

In Praise of Computer Architecture: A Quantitative Approach
Fifth Edition

“The 5th edition of Computer Architecture: A Quantitative Approach continues
the legacy, providing students of computer architecture with the most up-to-date
information on current computing platforms, and architectural insights to help
them design future systems. A highlight of the new edition is the significantly
revised chapter on data-level parallelism, which demystifies GPU architectures
with clear explanations using traditional computer architecture terminology.”

—Krste Asanović, University of California, Berkeley

“Computer Architecture: A Quantitative Approach is a classic that, like fine
wine, just keeps getting better. I bought my first copy as I finished up my under-
graduate degree and it remains one of my most frequently referenced texts today.
When the fourth edition came out, there was so much new material that I needed
to get it to stay current in the field. And, as I review the fifth edition, I realize that
Hennessy and Patterson have done it again. The entire text is heavily updated and
Chapter 6 alone makes this new edition required reading for those wanting to
really understand cloud and warehouse scale-computing. Only Hennessy and
Patterson have access to the insiders at Google, Amazon, Microsoft, and other
cloud computing and internet-scale application providers and there is no better
coverage of this important area anywhere in the industry.”

—James Hamilton, Amazon Web Services

“Hennessy and Patterson wrote the first edition of this book when graduate stu-
dents built computers with 50,000 transistors. Today, warehouse-size computers
contain that many servers, each consisting of dozens of independent processors
and billions of transistors. The evolution of computer architecture has been rapid
and relentless, but Computer Architecture: A Quantitative Approach has kept
pace, with each edition accurately explaining and analyzing the important emerg-
ing ideas that make this field so exciting.”

—James Larus, Microsoft Research

“This new edition adds a superb new chapter on data-level parallelism in vector,
SIMD, and GPU architectures. It explains key architecture concepts inside mass-
market GPUs, maps them to traditional terms, and compares them with vector
and SIMD architectures. It’s timely and relevant with the widespread shift to
GPU parallel computing. Computer Architecture: A Quantitative Approach fur-
thers its string of firsts in presenting comprehensive architecture coverage of sig-
nificant new developments!”

—John Nickolls, NVIDIA

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

“The new edition of this now classic textbook highlights the ascendance of
explicit parallelism (data, thread, request) by devoting a whole chapter to each
type. The chapter on data parallelism is particularly illuminating: the comparison
and contrast between Vector SIMD, instruction level SIMD, and GPU cuts
through the jargon associated with each architecture and exposes the similarities
and differences between these architectures.”

—Kunle Olukotun, Stanford University

“The fifth edition of Computer Architecture: A Quantitative Approach explores
the various parallel concepts and their respective tradeoffs. As with the previous
editions, this new edition covers the latest technology trends. Two highlighted are
the explosive growth of Personal Mobile Devices (PMD) and Warehouse Scale
Computing (WSC)—where the focus has shifted towards a more sophisticated
balance of performance and energy efficiency as compared with raw perfor-
mance. These trends are fueling our demand for ever more processing capability
which in turn is moving us further down the parallel path.”

—Andrew N. Sloss, Consultant Engineer, ARM
Author of ARM System Developer’s Guide

Computer Architecture
A Quantitative Approach

Fifth Edition

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

John L. Hennessy is the tenth president of Stanford University, where he has been a member

of the faculty since 1977 in the departments of electrical engineering and computer science.

Hennessy is a Fellow of the IEEE and ACM; a member of the National Academy of Engineering,

the National Academy of Science, and the American Philosophical Society; and a Fellow of

the American Academy of Arts and Sciences. Among his many awards are the 2001 Eckert-

Mauchly Award for his contributions to RISC technology, the 2001 Seymour Cray Computer

Engineering Award, and the 2000 John von Neumann Award, which he shared with David

Patterson. He has also received seven honorary doctorates.

In 1981, he started the MIPS project at Stanford with a handful of graduate students. After

completing the project in 1984, he took a leave from the university to cofound MIPS Computer

Systems (now MIPS Technologies), which developed one of the first commercial RISC

microprocessors. As of 2006, over 2 billion MIPS microprocessors have been shipped in devices

ranging from video games and palmtop computers to laser printers and network switches.

Hennessy subsequently led the DASH (Director Architecture for Shared Memory) project, which

prototyped the first scalable cache coherent multiprocessor; many of the key ideas have been

adopted in modern multiprocessors. In addition to his technical activities and university

responsibilities, he has continued to work with numerous start-ups both as an early-stage

advisor and an investor.

David A. Patterson has been teaching computer architecture at the University of California,

Berkeley, since joining the faculty in 1977, where he holds the Pardee Chair of Computer

Science. His teaching has been honored by the Distinguished Teaching Award from the

University of California, the Karlstrom Award from ACM, and the Mulligan Education Medal and

Undergraduate Teaching Award from IEEE. Patterson received the IEEE Technical Achievement

Award and the ACM Eckert-Mauchly Award for contributions to RISC, and he shared the IEEE

Johnson Information Storage Award for contributions to RAID. He also shared the IEEE John von

Neumann Medal and the C & C Prize with John Hennessy. Like his co-author, Patterson is a

Fellow of the American Academy of Arts and Sciences, the Computer History Museum, ACM,

and IEEE, and he was elected to the National Academy of Engineering, the National Academy

of Sciences, and the Silicon Valley Engineering Hall of Fame. He served on the Information

Technology Advisory Committee to the U.S. President, as chair of the CS division in the Berkeley

EECS department, as chair of the Computing Research Association, and as President of ACM.

This record led to Distinguished Service Awards from ACM and CRA.

At Berkeley, Patterson led the design and implementation of RISC I, likely the first VLSI reduced

instruction set computer, and the foundation of the commercial SPARC architecture. He was a

leader of the Redundant Arrays of Inexpensive Disks (RAID) project, which led to dependable

storage systems from many companies. He was also involved in the Network of Workstations

(NOW) project, which led to cluster technology used by Internet companies and later to cloud

computing. These projects earned three dissertation awards from ACM. His current research

projects are Algorithm-Machine-People Laboratory and the Parallel Computing Laboratory,

where he is director. The goal of the AMP Lab is develop scalable machine learning algorithms,

warehouse-scale-computer-friendly programming models, and crowd-sourcing tools to gain

valueable insights quickly from big data in the cloud. The goal of the Par Lab is to develop tech-

nologies to deliver scalable, portable, efficient, and productive software for parallel personal

mobile devices.

Computer Architecture
A Quantitative Approach

Fifth Edition

John L. Hennessy
Stanford University

David A. Patterson
University of California, Berkeley

With Contributions by

Krste Asanović

University of California, Berkeley
Jason D. Bakos

University of South Carolina
Robert P. Colwell

R&E Colwell & Assoc. Inc.
Thomas M. Conte

North Carolina State University
José Duato

Universitat Politècnica de València and Simula
Diana Franklin

University of California, Santa Barbara

David Goldberg

The Scripps Research Institute

Norman P. Jouppi

HP Labs
Sheng Li

HP Labs
Naveen Muralimanohar

HP Labs
Gregory D. Peterson

University of Tennessee
Timothy M. Pinkston

University of Southern California
Parthasarathy Ranganathan

HP Labs
David A. Wood

University of Wisconsin–Madison
Amr Zaky

University of Santa Clara

Amsterdam • Boston • Heidelberg • London
New York • Oxford • Paris • San Diego

San Francisco • Singapore • Sydney • Tokyo

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Acquiring Editor: Todd Green
Development Editor: Nate McFadden
Project Manager: Paul Gottehrer
Designer: Joanne Blank

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

© 2012 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the publisher. Details on how to seek permission, further informa-
tion about the Publisher’s permissions policies and our arrangements with organizations such as the
Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods or professional practices, may become
necessary. Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information or methods described herein. In using such information or
methods they should be mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability, neg-
ligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-383872-8

For information on all MK publications
visit our website at www.mkp.com

Printed in the United States of America
11 12 13 14 15 10 9 8 7 6 5 4 3 2 1

Typeset by: diacriTech, Chennai, India

http://www.elsevier.com/permissions
http://www.mkp.com

To Andrea, Linda, and our four sons

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

This page intentionally left blank

ix

The first edition of Hennessy and Patterson’s Computer Architecture: A Quanti-
tative Approach was released during my first year in graduate school. I belong,
therefore, to that first wave of professionals who learned about our discipline
using this book as a compass. Perspective being a fundamental ingredient to a
useful Foreword, I find myself at a disadvantage given how much of my own
views have been colored by the previous four editions of this book. Another
obstacle to clear perspective is that the student-grade reverence for these two
superstars of Computer Science has not yet left me, despite (or perhaps because
of) having had the chance to get to know them in the years since. These disadvan-
tages are mitigated by my having practiced this trade continuously since this
book’s first edition, which has given me a chance to enjoy its evolution and
enduring relevance.

The last edition arrived just two years after the rampant industrial race for
higher CPU clock frequency had come to its official end, with Intel cancelling its
4 GHz single-core developments and embracing multicore CPUs. Two years was
plenty of time for John and Dave to present this story not as a random product
line update, but as a defining computing technology inflection point of the last
decade. That fourth edition had a reduced emphasis on instruction-level parallel-
ism (ILP) in favor of added material on thread-level parallelism, something the
current edition takes even further by devoting two chapters to thread- and data-
level parallelism while limiting ILP discussion to a single chapter. Readers who
are being introduced to new graphics processing engines will benefit especially
from the new Chapter 4 which focuses on data parallelism, explaining the
different but slowly converging solutions offered by multimedia extensions in
general-purpose processors and increasingly programmable graphics processing
units. Of notable practical relevance: If you have ever struggled with CUDA
terminology check out Figure 4.24 (teaser: “Shared Memory” is really local,
while “Global Memory” is closer to what you’d consider shared memory).

Even though we are still in the middle of that multicore technology shift, this
edition embraces what appears to be the next major one: cloud computing. In this
case, the ubiquity of Internet connectivity and the evolution of compelling Web
services are bringing to the spotlight very small devices (smart phones, tablets)

Foreword 1

by Luiz André Barroso, Google Inc.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

x ■ Foreword

and very large ones (warehouse-scale computing systems). The ARM Cortex A8,
a popular CPU for smart phones, appears in Chapter 3’s “Putting It All Together”
section, and a whole new Chapter 6 is devoted to request- and data-level parallel-
ism in the context of warehouse-scale computing systems. In this new chapter,
John and Dave present these new massive clusters as a distinctively new class of
computers—an open invitation for computer architects to help shape this emerg-
ing field. Readers will appreciate how this area has evolved in the last decade by
comparing the Google cluster architecture described in the third edition with the
more modern incarnation presented in this version’s Chapter 6.

Return customers of this book will appreciate once again the work of two outstanding
computer scientists who over their careers have perfected the art of combining an
academic’s principled treatment of ideas with a deep understanding of leading-edge
industrial products and technologies. The authors’ success in industrial interactions
won’t be a surprise to those who have witnessed how Dave conducts his biannual proj-
ect retreats, forums meticulously crafted to extract the most out of academic–industrial
collaborations. Those who recall John’s entrepreneurial success with MIPS or bump into
him in a Google hallway (as I occasionally do) won’t be surprised by it either.

Perhaps most importantly, return and new readers alike will get their money’s
worth. What has made this book an enduring classic is that each edition is not an
update but an extensive revision that presents the most current information and
unparalleled insight into this fascinating and quickly changing field. For me, after
over twenty years in this profession, it is also another opportunity to experience
that student-grade admiration for two remarkable teachers.

xi

Foreword ix

Preface xv

Acknowledgments xxiii

Chapter 1 Fundamentals of Quantitative Design and Analysis

1.1 Introduction 2

1.2 Classes of Computers 5

1.3 Defining Computer Architecture 11

1.4 Trends in Technology 17

1.5 Trends in Power and Energy in Integrated Circuits 21

1.6 Trends in Cost 27

1.7 Dependability 33

1.8 Measuring, Reporting, and Summarizing Performance 36

1.9 Quantitative Principles of Computer Design 44

1.10 Putting It All Together: Performance, Price, and Power 52

1.11 Fallacies and Pitfalls 55

1.12 Concluding Remarks 59

1.13 Historical Perspectives and References 61

Case Studies and Exercises by Diana Franklin 61

Chapter 2 Memory Hierarchy Design

2.1 Introduction 72

2.2 Ten Advanced Optimizations of Cache Performance 78

2.3 Memory Technology and Optimizations 96

2.4 Protection: Virtual Memory and Virtual Machines 105

2.5 Crosscutting Issues: The Design of Memory Hierarchies 112

2.6 Putting It All Together: Memory Hierachies in the

ARM Cortex-A8 and Intel Core i7 113

2.7 Fallacies and Pitfalls 125

Contents 1

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

xii ■ Contents

2.8 Concluding Remarks: Looking Ahead 129

2.9 Historical Perspective and References 131

Case Studies and Exercises by Norman P. Jouppi,

Naveen Muralimanohar, and Sheng Li 131

Chapter 3 Instruction-Level Parallelism and Its Exploitation

3.1 Instruction-Level Parallelism: Concepts and Challenges 148

3.2 Basic Compiler Techniques for Exposing ILP 156

3.3 Reducing Branch Costs with Advanced Branch Prediction 162

3.4 Overcoming Data Hazards with Dynamic Scheduling 167

3.5 Dynamic Scheduling: Examples and the Algorithm 176

3.6 Hardware-Based Speculation 183

3.7 Exploiting ILP Using Multiple Issue and Static Scheduling 192

3.8 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and

Speculation 197

3.9 Advanced Techniques for Instruction Delivery and Speculation 202

3.10 Studies of the Limitations of ILP 213

3.11 Cross-Cutting Issues: ILP Approaches and the Memory System 221

3.12 Multithreading: Exploiting Thread-Level Parallelism to Improve

Uniprocessor Throughput 223

3.13 Putting It All Together: The Intel Core i7 and ARM Cortex-A8 233
3.14 Fallacies and Pitfalls 241

3.15 Concluding Remarks: What’s Ahead? 245

3.16 Historical Perspective and References 247

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell 247

Chapter 4 Data-Level Parallelism in Vector, SIMD, and GPU Architectures

4.1 Introduction 262

4.2 Vector Architecture 264

4.3 SIMD Instruction Set Extensions for Multimedia 282

4.4 Graphics Processing Units 288

4.5 Detecting and Enhancing Loop-Level Parallelism 315

4.6 Crosscutting Issues 322

4.7 Putting It All Together: Mobile versus Server GPUs

and Tesla versus Core i7 323

4.8 Fallacies and Pitfalls 330

4.9 Concluding Remarks 332

4.10 Historical Perspective and References 334

Case Study and Exercises by Jason D. Bakos 334

Chapter 5 Thread-Level Parallelism

5.1 Introduction 344

5.2 Centralized Shared-Memory Architectures 351

5.3 Performance of Symmetric Shared-Memory Multiprocessors 366

Contents ■ xiii

5.4 Distributed Shared-Memory and Directory-Based Coherence 378

5.5 Synchronization: The Basics 386

5.6 Models of Memory Consistency: An Introduction 392

5.7 Crosscutting Issues 395

5.8 Putting It All Together: Multicore Processors and Their Performance 400

5.9 Fallacies and Pitfalls 405

5.10 Concluding Remarks 409

5.11 Historical Perspectives and References 412

Case Studies and Exercises by Amr Zaky and David A. Wood 412

Chapter 6 Warehouse-Scale Computers to Exploit Request-Level and
Data-Level Parallelism

6.1 Introduction 432

6.2 Programming Models and Workloads for Warehouse-Scale Computers 436

6.3 Computer Architecture of Warehouse-Scale Computers 441

6.4 Physical Infrastructure and Costs of Warehouse-Scale Computers 446

6.5 Cloud Computing: The Return of Utility Computing 455

6.6 Crosscutting Issues 461

6.7 Putting It All Together: A Google Warehouse-Scale Computer 464

6.8 Fallacies and Pitfalls 471

6.9 Concluding Remarks 475

6.10 Historical Perspectives and References 476

Case Studies and Exercises by Parthasarathy Ranganathan 476

Appendix A Instruction Set Principles

A.1 Introduction A-2

A.2 Classifying Instruction Set Architectures A-3

A.3 Memory Addressing A-7

A.4 Type and Size of Operands A-13

A.5 Operations in the Instruction Set A-14

A.6 Instructions for Control Flow A-16

A.7 Encoding an Instruction Set A-21

A.8 Crosscutting Issues: The Role of Compilers A-24

A.9 Putting It All Together: The MIPS Architecture A-32

A.10 Fallacies and Pitfalls A-39

A.11 Concluding Remarks A-45

A.12 Historical Perspective and References A-47

 Exercises by Gregory D. Peterson A-47

Appendix B Review of Memory Hierarchy

B.1 Introduction B-2

B.2 Cache Performance B-16

B.3 Six Basic Cache Optimizations B-22

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

xiv ■ Contents

B.4 Virtual Memory B-40

B.5 Protection and Examples of Virtual Memory B-49

B.6 Fallacies and Pitfalls B-57

B.7 Concluding Remarks B-59

B.8 Historical Perspective and References B-59

 Exercises by Amr Zaky B-60

Appendix C Pipelining: Basic and Intermediate Concepts

C.1 Introduction C-2

C.2 The Major Hurdle of Pipelining—Pipeline Hazards C-11

C.3 How Is Pipelining Implemented? C-30

C.4 What Makes Pipelining Hard to Implement? C-43

C.5 Extending the MIPS Pipeline to Handle Multicycle Operations C-51

C.6 Putting It All Together: The MIPS R4000 Pipeline C-61

C.7 Crosscutting Issues C-70

C.8 Fallacies and Pitfalls C-80

C.9 Concluding Remarks C-81

C.10 Historical Perspective and References C-81

 Updated Exercises by Diana Franklin C-82

Online Appendices

Appendix D Storage Systems

Appendix E Embedded Systems

By Thomas M. Conte

Appendix F Interconnection Networks

Revised by Timothy M. Pinkston and José Duato

Appendix G Vector Processors in More Depth

Revised by Krste Asanovic

Appendix H Hardware and Software for VLIW and EPIC

Appendix I Large-Scale Multiprocessors and Scientific Applications

Appendix J Computer Arithmetic

by David Goldberg

Appendix K Survey of Instruction Set Architectures

Appendix L Historical Perspectives and References

References R-1

Index I-1

xv

Why We Wrote This Book

Through five editions of this book, our goal has been to describe the basic princi-
ples underlying what will be tomorrow’s technological developments. Our excite-
ment about the opportunities in computer architecture has not abated, and we
echo what we said about the field in the first edition: “It is not a dreary science of
paper machines that will never work. No! It’s a discipline of keen intellectual
interest, requiring the balance of marketplace forces to cost-performance-power,
leading to glorious failures and some notable successes.”

Our primary objective in writing our first book was to change the way people
learn and think about computer architecture. We feel this goal is still valid and
important. The field is changing daily and must be studied with real examples
and measurements on real computers, rather than simply as a collection of defini-
tions and designs that will never need to be realized. We offer an enthusiastic
welcome to anyone who came along with us in the past, as well as to those who
are joining us now. Either way, we can promise the same quantitative approach
to, and analysis of, real systems.

As with earlier versions, we have strived to produce a new edition that will
continue to be as relevant for professional engineers and architects as it is for
those involved in advanced computer architecture and design courses. Like the
first edition, this edition has a sharp focus on new platforms—personal mobile
devices and warehouse-scale computers—and new architectures—multicore and
GPUs. As much as its predecessors, this edition aims to demystify computer
architecture through an emphasis on cost-performance-energy trade-offs and
good engineering design. We believe that the field has continued to mature and
move toward the rigorous quantitative foundation of long-established scientific
and engineering disciplines.

Preface 1

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

xvi ■ Preface

This Edition

We said the fourth edition of Computer Architecture: A Quantitative Approach
may have been the most significant since the first edition due to the switch to
multicore chips. The feedback we received this time was that the book had lost
the sharp focus of the first edition, covering everthing equally but without empha-
sis and context. We’re pretty sure that won’t be said about the fifth edition.

We believe most of the excitement is at the extremes in size of computing,
with personal mobile devices (PMDs) such as cell phones and tablets as the cli-
ents and warehouse-scale computers offering cloud computing as the server.
(Observant readers may seen the hint for cloud computing on the cover.) We are
struck by the common theme of these two extremes in cost, performance, and
energy efficiency despite their difference in size. As a result, the running context
through each chapter is computing for PMDs and for warehouse scale computers,
and Chapter 6 is a brand-new chapter on the latter topic.

The other theme is parallelism in all its forms. We first idetify the two types of
application-level parallelism in Chapter 1: data-level parallelism (DLP), which
arises because there are many data items that can be operated on at the same time,
and task-level parallelism (TLP), which arises because tasks of work are created
that can operate independently and largely in parallel. We then explain the four
architectural styles that exploit DLP and TLP: instruction-level parallelism (ILP)
in Chapter 3; vector architectures and graphic processor units (GPUs) in Chapter
4, which is a brand-new chapter for this edition; thread-level parallelism in
Chapter 5; and request-level parallelism (RLP) via warehouse-scale computers in
Chapter 6, which is also a brand-new chapter for this edition. We moved memory
hierarchy earlier in the book to Chapter 2, and we moved the storage systems
chapter to Appendix D. We are particularly proud about Chapter 4, which con-
tains the most detailed and clearest explanation of GPUs yet, and Chapter 6,
which is the first publication of the most recent details of a Google Warehouse-
scale computer.

As before, the first three appendices in the book give basics on the MIPS
instruction set, memory hierachy, and pipelining for readers who have not read a
book like Computer Organization and Design. To keep costs down but still sup-
ply supplemental material that are of interest to some readers, available online at
http://booksite.mkp.com/9780123838728/ are nine more appendices. There are
more pages in these appendices than there are in this book!

This edition continues the tradition of using real-world examples to demon-
strate the ideas, and the “Putting It All Together” sections are brand new. The
“Putting It All Together” sections of this edition include the pipeline organiza-
tions and memory hierarchies of the ARM Cortex A8 processor, the Intel core i7
processor, the NVIDIA GTX-280 and GTX-480 GPUs, and one of the Google
warehouse-scale computers.

http://booksite.mkp.com/9780123838728/

Preface ■ xvii

Topic Selection and Organization

As before, we have taken a conservative approach to topic selection, for there are
many more interesting ideas in the field than can reasonably be covered in a treat-
ment of basic principles. We have steered away from a comprehensive survey of
every architecture a reader might encounter. Instead, our presentation focuses on
core concepts likely to be found in any new machine. The key criterion remains
that of selecting ideas that have been examined and utilized successfully enough
to permit their discussion in quantitative terms.

Our intent has always been to focus on material that is not available in equiva-
lent form from other sources, so we continue to emphasize advanced content
wherever possible. Indeed, there are several systems here whose descriptions
cannot be found in the literature. (Readers interested strictly in a more basic
introduction to computer architecture should read Computer Organization and
Design: The Hardware/Software Interface.)

An Overview of the Content

Chapter 1 has been beefed up in this edition. It includes formulas for energy,
static power, dynamic power, integrated circuit costs, reliability, and availability.
(These formulas are also found on the front inside cover.) Our hope is that these
topics can be used through the rest of the book. In addition to the classic quantita-
tive principles of computer design and performance measurement, the PIAT sec-
tion has been upgraded to use the new SPECPower benchmark.

Our view is that the instruction set architecture is playing less of a role today
than in 1990, so we moved this material to Appendix A. It still uses the MIPS64
architecture. (For quick review, a summary of the MIPS ISA can be found on the
back inside cover.) For fans of ISAs, Appendix K covers 10 RISC architectures,
the 80x86, the DEC VAX, and the IBM 360/370.

We then move onto memory hierarchy in Chapter 2, since it is easy to apply
the cost-performance-energy principles to this material and memory is a critical
resource for the rest of the chapters. As in the past edition, Appendix B contains
an introductory review of cache principles, which is available in case you need it.
Chapter 2 discusses 10 advanced optimizations of caches. The chapter includes
virtual machines, which offers advantages in protection, software management,
and hardware management and play an important role in cloud computing. In
addition to covering SRAM and DRAM technologies, the chapter includes new
material on Flash memory. The PIAT examples are the ARM Cortex A8, which is
used in PMDs, and the Intel Core i7, which is used in servers.

Chapter 3 covers the exploitation of instruction-level parallelism in high-
performance processors, including superscalar execution, branch prediction,
speculation, dynamic scheduling, and multithreading. As mentioned earlier,
Appendix C is a review of pipelining in case you need it. Chapter 3 also sur-
veys the limits of ILP. Like Chapter 2, the PIAT examples are again the ARM
Cortex A8 and the Intel Core i7. While the third edition contained a great deal

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

xviii ■ Preface

on Itanium and VLIW, this material is now in Appendix H, indicating our view
that this architecture did not live up to the earlier claims.

The increasing importance of multimedia applications such as games and video
processing has also increased the importance of achitectures that can exploit data-
level parallelism. In particular, there is a rising interest in computing using graphi-
cal processing units (GPUs), yet few architects understand how GPUs really work.
We decided to write a new chapter in large part to unveil this new style of com-
puter architecture. Chapter 4 starts with an introduction to vector architectures,
which acts as a foundation on which to build explanations of multimedia SIMD
instrution set extensions and GPUs. (Appendix G goes into even more depth on
vector architectures.) The section on GPUs was the most difficult to write in this
book, in that it took many iterations to get an accurate description that was also
easy to understand. A significant challenge was the terminology. We decided to go
with our own terms and then provide a translation between our terms and the offi-
cial NVIDIA terms. (A copy of that table can be found in the back inside cover
pages.) This chapter introduces the Roofline performance model and then uses it
to compare the Intel Core i7 and the NVIDIA GTX 280 and GTX 480 GPUs. The
chapter also describes the Tegra 2 GPU for PMDs.

Chapter 5 describes multicore processors. It explores symmetric and
distributed-memory architectures, examining both organizational principles and
performance. Topics in synchronization and memory consistency models are
next. The example is the Intel Core i7. Readers interested in interconnection net-
works on a chip should read Appendix F, and those interested in larger scale mul-
tiprocessors and scientific applications should read Appendix I.

As mentioned earlier, Chapter 6 describes the newest topic in computer archi-
tecture, warehouse-scale computers (WSCs). Based on help from engineers at
Amazon Web Services and Google, this chapter integrates details on design, cost,
and performance of WSCs that few architects are aware of. It starts with the pop-
ular MapReduce programming model before describing the architecture and
physical implemention of WSCs, including cost. The costs allow us to explain
the emergence of cloud computing, whereby it can be cheaper to compute using
WSCs in the cloud than in your local datacenter. The PIAT example is a descrip-
tion of a Google WSC that includes information published for the first time in
this book.

This brings us to Appendices A through L. Appendix A covers principles of
ISAs, including MIPS64, and Appendix K describes 64-bit versions of Alpha,
MIPS, PowerPC, and SPARC and their multimedia extensions. It also includes
some classic architectures (80x86, VAX, and IBM 360/370) and popular embedded
instruction sets (ARM, Thumb, SuperH, MIPS16, and Mitsubishi M32R). Appen-
dix H is related, in that it covers architectures and compilers for VLIW ISAs.

As mentioned earlier, Appendices B and C are tutorials on basic caching and
pipelining concepts. Readers relatively new to caching should read Appendix B
before Chapter 2 and those new to pipelining should read Appendix C before
Chapter 3.

Preface ■ xix

Appendix D, “Storage Systems,” has an expanded discussion of reliability and
availability, a tutorial on RAID with a description of RAID 6 schemes, and rarely
found failure statistics of real systems. It continues to provide an introduction to
queuing theory and I/O performance benchmarks. We evaluate the cost, perfor-
mance, and reliability of a real cluster: the Internet Archive. The “Putting It All
Together” example is the NetApp FAS6000 filer.

Appendix E, by Thomas M. Conte, consolidates the embedded material in one
place.

Appendix F, on interconnection networks, has been revised by Timothy M.
Pinkston and José Duato. Appendix G, written originally by Krste Asanović, includes
a description of vector processors. We think these two appendices are some of the
best material we know of on each topic.

Appendix H describes VLIW and EPIC, the architecture of Itanium.
Appendix I describes parallel processing applications and coherence protocols

for larger-scale, shared-memory multiprocessing. Appendix J, by David Gold-
berg, describes computer arithmetic.

Appendix L collects the “Historical Perspective and References” from each
chapter into a single appendix. It attempts to give proper credit for the ideas in
each chapter and a sense of the history surrounding the inventions. We like to
think of this as presenting the human drama of computer design. It also supplies
references that the student of architecture may want to pursue. If you have time,
we recommend reading some of the classic papers in the field that are mentioned
in these sections. It is both enjoyable and educational to hear the ideas directly
from the creators. “Historical Perspective” was one of the most popular sections
of prior editions.

Navigating the Text

There is no single best order in which to approach these chapters and appendices,
except that all readers should start with Chapter 1. If you don’t want to read
everything, here are some suggested sequences:

■ Memory Hierarchy: Appendix B, Chapter 2, and Appendix D.

■ Instruction-Level Parallelism: Appendix C, Chapter 3, and Appendix H

■ Data-Level Parallelism: Chapters 4 and 6, Appendix G

■ Thread-Level Parallelism: Chapter 5, Appendices F and I

■ Request-Level Parallelism: Chapter 6

■ ISA: Appendices A and K

Appendix E can be read at any time, but it might work best if read after the ISA
and cache sequences. Appendix J can be read whenever arithmetic moves you.
You should read the corresponding portion of Appendix L after you complete
each chapter.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

xx ■ Preface

Chapter Structure

The material we have selected has been stretched upon a consistent framework
that is followed in each chapter. We start by explaining the ideas of a chapter.
These ideas are followed by a “Crosscutting Issues” section, a feature that shows
how the ideas covered in one chapter interact with those given in other chapters.
This is followed by a “Putting It All Together” section that ties these ideas
together by showing how they are used in a real machine.

Next in the sequence is “Fallacies and Pitfalls,” which lets readers learn from
the mistakes of others. We show examples of common misunderstandings and
architectural traps that are difficult to avoid even when you know they are lying
in wait for you. The “Fallacies and Pitfalls” sections is one of the most popular
sections of the book. Each chapter ends with a “Concluding Remarks” section.

Case Studies with Exercises

Each chapter ends with case studies and accompanying exercises. Authored by
experts in industry and academia, the case studies explore key chapter concepts
and verify understanding through increasingly challenging exercises. Instructors
should find the case studies sufficiently detailed and robust to allow them to cre-
ate their own additional exercises.

Brackets for each exercise (<chapter.section>) indicate the text sections of pri-
mary relevance to completing the exercise. We hope this helps readers to avoid
exercises for which they haven’t read the corresponding section, in addition to
providing the source for review. Exercises are rated, to give the reader a sense of
the amount of time required to complete an exercise:

[10] Less than 5 minutes (to read and understand)

[15] 5–15 minutes for a full answer

[20] 15–20 minutes for a full answer

[25] 1 hour for a full written answer

[30] Short programming project: less than 1 full day of programming

[40] Significant programming project: 2 weeks of elapsed time

[Discussion] Topic for discussion with others

Solutions to the case studies and exercises are available for instructors who
register at textbooks.elsevier.com.

Supplemental Materials

A variety of resources are available online at http://booksite.mkp.com/9780123838728/,
including the following:

http://booksite.mkp.com/9780123838728/

Preface ■ xxi

■ Reference appendices—some guest authored by subject experts—covering a
range of advanced topics

■ Historical Perspectives material that explores the development of the key
ideas presented in each of the chapters in the text

■ Instructor slides in PowerPoint

■ Figures from the book in PDF, EPS, and PPT formats

■ Links to related material on the Web

■ List of errata

 New materials and links to other resources available on the Web will be
added on a regular basis.

Helping Improve This Book

Finally, it is possible to make money while reading this book. (Talk about cost-
performance!) If you read the Acknowledgments that follow, you will see that we
went to great lengths to correct mistakes. Since a book goes through many print-
ings, we have the opportunity to make even more corrections. If you uncover any
remaining resilient bugs, please contact the publisher by electronic mail
(ca5bugs@mkp.com).

We welcome general comments to the text and invite you to send them to a
separate email address at ca5comments@mkp.com.

Concluding Remarks

Once again this book is a true co-authorship, with each of us writing half the
chapters and an equal share of the appendices. We can’t imagine how long it
would have taken without someone else doing half the work, offering inspiration
when the task seemed hopeless, providing the key insight to explain a difficult
concept, supplying reviews over the weekend of chapters, and commiserating
when the weight of our other obligations made it hard to pick up the pen. (These
obligations have escalated exponentially with the number of editions, as the biog-
raphies attest.) Thus, once again we share equally the blame for what you are
about to read.

John Hennessy ■ David Patterson

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

mailto:ca5bugs@mkp.com
mailto:ca5comments@mkp.com
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

This page intentionally left blank

xxiii

Although this is only the fifth edition of this book, we have actually created ten
different versions of the text: three versions of the first edition (alpha, beta, and
final) and two versions of the second, third, and fourth editions (beta and final).
Along the way, we have received help from hundreds of reviewers and users.
Each of these people has helped make this book better. Thus, we have chosen to
list all of the people who have made contributions to some version of this book.

Contributors to the Fifth Edition

Like prior editions, this is a community effort that involves scores of volunteers.
Without their help, this edition would not be nearly as polished.

Reviewers

Jason D. Bakos, University of South Carolina; Diana Franklin, The University of
California, Santa Barbara; Norman P. Jouppi, HP Labs; Gregory Peterson, Uni-
versity of Tennessee; Parthasarathy Ranganathan, HP Labs; Mark Smotherman,
Clemson University; Gurindar Sohi, University of Wisconsin–Madison; Mateo
Valero, Universidad Politécnica de Cataluña; Sotirios G. Ziavras, New Jersey
Institute of Technology

Members of the University of California–Berkeley Par Lab and RAD Lab who
gave frequent reviews of Chapter 1, 4, and 6 and shaped the explanation of
GPUs and WSCs: Krste Asanović, Michael Armbrust, Scott Beamer, Sarah Bird,
Bryan Catanzaro, Jike Chong, Henry Cook, Derrick Coetzee, Randy Katz, Yun-
sup Lee, Leo Meyervich, Mark Murphy, Zhangxi Tan, Vasily Volkov, and Andrew
Waterman

Advisory Panel

Luiz André Barroso, Google Inc.; Robert P. Colwell, R&E Colwell & Assoc.
Inc.; Krisztian Flautner, VP of R&D at ARM Ltd.; Mary Jane Irwin, Penn State;

Acknowledgments 1

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

xxiv ■ Acknowledgments

David Kirk, NVIDIA; Grant Martin, Chief Scientist, Tensilica; Gurindar Sohi,
University of Wisconsin–Madison; Mateo Valero, Universidad Politécnica de
Cataluña

Appendices

Krste Asanović, University of California, Berkeley (Appendix G); Thomas M.
Conte, North Carolina State University (Appendix E); José Duato, Universitat
Politècnica de València and Simula (Appendix F); David Goldberg, Xerox PARC
(Appendix J); Timothy M. Pinkston, University of Southern California (Appendix F)

José Flich of the Universidad Politécnica de Valencia provided significant contri-
butions to the updating of Appendix F.

Case Studies with Exercises

Jason D. Bakos, University of South Carolina (Chapters 3 and 4); Diana Franklin,
University of California, Santa Barbara (Chapter 1 and Appendix C); Norman P.
Jouppi, HP Labs (Chapter 2); Naveen Muralimanohar, HP Labs (Chapter 2);
Gregory Peterson, University of Tennessee (Appendix A); Parthasarathy Ranga-
nathan, HP Labs (Chapter 6); Amr Zaky, University of Santa Clara (Chapter 5 and
Appendix B)

Jichuan Chang, Kevin Lim, and Justin Meza assisted in the development and test-
ing of the case studies and exercises for Chapter 6.

Additional Material

John Nickolls, Steve Keckler, and Michael Toksvig of NVIDIA (Chapter 4
NVIDIA GPUs); Victor Lee, Intel (Chapter 4 comparison of Core i7 and GPU);
John Shalf, LBNL (Chapter 4 recent vector architectures); Sam Williams, LBNL
(Roofline model for computers in Chapter 4); Steve Blackburn of Australian
National University and Kathryn McKinley of University of Texas at Austin
(Intel performance and power measurements in Chapter 5); Luiz Barroso, Urs
Hölzle, Jimmy Clidaris, Bob Felderman, and Chris Johnson of Google (the
Google WSC in Chapter 6); James Hamilton of Amazon Web Services (power
distribution and cost model in Chapter 6)

Jason D. Bakos of the University of South Carolina developed the new
lecture slides for this edition.

Finally, a special thanks once again to Mark Smotherman of Clemson Univer-
sity, who gave a final technical reading of our manuscript. Mark found numerous
bugs and ambiguities, and the book is much cleaner as a result.

This book could not have been published without a publisher, of course. We
wish to thank all the Morgan Kaufmann/Elsevier staff for their efforts and support.
For this fifth edition, we particularly want to thank our editors Nate McFadden

Acknowledgments ■ xxv

and Todd Green, who coordinated surveys, the advisory panel, development of the
case studies and exercises, focus groups, manuscript reviews, and the updating of
the appendices.

We must also thank our university staff, Margaret Rowland and Roxana
Infante, for countless express mailings, as well as for holding down the fort at
Stanford and Berkeley while we worked on the book.

Our final thanks go to our wives for their suffering through increasingly early
mornings of reading, thinking, and writing.

Contributors to Previous Editions

Reviewers

George Adams, Purdue University; Sarita Adve, University of Illinois at Urbana–
Champaign; Jim Archibald, Brigham Young University; Krste Asanović, Massa-
chusetts Institute of Technology; Jean-Loup Baer, University of Washington; Paul
Barr, Northeastern University; Rajendra V. Boppana, University of Texas, San
Antonio; Mark Brehob, University of Michigan; Doug Burger, University of Texas,
Austin; John Burger, SGI; Michael Butler; Thomas Casavant; Rohit Chandra; Peter
Chen, University of Michigan; the classes at SUNY Stony Brook, Carnegie Mel-
lon, Stanford, Clemson, and Wisconsin; Tim Coe, Vitesse Semiconductor; Robert
P. Colwell; David Cummings; Bill Dally; David Douglas; José Duato, Universitat
Politècnica de València and Simula; Anthony Duben, Southeast Missouri State
University; Susan Eggers, University of Washington; Joel Emer; Barry Fagin, Dart-
mouth; Joel Ferguson, University of California, Santa Cruz; Carl Feynman; David
Filo; Josh Fisher, Hewlett-Packard Laboratories; Rob Fowler, DIKU; Mark Frank-
lin, Washington University (St. Louis); Kourosh Gharachorloo; Nikolas Gloy, Har-
vard University; David Goldberg, Xerox Palo Alto Research Center; Antonio
González, Intel and Universitat Politècnica de Catalunya; James Goodman, Univer-
sity of Wisconsin–Madison; Sudhanva Gurumurthi, University of Virginia; David
Harris, Harvey Mudd College; John Heinlein; Mark Heinrich, Stanford; Daniel
Helman, University of California, Santa Cruz; Mark D. Hill, University of Wiscon-
sin–Madison; Martin Hopkins, IBM; Jerry Huck, Hewlett-Packard Laboratories;
Wen-mei Hwu, University of Illinois at Urbana–Champaign; Mary Jane Irwin,
Pennsylvania State University; Truman Joe; Norm Jouppi; David Kaeli, Northeast-
ern University; Roger Kieckhafer, University of Nebraska; Lev G. Kirischian,
Ryerson University; Earl Killian; Allan Knies, Purdue University; Don Knuth; Jeff
Kuskin, Stanford; James R. Larus, Microsoft Research; Corinna Lee, University of
Toronto; Hank Levy; Kai Li, Princeton University; Lori Liebrock, University of
Alaska, Fairbanks; Mikko Lipasti, University of Wisconsin–Madison; Gyula A.
Mago, University of North Carolina, Chapel Hill; Bryan Martin; Norman Matloff;
David Meyer; William Michalson, Worcester Polytechnic Institute; James Mooney;
Trevor Mudge, University of Michigan; Ramadass Nagarajan, University of Texas
at Austin; David Nagle, Carnegie Mellon University; Todd Narter; Victor Nelson;
Vojin Oklobdzija, University of California, Berkeley; Kunle Olukotun, Stanford
University; Bob Owens, Pennsylvania State University; Greg Papadapoulous, Sun

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

xxvi ■ Acknowledgments

Microsystems; Joseph Pfeiffer; Keshav Pingali, Cornell University; Timothy M.
Pinkston, University of Southern California; Bruno Preiss, University of Waterloo;
Steven Przybylski; Jim Quinlan; Andras Radics; Kishore Ramachandran, Georgia
Institute of Technology; Joseph Rameh, University of Texas, Austin; Anthony
Reeves, Cornell University; Richard Reid, Michigan State University; Steve Rein-
hardt, University of Michigan; David Rennels, University of California, Los Ange-
les; Arnold L. Rosenberg, University of Massachusetts, Amherst; Kaushik Roy,
Purdue University; Emilio Salgueiro, Unysis; Karthikeyan Sankaralingam, Univer-
sity of Texas at Austin; Peter Schnorf; Margo Seltzer; Behrooz Shirazi, Southern
Methodist University; Daniel Siewiorek, Carnegie Mellon University; J. P. Singh,
Princeton; Ashok Singhal; Jim Smith, University of Wisconsin–Madison; Mike
Smith, Harvard University; Mark Smotherman, Clemson University; Gurindar
Sohi, University of Wisconsin–Madison; Arun Somani, University of Washington;
Gene Tagliarin, Clemson University; Shyamkumar Thoziyoor, University of Notre
Dame; Evan Tick, University of Oregon; Akhilesh Tyagi, University of North Car-
olina, Chapel Hill; Dan Upton, University of Virginia; Mateo Valero, Universidad
Politécnica de Cataluña, Barcelona; Anujan Varma, University of California, Santa
Cruz; Thorsten von Eicken, Cornell University; Hank Walker, Texas A&M; Roy
Want, Xerox Palo Alto Research Center; David Weaver, Sun Microsystems;
Shlomo Weiss, Tel Aviv University; David Wells; Mike Westall, Clemson Univer-
sity; Maurice Wilkes; Eric Williams; Thomas Willis, Purdue University; Malcolm
Wing; Larry Wittie, SUNY Stony Brook; Ellen Witte Zegura, Georgia Institute of
Technology; Sotirios G. Ziavras, New Jersey Institute of Technology

Appendices

The vector appendix was revised by Krste Asanović of the Massachusetts Insti-
tute of Technology. The floating-point appendix was written originally by David
Goldberg of Xerox PARC.

Exercises

George Adams, Purdue University; Todd M. Bezenek, University of Wisconsin–
Madison (in remembrance of his grandmother Ethel Eshom); Susan Eggers; Anoop
Gupta; David Hayes; Mark Hill; Allan Knies; Ethan L. Miller, University of Cali-
fornia, Santa Cruz; Parthasarathy Ranganathan, Compaq Western Research Labo-
ratory; Brandon Schwartz, University of Wisconsin–Madison; Michael Scott; Dan
Siewiorek; Mike Smith; Mark Smotherman; Evan Tick; Thomas Willis

Case Studies with Exercises

Andrea C. Arpaci-Dusseau, University of Wisconsin–Madison; Remzi H. Arpaci-
Dusseau, University of Wisconsin–Madison; Robert P. Colwell, R&E Colwell &
Assoc., Inc.; Diana Franklin, California Polytechnic State University, San Luis
Obispo; Wen-mei W. Hwu, University of Illinois at Urbana–Champaign; Norman
P. Jouppi, HP Labs; John W. Sias, University of Illinois at Urbana–Champaign;
David A. Wood, University of Wisconsin–Madison

Acknowledgments ■ xxvii

Special Thanks

Duane Adams, Defense Advanced Research Projects Agency; Tom Adams; Sarita
Adve, University of Illinois at Urbana–Champaign; Anant Agarwal; Dave Albonesi,
University of Rochester; Mitch Alsup; Howard Alt; Dave Anderson; Peter Ashenden;
David Bailey; Bill Bandy, Defense Advanced Research Projects Agency; Luiz
Barroso, Compaq’s Western Research Lab; Andy Bechtolsheim; C. Gordon Bell;
Fred Berkowitz; John Best, IBM; Dileep Bhandarkar; Jeff Bier, BDTI; Mark Birman;
David Black; David Boggs; Jim Brady; Forrest Brewer; Aaron Brown, University of
California, Berkeley; E. Bugnion, Compaq’s Western Research Lab; Alper Buyuk-
tosunoglu, University of Rochester; Mark Callaghan; Jason F. Cantin; Paul Carrick;
Chen-Chung Chang; Lei Chen, University of Rochester; Pete Chen; Nhan Chu;
Doug Clark, Princeton University; Bob Cmelik; John Crawford; Zarka Cvetanovic;
Mike Dahlin, University of Texas, Austin; Merrick Darley; the staff of the DEC
Western Research Laboratory; John DeRosa; Lloyd Dickman; J. Ding; Susan Egg-
ers, University of Washington; Wael El-Essawy, University of Rochester; Patty
Enriquez, Mills; Milos Ercegovac; Robert Garner; K. Gharachorloo, Compaq’s
Western Research Lab; Garth Gibson; Ronald Greenberg; Ben Hao; John Henning,
Compaq; Mark Hill, University of Wisconsin–Madison; Danny Hillis; David
Hodges; Urs Hölzle, Google; David Hough; Ed Hudson; Chris Hughes, University
of Illinois at Urbana–Champaign; Mark Johnson; Lewis Jordan; Norm Jouppi; Wil-
liam Kahan; Randy Katz; Ed Kelly; Richard Kessler; Les Kohn; John Kowaleski,
Compaq Computer Corp; Dan Lambright; Gary Lauterbach, Sun Microsystems;
Corinna Lee; Ruby Lee; Don Lewine; Chao-Huang Lin; Paul Losleben, Defense
Advanced Research Projects Agency; Yung-Hsiang Lu; Bob Lucas, Defense
Advanced Research Projects Agency; Ken Lutz; Alan Mainwaring, Intel Berkeley
Research Labs; Al Marston; Rich Martin, Rutgers; John Mashey; Luke McDowell;
Sebastian Mirolo, Trimedia Corporation; Ravi Murthy; Biswadeep Nag; Lisa
Noordergraaf, Sun Microsystems; Bob Parker, Defense Advanced Research Proj-
ects Agency; Vern Paxson, Center for Internet Research; Lawrence Prince; Steven
Przybylski; Mark Pullen, Defense Advanced Research Projects Agency; Chris
Rowen; Margaret Rowland; Greg Semeraro, University of Rochester; Bill Shan-
non; Behrooz Shirazi; Robert Shomler; Jim Slager; Mark Smotherman, Clemson
University; the SMT research group at the University of Washington; Steve
Squires, Defense Advanced Research Projects Agency; Ajay Sreekanth; Darren
Staples; Charles Stapper; Jorge Stolfi; Peter Stoll; the students at Stanford and
Berkeley who endured our first attempts at creating this book; Bob Supnik; Steve
Swanson; Paul Taysom; Shreekant Thakkar; Alexander Thomasian, New Jersey
Institute of Technology; John Toole, Defense Advanced Research Projects Agency;
Kees A. Vissers, Trimedia Corporation; Willa Walker; David Weaver; Ric Wheeler,
EMC; Maurice Wilkes; Richard Zimmerman.

John Hennessy ■ David Patterson

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

1.1 Introduction 2

1.2 Classes of Computers 5

1.3 Defining Computer Architecture 11

1.4 Trends in Technology 17

1.5 Trends in Power and Energy in Integrated Circuits 21

1.6 Trends in Cost 27

1.7 Dependability 33

1.8 Measuring, Reporting, and Summarizing Performance 36

1.9 Quantitative Principles of Computer Design 44

1.10 Putting It All Together: Performance, Price, and Power 52

1.11 Fallacies and Pitfalls 55

1.12 Concluding Remarks 59

1.13 Historical Perspectives and References 61

Case Studies and Exercises by Diana Franklin 61

1
Fundamentals of Quantitative

Design and Analysis 1

I think it’s fair to say that personal computers have become the most

empowering tool we’ve ever created. They’re tools of communication,

they’re tools of creativity, and they can be shaped by their user.

Bill Gates, February 24, 2004

Computer Architecture. DOI: 10.1016/B978-0-12-383872-8.00002-1
© 2012 Elsevier, Inc. All rights reserved.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://dx.doi.org/10.1016/B978-0-12-383872-8.00002-1
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

2 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Computer technology has made incredible progress in the roughly 65 years since
the first general-purpose electronic computer was created. Today, less than $500
will purchase a mobile computer that has more performance, more main memory,
and more disk storage than a computer bought in 1985 for $1 million. This rapid
improvement has come both from advances in the technology used to build com-
puters and from innovations in computer design.

Although technological improvements have been fairly steady, progress aris-
ing from better computer architectures has been much less consistent. During the
first 25 years of electronic computers, both forces made a major contribution,
delivering performance improvement of about 25% per year. The late 1970s saw
the emergence of the microprocessor. The ability of the microprocessor to ride
the improvements in integrated circuit technology led to a higher rate of perfor-
mance improvement—roughly 35% growth per year.

This growth rate, combined with the cost advantages of a mass-produced
microprocessor, led to an increasing fraction of the computer business being
based on microprocessors. In addition, two significant changes in the computer
marketplace made it easier than ever before to succeed commercially with a new
architecture. First, the virtual elimination of assembly language programming
reduced the need for object-code compatibility. Second, the creation of standard-
ized, vendor-independent operating systems, such as UNIX and its clone, Linux,
lowered the cost and risk of bringing out a new architecture.

These changes made it possible to develop successfully a new set of architec-
tures with simpler instructions, called RISC (Reduced Instruction Set Computer)
architectures, in the early 1980s. The RISC-based machines focused the attention
of designers on two critical performance techniques, the exploitation of instruction-
level parallelism (initially through pipelining and later through multiple instruction
issue) and the use of caches (initially in simple forms and later using more sophisti-
cated organizations and optimizations).

The RISC-based computers raised the performance bar, forcing prior archi-
tectures to keep up or disappear. The Digital Equipment Vax could not, and so it
was replaced by a RISC architecture. Intel rose to the challenge, primarily by
translating 80x86 instructions into RISC-like instructions internally, allowing it
to adopt many of the innovations first pioneered in the RISC designs. As transis-
tor counts soared in the late 1990s, the hardware overhead of translating the more
complex x86 architecture became negligible. In low-end applications, such as
cell phones, the cost in power and silicon area of the x86-translation overhead
helped lead to a RISC architecture, ARM, becoming dominant.

Figure 1.1 shows that the combination of architectural and organizational
enhancements led to 17 years of sustained growth in performance at an annual
rate of over 50%—a rate that is unprecedented in the computer industry.

The effect of this dramatic growth rate in the 20th century has been fourfold.
First, it has significantly enhanced the capability available to computer users. For
many applications, the highest-performance microprocessors of today outper-
form the supercomputer of less than 10 years ago.

1.1 Introduction

1.1 Introduction ■ 3

Second, this dramatic improvement in cost-performance leads to new classes
of computers. Personal computers and workstations emerged in the 1980s with
the availability of the microprocessor. The last decade saw the rise of smart cell
phones and tablet computers, which many people are using as their primary com-
puting platforms instead of PCs. These mobile client devices are increasingly
using the Internet to access warehouses containing tens of thousands of servers,
which are being designed as if they were a single gigantic computer.

Third, continuing improvement of semiconductor manufacturing as pre-
dicted by Moore’s law has led to the dominance of microprocessor-based com-
puters across the entire range of computer design. Minicomputers, which were

Figure 1.1 Growth in processor performance since the late 1970s. This chart plots performance relative to the VAX
11/780 as measured by the SPEC benchmarks (see Section 1.8). Prior to the mid-1980s, processor performance
growth was largely technology driven and averaged about 25% per year. The increase in growth to about 52% since
then is attributable to more advanced architectural and organizational ideas. By 2003, this growth led to a difference
in performance of about a factor of 25 versus if we had continued at the 25% rate. Performance for floating-point-ori-
ented calculations has increased even faster. Since 2003, the limits of power and available instruction-level parallel-
ism have slowed uniprocessor performance, to no more than 22% per year, or about 5 times slower than had we
continued at 52% per year. (The fastest SPEC performance since 2007 has had automatic parallelization turned on
with increasing number of cores per chip each year, so uniprocessor speed is harder to gauge. These results are lim-
ited to single-socket systems to reduce the impact of automatic parallelization.) Figure 1.11 on page 24 shows the
improvement in clock rates for these same three eras. Since SPEC has changed over the years, performance of newer
machines is estimated by a scaling factor that relates the performance for two different versions of SPEC (e.g.,
SPEC89, SPEC92, SPEC95, SPEC2000, and SPEC2006).

1

5

9

13
18

24

51

80

117

183

280

481
649

993
1,267

1,779
3,016

4,195
6,043 6,681

7,108

11,865
14,387

19,484
21,871

24,129

1

10

100

1000

10,000

100,000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

P
er

fo
rm

an
ce

 (
vs

. V
A

X
-1

1/
78

0)

25%/year

52%/year

22%/year

 IBM POWERstation 100, 150 MHz

Digital Alphastation 4/266, 266 MHz

Digital Alphastation 5/300, 300 MHz

Digital Alphastation 5/500, 500 MHz
AlphaServer 4000 5/600, 600 MHz 21164

Digital AlphaServer 8400 6/575, 575 MHz 21264
Professional Workstation XP1000, 667 MHz 21264A
Intel VC820 motherboard, 1.0 GHz Pentium III processor

 IBM Power4, 1.3 GHz

 Intel Xeon EE 3.2 GHz
 AMD Athlon, 2.6 GHz

 Intel Core 2 Extreme 2 cores, 2.9 GHz
 Intel Core Duo Extreme 2 cores, 3.0 GHz

 Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
 Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)

 Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)

Intel D850EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology)

1.5, VAX-11/785

 AMD Athlon 64, 2.8 GHz

Digital 3000 AXP/500, 150 MHz

HP 9000/750, 66 MHz

IBM RS6000/540, 30 MHz
MIPS M2000, 25 MHz

MIPS M/120, 16.7 MHz

Sun-4/260, 16.7 MHz

VAX 8700, 22 MHz

AX-11/780, 5 MHz

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

4 ■ Chapter One Fundamentals of Quantitative Design and Analysis

traditionally made from off-the-shelf logic or from gate arrays, were replaced by
servers made using microprocessors. Even mainframe computers and high-
performance supercomputers are all collections of microprocessors.

The hardware innovations above led to a renaissance in computer design,
which emphasized both architectural innovation and efficient use of technology
improvements. This rate of growth has compounded so that by 2003, high-
performance microprocessors were 7.5 times faster than what would have been
obtained by relying solely on technology, including improved circuit design; that
is, 52% per year versus 35% per year.

This hardware renaissance led to the fourth impact, which is on software
development. This 25,000-fold performance improvement since 1978 (see
Figure 1.1) allowed programmers today to trade performance for productivity. In
place of performance-oriented languages like C and C++, much more program-
ming today is done in managed programming languages like Java and C#. More-
over, scripting languages like Python and Ruby, which are even more productive,
are gaining in popularity along with programming frameworks like Ruby on
Rails. To maintain productivity and try to close the performance gap, interpreters
with just-in-time compilers and trace-based compiling are replacing the tradi-
tional compiler and linker of the past. Software deployment is changing as well,
with Software as a Service (SaaS) used over the Internet replacing shrink-
wrapped software that must be installed and run on a local computer.

The nature of applications also changes. Speech, sound, images, and video
are becoming increasingly important, along with predictable response time that is
so critical to the user experience. An inspiring example is Google Goggles. This
application lets you hold up your cell phone to point its camera at an object, and
the image is sent wirelessly over the Internet to a warehouse-scale computer that
recognizes the object and tells you interesting information about it. It might
translate text on the object to another language; read the bar code on a book cover
to tell you if a book is available online and its price; or, if you pan the phone cam-
era, tell you what businesses are nearby along with their websites, phone num-
bers, and directions.

Alas, Figure 1.1 also shows that this 17-year hardware renaissance is over.
Since 2003, single-processor performance improvement has dropped to less than
22% per year due to the twin hurdles of maximum power dissipation of air-
cooled chips and the lack of more instruction-level parallelism to exploit effi-
ciently. Indeed, in 2004 Intel canceled its high-performance uniprocessor projects
and joined others in declaring that the road to higher performance would be via
multiple processors per chip rather than via faster uniprocessors.

This milestone signals a historic switch from relying solely on instruction-
level parallelism (ILP), the primary focus of the first three editions of this book,
to data-level parallelism (DLP) and thread-level parallelism (TLP), which were
featured in the fourth edition and expanded in this edition. This edition also adds
warehouse-scale computers and request-level parallelism (RLP). Whereas
the compiler and hardware conspire to exploit ILP implicitly without the pro-
grammer’s attention, DLP, TLP, and RLP are explicitly parallel, requiring the

1.2 Classes of Computers ■ 5

restructuring of the application so that it can exploit explicit parallelism. In some
instances, this is easy; in many, it is a major new burden for programmers.

This text is about the architectural ideas and accompanying compiler
improvements that made the incredible growth rate possible in the last century,
the reasons for the dramatic change, and the challenges and initial promising
approaches to architectural ideas, compilers, and interpreters for the 21st century.
At the core is a quantitative approach to computer design and analysis that uses
empirical observations of programs, experimentation, and simulation as its tools.
It is this style and approach to computer design that is reflected in this text. The
purpose of this chapter is to lay the quantitative foundation on which the follow-
ing chapters and appendices are based.

This book was written not only to explain this design style but also to stimu-
late you to contribute to this progress. We believe this approach will work for
explicitly parallel computers of the future just as it worked for the implicitly par-
allel computers of the past.

These changes have set the stage for a dramatic change in how we view comput-
ing, computing applications, and the computer markets in this new century. Not
since the creation of the personal computer have we seen such dramatic changes
in the way computers appear and in how they are used. These changes in com-
puter use have led to five different computing markets, each characterized by dif-
ferent applications, requirements, and computing technologies. Figure 1.2
summarizes these mainstream classes of computing environments and their
important characteristics.

Feature
Personal
mobile device
(PMD)

Desktop Server
Clusters/warehouse-
scale computer

Embedded

Price of
system

$100–$1000 $300–$2500 $5000–$10,000,000 $100,000–$200,000,000 $10–$100,000

Price of
micro-
processor

$10–$100 $50–$500 $200–$2000 $50–$250 $0.01–$100

Critical
system
design
issues

Cost, energy,
media
performance,
responsiveness

Price-
performance,
energy,
graphics
performance

Throughput,
availability,
scalability, energy

Price-performance,
throughput, energy
proportionality

Price, energy,
application-specific
performance

Figure 1.2 A summary of the five mainstream computing classes and their system characteristics. Sales in 2010
included about 1.8 billion PMDs (90% cell phones), 350 million desktop PCs, and 20 million servers. The total number
of embedded processors sold was nearly 19 billion. In total, 6.1 billion ARM-technology based chips were shipped in
2010. Note the wide range in system price for servers and embedded systems, which go from USB keys to network
routers. For servers, this range arises from the need for very large-scale multiprocessor systems for high-end
transaction processing.

1.2 Classes of Computers

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

6 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Personal Mobile Device (PMD)

Personal mobile device (PMD) is the term we apply to a collection of wireless
devices with multimedia user interfaces such as cell phones, tablet computers,
and so on. Cost is a prime concern given the consumer price for the whole prod-
uct is a few hundred dollars. Although the emphasis on energy efficiency is fre-
quently driven by the use of batteries, the need to use less expensive packaging—
plastic versus ceramic—and the absence of a fan for cooling also limit total
power consumption. We examine the issue of energy and power in more detail in
Section 1.5. Applications on PMDs are often Web-based and media-oriented, like
the Google Goggles example above. Energy and size requirements lead to use of
Flash memory for storage (Chapter 2) instead of magnetic disks.

Responsiveness and predictability are key characteristics for media applica-
tions. A real-time performance requirement means a segment of the application
has an absolute maximum execution time. For example, in playing a video on a
PMD, the time to process each video frame is limited, since the processor must
accept and process the next frame shortly. In some applications, a more nuanced
requirement exists: the average time for a particular task is constrained as well
as the number of instances when some maximum time is exceeded. Such
approaches—sometimes called soft real-time—arise when it is possible to occa-
sionally miss the time constraint on an event, as long as not too many are missed.
Real-time performance tends to be highly application dependent.

Other key characteristics in many PMD applications are the need to minimize
memory and the need to use energy efficiently. Energy efficiency is driven by
both battery power and heat dissipation. The memory can be a substantial portion
of the system cost, and it is important to optimize memory size in such cases. The
importance of memory size translates to an emphasis on code size, since data size
is dictated by the application.

Desktop Computing

The first, and probably still the largest market in dollar terms, is desktop comput-
ing. Desktop computing spans from low-end netbooks that sell for under $300 to
high-end, heavily configured workstations that may sell for $2500. Since 2008,
more than half of the desktop computers made each year have been battery oper-
ated laptop computers.

Throughout this range in price and capability, the desktop market tends to be
driven to optimize price-performance. This combination of performance (mea-
sured primarily in terms of compute performance and graphics performance) and
price of a system is what matters most to customers in this market, and hence to
computer designers. As a result, the newest, highest-performance microproces-
sors and cost-reduced microprocessors often appear first in desktop systems (see
Section 1.6 for a discussion of the issues affecting the cost of computers).

Desktop computing also tends to be reasonably well characterized in terms of
applications and benchmarking, though the increasing use of Web-centric, inter-
active applications poses new challenges in performance evaluation.

1.2 Classes of Computers ■ 7

Servers

As the shift to desktop computing occurred in the 1980s, the role of servers grew
to provide larger-scale and more reliable file and computing services. Such serv-
ers have become the backbone of large-scale enterprise computing, replacing the
traditional mainframe.

For servers, different characteristics are important. First, availability is criti-
cal. (We discuss availability in Section 1.7.) Consider the servers running ATM
machines for banks or airline reservation systems. Failure of such server systems
is far more catastrophic than failure of a single desktop, since these servers must
operate seven days a week, 24 hours a day. Figure 1.3 estimates revenue costs of
downtime for server applications.

A second key feature of server systems is scalability. Server systems often
grow in response to an increasing demand for the services they support or an
increase in functional requirements. Thus, the ability to scale up the computing
capacity, the memory, the storage, and the I/O bandwidth of a server is crucial.

Finally, servers are designed for efficient throughput. That is, the overall per-
formance of the server—in terms of transactions per minute or Web pages served
per second—is what is crucial. Responsiveness to an individual request remains
important, but overall efficiency and cost-effectiveness, as determined by how
many requests can be handled in a unit time, are the key metrics for most servers.
We return to the issue of assessing performance for different types of computing
environments in Section 1.8.

Application
Cost of downtime

per hour

Annual losses with downtime of

1%
(87.6 hrs/yr)

0.5%
(43.8 hrs/yr)

0.1%
(8.8 hrs/yr)

Brokerage operations $6,450,000 $565,000,000 $283,000,000 $56,500,000

Credit card authorization $2,600,000 $228,000,000 $114,000,000 $22,800,000

Package shipping services $150,000 $13,000,000 $6,600,000 $1,300,000

Home shopping channel $113,000 $9,900,000 $4,900,000 $1,000,000

Catalog sales center $90,000 $7,900,000 $3,900,000 $800,000

Airline reservation center $89,000 $7,900,000 $3,900,000 $800,000

Cellular service activation $41,000 $3,600,000 $1,800,000 $400,000

Online network fees $25,000 $2,200,000 $1,100,000 $200,000

ATM service fees $14,000 $1,200,000 $600,000 $100,000

Figure 1.3 Costs rounded to nearest $100,000 of an unavailable system are shown by analyzing the cost of

downtime (in terms of immediately lost revenue), assuming three different levels of availability and that down-

time is distributed uniformly. These data are from Kembel [2000] and were collected and analyzed by Contingency
Planning Research.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

8 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Clusters/Warehouse-Scale Computers

The growth of Software as a Service (SaaS) for applications like search, social
networking, video sharing, multiplayer games, online shopping, and so on has led
to the growth of a class of computers called clusters. Clusters are collections of
desktop computers or servers connected by local area networks to act as a single
larger computer. Each node runs its own operating system, and nodes communi-
cate using a networking protocol. The largest of the clusters are called
warehouse-scale computers (WSCs), in that they are designed so that tens of
thousands of servers can act as one. Chapter 6 describes this class of the
extremely large computers.

Price-performance and power are critical to WSCs since they are so large. As
Chapter 6 explains, 80% of the cost of a $90M warehouse is associated with
power and cooling of the computers inside. The computers themselves and net-
working gear cost another $70M and they must be replaced every few years.
When you are buying that much computing, you need to buy wisely, as a 10%
improvement in price-performance means a savings of $7M (10% of $70M).

WSCs are related to servers, in that availability is critical. For example, Ama-
zon.com had $13 billion in sales in the fourth quarter of 2010. As there are about
2200 hours in a quarter, the average revenue per hour was almost $6M. During a
peak hour for Christmas shopping, the potential loss would be many times higher.
As Chapter 6 explains, the difference from servers is that WSCs use redundant
inexpensive components as the building blocks, relying on a software layer to
catch and isolate the many failures that will happen with computing at this scale.
Note that scalability for a WSC is handled by the local area network connecting
the computers and not by integrated computer hardware, as in the case of servers.

Supercomputers are related to WSCs in that they are equally expensive, cost-
ing hundreds of millions of dollars, but supercomputers differ by emphasizing
floating-point performance and by running large, communication-intensive batch
programs that can run for weeks at a time. This tight coupling leads to use of
much faster internal networks. In contrast, WSCs emphasize interactive applica-
tions, large-scale storage, dependability, and high Internet bandwidth.

Embedded Computers

Embedded computers are found in everyday machines; microwaves, washing
machines, most printers, most networking switches, and all cars contain simple
embedded microprocessors.

The processors in a PMD are often considered embedded computers, but we
are keeping them as a separate category because PMDs are platforms that can run
externally developed software and they share many of the characteristics of desk-
top computers. Other embedded devices are more limited in hardware and soft-
ware sophistication. We use the ability to run third-party software as the dividing
line between non-embedded and embedded computers.

Embedded computers have the widest spread of processing power and cost.
They include 8-bit and 16-bit processors that may cost less than a dime, 32-bit

1.2 Classes of Computers ■ 9

microprocessors that execute 100 million instructions per second and cost under
$5, and high-end processors for network switches that cost $100 and can execute
billions of instructions per second. Although the range of computing power in the
embedded computing market is very large, price is a key factor in the design of
computers for this space. Performance requirements do exist, of course, but the
primary goal is often meeting the performance need at a minimum price, rather
than achieving higher performance at a higher price.

Most of this book applies to the design, use, and performance of embedded
processors, whether they are off-the-shelf microprocessors or microprocessor
cores that will be assembled with other special-purpose hardware. Indeed, the
third edition of this book included examples from embedded computing to illus-
trate the ideas in every chapter.

Alas, most readers found these examples unsatisfactory, as the data that drive
the quantitative design and evaluation of other classes of computers have not yet
been extended well to embedded computing (see the challenges with EEMBC,
for example, in Section 1.8). Hence, we are left for now with qualitative descrip-
tions, which do not fit well with the rest of the book. As a result, in this and the
prior edition we consolidated the embedded material into Appendix E. We
believe a separate appendix improves the flow of ideas in the text while allowing
readers to see how the differing requirements affect embedded computing.

Classes of Parallelism and Parallel Architectures

Parallelism at multiple levels is now the driving force of computer design across
all four classes of computers, with energy and cost being the primary constraints.
There are basically two kinds of parallelism in applications:

1. Data-Level Parallelism (DLP) arises because there are many data items that
can be operated on at the same time.

2. Task-Level Parallelism (TLP) arises because tasks of work are created that
can operate independently and largely in parallel.

Computer hardware in turn can exploit these two kinds of application parallelism
in four major ways:

1. Instruction-Level Parallelism exploits data-level parallelism at modest levels
with compiler help using ideas like pipelining and at medium levels using
ideas like speculative execution.

2. Vector Architectures and Graphic Processor Units (GPUs) exploit data-level
parallelism by applying a single instruction to a collection of data in parallel.

3. Thread-Level Parallelism exploits either data-level parallelism or task-level
parallelism in a tightly coupled hardware model that allows for interaction
among parallel threads.

4. Request-Level Parallelism exploits parallelism among largely decoupled
tasks specified by the programmer or the operating system.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

10 ■ Chapter One Fundamentals of Quantitative Design and Analysis

These four ways for hardware to support the data-level parallelism and
task-level parallelism go back 50 years. When Michael Flynn [1966] studied
the parallel computing efforts in the 1960s, he found a simple classification
whose abbreviations we still use today. He looked at the parallelism in the
instruction and data streams called for by the instructions at the most con-
strained component of the multiprocessor, and placed all computers into one of
four categories:

1. Single instruction stream, single data stream (SISD)—This category is the
uniprocessor. The programmer thinks of it as the standard sequential com-
puter, but it can exploit instruction-level parallelism. Chapter 3 covers SISD
architectures that use ILP techniques such as superscalar and speculative exe-
cution.

2. Single instruction stream, multiple data streams (SIMD)—The same
instruction is executed by multiple processors using different data streams.
SIMD computers exploit data-level parallelism by applying the same
operations to multiple items of data in parallel. Each processor has its own
data memory (hence the MD of SIMD), but there is a single instruction
memory and control processor, which fetches and dispatches instructions.
Chapter 4 covers DLP and three different architectures that exploit it:
vector architectures, multimedia extensions to standard instruction sets,
and GPUs.

3. Multiple instruction streams, single data stream (MISD)—No commercial
multiprocessor of this type has been built to date, but it rounds out this simple
classification.

4. Multiple instruction streams, multiple data streams (MIMD)—Each proces-
sor fetches its own instructions and operates on its own data, and it targets
task-level parallelism. In general, MIMD is more flexible than SIMD and
thus more generally applicable, but it is inherently more expensive than
SIMD. For example, MIMD computers can also exploit data-level parallel-
ism, although the overhead is likely to be higher than would be seen in an
SIMD computer. This overhead means that grain size must be sufficiently
large to exploit the parallelism efficiently. Chapter 5 covers tightly coupled
MIMD architectures, which exploit thread-level parallelism since multiple
cooperating threads operate in parallel. Chapter 6 covers loosely coupled
MIMD architectures—specifically, clusters and warehouse-scale comput-
ers—that exploit request-level parallelism, where many independent tasks
can proceed in parallel naturally with little need for communication or
synchronization.

This taxonomy is a coarse model, as many parallel processors are hybrids of the
SISD, SIMD, and MIMD classes. Nonetheless, it is useful to put a framework on
the design space for the computers we will see in this book.

1.3 Defining Computer Architecture ■ 11

The task the computer designer faces is a complex one: Determine what
attributes are important for a new computer, then design a computer to maximize
performance and energy efficiency while staying within cost, power, and avail-
ability constraints. This task has many aspects, including instruction set design,
functional organization, logic design, and implementation. The implementation
may encompass integrated circuit design, packaging, power, and cooling. Opti-
mizing the design requires familiarity with a very wide range of technologies,
from compilers and operating systems to logic design and packaging.

Several years ago, the term computer architecture often referred only to
instruction set design. Other aspects of computer design were called implementa-
tion, often insinuating that implementation is uninteresting or less challenging.

We believe this view is incorrect. The architect’s or designer’s job is much
more than instruction set design, and the technical hurdles in the other aspects of
the project are likely more challenging than those encountered in instruction set
design. We’ll quickly review instruction set architecture before describing the
larger challenges for the computer architect.

Instruction Set Architecture: The Myopic View of Computer
Architecture

We use the term instruction set architecture (ISA) to refer to the actual programmer-
visible instruction set in this book. The ISA serves as the boundary between the
software and hardware. This quick review of ISA will use examples from 80x86,
ARM, and MIPS to illustrate the seven dimensions of an ISA. Appendices A and
K give more details on the three ISAs.

1. Class of ISA—Nearly all ISAs today are classified as general-purpose register
architectures, where the operands are either registers or memory locations.
The 80x86 has 16 general-purpose registers and 16 that can hold floating-
point data, while MIPS has 32 general-purpose and 32 floating-point registers
(see Figure 1.4). The two popular versions of this class are register-memory
ISAs, such as the 80x86, which can access memory as part of many instruc-
tions, and load-store ISAs, such as ARM and MIPS, which can access mem-
ory only with load or store instructions. All recent ISAs are load-store.

2. Memory addressing—Virtually all desktop and server computers, including
the 80x86, ARM, and MIPS, use byte addressing to access memory operands.
Some architectures, like ARM and MIPS, require that objects must be
aligned. An access to an object of size s bytes at byte address A is aligned if
A mod s = 0. (See Figure A.5 on page A-8.) The 80x86 does not require
alignment, but accesses are generally faster if operands are aligned.

3. Addressing modes—In addition to specifying registers and constant operands,
addressing modes specify the address of a memory object. MIPS addressing

1.3 Defining Computer Architecture

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

12 ■ Chapter One Fundamentals of Quantitative Design and Analysis

modes are Register, Immediate (for constants), and Displacement, where a
constant offset is added to a register to form the memory address. The 80x86
supports those three plus three variations of displacement: no register (abso-
lute), two registers (based indexed with displacement), and two registers
where one register is multiplied by the size of the operand in bytes (based
with scaled index and displacement). It has more like the last three, minus the
displacement field, plus register indirect, indexed, and based with scaled
index. ARM has the three MIPS addressing modes plus PC-relative address-
ing, the sum of two registers, and the sum of two registers where one register
is multiplied by the size of the operand in bytes. It also has autoincrement and
autodecrement addressing, where the calculated address replaces the contents
of one of the registers used in forming the address.

4. Types and sizes of operands—Like most ISAs, 80x86, ARM, and MIPS
support operand sizes of 8-bit (ASCII character), 16-bit (Unicode character
or half word), 32-bit (integer or word), 64-bit (double word or long inte-
ger), and IEEE 754 floating point in 32-bit (single precision) and 64-bit
(double precision). The 80x86 also supports 80-bit floating point (extended
double precision).

5. Operations—The general categories of operations are data transfer, arithme-
tic logical, control (discussed next), and floating point. MIPS is a simple and
easy-to-pipeline instruction set architecture, and it is representative of the RISC
architectures being used in 2011. Figure 1.5 summarizes the MIPS ISA. The
80x86 has a much richer and larger set of operations (see Appendix K).

Name Number Use Preserved across a call?

$zero 0 The constant value 0 N.A.

$at 1 Assembler temporary No

$v0–$v1 2–3 Values for function results and
expression evaluation

No

$a0–$a3 4–7 Arguments No

$t0–$t7 8–15 Temporaries No

$s0–$s7 16–23 Saved temporaries Yes

$t8–$t9 24–25 Temporaries No

$k0–$k1 26–27 Reserved for OS kernel No

$gp 28 Global pointer Yes

$sp 29 Stack pointer Yes

$fp 30 Frame pointer Yes

$ra 31 Return address Yes

Figure 1.4 MIPS registers and usage conventions. In addition to the 32 general-
purpose registers (R0–R31), MIPS has 32 floating-point registers (F0–F31) that can hold
either a 32-bit single-precision number or a 64-bit double-precision number.

1.3 Defining Computer Architecture ■ 13

Instruction type/opcode Instruction meaning

Data transfers Move data between registers and memory, or between the integer and FP or special
registers; only memory address mode is 16-bit displacement + contents of a GPR

LB, LBU, SB Load byte, load byte unsigned, store byte (to/from integer registers)

LH, LHU, SH Load half word, load half word unsigned, store half word (to/from integer registers)

LW, LWU, SW Load word, load word unsigned, store word (to/from integer registers)

LD, SD Load double word, store double word (to/from integer registers)

L.S, L.D, S.S, S.D Load SP float, load DP float, store SP float, store DP float

MFC0, MTC0 Copy from/to GPR to/from a special register

MOV.S, MOV.D Copy one SP or DP FP register to another FP register

MFC1, MTC1 Copy 32 bits to/from FP registers from/to integer registers

Arithmetic/logical Operations on integer or logical data in GPRs; signed arithmetic trap on overflow

DADD, DADDI, DADDU, DADDIU Add, add immediate (all immediates are 16 bits); signed and unsigned

DSUB, DSUBU Subtract, signed and unsigned

DMUL, DMULU, DDIV,
DDIVU, MADD

Multiply and divide, signed and unsigned; multiply-add; all operations take and yield
64-bit values

AND, ANDI And, and immediate

OR, ORI, XOR, XORI Or, or immediate, exclusive or, exclusive or immediate

LUI Load upper immediate; loads bits 32 to 47 of register with immediate, then sign-extends

DSLL, DSRL, DSRA, DSLLV,
DSRLV, DSRAV

Shifts: both immediate (DS__) and variable form (DS__V); shifts are shift left logical,
right logical, right arithmetic

SLT, SLTI, SLTU, SLTIU Set less than, set less than immediate, signed and unsigned

Control Conditional branches and jumps; PC-relative or through register

BEQZ, BNEZ Branch GPRs equal/not equal to zero; 16-bit offset from PC + 4

BEQ, BNE Branch GPR equal/not equal; 16-bit offset from PC + 4

BC1T, BC1F Test comparison bit in the FP status register and branch; 16-bit offset from PC + 4

MOVN, MOVZ Copy GPR to another GPR if third GPR is negative, zero

J, JR Jumps: 26-bit offset from PC + 4 (J) or target in register (JR)

JAL, JALR Jump and link: save PC + 4 in R31, target is PC-relative (JAL) or a register (JALR)

TRAP Transfer to operating system at a vectored address

ERET Return to user code from an exception; restore user mode

Floating point FP operations on DP and SP formats

ADD.D, ADD.S, ADD.PS Add DP, SP numbers, and pairs of SP numbers

SUB.D, SUB.S, SUB.PS Subtract DP, SP numbers, and pairs of SP numbers

MUL.D, MUL.S, MUL.PS Multiply DP, SP floating point, and pairs of SP numbers

MADD.D, MADD.S, MADD.PS Multiply-add DP, SP numbers, and pairs of SP numbers

DIV.D, DIV.S, DIV.PS Divide DP, SP floating point, and pairs of SP numbers

CVT._._ Convert instructions: CVT.x.y converts from type x to type y, where x and y are L
(64-bit integer), W (32-bit integer), D (DP), or S (SP). Both operands are FPRs.

C.__.D, C.__.S DP and SP compares: “__” = LT,GT,LE,GE,EQ,NE; sets bit in FP status register

Figure 1.5 Subset of the instructions in MIPS64. SP = single precision; DP = double precision. Appendix A gives
much more detail on MIPS64. For data, the most significant bit number is 0; least is 63.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

14 ■ Chapter One Fundamentals of Quantitative Design and Analysis

6. Control flow instructions—Virtually all ISAs, including these three, support
conditional branches, unconditional jumps, procedure calls, and returns. All
three use PC-relative addressing, where the branch address is specified by an
address field that is added to the PC. There are some small differences. MIPS
conditional branches (BE, BNE, etc.) test the contents of registers, while the
80x86 and ARM branches test condition code bits set as side effects of arith-
metic/logic operations. The ARM and MIPS procedure call places the return
address in a register, while the 80x86 call (CALLF) places the return address
on a stack in memory.

7. Encoding an ISA—There are two basic choices on encoding: fixed length and
variable length. All ARM and MIPS instructions are 32 bits long, which sim-
plifies instruction decoding. Figure 1.6 shows the MIPS instruction formats.
The 80x86 encoding is variable length, ranging from 1 to 18 bytes. Variable-
length instructions can take less space than fixed-length instructions, so a
program compiled for the 80x86 is usually smaller than the same program
compiled for MIPS. Note that choices mentioned above will affect how the
instructions are encoded into a binary representation. For example, the num-
ber of registers and the number of addressing modes both have a significant
impact on the size of instructions, as the register field and addressing mode
field can appear many times in a single instruction. (Note that ARM and
MIPS later offered extensions to offer 16-bit length instructions so as to
reduce program size, called Thumb or Thumb-2 and MIPS16, respectively.)

Figure 1.6 MIPS64 instruction set architecture formats. All instructions are 32 bits
long. The R format is for integer register-to-register operations, such as DADDU, DSUBU,
and so on. The I format is for data transfers, branches, and immediate instructions, such
as LD, SD, BEQZ, and DADDIs. The J format is for jumps, the FR format for floating-point
operations, and the FI format for floating-point branches.

Basic instruction formats

R opcode rs rt rd shamt funct

31 026 25 21 20 16 15 11 10 6 5

026 25 21 20 16 15 11 10 6 5

I opcode rs rt immediate

31 26 25 21 20 16 15

J opcode address

31 26 25

Floating-point instruction formats

FR opcode fmt ft fs fd funct

31

26 25 21 20 16 1531

FI opcode fmt ft immediate

1.3 Defining Computer Architecture ■ 15

The other challenges facing the computer architect beyond ISA design are
particularly acute at the present, when the differences among instruction sets are
small and when there are distinct application areas. Therefore, starting with the
last edition, the bulk of instruction set material beyond this quick review is found
in the appendices (see Appendices A and K).

We use a subset of MIPS64 as the example ISA in this book because it is both
the dominant ISA for networking and it is an elegant example of the RISC architec-
tures mentioned earlier, of which ARM (Advanced RISC Machine) is the most
popular example. ARM processors were in 6.1 billion chips shipped in 2010, or
roughly 20 times as many chips that shipped with 80x86 processors.

Genuine Computer Architecture: Designing the Organization
and Hardware to Meet Goals and Functional Requirements

The implementation of a computer has two components: organization and
hardware. The term organization includes the high-level aspects of a computer’s
design, such as the memory system, the memory interconnect, and the design of
the internal processor or CPU (central processing unit—where arithmetic, logic,
branching, and data transfer are implemented). The term microarchitecture is
also used instead of organization. For example, two processors with the same
instruction set architectures but different organizations are the AMD Opteron and
the Intel Core i7. Both processors implement the x86 instruction set, but they
have very different pipeline and cache organizations.

The switch to multiple processors per microprocessor led to the term core to
also be used for processor. Instead of saying multiprocessor microprocessor, the
term multicore has caught on. Given that virtually all chips have multiple proces-
sors, the term central processing unit, or CPU, is fading in popularity.

Hardware refers to the specifics of a computer, including the detailed logic
design and the packaging technology of the computer. Often a line of computers
contains computers with identical instruction set architectures and nearly identical
organizations, but they differ in the detailed hardware implementation. For exam-
ple, the Intel Core i7 (see Chapter 3) and the Intel Xeon 7560 (see Chapter 5) are
nearly identical but offer different clock rates and different memory systems,
making the Xeon 7560 more effective for server computers.

In this book, the word architecture covers all three aspects of computer
design—instruction set architecture, organization or microarchitecture, and
hardware.

Computer architects must design a computer to meet functional requirements
as well as price, power, performance, and availability goals. Figure 1.7 summa-
rizes requirements to consider in designing a new computer. Often, architects
also must determine what the functional requirements are, which can be a major
task. The requirements may be specific features inspired by the market. Applica-
tion software often drives the choice of certain functional requirements by deter-
mining how the computer will be used. If a large body of software exists for a
certain instruction set architecture, the architect may decide that a new computer

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

16 ■ Chapter One Fundamentals of Quantitative Design and Analysis

should implement an existing instruction set. The presence of a large market for a
particular class of applications might encourage the designers to incorporate
requirements that would make the computer competitive in that market. Later
chapters examine many of these requirements and features in depth.

Architects must also be aware of important trends in both the technology and
the use of computers, as such trends affect not only the future cost but also the
longevity of an architecture.

Functional requirements Typical features required or supported

Application area Target of computer

Personal mobile device Real-time performance for a range of tasks, including interactive performance for
graphics, video, and audio; energy efficiency (Ch. 2, 3, 4, 5; App. A)

General-purpose desktop Balanced performance for a range of tasks, including interactive performance for
graphics, video, and audio (Ch. 2, 3, 4, 5; App. A)

Servers Support for databases and transaction processing; enhancements for reliability and
availability; support for scalability (Ch. 2, 5; App. A, D, F)

Clusters/warehouse-scale
computers

Throughput performance for many independent tasks; error correction for
memory; energy proportionality (Ch 2, 6; App. F)

Embedded computing Often requires special support for graphics or video (or other application-specific
extension); power limitations and power control may be required; real-time
constraints (Ch. 2, 3, 5; App. A, E)

Level of software compatibility Determines amount of existing software for computer

At programming language Most flexible for designer; need new compiler (Ch. 3, 5; App. A)

Object code or binary
compatible

Instruction set architecture is completely defined—little flexibility—but no
investment needed in software or porting programs (App. A)

Operating system requirements Necessary features to support chosen OS (Ch. 2; App. B)

Size of address space Very important feature (Ch. 2); may limit applications

Memory management Required for modern OS; may be paged or segmented (Ch. 2)

Protection Different OS and application needs: page vs. segment; virtual machines (Ch. 2)

Standards Certain standards may be required by marketplace

Floating point Format and arithmetic: IEEE 754 standard (App. J), special arithmetic for graphics
or signal processing

I/O interfaces For I/O devices: Serial ATA, Serial Attached SCSI, PCI Express (App. D, F)

Operating systems UNIX, Windows, Linux, CISCO IOS

Networks Support required for different networks: Ethernet, Infiniband (App. F)

Programming languages Languages (ANSI C, C++, Java, Fortran) affect instruction set (App. A)

Figure 1.7 Summary of some of the most important functional requirements an architect faces. The left-hand
column describes the class of requirement, while the right-hand column gives specific examples. The right-hand
column also contains references to chapters and appendices that deal with the specific issues.

1.4 Trends in Technology ■ 17

If an instruction set architecture is to be successful, it must be designed to survive
rapid changes in computer technology. After all, a successful new instruction set
architecture may last decades—for example, the core of the IBM mainframe has
been in use for nearly 50 years. An architect must plan for technology changes
that can increase the lifetime of a successful computer.

To plan for the evolution of a computer, the designer must be aware of rapid
changes in implementation technology. Five implementation technologies, which
change at a dramatic pace, are critical to modern implementations:

■ Integrated circuit logic technology—Transistor density increases by about
35% per year, quadrupling somewhat over four years. Increases in die size
are less predictable and slower, ranging from 10% to 20% per year. The com-
bined effect is a growth rate in transistor count on a chip of about 40% to 55%
per year, or doubling every 18 to 24 months. This trend is popularly known as
Moore’s law. Device speed scales more slowly, as we discuss below.

■ Semiconductor DRAM (dynamic random-access memory)—Now that most
DRAM chips are primarily shipped in DIMM modules, it is harder to track
chip capacity, as DRAM manufacturers typically offer several capacity prod-
ucts at the same time to match DIMM capacity. Capacity per DRAM chip has
increased by about 25% to 40% per year recently, doubling roughly every
two to three years. This technology is the foundation of main memory, and
we discuss it in Chapter 2. Note that the rate of improvement has continued to
slow over the editions of this book, as Figure 1.8 shows. There is even con-
cern as whether the growth rate will stop in the middle of this decade due to
the increasing difficulty of efficiently manufacturing even smaller DRAM
cells [Kim 2005]. Chapter 2 mentions several other technologies that may
replace DRAM if it hits a capacity wall.

CA:AQA Edition Year
DRAM growth
rate

Characterization of impact
on DRAM capacity

1 1990 60%/year Quadrupling every 3 years

2 1996 60%/year Quadrupling every 3 years

3 2003 40%–60%/year Quadrupling every 3 to 4 years

4 2007 40%/year Doubling every 2 years

5 2011 25%–40%/year Doubling every 2 to 3 years

Figure 1.8 Change in rate of improvement in DRAM capacity over time. The first two
editions even called this rate the DRAM Growth Rule of Thumb, since it had been so
dependable since 1977 with the 16-kilobit DRAM through 1996 with the 64-megabit
DRAM. Today, some question whether DRAM capacity can improve at all in 5 to 7
years, due to difficulties in manufacturing an increasingly three-dimensional DRAM
cell [Kim 2005].

1.4 Trends in Technology

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

18 ■ Chapter One Fundamentals of Quantitative Design and Analysis

■ Semiconductor Flash (electrically erasable programmable read-only mem-
ory)—This nonvolatile semiconductor memory is the standard storage device
in PMDs, and its rapidly increasing popularity has fueled its rapid growth rate
in capacity. Capacity per Flash chip has increased by about 50% to 60% per
year recently, doubling roughly every two years. In 2011, Flash memory is 15
to 20 times cheaper per bit than DRAM. Chapter 2 describes Flash memory.

■ Magnetic disk technology—Prior to 1990, density increased by about 30%
per year, doubling in three years. It rose to 60% per year thereafter, and
increased to 100% per year in 1996. Since 2004, it has dropped back to
about 40% per year, or doubled every three years. Disks are 15 to 25 times
cheaper per bit than Flash. Given the slowed growth rate of DRAM, disks
are now 300 to 500 times cheaper per bit than DRAM. This technology is
central to server and warehouse scale storage, and we discuss the trends in
detail in Appendix D.

■ Network technology—Network performance depends both on the perfor-
mance of switches and on the performance of the transmission system. We
discuss the trends in networking in Appendix F.

These rapidly changing technologies shape the design of a computer that,
with speed and technology enhancements, may have a lifetime of three to five
years. Key technologies such as DRAM, Flash, and disk change sufficiently that
the designer must plan for these changes. Indeed, designers often design for the
next technology, knowing that when a product begins shipping in volume that the
next technology may be the most cost-effective or may have performance advan-
tages. Traditionally, cost has decreased at about the rate at which density
increases.

Although technology improves continuously, the impact of these improve-
ments can be in discrete leaps, as a threshold that allows a new capability is
reached. For example, when MOS technology reached a point in the early 1980s
where between 25,000 and 50,000 transistors could fit on a single chip, it became
possible to build a single-chip, 32-bit microprocessor. By the late 1980s, first-level
caches could go on a chip. By eliminating chip crossings within the processor and
between the processor and the cache, a dramatic improvement in cost-performance
and energy-performance was possible. This design was simply infeasible until the
technology reached a certain point. With multicore microprocessors and increasing
numbers of cores each generation, even server computers are increasingly headed
toward a single chip for all processors. Such technology thresholds are not rare and
have a significant impact on a wide variety of design decisions.

Performance Trends: Bandwidth over Latency

As we shall see in Section 1.8, bandwidth or throughput is the total amount of
work done in a given time, such as megabytes per second for a disk transfer. In
contrast, latency or response time is the time between the start and the completion
of an event, such as milliseconds for a disk access. Figure 1.9 plots the relative

1.4 Trends in Technology ■ 19

improvement in bandwidth and latency for technology milestones for micropro-
cessors, memory, networks, and disks. Figure 1.10 describes the examples and
milestones in more detail.

Performance is the primary differentiator for microprocessors and networks,
so they have seen the greatest gains: 10,000–25,000X in bandwidth and 30–80X
in latency. Capacity is generally more important than performance for memory
and disks, so capacity has improved most, yet bandwidth advances of 300–
1200X are still much greater than gains in latency of 6–8X.

Clearly, bandwidth has outpaced latency across these technologies and will
likely continue to do so. A simple rule of thumb is that bandwidth grows by at
least the square of the improvement in latency. Computer designers should plan
accordingly.

Scaling of Transistor Performance and Wires

Integrated circuit processes are characterized by the feature size, which is the
minimum size of a transistor or a wire in either the x or y dimension. Feature
sizes have decreased from 10 microns in 1971 to 0.032 microns in 2011; in fact,
we have switched units, so production in 2011 is referred to as “32 nanometers,”
and 22 nanometer chips are under way. Since the transistor count per square

Figure 1.9 Log–log plot of bandwidth and latency milestones from Figure 1.10 rela-

tive to the first milestone. Note that latency improved 6X to 80X while bandwidth
improved about 300X to 25,000X. Updated from Patterson [2004].

