

P
package.appxmanifest file, 378, 396
package manifest, customizing, 396–398
Package Manifest editor

Capabilities tab, 378, 397
Declarations tab, 397

packaging Windows 8 apps, 356–358
for Windows Store, 379

PageControlNavigator attribute, 376
page load times, functions to determine, 68
parameters of functions, 120–121
parameter/value pair, 162
.parent() function (jQuery), 187
parent node in DOM tree, 196
parentNode property, 203
parent property of window object, 153
parseWXData() function, 387–388
:password selector, 182
paths, for files in jQuery, 293
percent sign (%), as modulo operator, 81
persistent toolbar, 323–325
PHP (PHP: Hypertext Preprocessor), 12

server-side program and, 341
pipe character (|), for logical OR, 105
PI value property, of Math object, 46
plus sign (+)

for concatenation, 49
converting to number with, 86

pop() method, 145
pop-up windows, 226
portable hovers, 238–241
.POSITIVE_INFINITY, 45
postfix operator, 85, 109
.post() function (jQuery), 348
POST method (HTTP), AJAX and, 346–348
pow function property of Math object, 46
pow method of Math object, 37
preloading images for hovers, 242–244
pre-validating form data, 269–275
preventDefault() method, 260
prev() function, 203
prevImage() function, 249
previous button, creating for slide show, 247
previousSibling property, 203
primitive types, 75
print() method, 154
production version of jQuery, 173
product key, for Visual Studio Express, 367

 search method, of String object

 index 449

program flow, if statement for decisions about, 96–
98

programming libraries, 169
programming paradigms, 133
progressive enhancement, 14
promise objects, 386, 390
prompt() function, 95–98, 98
properties

in CSS, 278–279
of objects, 51, 134

adding, 138–140
deleting, 87
looking for, 139–140

unary operator to remove, 85
proprietary plug-ins, 13
prototype pattern, 137
pseudo-class for object, 136–137
push() method, 145

Q
query string, 351

exercise to examine, 161–166
question mark (?)

in regular expressions, 71
as ternary operator, 106

Quirks Mode, 9
QuirksMode website, 36
quotation marks

escaping, 47
as selectors within jQuery, 175
for strings, 47

R
radio buttons on web forms, 268–269
:radio selector, 182
random function property of Math object, 46
readable code

line breaks and, 33
white space and, 30

readyAJAX() function, 338, 340
ready() function (jQuery), 261, 262, 293, 294
readyState property, of event, 340
.ready() utility function, 175
reference data types, 42
references, 75–76
RegExp object, 70–76
registerContentHandler() method, 167

registered events, 217
registering event handlers, 167
registerProtocolHandler() method, 167
registration of Visual Studio Express, 367
regular expression literals, 70
regular expressions, 70–76

multiple levels of conditionals and, 102–105
for removing class name, 286
syntax, 71–74

relational operators, 83–85
in if statement, 95

removeChild() method, 210
removeClass() function, 286
removeEventListener() method, 154, 218
remove() function (jQuery), 212
render time, calculating, 66–68
replace() method, 286
replace method, of String object, 74
requestObj variable, 339
reserved words, 6, 35–36
:reset selector, 182
resizing window object, 154, 227, 228–229
responseText method, 339
responseXML method, 343
return keyword, 123–124

line breaks and, 32
return value of function, 119
reverse() method, 148
RFC (Request for Comments)

2616, on HTTP, 338
RFC (Request For Comments)

2396, on URI generic syntax, 148
Rhino, 151

S
Safari, 4

DOM support, 6
same-origin policy, 11, 341

HEAD method and, 346
Save As dialog box (Notepad), 435
scope of variables, 53–61, 121–123
screen object, 154–156
<script> tag (HTML), to include jQuery, 174
<SCRIPT> tag (HTML), 7–8, 23

for external JavaScript file, 26, 433, 437
src attribute, 23, 34

scrollbars feature of window object, 227
search method, of String object, 74

search property

450 index

search property, 163
security warning, from Internet Explorer, 95
select boxes, 261–265
:selected selector, 182
selectors in CSS, 278–279
selectors in jQuery, 177–183

by attribute, 181–182
by class, 177–178
by element type, 178
form elements, 182
by hierarchy, 178
by ID, 177
by position, 179–181

self, 152–154
semicolon (;), to delineate expressions, 32–33, 34
sendAlert() function, 230
send() method, of XMLHttpRequest object, 337
servers, for JavaScript development, 18–19
server-side applications

