v NATIONAL
’ INSTRUMENTS

Five Techniques for Better LabVIEW Code

Peter Blume
President/Chief Engineer, Bloomy Controls

NATIONAL

INSTRUMENTS'

This presentation provides five techniques to improve your LabVIEW programs.

Overview

*Introduction

Write a functional specification

*Use proper data flow

Implement a state machine architecture
*Use proper error handling

« Document your source code

* Conclusion

We will focus on LabVIEW programming and documentation techniques. The
specific topics include specifications, data flow, state machines, error handling, and
documentation.

Introduction

* LabVIEW offers many means to an end
* Programming style is the differentiator
—Readability
—Robustness
—Efficiency
—Maintainability
* Techniques are style related

INSTRUMENTS

This presentation was motivated by some common mistakes we' ve seen made
repeatedly by the customers of Bloomy Controls. LabVIEW provides many means
to an end. The developer’s decisions on how they implement a feature may have a
subtle effect on readability, or a profound effect on the overall performance and
reliability of the virtual instrument (V1). Hence, LabVIEW programming styleis
extremely important.

Bad Code Example

Why isthisLabVIEW diagram bad? What would you do differently?

Experienced LabVIEW developers refer to this diagram as “ spaghetti.” 1t exhibits an
inappropriate architecture, insufficient modularity, and a haphazard wiring scheme.
Specifically, the wiring was performed haphazardly, with data flowing left-to-right,
right-to-left, up, down, and all around. Several subV1 icons contain text that was
drawn free-hand, one unique trait that | would not consider common. Error handling
isincomplete, and documentation including comments and VI descriptions, is
nonexi stent.

When Bloomy Controls was contacted to debug this application, our first request
was “please forward us the documentation for our review.” Not too surprisingly,
documentation was never written for this application. Even worse, the developer had
long since | eft the company and was no longer available to answer questions.

——
1. Write a Functional Specification

* Understand the application’s requirements

—Interview operators, developers, engineers,
managers, bean counters, etc.

« Formally document the requirements
—Statement of high-level objectives
—Specific requirements for I/O, analysis, GUI
—Assign priorities to each requirement

NATIONAL

INSTRUMENTS

The most common problem | see is that people begin developing their LabVIEW
applications without a full understanding of the requirements. This resultsin poor
choices for the top-level architecture, incorrect data structures, inadequate error
handling, etc. Moreover, it often results in wasted effort when significant portions
of the application must be rewritten to accommodate new definitions of poorly
understood requirements. Documenting the specifications, and having them
reviewed by all contributors, ensures that the requirements are understood, agreed
upon, and approved. This should be the first step in any LabVIEW application
development effort, except if you're developing avery simple VI intended only for
your own use.

2. Use Proper Data Flow

+ Data flow definition

“A block diagram node executes when all its inputs are available. When
a node completes execution, it supplies data to its output terminals
and passes the data to the next node in the dataflow path.”

« Parallel paths are permitted

« Efficiency is optimized when LabVIEW determines the
execution order

* Readability is optimized when source terminals, wires,
and destination terminals are neatly aligned

INSTRUMENTS

Data flow isthe fundamental principle of LabVIEW. Dataflows along wires from
source terminals to destination terminals. Programs execute most efficiently when
data dependency determines the execution order. Hence, parallel data paths are
desirable, unless a specific order is required.

Data Flow Impediments

* Sequence structures

* Local and global variables
» Coercions

* Sloppy wiring

NATIONAL

INSTRUMENTS

Sequence structures force the order of execution where data dependency doesn’t
exist. Sequence structures are undesirable because they undermine data flow
principals and reduce the efficiency of LabVIEW’s compiler.