1

10

100

1000

10,000

100,000

Relative latency improvement

R
el

at
iv

e
ba

nd
w

id
th

 im
pr

ov
em

en
t

1 10 100

(Latency improvement
= bandwidth improvement)

Memory

Network

Microprocessor

Disk

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

20 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Microprocessor 16-bit
address/

bus,
microcoded

32-bit
address/

bus,
microcoded

5-stage
pipeline,

on-chip I & D
caches, FPU

2-way
superscalar,
64-bit bus

Out-of-order
3-way

superscalar

Out-of-order
superpipelined,

on-chip L2
cache

Multicore
OOO 4-way
on chip L3

cache, Turbo

Product Intel 80286 Intel 80386 Intel 80486 Intel Pentium Intel Pentium Pro Intel Pentium 4 Intel Core i7

Year 1982 1985 1989 1993 1997 2001 2010

Die size (mm2) 47 43 81 90 308 217 240

Transistors 134,000 275,000 1,200,000 3,100,000 5,500,000 42,000,000 1,170,000,000

Processors/chip 1 1 1 1 1 1 4

Pins 68 132 168 273 387 423 1366

Latency (clocks) 6 5 5 5 10 22 14

Bus width (bits) 16 32 32 64 64 64 196

Clock rate (MHz) 12.5 16 25 66 200 1500 3333

Bandwidth (MIPS) 2 6 25 132 600 4500 50,000

Latency (ns) 320 313 200 76 50 15 4

Memory module DRAM Page mode
DRAM

Fast page
mode DRAM

Fast page
mode DRAM

Synchronous
DRAM

Double data
rate SDRAM

DDR3
SDRAM

Module width (bits) 16 16 32 64 64 64 64

Year 1980 1983 1986 1993 1997 2000 2010

Mbits/DRAM chip 0.06 0.25 1 16 64 256 2048

Die size (mm2) 35 45 70 130 170 204 50

Pins/DRAM chip 16 16 18 20 54 66 134

Bandwidth (MBytes/s) 13 40 160 267 640 1600 16,000

Latency (ns) 225 170 125 75 62 52 37

Local area network Ethernet Fast
Ethernet

Gigabit
Ethernet

10 Gigabit
Ethernet

100 Gigabit
Ethernet

IEEE standard 802.3 803.3u 802.3ab 802.3ac 802.3ba

Year 1978 1995 1999 2003 2010

Bandwidth (Mbits/sec) 10 100 1000 10,000 100,000

Latency (μsec) 3000 500 340 190 100

Hard disk 3600 RPM 5400 RPM 7200 RPM 10,000 RPM 15,000 RPM 15,000 RPM

Product CDC WrenI
94145-36

Seagate
ST41600

Seagate
ST15150

Seagate
ST39102

Seagate
ST373453

Seagate
ST3600057

Year 1983 1990 1994 1998 2003 2010

Capacity (GB) 0.03 1.4 4.3 9.1 73.4 600

Disk form factor 5.25 inch 5.25 inch 3.5 inch 3.5 inch 3.5 inch 3.5 inch

Media diameter 5.25 inch 5.25 inch 3.5 inch 3.0 inch 2.5 inch 2.5 inch

Interface ST-412 SCSI SCSI SCSI SCSI SAS

Bandwidth (MBytes/s) 0.6 4 9 24 86 204

Latency (ms) 48.3 17.1 12.7 8.8 5.7 3.6

Figure 1.10 Performance milestones over 25 to 40 years for microprocessors, memory, networks, and disks. The
microprocessor milestones are several generations of IA-32 processors, going from a 16-bit bus, microcoded
80286 to a 64-bit bus, multicore, out-of-order execution, superpipelined Core i7. Memory module milestones go
from 16-bit-wide, plain DRAM to 64-bit-wide double data rate version 3 synchronous DRAM. Ethernet advanced from
10 Mbits/sec to 100 Gbits/sec. Disk milestones are based on rotation speed, improving from 3600 RPM to 15,000
RPM. Each case is best-case bandwidth, and latency is the time for a simple operation assuming no contention.
Updated from Patterson [2004].

1.5 Trends in Power and Energy in Integrated Circuits ■ 21

millimeter of silicon is determined by the surface area of a transistor, the density
of transistors increases quadratically with a linear decrease in feature size.

The increase in transistor performance, however, is more complex. As feature
sizes shrink, devices shrink quadratically in the horizontal dimension and also
shrink in the vertical dimension. The shrink in the vertical dimension requires a
reduction in operating voltage to maintain correct operation and reliability of the
transistors. This combination of scaling factors leads to a complex interrelation-
ship between transistor performance and process feature size. To a first approxi-
mation, transistor performance improves linearly with decreasing feature size.

The fact that transistor count improves quadratically with a linear improve-
ment in transistor performance is both the challenge and the opportunity for
which computer architects were created! In the early days of microprocessors,
the higher rate of improvement in density was used to move quickly from 4-bit,
to 8-bit, to 16-bit, to 32-bit, to 64-bit microprocessors. More recently, density
improvements have supported the introduction of multiple processors per chip,
wider SIMD units, and many of the innovations in speculative execution and
caches found in Chapters 2, 3, 4, and 5.

Although transistors generally improve in performance with decreased fea-
ture size, wires in an integrated circuit do not. In particular, the signal delay for a
wire increases in proportion to the product of its resistance and capacitance. Of
course, as feature size shrinks, wires get shorter, but the resistance and capaci-
tance per unit length get worse. This relationship is complex, since both resis-
tance and capacitance depend on detailed aspects of the process, the geometry of
a wire, the loading on a wire, and even the adjacency to other structures. There
are occasional process enhancements, such as the introduction of copper, which
provide one-time improvements in wire delay.

In general, however, wire delay scales poorly compared to transistor perfor-
mance, creating additional challenges for the designer. In the past few years, in
addition to the power dissipation limit, wire delay has become a major design
limitation for large integrated circuits and is often more critical than transistor
switching delay. Larger and larger fractions of the clock cycle have been con-
sumed by the propagation delay of signals on wires, but power now plays an even
greater role than wire delay.

Today, power is the biggest challenge facing the computer designer for nearly
every class of computer. First, power must be brought in and distributed around
the chip, and modern microprocessors use hundreds of pins and multiple inter-
connect layers just for power and ground. Second, power is dissipated as heat and
must be removed.

Power and Energy: A Systems Perspective

How should a system architect or a user think about performance, power, and
energy? From the viewpoint of a system designer, there are three primary concerns.

1.5 Trends in Power and Energy in Integrated Circuits

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

22 ■ Chapter One Fundamentals of Quantitative Design and Analysis

First, what is the maximum power a processor ever requires? Meeting this
demand can be important to ensuring correct operation. For example, if a proces-
sor attempts to draw more power than a power supply system can provide (by
drawing more current than the system can supply), the result is typically a volt-
age drop, which can cause the device to malfunction. Modern processors can
vary widely in power consumption with high peak currents; hence, they provide
voltage indexing methods that allow the processor to slow down and regulate
voltage within a wider margin. Obviously, doing so decreases performance.

Second, what is the sustained power consumption? This metric is widely
called the thermal design power (TDP), since it determines the cooling require-
ment. TDP is neither peak power, which is often 1.5 times higher, nor is it the
actual average power that will be consumed during a given computation, which is
likely to be lower still. A typical power supply for a system is usually sized to
exceed the TDP, and a cooling system is usually designed to match or exceed
TDP. Failure to provide adequate cooling will allow the junction temperature in
the processor to exceed its maximum value, resulting in device failure and possi-
bly permanent damage. Modern processors provide two features to assist in man-
aging heat, since the maximum power (and hence heat and temperature rise) can
exceed the long-term average specified by the TDP. First, as the thermal temper-
ature approaches the junction temperature limit, circuitry reduces the clock rate,
thereby reducing power. Should this technique not be successful, a second ther-
mal overload trip is activated to power down the chip.

The third factor that designers and users need to consider is energy and
energy efficiency. Recall that power is simply energy per unit time: 1 watt =
1 joule per second. Which metric is the right one for comparing processors:
energy or power? In general, energy is always a better metric because it is tied to
a specific task and the time required for that task. In particular, the energy to exe-
cute a workload is equal to the average power times the execution time for the
workload.

Thus, if we want to know which of two processors is more efficient for a given
task, we should compare energy consumption (not power) for executing the task.
For example, processor A may have a 20% higher average power consumption
than processor B, but if A executes the task in only 70% of the time needed by B,
its energy consumption will be 1.2 × 0.7 = 0.84, which is clearly better.

One might argue that in a large server or cloud, it is sufficient to consider
average power, since the workload is often assumed to be infinite, but this is mis-
leading. If our cloud were populated with processor Bs rather than As, then the
cloud would do less work for the same amount of energy expended. Using energy
to compare the alternatives avoids this pitfall. Whenever we have a fixed work-
load, whether for a warehouse-size cloud or a smartphone, comparing energy will
be the right way to compare processor alternatives, as the electricity bill for the
cloud and the battery lifetime for the smartphone are both determined by the
energy consumed.

When is power consumption a useful measure? The primary legitimate use is
as a constraint: for example, a chip might be limited to 100 watts. It can be used

1.5 Trends in Power and Energy in Integrated Circuits ■ 23

as a metric if the workload is fixed, but then it’s just a variation of the true metric
of energy per task.

Energy and Power within a Microprocessor

For CMOS chips, the traditional primary energy consumption has been in switch-
ing transistors, also called dynamic energy. The energy required per transistor is
proportional to the product of the capacitive load driven by the transistor and the
square of the voltage:

This equation is the energy of pulse of the logic transition of 0→1→0 or 1→0→1.
The energy of a single transition (0→1 or 1→0) is then:

The power required per transistor is just the product of the energy of a transition
multiplied by the frequency of transitions:

For a fixed task, slowing clock rate reduces power, but not energy.
Clearly, dynamic power and energy are greatly reduced by lowering the

voltage, so voltages have dropped from 5V to just under 1V in 20 years. The
capacitive load is a function of the number of transistors connected to an output
and the technology, which determines the capacitance of the wires and the tran-
sistors.

Example Some microprocessors today are designed to have adjustable voltage, so a 15%
reduction in voltage may result in a 15% reduction in frequency. What would be
the impact on dynamic energy and on dynamic power?

Answer Since the capacitance is unchanged, the answer for energy is the ratio of the volt-
ages since the capacitance is unchanged:

thereby reducing energy to about 72% of the original. For power, we add the ratio
of the frequencies

shrinking power to about 61% of the original.

Energydynamic Capacitive load Voltage
2×∝

Energydynamic 1 2⁄ Capacitive load Voltage
2××∝

Powerdynamic 1 2⁄ Capacitive load× Voltage
2

Frequency switched××∝

Energynew

Energyold

Voltage 0.85×()2

Voltage
2

--- 0.85
2

0.72= = =

Powernew

Powerold
----------------------- 0.72

Frequency switched 0.85×()
Frequency switched

---× 0.61= =

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

24 ■ Chapter One Fundamentals of Quantitative Design and Analysis

As we move from one process to the next, the increase in the number of
transistors switching and the frequency with which they switch dominate the
decrease in load capacitance and voltage, leading to an overall growth in power
consumption and energy. The first microprocessors consumed less than a watt
and the first 32-bit microprocessors (like the Intel 80386) used about 2 watts,
while a 3.3 GHz Intel Core i7 consumes 130 watts. Given that this heat must be
dissipated from a chip that is about 1.5 cm on a side, we have reached the limit
of what can be cooled by air.

Given the equation above, you would expect clock frequency growth to
slow down if we can’t reduce voltage or increase power per chip. Figure 1.11
shows that this has indeed been the case since 2003, even for the microproces-
sors in Figure 1.1 that were the highest performers each year. Note that this
period of flat clock rates corresponds to the period of slow performance
improvement range in Figure 1.1.

Figure 1.11 Growth in clock rate of microprocessors in Figure 1.1. Between 1978 and 1986, the clock rate improved
less than 15% per year while performance improved by 25% per year. During the “renaissance period” of 52% perfor-
mance improvement per year between 1986 and 2003, clock rates shot up almost 40% per year. Since then, the clock
rate has been nearly flat, growing at less than 1% per year, while single processor performance improved at less than
22% per year.

1

10

100

1000

10,000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

C
lo

ck
 r

at
e

(M
H

z)

Intel Pentium4 Xeon
3200 MHz in 2003

Intel Nehalem Xeon
3330 MHz in 2010

Intel Pentium III
1000 MHz in 2000

Digital Alpha 21164A
500 MHz in 1996

Digital Alpha 21064
150 MHz in 1992

MIPS M2000
25 MHz in 1989

Digital VAX-11/780
5 MHz in 1978

Sun-4 SPARC
16.7 MHz in 1986

15%/year

40%/year

1%/year

1.5 Trends in Power and Energy in Integrated Circuits ■ 25

Distributing the power, removing the heat, and preventing hot spots have
become increasingly difficult challenges. Power is now the major constraint to
using transistors; in the past, it was raw silicon area. Hence, modern micropro-
cessors offer many techniques to try to improve energy efficiency despite flat
clock rates and constant supply voltages:

1. Do nothing well. Most microprocessors today turn off the clock of inactive
modules to save energy and dynamic power. For example, if no floating-point
instructions are executing, the clock of the floating-point unit is disabled. If
some cores are idle, their clocks are stopped.

2. Dynamic Voltage-Frequency Scaling (DVFS). The second technique comes
directly from the formulas above. Personal mobile devices, laptops, and even
servers have periods of low activity where there is no need to operate at the
highest clock frequency and voltages. Modern microprocessors typically
offer a few clock frequencies and voltages in which to operate that use lower
power and energy. Figure 1.12 plots the potential power savings via DVFS
for a server as the workload shrinks for three different clock rates: 2.4 GHz,
1.8 GHz, and 1 GHz. The overall server power savings is about 10% to 15%
for each of the two steps.

3. Design for typical case. Given that PMDs and laptops are often idle, mem-
ory and storage offer low power modes to save energy. For example,
DRAMs have a series of increasingly lower power modes to extend battery
life in PMDs and laptops, and there have been proposals for disks that have a
mode that spins at lower rates when idle to save power. Alas, you cannot
access DRAMs or disks in these modes, so you must return to fully active
mode to read or write, no matter how low the access rate. As mentioned

Figure 1.12 Energy savings for a server using an AMD Opteron microprocessor,

8 GB of DRAM, and one ATA disk. At 1.8 GHz, the server can only handle up to two-
thirds of the workload without causing service level violations, and, at 1.0 GHz, it can
only safely handle one-third of the workload. (Figure 5.11 in Barroso and Hölzle [2009].)

100

P
ow

er
 (

%
 o

f p
ea

k)
 80

60

40

20

0

1 GHz

DVS savings (%)

1.8 GHz
2.4 GHz

Idle 7 14 21 29 36 43 50 57 64 71 79 86 93 100

Compute load (%)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

26 ■ Chapter One Fundamentals of Quantitative Design and Analysis

above, microprocessors for PCs have been designed instead for a more
typical case of heavy use at high operating temperatures, relying on on-chip
temperature sensors to detect when activity should be reduced automati-
cally to avoid overheating. This “emergency slowdown” allows manufac-
turers to design for a more typical case and then rely on this safety
mechanism if someone really does run programs that consume much more
power than is typical.

4. Overclocking. Intel started offering Turbo mode in 2008, where the chip
decides that it is safe to run at a higher clock rate for a short time possibly on
just a few cores until temperature starts to rise. For example, the 3.3 GHz
Core i7 can run in short bursts for 3.6 GHz. Indeed, the highest-performing
microprocessors each year since 2008 in Figure 1.1 have all offered tempo-
rary overclocking of about 10% over the nominal clock rate. For single
threaded code, these microprocessors can turn off all cores but one and run it
at an even higher clock rate. Note that while the operating system can turn off
Turbo mode there is no notification once it is enabled, so the programmers
may be surprised to see their programs vary in performance due to room
temperature!

Although dynamic power is traditionally thought of as the primary source of
power dissipation in CMOS, static power is becoming an important issue because
leakage current flows even when a transistor is off:

That is, static power is proportional to number of devices.
Thus, increasing the number of transistors increases power even if they are

idle, and leakage current increases in processors with smaller transistor sizes.
As a result, very low power systems are even turning off the power supply
(power gating) to inactive modules to control loss due to leakage. In 2011, the
goal for leakage is 25% of the total power consumption, with leakage in high-
performance designs sometimes far exceeding that goal. Leakage can be as high
as 50% for such chips, in part because of the large SRAM caches that need power
to maintain the storage values. (The S in SRAM is for static.) The only hope to
stop leakage is to turn off power to subsets of the chips.

Finally, because the processor is just a portion of the whole energy cost of a
system, it can make sense to use a faster, less energy-efficient processor to
allow the rest of the system to go into a sleep mode. This strategy is known as
race-to-halt.

The importance of power and energy has increased the scrutiny on the effi-
ciency of an innovation, so the primary evaluation now is tasks per joule or per-
formance per watt as opposed to performance per mm2 of silicon. This new
metric affects approaches to parallelism, as we shall see in Chapters 4 and 5.

Powerstatic Currentstatic Voltage×∝

1.6 Trends in Cost ■ 27

Although costs tend to be less important in some computer designs—specifically
supercomputers—cost-sensitive designs are of growing significance. Indeed, in
the past 30 years, the use of technology improvements to lower cost, as well as
increase performance, has been a major theme in the computer industry.

Textbooks often ignore the cost half of cost-performance because costs
change, thereby dating books, and because the issues are subtle and differ across
industry segments. Yet, an understanding of cost and its factors is essential for
computer architects to make intelligent decisions about whether or not a new
feature should be included in designs where cost is an issue. (Imagine architects
designing skyscrapers without any information on costs of steel beams and
concrete!)

This section discusses the major factors that influence the cost of a computer
and how these factors are changing over time.

The Impact of Time, Volume, and Commoditization

The cost of a manufactured computer component decreases over time even with-
out major improvements in the basic implementation technology. The underlying
principle that drives costs down is the learning curve—manufacturing costs
decrease over time. The learning curve itself is best measured by change in
yield—the percentage of manufactured devices that survives the testing proce-
dure. Whether it is a chip, a board, or a system, designs that have twice the yield
will have half the cost.

Understanding how the learning curve improves yield is critical to projecting
costs over a product’s life. One example is that the price per megabyte of DRAM
has dropped over the long term. Since DRAMs tend to be priced in close relation-
ship to cost—with the exception of periods when there is a shortage or an
oversupply—price and cost of DRAM track closely.

Microprocessor prices also drop over time, but, because they are less stan-
dardized than DRAMs, the relationship between price and cost is more complex.
In a period of significant competition, price tends to track cost closely, although
microprocessor vendors probably rarely sell at a loss.

Volume is a second key factor in determining cost. Increasing volumes affect
cost in several ways. First, they decrease the time needed to get down the learn-
ing curve, which is partly proportional to the number of systems (or chips) manu-
factured. Second, volume decreases cost, since it increases purchasing and
manufacturing efficiency. As a rule of thumb, some designers have estimated that
cost decreases about 10% for each doubling of volume. Moreover, volume
decreases the amount of development cost that must be amortized by each com-
puter, thus allowing cost and selling price to be closer.

Commodities are products that are sold by multiple vendors in large volumes
and are essentially identical. Virtually all the products sold on the shelves of gro-
cery stores are commodities, as are standard DRAMs, Flash memory, disks,

1.6 Trends in Cost

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

28 ■ Chapter One Fundamentals of Quantitative Design and Analysis

monitors, and keyboards. In the past 25 years, much of the personal computer
industry has become a commodity business focused on building desktop and lap-
top computers running Microsoft Windows.

Because many vendors ship virtually identical products, the market is highly
competitive. Of course, this competition decreases the gap between cost and sell-
ing price, but it also decreases cost. Reductions occur because a commodity mar-
ket has both volume and a clear product definition, which allows multiple
suppliers to compete in building components for the commodity product. As a
result, the overall product cost is lower because of the competition among the
suppliers of the components and the volume efficiencies the suppliers can
achieve. This rivalry has led to the low end of the computer business being able
to achieve better price-performance than other sectors and yielded greater growth
at the low end, although with very limited profits (as is typical in any commodity
business).

Cost of an Integrated Circuit

Why would a computer architecture book have a section on integrated circuit
costs? In an increasingly competitive computer marketplace where standard
parts—disks, Flash memory, DRAMs, and so on—are becoming a significant
portion of any system’s cost, integrated circuit costs are becoming a greater por-
tion of the cost that varies between computers, especially in the high-volume,
cost-sensitive portion of the market. Indeed, with personal mobile devices’
increasing reliance of whole systems on a chip (SOC), the cost of the integrated
circuits is much of the cost of the PMD. Thus, computer designers must under-
stand the costs of chips to understand the costs of current computers.

Although the costs of integrated circuits have dropped exponentially, the
basic process of silicon manufacture is unchanged: A wafer is still tested and
chopped into dies that are packaged (see Figures 1.13, 1.14, and 1.15). Thus, the
cost of a packaged integrated circuit is

Cost of integrated circuit =

In this section, we focus on the cost of dies, summarizing the key issues in testing
and packaging at the end.

Learning how to predict the number of good chips per wafer requires first
learning how many dies fit on a wafer and then learning how to predict the per-
centage of those that will work. From there it is simple to predict cost:

The most interesting feature of this first term of the chip cost equation is its sensi-
tivity to die size, shown below.

Cost of die + Cost of testing die + Cost of packaging and final test

Final test yield

Cost of die
Cost of wafer

Dies per wafer Die yield×
---=

1.6 Trends in Cost ■ 29

Figure 1.13 Photograph of an Intel Core i7 microprocessor die, which is evaluated in

Chapters 2 through 5. The dimensions are 18.9 mm by 13.6 mm (257 mm2) in a 45 nm
process. (Courtesy Intel.)

Figure 1.14 Floorplan of Core i7 die in Figure 1.13 on left with close-up of floorplan of second core on right.

Memory controller
Out-of-
order
scheduling
&
instruction
commit

Execution
units

Instruction
decode,
register
renaming,
&
microcode

L1 inst
cache
& inst
fetch

Branch
pre-
diction

Virtual
memory

L2 cache
&
interrupt
servicing

Memory
ordering &
execution

L1
data
cache

M
i
s
c

M
i
s
c

Q
u
e
u
e

M
e
m
o
r
y

Core Core Core

Shared L3
cache

Core

Q
P
I

Q
P
I

 I/O I/O

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

30 ■ Chapter One Fundamentals of Quantitative Design and Analysis

The number of dies per wafer is approximately the area of the wafer divided
by the area of the die. It can be more accurately estimated by

The first term is the ratio of wafer area (πr2) to die area. The second compensates
for the “square peg in a round hole” problem—rectangular dies near the periph-
ery of round wafers. Dividing the circumference (πd) by the diagonal of a square
die is approximately the number of dies along the edge.

Figure 1.15 This 300 mm wafer contains 280 full Sandy Bridge dies, each 20.7 by
10.5 mm in a 32 nm process. (Sandy Bridge is Intel’s successor to Nehalem used in the
Core i7.) At 216 mm2, the formula for dies per wafer estimates 282. (Courtesy Intel.)

Dies per wafer
π Wafer diameter/2()2×

Die area
---= –

π Wafer diameter×
2 Die area×

1.6 Trends in Cost ■ 31

Example Find the number of dies per 300 mm (30 cm) wafer for a die that is 1.5 cm on a
side and for a die that is 1.0 cm on a side.

Answer When die area is 2.25 cm2:

Since the area of the larger die is 2.25 times bigger, there are roughly 2.25 as
many smaller dies per wafer:

However, this formula only gives the maximum number of dies per wafer.
The critical question is: What is the fraction of good dies on a wafer, or the die
yield? A simple model of integrated circuit yield, which assumes that defects are
randomly distributed over the wafer and that yield is inversely proportional to the
complexity of the fabrication process, leads to the following:

This Bose–Einstein formula is an empirical model developed by looking at the
yield of many manufacturing lines [Sydow 2006]. Wafer yield accounts for
wafers that are completely bad and so need not be tested. For simplicity, we’ll
just assume the wafer yield is 100%. Defects per unit area is a measure of the ran-
dom manufacturing defects that occur. In 2010, the value was typically 0.1 to 0.3
defects per square inch, or 0.016 to 0.057 defects per square centimeter, for a
40 nm process, as it depends on the maturity of the process (recall the learning
curve, mentioned earlier). Finally, N is a parameter called the process-complexity
factor, a measure of manufacturing difficulty. For 40 nm processes in 2010, N
ranged from 11.5 to 15.5.

Example Find the die yield for dies that are 1.5 cm on a side and 1.0 cm on a side, assum-
ing a defect density of 0.031 per cm2 and N is 13.5.

Answer The total die areas are 2.25 cm2 and 1.00 cm2. For the larger die, the yield is

For the smaller die, the yield is

That is, less than half of all the large dies are good but two-thirds of the small
dies are good.

Dies per wafer
π 30 2⁄()2×

2.25
------------------------------= –

π 30×
2 2.25×

706.9
2.25

------------- –
94.2
2.12
---------- 270= =

Dies per wafer
π 30 2⁄()2×

1.00
------------------------------= –

π 30×
2 1.00×

706.9
1.00

------------- –
94.2
1.41
---------- 640= =

Die yield Wafer yield 1 1 Defects per unit area Die area×+()⁄ N×=

Die yield 1 1 0.031 2.25×+()⁄ 13.5
0.40= =

Die yield 1 1 0.031 1.00×+()⁄ 13.5
0.66= =

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

32 ■ Chapter One Fundamentals of Quantitative Design and Analysis

The bottom line is the number of good dies per wafer, which comes from
multiplying dies per wafer by die yield to incorporate the effects of defects. The
examples above predict about 109 good 2.25 cm2 dies from the 300 mm wafer
and 424 good 1.00 cm2 dies. Many microprocessors fall between these two sizes.
Low-end embedded 32-bit processors are sometimes as small as 0.10 cm2, and
processors used for embedded control (in printers, microwaves, and so on) are
often less than 0.04 cm2.

Given the tremendous price pressures on commodity products such as
DRAM and SRAM, designers have included redundancy as a way to raise yield.
For a number of years, DRAMs have regularly included some redundant memory
cells, so that a certain number of flaws can be accommodated. Designers have
used similar techniques in both standard SRAMs and in large SRAM arrays used
for caches within microprocessors. Obviously, the presence of redundant entries
can be used to boost the yield significantly.

Processing of a 300 mm (12-inch) diameter wafer in a leading-edge technol-
ogy cost between $5000 and $6000 in 2010. Assuming a processed wafer cost of
$5500, the cost of the 1.00 cm2 die would be around $13, but the cost per die of
the 2.25 cm2 die would be about $51, or almost four times the cost for a die that
is a little over twice as large.

What should a computer designer remember about chip costs? The manufac-
turing process dictates the wafer cost, wafer yield, and defects per unit area, so
the sole control of the designer is die area. In practice, because the number of
defects per unit area is small, the number of good dies per wafer, and hence the
cost per die, grows roughly as the square of the die area. The computer designer
affects die size, and hence cost, both by what functions are included on or
excluded from the die and by the number of I/O pins.

Before we have a part that is ready for use in a computer, the die must be
tested (to separate the good dies from the bad), packaged, and tested again after
packaging. These steps all add significant costs.

The above analysis has focused on the variable costs of producing a func-
tional die, which is appropriate for high-volume integrated circuits. There is,
however, one very important part of the fixed costs that can significantly affect
the cost of an integrated circuit for low volumes (less than 1 million parts),
namely, the cost of a mask set. Each step in the integrated circuit process requires
a separate mask. Thus, for modern high-density fabrication processes with four to
six metal layers, mask costs exceed $1M. Obviously, this large fixed cost affects
the cost of prototyping and debugging runs and, for small-volume production,
can be a significant part of the production cost. Since mask costs are likely to
continue to increase, designers may incorporate reconfigurable logic to enhance
the flexibility of a part or choose to use gate arrays (which have fewer custom
mask levels) and thus reduce the cost implications of masks.

Cost versus Price

With the commoditization of computers, the margin between the cost to manu-
facture a product and the price the product sells for has been shrinking. Those

1.7 Dependability ■ 33

margins pay for a company’s research and development (R&D), marketing, sales,
manufacturing equipment maintenance, building rental, cost of financing, pretax
profits, and taxes. Many engineers are surprised to find that most companies
spend only 4% (in the commodity PC business) to 12% (in the high-end server
business) of their income on R&D, which includes all engineering.

Cost of Manufacturing versus Cost of Operation

For the first four editions of this book, cost meant the cost to build a computer
and price meant price to purchase a computer. With the advent of warehouse-
scale computers, which contain tens of thousands of servers, the cost to operate
the computers is significant in addition to the cost of purchase.

As Chapter 6 shows, the amortized purchase price of servers and networks is
just over 60% of the monthly cost to operate a warehouse-scale computer, assum-
ing a short lifetime of the IT equipment of 3 to 4 years. About 30% of the
monthly operational costs are for power use and the amortized infrastructure to
distribute power and to cool the IT equipment, despite this infrastructure being
amortized over 10 years. Thus, to lower operational costs in a warehouse-scale
computer, computer architects need to use energy efficiently.

Historically, integrated circuits were one of the most reliable components of a
computer. Although their pins may be vulnerable, and faults may occur over
communication channels, the error rate inside the chip was very low. That con-
ventional wisdom is changing as we head to feature sizes of 32 nm and smaller,
as both transient faults and permanent faults will become more commonplace, so
architects must design systems to cope with these challenges. This section gives a
quick overview of the issues in dependability, leaving the official definition of
the terms and approaches to Section D.3 in Appendix D.

Computers are designed and constructed at different layers of abstraction. We
can descend recursively down through a computer seeing components enlarge
themselves to full subsystems until we run into individual transistors. Although
some faults are widespread, like the loss of power, many can be limited to a sin-
gle component in a module. Thus, utter failure of a module at one level may be
considered merely a component error in a higher-level module. This distinction is
helpful in trying to find ways to build dependable computers.

One difficult question is deciding when a system is operating properly. This
philosophical point became concrete with the popularity of Internet services.
Infrastructure providers started offering service level agreements (SLAs) or
service level objectives (SLOs) to guarantee that their networking or power ser-
vice would be dependable. For example, they would pay the customer a penalty
if they did not meet an agreement more than some hours per month. Thus, an
SLA could be used to decide whether the system was up or down.

1.7 Dependability

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

34 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Systems alternate between two states of service with respect to an SLA:

1. Service accomplishment, where the service is delivered as specified

2. Service interruption, where the delivered service is different from the SLA

Transitions between these two states are caused by failures (from state 1 to
state 2) or restorations (2 to 1). Quantifying these transitions leads to the two
main measures of dependability:

■ Module reliability is a measure of the continuous service accomplishment (or,
equivalently, of the time to failure) from a reference initial instant. Hence, the
mean time to failure (MTTF) is a reliability measure. The reciprocal of
MTTF is a rate of failures, generally reported as failures per billion hours of
operation, or FIT (for failures in time). Thus, an MTTF of 1,000,000 hours
equals 109/106 or 1000 FIT. Service interruption is measured as mean time to
repair (MTTR). Mean time between failures (MTBF) is simply the sum of
MTTF + MTTR. Although MTBF is widely used, MTTF is often the more
appropriate term. If a collection of modules has exponentially distributed
lifetimes—meaning that the age of a module is not important in probability of
failure—the overall failure rate of the collection is the sum of the failure rates
of the modules.

■ Module availability is a measure of the service accomplishment with respect
to the alternation between the two states of accomplishment and interruption.
For nonredundant systems with repair, module availability is

Note that reliability and availability are now quantifiable metrics, rather than
synonyms for dependability. From these definitions, we can estimate reliability
of a system quantitatively if we make some assumptions about the reliability of
components and that failures are independent.

Example Assume a disk subsystem with the following components and MTTF:

■ 10 disks, each rated at 1,000,000-hour MTTF

■ 1 ATA controller, 500,000-hour MTTF

■ 1 power supply, 200,000-hour MTTF

■ 1 fan, 200,000-hour MTTF

■ 1 ATA cable, 1,000,000-hour MTTF

Using the simplifying assumptions that the lifetimes are exponentially distributed
and that failures are independent, compute the MTTF of the system as a whole.

Module availability
MTTF

MTTF MTTR+()
---=

1.7 Dependability ■ 35

Answer The sum of the failure rates is

or 23,000 FIT. The MTTF for the system is just the inverse of the failure rate:

or just under 5 years.

The primary way to cope with failure is redundancy, either in time (repeat the
operation to see if it still is erroneous) or in resources (have other components to
take over from the one that failed). Once the component is replaced and the sys-
tem fully repaired, the dependability of the system is assumed to be as good as
new. Let’s quantify the benefits of redundancy with an example.

Example Disk subsystems often have redundant power supplies to improve dependability.
Using the components and MTTFs from above, calculate the reliability of
redundant power supplies. Assume one power supply is sufficient to run the disk
subsystem and that we are adding one redundant power supply.

Answer We need a formula to show what to expect when we can tolerate a failure and still
provide service. To simplify the calculations, we assume that the lifetimes of the
components are exponentially distributed and that there is no dependency
between the component failures. MTTF for our redundant power supplies is the
mean time until one power supply fails divided by the chance that the other will
fail before the first one is replaced. Thus, if the chance of a second failure before
repair is small, then the MTTF of the pair is large.

Since we have two power supplies and independent failures, the mean time
until one disk fails is MTTFpower supply/2. A good approximation of the probability
of a second failure is MTTR over the mean time until the other power supply fails.
Hence, a reasonable approximation for a redundant pair of power supplies is

Using the MTTF numbers above, if we assume it takes on average 24 hours for a
human operator to notice that a power supply has failed and replace it, the reli-
ability of the fault tolerant pair of power supplies is

making the pair about 4150 times more reliable than a single power supply.

Failure ratesystem 10
1

1,000,000

1
500,000
-------------------+× 1

200,000

1
200,000

1
1,000,000
------------------------+ + +=

10 2 5 5 1+ + + +
1,000,000 hours

23

1,000,000

23,000
1,000,000,000 hours
--= ==

MTTFsystem
1

Failure ratesystem
--

1,000,000,000 hours
23,000

-- 43,500 hours===

MTTFpower supply pair

MTTFpower supply 2⁄
MTTRpower supply

MTTFpower supply
--

--
MTTFpower supply

2
2⁄

MTTRpower supply
--

MTTFpower supply
2

2 MTTRpower supply×
---= = =

MTTFpower supply pair

MTTFpower supply
2

2 MTTRpower supply×

200,000
2

2 24×
---------------------- 830,000,000≅= =

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

36 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Having quantified the cost, power, and dependability of computer technology, we
are ready to quantify performance.

When we say one computer is faster than another is, what do we mean? The
user of a desktop computer may say a computer is faster when a program runs
in less time, while an Amazon.com administrator may say a computer is faster
when it completes more transactions per hour. The computer user is interested
in reducing response time—the time between the start and the completion of an
event—also referred to as execution time. The operator of a warehouse-scale
computer may be interested in increasing throughput—the total amount of
work done in a given time.

In comparing design alternatives, we often want to relate the performance of
two different computers, say, X and Y. The phrase “X is faster than Y” is used
here to mean that the response time or execution time is lower on X than on Y for
the given task. In particular, “X is n times faster than Y” will mean:

 =

Since execution time is the reciprocal of performance, the following relationship
holds:

n = = =

The phrase “the throughput of X is 1.3 times higher than Y” signifies here that
the number of tasks completed per unit time on computer X is 1.3 times the num-
ber completed on Y.

Unfortunately, time is not always the metric quoted in comparing the perfor-
mance of computers. Our position is that the only consistent and reliable measure
of performance is the execution time of real programs, and that all proposed
alternatives to time as the metric or to real programs as the items measured have
eventually led to misleading claims or even mistakes in computer design.

Even execution time can be defined in different ways depending on what we
count. The most straightforward definition of time is called wall-clock time,
response time, or elapsed time, which is the latency to complete a task, including
disk accesses, memory accesses, input/output activities, operating system over-
head—everything. With multiprogramming, the processor works on another pro-
gram while waiting for I/O and may not necessarily minimize the elapsed time of
one program. Hence, we need a term to consider this activity. CPU time recog-
nizes this distinction and means the time the processor is computing, not includ-
ing the time waiting for I/O or running other programs. (Clearly, the response
time seen by the user is the elapsed time of the program, not the CPU time.)

1.8 Measuring, Reporting, and Summarizing Performance

Execution timeY

Execution timeX
-- n

Execution timeY

Execution timeX
--

1
PerformanceY

1
PerformanceX

PerformanceX

PerformanceY

1.8 Measuring, Reporting, and Summarizing Performance ■ 37

Computer users who routinely run the same programs would be the perfect
candidates to evaluate a new computer. To evaluate a new system the users would
simply compare the execution time of their workloads—the mixture of programs
and operating system commands that users run on a computer. Few are in this
happy situation, however. Most must rely on other methods to evaluate comput-
ers, and often other evaluators, hoping that these methods will predict per-
formance for their usage of the new computer.

Benchmarks

The best choice of benchmarks to measure performance is real applications, such
as Google Goggles from Section 1.1. Attempts at running programs that are
much simpler than a real application have led to performance pitfalls. Examples
include:

■ Kernels, which are small, key pieces of real applications

■ Toy programs, which are 100-line programs from beginning programming
assignments, such as quicksort

■ Synthetic benchmarks, which are fake programs invented to try to match the
profile and behavior of real applications, such as Dhrystone

All three are discredited today, usually because the compiler writer and architect
can conspire to make the computer appear faster on these stand-in programs than
on real applications. Depressingly for your authors—who dropped the fallacy
about using synthetic programs to characterize performance in the fourth edition
of this book since we thought computer architects agreed it was disreputable—
the synthetic program Dhrystone is still the most widely quoted benchmark for
embedded processors!

Another issue is the conditions under which the benchmarks are run. One
way to improve the performance of a benchmark has been with benchmark-
specific flags; these flags often caused transformations that would be illegal on
many programs or would slow down performance on others. To restrict this pro-
cess and increase the significance of the results, benchmark developers often
require the vendor to use one compiler and one set of flags for all the programs in
the same language (C++ or C). In addition to the question of compiler flags,
another question is whether source code modifications are allowed. There are
three different approaches to addressing this question:

1. No source code modifications are allowed.

2. Source code modifications are allowed but are essentially impossible. For
example, database benchmarks rely on standard database programs that are
tens of millions of lines of code. The database companies are highly unlikely
to make changes to enhance the performance for one particular computer.

3. Source modifications are allowed, as long as the modified version produces
the same output.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

38 ■ Chapter One Fundamentals of Quantitative Design and Analysis

The key issue that benchmark designers face in deciding to allow modification of
the source is whether such modifications will reflect real practice and provide
useful insight to users, or whether such modifications simply reduce the accuracy
of the benchmarks as predictors of real performance.

To overcome the danger of placing too many eggs in one basket, collections
of benchmark applications, called benchmark suites, are a popular measure of
performance of processors with a variety of applications. Of course, such suites
are only as good as the constituent individual benchmarks. Nonetheless, a key
advantage of such suites is that the weakness of any one benchmark is lessened
by the presence of the other benchmarks. The goal of a benchmark suite is that it
will characterize the relative performance of two computers, particularly for pro-
grams not in the suite that customers are likely to run.

A cautionary example is the Electronic Design News Embedded Micropro-
cessor Benchmark Consortium (or EEMBC, pronounced “embassy”) bench-
marks. It is a set of 41 kernels used to predict performance of different embedded
applications: automotive/industrial, consumer, networking, office automation,
and telecommunications. EEMBC reports unmodified performance and “full
fury” performance, where almost anything goes. Because these benchmarks use
kernels, and because of the reporting options, EEMBC does not have the reputa-
tion of being a good predictor of relative performance of different embedded
computers in the field. This lack of success is why Dhrystone, which EEMBC
was trying to replace, is still used.

One of the most successful attempts to create standardized benchmark appli-
cation suites has been the SPEC (Standard Performance Evaluation Corporation),
which had its roots in efforts in the late 1980s to deliver better benchmarks for
workstations. Just as the computer industry has evolved over time, so has the
need for different benchmark suites, and there are now SPEC benchmarks to
cover many application classes. All the SPEC benchmark suites and their
reported results are found at www.spec.org.

Although we focus our discussion on the SPEC benchmarks in many of the
following sections, many benchmarks have also been developed for PCs running
the Windows operating system.

Desktop Benchmarks

Desktop benchmarks divide into two broad classes: processor-intensive bench-
marks and graphics-intensive benchmarks, although many graphics benchmarks
include intensive processor activity. SPEC originally created a benchmark set
focusing on processor performance (initially called SPEC89), which has evolved
into its fifth generation: SPEC CPU2006, which follows SPEC2000, SPEC95
SPEC92, and SPEC89. SPEC CPU2006 consists of a set of 12 integer bench-
marks (CINT2006) and 17 floating-point benchmarks (CFP2006). Figure 1.16
describes the current SPEC benchmarks and their ancestry.

SPEC benchmarks are real programs modified to be portable and to minimize
the effect of I/O on performance. The integer benchmarks vary from part of a C

http://www.spec.org

1.8 Measuring, Reporting, and Summarizing Performance ■ 39

Figure 1.16 SPEC2006 programs and the evolution of the SPEC benchmarks over time, with integer programs

above the line and floating-point programs below the line. Of the 12 SPEC2006 integer programs, 9 are written in
C, and the rest in C++. For the floating-point programs, the split is 6 in Fortran, 4 in C++, 3 in C, and 4 in mixed C and
Fortran. The figure shows all 70 of the programs in the 1989, 1992, 1995, 2000, and 2006 releases. The benchmark
descriptions on the left are for SPEC2006 only and do not apply to earlier versions. Programs in the same row from
different generations of SPEC are generally not related; for example, fpppp is not a CFD code like bwaves. Gcc is the
senior citizen of the group. Only 3 integer programs and 3 floating-point programs survived three or more
generations. Note that all the floating-point programs are new for SPEC2006. Although a few are carried over from
generation to generation, the version of the program changes and either the input or the size of the benchmark is
often changed to increase its running time and to avoid perturbation in measurement or domination of the execu-
tion time by some factor other than CPU time.

SPEC2006 benchmark description

GNU C compiler

Interpreted string processing

Combinatorial optimization

Block-sorting compression

Go game (AI)

Video compression

Games/path finding

Search gene sequence

Quantum computer simulation

Discrete event simulation library

Chess game (AI)

XML parsing

CFD/blast waves

Numerical relativity

Finite element code

Differential equation solver framework

Quantum chemistry

EM solver (freq/time domain)

Scalable molecular dynamics (~NAMD)

Lattice Boltzman method (fluid/air flow)

Large eddie simulation/turbulent CFD

Lattice quantum chromodynamics

Molecular dynamics

Image ray tracing

Spare linear algebra

Speech recognition

Quantum chemistry/object oriented

Weather research and forecasting

Magneto hydrodynamics (astrophysics)

gcc

espresso

li

eqntott

perl

mcf

bzip2

vortex

gzip

eon

twolf

vortex

vpr

crafty

parser

wupwise

apply

galgel

mesa

art

equake

facerec

ammp

lucas

fma3d

sixtrack

apsi

mgrid

applu

turb3d

swim

hydro2d

su2cor

wave5

fpppp

tomcatv

doduc

nasa7

spice

matrix300

go

h264avc

astar

hmmer

libquantum

omnetpp

sjeng

xalancbmk

bwaves

cactusADM

calculix

dealll

gamess

GemsFDTD

gromacs

lbm

LESlie3d

milc

namd

povray

soplex

sphinx3

tonto

wrf

zeusmp

SPEC89SPEC95

Benchmark name by SPEC generation

SPEC92SPEC2000SPEC2006

go

ijpeg

m88ksim

compress

sc

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

40 ■ Chapter One Fundamentals of Quantitative Design and Analysis

compiler to a chess program to a quantum computer simulation. The floating-
point benchmarks include structured grid codes for finite element modeling, par-
ticle method codes for molecular dynamics, and sparse linear algebra codes for
fluid dynamics. The SPEC CPU suite is useful for processor benchmarking for
both desktop systems and single-processor servers. We will see data on many of
these programs throughout this text. However, note that these programs share lit-
tle with programming languages and environments and the Google Goggles
application that Section 1.1 describes. Seven use C++, eight use C, and nine use
Fortran! They are even statically linked, and the applications themselves are dull.
It’s not clear that SPECINT2006 and SPECFP2006 capture what is exciting
about computing in the 21st century.

In Section 1.11, we describe pitfalls that have occurred in developing the
SPEC benchmark suite, as well as the challenges in maintaining a useful and pre-
dictive benchmark suite.

SPEC CPU2006 is aimed at processor performance, but SPEC offers many
other benchmarks.

Server Benchmarks

Just as servers have multiple functions, so are there multiple types of bench-
marks. The simplest benchmark is perhaps a processor throughput-oriented
benchmark. SPEC CPU2000 uses the SPEC CPU benchmarks to construct a sim-
ple throughput benchmark where the processing rate of a multiprocessor can be
measured by running multiple copies (usually as many as there are processors) of
each SPEC CPU benchmark and converting the CPU time into a rate. This leads
to a measurement called the SPECrate, and it is a measure of request-level paral-
lelism from Section 1.2. To measure thread-level parallelism, SPEC offers what
they call high-performance computing benchmarks around OpenMP and MPI.

Other than SPECrate, most server applications and benchmarks have signifi-
cant I/O activity arising from either disk or network traffic, including bench-
marks for file server systems, for Web servers, and for database and transaction-
processing systems. SPEC offers both a file server benchmark (SPECSFS) and a
Web server benchmark (SPECWeb). SPECSFS is a benchmark for measuring
NFS (Network File System) performance using a script of file server requests; it
tests the performance of the I/O system (both disk and network I/O) as well as the
processor. SPECSFS is a throughput-oriented benchmark but with important
response time requirements. (Appendix D discusses some file and I/O system
benchmarks in detail.) SPECWeb is a Web server benchmark that simulates mul-
tiple clients requesting both static and dynamic pages from a server, as well as
clients posting data to the server. SPECjbb measures server performance for Web
applications written in Java. The most recent SPEC benchmark is
SPECvirt_Sc2010, which evaluates end-to-end performance of virtualized data-
center servers, including hardware, the virtual machine layer, and the virtualized
guest operating system. Another recent SPEC benchmark measures power, which
we examine in Section 1.10.

1.8 Measuring, Reporting, and Summarizing Performance ■ 41

Transaction-processing (TP) benchmarks measure the ability of a system to
handle transactions that consist of database accesses and updates. Airline reser-
vation systems and bank ATM systems are typical simple examples of TP; more
sophisticated TP systems involve complex databases and decision-making. In the
mid-1980s, a group of concerned engineers formed the vendor-independent
Transaction Processing Council (TPC) to try to create realistic and fair bench-
marks for TP. The TPC benchmarks are described at www.tpc.org.

The first TPC benchmark, TPC-A, was published in 1985 and has since been
replaced and enhanced by several different benchmarks. TPC-C, initially created
in 1992, simulates a complex query environment. TPC-H models ad hoc decision
support—the queries are unrelated and knowledge of past queries cannot be used
to optimize future queries. TPC-E is a new On-Line Transaction Processing
(OLTP) workload that simulates a brokerage firm’s customer accounts. The most
recent effort is TPC Energy, which adds energy metrics to all the existing TPC
benchmarks.

All the TPC benchmarks measure performance in transactions per second. In
addition, they include a response time requirement, so that throughput perfor-
mance is measured only when the response time limit is met. To model real-
world systems, higher transaction rates are also associated with larger systems, in
terms of both users and the database to which the transactions are applied.
Finally, the system cost for a benchmark system must also be included, allowing
accurate comparisons of cost-performance. TPC modified its pricing policy so
that there is a single specification for all the TPC benchmarks and to allow verifi-
cation of the prices that TPC publishes.

Reporting Performance Results

The guiding principle of reporting performance measurements should be repro-
ducibility—list everything another experimenter would need to duplicate the
results. A SPEC benchmark report requires an extensive description of the com-
puter and the compiler flags, as well as the publication of both the baseline and
optimized results. In addition to hardware, software, and baseline tuning parame-
ter descriptions, a SPEC report contains the actual performance times, shown
both in tabular form and as a graph. A TPC benchmark report is even more com-
plete, since it must include results of a benchmarking audit and cost information.
These reports are excellent sources for finding the real costs of computing sys-
tems, since manufacturers compete on high performance and cost-performance.

Summarizing Performance Results

In practical computer design, you must evaluate myriad design choices for their
relative quantitative benefits across a suite of benchmarks believed to be rele-
vant. Likewise, consumers trying to choose a computer will rely on performance
measurements from benchmarks, which hopefully are similar to the user’s appli-
cations. In both cases, it is useful to have measurements for a suite of bench-

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.tpc.org
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

42 ■ Chapter One Fundamentals of Quantitative Design and Analysis

marks so that the performance of important applications is similar to that of one
or more benchmarks in the suite and that variability in performance can be under-
stood. In the ideal case, the suite resembles a statistically valid sample of the
application space, but such a sample requires more benchmarks than are typically
found in most suites and requires a randomized sampling, which essentially no
benchmark suite uses.

Once we have chosen to measure performance with a benchmark suite, we
would like to be able to summarize the performance results of the suite in a single
number. A straightforward approach to computing a summary result would be to
compare the arithmetic means of the execution times of the programs in the suite.
Alas, some SPEC programs take four times longer than others do, so those pro-
grams would be much more important if the arithmetic mean were the single
number used to summarize performance. An alternative would be to add a
weighting factor to each benchmark and use the weighted arithmetic mean as the
single number to summarize performance. The problem would then be how to
pick weights; since SPEC is a consortium of competing companies, each com-
pany might have their own favorite set of weights, which would make it hard to
reach consensus. One approach is to use weights that make all programs execute
an equal time on some reference computer, but this biases the results to the per-
formance characteristics of the reference computer.

Rather than pick weights, we could normalize execution times to a reference
computer by dividing the time on the reference computer by the time on the com-
puter being rated, yielding a ratio proportional to performance. SPEC uses this
approach, calling the ratio the SPECRatio. It has a particularly useful property
that it matches the way we compare computer performance throughout this
text—namely, comparing performance ratios. For example, suppose that the
SPECRatio of computer A on a benchmark was 1.25 times higher than computer
B; then we would know:

Notice that the execution times on the reference computer drop out and the
choice of the reference computer is irrelevant when the comparisons are made as
a ratio, which is the approach we consistently use. Figure 1.17 gives an example.

Because a SPECRatio is a ratio rather than an absolute execution time, the
mean must be computed using the geometric mean. (Since SPECRatios have no
units, comparing SPECRatios arithmetically is meaningless.) The formula is

1.25
SPECRatioA

SPECRatioB

Execution timereference

Execution timeA
--

Execution timereference

Execution timeB
--

--
Execution timeB

Execution timeA
--

PerformanceA

PerformanceB
----------------------------------== = =

Geometric mean

n

samplei

i 1=

n

∏=

1.8 Measuring, Reporting, and Summarizing Performance ■ 43

In the case of SPEC, samplei is the SPECRatio for program i. Using the geomet-
ric mean ensures two important properties:

1. The geometric mean of the ratios is the same as the ratio of the geometric
means.

2. The ratio of the geometric means is equal to the geometric mean of the per-
formance ratios, which implies that the choice of the reference computer is
irrelevant.

Hence, the motivations to use the geometric mean are substantial, especially
when we use performance ratios to make comparisons.

Example Show that the ratio of the geometric means is equal to the geometric mean of the
performance ratios, and that the reference computer of SPECRatio matters not.

Answer Assume two computers A and B and a set of SPECRatios for each.

Benchmarks

Ultra 5
time
(sec)

Opteron
time (sec) SPECRatio

Itanium 2
time (sec) SPECRatio

Opteron/Itanium
times (sec)

Itanium/Opteron
SPECRatios

wupwise 1600 51.5 31.06 56.1 28.53 0.92 0.92

swim 3100 125.0 24.73 70.7 43.85 1.77 1.77

mgrid 1800 98.0 18.37 65.8 27.36 1.49 1.49

applu 2100 94.0 22.34 50.9 41.25 1.85 1.85

mesa 1400 64.6 21.69 108.0 12.99 0.60 0.60

galgel 2900 86.4 33.57 40.0 72.47 2.16 2.16

art 2600 92.4 28.13 21.0 123.67 4.40 4.40

equake 1300 72.6 17.92 36.3 35.78 2.00 2.00

facerec 1900 73.6 25.80 86.9 21.86 0.85 0.85

ammp 2200 136.0 16.14 132.0 16.63 1.03 1.03

lucas 2000 88.8 22.52 107.0 18.76 0.83 0.83

fma3d 2100 120.0 17.48 131.0 16.09 0.92 0.92

sixtrack 1100 123.0 8.95 68.8 15.99 1.79 1.79

apsi 2600 150.0 17.36 231.0 11.27 0.65 0.65

Geometric mean 20.86 27.12 1.30 1.30

Figure 1.17 SPECfp2000 execution times (in seconds) for the Sun Ultra 5—the reference computer of SPEC2000—

and execution times and SPECRatios for the AMD Opteron and Intel Itanium 2. (SPEC2000 multiplies the ratio of exe-
cution times by 100 to remove the decimal point from the result, so 20.86 is reported as 2086.) The final two columns
show the ratios of execution times and SPECRatios. This figure demonstrates the irrelevance of the reference computer
in relative performance. The ratio of the execution times is identical to the ratio of the SPECRatios, and the ratio of the
geometric means (27.12/20.86 = 1.30) is identical to the geometric mean of the ratios (1.30).

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

44 ■ Chapter One Fundamentals of Quantitative Design and Analysis

That is, the ratio of the geometric means of the SPECRatios of A and B is the
geometric mean of the performance ratios of A to B of all the benchmarks in the
suite. Figure 1.17 demonstrates this validity using examples from SPEC.

Now that we have seen how to define, measure, and summarize performance,
cost, dependability, energy, and power, we can explore guidelines and principles
that are useful in the design and analysis of computers. This section introduces
important observations about design, as well as two equations to evaluate
alternatives.

Take Advantage of Parallelism

Taking advantage of parallelism is one of the most important methods for
improving performance. Every chapter in this book has an example of how
performance is enhanced through the exploitation of parallelism. We give three
brief examples here, which are expounded on in later chapters.

Our first example is the use of parallelism at the system level. To improve the
throughput performance on a typical server benchmark, such as SPECWeb or
TPC-C, multiple processors and multiple disks can be used. The workload of han-
dling requests can then be spread among the processors and disks, resulting in
improved throughput. Being able to expand memory and the number of processors
and disks is called scalability, and it is a valuable asset for servers. Spreading of
data across many disks for parallel reads and writes enables data-level parallelism.
SPECWeb also relies on request-level parallelism to use many processors while
TPC-C uses thread-level parallelism for faster processing of database queries.

At the level of an individual processor, taking advantage of parallelism
among instructions is critical to achieving high performance. One of the simplest
ways to do this is through pipelining. (It is explained in more detail in
Appendix C and is a major focus of Chapter 3.) The basic idea behind pipelining

Geometric meanA

Geometric meanB

SPECRatio Ai

i 1=

n

∏n

SPECRatio Bi

i 1=

n

∏n

SPECRatio Ai

SPECRatio Bi

i 1=

n

∏n
==

Execution timereferencei

Execution timeAi

--

Execution timereferencei

Execution timeBi

--

--

i 1=

n

∏
n

=
Execution timeBi

Execution timeAi

i 1=

n

∏n

PerformanceAi

PerformanceBi

i 1=

n

∏n
= =

1.9 Quantitative Principles of Computer Design

1.9 Quantitative Principles of Computer Design ■ 45

is to overlap instruction execution to reduce the total time to complete an instruc-
tion sequence. A key insight that allows pipelining to work is that not every
instruction depends on its immediate predecessor, so executing the instructions
completely or partially in parallel may be possible. Pipelining is the best-known
example of instruction-level parallelism.

Parallelism can also be exploited at the level of detailed digital design. For
example, set-associative caches use multiple banks of memory that are typically
searched in parallel to find a desired item. Modern ALUs (arithmetic-logical
units) use carry-lookahead, which uses parallelism to speed the process of com-
puting sums from linear to logarithmic in the number of bits per operand. These
are more examples of data-level parallelism.

Principle of Locality

Important fundamental observations have come from properties of programs.
The most important program property that we regularly exploit is the principle of
locality: Programs tend to reuse data and instructions they have used recently. A
widely held rule of thumb is that a program spends 90% of its execution time in
only 10% of the code. An implication of locality is that we can predict with rea-
sonable accuracy what instructions and data a program will use in the near future
based on its accesses in the recent past. The principle of locality also applies to
data accesses, though not as strongly as to code accesses.

Two different types of locality have been observed. Temporal locality states
that recently accessed items are likely to be accessed in the near future. Spatial
locality says that items whose addresses are near one another tend to be refer-
enced close together in time. We will see these principles applied in Chapter 2.

Focus on the Common Case

Perhaps the most important and pervasive principle of computer design is to
focus on the common case: In making a design trade-off, favor the frequent
case over the infrequent case. This principle applies when determining how to
spend resources, since the impact of the improvement is higher if the occur-
rence is frequent.

Focusing on the common case works for power as well as for resource alloca-
tion and performance. The instruction fetch and decode unit of a processor may
be used much more frequently than a multiplier, so optimize it first. It works on
dependability as well. If a database server has 50 disks for every processor, stor-
age dependability will dominate system dependability.

In addition, the frequent case is often simpler and can be done faster than the
infrequent case. For example, when adding two numbers in the processor, we can
expect overflow to be a rare circumstance and can therefore improve perfor-
mance by optimizing the more common case of no overflow. This emphasis may
slow down the case when overflow occurs, but if that is rare then overall perfor-
mance will be improved by optimizing for the normal case.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

46 ■ Chapter One Fundamentals of Quantitative Design and Analysis

We will see many cases of this principle throughout this text. In applying this
simple principle, we have to decide what the frequent case is and how much per-
formance can be improved by making that case faster. A fundamental law, called
Amdahl’s law, can be used to quantify this principle.

Amdahl’s Law

The performance gain that can be obtained by improving some portion of a com-
puter can be calculated using Amdahl’s law. Amdahl’s law states that the perfor-
mance improvement to be gained from using some faster mode of execution is
limited by the fraction of the time the faster mode can be used.

Amdahl’s law defines the speedup that can be gained by using a particular
feature. What is speedup? Suppose that we can make an enhancement to a com-
puter that will improve performance when it is used. Speedup is the ratio:

Speedup =

Alternatively,

Speedup =

Speedup tells us how much faster a task will run using the computer with the
enhancement as opposed to the original computer.

Amdahl’s law gives us a quick way to find the speedup from some enhance-
ment, which depends on two factors:

1. The fraction of the computation time in the original computer that can be
converted to take advantage of the enhancement—For example, if 20
seconds of the execution time of a program that takes 60 seconds in total
can use an enhancement, the fraction is 20/60. This value, which we will call
Fractionenhanced, is always less than or equal to 1.

2. The improvement gained by the enhanced execution mode, that is, how much
faster the task would run if the enhanced mode were used for the entire
program—This value is the time of the original mode over the time of the
enhanced mode. If the enhanced mode takes, say, 2 seconds for a portion of
the program, while it is 5 seconds in the original mode, the improvement is
5/2. We will call this value, which is always greater than 1, Speedupenhanced.

The execution time using the original computer with the enhanced mode will be
the time spent using the unenhanced portion of the computer plus the time spent
using the enhancement:

Execution timenew = Execution timeold ×

Performance for entire task using the enhancement when possible

Performance for entire task without using the enhancement

Execution time for entire task without using the enhancement

Execution time for entire task using the enhancement when possible

1 – Fractionenhanced()
Fractionenhanced

Speedupenhanced
--------------------------------------+

1.9 Quantitative Principles of Computer Design ■ 47

The overall speedup is the ratio of the execution times:

Speedupoverall = =

Example Suppose that we want to enhance the processor used for Web serving. The new
processor is 10 times faster on computation in the Web serving application than
the original processor. Assuming that the original processor is busy with compu-
tation 40% of the time and is waiting for I/O 60% of the time, what is the overall
speedup gained by incorporating the enhancement?

Answer Fractionenhanced = 0.4; Speedupenhanced = 10; Speedupoverall = = ≈ 1.56

Amdahl’s law expresses the law of diminishing returns: The incremental
improvement in speedup gained by an improvement of just a portion of the com-
putation diminishes as improvements are added. An important corollary of
Amdahl’s law is that if an enhancement is only usable for a fraction of a task then
we can’t speed up the task by more than the reciprocal of 1 minus that fraction.

A common mistake in applying Amdahl’s law is to confuse “fraction of time
converted to use an enhancement” and “fraction of time after enhancement is in
use.” If, instead of measuring the time that we could use the enhancement in a
computation, we measure the time after the enhancement is in use, the results
will be incorrect!

Amdahl’s law can serve as a guide to how much an enhancement will
improve performance and how to distribute resources to improve cost-
performance. The goal, clearly, is to spend resources proportional to where time
is spent. Amdahl’s law is particularly useful for comparing the overall system
performance of two alternatives, but it can also be applied to compare two pro-
cessor design alternatives, as the following example shows.

Example A common transformation required in graphics processors is square root. Imple-
mentations of floating-point (FP) square root vary significantly in performance,
especially among processors designed for graphics. Suppose FP square root
(FPSQR) is responsible for 20% of the execution time of a critical graphics
benchmark. One proposal is to enhance the FPSQR hardware and speed up this
operation by a factor of 10. The other alternative is just to try to make all FP
instructions in the graphics processor run faster by a factor of 1.6; FP instructions
are responsible for half of the execution time for the application. The design team
believes that they can make all FP instructions run 1.6 times faster with the same
effort as required for the fast square root. Compare these two design alternatives.

Execution timeold

Execution timenew
--

1

1 – Fractionenhanced()
Fractionenhanced

Speedupenhanced
--------------------------------------+

1

0.6
0.4
10
-------+

1

0.64

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

48 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Answer We can compare these two alternatives by comparing the speedups:

SpeedupFPSQR = = = 1.22

SpeedupFP = = = 1.23

Improving the performance of the FP operations overall is slightly better because
of the higher frequency.

Amdahl’s law is applicable beyond performance. Let’s redo the reliability
example from page 35 after improving the reliability of the power supply via
redundancy from 200,000-hour to 830,000,000-hour MTTF, or 4150X better.

Example The calculation of the failure rates of the disk subsystem was

Therefore, the fraction of the failure rate that could be improved is 5 per million
hours out of 23 for the whole system, or 0.22.

Answer The reliability improvement would be

Improvementpower supply pair = = = 1.28

Despite an impressive 4150X improvement in reliability of one module, from the
system’s perspective, the change has a measurable but small benefit.

In the examples above, we needed the fraction consumed by the new and
improved version; often it is difficult to measure these times directly. In the next
section, we will see another way of doing such comparisons based on the use of
an equation that decomposes the CPU execution time into three separate compo-
nents. If we know how an alternative affects these three components, we can
determine its overall performance. Furthermore, it is often possible to build sim-
ulators that measure these components before the hardware is actually designed.

The Processor Performance Equation

Essentially all computers are constructed using a clock running at a constant rate.
These discrete time events are called ticks, clock ticks, clock periods, clocks,

1

1 0.2–() 0.2
10
-------+

1

0.82

1

1 0.5–() 0.5
1.6
-------+

1

0.8125

Failure ratesystem 10
1

1,000,000

1
500,000
-------------------+× 1

200,000

1
200,000

1
1,000,000
------------------------+ + +=

10 2 5 5 1+ + + +
1,000,000 hours

23

1,000,000 hours
---------------------------------------==

1

1 0.22–() 0.22
4150
------------+

--
1

0.78

1.9 Quantitative Principles of Computer Design ■ 49

cycles, or clock cycles. Computer designers refer to the time of a clock period by
its duration (e.g., 1 ns) or by its rate (e.g., 1 GHz). CPU time for a program can
then be expressed two ways:

or

CPU time =

In addition to the number of clock cycles needed to execute a program, we
can also count the number of instructions executed—the instruction path length
or instruction count (IC). If we know the number of clock cycles and the instruc-
tion count, we can calculate the average number of clock cycles per instruction
(CPI). Because it is easier to work with, and because we will deal with simple
processors in this chapter, we use CPI. Designers sometimes also use instructions
per clock (IPC), which is the inverse of CPI.

CPI is computed as

CPI =

This processor figure of merit provides insight into different styles of instruction
sets and implementations, and we will use it extensively in the next four chapters.

By transposing the instruction count in the above formula, clock cycles can
be defined as IC × CPI. This allows us to use CPI in the execution time formula:

Expanding the first formula into the units of measurement shows how the pieces
fit together:

 = = CPU time

As this formula demonstrates, processor performance is dependent upon three
characteristics: clock cycle (or rate), clock cycles per instruction, and instruction
count. Furthermore, CPU time is equally dependent on these three characteris-
tics; for example, a 10% improvement in any one of them leads to a 10%
improvement in CPU time.

Unfortunately, it is difficult to change one parameter in complete isolation
from others because the basic technologies involved in changing each character-
istic are interdependent:

■ Clock cycle time—Hardware technology and organization

■ CPI—Organization and instruction set architecture

■ Instruction count—Instruction set architecture and compiler technology

CPU time CPU clock cycles for a program Clock cycle time×=

CPU clock cycles for a program
Clock rate

CPU clock cycles for a program
Instruction count

CPU time Instruction count Cycles per instruction Clock cycle time××=

Instructions
Program

Clock cycles
Instruction

------------------------------× Seconds
Clock cycle
----------------------------× Seconds

Program

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

50 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Luckily, many potential performance improvement techniques primarily improve
one component of processor performance with small or predictable impacts on
the other two.

Sometimes it is useful in designing the processor to calculate the number of
total processor clock cycles as

CPU clock cycles =

where ICi represents the number of times instruction i is executed in a program
and CPIi represents the average number of clocks per instruction for instruction i.
This form can be used to express CPU time as

and overall CPI as

The latter form of the CPI calculation uses each individual CPIi and the fraction
of occurrences of that instruction in a program (i.e., ICi ÷ Instruction count). CPIi
should be measured and not just calculated from a table in the back of a reference
manual since it must include pipeline effects, cache misses, and any other mem-
ory system inefficiencies.

Consider our performance example on page 47, here modified to use mea-
surements of the frequency of the instructions and of the instruction CPI values,
which, in practice, are obtained by simulation or by hardware instrumentation.

Example Suppose we have made the following measurements:

Frequency of FP operations = 25%

Average CPI of FP operations = 4.0

Average CPI of other instructions = 1.33

Frequency of FPSQR = 2%

CPI of FPSQR = 20

Assume that the two design alternatives are to decrease the CPI of FPSQR to 2 or
to decrease the average CPI of all FP operations to 2.5. Compare these two
design alternatives using the processor performance equation.

ICi CPIi×
i 1=

n

CPU time ICi CPIi×
i 1=

n

Clock cycle time×=

CPI

ICi CPIi×
i 1=

n

Instruction count
--

ICi

Instruction count
-- CPIi×

i 1=

n

= =

1.9 Quantitative Principles of Computer Design ■ 51

Answer First, observe that only the CPI changes; the clock rate and instruction count
remain identical. We start by finding the original CPI with neither enhancement:

We can compute the CPI for the enhanced FPSQR by subtracting the cycles
saved from the original CPI:

We can compute the CPI for the enhancement of all FP instructions the same way
or by summing the FP and non-FP CPIs. Using the latter gives us:

Since the CPI of the overall FP enhancement is slightly lower, its performance
will be marginally better. Specifically, the speedup for the overall FP enhance-
ment is

Happily, we obtained this same speedup using Amdahl’s law on page 46.

It is often possible to measure the constituent parts of the processor perfor-
mance equation. This is a key advantage of using the processor performance
equation versus Amdahl’s law in the previous example. In particular, it may be
difficult to measure things such as the fraction of execution time for which a set
of instructions is responsible. In practice, this would probably be computed by
summing the product of the instruction count and the CPI for each of the instruc-
tions in the set. Since the starting point is often individual instruction count and
CPI measurements, the processor performance equation is incredibly useful.

To use the processor performance equation as a design tool, we need to be
able to measure the various factors. For an existing processor, it is easy to obtain
the execution time by measurement, and we know the default clock speed. The
challenge lies in discovering the instruction count or the CPI. Most new proces-
sors include counters for both instructions executed and for clock cycles. By
periodically monitoring these counters, it is also possible to attach execution time
and instruction count to segments of the code, which can be helpful to
programmers trying to understand and tune the performance of an application.
Often, a designer or programmer will want to understand performance at a more

CPIoriginal CPIi

ICi

Instruction count
--×

i 1=

n

=

4 25%×() 1.33 75%×() 2.0=+=

CPIwith new FPSQR CPIoriginal – 2% CPIold FPSQR – CPIof new FPSQR only()×=

2.0 – 2% 20 – 2()× 1.64= =

CPInew FP 75% 1.33×() 25% 2.5×() 1.625=+=

Speedupnew FP

CPU timeoriginal

CPU timenew FP

IC Clock cycle CPIoriginal××
IC Clock cycle CPInew FP××
---= =

CPIoriginal

CPInew FP

2.00
1.625
------------- 1.23= = =

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

52 ■ Chapter One Fundamentals of Quantitative Design and Analysis

fine-grained level than what is available from the hardware counters. For exam-
ple, they may want to know why the CPI is what it is. In such cases, simulation
techniques used are like those for processors that are being designed.

Techniques that help with energy efficiency, such as dynamic voltage fre-
quency scaling and overclocking (see Section 1.5), make this equation harder to
use, since the clock speed may vary while we measure the program. A simple
approach is to turn off those features to make the results reproducible. Fortu-
nately, as performance and energy efficiency are often highly correlated—taking
less time to run a program generally saves energy—it’s probably safe to consider
performance without worrying about the impact of DVFS or overclocking on the
results.

In the “Putting It All Together” sections that appear near the end of every chapter,
we provide real examples that use the principles in that chapter. In this section,
we look at measures of performance and power-performance in small servers
using the SPECpower benchmark.

Figure 1.18 shows the three multiprocessor servers we are evaluating along
with their price. To keep the price comparison fair, all are Dell PowerEdge serv-
ers. The first is the PowerEdge R710, which is based on the Intel Xeon X5670
microprocessor with a clock rate of 2.93 GHz. Unlike the Intel Core i7 in Chap-
ters 2 through 5, which has 4 cores and an 8 MB L3 cache, this Intel chip has
6 cores and a 12 MB L3 cache, although the cores themselves are identical. We
selected a two-socket system with 12 GB of ECC-protected 1333 MHz DDR3
DRAM. The next server is the PowerEdge R815, which is based on the AMD
Opteron 6174 microprocessor. A chip has 6 cores and a 6 MB L3 cache, and it
runs at 2.20 GHz, but AMD puts two of these chips into a single socket. Thus, a
socket has 12 cores and two 6 MB L3 caches. Our second server has two sockets
with 24 cores and 16 GB of ECC-protected 1333 MHz DDR3 DRAM, and our
third server (also a PowerEdge R815) has four sockets with 48 cores and 32 GB
of DRAM. All are running the IBM J9 JVM and the Microsoft Windows 2008
Server Enterprise x64 Edition operating system.

Note that due to the forces of benchmarking (see Section 1.11), these are
unusually configured servers. The systems in Figure 1.18 have little memory rel-
ative to the amount of computation, and just a tiny 50 GB solid-state disk. It is
inexpensive to add cores if you don’t need to add commensurate increases in
memory and storage!

Rather than run statically linked C programs of SPEC CPU, SPECpower uses
a more modern software stack written in Java. It is based on SPECjbb, and it rep-
resents the server side of business applications, with performance measured as
the number transactions per second, called ssj_ops for server side Java opera-
tions per second. It exercises not only the processor of the server, as does SPEC

1.10 Putting It All Together: Performance, Price,
and Power

1.10 Putting It All Together: Performance, Price, and Power ■ 53

CPU, but also the caches, memory system, and even the multiprocessor intercon-
nection system. In addition, it exercises the Java Virtual Machine (JVM), includ-
ing the JIT runtime compiler and garbage collector, as well as portions of the
underlying operating system.

As the last two rows of Figure 1.18 show, the performance and price-perfor-
mance winner is the PowerEdge R815 with four sockets and 48 cores. It hits
1.8M ssj_ops, and the ssj_ops per dollar is highest at 145. Amazingly, the com-
puter with the largest number of cores is the most cost effective. In second place
is the two-socket R815 with 24 cores, and the R710 with 12 cores is in last place.

While most benchmarks (and most computer architects) care only about per-
formance of systems at peak load, computers rarely run at peak load. Indeed, Fig-
ure 6.2 in Chapter 6 shows the results of measuring the utilization of tens of
thousands of servers over 6 months at Google, and less than 1% operate at an
average utilization of 100%. The majority have an average utilization of between
10% and 50%. Thus, the SPECpower benchmark captures power as the target
workload varies from its peak in 10% intervals all the way to 0%, which is called
Active Idle.

Figure 1.19 plots the ssj_ops (SSJ operations/second) per watt and the aver-
age power as the target load varies from 100% to 0%. The Intel R710 always has
the lowest power and the best ssj_ops per watt across each target workload level.

System 1 System 2 System 3

Component Cost (% Cost) Cost (% Cost) Cost (% Cost)

Base server PowerEdge R710 $653 (7%) PowerEdge R815 $1437 (15%) PowerEdge R815 $1437 (11%)

Power supply 570 W 1100 W 1100 W

Processor Xeon X5670 $3738 (40%) Opteron 6174 $2679 (29%) Opteron 6174 $5358 (42%)

Clock rate 2.93 GHz 2.20 GHz 2.20 GHz

Total cores 12 24 48

Sockets 2 2 4

Cores/socket 6 12 12

DRAM 12 GB $484 (5%) 16 GB $693 (7%) 32 GB $1386 (11%)

Ethernet Inter. Dual 1-Gbit $199 (2%) Dual 1-Gbit $199 (2%) Dual 1-Gbit $199 (2%)

Disk 50 GB SSD $1279 (14%) 50 GB SSD $1279 (14%) 50 GB SSD $1279 (10%)

Windows OS $2999 (32%) $2999 (33%) $2999 (24%)

Total $9352 (100%) $9286 (100%) $12,658 (100%)

Max ssj_ops 910,978 926,676 1,840,450

Max ssj_ops/$ 97 100 145

Figure 1.18 Three Dell PowerEdge servers being measured and their prices as of August 2010. We calculated the
cost of the processors by subtracting the cost of a second processor. Similarly, we calculated the overall cost of
memory by seeing what the cost of extra memory was. Hence, the base cost of the server is adjusted by removing
the estimated cost of the default processor and memory. Chapter 5 describes how these multi-socket systems are
connected together.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

54 ■ Chapter One Fundamentals of Quantitative Design and Analysis

One reason is the much larger power supply for the R815, at 1100 watts versus
570 in the R715. As Chapter 6 shows, power supply efficiency is very important
in the overall power efficiency of a computer. Since watts = joules/second, this
metric is proportional to SSJ operations per joule:

To calculate a single number to use to compare the power efficiency of sys-
tems, SPECpower uses:

The overall ssj_ops/watt of the three servers is 3034 for the Intel R710, 2357 for
the AMD dual-socket R815, and 2696 for the AMD quad-socket R815. Hence,

Figure 1.19 Power-performance of the three servers in Figure 1.18. Ssj_ops/watt values are on the left axis, with
the three columns associated with it, and watts are on the right axis, with the three lines associated with it. The hori-
zontal axis shows the target workload, as it varies from 100% to Active Idle. The Intel-based R715 has the best
ssj_ops/watt at each workload level, and it also consumes the lowest power at each level.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% Active Idle

Target workload

0

50

100

150

200

250

300

350

400

450

500

550

W
at

ts

710 Intel 12 core W

815 AMD 24 core W

815 AMD 48 core W

ss
j_

op
s/

w
at

t

815 AMD 48 core

815 AMD 24 core

710 Intel 12 core

ssj_operations/sec
Watt

ssj_operations/sec

Joule/sec

ssj_operations
Joule

----------------------------------= =

Overall ssj_ops/watt
ssj_ops

power
------------------------=

1.11 Fallacies and Pitfalls ■ 55

the Intel R710 has the best power-performance. Dividing by the price of the
servers, the ssj_ops/watt/$1000 is 324 for the Intel R710, 254 for the dual-
socket AMD R815, and 213 for the quad-socket MD R815. Thus, adding
power reverses the results of the price-performance competition, and the
price-power-performance trophy goes to Intel R710; the 48-core R815 comes
in last place.

The purpose of this section, which will be found in every chapter, is to explain
some commonly held misbeliefs or misconceptions that you should avoid. We
call such misbeliefs fallacies. When discussing a fallacy, we try to give a coun-
terexample. We also discuss pitfalls—easily made mistakes. Often pitfalls are
generalizations of principles that are true in a limited context. The purpose of
these sections is to help you avoid making these errors in computers that you
design.

Fallacy Multiprocessors are a silver bullet.

The switch to multiple processors per chip around 2005 did not come from some
breakthrough that dramatically simplified parallel programming or made it easy to
build multicore computers. The change occurred because there was no other option
due to the ILP walls and power walls. Multiple processors per chip do not guaran-
tee lower power; it’s certainly possible to design a multicore chip that uses more
power. The potential is just that it’s possible to continue to improve performance
by replacing a high-clock-rate, inefficient core with several lower-clock-rate, effi-
cient cores. As technology improves to shrink transistors, this can shrink both
capacitance and the supply voltage a bit so that we can get a modest increase in the
number of cores per generation. For example, for the last few years Intel has been
adding two cores per generation.

As we shall see in Chapters 4 and 5, performance is now a programmer’s bur-
den. The La-Z-Boy programmer era of relying on hardware designers to make
their programs go faster without lifting a finger is officially over. If programmers
want their programs to go faster with each generation, they must make their pro-
grams more parallel.

The popular version of Moore’s law—increasing performance with each gen-
eration of technology—is now up to programmers.

Pitfall Falling prey to Amdahl’s heartbreaking law.

Virtually every practicing computer architect knows Amdahl’s law. Despite this,
we almost all occasionally expend tremendous effort optimizing some feature
before we measure its usage. Only when the overall speedup is disappointing do
we recall that we should have measured first before we spent so much effort
enhancing it!

1.11 Fallacies and Pitfalls

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

56 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Pitfall A single point of failure.

The calculations of reliability improvement using Amdahl’s law on page 48 show
that dependability is no stronger than the weakest link in a chain. No matter how
much more dependable we make the power supplies, as we did in our example,
the single fan will limit the reliability of the disk subsystem. This Amdahl’s law
observation led to a rule of thumb for fault-tolerant systems to make sure that
every component was redundant so that no single component failure could bring
down the whole system. Chapter 6 shows how a software layer avoids single
points of failure inside warehouse-scale computers.

Fallacy Hardware enhancements that increase performance improve energy efficiency or
are at worst energy neutral.

Esmaeilzadeh et al. [2011] measured SPEC2006 on just one core of a 2.67 GHz
Intel Core i7 using Turbo mode (Section 1.5). Performance increased by a factor
of 1.07 when the clock rate increased to 2.94 GHz (or a factor of 1.10), but the i7
used a factor of 1.37 more joules and a factor of 1.47 more watt-hours!

Fallacy Benchmarks remain valid indefinitely.

Several factors influence the usefulness of a benchmark as a predictor of real per-
formance, and some change over time. A big factor influencing the usefulness of a
benchmark is its ability to resist “benchmark engineering” or “benchmarketing.”
Once a benchmark becomes standardized and popular, there is tremendous pres-
sure to improve performance by targeted optimizations or by aggressive interpre-
tation of the rules for running the benchmark. Small kernels or programs that
spend their time in a small amount of code are particularly vulnerable.

 For example, despite the best intentions, the initial SPEC89 benchmark suite
included a small kernel, called matrix300, which consisted of eight different
300 × 300 matrix multiplications. In this kernel, 99% of the execution time was
in a single line (see SPEC [1989]). When an IBM compiler optimized this inner
loop (using an idea called blocking, discussed in Chapters 2 and 4), performance
improved by a factor of 9 over a prior version of the compiler! This benchmark
tested compiler tuning and was not, of course, a good indication of overall per-
formance, nor of the typical value of this particular optimization.

Over a long period, these changes may make even a well-chosen bench-
mark obsolete; Gcc is the lone survivor from SPEC89. Figure 1.16 on page 39
lists the status of all 70 benchmarks from the various SPEC releases. Amaz-
ingly, almost 70% of all programs from SPEC2000 or earlier were dropped
from the next release.

Fallacy The rated mean time to failure of disks is 1,200,000 hours or almost 140 years, so
disks practically never fail.

The current marketing practices of disk manufacturers can mislead users. How is
such an MTTF calculated? Early in the process, manufacturers will put thousands

1.11 Fallacies and Pitfalls ■ 57

of disks in a room, run them for a few months, and count the number that fail.
They compute MTTF as the total number of hours that the disks worked cumula-
tively divided by the number that failed.

One problem is that this number far exceeds the lifetime of a disk, which is
commonly assumed to be 5 years or 43,800 hours. For this large MTTF to make
some sense, disk manufacturers argue that the model corresponds to a user who
buys a disk and then keeps replacing the disk every 5 years—the planned lifetime
of the disk. The claim is that if many customers (and their great-grandchildren)
did this for the next century, on average they would replace a disk 27 times
before a failure, or about 140 years.

A more useful measure would be percentage of disks that fail. Assume 1000
disks with a 1,000,000-hour MTTF and that the disks are used 24 hours a day. If
you replaced failed disks with a new one having the same reliability characteris-
tics, the number that would fail in a year (8760 hours) is

Stated alternatively, 0.9% would fail per year, or 4.4% over a 5-year lifetime.
Moreover, those high numbers are quoted assuming limited ranges of temper-

ature and vibration; if they are exceeded, then all bets are off. A survey of disk
drives in real environments [Gray and van Ingen 2005] found that 3% to 7% of
drives failed per year, for an MTTF of about 125,000 to 300,000 hours. An even
larger study found annual disk failure rates of 2% to 10% [Pinheiro, Weber, and
Barroso 2007]. Hence, the real-world MTTF is about 2 to 10 times worse than
the manufacturer’s MTTF.

Fallacy Peak performance tracks observed performance.

The only universally true definition of peak performance is “the performance
level a computer is guaranteed not to exceed.” Figure 1.20 shows the percentage
of peak performance for four programs on four multiprocessors. It varies from
5% to 58%. Since the gap is so large and can vary significantly by benchmark,
peak performance is not generally useful in predicting observed performance.

Pitfall Fault detection can lower availability.

This apparently ironic pitfall is because computer hardware has a fair amount of
state that may not always be critical to proper operation. For example, it is not
fatal if an error occurs in a branch predictor, as only performance may suffer.

In processors that try to aggressively exploit instruction-level parallelism, not
all the operations are needed for correct execution of the program. Mukherjee
et al. [2003] found that less than 30% of the operations were potentially on the
critical path for the SPEC2000 benchmarks running on an Itanium 2.

The same observation is true about programs. If a register is “dead” in a
program—that is, the program will write it before it is read again—then errors do

Failed disks
Number of disks Time period×

MTTF

1000 disks 8760 hours/drive×
1,000,000 hours/failure

--- 9== =

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

58 ■ Chapter One Fundamentals of Quantitative Design and Analysis

not matter. If you were to crash the program upon detection of a transient fault in
a dead register, it would lower availability unnecessarily.

Sun Microsystems lived this pitfall in 2000 with an L2 cache that included
parity, but not error correction, in its Sun E3000 to Sun E10000 systems. The
SRAMs they used to build the caches had intermittent faults, which parity
detected. If the data in the cache were not modified, the processor simply reread
the data from the cache. Since the designers did not protect the cache with ECC
(error-correcting code), the operating system had no choice but to report an error
to dirty data and crash the program. Field engineers found no problems on
inspection in more than 90% of the cases.

To reduce the frequency of such errors, Sun modified the Solaris operating
system to “scrub” the cache by having a process that proactively writes dirty data
to memory. Since the processor chips did not have enough pins to add ECC, the
only hardware option for dirty data was to duplicate the external cache, using the
copy without the parity error to correct the error.

The pitfall is in detecting faults without providing a mechanism to correct
them. These engineers are unlikely to design another computer without ECC on
external caches.

Figure 1.20 Percentage of peak performance for four programs on four multiprocessors scaled to 64 processors.
The Earth Simulator and X1 are vector processors (see Chapter 4 and Appendix G). Not only did they deliver a higher
fraction of peak performance, but they also had the highest peak performance and the lowest clock rates. Except for
the Paratec program, the Power 4 and Itanium 2 systems delivered between 5% and 10% of their peak. From Oliker
et al. [2004].

Paratec
plasma physics

33%

54%

58%

20%

6%

10%

54%

LBMHD
materials science

Cactus
astrophysics

GTC
magnetic fusion

0%

30%

20%

10%

40%

50%

P
er

ce
nt

ag
e

of
 p

ea
k

pe
rf

or
m

an
ce

60%

70%
Power4

Itanium 2

NEC Earth Simulator

Cray X1

34%

11%

34%

7% 6% 6% 5%

16%

11%

1.12 Concluding Remarks ■ 59

This chapter has introduced a number of concepts and provided a quantitative
framework that we will expand upon throughout the book. Starting with this edi-
tion, energy efficiency is the new companion to performance.

In Chapter 2, we start with the all-important area of memory system design.
We will examine a wide range of techniques that conspire to make memory look
infinitely large while still being as fast as possible. (Appendix B provides intro-
ductory material on caches for readers without much experience and background
in them.) As in later chapters, we will see that hardware–software cooperation
has become a key to high-performance memory systems, just as it has to high-
performance pipelines. This chapter also covers virtual machines, an increasingly
important technique for protection.

In Chapter 3, we look at instruction-level parallelism (ILP), of which pipelin-
ing is the simplest and most common form. Exploiting ILP is one of the most
important techniques for building high-speed uniprocessors. Chapter 3 begins
with an extensive discussion of basic concepts that will prepare you for the wide
range of ideas examined in both chapters. Chapter 3 uses examples that span
about 40 years, drawing from one of the first supercomputers (IBM 360/91) to
the fastest processors in the market in 2011. It emphasizes what is called the
dynamic or run time approach to exploiting ILP. It also talks about the limits to
ILP ideas and introduces multithreading, which is further developed in both
Chapters 4 and 5. Appendix C provides introductory material on pipelining for
readers without much experience and background in pipelining. (We expect it to
be a review for many readers, including those of our introductory text, Computer
Organization and Design: The Hardware/Software Interface.)

Chapter 4 is new to this edition, and it explains three ways to exploit data-
level parallelism. The classic and oldest approach is vector architecture, and we
start there to lay down the principles of SIMD design. (Appendix G goes into
greater depth on vector architectures.) We next explain the SIMD instruction set
extensions found in most desktop microprocessors today. The third piece is an in-
depth explanation of how modern graphics processing units (GPUs) work. Most
GPU descriptions are written from the programmer’s perspective, which usually
hides how the computer really works. This section explains GPUs from an
insider’s perspective, including a mapping between GPU jargon and more tradi-
tional architecture terms.

Chapter 5 focuses on the issue of achieving higher performance using multi-
ple processors, or multiprocessors. Instead of using parallelism to overlap indi-
vidual instructions, multiprocessing uses parallelism to allow multiple instruction
streams to be executed simultaneously on different processors. Our focus is on
the dominant form of multiprocessors, shared-memory multiprocessors, though
we introduce other types as well and discuss the broad issues that arise in any
multiprocessor. Here again, we explore a variety of techniques, focusing on the
important ideas first introduced in the 1980s and 1990s.

1.12 Concluding Remarks

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

60 ■ Chapter One Fundamentals of Quantitative Design and Analysis

Chapter 6 is also new to this edition. We introduce clusters and then go into
depth on warehouse-scale computers (WSCs), which computer architects help
design. The designers of WSCs are the professional descendents of the pioneers
of supercomputers such as Seymour Cray in that they are designing extreme
computers. They contain tens of thousands of servers, and the equipment and
building that holds them cost nearly $200 M. The concerns of price-performance
and energy efficiency of the earlier chapters applies to WSCs, as does the quanti-
tative approach to making decisions.

This book comes with an abundance of material online (see Preface for more
details), both to reduce cost and to introduce readers to a variety of advanced top-
ics. Figure 1.21 shows them all. Appendices A, B, and C, which appear in the
book, will be review for many readers.

In Appendix D, we move away from a processor-centric view and discuss
issues in storage systems. We apply a similar quantitative approach, but one
based on observations of system behavior and using an end-to-end approach to
performance analysis. It addresses the important issue of how to efficiently store
and retrieve data using primarily lower-cost magnetic storage technologies. Our
focus is on examining the performance of disk storage systems for typical I/O-
intensive workloads, like the OLTP benchmarks we saw in this chapter. We
extensively explore advanced topics in RAID-based systems, which use redun-
dant disks to achieve both high performance and high availability. Finally, the
chapter introduces queuing theory, which gives a basis for trading off utilization
and latency.

Appendix E applies an embedded computing perspective to the ideas of each
of the chapters and early appendices.

Appendix F explores the topic of system interconnect broadly, including wide
area and system area networks that allow computers to communicate.

Appendix Title

A Instruction Set Principles

B Review of Memory Hierarchies

C Pipelining: Basic and Intermediate Concepts

D Storage Systems

E Embedded Systems

F Interconnection Networks

G Vector Processors in More Depth

H Hardware and Software for VLIW and EPIC

I Large-Scale Multiprocessors and Scientific Applications

J Computer Arithmetic

K Survey of Instruction Set Architectures

L Historical Perspectives and References

Figure 1.21 List of appendices.

Case Studies and Exercises by Diana Franklin ■ 61

Appendix H reviews VLIW hardware and software, which, in contrast, are
less popular than when EPIC appeared on the scene just before the last edition.

Appendix I describes large-scale multiprocessors for use in high-performance
computing.

Appendix J is the only appendix that remains from the first edition, and it
covers computer arithmetic.

Appendix K provides a survey of instruction architectures, including the
80x86, the IBM 360, the VAX, and many RISC architectures, including ARM,
MIPS, Power, and SPARC.

We describe Appendix L below.

Appendix L (available online) includes historical perspectives on the key ideas
presented in each of the chapters in this text. These historical perspective sections
allow us to trace the development of an idea through a series of machines or
describe significant projects. If you’re interested in examining the initial devel-
opment of an idea or machine or interested in further reading, references are pro-
vided at the end of each history. For this chapter, see Section L.2, The Early
Development of Computers, for a discussion on the early development of digital
computers and performance measurement methodologies.

As you read the historical material, you’ll soon come to realize that one of the
important benefits of the youth of computing, compared to many other engineer-
ing fields, is that many of the pioneers are still alive—we can learn the history by
simply asking them!

Case Study 1: Chip Fabrication Cost

Concepts illustrated by this case study

■ Fabrication Cost

■ Fabrication Yield

■ Defect Tolerance through Redundancy

There are many factors involved in the price of a computer chip. New, smaller
technology gives a boost in performance and a drop in required chip area. In the
smaller technology, one can either keep the small area or place more hardware on
the chip in order to get more functionality. In this case study, we explore how dif-
ferent design decisions involving fabrication technology, area, and redundancy
affect the cost of chips.

1.13 Historical Perspectives and References

Case Studies and Exercises by Diana Franklin

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

62 ■ Chapter One Fundamentals of Quantitative Design and Analysis

1.1 [10/10] <1.6> Figure 1.22 gives the relevant chip statistics that influence the cost
of several current chips. In the next few exercises, you will be exploring the
effect of different possible design decisions for the IBM Power5.

a. [10] <1.6> What is the yield for the IBM Power5?

b. [10] <1.6> Why does the IBM Power5 have a lower defect rate than the Niag-
ara and Opteron?

1.2 [20/20/20/20] <1.6> It costs $1 billion to build a new fabrication facility. You
will be selling a range of chips from that factory, and you need to decide how
much capacity to dedicate to each chip. Your Woods chip will be 150 mm2 and
will make a profit of $20 per defect-free chip. Your Markon chip will be 250
mm2 and will make a profit of $25 per defect-free chip. Your fabrication facility
will be identical to that for the Power5. Each wafer has a 300 mm diameter.

a. [20] <1.6> How much profit do you make on each wafer of Woods chip?

b. [20] <1.6> How much profit do you make on each wafer of Markon chip?

c. [20] <1.6> Which chip should you produce in this facility?

d. [20] <1.6> What is the profit on each new Power5 chip? If your demand is
50,000 Woods chips per month and 25,000 Markon chips per month, and
your facility can fabricate 150 wafers a month, how many wafers should you
make of each chip?

1.3 [20/20] <1.6> Your colleague at AMD suggests that, since the yield is so poor,
you might make chips more cheaply if you placed an extra core on the die and
only threw out chips on which both processors had failed. We will solve this
exercise by viewing the yield as a probability of no defects occurring in a certain
area given the defect rate. Calculate probabilities based on each Opteron core
separately (this may not be entirely accurate, since the yield equation is based on
empirical evidence rather than a mathematical calculation relating the probabili-
ties of finding errors in different portions of the chip).

a. [20] <1.6> What is the probability that a defect will occur on no more than
one of the two processor cores?

b. [20] <1.6> If the old chip cost $20 dollars per chip, what will the cost be of
the new chip, taking into account the new area and yield?

Chip
Die size
(mm2)

Estimated defect
rate (per cm2)

Manufacturing
size (nm)

Transistors
(millions)

IBM Power5 389 .30 130 276

Sun Niagara 380 .75 90 279

AMD Opteron 199 .75 90 233

Figure 1.22 Manufacturing cost factors for several modern processors.

Case Studies and Exercises by Diana Franklin ■ 63

Case Study 2: Power Consumption in Computer Systems

Concepts illustrated by this case study

■ Amdahl’s Law

■ Redundancy

■ MTTF

■ Power Consumption

Power consumption in modern systems is dependent on a variety of factors,
including the chip clock frequency, efficiency, disk drive speed, disk drive utili-
zation, and DRAM. The following exercises explore the impact on power that
different design decisions and use scenarios have.

1.4 [20/10/20] <1.5> Figure 1.23 presents the power consumption of several com-
puter system components. In this exercise, we will explore how the hard drive
affects power consumption for the system.

a. [20] <1.5> Assuming the maximum load for each component, and a power
supply efficiency of 80%, what wattage must the server’s power supply
deliver to a system with an Intel Pentium 4 chip, 2 GB 240-pin Kingston
DRAM, and one 7200 rpm hard drive?

b. [10] <1.5> How much power will the 7200 rpm disk drive consume if it is
idle roughly 60% of the time?

c. [20] <1.5> Given that the time to read data off a 7200 rpm disk drive will be
roughly 75% of a 5400 rpm disk, at what idle time of the 7200 rpm disk will
the power consumption be equal, on average, for the two disks?

