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Five Techniques for Better LabVIEW Code

Peter Blume
President/Chief Engineer, Bloomy Controls

This presentation provides five techniques to improve your LabVIEW programs.
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Overview

• Introduction
•Write a functional specification
•Use proper data flow
• Implement a state machine architecture
•Use proper error handling
•Document your source code
•Conclusion

We will focus on LabVIEW programming and documentation techniques. The 
specific topics include specifications, data flow, state machines, error handling, and 
documentation.
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Introduction

• LabVIEW offers many means to an end
• Programming style is the differentiator

–Readability
–Robustness
–Efficiency
–Maintainability

• Techniques are style related

This presentation was motivated by some common mistakes we’ve seen made 
repeatedly by the customers of Bloomy Controls. LabVIEW provides many means 
to an end. The developer’s decisions on how they implement a feature may have a 
subtle effect on readability, or a profound effect on the overall performance and 
reliability of the virtual instrument (VI). Hence, LabVIEW programming style is 
extremely important.
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Bad Code Example

Why is this LabVIEW diagram bad? What would you do differently?

Experienced LabVIEW developers refer to this diagram as “spaghetti.” It exhibits an 
inappropriate architecture, insufficient modularity, and a haphazard wiring scheme. 
Specifically, the wiring was performed haphazardly, with data flowing left-to-right, 
right-to-left, up, down, and all around. Several subVI icons contain text that was 
drawn free-hand, one unique trait that I would not consider common. Error handling 
is incomplete, and documentation including comments and VI descriptions, is 
nonexistent.

When Bloomy Controls was contacted to debug this application, our first request 
was “please forward us the documentation for our review.” Not too surprisingly, 
documentation was never written for this application. Even worse, the developer had 
long since left the company and was no longer available to answer questions.
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1. Write a Functional Specification

• Understand the application’s requirements
–Interview operators, developers, engineers, 

managers, bean counters, etc.
• Formally document the requirements

–Statement of high-level objectives
–Specific requirements for I/O, analysis, GUI
–Assign priorities to each requirement

The most common problem I see is that people begin developing their LabVIEW 
applications without a full understanding of the requirements. This results in poor 
choices for the top-level architecture, incorrect data structures, inadequate error 
handling, etc. Moreover, it often results in wasted effort when significant portions 
of the application must be rewritten to accommodate new definitions of poorly 
understood requirements. Documenting the specifications, and having them 
reviewed by all contributors, ensures that the requirements are understood, agreed 
upon, and approved. This should be the first step in any LabVIEW application 
development effort, except if you’re developing a very simple VI intended only for 
your own use.
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2. Use Proper Data Flow

• Data flow definition
“A block diagram node executes when all its inputs are available. When 

a node completes execution, it supplies data to its output terminals 
and passes the data to the next node in the dataflow path.”

• Parallel paths are permitted
• Efficiency is optimized when LabVIEW determines the 
execution order

• Readability is optimized when source terminals, wires, 
and destination terminals are neatly aligned

Data flow is the fundamental principle of LabVIEW. Data flows along wires from 
source terminals to destination terminals. Programs execute most efficiently when 
data dependency determines the execution order. Hence, parallel data paths are 
desirable, unless a specific order is required.
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Data Flow Impediments

• Sequence structures
• Local and global variables
• Coercions
• Sloppy wiring

Sequence structures force the order of execution where data dependency doesn’t 
exist. Sequence structures are undesirable because they undermine data flow 
principals and reduce the efficiency of LabVIEW’s compiler.

Local and global variables also undermine data flow by duplicating terminals on the 
diagram. Each Read Local or Global variable makes a copy of the data in memory. 
Each Write Local or Global variable has the potential to overwrite a value written 
from another Write operation, resulting in a race condition. Hence, local and global 
variables are slow to access, consume memory, and add complexity and potential 
misbehavior. These issues become increasingly important when the data is large or 
complex, or many variables are used. Experienced LabVIEW programmers 
generally avoid local and global variables unless absolutely necessary.

Coercions appear as gray dots at the junction of wires and nodes. They indicate that 
the data type carried by the wire is being converted, or upgraded to a different data 
type. This adds an extra operation and creates an extra memory buffer. Similar to 
Read local and global variables, the additional overhead depends on the number of 
coercions, as well as the size and complexity of the data. Note that in many 
instances, a coercion is unavoidable, and the extra overhead may be negligible.