Active Server Pages (ASP) page for, 341
resources on, 330
XML responses from, 343

server-side validation, 257
hacking, 270–273

servers, JavaScript and, 12
setAttribute() method, 206–208
setDate() method, 69
setFullYear() method, 69
setHours() method, 69
setInterval() function, 229
setMilliseconds() method, 69
setMinutes() method, 69
setMonth() method, 69
setSeconds() method, 69
setTime() method, 69
setTimeout() function, 229, 230
shift() method, 145
showattribs() function, 204
.show() function, 233
siblings in DOM, 196, 203
sideloading, 358, 359
simple assignment, 90
simple statement, 35
single-line comment, 31
site maps, 13
slashes (//) for single-line comment, 31
slice method, 49, 146
slide shows, 244–251

creating, 244–246
jQuery for, 250–255

moving backward, 247–250
SlidesJS, 251
Software Installation dialog box, for Firebug, 56
Solution Explorer, 25

to view HTML for landing page, 373
some() method, 148
sort() method, 146–147
splash screen, 396
splice() method, 148
Split App template, 377, 394
src attribute of <script> tag (HTML), 34
src attribute of <SCRIPT> tag (HTML), 23
src() property of image object, 242
Start screen for Windows 8, 353
startTimer() function, 230
statements in JavaScript, 6, 34–35
status property of window object, 153, 227
stopPropagation() method, 219
Store menu (Visual Studio), Create App

Packages, 398
strict mode, 38–39
string object

length property, 48
methods, 73

strings, 47–50
concatenating, 80
converting array elements to joined string, 144–

145
converting date to, 69
converting numbers to, 76
converting to numbers, 76
methods and properties, 48–50

style attribute (CSS), 278
<STYLE> element, 279
submit event handler, 294
:submit selector, 182
substring method, 49, 164
substr method, 49
subtraction operators, 80
switch statement, testing with, 106–108
synchronous AJAX requests, 337–338

response to, 340

T
tab, 47

in regular expressions, 72
tabular data, and jQuery, 180
target attribute of anchor (<A>) elements, 228

 variables

 index 451

technology, overuse, 13
templates for Windows 8 apps, 370–377
ternary conditionals, 106, 130
ternary operator, 224
testing

browser features, 223–224
conditionals for end of slide show, 246
delay in pageload for, 67
else if and else for, 102
equality operators, 82–83
for getElementById() method, 224
for JavaScript availability, 223
jQuery Mobile, 311–313
in multiple browsers, 5
for property with in operator, 139–140
switch statement for, 106–108
weather app, 398–402
Windows 8 apps, 356–358

test method, of RegExp object, 72
text editor, 17, 434
text field, validation of, 273–275
.text() function, 188
Textpad, 438
text readers, 13
:text selector, 182
themes, in jQuery Mobile, 310
this keyword, 134
$(this) selector, 183
tiles in Windows 8 interface, 353

adding image, 396–397
time-outs, .ajax() function for, 351
timers, 229–231
time, writing to webpage, 63–64
toDateString() method, 69
toggleClass() function, 287
toISOString() method, 69
tokens, 6
toLocaleDateString() method, 64
toLocaleLowerCase method, 49
toLocaleString() method, 61, 69
toLocaleTimeString() method, 64, 69
toLocaleUpperCase method, 49
toLowerCase method, 49
toolbar

adding buttons, 321–322
color change, 322–323
jQuery Mobile for creating, 317–325
window object feature, 227

top feature of window object, 227

top property of window object, 153
toString() method, 69
toTimeString() method, 69
touch experience. See jQuery Mobile
toUpperCase method, 49
toUTCString() method, 69
transition, changing for link in jQuery Mobile, 315
traversing DOM with jQuery, 183–188
trigger() function, 221–222
troubleshooting

Firebug add-on for, 57–61
jQuery Mobile, 313
jQuery UI, 293
undefined variables, 60

try/catch blocks, 336
.txt extension, 435
typeof operator, 85–92, 223

U
ui-btn-active class, 325
ui-state-persistent class, 325
unary operators, 85–89
unbinding event handlers, 220–222
undeclared variables, prevention of, 38
undefined state, 50
Uniform Resource Identifier (URI), safety of, 148
unnamed functions, 126
unobtrusive scripting, 14
unshift() method, 145
user agent, 10
userAgent property of navigator object, 222
user-defined functions, 36

built-in vs., 127
U.S. National Weather Service data feeds, 381

V
val() function, 188, 261
validation

client-side vs. server-side, 257
hacking, 270
of text field, 273–275
of web forms