1.5 [10/10/20] <1.5> One critical factor in powering a server farm is cooling. If heat
is not removed from the computer efficiently, the fans will blow hot air back onto
the computer, not cold air. We will look at how different design decisions affect
the necessary cooling, and thus the price, of a system. Use Figure 1.23 for your
power calculations.

Component
type Product Performance Power

Processor Sun Niagara 8-core 1.2 GHz 72–79 W peak

Intel Pentium 4 2 GHz 48.9–66 W

DRAM Kingston X64C3AD2 1 GB 184-pin 3.7 W

Kingston D2N3 1 GB 240-pin 2.3 W

Hard drive DiamondMax 16 5400 rpm 7.0 W read/seek, 2.9 W idle

DiamondMax 9 7200 rpm 7.9 W read/seek, 4.0 W idle

Figure 1.23 Power consumption of several computer components.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

64 ■ Chapter One Fundamentals of Quantitative Design and Analysis

a. [10] <1.5> A cooling door for a rack costs $4000 and dissipates 14 KW (into
the room; additional cost is required to get it out of the room). How many
servers with an Intel Pentium 4 processor, 1 GB 240-pin DRAM, and a single
7200 rpm hard drive can you cool with one cooling door?

b. [10] <1.5> You are considering providing fault tolerance for your hard drive.
RAID 1 doubles the number of disks (see Chapter 6). Now how many sys-
tems can you place on a single rack with a single cooler?

c. [20] <1.5> Typical server farms can dissipate a maximum of 200 W per
square foot. Given that a server rack requires 11 square feet (including front
and back clearance), how many servers from part (a) can be placed on a sin-
gle rack, and how many cooling doors are required?

1.6 [Discussion] <1.8> Figure 1.24 gives a comparison of power and performance
for several benchmarks comparing two servers: Sun Fire T2000 (which uses
Niagara) and IBM x346 (using Intel Xeon processors). This information was
reported on a Sun Web site. There are two pieces of information reported: power
and speed on two benchmarks. For the results shown, the Sun Fire T2000 is
clearly superior. What other factors might be important and thus cause someone
to choose the IBM x346 if it were superior in those areas?

1.7 [20/20/20/20] <1.6, 1.9> Your company’s internal studies show that a single-core
system is sufficient for the demand on your processing power; however, you are
exploring whether you could save power by using two cores.

a. [20] <1.9> Assume your application is 80% parallelizable. By how much
could you decrease the frequency and get the same performance?

b. [20] <1.6> Assume that the voltage may be decreased linearly with the fre-
quency. Using the equation in Section 1.5, how much dynamic power would
the dual-core system require as compared to the single-core system?

c. [20] <1.6, 1.9> Now assume the voltage may not decrease below 25% of the
original voltage. This voltage is referred to as the voltage floor, and any volt-
age lower than that will lose the state. What percent of parallelization gives
you a voltage at the voltage floor?

d. [20] <1.6, 1.9> Using the equation in Section 1.5, how much dynamic power
would the dual-core system require as compared to the single-core system
when taking into account the voltage floor?

Sun Fire T2000 IBM x346

Power (watts) 298 438

SPECjbb (operations/sec) 63,378 39,985

Power (watts) 330 438

SPECWeb (composite) 14,001 4348

Figure 1.24 Sun power/performance comparison as selectively reported by Sun.

Case Studies and Exercises by Diana Franklin ■ 65

Exercises

1.8 [10/15/15/10/10] <1.4, 1.5> One challenge for architects is that the design cre-
ated today will require several years of implementation, verification, and testing
before appearing on the market. This means that the architect must project what
the technology will be like several years in advance. Sometimes, this is difficult
to do.

a. [10] <1.4> According to the trend in device scaling observed by Moore’s law,
the number of transistors on a chip in 2015 should be how many times the
number in 2005?

b. [15] <1.5> The increase in clock rates once mirrored this trend. Had clock
rates continued to climb at the same rate as in the 1990s, approximately how
fast would clock rates be in 2015?

c. [15] <1.5> At the current rate of increase, what are the clock rates now pro-
jected to be in 2015?

d. [10] <1.4> What has limited the rate of growth of the clock rate, and what are
architects doing with the extra transistors now to increase performance?

e. [10] <1.4> The rate of growth for DRAM capacity has also slowed down. For
20 years, DRAM capacity improved by 60% each year. That rate dropped to
40% each year and now improvement is 25 to 40% per year. If this trend con-
tinues, what will be the approximate rate of growth for DRAM capacity by
2020?

1.9 [10/10] <1.5> You are designing a system for a real-time application in which
specific deadlines must be met. Finishing the computation faster gains nothing.
You find that your system can execute the necessary code, in the worst case,
twice as fast as necessary.

a. [10] <1.5> How much energy do you save if you execute at the current speed
and turn off the system when the computation is complete?

b. [10] <1.5> How much energy do you save if you set the voltage and fre-
quency to be half as much?

1.10 [10/10/20/20] <1.5> Server farms such as Google and Yahoo! provide enough
compute capacity for the highest request rate of the day. Imagine that most of the
time these servers operate at only 60% capacity. Assume further that the power
does not scale linearly with the load; that is, when the servers are operating at
60% capacity, they consume 90% of maximum power. The servers could be
turned off, but they would take too long to restart in response to more load.
A new system has been proposed that allows for a quick restart but requires 20%
of the maximum power while in this “barely alive” state.

a. [10] <1.5> How much power savings would be achieved by turning off 60%
of the servers?

b. [10] <1.5> How much power savings would be achieved by placing 60% of
the servers in the “barely alive” state?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

66 ■ Chapter One Fundamentals of Quantitative Design and Analysis

c. [20] <1.5> How much power savings would be achieved by reducing the
voltage by 20% and frequency by 40%?

d. [20] <1.5> How much power savings would be achieved by placing 30% of
the servers in the “barely alive” state and 30% off?

1.11 [10/10/20] <1.7> Availability is the most important consideration for designing
servers, followed closely by scalability and throughput.

a. [10] <1.7> We have a single processor with a failures in time (FIT) of 100.
What is the mean time to failure (MTTF) for this system?

b. [10] <1.7> If it takes 1 day to get the system running again, what is the avail-
ability of the system?

c. [20] <1.7> Imagine that the government, to cut costs, is going to build a
supercomputer out of inexpensive computers rather than expensive, reliable
computers. What is the MTTF for a system with 1000 processors? Assume
that if one fails, they all fail.

1.12 [20/20/20] <1.1, 1.2, 1.7> In a server farm such as that used by Amazon or eBay,
a single failure does not cause the entire system to crash. Instead, it will reduce
the number of requests that can be satisfied at any one time.

a. [20] <1.7> If a company has 10,000 computers, each with a MTTF of 35
days, and it experiences catastrophic failure only if 1/3 of the computers fail,
what is the MTTF for the system?

b. [20] <1.1, 1.7> If it costs an extra $1000, per computer, to double the MTTF,
would this be a good business decision? Show your work.

c. [20] <1.2> Figure 1.3 shows, on average, the cost of downtimes, assuming
that the cost is equal at all times of the year. For retailers, however, the Christ-
mas season is the most profitable (and therefore the most costly time to lose
sales). If a catalog sales center has twice as much traffic in the fourth quarter
as every other quarter, what is the average cost of downtime per hour during
the fourth quarter and the rest of the year?

1.13 [10/20/20] <1.9> Your company is trying to choose between purchasing the
Opteron or Itanium 2. You have analyzed your company’s applications, and 60%
of the time it will be running applications similar to wupwise, 20% of the time
applications similar to ammp, and 20% of the time applications similar to apsi.

a. [10] If you were choosing just based on overall SPEC performance, which
would you choose and why?

b. [20] What is the weighted average of execution time ratios for this mix of
applications for the Opteron and Itanium 2?

c. [20] What is the speedup of the Opteron over the Itanium 2?

1.14 [20/10/10/10/15] <1.9> In this exercise, assume that we are considering enhanc-
ing a machine by adding vector hardware to it. When a computation is run in vec-
tor mode on the vector hardware, it is 10 times faster than the normal mode of
execution. We call the percentage of time that could be spent using vector mode

Case Studies and Exercises by Diana Franklin ■ 67

the percentage of vectorization. Vectors are discussed in Chapter 4, but you don’t
need to know anything about how they work to answer this question!

a. [20] <1.9> Draw a graph that plots the speedup as a percentage of the compu-
tation performed in vector mode. Label the y-axis “Net speedup” and label
the x-axis “Percent vectorization.”

b. [10] <1.9> What percentage of vectorization is needed to achieve a speedup
of 2?

c. [10] <1.9> What percentage of the computation run time is spent in vector
mode if a speedup of 2 is achieved?

d. [10] <1.9> What percentage of vectorization is needed to achieve one-half
the maximum speedup attainable from using vector mode?

e. [15] <1.9> Suppose you have measured the percentage of vectorization of the
program to be 70%. The hardware design group estimates it can speed up the
vector hardware even more with significant additional investment. You won-
der whether the compiler crew could increase the percentage of vectorization,
instead. What percentage of vectorization would the compiler team need to
achieve in order to equal an addition 2× speedup in the vector unit (beyond
the initial 10×)?

1.15 [15/10] <1.9> Assume that we make an enhancement to a computer that
improves some mode of execution by a factor of 10. Enhanced mode is used 50%
of the time, measured as a percentage of the execution time when the enhanced
mode is in use. Recall that Amdahl’s law depends on the fraction of the original,
unenhanced execution time that could make use of enhanced mode. Thus, we
cannot directly use this 50% measurement to compute speedup with Amdahl’s
law.

a. [15] <1.9> What is the speedup we have obtained from fast mode?

b. [10] <1.9> What percentage of the original execution time has been con-
verted to fast mode?

1.16 [20/20/15] <1.9> When making changes to optimize part of a processor, it is
often the case that speeding up one type of instruction comes at the cost of slow-
ing down something else. For example, if we put in a complicated fast floating-
point unit, that takes space, and something might have to be moved farther away
from the middle to accommodate it, adding an extra cycle in delay to reach that
unit. The basic Amdahl’s law equation does not take into account this trade-off.

a. [20] <1.9> If the new fast floating-point unit speeds up floating-point opera-
tions by, on average, 2×, and floating-point operations take 20% of the origi-
nal program’s execution time, what is the overall speedup (ignoring the
penalty to any other instructions)?

b. [20] <1.9> Now assume that speeding up the floating-point unit slowed down
data cache accesses, resulting in a 1.5× slowdown (or 2/3 speedup). Data
cache accesses consume 10% of the execution time. What is the overall
speedup now?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

68 ■ Chapter One Fundamentals of Quantitative Design and Analysis

c. [15] <1.9> After implementing the new floating-point operations, what
percentage of execution time is spent on floating-point operations? What per-
centage is spent on data cache accesses?

1.17 [10/10/20/20] <1.10> Your company has just bought a new Intel Core i5 dual-
core processor, and you have been tasked with optimizing your software for this
processor. You will run two applications on this dual core, but the resource
requirements are not equal. The first application requires 80% of the resources,
and the other only 20% of the resources. Assume that when you parallelize a por-
tion of the program, the speedup for that portion is 2.

a. [10] <1.10> Given that 40% of the first application is parallelizable, how
much speedup would you achieve with that application if run in isolation?

b. [10] <1.10> Given that 99% of the second application is parallelizable, how
much speedup would this application observe if run in isolation?

c. [20] <1.10> Given that 40% of the first application is parallelizable, how
much overall system speedup would you observe if you parallelized it?

d. [20] <1.10> Given that 99% of the second application is parallelizable, how
much overall system speedup would you observe if you parallelized it?

1.18 [10/20/20/20/25] <1.10> When parallelizing an application, the ideal speedup is
speeding up by the number of processors. This is limited by two things: percent-
age of the application that can be parallelized and the cost of communication.
Amdahl’s law takes into account the former but not the latter.

a. [10] <1.10> What is the speedup with N processors if 80% of the application
is parallelizable, ignoring the cost of communication?

b. [20] <1.10> What is the speedup with 8 processors if, for every processor
added, the communication overhead is 0.5% of the original execution time.

c. [20] <1.10> What is the speedup with 8 processors if, for every time the num-
ber of processors is doubled, the communication overhead is increased by
0.5% of the original execution time?

d. [20] <1.10> What is the speedup with N processors if, for every time the
number of processors is doubled, the communication overhead is increased
by 0.5% of the original execution time?

e. [25] <1.10> Write the general equation that solves this question: What is the
number of processors with the highest speedup in an application in which P%
of the original execution time is parallelizable, and, for every time the num-
ber of processors is doubled, the communication is increased by 0.5% of the
original execution time?

This page intentionally left blank

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

2.1 Introduction 72

2.2 Ten Advanced Optimizations of Cache Performance 78

2.3 Memory Technology and Optimizations 96

2.4 Protection: Virtual Memory and Virtual Machines 105

2.5 Crosscutting Issues: The Design of Memory Hierarchies 112

2.6 Putting It All Together: Memory Hierachies in the

ARM Cortex-A8 and Intel Core i7 113

2.7 Fallacies and Pitfalls 125

2.8 Concluding Remarks: Looking Ahead 129

2.9 Historical Perspective and References 131

Case Studies and Exercises by Norman P. Jouppi,

Naveen Muralimanohar, and Sheng Li 131

2
Memory Hierarchy

Design 1

Ideally one would desire an indefinitely large memory capacity such

that any particular … word would be immediately available. … We

are … forced to recognize the possibility of constructing a hierarchy of

memories, each of which has greater capacity than the preceding but

which is less quickly accessible.

A. W. Burks, H. H. Goldstine,
and J. von Neumann

Preliminary Discussion of the
Logical Design of an Electronic
Computing Instrument (1946)

Computer Architecture. DOI: 10.1016/B978-0-12-383872-8.00003-3
© 2012 Elsevier, Inc. All rights reserved.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://dx.doi.org/10.1016/B978-0-12-383872-8.00003-3
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

72 ■ Chapter Two Memory Hierarchy Design

Computer pioneers correctly predicted that programmers would want unlimited
amounts of fast memory. An economical solution to that desire is a memory hier-
archy, which takes advantage of locality and trade-offs in the cost-performance
of memory technologies. The principle of locality, presented in the first chapter,
says that most programs do not access all code or data uniformly. Locality occurs
in time (temporal locality) and in space (spatial locality). This principle, plus the
guideline that for a given implementation technology and power budget smaller
hardware can be made faster, led to hierarchies based on memories of different
speeds and sizes. Figure 2.1 shows a multilevel memory hierarchy, including typ-
ical sizes and speeds of access.

Since fast memory is expensive, a memory hierarchy is organized into several
levels—each smaller, faster, and more expensive per byte than the next lower level,
which is farther from the processor. The goal is to provide a memory system with
cost per byte almost as low as the cheapest level of memory and speed almost as
fast as the fastest level. In most cases (but not all), the data contained in a lower
level are a superset of the next higher level. This property, called the inclusion
property, is always required for the lowest level of the hierarchy, which consists of
main memory in the case of caches and disk memory in the case of virtual memory.

Figure 2.1 The levels in a typical memory hierarchy in a server computer shown on
top (a) and in a personal mobile device (PMD) on the bottom (b). As we move farther
away from the processor, the memory in the level below becomes slower and larger.
Note that the time units change by a factor of 109—from picoseconds to millisec-
onds—and that the size units change by a factor of 1012—from bytes to terabytes. The
PMD has a slower clock rate and smaller caches and main memory. A key difference is
that servers and desktops use disk storage as the lowest level in the hierarchy while
PMDs use Flash, which is built from EEPROM technology.

2.1 Introduction

Size:
Speed:

4 –16 TB
5 –10 ms

4 –16 GB
50 –100 ns

2 – 4 MB
10 – 20 ns

256 KB
3–10 ns

64 KB
1 ns

1000 bytes
300 ps

Size:
Speed:

4 – 8 GB
25 – 50 us

256 – 512 MB
50 –100 ns

256 KB
10 – 20 ns

64 KB
2 ns

500 bytes
500 ps

Level 2
Cache

reference

Level 1
Cache

reference

(a) Memory hierarchy for server

(b) Memory hierarchy for a personal mobile device

Level 1
Cache

reference

Register
reference

Register
reference

Memory
reference

Memory
reference

Disk
memory

reference

Flash
memory

reference

Level 2
Cache

reference

Level 3
Cache

reference

CPU

Registers
Memory Storage

Memory
bus

L1
C
a
c
h
e

L2
C
a
c
h
e

CPU

Registers
Memory Disk storageI/O bus

Memory
bus

L1
C
a
c
h
e

L2
C
a
c
h
e

L3
C
a
c
h
e

©
 H

en
ne

ss
y,

 J
oh

n
L

.;
Pa

tte
rs

on
, D

av
id

 A
.,

O
ct

 0
7,

 2
01

1,
 C

om
pu

te
r

A
rc

hi
te

ct
ur

e
: A

 Q
ua

nt
ita

tiv
e

A
pp

ro
ac

h
M

or
ga

n
K

au
fm

an
n,

 B
ur

lin
gt

on
, I

SB
N

: 9
78

01
23

83
87

35

2.1 Introduction ■ 73

The importance of the memory hierarchy has increased with advances in per-
formance of processors. Figure 2.2 plots single processor performance projec-
tions against the historical performance improvement in time to access main
memory. The processor line shows the increase in memory requests per second
on average (i.e., the inverse of the latency between memory references), while
the memory line shows the increase in DRAM accesses per second (i.e., the
inverse of the DRAM access latency). The situation in a uniprocessor is actually
somewhat worse, since the peak memory access rate is faster than the average
rate, which is what is plotted.

More recently, high-end processors have moved to multiple cores, further
increasing the bandwidth requirements versus single cores. In fact, the aggregate
peak bandwidth essentially grows as the numbers of cores grows. A modern high-
end processor such as the Intel Core i7 can generate two data memory references
per core each clock cycle; with four cores and a 3.2 GHz clock rate, the i7 can
generate a peak of 25.6 billion 64-bit data memory references per second, in addi-
tion to a peak instruction demand of about 12.8 billion 128-bit instruction refer-
ences; this is a total peak bandwidth of 409.6 GB/sec! This incredible bandwidth
is achieved by multiporting and pipelining the caches; by the use of multiple lev-
els of caches, using separate first- and sometimes second-level caches per core;
and by using a separate instruction and data cache at the first level. In contrast, the
peak bandwidth to DRAM main memory is only 6% of this (25 GB/sec).

Figure 2.2 Starting with 1980 performance as a baseline, the gap in performance,

measured as the difference in the time between processor memory requests (for a

single processor or core) and the latency of a DRAM access, is plotted over time.

Note that the vertical axis must be on a logarithmic scale to record the size of the
processor–DRAM performance gap. The memory baseline is 64 KB DRAM in 1980, with
a 1.07 per year performance improvement in latency (see Figure 2.13 on page 99). The
processor line assumes a 1.25 improvement per year until 1986, a 1.52 improvement
until 2000, a 1.20 improvement between 2000 and 2005, and no change in processor
performance (on a per-core basis) between 2005 and 2010; see Figure 1.1 in Chapter 1.

1

100

10

1000

P
er

fo
rm

an
ce

10,000

100,000

1980 2010200520001995
Year

Processor

Memory

19901985

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

74 ■ Chapter Two Memory Hierarchy Design

Traditionally, designers of memory hierarchies focused on optimizing aver-
age memory access time, which is determined by the cache access time, miss
rate, and miss penalty. More recently, however, power has become a major
consideration. In high-end microprocessors, there may be 10 MB or more of
on-chip cache, and a large second- or third-level cache will consume significant
power both as leakage when not operating (called static power) and as active
power, as when performing a read or write (called dynamic power), as described
in Section 2.3. The problem is even more acute in processors in PMDs where the
CPU is less aggressive and the power budget may be 20 to 50 times smaller. In
such cases, the caches can account for 25% to 50% of the total power consump-
tion. Thus, more designs must consider both performance and power trade-offs,
and we will examine both in this chapter.

Basics of Memory Hierarchies: A Quick Review

The increasing size and thus importance of this gap led to the migration of the
basics of memory hierarchy into undergraduate courses in computer architecture,
and even to courses in operating systems and compilers. Thus, we’ll start with a
quick review of caches and their operation. The bulk of the chapter, however,
describes more advanced innovations that attack the processor–memory perfor-
mance gap.

When a word is not found in the cache, the word must be fetched from a
lower level in the hierarchy (which may be another cache or the main memory)
and placed in the cache before continuing. Multiple words, called a block (or
line), are moved for efficiency reasons, and because they are likely to be needed
soon due to spatial locality. Each cache block includes a tag to indicate which
memory address it corresponds to.

A key design decision is where blocks (or lines) can be placed in a cache. The
most popular scheme is set associative, where a set is a group of blocks in the
cache. A block is first mapped onto a set, and then the block can be placed any-
where within that set. Finding a block consists of first mapping the block address
to the set and then searching the set—usually in parallel—to find the block. The
set is chosen by the address of the data:

(Block address) MOD (Number of sets in cache)

If there are n blocks in a set, the cache placement is called n-way set associative.
The end points of set associativity have their own names. A direct-mapped cache
has just one block per set (so a block is always placed in the same location), and
a fully associative cache has just one set (so a block can be placed anywhere).

Caching data that is only read is easy, since the copy in the cache and mem-
ory will be identical. Caching writes is more difficult; for example, how can the
copy in the cache and memory be kept consistent? There are two main strategies.
A write-through cache updates the item in the cache and writes through to update

2.1 Introduction ■ 75

main memory. A write-back cache only updates the copy in the cache. When the
block is about to be replaced, it is copied back to memory. Both write strategies
can use a write buffer to allow the cache to proceed as soon as the data are placed
in the buffer rather than wait the full latency to write the data into memory.

One measure of the benefits of different cache organizations is miss rate.
Miss rate is simply the fraction of cache accesses that result in a miss—that is,
the number of accesses that miss divided by the number of accesses.

To gain insights into the causes of high miss rates, which can inspire better
cache designs, the three Cs model sorts all misses into three simple categories:

■ Compulsory—The very first access to a block cannot be in the cache, so the
block must be brought into the cache. Compulsory misses are those that occur
even if you had an infinite sized cache.

■ Capacity—If the cache cannot contain all the blocks needed during execution
of a program, capacity misses (in addition to compulsory misses) will occur
because of blocks being discarded and later retrieved.

■ Conflict—If the block placement strategy is not fully associative, conflict
misses (in addition to compulsory and capacity misses) will occur because a
block may be discarded and later retrieved if multiple blocks map to its set
and accesses to the different blocks are intermingled.

Figures B.8 and B.9 on pages B-24 and B-25 show the relative frequency of
cache misses broken down by the three Cs. As we will see in Chapters 3 and 5,
multithreading and multiple cores add complications for caches, both increasing
the potential for capacity misses as well as adding a fourth C, for coherency
misses due to cache flushes to keep multiple caches coherent in a multiprocessor;
we will consider these issues in Chapter 5.

Alas, miss rate can be a misleading measure for several reasons. Hence, some
designers prefer measuring misses per instruction rather than misses per memory
reference (miss rate). These two are related:

(It is often reported as misses per 1000 instructions to use integers instead of
fractions.)

The problem with both measures is that they don’t factor in the cost of a miss.
A better measure is the average memory access time:

Average memory access time = Hit time + Miss rate × Miss penalty

where hit time is the time to hit in the cache and miss penalty is the time to replace
the block from memory (that is, the cost of a miss). Average memory access time is
still an indirect measure of performance; although it is a better measure than miss
rate, it is not a substitute for execution time. In Chapter 3 we will see that specula-
tive processors may execute other instructions during a miss, thereby reducing the

Misses
Instruction

Miss rate Memory accesses×
Instruction count

---= Miss rate
Memory accesses

Instruction
--×=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

76 ■ Chapter Two Memory Hierarchy Design

effective miss penalty. The use of multithreading (introduced in Chapter 3) also
allows a processor to tolerate missses without being forced to idle. As we will
examine shortly, to take advantage of such latency tolerating techniques we need
caches that can service requests while handling an outstanding miss.

If this material is new to you, or if this quick review moves too quickly, see
Appendix B. It covers the same introductory material in more depth and includes
examples of caches from real computers and quantitative evaluations of their
effectiveness.

Section B.3 in Appendix B presents six basic cache optimizations, which we
quickly review here. The appendix also gives quantitative examples of the bene-
fits of these optimizations. We also comment briefly on the power implications of
these trade-offs.

1. Larger block size to reduce miss rate—The simplest way to reduce the miss
rate is to take advantage of spatial locality and increase the block size. Larger
blocks reduce compulsory misses, but they also increase the miss penalty.
Because larger blocks lower the number of tags, they can slightly reduce
static power. Larger block sizes can also increase capacity or conflict misses,
especially in smaller caches. Choosing the right block size is a complex
trade-off that depends on the size of cache and the miss penalty.

2. Bigger caches to reduce miss rate—The obvious way to reduce capacity
misses is to increase cache capacity. Drawbacks include potentially longer hit
time of the larger cache memory and higher cost and power. Larger caches
increase both static and dynamic power.

3. Higher associativity to reduce miss rate—Obviously, increasing associativity
reduces conflict misses. Greater associativity can come at the cost of
increased hit time. As we will see shortly, associativity also increases power
consumption.

4. Multilevel caches to reduce miss penalty—A difficult decision is whether to
make the cache hit time fast, to keep pace with the high clock rate of proces-
sors, or to make the cache large to reduce the gap between the processor
accesses and main memory accesses. Adding another level of cache between
the original cache and memory simplifies the decision (see Figure 2.3). The
first-level cache can be small enough to match a fast clock cycle time, yet the
second-level (or third-level) cache can be large enough to capture many
accesses that would go to main memory. The focus on misses in second-level
caches leads to larger blocks, bigger capacity, and higher associativity. Multi-
level caches are more power efficient than a single aggregate cache. If L1 and
L2 refer, respectively, to first- and second-level caches, we can redefine the
average memory access time:

Hit timeL1 + Miss rateL1 × (Hit timeL2 + Miss rateL2 × Miss penaltyL2)

5. Giving priority to read misses over writes to reduce miss penalty—A write
buffer is a good place to implement this optimization. Write buffers create
hazards because they hold the updated value of a location needed on a read

2.1 Introduction ■ 77

miss—that is, a read-after-write hazard through memory. One solution is to
check the contents of the write buffer on a read miss. If there are no conflicts,
and if the memory system is available, sending the read before the writes
reduces the miss penalty. Most processors give reads priority over writes.
This choice has little effect on power consumption.

6. Avoiding address translation during indexing of the cache to reduce hit
time—Caches must cope with the translation of a virtual address from the
processor to a physical address to access memory. (Virtual memory is cov-
ered in Sections 2.4 and B.4.) A common optimization is to use the page
offset—the part that is identical in both virtual and physical addresses—to
index the cache, as described in Appendix B, page B-38. This virtual index/
physical tag method introduces some system complications and/or

Figure 2.3 Access times generally increase as cache size and associativity are

increased. These data come from the CACTI model 6.5 by Tarjan, Thoziyoor, and Jouppi
[2005]. The data assume a 40 nm feature size (which is between the technology used in
Intel’s fastest and second fastest versions of the i7 and the same as the technology used
in the fastest ARM embedded processors), a single bank, and 64-byte blocks. The
assumptions about cache layout and the complex trade-offs between interconnect
delays (that depend on the size of a cache block being accessed) and the cost of tag
checks and multiplexing lead to results that are occasionally surprising, such as the
lower access time for a 64 KB with two-way set associativity versus direct mapping. Sim-
ilarly, the results with eight-way set associativity generate unusual behavior as cache
size is increased. Since such observations are highly dependent on technology and
detailed design assumptions, tools such as CACTI serve to reduce the search space
rather than precision analysis of the trade-offs.

900

800

700

600

500

400

300

200

100

0

A
cc

es
s

tim
e

in
 m

ic
ro

se
co

nd
s

16 KB 32 KB 64 KB 128 KB 256 KB

1-way 2-way
8-way4-way

Cache size

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

78 ■ Chapter Two Memory Hierarchy Design

limitations on the size and structure of the L1 cache, but the advantages of
removing the translation lookaside buffer (TLB) access from the critical
path outweigh the disadvantages.

Note that each of the six optimizations above has a potential disadvantage
that can lead to increased, rather than decreased, average memory access time.

The rest of this chapter assumes familiarity with the material above and the
details in Appendix B. In the Putting It All Together section, we examine the
memory hierarchy for a microprocessor designed for a high-end server, the Intel
Core i7, as well as one designed for use in a PMD, the Arm Cortex-A8, which is
the basis for the processor used in the Apple iPad and several high-end
smartphones. Within each of these classes, there is a significant diversity in
approach due to the intended use of the computer. While the high-end processor
used in the server has more cores and bigger caches than the Intel processors
designed for desktop uses, the processors have similar architectures. The differ-
ences are driven by performance and the nature of the workload; desktop com-
puters are primarily running one application at a time on top of an operating
system for a single user, whereas server computers may have hundreds of users
running potentially dozens of applications simultaneously. Because of these
workload differences, desktop computers are generally concerned more with
average latency from the memory hierarchy, whereas server computers are also
concerned about memory bandwidth. Even within the class of desktop comput-
ers there is wide diversity from lower end netbooks with scaled-down proces-
sors more similar to those found in high-end PMDs, to high-end desktops whose
processors contain multiple cores and whose organization resembles that of a
low-end server.

In contrast, PMDs not only serve one user but generally also have smaller
operating systems, usually less multitasking (running of several applications
simultaneously), and simpler applications. PMDs also typically use Flash
memory rather than disks, and most consider both performance and energy con-
sumption, which determines battery life.

The average memory access time formula above gives us three metrics for cache
optimizations: hit time, miss rate, and miss penalty. Given the recent trends, we add
cache bandwidth and power consumption to this list. We can classify the ten
advanced cache optimizations we examine into five categories based on these
metrics:

1. Reducing the hit time—Small and simple first-level caches and way-
prediction. Both techniques also generally decrease power consumption.

2. Increasing cache bandwidth—Pipelined caches, multibanked caches, and
nonblocking caches. These techniques have varying impacts on power con-
sumption.

2.2 Ten Advanced Optimizations of Cache Performance

2.2 Ten Advanced Optimizations of Cache Performance ■ 79

3. Reducing the miss penalty—Critical word first and merging write buffers.
These optimizations have little impact on power.

4. Reducing the miss rate—Compiler optimizations. Obviously any improve-
ment at compile time improves power consumption.

5. Reducing the miss penalty or miss rate via parallelism—Hardware prefetch-
ing and compiler prefetching. These optimizations generally increase power
consumption, primarily due to prefetched data that are unused.

In general, the hardware complexity increases as we go through these optimiza-
tions. In addition, several of the optimizations require sophisticated compiler
technology. We will conclude with a summary of the implementation complexity
and the performance benefits of the ten techniques presented in Figure 2.11 on
page 96. Since some of these are straightforward, we cover them briefly; others
require more description.

First Optimization: Small and Simple First-Level Caches to
Reduce Hit Time and Power

The pressure of both a fast clock cycle and power limitations encourages limited
size for first-level caches. Similarly, use of lower levels of associativity can
reduce both hit time and power, although such trade-offs are more complex than
those involving size.

The critical timing path in a cache hit is the three-step process of addressing
the tag memory using the index portion of the address, comparing the read tag
value to the address, and setting the multiplexor to choose the correct data item if
the cache is set associative. Direct-mapped caches can overlap the tag check with
the transmission of the data, effectively reducing hit time. Furthermore, lower
levels of associativity will usually reduce power because fewer cache lines must
be accessed.

Although the total amount of on-chip cache has increased dramatically with
new generations of microprocessors, due to the clock rate impact arising from a
larger L1 cache, the size of the L1 caches has recently increased either slightly
or not at all. In many recent processors, designers have opted for more associa-
tivity rather than larger caches. An additional consideration in choosing the
associativity is the possibility of eliminating address aliases; we discuss this
shortly.

One approach to determining the impact on hit time and power consumption
in advance of building a chip is to use CAD tools. CACTI is a program to esti-
mate the access time and energy consumption of alternative cache structures on
CMOS microprocessors within 10% of more detailed CAD tools. For a given
minimum feature size, CACTI estimates the hit time of caches as cache size var-
ies, associativity, number of read/write ports, and more complex parameters.
Figure 2.3 shows the estimated impact on hit time as cache size and associativity
are varied. Depending on cache size, for these parameters the model suggests that
the hit time for direct mapped is slightly faster than two-way set associative and

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

80 ■ Chapter Two Memory Hierarchy Design

that two-way set associative is 1.2 times faster than four-way and four-way is 1.4
times faster than eight-way. Of course, these estimates depend on technology as
well as the size of the cache.

Example Using the data in Figure B.8 in Appendix B and Figure 2.3, determine whether a
32 KB four-way set associative L1 cache has a faster memory access time than a
32 KB two-way set associative L1 cache. Assume the miss penalty to L2 is 15
times the access time for the faster L1 cache. Ignore misses beyond L2. Which
has the faster average memory access time?

Answer Let the access time for the two-way set associative cache be 1. Then, for the two-
way cache:

For the four-way cache, the access time is 1.4 times longer. The elapsed time of
the miss penalty is 15/1.4 = 10.1. Assume 10 for simplicity:

Clearly, the higher associativity looks like a bad trade-off; however, since cache
access in modern processors is often pipelined, the exact impact on the clock
cycle time is difficult to assess.

Energy consumption is also a consideration in choosing both the cache size
and associativity, as Figure 2.4 shows. The energy cost of higher associativity
ranges from more than a factor of 2 to negligible in caches of 128 KB or 256 KB
when going from direct mapped to two-way set associative.

In recent designs, there are three other factors that have led to the use of
higher associativity in first-level caches. First, many processors take at least two
clock cycles to access the cache and thus the impact of a longer hit time may not
be critical. Second, to keep the TLB out of the critical path (a delay that would be
larger than that associated with increased associativity), almost all L1 caches
should be virtually indexed. This limits the size of the cache to the page size
times the associativity, because then only the bits within the page are used for the
index. There are other solutions to the problem of indexing the cache before
address translation is completed, but increasing the associativity, which also has
other benefits, is the most attractive. Third, with the introduction of multithread-
ing (see Chapter 3), conflict misses can increase, making higher associativity
more attractive.

Average memory access time2-way Hit time Miss rate Miss penalty×+=

1 0.038 15×+ 1.38= =

Average memory access time4-way Hit time2-way 1.4× Miss rate Miss penalty×+=

1.4 0.037 10×+ 1.77= =

2.2 Ten Advanced Optimizations of Cache Performance ■ 81

Second Optimization: Way Prediction to Reduce Hit Time

Another approach reduces conflict misses and yet maintains the hit speed of
direct-mapped cache. In way prediction, extra bits are kept in the cache to predict
the way, or block within the set of the next cache access. This prediction means
the multiplexor is set early to select the desired block, and only a single tag
comparison is performed that clock cycle in parallel with reading the cache data.
A miss results in checking the other blocks for matches in the next clock cycle.

Added to each block of a cache are block predictor bits. The bits select which
of the blocks to try on the next cache access. If the predictor is correct, the cache
access latency is the fast hit time. If not, it tries the other block, changes the way
predictor, and has a latency of one extra clock cycle. Simulations suggest that set
prediction accuracy is in excess of 90% for a two-way set associative cache and
80% for a four-way set associative cache, with better accuracy on I-caches than
D-caches. Way prediction yields lower average memory access time for a two-
way set associative cache if it is at least 10% faster, which is quite likely. Way
prediction was first used in the MIPS R10000 in the mid-1990s. It is popular in
processors that use two-way set associativity and is used in the ARM Cortex-A8
with four-way set associative caches. For very fast processors, it may be chal-
lenging to implement the one cycle stall that is critical to keeping the way predic-
tion penalty small.

Figure 2.4 Energy consumption per read increases as cache size and associativity

are increased. As in the previous figure, CACTI is used for the modeling with the same
technology parameters. The large penalty for eight-way set associative caches is due to
the cost of reading out eight tags and the corresponding data in parallel.

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

E
ne

rg
y

pe
r

re
ad

 in
 n

an
o

jo
ul

es

Cache size
16 KB 32 KB 64 KB 128 KB 256 KB

1-way 2-way
8-way4-way

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

82 ■ Chapter Two Memory Hierarchy Design

An extended form of way prediction can also be used to reduce power con-
sumption by using the way prediction bits to decide which cache block to actu-
ally access (the way prediction bits are essentially extra address bits); this
approach, which might be called way selection, saves power when the way pre-
diction is correct but adds significant time on a way misprediction, since the
access, not just the tag match and selection, must be repeated. Such an optimiza-
tion is likely to make sense only in low-power processors. Inoue, Ishihara, and
Murakami [1999] estimated that using the way selection approach with a four-
way set associative cache increases the average access time for the I-cache by
1.04 and for the D-cache by 1.13 on the SPEC95 benchmarks, but it yields an
average cache power consumption relative to a normal four-way set associative
cache that is 0.28 for the I-cache and 0.35 for the D-cache. One significant draw-
back for way selection is that it makes it difficult to pipeline the cache access.

Example Assume that there are half as many D-cache accesses as I-cache accesses, and
that the I-cache and D-cache are responsible for 25% and 15% of the processor’s
power consumption in a normal four-way set associative implementation. Deter-
mine if way selection improves performance per watt based on the estimates
from the study above.

Answer For the I-cache, the savings in power is 25 × 0.28 = 0.07 of the total power, while
for the D-cache it is 15 × 0.35 = 0.05 for a total savings of 0.12. The way predic-
tion version requires 0.88 of the power requirement of the standard 4-way cache.
The increase in cache access time is the increase in I-cache average access time
plus one-half the increase in D-cache access time, or 1.04 + 0.5 × 0.13 = 1.11
times longer. This result means that way selection has 0.90 of the performance of
a standard four-way cache. Thus, way selection improves performance per joule
very slightly by a ratio of 0.90/0.88 = 1.02. This optimization is best used where
power rather than performance is the key objective.

Third Optimization: Pipelined Cache Access to Increase
Cache Bandwidth

This optimization is simply to pipeline cache access so that the effective latency
of a first-level cache hit can be multiple clock cycles, giving fast clock cycle time
and high bandwidth but slow hits. For example, the pipeline for the instruction
cache access for Intel Pentium processors in the mid-1990s took 1 clock cycle,
for the Pentium Pro through Pentium III in the mid-1990s through 2000 it took 2
clocks, and for the Pentium 4, which became available in 2000, and the current
Intel Core i7 it takes 4 clocks. This change increases the number of pipeline
stages, leading to a greater penalty on mispredicted branches and more clock
cycles between issuing the load and using the data (see Chapter 3), but it does
make it easier to incorporate high degrees of associativity.

2.2 Ten Advanced Optimizations of Cache Performance ■ 83

Fourth Optimization: Nonblocking Caches to
Increase Cache Bandwidth

For pipelined computers that allow out-of-order execution (discussed in
Chapter 3), the processor need not stall on a data cache miss. For example, the
processor could continue fetching instructions from the instruction cache while
waiting for the data cache to return the missing data. A nonblocking cache or
lockup-free cache escalates the potential benefits of such a scheme by allowing
the data cache to continue to supply cache hits during a miss. This “hit under
miss” optimization reduces the effective miss penalty by being helpful during a
miss instead of ignoring the requests of the processor. A subtle and complex
option is that the cache may further lower the effective miss penalty if it can
overlap multiple misses: a “hit under multiple miss” or “miss under miss” opti-
mization. The second option is beneficial only if the memory system can service
multiple misses; most high-performance processors (such as the Intel Core i7)
usually support both, while lower end processors, such as the ARM A8, provide
only limited nonblocking support in L2.

To examine the effectiveness of nonblocking caches in reducing the cache
miss penalty, Farkas and Jouppi [1994] did a study assuming 8 KB caches with a
14-cycle miss penalty; they observed a reduction in the effective miss penalty of
20% for the SPECINT92 benchmarks and 30% for the SPECFP92 benchmarks
when allowing one hit under miss.

Li, Chen, Brockman, and Jouppi [2011] recently updated this study to use a
multilevel cache, more modern assumptions about miss penalties, and the
larger and more demanding SPEC2006 benchmarks. The study was done
assuming a model based on a single core of an Intel i7 (see Section 2.6) running
the SPEC2006 benchmarks. Figure 2.5 shows the reduction in data cache
access latency when allowing 1, 2, and 64 hits under a miss; the caption
describes further details of the memory system. The larger caches and the addi-
tion of an L3 cache since the earlier study have reduced the benefits with the
SPECINT2006 benchmarks showing an average reduction in cache latency of
about 9% and the SPECFP2006 benchmarks about 12.5%.

Example Which is more important for floating-point programs: two-way set associativity or
hit under one miss for the primary data caches? What about integer programs?
Assume the following average miss rates for 32 KB data caches: 5.2% for floating-
point programs with a direct-mapped cache, 4.9% for these programs with a two-
way set associative cache, 3.5% for integer programs with a direct-mapped cache,
and 3.2% for integer programs with a two-way set associative cache. Assume the
miss penalty to L2 is 10 cycles, and the L2 misses and penalties are the same.

Answer For floating-point programs, the average memory stall times are

Miss rateDM × Miss penalty = 5.2% × 10 = 0.52

Miss rate2-way × Miss penalty = 4.9% × 10 = 0.49

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

84 ■ Chapter Two Memory Hierarchy Design

The cache access latency (including stalls) for two-way associativity is 0.49/0.52
or 94% of direct-mapped cache. The caption of Figure 2.5 says hit under one
miss reduces the average data cache access latency for floating point programs to
87.5% of a blocking cache. Hence, for floating-point programs, the direct
mapped data cache supporting one hit under one miss gives better performance
than a two-way set-associative cache that blocks on a miss.

For integer programs, the calculation is

Miss rateDM × Miss penalty = 3.5% × 10 = 0.35

Miss rate2-way × Miss penalty = 3.2% × 10 = 0.32

The data cache access latency of a two-way set associative cache is thus 0.32/0.35
or 91% of direct-mapped cache, while the reduction in access latency when
allowing a hit under one miss is 9%, making the two choices about equal.

The real difficulty with performance evaluation of nonblocking caches is that
a cache miss does not necessarily stall the processor. In this case, it is difficult to
judge the impact of any single miss and hence to calculate the average memory
access time. The effective miss penalty is not the sum of the misses but the non-
overlapped time that the processor is stalled. The benefit of nonblocking caches
is complex, as it depends upon the miss penalty when there are multiple misses,
the memory reference pattern, and how many instructions the processor can
execute with a miss outstanding.

Figure 2.5 The effectiveness of a nonblocking cache is evaluated by allowing 1, 2, or
64 hits under a cache miss with 9 SPECINT (on the left) and 9 SPECFP (on the right)
benchmarks. The data memory system modeled after the Intel i7 consists of a 32KB L1
cache with a four cycle access latency. The L2 cache (shared with instructions) is 256 KB
with a 10 clock cycle access latency. The L3 is 2 MB and a 36-cycle access latency. All the
caches are eight-way set associative and have a 64-byte block size. Allowing one hit
under miss reduces the miss penalty by 9% for the integer benchmarks and 12.5% for
the floating point. Allowing a second hit improves these results to 10% and 16%, and
allowing 64 results in little additional improvement.

40%

50%

60%

70%

80%

90%

100%

bz
ip

2

gc
c

m
cf

hm
m

er

sj
en

g

lib
qu

an
tu

m

h2
64

re
f

om
ne

tp
p

as
ta

r

ga
m

es
s

ze
us

m
p

m
ilc

gr
om

ac
s

ca
ct

us
A

D
M

na
m

d

so
pl

ex

po
vr

ay

ca
lc

ul
ix

G
em

sF
D

T
D

to
nt

o

lb
m w
rf

sp
hi

nx
3

SPECINT SPECFP

C
ac

he
 a

ce
ss

 la
te

nc
y

Hit-under-2-missesHit-under-1-miss Hit-under-64-misses

2.2 Ten Advanced Optimizations of Cache Performance ■ 85

In general, out-of-order processors are capable of hiding much of the miss
penalty of an L1 data cache miss that hits in the L2 cache but are not capable of
hiding a significant fraction of a lower level cache miss. Deciding how many out-
standing misses to support depends on a variety of factors:

■ The temporal and spatial locality in the miss stream, which determines
whether a miss can initiate a new access to a lower level cache or to memory

■ The bandwidth of the responding memory or cache

■ To allow more outstanding misses at the lowest level of the cache (where the
miss time is the longest) requires supporting at least that many misses at a
higher level, since the miss must initiate at the highest level cache

■ The latency of the memory system

The following simplified example shows the key idea.

Example Assume a main memory access time of 36 ns and a memory system capable of a
sustained transfer rate of 16 GB/sec. If the block size is 64 bytes, what is the
maximum number of outstanding misses we need to support assuming that we
can maintain the peak bandwidth given the request stream and that accesses
never conflict. If the probability of a reference colliding with one of the previous
four is 50%, and we assume that the access has to wait until the earlier access
completes, estimate the number of maximum outstanding references. For sim-
plicity, ignore the time between misses.

Answer In the first case, assuming that we can maintain the peak bandwidth, the mem-
ory system can support (16 × 10)9/64 = 250 million references per second. Since
each reference takes 36 ns, we can support 250 × 106 × 36 × 10−9 = 9 refer-
ences. If the probability of a collision is greater than 0, then we need more out-
standing references, since we cannot start work on those references; the
memory system needs more independent references not fewer! To approxi-
mate this, we can simply assume that half the memory references need not be
issued to the memory. This means that we must support twice as many out-
standing references, or 18.

In Li, Chen, Brockman, and Jouppi’s study they found that the reduction in CPI
for the integer programs was about 7% for one hit under miss and about 12.7%
for 64. For the floating point programs, the reductions were 12.7% for one hit
under miss and 17.8% for 64. These reductions track fairly closely the reductions
in the data cache access latency shown in Figure 2.5.

Fifth Optimization: Multibanked Caches to
Increase Cache Bandwidth

Rather than treat the cache as a single monolithic block, we can divide it into
independent banks that can support simultaneous accesses. Banks were originally

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

86 ■ Chapter Two Memory Hierarchy Design

used to improve performance of main memory and are now used inside modern
DRAM chips as well as with caches. The Arm Cortex-A8 supports one to four
banks in its L2 cache; the Intel Core i7 has four banks in L1 (to support up to 2
memory accesses per clock), and the L2 has eight banks.

Clearly, banking works best when the accesses naturally spread themselves
across the banks, so the mapping of addresses to banks affects the behavior of
the memory system. A simple mapping that works well is to spread the addresses
of the block sequentially across the banks, called sequential interleaving. For
example, if there are four banks, bank 0 has all blocks whose address modulo 4
is 0, bank 1 has all blocks whose address modulo 4 is 1, and so on. Figure 2.6
shows this interleaving. Multiple banks also are a way to reduce power con-
sumption both in caches and DRAM.

Sixth Optimization: Critical Word First and
Early Restart to Reduce Miss Penalty

This technique is based on the observation that the processor normally needs just
one word of the block at a time. This strategy is impatience: Don’t wait for the
full block to be loaded before sending the requested word and restarting the
processor. Here are two specific strategies:

■ Critical word first—Request the missed word first from memory and send it
to the processor as soon as it arrives; let the processor continue execution
while filling the rest of the words in the block.

■ Early restart—Fetch the words in normal order, but as soon as the requested
word of the block arrives send it to the processor and let the processor con-
tinue execution.

Generally, these techniques only benefit designs with large cache blocks,
since the benefit is low unless blocks are large. Note that caches normally con-
tinue to satisfy accesses to other blocks while the rest of the block is being filled.

Alas, given spatial locality, there is a good chance that the next reference is
to the rest of the block. Just as with nonblocking caches, the miss penalty is not
simple to calculate. When there is a second request in critical word first, the
effective miss penalty is the nonoverlapped time from the reference until the

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.

0
4
8

12

Bank 0
Block

address
Block

address
1
5
9

13

Bank 1
Block

address
2
6

10
14

Bank 2
Block

address
3
7

11
15

Bank 3

2.2 Ten Advanced Optimizations of Cache Performance ■ 87

second piece arrives. The benefits of critical word first and early restart depend
on the size of the block and the likelihood of another access to the portion of the
block that has not yet been fetched.

Seventh Optimization: Merging Write Buffer to
Reduce Miss Penalty

Write-through caches rely on write buffers, as all stores must be sent to the next
lower level of the hierarchy. Even write-back caches use a simple buffer when a
block is replaced. If the write buffer is empty, the data and the full address are writ-
ten in the buffer, and the write is finished from the processor’s perspective; the pro-
cessor continues working while the write buffer prepares to write the word to
memory. If the buffer contains other modified blocks, the addresses can be checked
to see if the address of the new data matches the address of a valid write buffer
entry. If so, the new data are combined with that entry. Write merging is the name of
this optimization. The Intel Core i7, among many others, uses write merging.

If the buffer is full and there is no address match, the cache (and processor)
must wait until the buffer has an empty entry. This optimization uses the mem-
ory more efficiently since multiword writes are usually faster than writes per-
formed one word at a time. Skadron and Clark [1997] found that even a
merging four-entry write buffer generated stalls that led to a 5% to 10% perfor-
mance loss.

The optimization also reduces stalls due to the write buffer being full.
Figure 2.7 shows a write buffer with and without write merging. Assume we had
four entries in the write buffer, and each entry could hold four 64-bit words.
Without this optimization, four stores to sequential addresses would fill the buf-
fer at one word per entry, even though these four words when merged exactly fit
within a single entry of the write buffer.

Note that input/output device registers are often mapped into the physical
address space. These I/O addresses cannot allow write merging because separate
I/O registers may not act like an array of words in memory. For example, they
may require one address and data word per I/O register rather than use multiword
writes using a single address. These side effects are typically implemented by
marking the pages as requiring nonmerging write through by the caches.

Eighth Optimization: Compiler Optimizations to
Reduce Miss Rate

Thus far, our techniques have required changing the hardware. This next tech-
nique reduces miss rates without any hardware changes.

This magical reduction comes from optimized software—the hardware
designer’s favorite solution! The increasing performance gap between processors
and main memory has inspired compiler writers to scrutinize the memory hierarchy
to see if compile time optimizations can improve performance. Once again, research

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

88 ■ Chapter Two Memory Hierarchy Design

is split between improvements in instruction misses and improvements in data
misses. The optimizations presented below are found in many modern compilers.

Loop Interchange

Some programs have nested loops that access data in memory in nonsequential
order. Simply exchanging the nesting of the loops can make the code access the
data in the order in which they are stored. Assuming the arrays do not fit in the
cache, this technique reduces misses by improving spatial locality; reordering
maximizes use of data in a cache block before they are discarded. For example, if x
is a two-dimensional array of size [5000,100] allocated so that x[i,j] and
x[i,j+1] are adjacent (an order called row major, since the array is laid out by
rows), then the two pieces of code below show how the accesses can be optimized:

/* Before */
for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)
x[i][j] = 2 * x[i][j];

Figure 2.7 To illustrate write merging, the write buffer on top does not use it while
the write buffer on the bottom does. The four writes are merged into a single buffer
entry with write merging; without it, the buffer is full even though three-fourths of each
entry is wasted. The buffer has four entries, and each entry holds four 64-bit words. The
address for each entry is on the left, with a valid bit (V) indicating whether the next
sequential 8 bytes in this entry are occupied. (Without write merging, the words to the
right in the upper part of the figure would only be used for instructions that wrote mul-
tiple words at the same time.)

100

108

116

124

Write address

1

1

1

1

V

0

0

0

0

V

0

0

0

0

V

0

0

0

0

V

100

Write address

1

0

0

0

V

1

0

0

0

V

1

0

0

0

V

1

0

0

0

V

Mem[100]

Mem[100]

Mem[108]

Mem[108]

Mem[116]

Mem[116]

Mem[124]

Mem[124]

2.2 Ten Advanced Optimizations of Cache Performance ■ 89

/* After */
for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)
x[i][j] = 2 * x[i][j];

The original code would skip through memory in strides of 100 words, while the
revised version accesses all the words in one cache block before going to the next
block. This optimization improves cache performance without affecting the num-
ber of instructions executed.

Blocking

This optimization improves temporal locality to reduce misses. We are again
dealing with multiple arrays, with some arrays accessed by rows and some by
columns. Storing the arrays row by row (row major order) or column by col-
umn (column major order) does not solve the problem because both rows and
columns are used in every loop iteration. Such orthogonal accesses mean that
transformations such as loop interchange still leave plenty of room for
improvement.

Instead of operating on entire rows or columns of an array, blocked algo-
rithms operate on submatrices or blocks. The goal is to maximize accesses
to the data loaded into the cache before the data are replaced. The code
example below, which performs matrix multiplication, helps motivate the
optimization:

/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k + 1)

r = r + y[i][k]*z[k][j];
 x[i][j] = r;
};

The two inner loops read all N-by-N elements of z, read the same N elements in
a row of y repeatedly, and write one row of N elements of x. Figure 2.8 gives a
snapshot of the accesses to the three arrays. A dark shade indicates a recent
access, a light shade indicates an older access, and white means not yet
accessed.

The number of capacity misses clearly depends on N and the size of the cache.
If it can hold all three N-by-N matrices, then all is well, provided there are no
cache conflicts. If the cache can hold one N-by-N matrix and one row of N, then
at least the ith row of y and the array z may stay in the cache. Less than that and
misses may occur for both x and z. In the worst case, there would be 2N3 + N2

memory words accessed for N3 operations.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

90 ■ Chapter Two Memory Hierarchy Design

To ensure that the elements being accessed can fit in the cache, the original
code is changed to compute on a submatrix of size B by B. Two inner loops now
compute in steps of size B rather than the full length of x and z. B is called the
blocking factor. (Assume x is initialized to zero.)

/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B,N); j = j+1)
{r = 0;
 for (k = kk; k < min(kk+B,N); k = k + 1)

r = r + y[i][k]*z[k][j];
 x[i][j] = x[i][j] + r;

};

Figure 2.9 illustrates the accesses to the three arrays using blocking. Looking
only at capacity misses, the total number of memory words accessed is 2N3/B + N2.
This total is an improvement by about a factor of B. Hence, blocking exploits a
combination of spatial and temporal locality, since y benefits from spatial locality
and z benefits from temporal locality.

Although we have aimed at reducing cache misses, blocking can also be used
to help register allocation. By taking a small blocking size such that the block can
be held in registers, we can minimize the number of loads and stores in the
program.

As we shall see in Section 4.8 of Chapter 4, cache blocking is absolutely nec-
essary to get good performance from cache-based processors running applica-
tions using matrices as the primary data structure.

Figure 2.8 A snapshot of the three arrays x, y, and z when N = 6 and i = 1. The age of accesses to the array ele-
ments is indicated by shade: white means not yet touched, light means older accesses, and dark means newer
accesses. Compared to Figure 2.9, elements of y and z are read repeatedly to calculate new elements of x. The vari-
ables i, j, and k are shown along the rows or columns used to access the arrays.

0

1

2

3

4

5

10 2 3 4 5
x

j

i

0

1

2

3

4

5

10 2 3 4 5
y

k

i

0

1

2

3

4

5

10 2 3 4 5
z

j

k

2.2 Ten Advanced Optimizations of Cache Performance ■ 91

Ninth Optimization: Hardware Prefetching of Instructions
and Data to Reduce Miss Penalty or Miss Rate

Nonblocking caches effectively reduce the miss penalty by overlapping execu-
tion with memory access. Another approach is to prefetch items before the pro-
cessor requests them. Both instructions and data can be prefetched, either
directly into the caches or into an external buffer that can be more quickly
accessed than main memory.

Instruction prefetch is frequently done in hardware outside of the cache.
Typically, the processor fetches two blocks on a miss: the requested block and the
next consecutive block. The requested block is placed in the instruction cache
when it returns, and the prefetched block is placed into the instruction stream
buffer. If the requested block is present in the instruction stream buffer, the
original cache request is canceled, the block is read from the stream buffer, and
the next prefetch request is issued.

A similar approach can be applied to data accesses [Jouppi 1990]. Palacharla
and Kessler [1994] looked at a set of scientific programs and considered multiple
stream buffers that could handle either instructions or data. They found that eight
stream buffers could capture 50% to 70% of all misses from a processor with two
64 KB four-way set associative caches, one for instructions and the other for data.

The Intel Core i7 supports hardware prefetching into both L1 and L2 with the
most common case of prefetching being accessing the next line. Some earlier
Intel processors used more aggressive hardware prefetching, but that resulted in
reduced performance for some applications, causing some sophisticated users to
turn off the capability.

Figure 2.10 shows the overall performance improvement for a subset of
SPEC2000 programs when hardware prefetching is turned on. Note that this fig-
ure includes only 2 of 12 integer programs, while it includes the majority of the
SPEC floating-point programs.

Figure 2.9 The age of accesses to the arrays x, y, and z when B = 3. Note that, in contrast to Figure 2.8, a smaller
number of elements is accessed.

0

1

2

3

4

5

10 2 3 4 5
x

j

i

0

1

2

3

4

5

10 2 3 4 5
y

k

i

0

1

2

3

4

5

10 2 3 4 5
z

j

k

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

92 ■ Chapter Two Memory Hierarchy Design

Prefetching relies on utilizing memory bandwidth that otherwise would be
unused, but if it interferes with demand misses it can actually lower performance.
Help from compilers can reduce useless prefetching. When prefetching works
well its impact on power is negligible. When prefetched data are not used or use-
ful data are displaced, prefetching will have a very negative impact on power.

Tenth Optimization: Compiler-Controlled Prefetching to
Reduce Miss Penalty or Miss Rate

An alternative to hardware prefetching is for the compiler to insert prefetch
instructions to request data before the processor needs it. There are two flavors of
prefetch:

■ Register prefetch will load the value into a register.

■ Cache prefetch loads data only into the cache and not the register.

Either of these can be faulting or nonfaulting; that is, the address does or does
not cause an exception for virtual address faults and protection violations. Using
this terminology, a normal load instruction could be considered a “faulting regis-
ter prefetch instruction.” Nonfaulting prefetches simply turn into no-ops if they
would normally result in an exception, which is what we want.

Figure 2.10 Speedup due to hardware prefetching on Intel Pentium 4 with hardware prefetching turned on for
2 of 12 SPECint2000 benchmarks and 9 of 14 SPECfp2000 benchmarks. Only the programs that benefit the most
from prefetching are shown; prefetching speeds up the missing 15 SPEC benchmarks by less than 15% [Singhal 2004].

1.00

1.20

1.40

1.60

1.80

2.00

2.20

gap

1.16

mcf

1.45

fam3d

1.18

wupwise

1.20

galgel

1.21

facerec

1.26P
er

fo
rm

an
ce

 im
pr

ov
em

en
t

swim

1.29

applu

1.32

SPECint2000 SPECfp2000

lucas

1.40

equake

1.97

mgrid

1.49

2.2 Ten Advanced Optimizations of Cache Performance ■ 93

The most effective prefetch is “semantically invisible” to a program: It
doesn’t change the contents of registers and memory, and it cannot cause vir-
tual memory faults. Most processors today offer nonfaulting cache prefetches.
This section assumes nonfaulting cache prefetch, also called nonbinding
prefetch.

Prefetching makes sense only if the processor can proceed while prefetching
the data; that is, the caches do not stall but continue to supply instructions and
data while waiting for the prefetched data to return. As you would expect, the
data cache for such computers is normally nonblocking.

Like hardware-controlled prefetching, the goal is to overlap execution with
the prefetching of data. Loops are the important targets, as they lend themselves
to prefetch optimizations. If the miss penalty is small, the compiler just unrolls
the loop once or twice, and it schedules the prefetches with the execution. If the
miss penalty is large, it uses software pipelining (see Appendix H) or unrolls
many times to prefetch data for a future iteration.

Issuing prefetch instructions incurs an instruction overhead, however, so
compilers must take care to ensure that such overheads do not exceed the bene-
fits. By concentrating on references that are likely to be cache misses, programs
can avoid unnecessary prefetches while improving average memory access time
significantly.

Example For the code below, determine which accesses are likely to cause data cache
misses. Next, insert prefetch instructions to reduce misses. Finally, calculate the
number of prefetch instructions executed and the misses avoided by prefetching.
Let’s assume we have an 8 KB direct-mapped data cache with 16-byte blocks,
and it is a write-back cache that does write allocate. The elements of a and b are 8
bytes long since they are double-precision floating-point arrays. There are 3 rows
and 100 columns for a and 101 rows and 3 columns for b. Let’s also assume they
are not in the cache at the start of the program.

for (i = 0; i < 3; i = i+1)
for (j = 0; j < 100; j = j+1)

a[i][j] = b[j][0] * b[j+1][0];

Answer The compiler will first determine which accesses are likely to cause cache
misses; otherwise, we will waste time on issuing prefetch instructions for data
that would be hits. Elements of a are written in the order that they are stored in
memory, so a will benefit from spatial locality: The even values of j will miss
and the odd values will hit. Since a has 3 rows and 100 columns, its accesses will
lead to 3 × (100/2), or 150 misses.

The array b does not benefit from spatial locality since the accesses are not in
the order it is stored. The array b does benefit twice from temporal locality: The
same elements are accessed for each iteration of i, and each iteration of j uses
the same value of b as the last iteration. Ignoring potential conflict misses, the
misses due to b will be for b[j+1][0] accesses when i = 0, and also the first

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

94 ■ Chapter Two Memory Hierarchy Design

access to b[j][0] when j = 0. Since j goes from 0 to 99 when i = 0, accesses to
b lead to 100 + 1, or 101 misses.

Thus, this loop will miss the data cache approximately 150 times for a plus
101 times for b, or 251 misses.

To simplify our optimization, we will not worry about prefetching the first
accesses of the loop. These may already be in the cache, or we will pay the miss
penalty of the first few elements of a or b. Nor will we worry about suppressing
the prefetches at the end of the loop that try to prefetch beyond the end of a
(a[i][100] . . . a[i][106]) and the end of b (b[101][0] . . . b[107][0]). If these
were faulting prefetches, we could not take this luxury. Let’s assume that the miss
penalty is so large we need to start prefetching at least, say, seven iterations in
advance. (Stated alternatively, we assume prefetching has no benefit until the eighth
iteration.) We underline the changes to the code above needed to add prefetching.

for (j = 0; j < 100; j = j+1) {
prefetch(b[j+7][0]);
/* b(j,0) for 7 iterations later */
prefetch(a[0][j+7]);
/* a(0,j) for 7 iterations later */
a[0][j] = b[j][0] * b[j+1][0];};

for (i = 1; i < 3; i = i+1)
for (j = 0; j < 100; j = j+1) {

prefetch(a[i][j+7]);
/* a(i,j) for +7 iterations */
a[i][j] = b[j][0] * b[j+1][0];}

This revised code prefetches a[i][7] through a[i][99] and b[7][0] through
b[100][0], reducing the number of nonprefetched misses to

■ 7 misses for elements b[0][0], b[1][0], . . . , b[6][0] in the first loop

■ 4 misses ([7⁄2]) for elements a[0][0], a[0][1], . . . , a[0][6] in the first
loop (spatial locality reduces misses to 1 per 16-byte cache block)

■ 4 misses ([7⁄2]) for elements a[1][0], a[1][1], . . . , a[1][6] in the second
loop

■ 4 misses ([7⁄2]) for elements a[2][0], a[2][1], . . . , a[2][6] in the second
loop

or a total of 19 nonprefetched misses. The cost of avoiding 232 cache misses is
executing 400 prefetch instructions, likely a good trade-off.

Example Calculate the time saved in the example above. Ignore instruction cache misses
and assume there are no conflict or capacity misses in the data cache. Assume
that prefetches can overlap with each other and with cache misses, thereby

2.2 Ten Advanced Optimizations of Cache Performance ■ 95

transferring at the maximum memory bandwidth. Here are the key loop times
ignoring cache misses: The original loop takes 7 clock cycles per iteration, the
first prefetch loop takes 9 clock cycles per iteration, and the second prefetch loop
takes 8 clock cycles per iteration (including the overhead of the outer for loop).
A miss takes 100 clock cycles.

Answer The original doubly nested loop executes the multiply 3 × 100 or 300 times.
Since the loop takes 7 clock cycles per iteration, the total is 300 × 7 or 2100 clock
cycles plus cache misses. Cache misses add 251 × 100 or 25,100 clock cycles,
giving a total of 27,200 clock cycles. The first prefetch loop iterates 100 times; at
9 clock cycles per iteration the total is 900 clock cycles plus cache misses. Now
add 11 × 100 or 1100 clock cycles for cache misses, giving a total of 2000. The
second loop executes 2 × 100 or 200 times, and at 8 clock cycles per iteration it
takes 1600 clock cycles plus 8 × 100 or 800 clock cycles for cache misses. This
gives a total of 2400 clock cycles. From the prior example, we know that this
code executes 400 prefetch instructions during the 2000 + 2400 or 4400 clock
cycles to execute these two loops. If we assume that the prefetches are com-
pletely overlapped with the rest of the execution, then the prefetch code is
27,200/4400, or 6.2 times faster.

Although array optimizations are easy to understand, modern programs are
more likely to use pointers. Luk and Mowry [1999] have demonstrated that
compiler-based prefetching can sometimes be extended to pointers as well. Of
10 programs with recursive data structures, prefetching all pointers when a
node is visited improved performance by 4% to 31% in half of the programs.
On the other hand, the remaining programs were still within 2% of their origi-
nal performance. The issue is both whether prefetches are to data already in the
cache and whether they occur early enough for the data to arrive by the time it
is needed.

Many processors support instructions for cache prefetch, and high-end pro-
cessors (such as the Intel Core i7) often also do some type of automated prefetch
in hardware.

Cache Optimization Summary

The techniques to improve hit time, bandwidth, miss penalty, and miss rate gen-
erally affect the other components of the average memory access equation as well
as the complexity of the memory hierarchy. Figure 2.11 summarizes these tech-
niques and estimates the impact on complexity, with + meaning that the tech-
nique improves the factor, – meaning it hurts that factor, and blank meaning it has
no impact. Generally, no technique helps more than one category.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

96 ■ Chapter Two Memory Hierarchy Design

… the one single development that put computers on their feet was the invention
of a reliable form of memory, namely, the core memory. … Its cost was reasonable,
it was reliable and, because it was reliable, it could in due course be made large.
[p. 209]

Maurice Wilkes
Memoirs of a Computer Pioneer (1985)

Main memory is the next level down in the hierarchy. Main memory satisfies the
demands of caches and serves as the I/O interface, as it is the destination of input
as well as the source for output. Performance measures of main memory empha-
size both latency and bandwidth. Traditionally, main memory latency (which

Technique
Hit

time
Band-
width

Miss
penalty

Miss
rate

Power
consumption

Hardware cost/
complexity Comment

Small and simple caches + – + 0 Trivial; widely used

Way-predicting caches + + 1 Used in Pentium 4

Pipelined cache access – + 1 Widely used

Nonblocking caches + + 3 Widely used

Banked caches + + 1 Used in L2 of both i7 and
Cortex-A8

Critical word first
and early restart

+ 2 Widely used

Merging write buffer + 1 Widely used with write
through

Compiler techniques to
reduce cache misses

+ 0 Software is a challenge, but
many compilers handle
common linear algebra
calculations

Hardware prefetching
of instructions and data

+ + − 2 instr.,
3 data

Most provide prefetch
instructions; modern high-
end processors also
automatically prefetch in
hardware.

Compiler-controlled
prefetching

+ + 3 Needs nonblocking cache;
possible instruction overhead;
in many CPUs

Figure 2.11 Summary of 10 advanced cache optimizations showing impact on cache performance, power con-
sumption, and complexity. Although generally a technique helps only one factor, prefetching can reduce misses if
done sufficiently early; if not, it can reduce miss penalty. + means that the technique improves the factor, – means it
hurts that factor, and blank means it has no impact. The complexity measure is subjective, with 0 being the easiest and
3 being a challenge.

2.3 Memory Technology and Optimizations

2.3 Memory Technology and Optimizations ■ 97

affects the cache miss penalty) is the primary concern of the cache, while main
memory bandwidth is the primary concern of multiprocessors and I/O.

Although caches benefit from low-latency memory, it is generally easier to
improve memory bandwidth with new organizations than it is to reduce latency.
The popularity of multilevel caches and their larger block sizes make main
memory bandwidth important to caches as well. In fact, cache designers increase
block size to take advantage of the high memory bandwidth.

The previous sections describe what can be done with cache organization to
reduce this processor–DRAM performance gap, but simply making caches larger
or adding more levels of caches cannot eliminate the gap. Innovations in main
memory are needed as well.

In the past, the innovation was how to organize the many DRAM chips that
made up the main memory, such as multiple memory banks. Higher bandwidth is
available using memory banks, by making memory and its bus wider, or by doing
both. Ironically, as capacity per memory chip increases, there are fewer chips in
the same-sized memory system, reducing possibilities for wider memory systems
with the same capacity.

To allow memory systems to keep up with the bandwidth demands of modern
processors, memory innovations started happening inside the DRAM chips them-
selves. This section describes the technology inside the memory chips and those
innovative, internal organizations. Before describing the technologies and
options, let’s go over the performance metrics.

With the introduction of burst transfer memories, now widely used in both
Flash and DRAM, memory latency is quoted using two measures—access time
and cycle time. Access time is the time between when a read is requested and
when the desired word arrives, and cycle time is the minimum time between
unrelated requests to memory.

Virtually all computers since 1975 have used DRAMs for main memory and
SRAMs for cache, with one to three levels integrated onto the processor chip
with the CPU. In PMDs, the memory technology often balances power and
speed, with higher end systems using fast, high-bandwidth memory technology.

SRAM Technology

The first letter of SRAM stands for static. The dynamic nature of the circuits in
DRAM requires data to be written back after being read—hence the difference
between the access time and the cycle time as well as the need to refresh. SRAMs
don’t need to refresh, so the access time is very close to the cycle time. SRAMs
typically use six transistors per bit to prevent the information from being dis-
turbed when read. SRAM needs only minimal power to retain the charge in
standby mode.

In earlier times, most desktop and server systems used SRAM chips for their
primary, secondary, or tertiary caches; today, all three levels of caches are inte-
grated onto the processor chip. Currently, the largest on-chip, third-level caches
are 12 MB, while the memory system for such a processor is likely to have 4 to

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

98 ■ Chapter Two Memory Hierarchy Design

16 GB of DRAM. The access times for large, third-level, on-chip caches are typ-
ically two to four times that of a second-level cache, which is still three to five
times faster than accessing DRAM memory.

DRAM Technology

As early DRAMs grew in capacity, the cost of a package with all the necessary
address lines was an issue. The solution was to multiplex the address lines,
thereby cutting the number of address pins in half. Figure 2.12 shows the basic
DRAM organization. One-half of the address is sent first during the row access
strobe (RAS). The other half of the address, sent during the column access strobe
(CAS), follows it. These names come from the internal chip organization, since
the memory is organized as a rectangular matrix addressed by rows and columns.

An additional requirement of DRAM derives from the property signified by
its first letter, D, for dynamic. To pack more bits per chip, DRAMs use only a sin-
gle transistor to store a bit. Reading that bit destroys the information, so it must
be restored. This is one reason why the DRAM cycle time was traditionally lon-
ger than the access time; more recently, DRAMs have introduced multiple banks,
which allow the rewrite portion of the cycle to be hidden. In addition, to prevent
loss of information when a bit is not read or written, the bit must be “refreshed”
periodically. Fortunately, all the bits in a row can be refreshed simultaneously
just by reading that row. Hence, every DRAM in the memory system must access
every row within a certain time window, such as 8 ms. Memory controllers
include hardware to refresh the DRAMs periodically.

This requirement means that the memory system is occasionally unavailable
because it is sending a signal telling every chip to refresh. The time for a refresh
is typically a full memory access (RAS and CAS) for each row of the DRAM.
Since the memory matrix in a DRAM is conceptually square, the number of steps

Figure 2.12 Internal organization of a DRAM. Modern DRAMs are organized in banks,
typically four for DDR3. Each bank consists of a series of rows. Sending a PRE (pre-
charge) command opens or closes a bank. A row address is sent with an Act (activate),
which causes the row to transfer to a buffer. When the row is in the buffer, it can be
transferred by successive column addresses at whatever the width of the DRAM is (typ-
ically 4, 8, or 16 bits in DDR3) or by specifying a block transfer and the starting address.
Each command, as well as block transfers, are synchronized with a clock.

Column

Rd/Wr

Pre

Act

Row

Bank

2.3 Memory Technology and Optimizations ■ 99

in a refresh is usually the square root of the DRAM capacity. DRAM designers
try to keep time spent refreshing to less than 5% of the total time.

So far we have presented main memory as if it operated like a Swiss train,
consistently delivering the goods exactly according to schedule. Refresh belies
that analogy, since some accesses take much longer than others do. Thus, refresh
is another reason for variability of memory latency and hence cache miss penalty.

Amdahl suggested as a rule of thumb that memory capacity should grow lin-
early with processor speed to keep a balanced system, so that a 1000 MIPS pro-
cessor should have 1000 MB of memory. Processor designers rely on DRAMs to
supply that demand. In the past, they expected a fourfold improvement in capac-
ity every three years, or 55% per year. Unfortunately, the performance of
DRAMs is growing at a much slower rate. Figure 2.13 shows a performance
improvement in row access time, which is related to latency, of about 5% per
year. The CAS or data transfer time, which is related to bandwidth, is growing at
more than twice that rate.

Although we have been talking about individual chips, DRAMs are com-
monly sold on small boards called dual inline memory modules (DIMMs).
DIMMs typically contain 4 to 16 DRAMs, and they are normally organized to be
8 bytes wide (+ ECC) for desktop and server systems.

Row access strobe (RAS)

Production year Chip size DRAM type
Slowest

DRAM (ns)
Fastest

DRAM (ns)
Column access strobe (CAS)/

data transfer time (ns)
Cycle

time (ns)

1980 64K bit DRAM 180 150 75 250

1983 256K bit DRAM 150 120 50 220

1986 1M bit DRAM 120 100 25 190

1989 4M bit DRAM 100 80 20 165

1992 16M bit DRAM 80 60 15 120

1996 64M bit SDRAM 70 50 12 110

1998 128M bit SDRAM 70 50 10 100

2000 256M bit DDR1 65 45 7 90

2002 512M bit DDR1 60 40 5 80

2004 1G bit DDR2 55 35 5 70

2006 2G bit DDR2 50 30 2.5 60

2010 4G bit DDR3 36 28 1 37

2012 8G bit DDR3 30 24 0.5 31

Figure 2.13 Times of fast and slow DRAMs vary with each generation. (Cycle time is defined on page 97.) Perfor-
mance improvement of row access time is about 5% per year. The improvement by a factor of 2 in column access in
1986 accompanied the switch from NMOS DRAMs to CMOS DRAMs. The introduction of various burst transfer
modes in the mid-1990s and SDRAMs in the late 1990s has significantly complicated the calculation of access time
for blocks of data; we discuss this later in this section when we talk about SDRAM access time and power. The DDR4
designs are due for introduction in mid- to late 2012. We discuss these various forms of DRAMs in the next few pages.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

100 ■ Chapter Two Memory Hierarchy Design

In addition to the DIMM packaging and the new interfaces to improve the
data transfer time, discussed in the following subsections, the biggest change to
DRAMs has been a slowing down in capacity growth. DRAMs obeyed Moore’s
law for 20 years, bringing out a new chip with four times the capacity every three
years. Due to the manufacturing challenges of a single-bit DRAM, new chips
only double capacity every two years since 1998. In 2006, the pace slowed fur-
ther, with the four years from 2006 to 2010 seeing only a doubling of capacity.

Improving Memory Performance Inside a DRAM Chip

As Moore’s law continues to supply more transistors and as the processor–
memory gap increases pressure on memory performance, the ideas of the previ-
ous section have made their way inside the DRAM chip. Generally, innovation
has led to greater bandwidth, sometimes at the cost of greater latency. This sub-
section presents techniques that take advantage of the nature of DRAMs.

As mentioned earlier, a DRAM access is divided into row access and column
access. DRAMs must buffer a row of bits inside the DRAM for the column
access, and this row is usually the square root of the DRAM size—for example,
2 Kb for a 4 Mb DRAM. As DRAMs grew, additional structure and several
opportunities for increasing bandwith were added.

First, DRAMs added timing signals that allow repeated accesses to the row buf-
fer without another row access time. Such a buffer comes naturally, as each array
will buffer 1024 to 4096 bits for each access. Initially, separate column addresses
had to be sent for each transfer with a delay after each new set of column addresses.

Originally, DRAMs had an asynchronous interface to the memory controller,
so every transfer involved overhead to synchronize with the controller. The sec-
ond major change was to add a clock signal to the DRAM interface, so that the
repeated transfers would not bear that overhead. Synchronous DRAM (SDRAM)
is the name of this optimization. SDRAMs typically also have a programmable
register to hold the number of bytes requested, and hence can send many bytes
over several cycles per request. Typically, 8 or more 16-bit transfers can occur
without sending any new addresses by placing the DRAM in burst mode; this
mode, which supports critical word first transfers, is the only way that the peak
bandwidths shown in Figure 2.14 can be achieved.

Third, to overcome the problem of getting a wide stream of bits from the
memory without having to make the memory system too large as memory system
density increased, DRAMS were made wider. Initially, they offered a four-bit
transfer mode; in 2010, DDR2 and DDR3 DRAMS had up to 16-bit buses.

The fourth major DRAM innovation to increase bandwidth is to transfer data
on both the rising edge and falling edge of the DRAM clock signal, thereby dou-
bling the peak data rate. This optimization is called double data rate (DDR).

To provide some of the advantages of interleaving, as well to help with power
management, SDRAMs also introduced banks, breaking a single SDRAM into 2
to 8 blocks (in current DDR3 DRAMs) that can operate independently. (We have
already seen banks used in internal caches, and they were often used in large

2.3 Memory Technology and Optimizations ■ 101

main memories.) Creating multiple banks inside a DRAM effectively adds
another segment to the address, which now consists of bank number, row
address, and column address. When an address is sent that designates a new
bank, that bank must be opened, incurring an additional delay. The management
of banks and row buffers is completely handled by modern memory control inter-
faces, so that when subsequent access specifies the same row for an open bank,
the access can happen quickly, sending only the column address.

When DDR SDRAMs are packaged as DIMMs, they are confusingly labeled
by the peak DIMM bandwidth. Hence, the DIMM name PC2100 comes from 133
MHz × 2 × 8 bytes, or 2100 MB/sec. Sustaining the confusion, the chips them-
selves are labeled with the number of bits per second rather than their clock rate,
so a 133 MHz DDR chip is called a DDR266. Figure 2.14 shows the relation-
ships among clock rate, transfers per second per chip, chip name, DIMM band-
width, and DIMM name.

DDR is now a sequence of standards. DDR2 lowers power by dropping the
voltage from 2.5 volts to 1.8 volts and offers higher clock rates: 266 MHz,
333 MHz, and 400 MHz. DDR3 drops voltage to 1.5 volts and has a maximum
clock speed of 800 MHz. DDR4, scheduled for production in 2014, drops the
voltage to 1 to 1.2 volts and has a maximum expected clock rate of 1600 MHz.
DDR5 will follow in about 2014 or 2015. (As we discuss in the next section,
GDDR5 is a graphics RAM and is based on DDR3 DRAMs.)

Standard Clock rate (MHz) M transfers per second DRAM name MB/sec /DIMM DIMM name

DDR 133 266 DDR266 2128 PC2100

DDR 150 300 DDR300 2400 PC2400

DDR 200 400 DDR400 3200 PC3200

DDR2 266 533 DDR2-533 4264 PC4300

DDR2 333 667 DDR2-667 5336 PC5300

DDR2 400 800 DDR2-800 6400 PC6400

DDR3 533 1066 DDR3-1066 8528 PC8500

DDR3 666 1333 DDR3-1333 10,664 PC10700

DDR3 800 1600 DDR3-1600 12,800 PC12800

DDR4 1066–1600 2133–3200 DDR4-3200 17,056–25,600 PC25600

Figure 2.14 Clock rates, bandwidth, and names of DDR DRAMS and DIMMs in 2010. Note the numerical relation-
ship between the columns. The third column is twice the second, and the fourth uses the number from the third col-
umn in the name of the DRAM chip. The fifth column is eight times the third column, and a rounded version of this
number is used in the name of the DIMM. Although not shown in this figure, DDRs also specify latency in clock cycles
as four numbers, which are specified by the DDR standard. For example, DDR3-2000 CL 9 has latencies of 9-9-9-28.
What does this mean? With a 1 ns clock (clock cycle is one-half the transfer rate), this indicates 9 ns for row to col-
umns address (RAS time), 9 ns for column access to data (CAS time), and a minimum read time of 28 ns. Closing the
row takes 9 ns for precharge but happens only when the reads from that row are finished. In burst mode, transfers
occur on every clock on both edges, when the first RAS and CAS times have elapsed. Furthermore, the precharge is
not needed until the entire row is read. DDR4 will be produced in 2012 and is expected to reach clock rates of 1600
MHz in 2014, when DDR5 is expected to take over. The exercises explore these details further.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

102 ■ Chapter Two Memory Hierarchy Design

Graphics Data RAMs

GDRAMs or GSDRAMs (Graphics or Graphics Synchronous DRAMs) are a
special class of DRAMs based on SDRAM designs but tailored for handling the
higher bandwidth demands of graphics processing units. GDDR5 is based on
DDR3 with earlier GDDRs based on DDR2. Since Graphics Processor Units
(GPUs; see Chapter 4) require more bandwidth per DRAM chip than CPUs,
GDDRs have several important differences:

1. GDDRs have wider interfaces: 32-bits versus 4, 8, or 16 in current designs.

2. GDDRs have a higher maximum clock rate on the data pins. To allow a
higher transfer rate without incurring signaling problems, GDRAMS
normally connect directly to the GPU and are attached by soldering them to
the board, unlike DRAMs, which are normally arranged in an expandable
array of DIMMs.

Altogether, these characteristics let GDDRs run at two to five times the band-
width per DRAM versus DDR3 DRAMs, a significant advantage in supporting
GPUs. Because of the lower locality of memory requests in a GPU, burst mode
generally is less useful for a GPU, but keeping open multiple memory banks and
managing their use improves effective bandwidth.

Reducing Power Consumption in SDRAMs

Power consumption in dynamic memory chips consists of both dynamic power
used in a read or write and static or standby power; both depend on the operating
voltage. In the most advanced DDR3 SDRAMs the operating voltage has been
dropped to 1.35 to 1.5 volts, significantly reducing power versus DDR2
SDRAMs. The addition of banks also reduced power, since only the row in a sin-
gle bank is read and precharged.

In addition to these changes, all recent SDRAMs support a power down
mode, which is entered by telling the DRAM to ignore the clock. Power down
mode disables the SDRAM, except for internal automatic refresh (without which
entering power down mode for longer than the refresh time will cause the con-
tents of memory to be lost). Figure 2.15 shows the power consumption for three
situations in a 2 Gb DDR3 SDRAM. The exact delay required to return from low
power mode depends on the SDRAM, but a typical timing from autorefresh low
power mode is 200 clock cycles; additional time may be required for resetting the
mode register before the first command.

Flash Memory

Flash memory is a type of EEPROM (Electronically Erasable Programmable
Read-Only Memory), which is normally read-only but can be erased. The other
key property of Flash memory is that it holds it contents without any power.

2.3 Memory Technology and Optimizations ■ 103

Flash is used as the backup storage in PMDs in the same manner that a disk
functions in a laptop or server. In addition, because most PMDs have a limited
amount of DRAM, Flash may also act as a level of the memory hierarchy, to a
much larger extent than it might have to do so in the desktop or server with a
main memory that might be 10 to 100 times larger.

Flash uses a very different architecture and has different properties than stan-
dard DRAM. The most important differences are

1. Flash memory must be erased (hence the name Flash for the “flash” erase
process) before it is overwritten, and it is erased in blocks (in high-density
Flash, called NAND Flash, which is what is used in most computer applica-
tions) rather than individual bytes or words. This means when data must be
written to Flash, an entire block must be assembled, either as new data or by
merging the data to be written and the rest of the block’s contents.

2. Flash memory is static (i.e., it keeps its contents even when power is not
applied) and draws significantly less power when not reading or writing
(from less than half in standby mode to zero when completely inactive).

3. Flash memory has a limited number of write cycles for any block, typically at
least 100,000. By ensuring uniform distribution of written blocks throughout
the memory, a system can maximize the lifetime of a Flash memory system.

4. High-density Flash is cheaper than SDRAM but more expensive than disks:
roughly $2/GB for Flash, $20 to $40/GB for SDRAM, and $0.09/GB for
magnetic disks.

5. Flash is much slower than SDRAM but much faster than disk. For example, a
transfer of 256 bytes from a typical high-density Flash memory takes about
6.5 μs (using burst mode transfer similar to but slower than that used in
SDRAM). A comparable transfer from a DDR SDRAM takes about one-
quarter as long, and for a disk about 1000 times longer. For writes, the

Figure 2.15 Power consumption for a DDR3 SDRAM operating under three condi-

tions: low power (shutdown) mode, typical system mode (DRAM is active 30% of the

time for reads and 15% for writes), and fully active mode, where the DRAM is contin-

uously reading or writing when not in precharge. Reads and writes assume bursts of 8
transfers. These data are based on a Micron 1.5V 2Gb DDR3-1066.

0

100

200

300

400

500

600

Low
power
mode

Typical
usage

Fully
active

P
ow

er
 in

 m
W

Background power
Activate power

Read, write, terminate
power

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

104 ■ Chapter Two Memory Hierarchy Design

difference is considerably larger, with the SDRAM being at least 10 and as
much as 100 times faster than Flash depending on the circumstances.

The rapid improvements in high-density Flash in the past decade have made the
technology a viable part of memory hierarchies in mobile devices and as solid-
state replacements for disks. As the rate of increase in DRAM density continues
to drop, Flash could play an increased role in future memory systems, acting as
both a replacement for hard disks and as an intermediate storage between DRAM
and disk.

Enhancing Dependability in Memory Systems

Large caches and main memories significantly increase the possibility of errors
occurring both during the fabrication process and dynamically, primarily from
cosmic rays striking a memory cell. These dynamic errors, which are changes to
a cell’s contents, not a change in the circuitry, are called soft errors. All DRAMs,
Flash memory, and many SRAMs are manufactured with spare rows, so that a
small number of manufacturing defects can be accommodated by programming
the replacement of a defective row by a spare row. In addition to fabrication
errors that must be fixed at configuration time, hard errors, which are permanent
changes in the operation of one of more memory cells, can occur in operation.

Dynamic errors can be detected by parity bits and detected and fixed by the
use of Error Correcting Codes (ECCs). Because instruction caches are read-only,
parity suffices. In larger data caches and in main memory, ECC is used to allow
errors to be both detected and corrected. Parity requires only one bit of overhead
to detect a single error in a sequence of bits. Because a multibit error would be
undetected with parity, the number of bits protected by a parity bit must be lim-
ited. One parity bit per 8 data bits is a typical ratio. ECC can detect two errors
and correct a single error with a cost of 8 bits of overhead per 64 data bits.

In very large systems, the possibility of multiple errors as well as complete
failure of a single memory chip becomes significant. Chipkill was introduced by
IBM to solve this problem, and many very large systems, such as IBM and SUN
servers and the Google Clusters, use this technology. (Intel calls their version
SDDC.) Similar in nature to the RAID approach used for disks, Chipkill distrib-
utes the data and ECC information, so that the complete failure of a single mem-
ory chip can be handled by supporting the reconstruction of the missing data
from the remaining memory chips. Using an analysis by IBM and assuming a
10,000 processor server with 4 GB per processor yields the following rates of
unrecoverable errors in three years of operation:

■ Parity only—about 90,000, or one unrecoverable (or undetected) failure every
17 minutes

■ ECC only—about 3500, or about one undetected or unrecoverable failure every
7.5 hours

■ Chipkill—6, or about one undetected or unrecoverable failure every 2 months

2.4 Protection: Virtual Memory and Virtual Machines ■ 105

Another way to look at this is to find the maximum number of servers (each with
4 GB) that can be protected while achieving the same error rate as demonstrated
for Chipkill. For parity, even a server with only one processor will have an unre-
coverable error rate higher than a 10,000-server Chipkill protected system. For
ECC, a 17-server system would have about the same failure rate as a 10,000-
server Chipkill system. Hence, Chipkill is a requirement for the 50,000 to 100,00
servers in warehouse-scale computers (see Section 6.8 of Chapter 6).

A virtual machine is taken to be an efficient, isolated duplicate of the real
machine. We explain these notions through the idea of a virtual machine monitor
(VMM). . . . a VMM has three essential characteristics. First, the VMM provides an
environment for programs which is essentially identical with the original machine;
second, programs run in this environment show at worst only minor decreases in
speed; and last, the VMM is in complete control of system resources.

Gerald Popek and Robert Goldberg

“Formal requirements for virtualizable third generation architectures,”
Communications of the ACM (July 1974)

Security and privacy are two of the most vexing challenges for information tech-
nology in 2011. Electronic burglaries, often involving lists of credit card num-
bers, are announced regularly, and it’s widely believed that many more go
unreported. Hence, both researchers and practitioners are looking for new ways
to make computing systems more secure. Although protecting information is not
limited to hardware, in our view real security and privacy will likely involve
innovation in computer architecture as well as in systems software.

This section starts with a review of the architecture support for protecting
processes from each other via virtual memory. It then describes the added protec-
tion provided from virtual machines, the architecture requirements of virtual
machines, and the performance of a virtual machine. As we will see in Chapter 6,
virtual machines are a foundational technology for cloud computing.

Protection via Virtual Memory

Page-based virtual memory, including a translation lookaside buffer that caches
page table entries, is the primary mechanism that protects processes from each
other. Sections B.4 and B.5 in Appendix B review virtual memory, including a
detailed description of protection via segmentation and paging in the 80x86. This
subsection acts as a quick review; refer to those sections if it’s too quick.

Multiprogramming, where several programs running concurrently would
share a computer, led to demands for protection and sharing among programs and

2.4 Protection: Virtual Memory and Virtual Machines

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

Guanglin
高亮

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

106 ■ Chapter Two Memory Hierarchy Design

to the concept of a process. Metaphorically, a process is a program’s breathing air
and living space—that is, a running program plus any state needed to continue
running it. At any instant, it must be possible to switch from one process to
another. This exchange is called a process switch or context switch.

The operating system and architecture join forces to allow processes to share the
hardware yet not interfere with each other. To do this, the architecture must limit
what a process can access when running a user process yet allow an operating sys-
tem process to access more. At a minimum, the architecture must do the following:

1. Provide at least two modes, indicating whether the running process is a user
process or an operating system process. This latter process is sometimes
called a kernel process or a supervisor process.

2. Provide a portion of the processor state that a user process can use but not
write. This state includes a user/supervisor mode bit, an exception enable/dis-
able bit, and memory protection information. Users are prevented from writ-
ing this state because the operating system cannot control user processes if
users can give themselves supervisor privileges, disable exceptions, or
change memory protection.

3. Provide mechanisms whereby the processor can go from user mode to super-
visor mode and vice versa. The first direction is typically accomplished by a
system call, implemented as a special instruction that transfers control to a
dedicated location in supervisor code space. The PC is saved from the point
of the system call, and the processor is placed in supervisor mode. The return
to user mode is like a subroutine return that restores the previous user/super-
visor mode.

4. Provide mechanisms to limit memory accesses to protect the memory state of
a process without having to swap the process to disk on a context switch.

Appendix A describes several memory protection schemes, but by far the
most popular is adding protection restrictions to each page of virtual memory.
Fixed-sized pages, typically 4 KB or 8 KB long, are mapped from the virtual
address space into physical address space via a page table. The protection restric-
tions are included in each page table entry. The protection restrictions might
determine whether a user process can read this page, whether a user process can
write to this page, and whether code can be executed from this page. In addition,
a process can neither read nor write a page if it is not in the page table. Since only
the OS can update the page table, the paging mechanism provides total access
protection.

Paged virtual memory means that every memory access logically takes at
least twice as long, with one memory access to obtain the physical address and a
second access to get the data. This cost would be far too dear. The solution is to
rely on the principle of locality; if the accesses have locality, then the address
translations for the accesses must also have locality. By keeping these address
translations in a special cache, a memory access rarely requires a second access
to translate the address. This special address translation cache is referred to as a
translation lookaside buffer (TLB).

2.4 Protection: Virtual Memory and Virtual Machines ■ 107

A TLB entry is like a cache entry where the tag holds portions of the virtual
address and the data portion holds a physical page address, protection field, valid
bit, and usually a use bit and a dirty bit. The operating system changes these bits
by changing the value in the page table and then invalidating the corresponding
TLB entry. When the entry is reloaded from the page table, the TLB gets an accu-
rate copy of the bits.

Assuming the computer faithfully obeys the restrictions on pages and maps
virtual addresses to physical addresses, it would seem that we are done. Newspa-
per headlines suggest otherwise.

The reason we’re not done is that we depend on the accuracy of the operating
system as well as the hardware. Today’s operating systems consist of tens of
millions of lines of code. Since bugs are measured in number per thousand lines
of code, there are thousands of bugs in production operating systems. Flaws in
the OS have led to vulnerabilities that are routinely exploited.

This problem and the possibility that not enforcing protection could be much
more costly than in the past have led some to look for a protection model with a
much smaller code base than the full OS, such as Virtual Machines.