Local and global variables also undermine data flow by duplicating terminals on the
diagram. Each Read Local or Global variable makes a copy of the datain memory.
Each Write Local or Global variable has the potential to overwrite a value written
from another Write operation, resulting in a race condition. Hence, local and global
variables are slow to access, consume memory, and add complexity and potential
misbehavior. These issues become increasingly important when the datais large or
complex, or many variables are used. Experienced LabVIEW programmers
generally avoid local and global variables unless absolutely necessary.

Coercions appear as gray dots at the junction of wires and nodes. They indicate that
the data type carried by the wire is being converted, or upgraded to a different data
type. This adds an extra operation and creates an extra memory buffer. Similar to
Read local and global variables, the additional overhead depends on the number of
coercions, as well as the size and complexity of the data. Note that in many
instances, a coercion is unavoidable, and the extra overhead may be negligible.

Data flow appears sloppy if there are many unnecessary bends in the wires, or if data
flows in multiple directions.

0000000000000 0000000000000 O000000000000000000000000
*Bad
Rt
: [> b :
»
; g
nn
-umberl
- Flesult 1
[J
umber 2|
¥
* Good

]

NATIONAL

INSTRUMENTS

Thisis an oversimplified example of two equivalent diagrams. The top diagram
uses aflat sequence structure to dictate the execution order. The flat sequenceisa
new feature of LabVIEW 7.0 that shows each frame side-by-side instead of stacked.
Thisimproves the readability versus the stacked sequence structures. However,
sequence structures are generally undesirable, unlessit’s critical that the code
executes in a specific order and no data dependency exists between the respective
nodes.

Notice also that local variables are used to replicate the control terminals for
Number 1 and Number 2 in the second frame of the sequence. Thisisaso
undesirable because unnecessary local variables increase memory usage, execution
time, and complexity.

Finally, the top diagram contains coercion dots because the control storing Number
2 has a different data representation (single precision float) than the others.

The bottom diagram allows LabVIEW to efficiently process parallel data paths.

Data Flow Enhancements

+ Artificial data dependency

— Use error cluster and/or refnum or task ID
* Shift registers

— Reduce local and global variables
s Clusters

— Reduce the overall number of wires
* Neat wiring

— Left-to-right data flow

— Align nodes to form straight wires

— Consistent data types

— Avoid overlapping or obstructions

INSTRUMENTS

When the order of execution must be specified, an experienced LabVIEW
developer will create artificial data dependency using an error cluster or other
common data type as an aternative to a sequence structure. Additionally, shift

registers can be used to dramatically reduce the required number of local variables.

Clusters can be used to combine multiple data elements and thereby reduce the
overall number of wiresrequired. Finally, be sure to practice neat wiring practices.

10

3. Implement a State Machine Architecture

* Define application as a series of states
+Can go to any state from any other state
« Easy to modify, maintain, and debug

» Self-documenting

* Scalable!

 ni.com NATIONAL
ﬂNSTRUMENTS‘

The diagram of al top-level Vs, except for very simple applications, should contain
a state machine architecture. This provides the most flexibility and efficiency, while
maintaining the natural data flow of LabVIEW.

T -1. Default B
tenu Cluster Check for prezsed buttons
L E;u[s‘ter ToAmray Sea.rc:h 10 Arra
1 J— BT o ‘
element =t
Configure Data Acquisition
. it Lintil Mest ms Multiple
Acquire Data STOP 2
o 2y EB-
i)
0 3 1 3
= ==
=
C |
INSTRUMENTS

Thisisaclassic state machine, as defined in the LabVIEW Basics hands-on
course. It consists of asingle case structure within awhile loop. A shift register
passes the next state as an integer data type wired to the condition terminal. The
default case polls a menu of boolean controls. If abutton is pressed, Search 1D
Array returns the array element (cluster order number) of the first control that
matches the True boolean constant, and passes this number to the shift register on
the right border of the While loop. Upon the next iteration of the While loop, the
state number is read from the shift register on the left border of the while loop,
and passesit to the condition terminal of the case structure to select the
corresponding frame number. Hence, each button in the menu cluster corresponds
to aframe of the case structure, numbered in order of the cluster order of the
control within the cluster.