with conditionals, 116–118
CSS and JavaScript for, 282–283

validator from W3C, 9
variables, 52–69

declaration, 52–53

452 index

var keyword

destruction of unused, 75
names of, 122, 123
prevention of undeclared, 38
returning type, 88–89
scope of, 53–61, 121–123
troubleshooting undefined, 60
types, 53

var keyword, 35, 38, 52, 122
VBScript, 4
Venkman, 27
vertical tab, 47
Vim, 434, 438
Virtual Earth web server, 329
virus, app security testing for, 380
visitors, detecting information, 222–226
Visual Basic .NET, 12
Visual Studio, 17

for app development, 355
external JavaScript files in, 23–27
jQuery Mobile file in project, 312

Visual Studio 2012
installing, 363–364
JavaScript samples in, 371
for writing JavaScript, 19–27

Visual Studio 2012 Express, 18, 19
downloading installer, 364
installing, 364–370

void operator, 85

W
weather app

customizing, 385–396
CSS, 393–394
HTML, 390–392
JavaScript, 385–390

design and programming, 382–385
development process, 381–382
finalizing, 394–396
testing, 398–402

web applications
architecture, 327–328
JavaScript and interface, 329

web browsers. See browsers
web.config, debugging enabled, 22
web forms, 257–261

accessing elements of, 261–269
check boxes, 265–268
CSS and JavaScript for validation, 282–283
pre-validating data, 269–275

radio buttons, 268–269
select boxes, 261–265
selecting option, 263–265
validating text field, 273–275

WebKit rendering engine, 6
webpage

changing text and HTML, 188–189
jQuery included in, 174
writing date and time to, 63–64

website design, 12–15
web standards, 13
while statement, 108–109
white space, 30–31

line breaks and, 33
in regular expressions, 72

width feature of window object, 227
width property of screen object, 155
wildcard selectors in jQuery, 182
window object, 127–131, 148. See also document

object
child objects as properties, 153
child objects of, 151–152
events, 215–222
load event, 240
load event of, 237
methods, 153–154
moving and resizing, 154, 228–229
opening, best practices, 228
opening, closing, and resizing, 226–229
opening tabs, 228

Windows 8, 15–16
opening Notepad in, 434
Start screen, 353

Windows 8 apps, 353. See also weather app
defining capabilities, 397–398
development, 354–358

guidelines, 354
packaging and testing, 356–358
planning and design, 355

distribution, 358–359
in enterprise, 359

helper applications for creating, 17
package manifest, 377–378
packaging for Windows Store, 379–380
templates, 17, 370–377

Blank App, 372–374
Grid App, 375–377
Split App, 377, 383, 394

Windows 8 Software Development Kit (SDK), 355

 zip file

 index 453

Windows App Certification Kit, 356–358, 359, 380,
398, 400–401

Windows Store
app distribution in, 358–359
app submission for approval, 354
packaging Windows 8 apps for, 379–380
pricing models for apps, 379

WinJS library, 382
word boundary, in regular expressions, 71
World Wide Web, 338–339
World Wide Web Consortium (W3C), 5, 193, 335

application for testing modules, 6
event model, 216
for CSS properties, 278
online validator from, 9

X
XDomainRequest object, 11
XHR function, 386
XHTML 1.0 standard, DOCTYPE declaration for, 9
XHTML (Extensible Hypertext Markup Language)

JavaScript and, 8
JavaScript declaration within, 33

xmldocument object, getElementsByTagName()
method, 344

XML (Extensible Markup Language), 6
AJAX without, 330–331
processing responses, 343–344

XMLHttpRequest object (AJAX), 11, 329, 335–348,
340

getAllResponseHeaders() method for, 345
instantiating, 335–337
obtaining response headers from, 345
sending AJAX request, 337
sending and receiving with, 342–343

Y
Yahoo! User Interface (YUI), 171
year, adding drop-down list to calendar, 298

Z
zip file

for jQuery Mobile, 311
for jQuery UI, 290

about the author

STEVE SUEHRING is a technology architect who specializes in finding simple solutions
to complex problems and complex solutions to simple problems. When not writing
technology books, Steve enjoys playing several musical instruments. You can follow
Steve on Twitter, @stevesuehring.

SurvPage_Corp_b&w.indd 1 4/24/13 12:45 PM

Now that
you’ve
read the
book...

Tell us what you think!
Was it useful?