Protection via Virtual Machines

An idea related to virtual memory that is almost as old are Virtual Machines
(VMs). They were first developed in the late 1960s, and they have remained an
important part of mainframe computing over the years. Although largely ignored
in the domain of single-user computers in the 1980s and 1990s, they have
recently gained popularity due to

■ The increasing importance of isolation and security in modern systems

■ The failures in security and reliability of standard operating systems

■ The sharing of a single computer among many unrelated users, such as in a
datacenter or cloud

■ The dramatic increases in the raw speed of processors, which make the over-
head of VMs more acceptable

The broadest definition of VMs includes basically all emulation methods that
provide a standard software interface, such as the Java VM. We are interested in
VMs that provide a complete system-level environment at the binary instruction
set architecture (ISA) level. Most often, the VM supports the same ISA as the
underlying hardware; however, it is also possible to support a different ISA, and
such approaches are often employed when migrating between ISAs, so as to
allow software from the departing ISA to be used until it can be ported to the new
ISA. Our focus here will be in VMs where the ISA presented by the VM and the
underlying hardware match. Such VMs are called (Operating) System Virtual
Machines. IBM VM/370, VMware ESX Server, and Xen are examples. They
present the illusion that the users of a VM have an entire computer to themselves,

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

108 ■ Chapter Two Memory Hierarchy Design

including a copy of the operating system. A single computer runs multiple VMs
and can support a number of different operating systems (OSes). On a conven-
tional platform, a single OS “owns” all the hardware resources, but with a VM
multiple OSes all share the hardware resources.

The software that supports VMs is called a virtual machine monitor (VMM)
or hypervisor; the VMM is the heart of virtual machine technology. The underly-
ing hardware platform is called the host, and its resources are shared among the
guest VMs. The VMM determines how to map virtual resources to physical
resources: A physical resource may be time-shared, partitioned, or even emulated
in software. The VMM is much smaller than a traditional OS; the isolation por-
tion of a VMM is perhaps only 10,000 lines of code.

In general, the cost of processor virtualization depends on the workload.
User-level processor-bound programs, such as SPEC CPU2006, have zero
virtualization overhead because the OS is rarely invoked so everything runs at
native speeds. Conversely, I/O-intensive workloads generally are also OS-inten-
sive and execute many system calls (which doing I/O requires) and privileged
instructions that can result in high virtualization overhead. The overhead is
determined by the number of instructions that must be emulated by the VMM
and how slowly they are emulated. Hence, when the guest VMs run the same
ISA as the host, as we assume here, the goal of the architecture and the VMM is
to run almost all instructions directly on the native hardware. On the other hand,
if the I/O-intensive workload is also I/O-bound, the cost of processor virtualiza-
tion can be completely hidden by low processor utilization since it is often wait-
ing for I/O.

Although our interest here is in VMs for improving protection, VMs provide
two other benefits that are commercially significant:

1. Managing software—VMs provide an abstraction that can run the complete
software stack, even including old operating systems such as DOS. A typical
deployment might be some VMs running legacy OSes, many running the cur-
rent stable OS release, and a few testing the next OS release.

2. Managing hardware—One reason for multiple servers is to have each appli-
cation running with its own compatible version of the operating system on
separate computers, as this separation can improve dependability. VMs allow
these separate software stacks to run independently yet share hardware,
thereby consolidating the number of servers. Another example is that some
VMMs support migration of a running VM to a different computer, either to
balance load or to evacuate from failing hardware.

These two reasons are why cloud-based servers, such as Amazon’s, rely on vir-
tual machines.

Requirements of a Virtual Machine Monitor

What must a VM monitor do? It presents a software interface to guest software, it
must isolate the state of guests from each other, and it must protect itself from
guest software (including guest OSes). The qualitative requirements are

2.4 Protection: Virtual Memory and Virtual Machines ■ 109

■ Guest software should behave on a VM exactly as if it were running on the
native hardware, except for performance-related behavior or limitations of
fixed resources shared by multiple VMs.

■ Guest software should not be able to change allocation of real system
resources directly.

To “virtualize” the processor, the VMM must control just about everything—
access to privileged state, address translation, I/O, exceptions and interrupts—
even though the guest VM and OS currently running are temporarily using
them.

For example, in the case of a timer interrupt, the VMM would suspend the cur-
rently running guest VM, save its state, handle the interrupt, determine which guest
VM to run next, and then load its state. Guest VMs that rely on a timer interrupt are
provided with a virtual timer and an emulated timer interrupt by the VMM.

To be in charge, the VMM must be at a higher privilege level than the guest
VM, which generally runs in user mode; this also ensures that the execution of
any privileged instruction will be handled by the VMM. The basic requirements
of system virtual machines are almost identical to those for paged virtual mem-
ory listed above:

■ At least two processor modes, system and user.

■ A privileged subset of instructions that is available only in system mode,
resulting in a trap if executed in user mode. All system resources must be
controllable only via these instructions.

(Lack of) Instruction Set Architecture Support for
Virtual Machines

If VMs are planned for during the design of the ISA, it’s relatively easy to both
reduce the number of instructions that must be executed by a VMM and how
long it takes to emulate them. An architecture that allows the VM to execute
directly on the hardware earns the title virtualizable, and the IBM 370 architec-
ture proudly bears that label.

Alas, since VMs have been considered for desktop and PC-based server
applications only fairly recently, most instruction sets were created without virtu-
alization in mind. These culprits include 80x86 and most RISC architectures.

Because the VMM must ensure that the guest system only interacts with vir-
tual resources, a conventional guest OS runs as a user mode program on top of
the VMM. Then, if a guest OS attempts to access or modify information related
to hardware resources via a privileged instruction—for example, reading or writ-
ing the page table pointer—it will trap to the VMM. The VMM can then effect
the appropriate changes to corresponding real resources.

Hence, if any instruction that tries to read or write such sensitive information
traps when executed in user mode, the VMM can intercept it and support a virtual
version of the sensitive information as the guest OS expects.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

110 ■ Chapter Two Memory Hierarchy Design

In the absence of such support, other measures must be taken. A VMM must
take special precautions to locate all problematic instructions and ensure that they
behave correctly when executed by a guest OS, thereby increasing the complex-
ity of the VMM and reducing the performance of running the VM.

Sections 2.5 and 2.7 give concrete examples of problematic instructions in
the 80x86 architecture.

Impact of Virtual Machines on Virtual Memory and I/O

Another challenge is virtualization of virtual memory, as each guest OS in every
VM manages its own set of page tables. To make this work, the VMM separates
the notions of real and physical memory (which are often treated synonymously)
and makes real memory a separate, intermediate level between virtual memory
and physical memory. (Some use the terms virtual memory, physical memory, and
machine memory to name the same three levels.) The guest OS maps virtual
memory to real memory via its page tables, and the VMM page tables map the
guests’ real memory to physical memory. The virtual memory architecture is
specified either via page tables, as in IBM VM/370 and the 80x86, or via the
TLB structure, as in many RISC architectures.

Rather than pay an extra level of indirection on every memory access, the
VMM maintains a shadow page table that maps directly from the guest virtual
address space to the physical address space of the hardware. By detecting all mod-
ifications to the guest’s page table, the VMM can ensure the shadow page table
entries being used by the hardware for translations correspond to those of the
guest OS environment, with the exception of the correct physical pages substi-
tuted for the real pages in the guest tables. Hence, the VMM must trap any attempt
by the guest OS to change its page table or to access the page table pointer. This is
commonly done by write protecting the guest page tables and trapping any access
to the page table pointer by a guest OS. As noted above, the latter happens natu-
rally if accessing the page table pointer is a privileged operation.

The IBM 370 architecture solved the page table problem in the 1970s with an
additional level of indirection that is managed by the VMM. The guest OS keeps
its page tables as before, so the shadow pages are unnecessary. AMD has pro-
posed a similar scheme for their Pacifica revision to the 80x86.

To virtualize the TLB in many RISC computers, the VMM manages the real
TLB and has a copy of the contents of the TLB of each guest VM. To pull this
off, any instructions that access the TLB must trap. TLBs with Process ID tags
can support a mix of entries from different VMs and the VMM, thereby avoid-
ing flushing of the TLB on a VM switch. Meanwhile, in the background, the
VMM supports a mapping between the VMs’ virtual Process IDs and the real
Process IDs.

The final portion of the architecture to virtualize is I/O. This is by far the most
difficult part of system virtualization because of the increasing number of I/O
devices attached to the computer and the increasing diversity of I/O device types.
Another difficulty is the sharing of a real device among multiple VMs, and yet
another comes from supporting the myriad of device drivers that are required,

2.4 Protection: Virtual Memory and Virtual Machines ■ 111

especially if different guest OSes are supported on the same VM system. The VM
illusion can be maintained by giving each VM generic versions of each type of I/O
device driver, and then leaving it to the VMM to handle real I/O.

The method for mapping a virtual to physical I/O device depends on the type
of device. For example, physical disks are normally partitioned by the VMM to
create virtual disks for guest VMs, and the VMM maintains the mapping of vir-
tual tracks and sectors to the physical ones. Network interfaces are often shared
between VMs in very short time slices, and the job of the VMM is to keep track
of messages for the virtual network addresses to ensure that guest VMs receive
only messages intended for them.

An Example VMM: The Xen Virtual Machine

Early in the development of VMs, a number of inefficiencies became apparent.
For example, a guest OS manages its virtual to real page mapping, but this map-
ping is ignored by the VMM, which performs the actual mapping to physical
pages. In other words, a significant amount of wasted effort is expended just to
keep the guest OS happy. To reduce such inefficiencies, VMM developers
decided that it may be worthwhile to allow the guest OS to be aware that it is run-
ning on a VM. For example, a guest OS could assume a real memory as large as
its virtual memory so that no memory management is required by the guest OS.

Allowing small modifications to the guest OS to simplify virtualization is
referred to as paravirtualization, and the open source Xen VMM is a good exam-
ple. The Xen VMM, which is used in Amazon’s Web services data centers, pro-
vides a guest OS with a virtual machine abstraction that is similar to the physical
hardware, but it drops many of the troublesome pieces. For example, to avoid
flushing the TLB, Xen maps itself into the upper 64 MB of the address space of
each VM. It allows the guest OS to allocate pages, just checking to be sure it does
not violate protection restrictions. To protect the guest OS from the user pro-
grams in the VM, Xen takes advantage of the four protection levels available in
the 80x86. The Xen VMM runs at the highest privilege level (0), the guest OS
runs at the next level (1), and the applications run at the lowest privilege level
(3). Most OSes for the 80x86 keep everything at privilege levels 0 or 3.

For subsetting to work properly, Xen modifies the guest OS to not use prob-
lematic portions of the architecture. For example, the port of Linux to Xen
changes about 3000 lines, or about 1% of the 80x86-specific code. These
changes, however, do not affect the application-binary interfaces of the guest OS.

To simplify the I/O challenge of VMs, Xen assigned privileged virtual
machines to each hardware I/O device. These special VMs are called driver
domains. (Xen calls its VMs “domains.”) Driver domains run the physical device
drivers, although interrupts are still handled by the VMM before being sent to the
appropriate driver domain. Regular VMs, called guest domains, run simple vir-
tual device drivers that must communicate with the physical device drivers in the
driver domains over a channel to access the physical I/O hardware. Data are sent
between guest and driver domains by page remapping.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

112 ■ Chapter Two Memory Hierarchy Design

This section describes three topics discussed in other chapters that are fundamen-
tal to memory hierarchies.

Protection and Instruction Set Architecture

Protection is a joint effort of architecture and operating systems, but architects
had to modify some awkward details of existing instruction set architectures
when virtual memory became popular. For example, to support virtual memory in
the IBM 370, architects had to change the successful IBM 360 instruction set
architecture that had been announced just 6 years before. Similar adjustments are
being made today to accommodate virtual machines.

For example, the 80x86 instruction POPF loads the flag registers from the
top of the stack in memory. One of the flags is the Interrupt Enable (IE) flag.
Until recent changes to support virtualization, running the POPF instruction in
user mode, rather than trapping it, simply changed all the flags except IE. In
system mode, it does change the IE flag. Since a guest OS runs in user mode
inside a VM, this was a problem, as it would expect to see a changed IE.
Extensions of the 80x86 architecture to support virtualization eliminated this
problem.

Historically, IBM mainframe hardware and VMM took three steps to
improve performance of virtual machines:

1. Reduce the cost of processor virtualization.

2. Reduce interrupt overhead cost due to the virtualization.

3. Reduce interrupt cost by steering interrupts to the proper VM without invok-
ing VMM.

IBM is still the gold standard of virtual machine technology. For example, an
IBM mainframe ran thousands of Linux VMs in 2000, while Xen ran 25 VMs in
2004 [Clark et al. 2004]. Recent versions of Intel and AMD chipsets have added
special instructions to support devices in a VM, to mask interrupts at lower levels
from each VM, and to steer interrupts to the appropriate VM.

Coherency of Cached Data

Data can be found in memory and in the cache. As long as the processor is the
sole component changing or reading the data and the cache stands between the
processor and memory, there is little danger in the processor seeing the old or
stale copy. As we will see, multiple processors and I/O devices raise the opportu-
nity for copies to be inconsistent and to read the wrong copy.

The frequency of the cache coherency problem is different for multipro-
cessors than I/O. Multiple data copies are a rare event for I/O—one to be

2.5 Crosscutting Issues: The Design of
Memory Hierarchies

2.6 Putting It All Together: Memory Hierachies in the ARM Cortex-A8 and Intel Core i7 ■ 113

avoided whenever possible—but a program running on multiple processors
will want to have copies of the same data in several caches. Performance of a
multiprocessor program depends on the performance of the system when
sharing data.

The I/O cache coherency question is this: Where does the I/O occur in the
computer—between the I/O device and the cache or between the I/O device and
main memory? If input puts data into the cache and output reads data from the
cache, both I/O and the processor see the same data. The difficulty in this
approach is that it interferes with the processor and can cause the processor to
stall for I/O. Input may also interfere with the cache by displacing some informa-
tion with new data that are unlikely to be accessed soon.

The goal for the I/O system in a computer with a cache is to prevent the
stale data problem while interfering as little as possible. Many systems,
therefore, prefer that I/O occur directly to main memory, with main memory
acting as an I/O buffer. If a write-through cache were used, then memory would
have an up-to-date copy of the information, and there would be no stale data
issue for output. (This benefit is a reason processors used write through.) Alas,
write through is usually found today only in first-level data caches backed by
an L2 cache that uses write back.

Input requires some extra work. The software solution is to guarantee that no
blocks of the input buffer are in the cache. A page containing the buffer can be
marked as noncachable, and the operating system can always input to such a
page. Alternatively, the operating system can flush the buffer addresses from the
cache before the input occurs. A hardware solution is to check the I/O addresses
on input to see if they are in the cache. If there is a match of I/O addresses in the
cache, the cache entries are invalidated to avoid stale data. All of these
approaches can also be used for output with write-back caches.

Processor cache coherency is a critical subject in the age of multicore proces-
sors, and we will examine it in detail in Chapter 5.

This section reveals the ARM Cortex-A8 (hereafter called the Cortex-A8) and
Intel Core i7 (hereafter called i7) memory hierarchies and shows the performance
of their components on a set of single threaded benchmarks. We examine the
Cortex-A8 first because it has a simpler memory system; we go into more detail
for the i7, tracing out a memory reference in detail. This section presumes that
readers are familiar with the organization of a two-level cache hierarchy using
virtually indexed caches. The basics of such a memory system are explained in
detail in Appendix B, and readers who are uncertain of the organization of such a
system are strongly advised to review the Opteron example in Appendix B. Once
they understand the organization of the Opteron, the brief explanation of the
Cortex-A8 system, which is similar, will be easy to follow.

2.6 Putting It All Together: Memory Hierachies in the
ARM Cortex-A8 and Intel Core i7

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

114 ■ Chapter Two Memory Hierarchy Design

The ARM Cortex-A8

The Cortex-A8 is a configurable core that supports the ARMv7 instruction set
architecture. It is delivered as an IP (Intellectual Property) core. IP cores are the
dominant form of technology delivery in the embedded, PMD, and related mar-
kets; billions of ARM and MIPS processors have been created from these IP
cores. Note that IP cores are different than the cores in the Intel i7 or AMD Ath-
lon multicores. An IP core (which may itself be a multicore) is designed to be
incorporated with other logic (hence it is the core of a chip), including applica-
tion-specific processors (such as an encoder or decoder for video), I/O interfaces,
and memory interfaces, and then fabricated to yield a processor optimized for a
particular application. For example, the Cortex-A8 IP core is used in the Apple
iPad and smartphones by several manufacturers including Motorola and Sam-
sung. Although the processor core is almost identical, the resultant chips have
many differences.

Generally, IP cores come in two flavors. Hard cores are optimized for a par-
ticular semiconductor vendor and are black boxes with external (but still on-chip)
interfaces. Hard cores typically allow parametrization only of logic outside the
core, such as L2 cache sizes, and the IP core cannot be modified. Soft cores are
usually delivered in a form that uses a standard library of logic elements. A soft
core can be compiled for different semiconductor vendors and can also be modi-
fied, although extensive modifications are very difficult due to the complexity of
modern-day IP cores. In general, hard cores provide higher performance and
smaller die area, while soft cores allow retargeting to other vendors and can be
more easily modified.

The Cortex-A8 can issue two instructions per clock at clock rates up to
1GHz. It can support a two-level cache hierarchy with the first level being a pair
of caches (for I & D), each 16 KB or 32 KB organized as four-way set associative
and using way prediction and random replacement. The goal is to have single-
cycle access latency for the caches, allowing the Cortex-A8 to maintain a load-
to-use delay of one cycle, simpler instruction fetch, and a lower penalty for fetch-
ing the correct instruction when a branch miss causes the wrong instruction to be
prefetched. The optional second-level cache when present is eight-way set asso-
ciative and can be configured with 128 KB up to 1 MB; it is organized into one to
four banks to allow several transfers from memory to occur concurrently. An
external bus of 64 to 128 bits handles memory requests. The first-level cache is
virtually indexed and physically tagged, and the second-level cache is physically
indexed and tagged; both levels use a 64-byte block size. For the D-cache of 32
KB and a page size of 4 KB, each physical page could map to two different cache
addresses; such aliases are avoided by hardware detection on a miss as in Section
B.3 of Appendix B.

Memory management is handled by a pair of TLBs (I and D), each of which
are fully associative with 32 entries and a variable page size (4 KB, 16 KB, 64
KB, 1 MB, and 16 MB); replacement in the TLB is done by a round robin algo-
rithm. TLB misses are handled in hardware, which walks a page table structure in

2.6 Putting It All Together: Memory Hierachies in the ARM Cortex-A8 and Intel Core i7 ■ 115

memory. Figure 2.16 shows how the 32-bit virtual address is used to index the
TLB and the caches, assuming 32 KB primary caches and a 512 KB secondary
cache with 16 KB page size.

Performance of the Cortex-A8 Memory Hierarchy

The memory hierarchy of the Cortex-A8 was simulated with 32 KB primary
caches and a 1 MB eight-way set associative L2 cache using the integer
Minnespec benchmarks (see KleinOsowski and Lilja [2002]). Minnespec is a
set of benchmarks consisting of the SPEC2000 benchmarks but with different
inputs that reduce the running times by several orders of magnitude. Although
the use of smaller inputs does not change the instruction mix, it does affect the

Figure 2.16 The virtual address, physical address, indexes, tags, and data blocks for the ARM Cortex-A8 data

caches and data TLB. Since the instruction and data hierarchies are symmetric, we show only one. The TLB (instruc-
tion or data) is fully associative with 32 entries. The L1 cache is four-way set associative with 64-byte blocks and 32 KB
capacity. The L2 cache is eight-way set associative with 64-byte blocks and 1 MB capacity. This figure doesn’t show
the valid bits and protection bits for the caches and TLB, nor the use of the way prediction bits that would dictate the
predicted bank of the L1 cache.

Virtual add ress <32>

Physical address <32>

Virtual page number <18> Page offset <14>

L2 tag compare address <15> L2 cache index <11> Block offset <6>

TLB data <19>

L2 cache tag <15> L2 data <512>

=?

=?

To CPU

To CPU

To CPU

To L1 cache or CPU

L1 cache index <7> Block offset <6>

L1 cache tag <19> L1 data <64>

TLB tag <19>

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

116 ■ Chapter Two Memory Hierarchy Design

cache behavior. For example, on mcf, the most memory-intensive SPEC2000
integer benchmark, Minnespec has a miss rate for a 32 KB cache that is only 65%
of the miss rate for the full SPEC version. For a 1 MB cache the difference is a
factor of 6! On many other benchmarks the ratios are similar to those on mcf, but
the absolute miss rates are much smaller. For this reason, one cannot compare the
Minniespec benchmarks against the SPEC2000 benchmarks. Instead, the data are
useful for looking at the relative impact of L1 and L2 misses and on overall CPI,
as we do in the next chapter.

The instruction cache miss rates for these benchmarks (and also for the full
SPEC2000 versions on which Minniespec is based) are very small even for just
the L1: close to zero for most and under 1% for all of them. This low rate proba-
bly results from the computationally intensive nature of the SPEC programs
and the four-way set associative cache that eliminates most conflict misses.
Figure 2.17 shows the data cache results, which have significant L1 and L2 miss
rates. The L1 miss penalty for a 1 GHz Cortex-A8 is 11 clock cycles, while the

Figure 2.17 The data miss rate for ARM with a 32 KB L1 and the global data miss rate
for a 1 MB L2 using the integer Minnespec benchmarks are significantly affected by
the applications. Applications with larger memory footprints tend to have higher miss
rates in both L1 and L2. Note that the L2 rate is the global miss rate, that is counting all
references, including those that hit in L1. Mcf is known as a cache buster.

0%

5%

10%

15%

20%

25%

D
at

a
m

is
s

ra
te

gzip vpr gcc mcf craf ty parser eon perlbmk gap vortex bzip2

L1 data miss rate

L2 global data miss rate

2.6 Putting It All Together: Memory Hierachies in the ARM Cortex-A8 and Intel Core i7 ■ 117

L2 miss penalty is 60 clock cycles, using DDR SDRAMs for the main memory.
Using these miss penalties, Figure 2.18 shows the average penalty per data
access. In the next chapter, we will examine the impact of the cache misses on
overall CPI.

The Intel Core i7

The i7 supports the x86-64 instruction set architecture, a 64-bit extension of the
80x86 architecture. The i7 is an out-of-order execution processor that includes
four cores. In this chapter, we focus on the memory system design and perfor-
mance from the viewpoint of a single core. The system performance of multipro-
cessor designs, including the i7 multicore, is examined in detail in Chapter 5.

Each core in an i7 can execute up to four 80x86 instructions per clock cycle,
using a multiple issue, dynamically scheduled, 16-stage pipeline, which we
describe in detail in Chapter 3. The i7 can also support up to two simultaneous
threads per processor, using a technique called simultaneous multithreading,

Figure 2.18 The average memory access penalty per data memory reference

coming from L1 and L2 is shown for the ARM processor when running Minniespec.

Although the miss rates for L1 are significantly higher, the L2 miss penalty, which is
more than five times higher, means that the L2 misses can contribute significantly.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2

L1 data average memory penalty

L2 data average memory penalty

M
is

s
pe

na
lty

 p
er

 d
at

a
re

fe
re

nc
e

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

118 ■ Chapter Two Memory Hierarchy Design

described in Chapter 4. In 2010, the fastest i7 had a clock rate of 3.3 GHz, which
yields a peak instruction execution rate of 13.2 billion instructions per second, or
over 50 billion instructions per second for the four-core design.

The i7 can support up to three memory channels, each consisting of a sepa-
rate set of DIMMs, and each of which can transfer in parallel. Using DDR3-1066
(DIMM PC8500), the i7 has a peak memory bandwith of just over 25 GB/sec.

i7 uses 48-bit virtual addresses and 36-bit physical addresses, yielding a max-
imum physical memory of 36 GB. Memory management is handled with a two-
level TLB (see Appendix B, Section B.4), summarized in Figure 2.19.

Figure 2.20 summarizes the i7’s three-level cache hierarchy. The first-level
caches are virtually indexed and physically tagged (see Appendix B, Section B.3),
while the L2 and L3 caches are physically indexed. Figure 2.21 is labeled with the

Characteristic Instruction TLB Data DLB Second-level TLB

Size 128 64 512

Associativity 4-way 4-way 4-way

Replacement Pseudo-LRU Pseudo-LRU Pseudo-LRU

Access latency 1 cycle 1 cycle 6 cycles

Miss 7 cycles 7 cycles Hundreds of cycles to access
page table

Figure 2.19 Characteristics of the i7’s TLB structure, which has separate first-level

instruction and data TLBs, both backed by a joint second-level TLB. The first-level
TLBs support the standard 4 KB page size, as well as having a limited number of entries
of large 2 to 4 MB pages; only 4 KB pages are supported in the second-level TLB.

Characteristic L1 L2 L3

Size 32 KB I/32 KB D 256 KB 2 MB per core

Associativity 4-way I/8-way D 8-way 16-way

Access latency 4 cycles, pipelined 10 cycles 35 cycles

Replacement scheme Pseudo-LRU Pseudo-
LRU

Pseudo-LRU but with an
ordered selection algorihtm

Figure 2.20 Characteristics of the three-level cache hierarchy in the i7. All three
caches use write-back and a block size of 64 bytes. The L1 and L2 caches are separate
for each core, while the L3 cache is shared among the cores on a chip and is a total of 2
MB per core. All three caches are nonblocking and allow multiple outstanding writes.
A merging write buffer is used for the L1 cache, which holds data in the event that the
line is not present in L1 when it is written. (That is, an L1 write miss does not cause the
line to be allocated.) L3 is inclusive of L1 and L2; we explore this property in further
detail when we explain multiprocessor caches. Replacement is by a variant on pseudo-
LRU; in the case of L3 the block replaced is always the lowest numbered way whose
access bit is turned off. This is not quite random but is easy to compute.

2.6 Putting It All Together: Memory Hierachies in the ARM Cortex-A8 and Intel Core i7 ■ 119

Figure 2.21 The Intel i7 memory hierarchy and the steps in both instruction and data access. We show only reads
for data. Writes are similar, in that they begin with a read (since caches are write back). Misses are handled by simply
placing the data in a write buffer, since the L1 cache is not write allocated.

Data
<128x4>

Data
<512>

Virtual page
number <36>

Data in <64>

Instruction
<128>

<128>

<7>

<64>

<30>

Page
offset <12>

PC
CPU

2:1 mux

<21>
Tag

<9>
L2

C
A
C
H
E

C
A
C
H
E

Data virtual page
number <36>

Page
offset <12>

<7>
Index Block offset

I
C
A
C
H
E

I
T
L
B

L2

T
L
B

<23>

=?

4:1 mux

4:1 mux

4:1 mux

2
1

3

5
5

6

8

9

7

16

10

V
<1>

D
<1>

V
<1>

D
<1>

Tag
<21>

V
<1>

D
<1>

Tag
<17>

8:1 mux

=?

=?

<7>

<6>

D
C
A
C
H
E

D
T
L
B

4:1 mux

<4>
Prot

<1>
V

4:1 mux
(64 PTEs in 4 banks)(128 PTEs in 4 banks)

<31>
Tag

<24>
Physical address

<4>
Prot

<1>
V

<31>
Tag

<24>
Physical address

<4>
Prot

<1>
V

<29>
Tag

<24>
Physical address

=?

(512 PTEs
 in 4 banks)

(512 blocks in 4 banks)

Data
<128×4>

(512 blocks in 8 banks)

Data
<64>

(4K blocks in 8 banks)

Data
<512><17> <13>

L3
11

12

13 16:1 mux=?

(128K blocks in 16 banks)

<64> <64>

DIMM DIMM

M
A
I
N

M
E
M
O
R
Y 15

Memory Interface

<64>DIMM
14

16

4

Index

Tag Index

V
<1>

D
<1>

Tag
<21>

Index Block offset
<6> <6>

<24> <28>

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

120 ■ Chapter Two Memory Hierarchy Design

steps of an access to the memory hierarchy. First, the PC is sent to the instruction
cache. The instruction cache index is

or 7 bits. The page frame of the instruction’s address (36 = 48 – 12 bits) is sent to
the instruction TLB (step 1). At the same time the 7-bit index (plus an additional
2 bits from the block offset to select the appropriate 16 bytes, the instruction
fetch amount) from the virtual address is sent to the instruction cache (step 2).
Notice that for the four-way associative instruction cache, 13 bits are needed
for the cache address: 7 bits to index the cache plus 6 bits of block offset for the
64-byte block, but the page size is 4 KB = 212, which means that 1 bit of the
cache index must come from the virtual address. This use of 1 bit of virtual
address means that the corresponding block could actually be in two different
places in the cache, since the corresponding physical address could have either a
0 or 1 in this location. For instructions this does not pose a problem, since even if
an instruction appeared in the cache in two different locations, the two versions
must be the same. If such duplication, or aliasing, of data is allowed, the cache
must be checked when the page map is changed, which is an infrequent event.
Note that a very simple use of page coloring (see Appendix B, Section B.3) can
eliminate the possibility of these aliases. If even-address virtual pages are
mapped to even-address physical pages (and the same for odd pages), then these
aliases can never occur because the low-order bit in the virtual and physical page
number will be identical.

The instruction TLB is accessed to find a match between the address and a
valid Page Table Entry (PTE) (steps 3 and 4). In addition to translating the
address, the TLB checks to see if the PTE demands that this access result in an
exception due to an access violation.

An instruction TLB miss first goes to the L2 TLB, which contains 512 PTEs
of 4 KB page sizes and is four-way set associative. It takes two clock cycles to
load the L1 TLB from the L2 TLB. If the L2 TLB misses, a hardware algorithm
is used to walk the page table and update the TLB entry. In the worst case, the
page is not in memory, and the operating system gets the page from disk. Since
millions of instructions could execute during a page fault, the operating system
will swap in another process if one is waiting to run. Otherwise, if there is no
TLB exception, the instruction cache access continues.

The index field of the address is sent to all four banks of the instruction cache
(step 5). The instruction cache tag is 36 – 7 bits (index) – 6 bits (block offset), or
23 bits. The four tags and valid bits are compared to the physical page frame
from the instruction TLB (step 6). As the i7 expects 16 bytes each instruction
fetch, an additional 2 bits are used from the 6-bit block offset to select the appro-
priate 16 bytes. Hence, 7 + 2 or 9 bits are used to send 16 bytes of instructions to
the processor. The L1 cache is pipelined, and the latency of a hit is 4 clock cycles
(step 7). A miss goes to the second-level cache.

As mentioned earlier, the instruction cache is virtually addressed and
physically tagged. Because the second-level caches are physically addressed, the

2
Index Cache size

Block size Set associativity×
--

32K
64 4×
--------------- 128 2

7
= = ==

2.6 Putting It All Together: Memory Hierachies in the ARM Cortex-A8 and Intel Core i7 ■ 121

physical page address from the TLB is composed with the page offset to make an
address to access the L2 cache. The L2 index is

so the 30-bit block address (36-bit physical address – 6-bit block offset) is
divided into a 21-bit tag and a 9-bit index (step 8). Once again, the index and tag
are sent to all eight banks of the unified L2 cache (step 9), which are compared in
parallel. If one matches and is valid (step 10), it returns the block in sequential
order after the initial 10-cycle latency at a rate of 8 bytes per clock cycle.

If the L2 cache misses, the L3 cache is accessed. For a four-core i7, which
has an 8 MB L3, the index size is

The 13-bit index (step 11) is sent to all 16 banks of the L3 (step 12). The L3 tag,
which is 36 − (13 + 6) = 17 bits, is compared against the physical address from
the TLB (step 13). If a hit occurs, the block is returned after an initial latency at a
rate of 16 bytes per clock and placed into both L1 and L3. If L3 misses, a mem-
ory access is initiated.

If the instruction is not found in the L3 cache, the on-chip memory controller
must get the block from main memory. The i7 has three 64-bit memory channels
that can act as one 192-bit channel, since there is only one memory controller and
the same address is sent on both channels (step 14). Wide transfers happen when
both channels have identical DIMMs. Each channel supports up to four DDR
DIMMs (step 15). When the data return they are placed into L3 and L1 (step 16)
because L3 is inclusive.

The total latency of the instruction miss that is serviced by main memory is
approximately 35 processor cycles to determine that an L3 miss has occurred,
plus the DRAM latency for the critical instructions. For a single-bank DDR1600
SDRAM and 3.3 GHz CPU, the DRAM latency is about 35 ns or 100 clock
cycles to the first 16 bytes, leading to a total miss penalty of 135 clock cycles.
The memory controller fills the remainder of the 64-byte cache block at a rate of
16 bytes per memory clock cycle, which takes another 15 ns or 45 clock cycles.

Since the second-level cache is a write-back cache, any miss can lead to an
old block being written back to memory. The i7 has a 10-entry merging write
buffer that writes back dirty cache lines when the next level in the cache is
unused for a read. The write buffer is snooped by any miss to see if the cache line
exists in the buffer; if so, the miss is filled from the buffer. A similar buffer is
used between the L1 and L2 caches.

If this initial instruction is a load, the data address is sent to the data cache and
data TLBs, acting very much like an instruction cache access with one key differ-
ence. The first-level data cache is eight-way set associative, meaning that the index
is 6 bits (versus 7 for the instruction cache) and the address used to access the cache
is the same as the page offset. Hence aliases in the data cache are not a worry.

2
Index Cache size

Block size Set associativity×
--

256K
64 8×
--------------- 512 2

9
= = ==

2
Index Cache size

Block size Set associativity×
--

8M
64 16×
------------------ 8192 2

13
= = ==

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

122 ■ Chapter Two Memory Hierarchy Design

Suppose the instruction is a store instead of a load. When the store issues, it
does a data cache lookup just like a load. A miss causes the block to be placed in
a write buffer, since the L1 cache does not allocate the block on a write miss. On
a hit, the store does not update the L1 (or L2) cache until later, after it is known to
be nonspeculative. During this time the store resides in a load-store queue, part of
the out-of-order control mechanism of the processor.

The I7 also supports prefetching for L1 and L2 from the next level in the hier-
archy. In most cases, the prefetched line is simply the next block in the cache. By
prefetching only for L1 and L2, high-cost unnecessary fetches to memory are
avoided.

Performance of the i7 Memory System

We evaluate the performance of the i7 cache structure using 19 of the
SPECCPU2006 benchmarks (12 integer and 7 floating point), which were
described in Chapter 1. The data in this section were collected by Professor Lu
Peng and Ph.D. student Ying Zhang, both of Louisiana State University.

We begin with the L1 cache. The 32 KB, four-way set associative instruction
cache leads to a very low instruction miss rate, especially because the instruction
prefetch in the i7 is quite effective. Of course, how we evaluate the miss rate is a
bit tricky, since the i7 does not generate individual requests for single instruction
units, but instead prefetches 16 bytes of instruction data (between four and five
instructions typically). If, for simplicity, we examine the instruction cache miss
rate as if single instruction references were handled, then the L1 instruction cache
miss rate varies from 0.1% to 1.8%, averaging just over 0.4%. This rate is in
keeping with other studies of instruction cache behavior for the SPECCPU2006
benchmarks, which showed low instruction cache miss rates.

The L1 data cache is more interesting and even trickier to evaluate for three
reasons:

1. Because the L1 data cache is not write allocated, writes can hit but never
really miss, in the sense that a write that does not hit simply places its data in
the write buffer and does not record as a miss.

2. Because speculation may sometimes be wrong (see Chapter 3 for an exten-
sive discussion), there are references to the L1 data cache that do not corre-
spond to loads or stores that eventually complete execution. How should such
misses be treated?

3. Finally, the L1 data cache does automatic prefetching. Should prefetches that
miss be counted, and, if so, how?

To address these issues, while keeping the amount of data reasonable,
Figure 2.22 shows the L1 data cache misses in two ways: relative to the number
of loads that actually complete (often called graduation or retirement) and rela-
tive to all the L1 data cache accesses from any source. As we can see, the miss
rate when measured against only completed loads is 1.6 times higher (an average
of 9.5% versus 5.9%). Figure 2.23 shows the same data in table form.

2.6 Putting It All Together: Memory Hierachies in the ARM Cortex-A8 and Intel Core i7 ■ 123

Figure 2.22 The L1 data cache miss rate for 17 SPECCPU2006 benchmarks is shown

in two ways: relative to the actual loads that complete execution successfully and

relative to all the references to L1, which also includes prefetches, speculative loads

that do not complete, and writes, which count as references, but do not generate

misses. These data, like the rest in this section, were collected by Professor Lu Peng and
Ph.D. student Ying Zhang, both of Louisiana State University, based on earlier studies of
the Intel Core Duo and other processors (see Peng et al. [2008]).

Benchmark

L1 data misses/

graduated loads
L1 data misses/

L1 data cache references

PERLBENCH 2% 1%
BZIP2 5% 3%
GCC 14% 6%
MCF 46% 24%
GOBMK 3% 2%
HMMER 4% 3%
SJENG 2% 1%
LIBQUANTUM 18% 10%
H264REF 4% 3%
OMNETPP 13% 8%
ASTAR 9% 6%
XALANCBMK 9% 7%
MILC 8% 5%
NAMD 4% 3%
DEALII 6% 5%
SOPLEX 13% 9%
POVRAY 7% 5%
LBM 7% 4%
SPHINX3 10% 8%

Figure 2.23 The primary data cache misses are shown versus all loads that complete

and all references (which includes speculative and prefetch requests).

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

PERLB
ENCH

BZIP
2
GCC

M
CF

GOBM
K

HM
M

ER

SJE
NG

LI
BQUANTUM

H26
4R

EF

OM
NETPP

ASTAR

XALA
NCBM

K
M

IL
C

NAM
D

DEALI
I

SOPLE
X

POVRAY
LB

M

SPHIN
X3

L1 D misses/L1 D cache references

L1 D misses/graduated loads

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

124 ■ Chapter Two Memory Hierarchy Design

With L1 data cache miss rates running 5% to 10%, and sometimes higher, the
importance of the L2 and L3 caches should be obvious. Figure 2.24 shows the
miss rates of the L2 and L3 caches versus the number of L1 references (and
Figure 2.25 shows the data in tabular form). Since the cost for a miss to memory
is over 100 cycles and the average data miss rate in L2 is 4%, L3 is obviously
critical. Without L3 and assuming about half the instructions are loads or stores,
L2 cache misses could add two cycles per instruction to the CPI! In comparison,
the average L3 data miss rate of 1% is still significant but four times lower than
the L2 miss rate and six times less than the L1 miss rate. In the next chapter, we
will examine the relationship between the i7 CPI and cache misses, as well as
other pipeline effects.

Figure 2.24 The L2 and L3 data cache miss rates for 17 SPECCPU2006 benchmarks
are shown relative to all the references to L1, which also includes prefetches,
speculative loads that do not complete, and program–generated loads and stores.
These data, like the rest in this section, were collected by Professor Lu Peng and Ph.D.
student Ying Zhang, both of Louisiana State University.

0%

2%

4%

6%

8%

10%

12%

14%

16%

PERLB
ENCH

BZIP
2

GCC
M

CF

GOBM
K

HM
M

ER

SJE
NG

LI
BQUANTUM

H26
4R

EF

OM
NETPP

ASTAR

XALA
NCBM

K
M

IL
C

NAM
D

DEALI
I

SOPLE
X

POVRAY
LB

M

SPHIN
X3

L2 misses/all D cache references
L3 misses/all D cache references

2.7 Fallacies and Pitfalls ■ 125

As the most naturally quantitative of the computer architecture disciplines, mem-
ory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Yet we
were limited here not by lack of warnings, but by lack of space!

Fallacy Predicting cache performance of one program from another.

Figure 2.26 shows the instruction miss rates and data miss rates for three pro-
grams from the SPEC2000 benchmark suite as cache size varies. Depending on
the program, the data misses per thousand instructions for a 4096 KB cache are 9,
2, or 90, and the instruction misses per thousand instructions for a 4 KB cache are
55, 19, or 0.0004. Commercial programs such as databases will have significant
miss rates even in large second-level caches, which is generally not the case for
the SPEC programs. Clearly, generalizing cache performance from one program
to another is unwise. As Figure 2.24 reminds us, there is a great deal of variation,

L2 misses/all data cache
references

L3 misses/all data cache
references

PERLBENCH 1% 0%

BZIP2 2% 0%

GCC 6% 1%

MCF 15% 5%

GOBMK 1% 0%

HMMER 2% 0%

SJENG 0% 0%

LIBQUANTUM 3% 0%

H264REF 1% 0%

OMNETPP 7% 3%

ASTAR 3% 1%

XALANCBMK 4% 1%

MILC 6% 1%

NAMD 0% 0%

DEALII 4% 0%

SOPLEX 9% 1%

POVRAY 0% 0%

LBM 4% 4%

SPHINX3 7% 0%

Figure 2.25 The L2 and L3 miss rates shown in table form versus the number of data

requests.

2.7 Fallacies and Pitfalls

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

126 ■ Chapter Two Memory Hierarchy Design

and even predictions about the relative miss rates of integer and floating-point-
intensive programs can be wrong as mcf and sphnix3 remind us!

Pitfall Simulating enough instructions to get accurate performance measures of the
memory hierarchy.

There are really three pitfalls here. One is trying to predict performance of a large
cache using a small trace. Another is that a program’s locality behavior is not
constant over the run of the entire program. The third is that a program’s locality
behavior may vary depending on the input.

Figure 2.27 shows the cumulative average instruction misses per thousand
instructions for five inputs to a single SPEC2000 program. For these inputs, the
average memory rate for the first 1.9 billion instructions is very different from
the average miss rate for the rest of the execution.

Pitfall Not delivering high memory bandwidth in a cache-based system.

Caches help with average cache memory latency but may not deliver high mem-
ory bandwidth to an application that must go to main memory. The architect must
design a high bandwidth memory behind the cache for such applications. We will
revisit this pitfall in Chapters 4 and 5.

Pitfall Implementing a virtual machine monitor on an instruction set architecture that
wasn’t designed to be virtualizable.

Many architects in the 1970s and 1980s weren’t careful to make sure that all
instructions reading or writing information related to hardware resource infor-
mation were privileged. This laissez faire attitude causes problems for VMMs

Figure 2.26 Instruction and data misses per 1000 instructions as cache size varies
from 4 KB to 4096 KB. Instruction misses for gcc are 30,000 to 40,000 times larger than
lucas, and, conversely, data misses for lucas are 2 to 60 times larger than gcc. The pro-
grams gap, gcc, and lucas are from the SPEC2000 benchmark suite.

0

20

40

60

80

100

120

140

160

M
is

se
s

pe
r

10
00

 in
st

ru
ct

io
ns

4 16 64 256 1024 4096
Cache size (KB)

D: lucas D: gcc
D: gap I: gap

I: gcc
I: lucas

2.7 Fallacies and Pitfalls ■ 127

Figure 2.27 Instruction misses per 1000 references for five inputs to the perl bench-

mark from SPEC2000. There is little variation in misses and little difference between
the five inputs for the first 1.9 billion instructions. Running to completion shows how
misses vary over the life of the program and how they depend on the input. The top
graph shows the running average misses for the first 1.9 billion instructions, which
starts at about 2.5 and ends at about 4.7 misses per 1000 references for all five inputs.
The bottom graph shows the running average misses to run to completion, which takes
16 to 41 billion instructions depending on the input. After the first 1.9 billion instruc-
tions, the misses per 1000 references vary from 2.4 to 7.9 depending on the input. The
simulations were for the Alpha processor using separate L1 caches for instructions and
data, each two-way 64 KB with LRU, and a unified 1 MB direct-mapped L2 cache.

0

1

2

3

4

5

6

7

8

9

In
st

ru
ct

io
n

m
is

se
s

pe
r

10
00

 r
ef

er
en

ce
s

In
st

ru
ct

io
n

m
is

se
s

pe
r

10
00

 r
ef

er
en

ce
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

1

2, 3, 4, 5

1.5 1.6 1.7 1.8 1.9
Instructions (billions)

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

Instructions (billions)

5

2

3

4

1

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

128 ■ Chapter Two Memory Hierarchy Design

for all of these architectures, including the 80x86, which we use here as an
example.

Figure 2.28 describes the 18 instructions that cause problems for virtualiza-
tion [Robin and Irvine 2000]. The two broad classes are instructions that

■ Read control registers in user mode that reveal that the guest operating sys-
tem is running in a virtual machine (such as POPF mentioned earlier)

■ Check protection as required by the segmented architecture but assume that
the operating system is running at the highest privilege level.

Virtual memory is also challenging. Because the 80x86 TLBs do not support
process ID tags, as do most RISC architectures, it is more expensive for the
VMM and guest OSes to share the TLB; each address space change typically
requires a TLB flush.

Problem category Problem 80x86 instructions

Access sensitive registers without
trapping when running in user mode

Store global descriptor table register (SGDT)
Store local descriptor table register (SLDT)
Store interrupt descriptor table register (SIDT)
Store machine status word (SMSW)
Push flags (PUSHF, PUSHFD)
Pop flags (POPF, POPFD)

When accessing virtual memory
mechanisms in user mode,
instructions fail the 80x86
protection checks

Load access rights from segment descriptor (LAR)
Load segment limit from segment descriptor (LSL)
Verify if segment descriptor is readable (VERR)
Verify if segment descriptor is writable (VERW)
Pop to segment register (POP CS, POP SS, …)
Push segment register (PUSH CS, PUSH SS, …)
Far call to different privilege level (CALL)
Far return to different privilege level (RET)
Far jump to different privilege level (JMP)
Software interrupt (INT)
Store segment selector register (STR)
Move to/from segment registers (MOVE)

Figure 2.28 Summary of 18 80x86 instructions that cause problems for virtualiza-
tion [Robin and Irvine 2000]. The first five instructions of the top group allow a pro-
gram in user mode to read a control register, such as a descriptor table register, without
causing a trap. The pop flags instruction modifies a control register with sensitive infor-
mation but fails silently when in user mode. The protection checking of the segmented
architecture of the 80x86 is the downfall of the bottom group, as each of these instruc-
tions checks the privilege level implicitly as part of instruction execution when reading
a control register. The checking assumes that the OS must be at the highest privilege
level, which is not the case for guest VMs. Only the MOVE to segment register tries to
modify control state, and protection checking foils it as well.

2.8 Concluding Remarks: Looking Ahead ■ 129

Virtualizing I/O is also a challenge for the 80x86, in part because it both sup-
ports memory-mapped I/O and has separate I/O instructions, but more impor-
tantly because there are a very large number and variety of types of devices and
device drivers of PCs for the VMM to handle. Third-party vendors supply their
own drivers, and they may not properly virtualize. One solution for conventional
VM implementations is to load real device drivers directly into the VMM.

To simplify implementations of VMMs on the 80x86, both AMD and Intel
have proposed extensions to the architecture. Intel’s VT-x provides a new execu-
tion mode for running VMs, a architected definition of the VM state, instructions
to swap VMs rapidly, and a large set of parameters to select the circumstances
where a VMM must be invoked. Altogether, VT-x adds 11 new instructions for
the 80x86. AMD’s Secure Virtual Machine (SVM) provides similar functionality.

After turning on the mode that enables VT-x support (via the new VMXON
instruction), VT-x offers four privilege levels for the guest OS that are lower in
priority than the original four (and fix issues like the problem with the POPF
instruction mentioned earlier). VT-x captures all the states of a Virtual Machine
in the Virtual Machine Control State (VMCS), and then provides atomic instruc-
tions to save and restore a VMCS. In addition to critical state, the VMCS
includes configuration information to determine when to invoke the VMM and
then specifically what caused the VMM to be invoked. To reduce the number of
times the VMM must be invoked, this mode adds shadow versions of some sensi-
tive registers and adds masks that check to see whether critical bits of a sensitive
register will be changed before trapping. To reduce the cost of virtualizing virtual
memory, AMD’s SVM adds an additional level of indirection, called nested page
tables. It makes shadow page tables unnecessary.

Over the past thirty years there have been several predictions of the eminent [sic]
cessation of the rate of improvement in computer performance. Every such predic-
tion was wrong. They were wrong because they hinged on unstated assumptions
that were overturned by subsequent events. So, for example, the failure to foresee
the move from discrete components to integrated circuits led to a prediction that
the speed of light would limit computer speeds to several orders of magnitude
slower than they are now. Our prediction of the memory wall is probably wrong
too but it suggests that we have to start thinking "out of the box."

Wm. A. Wulf and Sally A. McKee

Hitting the Memory Wall: Implications of the Obvious
Department of Computer Science, University of Virginia (December 1994)

This paper introduced the term memory wall.

The possibility of using a memory hierarchy dates back to the earliest days of
general-purpose digital computers in the late 1940s and early 1950s. Virtual

2.8 Concluding Remarks: Looking Ahead

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

130 ■ Chapter Two Memory Hierarchy Design

memory was introduced in research computers in the early 1960s and into IBM
mainframes in the 1970s. Caches appeared around the same time. The basic con-
cepts have been expanded and enhanced over time to help close the access time
gap between main memory and processors, but the basic concepts remain.

One trend that could cause a significant change in the design of memory hier-
archies is a continued slowdown in both density and access time of DRAMs. In
the last decade, both these trends have been observed. While some increases in
DRAM bandwidth have been achieved, decreases in access time have come
much more slowly, partly because to limit power consumption voltage levels
have been going down. One concept being explored to increase bandwidth is to
have multiple overlapped accesses per bank. This provides an alternative to
increasing the number of banks while allowing higher bandwidth. Manufacturing
challenges to the conventional DRAM design that uses a capacitor in each cell,
typically placed in a deep trench, have also led to slowdowns in the rate of
increase in density. As this book was going to press, one manufacturer announced
a new DRAM that does not require the capacitor, perhaps providing the opportu-
nity for continued enhancement of DRAM technology.

Independently of improvements in DRAM, Flash memory is likely to play a
larger role because of potential advantages in power and density. Of course, in
PMDs, Flash has already replaced disk drives and offers advantages such as
“instant on” that many desktop computers do not provide. Flash’s potential
advantage over DRAMs—the absence of a per-bit transistor to control writing—
is also its Achilles heel. Flash must use bulk erase-rewrite cycles that are consid-
erably slower. As a result, several PMDs, such as the Apple iPad, use a relatively
small SDRAM main memory combined with Flash, which acts as both the file
system and the page storage system to handle virtual memory.

In addition, several completely new approaches to memory are being
explored. These include MRAMs, which use magnetic storage of data, and phase
change RAMs (known as PCRAM, PCME, and PRAM), which use a glass that
can be changed between amorphous and crystalline states. Both types of
memories are nonvolatile and offer potentially higher densities than DRAMs.
These are not new ideas; magnetoresistive memory technologies and phase
change memories have been around for decades. Either technology may become
an alternative to current Flash; replacing DRAM is a much tougher task.
Although the improvements in DRAMs have slowed down, the possibility of a
capacitor-free cell and other potential improvements make it hard to bet against
DRAMs at least for the next decade.

For some years, a variety of predictions have been made about the coming
memory wall (see quote and paper cited above), which would lead to fundamen-
tal decreases in processor performance. However, the extension of caches to mul-
tiple levels, more sophisticated refill and prefetch schemes, greater compiler and
programmer awareness of the importance of locality, and the use of parallelism to
hide what latency remains have helped keep the memory wall at bay. The intro-
duction of out-of-order pipelines with multiple outstanding misses allowed avail-
able instruction-level parallelism to hide the memory latency remaining in a
cache-based system. The introduction of multithreading and more thread-level

Case Studies and Exercises by Norman P. Jouppi, Naveen Muralimanohar, and Sheng Li ■ 131

parallelism took this a step further by providing more parallelism and hence more
latency-hiding opportunities. It is likely that the use of instruction- and thread-
level parallelism will be the primary tool to combat whatever memory delays are
encountered in modern multilevel cache systems.

One idea that periodically arises is the use of programmer-controlled scratch-
pad or other high-speed memories, which we will see are used in GPUs. Such
ideas have never made the mainstream for several reasons: First, they break the
memory model by introducing address spaces with different behavior. Second,
unlike compiler-based or programmer-based cache optimizations (such as
prefetching), memory transformations with scratchpads must completely handle
the remapping from main memory address space to the scratchpad address space.
This makes such transformations more difficult and limited in applicability. In
GPUs (see Chapter 4), where local scratchpad memories are heavily used, the
burden for managing them currently falls on the programmer.

Although one should be cautious about predicting the future of computing
technology, history has shown that caching is a powerful and highly extensible
idea that is likely to allow us to continue to build faster computers and ensure that
the memory hierarchy can deliver the instructions and data needed to keep such
systems working well.

In Section L.3 (available online) we examine the history of caches, virtual mem-
ory, and virtual machines. IBM plays a prominent role in the history of all three.
References for further reading are included.

Case Study 1: Optimizing Cache Performance via Advanced
Techniques

Concepts illustrated by this case study

■ Non-blocking Caches

■ Compiler Optimizations for Caches

■ Software and Hardware Prefetching

■ Calculating Impact of Cache Performance on More Complex Processors

2.9 Historical Perspective and References

Case Studies and Exercises by Norman P. Jouppi, Naveen
Muralimanohar, and Sheng Li

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

132 ■ Chapter Two Memory Hierarchy Design

The transpose of a matrix interchanges its rows and columns; this is illustrated
below:

Here is a simple C loop to show the transpose:

for (i = 0; i < 3; i++) {

 for (j = 0; j < 3; j++) {

 output[j][i] = input[i][j];

 }

}

Assume that both the input and output matrices are stored in the row major order
(row major order means that the row index changes fastest). Assume that you are
executing a 256 × 256 double-precision transpose on a processor with a 16 KB
fully associative (don’t worry about cache conflicts) least recently used (LRU)
replacement L1 data cache with 64 byte blocks. Assume that the L1 cache misses
or prefetches require 16 cycles and always hit in the L2 cache, and that the L2
cache can process a request every two processor cycles. Assume that each iteration
of the inner loop above requires four cycles if the data are present in the L1 cache.
Assume that the cache has a write-allocate fetch-on-write policy for write misses.
Unrealistically, assume that writing back dirty cache blocks requires 0 cycles.

2.1 [10/15/15/12/20] <2.2> For the simple implementation given above, this execu-
tion order would be nonideal for the input matrix; however, applying a loop inter-
change optimization would create a nonideal order for the output matrix. Because
loop interchange is not sufficient to improve its performance, it must be blocked
instead.

a. [10] <2.2> What should be the minimum size of the cache to take advantage
of blocked execution?

b. [15] <2.2> How do the relative number of misses in the blocked and
unblocked versions compare in the minimum sized cache above?

c. [15] <2.2> Write code to perform a transpose with a block size parameter B
which uses B × B blocks.

d. [12] <2.2> What is the minimum associativity required of the L1 cache for
consistent performance independent of both arrays’ position in memory?

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

A11 A21 A31 A41

A12 A22 A32 A42

A13 A23 A33 A43

A14 A24 A34 A44

Case Studies and Exercises by Norman P. Jouppi, Naveen Muralimanohar, and Sheng Li ■ 133

e. [20] <2.2> Try out blocked and nonblocked 256 × 256 matrix transpositions
on a computer. How closely do the results match your expectations based on
what you know about the computer’s memory system? Explain any discrep-
ancies if possible.

2.2 [10] <2.2> Assume you are designing a hardware prefetcher for the unblocked
matrix transposition code above. The simplest type of hardware prefetcher only
prefetches sequential cache blocks after a miss. More complicated “non-unit
stride” hardware prefetchers can analyze a miss reference stream and detect and
prefetch non-unit strides. In contrast, software prefetching can determine non-
unit strides as easily as it can determine unit strides. Assume prefetches write
directly into the cache and that there is no “pollution” (overwriting data that must
be used before the data that are prefetched). For best performance given a non-
unit stride prefetcher, in the steady state of the inner loop how many prefetches
must be outstanding at a given time?

2.3 [15/20] <2.2> With software prefetching it is important to be careful to have the
prefetches occur in time for use but also to minimize the number of outstanding
prefetches to live within the capabilities of the microarchitecture and minimize
cache pollution. This is complicated by the fact that different processors have dif-
ferent capabilities and limitations.

a. [15] <2.2> Create a blocked version of the matrix transpose with software
prefetching.

b. [20] <2.2> Estimate and compare the performance of the blocked and
unblocked transpose codes both with and without software prefetching.

Case Study 2: Putting It All Together: Highly Parallel
Memory Systems

Concept illustrated by this case study

■ Crosscutting Issues: The Design of Memory Hierarchies

The program in Figure 2.29 can be used to evaluate the behavior of a memory
system. The key is having accurate timing and then having the program stride
through memory to invoke different levels of the hierarchy. Figure 2.29 shows
the code in C. The first part is a procedure that uses a standard utility to get an
accurate measure of the user CPU time; this procedure may have to be changed
to work on some systems. The second part is a nested loop to read and write
memory at different strides and cache sizes. To get accurate cache timing, this
code is repeated many times. The third part times the nested loop overhead only
so that it can be subtracted from overall measured times to see how long the
accesses were. The results are output in .csv file format to facilitate importing
into spreadsheets. You may need to change CACHE_MAX depending on the ques-
tion you are answering and the size of memory on the system you are measuring.
Running the program in single-user mode or at least without other active applica-
tions will give more consistent results. The code in Figure 2.29 was derived from
a program written by Andrea Dusseau at the University of California–Berkeley

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

134 ■ Chapter Two Memory Hierarchy Design

Figure 2.29 C program for evaluating memory system.

#include "stdafx.h"
#include <stdio.h>
#include <time.h>
#define ARRAY_MIN (1024) /* 1/4 smallest cache */
#define ARRAY_MAX (4096*4096) /* 1/4 largest cache */
int x[ARRAY_MAX]; /* array going to stride through */

double get_seconds() { /* routine to read time in seconds */

__time64_t ltime;
_time64(<ime);
return (double) ltime;

}
int label(int i) {/* generate text labels */

if (i<1e3) printf("%1dB,",i);
else if (i<1e6) printf("%1dK,",i/1024);
else if (i<1e9) printf("%1dM,",i/1048576);
else printf("%1dG,",i/1073741824);
return 0;

}
int _tmain(int argc, _TCHAR* argv[]) {
int register nextstep, i, index, stride;
int csize;
double steps, tsteps;
double loadtime, lastsec, sec0, sec1, sec; /* timing variables */

/* Initialize output */
printf(" ,");
for (stride=1; stride <= ARRAY_MAX/2; stride=stride*2)

label(stride*sizeof(int));
printf("\n");

/* Main loop for each configuration */
for (csize=ARRAY_MIN; csize <= ARRAY_MAX; csize=csize*2) {

label(csize*sizeof(int)); /* print cache size this loop */
for (stride=1; stride <= csize/2; stride=stride*2) {

/* Lay out path of memory references in array */
for (index=0; index < csize; index=index+stride)

x[index] = index + stride; /* pointer to next */
x[index-stride] = 0; /* loop back to beginning */

/* Wait for timer to roll over */
lastsec = get_seconds();
 sec0 = get_seconds(); while (sec0 == lastsec);

/* Walk through path in array for twenty seconds */
/* This gives 5% accuracy with second resolution */
steps = 0.0; /* number of steps taken */
nextstep = 0; /* start at beginning of path */
sec0 = get_seconds(); /* start timer */

{ /* repeat until collect 20 seconds */
(i=stride;i!=0;i=i-1) { /* keep samples same */

nextstep = 0;
do nextstep = x[nextstep]; /* dependency */
while (nextstep != 0);

}
steps = steps + 1.0; /* count loop iterations */
sec1 = get_seconds(); /* end timer */

} while ((sec1 - sec0) < 20.0); /* collect 20 seconds */
sec = sec1 - sec0;

/* Repeat empty loop to loop subtract overhead */
tsteps = 0.0; /* used to match no. while iterations */
sec0 = get_seconds(); /* start timer */

{ /* repeat until same no. iterations as above */
(i=stride;i!=0;i=i-1) { /* keep samples same */

index = 0;
do index = index + stride;
while (index < csize);

}
tsteps = tsteps + 1.0;
sec1 = get_seconds(); /* - overhead */

} while (tsteps<steps); /* until = no. iterations */
sec = sec - (sec1 - sec0);
loadtime = (sec*1e9)/(steps*csize);
/* write out results in .csv format for Excel */
printf("%4.1f,", (loadtime<0.1) ? 0.1 : loadtime);

 }; /* end of inner for loop */
 printf("\n");
}; /* end of outer for loop */
return 0;

}

Case Studies and Exercises by Norman P. Jouppi, Naveen Muralimanohar, and Sheng Li ■ 135

and was based on a detailed description found in Saavedra-Barrera [1992]. It has
been modified to fix a number of issues with more modern machines and to run
under Microsoft Visual C++. It can be downloaded from www.hpl.hp.com/
research/cacti/aca_ch2_cs2.c.

The program above assumes that program addresses track physical addresses,
which is true on the few machines that use virtually addressed caches, such as the
Alpha 21264. In general, virtual addresses tend to follow physical addresses
shortly after rebooting, so you may need to reboot the machine in order to get
smooth lines in your results. To answer the questions below, assume that the sizes
of all components of the memory hierarchy are powers of 2. Assume that the size
of the page is much larger than the size of a block in a second-level cache (if
there is one), and the size of a second-level cache block is greater than or equal to
the size of a block in a first-level cache. An example of the output of the program
is plotted in Figure 2.30; the key lists the size of the array that is exercised.

2.4 [12/12/12/10/12] <2.6> Using the sample program results in Figure 2.30:

a. [12] <2.6> What are the overall size and block size of the second-level
cache?

b. [12] <2.6> What is the miss penalty of the second-level cache?

Figure 2.30 Sample results from program in Figure 2.29.

R
ea

d
(n

s)
1000

100

10

1
4B 16B 64B 256B 4K1K 16K 64K 256K 4M1M 16M 64M 256M

Stride

8K

16K

32K

64K

128K

256K

512K

1M

2M

4M

8M

16M

32M

64M

128M

256M

512M

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.hpl.hp.com/research/cacti/aca_ch2_cs2.c
http://www.hpl.hp.com/research/cacti/aca_ch2_cs2.c
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

136 ■ Chapter Two Memory Hierarchy Design

c. [12] <2.6> What is the associativity of the second-level cache?

d. [10] <2.6> What is the size of the main memory?

e. [12] <2.6> What is the paging time if the page size is 4 KB?

2.5 [12/15/15/20] <2.6> If necessary, modify the code in Figure 2.29 to measure the
following system characteristics. Plot the experimental results with elapsed time
on the y-axis and the memory stride on the x-axis. Use logarithmic scales for both
axes, and draw a line for each cache size.

a. [12] <2.6> What is the system page size?

b. [15] <2.6> How many entries are there in the translation lookaside buffer
(TLB)?

c. [15] <2.6> What is the miss penalty for the TLB?

d. [20] <2.6> What is the associativity of the TLB?

2.6 [20/20] <2.6> In multiprocessor memory systems, lower levels of the memory
hierarchy may not be able to be saturated by a single processor but should be able
to be saturated by multiple processors working together. Modify the code in
Figure 2.29, and run multiple copies at the same time. Can you determine:

a. [20] <2.6> How many actual processors are in your computer system and
how many system processors are just additional multithreaded contexts?

b. [20] <2.6> How many memory controllers does your system have?

2.7 [20] <2.6> Can you think of a way to test some of the characteristics of an
instruction cache using a program? Hint: The compiler may generate a large
number of non obvious instructions from a piece of code. Try to use simple arith-
metic instructions of known length in your instruction set architecture (ISA).

Exercises

2.8 [12/12/15] <2.2> The following questions investigate the impact of small and
simple caches using CACTI and assume a 65 nm (0.065 μm) technology.
(CACTI is available in an online form at http://quid.hpl.hp.com:9081/cacti/.)

a. [12] <2.2> Compare the access times of 64 KB caches with 64 byte blocks
and a single bank. What are the relative access times of two-way and four-
way set associative caches in comparison to a direct mapped organization?

b. [12] <2.2> Compare the access times of four-way set associative caches with
64 byte blocks and a single bank. What are the relative access times of 32 KB
and 64 KB caches in comparison to a 16 KB cache?

c. [15] <2.2> For a 64 KB cache, find the cache associativity between 1 and 8
with the lowest average memory access time given that misses per instruction
for a certain workload suite is 0.00664 for direct mapped, 0.00366 for two-
way set associative, 0.000987 for four-way set associative, and 0.000266 for

http://www.quid.hpl.hp.com:9081/cacti/

Case Studies and Exercises by Norman P. Jouppi, Naveen Muralimanohar, and Sheng Li ■ 137

eight-way set associative cache. Overall, there are 0.3 data references per
instruction. Assume cache misses take 10 ns in all models. To calculate the
hit time in cycles, assume the cycle time output using CACTI, which corre-
sponds to the maximum frequency a cache can operate without any bubbles
in the pipeline.

2.9 [12/15/15/10] <2.2> You are investigating the possible benefits of a way-
predicting L1 cache. Assume that a 64 KB four-way set associative single-
banked L1 data cache is the cycle time limiter in a system. As an alternative
cache organization you are considering a way-predicted cache modeled as a
64 KB direct-mapped cache with 80% prediction accuracy. Unless stated other-
wise, assume that a mispredicted way access that hits in the cache takes one more
cycle. Assume the miss rates and the miss penalties in question 2.8 part (c).

a. [12] <2.2> What is the average memory access time of the current cache (in
cycles) versus the way-predicted cache?

b. [15] <2.2> If all other components could operate with the faster way-
predicted cache cycle time (including the main memory), what would be the
impact on performance from using the way-predicted cache?

c. [15] <2.2> Way-predicted caches have usually been used only for instruction
caches that feed an instruction queue or buffer. Imagine that you want to try out
way prediction on a data cache. Assume that you have 80% prediction accuracy
and that subsequent operations (e.g., data cache access of other instructions,
dependent operations) are issued assuming a correct way prediction. Thus, a
way misprediction necessitates a pipe flush and replay trap, which requires
15 cycles. Is the change in average memory access time per load instruction
with data cache way prediction positive or negative, and how much is it?

d. [10] <2.2> As an alternative to way prediction, many large associative L2
caches serialize tag and data access, so that only the required dataset array
needs to be activated. This saves power but increases the access time. Use
CACTI’s detailed Web interface for a 0.065 μm process 1 MB four-way set
associative cache with 64 byte blocks, 144 bits read out, 1 bank, only 1 read/
write port, 30 bit tags, and ITRS-HP technology with global wires. What is
the ratio of the access times for serializing tag and data access in comparison
to parallel access?

2.10 [10/12] <2.2> You have been asked to investigate the relative performance of a
banked versus pipelined L1 data cache for a new microprocessor. Assume a
64 KB two-way set associative cache with 64 byte blocks. The pipelined cache
would consist of three pipestages, similar in capacity to the Alpha 21264 data
cache. A banked implementation would consist of two 32 KB two-way set asso-
ciative banks. Use CACTI and assume a 65 nm (0.065 μm) technology to answer
the following questions. The cycle time output in the Web version shows at what
frequency a cache can operate without any bubbles in the pipeline.

a. [10] <2.2> What is the cycle time of the cache in comparison to its access time,
and how many pipestages will the cache take up (to two decimal places)?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

138 ■ Chapter Two Memory Hierarchy Design

b. [12] <2.2> Compare the area and total dynamic read energy per access of the
pipelined design versus the banked design. State which takes up less area and
which requires more power, and explain why that might be.

2.11 [12/15] <2.2> Consider the usage of critical word first and early restart on L2
cache misses. Assume a 1 MB L2 cache with 64 byte blocks and a refill path that
is 16 bytes wide. Assume that the L2 can be written with 16 bytes every 4 proces-
sor cycles, the time to receive the first 16 byte block from the memory controller
is 120 cycles, each additional 16 byte block from main memory requires 16
cycles, and data can be bypassed directly into the read port of the L2 cache.
Ignore any cycles to transfer the miss request to the L2 cache and the requested
data to the L1 cache.

a. [12] <2.2> How many cycles would it take to service an L2 cache miss with
and without critical word first and early restart?

b. [15] <2.2> Do you think critical word first and early restart would be more
important for L1 caches or L2 caches, and what factors would contribute to
their relative importance?

2.12 [12/12] <2.2> You are designing a write buffer between a write-through L1 cache
and a write-back L2 cache. The L2 cache write data bus is 16 B wide and can per-
form a write to an independent cache address every 4 processor cycles.

a. [12] <2.2> How many bytes wide should each write buffer entry be?

b. [15] <2.2> What speedup could be expected in the steady state by using a
merging write buffer instead of a nonmerging buffer when zeroing memory
by the execution of 64-bit stores if all other instructions could be issued in
parallel with the stores and the blocks are present in the L2 cache?

c. [15] <2.2> What would the effect of possible L1 misses be on the number of
required write buffer entries for systems with blocking and nonblocking
caches?

2.13 [10/10/10] <2.3> Consider a desktop system with a processor connected to a
2 GB DRAM with error-correcting code (ECC). Assume that there is only one
memory channel of width 72 bits to 64 bits for data and 8 bits for ECC.

a. [10] <2.3> How many DRAM chips are on the DIMM if 1 GB DRAM chips
are used, and how many data I/Os must each DRAM have if only one DRAM
connects to each DIMM data pin?

b. [10] <2.3> What burst length is required to support 32 B L2 cache blocks?

c. [10] <2.3> Calculate the peak bandwidth for DDR2-667 and DDR2-533
DIMMs for reads from an active page excluding the ECC overhead.

2.14 [10/10] <2.3> A sample DDR2 SDRAM timing diagram is shown in Figure 2.31.
tRCD is the time required to activate a row in a bank, and column address strobe
(CAS) latency (CL) is the number of cycles required to read out a column in a row
Assume that the RAM is on a standard DDR2 DIMM with ECC, having 72 data
lines. Also assume burst lengths of 8 which read out 8 bits, or a total of 64 B from

Case Studies and Exercises by Norman P. Jouppi, Naveen Muralimanohar, and Sheng Li ■ 139

the DIMM. Assume tRCD = CAS (or CL) * clock_frequency, and
clock_frequency = transfers_per_second/2. The on-chip latency on a cache
miss through levels 1 and 2 and back, not including the DRAM access, is 20 ns.

a. [10] <2.3> How much time is required from presentation of the activate com-
mand until the last requested bit of data from the DRAM transitions from valid
to invalid for the DDR2-667 1 GB CL = 5 DIMM? Assume that for every
request we automatically prefetch another adjacent cacheline in the same page.

b. [10] <2.3> What is the relative latency when using the DDR2-667 DIMM of
a read requiring a bank activate versus one to an already open page, including
the time required to process the miss inside the processor?

2.15 [15] <2.3> Assume that a DDR2-667 2 GB DIMM with CL = 5 is available for
$130 and a DDR2-533 2 GB DIMM with CL = 4 is available for $100. Assume
that two DIMMs are used in a system, and the rest of the system costs $800.
Consider the performance of the system using the DDR2-667 and DDR2-533
DIMMs on a workload with 3.33 L2 misses per 1K instructions, and assume that
80% of all DRAM reads require an activate. What is the cost-performance of the
entire system when using the different DIMMs, assuming only one L2 miss is
outstanding at a time and an in-order core with a CPI of 1.5 not including L2
cache miss memory access time?

2.16 [12] <2.3> You are provisioning a server with eight-core 3 GHz CMP, which can
execute a workload with an overall CPI of 2.0 (assuming that L2 cache miss
refills are not delayed). The L2 cache line size is 32 bytes. Assuming the system
uses DDR2-667 DIMMs, how many independent memory channels should be
provided so the system is not limited by memory bandwidth if the bandwidth
required is sometimes twice the average? The workloads incur, on an average,
6.67 L2 misses per 1K instructions.

2.17 [12/12] <2.3> A large amount (more than a third) of DRAM power can be due to
page activation (see http://download.micron.com/pdf/technotes/ddr2/TN4704.pdf
and www.micron.com/systemcalc). Assume you are building a system with 2 GB
of memory using either 8-bank 2 GB x8 DDR2 DRAMs or 8-bank 1 GB x8
DRAMs, both with the same speed grade. Both use a page size of 1 KB, and the

Figure 2.31 DDR2 SDRAM timing diagram.

ACT
B0, Rx

RD
B0, Cx

Data outCAS latencyt RCD Data out

CMD/
ADD

Clock

Data

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.micron.com/systemcalc
http://www.download.micron.com/pdf/technotes/ddr2/TN4704.pdf
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

140 ■ Chapter Two Memory Hierarchy Design

last level cacheline size is 64 bytes. Assume that DRAMs that are not active are
in precharged standby and dissipate negligible power. Assume that the time to
transition from standby to active is not significant.

a. [12] <2.3> Which type of DRAM would be expected to provide the higher
system performance? Explain why.

b. [12] <2.3> How does a 2 GB DIMM made of 1 GB x8 DDR2 DRAMs com-
pare against a DIMM with similar capacity made of 1 Gb x4 DDR2 DRAMs
in terms of power?

2.18 [20/15/12] <2.3> To access data from a typical DRAM, we first have to activate
the appropriate row. Assume that this brings an entire page of size 8 KB to the
row buffer. Then we select a particular column from the row buffer. If subsequent
accesses to DRAM are to the same page, then we can skip the activation step;
otherwise, we have to close the current page and precharge the bitlines for the
next activation. Another popular DRAM policy is to proactively close a page and
precharge bitlines as soon as an access is over. Assume that every read or write to
DRAM is of size 64 bytes and DDR bus latency (Data out in Figure 2.30) for
sending 512 bits is Tddr.

a. [20] <2.3> Assuming DDR2-667, if it takes five cycles to precharge, five
cycles to activate, and four cycles to read a column, for what value of the row
buffer hit rate (r) will you choose one policy over another to get the best
access time? Assume that every access to DRAM is separated by enough time
to finish a random new access.

b. [15] <2.3> If 10% of the total accesses to DRAM happen back to back or
contiguously without any time gap, how will your decision change?

c. [12] <2.3> Calculate the difference in average DRAM energy per access
between the two policies using the row buffer hit rate calculated above.
Assume that precharging requires 2 nJ and activation requires 4 nJ and that
100 pJ/bit are required to read or write from the row buffer.

2.19 [15] <2.3> Whenever a computer is idle, we can either put it in stand by (where
DRAM is still active) or we can let it hibernate. Assume that, to hibernate, we
have to copy just the contents of DRAM to a nonvolatile medium such as Flash.
If reading or writing a cacheline of size 64 bytes to Flash requires 2.56 μJ and
DRAM requires 0.5 nJ, and if idle power consumption for DRAM is 1.6 W (for
8 GB), how long should a system be idle to benefit from hibernating? Assume a
main memory of size 8 GB.

2.20 [10/10/10/10/10] <2.4> Virtual Machines (VMs) have the potential for adding
many beneficial capabilities to computer systems, such as improved total cost of
ownership (TCO) or availability. Could VMs be used to provide the following
capabilities? If so, how could they facilitate this?

a. [10] <2.4> Test applications in production environments using development
machines?

b. [10] <2.4> Quick redeployment of applications in case of disaster or failure?

Case Studies and Exercises by Norman P. Jouppi, Naveen Muralimanohar, and Sheng Li ■ 141

c. [10] <2.4> Higher performance in I/O-intensive applications?

d. [10] <2.4> Fault isolation between different applications, resulting in higher
availability for services?

e. [10] <2.4> Performing software maintenance on systems while applications
are running without significant interruption?

2.21 [10/10/12/12] <2.4> Virtual machines can lose performance from a number
of events, such as the execution of privileged instructions, TLB misses, traps, and
I/O. These events are usually handled in system code. Thus, one way of estimat-
ing the slowdown when running under a VM is the percentage of application exe-
cution time in system versus user mode. For example, an application spending
10% of its execution in system mode might slow down by 60% when running on
a VM. Figure 2.32 lists the early performance of various system calls under
native execution, pure virtualization, and paravirtualization for LMbench using
Xen on an Itanium system with times measured in microseconds (courtesy of
Matthew Chapman of the University of New South Wales).

a. [10] <2.4> What types of programs would be expected to have smaller slow-
downs when running under VMs?

b. [10] <2.4> If slowdowns were linear as a function of system time, given the
slowdown above, how much slower would a program spending 20% of its
execution in system time be expected to run?

c. [12] <2.4> What is the median slowdown of the system calls in the table
above under pure virtualization and paravirtualization?

d. [12] <2.4> Which functions in the table above have the largest slowdowns?
What do you think the cause of this could be?

Benchmark Native Pure Para

Null call 0.04 0.96 0.50

Null I/O 0.27 6.32 2.91

Stat 1.10 10.69 4.14

Open/close 1.99 20.43 7.71

Install sighandler 0.33 7.34 2.89

Handle signal 1.69 19.26 2.36

Fork 56.00 513.00 164.00

Exec 316.00 2084.00 578.00

Fork + exec sh 1451.00 7790.00 2360.00

Figure 2.32 Early performance of various system calls under native execution, pure

virtualization, and paravirtualization.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

142 ■ Chapter Two Memory Hierarchy Design

2.22 [12] <2.4> Popek and Goldberg’s definition of a virtual machine said that it
would be indistinguishable from a real machine except for its performance. In
this question, we will use that definition to find out if we have access to native
execution on a processor or are running on a virtual machine. The Intel VT-x
technology effectively provides a second set of privilege levels for the use of the
virtual machine. What would a virtual machine running on top of another virtual
machine have to do, assuming VT-x technology?

2.23 [20/25] <2.4> With the adoption of virtualization support on the x86 architecture,
virtual machines are actively evolving and becoming mainstream. Compare and
contrast the Intel VT-x and AMD’s AMD-V virtualization technologies. (Infor-
mation on AMD-V can be found at http://sites.amd.com/us/business/it-solutions/
virtualization/Pages/resources.aspx.)

a. [20] <2.4> Which one could provide higher performance for memory-inten-
sive applications with large memory footprints?

b. [25] <2.4> Information on AMD’s IOMMU support for virtualized I/O can be
found in http://developer.amd.com/documentation/articles/pages/892006101.aspx.
What do Virtualization Technology and an input/output memory management
unit (IOMMU) do to improve virtualized I/O performance?

2.24 [30] <2.2, 2.3> Since instruction-level parallelism can also be effectively
exploited on in-order superscalar processors and very long instruction word
(VLIW) processors with speculation, one important reason for building an out-of-
order (OOO) superscalar processor is the ability to tolerate unpredictable
memory latency caused by cache misses. Hence, you can think about hardware
supporting OOO issue as being part of the memory system! Look at the floorplan
of the Alpha 21264 in Figure 2.33 to find the relative area of the integer and
floating-point issue queues and mappers versus the caches. The queues schedule
instructions for issue, and the mappers rename register specifiers. Hence, these
are necessary additions to support OOO issue. The 21264 only has L1 data and
instruction caches on chip, and they are both 64 KB two-way set associative. Use
an OOO superscalar simulator such as SimpleScalar (www.cs.wisc.edu/~mscalar/
simplescalar.html) on memory-intensive benchmarks to find out how much
performance is lost if the area of the issue queues and mappers is used for addi-
tional L1 data cache area in an in-order superscalar processor, instead of OOO
issue in a model of the 21264. Make sure the other aspects of the machine are as
similar as possible to make the comparison fair. Ignore any increase in access or
cycle time from larger caches and effects of the larger data cache on the floorplan
of the chip. (Note that this comparison will not be totally fair, as the code will not
have been scheduled for the in-order processor by the compiler.)

2.25 [20/20/20] <2.6> The Intel performance analyzer VTune can be used to make
many measurements of cache behavior. A free evaluation version of VTune on
both Windows and Linux can be downloaded from http://software.intel.com/en-
us/articles/intel-vtune-amplifier-xe/. The program (aca_ch2_cs2.c) used in
Case Study 2 has been modified so that it can work with VTune out of the box on
Microsoft Visual C++. The program can be downloaded from www.hpl.hp.com/

http://www.cs.wisc.edu/~mscalar/simplescalar.html
http://www.cs.wisc.edu/~mscalar/simplescalar.html
http://www.hpl.hp.com/research/cacti/aca_ch2_cs2_vtune.c
http://www.sites.amd.com/us/business/it-solutions/virtualization/Pages/resources.aspx
http://www.sites.amd.com/us/business/it-solutions/virtualization/Pages/resources.aspx
http://www.developer.amd.com/documentation/articles/pages/892006101.aspx
http://www.software.intel.com/enus/articles/intel-vtune-amplifier-xe/
http://www.software.intel.com/enus/articles/intel-vtune-amplifier-xe/

Case Studies and Exercises by Norman P. Jouppi, Naveen Muralimanohar, and Sheng Li ■ 143

research/cacti/aca_ch2_cs2_vtune.c. Special VTune functions have been
inserted to exclude initialization and loop overhead during the performance anal-
ysis process. Detailed VTune setup directions are given in the README section
in the program. The program keeps looping for 20 seconds for every configura-
tion. In the following experiment you can find the effects of data size on cache
and overall processor performance. Run the program in VTune on an Intel pro-
cessor with the input dataset sizes of 8 KB, 128 KB, 4 MB, and 32 MB, and keep
a stride of 64 bytes (stride one cache line on Intel i7 processors). Collect statistics
on overall performance and L1 data cache, L2, and L3 cache performance.

a. [20] <2.6> List the number of misses per 1K instruction of L1 data cache, L2,
and L3 for each dataset size and your processor model and speed. Based on
the results, what can you say about the L1 data cache, L2, and L3 cache sizes
on your processor? Explain your observations.

b. [20] <2.6> List the instructions per clock (IPC) for each dataset size and your
processor model and speed. Based on the results, what can you say about the
L1, L2, and L3 miss penalties on your processor? Explain your observations.

Figure 2.33 Floorplan of the Alpha 21264 [Kessler 1999].

Float

map

and

queue

Memory

controller

Bus

interface

unit

Data and control buses

Memory controller

Data

cacheInstruction

cache

Integer

mapper

Integer

queue

In
te

ge
r

un
it

(c
lu

st
er

 0
)

In
te

ge
r

un
it

(c
lu

st
er

 1
)

F
lo

at
in

g-
po

in
t u

ni
ts

In
st

ru
ct

io
n

fe
tc

h

B
IU

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.hpl.hp.com/research/cacti/aca_ch2_cs2_vtune.c
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

144 ■ Chapter Two Memory Hierarchy Design

c. [20] <2.6> Run the program in VTune with input dataset size of 8 KB and
128 KB on an Intel OOO processor. List the number of L1 data cache and L2
cache misses per 1K instructions and the CPI for both configurations. What
can you say about the effectiveness of memory latency hiding techniques in
high-performance OOO processors? Hint: You need to find the L1 data cache
miss latency for your processor. For recent Intel i7 processors, it is approxi-
mately 11 cycles.

This page intentionally left blank

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

3.1 Instruction-Level Parallelism: Concepts and Challenges 148

3.2 Basic Compiler Techniques for Exposing ILP 156

3.3 Reducing Branch Costs with Advanced Branch Prediction 162

3.4 Overcoming Data Hazards with Dynamic Scheduling 167

3.5 Dynamic Scheduling: Examples and the Algorithm 176

3.6 Hardware-Based Speculation 183

3.7 Exploiting ILP Using Multiple Issue and Static Scheduling 192

3.8 Exploiting ILP Using Dynamic Scheduling,

Multiple Issue, and Speculation 197

3.9 Advanced Techniques for Instruction Delivery and Speculation 202

3.10 Studies of the Limitations of ILP 213

3.11 Cross-Cutting Issues: ILP Approaches and the Memory System 221

3.12 Multithreading: Exploiting Thread-Level Parallelism to

Improve Uniprocessor Throughput 223

3.13 Putting It All Together: The Intel Core i7 and ARM Cortex-A8 233

3.14 Fallacies and Pitfalls 241

3.15 Concluding Remarks: What’s Ahead? 245

3.16 Historical Perspective and References 247

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell 247

3
Instruction-Level

Parallelism and Its

Exploitation 1

“Who’s first?”

“America.”

“Who’s second?”

“Sir, there is no second.”

Dialog between two observers
of the sailing race later named

“The America’s Cup” and run
every few years—the

inspiration for John Cocke’s
naming of the IBM research
processor as “America.” This

processor was the precursor to
the RS/6000 series and the first

superscalar microprocessor.

Computer Architecture. DOI: 10.1016/B978-0-12-383872-8.00004-5
© 2012 Elsevier, Inc. All rights reserved.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://dx.doi.org/10.1016/B978-0-12-383872-8.00004-5
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

148 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

All processors since about 1985 use pipelining to overlap the execution of
instructions and improve performance. This potential overlap among instructions
is called instruction-level parallelism (ILP), since the instructions can be evalu-
ated in parallel. In this chapter and Appendix H, we look at a wide range of tech-
niques for extending the basic pipelining concepts by increasing the amount of
parallelism exploited among instructions.

This chapter is at a considerably more advanced level than the material on basic
pipelining in Appendix C. If you are not thoroughly familiar with the ideas in
Appendix C, you should review that appendix before venturing into this chapter.

We start this chapter by looking at the limitation imposed by data and control
hazards and then turn to the topic of increasing the ability of the compiler and the
processor to exploit parallelism. These sections introduce a large number of con-
cepts, which we build on throughout this chapter and the next. While some of the
more basic material in this chapter could be understood without all of the ideas in
the first two sections, this basic material is important to later sections of this
chapter.

There are two largely separable approaches to exploiting ILP: (1) an approach
that relies on hardware to help discover and exploit the parallelism dynamically,
and (2) an approach that relies on software technology to find parallelism stati-
cally at compile time. Processors using the dynamic, hardware-based approach,
including the Intel Core series, dominate in the desktop and server markets. In the
personal mobile device market, where energy efficiency is often the key objective,
designers exploit lower levels of instruction-level parallelism. Thus, in 2011, most
processors for the PMD market use static approaches, as we will see in the ARM
Cortex-A8; however, future processors (e.g., the new ARM Cortex-A9) are using
dynamic approaches. Aggressive compiler-based approaches have been attempted
numerous times beginning in the 1980s and most recently in the Intel Itanium
series. Despite enormous efforts, such approaches have not been successful out-
side of the narrow range of scientific applications.

In the past few years, many of the techniques developed for one approach
have been exploited within a design relying primarily on the other. This chapter
introduces the basic concepts and both approaches. A discussion of the limita-
tions on ILP approaches is included in this chapter, and it was such limitations
that directly led to the movement to multicore. Understanding the limitations
remains important in balancing the use of ILP and thread-level parallelism.

In this section, we discuss features of both programs and processors that limit
the amount of parallelism that can be exploited among instructions, as well as the
critical mapping between program structure and hardware structure, which is key
to understanding whether a program property will actually limit performance and
under what circumstances.

The value of the CPI (cycles per instruction) for a pipelined processor is the
sum of the base CPI and all contributions from stalls:

3.1 Instruction-Level Parallelism: Concepts and Challenges

Pipeline CPI Ideal pipeline CPI Structural stalls Data hazard stalls+ += Control stalls+

3.1 Instruction-Level Parallelism: Concepts and Challenges ■ 149

The ideal pipeline CPI is a measure of the maximum performance attainable by
the implementation. By reducing each of the terms of the right-hand side, we
decrease the overall pipeline CPI or, alternatively, increase the IPC (instructions
per clock). The equation above allows us to characterize various techniques by
what component of the overall CPI a technique reduces. Figure 3.1 shows the
techniques we examine in this chapter and in Appendix H, as well as the topics
covered in the introductory material in Appendix C. In this chapter, we will see
that the techniques we introduce to decrease the ideal pipeline CPI can increase
the importance of dealing with hazards.

What Is Instruction-Level Parallelism?

All the techniques in this chapter exploit parallelism among instructions. The
amount of parallelism available within a basic block—a straight-line code
sequence with no branches in except to the entry and no branches out except at the
exit—is quite small. For typical MIPS programs, the average dynamic branch fre-
quency is often between 15% and 25%, meaning that between three and six instruc-
tions execute between a pair of branches. Since these instructions are likely to
depend upon one another, the amount of overlap we can exploit within a basic
block is likely to be less than the average basic block size. To obtain substantial
performance enhancements, we must exploit ILP across multiple basic blocks.

The simplest and most common way to increase the ILP is to exploit parallel-
ism among iterations of a loop. This type of parallelism is often called loop-level
parallelism. Here is a simple example of a loop that adds two 1000-element
arrays and is completely parallel:

Technique Reduces Section

Forwarding and bypassing Potential data hazard stalls C.2

Delayed branches and simple branch scheduling Control hazard stalls C.2

Basic compiler pipeline scheduling Data hazard stalls C.2, 3.2

Basic dynamic scheduling (scoreboarding) Data hazard stalls from true dependences C.7

Loop unrolling Control hazard stalls 3.2

Branch prediction Control stalls 3.3

Dynamic scheduling with renaming Stalls from data hazards, output dependences, and
antidependences

3.4

Hardware speculation Data hazard and control hazard stalls 3.6

Dynamic memory disambiguation Data hazard stalls with memory 3.6

Issuing multiple instructions per cycle Ideal CPI 3.7, 3.8

Compiler dependence analysis, software
pipelining, trace scheduling

Ideal CPI, data hazard stalls H.2, H.3

Hardware support for compiler speculation Ideal CPI, data hazard stalls, branch hazard stalls H.4, H.5

Figure 3.1 The major techniques examined in Appendix C, Chapter 3, and Appendix H are shown together with

the component of the CPI equation that the technique affects.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

150 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

for (i=0; i<=999; i=i+1)
x[i] = x[i] + y[i];

Every iteration of the loop can overlap with any other iteration, although within
each loop iteration there is little or no opportunity for overlap.

We will examine a number of techniques for converting such loop-level par-
allelism into instruction-level parallelism. Basically, such techniques work by
unrolling the loop either statically by the compiler (as in the next section) or
dynamically by the hardware (as in Sections 3.5 and 3.6).

An important alternative method for exploiting loop-level parallelism is the
use of SIMD in both vector processors and Graphics Processing Units (GPUs),
both of which are covered in Chapter 4. A SIMD instruction exploits data-level
parallelism by operating on a small to moderate number of data items in parallel
(typically two to eight). A vector instruction exploits data-level parallelism by
operating on many data items in parallel using both parallel execution units and a
deep pipeline. For example, the above code sequence, which in simple form
requires seven instructions per iteration (two loads, an add, a store, two address
updates, and a branch) for a total of 7000 instructions, might execute in one-quar-
ter as many instructions in some SIMD architecture where four data items are
processed per instruction. On some vector processors, this sequence might take
only four instructions: two instructions to load the vectors x and y from memory,
one instruction to add the two vectors, and an instruction to store back the result
vector. Of course, these instructions would be pipelined and have relatively long
latencies, but these latencies may be overlapped.

Data Dependences and Hazards

Determining how one instruction depends on another is critical to determining
how much parallelism exists in a program and how that parallelism can be
exploited. In particular, to exploit instruction-level parallelism we must determine
which instructions can be executed in parallel. If two instructions are parallel, they
can execute simultaneously in a pipeline of arbitrary depth without causing any
stalls, assuming the pipeline has sufficient resources (and hence no structural haz-
ards exist). If two instructions are dependent, they are not parallel and must be exe-
cuted in order, although they may often be partially overlapped. The key in both
cases is to determine whether an instruction is dependent on another instruction.

Data Dependences

There are three different types of dependences: data dependences (also called
true data dependences), name dependences, and control dependences. An instruc-
tion j is data dependent on instruction i if either of the following holds:

■ Instruction i produces a result that may be used by instruction j.

■ Instruction j is data dependent on instruction k, and instruction k is data
dependent on instruction i.

3.1 Instruction-Level Parallelism: Concepts and Challenges ■ 151

The second condition simply states that one instruction is dependent on another if
there exists a chain of dependences of the first type between the two instructions.
This dependence chain can be as long as the entire program. Note that a depen-
dence within a single instruction (such as ADDD R1,R1,R1) is not considered a
dependence.

For example, consider the following MIPS code sequence that increments a
vector of values in memory (starting at 0(R1) and with the last element at 8(R2))
by a scalar in register F2. (For simplicity, throughout this chapter, our examples
ignore the effects of delayed branches.)

Loop: L.D F0,0(R1) ;F0=array element
ADD.D F4,F0,F2 ;add scalar in F2
S.D F4,0(R1) ;store result
DADDUI R1,R1,#-8 ;decrement pointer 8 bytes
BNE R1,R2,LOOP ;branch R1!=R2

The data dependences in this code sequence involve both floating-point data:

and integer data:

In both of the above dependent sequences, as shown by the arrows, each instruc-
tion depends on the previous one. The arrows here and in following examples
show the order that must be preserved for correct execution. The arrow points
from an instruction that must precede the instruction that the arrowhead points to.

If two instructions are data dependent, they must execute in order and cannot
execute simultaneously or be completely overlapped. The dependence implies
that there would be a chain of one or more data hazards between the two
instructions. (See Appendix C for a brief description of data hazards, which we
will define precisely in a few pages.) Executing the instructions simultaneously
will cause a processor with pipeline interlocks (and a pipeline depth longer than
the distance between the instructions in cycles) to detect a hazard and stall,
thereby reducing or eliminating the overlap. In a processor without interlocks that
relies on compiler scheduling, the compiler cannot schedule dependent instruc-
tions in such a way that they completely overlap, since the program will not exe-
cute correctly. The presence of a data dependence in an instruction sequence
reflects a data dependence in the source code from which the instruction sequence
was generated. The effect of the original data dependence must be preserved.

Loop: L.D F0,0(R1) ;F0=array element

ADD.D F4,F0,F2 ;add scalar in F2

S.D F4,0(R1) ;store result

DADDIU R1,R1,#-8 ;decrement pointer

;8 bytes (per DW)

BNE R1,R2,Loop ;branch R1!=R2

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

152 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

Dependences are a property of programs. Whether a given dependence
results in an actual hazard being detected and whether that hazard actually causes
a stall are properties of the pipeline organization. This difference is critical to
understanding how instruction-level parallelism can be exploited.