It is important to note that the state machine is not limited in number of states by
the number of boolean controls in the menu. Rather, any number of states may be
defined and called from any previous state. Furthermore, the state to execute next
can be programmatically determined within the previous state. Therefore, state
machines provide powerful flexibility.

12

State Machine Enhancements

* Use enumerated or string

Erum
for case gelector | G
* Poll user interface events in [‘;;:ent
“No Event, Default” frame or Configure
@n separate event structure oo
in parallel loop

« Use intuitive state names
*Include “Initialize” and “Shutdown” states

NATIONAL

INSTRUMENTS

An enumerated or string case selector, with intuitive state names, servesto
document the state machine. Avoid numeric selector types that display numbersin
the case selector instead of text. “Initialize” and * Shutdown” frames are used for
functionslike initializing or closing instruments and hardware, setting control
properties, and reading or writing to configuration files. Using “Initialize” and
“Shutdown” states also reduces inefficient block diagram real estate that otherwise
would contain these functions outside the state machine.

13

Enumerated State Machine

T Tnitialize™ ~] T[N Event™
[Initialize State|
[—]
- pDiabed] =
T
[mritale [F =
No Event Disabled|
Login
e =)
Acquire
Shutdown m H
[“Configure™ ~ W acqure™ =P E‘ "Shutdown” 't
m
onfigure State
[rcgure|
[—"r] 7]
B
[— 7]
[PDisabled|

Hereis an enumerated state machine. Notice the intuitive state |abels in the case

structure selector and in the enumerated constants.

14

]
Event-Driven State Machine

» Consider desired response to GUI for determining
state granularity

« Consider applicability of queues

W =B
e S EARES
I+

INSTRUMENTS

States typically are derived directly from the steps of atest, measurement, or control
sequence. However, consideration should be given to how long each state takes and
how quickly the program needs to respond to GUI events. For example, if your VI
needs to execute a Shutdown sequence within two seconds of the user clicking the
Abort button, then the process should be divided in states with enough granularity
such that no state takes more than two seconds. Queues may be used to store
multiple user events and pass those events between parallel structures for
processing.

The diagram shown above is functionally equivalent to the previous state machine
example. However, it uses a separate parallel event structure to optimize its ability
to detect user interface events, and it stores the events in a queue for processing by
the state machine. It has the advantage in that it can capture and process multiple
user interface events.

15

———
4. Use Proper Error Handling

* All VIs must trap and report any I/O-related errors that
might occur
—Trapping is facilitated by propagation of
error cluster

—|/O functions include DAQ, File 1/0O,
Instrument I/O, Communication

—Reporting methods include dialog prompt or
log to file

INSTRUMENTS

Error handling consists of trapping and reporting any undesirable behavior that may
cause the program to malfunction. We primarily are concerned with input/output
errors, where LabVIEW is calling a device driver, operating system, or any
application or resource external to the LabVIEW environment. Examples include
querying an instrument that is not powered on or hung up, or reading or writing to a
file or network path that does not exist, and so on. All such I/O functions contain the
standard error-in and error-out clusters. These terminals must be wired and
propagated among 1/0O functions and terminated with an appropriate error handler
VI.

16

y - . -
What’s Wrong With This Picture?
file path (dialog if empty)
LOSE
EOw =
Minimurm Value Samples to Read
[CoeeH [C=z
Maximum Value Rate (Hz) timeout
¥ W— Gl i
[AL voltage ~]) [52mple Clock =]
hChan NSamp
| stop
 ni.com] NATIONAL
INSTRUMENTS

The diagram above traps an error only if it is present upon completion of the last
iteration of the While Loop. Any errorsthat are generated by the DAQmx Read VI
or the Write File function before the user clicks the Stop button will be ignored.
Therefore, many errors could go unnoticed!