Data flow appears sloppy if there are many unnecessary bends in the wires, or if data 
flows in multiple directions.
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Data Flow Example

• Bad

• Good

This is an oversimplified example of two equivalent diagrams. The top diagram 
uses a flat sequence structure to dictate the execution order.  The flat sequence is a 
new feature of LabVIEW 7.0 that shows each frame side-by-side instead of stacked. 
This improves the readability versus the stacked sequence structures. However, 
sequence structures are generally undesirable, unless it’s critical that the code 
executes in a specific order and no data dependency exists between the respective 
nodes.

Notice also that local variables are used to replicate the control terminals for 
Number 1 and Number 2 in the second frame of the sequence.  This is also 
undesirable because unnecessary local variables increase memory usage, execution 
time, and complexity.

Finally, the top diagram contains coercion dots because the control storing Number 
2 has a different data representation (single precision float) than the others.

The bottom diagram allows LabVIEW to efficiently process parallel data paths.
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Data Flow Enhancements
• Artificial data dependency

– Use error cluster and/or refnum or task ID
• Shift registers

– Reduce local and global variables
• Clusters

– Reduce the overall number of wires
• Neat wiring

– Left-to-right data flow
– Align nodes to form straight wires
– Consistent data types
– Avoid overlapping or obstructions

When the order of execution must be specified, an experienced LabVIEW 
developer will create artificial data dependency using an error cluster or other 
common data type as an alternative to a sequence structure. Additionally, shift 
registers can be used to dramatically reduce the required number of local variables. 
Clusters can be used to combine multiple data elements and thereby reduce the 
overall number of wires required. Finally, be sure to practice neat wiring practices.



11

3. Implement a State Machine Architecture

• Define application as a series of states
• Can go to any state from any other state
• Easy to modify, maintain, and debug
• Self-documenting
• Scalable!

The diagram of all top-level VIs, except for very simple applications, should contain 
a state machine architecture. This provides the most flexibility and efficiency, while 
maintaining the natural data flow of LabVIEW. 
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This is a classic state machine, as defined in the LabVIEW Basics hands-on 
course. It consists of a single case structure within a while loop. A shift register 
passes the next state as an integer data type wired to the condition terminal. The 
default case polls a menu of boolean controls. If a button is pressed, Search 1D 
Array returns the array element (cluster order number) of the first control that 
matches the True boolean constant, and passes this number to the shift register on 
the right border of the While loop. Upon the next iteration of the While loop, the 
state number is read from the shift register on the left border of the while loop, 
and passes it to the condition terminal of the case structure to select the 
corresponding frame number. Hence, each button in the menu cluster corresponds 
to a frame of the case structure, numbered in order of the cluster order of the 
control within the cluster.

It is important to note that the state machine is not limited in number of states by 
the number of boolean controls in the menu. Rather, any number of states may be 
defined and called from any previous state. Furthermore, the state to execute next 
can be programmatically determined within the previous state. Therefore, state 
machines provide powerful flexibility.

Classic State Machine
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State Machine Enhancements

• Use enumerated or string 
for case selector

• Poll user interface events in 
“No Event, Default” frame or 
in separate event structure 
in parallel loop

• Use intuitive state names
• Include “Initialize” and “Shutdown” states

An enumerated or string case selector, with intuitive state names, serves to 
document the state machine. Avoid numeric selector types that display numbers in 
the case selector instead of text. “Initialize” and “Shutdown” frames are used for 
functions like initializing or closing instruments and hardware, setting control 
properties, and reading or writing to configuration files. Using “Initialize” and 
“Shutdown” states also reduces inefficient block diagram real estate that otherwise 
would contain these functions outside the state machine.
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Enumerated State Machine

Here is an enumerated state machine. Notice the intuitive state labels in the case 
structure selector and in the enumerated constants.
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Event-Driven State Machine
• Consider desired response to GUI for determining 
state granularity

• Consider applicability of queues

States typically are derived directly from the steps of a test, measurement, or control 
sequence. However, consideration should be given to how long each state takes and 
how quickly the program needs to respond to GUI events. For example, if your VI 
needs to execute a Shutdown sequence within two seconds of the user clicking the 
Abort button, then the process should be divided in states with enough granularity 
such that no state takes more than two seconds. Queues may be used to store 
multiple user events and pass those events between parallel structures for 
processing.