A data dependence conveys three things: (1) the possibility of a hazard, (2) the
order in which results must be calculated, and (3) an upper bound on how much
parallelism can possibly be exploited. Such limits are explored in Section 3.10 and
in Appendix H in more detail.

Since a data dependence can limit the amount of instruction-level parallelism
we can exploit, a major focus of this chapter is overcoming these limitations.
A dependence can be overcome in two different ways: (1) maintaining the depen-
dence but avoiding a hazard, and (2) eliminating a dependence by transforming
the code. Scheduling the code is the primary method used to avoid a hazard with-
out altering a dependence, and such scheduling can be done both by the compiler
and by the hardware.

A data value may flow between instructions either through registers or
through memory locations. When the data flow occurs in a register, detecting the
dependence is straightforward since the register names are fixed in the instruc-
tions, although it gets more complicated when branches intervene and correct-
ness concerns force a compiler or hardware to be conservative.

Dependences that flow through memory locations are more difficult to detect,
since two addresses may refer to the same location but look different: For exam-
ple, 100(R4) and 20(R6) may be identical memory addresses. In addition, the
effective address of a load or store may change from one execution of the instruc-
tion to another (so that 20(R4) and 20(R4) may be different), further complicat-
ing the detection of a dependence.

In this chapter, we examine hardware for detecting data dependences that
involve memory locations, but we will see that these techniques also have limita-
tions. The compiler techniques for detecting such dependences are critical in
uncovering loop-level parallelism.

Name Dependences

The second type of dependence is a name dependence. A name dependence
occurs when two instructions use the same register or memory location, called a
name, but there is no flow of data between the instructions associated with that
name. There are two types of name dependences between an instruction i that
precedes instruction j in program order:

1. An antidependence between instruction i and instruction j occurs when
instruction j writes a register or memory location that instruction i reads. The
original ordering must be preserved to ensure that i reads the correct value. In
the example on page 151, there is an antidependence between S.D and
DADDIU on register R1.

2. An output dependence occurs when instruction i and instruction j write the
same register or memory location. The ordering between the instructions

3.1 Instruction-Level Parallelism: Concepts and Challenges ■ 153

must be preserved to ensure that the value finally written corresponds to
instruction j.

Both antidependences and output dependences are name dependences, as
opposed to true data dependences, since there is no value being transmitted
between the instructions. Because a name dependence is not a true dependence,
instructions involved in a name dependence can execute simultaneously or be
reordered, if the name (register number or memory location) used in the instruc-
tions is changed so the instructions do not conflict.

This renaming can be more easily done for register operands, where it is
called register renaming. Register renaming can be done either statically by a
compiler or dynamically by the hardware. Before describing dependences arising
from branches, let’s examine the relationship between dependences and pipeline
data hazards.

Data Hazards

A hazard exists whenever there is a name or data dependence between
instructions, and they are close enough that the overlap during execution would
change the order of access to the operand involved in the dependence. Because of
the dependence, we must preserve what is called program order—that is, the
order that the instructions would execute in if executed sequentially one at a time
as determined by the original source program. The goal of both our software and
hardware techniques is to exploit parallelism by preserving program order only
where it affects the outcome of the program. Detecting and avoiding hazards
ensures that necessary program order is preserved.

Data hazards, which are informally described in Appendix C, may be classi-
fied as one of three types, depending on the order of read and write accesses in
the instructions. By convention, the hazards are named by the ordering in the pro-
gram that must be preserved by the pipeline. Consider two instructions i and j,
with i preceding j in program order. The possible data hazards are

■ RAW (read after write)—j tries to read a source before i writes it, so j incor-
rectly gets the old value. This hazard is the most common type and corre-
sponds to a true data dependence. Program order must be preserved to ensure
that j receives the value from i.

■ WAW (write after write)—j tries to write an operand before it is written by i.
The writes end up being performed in the wrong order, leaving the value writ-
ten by i rather than the value written by j in the destination. This hazard corre-
sponds to an output dependence. WAW hazards are present only in pipelines
that write in more than one pipe stage or allow an instruction to proceed even
when a previous instruction is stalled.

■ WAR (write after read)—j tries to write a destination before it is read by i, so i
incorrectly gets the new value. This hazard arises from an antidependence (or
name dependence). WAR hazards cannot occur in most static issue pipelines—
even deeper pipelines or floating-point pipelines—because all reads are early

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

154 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

(in ID in the pipeline in Appendix C) and all writes are late (in WB in the pipe-
line in Appendix C). A WAR hazard occurs either when there are some instruc-
tions that write results early in the instruction pipeline and other instructions
that read a source late in the pipeline, or when instructions are reordered, as we
will see in this chapter.

Note that the RAR (read after read) case is not a hazard.

Control Dependences

The last type of dependence is a control dependence. A control dependence
determines the ordering of an instruction, i, with respect to a branch instruction
so that instruction i is executed in correct program order and only when it should
be. Every instruction, except for those in the first basic block of the program, is
control dependent on some set of branches, and, in general, these control depen-
dences must be preserved to preserve program order. One of the simplest exam-
ples of a control dependence is the dependence of the statements in the “then”
part of an if statement on the branch. For example, in the code segment

if p1 {
S1;

};
if p2 {

S2;
}

S1 is control dependent on p1, and S2 is control dependent on p2 but not on p1.
In general, two constraints are imposed by control dependences:

1. An instruction that is control dependent on a branch cannot be moved before
the branch so that its execution is no longer controlled by the branch. For
example, we cannot take an instruction from the then portion of an if state-
ment and move it before the if statement.

2. An instruction that is not control dependent on a branch cannot be moved
after the branch so that its execution is controlled by the branch. For exam-
ple, we cannot take a statement before the if statement and move it into the
then portion.

When processors preserve strict program order, they ensure that control
dependences are also preserved. We may be willing to execute instructions that
should not have been executed, however, thereby violating the control depen-
dences, if we can do so without affecting the correctness of the program. Thus,
control dependence is not the critical property that must be preserved. Instead,
the two properties critical to program correctness—and normally preserved by
maintaining both data and control dependences—are the exception behavior
and the data flow.

Preserving the exception behavior means that any changes in the ordering of
instruction execution must not change how exceptions are raised in the program.

3.1 Instruction-Level Parallelism: Concepts and Challenges ■ 155

Often this is relaxed to mean that the reordering of instruction execution must not
cause any new exceptions in the program. A simple example shows how main-
taining the control and data dependences can prevent such situations. Consider
this code sequence:

DADDU R2,R3,R4
BEQZ R2,L1
LW R1,0(R2)

L1:

In this case, it is easy to see that if we do not maintain the data dependence
involving R2, we can change the result of the program. Less obvious is the fact
that if we ignore the control dependence and move the load instruction before the
branch, the load instruction may cause a memory protection exception. Notice
that no data dependence prevents us from interchanging the BEQZ and the LW; it is
only the control dependence. To allow us to reorder these instructions (and still
preserve the data dependence), we would like to just ignore the exception when
the branch is taken. In Section 3.6, we will look at a hardware technique, specula-
tion, which allows us to overcome this exception problem. Appendix H looks at
software techniques for supporting speculation.

The second property preserved by maintenance of data dependences and con-
trol dependences is the data flow. The data flow is the actual flow of data values
among instructions that produce results and those that consume them. Branches
make the data flow dynamic, since they allow the source of data for a given
instruction to come from many points. Put another way, it is insufficient to just
maintain data dependences because an instruction may be data dependent on
more than one predecessor. Program order is what determines which predecessor
will actually deliver a data value to an instruction. Program order is ensured by
maintaining the control dependences.

For example, consider the following code fragment:

DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R5,R6

L: ...

OR R7,R1,R8

In this example, the value of R1 used by the OR instruction depends on whether
the branch is taken or not. Data dependence alone is not sufficient to preserve
correctness. The OR instruction is data dependent on both the DADDU and
DSUBU instructions, but preserving that order alone is insufficient for correct
execution.

Instead, when the instructions execute, the data flow must be preserved: If
the branch is not taken, then the value of R1 computed by the DSUBU should be
used by the OR, and, if the branch is taken, the value of R1 computed by the
DADDU should be used by the OR. By preserving the control dependence of the OR
on the branch, we prevent an illegal change to the data flow. For similar reasons,

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

156 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

the DSUBU instruction cannot be moved above the branch. Speculation, which
helps with the exception problem, will also allow us to lessen the impact of the
control dependence while still maintaining the data flow, as we will see in
Section 3.6.

Sometimes we can determine that violating the control dependence cannot
affect either the exception behavior or the data flow. Consider the following code
sequence:

DADDU R1,R2,R3
BEQZ R12,skip
DSUBU R4,R5,R6
DADDU R5,R4,R9

skip: OR R7,R8,R9

Suppose we knew that the register destination of the DSUBU instruction (R4) was
unused after the instruction labeled skip. (The property of whether a value will
be used by an upcoming instruction is called liveness.) If R4 were unused, then
changing the value of R4 just before the branch would not affect the data flow
since R4 would be dead (rather than live) in the code region after skip. Thus, if
R4 were dead and the existing DSUBU instruction could not generate an exception
(other than those from which the processor resumes the same process), we could
move the DSUBU instruction before the branch, since the data flow cannot be
affected by this change.

If the branch is taken, the DSUBU instruction will execute and will be use-
less, but it will not affect the program results. This type of code scheduling is
also a form of speculation, often called software speculation, since the com-
piler is betting on the branch outcome; in this case, the bet is that the branch is
usually not taken. More ambitious compiler speculation mechanisms are
discussed in Appendix H. Normally, it will be clear when we say speculation
or speculative whether the mechanism is a hardware or software mechanism;
when it is not clear, it is best to say “hardware speculation” or “software
speculation.”

Control dependence is preserved by implementing control hazard detection
that causes control stalls. Control stalls can be eliminated or reduced by a variety
of hardware and software techniques, which we examine in Section 3.3.

This section examines the use of simple compiler technology to enhance a pro-
cessor’s ability to exploit ILP. These techniques are crucial for processors that
use static issue or static scheduling. Armed with this compiler technology, we
will shortly examine the design and performance of processors using static issu-
ing. Appendix H will investigate more sophisticated compiler and associated
hardware schemes designed to enable a processor to exploit more instruction-
level parallelism.

3.2 Basic Compiler Techniques for Exposing ILP

3.2 Basic Compiler Techniques for Exposing ILP ■ 157

Basic Pipeline Scheduling and Loop Unrolling

To keep a pipeline full, parallelism among instructions must be exploited by
finding sequences of unrelated instructions that can be overlapped in the pipe-
line. To avoid a pipeline stall, the execution of a dependent instruction must be
separated from the source instruction by a distance in clock cycles equal to the
pipeline latency of that source instruction. A compiler’s ability to perform this
scheduling depends both on the amount of ILP available in the program and on
the latencies of the functional units in the pipeline. Figure 3.2 shows the FP
unit latencies we assume in this chapter, unless different latencies are explicitly
stated. We assume the standard five-stage integer pipeline, so that branches
have a delay of one clock cycle. We assume that the functional units are fully
pipelined or replicated (as many times as the pipeline depth), so that an opera-
tion of any type can be issued on every clock cycle and there are no structural
hazards.

In this subsection, we look at how the compiler can increase the amount
of available ILP by transforming loops. This example serves both to illustrate
an important technique as well as to motivate the more powerful program
transformations described in Appendix H. We will rely on the following code
segment, which adds a scalar to a vector:

for (i=999; i>=0; i=i–1)
x[i] = x[i] + s;

We can see that this loop is parallel by noticing that the body of each iteration is
independent. We formalize this notion in Appendix H and describe how we can
test whether loop iterations are independent at compile time. First, let’s look at
the performance of this loop, showing how we can use the parallelism to improve
its performance for a MIPS pipeline with the latencies shown above.

The first step is to translate the above segment to MIPS assembly language.
In the following code segment, R1 is initially the address of the element in the
array with the highest address, and F2 contains the scalar value s. Register R2 is
precomputed, so that 8(R2) is the address of the last element to operate on.

Instruction producing result Instruction using result Latency in clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

Load double Store double 0

Figure 3.2 Latencies of FP operations used in this chapter. The last column is the
number of intervening clock cycles needed to avoid a stall. These numbers are similar
to the average latencies we would see on an FP unit. The latency of a floating-point
load to a store is 0, since the result of the load can be bypassed without stalling the
store. We will continue to assume an integer load latency of 1 and an integer ALU oper-
ation latency of 0.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

158 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

The straightforward MIPS code, not scheduled for the pipeline, looks like
this:

Loop: L.D F0,0(R1) ;F0=array element
ADD.D F4,F0,F2 ;add scalar in F2
S.D F4,0(R1) ;store result
DADDUI R1,R1,#-8 ;decrement pointer

;8 bytes (per DW)
BNE R1,R2,Loop ;branch R1!=R2

Let’s start by seeing how well this loop will run when it is scheduled on a
simple pipeline for MIPS with the latencies from Figure 3.2.

Example Show how the loop would look on MIPS, both scheduled and unscheduled,
including any stalls or idle clock cycles. Schedule for delays from floating-point
operations, but remember that we are ignoring delayed branches.

Answer Without any scheduling, the loop will execute as follows, taking nine cycles:

 Clock cycle issued

Loop: L.D F0,0(R1) 1
stall 2
ADD.D F4,F0,F2 3
stall 4
stall 5
S.D F4,0(R1) 6
DADDUI R1,R1,#-8 7
stall 8
BNE R1,R2,Loop 9

We can schedule the loop to obtain only two stalls and reduce the time to seven
cycles:

Loop: L.D F0,0(R1)
DADDUI R1,R1,#-8
ADD.D F4,F0,F2
stall
stall
S.D F4,8(R1)
BNE R1,R2,Loop

The stalls after ADD.D are for use by the S.D.

In the previous example, we complete one loop iteration and store back one
array element every seven clock cycles, but the actual work of operating on the
array element takes just three (the load, add, and store) of those seven clock

3.2 Basic Compiler Techniques for Exposing ILP ■ 159

cycles. The remaining four clock cycles consist of loop overhead—the DADDUI
and BNE—and two stalls. To eliminate these four clock cycles we need to get
more operations relative to the number of overhead instructions.

A simple scheme for increasing the number of instructions relative to the
branch and overhead instructions is loop unrolling. Unrolling simply replicates
the loop body multiple times, adjusting the loop termination code.

Loop unrolling can also be used to improve scheduling. Because it eliminates
the branch, it allows instructions from different iterations to be scheduled
together. In this case, we can eliminate the data use stalls by creating additional
independent instructions within the loop body. If we simply replicated the
instructions when we unrolled the loop, the resulting use of the same registers
could prevent us from effectively scheduling the loop. Thus, we will want to use
different registers for each iteration, increasing the required number of registers.

Example Show our loop unrolled so that there are four copies of the loop body, assuming
R1 – R2 (that is, the size of the array) is initially a multiple of 32, which means
that the number of loop iterations is a multiple of 4. Eliminate any obviously
redundant computations and do not reuse any of the registers.

Answer Here is the result after merging the DADDUI instructions and dropping the unnec-
essary BNE operations that are duplicated during unrolling. Note that R2 must now
be set so that 32(R2) is the starting address of the last four elements.

Loop: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1) ;drop DADDUI & BNE
L.D F6,-8(R1)
ADD.D F8,F6,F2
S.D F8,-8(R1) ;drop DADDUI & BNE
L.D F10,-16(R1)
ADD.D F12,F10,F2
S.D F12,-16(R1) ;drop DADDUI & BNE
L.D F14,-24(R1)
ADD.D F16,F14,F2
S.D F16,-24(R1)
DADDUI R1,R1,#-32
BNE R1,R2,Loop

We have eliminated three branches and three decrements of R1. The addresses on
the loads and stores have been compensated to allow the DADDUI instructions on
R1 to be merged. This optimization may seem trivial, but it is not; it requires sym-
bolic substitution and simplification. Symbolic substitution and simplification
will rearrange expressions so as to allow constants to be collapsed, allowing an
expression such as ((i + 1) + 1) to be rewritten as (i + (1 + 1)) and then simplified
to (i + 2). We will see more general forms of these optimizations that eliminate
dependent computations in Appendix H.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

160 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

Without scheduling, every operation in the unrolled loop is followed by a
dependent operation and thus will cause a stall. This loop will run in 27 clock
cycles—each LD has 1 stall, each ADDD 2, the DADDUI 1, plus 14 instruction issue
cycles—or 6.75 clock cycles for each of the four elements, but it can be sched-
uled to improve performance significantly. Loop unrolling is normally done early
in the compilation process, so that redundant computations can be exposed and
eliminated by the optimizer.

In real programs we do not usually know the upper bound on the loop. Sup-
pose it is n, and we would like to unroll the loop to make k copies of the body.
Instead of a single unrolled loop, we generate a pair of consecutive loops. The
first executes (n mod k) times and has a body that is the original loop. The second
is the unrolled body surrounded by an outer loop that iterates (n/k) times. (As we
shall see in Chapter 4, this technique is similar to a technique called strip mining,
used in compilers for vector processors.) For large values of n, most of the execu-
tion time will be spent in the unrolled loop body.

In the previous example, unrolling improves the performance of this loop by
eliminating overhead instructions, although it increases code size substantially.
How will the unrolled loop perform when it is scheduled for the pipeline
described earlier?

Example Show the unrolled loop in the previous example after it has been scheduled for
the pipeline with the latencies from Figure 3.2.

Answer Loop: L.D F0,0(R1)
L.D F6,-8(R1)
L.D F10,-16(R1)
L.D F14,-24(R1)
ADD.D F4,F0,F2
ADD.D F8,F6,F2
ADD.D F12,F10,F2
ADD.D F16,F14,F2
S.D F4,0(R1)
S.D F8,-8(R1)
DADDUI R1,R1,#-32
S.D F12,16(R1)
S.D F16,8(R1)
BNE R1,R2,Loop

The execution time of the unrolled loop has dropped to a total of 14 clock cycles,
or 3.5 clock cycles per element, compared with 9 cycles per element before any
unrolling or scheduling and 7 cycles when scheduled but not unrolled.

The gain from scheduling on the unrolled loop is even larger than on the origi-
nal loop. This increase arises because unrolling the loop exposes more computation

3.2 Basic Compiler Techniques for Exposing ILP ■ 161

that can be scheduled to minimize the stalls; the code above has no stalls. Schedul-
ing the loop in this fashion necessitates realizing that the loads and stores are inde-
pendent and can be interchanged.

Summary of the Loop Unrolling and Scheduling

Throughout this chapter and Appendix H, we will look at a variety of hardware
and software techniques that allow us to take advantage of instruction-level
parallelism to fully utilize the potential of the functional units in a processor.
The key to most of these techniques is to know when and how the ordering
among instructions may be changed. In our example we made many such
changes, which to us, as human beings, were obviously allowable. In practice,
this process must be performed in a methodical fashion either by a compiler or
by hardware. To obtain the final unrolled code we had to make the following
decisions and transformations:

■ Determine that unrolling the loop would be useful by finding that the loop
iterations were independent, except for the loop maintenance code.

■ Use different registers to avoid unnecessary constraints that would be forced by
using the same registers for different computations (e.g., name dependences).

■ Eliminate the extra test and branch instructions and adjust the loop termina-
tion and iteration code.

■ Determine that the loads and stores in the unrolled loop can be interchanged
by observing that the loads and stores from different iterations are indepen-
dent. This transformation requires analyzing the memory addresses and find-
ing that they do not refer to the same address.

■ Schedule the code, preserving any dependences needed to yield the same
result as the original code.

The key requirement underlying all of these transformations is an understanding
of how one instruction depends on another and how the instructions can be
changed or reordered given the dependences.

Three different effects limit the gains from loop unrolling: (1) a decrease in
the amount of overhead amortized with each unroll, (2) code size limitations,
and (3) compiler limitations. Let’s consider the question of loop overhead first.
When we unrolled the loop four times, it generated sufficient parallelism among
the instructions that the loop could be scheduled with no stall cycles. In fact, in
14 clock cycles, only 2 cycles were loop overhead: the DADDUI, which maintains
the index value, and the BNE, which terminates the loop. If the loop is unrolled
eight times, the overhead is reduced from 1/ 2 cycle per original iteration to 1/ 4.

A second limit to unrolling is the growth in code size that results. For larger
loops, the code size growth may be a concern particularly if it causes an increase
in the instruction cache miss rate.

Another factor often more important than code size is the potential shortfall in
registers that is created by aggressive unrolling and scheduling. This secondary

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

162 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

effect that results from instruction scheduling in large code segments is called reg-
ister pressure. It arises because scheduling code to increase ILP causes the number
of live values to increase. After aggressive instruction scheduling, it may not be
possible to allocate all the live values to registers. The transformed code, while
theoretically faster, may lose some or all of its advantage because it generates a
shortage of registers. Without unrolling, aggressive scheduling is sufficiently lim-
ited by branches so that register pressure is rarely a problem. The combination of
unrolling and aggressive scheduling can, however, cause this problem. The prob-
lem becomes especially challenging in multiple-issue processors that require the
exposure of more independent instruction sequences whose execution can be
overlapped. In general, the use of sophisticated high-level transformations, whose
potential improvements are difficult to measure before detailed code generation,
has led to significant increases in the complexity of modern compilers.

Loop unrolling is a simple but useful method for increasing the size of
straight-line code fragments that can be scheduled effectively. This transforma-
tion is useful in a variety of processors, from simple pipelines like those we have
examined so far to the multiple-issue superscalars and VLIWs explored later in
this chapter.

Because of the need to enforce control dependences through branch hazards and
stalls, branches will hurt pipeline performance. Loop unrolling is one way to
reduce the number of branch hazards; we can also reduce the performance losses of
branches by predicting how they will behave. In Appendix C, we examine simple
branch predictors that rely either on compile-time information or on the observed
dynamic behavior of a branch in isolation. As the number of instructions in flight
has increased, the importance of more accurate branch prediction has grown. In this
section, we examine techniques for improving dynamic prediction accuracy.

Correlating Branch Predictors

The 2-bit predictor schemes use only the recent behavior of a single branch to
predict the future behavior of that branch. It may be possible to improve the pre-
diction accuracy if we also look at the recent behavior of other branches rather
than just the branch we are trying to predict. Consider a small code fragment
from the eqntott benchmark, a member of early SPEC benchmark suites that dis-
played particularly bad branch prediction behavior:

if (aa==2)
aa=0;

if (bb==2)
bb=0;

if (aa!=bb) {

3.3 Reducing Branch Costs with Advanced Branch
Prediction

3.3 Reducing Branch Costs with Advanced Branch Prediction ■ 163

Here is the MIPS code that we would typically generate for this code frag-
ment assuming that aa and bb are assigned to registers R1 and R2:

DADDIU R3,R1,#–2
BNEZ R3,L1 ;branch b1 (aa!=2)
DADD R1,R0,R0 ;aa=0

L1: DADDIU R3,R2,#–2
BNEZ R3,L2 ;branch b2 (bb!=2)
DADD R2,R0,R0 ;bb=0

L2: DSUBU R3,R1,R2 ;R3=aa-bb
BEQZ R3,L3 ;branch b3 (aa==bb)

Let’s label these branches b1, b2, and b3. The key observation is that the behav-
ior of branch b3 is correlated with the behavior of branches b1 and b2. Clearly, if
branches b1 and b2 are both not taken (i.e., if the conditions both evaluate to true
and aa and bb are both assigned 0), then b3 will be taken, since aa and bb are
clearly equal. A predictor that uses only the behavior of a single branch to predict
the outcome of that branch can never capture this behavior.

Branch predictors that use the behavior of other branches to make a predic-
tion are called correlating predictors or two-level predictors. Existing corre-
lating predictors add information about the behavior of the most recent
branches to decide how to predict a given branch. For example, a (1,2) predic-
tor uses the behavior of the last branch to choose from among a pair of 2-bit
branch predictors in predicting a particular branch. In the general case, an
(m,n) predictor uses the behavior of the last m branches to choose from 2m

branch predictors, each of which is an n-bit predictor for a single branch. The
attraction of this type of correlating branch predictor is that it can yield higher
prediction rates than the 2-bit scheme and requires only a trivial amount of
additional hardware.

The simplicity of the hardware comes from a simple observation: The
global history of the most recent m branches can be recorded in an m-bit shift
register, where each bit records whether the branch was taken or not taken. The
branch-prediction buffer can then be indexed using a concatenation of the low-
order bits from the branch address with the m-bit global history. For example,
in a (2,2) buffer with 64 total entries, the 4 low-order address bits of the branch
(word address) and the 2 global bits representing the behavior of the two most
recently executed branches form a 6-bit index that can be used to index the 64
counters.

How much better do the correlating branch predictors work when compared
with the standard 2-bit scheme? To compare them fairly, we must compare
predictors that use the same number of state bits. The number of bits in an (m,n)
predictor is

2m × n × Number of prediction entries selected by the branch address

A 2-bit predictor with no global history is simply a (0,2) predictor.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

164 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

Example How many bits are in the (0,2) branch predictor with 4K entries? How many
entries are in a (2,2) predictor with the same number of bits?

Answer The predictor with 4K entries has

20 × 2 × 4K = 8K bits

How many branch-selected entries are in a (2,2) predictor that has a total of 8K
bits in the prediction buffer? We know that

22 × 2 × Number of prediction entries selected by the branch = 8K

Hence, the number of prediction entries selected by the branch = 1K.

Figure 3.3 compares the misprediction rates of the earlier (0,2) predictor with
4K entries and a (2,2) predictor with 1K entries. As you can see, this correlating
predictor not only outperforms a simple 2-bit predictor with the same total num-
ber of state bits, but it also often outperforms a 2-bit predictor with an unlimited
number of entries.

Tournament Predictors: Adaptively Combining Local and
Global Predictors

The primary motivation for correlating branch predictors came from the observa-
tion that the standard 2-bit predictor using only local information failed on some
important branches and that, by adding global information, the performance
could be improved. Tournament predictors take this insight to the next level, by
using multiple predictors, usually one based on global information and one based
on local information, and combining them with a selector. Tournament predictors
can achieve both better accuracy at medium sizes (8K–32K bits) and also make
use of very large numbers of prediction bits effectively. Existing tournament pre-
dictors use a 2-bit saturating counter per branch to choose among two different
predictors based on which predictor (local, global, or even some mix) was most
effective in recent predictions. As in a simple 2-bit predictor, the saturating coun-
ter requires two mispredictions before changing the identity of the preferred
predictor.

The advantage of a tournament predictor is its ability to select the right
predictor for a particular branch, which is particularly crucial for the integer
benchmarks. A typical tournament predictor will select the global predictor
almost 40% of the time for the SPEC integer benchmarks and less than 15% of
the time for the SPEC FP benchmarks. In addition to the Alpha processors that
pioneered tournament predictors, recent AMD processors, including both the
Opteron and Phenom, have used tournament-style predictors.

Figure 3.4 looks at the performance of three different predictors (a local 2-bit
predictor, a correlating predictor, and a tournament predictor) for different

3.3 Reducing Branch Costs with Advanced Branch Prediction ■ 165

numbers of bits using SPEC89 as the benchmark. As we saw earlier, the predic-
tion capability of the local predictor does not improve beyond a certain size. The
correlating predictor shows a significant improvement, and the tournament pre-
dictor generates slightly better performance. For more recent versions of the
SPEC, the results would be similar, but the asymptotic behavior would not be
reached until slightly larger predictor sizes.

The local predictor consists of a two-level predictor. The top level is a local
history table consisting of 1024 10-bit entries; each 10-bit entry corresponds to
the most recent 10 branch outcomes for the entry. That is, if the branch was taken
10 or more times in a row, the entry in the local history table will be all 1s. If the
branch is alternately taken and untaken, the history entry consists of alternating
0s and 1s. This 10-bit history allows patterns of up to 10 branches to be discov-
ered and predicted. The selected entry from the local history table is used to

Figure 3.3 Comparison of 2-bit predictors. A noncorrelating predictor for 4096 bits is
first, followed by a noncorrelating 2-bit predictor with unlimited entries and a 2-bit pre-
dictor with 2 bits of global history and a total of 1024 entries. Although these data are
for an older version of SPEC, data for more recent SPEC benchmarks would show similar
differences in accuracy.

nASA7

matrix300

tomcatv

doduc

S
P

E
C

89
 b

en
ch

m
ar

ks

spice

fpppp

gcc

espresso

eqntott

li

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%

Frequency of mispredictions

1%
0%
1%
0%
0%
0%

1%
0%
1%

5%
5%
5%

9%
9%

5%

9%
9%

5%

12%
11%
11%

5%
5%

4%

18%
18%

6%

10%
10%

5%

1024 entries:
(2,2)

Unlimited entries:
2 bits per entry

4096 entries:
2 bits per entry

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

166 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

index a table of 1K entries consisting of 3-bit saturating counters, which provide
the local prediction. This combination, which uses a total of 29K bits, leads to
high accuracy in branch prediction.

The Intel Core i7 Branch Predictor

Intel has released only limited amounts of information about the Core i7’s branch
predictor, which is based on earlier predictors used in the Core Duo chip. The i7
uses a two-level predictor that has a smaller first-level predictor, designed to
meet the cycle constraints of predicting a branch every clock cycle, and a larger
second-level predictor as a backup. Each predictor combines three different pre-
dictors: (1) the simple two-bit predictor, which was introduced in Appendix C
(and used in the tournament predictor discussed above); (2) a global history pre-
dictor, like those we just saw; and (3) a loop exit predictor. The loop exit predic-
tor uses a counter to predict the exact number of taken branches (which is the
number of loop iterations) for a branch that is detected as a loop branch. For each
branch, the best prediction is chosen from among the three predictors by tracking
the accuracy of each prediction, like a tournament predictor. In addition to this
multilevel main predictor, a separate unit predicts target addresses for indirect
branches, and a stack to predict return addresses is also used.

Figure 3.4 The misprediction rate for three different predictors on SPEC89 as the total number of bits is
increased. The predictors are a local 2-bit predictor, a correlating predictor that is optimally structured in its use of
global and local information at each point in the graph, and a tournament predictor. Although these data are for an
older version of SPEC, data for more recent SPEC benchmarks would show similar behavior, perhaps converging to
the asymptotic limit at slightly larger predictor sizes.

6%

7%

8%

5%

4%

3%

2%

1%

0%

C
on

di
tio

na
l b

ra
nc

h
m

is
pr

ed
ic

tio
n

ra
te

Total predictor size

Local 2-bit predictors

Correlating predictors

Tournament predictors

5124804484163843523202882562241921601289664320

3.4 Overcoming Data Hazards with Dynamic Scheduling ■ 167

As in other cases, speculation causes some challenges in evaluating the pre-
dictor, since a mispredicted branch may easily lead to another branch being
fetched and mispredicted. To keep things simple, we look at the number of mis-
predictions as a percentage of the number of successfully completed branches
(those that were not the result of misspeculation). Figure 3.5 shows these data for
19 of the SPECCPU 2006 benchmarks. These benchmarks are considerably
larger than SPEC89 or SPEC2000, with the result being that the misprediction
rates are slightly higher than those in Figure 3.4 even with a more elaborate com-
bination of predictors. Because branch misprediction leads to ineffective specula-
tion, it contributes to the wasted work, as we will see later in this chapter.

A simple statically scheduled pipeline fetches an instruction and issues it, unless
there is a data dependence between an instruction already in the pipeline and the
fetched instruction that cannot be hidden with bypassing or forwarding. (For-
warding logic reduces the effective pipeline latency so that the certain depen-
dences do not result in hazards.) If there is a data dependence that cannot be

Figure 3.5 The misprediction rate for 19 of the SPECCPU2006 benchmarks versus the number of successfully

retired branches is slightly higher on average for the integer benchmarks than for the FP (4% versus 3%). More
importantly, it is much higher for a few benchmarks.

3.4 Overcoming Data Hazards with Dynamic Scheduling

Per
lbe

nc
h

Bzip
2

Gcc
M

cf

Gob
m

k

Hm
m

er

Sjen
g

H26
4r

ef

Xala
nc

bm
k

M
ilc

Nam
d

Sop
lex Lb

m

Sph
inx

3

Pov
ra

y

Dea
l II

Asta
r

Om
ne

tp
p

Lib
qu

an
tu

m
0%

10%

9%

8%

7%

6%

5%

4%

M
is

pr
ed

ic
tio

n
ra

te

3%

2%

1%

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

168 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

hidden, then the hazard detection hardware stalls the pipeline starting with the
instruction that uses the result. No new instructions are fetched or issued until the
dependence is cleared.

In this section, we explore dynamic scheduling, in which the hardware rear-
ranges the instruction execution to reduce the stalls while maintaining data flow
and exception behavior. Dynamic scheduling offers several advantages. First, it
allows code that was compiled with one pipeline in mind to run efficiently on a
different pipeline, eliminating the need to have multiple binaries and recompile
for a different microarchitecture. In today’s computing environment, where much
of the software is from third parties and distributed in binary form, this advantage
is significant. Second, it enables handling some cases when dependences are
unknown at compile time; for example, they may involve a memory reference or
a data-dependent branch, or they may result from a modern programming envi-
ronment that uses dynamic linking or dispatching. Third, and perhaps most
importantly, it allows the processor to tolerate unpredictable delays, such as
cache misses, by executing other code while waiting for the miss to resolve. In
Section 3.6, we explore hardware speculation, a technique with additional perfor-
mance advantages, which builds on dynamic scheduling. As we will see, the
advantages of dynamic scheduling are gained at a cost of significant increase in
hardware complexity.

Although a dynamically scheduled processor cannot change the data flow, it
tries to avoid stalling when dependences are present. In contrast, static pipeline
scheduling by the compiler (covered in Section 3.2) tries to minimize stalls by
separating dependent instructions so that they will not lead to hazards. Of course,
compiler pipeline scheduling can also be used on code destined to run on a pro-
cessor with a dynamically scheduled pipeline.

Dynamic Scheduling: The Idea

A major limitation of simple pipelining techniques is that they use in-order
instruction issue and execution: Instructions are issued in program order, and if
an instruction is stalled in the pipeline no later instructions can proceed. Thus, if
there is a dependence between two closely spaced instructions in the pipeline,
this will lead to a hazard and a stall will result. If there are multiple functional
units, these units could lie idle. If instruction j depends on a long-running instruc-
tion i, currently in execution in the pipeline, then all instructions after j must be
stalled until i is finished and j can execute. For example, consider this code:

DIV.D F0,F2,F4
ADD.D F10,F0,F8
SUB.D F12,F8,F14

The SUB.D instruction cannot execute because the dependence of ADD.D on
DIV.D causes the pipeline to stall; yet, SUB.D is not data dependent on anything in
the pipeline. This hazard creates a performance limitation that can be eliminated
by not requiring instructions to execute in program order.

3.4 Overcoming Data Hazards with Dynamic Scheduling ■ 169

In the classic five-stage pipeline, both structural and data hazards could be
checked during instruction decode (ID): When an instruction could execute with-
out hazards, it was issued from ID knowing that all data hazards had been
resolved.

To allow us to begin executing the SUB.D in the above example, we must sep-
arate the issue process into two parts: checking for any structural hazards and
waiting for the absence of a data hazard. Thus, we still use in-order instruction
issue (i.e., instructions issued in program order), but we want an instruction to
begin execution as soon as its data operands are available. Such a pipeline does
out-of-order execution, which implies out-of-order completion.

Out-of-order execution introduces the possibility of WAR and WAW hazards,
which do not exist in the five-stage integer pipeline and its logical extension to an
in-order floating-point pipeline. Consider the following MIPS floating-point
code sequence:

DIV.D F0,F2,F4
ADD.D F6,F0,F8
SUB.D F8,F10,F14
MUL.D F6,F10,F8

There is an antidependence between the ADD.D and the SUB.D, and if the pipeline
executes the SUB.D before the ADD.D (which is waiting for the DIV.D), it will vio-
late the antidependence, yielding a WAR hazard. Likewise, to avoid violating
output dependences, such as the write of F6 by MUL.D, WAW hazards must be
handled. As we will see, both these hazards are avoided by the use of register
renaming.

Out-of-order completion also creates major complications in handling excep-
tions. Dynamic scheduling with out-of-order completion must preserve exception
behavior in the sense that exactly those exceptions that would arise if the pro-
gram were executed in strict program order actually do arise. Dynamically
scheduled processors preserve exception behavior by delaying the notification of
an associated exception until the processor knows that the instruction should be
the next one completed.

Although exception behavior must be preserved, dynamically scheduled pro-
cessors could generate imprecise exceptions. An exception is imprecise if the
processor state when an exception is raised does not look exactly as if the instruc-
tions were executed sequentially in strict program order. Imprecise exceptions
can occur because of two possibilities:

1. The pipeline may have already completed instructions that are later in pro-
gram order than the instruction causing the exception.

2. The pipeline may have not yet completed some instructions that are earlier in
program order than the instruction causing the exception.

Imprecise exceptions make it difficult to restart execution after an exception.
Rather than address these problems in this section, we will discuss a solution that

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

170 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

provides precise exceptions in the context of a processor with speculation in Sec-
tion 3.6. For floating-point exceptions, other solutions have been used, as dis-
cussed in Appendix J.

To allow out-of-order execution, we essentially split the ID pipe stage of our
simple five-stage pipeline into two stages:

1. Issue—Decode instructions, check for structural hazards.

2. Read operands—Wait until no data hazards, then read operands.

An instruction fetch stage precedes the issue stage and may fetch either into an
instruction register or into a queue of pending instructions; instructions are then
issued from the register or queue. The execution stage follows the read operands
stage, just as in the five-stage pipeline. Execution may take multiple cycles,
depending on the operation.

We distinguish when an instruction begins execution and when it completes
execution; between the two times, the instruction is in execution. Our pipeline
allows multiple instructions to be in execution at the same time; without this
capability, a major advantage of dynamic scheduling is lost. Having multiple
instructions in execution at once requires multiple functional units, pipelined
functional units, or both. Since these two capabilities—pipelined functional units
and multiple functional units—are essentially equivalent for the purposes of
pipeline control, we will assume the processor has multiple functional units.

In a dynamically scheduled pipeline, all instructions pass through the issue
stage in order (in-order issue); however, they can be stalled or bypass each other
in the second stage (read operands) and thus enter execution out of order. Score-
boarding is a technique for allowing instructions to execute out of order when
there are sufficient resources and no data dependences; it is named after the CDC
6600 scoreboard, which developed this capability. Here, we focus on a more
sophisticated technique, called Tomasulo’s algorithm. The primary difference is
that Tomasulo’s algorithm handles antidependences and output dependences by
effectively renaming the registers dynamically. Additionally, Tomasulo’s algo-
rithm can be extended to handle speculation, a technique to reduce the effect of
control dependences by predicting the outcome of a branch, executing instruc-
tions at the predicted destination address, and taking corrective actions when the
prediction was wrong. While the use of scoreboarding is probably sufficient to
support a simple two-issue superscalar like the ARM A8, a more aggressive
processor, like the four-issue Intel i7, benefits from the use of out-of-order
execution.

Dynamic Scheduling Using Tomasulo’s Approach

The IBM 360/91 floating-point unit used a sophisticated scheme to allow out-of-
order execution. This scheme, invented by Robert Tomasulo, tracks when oper-
ands for instructions are available to minimize RAW hazards and introduces
register renaming in hardware to minimize WAW and WAR hazards. There are

3.4 Overcoming Data Hazards with Dynamic Scheduling ■ 171

many variations on this scheme in modern processors, although the key concepts
of tracking instruction dependences to allow execution as soon as operands are
available and renaming registers to avoid WAR and WAW hazards are common
characteristics.

IBM’s goal was to achieve high floating-point performance from an instruc-
tion set and from compilers designed for the entire 360 computer family, rather
than from specialized compilers for the high-end processors. The 360 architec-
ture had only four double-precision floating-point registers, which limits the
effectiveness of compiler scheduling; this fact was another motivation for the
Tomasulo approach. In addition, the IBM 360/91 had long memory accesses and
long floating-point delays, which Tomasulo’s algorithm was designed to overcome.
At the end of the section, we will see that Tomasulo’s algorithm can also support the
overlapped execution of multiple iterations of a loop.

We explain the algorithm, which focuses on the floating-point unit and load-
store unit, in the context of the MIPS instruction set. The primary difference
between MIPS and the 360 is the presence of register-memory instructions in the
latter architecture. Because Tomasulo’s algorithm uses a load functional unit, no
significant changes are needed to add register-memory addressing modes. The
IBM 360/91 also had pipelined functional units, rather than multiple functional
units, but we describe the algorithm as if there were multiple functional units. It
is a simple conceptual extension to also pipeline those functional units.

As we will see, RAW hazards are avoided by executing an instruction only
when its operands are available, which is exactly what the simpler scoreboarding
approach provides. WAR and WAW hazards, which arise from name depen-
dences, are eliminated by register renaming. Register renaming eliminates these
hazards by renaming all destination registers, including those with a pending read
or write for an earlier instruction, so that the out-of-order write does not affect
any instructions that depend on an earlier value of an operand.

To better understand how register renaming eliminates WAR and WAW haz-
ards, consider the following example code sequence that includes potential WAR
and WAW hazards:

DIV.D F0,F2,F4
ADD.D F6,F0,F8
S.D F6,0(R1)
SUB.D F8,F10,F14
MUL.D F6,F10,F8

There are two antidependences: between the ADD.D and the SUB.D and between
the S.D and the MUL.D. There is also an output dependence between the ADD.D
and the MUL.D, leading to three possible hazards: WAR hazards on the use of F8
by ADD.D and the use of F6 by the SUB.D, as well as a WAW hazard since the
ADD.D may finish later than the MUL.D. There are also three true data depen-
dences: between the DIV.D and the ADD.D, between the SUB.D and the MUL.D, and
between the ADD.D and the S.D.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

172 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

These three name dependences can all be eliminated by register renaming.
For simplicity, assume the existence of two temporary registers, S and T. Using S
and T, the sequence can be rewritten without any dependences as:

DIV.D F0,F2,F4
ADD.D S,F0,F8
S.D S,0(R1)
SUB.D T,F10,F14
MUL.D F6,F10,T

In addition, any subsequent uses of F8 must be replaced by the register T. In this
code segment, the renaming process can be done statically by the compiler. Find-
ing any uses of F8 that are later in the code requires either sophisticated compiler
analysis or hardware support, since there may be intervening branches between
the above code segment and a later use of F8. As we will see, Tomasulo’s algo-
rithm can handle renaming across branches.

In Tomasulo’s scheme, register renaming is provided by reservation stations,
which buffer the operands of instructions waiting to issue. The basic idea is that a
reservation station fetches and buffers an operand as soon as it is available, elim-
inating the need to get the operand from a register. In addition, pending instruc-
tions designate the reservation station that will provide their input. Finally, when
successive writes to a register overlap in execution, only the last one is actually
used to update the register. As instructions are issued, the register specifiers for
pending operands are renamed to the names of the reservation station, which pro-
vides register renaming.

Since there can be more reservation stations than real registers, the technique
can even eliminate hazards arising from name dependences that could not be
eliminated by a compiler. As we explore the components of Tomasulo’s scheme,
we will return to the topic of register renaming and see exactly how the renaming
occurs and how it eliminates WAR and WAW hazards.

The use of reservation stations, rather than a centralized register file, leads to
two other important properties. First, hazard detection and execution control are
distributed: The information held in the reservation stations at each functional
unit determines when an instruction can begin execution at that unit. Second,
results are passed directly to functional units from the reservation stations where
they are buffered, rather than going through the registers. This bypassing is done
with a common result bus that allows all units waiting for an operand to be
loaded simultaneously (on the 360/91 this is called the common data bus, or
CDB). In pipelines with multiple execution units and issuing multiple instruc-
tions per clock, more than one result bus will be needed.

Figure 3.6 shows the basic structure of a Tomasulo-based processor, includ-
ing both the floating-point unit and the load/store unit; none of the execution con-
trol tables is shown. Each reservation station holds an instruction that has been
issued and is awaiting execution at a functional unit and either the operand values
for that instruction, if they have already been computed, or else the names of the
reservation stations that will provide the operand values.

3.4 Overcoming Data Hazards with Dynamic Scheduling ■ 173

The load buffers and store buffers hold data or addresses coming from and
going to memory and behave almost exactly like reservation stations, so we dis-
tinguish them only when necessary. The floating-point registers are connected by
a pair of buses to the functional units and by a single bus to the store buffers. All
results from the functional units and from memory are sent on the common data
bus, which goes everywhere except to the load buffer. All reservation stations
have tag fields, employed by the pipeline control.

Before we describe the details of the reservation stations and the algorithm,
let’s look at the steps an instruction goes through. There are only three steps,
although each one can now take an arbitrary number of clock cycles:

Figure 3.6 The basic structure of a MIPS floating-point unit using Tomasulo’s algorithm. Instructions are sent
from the instruction unit into the instruction queue from which they are issued in first-in, first-out (FIFO) order. The res-
ervation stations include the operation and the actual operands, as well as information used for detecting and resolv-
ing hazards. Load buffers have three functions: (1) hold the components of the effective address until it is computed,
(2) track outstanding loads that are waiting on the memory, and (3) hold the results of completed loads that are waiting
for the CDB. Similarly, store buffers have three functions: (1) hold the components of the effective address until it is
computed, (2) hold the destination memory addresses of outstanding stores that are waiting for the data value to
store, and (3) hold the address and value to store until the memory unit is available. All results from either the FP units
or the load unit are put on the CDB, which goes to the FP register file as well as to the reservation stations and store
buffers. The FP adders implement addition and subtraction, and the FP multipliers do multiplication and division.

From instruction unit

Floating-point
operations

FP registers

Reservation
stations

FP adders FP multipliers

3
2
1

2
1

Common data bus (CDB)

Operation bus

Operand
buses

Load/store
operations

Address unit

Load buffers

Memory unit
AddressData

Instruction
queue

Store buffers

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

174 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

1. Issue—Get the next instruction from the head of the instruction queue, which
is maintained in FIFO order to ensure the maintenance of correct data flow. If
there is a matching reservation station that is empty, issue the instruction to
the station with the operand values, if they are currently in the registers. If
there is not an empty reservation station, then there is a structural hazard and
the instruction stalls until a station or buffer is freed. If the operands are not in
the registers, keep track of the functional units that will produce the operands.
This step renames registers, eliminating WAR and WAW hazards. (This stage
is sometimes called dispatch in a dynamically scheduled processor.)

2. Execute—If one or more of the operands is not yet available, monitor the
common data bus while waiting for it to be computed. When an operand
becomes available, it is placed into any reservation station awaiting it. When
all the operands are available, the operation can be executed at the corre-
sponding functional unit. By delaying instruction execution until the oper-
ands are available, RAW hazards are avoided. (Some dynamically scheduled
processors call this step “issue,” but we use the name “execute,” which was
used in the first dynamically scheduled processor, the CDC 6600.)

Notice that several instructions could become ready in the same clock
cycle for the same functional unit. Although independent functional units
could begin execution in the same clock cycle for different instructions, if
more than one instruction is ready for a single functional unit, the unit will
have to choose among them. For the floating-point reservation stations, this
choice may be made arbitrarily; loads and stores, however, present an addi-
tional complication.

Loads and stores require a two-step execution process. The first step com-
putes the effective address when the base register is available, and the effective
address is then placed in the load or store buffer. Loads in the load buffer exe-
cute as soon as the memory unit is available. Stores in the store buffer wait for
the value to be stored before being sent to the memory unit. Loads and stores
are maintained in program order through the effective address calculation,
which will help to prevent hazards through memory, as we will see shortly.

To preserve exception behavior, no instruction is allowed to initiate exe-
cution until all branches that precede the instruction in program order have
completed. This restriction guarantees that an instruction that causes an
exception during execution really would have been executed. In a processor
using branch prediction (as all dynamically scheduled processors do), this
means that the processor must know that the branch prediction was correct
before allowing an instruction after the branch to begin execution. If the pro-
cessor records the occurrence of the exception, but does not actually raise it,
an instruction can start execution but not stall until it enters write result.

As we will see, speculation provides a more flexible and more complete
method to handle exceptions, so we will delay making this enhancement and
show how speculation handles this problem later.

3.4 Overcoming Data Hazards with Dynamic Scheduling ■ 175

3. Write result—When the result is available, write it on the CDB and from
there into the registers and into any reservation stations (including store buf-
fers) waiting for this result. Stores are buffered in the store buffer until both
the value to be stored and the store address are available, then the result is
written as soon as the memory unit is free.

The data structures that detect and eliminate hazards are attached to the reser-
vation stations, to the register file, and to the load and store buffers with slightly
different information attached to different objects. These tags are essentially
names for an extended set of virtual registers used for renaming. In our example,
the tag field is a 4-bit quantity that denotes one of the five reservation stations or
one of the five load buffers. As we will see, this produces the equivalent of 10
registers that can be designated as result registers (as opposed to the four double-
precision registers that the 360 architecture contains). In a processor with more
real registers, we would want renaming to provide an even larger set of virtual
registers. The tag field describes which reservation station contains the instruc-
tion that will produce a result needed as a source operand.

Once an instruction has issued and is waiting for a source operand, it refers to
the operand by the reservation station number where the instruction that will
write the register has been assigned. Unused values, such as zero, indicate that
the operand is already available in the registers. Because there are more reserva-
tion stations than actual register numbers, WAW and WAR hazards are elimi-
nated by renaming results using reservation station numbers. Although in
Tomasulo’s scheme the reservation stations are used as the extended virtual
registers, other approaches could use a register set with additional registers or a
structure like the reorder buffer, which we will see in Section 3.6.

In Tomasulo’s scheme, as well as the subsequent methods we look at for
supporting speculation, results are broadcast on a bus (the CDB), which is
monitored by the reservation stations. The combination of the common result
bus and the retrieval of results from the bus by the reservation stations imple-
ments the forwarding and bypassing mechanisms used in a statically scheduled
pipeline. In doing so, however, a dynamically scheduled scheme introduces one
cycle of latency between source and result, since the matching of a result and
its use cannot be done until the Write Result stage. Thus, in a dynamically
scheduled pipeline, the effective latency between a producing instruction and a
consuming instruction is at least one cycle longer than the latency of the func-
tional unit producing the result.

It is important to remember that the tags in the Tomasulo scheme refer to the
buffer or unit that will produce a result; the register names are discarded when an
instruction issues to a reservation station. (This is a key difference between
Tomasulo’s scheme and scoreboarding: In scoreboarding, operands stay in the
registers and are only read after the producing instruction completes and the con-
suming instruction is ready to execute.)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

176 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

Each reservation station has seven fields:

■ Op—The operation to perform on source operands S1 and S2.

■ Qj, Qk—The reservation stations that will produce the corresponding source
operand; a value of zero indicates that the source operand is already available
in Vj or Vk, or is unnecessary.

■ Vj, Vk—The value of the source operands. Note that only one of the V
fields or the Q field is valid for each operand. For loads, the Vk field is used
to hold the offset field.

■ A—Used to hold information for the memory address calculation for a load
or store. Initially, the immediate field of the instruction is stored here; after
the address calculation, the effective address is stored here.

■ Busy—Indicates that this reservation station and its accompanying functional
unit are occupied.

The register file has a field, Qi:

■ Qi—The number of the reservation station that contains the operation whose
result should be stored into this register. If the value of Qi is blank (or 0), no
currently active instruction is computing a result destined for this register,
meaning that the value is simply the register contents.

The load and store buffers each have a field, A, which holds the result of the
effective address once the first step of execution has been completed.

In the next section, we will first consider some examples that show how these
mechanisms work and then examine the detailed algorithm.

Before we examine Tomasulo’s algorithm in detail, let’s consider a few examples
that will help illustrate how the algorithm works.

Example Show what the information tables look like for the following code sequence
when only the first load has completed and written its result:

1. L.D F6,32(R2)
2. L.D F2,44(R3)
3. MUL.D F0,F2,F4
4. SUB.D F8,F2,F6
5. DIV.D F10,F0,F6
6. ADD.D F6,F8,F2

Answer Figure 3.7 shows the result in three tables. The numbers appended to the names
Add, Mult, and Load stand for the tag for that reservation station—Add1 is the
tag for the result from the first add unit. In addition, we have included an

3.5 Dynamic Scheduling: Examples and the Algorithm

3.5 Dynamic Scheduling: Examples and the Algorithm ■ 177

instruction status table. This table is included only to help you understand the
algorithm; it is not actually a part of the hardware. Instead, the reservation station
keeps the state of each operation that has issued.

Tomasulo’s scheme offers two major advantages over earlier and simpler
schemes: (1) the distribution of the hazard detection logic, and (2) the elimination
of stalls for WAW and WAR hazards.

Instruction status

Instruction Issue Execute Write result

L.D F6,32(R2) √ √
L.D F2,44(R3) √ √
MUL.D F0,F2,F4 √
SUB.D F8,F2,F6 √
DIV.D F10,F0,F6 √
ADD.D F6,F8,F2 √

 Reservation stations

Name Busy Op Vj Vk Qj Qk A

Load1 No

Load2 Yes Load 44 + Regs[R3]

Add1 Yes SUB Mem[32 + Regs[R2]] Load2

Add2 Yes ADD Add1 Load2

Add3 No

Mult1 Yes MUL Regs[F4] Load2

Mult2 Yes DIV Mem[32 + Regs[R2]] Mult1

Register status

Field F0 F2 F4 F6 F8 F10 F12 . . . F30

Qi Mult1 Load2 Add2 Add1 Mult2

√

Figure 3.7 Reservation stations and register tags shown when all of the instructions have issued, but only the

first load instruction has completed and written its result to the CDB. The second load has completed effective
address calculation but is waiting on the memory unit. We use the array Regs[] to refer to the register file and the
array Mem[] to refer to the memory. Remember that an operand is specified by either a Q field or a V field at any
time. Notice that the ADD.D instruction, which has a WAR hazard at the WB stage, has issued and could complete
before the DIV.D initiates.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

178 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

The first advantage arises from the distributed reservation stations and the use
of the CDB. If multiple instructions are waiting on a single result, and each
instruction already has its other operand, then the instructions can be released
simultaneously by the broadcast of the result on the CDB. If a centralized register
file were used, the units would have to read their results from the registers when
register buses are available.

The second advantage, the elimination of WAW and WAR hazards, is accom-
plished by renaming registers using the reservation stations and by the process of
storing operands into the reservation station as soon as they are available.

For example, the code sequence in Figure 3.7 issues both the DIV.D and the
ADD.D, even though there is a WAR hazard involving F6. The hazard is elimi-
nated in one of two ways. First, if the instruction providing the value for the
DIV.D has completed, then Vk will store the result, allowing DIV.D to execute
independent of the ADD.D (this is the case shown). On the other hand, if the L.D
had not completed, then Qk would point to the Load1 reservation station, and the
DIV.D instruction would be independent of the ADD.D. Thus, in either case, the
ADD.D can issue and begin executing. Any uses of the result of the DIV.D would
point to the reservation station, allowing the ADD.D to complete and store its
value into the registers without affecting the DIV.D.

We’ll see an example of the elimination of a WAW hazard shortly. But let’s first
look at how our earlier example continues execution. In this example, and the ones
that follow in this chapter, assume the following latencies: load is 1 clock cycle,
add is 2 clock cycles, multiply is 6 clock cycles, and divide is 12 clock cycles.

Example Using the same code segment as in the previous example (page 176), show what
the status tables look like when the MUL.D is ready to write its result.

Answer The result is shown in the three tables in Figure 3.8. Notice that ADD.D has com-
pleted since the operands of DIV.D were copied, thereby overcoming the WAR
hazard. Notice that even if the load of F6 was delayed, the add into F6 could be
executed without triggering a WAW hazard.

Tomasulo’s Algorithm: The Details

Figure 3.9 specifies the checks and steps that each instruction must go
through. As mentioned earlier, loads and stores go through a functional unit
for effective address computation before proceeding to independent load or
store buffers. Loads take a second execution step to access memory and then
go to write result to send the value from memory to the register file and/or any
waiting reservation stations. Stores complete their execution in the write result
stage, which writes the result to memory. Notice that all writes occur in write
result, whether the destination is a register or memory. This restriction simpli-
fies Tomasulo’s algorithm and is critical to its extension with speculation in
Section 3.6.

3.5 Dynamic Scheduling: Examples and the Algorithm ■ 179

Tomasulo’s Algorithm: A Loop-Based Example

To understand the full power of eliminating WAW and WAR hazards through
dynamic renaming of registers, we must look at a loop. Consider the following
simple sequence for multiplying the elements of an array by a scalar in F2:

Loop: L.D F0,0(R1)
MUL.D F4,F0,F2
S.D F4,0(R1)
DADDIU R1,R1,-8
BNE R1,R2,Loop; branches if R1¦R2

If we predict that branches are taken, using reservation stations will allow multi-
ple executions of this loop to proceed at once. This advantage is gained without
changing the code—in effect, the loop is unrolled dynamically by the hardware
using the reservation stations obtained by renaming to act as additional registers.

Instruction status

Instruction Issue Execute Write result

L.D F6,32(R2) √ √
L.D F2,44(R3) √ √
MUL.D F0,F2,F4 √ √
SUB.D F8,F2,F6 √ √
DIV.D F10,F0,F6 √
ADD.D F6,F8,F2 √ √

Reservation stations

Name Busy Op Vj Vk Qj Qk A

Load1 No

Load2 No

Add1 No

Add2 No

Add3 No

Mult1 Yes MUL Mem[44 + Regs[R3]] Regs[F4]

Mult2 Yes DIV Mem[32 + Regs[R2]] Mult1

Register status

Field F0 F2 F4 F6 F8 F10 F12 . . . F3

Qi Mult1 Mult2

√
√

√

√

0

Figure 3.8 Multiply and divide are the only instructions not finished.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

180 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

Instruction state Wait until Action or bookkeeping

Issue
FP operation

Station r empty if (RegisterStat[rs].Qi¦0)
{RS[r].Qj ← RegisterStat[rs].Qi}

else {RS[r].Vj ← Regs[rs]; RS[r].Qj ← 0};
if (RegisterStat[rt].Qi¦0)

{RS[r].Qk ← RegisterStat[rt].Qi
else {RS[r].Vk ← Regs[rt]; RS[r].Qk ← 0};
RS[r].Busy ← yes; RegisterStat[rd].Q ← r;

Load or store Buffer r empty if (RegisterStat[rs].Qi¦0)
 {RS[r].Qj ← RegisterStat[rs].Qi}
else {RS[r].Vj ← Regs[rs]; RS[r].Qj ← 0};
RS[r].A ← imm; RS[r].Busy ← yes;

Load only RegisterStat[rt].Qi ← r;
Store only if (RegisterStat[rt].Qi¦0)

 {RS[r].Qk ← RegisterStat[rs].Qi}
else {RS[r].Vk ← Regs[rt]; RS[r].Qk ← 0};

Execute
FP operation

(RS[r].Qj = 0) and
(RS[r].Qk = 0)

Compute result: operands are in Vj and Vk

Load/store
step 1

RS[r].Qj = 0 & r is head of
load-store queue

RS[r].A ← RS[r].Vj + RS[r].A;

Load step 2 Load step 1 complete Read from Mem[RS[r].A]

Write result
FP operation
or load

Execution complete at r &
CDB available

∀x(if (RegisterStat[x].Qi=r) {Regs[x] ← result;
 RegisterStat[x].Qi ← 0});
∀x(if (RS[x].Qj=r) {RS[x].Vj ← result;RS[x].Qj ←

0});
∀x(if (RS[x].Qk=r) {RS[x].Vk ← result;RS[x].Qk ←

0});
RS[r].Busy ← no;

Store Execution complete at r &
RS[r].Qk = 0

Mem[RS[r].A] ← RS[r].Vk;
RS[r].Busy ← no;

Figure 3.9 Steps in the algorithm and what is required for each step. For the issuing instruction, rd is the destina-
tion, rs and rt are the source register numbers, imm is the sign-extended immediate field, and r is the reservation
station or buffer that the instruction is assigned to. RS is the reservation station data structure. The value returned by
an FP unit or by the load unit is called result. RegisterStat is the register status data structure (not the register file,
which is Regs[]). When an instruction is issued, the destination register has its Qi field set to the number of the buf-
fer or reservation station to which the instruction is issued. If the operands are available in the registers, they are
stored in the V fields. Otherwise, the Q fields are set to indicate the reservation station that will produce the values
needed as source operands. The instruction waits at the reservation station until both its operands are available,
indicated by zero in the Q fields. The Q fields are set to zero either when this instruction is issued or when an instruc-
tion on which this instruction depends completes and does its write back. When an instruction has finished execu-
tion and the CDB is available, it can do its write back. All the buffers, registers, and reservation stations whose values
of Qj or Qk are the same as the completing reservation station update their values from the CDB and mark the Q
fields to indicate that values have been received. Thus, the CDB can broadcast its result to many destinations in a sin-
gle clock cycle, and if the waiting instructions have their operands they can all begin execution on the next clock
cycle. Loads go through two steps in execute, and stores perform slightly differently during write result, where they
may have to wait for the value to store. Remember that, to preserve exception behavior, instructions should not be
allowed to execute if a branch that is earlier in program order has not yet completed. Because any concept of pro-
gram order is not maintained after the issue stage, this restriction is usually implemented by preventing any instruc-
tion from leaving the issue step, if there is a pending branch already in the pipeline. In Section 3.6, we will see how
speculation support removes this restriction.

3.5 Dynamic Scheduling: Examples and the Algorithm ■ 181

Let’s assume we have issued all the instructions in two successive iterations
of the loop, but none of the floating-point load/stores or operations has com-
pleted. Figure 3.10 shows reservation stations, register status tables, and load and
store buffers at this point. (The integer ALU operation is ignored, and it is
assumed the branch was predicted as taken.) Once the system reaches this state,
two copies of the loop could be sustained with a CPI close to 1.0, provided the
multiplies could complete in four clock cycles. With a latency of six cycles, addi-
tional iterations will need to be processed before the steady state can be reached.
This requires more reservation stations to hold instructions that are in execution.

Instruction status

Instruction From iteration Issue Execute Write result

L.D F0,0(R1) 1 √ √
MUL.D F4,F0,F2 1 √
S.D F4,0(R1) 1 √
L.D F0,0(R1) 2 √ √
MUL.D F4,F0,F2 2 √
S.D F4,0(R1) 2 √

Reservation stations

Name Busy Op Vj Vk Qj Qk A

Load1 Yes Load Regs[R1] + 0

Load2 Yes Load Regs[R1] – 8

Add1 No

Add2 No

Add3 No

Mult1 Yes MUL Regs[F2] Load1

Mult2 Yes MUL Regs[F2] Load2

Store1 Yes Store Regs[R1] Mult1

Store2 Yes Store Regs[R1] – 8 Mult2

Register status

Field F0 F2 F4 F6 F8 F10 F12 ... F30

Qi Load2 Mult2

Figure 3.10 Two active iterations of the loop with no instruction yet completed. Entries in the multiplier reserva-
tion stations indicate that the outstanding loads are the sources. The store reservation stations indicate that the
multiply destination is the source of the value to store.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

182 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

As we will see later in this chapter, when extended with multiple instruction
issue, Tomasulo’s approach can sustain more than one instruction per clock.

A load and a store can safely be done out of order, provided they access dif-
ferent addresses. If a load and a store access the same address, then either

■ The load is before the store in program order and interchanging them results
in a WAR hazard, or

■ The store is before the load in program order and interchanging them results
in a RAW hazard.

Similarly, interchanging two stores to the same address results in a WAW hazard.
Hence, to determine if a load can be executed at a given time, the processor

can check whether any uncompleted store that precedes the load in program order
shares the same data memory address as the load. Similarly, a store must wait
until there are no unexecuted loads or stores that are earlier in program order and
share the same data memory address. We consider a method to eliminate this
restriction in Section 3.9.

To detect such hazards, the processor must have computed the data memory
address associated with any earlier memory operation. A simple, but not necessarily
optimal, way to guarantee that the processor has all such addresses is to perform the
effective address calculations in program order. (We really only need to keep the
relative order between stores and other memory references; that is, loads can be
reordered freely.)

Let’s consider the situation of a load first. If we perform effective address cal-
culation in program order, then when a load has completed effective address calcu-
lation, we can check whether there is an address conflict by examining the A field
of all active store buffers. If the load address matches the address of any active
entries in the store buffer, that load instruction is not sent to the load buffer until the
conflicting store completes. (Some implementations bypass the value directly to
the load from a pending store, reducing the delay for this RAW hazard.)

Stores operate similarly, except that the processor must check for conflicts in
both the load buffers and the store buffers, since conflicting stores cannot be reor-
dered with respect to either a load or a store.

A dynamically scheduled pipeline can yield very high performance, provided
branches are predicted accurately—an issue we addressed in the last section. The
major drawback of this approach is the complexity of the Tomasulo scheme,
which requires a large amount of hardware. In particular, each reservation station
must contain an associative buffer, which must run at high speed, as well as com-
plex control logic. The performance can also be limited by the single CDB.
Although additional CDBs can be added, each CDB must interact with each res-
ervation station, and the associative tag-matching hardware would have to be
duplicated at each station for each CDB.

In Tomasulo’s scheme, two different techniques are combined: the renaming of
the architectural registers to a larger set of registers and the buffering of source
operands from the register file. Source operand buffering resolves WAR hazards
that arise when the operand is available in the registers. As we will see later, it is

3.6 Hardware-Based Speculation ■ 183

also possible to eliminate WAR hazards by the renaming of a register together with
the buffering of a result until no outstanding references to the earlier version of the
register remain. This approach will be used when we discuss hardware speculation.

Tomasulo’s scheme was unused for many years after the 360/91, but was
widely adopted in multiple-issue processors starting in the 1990s for several
reasons:

1. Although Tomasulo’s algorithm was designed before caches, the presence of
caches, with the inherently unpredictable delays, has become one of the
major motivations for dynamic scheduling. Out-of-order execution allows the
processors to continue executing instructions while awaiting the completion
of a cache miss, thus hiding all or part of the cache miss penalty.

2. As processors became more aggressive in their issue capability and designers
are concerned with the performance of difficult-to-schedule code (such as
most nonnumeric code), techniques such as register renaming, dynamic
scheduling, and speculation became more important.

3. It can achieve high performance without requiring the compiler to target code
to a specific pipeline structure, a valuable property in the era of shrink-
wrapped mass market software.

As we try to exploit more instruction-level parallelism, maintaining control
dependences becomes an increasing burden. Branch prediction reduces the direct
stalls attributable to branches, but for a processor executing multiple instructions
per clock, just predicting branches accurately may not be sufficient to generate
the desired amount of instruction-level parallelism. A wide issue processor may
need to execute a branch every clock cycle to maintain maximum performance.
Hence, exploiting more parallelism requires that we overcome the limitation of
control dependence.

Overcoming control dependence is done by speculating on the outcome of
branches and executing the program as if our guesses were correct. This mecha-
nism represents a subtle, but important, extension over branch prediction with
dynamic scheduling. In particular, with speculation, we fetch, issue, and execute
instructions, as if our branch predictions were always correct; dynamic schedul-
ing only fetches and issues such instructions. Of course, we need mechanisms to
handle the situation where the speculation is incorrect. Appendix H discusses a
variety of mechanisms for supporting speculation by the compiler. In this sec-
tion, we explore hardware speculation, which extends the ideas of dynamic
scheduling.

Hardware-based speculation combines three key ideas: (1) dynamic branch
prediction to choose which instructions to execute, (2) speculation to allow the
execution of instructions before the control dependences are resolved (with the
ability to undo the effects of an incorrectly speculated sequence), and (3)
dynamic scheduling to deal with the scheduling of different combinations of

3.6 Hardware-Based Speculation

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

184 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

basic blocks. (In comparison, dynamic scheduling without speculation only par-
tially overlaps basic blocks because it requires that a branch be resolved before
actually executing any instructions in the successor basic block.)

Hardware-based speculation follows the predicted flow of data values to
choose when to execute instructions. This method of executing programs is
essentially a data flow execution: Operations execute as soon as their operands
are available.

To extend Tomasulo’s algorithm to support speculation, we must separate the
bypassing of results among instructions, which is needed to execute an instruc-
tion speculatively, from the actual completion of an instruction. By making this
separation, we can allow an instruction to execute and to bypass its results to
other instructions, without allowing the instruction to perform any updates that
cannot be undone, until we know that the instruction is no longer speculative.

Using the bypassed value is like performing a speculative register read, since
we do not know whether the instruction providing the source register value is
providing the correct result until the instruction is no longer speculative. When
an instruction is no longer speculative, we allow it to update the register file or
memory; we call this additional step in the instruction execution sequence
instruction commit.

The key idea behind implementing speculation is to allow instructions to
execute out of order but to force them to commit in order and to prevent any
irrevocable action (such as updating state or taking an exception) until an instruc-
tion commits. Hence, when we add speculation, we need to separate the process
of completing execution from instruction commit, since instructions may finish
execution considerably before they are ready to commit. Adding this commit
phase to the instruction execution sequence requires an additional set of hardware
buffers that hold the results of instructions that have finished execution but have
not committed. This hardware buffer, which we call the reorder buffer, is also
used to pass results among instructions that may be speculated.

The reorder buffer (ROB) provides additional registers in the same way as the
reservation stations in Tomasulo’s algorithm extend the register set. The ROB
holds the result of an instruction between the time the operation associated with
the instruction completes and the time the instruction commits. Hence, the ROB
is a source of operands for instructions, just as the reservation stations provide
operands in Tomasulo’s algorithm. The key difference is that in Tomasulo’s algo-
rithm, once an instruction writes its result, any subsequently issued instructions
will find the result in the register file. With speculation, the register file is not
updated until the instruction commits (and we know definitively that the instruc-
tion should execute); thus, the ROB supplies operands in the interval between
completion of instruction execution and instruction commit. The ROB is similar
to the store buffer in Tomasulo’s algorithm, and we integrate the function of the
store buffer into the ROB for simplicity.

Each entry in the ROB contains four fields: the instruction type, the destina-
tion field, the value field, and the ready field. The instruction type field indicates
whether the instruction is a branch (and has no destination result), a store (which

3.6 Hardware-Based Speculation ■ 185

has a memory address destination), or a register operation (ALU operation or
load, which has register destinations). The destination field supplies the register
number (for loads and ALU operations) or the memory address (for stores) where
the instruction result should be written. The value field is used to hold the value
of the instruction result until the instruction commits. We will see an example of
ROB entries shortly. Finally, the ready field indicates that the instruction has
completed execution, and the value is ready.

Figure 3.11 shows the hardware structure of the processor including the
ROB. The ROB subsumes the store buffers. Stores still execute in two steps, but
the second step is performed by instruction commit. Although the renaming

Figure 3.11 The basic structure of a FP unit using Tomasulo’s algorithm and extended to handle speculation.

Comparing this to Figure 3.6 on page 173, which implemented Tomasulo’s algorithm, the major change is the addi-
tion of the ROB and the elimination of the store buffer, whose function is integrated into the ROB. This mechanism
can be extended to multiple issue by making the CDB wider to allow for multiple completions per clock.

From instruction unit

FP registers

Reservation
stations

FP adders FP multipliers

3
2
1

2
1

Common data bus (CDB)

Operation bus

Operand
busesAddress unit

Load buffers

Memory unit

Reorder buffer

DataReg #

Store
data Address

Load
data

Store
address

Floating-point
operations

Load/store
operations

Instruction
queue

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

186 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

function of the reservation stations is replaced by the ROB, we still need a place
to buffer operations (and operands) between the time they issue and the time they
begin execution. This function is still provided by the reservation stations. Since
every instruction has a position in the ROB until it commits, we tag a result using
the ROB entry number rather than using the reservation station number. This
tagging requires that the ROB assigned for an instruction must be tracked in the
reservation station. Later in this section, we will explore an alternative imple-
mentation that uses extra registers for renaming and a queue that replaces the
ROB to decide when instructions can commit.

Here are the four steps involved in instruction execution:

1. Issue—Get an instruction from the instruction queue. Issue the instruction if
there is an empty reservation station and an empty slot in the ROB; send the
operands to the reservation station if they are available in either the registers
or the ROB. Update the control entries to indicate the buffers are in use. The
number of the ROB entry allocated for the result is also sent to the reserva-
tion station, so that the number can be used to tag the result when it is placed
on the CDB. If either all reservations are full or the ROB is full, then instruc-
tion issue is stalled until both have available entries.

2. Execute—If one or more of the operands is not yet available, monitor the
CDB while waiting for the register to be computed. This step checks for
RAW hazards. When both operands are available at a reservation station, exe-
cute the operation. Instructions may take multiple clock cycles in this stage,
and loads still require two steps in this stage. Stores need only have the base
register available at this step, since execution for a store at this point is only
effective address calculation.

3. Write result—When the result is available, write it on the CDB (with the ROB
tag sent when the instruction issued) and from the CDB into the ROB, as well
as to any reservation stations waiting for this result. Mark the reservation sta-
tion as available. Special actions are required for store instructions. If the value
to be stored is available, it is written into the Value field of the ROB entry for
the store. If the value to be stored is not available yet, the CDB must be moni-
tored until that value is broadcast, at which time the Value field of the ROB
entry of the store is updated. For simplicity we assume that this occurs during
the write results stage of a store; we discuss relaxing this requirement later.

4. Commit—This is the final stage of completing an instruction, after which only
its result remains. (Some processors call this commit phase “completion” or
“graduation.”) There are three different sequences of actions at commit depend-
ing on whether the committing instruction is a branch with an incorrect predic-
tion, a store, or any other instruction (normal commit). The normal commit case
occurs when an instruction reaches the head of the ROB and its result is present
in the buffer; at this point, the processor updates the register with the result and
removes the instruction from the ROB. Committing a store is similar except
that memory is updated rather than a result register. When a branch with incor-
rect prediction reaches the head of the ROB, it indicates that the speculation

3.6 Hardware-Based Speculation ■ 187

was wrong. The ROB is flushed and execution is restarted at the correct succes-
sor of the branch. If the branch was correctly predicted, the branch is finished.

Once an instruction commits, its entry in the ROB is reclaimed and the regis-
ter or memory destination is updated, eliminating the need for the ROB entry. If
the ROB fills, we simply stop issuing instructions until an entry is made free.
Now, let’s examine how this scheme would work with the same example we used
for Tomasulo’s algorithm.

Example Assume the same latencies for the floating-point functional units as in earlier exam-
ples: add is 2 clock cycles, multiply is 6 clock cycles, and divide is 12 clock cycles.
Using the code segment below, the same one we used to generate Figure 3.8, show
what the status tables look like when the MUL.D is ready to go to commit.

L.D F6,32(R2)
L.D F2,44(R3)
MUL.D F0,F2,F4
SUB.D F8,F2,F6
DIV.D F10,F0,F6
ADD.D F6,F8,F2

Answer Figure 3.12 shows the result in the three tables. Notice that although the SUB.D
instruction has completed execution, it does not commit until the MUL.D commits.
The reservation stations and register status field contain the same basic informa-
tion that they did for Tomasulo’s algorithm (see page 176 for a description of
those fields). The differences are that reservation station numbers are replaced
with ROB entry numbers in the Qj and Qk fields, as well as in the register status
fields, and we have added the Dest field to the reservation stations. The Dest field
designates the ROB entry that is the destination for the result produced by this
reservation station entry.

The above example illustrates the key important difference between a proces-
sor with speculation and a processor with dynamic scheduling. Compare the con-
tent of Figure 3.12 with that of Figure 3.8 on page 179, which shows the same
code sequence in operation on a processor with Tomasulo’s algorithm. The key
difference is that, in the example above, no instruction after the earliest uncom-
pleted instruction (MUL.D above) is allowed to complete. In contrast, in Figure 3.8
the SUB.D and ADD.D instructions have also completed.

One implication of this difference is that the processor with the ROB can
dynamically execute code while maintaining a precise interrupt model. For
example, if the MUL.D instruction caused an interrupt, we could simply wait until
it reached the head of the ROB and take the interrupt, flushing any other pending
instructions from the ROB. Because instruction commit happens in order, this
yields a precise exception.

By contrast, in the example using Tomasulo’s algorithm, the SUB.D and
ADD.D instructions could both complete before the MUL.D raised the exception.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

188 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

The result is that the registers F8 and F6 (destinations of the SUB.D and ADD.D
instructions) could be overwritten, and the interrupt would be imprecise.

Some users and architects have decided that imprecise floating-point excep-
tions are acceptable in high-performance processors, since the program will
likely terminate; see Appendix J for further discussion of this topic. Other types
of exceptions, such as page faults, are much more difficult to accommodate if
they are imprecise, since the program must transparently resume execution after
handling such an exception.

The use of a ROB with in-order instruction commit provides precise excep-
tions, in addition to supporting speculative execution, as the next example shows.

 Reorder buffer

Entry Busy Instruction State Destination Value

1 No L.D F6,32(R2) Commit F6 Mem[32 + Regs[R2]]
2 No L.D F2,44(R3) Commit F2 Mem[44 + Regs[R3]]
3 Yes MUL.D F0,F2,F4 Write result F0 #2 × Regs[F4]
4 Yes SUB.D F8,F2,F6 Write result F8 #2 – #1

5 Yes DIV.D F10,F0,F6 Execute F10
6 Yes ADD.D F6,F8,F2 Write result F6 #4 + #2

 Reservation stations

Name Busy Op Vj Vk Qj Qk Dest A

Load1 No

Load2 No

Add1 No

Add2 No

Add3 No

Mult1 No MUL.D Mem[44 + Regs[R3]] Regs[F4] #3

Mult2 Yes DIV.D Mem[32 + Regs[R2]] #3 #5

FP register status

Field F0 F1 F2 F3 F4 F5 F6 F7 F8 F10

Reorder # 3 6 4 5

Busy Yes No No No No No Yes . . . Yes Yes

Figure 3.12 At the time the MUL.D is ready to commit, only the two L.D instructions have committed, although
several others have completed execution. The MUL.D is at the head of the ROB, and the two L.D instructions are
there only to ease understanding. The SUB.D and ADD.D instructions will not commit until the MUL.D instruction
commits, although the results of the instructions are available and can be used as sources for other instructions.
The DIV.D is in execution, but has not completed solely due to its longer latency than MUL.D. The Value column
indicates the value being held; the format #X is used to refer to a value field of ROB entry X. Reorder buffers 1 and
2 are actually completed but are shown for informational purposes. We do not show the entries for the load/store
queue, but these entries are kept in order.

3.6 Hardware-Based Speculation ■ 189

Example Consider the code example used earlier for Tomasulo’s algorithm and shown in
Figure 3.10 in execution:

Loop: L.D F0,0(R1)
MUL.D F4,F0,F2
S.D F4,0(R1)
DADDIU R1,R1,#-8
BNE R1,R2,Loop ;branches if R1¦R2

Assume that we have issued all the instructions in the loop twice. Let’s also
assume that the L.D and MUL.D from the first iteration have committed and all
other instructions have completed execution. Normally, the store would wait in
the ROB for both the effective address operand (R1 in this example) and the value
(F4 in this example). Since we are only considering the floating-point pipeline,
assume the effective address for the store is computed by the time the instruction
is issued.

Answer Figure 3.13 shows the result in two tables.

 Reorder buffer

Entry Busy Instruction State Destination Value

1 No L.D F0,0(R1) Commit F0 Mem[0 +
Regs[R1]]

2 No MUL.D F4,F0,F2 Commit F4 #1 × Regs[F2]

3 Yes S.D F4,0(R1) Write result 0 + Regs[R1] #2

4 Yes DADDIU R1,R1,#-8 Write result R1 Regs[R1] – 8

5 Yes BNE R1,R2,Loop Write result

6 Yes L.D F0,0(R1) Write result F0 Mem[#4]

7 Yes MUL.D F4,F0,F2 Write result F4 #6 × Regs[F2]

8 Yes S.D F4,0(R1) Write result 0 + #4 #7

9 Yes DADDIU R1,R1,#-8 Write result R1 #4 – 8

10 Yes BNE R1,R2,Loop Write result

FP register status

Field F0 F1 F2 F3 F4 F5 F6 F7

Reorder # 6 7

Busy Yes No No No Yes No No ... N

F8

o

Figure 3.13 Only the L.D and MUL.D instructions have committed, although all the others have completed

execution. Hence, no reservation stations are busy and none is shown. The remaining instructions will be committed
as quickly as possible. The first two reorder buffers are empty, but are shown for completeness.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

190 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

Because neither the register values nor any memory values are actually writ-
ten until an instruction commits, the processor can easily undo its speculative
actions when a branch is found to be mispredicted. Suppose that the branch BNE
is not taken the first time in Figure 3.13. The instructions prior to the branch will
simply commit when each reaches the head of the ROB; when the branch reaches
the head of that buffer, the buffer is simply cleared and the processor begins
fetching instructions from the other path.

In practice, processors that speculate try to recover as early as possible
after a branch is mispredicted. This recovery can be done by clearing the ROB
for all entries that appear after the mispredicted branch, allowing those that
are before the branch in the ROB to continue, and restarting the fetch at the
correct branch successor. In speculative processors, performance is more sen-
sitive to the branch prediction, since the impact of a misprediction will be
higher. Thus, all the aspects of handling branches—prediction accuracy,
latency of misprediction detection, and misprediction recovery time—increase
in importance.

Exceptions are handled by not recognizing the exception until it is ready to
commit. If a speculated instruction raises an exception, the exception is recorded
in the ROB. If a branch misprediction arises and the instruction should not have
been executed, the exception is flushed along with the instruction when the ROB
is cleared. If the instruction reaches the head of the ROB, then we know it is no
longer speculative and the exception should really be taken. We can also try to
handle exceptions as soon as they arise and all earlier branches are resolved, but
this is more challenging in the case of exceptions than for branch mispredict and,
because it occurs less frequently, not as critical.

Figure 3.14 shows the steps of execution for an instruction, as well as the
conditions that must be satisfied to proceed to the step and the actions taken. We
show the case where mispredicted branches are not resolved until commit.
Although speculation seems like a simple addition to dynamic scheduling, a
comparison of Figure 3.14 with the comparable figure for Tomasulo’s algorithm
in Figure 3.9 shows that speculation adds significant complications to the con-
trol. In addition, remember that branch mispredictions are somewhat more com-
plex as well.

There is an important difference in how stores are handled in a speculative
processor versus in Tomasulo’s algorithm. In Tomasulo’s algorithm, a store can
update memory when it reaches write result (which ensures that the effective
address has been calculated) and the data value to store is available. In a specula-
tive processor, a store updates memory only when it reaches the head of the
ROB. This difference ensures that memory is not updated until an instruction is
no longer speculative.

Figure 3.14 has one significant simplification for stores, which is unneeded
in practice. Figure 3.14 requires stores to wait in the write result stage for the
register source operand whose value is to be stored; the value is then moved
from the Vk field of the store’s reservation station to the Value field of the
store’s ROB entry. In reality, however, the value to be stored need not arrive

3.6 Hardware-Based Speculation ■ 191

Status Wait until Action or bookkeeping

Issue
all
instructions

Reservation
station (r)
and
ROB (b)
both available

if (RegisterStat[rs].Busy)/*in-flight instr. writes rs*/
 {h ← RegisterStat[rs].Reorder;
 if (ROB[h].Ready)/* Instr completed already */
 {RS[r].Vj ← ROB[h].Value; RS[r].Qj ← 0;}
 else {RS[r].Qj ← h;} /* wait for instruction */
} else {RS[r].Vj ← Regs[rs]; RS[r].Qj ← 0;};
RS[r].Busy ← yes; RS[r].Dest ← b;
ROB[b].Instruction ← opcode; ROB[b].Dest ← rd;ROB[b].Ready ← no;

FP
operations
and stores

if (RegisterStat[rt].Busy) /*in-flight instr writes rt*/
 {h ← RegisterStat[rt].Reorder;
 if (ROB[h].Ready)/* Instr completed already */
 {RS[r].Vk ← ROB[h].Value; RS[r].Qk ← 0;}
 else {RS[r].Qk ← h;} /* wait for instruction */
} else {RS[r].Vk ← Regs[rt]; RS[r].Qk ← 0;};

FP operations RegisterStat[rd].Reorder ← b; RegisterStat[rd].Busy ← yes;
ROB[b].Dest ← rd;

Loads RS[r].A ← imm; RegisterStat[rt].Reorder ← b;
RegisterStat[rt].Busy ← yes; ROB[b].Dest ← rt;

Stores RS[r].A ← imm;
Execute
FP op

(RS[r].Qj == 0) and
(RS[r].Qk == 0)

Compute results—operands are in Vj and Vk

Load step 1 (RS[r].Qj == 0) and
there are no stores
earlier in the queue

RS[r].A ← RS[r].Vj + RS[r].A;

Load step 2 Load step 1 done and
all stores earlier in
ROB have different
address

Read from Mem[RS[r].A]

Store (RS[r].Qj == 0) and
store at queue head

ROB[h].Address ← RS[r].Vj + RS[r].A;

Write result
all but store

Execution done at r
and CDB available

b ← RS[r].Dest; RS[r].Busy ← no;
∀x(if (RS[x].Qj==b) {RS[x].Vj ← result; RS[x].Qj ← 0});
∀x(if (RS[x].Qk==b) {RS[x].Vk ← result; RS[x].Qk ← 0});
ROB[b].Value ← result; ROB[b].Ready ← yes;

Store Execution done at r
and (RS[r].Qk == 0)

ROB[h].Value ← RS[r].Vk;

Commit Instruction is at the
head of the ROB
(entry h) and
ROB[h].ready ==
yes

d ← ROB[h].Dest; /* register dest, if exists */
if (ROB[h].Instruction==Branch)
 {if (branch is mispredicted)

{clear ROB[h], RegisterStat; fetch branch dest;};}
else if (ROB[h].Instruction==Store)

{Mem[ROB[h].Destination] ← ROB[h].Value;}
else /* put the result in the register destination */
 {Regs[d] ← ROB[h].Value;};
ROB[h].Busy ← no; /* free up ROB entry */
/* free up dest register if no one else writing it */
if (RegisterStat[d].Reorder==h) {RegisterStat[d].Busy ← no;};

Figure 3.14 Steps in the algorithm and what is required for each step. For the issuing instruction, rd is the destina-
tion, rs and rt are the sources, r is the reservation station allocated, b is the assigned ROB entry, and h is the head entry
of the ROB. RS is the reservation station data structure. The value returned by a reservation station is called the result.
RegisterStat is the register data structure, Regs represents the actual registers, and ROB is the reorder buffer data
structure.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

192 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

until just before the store commits and can be placed directly into the store’s
ROB entry by the sourcing instruction. This is accomplished by having the hard-
ware track when the source value to be stored is available in the store’s ROB
entry and searching the ROB on every instruction completion to look for depen-
dent stores.

This addition is not complicated, but adding it has two effects: We would
need to add a field to the ROB, and Figure 3.14, which is already in a small font,
would be even longer! Although Figure 3.14 makes this simplification, in our
examples, we will allow the store to pass through the write result stage and sim-
ply wait for the value to be ready when it commits.

Like Tomasulo’s algorithm, we must avoid hazards through memory. WAW
and WAR hazards through memory are eliminated with speculation because the
actual updating of memory occurs in order, when a store is at the head of the
ROB, and, hence, no earlier loads or stores can still be pending. RAW hazards
through memory are maintained by two restrictions:

1. Not allowing a load to initiate the second step of its execution if any active
ROB entry occupied by a store has a Destination field that matches the value
of the A field of the load.

2. Maintaining the program order for the computation of an effective address of
a load with respect to all earlier stores.

Together, these two restrictions ensure that any load that accesses a memory loca-
tion written to by an earlier store cannot perform the memory access until the
store has written the data. Some speculative processors will actually bypass the
value from the store to the load directly, when such a RAW hazard occurs.
Another approach is to predict potential collisions using a form of value predic-
tion; we consider this in Section 3.9.

Although this explanation of speculative execution has focused on floating
point, the techniques easily extend to the integer registers and functional units.
Indeed, speculation may be more useful in integer programs, since such programs
tend to have code where the branch behavior is less predictable. Additionally,
these techniques can be extended to work in a multiple-issue processor by allow-
ing multiple instructions to issue and commit every clock. In fact, speculation is
probably most interesting in such processors, since less ambitious techniques can
probably exploit sufficient ILP within basic blocks when assisted by a compiler.

The techniques of the preceding sections can be used to eliminate data, control
stalls, and achieve an ideal CPI of one. To improve performance further we
would like to decrease the CPI to less than one, but the CPI cannot be reduced
below one if we issue only one instruction every clock cycle.

3.7 Exploiting ILP Using Multiple Issue and
Static Scheduling

3.7 Exploiting ILP Using Multiple Issue and Static Scheduling ■ 193

The goal of the multiple-issue processors, discussed in the next few sections,
is to allow multiple instructions to issue in a clock cycle. Multiple-issue proces-
sors come in three major flavors:

1. Statically scheduled superscalar processors

2. VLIW (very long instruction word) processors

3. Dynamically scheduled superscalar processors

The two types of superscalar processors issue varying numbers of instructions
per clock and use in-order execution if they are statically scheduled or out-of-
order execution if they are dynamically scheduled.

VLIW processors, in contrast, issue a fixed number of instructions formatted
either as one large instruction or as a fixed instruction packet with the parallel-
ism among instructions explicitly indicated by the instruction. VLIW processors
are inherently statically scheduled by the compiler. When Intel and HP created
the IA-64 architecture, described in Appendix H, they also introduced the name
EPIC—explicitly parallel instruction computer—for this architectural style.

Although statically scheduled superscalars issue a varying rather than a fixed
number of instructions per clock, they are actually closer in concept to VLIWs,
since both approaches rely on the compiler to schedule code for the processor.
Because of the diminishing advantages of a statically scheduled superscalar as the
issue width grows, statically scheduled superscalars are used primarily for narrow
issue widths, normally just two instructions. Beyond that width, most designers
choose to implement either a VLIW or a dynamically scheduled superscalar.
Because of the similarities in hardware and required compiler technology, we
focus on VLIWs in this section. The insights of this section are easily extrapolated
to a statically scheduled superscalar.

Figure 3.15 summarizes the basic approaches to multiple issue and their dis-
tinguishing characteristics and shows processors that use each approach.

The Basic VLIW Approach

VLIWs use multiple, independent functional units. Rather than attempting to
issue multiple, independent instructions to the units, a VLIW packages the multi-
ple operations into one very long instruction, or requires that the instructions in
the issue packet satisfy the same constraints. Since there is no fundamental
difference in the two approaches, we will just assume that multiple operations are
placed in one instruction, as in the original VLIW approach.

Since the advantage of a VLIW increases as the maximum issue rate grows,
we focus on a wider issue processor. Indeed, for simple two-issue processors, the
overhead of a superscalar is probably minimal. Many designers would probably
argue that a four-issue processor has manageable overhead, but as we will see
later in this chapter, the growth in overhead is a major factor limiting wider issue
processors.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

194 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

Let’s consider a VLIW processor with instructions that contain five opera-
tions, including one integer operation (which could also be a branch), two
floating-point operations, and two memory references. The instruction would
have a set of fields for each functional unit—perhaps 16 to 24 bits per unit, yield-
ing an instruction length of between 80 and 120 bits. By comparison, the Intel
Itanium 1 and 2 contain six operations per instruction packet (i.e., they allow
concurrent issue of two three-instruction bundles, as Appendix H describes).

To keep the functional units busy, there must be enough parallelism in a code
sequence to fill the available operation slots. This parallelism is uncovered by
unrolling loops and scheduling the code within the single larger loop body. If the
unrolling generates straight-line code, then local scheduling techniques, which
operate on a single basic block, can be used. If finding and exploiting the parallel-
ism require scheduling code across branches, a substantially more complex global
scheduling algorithm must be used. Global scheduling algorithms are not only
more complex in structure, but they also must deal with significantly more compli-
cated trade-offs in optimization, since moving code across branches is expensive.

In Appendix H, we will discuss trace scheduling, one of these global sched-
uling techniques developed specifically for VLIWs; we will also explore special
hardware support that allows some conditional branches to be eliminated,
extending the usefulness of local scheduling and enhancing the performance of
global scheduling.

Common name
Issue
structure

Hazard
detection Scheduling

Distinguishing
characteristic Examples

Superscalar
(static)

Dynamic Hardware Static In-order execution Mostly in the
embedded space:
MIPS and ARM,
including the ARM
Cortex-A8

Superscalar
(dynamic)

Dynamic Hardware Dynamic Some out-of-order
execution, but no
speculation

None at the present

Superscalar
(speculative)

Dynamic Hardware Dynamic with
speculation

Out-of-order execution
with speculation

Intel Core i3, i5, i7;
AMD Phenom; IBM
Power 7

VLIW/LIW Static Primarily
software

Static All hazards determined
and indicated by compiler
(often implicitly)

Most examples are in
signal processing,
such as the TI C6x

EPIC Primarily
static

Primarily
software

Mostly static All hazards determined
and indicated explicitly
by the compiler

Itanium

Figure 3.15 The five primary approaches in use for multiple-issue processors and the primary characteristics
that distinguish them. This chapter has focused on the hardware-intensive techniques, which are all some form of
superscalar. Appendix H focuses on compiler-based approaches. The EPIC approach, as embodied in the IA-64 archi-
tecture, extends many of the concepts of the early VLIW approaches, providing a blend of static and dynamic
approaches.

3.7 Exploiting ILP Using Multiple Issue and Static Scheduling ■ 195

For now, we will rely on loop unrolling to generate long, straight-line code
sequences, so that we can use local scheduling to build up VLIW instructions and
focus on how well these processors operate.