Improved Error Handling

file path (dialog if empty)

Im @

The conforming diagram contains several enhancements. The error cluster is
propagated between both DAQ and File 1/0 Vs, such that an error generated by one
will cause all subsequent I/O operations to be bypassed. Additionally, the While

L oop terminates immediately upon detecting an error and displays the error
information in adialog box through the Simple Error Handler.vi.

18

E———
5. Document Your Source Code

« Control labels
—Use succinct, intuitive labels
—Indicate units in parentheses or use free labels

—Enter descriptions or online help where further text
IS needed

*|cons
—Intuitive text or graphic
—10-point small fonts
—Color coding for icons of related subVls

NATIONAL

INSTRUMENTS

There are many techniques for documenting source code. Proper control and
indicator labels go along way toward documenting the front panel and diagram. It
is very important to use succinct and intuitive labels, and keep them visible on the
diagrams. Enter descriptions for controls and indicators where more information is
needed. Icons should properly portray the function performed by the subV1.

19

Document Your Source Code (continued)

* Diagram
—Set all control labels visible
—Liberally document with free labels
—Hide subVI labels

* Enter descriptions for each subVI!

The diagram should be documented liberally with free labels, including long wires
and each frame of a structure. SubV | labels tend to occupy valuable space and
generally are unnecessary. The most important documentation rule of all isto enter
subV1 descriptions for every subV1!

How’s This?

Open VI Reference

Wi b

Property Mode| n

Iyl

A}

f[True vpf 3 Close Application
Property Mode Property Mode 1 or VI Reference
T ! N]
|5 =V gl A m——] —

~[rF7-Open] Run VI
gefv Wait until done ;
-{vAuto Dispose Ref

==

INSTRUMENTS

Now, let’s put it all together by looking at an example. Isthis VI a state machine?
How’ s the data flow? Error handling? Documentation?

This example is not a classic state machine because there are two case structures,
and a given case cannot affect the next case because the next case is always
determined by the control values, instead of passing the next state to the selector
terminal via a shift register. The data flowsright to left aswell asleft to right.
Control and indicator labels are not visible on the diagram, and comments are
absent. Error handling is present, but only errors present during the last iteration of
the loop will be trapped. No textual comments exist, except for some of the function
labels, which we decided are not necessary because they use up space on the
diagram.

21

Improved Example

F "No Event’, Default * &P
“Initialize™

= Current Panel Condition: "No Event”, Default

"Dialogue Box"
"Show Title Bar™
"Resizable™

ren "Show Scroll Bars™
B ';:?Ef_ "Show Menu Bars™

g

[T o T 1018 "Run VI
Etates 7] Shutdown

= VI Reference =

[+ Initialize ~

= Error Cluster =

—

INSTRUMENTS

ThisVI'sdiagram is functionally equivalent to the previous slide. This diagram uses
atrue state machine architecture with an enumerated selector type and intuitive
textual state namesin the case structure’ s selector area. The next state is determined
in the previous state and passed to the case’ s selector through a shift register. Also,
several more techniques are applied, including visible owned labels, |eft-to-right
data flow, and free labels applied to long wires. Thefirst error that is generated is
maintained in the shift register and reported in the “ Shutdown” frame.

22

Conclusion

» Good LabVIEW programming techniques ensure:

—You fully understand the requirements
before you begin

—Your software will be neat, robust, efficient,
and scalable!

m V NATIONAL
INSTRUMENTS

23

Contact Us

Peter Blume]\,\HMMYP

President/Chief Engineer RS
NATIONAL

Bloomy Controls Inc. INSTRUMENTS'

Windsor, CT NATIONAL

(860) 298-9925 TS,

peter.blume@bloomy.com

www.bloomy.com

One final note ... Dueto time and space limitations, we are not including the
conforming solutions to the nonconforming applications discussed at the beginning.
These and other dlides, however, are posted and available for free download from
www.bloomy.com.