Did it teach you what you wanted to learn?

Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

http://aka.ms/tellpress

	Introduction
	Part I: Javawhat? The where, why, and how of JavaScript
	Chapter 1: JavaScript is more than you might think
	A brief history of JavaScript
	Enter Internet Explorer 3.0
	And then came ECMAScript
	So many standards...
	The DOM

	What’s in a JavaScript program?
	JavaScript placement on your webpage
	What JavaScript can do
	What JavaScript can’t do
	JavaScript can’t be forced on a client
	JavaScript can’t guarantee data security
	JavaScript can’t cross domains
	JavaScript doesn’t do servers

	Tips for using JavaScript
	Where JavaScript fits
	Which browsers should the site support?

	And then came Windows 8
	Exercises

	Chapter 2: Developing in JavaScript
	JavaScript development options
	Configuring your environment
	Writing JavaScript with Visual Studio 2012
	Your first web (and JavaScript) project with Visual Studio 2012
	Using external JavaScript files with Visual Studio 2012

	Debugging JavaScript
	Exercises

	Chapter 3: JavaScript syntax and statements
	A bit of housekeeping
	Case sensitivity
	White space
	Comments
	Semicolons
	Line breaks
	Placing JavaScript correctly

	JavaScript statements
	What’s in a statement?
	The two types of JavaScript statements

	Reserved words in JavaScript
	A quick look at functions
	JavaScript’s strict mode
	Exercises

	Chapter 4: Working with variables and data types
	Data types in JavaScript
	Working with numbers
	Working with strings
	Booleans
	Null
	Undefined
	Objects
	Arrays

	Defining and using variables
	Declaring variables
	Variable types
	Variable scope
	The Date object

	Using the RegExp object
	The syntax of regular expressions
	References and garbage collection

	Learning about type conversions
	Number conversions
	String conversions
	Boolean conversions

	Exercises

	Chapter 5: Using operators and expressions
	Meet the operators
	Additive operators
	Multiplicative operators
	Bitwise operators
	Equality operators
	Relational operators
	The in operator
	The instanceof operator

	Unary operators
	Incrementing and decrementing
	Converting to a number with the plus sign
	Creating a negative number with the minus sign
	Negating with bitwise not and logical not
	Using the delete operator
	Returning variable types with the typeof operator

	Assignment operators
	The comma operator
	Exercises

	Chapter 6: Controlling flow with conditionals and loops
	If (and how)
	Syntax for if statements
	The prompt() function in Internet Explorer
	Compound conditions

	Using else if and else statements
	Working with ternary conditionals
	Testing with switch
	Looping with while
	The while statement
	The do...while statement

	Using for loops
	The for loop
	The for...in loop
	The for each...in loop

	Validating forms with conditionals
	Exercises

	Chapter 7: Working with functions
	What’s in a function?
	Function parameters
	Variable scoping revisited
	Return values
	More on calling functions
	Anonymous/unnamed functions (function literals)
	Closures

	Methods
	A look at dialog functions
	Exercises

	Chapter 8: Objects in JavaScript
	Object-oriented development
	Objects
	Properties
	Methods
	Classes

	Creating objects
	Adding properties to objects
	Adding methods to objects

	Finding out more about arrays
	The length property
	Array methods

	Taking advantage of built-in objects
	Making URIs safe
	Using the eval() method

	Exercises

	Chapter 9: The Browser Object Model
	Introducing the browser
	The browser hierarchy
	Events

	A sense of self
	Getting information about the screen
	Using the navigator object
	The location object
	The history object
	Exercises

	Chapter 10: An introduction to JavaScript libraries and frameworks
	Understanding programming libraries
	Defining your own JavaScript library
	Looking at popular JavaScript libraries and frameworks
	jQuery
	Modernizr
	Yahoo! User Interface
	MooTools
	Other libraries

	Exercises

	Chapter 11: An introduction to jQuery
	jQuery primer
	Using jQuery
	The two jQuery downloads
	Including jQuery
	Basic jQuery syntax
	Connecting jQuery to the load event

	Using selectors
	Selecting elements by ID
	Selecting elements by class
	Selecting elements by type
	Selecting elements by hierarchy
	Selecting elements by position
	Selecting elements by attribute
	Selecting form elements
	More selectors

	Functions
	Traversing the DOM
	Working with attributes
	Changing text and HTML
	Inserting elements
	Callback functions