Example Suppose we have a VLIW that could issue two memory references, two FP oper-
ations, and one integer operation or branch in every clock cycle. Show an
unrolled version of the loop x[i] = x[i] + s (see page 158 for the MIPS code)
for such a processor. Unroll as many times as necessary to eliminate any stalls.
Ignore delayed branches.

Answer Figure 3.16 shows the code. The loop has been unrolled to make seven copies of
the body, which eliminates all stalls (i.e., completely empty issue cycles), and
runs in 9 cycles. This code yields a running rate of seven results in 9 cycles, or
1.29 cycles per result, nearly twice as fast as the two-issue superscalar of Section
3.2 that used unrolled and scheduled code.

 For the original VLIW model, there were both technical and logistical prob-
lems that make the approach less efficient. The technical problems are the
increase in code size and the limitations of lockstep operation. Two different
elements combine to increase code size substantially for a VLIW. First, generat-
ing enough operations in a straight-line code fragment requires ambitiously
unrolling loops (as in earlier examples), thereby increasing code size. Second,
whenever instructions are not full, the unused functional units translate to wasted
bits in the instruction encoding. In Appendix H, we examine software scheduling

Memory
reference 1

Memory
reference 2

FP
operation 1

FP
operation 2

Integer
operation/branch

L.D F0,0(R1) L.D F6,-8(R1)

L.D F10,-16(R1) L.D F14,-24(R1)

L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2

L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2

ADD.D F20,F18,F2 ADD.D F24,F22,F2

S.D F4,0(R1) S.D F8,-8(R1) ADD.D F28,F26,F2

S.D F12,-16(R1) S.D F16,-24(R1) DADDUI R1,R1,#-56

S.D F20,24(R1) S.D F24,16(R1)

S.D F28,8(R1) BNE R1,R2,Loop

Figure 3.16 VLIW instructions that occupy the inner loop and replace the unrolled sequence. This code takes 9
cycles assuming no branch delay; normally the branch delay would also need to be scheduled. The issue rate is 23 oper-
ations in 9 clock cycles, or 2.5 operations per cycle. The efficiency, the percentage of available slots that contained an
operation, is about 60%. To achieve this issue rate requires a larger number of registers than MIPS would normally use in
this loop. The VLIW code sequence above requires at least eight FP registers, while the same code sequence for the base
MIPS processor can use as few as two FP registers or as many as five when unrolled and scheduled.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

196 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

approaches, such as software pipelining, that can achieve the benefits of unroll-
ing without as much code expansion.

To combat this code size increase, clever encodings are sometimes used. For
example, there may be only one large immediate field for use by any functional
unit. Another technique is to compress the instructions in main memory and
expand them when they are read into the cache or are decoded. In Appendix H,
we show other techniques, as well as document the significant code expansion
seen on IA-64.

Early VLIWs operated in lockstep; there was no hazard-detection hardware at
all. This structure dictated that a stall in any functional unit pipeline must cause
the entire processor to stall, since all the functional units must be kept synchro-
nized. Although a compiler may be able to schedule the deterministic functional
units to prevent stalls, predicting which data accesses will encounter a cache stall
and scheduling them are very difficult. Hence, caches needed to be blocking and
to cause all the functional units to stall. As the issue rate and number of memory
references becomes large, this synchronization restriction becomes unacceptable.
In more recent processors, the functional units operate more independently, and
the compiler is used to avoid hazards at issue time, while hardware checks allow
for unsynchronized execution once instructions are issued.

Binary code compatibility has also been a major logistical problem for
VLIWs. In a strict VLIW approach, the code sequence makes use of both the
instruction set definition and the detailed pipeline structure, including both func-
tional units and their latencies. Thus, different numbers of functional units and
unit latencies require different versions of the code. This requirement makes
migrating between successive implementations, or between implementations
with different issue widths, more difficult than it is for a superscalar design. Of
course, obtaining improved performance from a new superscalar design may
require recompilation. Nonetheless, the ability to run old binary files is a practi-
cal advantage for the superscalar approach.

The EPIC approach, of which the IA-64 architecture is the primary example,
provides solutions to many of the problems encountered in early VLIW designs,
including extensions for more aggressive software speculation and methods to
overcome the limitation of hardware dependence while preserving binary com-
patibility.

The major challenge for all multiple-issue processors is to try to exploit large
amounts of ILP. When the parallelism comes from unrolling simple loops in FP
programs, the original loop probably could have been run efficiently on a vector
processor (described in the next chapter). It is not clear that a multiple-issue pro-
cessor is preferred over a vector processor for such applications; the costs are
similar, and the vector processor is typically the same speed or faster. The poten-
tial advantages of a multiple-issue processor versus a vector processor are their
ability to extract some parallelism from less structured code and their ability to
easily cache all forms of data. For these reasons multiple-issue approaches have
become the primary method for taking advantage of instruction-level parallelism,
and vectors have become primarily an extension to these processors.

3.8 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation ■ 197

So far, we have seen how the individual mechanisms of dynamic scheduling,
multiple issue, and speculation work. In this section, we put all three together,
which yields a microarchitecture quite similar to those in modern microproces-
sors. For simplicity, we consider only an issue rate of two instructions per clock,
but the concepts are no different from modern processors that issue three or more
instructions per clock.

Let’s assume we want to extend Tomasulo’s algorithm to support multiple-
issue superscalar pipeline with separate integer, load/store, and floating-point
units (both FP multiply and FP add), each of which can initiate an operation on
every clock. We do not want to issue instructions to the reservation stations out of
order, since this could lead to a violation of the program semantics. To gain the
full advantage of dynamic scheduling we will allow the pipeline to issue any
combination of two instructions in a clock, using the scheduling hardware to
actually assign operations to the integer and floating-point unit. Because the
interaction of the integer and floating-point instructions is crucial, we also extend
Tomasulo’s scheme to deal with both the integer and floating-point functional
units and registers, as well as incorporating speculative execution. As Figure 3.17
shows, the basic organization is similar to that of a processor with speculation
with one issue per clock, except that the issue and completion logic must be
enhanced to allow multiple instructions to be processed per clock.

Issuing multiple instructions per clock in a dynamically scheduled processor
(with or without speculation) is very complex for the simple reason that the mul-
tiple instructions may depend on one another. Because of this the tables must be
updated for the instructions in parallel; otherwise, the tables will be incorrect or
the dependence may be lost.

Two different approaches have been used to issue multiple instructions per
clock in a dynamically scheduled processor, and both rely on the observation that
the key is assigning a reservation station and updating the pipeline control tables.
One approach is to run this step in half a clock cycle, so that two instructions can
be processed in one clock cycle; this approach cannot be easily extended to han-
dle four instructions per clock, unfortunately.

A second alternative is to build the logic necessary to handle two or more
instructions at once, including any possible dependences between the instruc-
tions. Modern superscalar processors that issue four or more instructions per
clock may include both approaches: They both pipeline and widen the issue
logic. A key observation is that we cannot simply pipeline away the problem. By
making instruction issues take multiple clocks because new instructions are issu-
ing every clock cycle, we must be able to assign the reservation station and to
update the pipeline tables, so that a dependent instruction issuing on the next
clock can use the updated information.

This issue step is one of the most fundamental bottlenecks in dynamically
scheduled superscalars. To illustrate the complexity of this process, Figure 3.18

3.8 Exploiting ILP Using Dynamic Scheduling, Multiple
Issue, and Speculation

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

198 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

shows the issue logic for one case: issuing a load followed by a dependent FP
operation. The logic is based on that in Figure 3.14 on page 191, but represents
only one case. In a modern superscalar, every possible combination of dependent
instructions that is allowed to issue in the same clock cycle must be considered.
Since the number of possibilities climbs as the square of the number of instruc-
tions that can be issued in a clock, the issue step is a likely bottleneck for
attempts to go beyond four instructions per clock.

We can generalize the detail of Figure 3.18 to describe the basic strategy for
updating the issue logic and the reservation tables in a dynamically scheduled
superscalar with up to n issues per clock as follows:

Figure 3.17 The basic organization of a multiple issue processor with speculation. In this case, the organization
could allow a FP multiply, FP add, integer, and load/store to all issues simultaneously (assuming one issue per clock
per functional unit). Note that several datapaths must be widened to support multiple issues: the CDB, the operand
buses, and, critically, the instruction issue logic, which is not shown in this figure. The last is a difficult problem, as we
discuss in the text.

From instruction unit

Integer and FP registers

Reservation
stations

FP adders FP multipliers

3
2
1

2
1

Common data bus (CDB)

Operation bus

Operand
busesAddress unit

Load buffers

Memory unit

DataReg #

Reorder buffer

Store
data Address

Load
data

Store
address

Floating-point
operations

Load/store
operations

Instruction
queue

Integer unit

2
1

©
 H

en
ne

ss
y,

 J
oh

n
L

.;
Pa

tte
rs

on
, D

av
id

 A
.,

O
ct

 0
7,

 2
01

1,
 C

om
pu

te
r

A
rc

hi
te

ct
ur

e
: A

 Q
ua

nt
ita

tiv
e

A
pp

ro
ac

h
M

or
ga

n
K

au
fm

an
n,

 B
ur

lin
gt

on
, I

SB
N

: 9
78

01
23

83
87

35

3.8 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation ■ 199

1. Assign a reservation station and a reorder buffer for every instruction that
might be issued in the next issue bundle. This assignment can be done before
the instruction types are known, by simply preallocating the reorder buffer
entries sequentially to the instructions in the packet using n available reorder
buffer entries and by ensuring that enough reservation stations are available
to issue the whole bundle, independent of what it contains. By limiting the
number of instructions of a given class (say, one FP, one integer, one load,

Action or bookkeeping Comments

if (RegisterStat[rs1].Busy)/*in-flight instr. writes rs*/
 {h ← RegisterStat[rs1].Reorder;
 if (ROB[h].Ready)/* Instr completed already */
 {RS[r1].Vj ← ROB[h].Value; RS[r1].Qj ← 0;}
 else {RS[r1].Qj ← h;} /* wait for instruction */
} else {RS[r1].Vj ← Regs[rs]; RS[r1].Qj ← 0;};
RS[r1].Busy ← yes; RS[r1].Dest ← b1;
ROB[b1].Instruction ← Load; ROB[b1].Dest ← rd1;
ROB[b1].Ready ← no;
RS[r].A ← imm1; RegisterStat[rt1].Reorder ← b1;
RegisterStat[rt1].Busy ← yes; ROB[b1].Dest ← rt1;

Updating the reservation tables for the load
instruction, which has a single source operand.
Because this is the first instruction in this issue
bundle, it looks no different than what would
normally happen for a load.

RS[r2].Qj ← b1;} /* wait for load instruction */ Since we know that the first operand of the FP
operation is from the load, this step simply
updates the reservation station to point to the
load. Notice that the dependence must be
analyzed on the fly and the ROB entries must
be allocated during this issue step so that the
reservation tables can be correctly updated.

if (RegisterStat[rt2].Busy) /*in-flight instr writes rt*/
 {h ← RegisterStat[rt2].Reorder;
 if (ROB[h].Ready)/* Instr completed already */
 {RS[r2].Vk ← ROB[h].Value; RS[r2].Qk ← 0;}
 else {RS[r2].Qk ← h;} /* wait for instruction */
} else {RS[r2].Vk ← Regs[rt2]; RS[r2].Qk ← 0;};
RegisterStat[rd2].Reorder ← b2;
RegisterStat[rd2].Busy ← yes;
ROB[b2].Dest ← rd2;

Since we assumed that the second operand of
the FP instruction was from a prior issue bundle,
this step looks like it would in the single-issue
case. Of course, if this instruction was
dependent on something in the same issue
bundle the tables would need to be updated
using the assigned reservation buffer.

RS[r2].Busy ← yes; RS[r2].Dest ← b2;
ROB[b2].Instruction ← FP operation; ROB[b2].Dest ← rd2;
ROB[b2].Ready ← no;

This section simply updates the tables for the FP
operation, and is independent of the load. Of
course, if further instructions in this issue
bundle depended on the FP operation (as could
happen with a four-issue superscalar), the
updates to the reservation tables for those
instructions would be effected by this instruction.

Figure 3.18 The issue steps for a pair of dependent instructions (called 1 and 2) where instruction 1 is FP load

and instruction 2 is an FP operation whose first operand is the result of the load instruction; r1 and r2 are the

assigned reservation stations for the instructions; and b1 and b2 are the assigned reorder buffer entries. For the
issuing instructions, rd1 and rd2 are the destinations; rs1, rs2, and rt2 are the sources (the load only has one
source); r1 and r2 are the reservation stations allocated; and b1 and b2 are the assigned ROB entries. RS is the res-
ervation station data structure. RegisterStat is the register data structure, Regs represents the actual registers,
and ROB is the reorder buffer data structure. Notice that we need to have assigned reorder buffer entries for this
logic to operate properly and recall that all these updates happen in a single clock cycle in parallel, not
sequentially!

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

200 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

one store), the necessary reservation stations can be preallocated. Should suf-
ficient reservation stations not be available (such as when the next few
instructions in the program are all of one instruction type), the bundle is bro-
ken, and only a subset of the instructions, in the original program order, is
issued. The remainder of the instructions in the bundle can be placed in the
next bundle for potential issue.

2. Analyze all the dependences among the instructions in the issue bundle.

3. If an instruction in the bundle depends on an earlier instruction in the bundle,
use the assigned reorder buffer number to update the reservation table for the
dependent instruction. Otherwise, use the existing reservation table and reor-
der buffer information to update the reservation table entries for the issuing
instruction.

Of course, what makes the above very complicated is that it is all done in parallel
in a single clock cycle!

At the back-end of the pipeline, we must be able to complete and commit
multiple instructions per clock. These steps are somewhat easier than the issue
problems since multiple instructions that can actually commit in the same clock
cycle must have already dealt with and resolved any dependences. As we will
see, designers have figured out how to handle this complexity: The Intel i7,
which we examine in Section 3.13, uses essentially the scheme we have
described for speculative multiple issue, including a large number of reservation
stations, a reorder buffer, and a load and store buffer that is also used to handle
nonblocking cache misses.

From a performance viewpoint, we can show how the concepts fit together
with an example.

Example Consider the execution of the following loop, which increments each element of
an integer array, on a two-issue processor, once without speculation and once
with speculation:

Loop: LD R2,0(R1) ;R2=array element
DADDIU R2,R2,#1 ;increment R2
SD R2,0(R1) ;store result
DADDIU R1,R1,#8 ;increment pointer
BNE R2,R3,LOOP ;branch if not last element

Assume that there are separate integer functional units for effective address
calculation, for ALU operations, and for branch condition evaluation. Create a
table for the first three iterations of this loop for both processors. Assume that up
to two instructions of any type can commit per clock.

Answer Figures 3.19 and 3.20 show the performance for a two-issue dynamically sched-
uled processor, without and with speculation. In this case, where a branch can be
a critical performance limiter, speculation helps significantly. The third branch in

3.8 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation ■ 201

the speculative processor executes in clock cycle 13, while it executes in clock
cycle 19 on the nonspeculative pipeline. Because the completion rate on the non-
speculative pipeline is falling behind the issue rate rapidly, the nonspeculative
pipeline will stall when a few more iterations are issued. The performance of the
nonspeculative processor could be improved by allowing load instructions to
complete effective address calculation before a branch is decided, but unless
speculative memory accesses are allowed, this improvement will gain only 1
clock per iteration.

This example clearly shows how speculation can be advantageous when there
are data-dependent branches, which otherwise would limit performance. This
advantage depends, however, on accurate branch prediction. Incorrect specula-
tion does not improve performance; in fact, it typically harms performance and,
as we shall see, dramatically lowers energy efficiency.

Iteration
number Instructions

Issues at
clock cycle

number

Executes at
clock cycle

number

Memory
access at

clock cycle
number

 Write CDB at
clock cycle

number Comment

1 LD R2,0(R1) 1 2 3 4 First issue

1 DADDIU R2,R2,#1 1 5 6 Wait for LW

1 SD R2,0(R1) 2 3 7 Wait for DADDIU

1 DADDIU R1,R1,#8 2 3 4 Execute directly

1 BNE R2,R3,LOOP 3 7 Wait for DADDIU

2 LD R2,0(R1) 4 8 9 10 Wait for BNE

2 DADDIU R2,R2,#1 4 11 12 Wait for LW

2 SD R2,0(R1) 5 9 13 Wait for DADDIU

2 DADDIU R1,R1,#8 5 8 9 Wait for BNE

2 BNE R2,R3,LOOP 6 13 Wait for DADDIU

3 LD R2,0(R1) 7 14 15 16 Wait for BNE

3 DADDIU R2,R2,#1 7 17 18 Wait for LW

3 SD R2,0(R1) 8 15 19 Wait for DADDIU

3 DADDIU R1,R1,#8 8 14 15 Wait for BNE

3 BNE R2,R3,LOOP 9 19 Wait for DADDIU

Figure 3.19 The time of issue, execution, and writing result for a dual-issue version of our pipeline without
speculation. Note that the LD following the BNE cannot start execution earlier because it must wait until the branch
outcome is determined. This type of program, with data-dependent branches that cannot be resolved earlier, shows
the strength of speculation. Separate functional units for address calculation, ALU operations, and branch-condition
evaluation allow multiple instructions to execute in the same cycle. Figure 3.20 shows this example with speculation.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

202 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

In a high-performance pipeline, especially one with multiple issues, predicting
branches well is not enough; we actually have to be able to deliver a high-
bandwidth instruction stream. In recent multiple-issue processors, this has meant
delivering 4 to 8 instructions every clock cycle. We look at methods for increas-
ing instruction delivery bandwidth first. We then turn to a set of key issues in
implementing advanced speculation techniques, including the use of register
renaming versus reorder buffers, the aggressiveness of speculation, and a tech-
nique called value prediction, which attempts to predict the result of a computa-
tion and which could further enhance ILP.

Increasing Instruction Fetch Bandwidth

A multiple-issue processor will require that the average number of instructions
fetched every clock cycle be at least as large as the average throughput. Of
course, fetching these instructions requires wide enough paths to the instruction
cache, but the most difficult aspect is handling branches. In this section, we look

Iteration
number Instructions

Issues
at clock
number

Executes
at clock
number

Read access
at clock
number

 Write
CDB at
clock

number

Commits
at clock
number Comment

1 LD R2,0(R1) 1 2 3 4 5 First issue

1 DADDIU R2,R2,#1 1 5 6 7 Wait for LW

1 SD R2,0(R1) 2 3 7 Wait for DADDIU

1 DADDIU R1,R1,#8 2 3 4 8 Commit in order

1 BNE R2,R3,LOOP 3 7 8 Wait for DADDIU

2 LD R2,0(R1) 4 5 6 7 9 No execute delay

2 DADDIU R2,R2,#1 4 8 9 10 Wait for LW

2 SD R2,0(R1) 5 6 10 Wait for DADDIU

2 DADDIU R1,R1,#8 5 6 7 11 Commit in order

2 BNE R2,R3,LOOP 6 10 11 Wait for DADDIU

3 LD R2,0(R1) 7 8 9 10 12 Earliest possible

3 DADDIU R2,R2,#1 7 11 12 13 Wait for LW

3 SD R2,0(R1) 8 9 13 Wait for DADDIU

3 DADDIU R1,R1,#8 8 9 10 14 Executes earlier

3 BNE R2,R3,LOOP 9 13 14 Wait for DADDIU

Figure 3.20 The time of issue, execution, and writing result for a dual-issue version of our pipeline with specula-
tion. Note that the LD following the BNE can start execution early because it is speculative.

3.9 Advanced Techniques for Instruction Delivery and
Speculation

3.9 Advanced Techniques for Instruction Delivery and Speculation ■ 203

at two methods for dealing with branches and then discuss how modern proces-
sors integrate the instruction prediction and prefetch functions.

Branch-Target Buffers

To reduce the branch penalty for our simple five-stage pipeline, as well as for
deeper pipelines, we must know whether the as-yet-undecoded instruction is a
branch and, if so, what the next program counter (PC) should be. If the
instruction is a branch and we know what the next PC should be, we can have a
branch penalty of zero. A branch-prediction cache that stores the predicted
address for the next instruction after a branch is called a branch-target buffer or
branch-target cache. Figure 3.21 shows a branch-target buffer.

Because a branch-target buffer predicts the next instruction address and will
send it out before decoding the instruction, we must know whether the fetched
instruction is predicted as a taken branch. If the PC of the fetched instruction
matches an address in the prediction buffer, then the corresponding predicted PC
is used as the next PC. The hardware for this branch-target buffer is essentially
identical to the hardware for a cache.

Figure 3.21 A branch-target buffer. The PC of the instruction being fetched is matched against a set of instruction
addresses stored in the first column; these represent the addresses of known branches. If the PC matches one of
these entries, then the instruction being fetched is a taken branch, and the second field, predicted PC, contains the
prediction for the next PC after the branch. Fetching begins immediately at that address. The third field, which is
optional, may be used for extra prediction state bits.

Look up Predicted PC

Number of
entries
in branch-
target
buffer

No: instruction is
not predicted to be
branch; proceed normally

=

Yes: then instruction is branch and predicted
PC should be used as the next PC

Branch
predicted
taken or
untaken

PC of instruction to fetch

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

204 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

If a matching entry is found in the branch-target buffer, fetching begins
immediately at the predicted PC. Note that unlike a branch-prediction buffer, the
predictive entry must be matched to this instruction because the predicted PC
will be sent out before it is known whether this instruction is even a branch. If the
processor did not check whether the entry matched this PC, then the wrong PC
would be sent out for instructions that were not branches, resulting in worse
performance. We only need to store the predicted-taken branches in the branch-
target buffer, since an untaken branch should simply fetch the next sequential
instruction, as if it were not a branch.

Figure 3.22 shows the steps when using a branch-target buffer for a simple
five-stage pipeline. From this figure we can see that there will be no branch delay

Figure 3.22 The steps involved in handling an instruction with a branch-target buffer.

IF

ID

EX

Send PC to memory and
branch-target buffer

Entry found in
branch-target

buffer?

No

No

Normal
instruction
execution

Yes

Send out
predicted

PCIs
instruction

a taken
branch?

Taken
branch?

Enter
branch instruction
address and next
PC into branch-

target buffer

Mispredicted branch,
kill fetched instruction;
restart fetch at other
target; delete entry
from target buffer

Branch correctly
predicted;

continue execution
with no stalls

Yes

No Yes

3.9 Advanced Techniques for Instruction Delivery and Speculation ■ 205

if a branch-prediction entry is found in the buffer and the prediction is correct.
Otherwise, there will be a penalty of at least two clock cycles. Dealing with the
mispredictions and misses is a significant challenge, since we typically will have
to halt instruction fetch while we rewrite the buffer entry. Thus, we would like to
make this process fast to minimize the penalty.

To evaluate how well a branch-target buffer works, we first must determine
the penalties in all possible cases. Figure 3.23 contains this information for a sim-
ple five-stage pipeline.

Example Determine the total branch penalty for a branch-target buffer assuming the pen-
alty cycles for individual mispredictions from Figure 3.23. Make the following
assumptions about the prediction accuracy and hit rate:

■ Prediction accuracy is 90% (for instructions in the buffer).

■ Hit rate in the buffer is 90% (for branches predicted taken).

Answer We compute the penalty by looking at the probability of two events: the branch is
predicted taken but ends up being not taken, and the branch is taken but is not
found in the buffer. Both carry a penalty of two cycles.

This penalty compares with a branch penalty for delayed branches, which we
evaluate in Appendix C, of about 0.5 clock cycles per branch. Remember,
though, that the improvement from dynamic branch prediction will grow as the

Instruction in buffer Prediction Actual branch Penalty cycles

Yes Taken Taken 0

Yes Taken Not taken 2

No Taken 2

No Not taken 0

Figure 3.23 Penalties for all possible combinations of whether the branch is in the

buffer and what it actually does, assuming we store only taken branches in the

buffer. There is no branch penalty if everything is correctly predicted and the branch is
found in the target buffer. If the branch is not correctly predicted, the penalty is equal
to one clock cycle to update the buffer with the correct information (during which an
instruction cannot be fetched) and one clock cycle, if needed, to restart fetching the
next correct instruction for the branch. If the branch is not found and taken, a two-cycle
penalty is encountered, during which time the buffer is updated.

Probability (branch in buffer, but actually not taken) Percent buffer hit rate Percent incorrect predictions×=

90% 10%× 0.09= =

Probability (branch not in buffer, but actually taken) 10%=

Branch penalty 0.09 0.10+() 2×=

Branch penalty 0.38=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

206 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

pipeline length and, hence, the branch delay grows; in addition, better predictors
will yield a larger performance advantage. Modern high-performance processors
have branch misprediction delays on the order of 15 clock cycles; clearly, accu-
rate prediction is critical!

One variation on the branch-target buffer is to store one or more target
instructions instead of, or in addition to, the predicted target address. This varia-
tion has two potential advantages. First, it allows the branch-target buffer access
to take longer than the time between successive instruction fetches, possibly
allowing a larger branch-target buffer. Second, buffering the actual target instruc-
tions allows us to perform an optimization called branch folding. Branch folding
can be used to obtain 0-cycle unconditional branches and sometimes 0-cycle con-
ditional branches.

Consider a branch-target buffer that buffers instructions from the predicted
path and is being accessed with the address of an unconditional branch. The only
function of the unconditional branch is to change the PC. Thus, when the branch-
target buffer signals a hit and indicates that the branch is unconditional, the pipe-
line can simply substitute the instruction from the branch-target buffer in place of
the instruction that is returned from the cache (which is the unconditional
branch). If the processor is issuing multiple instructions per cycle, then the buffer
will need to supply multiple instructions to obtain the maximum benefit. In some
cases, it may be possible to eliminate the cost of a conditional branch.

Return Address Predictors

As we try to increase the opportunity and accuracy of speculation we face the
challenge of predicting indirect jumps, that is, jumps whose destination address
varies at runtime. Although high-level language programs will generate such
jumps for indirect procedure calls, select or case statements, and FORTRAN-
computed gotos, the vast majority of the indirect jumps come from procedure
returns. For example, for the SPEC95 benchmarks, procedure returns account for
more than 15% of the branches and the vast majority of the indirect jumps on
average. For object-oriented languages such as C++ and Java, procedure returns
are even more frequent. Thus, focusing on procedure returns seems appropriate.

Though procedure returns can be predicted with a branch-target buffer, the
accuracy of such a prediction technique can be low if the procedure is called from
multiple sites and the calls from one site are not clustered in time. For example, in
SPEC CPU95, an aggressive branch predictor achieves an accuracy of less than
60% for such return branches. To overcome this problem, some designs use a small
buffer of return addresses operating as a stack. This structure caches the most
recent return addresses: pushing a return address on the stack at a call and popping
one off at a return. If the cache is sufficiently large (i.e., as large as the maximum
call depth), it will predict the returns perfectly. Figure 3.24 shows the performance
of such a return buffer with 0 to 16 elements for a number of the SPEC CPU95
benchmarks. We will use a similar return predictor when we examine the studies of

3.9 Advanced Techniques for Instruction Delivery and Speculation ■ 207

ILP in Section 3.10. Both the Intel Core processors and the AMD Phenom proces-
sors have return address predictors.

Integrated Instruction Fetch Units

To meet the demands of multiple-issue processors, many recent designers have
chosen to implement an integrated instruction fetch unit as a separate autono-
mous unit that feeds instructions to the rest of the pipeline. Essentially, this
amounts to recognizing that characterizing instruction fetch as a simple single
pipe stage given the complexities of multiple issue is no longer valid.

Instead, recent designs have used an integrated instruction fetch unit that inte-
grates several functions:

1. Integrated branch prediction—The branch predictor becomes part of the
instruction fetch unit and is constantly predicting branches, so as to drive the
fetch pipeline.

Figure 3.24 Prediction accuracy for a return address buffer operated as a stack on a

number of SPEC CPU95 benchmarks. The accuracy is the fraction of return addresses
predicted correctly. A buffer of 0 entries implies that the standard branch prediction is
used. Since call depths are typically not large, with some exceptions, a modest buffer
works well. These data come from Skadron et al. [1999] and use a fix-up mechanism to
prevent corruption of the cached return addresses.

M
is

pr
ed

ic
tio

n
fr

eq
ue

nc
y

70%

60%

50%

40%

30%

20%

0

10%

0%
1 2 4

Return address buffer entries

8

Go

m88ksim

cc1

Compress

Xlisp

Ijpeg

Perl

Vortex

16

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

208 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

2. Instruction prefetch—To deliver multiple instructions per clock, the instruc-
tion fetch unit will likely need to fetch ahead. The unit autonomously man-
ages the prefetching of instructions (see Chapter 2 for a discussion of
techniques for doing this), integrating it with branch prediction.

3. Instruction memory access and buffering—When fetching multiple instruc-
tions per cycle a variety of complexities are encountered, including the diffi-
culty that fetching multiple instructions may require accessing multiple cache
lines. The instruction fetch unit encapsulates this complexity, using prefetch
to try to hide the cost of crossing cache blocks. The instruction fetch unit also
provides buffering, essentially acting as an on-demand unit to provide
instructions to the issue stage as needed and in the quantity needed.

Virtually all high-end processors now use a separate instruction fetch unit con-
nected to the rest of the pipeline by a buffer containing pending instructions.

Speculation: Implementation Issues and Extensions

In this section we explore four issues that involve the design trade-offs in specu-
lation, starting with the use of register renaming, the approach that is often used
instead of a reorder buffer. We then discuss one important possible extension to
speculation on control flow: an idea called value prediction.

Speculation Support: Register Renaming versus Reorder Buffers

One alternative to the use of a reorder buffer (ROB) is the explicit use of a larger
physical set of registers combined with register renaming. This approach builds
on the concept of renaming used in Tomasulo’s algorithm and extends it. In
Tomasulo’s algorithm, the values of the architecturally visible registers (R0, …,
R31 and F0, …, F31) are contained, at any point in execution, in some combina-
tion of the register set and the reservation stations. With the addition of specula-
tion, register values may also temporarily reside in the ROB. In either case, if the
processor does not issue new instructions for a period of time, all existing
instructions will commit, and the register values will appear in the register file,
which directly corresponds to the architecturally visible registers.

In the register-renaming approach, an extended set of physical registers is
used to hold both the architecturally visible registers as well as temporary values.
Thus, the extended registers replace most of the function of the ROB and the res-
ervation stations; only a queue to ensure that instructions complete in order is
needed. During instruction issue, a renaming process maps the names of architec-
tural registers to physical register numbers in the extended register set, allocating
a new unused register for the destination. WAW and WAR hazards are avoided
by renaming of the destination register, and speculation recovery is handled
because a physical register holding an instruction destination does not become
the architectural register until the instruction commits. The renaming map is a
simple data structure that supplies the physical register number of the register

3.9 Advanced Techniques for Instruction Delivery and Speculation ■ 209

that currently corresponds to the specified architectural register, a function per-
formed by the register status table in Tomasulo’s algorithm. When an instruction
commits, the renaming table is permanently updated to indicate that a physical
register corresponds to the actual architectural register, thus effectively finalizing
the update to the processor state. Although an ROB is not necessary with register
renaming, the hardware must still track instructions in a queue-like structure and
update the renaming table in strict order.

An advantage of the renaming approach versus the ROB approach is that
instruction commit is slightly simplified, since it requires only two simple
actions: (1) record that the mapping between an architectural register number and
physical register number is no longer speculative, and (2) free up any physical
registers being used to hold the “older” value of the architectural register. In a
design with reservation stations, a station is freed up when the instruction using it
completes execution, and a ROB entry is freed up when the corresponding
instruction commits.

With register renaming, deallocating registers is more complex, since before
we free up a physical register, we must know that it no longer corresponds to an
architectural register and that no further uses of the physical register are outstand-
ing. A physical register corresponds to an architectural register until the architec-
tural register is rewritten, causing the renaming table to point elsewhere. That is,
if no renaming entry points to a particular physical register, then it no longer cor-
responds to an architectural register. There may, however, still be uses of the
physical register outstanding. The processor can determine whether this is the
case by examining the source register specifiers of all instructions in the func-
tional unit queues. If a given physical register does not appear as a source and it
is not designated as an architectural register, it may be reclaimed and reallocated.

Alternatively, the processor can simply wait until another instruction that
writes the same architectural register commits. At that point, there can be no fur-
ther uses of the older value outstanding. Although this method may tie up a phys-
ical register slightly longer than necessary, it is easy to implement and is used in
most recent superscalars.

One question you may be asking is how do we ever know which registers are
the architectural registers if they are constantly changing? Most of the time when
the program is executing, it does not matter. There are clearly cases, however,
where another process, such as the operating system, must be able to know
exactly where the contents of a certain architectural register reside. To under-
stand how this capability is provided, assume the processor does not issue
instructions for some period of time. Eventually all instructions in the pipeline
will commit, and the mapping between the architecturally visible registers and
physical registers will become stable. At that point, a subset of the physical regis-
ters contains the architecturally visible registers, and the value of any physical
register not associated with an architectural register is unneeded. It is then easy to
move the architectural registers to a fixed subset of physical registers so that the
values can be communicated to another process.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

210 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

Both register renaming and reorder buffers continue to be used in high-end
processors, which now feature the ability to have as many as 40 or 50 instructions
(including loads and stores waiting on the cache) in flight. Whether renaming or
a reorder buffer is used, the key complexity bottleneck for a dynamically sched-
ule superscalar remains issuing bundles of instructions with dependences within
the bundle. In particular, dependent instructions in an issue bundle must be issued
with the assigned virtual registers of the instructions on which they depend.
A strategy for instruction issue with register renaming similar to that used for
multiple issue with reorder buffers (see page 198) can be deployed, as follows:

1. The issue logic pre-reserves enough physical registers for the entire issue
bundle (say, four registers for a four-instruction bundle with at most one reg-
ister result per instruction).

2. The issue logic determines what dependences exist within the bundle. If a
dependence does not exist within the bundle, the register renaming structure
is used to determine the physical register that holds, or will hold, the result on
which instruction depends. When no dependence exists within the bundle the
result is from an earlier issue bundle, and the register renaming table will
have the correct register number.

3. If an instruction depends on an instruction that is earlier in the bundle, then
the pre-reserved physical register in which the result will be placed is used to
update the information for the issuing instruction.

Note that just as in the reorder buffer case, the issue logic must both determine
dependences within the bundle and update the renaming tables in a single clock,
and, as before, the complexity of doing this for a larger number of instructions
per clock becomes a chief limitation in the issue width.

How Much to Speculate

One of the significant advantages of speculation is its ability to uncover events
that would otherwise stall the pipeline early, such as cache misses. This potential
advantage, however, comes with a significant potential disadvantage. Specula-
tion is not free. It takes time and energy, and the recovery of incorrect speculation
further reduces performance. In addition, to support the higher instruction execu-
tion rate needed to benefit from speculation, the processor must have additional
resources, which take silicon area and power. Finally, if speculation causes an
exceptional event to occur, such as a cache or translation lookaside buffer (TLB)
miss, the potential for significant performance loss increases, if that event would
not have occurred without speculation.

To maintain most of the advantage, while minimizing the disadvantages,
most pipelines with speculation will allow only low-cost exceptional events
(such as a first-level cache miss) to be handled in speculative mode. If an
expensive exceptional event occurs, such as a second-level cache miss or a TLB
miss, the processor will wait until the instruction causing the event is no longer

3.9 Advanced Techniques for Instruction Delivery and Speculation ■ 211

speculative before handling the event. Although this may slightly degrade the
performance of some programs, it avoids significant performance losses in
others, especially those that suffer from a high frequency of such events coupled
with less-than-excellent branch prediction.

In the 1990s, the potential downsides of speculation were less obvious. As
processors have evolved, the real costs of speculation have become more appar-
ent, and the limitations of wider issue and speculation have been obvious. We
return to this issue shortly.

Speculating through Multiple Branches

In the examples we have considered in this chapter, it has been possible to
resolve a branch before having to speculate on another. Three different situations
can benefit from speculating on multiple branches simultaneously: (1) a very
high branch frequency, (2) significant clustering of branches, and (3) long delays
in functional units. In the first two cases, achieving high performance may mean
that multiple branches are speculated, and it may even mean handling more than
one branch per clock. Database programs, and other less structured integer
computations, often exhibit these properties, making speculation on multiple
branches important. Likewise, long delays in functional units can raise the impor-
tance of speculating on multiple branches as a way to avoid stalls from the longer
pipeline delays.

Speculating on multiple branches slightly complicates the process of specula-
tion recovery but is straightforward otherwise. As of 2011, no processor has yet
combined full speculation with resolving multiple branches per cycle, and it is
unlikely that the costs of doing so would be justified in terms of performance ver-
sus complexity and power.

Speculation and the Challenge of Energy Efficiency

What is the impact of speculation on energy efficiency? At first glance, one
might argue that using speculation always decreases energy efficiency, since
whenever speculation is wrong it consumes excess energy in two ways:

1. The instructions that were speculated and whose results were not needed gen-
erated excess work for the processor, wasting energy.

2. Undoing the speculation and restoring the state of the processor to continue
execution at the appropriate address consumes additional energy that would
not be needed without speculation.

Certainly, speculation will raise the power consumption and, if we could control
speculation, it would be possible to measure the cost (or at least the dynamic
power cost). But, if speculation lowers the execution time by more than it
increases the average power consumption, then the total energy consumed may
be less.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

212 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

Thus, to understand the impact of speculation on energy efficiency, we need
to look at how often speculation is leading to unnecessary work. If a significant
number of unneeded instructions is executed, it is unlikely that speculation will
improve running time by a comparable amount! Figure 3.25 shows the fraction of
instructions that are executed from misspeculation. As we can see, this fraction is
small in scientific code and significant (about 30% on average) in integer code.
Thus, it is unlikely that speculation is energy efficient for integer applications.
Designers could avoid speculation, try to reduce the misspeculation, or think
about new approaches, such as only speculating on branches that are known to be
highly predictable.

Value Prediction

One technique for increasing the amount of ILP available in a program is value
prediction. Value prediction attempts to predict the value that will be produced by
an instruction. Obviously, since most instructions produce a different value every
time they are executed (or at least a different value from a set of values), value
prediction can have only limited success. There are, however, certain instructions
for which it is easier to predict the resulting value—for example, loads that load
from a constant pool or that load a value that changes infrequently. In addition,

Figure 3.25 The fraction of instructions that are executed as a result of misspeculation is typically much higher
for integer programs (the first five) versus FP programs (the last five).

0%

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

16
8.

wup
wise

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
plu

17
7.

m
es

a

M
is

sp
ec

ul
at

io
n

45%

40%

35%

30%

25%

20%

15%

10%

5%

3.10 Studies of the Limitations of ILP ■ 213

when an instruction produces a value chosen from a small set of potential values,
it may be possible to predict the resulting value by correlating it with other pro-
gram behavior.

Value prediction is useful if it significantly increases the amount of available
ILP. This possibility is most likely when a value is used as the source of a chain
of dependent computations, such as a load. Because value prediction is used to
enhance speculations and incorrect speculation has detrimental performance
impact, the accuracy of the prediction is critical.

Although many researchers have focused on value prediction in the past ten
years, the results have never been sufficiently attractive to justify their incorpora-
tion in real processors. Instead, a simpler and older idea, related to value predic-
tion, has been used: address aliasing prediction. Address aliasing prediction is a
simple technique that predicts whether two stores or a load and a store refer to the
same memory address. If two such references do not refer to the same address,
then they may be safely interchanged. Otherwise, we must wait until the memory
addresses accessed by the instructions are known. Because we need not actually
predict the address values, only whether such values conflict, the prediction is
both more stable and simpler. This limited form of address value speculation has
been used in several processors already and may become universal in the future.

Exploiting ILP to increase performance began with the first pipelined processors
in the 1960s. In the 1980s and 1990s, these techniques were key to achieving
rapid performance improvements. The question of how much ILP exists was
critical to our long-term ability to enhance performance at a rate that exceeds the
increase in speed of the base integrated circuit technology. On a shorter scale, the
critical question of what is needed to exploit more ILP is crucial to both com-
puter designers and compiler writers. The data in this section also provide us with
a way to examine the value of ideas that we have introduced in this chapter,
including memory disambiguation, register renaming, and speculation.

In this section we review a portion of one of the studies done of these ques-
tions (based on Wall’s 1993 study). All of these studies of available parallelism
operate by making a set of assumptions and seeing how much parallelism is
available under those assumptions. The data we examine here are from a study
that makes the fewest assumptions; in fact, the ultimate hardware model is proba-
bly unrealizable. Nonetheless, all such studies assume a certain level of compiler
technology, and some of these assumptions could affect the results, despite the
use of incredibly ambitious hardware.

As we will see, for hardware models that have reasonable cost, it is unlikely
that the costs of very aggressive speculation can be justified: the inefficiencies in
power and use of silicon are simply too high. While many in the research com-
munity and the major processor manufacturers were betting in favor of much
greater exploitable ILP and were initially reluctant to accept this possibility, by
2005 they were forced to change their minds.

 3.10 Studies of the Limitations of ILP

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

214 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

The Hardware Model

To see what the limits of ILP might be, we first need to define an ideal processor.
An ideal processor is one where all constraints on ILP are removed. The only
limits on ILP in such a processor are those imposed by the actual data flows
through either registers or memory.

The assumptions made for an ideal or perfect processor are as follows:

1. Infinite register renaming—There are an infinite number of virtual registers
available, and hence all WAW and WAR hazards are avoided and an
unbounded number of instructions can begin execution simultaneously.

2. Perfect branch prediction—Branch prediction is perfect. All conditional
branches are predicted exactly.

3. Perfect jump prediction—All jumps (including jump register used for return
and computed jumps) are perfectly predicted. When combined with perfect
branch prediction, this is equivalent to having a processor with perfect specu-
lation and an unbounded buffer of instructions available for execution.

4. Perfect memory address alias analysis—All memory addresses are known
exactly, and a load can be moved before a store provided that the addresses
are not identical. Note that this implements perfect address alias analysis.

5. Perfect caches—All memory accesses take one clock cycle. In practice,
superscalar processors will typically consume large amounts of ILP hiding
cache misses, making these results highly optimistic.

Assumptions 2 and 3 eliminate all control dependences. Likewise, assump-
tions 1 and 4 eliminate all but the true data dependences. Together, these four
assumptions mean that any instruction in the program’s execution can be sched-
uled on the cycle immediately following the execution of the predecessor on
which it depends. It is even possible, under these assumptions, for the last
dynamically executed instruction in the program to be scheduled on the very first
cycle! Thus, this set of assumptions subsumes both control and address specula-
tion and implements them as if they were perfect.

Initially, we examine a processor that can issue an unlimited number of
instructions at once, looking arbitrarily far ahead in the computation. For all the
processor models we examine, there are no restrictions on what types of instruc-
tions can execute in a cycle. For the unlimited-issue case, this means there may
be an unlimited number of loads or stores issuing in one clock cycle. In addition,
all functional unit latencies are assumed to be one cycle, so that any sequence of
dependent instructions can issue on successive cycles. Latencies longer than one
cycle would decrease the number of issues per cycle, although not the number of
instructions under execution at any point. (The instructions in execution at any
point are often referred to as in flight.)

Of course, this ideal processor is probably unrealizable. For example, the IBM
Power7 (see Wendell et. al. [2010]) is the most advanced superscalar processor

3.10 Studies of the Limitations of ILP ■ 215

announced to date. The Power7 issues up to six instructions per clock and initiates
execution on up to 8 of 12 execution units (only two of which are load/store units),
supports a large set of renaming registers (allowing hundreds of instructions to be
in flight), uses a large aggressive branch predictor, and employs dynamic memory
disambiguation. The Power7 continued the move toward using more thread-level
parallelism by increasing the width of simultaneous multithreading (SMT) sup-
port (to four threads per core) and the number of cores per chip to eight. After
looking at the parallelism available for the perfect processor, we will examine
what might be achievable in any processor likely to be designed in the near future.

To measure the available parallelism, a set of programs was compiled and
optimized with the standard MIPS optimizing compilers. The programs were
instrumented and executed to produce a trace of the instruction and data refer-
ences. Every instruction in the trace is then scheduled as early as possible, lim-
ited only by the data dependences. Since a trace is used, perfect branch prediction
and perfect alias analysis are easy to do. With these mechanisms, instructions
may be scheduled much earlier than they would otherwise, moving across large
numbers of instructions on which they are not data dependent, including
branches, since branches are perfectly predicted.

Figure 3.26 shows the average amount of parallelism available for six of the
SPEC92 benchmarks. Throughout this section the parallelism is measured by the
average instruction issue rate. Remember that all instructions have a one-cycle
latency; a longer latency would reduce the average number of instructions per
clock. Three of these benchmarks (fpppp, doduc, and tomcatv) are floating-point
intensive, and the other three are integer programs. Two of the floating-point
benchmarks (fpppp and tomcatv) have extensive parallelism, which could be
exploited by a vector computer or by a multiprocessor (the structure in fpppp is
quite messy, however, since some hand transformations have been done on the
code). The doduc program has extensive parallelism, but the parallelism does not
occur in simple parallel loops as it does in fpppp and tomcatv. The program li is a
LISP interpreter that has many short dependences.

Figure 3.26 ILP available in a perfect processor for six of the SPEC92 benchmarks.

The first three programs are integer programs, and the last three are floating-point
programs. The floating-point programs are loop intensive and have large amounts of
loop-level parallelism.

0 20 40 60 80 100 120

Instruction issues per cycle

gcc

espresso

li

S
P

E
C

 b
en

ch
m

ar
ks

fpppp

doduc

tomcatv

55

63

18

75

119

150

140 160

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

216 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

Limitations on ILP for Realizable Processors

In this section we look at the performance of processors with ambitious levels of
hardware support equal to or better than what is available in 2011 or, given the
events and lessons of the last decade, likely to be available in the near future. In
particular, we assume the following fixed attributes:

1. Up to 64 instruction issues per clock with no issue restrictions, or more than
10 times the total issue width of the widest processor in 2011. As we dis-
cuss later, the practical implications of very wide issue widths on clock
rate, logic complexity, and power may be the most important limitations on
exploiting ILP.

2. A tournament predictor with 1K entries and a 16-entry return predictor. This
predictor is comparable to the best predictors in 2011; the predictor is not a
primary bottleneck.

3. Perfect disambiguation of memory references done dynamically—this is
ambitious but perhaps attainable for small window sizes (and hence small issue
rates and load/store buffers) or through address aliasing prediction.

4. Register renaming with 64 additional integer and 64 additional FP registers,
which is slightly less than the most aggressive processor in 2011. The Intel
Core i7 has 128 entries in its reorder buffer, although they are not split
between integer and FP, while the IBM Power7 has almost 200. Note that we
assume a pipeline latency of one cycle, which significantly reduces the need
for reorder buffer entries. Both the Power7 and the i7 have latencies of 10
cycles or greater.

Figure 3.27 shows the result for this configuration as we vary the window
size. This configuration is more complex and expensive than any existing imple-
mentations, especially in terms of the number of instruction issues, which is more
than 10 times larger than the largest number of issues available on any processor
in 2011. Nonetheless, it gives a useful bound on what future implementations
might yield. The data in these figures are likely to be very optimistic for another
reason. There are no issue restrictions among the 64 instructions: They may all be
memory references. No one would even contemplate this capability in a proces-
sor in the near future. Unfortunately, it is quite difficult to bound the performance
of a processor with reasonable issue restrictions; not only is the space of possibil-
ities quite large, but the existence of issue restrictions requires that the parallel-
ism be evaluated with an accurate instruction scheduler, making the cost of
studying processors with large numbers of issues very expensive.

In addition, remember that in interpreting these results cache misses and non-
unit latencies have not been taken into account, and both these effects will have
significant impact!

3.10 Studies of the Limitations of ILP ■ 217

The most startling observation from Figure 3.27 is that, with the realistic pro-
cessor constraints listed above, the effect of the window size for the integer pro-
grams is not as severe as for FP programs. This result points to the key difference
between these two types of programs. The availability of loop-level parallelism
in two of the FP programs means that the amount of ILP that can be exploited is
higher, but for integer programs other factors—such as branch prediction,
register renaming, and less parallelism, to start with—are all important limita-
tions. This observation is critical because of the increased emphasis on integer

Figure 3.27 The amount of parallelism available versus the window size for a variety

of integer and floating-point programs with up to 64 arbitrary instruction issues per

clock. Although there are fewer renaming registers than the window size, the fact that
all operations have one-cycle latency and the number of renaming registers equals the
issue width allows the processor to exploit parallelism within the entire window. In a
real implementation, the window size and the number of renaming registers must be
balanced to prevent one of these factors from overly constraining the issue rate.

10
10
10

8
9

15
15

13

8
10

11
12
12

11
9

14
22

35

52
47

9
12

15
16
17

56
45

34
22

14

gcc

espresso

li

fpppp

B
en

ch
m

ar
ks

doduc

tomcatv

0 10 20
Instruction issues per cycle

30 40 50 60

Infinite
256
128
64
32

Window size

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

218 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

performance since the explosion of the World Wide Web and cloud computing
starting in the mid-1990s. Indeed, most of the market growth in the last decade—
transaction processing, Web servers, and the like—depended on integer perfor-
mance, rather than floating point. As we will see in the next section, for a realistic
processor in 2011, the actual performance levels are much lower than those
shown in Figure 3.27.

Given the difficulty of increasing the instruction rates with realistic hardware
designs, designers face a challenge in deciding how best to use the limited
resources available on an integrated circuit. One of the most interesting trade-offs
is between simpler processors with larger caches and higher clock rates versus
more emphasis on instruction-level parallelism with a slower clock and smaller
caches. The following example illustrates the challenges, and in the next chapter
we will see an alternative approach to exploiting fine-grained parallelism in the
form of GPUs.

Example Consider the following three hypothetical, but not atypical, processors, which we
run with the SPEC gcc benchmark:

1. A simple MIPS two-issue static pipe running at a clock rate of 4 GHz and
achieving a pipeline CPI of 0.8. This processor has a cache system that yields
0.005 misses per instruction.

2. A deeply pipelined version of a two-issue MIPS processor with slightly
smaller caches and a 5 GHz clock rate. The pipeline CPI of the processor is
1.0, and the smaller caches yield 0.0055 misses per instruction on average.

3. A speculative superscalar with a 64-entry window. It achieves one-half of the
ideal issue rate measured for this window size. (Use the data in Figure 3.27.)
This processor has the smallest caches, which lead to 0.01 misses per instruc-
tion, but it hides 25% of the miss penalty on every miss by dynamic schedul-
ing. This processor has a 2.5 GHz clock.

Assume that the main memory time (which sets the miss penalty) is 50 ns. Deter-
mine the relative performance of these three processors.

Answer First, we use the miss penalty and miss rate information to compute the contribu-
tion to CPI from cache misses for each configuration. We do this with the follow-
ing formula:

We need to compute the miss penalties for each system:

Cache CPI Misses per instruction Miss penalty×=

Miss penalty
Memory access time

Clock cycle
---=

3.10 Studies of the Limitations of ILP ■ 219

The clock cycle times for the processors are 250 ps, 200 ps, and 400 ps, respec-
tively. Hence, the miss penalties are

Applying this for each cache:

Cache CPI1 = 0.005 × 200 = 1.0

Cache CPI2 = 0.0055 × 250 = 1.4

Cache CPI3 = 0.01 × 94 = 0.94

We know the pipeline CPI contribution for everything but processor 3; its pipe-
line CPI is given by:

Now we can find the CPI for each processor by adding the pipeline and cache
CPI contributions:

CPI1 = 0.8 + 1.0 = 1.8

CPI2 = 1.0 + 1.4 = 2.4

CPI3 = 0.22 + 0.94 = 1.16

Since this is the same architecture, we can compare instruction execution rates in
millions of instructions per second (MIPS) to determine relative performance:

In this example, the simple two-issue static superscalar looks best. In practice,
performance depends on both the CPI and clock rate assumptions.

Beyond the Limits of This Study

Like any limit study, the study we have examined in this section has its own
limitations. We divide these into two classes: limitations that arise even for the

Miss penalty1
50 ns

250 ps
---------------- 200 cycles==

Miss penalty2
50 ns

200 ps
---------------- 250 cycles==

Miss penalty3
0.75 5× 0 ns

400 ps
------------------------------ 94 cycles==

Pipeline CPI3
1

Issue rate
-----------------------=

1
9 0.5×

1
4.5
------- 0.22===

Instruction execution rate
CR
CPI
---------=

Instruction execution rate1
4000 MHz

1.8
-------------------------- 2222 MIPS= =

Instruction execution rate2
5000 MHz

2.4
-------------------------- 2083 MIPS= =

Instruction execution rate3
2500 MHz

1.16
-------------------------- 2155 MIPS= =

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

220 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

perfect speculative processor, and limitations that arise for one or more realistic
models. Of course, all the limitations in the first class apply to the second. The
most important limitations that apply even to the perfect model are

1. WAW and WAR hazards through memory—The study eliminated WAW and
WAR hazards through register renaming, but not in memory usage. Although
at first glance it might appear that such circumstances are rare (especially
WAW hazards), they arise due to the allocation of stack frames. A called pro-
cedure reuses the memory locations of a previous procedure on the stack, and
this can lead to WAW and WAR hazards that are unnecessarily limiting. Aus-
tin and Sohi [1992] examined this issue.

2. Unnecessary dependences—With infinite numbers of registers, all but true
register data dependences are removed. There are, however, dependences
arising from either recurrences or code generation conventions that introduce
unnecessary true data dependences. One example of these is the dependence
on the control variable in a simple for loop. Since the control variable is
incremented on every loop iteration, the loop contains at least one depen-
dence. As we show in Appendix H, loop unrolling and aggressive algebraic
optimization can remove such dependent computation. Wall’s study includes
a limited amount of such optimizations, but applying them more aggressively
could lead to increased amounts of ILP. In addition, certain code generation
conventions introduce unneeded dependences, in particular the use of return
address registers and a register for the stack pointer (which is incremented
and decremented in the call/return sequence). Wall removes the effect of the
return address register, but the use of a stack pointer in the linkage conven-
tion can cause “unnecessary” dependences. Postiff et al. [1999] explored the
advantages of removing this constraint.

3. Overcoming the data flow limit—If value prediction worked with high accu-
racy, it could overcome the data flow limit. As of yet, none of the more than
100 papers on the subject has achieved a significant enhancement in ILP
when using a realistic prediction scheme. Obviously, perfect data value pre-
diction would lead to effectively infinite parallelism, since every value of
every instruction could be predicted a priori.

For a less-than-perfect processor, several ideas have been proposed that could
expose more ILP. One example is to speculate along multiple paths. This idea was
discussed by Lam and Wilson [1992] and explored in the study covered in this
section. By speculating on multiple paths, the cost of incorrect recovery is reduced
and more parallelism can be uncovered. It only makes sense to evaluate this
scheme for a limited number of branches because the hardware resources required
grow exponentially. Wall [1993] provided data for speculating in both directions
on up to eight branches. Given the costs of pursuing both paths, knowing that one
will be thrown away (and the growing amount of useless computation as such a
process is followed through multiple branches), every commercial design has
instead devoted additional hardware to better speculation on the correct path.

3.11 Cross-Cutting Issues: ILP Approaches and the Memory System ■ 221

It is critical to understand that none of the limits in this section is fundamental
in the sense that overcoming them requires a change in the laws of physics!
Instead, they are practical limitations that imply the existence of some formidable
barriers to exploiting additional ILP. These limitations—whether they be window
size, alias detection, or branch prediction—represent challenges for designers
and researchers to overcome.

Attempts to break through these limits in the first five years of this century
met with frustration. Some techniques produced small improvements, but often at
significant increases in complexity, increases in the clock cycle, and dispropor-
tionate increases in power. In summary, designers discovered that trying to
extract more ILP was simply too inefficient. We will return to this discussion in
our concluding remarks.

Hardware versus Software Speculation

The hardware-intensive approaches to speculation in this chapter and the soft-
ware approaches of Appendix H provide alternative approaches to exploiting
ILP. Some of the trade-offs, and the limitations, for these approaches are listed
below:

■ To speculate extensively, we must be able to disambiguate memory refer-
ences. This capability is difficult to do at compile time for integer programs
that contain pointers. In a hardware-based scheme, dynamic runtime disam-
biguation of memory addresses is done using the techniques we saw earlier
for Tomasulo’s algorithm. This disambiguation allows us to move loads
past stores at runtime. Support for speculative memory references can help
overcome the conservatism of the compiler, but unless such approaches are
used carefully, the overhead of the recovery mechanisms may swamp the
advantages.

■ Hardware-based speculation works better when control flow is unpredictable
and when hardware-based branch prediction is superior to software-based
branch prediction done at compile time. These properties hold for many inte-
ger programs. For example, a good static predictor has a misprediction rate of
about 16% for four major integer SPEC92 programs, and a hardware predic-
tor has a misprediction rate of under 10%. Because speculated instructions
may slow down the computation when the prediction is incorrect, this differ-
ence is significant. One result of this difference is that even statically sched-
uled processors normally include dynamic branch predictors.

■ Hardware-based speculation maintains a completely precise exception model
even for speculated instructions. Recent software-based approaches have
added special support to allow this as well.

3.11 Cross-Cutting Issues: ILP Approaches and the
Memory System

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

222 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

■ Hardware-based speculation does not require compensation or bookkeeping
code, which is needed by ambitious software speculation mechanisms.

■ Compiler-based approaches may benefit from the ability to see further in the
code sequence, resulting in better code scheduling than a purely hardware-
driven approach.

■ Hardware-based speculation with dynamic scheduling does not require dif-
ferent code sequences to achieve good performance for different implementa-
tions of an architecture. Although this advantage is the hardest to quantify, it
may be the most important in the long run. Interestingly, this was one of the
motivations for the IBM 360/91. On the other hand, more recent explicitly
parallel architectures, such as IA-64, have added flexibility that reduces the
hardware dependence inherent in a code sequence.

The major disadvantage of supporting speculation in hardware is the com-
plexity and additional hardware resources required. This hardware cost must be
evaluated against both the complexity of a compiler for a software-based
approach and the amount and usefulness of the simplifications in a processor that
relies on such a compiler.

Some designers have tried to combine the dynamic and compiler-based
approaches to achieve the best of each. Such a combination can generate interest-
ing and obscure interactions. For example, if conditional moves are combined
with register renaming, a subtle side effect appears. A conditional move that is
annulled must still copy a value to the destination register, since it was renamed
earlier in the instruction pipeline. These subtle interactions complicate the design
and verification process and can also reduce performance.

The Intel Itanium processor was the most ambitious computer ever designed
based on the software support for ILP and speculation. It did not deliver on the
hopes of the designers, especially for general-purpose, nonscientific code. As
designers’ ambitions for exploiting ILP were reduced in light of the difficulties
discussed in Section 3.10, most architectures settled on hardware-based mecha-
nisms with issue rates of three to four instructions per clock.

Speculative Execution and the Memory System

Inherent in processors that support speculative execution or conditional instruc-
tions is the possibility of generating invalid addresses that would not occur with-
out speculative execution. Not only would this be incorrect behavior if protection
exceptions were taken, but the benefits of speculative execution would be
swamped by false exception overhead. Hence, the memory system must identify
speculatively executed instructions and conditionally executed instructions and
suppress the corresponding exception.

By similar reasoning, we cannot allow such instructions to cause the cache to
stall on a miss because again unnecessary stalls could overwhelm the benefits of
speculation. Hence, these processors must be matched with nonblocking caches.

3.12 Multithreading: Exploiting Thread-Level Parallelism to Improve Uniprocessor Throughput ■ 223

In reality, the penalty of an L2 miss is so large that compilers normally only
speculate on L1 misses. Figure 2.5 on page 84 shows that for some well-behaved
scientific programs the compiler can sustain multiple outstanding L2 misses to
cut the L2 miss penalty effectively. Once again, for this to work the memory sys-
tem behind the cache must match the goals of the compiler in number of simulta-
neous memory accesses.

The topic we cover in this section, multithreading, is truly a cross-cutting topic,
since it has relevance to pipelining and superscalars, to graphics processing units
(Chapter 4), and to multiprocessors (Chapter 5). We introduce the topic here and
explore the use of multithreading to increase uniprocessor throughput by using
multiple threads to hide pipeline and memory latencies. In the next chapter, we
will see how multithreading provides the same advantages in GPUs, and finally,
Chapter 5 will explore the combination of multithreading and multiprocessing.
These topics are closely interwoven, since multithreading is a primary technique
for exposing more parallelism to the hardware. In a strict sense, multithreading
uses thread-level parallelism, and thus is properly the subject of Chapter 5, but its
role in both improving pipeline utilization and in GPUs motivates us to introduce
the concept here.

Although increasing performance by using ILP has the great advantage that it
is reasonably transparent to the programmer, as we have seen ILP can be quite
limited or difficult to exploit in some applications. In particular, with reasonable
instruction issue rates, cache misses that go to memory or off-chip caches are
unlikely to be hidden by available ILP. Of course, when the processor is stalled
waiting on a cache miss, the utilization of the functional units drops dramatically.

Since attempts to cover long memory stalls with more ILP have limited effec-
tiveness, it is natural to ask whether other forms of parallelism in an application
could be used to hide memory delays. For example, an online transaction-pro-
cessing system has natural parallelism among the multiple queries and updates
that are presented by requests. Of course, many scientific applications contain
natural parallelism since they often model the three-dimensional, parallel struc-
ture of nature, and that structure can be exploited by using separate threads. Even
desktop applications that use modern Windows-based operating systems often
have multiple active applications running, providing a source of parallelism.

Multithreading allows multiple threads to share the functional units of a single
processor in an overlapping fashion. In contrast, a more general method to
exploit thread-level parallelism (TLP) is with a multiprocessor that has multiple
independent threads operating at once and in parallel. Multithreading, however,
does not duplicate the entire processor as a multiprocessor does. Instead, multi-
threading shares most of the processor core among a set of threads, duplicating
only private state, such as the registers and program counter. As we will see in

3.12 Multithreading: Exploiting Thread-Level
Parallelism to Improve Uniprocessor Throughput

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

224 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

Chapter 5, many recent processors incorporate both multiple processor cores on a
single chip and provide multithreading within each core.

Duplicating the per-thread state of a processor core means creating a separate
register file, a separate PC, and a separate page table for each thread. The mem-
ory itself can be shared through the virtual memory mechanisms, which already
support multiprogramming. In addition, the hardware must support the ability to
change to a different thread relatively quickly; in particular, a thread switch
should be much more efficient than a process switch, which typically requires
hundreds to thousands of processor cycles. Of course, for multithreading hard-
ware to achieve performance improvements, a program must contain multiple
threads (we sometimes say that the application is multithreaded) that could exe-
cute in concurrent fashion. These threads are identified either by a compiler (typ-
ically from a language with parallelism constructs) or by the programmer.

There are three main hardware approaches to multithreading. Fine-grained
multithreading switches between threads on each clock, causing the execution of
instructions from multiple threads to be interleaved. This interleaving is often
done in a round-robin fashion, skipping any threads that are stalled at that time.
One key advantage of fine-grained multithreading is that it can hide the through-
put losses that arise from both short and long stalls, since instructions from other
threads can be executed when one thread stalls, even if the stall is only for a few
cycles. The primary disadvantage of fine-grained multithreading is that it slows
down the execution of an individual thread, since a thread that is ready to execute
without stalls will be delayed by instructions from other threads. It trades an
uncrease in multithreaded throughput for a loss in the performance (as measured
by latency) of a single thread. The Sun Niagara processor, which we examine
shortly, uses simple fine-grained multithreading, as do the Nvidia GPUs, which
we look at in the next chapter.

Coarse-grained multithreading was invented as an alternative to fine-grained
multithreading. Coarse-grained multithreading switches threads only on costly
stalls, such as level two or three cache misses. This change relieves the need to
have thread-switching be essentially free and is much less likely to slow down
the execution of any one thread, since instructions from other threads will only
be issued when a thread encounters a costly stall.

Coarse-grained multithreading suffers, however, from a major drawback: It is
limited in its ability to overcome throughput losses, especially from shorter
stalls. This limitation arises from the pipeline start-up costs of coarse-grained
multithreading. Because a CPU with coarse-grained multithreading issues in-
structions from a single thread, when a stall occurs the pipeline will see a bubble
before the new thread begins executing. Because of this start-up overhead,
coarse-grained multithreading is much more useful for reducing the penalty of
very high-cost stalls, where pipeline refill is negligible compared to the stall
time. Several research projects have explored coarse grained multithreading, but
no major current processors use this technique.

The most common implementation of multithreading is called Simultaneous
multithreading (SMT). Simultaneous multithreading is a variation on fine-
grained multithreading that arises naturally when fine-grained multithreading is
implemented on top of a multiple-issue, dynamically scheduled processor. As

3.12 Multithreading: Exploiting Thread-Level Parallelism to Improve Uniprocessor Throughput ■ 225

with other forms of multithreading, SMT uses thread-level parallelism to hide
long-latency events in a processor, thereby increasing the usage of the functional
units. The key insight in SMT is that register renaming and dynamic scheduling
allow multiple instructions from independent threads to be executed without
regard to the dependences among them; the resolution of the dependences can be
handled by the dynamic scheduling capability.

Figure 3.28 conceptually illustrates the differences in a processor’s ability to
exploit the resources of a superscalar for the following processor configurations:

■ A superscalar with no multithreading support

■ A superscalar with coarse-grained multithreading

■ A superscalar with fine-grained multithreading

■ A superscalar with simultaneous multithreading

In the superscalar without multithreading support, the use of issue slots is
limited by a lack of ILP, including ILP to hide memory latency. Because of the
length of L2 and L3 cache misses, much of the processor can be left idle.

Figure 3.28 How four different approaches use the functional unit execution slots of a superscalar processor.

The horizontal dimension represents the instruction execution capability in each clock cycle. The vertical dimension
represents a sequence of clock cycles. An empty (white) box indicates that the corresponding execution slot is
unused in that clock cycle. The shades of gray and black correspond to four different threads in the multithreading
processors. Black is also used to indicate the occupied issue slots in the case of the superscalar without multithread-
ing support. The Sun T1 and T2 (aka Niagara) processors are fine-grained multithreaded processors, while the Intel
Core i7 and IBM Power7 processors use SMT. The T2 has eight threads, the Power7 has four, and the Intel i7 has two.
In all existing SMTs, instructions issue from only one thread at a time. The difference in SMT is that the subsequent
decision to execute an instruction is decoupled and could execute the operations coming from several different
instructions in the same clock cycle.

Superscalar Coarse MT Fine MT SMT

T
im

e

Execution slots

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

226 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

In the coarse-grained multithreaded superscalar, the long stalls are partially
hidden by switching to another thread that uses the resources of the processor.
This switching reduces the number of completely idle clock cycles. In a coarse-
grained multithreaded processor, however, thread switching only occurs when
there is a stall. Because the new thread has a start-up period, there are likely to be
some fully idle cycles remaining.

In the fine-grained case, the interleaving of threads can eliminate fully empty
slots. In addition, because the issuing thread is changed on every clock cycle,
longer latency operations can be hidden. Because instruction issue and execution
are connected, a thread can only issue as many instructions as are ready. With a
narrow issue width this is not a problem (a cycle is either occupied or not), which
is why fine-grained multithreading works perfectly for a single issue processor,
and SMT would make no sense. Indeed, in the Sun T2, there are two issues per
clock, but they are from different threads. This eliminates the need to implement
the complex dynamic scheduling approach and relies instead on hiding latency
with more threads.

If one implements fine-grained threading on top of a multiple-issue dynami-
cally schedule processor, the result is SMT. In all existing SMT implementations,
all issues come from one thread, although instructions from different threads can
initiate execution in the same cycle, using the dynamic scheduling hardware to
determine what instructions are ready. Although Figure 3.28 greatly simplifies
the real operation of these processors, it does illustrate the potential performance
advantages of multithreading in general and SMT in wider issue, dynamically
scheduled processors.

Simultaneous multithreading uses the insight that a dynamically scheduled
processor already has many of the hardware mechanisms needed to support the
mechanism, including a large virtual register set. Multithreading can be built on
top of an out-of-order processor by adding a per-thread renaming table, keeping
separate PCs, and providing the capability for instructions from multiple threads
to commit.

Effectiveness of Fine-Grained Multithreading on the Sun T1

In this section, we use the Sun T1 processor to examine the ability of multi-
threading to hide latency. The T1 is a fine-grained multithreaded multicore
microprocessor introduced by Sun in 2005. What makes T1 especially interesting
is that it is almost totally focused on exploiting thread-level parallelism (TLP)
rather than instruction-level parallelism (ILP). The T1 abandoned the intense
focus on ILP (just shortly after the most aggressive ILP processors ever were
introduced), returned to a simple pipeline strategy, and focused on exploiting
TLP, using both multiple cores and multithreading to produce throughput.

Each T1 processor contains eight processor cores, each supporting four threads.
Each processor core consists of a simple six-stage, single-issue pipeline (a standard
five-stage RISC pipeline like that of Appendix C, with one stage added for thread
switching). T1 uses fine-grained multithreading (but not SMT), switching to a new
thread on each clock cycle, and threads that are idle because they are waiting due to

3.12 Multithreading: Exploiting Thread-Level Parallelism to Improve Uniprocessor Throughput ■ 227

a pipeline delay or cache miss are bypassed in the scheduling. The processor is idle
only when all four threads are idle or stalled. Both loads and branches incur a three-
cycle delay that can only be hidden by other threads. A single set of floating-point
functional units is shared by all eight cores, as floating-point performance was not a
focus for T1. Figure 3.29 summarizes the T1 processor.

T1 Multithreading Unicore Performance

The T1 makes TLP its focus, both through the multithreading on an individual
core and through the use of many simple cores on a single die. In this section, we
will look at the effectiveness of the T1 in increasing the performance of a single
core through fine-grained multithreading. In Chapter 5, we will return to examine
the effectiveness of combining multithreading with multiple cores.

To examine the performance of the T1, we use three server-oriented bench-
marks: TPC-C, SPECJBB (the SPEC Java Business Benchmark), and SPECWeb99.
Since multiple threads increase the memory demands from a single processor, they
could overload the memory system, leading to reductions in the potential gain from
multithreading. Figure 3.30 shows the relative increase in the miss rate and the
observed miss latency when executing with one thread per core versus executing
four threads per core for TPC-C. Both the miss rates and the miss latencies increase,
due to increased contention in the memory system. The relatively small increase in
miss latency indicates that the memory system still has unused capacity.

By looking at the behavior of an average thread, we can understand the interac-
tion among the threads and their ability to keep a core busy. Figure 3.31 shows the
percentage of cycles for which a thread is executing, ready but not executing, and
not ready. Remember that not ready does not imply that the core with that thread is
stalled; it is only when all four threads are not ready that the core will stall.

Threads can be not ready due to cache misses, pipeline delays (arising from
long latency instructions such as branches, loads, floating point, or integer
multiply/divide), and a variety of smaller effects. Figure 3.32 shows the relative

Characteristic Sun T1

Multiprocessor and
multithreading
support

Eight cores per chip; four threads per core. Fine-grained thread
scheduling. One shared floating-point unit for eight cores.
Supports only on-chip multiprocessing.

Pipeline structure Simple, in-order, six-deep pipeline with three-cycle delays for
loads and branches.

L1 caches 16 KB instructions; 8 KB data. 64-byte block size. Miss to L2 is
23 cycles, assuming no contention.

L2 caches Four separate L2 caches, each 750 KB and associated with a
memory bank. 64-byte block size. Miss to main memory is 110
clock cycles assuming no contention.

Initial implementation 90 nm process; maximum clock rate of 1.2 GHz; power 79 W;
300 M transistors; 379 mm2 die.

Figure 3.29 A summary of the T1 processor.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

228 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

frequency of these various causes. Cache effects are responsible for the thread
not being ready from 50% to 75% of the time, with L1 instruction misses, L1
data misses, and L2 misses contributing roughly equally. Potential delays from
the pipeline (called “pipeline delay”) are most severe in SPECJBB and may arise
from its higher branch frequency.

q

L1 I miss
rate

L1 D miss
rate

L2 miss
rate

L1 I miss
latency

L1 D miss
latency

L2 miss
latency

1

1.1

1.2

1.3

R
el

at
iv

e
in

cr
ea

se
 in

 m
is

s
ra

te
 o

r
la

te
nc

y

1.4

1.5

1.7

1.6

Figure 3.30 The relative change in the miss rates and miss latencies when executing
with one thread per core versus four threads per core on the TPC-C benchmark. The
latencies are the actual time to return the requested data after a miss. In the four-thread
case, the execution of other threads could potentially hide much of this latency.

Figure 3.31 Breakdown of the status on an average thread. “Executing” indicates the
thread issues an instruction in that cycle. “Ready but not chosen” means it could issue
but another thread has been chosen, and “not ready” indicates that the thread is await-
ing the completion of an event (a pipeline delay or cache miss, for example).

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

P
er

ce
nt

ag
e

of
 c

yc
le

s

0%
TPC-C-like SPECJBB00 SPECWeb99

Executing

Ready, not chosen

Not ready

3.12 Multithreading: Exploiting Thread-Level Parallelism to Improve Uniprocessor Throughput ■ 229

Figure 3.33 shows the per-thread and per-core CPI. Because T1 is a fine-
grained multithreaded processor with four threads per core, with sufficient paral-
lelism the ideal effective CPI per thread would be four, since that would mean
that each thread was consuming one cycle out of every four. The ideal CPI per
core would be one. In 2005, the IPC for these benchmarks running on aggressive
ILP cores would have been similar to that seen on a T1 core. The T1 core, how-
ever, was very modest in size compared to the aggressive ILP cores of 2005,
which is why the T1 had eight cores compared to the two to four offered on other
processors of the same vintage. As a result, in 2005 when it was introduced, the
Sun T1 processor had the best performance on integer applications with exten-
sive TLP and demanding memory performance, such as SPECJBB and transac-
tion processing workloads.

Figure 3.32 The breakdown of causes for a thread being not ready. The contribution
to the “other” category varies. In TPC-C, store buffer full is the largest contributor; in
SPEC-JBB, atomic instructions are the largest contributor; and in SPECWeb99, both fac-
tors contribute.

Benchmark Per-thread CPI Per-core CPI

TPC-C 7.2 1.80

SPECJBB 5.6 1.40

SPECWeb99 6.6 1.65

Figure 3.33 The per-thread CPI, the per-core CPI, the effective eight-core CPI, and

the effective IPC (inverse of CPI) for the eight-core T1 processor.

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

P
er

ce
nt

ag
e

of
 c

yc
le

s

0%
TPC-C-like SPECJBB SPECWeb99

L2 miss
L1 D miss
L1 I miss

Pipeline delay
Other

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

230 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

Effectiveness of Simultaneous Multithreading
on Superscalar Processors

A key question is, How much performance can be gained by implementing
SMT? When this question was explored in 2000–2001, researchers assumed that
dynamic superscalars would get much wider in the next five years, supporting six
to eight issues per clock with speculative dynamic scheduling, many simultane-
ous loads and stores, large primary caches, and four to eight contexts with simul-
taneous issue and retirement from multiple contexts. No processor has gotten
close to this level.

As a result, simulation research results that showed gains for multipro-
grammed workloads of two or more times are unrealistic. In practice, the existing
implementations of SMT offer only two to four contexts with fetching and issue
from only one, and up to four issues per clock. The result is that the gain from
SMT is also more modest.

For example, in the Pentium 4 Extreme, as implemented in HP-Compaq
servers, the use of SMT yields a performance improvement of 1.01 when running
the SPECintRate benchmark and about 1.07 when running the SPECfpRate
benchmark. Tuck and Tullsen [2003] reported that, on the SPLASH parallel
benchmarks, they found single-core multithreaded speedups ranging from 1.02 to
1.67, with an average speedup of about 1.22.

With the availability of recent extensive and insightful measurements done by
Esmaeilzadeh et al. [2011], we can look at the performance and energy benefits
of using SMT in a single i7 core using a set of multithreaded applications. The
benchmarks we use consist of a collection of parallel scientific applications and a
set of multithreaded Java programs from the DaCapo and SPEC Java suite, as
summarized in Figure 3.34. The Intel i7 supports SMT with two threads.
Figure 3.35 shows the performance ratio and the energy efficiency ratio of the
these benchmarks run on one core of the i7 with SMT turned off and on. (We plot
the energy efficiency ratio, which is the inverse of energy consumption, so that,
like speedup, a higher ratio is better.)

The harmonic mean of the speedup for the Java benchmarks is 1.28, despite the
two benchmarks that see small gains. These two benchmarks, pjbb2005 and trade-
beans, while multithreaded, have limited parallelism. They are included because
they are typical of a multithreaded benchmark that might be run on an SMT pro-
cessor with the hope of extracting some performance, which they find in limited
amounts. The PARSEC benchmarks obtain somewhat better speedups than the
full set of Java benchmarks (harmonic mean of 1.31). If tradebeans and pjbb2005
were omitted, the Java workload would actually have significantly better speedup
(1.39) than the PARSEC benchmarks. (See the discussion of the implication of us-
ing harmonic mean to summarize the results in the caption of Figure 3.36.)

Energy consumption is determined by the combination of speedup and increase
in power consumption. For the Java benchmarks, on average, SMT delivers the
same energy efficiency as non-SMT (average of 1.0), but it is brought down by the
two poor performing benchmarks; without tradebeans and pjbb2005, the average

3.12 Multithreading: Exploiting Thread-Level Parallelism to Improve Uniprocessor Throughput ■ 231

energy efficiency for the Java benchmarks is 1.06, which is almost as good as
the PARSEC benchmarks. In the PARSEC benchmarks, SMT reduces energy by
1 − (1/1.08) = 7%. Such energy-reducing performance enhancements are very dif-
ficult to find. Of course, the static power associated with SMT is paid in both
cases, thus the results probably slightly overstate the energy gains.

These results clearly show that SMT in an aggressive speculative processor
with extensive support for SMT can improve performance in an energy efficient
fashion, which the more aggressive ILP approaches have failed to do. In 2011,
the balance between offering multiple simpler cores and fewer more sophisticat-
ed cores has shifted in favor of more cores, with each core typically being a
three- to four-issue superscalar with SMT supporting two to four threads. Indeed,
Esmaeilzadeh et al. [2011] show that the energy improvements from SMT are
even larger on the Intel i5 (a processor similar to the i7, but with smaller caches
and a lower clock rate) and the Intel Atom (an 80×86 processor designed for the
netbook market and described in Section 3.14).

blackscholes Prices a portfolio of options with the Black-Scholes PDE
bodytrack Tracks a markerless human body
canneal Minimizes routing cost of a chip with cache-aware simulated annealing
facesim Simulates motions of a human face for visualization purposes
ferret Search engine that finds a set of images similar to a query image
fluidanimate Simulates physics of fluid motion for animation with SPH algorithm
raytrace Uses physical simulation for visualization
streamcluster Computes an approximation for the optimal clustering of data points
swaptions Prices a portfolio of swap options with the Heath–Jarrow–Morton framework
vips Applies a series of transformations to an image
x264 MPG-4 AVC/H.264 video encoder

eclipse Integrated development environment
lusearch Text search tool
sunflow Photo-realistic rendering system
tomcat Tomcat servlet container
tradebeans Tradebeans Daytrader benchmark
xalan An XSLT processor for transforming XML documents
pjbb2005 Version of SPEC JBB2005 (but fixed in problem size rather than time)

Figure 3.34 The parallel benchmarks used here to examine multithreading, as well as in Chapter 5 to examine

multiprocessing with an i7. The top half of the chart consists of PARSEC benchmarks collected by Biena et al. [2008].
The PARSEC benchmarks are meant to be indicative of compute-intensive, parallel applications that would be appro-
priate for multicore processors. The lower half consists of multithreaded Java benchmarks from the DaCapo collec-
tion (see Blackburn et al. [2006]) and pjbb2005 from SPEC. All of these benchmarks contain some parallelism; other
Java benchmarks in the DaCapo and SPEC Java workloads use multiple threads but have little or no true parallelism
and, hence, are not used here. See Esmaeilzadeh et al. [2011] for additional information on the characteristics of
these benchmarks, relative to the measurements here and in Chapter 5.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

232 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

Figure 3.35 The speedup from using multithreading on one core on an i7 processor averages 1.28 for the Java
benchmarks and 1.31 for the PARSEC benchmarks (using an unweighted harmonic mean, which implies a work-
load where the total time spent executing each benchmark in the single-threaded base set was the same). The
energy efficiency averages 0.99 and 1.07, respectively (using the harmonic mean). Recall that anything above 1.0 for
energy efficiency indicates that the feature reduces execution time by more than it increases average power. Two of
the Java benchmarks experience little speedup and have significant negative energy efficiency because of this.
Turbo Boost is off in all cases. These data were collected and analyzed by Esmaeilzadeh et al. [2011] using the Oracle
(Sun) HotSpot build 16.3-b01 Java 1.6.0 Virtual Machine and the gcc v4.4.1 native compiler.

Figure 3.36 The basic structure of the A8 pipeline is 13 stages. Three cycles are used
for instruction fetch and four for instruction decode, in addition to a five-cycle integer
pipeline. This yields a 13-cycle branch misprediction penalty. The instruction fetch unit
tries to keep the 12-entry instruction queue filled.

2.00

1.75

1.50

1.25

1.00

0.75

i7
 S

M
T

 p
er

fo
rm

an
ce

 a
nd

 e
ne

rg
y

ef
fic

ie
nc

y
ra

tio

Ecli
ps

e

Sun
flo

w

Tom
ca

t

Xala
n

Blac
ks

ch
ole

s

Bod
ytr

ac
k

Can
ne

al

Fer
re

t

Flui
da

nim
at

e

Ray
tra

ce

Stre
am

clu
ste

r

Swap
tio

ns
×2

64

Energy efficiencySpeedup

Lu
se

ar
ch

Tra
de

be
an

s

Pjbb
20

05

Fac
es

im
Vips

F0 F1 F2 D0 D1

Branch mispredict
penalty =13 cycles Instruction execute and load/store

ALU pipe 1

LS pipe 0 or 1

D2 D3

Instruction decode

A
rchitectural register file

Instruction
fetch

AGU
RAM

+
TLB

12-entry
fetch

queue

BTB
GHB
RS

D4 E0 E1 E2 E3 E4 E5

BP
update

ALU/MUL pipe 0 BP
update

BP
update

3.13 Putting It All Together: The Intel Core i7 and ARM Cortex-A8 ■ 233

In this section we explore the design of two multiple issue processors: the ARM
Cortex-A8 core, which is used as the basis for the Apple A9 processor in the
iPad, as well as the processor in the Motorola Droid and the iPhones 3GS and 4,
and the Intel Core i7, a high-end, dynamically scheduled, speculative processor,
intended for high-end desktops and server applications. We begin with the sim-
pler processor.

The ARM Cortex-A8

The A8 is a dual-issue, statically scheduled superscalar with dynamic issue
detection, which allows the processor to issue one or two instructions per clock.
Figure 3.36 shows the basic pipeline structure of the 13-stage pipeline.

The A8 uses a dynamic branch predictor with a 512-entry two-way set asso-
ciative branch target buffer and a 4K-entry global history buffer, which is
indexed by the branch history and the current PC. In the event that the branch tar-
get buffer misses, a prediction is obtained from the global history buffer, which
can then be used to compute the branch address. In addition, an eight-entry return
stack is kept to track return addresses. An incorrect prediction results in a 13-
cycle penalty as the pipeline is flushed.

Figure 3.37 shows the instruction decode pipeline. Up to two instructions per
clock can be issued using an in-order issue mechanism. A simple scoreboard
structure is used to track when an instruction can issue. A pair of dependent
instructions can be processed through the issue logic, but, of course, they will be
serialized at the scoreboard, unless they can be issued so that the forwarding
paths can resolve the dependence.

Figure 3.38 shows the execution pipeline for the A8 processor. Either instruc-
tion 1 or instruction 2 can go to the load/store pipeline. Fully bypassing is sup-
ported among the pipelines. The ARM Cortex-A8 pipeline uses a simple two-
issue statically scheduled superscalar to allow reasonably high clock rate with
lower power. In contrast, the i7 uses a reasonably aggressive, four-issue dynami-
cally scheduled speculative pipeline structure.

Performance of the A8 Pipeline

The A8 has an ideal CPI of 0.5 due to its dual-issue structure. Pipeline stalls can
arise from three sources:

1. Functional hazards, which occur because two adjacent instructions selected
for issue simultaneously use the same functional pipeline. Since the A8 is
statically scheduled, it is the compiler’s task to try to avoid such conflicts.
When they cannot be avoided, the A8 can issue at most one instruction in that
cycle.

3.13 Putting It All Together: The Intel Core i7 and ARM
Cortex-A8

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

234 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

Figure 3.37 The five-stage instruction decode of the A8. In the first stage, a PC pro-
duced by the fetch unit (either from the branch target buffer or the PC incrementer) is
used to retrieve an 8-byte block from the cache. Up to two instructions are decoded
and placed into the decode queue; if neither instruction is a branch, the PC is incre-
mented for the next fetch. Once in the decode queue, the scoreboard logic decides
when the instructions can issue. In the issue, the register operands are read; recall that
in a simple scoreboard, the operands always come from the registers. The register oper-
ands and opcode are sent to the instruction execution portion of the pipeline.

Figure 3.38 The five-stage instruction decode of the A8. Multiply operations are
always performed in ALU pipeline 0.

Instruction decode

D0 D1 D2 D3 D4

Early
Dec

Early
Dec Dec

Dec queue
read/write

Score board
+

issue logic

RegFile
ID remap

Dec/seq

Integer register write back
Instruction execute

INST 0

INST 1

E0 E1 E2 E3 E4 E5

LS pipelineALU

Shft

Shft

MUL
1

MUL
2

MUL
3

ALU
+

flags

ALU
+

flags

Sat

Sat

BP
update

BP
update

ACC

WB

WB

WB

WB

A
rchitectural register file

ALU
multiply
pipe 0

ALU pipe 1

Load/store
pipe 0 or 1

3.13 Putting It All Together: The Intel Core i7 and ARM Cortex-A8 ■ 235

2. Data hazards, which are detected early in the pipeline and may stall either
both instructions (if the first cannot issue, the second is always stalled) or the
second of a pair. The compiler is responsible for preventing such stalls when
possible.

3. Control hazards, which arise only when branches are mispredicted.

In addition to pipeline stalls, L1 and L2 misses both cause stalls.
Figure 3.39 shows an estimate of the factors that contribute to the actual CPI

for the Minnespec benchmarks, which we saw in Chapter 2. As we can see, pipe-
line delays rather than memory stalls are the major contributor to the CPI. This
result is partially due to the effect that Minnespec has a smaller cache footprint
than full SPEC or other large programs.

Figure 3.39 The estimated composition of the CPI on the ARM A8 shows that pipeline stalls are the primary

addition to the base CPI. eon deserves some special mention, as it does integer-based graphics calculations (ray
tracing) and has very few cache misses. It is computationally intensive with heavy use of multiples, and the single
multiply pipeline becomes a major bottleneck. This estimate is obtained by using the L1 and L2 miss rates and penal-
ties to compute the L1 and L2 generated stalls per instruction. These are subtracted from the CPI measured by a
detailed simulator to obtain the pipeline stalls. Pipeline stalls include all three hazards plus minor effects such as way
misprediction.

0

1

2

3

4

5

6

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2

C
yc

le
s

pe
r

in
st

ru
ct

io
n

L2 stalls/instruction

L1 stalls/instruction

Pipeline stalls/instruction

Ideal CPI

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

236 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

The insight that the pipeline stalls created significant performance losses
probably played a key role in the decision to make the ARM Cortex-A9 a dynam-
ically scheduled superscalar. The A9, like the A8, issues up to two instructions
per clock, but it uses dynamic scheduling and speculation. Up to four pending
instructions (two ALUs, one load/store or FP/multimedia, and one branch) can
begin execution in a clock cycle. The A9 uses a more powerful branch predictor,
instruction cache prefetch, and a nonblocking L1 data cache. Figure 3.40 shows
that the A9 outperforms the A8 by a factor of 1.28 on average, assuming the
same clock rate and virtually identical cache configurations.

The Intel Core i7

The i7 uses an aggressive out-of-order speculative microarchitecture with reason-
ably deep pipelines with the goal of achieving high instruction throughput by
combining multiple issue and high clock rates. Figure 3.41 shows the overall
structure of the i7 pipeline. We will examine the pipeline by starting with

Figure 3.40 The performance ratio for the A9 compared to the A8, both using a 1 GHz clock and the same size
caches for L1 and L2, shows that the A9 is about 1.28 times faster. Both runs use a 32 KB primary cache and a 1 MB
secondary cache, which is 8-way set associative for the A8 and 16-way for the A9. The block sizes in the caches are 64
bytes for the A8 and 32 bytes for the A9. As mentioned in the caption of Figure 3.39, eon makes intensive use of inte-
ger multiply, and the combination of dynamic scheduling and a faster multiply pipeline significantly improves per-
formance on the A9. twolf experiences a small slowdown, likely due to the fact that its cache behavior is worse with
the smaller L1 block size of the A9.

0.75

1

1.25

1.5

1.75

2

2.25

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

A
9

pe
rf

or
m

an
ce

/A
8

pe
rf

or
m

an
ce

3.13 Putting It All Together: The Intel Core i7 and ARM Cortex-A8 ■ 237

instruction fetch and continuing on to instruction commit, following steps labeled
on the figure.

1. Instruction fetch—The processor uses a multilevel branch target buffer to
achieve a balance between speed and prediction accuracy. There is also a
return address stack to speed up function return. Mispredictions cause a pen-
alty of about 15 cycles. Using the predicted address, the instruction fetch unit
fetches 16 bytes from the instruction cache.

2. The 16 bytes are placed in the predecode instruction buffer—In this step, a
process called macro-op fusion is executed. Macro-op fusion takes instruc-
tion combinations such as compare followed by a branch and fuses them into
a single operation. The predecode stage also breaks the 16 bytes into individ-
ual x86 instructions. This predecode is nontrivial since the length of an x86

Figure 3.41 The Intel Core i7 pipeline structure shown with the memory system

components. The total pipeline depth is 14 stages, with branch mispredictions costing
17 cycles. There are 48 load and 32 store buffers. The six independent functional units
can each begin execution of a ready micro-op in the same cycle.

256 KB unified l2
cache (eight-way)

Register alias table and allocator

128-Entry reorder buffer

36-Entry reservation station

Retirement
register file

ALU
shift

SSE
shuffle
ALU

128-bit
FMUL
FDIV

128-bit
FMUL
FDIV

128-bit
FMUL
FDIV

SSE
shuffle
ALU

SSE
shuffle
ALU

Memory order buffer

ALU
shift

ALU
shift

Load
address

Store
address

Store
data

Store
& load

Micro
-code

Complex
macro-op
decoder

28-Entry micro-op loop stream detect buffer

Simple
macro-op
decoder

Simple
macro-op
decoder

Simple
macro-op
decoder

128-Entry
inst. TLB

(four-way)

Instruction
fetch

hardware

18-Entry instruction queue

32 KB Inst. cache (four-way associative)

16-Byte pre-decode + macro-op
fusion, fetch buffer

64-Entry data TLB
(4-way associative)

32-KB dual-ported data
cache (8-way associative)

512-Entry unified
L2 TLB (4-way)

8 MB all core shared and inclusive L3
cache (16-way associative)

Uncore arbiter (handles scheduling and
clock/power state differences)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

238 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

instruction can be from 1 to 17 bytes and the predecoder must look through a
number of bytes before it knows the instruction length. Individual x86
instructions (including some fused instructions) are placed into the 18-entry
instruction queue.

3. Micro-op decode—Individual x86 instructions are translated into micro-ops.
Micro-ops are simple MIPS-like instructions that can be executed directly by
the pipeline; this approach of translating the x86 instruction set into simple
operations that are more easily pipelined was introduced in the Pentium Pro
in 1997 and has been used since. Three of the decoders handle x86 instruc-
tions that translate directly into one micro-op. For x86 instructions that have
more complex semantics, there is a microcode engine that is used to produce
the micro-op sequence; it can produce up to four micro-ops every cycle and
continues until the necessary micro-op sequence has been generated. The
micro-ops are placed according to the order of the x86 instructions in the 28-
entry micro-op buffer.

4. The micro-op buffer preforms loop stream detection and microfusion—If
there is a small sequence of instructions (less than 28 instructions or 256
bytes in length) that comprises a loop, the loop stream detector will find the
loop and directly issue the micro-ops from the buffer, eliminating the need for
the instruction fetch and instruction decode stages to be activated. Microfu-
sion combines instruction pairs such as load/ALU operation and ALU opera-
tion/store and issues them to a single reservation station (where they can still
issue independently), thus increasing the usage of the buffer. In a study of the
Intel Core architecture, which also incorporated microfusion and macrofu-
sion, Bird et al. [2007] discovered that microfusion had little impact on per-
formance, while macrofusion appears to have a modest positive impact on
integer performance and little impact on floating-point performance.

5. Perform the basic instruction issue—Looking up the register location in the
register tables, renaming the registers, allocating a reorder buffer entry, and
fetching any results from the registers or reorder buffer before sending the
micro-ops to the reservation stations.

6. The i7 uses a 36-entry centralized reservation station shared by six functional
units. Up to six micro-ops may be dispatched to the functional units every
clock cycle.

7. Micro-ops are executed by the individual function units and then results are
sent back to any waiting reservation station as well as to the register retire-
ment unit, where they will update the register state, once it is known that the
instruction is no longer speculative. The entry corresponding to the instruc-
tion in the reorder buffer is marked as complete.