The diagram shown above is functionally equivalent to the previous state machine 
example. However, it uses a separate parallel event structure to optimize its ability 
to detect user interface events, and it stores the events in a queue for processing by 
the state machine. It has the advantage in that it can capture and process multiple 
user interface events.
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4. Use Proper Error Handling

• All VIs must trap and report any I/O-related errors that 
might occur
–Trapping is facilitated by propagation of 

error cluster
–I/O functions include DAQ, File I/O,

Instrument I/O, Communication
–Reporting methods include dialog prompt or 

log to file

Error handling consists of trapping and reporting any undesirable behavior that may 
cause the program to malfunction. We primarily are concerned with input/output 
errors, where LabVIEW is calling a device driver, operating system, or any 
application or resource external to the LabVIEW environment. Examples include 
querying an instrument that is not powered on or hung up, or reading or writing to a 
file or network path that does not exist, and so on. All such I/O functions contain the 
standard error-in and error-out clusters. These terminals must be wired and 
propagated among I/O functions and terminated with an appropriate error handler 
VI.
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What’s Wrong With This Picture?

The diagram above traps an error only if it is present upon completion of the last 
iteration of the While Loop. Any errors that are generated by the DAQmx Read VI 
or the Write File function before the user clicks the Stop button will be ignored. 
Therefore, many errors could go unnoticed!
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Improved Error Handling

The conforming diagram contains several enhancements. The error cluster is 
propagated between both DAQ and File I/O VIs, such that an error generated by one 
will cause all subsequent I/O operations to be bypassed. Additionally, the While 
Loop terminates immediately upon detecting an error and displays the error 
information in a dialog box through the Simple Error Handler.vi.
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5. Document Your Source Code
• Control labels

–Use succinct, intuitive labels
–Indicate units in parentheses or use free labels
–Enter descriptions or online help where further text 

is needed
• Icons

–Intuitive text or graphic
–10-point small fonts
–Color coding for icons of related subVIs

There are many techniques for documenting source code. Proper control and 
indicator labels go a long way toward documenting the front panel and diagram. It 
is very important to use succinct and intuitive labels, and keep them visible on the 
diagrams. Enter descriptions for controls and indicators where more information is 
needed. Icons should properly portray the function performed by the subVI.
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Document Your Source Code (continued)

• Diagram
–Set all control labels visible
–Liberally document with free labels
–Hide subVI labels

• Enter descriptions for each subVI!

The diagram should be documented liberally with free labels, including long wires 
and each frame of a structure. SubVI labels tend to occupy valuable space and 
generally are unnecessary. The most important documentation rule of all is to enter 
subVI descriptions for every subVI!
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How’s This?

Now, let’s put it all together by looking at an example. Is this VI a state machine? 
How’s the data flow? Error handling? Documentation?

This example is not a classic state machine because there are two case structures, 
and a given case cannot affect the next case because the next case is always 
determined by the control values, instead of passing the next state to the selector 
terminal via a shift register. The data flows right to left as well as left to right. 
Control and indicator labels are not visible on the diagram, and comments are 
absent. Error handling is present, but only errors present during the last iteration of 
the loop will be trapped. No textual comments exist, except for some of the function 
labels, which we decided are not necessary because they use up space on the 
diagram.
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Improved Example

This VI’s diagram is functionally equivalent to the previous slide. This diagram uses 
a true state machine architecture with an enumerated selector type and intuitive 
textual state names in the case structure’s selector area. The next state is determined 
in the previous state and passed to the case’s selector through a shift register. Also, 
several more techniques are applied, including visible owned labels, left-to-right 
data flow, and free labels applied to long wires. The first error that is generated is 
maintained in the shift register and reported in the “Shutdown” frame.
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Conclusion

• Good LabVIEW programming techniques ensure:
–You fully understand the requirements 

before you begin
–Your software will be neat, robust, efficient, 

and scalable!



24

Contact Us

Peter Blume
President/Chief Engineer
Bloomy Controls Inc.
Windsor, CT
(860) 298-9925
peter.blume@bloomy.com
www.bloomy.com

One final note … Due to time and space limitations, we are not including the 
conforming solutions to the nonconforming applications discussed at the beginning. 
These and other slides, however, are posted and available for free download from 
www.bloomy.com.