	More jQuery
	Exercises

	Part II: Integrating JavaScript into Design
	Chapter 12: The Document Object Model
	The Document Object Model defined
	DOM Level 0: The legacy DOM
	DOM Levels 1 through 3
	The DOM as a tree
	Working with nodes

	Retrieving elements
	Retrieving elements by ID
	Retrieving by tag name
	HTML collections
	Working with siblings

	Working with attributes
	Viewing attributes
	Setting attributes

	Creating elements
	Adding text
	Adding an element and setting an ID

	Deleting elements
	Exercises

	Chapter 13: JavaScript events and the browser
	Understanding window events
	The event models
	A generic event handler
	jQuery event handling
	Binding and unbinding

	Detecting visitor information
	A brief look at the userAgent property
	Feature testing
	Keeping JavaScript away from older browsers
	Other navigator properties and methods

	Opening, closing, and resizing windows
	Window opening best practices
	Opening tabs: no JavaScript necessary
	Resizing and moving windows

	Timers
	Events
	Mouse events and hover
	Many more event handlers

	Exercises

	Chapter 14: Working with images in JavaScript
	Working with image hovers
	A simple hover
	Modern hovers with jQuery
	A closer look at the exercise

	Preloading images
	Working with slide shows
	Creating a slide show
	Moving backward
	A jQuery slide show

	Working with image maps
	Exercises

	Chapter 15: Using JavaScript with web forms
	JavaScript and web forms
	Validation with JavaScript
	Validation with jQuery

	Working with form information
	Working with select boxes
	Working with check boxes
	Working with radio buttons

	Pre-validating form data
	Hacking JavaScript validation
	Validating a text field

	Exercises

	Chapter 16: JavaScript and CSS
	What is CSS?
	Using properties and selectors
	Applying CSS

	The relationship between JavaScript and CSS
	Setting element styles by ID
	Setting element styles by type
	Setting CSS classes with JavaScript
	Retrieving element styles with JavaScript

	Exercises

	Chapter 17: jQuery effects and plug-ins
	Installing jQuery UI
	Obtaining jQuery UI
	Installing jQuery UI
	Building a jQuery UI demonstration page

	Creating a jQuery UI calendar
	Customizing the calendar

	Adding a dialog box
	Creating a modal dialog
	Adding buttons

	More JQuery UI
	Exercises

	Chapter 18: Mobile development with jQuery Mobile
	A walkthrough of jQuery Mobile
	Getting jQuery Mobile
	Downloading jQuery Mobile
	Testing jQuery Mobile

	Linking with jQuery Mobile
	Creating a link
	Changing the page transition
	Linking without AJAX

	Enhancing the page with toolbars
	Adding a navigation bar
	Adding a footer navigation bar
	Adding buttons to toolbars
	Other toolbar enhancements

	Even more jQuery Mobile
	Exercises

	Chapter 19: Getting data into JavaScript
	JavaScript application architecture
	The big three: display, behavior, data

	JavaScript and web interfaces
	Introduction to AJAX
	AJAX with jQuery
	AJAX without the X
	What’s Next?

	Part III: AJAX and Server-Side Integration
	Chapter 20: Using AJAX
	The XMLHttpRequest object
	Instantiating the XMLHttpRequest object
	Sending an AJAX request
	Processing an AJAX response
	Processing XML responses
	Working with JSON
	Processing headers
	Using the POST method

	AJAX and jQuery
	AJAX errors and time-outs
	Sending data to the server
	Other important options

	Exercise

	Chapter 21: Developing for Windows 8
	Windows 8 apps
	Developing Windows 8 apps
	Development guidelines
	The development process

	Distributing Windows apps
	Distributing in the Windows Store
	Distributing in an enterprise

	Summary

	Part IV: JavaScript and Windows 8
	Chapter 22: Using Visual Studio for Windows 8 development
	Installing Visual Studio 2012
	Installing Visual Studio 2012 Express for Windows 8
	Windows 8 app templates
	Blank App template
	Grid App template
	Split App template

	Setting app details in the App Manifest
	Packaging apps for the Windows Store
	Certification requirements
	The technical process

	Exercises

	Chapter 23: Creating a Windows app
	The app development process
	Starting the app design and programming
	Customizing the app
	Customize the JavaScript
	Customize the main HTML
	Customize the detail HTML
	Customize the CSS
	Finalizing the app

	Customizing the Package Manifest
	Adding a splash screen, logo, and tile image
	Defining capabilities

	Testing the app
	Summary

	Appendix A: Answer key to exercises
	Appendix B: Writing JavaScript with other tools
	Index