8. When one or more instructions at the head of the reorder buffer have been
marked as complete, the pending writes in the register retirement unit are
executed, and the instructions are removed from the reorder buffer.

3.13 Putting It All Together: The Intel Core i7 and ARM Cortex-A8 ■ 239

Performance of the i7

In earlier sections, we examined the performance of the i7’s branch predictor and
also the performance of SMT. In this section, we look at single-thread pipeline
performance. Because of the presence of aggressive speculation as well as non-
blocking caches, it is difficult to attribute the gap between idealized performance
and actual performance accurately. As we will see, relatively few stalls occur
because instructions cannot issue. For example, only about 3% of the loads are
delayed because no reservation station is available. Most losses come either from
branch mispredicts or cache misses. The cost of a branch mispredict is 15 cycles,
while the cost of an L1 miss is about 10 cycles; L2 misses are slightly more than
three times as costly as an L1 miss, and L3 misses cost about 13 times what an L1
miss costs (130–135 cycles)! Although the processor will attempt to find alterna-
tive instructions to execute for L3 misses and some L2 misses, it is likely that
some of the buffers will fill before the miss completes, causing the processor to
stop issuing instructions.

To examine the cost of mispredicts and incorrect speculation, Figure 3.42
shows the fraction of the work (measured by the numbers of micro-ops
dispatched into the pipeline) that do not retire (i.e., their results are annulled),

Figure 3.42 The amount of “wasted work” is plotted by taking the ratio of dispatched micro-ops that do not

graduate to all dispatched micro-ops. For example, the ratio is 25% for sjeng, meaning that 25% of the dispatched
and executed micro-ops are thrown away. The data in this section were collected by Professor Lu Peng and Ph.D. stu-
dent Ying Zhang, both of Louisiana State University.

40%

35%

30%

25%

20%

15%

10%

5%

0%

Per
lbe

nc
h
Bzip

2
Gcc M

cf

Gob
m

k

Hm
m

er

Sjen
g

Lib
qu

an
tu

m

H26
4r

ef

Om
ne

tp
p

Asta
r

Xala
nc

bm
k

M
ilc

Nam
d

Dea
lii

Sop
lex

Pov
ra

y
Lb

m

Sph
inx

3

W
or

k
w

as
te

d/
to

ta
l w

or
k

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

240 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

relative to all micro-op dispatches. For sjeng, for example, 25% of the work is
wasted, since 25% of the dispatched micro-ops are never retired.

Notice that the wasted work in some cases closely matches the branch mis-
prediction rates shown in Figure 3.5 on page 167, but in several instances, such
as mcf, the wasted work seems relatively larger than the misprediction rate. In
such cases, a likely explanation arises from the memory behavior. With the very
high data cache miss rates, mcf will dispatch many instructions during an incor-
rect speculation as long as sufficient reservation stations are available for the
stalled memory references. When the branch misprediction is detected, the
micro-ops corresponding to these instructions will be flushed, but there will be
congestion around the caches, as speculated memory references try to complete.
There is no simple way for the processor to halt such cache requests once they
are initiated.

Figure 3.43 shows the overall CPI for the 19 SPECCPU2006 benchmarks.
The integer benchmarks have a CPI of 1.06 with very large variance (0.67 stan-
dard deviation). MCF and OMNETPP are the major outliers, both having a CPI
over 2.0 while most other benchmarks are close to, or less than, 1.0 (gcc, the next
highest, is 1.23). This variance derives from differences in the accuracy of branch

Figure 3.43 The CPI for the 19 SPECCPU2006 benchmarks shows an average CPI for 0.83 for both the FP and
integer benchmarks, although the behavior is quite different. In the integer case, the CPI values range from 0.44 to
2.66 with a standard deviation of 0.77, while the variation in the FP case is from 0.62 to 1.38 with a standard deviation
of 0.25. The data in this section were collected by Professor Lu Peng and Ph.D. student Ying Zhang, both of Louisiana
State University.

3

Per
lbe

nc
h
Bzip

2
Gcc M

cf

Gob
m

k

Hm
m

er

Sjen
g

Lib
qu

an
tu

m

H26
4r

ef

Om
ne

tp
p

Asta
r

Xala
nc

bm
k

M
ilc

Nam
d

Dea
lii

Sop
lex

Pov
ra

y
Lb

m

Sph
inx

3

2.5

2

1.5

1

0.5

0

C
P

I

3.14 Fallacies and Pitfalls ■ 241

prediction and in cache miss rates. For the integer benchmarks, the L2 miss rate
is the best predictor of CPI, and the L3 miss rate (which is very small) has almost
no effect.

The FP benchmarks achieve higher performance with a lower average CPI
(0.89) and a lower standard deviation (0.25). For the FP benchmarks, L1 and L2
are equally important in determining the CPI, while L3 plays a smaller but signif-
icant role. While the dynamic scheduling and nonblocking capabilities of the i7
can hide some miss latency, cache memory behavior is still a major contributor.
This reinforces the role of multithreading as another way to hide memory latency.

Our few fallacies focus on the difficulty of predicting performance and energy
efficiency and extrapolating from single measures such as clock rate or CPI. We
also show that different architectural approaches can have radically different
behaviors for different benchmarks.

Fallacy It is easy to predict the performance and energy efficiency of two different versions
of the same instruction set architecture, if we hold the technology constant.

Intel manufactures a processor for the low-end Netbook and PMD space that is
quite similar in its microarchitecture of the ARM A8, called the Atom 230. Inter-
estingly, the Atom 230 and the Core i7 920 have both been fabricated in the same
45 nm Intel technology. Figure 3.44 summarizes the Intel Core i7, the ARM
Cortex-A8, and Intel Atom 230. These similarities provide a rare opportunity to
directly compare two radically different microarchitectures for the same instruc-
tion set while holding constant the underlying fabrication technology. Before we
do the comparison, we need to say a little more about the Atom 230.

The Atom processors implement the x86 architecture using the standard tech-
nique of translating x86 instructions into RISC-like instructions (as every x86
implementation since the mid-1990s has done). Atom uses a slightly more pow-
erful microoperation, which allows an arithmetic operation to be paired with a
load or a store. This means that on average for a typical instruction mix only 4%
of the instructions require more than one microoperation. The microoperations
are then executed in a 16-deep pipeline capable of issuing two instructions per
clock, in order, as in the ARM A8. There are dual-integer ALUs, separate pipe-
lines for FP add and other FP operations, and two memory operation pipelines,
supporting more general dual execution than the ARM A8 but still limited by the
in-order issue capability. The Atom 230 has a 32 KB instruction cache and a
24 KB data cache, both backed by a shared 512 KB L2 on the same die. (The
Atom 230 also supports multithreading with two threads, but we will consider
only one single threaded comparisons.) Figure 3.46 summarizes the i7, A8, and
Atom processors and their key characteristics.

We might expect that these two processors, implemented in the same technol-
ogy and with the same instruction set, would exhibit predictable behavior, in

3.14 Fallacies and Pitfalls

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

242 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

terms of relative performance and energy consumption, meaning that power and
performance would scale close to linearly. We examine this hypothesis using
three sets of benchmarks. The first sets is a group of Java, single-threaded
benchmarks that come from the DaCapo benchmarks, and the SPEC JVM98
benchmarks (see Esmaeilzadeh et al. [2011] for a discussion of the benchmarks
and measurements). The second and third sets of benchmarks are from SPEC
CPU2006 and consist of the integer and FP benchmarks, respectively.

As we can see in Figure 3.45, the i7 significantly outperforms the Atom. All
benchmarks are at least four times faster on the i7, two SPECFP benchmarks are
over ten times faster, and one SPECINT benchmark runs over eight times faster!

Figure 3.44 An overview of the four-core Intel i7 920, an example of a typical Arm A8 processor chip (with a 256
MB L2, 32K L1s, and no floating point), and the Intel ARM 230 clearly showing the difference in design philoso-
phy between a processor intended for the PMD (in the case of ARM) or netbook space (in the case of Atom) and a
processor for use in servers and high-end desktops. Remember, the i7 includes four cores, each of which is several
times higher in performance than the one-core A8 or Atom. All these processors are implemented in a comparable
45 nm technology.

Area Specific characteristic

Intel i7 920 ARM A8 Intel Atom 230

Four cores,
each with FP

One core,
no FP

One core,
with FP

Physical chip
properties

Clock rate 2.66 GHz 1 GHz 1.66 GHz

Thermal design power 130 W 2 W 4 W

Package 1366-pin BGA 522-pin BGA 437-pin BGA

Memory system

TLB

Two-level
All four-way set
associative
128 I/64 D
512 L2

One-level
fully associative
32 I/32 D

Two-level
All four-way set
associative
16 I/16 D
64 L2

Caches

Three-level
32 KB/32 KB
256 KB
2–8 MB

Two-level
16/16 or 32/32 KB
128 KB–1MB

Two-level
32/24 KB
512 KB

Peak memory BW 17 GB/sec 12 GB/sec 8 GB/sec

Pipeline structure Peak issue rate 4 ops/clock with fusion 2 ops/clock 2 ops/clock

Pipeline
scheduling

Speculating
out of order

In-order
dynamic issue

In-order
dynamic issue

Branch prediction Two-level

Two-level
512-entry BTB
4K global history
8-entry return
stack Two-level

3.14 Fallacies and Pitfalls ■ 243

Since the ratio of clock rates of these two processors is 1.6, most of the advantage
comes from a much lower CPI for the i7: a factor of 2.8 for the Java benchmarks,
a factor of 3.1 for the SPECINT benchmarks, and a factor of 4.3 for the SPECFP
benchmarks.

But, the average power consumption for the i7 is just under 43 W, while the
average power consumption of the Atom is 4.2 W, or about one-tenth of the
power! Combining the performance and power leads to a energy efficiency
advantage for the Atom that is typically more than 1.5 times better and often 2
times better! This comparison of two processors using the same underlying tech-
nology makes it clear that the performance advantages of an aggressive supersca-
lar with dynamic scheduling and speculation come with a significant
disadvantage in energy efficiency.

Figure 3.45 The relative performance and energy efficiency for a set of single-threaded benchmarks shows

the i7 920 is 4 to over 10 times faster than the Atom 230 but that it is about 2 times less power efficient on

average! Performance is shown in the columns as i7 relative to Atom, which is execution time (i7)/execution time
(Atom). Energy is shown with the line as Energy (Atom)/Energy (i7). The i7 never beats the Atom in energy effi-
ciency, although it is essentially as good on four benchmarks, three of which are floating point. The data shown
here were collected by Esmaeilzadeh et al. [2011]. The SPEC benchmarks were compiled with optimization on
using the standard Intel compiler, while the Java benchmarks use the Sun (Oracle) Hotspot Java VM. Only one core
is active on the i7, and the rest are in deep power saving mode. Turbo Boost is used on the i7, which increases its
performance advantage but slightly decreases its relative energy efficiency.

11

10

9

8

7

6

5

4

3

2

1

0

F
op

Lu
in

de
x

an
tlr

B
lo

at

_2
01

_c
om

pr
es

s

_2
02

_j
es

s

_2
09

_d
b

_2
13

_j
av

ac

_2
12

_m
pe

ga
ud

io

_2
28

_j
ac

k

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

42
9.

m
cf

44
5.

go
bm

k

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

om
ne

tp
p

47
3.

as
ta

r

48
3.

xa
la

nc
bm

k

41
6.

ga
m

es
s

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ct

us
 A

D
M

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
7.

de
al

ll

45
0.

so
pl

ex

45
3.

po
vr

ay

45
4.

ca
lc

ul
ix

45
9.

ga
m

s
F

D
T

D

46
5.

to
nt

o

47
0.

ib
m

48
2.

sp
hi

nx
3

i7
 9

20
 a

nd
 A

to
m

 2
30

 p
er

fo
rm

an
ce

 a
nd

 e
ne

rg
y

ra
tio Energy efficiencySpeedup

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

244 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

Fallacy Processors with lower CPIs will always be faster.

Fallacy Processors with faster clock rates will always be faster.

The key is that it is the product of CPI and clock rate that determines perfor-
mance. A high clock rate obtained by deeply pipelining the CPU must maintain a
low CPI to get the full benefit of the faster clock. Similarly, a simple processor
with a high clock rate but a low CPI may be slower.

As we saw in the previous fallacy, performance and energy efficiency can
diverge significantly among processors designed for different environments even
when they have the same ISA. In fact, large differences in performance can show
up even within a family of processors from the same company all designed for
high-end applications. Figure 3.46 shows the integer and FP performance of two
different implementations of the x86 architecture from Intel, as well as a version
of the Itanium architecture, also by Intel.

The Pentium 4 was the most aggressively pipelined processor ever built by
Intel. It used a pipeline with over 20 stages, had seven functional units, and
cached micro-ops rather than x86 instructions. Its relatively inferior performance
given the aggressive implementation, was a clear indication that the attempt to
exploit more ILP (there could easily be 50 instructions in flight) had failed. The
Pentium’s power consumption was similar to the i7, although its transistor count
was lower, as its primary caches were half as large as the i7, and it included only
a 2 MB secondary cache with no tertiary cache.

The Intel Itanium is a VLIW-style architecture, which despite the potential
decrease in complexity compared to dynamically scheduled superscalars, never
attained competitive clock rates with the mainline x86 processors (although it
appears to achieve an overall CPI similar to that of the i7). In examining these
results, the reader should be aware that they use different implementation tech-
nologies, giving the i7 an advantage in terms of transistor speed and hence clock
rate for an equivalently pipelined processor. Nonetheless, the wide variation in
performance—more than three times between the Pentium and i7—is astonish-
ing. The next pitfall explains where a significant amount of this advantage
comes from.

Processor Clock rate
SPECCInt2006

base
SPECCFP2006

baseline

Intel Pentium 4 670 3.8 GHz 11.5 12.2

Intel Itanium -2 1.66 GHz 14.5 17.3

Intel i7 3.3 GHz 35.5 38.4

Figure 3.46 Three different Intel processors vary widely. Although the Itanium
processor has two cores and the i7 four, only one core is used in the benchmarks.

3.15 Concluding Remarks: What’s Ahead? ■ 245

Pitfall Sometimes bigger and dumber is better.

Much of the attention in the early 2000s went to building aggressive processors
to exploit ILP, including the Pentium 4 architecture, which used the deepest pipe-
line ever seen in a microprocessor, and the Intel Itanium, which had the highest
peak issue rate per clock ever seen. What quickly became clear was that the main
limitation in exploiting ILP often turned out to be the memory system. Although
speculative out-of-order pipelines were fairly good at hiding a significant fraction
of the 10- to 15-cycle miss penalties for a first-level miss, they could do very lit-
tle to hide the penalties for a second-level miss that, when going to main memory,
were likely to be 50 to100 clock cycles.

The result was that these designs never came close to achieving the peak
instruction throughput despite the large transistor counts and extremely sophisti-
cated and clever techniques. The next section discusses this dilemma and the
turning away from more aggressive ILP schemes to multicore, but there was
another change that exemplifies this pitfall. Instead of trying to hide even more
memory latency with ILP, designers simply used the transistors to build much
larger caches. Both the Itanium 2 and the i7 use three-level caches compared to
the two-level cache of the Pentium 4, and the third-level caches are 9 MB and 8
MB compared to the 2 MB second-level cache of the Pentium 4. Needless to say,
building larger caches is a lot easier than designing the 20+ -stage Pentium 4
pipeline and, from the data in Figure 3.46, seems to be more effective.

As 2000 began, the focus on exploiting instruction-level parallelism was at its
peak. Intel was about to introduce Itanium, a high-issue-rate statically scheduled
processor that relied on a VLIW-like approach with intensive compiler support.
MIPS, Alpha, and IBM processors with dynamically scheduled speculative exe-
cution were in their second generation and had gotten wider and faster. The Pen-
tium 4, which used speculative scheduling, had also been announced that year
with seven functional units and a pipeline more than 20 stages deep. But there
were storm clouds on the horizon.

Research such as that covered in Section 3.10 was showing that pushing ILP
much further would be extremely difficult, and, while peak instruction through-
put rates had risen from the first speculative processors some 3 to 5 years earlier,
sustained instruction execution rates were growing much more slowly.

The next five years were telling. The Itanium turned out to be a good FP pro-
cessor but only a mediocre integer processor. Intel still produces the line, but
there are not many users, the clock rate lags the mainline Intel processors, and
Microsoft no longer supports the instruction set. The Intel Pentium 4, while
achieving good performance, turned out to be inefficient in terms of perfor-
mance/watt (i.e., energy use), and the complexity of the processor made it
unlikely that further advances would be possible by increasing the issue rate. The

3.15 Concluding Remarks: What’s Ahead?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

246 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

end of a 20-year road of achieving new performance levels in microprocessors by
exploiting ILP had come. The Pentium 4 was widely acknowledged to have gone
beyond the point of diminishing returns, and the aggressive and sophisticated
Netburst microarchitecture was abandoned.

By 2005, Intel and all the other major processor manufacturers had revamped
their approach to focus on multicore. Higher performance would be achieved
through thread-level parallelism rather than instruction-level parallelism, and the
responsibility for using the processor efficiently would largely shift from the
hardware to the software and the programmer. This change was the most signifi-
cant change in processor architecture since the early days of pipelining and
instruction-level parallelism some 25+ years earlier.

During the same period, designers began to explore the use of more data-level
parallelism as another approach to obtaining performance. SIMD extensions
enabled desktop and server microprocessors to achieve moderate performance
increases for graphics and similar functions. More importantly, graphics process-
ing units (GPUs) pursued aggressive use of SIMD, achieving significant perfor-
mance advantages for applications with extensive data-level parallelism. For
scientific applications, such approaches represent a viable alternative to the more
general, but less efficient, thread-level parallelism exploited in multicores. The
next chapter explores these developments in the use of data-level parallelism.

Many researchers predicted a major retrenchment in the use of ILP, predict-
ing that two issue superscalar processors and larger numbers of cores would be
the future. The advantages, however, of slightly higher issue rates and the ability
of speculative dynamic scheduling to deal with unpredictable events, such as
level-one cache misses, led to moderate ILP being the primary building block in
multicore designs. The addition of SMT and its effectiveness (both for perfor-
mance and energy efficiency) further cemented the position of the moderate
issue, out-of-order, speculative approaches. Indeed, even in the embedded mar-
ket, the newest processors (e.g., the ARM Cortex-A9) have introduced dynamic
scheduling, speculation, and wider issues rates.

It is highly unlikely that future processors will try to increase the width of
issue significantly. It is simply too inefficient both from the viewpoint of silicon
utilization and power efficiency. Consider the data in Figure 3.47 that show the
most recent four processors in the IBM Power series. Over the past decade, there
has been a modest improvement in the ILP support in the Power processors, but
the dominant portion of the increase in transistor count (a factor of almost 7 from
the Power 4 to the Power7) went to increasing the caches and the number of
cores per die. Even the expansion in SMT support seems to be more a focus than
an increase in the ILP throughput: The ILP structure from Power4 to Power7
went from 5 issues to 6, from 8 functional units to 12 (but not increasing from the
original 2 load/store units), while the SMT support went from nonexistent to 4
threads/processor. It seems clear that even for the most advanced ILP processor
in 2011 (the Power7), the focus has moved beyond instruction-level parallelism.
The next two chapters focus on approaches that exploit data-level and thread-
level parallelism.

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell ■ 247

Section L.5 (available online) features a discussion on the development of pipe-
lining and instruction-level parallelism. We provide numerous references for fur-
ther reading and exploration of these topics. Section L.5 covers both Chapter 3
and Appendix H.

Case Study: Exploring the Impact of Microarchitectural
Techniques

Concepts illustrated by this case study

■ Basic Instruction Scheduling, Reordering, Dispatch

■ Multiple Issue and Hazards

■ Register Renaming

■ Out-of-Order and Speculative Execution

■ Where to Spend Out-of-Order Resources

You are tasked with designing a new processor microarchitecture, and you are
trying to figure out how best to allocate your hardware resources. Which of the
hardware and software techniques you learned in Chapter 3 should you apply?
You have a list of latencies for the functional units and for memory, as well as
some representative code. Your boss has been somewhat vague about the
performance requirements of your new design, but you know from experience

Power4 Power5 Power6 Power7

Introduced 2001 2004 2007 2010

Initial clock rate (GHz) 1.3 1.9 4.7 3.6

Transistor count (M) 174 276 790 1200

Issues per clock 5 5 7 6

Functional units 8 8 9 12

Cores/chip 2 2 2 8

SMT threads 0 2 2 4

Total on-chip cache (MB) 1.5 2 4.1 32.3

Figure 3.47 Characteristics of four IBM Power processors. All except the Power6 were dynamically scheduled,
which is static, and in-order, and all the processors support two load/store pipelines. The Power6 has the same func-
tional units as the Power5 except for a decimal unit. Power7 uses DRAM for the L3 cache.

3.16 Historical Perspective and References

Case Studies and Exercises by Jason D. Bakos and
Robert P. Colwell

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

248 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

that, all else being equal, faster is usually better. Start with the basics. Figure 3.48
provides a sequence of instructions and list of latencies.

3.1 [10] <1.8, 3.1, 3.2> What would be the baseline performance (in cycles, per
loop iteration) of the code sequence in Figure 3.48 if no new instruction’s
execution could be initiated until the previous instruction’s execution had
completed? Ignore front-end fetch and decode. Assume for now that execution
does not stall for lack of the next instruction, but only one instruction/cycle
can be issued. Assume the branch is taken, and that there is a one-cycle branch
delay slot.

3.2 [10] <1.8, 3.1, 3.2> Think about what latency numbers really mean—they indi-
cate the number of cycles a given function requires to produce its output, nothing
more. If the overall pipeline stalls for the latency cycles of each functional unit,
then you are at least guaranteed that any pair of back-to-back instructions (a “pro-
ducer” followed by a “consumer”) will execute correctly. But not all instruction
pairs have a producer/consumer relationship. Sometimes two adjacent instruc-
tions have nothing to do with each other. How many cycles would the loop body
in the code sequence in Figure 3.48 require if the pipeline detected true data
dependences and only stalled on those, rather than blindly stalling everything just
because one functional unit is busy? Show the code with <stall> inserted where
necessary to accommodate stated latencies. (Hint: An instruction with latency +2
requires two <stall> cycles to be inserted into the code sequence. Think of it
this way: A one-cycle instruction has latency 1 + 0, meaning zero extra wait
states. So, latency 1 + 1 implies one stall cycle; latency 1 + N has N extra stall
cycles.

3.3 [15] <3.6, 3.7> Consider a multiple-issue design. Suppose you have two execu-
tion pipelines, each capable of beginning execution of one instruction per cycle,
and enough fetch/decode bandwidth in the front end so that it will not stall your

Latencies beyond single cycle

Loop: LD F2,0(RX) Memory LD +4

IO: DIVD F8,F2,F0 Memory SD +1

I1: MULTD F2,F6,F2 Integer ADD, SUB +0

I2: LD F4,0(Ry) Branches +1

I3: ADDD F4,F0,F4 ADDD +1

I4: ADDD F10,F8,F2 MULTD +5

I5: ADDI Rx,Rx,#8 DIVD +12

I6: ADDI Ry,Ry,#8
I7: SD F4,0(Ry)
I8: SUB R20,R4,Rx
I9: BNZ R20,Loop

Figure 3.48 Code and latencies for Exercises 3.1 through 3.6.

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell ■ 249

execution. Assume results can be immediately forwarded from one execution
unit to another, or to itself. Further assume that the only reason an execution
pipeline would stall is to observe a true data dependency. Now how many cycles
does the loop require?

3.4 [10] <3.6, 3.7> In the multiple-issue design of Exercise 3.3, you may have recog-
nized some subtle issues. Even though the two pipelines have the exact same
instruction repertoire, they are neither identical nor interchangeable, because
there is an implicit ordering between them that must reflect the ordering of the
instructions in the original program. If instruction N + 1 begins execution in Exe-
cution Pipe 1 at the same time that instruction N begins in Pipe 0, and N + 1 hap-
pens to require a shorter execution latency than N, then N + 1 will complete
before N (even though program ordering would have implied otherwise). Recite
at least two reasons why that could be hazardous and will require special consid-
erations in the microarchitecture. Give an example of two instructions from the
code in Figure 3.48 that demonstrate this hazard.

3.5 [20] <3.7> Reorder the instructions to improve performance of the code in Figure
3.48. Assume the two-pipe machine in Exercise 3.3 and that the out-of-order
completion issues of Exercise 3.4 have been dealt with successfully. Just worry
about observing true data dependences and functional unit latencies for now.
How many cycles does your reordered code take?

3.6 [10/10/10] <3.1, 3.2> Every cycle that does not initiate a new operation in a pipe
is a lost opportunity, in the sense that your hardware is not living up to its poten-
tial.

a. [10] <3.1, 3.2> In your reordered code from Exercise 3.5, what fraction of all
cycles, counting both pipes, were wasted (did not initiate a new op)?

b. [10] <3.1, 3.2> Loop unrolling is one standard compiler technique for finding
more parallelism in code, in order to minimize the lost opportunities for per-
formance. Hand-unroll two iterations of the loop in your reordered code from
Exercise 3.5.

c. [10] <3.1, 3.2> What speedup did you obtain? (For this exercise, just color
the N + 1 iteration’s instructions green to distinguish them from the Nth itera-
tion’s instructions; if you were actually unrolling the loop, you would have to
reassign registers to prevent collisions between the iterations.)

3.7 [15] <2.1> Computers spend most of their time in loops, so multiple loop itera-
tions are great places to speculatively find more work to keep CPU resources
busy. Nothing is ever easy, though; the compiler emitted only one copy of that
loop’s code, so even though multiple iterations are handling distinct data, they
will appear to use the same registers. To keep multiple iterations’ register usages
from colliding, we rename their registers. Figure 3.49 shows example code that
we would like our hardware to rename. A compiler could have simply unrolled
the loop and used different registers to avoid conflicts, but if we expect our hard-
ware to unroll the loop, it must also do the register renaming. How? Assume your
hardware has a pool of temporary registers (call them T registers, and assume that

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

250 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

there are 64 of them, T0 through T63) that it can substitute for those registers des-
ignated by the compiler. This rename hardware is indexed by the src (source)
register designation, and the value in the table is the T register of the last destina-
tion that targeted that register. (Think of these table values as producers, and the
src registers are the consumers; it doesn’t much matter where the producer puts
its result as long as its consumers can find it.) Consider the code sequence in Fig-
ure 3.49. Every time you see a destination register in the code, substitute the next
available T, beginning with T9. Then update all the src registers accordingly, so
that true data dependences are maintained. Show the resulting code. (Hint: See
Figure 3.50.)

3.8 [20] <3.4> Exercise 3.7 explored simple register renaming: when the hardware
register renamer sees a source register, it substitutes the destination T register of
the last instruction to have targeted that source register. When the rename table
sees a destination register, it substitutes the next available T for it, but superscalar
designs need to handle multiple instructions per clock cycle at every stage in the
machine, including the register renaming. A simple scalar processor would there-
fore look up both src register mappings for each instruction and allocate a new
dest mapping per clock cycle. Superscalar processors must be able to do that as
well, but they must also ensure that any dest-to-src relationships between the
two concurrent instructions are handled correctly. Consider the sample code
sequence in Figure 3.51. Assume that we would like to simultaneously rename
the first two instructions. Further assume that the next two available T registers to
be used are known at the beginning of the clock cycle in which these two instruc-
tions are being renamed. Conceptually, what we want is for the first instruction to
do its rename table lookups and then update the table per its destination’s
T register. Then the second instruction would do exactly the same thing, and any

Loop: LD F4,0(Rx)

I0: MULTD F2,F0,F2

I1: DIVD F8,F4,F2

I2: LD F4,0(Ry)

I3: ADDD F6,F0,F4

I4: SUBD F8,F8,F6

I5: SD F8,0(Ry)

Figure 3.49 Sample code for register renaming practice.

I0: LD T9,0(Rx)

I1: MULTD T10,F0,T9

...

Figure 3.50 Hint: Expected output of register renaming.

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell ■ 251

interinstruction dependency would thereby be handled correctly. But there’s not
enough time to write that T register designation into the renaming table and then
look it up again for the second instruction, all in the same clock cycle. That regis-
ter substitution must instead be done live (in parallel with the register rename
table update). Figure 3.52 shows a circuit diagram, using multiplexers and com-
parators, that will accomplish the necessary on-the-fly register renaming. Your
task is to show the cycle-by-cycle state of the rename table for every instruction
of the code shown in Figure 3.51. Assume the table starts out with every entry
equal to its index (T0 = 0; T1 = 1, …).

3.9 [5] <3.4> If you ever get confused about what a register renamer has to do, go
back to the assembly code you’re executing, and ask yourself what has to happen

I0: SUBD F1,F2,F3

I1: ADDD F4,F1,F2

I2: MULTD F6,F4,F1

I3: DIVD F0,F2,F6

Figure 3.51 Sample code for superscalar register renaming.

Figure 3.52 Rename table and on-the-fly register substitution logic for superscalar

machines. (Note that src is source, and dest is destination.)

Rename table

0
1
2
3
4
5

Next available T register

dst = F4

src1 = F1

src2 = F2

dst = F1

src1 = F2

src2 = F3

dst = T9

src1 = T19

src2 = T38

dst = T10

src1 = T9

src2 = T19(Similar mux
for src2)

Y N

This 9 appears
in the rename
table in next
clock cycle

I1 dst = I2 src?

(As per instr 1)

I1

I2

19

29

8
9

62
63

910. . .

. . .

. . .

21

38

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

252 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

for the right result to be obtained. For example, consider a three-way superscalar
machine renaming these three instructions concurrently:

ADDI R1, R1, R1
ADDI R1, R1, R1
ADDI R1, R1, R1

If the value of R1 starts out as 5, what should its value be when this sequence has
executed?

3.10 [20] <3.4, 3.9> Very long instruction word (VLIW) designers have a few basic
choices to make regarding architectural rules for register use. Suppose a VLIW is
designed with self-draining execution pipelines: once an operation is initiated, its
results will appear in the destination register at most L cycles later (where L is the
latency of the operation). There are never enough registers, so there is a tempta-
tion to wring maximum use out of the registers that exist. Consider Figure 3.53.
If loads have a 1 + 2 cycle latency, unroll this loop once, and show how a VLIW
capable of two loads and two adds per cycle can use the minimum number of reg-
isters, in the absence of any pipeline interruptions or stalls. Give an example of
an event that, in the presence of self-draining pipelines, could disrupt this pipe-
lining and yield wrong results.

3.11 [10/10/10] <3.3> Assume a five-stage single-pipeline microarchitecture (fetch,
decode, execute, memory, write-back) and the code in Figure 3.54. All ops are
one cycle except LW and SW, which are 1 + 2 cycles, and branches, which are 1 + 1
cycles. There is no forwarding. Show the phases of each instruction per clock
cycle for one iteration of the loop.

a. [10] <3.3> How many clock cycles per loop iteration are lost to branch
overhead?

b. [10] <3.3> Assume a static branch predictor, capable of recognizing a back-
wards branch in the Decode stage. Now how many clock cycles are wasted
on branch overhead?

c. [10] <3.3> Assume a dynamic branch predictor. How many cycles are lost on
a correct prediction?

Loop: LW R4,0(R0) ; ADDI R11,R3,#1

LW R5,8(R1) ; ADDI R20,R0,#1

<stall>

ADDI R10,R4,#1;

SW R7,0(R6) ; SW R9,8(R8)

ADDI R2,R2,#8

SUB R4,R3,R2

BNZ R4,Loop

Figure 3.53 Sample VLIW code with two adds, two loads, and two stalls.

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell ■ 253

3.12 [15/20/20/10/20] <3.4, 3.7, 3.14> Let’s consider what dynamic scheduling might
achieve here. Assume a microarchitecture as shown in Figure 3.55. Assume that
the arithmetic-logical units (ALUs) can do all arithmetic ops (MULTD, DIVD, ADDD,
ADDI, SUB) and branches, and that the Reservation Station (RS) can dispatch at
most one operation to each functional unit per cycle (one op to each ALU plus
one memory op to the LD/ST).

a. [15] <3.4> Suppose all of the instructions from the sequence in Figure 3.48
are present in the RS, with no renaming having been done. Highlight any
instructions in the code where register renaming would improve perfor-
mance. (Hint: Look for read-after-write and write-after-write hazards.
Assume the same functional unit latencies as in Figure 3.48.)

b. [20] <3.4> Suppose the register-renamed version of the code from part (a) is
resident in the RS in clock cycle N, with latencies as given in Figure 3.48.
Show how the RS should dispatch these instructions out of order, clock by
clock, to obtain optimal performance on this code. (Assume the same RS
restrictions as in part (a). Also assume that results must be written into the RS

Loop: LW R3,0(R0)

LW R1,0(R3)

ADDI R1,R1,#1

SUB R4,R3,R2

SW R1,0(R3)

BNZ R4, Loop

Figure 3.54 Code loop for Exercise 3.11.

Figure 3.55 An out-of-order microarchitecure.

Reservation
station

ALU 0

Instructions
from decoder

1

2

ALU 1

LD/ST Mem

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

254 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

before they’re available for use—no bypassing.) How many clock cycles
does the code sequence take?

c. [20] <3.4> Part (b) lets the RS try to optimally schedule these instructions.
But in reality, the whole instruction sequence of interest is not usually present
in the RS. Instead, various events clear the RS, and as a new code sequence
streams in from the decoder, the RS must choose to dispatch what it has.
Suppose that the RS is empty. In cycle 0, the first two register-renamed
instructions of this sequence appear in the RS. Assume it takes one clock
cycle to dispatch any op, and assume functional unit latencies are as they
were for Exercise 3.2. Further assume that the front end (decoder/register-
renamer) will continue to supply two new instructions per clock cycle. Show
the cycle-by-cycle order of dispatch of the RS. How many clock cycles does
this code sequence require now?

d. [10] <3.14> If you wanted to improve the results of part (c), which would
have helped most: (1) Another ALU? (2) Another LD/ST unit? (3) Full
bypassing of ALU results to subsequent operations? or (4) Cutting the longest
latency in half? What’s the speedup?

e. [20] <3.7> Now let’s consider speculation, the act of fetching, decoding, and
executing beyond one or more conditional branches. Our motivation to do
this is twofold: The dispatch schedule we came up with in part (c) had lots of
nops, and we know computers spend most of their time executing loops
(which implies the branch back to the top of the loop is pretty predictable).
Loops tell us where to find more work to do; our sparse dispatch schedule
suggests we have opportunities to do some of that work earlier than before. In
part (d) you found the critical path through the loop. Imagine folding a sec-
ond copy of that path onto the schedule you got in part (b). How many more
clock cycles would be required to do two loops’ worth of work (assuming all
instructions are resident in the RS)? (Assume all functional units are fully
pipelined.)

Exercises

3.13 [25] <3.13> In this exercise, you will explore performance trade-offs between
three processors that each employ different types of multithreading. Each of
these processors is superscalar, uses in-order pipelines, requires a fixed three-
cycle stall following all loads and branches, and has identical L1 caches. Instruc-
tions from the same thread issued in the same cycle are read in program order and
must not contain any data or control dependences.

■ Processor A is a superscalar SMT architecture, capable of issuing up to two
instructions per cycle from two threads.

■ Processor B is a fine MT architecture, capable of issuing up to four instruc-
tions per cycle from a single thread and switches threads on any pipeline stall.

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell ■ 255

■ Processor C is a coarse MT architecture, capable of issuing up to eight
instructions per cycle from a single thread and switches threads on an L1
cache miss.

Our application is a list searcher, which scans a region of memory for a specific
value stored in R9 between the address range specified in R16 and R17. It is paral-
lelized by evenly dividing the search space into four equal-sized contiguous
blocks and assigning one search thread to each block (yielding four threads).
Most of each thread’s runtime is spent in the following unrolled loop body:

loop: LD R1,0(R16)

LD R2,8(R16)

LD R3,16(R16)

LD R4,24(R16)

LD R5,32(R16)

LD R6,40(R16)

LD R7,48(R16)

LD R8,56(R16)

BEQAL R9,R1,match0

BEQAL R9,R2,match1

BEQAL R9,R3,match2

BEQAL R9,R4,match3

BEQAL R9,R5,match4

BEQAL R9,R6,match5

BEQAL R9,R7,match6

BEQAL R9,R8,match7

DADDIU R16,R16,#64

BLT R16,R17,loop

Assume the following:

■ A barrier is used to ensure that all threads begin simultaneously.

■ The first L1 cache miss occurs after two iterations of the loop.

■ None of the BEQAL branches is taken.

■ The BLT is always taken.

■ All three processors schedule threads in a round-robin fashion.

Determine how many cycles are required for each processor to complete the first
two iterations of the loop.

3.14 [25/25/25] <3.2, 3.7> In this exercise, we look at how software techniques
can extract instruction-level parallelism (ILP) in a common vector loop. The

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

256 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

following loop is the so-called DAXPY loop (double-precision aX plus Y) and
is the central operation in Gaussian elimination. The following code imple-
ments the DAXPY operation, Y = aX + Y, for a vector length 100. Initially, R1 is
set to the base address of array X and R2 is set to the base address of Y:

DADDIU R4,R1,#800 ; R1 = upper bound for X

foo: L.D F2,0(R1) ; (F2) = X(i)

MUL.D F4,F2,F0 ; (F4) = a*X(i)

L.D F6,0(R2) ; (F6) = Y(i)

ADD.D F6,F4,F6 ; (F6) = a*X(i) + Y(i)

S.D F6,0(R2) ; Y(i) = a*X(i) + Y(i)

DADDIU R1,R1,#8 ; increment X index

DADDIU R2,R2,#8 ; increment Y index

DSLTU R3,R1,R4 ; test: continue loop?

BNEZ R3,foo ; loop if needed

Assume the functional unit latencies as shown in the table below. Assume a one-
cycle delayed branch that resolves in the ID stage. Assume that results are fully
bypassed.

a. [25] <3.2> Assume a single-issue pipeline. Show how the loop would look
both unscheduled by the compiler and after compiler scheduling for both
floating-point operation and branch delays, including any stalls or idle clock
cycles. What is the execution time (in cycles) per element of the result vector,
Y, unscheduled and scheduled? How much faster must the clock be for pro-
cessor hardware alone to match the performance improvement achieved by
the scheduling compiler? (Neglect any possible effects of increased clock
speed on memory system performance.)

b. [25] <3.2> Assume a single-issue pipeline. Unroll the loop as many times as
necessary to schedule it without any stalls, collapsing the loop overhead
instructions. How many times must the loop be unrolled? Show the instruc-
tion schedule. What is the execution time per element of the result?

Instruction producing
result Instruction using result Latency in clock cycles

FP multiply FP ALU op 6

FP add FP ALU op 4

FP multiply FP store 5

FP add FP store 4

Integer operations and all
loads

Any 2

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell ■ 257

c. [25] <3.7> Assume a VLIW processor with instructions that contain five
operations, as shown in Figure 3.16. We will compare two degrees of loop
unrolling. First, unroll the loop 6 times to extract ILP and schedule it without
any stalls (i.e., completely empty issue cycles), collapsing the loop overhead
instructions, and then repeat the process but unroll the loop 10 times. Ignore
the branch delay slot. Show the two schedules. What is the execution time per
element of the result vector for each schedule? What percent of the operation
slots are used in each schedule? How much does the size of the code differ
between the two schedules? What is the total register demand for the two
schedules?

3.15 [20/20] <3.4, 3.5, 3.7, 3.8> In this exercise, we will look at how variations on
Tomasulo’s algorithm perform when running the loop from Exercise 3.14. The
functional units (FUs) are described in the table below.

Assume the following:

■ Functional units are not pipelined.

■ There is no forwarding between functional units; results are communicated
by the common data bus (CDB).

■ The execution stage (EX) does both the effective address calculation and the
memory access for loads and stores. Thus, the pipeline is IF/ID/IS/EX/WB.

■ Loads require one clock cycle.

■ The issue (IS) and write-back (WB) result stages each require one clock cycle.

■ There are five load buffer slots and five store buffer slots.

■ Assume that the Branch on Not Equal to Zero (BNEZ) instruction requires
one clock cycle.

a. [20] <3.4–3.5> For this problem use the single-issue Tomasulo MIPS pipe-
line of Figure 3.6 with the pipeline latencies from the table above. Show the
number of stall cycles for each instruction and what clock cycle each instruc-
tion begins execution (i.e., enters its first EX cycle) for three iterations of the
loop. How many cycles does each loop iteration take? Report your answer in
the form of a table with the following column headers:

■ Iteration (loop iteration number)

■ Instruction

■ Issues (cycle when instruction issues)

■ Executes (cycle when instruction executes)

FU Type Cycles in EX Number of FUs
Number of reservation
stations

Integer 1 1 5

FP adder 10 1 3

FP multiplier 15 1 2

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

258 ■ Chapter Three Instruction-Level Parallelism and Its Exploitation

■ Memory access (cycle when memory is accessed)

■ Write CDB (cycle when result is written to the CDB)

■ Comment (description of any event on which the instruction is waiting)

Show three iterations of the loop in your table. You may ignore the first
instruction.

b. [20] <3.7, 3.8> Repeat part (a) but this time assume a two-issue Tomasulo
algorithm and a fully pipelined floating-point unit (FPU).

3.16 [10] <3.4> Tomasulo’s algorithm has a disadvantage: Only one result can com-
pute per clock per CDB. Use the hardware configuration and latencies from the
previous question and find a code sequence of no more than 10 instructions
where Tomasulo’s algorithm must stall due to CDB contention. Indicate where
this occurs in your sequence.

3.17 [20] <3.3> An (m,n) correlating branch predictor uses the behavior of the most
recent m executed branches to choose from 2m predictors, each of which is an n-
bit predictor. A two-level local predictor works in a similar fashion, but only
keeps track of the past behavior of each individual branch to predict future
behavior.

There is a design trade-off involved with such predictors: Correlating predictors
require little memory for history which allows them to maintain 2-bit predictors
for a large number of individual branches (reducing the probability of branch
instructions reusing the same predictor), while local predictors require substan-
tially more memory to keep history and are thus limited to tracking a relatively
small number of branch instructions. For this exercise, consider a (1,2) correlat-
ing predictor that can track four branches (requiring 16 bits) versus a (1,2) local
predictor that can track two branches using the same amount of memory. For the
following branch outcomes, provide each prediction, the table entry used to make
the prediction, any updates to the table as a result of the prediction, and the final
misprediction rate of each predictor. Assume that all branches up to this point
have been taken. Initialize each predictor to the following:

Correlating predictor

Entry Branch Last outcome Prediction

0 0 T T with one misprediction

1 0 NT NT

2 1 T NT

3 1 NT T

4 2 T T

5 2 NT T

6 3 T NT with one misprediction

7 3 NT NT

Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell ■ 259

3.18 [10] <3.9> Suppose we have a deeply pipelined processor, for which we imple-
ment a branch-target buffer for the conditional branches only. Assume that the
misprediction penalty is always four cycles and the buffer miss penalty is always
three cycles. Assume a 90% hit rate, 90% accuracy, and 15% branch frequency.
How much faster is the processor with the branch-target buffer versus a processor
that has a fixed two-cycle branch penalty? Assume a base clock cycle per instruc-
tion (CPI) without branch stalls of one.

3.19 [10/5] <3.9> Consider a branch-target buffer that has penalties of zero, two, and
two clock cycles for correct conditional branch prediction, incorrect prediction,
and a buffer miss, respectively. Consider a branch-target buffer design that distin-
guishes conditional and unconditional branches, storing the target address for a
conditional branch and the target instruction for an unconditional branch.

a. [10] <3.9> What is the penalty in clock cycles when an unconditional branch
is found in the buffer?

b. [10] <3.9> Determine the improvement from branch folding for uncondi-
tional branches. Assume a 90% hit rate, an unconditional branch frequency of
5%, and a two-cycle penalty for a buffer miss. How much improvement is
gained by this enhancement? How high must the hit rate be for this enhance-
ment to provide a performance gain?

Local predictor

Entry Branch Last 2 outcomes (right is most recent) Prediction

0 0 T,T T with one misprediction

1 0 T,NT NT

2 0 NT,T NT

3 0 NT T

4 1 T,T T

5 1 T,NT T with one misprediction

6 1 NT,T NT

7 1 NT,NT NT

Branch PC (word address) Outcome

454 T

543 NT

777 NT

543 NT

777 NT

454 T

777 NT

454 T

543 T

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

4.1 Introduction 262

4.2 Vector Architecture 264

4.3 SIMD Instruction Set Extensions for Multimedia 282

4.4 Graphics Processing Units 288

4.5 Detecting and Enhancing Loop-Level Parallelism 315

4.6 Crosscutting Issues 322

4.7 Putting It All Together: Mobile versus Server GPUs

and Tesla versus Core i7 323

4.8 Fallacies and Pitfalls 330

4.9 Concluding Remarks 332

4.10 Historical Perspective and References 334

Case Study and Exercises by Jason D. Bakos 334

4
Data-Level Parallelism in

Vector, SIMD, and GPU

Architectures 1

We call these algorithms data parallel algorithms because their parallelism

comes from simultaneous operations across large sets of data, rather than

from multiple threads of control.

W. Daniel Hillis and Guy L. Steele
“Data Parallel Algorithms,” Comm. ACM (1986)

If you were plowing a field, which would you rather use: two strong

oxen or 1024 chickens?

Seymour Cray, Father of the Supercomputer
(arguing for two powerful vector processors

versus many simple processors)

Computer Architecture. DOI: 10.1016/B978-0-12-383872-8.00005-7
© 2012 Elsevier, Inc. All rights reserved.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://dx.doi.org/10.1016/B978-0-12-383872-8.00005-7
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

262 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

A question for the single instruction, multiple data (SIMD) architecture, which
Chapter 1 introduced, has always been just how wide a set of applications has
significant data-level parallelism (DLP). Fifty years later, the answer is not only
the matrix-oriented computations of scientific computing, but also the media-
oriented image and sound processing. Moreover, since a single instruction can
launch many data operations, SIMD is potentially more energy efficient than
multiple instruction multiple data (MIMD), which needs to fetch and execute
one instruction per data operation. These two answers make SIMD attractive for
Personal Mobile Devices. Finally, perhaps the biggest advantage of SIMD ver-
sus MIMD is that the programmer continues to think sequentially yet achieves
parallel speedup by having parallel data operations.

This chapter covers three variations of SIMD: vector architectures, multime-
dia SIMD instruction set extensions, and graphics processing units (GPUs).1

The first variation, which predates the other two by more than 30 years,
means essentially pipelined execution of many data operations. These vector
architectures are easier to understand and to compile to than other SIMD varia-
tions, but they were considered too expensive for microprocessors until recently.
Part of that expense was in transistors and part was in the cost of sufficient
DRAM bandwidth, given the widespread reliance on caches to meet memory
performance demands on conventional microprocessors.

The second SIMD variation borrows the SIMD name to mean basically simul-
taneous parallel data operations and is found in most instruction set architectures
today that support multimedia applications. For x86 architectures, the SIMD
instruction extensions started with the MMX (Multimedia Extensions) in 1996,
which were followed by several SSE (Streaming SIMD Extensions) versions in
the next decade, and they continue to this day with AVX (Advanced Vector
Extensions). To get the highest computation rate from an x86 computer, you often
need to use these SIMD instructions, especially for floating-point programs.

The third variation on SIMD comes from the GPU community, offering
higher potential performance than is found in traditional multicore computers
today. While GPUs share features with vector architectures, they have their own
distinguishing characteristics, in part due to the ecosystem in which they evolved.
This environment has a system processor and system memory in addition to the
GPU and its graphics memory. In fact, to recognize those distinctions, the GPU
community refers to this type of architecture as heterogeneous.

1 This chapter is based on material in Appendix F, “Vector Processors,” by Krste Asanovic, and Appendix G, “Hardware
and Software for VLIW and EPIC” from the 4th edition of this book; on material in Appendix A, “Graphics and Com-
puting GPUs,” by John Nickolls and David Kirk, from the 4th edition of Computer Organization and Design; and to a
lesser extent on material in “Embracing and Extending 20th-Century Instruction Set Architectures,” by Joe Gebis and
David Patterson, IEEE Computer, April 2007.

 4.1 Introduction

4.1 Introduction ■ 263

For problems with lots of data parallelism, all three SIMD variations share
the advantage of being easier for the programmer than classic parallel MIMD
programming. To put into perspective the importance of SIMD versus MIMD,
Figure 4.1 plots the number of cores for MIMD versus the number of 32-bit and
64-bit operations per clock cycle in SIMD mode for x86 computers over time.

For x86 computers, we expect to see two additional cores per chip every two
years and the SIMD width to double every four years. Given these assumptions,
over the next decade the potential speedup from SIMD parallelism is twice that of
MIMD parallelism. Hence, it’s as least as important to understand SIMD parallel-
ism as MIMD parallelism, although the latter has received much more fanfare
recently. For applications with both data-level parallelism and thread-level parallel-
ism, the potential speedup in 2020 will be an order of magnitude higher than today.

The goal of this chapter is for architects to understand why vector is more
general than multimedia SIMD, as well as the similarities and differences
between vector and GPU architectures. Since vector architectures are supersets
of the multimedia SIMD instructions, including a better model for compilation,
and since GPUs share several similarities with vector architectures, we start with

Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and

SIMD over time for x86 computers. This figure assumes that two cores per chip for
MIMD will be added every two years and the number of operations for SIMD will double
every four years.

2003
1

10

100

P
ot

en
tia

l p
ar

al
le

l s
pe

ed
up

1000

2007 2011 2015 2019 2023

MIMD*SIMD (32 b)

SIMD (32 b)

MIMD*SIMD (64 b)

MIMD

SIMD (64 b)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

264 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

vector architectures to set the foundation for the following two sections. The next
section introduces vector architectures, while Appendix G goes much deeper into
the subject.

The most efficient way to execute a vectorizable application is a vector
processor.

Jim Smith

International Symposium on Computer Architecture (1994)

Vector architectures grab sets of data elements scattered about memory, place
them into large, sequential register files, operate on data in those register files,
and then disperse the results back into memory. A single instruction operates on
vectors of data, which results in dozens of register–register operations on inde-
pendent data elements.

These large register files act as compiler-controlled buffers, both to hide
memory latency and to leverage memory bandwidth. Since vector loads and
stores are deeply pipelined, the program pays the long memory latency only once
per vector load or store versus once per element, thus amortizing the latency
over, say, 64 elements. Indeed, vector programs strive to keep memory busy.

VMIPS

We begin with a vector processor consisting of the primary components that
Figure 4.2 shows. This processor, which is loosely based on the Cray-1, is the
foundation for discussion throughout this section. We will call this instruction
set architecture VMIPS; its scalar portion is MIPS, and its vector portion is the
logical vector extension of MIPS. The rest of this subsection examines how the
basic architecture of VMIPS relates to other processors.

The primary components of the instruction set architecture of VMIPS are the
following:

■ Vector registers—Each vector register is a fixed-length bank holding a single
vector. VMIPS has eight vector registers, and each vector register holds 64 ele-
ments, each 64 bits wide. The vector register file needs to provide enough ports
to feed all the vector functional units. These ports will allow a high degree of
overlap among vector operations to different vector registers. The read and
write ports, which total at least 16 read ports and 8 write ports, are connected to
the functional unit inputs or outputs by a pair of crossbar switches.

■ Vector functional units—Each unit is fully pipelined, and it can start a new
operation on every clock cycle. A control unit is needed to detect hazards,
both structural hazards for functional units and data hazards on register
accesses. Figure 4.2 shows that VMIPS has five functional units. For sim-
plicity, we focus exclusively on the floating-point functional units.

4.2 Vector Architecture

4.2 Vector Architecture ■ 265

■ Vector load/store unit—The vector memory unit loads or stores a vector to or
from memory. The VMIPS vector loads and stores are fully pipelined, so that
words can be moved between the vector registers and memory with a band-
width of one word per clock cycle, after an initial latency. This unit would
also normally handle scalar loads and stores.

■ A set of scalar registers—Scalar registers can also provide data as input to
the vector functional units, as well as compute addresses to pass to the vector
load/store unit. These are the normal 32 general-purpose registers and 32
floating-point registers of MIPS. One input of the vector functional units
latches scalar values as they are read out of the scalar register file.

Figure 4.2 The basic structure of a vector architecture, VMIPS. This processor has a
scalar architecture just like MIPS. There are also eight 64-element vector registers, and
all the functional units are vector functional units. This chapter defines special vector
instructions for both arithmetic and memory accesses. The figure shows vector units for
logical and integer operations so that VMIPS looks like a standard vector processor that
usually includes these units; however, we will not be discussing these units. The vector
and scalar registers have a significant number of read and write ports to allow multiple
simultaneous vector operations. A set of crossbar switches (thick gray lines) connects
these ports to the inputs and outputs of the vector functional units.

Main memory

Vector
registers

Scalar
registers

FP add/subtract

FP multiply

FP divide

Integer

Logical

Vector
load/store

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

266 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Figure 4.3 lists the VMIPS vector instructions. In VMIPS, vector operations
use the same names as scalar MIPS instructions, but with the letters “VV”
appended. Thus, ADDVV.D is an addition of two double-precision vectors. The
vector instructions take as their input either a pair of vector registers (ADDVV.D)
or a vector register and a scalar register, designated by appending “VS”
(ADDVS.D). In the latter case, all operations use the same value in the scalar regis-
ter as one input: The operation ADDVS.D will add the contents of a scalar register
to each element in a vector register. The vector functional unit gets a copy of the
scalar value at issue time. Most vector operations have a vector destination regis-
ter, although a few (such as population count) produce a scalar value, which is
stored to a scalar register.

Instruction Operands Function

ADDVV.D
ADDVS.D

V1,V2,V3
V1,V2,F0

Add elements of V2 and V3, then put each result in V1.
Add F0 to each element of V2, then put each result in V1.

SUBVV.D
SUBVS.D
SUBSV.D

V1,V2,V3
V1,V2,F0
V1,F0,V2

Subtract elements of V3 from V2, then put each result in V1.
Subtract F0 from elements of V2, then put each result in V1.
Subtract elements of V2 from F0, then put each result in V1.

MULVV.D
MULVS.D

V1,V2,V3
V1,V2,F0

Multiply elements of V2 and V3, then put each result in V1.
Multiply each element of V2 by F0, then put each result in V1.

DIVVV.D
DIVVS.D
DIVSV.D

V1,V2,V3
V1,V2,F0
V1,F0,V2

Divide elements of V2 by V3, then put each result in V1.
Divide elements of V2 by F0, then put each result in V1.
Divide F0 by elements of V2, then put each result in V1.

LV V1,R1 Load vector register V1 from memory starting at address R1.

SV R1,V1 Store vector register V1 into memory starting at address R1.

LVWS V1,(R1,R2) Load V1 from address at R1 with stride in R2 (i.e., R1 + i × R2).

SVWS (R1,R2),V1 Store V1 to address at R1 with stride in R2 (i.e., R1 + i × R2).

LVI V1,(R1+V2) Load V1 with vector whose elements are at R1 + V2(i) (i.e., V2 is an index).

SVI (R1+V2),V1 Store V1 to vector whose elements are at R1 + V2(i) (i.e., V2 is an index).

CVI V1,R1 Create an index vector by storing the values 0, 1 × R1, 2 × R1,...,63 × R1 into V1.

S--VV.D
S--VS.D

V1,V2
V1,F0

Compare the elements (EQ, NE, GT, LT, GE, LE) in V1 and V2. If condition is true, put a
1 in the corresponding bit vector; otherwise put 0. Put resulting bit vector in vector-
mask register (VM). The instruction S--VS.D performs the same compare but using a
scalar value as one operand.

POP R1,VM Count the 1s in vector-mask register VM and store count in R1.

CVM Set the vector-mask register to all 1s.

MTC1
MFC1

VLR,R1
R1,VLR

Move contents of R1 to vector-length register VL.
Move the contents of vector-length register VL to R1.

MVTM
MVFM

VM,F0
F0,VM

Move contents of F0 to vector-mask register VM.
Move contents of vector-mask register VM to F0.

Figure 4.3 The VMIPS vector instructions, showing only the double-precision floating-point operations. In
addition to the vector registers, there are two special registers, VLR and VM, discussed below. These special registers
are assumed to live in the MIPS coprocessor 1 space along with the FPU registers. The operations with stride and
uses of the index creation and indexed load/store operations are explained later.

4.2 Vector Architecture ■ 267

The names LV and SV denote vector load and vector store, and they load or
store an entire vector of double-precision data. One operand is the vector reg-
ister to be loaded or stored; the other operand, which is a MIPS general-purpose
register, is the starting address of the vector in memory. As we shall see, in addi-
tion to the vector registers, we need two additional special-purpose registers: the
vector-length and vector-mask registers. The former is used when the natural
vector length is not 64 and the latter is used when loops involve IF statements.

The power wall leads architects to value architectures that can deliver high
performance without the energy and design complexity costs of highly out-
of-order superscalar processors. Vector instructions are a natural match to this
trend, since architects can use them to increase performance of simple in-order
scalar processors without greatly increasing energy demands and design com-
plexity. In practice, developers can express many of the programs that ran well
on complex out-of-order designs more efficiently as data-level parallelism in the
form of vector instructions, as Kozyrakis and Patterson [2002] showed.

With a vector instruction, the system can perform the operations on the vector
data elements in many ways, including operating on many elements simultane-
ously. This flexibility lets vector designs use slow but wide execution units to
achieve high performance at low power. Further, the independence of elements
within a vector instruction set allows scaling of functional units without perform-
ing additional costly dependency checks, as superscalar processors require.

 Vectors naturally accommodate varying data sizes. Hence, one view of a
vector register size is 64 64-bit data elements, but 128 32-bit elements, 256 16-bit
elements, and even 512 8-bit elements are equally valid views. Such hardware
multiplicity is why a vector architecture can be useful for multimedia applica-
tions as well as scientific applications.

How Vector Processors Work: An Example

We can best understand a vector processor by looking at a vector loop for VMIPS.
Let’s take a typical vector problem, which we use throughout this section:

Y = a × X + Y

X and Y are vectors, initially resident in memory, and a is a scalar. This problem
is the so-called SAXPY or DAXPY loop that forms the inner loop of the Linpack
benchmark. (SAXPY stands for single-precision a × X plus Y; DAXPY for dou-
ble precision a × X plus Y.) Linpack is a collection of linear algebra routines, and
the Linpack benchmark consists of routines for performing Gaussian elimination.

For now, let us assume that the number of elements, or length, of a vector
register (64) matches the length of the vector operation we are interested in. (This
restriction will be lifted shortly.)

Example Show the code for MIPS and VMIPS for the DAXPY loop. Assume that the start-
ing addresses of X and Y are in Rx and Ry, respectively.

Answer Here is the MIPS code.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

268 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

 L.D F0,a ;load scalar a
 DADDIU R4,Rx,#512 ;last address to load

Loop: L.D F2,0(Rx) ;load X[i]
 MUL.D F2,F2,F0 ;a × X[i]
 L.D F4,0(Ry) ;load Y[i]
 ADD.D F4,F4,F2 ;a × X[i] + Y[i]
 S.D F4,9(Ry) ;store into Y[i]
 DADDIU Rx,Rx,#8 ;increment index to X
 DADDIU Ry,Ry,#8 ;increment index to Y
 DSUBU R20,R4,Rx ;compute bound
 BNEZ R20,Loop ;check if done

Here is the VMIPS code for DAXPY.

 L.D F0,a ;load scalar a
 LV V1,Rx ;load vector X
 MULVS.D V2,V1,F0 ;vector-scalar multiply
 LV V3,Ry ;load vector Y
 ADDVV.D V4,V2,V3 ;add
 SV V4,Ry ;store the result

The most dramatic difference is that the vector processor greatly reduces the
dynamic instruction bandwidth, executing only 6 instructions versus almost
600 for MIPS. This reduction occurs because the vector operations work on 64
elements and the overhead instructions that constitute nearly half the loop on
MIPS are not present in the VMIPS code. When the compiler produces vector
instructions for such a sequence and the resulting code spends much of its time
running in vector mode, the code is said to be vectorized or vectorizable. Loops
can be vectorized when they do not have dependences between iterations of a
loop, which are called loop-carried dependences (see Section 4.5).

Another important difference between MIPS and VMIPS is the frequency of
pipeline interlocks. In the straightforward MIPS code, every ADD.D must wait for
a MUL.D, and every S.D must wait for the ADD.D. On the vector processor, each
vector instruction will only stall for the first element in each vector, and then sub-
sequent elements will flow smoothly down the pipeline. Thus, pipeline stalls are
required only once per vector instruction, rather than once per vector element.
Vector architects call forwarding of element-dependent operations chaining, in
that the dependent operations are “chained” together. In this example, the
pipeline stall frequency on MIPS will be about 64× higher than it is on VMIPS.
Software pipelining or loop unrolling (Appendix H) can reduce the pipeline stalls
on MIPS; however, the large difference in instruction bandwidth cannot be
reduced substantially.

Vector Execution Time

The execution time of a sequence of vector operations primarily depends on three
factors: (1) the length of the operand vectors, (2) structural hazards among the

4.2 Vector Architecture ■ 269

operations, and (3) the data dependences. Given the vector length and the initia-
tion rate, which is the rate at which a vector unit consumes new operands and
produces new results, we can compute the time for a single vector instruction. All
modern vector computers have vector functional units with multiple parallel
pipelines (or lanes) that can produce two or more results per clock cycle, but they
may also have some functional units that are not fully pipelined. For simplicity,
our VMIPS implementation has one lane with an initiation rate of one element
per clock cycle for individual operations. Thus, the execution time in clock
cycles for a single vector instruction is approximately the vector length.

To simplify the discussion of vector execution and vector performance, we
use the notion of a convoy, which is the set of vector instructions that could
potentially execute together. As we shall soon see, you can estimate performance
of a section of code by counting the number of convoys. The instructions in a
convoy must not contain any structural hazards; if such hazards were present, the
instructions would need to be serialized and initiated in different convoys. To
keep the analysis simple, we assume that a convoy of instructions must complete
execution before any other instructions (scalar or vector) can begin execution.

It might seem that in addition to vector instruction sequences with structural
hazards, sequences with read-after-write dependency hazards should also be in
separate convoys, but chaining allows them to be in the same convoy.

Chaining allows a vector operation to start as soon as the individual elements
of its vector source operand become available: The results from the first func-
tional unit in the chain are “forwarded” to the second functional unit. In practice,
we often implement chaining by allowing the processor to read and write a par-
ticular vector register at the same time, albeit to different elements. Early imple-
mentations of chaining worked just like forwarding in scalar pipelining, but this
restricted the timing of the source and destination instructions in the chain.
Recent implementations use flexible chaining, which allows a vector instruction
to chain to essentially any other active vector instruction, assuming that we don’t
generate a structural hazard. All modern vector architectures support flexible
chaining, which we assume in this chapter.

To turn convoys into execution time we need a timing metric to estimate the
time for a convoy. It is called a chime, which is simply the unit of time taken to
execute one convoy. Thus, a vector sequence that consists of m convoys executes
in m chimes; for a vector length of n, for VMIPS this is approximately m × n
clock cycles. The chime approximation ignores some processor-specific over-
heads, many of which are dependent on vector length. Hence, measuring time in
chimes is a better approximation for long vectors than for short ones. We will use
the chime measurement, rather than clock cycles per result, to indicate explicitly
that we are ignoring certain overheads.

If we know the number of convoys in a vector sequence, we know the execu-
tion time in chimes. One source of overhead ignored in measuring chimes is any
limitation on initiating multiple vector instructions in a single clock cycle. If only
one vector instruction can be initiated in a clock cycle (the reality in most vector
processors), the chime count will underestimate the actual execution time of a

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

270 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

convoy. Because the length of vectors is typically much greater than the number
of instructions in the convoy, we will simply assume that the convoy executes in
one chime.

Example Show how the following code sequence lays out in convoys, assuming a single
copy of each vector functional unit:

LV V1,Rx ;load vector X
MULVS.D V2,V1,F0 ;vector-scalar multiply
LV V3,Ry ;load vector Y
ADDVV.D V4,V2,V3 ;add two vectors
SV V4,Ry ;store the sum

How many chimes will this vector sequence take? How many cycles per FLOP
(floating-point operation) are needed, ignoring vector instruction issue overhead?

Answer The first convoy starts with the first LV instruction. The MULVS.D is dependent on
the first LV, but chaining allows it to be in the same convoy.

The second LV instruction must be in a separate convoy since there is a struc-
tural hazard on the load/store unit for the prior LV instruction. The ADDVV.D is
dependent on the second LV, but it can again be in the same convoy via chaining.
Finally, the SV has a structural hazard on the LV in the second convoy, so it must
go in the third convoy. This analysis leads to the following layout of vector
instructions into convoys:

1. LV MULVS.D

2. LV ADDVV.D

3. SV

The sequence requires three convoys. Since the sequence takes three chimes and
there are two floating-point operations per result, the number of cycles per FLOP
is 1.5 (ignoring any vector instruction issue overhead). Note that, although we
allow the LV and MULVS.D both to execute in the first convoy, most vector
machines will take two clock cycles to initiate the instructions.

This example shows that the chime approximation is reasonably accurate for
long vectors. For example, for 64-element vectors, the time in chimes is 3, so the
sequence would take about 64 × 3 or 192 clock cycles. The overhead of issuing
convoys in two separate clock cycles would be small.

Another source of overhead is far more significant than the issue limitation.
The most important source of overhead ignored by the chime model is vector
start-up time. The start-up time is principally determined by the pipelining
latency of the vector functional unit. For VMIPS, we will use the same pipeline
depths as the Cray-1, although latencies in more modern processors have tended
to increase, especially for vector loads. All functional units are fully pipelined.

4.2 Vector Architecture ■ 271

The pipeline depths are 6 clock cycles for floating-point add, 7 for floating-point
multiply, 20 for floating-point divide, and 12 for vector load.

Given these vector basics, the next several subsections will give optimiza-
tions that either improve the performance or increase the types of programs that
can run well on vector architectures. In particular, they will answer the questions:

■ How can a vector processor execute a single vector faster than one element
per clock cycle? Multiple elements per clock cycle improve performance.

■ How does a vector processor handle programs where the vector lengths are
not the same as the length of the vector register (64 for VMIPS)? Since most
application vectors don’t match the architecture vector length, we need an
efficient solution to this common case.

■ What happens when there is an IF statement inside the code to be vectorized?
More code can vectorize if we can efficiently handle conditional statements.

■ What does a vector processor need from the memory system? Without suffi-
cient memory bandwidth, vector execution can be futile.

■ How does a vector processor handle multiple dimensional matrices? This
popular data structure must vectorize for vector architectures to do well.

■ How does a vector processor handle sparse matrices? This popular data struc-
ture must vectorize also.

■ How do you program a vector computer? Architectural innovations that are a
mismatch to compiler technology may not get widespread use.

The rest of this section introduces each of these optimizations of the vector archi-
tecture, and Appendix G goes into greater depth.

Multiple Lanes: Beyond One Element per Clock Cycle

A critical advantage of a vector instruction set is that it allows software to pass a
large amount of parallel work to hardware using only a single short instruction.
A single vector instruction can include scores of independent operations yet be
encoded in the same number of bits as a conventional scalar instruction. The par-
allel semantics of a vector instruction allow an implementation to execute these
elemental operations using a deeply pipelined functional unit, as in the VMIPS
implementation we’ve studied so far; an array of parallel functional units; or a
combination of parallel and pipelined functional units. Figure 4.4 illustrates how
to improve vector performance by using parallel pipelines to execute a vector add
instruction.

The VMIPS instruction set has the property that all vector arithmetic instruc-
tions only allow element N of one vector register to take part in operations with
element N from other vector registers. This dramatically simplifies the construc-
tion of a highly parallel vector unit, which can be structured as multiple parallel
lanes. As with a traffic highway, we can increase the peak throughput of a vector
unit by adding more lanes. Figure 4.5 shows the structure of a four-lane vector

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

272 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

unit. Thus, going to four lanes from one lane reduces the number of clocks for a
chime from 64 to 16. For multiple lanes to be advantageous, both the applications
and the architecture must support long vectors; otherwise, they will execute so
quickly that you’ll run out of instruction bandwidth, requiring ILP techniques
(see Chapter 3) to supply enough vector instructions.

Each lane contains one portion of the vector register file and one execution
pipeline from each vector functional unit. Each vector functional unit executes
vector instructions at the rate of one element group per cycle using multiple pipe-
lines, one per lane. The first lane holds the first element (element 0) for all vector
registers, and so the first element in any vector instruction will have its source

Figure 4.4 Using multiple functional units to improve the performance of a single vector add instruction,
C = A + B. The vector processor (a) on the left has a single add pipeline and can complete one addition per cycle. The
vector processor (b) on the right has four add pipelines and can complete four additions per cycle. The elements
within a single vector add instruction are interleaved across the four pipelines. The set of elements that move
through the pipelines together is termed an element group. (Reproduced with permission from Asanovic [1998].)

(a) (b)
Element group

4.2 Vector Architecture ■ 273

and destination operands located in the first lane. This allocation allows the arith-
metic pipeline local to the lane to complete the operation without communicating
with other lanes. Accessing main memory also requires only intralane wiring.
Avoiding interlane communication reduces the wiring cost and register file ports
required to build a highly parallel execution unit, and helps explain why vector
computers can complete up to 64 operations per clock cycle (2 arithmetic units
and 2 load/store units across 16 lanes).

Adding multiple lanes is a popular technique to improve vector performance
as it requires little increase in control complexity and does not require changes to
existing machine code. It also allows designers to trade off die area, clock rate,
voltage, and energy without sacrificing peak performance. If the clock rate of a
vector processor is halved, doubling the number of lanes will retain the same
potential performance.

Figure 4.5 Structure of a vector unit containing four lanes. The vector register stor-
age is divided across the lanes, with each lane holding every fourth element of each
vector register. The figure shows three vector functional units: an FP add, an FP multi-
ply, and a load-store unit. Each of the vector arithmetic units contains four execution
pipelines, one per lane, which act in concert to complete a single vector instruction.
Note how each section of the vector register file only needs to provide enough ports
for pipelines local to its lane. This figure does not show the path to provide the scalar
operand for vector-scalar instructions, but the scalar processor (or control processor)
broadcasts a scalar value to all lanes.

Lane 1 Lane 2 Lane 3Lane 0

FP add
pipe 0

Vector
registers:
elements

0, 4, 8, . . .

FP mul.
pipe 0

FP mul.
pipe 1

Vector load-store unit

FP mul.
pipe 2

FP mul.
pipe 3

Vector
registers:
elements

1, 5, 9, . . .

Vector
registers:
elements

2, 6, 10, . . .

Vector
registers:
elements

3, 7, 11, . . .

FP add
pipe 1

FP add
pipe 2

FP add
pipe 3

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

274 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Vector-Length Registers: Handling Loops Not Equal to 64

A vector register processor has a natural vector length determined by the number
of elements in each vector register. This length, which is 64 for VMIPS, is
unlikely to match the real vector length in a program. Moreover, in a real program
the length of a particular vector operation is often unknown at compile time. In
fact, a single piece of code may require different vector lengths. For example, con-
sider this code:

 for (i=0; i <n; i=i+1)
 Y[i] = a ∗ X[i] + Y[i];

The size of all the vector operations depends on n, which may not even be known
until run time! The value of n might also be a parameter to a procedure contain-
ing the above loop and therefore subject to change during execution.

The solution to these problems is to create a vector-length register (VLR).
The VLR controls the length of any vector operation, including a vector load or
store. The value in the VLR, however, cannot be greater than the length of the
vector registers. This solves our problem as long as the real length is less than or
equal to the maximum vector length (MVL). The MVL determines the number of
data elements in a vector of an architecture. This parameter means the length of
vector registers can grow in later computer generations without changing the
instruction set; as we shall see in the next section, multimedia SIMD extensions
have no equivalent of MVL, so they change the instruction set every time they
increase their vector length.

What if the value of n is not known at compile time and thus may be greater
than the MVL? To tackle the second problem where the vector is longer than the
maximum length, a technique called strip mining is used. Strip mining is the gen-
eration of code such that each vector operation is done for a size less than or
equal to the MVL. We create one loop that handles any number of iterations that
is a multiple of the MVL and another loop that handles any remaining iterations
and must be less than the MVL. In practice, compilers usually create a single
strip-mined loop that is parameterized to handle both portions by changing the
length. We show the strip-mined version of the DAXPY loop in C:

low = 0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/

for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/
Y[i] = a * X[i] + Y[i] ; /*main operation*/

low = low + VL; /*start of next vector*/
VL = MVL; /*reset the length to maximum vector length*/

}

The term n/MVL represents truncating integer division. The effect of this loop is
to block the vector into segments that are then processed by the inner loop. The

4.2 Vector Architecture ■ 275

length of the first segment is (n % MVL), and all subsequent segments are of
length MVL. Figure 4.6 shows how to split the long vector into segments.

The inner loop of the preceding code is vectorizable with length VL, which is
equal to either (n % MVL) or MVL. The VLR register must be set twice in the
code, once at each place where the variable VL in the code is assigned.

Vector Mask Registers: Handling IF Statements in Vector Loops

From Amdahl’s law, we know that the speedup on programs with low to moder-
ate levels of vectorization will be very limited. The presence of conditionals (IF
statements) inside loops and the use of sparse matrices are two main reasons for
lower levels of vectorization. Programs that contain IF statements in loops cannot
be run in vector mode using the techniques we have discussed so far because the
IF statements introduce control dependences into a loop. Likewise, we cannot
implement sparse matrices efficiently using any of the capabilities we have seen
so far. We discuss strategies for dealing with conditional execution here, leaving
the discussion of sparse matrices for later.

Consider the following loop written in C:

for (i = 0; i < 64; i=i+1)
if (X[i] != 0)

X[i] = X[i] – Y[i];

This loop cannot normally be vectorized because of the conditional execution of
the body; however, if the inner loop could be run for the iterations for which
X[i] ≠ 0, then the subtraction could be vectorized.

The common extension for this capability is vector-mask control. Mask regis-
ters essentially provide conditional execution of each element operation in a vec-
tor instruction. The vector-mask control uses a Boolean vector to control the
execution of a vector instruction, just as conditionally executed instructions use a
Boolean condition to determine whether to execute a scalar instruction. When the
vector-mask register is enabled, any vector instructions executed operate only on

Figure 4.6 A vector of arbitrary length processed with strip mining. All blocks but
the first are of length MVL, utilizing the full power of the vector processor. In this figure,
we use the variable m for the expression (n % MVL). (The C operator % is modulo.)

0
..

(m−1)

m
..

(m−1)
+MVL

(m+MVL)
..

(m−1)
+2×MVL

(m+2×MVL)
..

(m−1)
+3×MVL

. . . (n−MVL)
..

(n−1)

Range of i

Value of j n/MVL1 2 3 . . .0

. . .

. . .

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

276 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

the vector elements whose corresponding entries in the vector-mask register are
one. The entries in the destination vector register that correspond to a zero in the
mask register are unaffected by the vector operation. Clearing the vector-mask
register sets it to all ones, making subsequent vector instructions operate on all
vector elements. We can now use the following code for the previous loop,
assuming that the starting addresses of X and Y are in Rx and Ry, respectively:

LV V1,Rx ;load vector X into V1
LV V2,Ry ;load vector Y
L.D F0,#0 ;load FP zero into F0
SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0
SUBVV.D V1,V1,V2 ;subtract under vector mask
SV V1,Rx ;store the result in X

Compiler writers call the transformation to change an IF statement to a straight-
line code sequence using conditional execution if conversion.

Using a vector-mask register does have overhead, however. With scalar archi-
tectures, conditionally executed instructions still require execution time when the
condition is not satisfied. Nonetheless, the elimination of a branch and the associ-
ated control dependences can make a conditional instruction faster even if it some-
times does useless work. Similarly, vector instructions executed with a vector mask
still take the same execution time, even for the elements where the mask is zero.
Likewise, even with a significant number of zeros in the mask, using vector-mask
control may still be significantly faster than using scalar mode.

As we shall see in Section 4.4, one difference between vector processors and
GPUs is the way they handle conditional statements. Vector processors make the
mask registers part of the architectural state and rely on compilers to manipulate
mask registers explicitly. In contrast, GPUs get the same effect using hardware to
manipulate internal mask registers that are invisible to GPU software. In both
cases, the hardware spends the time to execute a vector element whether the
mask is zero or one, so the GFLOPS rate drops when masks are used.

Memory Banks: Supplying Bandwidth for
Vector Load/Store Units

The behavior of the load/store vector unit is significantly more complicated than
that of the arithmetic functional units. The start-up time for a load is the time to
get the first word from memory into a register. If the rest of the vector can be sup-
plied without stalling, then the vector initiation rate is equal to the rate at which
new words are fetched or stored. Unlike simpler functional units, the initiation
rate may not necessarily be one clock cycle because memory bank stalls can
reduce effective throughput.

Typically, penalties for start-ups on load/store units are higher than those for
arithmetic units—over 100 clock cycles on many processors. For VMIPS we
assume a start-up time of 12 clock cycles, the same as the Cray-1. (More recent
vector computers use caches to bring down latency of vector loads and stores.)

4.2 Vector Architecture ■ 277

To maintain an initiation rate of one word fetched or stored per clock, the
memory system must be capable of producing or accepting this much data.
Spreading accesses across multiple independent memory banks usually
delivers the desired rate. As we will soon see, having significant numbers of
banks is useful for dealing with vector loads or stores that access rows or
columns of data.

Most vector processors use memory banks, which allow multiple indepen-
dent accesses rather than simple memory interleaving for three reasons:

1. Many vector computers support multiple loads or stores per clock, and the
memory bank cycle time is usually several times larger than the processor
cycle time. To support simultaneous accesses from multiple loads or stores,
the memory system needs multiple banks and to be able to control the
addresses to the banks independently.

2. Most vector processors support the ability to load or store data words that are
not sequential. In such cases, independent bank addressing, rather than inter-
leaving, is required.

3. Most vector computers support multiple processors sharing the same memory
system, so each processor will be generating its own independent stream of
addresses.

In combination, these features lead to a large number of independent memory
banks, as the following example shows.

Example The largest configuration of a Cray T90 (Cray T932) has 32 processors, each
capable of generating 4 loads and 2 stores per clock cycle. The processor clock
cycle is 2.167 ns, while the cycle time of the SRAMs used in the memory system
is 15 ns. Calculate the minimum number of memory banks required to allow all
processors to run at full memory bandwidth.

Answer The maximum number of memory references each cycle is 192: 32 processors
times 6 references per processor. Each SRAM bank is busy for 15/2.167 = 6.92
clock cycles, which we round up to 7 processor clock cycles. Therefore, we
require a minimum of 192 × 7 = 1344 memory banks!

The Cray T932 actually has 1024 memory banks, so the early models could not
sustain full bandwidth to all processors simultaneously. A subsequent memory
upgrade replaced the 15 ns asynchronous SRAMs with pipelined synchronous
SRAMs that more than halved the memory cycle time, thereby providing suffi-
cient bandwidth.

Taking a higher level perspective, vector load/store units play a similar role
to prefetch units in scalar processors in that both try to deliver data bandwidth by
supplying processors with streams of data.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

278 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Stride: Handling Multidimensional Arrays in Vector
Architectures

The position in memory of adjacent elements in a vector may not be sequential.
Consider this straightforward code for matrix multiply in C:

for (i = 0; i < 100; i=i+1)
for (j = 0; j < 100; j=j+1) {

A[i][j] = 0.0;
for (k = 0; k < 100; k=k+1)

A[i][j] = A[i][j] + B[i][k] * D[k][j];
}

We could vectorize the multiplication of each row of B with each column of D
and strip-mine the inner loop with k as the index variable.

To do so, we must consider how to address adjacent elements in B and adja-
cent elements in D. When an array is allocated memory, it is linearized and must
be laid out in either row-major (as in C) or column-major (as in Fortran) order.
This linearization means that either the elements in the row or the elements in the
column are not adjacent in memory. For example, the C code above allocates in
row-major order, so the elements of D that are accessed by iterations in the inner
loop are separated by the row size times 8 (the number of bytes per entry) for a
total of 800 bytes. In Chapter 2, we saw that blocking could improve locality in
cache-based systems. For vector processors without caches, we need another
technique to fetch elements of a vector that are not adjacent in memory.

This distance separating elements to be gathered into a single register is called
the stride. In this example, matrix D has a stride of 100 double words (800 bytes),
and matrix B would have a stride of 1 double word (8 bytes). For column-major
order, which is used by Fortran, the strides would be reversed. Matrix D would
have a stride of 1, or 1 double word (8 bytes), separating successive elements,
while matrix B would have a stride of 100, or 100 double words (800 bytes). Thus,
without reordering the loops, the compiler can’t hide the long distances between
successive elements for both B and D.

Once a vector is loaded into a vector register, it acts as if it had logically
adjacent elements. Thus, a vector processor can handle strides greater than one,
called non-unit strides, using only vector load and vector store operations with
stride capability. This ability to access nonsequential memory locations and to
reshape them into a dense structure is one of the major advantages of a vector
processor. Caches inherently deal with unit stride data; increasing block size
can help reduce miss rates for large scientific datasets with unit stride, but
increasing block size can even have a negative effect for data that are accessed
with non-unit strides. While blocking techniques can solve some of these prob-
lems (see Chapter 2), the ability to access data efficiently that is not contiguous
remains an advantage for vector processors on certain problems, as we shall see
in Section 4.7.

On VMIPS, where the addressable unit is a byte, the stride for our example
would be 800. The value must be computed dynamically, since the size of the

4.2 Vector Architecture ■ 279

matrix may not be known at compile time or—just like vector length—may change
for different executions of the same statement. The vector stride, like the vector
starting address, can be put in a general-purpose register. Then the VMIPS instruc-
tion LVWS (load vector with stride) fetches the vector into a vector register. Like-
wise, when storing a non-unit stride vector, use the instruction SVWS (store vector
with stride).

Supporting strides greater than one complicates the memory system. Once we
introduce non-unit strides, it becomes possible to request accesses from the same
bank frequently. When multiple accesses contend for a bank, a memory bank
conflict occurs, thereby stalling one access. A bank conflict and, hence, a stall
will occur if

Example Suppose we have 8 memory banks with a bank busy time of 6 clocks and a total
memory latency of 12 cycles. How long will it take to complete a 64-element
vector load with a stride of 1? With a stride of 32?

Answer Since the number of banks is larger than the bank busy time, for a stride of 1 the
load will take 12 + 64 = 76 clock cycles, or 1.2 clock cycles per element. The
worst possible stride is a value that is a multiple of the number of memory banks,
as in this case with a stride of 32 and 8 memory banks. Every access to memory
(after the first one) will collide with the previous access and will have to wait for
the 6-clock-cycle bank busy time. The total time will be 12 + 1 + 6 * 63 = 391
clock cycles, or 6.1 clock cycles per element.

Gather-Scatter: Handling Sparse Matrices in Vector
Architectures

As mentioned above, sparse matrices are commonplace so it is important to have
techniques to allow programs with sparse matrices to execute in vector mode. In
a sparse matrix, the elements of a vector are usually stored in some compacted
form and then accessed indirectly. Assuming a simplified sparse structure, we
might see code that looks like this:

for (i = 0; i < n; i=i+1)
A[K[i]] = A[K[i]] + C[M[i]];

This code implements a sparse vector sum on the arrays A and C, using index vec-
tors K and M to designate the nonzero elements of A and C. (A and C must have the
same number of nonzero elements—n of them—so K and M are the same size.)

The primary mechanism for supporting sparse matrices is gather-scatter
operations using index vectors. The goal of such operations is to support moving
between a compressed representation (i.e., zeros are not included) and normal
representation (i.e., the zeros are included) of a sparse matrix. A gather operation

Number of banks
Least common multiple (Stride, Number of banks)
--- Bank busy time<

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

280 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

takes an index vector and fetches the vector whose elements are at the addresses
given by adding a base address to the offsets given in the index vector. The result
is a dense vector in a vector register. After these elements are operated on in
dense form, the sparse vector can be stored in expanded form by a scatter store,
using the same index vector. Hardware support for such operations is called
gather-scatter and it appears on nearly all modern vector processors. The VMIPS
instructions are LVI (load vector indexed or gather) and SVI (store vector indexed
or scatter). For example, if Ra, Rc, Rk, and Rm contain the starting addresses of the
vectors in the previous sequence, we can code the inner loop with vector instruc-
tions such as:

LV Vk, Rk ;load K
LVI Va, (Ra+Vk) ;load A[K[]]
LV Vm, Rm ;load M
LVI Vc, (Rc+Vm) ;load C[M[]]
ADDVV.D Va, Va, Vc ;add them
SVI (Ra+Vk), Va ;store A[K[]]

This technique allows code with sparse matrices to run in vector mode. A
simple vectorizing compiler could not automatically vectorize the source code
above because the compiler would not know that the elements of K are distinct
values, and thus that no dependences exist. Instead, a programmer directive
would tell the compiler that it was safe to run the loop in vector mode.

Although indexed loads and stores (gather and scatter) can be pipelined, they
typically run much more slowly than non-indexed loads or stores, since the mem-
ory banks are not known at the start of the instruction. Each element has an indi-
vidual address, so they can’t be handled in groups, and there can be conflicts at
many places throughout the memory system. Thus, each individual access incurs
significant latency. However, as Section 4.7 shows, a memory system can deliver
better performance by designing for this case and by using more hardware
resources versus when architects have a laissez faire attitude toward such
accesses.

As we shall see in Section 4.4, all loads are gathers and all stores are scatters
in GPUs. To avoid running slowly in the frequent case of unit strides, it is up to
the GPU programmer to ensure that all the addresses in a gather or scatter are to
adjacent locations. In addition, the GPU hardware must recognize the sequence
of these addresses during execution to turn the gathers and scatters into the more
efficient unit stride accesses to memory.

Programming Vector Architectures

An advantage of vector architectures is that compilers can tell programmers at
compile time whether a section of code will vectorize or not, often giving hints as
to why it did not vectorize the code. This straightforward execution model allows

4.2 Vector Architecture ■ 281

experts in other domains to learn how to improve performance by revising their
code or by giving hints to the compiler when it’s OK to assume independence
between operations, such as for gather-scatter data transfers. It is this dialog
between the compiler and the programmer, with each side giving hints to the
other on how to improve performance, that simplifies programming of vector
computers.

Today, the main factor that affects the success with which a program runs in
vector mode is the structure of the program itself: Do the loops have true data
dependences (see Section 4.5), or can they be restructured so as not to have such
dependences? This factor is influenced by the algorithms chosen and, to some
extent, by how they are coded.

As an indication of the level of vectorization achievable in scientific pro-
grams, let’s look at the vectorization levels observed for the Perfect Club bench-
marks. Figure 4.7 shows the percentage of operations executed in vector mode for
two versions of the code running on the Cray Y-MP. The first version is that
obtained with just compiler optimization on the original code, while the second
version uses extensive hints from a team of Cray Research programmers. Several
studies of the performance of applications on vector processors show a wide vari-
ation in the level of compiler vectorization.

Benchmark
name

Operations executed
in vector mode,

compiler-optimized

Operations executed
in vector mode,

with programmer aid
Speedup from

hint optimization

BDNA 96.1% 97.2% 1.52

MG3D 95.1% 94.5% 1.00

FLO52 91.5% 88.7% N/A

ARC3D 91.1% 92.0% 1.01

SPEC77 90.3% 90.4% 1.07

MDG 87.7% 94.2% 1.49

TRFD 69.8% 73.7% 1.67

DYFESM 68.8% 65.6% N/A

ADM 42.9% 59.6% 3.60

OCEAN 42.8% 91.2% 3.92

TRACK 14.4% 54.6% 2.52

SPICE 11.5% 79.9% 4.06

QCD 4.2% 75.1% 2.15

Figure 4.7 Level of vectorization among the Perfect Club benchmarks when

executed on the Cray Y-MP [Vajapeyam 1991]. The first column shows the vectoriza-
tion level obtained with the compiler without hints, while the second column shows
the results after the codes have been improved with hints from a team of Cray Research
programmers.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

282 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

The hint-rich versions show significant gains in vectorization level for codes
the compiler could not vectorize well by itself, with all codes now above 50%
vectorization. The median vectorization improved from about 70% to about 90%.

SIMD Multimedia Extensions started with the simple observation that many
media applications operate on narrower data types than the 32-bit processors
were optimized for. Many graphics systems used 8 bits to represent each of the
three primary colors plus 8 bits for transparency. Depending on the application,
audio samples are usually represented with 8 or 16 bits. By partitioning the carry
chains within, say, a 256-bit adder, a processor could perform simultaneous
operations on short vectors of thirty-two 8-bit operands, sixteen 16-bit operands,
eight 32-bit operands, or four 64-bit operands. The additional cost of such parti-
tioned adders was small. Figure 4.8 summarizes typical multimedia SIMD
instructions. Like vector instructions, a SIMD instruction specifies the same
operation on vectors of data. Unlike vector machines with large register files
such as the VMIPS vector register, which can hold as many as sixty-four 64-bit
elements in each of 8 vector registers, SIMD instructions tend to specify fewer
operands and hence use much smaller register files.

In contrast to vector architectures, which offer an elegant instruction set that
is intended to be the target of a vectorizing compiler, SIMD extensions have
three major omissions:

■ Multimedia SIMD extensions fix the number of data operands in the
opcode, which has led to the addition of hundreds of instructions in the
MMX, SSE, and AVX extensions of the x86 architecture. Vector architec-
tures have a vector length register that specifies the number of operands for
the current operation. These variable-length vector registers easily accom-
modate programs that naturally have shorter vectors than the maximum size
the architecture supports. Moreover, vector architectures have an implicit
maximum vector length in the architecture, which combined with the vector
length register avoids the use of many opcodes.

Instruction category Operands

Unsigned add/subtract Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit

Maximum/minimum Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit

Average Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit

Shift right/left Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit

Floating point Sixteen 16-bit, eight 32-bit, four 64-bit, or two 128-bit

Figure 4.8 Summary of typical SIMD multimedia support for 256-bit-wide opera-
tions. Note that the IEEE 754-2008 floating-point standard added half-precision (16-bit)
and quad-precision (128-bit) floating-point operations.

4.3 SIMD Instruction Set Extensions for Multimedia

4.3 SIMD Instruction Set Extensions for Multimedia ■ 283

■ Multimedia SIMD does not offer the more sophisticated addressing modes of
vector architectures, namely strided accesses and gather-scatter accesses.
These features increase the number of programs that a vector compiler can
successfully vectorize (see Section 4.7).

■ Multimedia SIMD usually does not offer the mask registers to support condi-
tional execution of elements as in vector architectures.

These omissions make it harder for the compiler to generate SIMD code and
increase the difficulty of programming in SIMD assembly language.

For the x86 architecture, the MMX instructions added in 1996 repurposed
the 64-bit floating-point registers, so the basic instructions could perform eight
8-bit operations or four 16-bit operations simultaneously. These were joined by
parallel MAX and MIN operations, a wide variety of masking and conditional
instructions, operations typically found in digital signal processors, and ad hoc
instructions that were believed to be useful in important media libraries. Note
that MMX reused the floating-point data transfer instructions to access
memory.

The Streaming SIMD Extensions (SSE) successor in 1999 added separate
registers that were 128 bits wide, so now instructions could simultaneously per-
form sixteen 8-bit operations, eight 16-bit operations, or four 32-bit operations. It
also performed parallel single-precision floating-point arithmetic. Since SSE had
separate registers, it needed separate data transfer instructions. Intel soon added
double-precision SIMD floating-point data types via SSE2 in 2001, SSE3 in
2004, and SSE4 in 2007. Instructions with four single-precision floating-point
operations or two parallel double-precision operations increased the peak float-
ing-point performance of the x86 computers, as long as programmers place the
operands side by side. With each generation, they also added ad hoc instructions
whose aim is to accelerate specific multimedia functions perceived to be
important.

The Advanced Vector Extensions (AVX), added in 2010, doubles the width
of the registers again to 256 bits and thereby offers instructions that double the
number of operations on all narrower data types. Figure 4.9 shows AVX instruc-
tions useful for double-precision floating-point computations. AVX includes
preparations to extend the width to 512 bits and 1024 bits in future generations of
the architecture.

In general, the goal of these extensions has been to accelerate carefully writ-
ten libraries rather than for the compiler to generate them (see Appendix H), but
recent x86 compilers are trying to generate such code, particularly for floating-
point-intensive applications.

Given these weaknesses, why are Multimedia SIMD Extensions so popu-
lar? First, they cost little to add to the standard arithmetic unit and they were
easy to implement. Second, they require little extra state compared to vector
architectures, which is always a concern for context switch times. Third, you
need a lot of memory bandwidth to support a vector architecture, which many
computers don’t have. Fourth, SIMD does not have to deal with problems in

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

284 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

virtual memory when a single instruction that can generate 64 memory
accesses can get a page fault in the middle of the vector. SIMD extensions use
separate data transfers per SIMD group of operands that are aligned in mem-
ory, and so they cannot cross page boundaries. Another advantage of short,
fixed-length “vectors” of SIMD is that it is easy to introduce instructions that
can help with new media standards, such as instructions that perform permuta-
tions or instructions that consume either fewer or more operands than vectors
can produce. Finally, there was concern about how well vector architectures
can work with caches. More recent vector architectures have addressed all of
these problems, but the legacy of past flaws shaped the skeptical attitude
toward vectors among architects.

Example To give an idea of what multimedia instructions look like, assume we added
256-bit SIMD multimedia instructions to MIPS. We concentrate on floating-
point in this example. We add the suffix “4D” on instructions that operate on
four double-precision operands at once. Like vector architectures, you can
think of a SIMD processor as having lanes, four in this case. MIPS SIMD will
reuse the floating-point registers as operands for 4D instructions, just as double-
precision reused single-precision registers in the original MIPS. This example
shows MIPS SIMD code for the DAXPY loop. Assume that the starting addresses
of X and Y are in Rx and Ry, respectively. Underline the changes to the MIPS
code for SIMD.

AVX Instruction Description

VADDPD Add four packed double-precision operands

VSUBPD Subtract four packed double-precision operands

VMULPD Multiply four packed double-precision operands

VDIVPD Divide four packed double-precision operands

VFMADDPD Multiply and add four packed double-precision operands

VFMSUBPD Multiply and subtract four packed double-precision operands

VCMPxx Compare four packed double-precision operands for EQ, NEQ, LT, LE, GT, GE, …

VMOVAPD Move aligned four packed double-precision operands

VBROADCASTSD Broadcast one double-precision operand to four locations in a 256-bit register

Figure 4.9 AVX instructions for x86 architecture useful in double-precision floating-point programs. Packed-
double for 256-bit AVX means four 64-bit operands executed in SIMD mode. As the width increases with AVX, it is
increasingly important to add data permutation instructions that allow combinations of narrow operands from dif-
ferent parts of the wide registers. AVX includes instructions that shuffle 32-bit, 64-bit, or 128-bit operands within a
256-bit register. For example, BROADCAST replicates a 64-bit operand 4 times in an AVX register. AVX also includes a
large variety of fused multiply-add/subtract instructions; we show just two here.

4.3 SIMD Instruction Set Extensions for Multimedia ■ 285

Answer Here is the MIPS code:

L.D F0,a ;load scalar a
MOV F1, F0 ;copy a into F1 for SIMD MUL
MOV F2, F0 ;copy a into F2 for SIMD MUL
MOV F3, F0 ;copy a into F3 for SIMD MUL
DADDIU R4,Rx,#512 ;last address to load

Loop: L.4D F4,0(Rx) ;load X[i], X[i+1], X[i+2], X[i+3]
MUL.4D F4,F4,F0 ;a×X[i],a×X[i+1],a×X[i+2],a×X[i+3]
L.4D F8,0(Ry) ;load Y[i], Y[i+1], Y[i+2], Y[i+3]
ADD.4D F8,F8,F4 ;a×X[i]+Y[i], ..., a×X[i+3]+Y[i+3]
S.4D F8,0(Rx) ;store into Y[i], Y[i+1], Y[i+2], Y[i+3]
DADDIU Rx,Rx,#32 ;increment index to X
DADDIU Ry,Ry,#32 ;increment index to Y
DSUBU R20,R4,Rx ;compute bound
BNEZ R20,Loop ;check if done

The changes were replacing every MIPS double-precision instruction with its 4D
equivalent, increasing the increment from 8 to 32, and changing the registers
from F2 and F4 to F4 and F8 to get enough space in the register file for four
sequential double-precision operands. So that each SIMD lane would have its
own copy of the scalar a, we copied the value of F0 into registers F1, F2, and F3.
(Real SIMD instruction extensions have an instruction to broadcast a value to all
other registers in a group.) Thus, the multiply does F4*F0, F5*F1, F6*F2, and
F7*F3. While not as dramatic as the 100× reduction of dynamic instruction band-
width of VMIPS, SIMD MIPS does get a 4× reduction: 149 versus 578 instruc-
tions executed for MIPS.

Programming Multimedia SIMD Architectures

Given the ad hoc nature of the SIMD multimedia extensions, the easiest way
to use these instructions has been through libraries or by writing in assembly
language.

Recent extensions have become more regular, giving the compiler a more
reasonable target. By borrowing techniques from vectorizing compilers, compil-
ers are starting to produce SIMD instructions automatically. For example,
advanced compilers today can generate SIMD floating-point instructions to
deliver much higher performance for scientific codes. However, programmers
must be sure to align all the data in memory to the width of the SIMD unit on
which the code is run to prevent the compiler from generating scalar instructions
for otherwise vectorizable code.

The Roofline Visual Performance Model

One visual, intuitive way to compare potential floating-point performance of
variations of SIMD architectures is the Roofline model [Williams et al. 2009].

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

286 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

It ties together floating-point performance, memory performance, and arithme-
tic intensity in a two-dimensional graph. Arithmetic intensity is the ratio of
floating-point operations per byte of memory accessed. It can be calculated by
taking the total number of floating-point operations for a program divided by
the total number of data bytes transferred to main memory during program exe-
cution. Figure 4.10 shows the relative arithmetic intensity of several example
kernels.

Peak floating-point performance can be found using the hardware specifica-
tions. Many of the kernels in this case study do not fit in on-chip caches, so peak
memory performance is defined by the memory system behind the caches. Note
that we need the peak memory bandwidth that is available to the processors, not
just at the DRAM pins as in Figure 4.27 on page 325. One way to find the (deliv-
ered) peak memory performance is to run the Stream benchmark.

Figure 4.11 shows the Roofline model for the NEC SX-9 vector processor on
the left and the Intel Core i7 920 multicore computer on the right. The vertical
Y-axis is achievable floating-point performance from 2 to 256 GFLOP/sec. The
horizontal X-axis is arithmetic intensity, varying from 1/8th FLOP/DRAM byte
accessed to 16 FLOP/ DRAM byte accessed in both graphs. Note that the graph
is a log–log scale, and that Rooflines are done just once for a computer.

For a given kernel, we can find a point on the X-axis based on its arithmetic
intensity. If we drew a vertical line through that point, the performance of the
kernel on that computer must lie somewhere along that line. We can plot a hori-
zontal line showing peak floating-point performance of the computer. Obviously,
the actual floating-point performance can be no higher than the horizontal line,
since that is a hardware limit.

How could we plot the peak memory performance? Since the X-axis is FLOP/
byte and the Y-axis is FLOP/sec, bytes/sec is just a diagonal line at a 45-degree
angle in this figure. Hence, we can plot a third line that gives the maximum
floating-point performance that the memory system of that computer can support

Figure 4.10 Arithmetic intensity, specified as the number of floating-point opera-
tions to run the program divided by the number of bytes accessed in main memory
[Williams et al. 2009]. Some kernels have an arithmetic intensity that scales with prob-
lem size, such as dense matrix, but there are many kernels with arithmetic intensities
independent of problem size.

A r i t h m e t i c I n t e n s i t y

O(N) O(log(N)) O(1)

Sparse
matrix
(SpMV)

Structured
grids
(Stencils,
PDEs)

Structured
grids
(Lattice
methods)

Spectral
methods
(FFTs)

Dense
matrix
(BLAS3)

N-body
(Particle
methods)

4.3 SIMD Instruction Set Extensions for Multimedia ■ 287

for a given arithmetic intensity. We can express the limits as a formula to plot
these lines in the graphs in Figure 4.11:

The horizontal and diagonal lines give this simple model its name and indi-
cate its value. The “Roofline” sets an upper bound on performance of a kernel
depending on its arithmetic intensity. If we think of arithmetic intensity as a pole
that hits the roof, either it hits the flat part of the roof, which means performance
is computationally limited, or it hits the slanted part of the roof, which means
performance is ultimately limited by memory bandwidth. In Figure 4.11, the ver-
tical dashed line on the right (arithmetic intensity of 4) is an example of the for-
mer and the vertical dashed line on the left (arithmetic intensity of 1/4) is an
example of the latter. Given a Roofline model of a computer, you can apply it
repeatedly, since it doesn’t vary by kernel.

Note that the “ridge point,” where the diagonal and horizontal roofs meet,
offers an interesting insight into the computer. If it is far to the right, then only
kernels with very high arithmetic intensity can achieve the maximum perfor-
mance of that computer. If it is far to the left, then almost any kernel can poten-
tially hit the maximum performance. As we shall see, this vector processor has
both much higher memory bandwidth and a ridge point far to the left when com-
pared to other SIMD processors.

Figure 4.11 shows that the peak computational performance of the SX-9 is
2.4× faster than Core i7, but the memory performance is 10× faster. For programs

Figure 4.11 Roofline model for one NEC SX-9 vector processor on the left and the Intel Core i7 920 multicore

computer with SIMD Extensions on the right [Williams et al. 2009]. This Roofline is for unit-stride memory accesses
and double-precision floating-point performance. NEC SX-9 is a vector supercomputer announced in 2008 that costs
millions of dollars. It has a peak DP FP performance of 102.4 GFLOP/sec and a peak memory bandwidth of 162
GBytes/sec from the Stream benchmark. The Core i7 920 has a peak DP FP performance of 42.66 GFLOP/sec and a
peak memory bandwidth of 16.4 GBytes/sec. The dashed vertical lines at an arithmetic intensity of 4 FLOP/byte show
that both processors operate at peak performance. In this case, the SX-9 at 102.4 FLOP/sec is 2.4× faster than the Core
i7 at 42.66 GFLOP/sec. At an arithmetic intensity of 0.25 FLOP/byte, the SX-9 is 10× faster at 40.5 GFLOP/sec versus 4.1
GFLOP/sec for the Core i7.

1/8 1/2

Arithmetic intensity

1/4 1 2 4 8 16 1/8 1/2

Arithmetic intensity

1/4 1 2 4 8 16

256

128

64

32

16

8

4

2

256

128

64

32

16

8

4

2

D
ou

bl
e

pr
ec

is
io

n
G

LF
O

P
/s

ec

D
ou

bl
e

pr
ec

is
io

n
G

LF
O

P
/s

ec

NEC SX-9 CPU
Intel Core i7 920

(Nehalem)

102.4 GFLOP/sec

42.66 GFLOP/sec

16
2GB/s

(S
tre

am
)

16
.4

GB/s

(S
tre

am
)

Attainable GFLOPs/sec Min Peak Memory BW Arithmetic Intensity× Peak Floating-Point Perf.,()=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

288 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

with an arithmetic intensity of 0.25, the SX-9 is 10× faster (40.5 versus 4.1
GFLOP/sec). The higher memory bandwidth moves the ridge point from 2.6 in
the Core i7 to 0.6 on the SX-9, which means many more programs can reach
peak computational performance on the vector processor.

For a few hundred dollars, anyone can buy a GPU with hundreds of parallel float-
ing-point units, which makes high-performance computing more accessible. The
interest in GPU computing blossomed when this potential was combined with a
programming language that made GPUs easier to program. Hence, many pro-
grammers of scientific and multimedia applications today are pondering whether
to use GPUs or CPUs.

GPUs and CPUs do not go back in computer architecture genealogy to a
common ancestor; there is no Missing Link that explains both. As Section 4.10
describes, the primary ancestors of GPUs are graphics accelerators, as doing
graphics well is the reason why GPUs exist. While GPUs are moving toward
mainstream computing, they can’t abandon their responsibility to continue to
excel at graphics. Thus, the design of GPUs may make more sense when archi-
tects ask, given the hardware invested to do graphics well, how can we supple-
ment it to improve the performance of a wider range of applications?

Note that this section concentrates on using GPUs for computing. To see how
GPU computing combines with the traditional role of graphics acceleration, see
“Graphics and Computing GPUs,” by John Nickolls and David Kirk (Appendix A
in the 4th edition of Computer Organization and Design by the same authors as
this book).

Since the terminology and some hardware features are quite different from
vector and SIMD architectures, we believe it will be easier if we start with the
simplified programming model for GPUs before we describe the architecture.

Programming the GPU

CUDA is an elegant solution to the problem of representing parallelism in
algorithms, not all algorithms, but enough to matter. It seems to resonate in
some way with the way we think and code, allowing an easier, more natural
expression of parallelism beyond the task level.

Vincent Natol

“Kudos for CUDA,” HPC Wire (2010)

The challenge for the GPU programmer is not simply getting good performance
on the GPU, but also in coordinating the scheduling of computation on the sys-
tem processor and the GPU and the transfer of data between system memory and
GPU memory. Moreover, as we see shall see later in this section, GPUs have vir-
tually every type of parallelism that can be captured by the programming envi-
ronment: multithreading, MIMD, SIMD, and even instruction-level.

 4.4 Graphics Processing Units

4.4 Graphics Processing Units ■ 289

NVIDIA decided to develop a C-like language and programming environ-
ment that would improve the productivity of GPU programmers by attacking
both the challenges of heterogeneous computing and of multifaceted parallelism.
The name of their system is CUDA, for Compute Unified Device Architecture.
CUDA produces C/C++ for the system processor (host) and a C and C++ dialect
for the GPU (device, hence the D in CUDA). A similar programming language is
OpenCL, which several companies are developing to offer a vendor-independent
language for multiple platforms.

NVIDIA decided that the unifying theme of all these forms of parallelism is
the CUDA Thread. Using this lowest level of parallelism as the programming
primitive, the compiler and the hardware can gang thousands of CUDA Threads
together to utilize the various styles of parallelism within a GPU: multithreading,
MIMD, SIMD, and instruction-level parallelism. Hence, NVIDIA classifies the
CUDA programming model as Single Instruction, Multiple Thread (SIMT). For
reasons we shall soon see, these threads are blocked together and executed in
groups of 32 threads, called a Thread Block. We call the hardware that executes a
whole block of threads a multithreaded SIMD Processor.

We need just a few details before we can give an example of a CUDA program:

■ To distinguish between functions for the GPU (device) and functions for the
system processor (host), CUDA uses __device__or __global__for the for-
mer and __host__for the latter.

■ CUDA variables declared as in the__device__or__global__functions are
allocated to the GPU Memory (see below), which is accessible by all multi-
threaded SIMD processors.

■ The extended function call syntax for the function name that runs on the GPU is

name<<<dimGrid, dimBlock>>>(... parameter list ...)

where dimGrid and dimBlock specify the dimensions of the code (in blocks)
and the dimensions of a block (in threads).

■ In addition to the identifier for blocks (blockIdx) and the identifier for
threads per block (threadIdx), CUDA provides a keyword for the number of
threads per block (blockDim), which comes from the dimBlock parameter in
the bullet above.

Before seeing the CUDA code, let’s start with conventional C code for the
DAXPY loop from Section 4.2:

// Invoke DAXPY
daxpy(n, 2.0, x, y);
// DAXPY in C
void daxpy(int n, double a, double *x, double *y)
{

for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

}

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

290 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Below is the CUDA version. We launch n threads, one per vector element, with
256 CUDA Threads per thread block in a multithreaded SIMD Processor. The
GPU function starts by calculating the corresponding element index i based on
the block ID, the number of threads per block, and the thread ID. As long as this
index is within the array (i < n), it performs the multiply and add.

// Invoke DAXPY with 256 threads per Thread Block
__host__
int nblocks = (n+ 255) / 256;

daxpy<<<nblocks, 256>>>(n, 2.0, x, y);
// DAXPY in CUDA
__device__
void daxpy(int n, double a, double *x, double *y)
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];

}

Comparing the C and CUDA codes, we see a common pattern to parallelizing
data-parallel CUDA code. The C version has a loop where each iteration is inde-
pendent of the others, allowing the loop to be transformed straightforwardly into
a parallel code where each loop iteration becomes an independent thread. (As
mentioned above and described in detail in Section 4.5, vectorizing compilers
also rely on a lack of dependences between iterations of a loop, which are called
loop carried dependences.) The programmer determines the parallelism in
CUDA explicitly by specifying the grid dimensions and the number of threads
per SIMD Processor. By assigning a single thread to each element, there is no
need to synchronize among threads when writing results to memory.

The GPU hardware handles parallel execution and thread management; it is
not done by applications or by the operating system. To simplify scheduling by
the hardware, CUDA requires that thread blocks be able to execute independently
and in any order. Different thread blocks cannot communicate directly, although
they can coordinate using atomic memory operations in Global Memory.

As we shall soon see, many GPU hardware concepts are not obvious in
CUDA. That is a good thing from a programmer productivity perspective, but
most programmers are using GPUs instead of CPUs to get performance.
Performance programmers must keep the GPU hardware in mind when writing in
CUDA. For reasons explained shortly, they know that they need to keep groups
of 32 threads together in control flow to get the best performance from multi-
threaded SIMD Processors, and create many more threads per multithreaded
SIMD Processor to hide latency to DRAM. They also need to keep the data
addresses localized in one or a few blocks of memory to get the expected mem-
ory performance.

Like many parallel systems, a compromise between productivity and perfor-
mance is for CUDA to include intrinsics to give programmers explicit control of
the hardware. The struggle between productivity on one hand versus allowing the
programmer to be able to express anything that the hardware can do on the other

4.4 Graphics Processing Units ■ 291

happens often in parallel computing. It will be interesting to see how the lan-
guage evolves in this classic productivity–performance battle as well as to see if
CUDA becomes popular for other GPUs or even other architectural styles.

NVIDIA GPU Computational Structures

The uncommon heritage mentioned above helps explain why GPUs have their
own architectural style and their own terminology independent from CPUs. One
obstacle to understanding GPUs has been the jargon, with some terms even hav-
ing misleading names. This obstacle has been surprisingly difficult to overcome,
as the many rewrites of this chapter can attest. To try to bridge the twin goals of
making the architecture of GPUs understandable and learning the many GPU
terms with non traditional definitions, our final solution is to use the CUDA ter-
minology for software but initially use more descriptive terms for the hardware,
sometimes borrowing terms used by OpenCL. Once we explain the GPU archi-
tecture in our terms, we’ll map them into the official jargon of NVIDIA GPUs.

From left to right, Figure 4.12 lists the more descriptive term used in this sec-
tion, the closest term from mainstream computing, the official NVIDIA GPU
term in case you are interested, and then a short description of the term. The rest
of this section explains the microarchitetural features of GPUs using these
descriptive terms from the left of the figure.

We use NVIDIA systems as our example as they are representative of GPU
architectures. Specifically, we follow the terminology of the CUDA parallel
programming language above and use the Fermi architecture as the example
(see Section 4.7).

Like vector architectures, GPUs work well only with data-level parallel prob-
lems. Both styles have gather-scatter data transfers and mask registers, and GPU
processors have even more registers than do vector processors. Since they do not
have a close-by scalar processor, GPUs sometimes implement a feature at runtime
in hardware that vector computers implement at compiler time in software. Unlike
most vector architectures, GPUs also rely on multithreading within a single multi-
threaded SIMD processor to hide memory latency (see Chapters 2 and 3). How-
ever, efficient code for both vector architectures and GPUs requires programmers
to think in groups of SIMD operations.

A Grid is the code that runs on a GPU that consists of a set of Thread Blocks.
Figure 4.12 draws the analogy between a grid and a vectorized loop and between
a Thread Block and the body of that loop (after it has been strip-mined, so that it
is a full computation loop). To give a concrete example, let’s suppose we want to
multiply two vectors together, each 8192 elements long. We’ll return to this
example throughout this section. Figure 4.13 shows the relationship between this
example and these first two GPU terms. The GPU code that works on the whole
8192 element multiply is called a Grid (or vectorized loop). To break it down
into more manageable sizes, a Grid is composed of Thread Blocks (or body of a
vectorized loop), each with up to 512 elements. Note that a SIMD instruction
executes 32 elements at a time. With 8192 elements in the vectors, this example
thus has 16 Thread Blocks since 16 = 8192 ÷ 512. The Grid and Thread Block

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

292 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Type
More descrip-
tive name

Closest old term
outside of GPUs

Official CUDA/
NVIDIA GPU term Book definition

P
ro

g
ra

m
 a

b
st

ra
ct

io
n

s

Vectorizable
Loop

Vectorizable Loop Grid A vectorizable loop, executed on the GPU, made
up of one or more Thread Blocks (bodies of
vectorized loop) that can execute in parallel.

Body of
Vectorized Loop

 Body of a
(Strip-Mined)
Vectorized Loop

Thread Block A vectorized loop executed on a multithreaded
SIMD Processor, made up of one or more threads
of SIMD instructions. They can communicate via
Local Memory.

Sequence of
SIMD Lane
Operations

One iteration of
a Scalar Loop

CUDA Thread A vertical cut of a thread of SIMD instructions
corresponding to one element executed by one
SIMD Lane. Result is stored depending on mask
and predicate register.

M
ac

h
in

e
o

b
je

ct A Thread of
SIMD
Instructions

Thread of Vector
Instructions

Warp A traditional thread, but it contains just SIMD
instructions that are executed on a multithreaded
SIMD Processor. Results stored depending on a
per-element mask.

SIMD
Instruction

Vector Instruction PTX Instruction A single SIMD instruction executed across SIMD
Lanes.

Pr
o

ce
ss

in
g

 h
ar

d
w

ar
e

Multithreaded
SIMD
Processor

(Multithreaded)
Vector Processor

Streaming
Multiprocessor

A multithreaded SIMD Processor executes
threads of SIMD instructions, independent of
other SIMD Processors.

Thread Block
Scheduler

Scalar Processor Giga Thread
Engine

Assigns multiple Thread Blocks (bodies of
vectorized loop) to multithreaded SIMD
Processors.

SIMD Thread
Scheduler

Thread scheduler
in a Multithreaded
CPU

Warp Scheduler Hardware unit that schedules and issues threads
of SIMD instructions when they are ready to
execute; includes a scoreboard to track SIMD
Thread execution.

SIMD Lane Vector Lane Thread Processor A SIMD Lane executes the operations in a thread
of SIMD instructions on a single element. Results
stored depending on mask.

M
em

o
ry

 h
ar

d
w

ar
e

GPU Memory Main Memory Global Memory DRAM memory accessible by all multithreaded
SIMD Processors in a GPU.

Private
Memory

Stack or Thread
Local Storage (OS)

Local Memory Portion of DRAM memory private to each SIMD
Lane.

Local Memory Local Memory Shared Memory Fast local SRAM for one multithreaded SIMD
Processor, unavailable to other SIMD Processors.

SIMD Lane
Registers

Vector Lane
Registers

Thread Processor
Registers

Registers in a single SIMD Lane allocated across
a full thread block (body of vectorized loop).

Figure 4.12 Quick guide to GPU terms used in this chapter. We use the first column for hardware terms. Four
groups cluster these 11 terms. From top to bottom: Program Abstractions, Machine Objects, Processing Hardware,
and Memory Hardware. Figure 4.21 on page 309 associates vector terms with the closest terms here, and Figure 4.24
on page 313 and Figure 4.25 on page 314 reveal the official CUDA/NVIDIA and AMD terms and definitions along with
the terms used by OpenCL.

4.4 Graphics Processing Units ■ 293

Grid

Thread
Block

0

SIMD
Thread0

A[0] = B [0] * C[0]
A[1] = B [1] * C[1]
… … … … … … …
A[31] = B [31] * C[31]

SIMD
Thread1

A[32] = B [32] * C[32]
A[33] = B [33] * C[33]
… … … … … … …
A[63] = B [63] * C[63]
A[64] = B [64] * C[64]
… … … … … … …
A[479] = B [479] * C[479]

SIMD
Thread1

5

A[480] = B [480] * C[480]
A[481] = B [481] * C[481]
… … … … … … …
A[511] = B [511] * C[511]
A[512] = B [512] * C[512]

… … … … … … … … …
A[7679] = B [7679] * C[7679]

Thread
Block

15

SIMD
Thread0

A[7680] = B [7680] * C[7680]
A[7681] = B [7681] * C[7681]
… … … … … … …
A[7711] = B [7711] * C[7711]

SIMD
Thread1

A[7712] = B [7712] * C[7712]
A[7713] = B [7713] * C[7713]
… … … … … … …
A[7743] = B [7743] * C[7743]
A[7744] = B [7744] * C[7744]
… … … … … … …
A[8159] = B [8159] * C[8159]

SIMD
Thread1

5

A[8160] = B [8160] * C[8160]
A[8161] = B [8161] * C[8161]
… … … … … … …
A[8191] = B [8191] * C[8191]

Figure 4.13 The mapping of a Grid (vectorizable loop), Thread Blocks (SIMD basic blocks), and threads of SIMD

instructions to a vector–vector multiply, with each vector being 8192 elements long. Each thread of SIMD instruc-
tions calculates 32 elements per instruction, and in this example each Thread Block contains 16 threads of SIMD
instructions and the Grid contains 16 Thread Blocks. The hardware Thread Block Scheduler assigns Thread Blocks to
multithreaded SIMD Processors and the hardware Thread Scheduler picks which thread of SIMD instructions to run
each clock cycle within a SIMD Processor. Only SIMD Threads in the same Thread Block can communicate via Local
Memory. (The maximum number of SIMD Threads that can execute simultaneously per Thread Block is 16 for Tesla-
generation GPUs and 32 for the later Fermi-generation GPUs.)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

294 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

are programming abstractions implemented in GPU hardware that help program-
mers organize their CUDA code. (The Thread Block is analogous to a strip-
minded vector loop with a vector length of 32.)

A Thread Block is assigned to a processor that executes that code, which we
call a multithreaded SIMD Processor, by the Thread Block Scheduler. The
Thread Block Scheduler has some similarities to a control processor in a vector
architecture. It determines the number of thread blocks needed for the loop and
keeps allocating them to different multithreaded SIMD Processors until the loop
is completed. In this example, it would send 16 Thread Blocks to multithreaded
SIMD Processors to compute all 8192 elements of this loop.

Figure 4.14 shows a simplified block diagram of a multithreaded SIMD Proces-
sor. It is similar to a Vector Processor, but it has many parallel functional units

Figure 4.14 Simplified block diagram of a Multithreaded SIMD Processor. It has 16 SIMD lanes. The SIMD Thread
Scheduler has, say, 48 independent threads of SIMD instructions that it schedules with a table of 48 PCs.

Instruction
cache

Instruction register

Regi-
sters

1K × 32

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Address coalescing unit Interconnection network

Local Memory
64 KB

To Global
 Memory

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Operands?
ld.global.f64

ld.global.f64
ld.global.f64

mul.f64
shl.s32
add.s32

Ready
No

Ready

Ready
Ready

No

Warp scheduler

Warp No. Address SIMD instructions
42
43
95
96

SIMD Lanes
(Thread

Processors)

11
12

1
1
3
3
8
8

Scoreboard

4.4 Graphics Processing Units ■ 295

instead of a few that are deeply pipelined, as does a Vector Processor. In the pro-
gramming example in Figure 4.13, each multithreaded SIMD Processor is assigned
512 elements of the vectors to work on. SIMD Processors are full processors with
separate PCs and are programmed using threads (see Chapter 3).

The GPU hardware then contains a collection of multithreaded SIMD Proces-
sors that execute a Grid of Thread Blocks (bodies of vectorized loop); that is, a
GPU is a multiprocessor composed of multithreaded SIMD Processors.

The first four implementations of the Fermi architecture have 7, 11, 14, or 15
multithreaded SIMD Processors; future versions may have just 2 or 4. To provide
transparent scalability across models of GPUs with differing number of multi-
threaded SIMD Processors, the Thread Block Scheduler assigns Thread Blocks
(bodies of a vectorized loop) to multithreaded SIMD Processors. Figure 4.15
shows the floor plan of the GTX 480 implementation of the Fermi architecture.

Dropping down one more level of detail, the machine object that the hard-
ware creates, manages, schedules, and executes is a thread of SIMD instructions.
It is a traditional thread that contains exclusively SIMD instructions. These

Figure 4.15 Floor plan of the Fermi GTX 480 GPU. This diagram shows 16 multi-
threaded SIMD Processors. The Thread Block Scheduler is highlighted on the left. The
GTX 480 has 6 GDDR5 ports, each 64 bits wide, supporting up to 6 GB of capacity. The
Host Interface is PCI Express 2.0 x 16. Giga Thread is the name of the scheduler that
distributes thread blocks to Multiprocessors, each of which has its own SIMD Thread
Scheduler.

D
R

A
M

D
R

A
M

H
os

t i
nt

er
fa

ce
G

ig
aT

hr
ea

d

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

L2 Cache

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

296 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

threads of SIMD instructions have their own PCs and they run on a multithreaded
SIMD Processor. The SIMD Thread Scheduler includes a scoreboard that lets it
know which threads of SIMD instructions are ready to run, and then it sends
them off to a dispatch unit to be run on the multithreaded SIMD Processor. It is
identical to a hardware thread scheduler in a traditional multithreaded processor
(see Chapter 3), just that it is scheduling threads of SIMD instructions. Thus,
GPU hardware has two levels of hardware schedulers: (1) the Thread Block
Scheduler that assigns Thread Blocks (bodies of vectorized loops) to multi-
threaded SIMD Processors, which ensures that thread blocks are assigned to the
processors whose local memories have the corresponding data, and (2) the SIMD
Thread Scheduler within a SIMD Processor, which schedules when threads of
SIMD instructions should run.

The SIMD instructions of these threads are 32 wide, so each thread of SIMD
instructions in this example would compute 32 of the elements of the computa-
tion. In this example, Thread Blocks would contain 512/32 = 16 SIMD threads
(see Figure 4.13).

Since the thread consists of SIMD instructions, the SIMD Processor must
have parallel functional units to perform the operation. We call them SIMD
Lanes, and they are quite similar to the Vector Lanes in Section 4.2.

The number of lanes per SIMD processor varies across GPU generations. With
Fermi, each 32-wide thread of SIMD instructions is mapped to 16 physical SIMD
Lanes, so each SIMD instruction in a thread of SIMD instructions takes two clock
cycles to complete. Each thread of SIMD instructions is executed in lock step and
only scheduled at the beginning. Staying with the analogy of a SIMD Processor as
a vector processor, you could say that it has 16 lanes, the vector length would be
32, and the chime is 2 clock cycles. (This wide but shallow nature is why we use
the term SIMD Processor instead of vector processor as it is more descriptive.)

Since by definition the threads of SIMD instructions are independent, the
SIMD Thread Scheduler can pick whatever thread of SIMD instructions is ready,
and need not stick with the next SIMD instruction in the sequence within a
thread. The SIMD Thread Scheduler includes a scoreboard (see Chapter 3) to
keep track of up to 48 threads of SIMD instructions to see which SIMD instruc-
tion is ready to go. This scoreboard is needed because memory access instruc-
tions can take an unpredictable number of clock cycles due to memory bank
conflicts, for example. Figure 4.16 shows the SIMD Thread Scheduler picking
threads of SIMD instructions in a different order over time. The assumption of
GPU architects is that GPU applications have so many threads of SIMD instruc-
tions that multithreading can both hide the latency to DRAM and increase utiliza-
tion of multithreaded SIMD Processors. However, to hedge their bets, the recent
NVIDIA Fermi GPU includes an L2 cache (see Section 4.7).

Continuing our vector multiply example, each multithreaded SIMD Processor
must load 32 elements of two vectors from memory into registers, perform the
multiply by reading and writing registers, and store the product back from regis-
ters into memory. To hold these memory elements, a SIMD Processor has an
impressive 32,768 32-bit registers. Just like a vector processor, these registers are
divided logically across the vector lanes or, in this case, SIMD Lanes. Each SIMD
Thread is limited to no more than 64 registers, so you might think of a SIMD

4.4 Graphics Processing Units ■ 297

Thread as having up to 64 vector registers, with each vector register having 32 ele-
ments and each element being 32 bits wide. (Since double-precision floating-point
operands use two adjacent 32-bit registers, an alternative view is that each SIMD
Thread has 32 vector registers of 32 elements, each of which is 64 bits wide.)

Since Fermi has 16 physical SIMD Lanes, each contains 2048 registers.
(Rather than trying to design hardware registers with many read ports and write
ports per bit, GPUs will use simpler memory structures but divide them into
banks to get sufficient bandwidth, just as vector processors do.) Each CUDA
Thread gets one element of each of the vector registers. To handle the 32 ele-
ments of each thread of SIMD instructions with 16 SIMD Lanes, the CUDA
Threads of a Thread block collectively can use up to half of the 2048 registers.

To be able to execute many threads of SIMD instructions, each is dynami-
cally allocated a set of the physical registers on each SIMD Processor when
threads of SIMD instructions are created and freed when the SIMD Thread exits.

Note that a CUDA thread is just a vertical cut of a thread of SIMD instruc-
tions, corresponding to one element executed by one SIMD Lane. Beware that
CUDA Threads are very different from POSIX threads; you can’t make arbitrary
system calls from a CUDA Thread.

We’re now ready to see what GPU instructions look like.

Figure 4.16 Scheduling of threads of SIMD instructions. The scheduler selects a
ready thread of SIMD instructions and issues an instruction synchronously to all the
SIMD Lanes executing the SIMD thread. Because threads of SIMD instructions are inde-
pendent, the scheduler may select a different SIMD thread each time.

SIMD thread 8 instruction 11

SIMD thread 1 instruction 42

SIMD thread 3 instruction 95

SIMD thread 8 instruction 12

ime

SIMD thread scheduler

SIMD thread 1 instruction 43

SIMD thread 3 instruction 96

P
ho

to
: J

ud
y

S
ch

oo
nm

ak
er

T

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

298 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

NVIDA GPU Instruction Set Architecture

Unlike most system processors, the instruction set target of the NVIDIA compil-
ers is an abstraction of the hardware instruction set. PTX (Parallel Thread Execu-
tion) provides a stable instruction set for compilers as well as compatibility
across generations of GPUs. The hardware instruction set is hidden from the pro-
grammer. PTX instructions describe the operations on a single CUDA thread,
and usually map one-to-one with hardware instructions, but one PTX can expand
to many machine instructions, and vice versa. PTX uses virtual registers, so the
compiler figures out how many physical vector registers a SIMD thread needs,
and then an optimizer divides the available register storage between the SIMD
threads. This optimizer also eliminates dead code, folds instructions together, and
calculates places where branches might diverge and places where diverged paths
could converge.

While there is some similarity between the x86 microarchitectures and PTX,
in that both translate to an internal form (microinstructions for x86), the differ-
ence is that this translation happens in hardware at runtime during execution on
the x86 versus in software and load time on a GPU.

The format of a PTX instruction is

opcode.type d, a, b, c;

where d is the destination operand; a, b, and c are source operands; and the oper-
ation type is one of the following:

Source operands are 32-bit or 64-bit registers or a constant value. Destinations
are registers, except for store instructions.

Figure 4.17 shows the basic PTX instruction set. All instructions can be
predicated by 1-bit predicate registers, which can be set by a set predicate
instruction (setp). The control flow instructions are functions call and
return, thread exit, branch, and barrier synchronization for threads within a
thread block (bar.sync). Placing a predicate in front of a branch instruction
gives us conditional branches. The compiler or PTX programmer declares vir-
tual registers as 32-bit or 64-bit typed or untyped values. For example, R0,
R1, ... are for 32-bit values and RD0, RD1, ... are for 64-bit registers. Recall
that the assignment of virtual registers to physical registers occurs at load time
with PTX.

Type .type Specifier

Untyped bits 8, 16, 32, and 64 bits .b8, .b16, .b32, .b64
Unsigned integer 8, 16, 32, and 64 bits .u8, .u16, .u32, .u64
Signed integer 8, 16, 32, and 64 bits .s8, .s16, .s32, .s64
Floating Point 16, 32, and 64 bits .f16, .f32, .f64

4.4 Graphics Processing Units ■ 299

Group Instruction Example Meaning Comments

Arithmetic

arithmetic .type = .s32, .u32, .f32, .s64, .u64, .f64

add.type add.f32 d, a, b d = a + b;

sub.type sub.f32 d, a, b d = a – b;

mul.type mul.f32 d, a, b d = a * b;

mad.type mad.f32 d, a, b, c d = a * b + c; multiply-add

div.type div.f32 d, a, b d = a / b; multiple microinstructions

rem.type rem.u32 d, a, b d = a % b; integer remainder

abs.type abs.f32 d, a d = |a|;

neg.type neg.f32 d, a d = 0 - a;

min.type min.f32 d, a, b d = (a < b)? a:b; floating selects non-NaN

max.type max.f32 d, a, b d = (a > b)? a:b; floating selects non-NaN

setp.cmp.type setp.lt.f32 p, a, b p = (a < b); compare and set predicate

numeric .cmp = eq, ne, lt, le, gt, ge; unordered cmp = equ, neu, ltu, leu, gtu, geu, num, nan

mov.type mov.b32 d, a d = a; move

selp.type selp.f32 d, a, b, p d = p? a: b; select with predicate

cvt.dtype.atype cvt.f32.s32 d, a d = convert(a); convert atype to dtype

Special
Function

special .type = .f32 (some .f64)

rcp.type rcp.f32 d, a d = 1/a; reciprocal

sqrt.type sqrt.f32 d, a d = sqrt(a); square root

rsqrt.type rsqrt.f32 d, a d = 1/sqrt(a); reciprocal square root

sin.type sin.f32 d, a d = sin(a); sine

cos.type cos.f32 d, a d = cos(a); cosine

lg2.type lg2.f32 d, a d = log(a)/log(2) binary logarithm

ex2.type ex2.f32 d, a d = 2 ** a; binary exponential

Logical

logic.type = .pred,.b32, .b64

and.type and.b32 d, a, b d = a & b;

or.type or.b32 d, a, b d = a | b;

xor.type xor.b32 d, a, b d = a ^ b;

not.type not.b32 d, a, b d = ~a; one’s complement

cnot.type cnot.b32 d, a, b d = (a==0)? 1:0; C logical not

shl.type shl.b32 d, a, b d = a << b; shift left

shr.type shr.s32 d, a, b d = a >> b; shift right

Memory
Access

memory.space = .global, .shared, .local, .const; .type = .b8, .u8, .s8, .b16, .b32, .b64

ld.space.type ld.global.b32 d, [a+off] d = *(a+off); load from memory space

st.space.type st.shared.b32 [d+off], a *(d+off) = a; store to memory space

tex.nd.dtyp.btype tex.2d.v4.f32.f32 d, a, b d = tex2d(a, b); texture lookup

atom.spc.op.type
atom.global.add.u32 d,[a], b
atom.global.cas.b32 d,[a], b, c

atomic { d = *a; *a =
op(*a, b); }

atomic read-modify-write
operation

atom.op = and, or, xor, add, min, max, exch, cas; .spc = .global; .type = .b32

Control
Flow

branch @p bra target if (p) goto target; conditional branch

call call (ret), func, (params) ret = func(params); call function

ret ret return; return from function call

bar.sync bar.sync d wait for threads barrier synchronization

exit exit exit; terminate thread execution

Figure 4.17 Basic PTX GPU thread instructions.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

300 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

The following sequence of PTX instructions is for one iteration of our
DAXPY loop on page 289:

shl.u32 R8, blockIdx, 9 ; Thread Block ID * Block size (512 or 29)
add.u32 R8, R8, threadIdx ; R8 = i = my CUDA Thread ID
shl.u32 R8, R8, 3 ; byte offset
ld.global.f64 RD0, [X+R8] ; RD0 = X[i]
ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]
mul.f64 RD0, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)
add.f64 RD0, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])
st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

As demonstrated above, the CUDA programming model assigns one CUDA
Thread to each loop iteration and offers a unique identifier number to each thread
block (blockIdx) and one to each CUDA Thread within a block (threadIdx).
Thus, it creates 8192 CUDA Threads and uses the unique number to address each
element in the array, so there is no incrementing or branching code. The first three
PTX instructions calculate that unique element byte offset in R8, which is added
to the base of the arrays. The following PTX instructions load two double-preci-
sion floating-point operands, multiply and add them, and store the sum. (We’ll
describe the PTX code corresponding to the CUDA code “if (i < n)” below.)

Note that unlike vector architectures, GPUs don’t have separate instructions
for sequential data transfers, strided data transfers, and gather-scatter data trans-
fers. All data transfers are gather-scatter! To regain the efficiency of sequential
(unit-stride) data transfers, GPUs include special Address Coalescing hardware
to recognize when the SIMD Lanes within a thread of SIMD instructions are col-
lectively issuing sequential addresses. That runtime hardware then notifies the
Memory Interface Unit to request a block transfer of 32 sequential words. To get
this important performance improvement, the GPU programmer must ensure that
adjacent CUDA Threads access nearby addresses at the same time that can be
coalesced into one or a few memory or cache blocks, which our example does.

Conditional Branching in GPUs

Just like the case with unit-stride data transfers, there are strong similarities
between how vector architectures and GPUs handle IF statements, with the for-
mer implementing the mechanism largely in software with limited hardware sup-
port and the latter making use of even more hardware. As we shall see, in
addition to explicit predicate registers, GPU branch hardware uses internal
masks, a branch synchronization stack, and instruction markers to manage when
a branch diverges into multiple execution paths and when the paths converge.

At the PTX assembler level, control flow of one CUDA thread is described by
the PTX instructions branch, call, return, and exit, plus individual per-thread-lane
predication of each instruction, specified by the programmer with per-thread-lane
1-bit predicate registers. The PTX assembler analyzes the PTX branch graph and
optimizes it to the fastest GPU hardware instruction sequence.

4.4 Graphics Processing Units ■ 301

At the GPU hardware instruction level, control flow includes branch, jump,
jump indexed, call, call indexed, return, exit, and special instructions that manage
the branch synchronization stack. GPU hardware provides each SIMD thread
with its own stack; a stack entry contains an identifier token, a target instruction
address, and a target thread-active mask. There are GPU special instructions that
push stack entries for a SIMD thread and special instructions and instruction
markers that pop a stack entry or unwind the stack to a specified entry and branch
to the target instruction address with the target thread-active mask. GPU hard-
ware instructions also have individual per-lane predication (enable/disable),
specified with a 1-bit predicate register for each lane.

The PTX assembler typically optimizes a simple outer-level IF/THEN/ELSE
statement coded with PTX branch instructions to just predicated GPU instruc-
tions, without any GPU branch instructions. A more complex control flow typi-
cally results in a mixture of predication and GPU branch instructions with special
instructions and markers that use the branch synchronization stack to push a stack
entry when some lanes branch to the target address, while others fall through.
NVIDIA says a branch diverges when this happens. This mixture is also used
when a SIMD Lane executes a synchronization marker or converges, which pops
a stack entry and branches to the stack-entry address with the stack-entry thread-
active mask.

The PTX assembler identifies loop branches and generates GPU branch
instructions that branch to the top of the loop, along with special stack instruc-
tions to handle individual lanes breaking out of the loop and converging the
SIMD Lanes when all lanes have completed the loop. GPU indexed jump and
indexed call instructions push entries on the stack so that when all lanes complete
the switch statement or function call the SIMD thread converges.

A GPU set predicate instruction (setp in the figure above) evaluates the con-
ditional part of the IF statement. The PTX branch instruction then depends on
that predicate. If the PTX assembler generates predicated instructions with no
GPU branch instructions, it uses a per-lane predicate register to enable or disable
each SIMD Lane for each instruction. The SIMD instructions in the threads
inside the THEN part of the IF statement broadcast operations to all the SIMD
Lanes. Those lanes with the predicate set to one perform the operation and store
the result, and the other SIMD Lanes don’t perform an operation or store a result.
For the ELSE statement, the instructions use the complement of the predicate
(relative to the THEN statement), so the SIMD Lanes that were idle now perform
the operation and store the result while their formerly active siblings don’t. At the
end of the ELSE statement, the instructions are unpredicated so the original com-
putation can proceed. Thus, for equal length paths, an IF-THEN-ELSE operates
at 50% efficiency.

IF statements can be nested, hence the use of a stack, and the PTX assembler
typically generates a mix of predicated instructions and GPU branch and special
synchronization instructions for complex control flow. Note that deep nesting can
mean that most SIMD Lanes are idle during execution of nested conditional state-
ments. Thus, doubly nested IF statements with equal-length paths run at 25% effi-
ciency, triply nested at 12.5% efficiency, and so on. The analogous case would be
a vector processor operating where only a few of the mask bits are ones.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

302 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Dropping down a level of detail, the PTX assembler sets a “branch synchro-
nization” marker on appropriate conditional branch instructions that pushes the
current active mask on a stack inside each SIMD thread. If the conditional branch
diverges the (some lanes take the branch, some fall through), it pushes a stack
entry and sets the current internal active mask based on the condition. A branch
synchronization marker pops the diverged branch entry and flips the mask bits
before the ELSE portion. At the end of the IF statement, the PTX assembler adds
another branch synchronization marker that pops the prior active mask off the
stack into the current active mask.

If all the mask bits are set to one, then the branch instruction at the end of the
THEN skips over the instructions in the ELSE part. There is a similar optimiza-
tion for the THEN part in case all the mask bits are zero, as the conditional
branch jumps over the THEN instructions. Parallel IF statements and PTX
branches often use branch conditions that are unanimous (all lanes agree to fol-
low the same path), such that the SIMD thread does not diverge into different
individual lane control flow. The PTX assembler optimizes such branches to skip
over blocks of instructions that are not executed by any lane of a SIMD thread.
This optimization is useful in error condition checking, for example, where the
test must be made but is rarely taken.

The code for a conditional statement similar to the one in Section 4.2 is

if (X[i] != 0)
X[i] = X[i] – Y[i];

else X[i] = Z[i];

This IF statement could compile to the following PTX instructions (assuming
that R8 already has the scaled thread ID), with *Push, *Comp, *Pop indicating the
branch synchronization markers inserted by the PTX assembler that push the old
mask, complement the current mask, and pop to restore the old mask:

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]
setp.neq.s32 P1, RD0, #0 ; P1 is predicate register 1
@!P1, bra ELSE1, *Push ; Push old mask, set new mask bits

; if P1 false, go to ELSE1
ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]
sub.f64 RD0, RD0, RD2 ; Difference in RD0
st.global.f64 [X+R8], RD0 ; X[i] = RD0
@P1, bra ENDIF1, *Comp ; complement mask bits

; if P1 true, go to ENDIF1
ELSE1: ld.global.f64 RD0, [Z+R8] ; RD0 = Z[i]

st.global.f64 [X+R8], RD0 ; X[i] = RD0
ENDIF1: <next instruction>, *Pop ; pop to restore old mask

Once again, normally all instructions in the IF-THEN-ELSE statement are exe-
cuted by a SIMD Processor. It’s just that only some of the SIMD Lanes are
enabled for the THEN instructions and some lanes for the ELSE instructions. As
mentioned above, in the surprisingly common case that the individual lanes agree
on the predicated branch—such as branching on a parameter value that is the

4.4 Graphics Processing Units ■ 303

same for all lanes so that all active mask bits are zeros or all are ones—the branch
skips the THEN instructions or the ELSE instructions.

This flexibility makes it appear that an element has its own program counter;
however, in the slowest case only one SIMD Lane could store its result every two
clock cycles, with the rest idle. The analogous slowest case for vector architec-
tures is operating with only one mask bit set to one. This flexibility can lead
naive GPU programmers to poor performance, but it can be helpful in the early
stages of program development. Keep in mind, however, that the only choice for
a SIMD Lane in a clock cycle is to perform the operation specified in the PTX
instruction or be idle; two SIMD Lanes cannot simultaneously execute different
instructions.

This flexibility also helps explain the name CUDA Thread given to each
element in a thread of SIMD instructions, since it gives the illusion of acting inde-
pendently. A naive programmer may think that this thread abstraction means GPUs
handle conditional branches more gracefully. Some threads go one way, the rest go
another, which seems true as long as you’re not in a hurry. Each CUDA Thread is
executing the same instruction as every other thread in the thread block or it is idle.
This synchronization makes it easier to handle loops with conditional branches
since the mask capability can turn off SIMD Lanes and it detects the end of the
loop automatically.

The resulting performance sometimes belies that simple abstraction. Writing
programs that operate SIMD Lanes in this highly independent MIMD mode is
like writing programs that use lots of virtual address space on a computer with a
smaller physical memory. Both are correct, but they may run so slowly that the
programmer could be displeased with the result.

Vector compilers could do the same tricks with mask registers as GPUs
do in hardware, but it would involve scalar instructions to save, complement,
and restore mask registers. Conditional execution is a case where GPUs do in
runtime hardware what vector architectures do at compile time. One optimi-
zation available at runtime for GPUs but not at compile time for vector
architectures is to skip the THEN or ELSE parts when mask bits are all zeros
or all ones.

Thus, the efficiency with which GPUs execute conditional statements comes
down to how frequently the branches would diverge. For example, one calcula-
tion of eigenvalues has deep conditional nesting, but measurements of the code
show that around 82% of clock cycle issues have between 29 and 32 out of the 32
mask bits set to one, so GPUs execute this code more efficiently than one might
expect.

Note that the same mechanism handles the strip-mining of vector loops—
when the number of elements doesn’t perfectly match the hardware. The example
at the beginning of this section shows that an IF statement checks to see if this
SIMD Lane element number (stored in R8 in the example above) is less than the
limit (i < n), and it sets masks appropriately.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

304 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

NVIDIA GPU Memory Structures

Figure 4.18 shows the memory structures of an NVIDIA GPU. Each SIMD Lane
in a multithreaded SIMD Processor is given a private section of off-chip DRAM,
which we call the Private Memory. It is used for the stack frame, for spilling
registers, and for private variables that don’t fit in the registers. SIMD Lanes do
not share Private Memories. Recent GPUs cache this Private Memory in the L1
and L2 caches to aid register spilling and to speed up function calls.

We call the on-chip memory that is local to each multithreaded SIMD Proces-
sor Local Memory. It is shared by the SIMD Lanes within a multithreaded SIMD
Processor, but this memory is not shared between multithreaded SIMD Proces-
sors. The multithreaded SIMD Processor dynamically allocates portions of the
Local Memory to a thread block when it creates the thread block, and frees the
memory when all the threads of the thread block exit. That portion of Local
Memory is private to that thread block.

Finally, we call the off-chip DRAM shared by the whole GPU and all thread
blocks GPU Memory. Our vector multiply example only used GPU Memory.

Figure 4.18 GPU Memory structures. GPU Memory is shared by all Grids (vectorized
loops), Local Memory is shared by all threads of SIMD instructions within a thread block
(body of a vectorized loop), and Private Memory is private to a single CUDA Thread.

CUDA Thread

Thread block

Per-Block
Local Memory

Grid 0

. . .

Grid 1

. . .

GPU Memory

Sequence

Inter-Grid Synchronization

Per-CUDA Thread Private Memory

4.4 Graphics Processing Units ■ 305

The system processor, called the host, can read or write GPU Memory. Local
Memory is unavailable to the host, as it is private to each multithreaded SIMD
processor. Private Memories are unavailable to the host as well.

Rather than rely on large caches to contain the whole working sets of an
application, GPUs traditionally use smaller streaming caches and rely on
extensive multithreading of threads of SIMD instructions to hide the long latency
to DRAM, since their working sets can be hundreds of megabytes. Given the use
of multithreading to hide DRAM latency, the chip area used for caches in system
processors is spent instead on computing resources and on the large number of
registers to hold the state of many threads of SIMD instructions. In contrast, as
mentioned above, vector loads and stores amortize the latency across many ele-
ments, since they only pay the latency once and then pipeline the rest of the
accesses.

While hiding memory latency is the underlying philosophy, note that the lat-
est GPUs and vector processors have added caches. For example, the recent
Fermi architecture has added caches, but they are thought of as either bandwidth
filters to reduce demands on GPU Memory or as accelerators for the few vari-
ables whose latency cannot be hidden by multithreading. Thus, local memory for
stack frames, function calls, and register spilling is a good match to caches, since
latency matters when calling a function. Caches also save energy, since on-chip
cache accesses take much less energy than accesses to multiple, external DRAM
chips.

To improve memory bandwidth and reduce overhead, as mentioned above,
PTX data transfer instructions coalesce individual parallel thread requests from
the same SIMD thread together into a single memory block request when the
addresses fall in the same block. These restrictions are placed on the GPU pro-
gram, somewhat analogous to the guidelines for system processor programs to
engage hardware prefetching (see Chapter 2). The GPU memory controller will
also hold requests and send ones to the same open page together to improve
memory bandwidth (see Section 4.6). Chapter 2 describes DRAM in sufficient
detail to understand the potential benefits of grouping related addresses.

Innovations in the Fermi GPU Architecture

The multithreaded SIMD Processor of Fermi is more complicated than the sim-
plified version in Figure 4.14. To increase hardware utilization, each SIMD Pro-
cessor has two SIMD Thread Schedulers and two instruction dispatch units. The
dual SIMD Thread Scheduler selects two threads of SIMD instructions and issues
one instruction from each to two sets of 16 SIMD Lanes, 16 load/store units, or 4
special function units. Thus, two threads of SIMD instructions are scheduled
every two clock cycles to any of these collections. Since the threads are indepen-
dent, there is no need to check for data dependences in the instruction stream.
This innovation would be analogous to a multithreaded vector processor that can
issue vector instructions from two independent threads.

Figure 4.19 shows the Dual Scheduler issuing instructions and Figure 4.20
shows the block diagram of the multithreaded SIMD Processor of a Fermi GPU.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

306 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Fermi introduces several innovations to bring GPUs much closer to mainstream
system processors than Tesla and previous generations of GPU architectures:

■ Fast Double-Precision Floating-Point Arithmetic—Fermi matches the rela-
tive double-precision speed of conventional processors of roughly half the
speed of single precision versus a tenth the speed of single precision in the
prior Tesla generation. That is, there is no order of magnitude temptation to
use single precision when the accuracy calls for double precision. The peak
double-precision performance grew from 78 GFLOP/sec in the predecessor
GPU to 515 GFLOP/sec when using multiply-add instructions.

■ Caches for GPU Memory—While the GPU philosophy is to have enough
threads to hide DRAM latency, there are variables that are needed across
threads, such as local variables mentioned above. Fermi includes both an L1
Data Cache and L1 Instruction Cache for each multithreaded SIMD Processor
and a single 768 KB L2 cache shared by all multithreaded SIMD Processors in
the GPU. As mentioned above, in addition to reducing bandwidth pressure on
GPU Memory, caches can save energy by staying on-chip rather than going
off-chip to DRAM. The L1 cache actually cohabits the same SRAM as Local
Memory. Fermi has a mode bit that offers the choice of using 64 KB of SRAM
as a 16 KB L1 cache with 48 KB of Local Memory or as a 48 KB L1 cache
with 16 KB of Local Memory. Note that the GTX 480 has an inverted memory
hierarchy: The size of the aggregate register file is 2 MB, the size of all the L1
data caches is between 0.25 and 0.75 MB (depending on whether they are 16
KB or 48 KB), and the size of the L2 cache is 0.75 MB. It will be interesting to
see the impact of this inverted ratio on GPU applications.

■ 64-Bit Addressing and a Unified Address Space for All GPU Memories—This
innovation makes it much easier to provide the pointers needed for C and C++.

Figure 4.19 Block Diagram of Fermi’s Dual SIMD Thread Scheduler. Compare this
design to the single SIMD Thread Design in Figure 4.16.

SIMD thread scheduler

Instruction dispatch unit

SIMD thread 8 instruction 11

SIMD thread 2 instruction 42

SIMD thread 14 instruction 95

SIMD thread 8 instruction 12

T
im

e

SIMD thread 2 instruction 43

SIMD thread 14 instruction 96

SIMD thread scheduler

Instruction dispatch unit

SIMD thread 9 instruction 11

SIMD thread 3 instruction 33

SIMD thread 15 instruction 95

SIMD thread 9 instruction 12

SIMD thread 15 instruction 96

SIMD thread 3 instruction 34

4.4 Graphics Processing Units ■ 307

■ Error Correcting Codes to detect and correct errors in memory and registers
(see Chapter 2)—To make long-running applications dependable on thou-
sands of servers, ECC is the norm in the datacenter (see Chapter 6).

■ Faster Context Switching—Given the large state of a multithreaded SIMD
Processor, Fermi has hardware support to switch contexts much more
quickly. Fermi can switch in less than 25 microseconds, about 10× faster than
its predecessor can.

Figure 4.20 Block diagram of the multithreaded SIMD Processor of a Fermi GPU.

Each SIMD Lane has a pipelined floating-point unit, a pipelined integer unit, some logic
for dispatching instructions and operands to these units, and a queue for holding
results. The four Special Function units (SFUs) calculate functions such as square roots,
reciprocals, sines, and cosines.

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

SFU

SFU

SFU

SFU

Instruction cache

Register file (32,768 × 32-bit)

Interconnect network

Uniform cache
Fermi streaming multiprocessor (SM)

64 KB shared memory/L1 cache

SIMD Thread Scheduler

Dispatch unit

SIMD Thread Scheduler

Dispatch unit

SIMD Lane
Dispatch port

Operand collector

FP unit

Result queue

INT unit

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

308 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

■ Faster Atomic Instructions—First included in the Tesla architecture, Fermi
improves performance of Atomic instructions by 5 to 20×, to a few microsec-
onds. A special hardware unit associated with the L2 cache, not inside the
multithreaded SIMD Processors, handles atomic instructions.

Similarities and Differences between Vector
Architectures and GPUs

As we have seen, there really are many similarities between vector architectures
and GPUs. Along with the quirky jargon of GPUs, these similarities have con-
tributed to the confusion in architecture circles about how novel GPUs really are.
Now that you’ve seen what is under the covers of vector computers and GPUs,
you can appreciate both the similarities and the differences. Since both architec-
tures are designed to execute data-level parallel programs, but take different
paths, this comparison is in depth to try to gain better understanding of what is
needed for DLP hardware. Figure 4.21 shows the vector term first and then the
closest equivalent in a GPU.

A SIMD Processor is like a vector processor. The multiple SIMD Processors
in GPUs act as independent MIMD cores, just as many vector computers have
multiple vector processors. This view would consider the NVIDIA GTX 480 as a
15-core machine with hardware support for multithreading, where each core has
16 lanes. The biggest difference is multithreading, which is fundamental to GPUs
and missing from most vector processors.

Looking at the registers in the two architectures, the VMIPS register file
holds entire vectors—that is, a contiguous block of 64 doubles. In contrast, a sin-
gle vector in a GPU would be distributed across the registers of all SIMD Lanes.
A VMIPS processor has 8 vector registers with 64 elements, or 512 elements
total. A GPU thread of SIMD instructions has up to 64 registers with 32 elements
each, or 2048 elements. These extra GPU registers support multithreading.

Figure 4.22 is a block diagram of the execution units of a vector processor on
the left and a multithreaded SIMD Processor of a GPU on the right. For peda-
gogic purposes, we assume the vector processor has four lanes and the multi-
threaded SIMD Processor also has four SIMD Lanes. This figure shows that the
four SIMD Lanes act in concert much like a four-lane vector unit, and that a
SIMD Processor acts much like a vector processor.

In reality, there are many more lanes in GPUs, so GPU “chimes” are shorter.
While a vector processor might have 2 to 8 lanes and a vector length of, say,
32—making a chime 4 to 16 clock cycles—a multithreaded SIMD Processor
might have 8 or 16 lanes. A SIMD thread is 32 elements wide, so a GPU chime
would just be 2 or 4 clock cycles. This difference is why we use “SIMD Proces-
sor” as the more descriptive term because it is closer to a SIMD design than it is
to a traditional vector processor design.

The closest GPU term to a vectorized loop is Grid, and a PTX instruction is
the closest to a vector instruction since a SIMD Thread broadcasts a PTX instruc-
tion to all SIMD Lanes.

4.4 Graphics Processing Units ■ 309

Type Vector term
Closest CUDA/NVIDIA
GPU term Comment

P
ro

g
ra

m

a
b

st
ra

ct
io

n
s Vectorized Loop Grid Concepts are similar, with the GPU using the less

descriptive term.

Chime -- Since a vector instruction (PTX Instruction) takes
just two cycles on Fermi and four cycles on Tesla
to complete, a chime is short in GPUs.

M
a

ch
in

e
 o

b
je

ct
s

Vector Instruction PTX Instruction A PTX instruction of a SIMD thread is broadcast
to all SIMD Lanes, so it is similar to a vector
instruction.

Gather/Scatter Global load/store
(ld.global/st.global)

All GPU loads and stores are gather and scatter, in
that each SIMD Lane sends a unique address. It’s
up to the GPU Coalescing Unit to get unit-stride
performance when addresses from the SIMD
Lanes allow it.

Mask Registers Predicate Registers and
Internal Mask Registers

Vector mask registers are explicitly part of the
architectural state, while GPU mask registers are
internal to the hardware. The GPU conditional
hardware adds a new feature beyond predicate
registers to manage masks dynamically.

P
ro

ce
ss

in
g

 a
n

d
 m

e
m

o
ry

 h
a

rd
w

a
re

Vector Processor Multithreaded SIMD
Processor

These are similar, but SIMD Processors tend to
have many lanes, taking a few clock cycles per
lane to complete a vector, while vector
architectures have few lanes and take many
cycles to complete a vector. They are also
multithreaded where vectors usually are not.

Control Processor Thread Block Scheduler The closest is the Thread Block Scheduler that
assigns Thread Blocks to a multithreaded SIMD
Processor. But GPUs have no scalar-vector
operations and no unit-stride or strided data
transfer instructions, which Control Processors
often provide.

Scalar Processor System Processor Because of the lack of shared memory and the
high latency to communicate over a PCI bus
(1000s of clock cycles), the system processor in a
GPU rarely takes on the same tasks that a scalar
processor does in a vector architecture.

Vector Lane SIMD Lane Both are essentially functional units with
registers.

Vector Registers SIMD Lane Registers The equivalent of a vector register is the same
register in all 32 SIMD Lanes of a multithreaded
SIMD Processor running a thread of SIMD
instructions. The number of registers per SIMD
thread is flexible, but the maximum is 64, so the
maximum number of vector registers is 64.

Main Memory GPU Memory Memory for GPU versus System memory in
vector case.

Figure 4.21 GPU equivalent to vector terms.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

310 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

With respect to memory access instructions in the two architectures, all GPU
loads are gather instructions and all GPU stores are scatter instructions. If data
addresses of CUDA Threads refer to nearby addresses that fall in the same cache/
memory block at the same time, the Address Coalescing Unit of the GPU will
ensure high memory bandwidth. The explicit unit-stride load and store instructions
of vector architectures versus the implicit unit stride of GPU programming is why
writing efficient GPU code requires that programmers think in terms of SIMD oper-
ations, even though the CUDA programming model looks like MIMD. As CUDA
Threads can generate their own addresses, strided as well as gather-scatter, address-
ing vectors are found in both vector architectures and GPUs.

As we mentioned several times, the two architectures take very different
approaches to hiding memory latency. Vector architectures amortize it across all
the elements of the vector by having a deeply pipelined access so you pay the

Figure 4.22 A vector processor with four lanes on the left and a multithreaded SIMD Processor of a GPU with four
SIMD Lanes on the right. (GPUs typically have 8 to 16 SIMD Lanes.) The control processor supplies scalar operands for
scalar-vector operations, increments addressing for unit and non-unit stride accesses to memory, and performs other
accounting-type operations. Peak memory performance only occurs in a GPU when the Address Coalescing unit can
discover localized addressing. Similarly, peak computational performance occurs when all internal mask bits are set
identically. Note that the SIMD Processor has one PC per SIMD thread to help with multithreading.

PC

Mask

FU
0

FU
0

0 1 2 3
4

60 61 62 63

5 6

•
•
•

•
•
•

•
•
•

•
•
•

7

1
FU

2
FU

3
FU

1
FU

2
FU

3
FU

Mask Mask

Instruction
cache

Instruction register

Vector load/store unit

Memory interface
unit

Control
processer

V
ec

to
r

re
gi

st
er

s

Mask Mask Mask Mask Mask

0 0 0
1

1023 1023 1023 1023

1 1

•
•
•

•
•
•

•
•
•

•
•
•

1

Instruction
cache

Instruction register

SIMD Load/store unit

R
eg

is
te

rs
Address coalescing unit

Memory interface unit

SIMD Thread Scheduler

Dispatch unit

PC

PC

PC

PC

0

4.4 Graphics Processing Units ■ 311

latency only once per vector load or store. Hence, vector loads and stores are like
a block transfer between memory and the vector registers. In contrast, GPUs hide
memory latency using multithreading. (Some researchers are investigating add-
ing multithreading to vector architectures to try to capture the best of both
worlds.)

With respect to conditional branch instructions, both architectures implement
them using mask registers. Both conditional branch paths occupy time and/or
space even when they do not store a result. The difference is that the vector com-
piler manages mask registers explicitly in software while the GPU hardware and
assembler manages them implicitly using branch synchronization markers and an
internal stack to save, complement, and restore masks.

As mentioned above, the conditional branch mechanism of GPUs gracefully
handles the strip-mining problem of vector architectures. When the vector length
is unknown at compile time, the program must calculate the modulo of the appli-
cation vector length and the maximum vector length and store it in the vector
length register. The strip-minded loop then resets the vector length register to the
maximum vector length for the rest of the loop. This case is simpler with GPUs
since they just iterate the loop until all the SIMD Lanes reach the loop bound. On
the last iteration, some SIMD Lanes will be masked off and then restored after
the loop completes.

The control processor of a vector computer plays an important role in the
execution of vector instructions. It broadcasts operations to all the vector lanes
and broadcasts a scalar register value for vector-scalar operations. It also does
implicit calculations that are explicit in GPUs, such as automatically incre-
menting memory addresses for unit-stride and non-unit-stride loads and stores.
The control processor is missing in the GPU. The closest analogy is the Thread
Block Scheduler, which assigns Thread Blocks (bodies of vector loop) to multi-
threaded SIMD Processors. The runtime hardware mechanisms in a GPU that
both generate addresses and then discover if they are adjacent, which is com-
monplace in many DLP applications, are likely less power efficient than using
a control processor.

The scalar processor in a vector computer executes the scalar instructions of a
vector program; that is, it performs operations that would be too slow to do in the
vector unit. Although the system processor that is associated with a GPU is the
closest analogy to a scalar processor in a vector architecture, the separate address
spaces plus transferring over a PCle bus means thousands of clock cycles of
overhead to use them together. The scalar processor can be slower than a vector
processor for floating-point computations in a vector computer, but not by the
same ratio as the system processor versus a multithreaded SIMD Processor
(given the overhead).

Hence, each “vector unit” in a GPU must do computations that you would
expect to do on a scalar processor in a vector computer. That is, rather than calcu-
late on the system processor and communicate the results, it can be faster to dis-
able all but one SIMD Lane using the predicate registers and built-in masks and
do the scalar work with one SIMD Lane. The relatively simple scalar processor
in a vector computer is likely to be faster and more power efficient than the GPU

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

312 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

solution. If system processors and GPUs become more closely tied together in
the future, it will be interesting to see if system processors can play the same role
as scalar processors do for vector and Multimedia SIMD architectures.

Similarities and Differences between Multimedia SIMD
Computers and GPUs

At a high level, multicore computers with Multimedia SIMD instruction exten-
sions do share similarities with GPUs. Figure 4.23 summarizes the similarities
and differences.

Both are multiprocessors whose processors use multiple SIMD lanes,
although GPUs have more processors and many more lanes. Both use hardware
multithreading to improve processor utilization, although GPUs have hardware
support for many more threads. Recent innovations in GPUs mean that now both
have similar performance ratios between single-precision and double-precision
floating-point arithmetic. Both use caches, although GPUs use smaller streaming
caches and multicore computers use large multilevel caches that try to contain
whole working sets completely. Both use a 64-bit address space, although the
physical main memory is much smaller in GPUs. While GPUs support memory
protection at the page level, they do not support demand paging.

In addition to the large numerical differences in processors, SIMD lanes,
hardware thread support, and cache sizes, there are many architectural differ-
ences. The scalar processor and Multimedia SIMD instructions are tightly inte-
grated in traditional computers; they are separated by an I/O bus in GPUs, and
they even have separate main memories. The multiple SIMD processors in a
GPU use a single address space, but the caches are not coherent as they are in tra-
ditional multicore computers. Unlike GPUs, multimedia SIMD instructions do
not support gather-scatter memory accesses, which Section 4.7 shows is a signif-
icant omission.

Feature Multicore with SIMD GPU

SIMD processors 4 to 8 8 to 16

SIMD lanes/processor 2 to 4 8 to 16

Multithreading hardware support for SIMD threads 2 to 4 16 to 32

Typical ratio of single-precision to double-precision performance 2:1 2:1

Largest cache size 8 MB 0.75 MB

Size of memory address 64-bit 64-bit

Size of main memory 8 GB to 256 GB 4 to 6 GB

Memory protection at level of page Yes Yes

Demand paging Yes No

Integrated scalar processor/SIMD processor Yes No

Cache coherent Yes No

Figure 4.23 Similarities and differences between multicore with Multimedia SIMD extensions and recent GPUs.

4.4 Graphics Processing Units ■ 313

Summary

Now that the veil has been lifted, we can see that GPUs are really just multi-
threaded SIMD processors, although they have more processors, more lanes per
processor, and more multithreading hardware than do traditional multicore com-
puters. For example, the Fermi GTX 480 has 15 SIMD processors with 16 lanes
per processor and hardware support for 32 SIMD threads. Fermi even embraces
instruction-level parallelism by issuing instructions from two SIMD threads to
two sets of SIMD lanes. They also have less cache memory—Fermi’s L2 cache is
0.75 megabyte—and it is not coherent with the distant scalar processor.

Type

More
descriptive
name used in
this book

Official
CUDA/
NVIDIA
term

Book definition and
AMD and OpenCL terms

Official CUDA/NVIDIA
definition

P
ro

g
ra

m
 a

b
st

ra
ct

io
n

s

Vectorizable
loop

Grid A vectorizable loop, executed on the
GPU, made up of one or more “Thread
Blocks” (or bodies of vectorized loop)
that can execute in parallel. OpenCL
name is “index range.” AMD name is
“NDRange”.

A grid is an array of thread
blocks that can execute
concurrently, sequentially, or a
mixture.

Body of
Vectorized
loop

Thread
Block

A vectorized loop executed on a
multithreaded SIMD Processor, made up
of one or more threads of SIMD
instructions. These SIMD Threads can
communicate via Local Memory. AMD
and OpenCL name is “work group”.

A thread block is an array of
CUDA Threads that execute
concurrently together and can
cooperate and communicate via
Shared Memory and barrier
synchronization. A Thread
Block has a Thread Block ID
within its Grid.

Sequence of
SIMD Lane
operations

CUDA
Thread

A vertical cut of a thread of SIMD
instructions corresponding to one element
executed by one SIMD Lane. Result is
stored depending on mask. AMD and
OpenCL call a CUDA Thread a “work
item.”

A CUDA Thread is a lightweight
thread that executes a sequential
program and can cooperate with
other CUDA Threads executing
in the same Thread Block. A
CUDA Thread has a thread ID
within its Thread Block.

M
a

ch
in

e
 o

b
je

ct

A Thread of
SIMD
instructions

Warp A traditional thread, but it contains just
SIMD instructions that are executed on a
multithreaded SIMD Processor. Results
are stored depending on a per-element
mask. AMD name is “wavefront.”

A warp is a set of parallel CUDA
Threads (e.g., 32) that execute
the same instruction together in a
multithreaded SIMT/SIMD
Processor.

SIMD
instruction

PTX
instruction

A single SIMD instruction executed
across the SIMD Lanes. AMD name is
“AMDIL” or “FSAIL” instruction.

A PTX instruction specifies an
instruction executed by a CUDA
Thread.

Figure 4.24 Conversion from terms used in this chapter to official NVIDIA/CUDA and AMD jargon. OpenCL
names are given in the book definition.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

314 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Type

More
descriptive
name used in
this book

Official
CUDA/
NVIDIA
term

Book definition and
AMD and OpenCL terms

Official CUDA/NVIDIA
definition

P
ro

ce
ss

in
g

 h
ar

d
w

ar
e

Multithreaded
SIMD
processor

Streaming
multi-
processor

Multithreaded SIMD Processor that executes
thread of SIMD instructions, independent of
other SIMD Processors. Both AMD and
OpenCL call it a “compute unit.” However,
the CUDA Programmer writes program for
one lane rather than for a “vector” of
multiple SIMD Lanes.

A streaming multiprocessor
(SM) is a multithreaded SIMT/
SIMD Processor that executes
warps of CUDA Threads. A
SIMT program specifies the
execution of one CUDA
Thread, rather than a vector of
multiple SIMD Lanes.

Thread
block
scheduler

Giga
thread
engine

Assigns multiple bodies of vectorized loop
to multithreaded SIMD Processors. AMD
name is “Ultra-Threaded Dispatch Engine”.

Distributes and schedules
thread blocks of a grid to
streaming multiprocessors as
resources become available.

SIMD
Thread
scheduler

Warp
scheduler

Hardware unit that schedules and issues
threads of SIMD instructions when they are
ready to execute; includes a scoreboard to
track SIMD Thread execution. AMD name is
“Work Group Scheduler”.

A warp scheduler in a
streaming multiprocessor
schedules warps for execution
when their next instruction is
ready to execute.

SIMD
Lane

Thread
processor

Hardware SIMD Lane that executes the
operations in a thread of SIMD instructions
on a single element. Results are stored
depending on mask. OpenCL calls it a
“processing element.” AMD name is also
“SIMD Lane”.

A thread processor is a
datapath and register file
portion of a streaming
multiprocessor that executes
operations for one or more
lanes of a warp.

M
em

o
ry

 h
ar

d
w

ar
e

GPU
Memory

Global
Memory

DRAM memory accessible by all
multithreaded SIMD Processors in a GPU.
OpenCL calls it “Global Memory.”

Global memory is accessible
by all CUDA Threads in any
thread block in any grid;
implemented as a region of
DRAM, and may be cached.

Private
Memory

Local
Memory

Portion of DRAM memory private to each
SIMD Lane. Both AMD and OpenCL call it
“Private Memory.”

Private “thread-local” memory
for a CUDA Thread;
implemented as a cached
region of DRAM.

Local
Memory

Shared
Memory

Fast local SRAM for one multithreaded
SIMD Processor, unavailable to other SIMD
Processors. OpenCL calls it “Local
Memory.” AMD calls it “Group Memory”.

Fast SRAM memory shared by
the CUDA Threads composing
a thread block, and private to
that thread block. Used for
communication among CUDA
Threads in a thread block at
barrier synchronization points.

SIMD Lane
registers

Registers Registers in a single SIMD Lane allocated
across body of vectorized loop. AMD also
calls them “Registers”.

Private registers for a CUDA
Thread; implemented as
multithreaded register file for
certain lanes of several warps
for each thread processor.

Figure 4.25 Conversion from terms used in this chapter to official NVIDIA/CUDA and AMD jargon. Note that our
descriptive terms “Local Memory” and “Private Memory” use the OpenCL terminology. NVIDIA uses SIMT, single-
instruction multiple-thread, rather than SIMD, to describe a streaming multiprocessor. SIMT is preferred over SIMD
because the per-thread branching and control flow are unlike any SIMD machine.

4.5 Detecting and Enhancing Loop-Level Parallelism ■ 315

The CUDA programming model wraps up all these forms of parallelism
around a single abstraction, the CUDA Thread. Thus, the CUDA programmer
can think of programming thousands of threads, although they are really execut-
ing each block of 32 threads on the many lanes of the many SIMD Processors.
The CUDA programmer who wants good performance keeps in mind that these
threads are blocked and executed 32 at a time and that addresses need to be to
adjacent addresses to get good performance from the memory system.

Although we’ve used CUDA and the NVIDIA GPU in this section, rest
assured that the same ideas are found in the OpenCL programming language and
in GPUs from other companies.

Now that you understand better how GPUs work, we reveal the real jargon.
Figures 4.24 and 4.25 match the descriptive terms and definitions of this section
with the official CUDA/NVIDIA and AMD terms and definitions. We also include
the OpenCL terms. We believe the GPU learning curve is steep in part because of
using terms such as “Streaming Multiprocessor” for the SIMD Processor, “Thread
Processor” for the SIMD Lane, and “Shared Memory” for Local Memory—
especially since Local Memory is not shared between SIMD Processors! We hope
that this two-step approach gets you up that curve quicker, even if it’s a bit indirect.

Loops in programs are the fountainhead of many of the types of parallelism we
discussed above and in Chapter 5. In this section, we discuss compiler technol-
ogy for discovering the amount of parallelism that we can exploit in a program as
well as hardware support for these compiler techniques. We define precisely
when a loop is parallel (or vectorizable), how dependence can prevent a loop
from being parallel, and techniques for eliminating some types of dependences.
Finding and manipulating loop-level parallelism is critical to exploiting both
DLP and TLP, as well as the more aggressive static ILP approaches (e.g., VLIW)
that we examine in Appendix H.

Loop-level parallelism is normally analyzed at the source level or close to it,
while most analysis of ILP is done once instructions have been generated by the
compiler. Loop-level analysis involves determining what dependences exist
among the operands in a loop across the iterations of that loop. For now, we will
consider only data dependences, which arise when an operand is written at some
point and read at a later point. Name dependences also exist and may be removed
by the renaming techniques discussed in Chapter 3.

The analysis of loop-level parallelism focuses on determining whether data
accesses in later iterations are dependent on data values produced in earlier itera-
tions; such dependence is called a loop-carried dependence. Most of the exam-
ples we considered in Chapters 2 and 3 had no loop-carried dependences and,
thus, are loop-level parallel. To see that a loop is parallel, let us first look at the
source representation:

for (i=999; i>=0; i=i-1)
x[i] = x[i] + s;

4.5 Detecting and Enhancing Loop-Level Parallelism

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

316 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

In this loop, the two uses of x[i] are dependent, but this dependence is within a
single iteration and is not loop carried. There is a loop-carried dependence
between successive uses of i in different iterations, but this dependence involves
an induction variable that can be easily recognized and eliminated. We saw
examples of how to eliminate dependences involving induction variables during
loop unrolling in Section 2.2 of Chapter 2, and we will look at additional exam-
ples later in this section.

Because finding loop-level parallelism involves recognizing structures such
as loops, array references, and induction variable computations, the compiler can
do this analysis more easily at or near the source level, as opposed to the
machine-code level. Let’s look at a more complex example.

Example Consider a loop like this one:

for (i=0; i<100; i=i+1) {
A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2 */

}

Assume that A, B, and C are distinct, nonoverlapping arrays. (In practice, the
arrays may sometimes be the same or may overlap. Because the arrays may be
passed as parameters to a procedure that includes this loop, determining whether
arrays overlap or are identical often requires sophisticated, interprocedural analy-
sis of the program.) What are the data dependences among the statements S1 and
S2 in the loop?

Answer There are two different dependences:

1. S1 uses a value computed by S1 in an earlier iteration, since iteration i com-
putes A[i+1], which is read in iteration i+1. The same is true of S2 for B[i]
and B[i+1].

2. S2 uses the value A[i+1] computed by S1 in the same iteration.

These two dependences are different and have different effects. To see how
they differ, let’s assume that only one of these dependences exists at a time.
Because the dependence of statement S1 is on an earlier iteration of S1, this
dependence is loop carried. This dependence forces successive iterations of this
loop to execute in series.

The second dependence (S2 depending on S1) is within an iteration and is not
loop carried. Thus, if this were the only dependence, multiple iterations of the
loop could execute in parallel, as long as each pair of statements in an iteration
were kept in order. We saw this type of dependence in an example in Section 2.2,
where unrolling was able to expose the parallelism. These intra-loop depen-
dences are common; for example, a sequence of vector instructions that uses
chaining exhibits exactly this sort of dependence.

It is also possible to have a loop-carried dependence that does not prevent
parallelism, as the next example shows.

4.5 Detecting and Enhancing Loop-Level Parallelism ■ 317

Example Consider a loop like this one:

for (i=0; i<100; i=i+1) {
A[i] = A[i] + B[i]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2 */

}

What are the dependences between S1 and S2? Is this loop parallel? If not, show
how to make it parallel.

Answer Statement S1 uses the value assigned in the previous iteration by statement S2, so
there is a loop-carried dependence between S2 and S1. Despite this loop-carried
dependence, this loop can be made parallel. Unlike the earlier loop, this depen-
dence is not circular; neither statement depends on itself, and although S1
depends on S2, S2 does not depend on S1. A loop is parallel if it can be written
without a cycle in the dependences, since the absence of a cycle means that the
dependences give a partial ordering on the statements.

Although there are no circular dependences in the above loop, it must be
transformed to conform to the partial ordering and expose the parallelism. Two
observations are critical to this transformation:

1. There is no dependence from S1 to S2. If there were, then there would be a
cycle in the dependences and the loop would not be parallel. Since this other
dependence is absent, interchanging the two statements will not affect the
execution of S2.

2. On the first iteration of the loop, statement S2 depends on the value of B[0]
computed prior to initiating the loop.

These two observations allow us to replace the loop above with the following
code sequence:

A[0] = A[0] + B[0];
for (i=0; i<99; i=i+1) {

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}
B[100] = C[99] + D[99];

The dependence between the two statements is no longer loop carried, so that
iterations of the loop may be overlapped, provided the statements in each itera-
tion are kept in order.

Our analysis needs to begin by finding all loop-carried dependences. This
dependence information is inexact, in the sense that it tells us that such depen-
dence may exist. Consider the following example:

for (i=0;i<100;i=i+1) {
A[i] = B[i] + C[i]
D[i] = A[i] * E[i]

}

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

318 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

The second reference to A in this example need not be translated to a load instruc-
tion, since we know that the value is computed and stored by the previous state-
ment; hence, the second reference to A can simply be a reference to the register
into which A was computed. Performing this optimization requires knowing that
the two references are always to the same memory address and that there is no
intervening access to the same location. Normally, data dependence analysis only
tells that one reference may depend on another; a more complex analysis is
required to determine that two references must be to the exact same address. In
the example above, a simple version of this analysis suffices, since the two refer-
ences are in the same basic block.

Often loop-carried dependences are in the form of a recurrence. A recurrence
occurs when a variable is defined based on the value of that variable in an earlier
iteration, often the one immediately preceding, as in the following code
fragment:

for (i=1;i<100;i=i+1) {
Y[i] = Y[i-1] + Y[i];

}

 Detecting a recurrence can be important for two reasons: Some architec-
tures (especially vector computers) have special support for executing recur-
rences, and, in an ILP context, it may still be possible to exploit a fair amount of
parallelism.

Finding Dependences

Clearly, finding the dependences in a program is important both to determine
which loops might contain parallelism and to eliminate name dependences. The
complexity of dependence analysis arises also because of the presence of arrays
and pointers in languages such as C or C++, or pass-by-reference parameter
passing in Fortran. Since scalar variable references explicitly refer to a name,
they can usually be analyzed quite easily with aliasing because of pointers and
reference parameters causing some complications and uncertainty in the
analysis.

How does the compiler detect dependences in general? Nearly all dependence
analysis algorithms work on the assumption that array indices are affine. In sim-
plest terms, a one-dimensional array index is affine if it can be written in the form
a × i + b, where a and b are constants and i is the loop index variable. The index
of a multidimensional array is affine if the index in each dimension is affine.
Sparse array accesses, which typically have the form x[y[i]], are one of the
major examples of non-affine accesses.

Determining whether there is a dependence between two references to the
same array in a loop is thus equivalent to determining whether two affine func-
tions can have the same value for different indices between the bounds of the
loop. For example, suppose we have stored to an array element with index value
a × i + b and loaded from the same array with index value c × i + d, where i is the

4.5 Detecting and Enhancing Loop-Level Parallelism ■ 319

for-loop index variable that runs from m to n. A dependence exists if two condi-
tions hold:

1. There are two iteration indices, j and k, that are both within the limits of the
for loop. That is, , .

2. The loop stores into an array element indexed by a × j + b and later fetches
from that same array element when it is indexed by c × k + d. That is,
a × j + b = c × k + d.

In general, we cannot determine whether dependence exists at compile time.
For example, the values of a, b, c, and d may not be known (they could be values
in other arrays), making it impossible to tell if a dependence exists. In other
cases, the dependence testing may be very expensive but decidable at compile
time; for example, the accesses may depend on the iteration indices of multiple
nested loops. Many programs, however, contain primarily simple indices where
a, b, c, and d are all constants. For these cases, it is possible to devise reasonable
compile time tests for dependence.

As an example, a simple and sufficient test for the absence of a dependence is
the greatest common divisor (GCD) test. It is based on the observation that if a
loop-carried dependence exists, then GCD (c,a) must divide (d − b). (Recall that
an integer, x, divides another integer, y, if we get an integer quotient when we do
the division y/x and there is no remainder.)

Example Use the GCD test to determine whether dependences exist in the following loop:

for (i=0; i<100; i=i+1) {
X[2*i+3] = X[2*i] * 5.0;

}

Answer Given the values a = 2, b = 3, c = 2, and d = 0, then GCD(a,c) = 2, and d − b = −3.
Since 2 does not divide −3, no dependence is possible.

The GCD test is sufficient to guarantee that no dependence exists; however,
there are cases where the GCD test succeeds but no dependence exists. This can
arise, for example, because the GCD test does not consider the loop bounds.

In general, determining whether a dependence actually exists is NP-complete.
In practice, however, many common cases can be analyzed precisely at low cost.
Recently, approaches using a hierarchy of exact tests increasing in generality and
cost have been shown to be both accurate and efficient. (A test is exact if it
precisely determines whether a dependence exists. Although the general case is
NP-complete, there exist exact tests for restricted situations that are much cheaper.)

In addition to detecting the presence of a dependence, a compiler wants to
classify the type of dependence. This classification allows a compiler to recog-
nize name dependences and eliminate them at compile time by renaming and
copying.

m j n≤ ≤ m k n≤ ≤

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

320 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Example The following loop has multiple types of dependences. Find all the true depen-
dences, output dependences, and antidependences, and eliminate the output
dependences and antidependences by renaming.

for (i=0; i<100; i=i+1) {
Y[i] = X[i] / c; /* S1 */
X[i] = X[i] + c; /* S2 */
Z[i] = Y[i] + c; /* S3 */
Y[i] = c - Y[i]; /* S4 */

}

Answer The following dependences exist among the four statements:

1. There are true dependences from S1 to S3 and from S1 to S4 because of Y[i].
These are not loop carried, so they do not prevent the loop from being consid-
ered parallel. These dependences will force S3 and S4 to wait for S1 to com-
plete.

2. There is an antidependence from S1 to S2, based on X[i].

3. There is an antidependence from S3 to S4 for Y[i].

4. There is an output dependence from S1 to S4, based on Y[i].

The following version of the loop eliminates these false (or pseudo) dependences.

for (i=0; i<100; i=i+1 {
T[i] = X[i] / c; /* Y renamed to T to remove output dependence */
X1[i] = X[i] + c;/* X renamed to X1 to remove antidependence */
Z[i] = T[i] + c;/* Y renamed to T to remove antidependence */
Y[i] = c - T[i];

}

After the loop, the variable X has been renamed X1. In code that follows the loop,
the compiler can simply replace the name X by X1. In this case, renaming does
not require an actual copy operation, as it can be done by substituting names or
by register allocation. In other cases, however, renaming will require copying.

Dependence analysis is a critical technology for exploiting parallelism, as well
as for the transformation-like blocking that Chapter 2 covers. For detecting loop-
level parallelism, dependence analysis is the basic tool. Effectively compiling pro-
grams for vector computers, SIMD computers, or multiprocessors depends criti-
cally on this analysis. The major drawback of dependence analysis is that it applies
only under a limited set of circumstances, namely, among references within a sin-
gle loop nest and using affine index functions. Thus, there are many situations
where array-oriented dependence analysis cannot tell us what we want to know; for
example, analyzing accesses done with pointers, rather than with array indices can
be much harder. (This is one reason why Fortran is still preferred over C and C++
for many scientific applications designed for parallel computers.) Similarly,

4.5 Detecting and Enhancing Loop-Level Parallelism ■ 321

analyzing references across procedure calls is extremely difficult. Thus, while anal-
ysis of code written in sequential languages remains important, we also need
approaches such as OpenMP and CUDA that write explicitly parallel loops.

Eliminating Dependent Computations

As mentioned above, one of the most important forms of dependent computa-
tions is a recurrence. A dot product is a perfect example of a recurrence:

for (i=9999; i>=0; i=i-1)
sum = sum + x[i] * y[i];

This loop is not parallel because it has a loop-carried dependence on the variable
sum. We can, however, transform it to a set of loops, one of which is completely
parallel and the other that can be partly parallel. The first loop will execute the
completely parallel portion of this loop. It looks like:

for (i=9999; i>=0; i=i-1)
sum[i] = x[i] * y[i];

Notice that sum has been expanded from a scalar into a vector quantity (a trans-
formation called scalar expansion) and that this transformation makes this new
loop completely parallel. When we are done, however, we need to do the reduce
step, which sums up the elements of the vector. It looks like:

for (i=9999; i>=0; i=i-1)
finalsum = finalsum + sum[i];

Although this loop is not parallel, it has a very specific structure called a reduc-
tion. Reductions are common in linear algebra and, as we shall see in Chapter 6,
they are also a key part of the primary parallelism primitive MapReduce used in
warehouse-scale computers. In general, any function can be used as a reduction
operator, and common cases include operators such as max and min.

Reductions are sometimes handled by special hardware in a vector and SIMD
architecture that allows the reduce step to be done much faster than it could be
done in scalar mode. These work by implementing a technique similar to what
can be done in a multiprocessor environment. While the general transformation
works with any number of processors, suppose for simplicity we have 10 proces-
sors. In the first step of reducing the sum, each processor executes the following
(with p as the processor number ranging from 0 to 9):

for (i=999; i>=0; i=i-1)
finalsum[p] = finalsum[p] + sum[i+1000*p];

This loop, which sums up 1000 elements on each of the ten processors, is com-
pletely parallel. A simple scalar loop can then complete the summation of the last
ten sums. Similar approaches are used in vector and SIMD processors.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

322 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

It is important to observe that the above transformation relies on associativity
of addition. Although arithmetic with unlimited range and precision is associa-
tive, computer arithmetic is not associative, for either integer arithmetic, because
of limited range, or floating-point arithmetic, because of both range and preci-
sion. Thus, using these restructuring techniques can sometimes lead to erroneous
behavior, although such occurrences are rare. For this reason, most compilers
require that optimizations that rely on associativity be explicitly enabled.

Energy and DLP: Slow and Wide versus Fast and Narrow

A fundamental energy advantage of data-level parallel architectures comes from
the energy equation in Chapter 1. Since we assume ample data-level parallelism,
the performance is the same if we halve the clock rate and double the execution
resources: twice the number of lanes for a vector computer, wider registers and
ALUs for multimedia SIMD, and more SIMD lanes for GPUs. If we can lower
the voltage while dropping the clock rate, we can actually reduce energy as well
as the power for the computation while maintaining the same peak performance.
Hence, DLP processors tend to have lower clock rates than system processors,
which rely on high clock rates for performance (see Section 4.7).

Compared to out-of-order processors, DLP processors can have simpler con-
trol logic to launch a large number of operations per clock cycle; for example, the
control is identical for all lanes in vector processors, and there is no logic to
decide on multiple instruction issue or speculative execution logic. Vector archi-
tectures can also make it easier to turn off unused portions of the chip. Each vec-
tor instruction explicitly describes all the resources it needs for a number of
cycles when the instruction issues.

Banked Memory and Graphics Memory

Section 4.2 noted the importance of substantial memory bandwidth for vector
architectures to support unit stride, non-unit stride, and gather-scatter accesses.

To achieve their high performance, GPUs also require substantial memory
bandwidth. Special DRAM chips designed just for GPUs, called GDRAM for
graphics DRAM, help deliver this bandwidth. GDRAM chips have higher band-
width often at lower capacity than conventional DRAM chips. To deliver this
bandwidth, GDRAM chips are often soldered directly onto the same board as the
GPU rather than being placed into DIMM modules that are inserted into slots on
a board, as is the case for system memory. DIMM modules allow for much
greater capacity and for the system to be upgraded, unlike GDRAM. This limited
capacity—about 4 GB in 2011—is in conflict with the goal of running bigger
problems, which is a natural use of the increased computational power of GPUs.

 4.6 Crosscutting Issues

4.7 Putting It All Together: Mobile versus Server GPUs and Tesla versus Core i7 ■ 323

To deliver the best possible performance, GPUs try to take into account all
the features of GDRAMs. They are typically arranged internally as 4 to 8 banks,
with a power of 2 number of rows (typically 16,384) and a power of 2 number of
bits per row (typically 8192). Chapter 2 describes the details of DRAM behavior
that GPUs try to match.

Given all the potential demands on the GDRAMs from both the computation
tasks and the graphics acceleration tasks, the memory system could see a large
number of uncorrelated requests. Alas, this diversity hurts memory performance.
To cope, the GPU’s memory controller maintains separate queues of traffic
bound for different GDRAM banks, waiting until there is enough traffic to jus-
tify opening a row and transferring all requested data at once. This delay
improves bandwidth but stretches latency, and the controller must ensure that no
processing units starve while waiting for data, for otherwise neighboring proces-
sors could become idle. Section 4.7 shows that gather-scatter techniques and
memory-bank-aware access techniques can deliver substantial increases in per-
formance versus conventional cache-based architectures.

Strided Accesses and TLB Misses

One problem with strided accesses is how they interact with the translation
lookaside buffer (TLB) for virtual memory in vector architectures or GPUs.
(GPUs use TLBs for memory mapping.) Depending on how the TLB is orga-
nized and the size of the array being accessed in memory, it is even possible to
get one TLB miss for every access to an element in the array!

Given the popularity of graphics applications, GPUs are now found in both
mobile clients as well as traditional servers or heavy-duty desktop computers.
Figure 4.26 lists the key characteristics of the NVIDIA Tegra 2 for mobile cli-
ents, which is used in the LG Optimus 2X and runs Android OS, and the Fermi
GPU for servers. GPU server engineers hope to be able to do live animation
within five years after a movie is released. GPU mobile engineers in turn want
within five more years that a mobile client can do what a server or game console
does today. More concretely, the overarching goal is for the graphics quality of a
movie such as Avatar to be achieved in real time on a server GPU in 2015 and on
your mobile GPU in 2020.

The NVIDIA Tegra 2 for mobile devices provides both the system processor
and the GPU in a single chip using a single physical memory. The system proces-
sor is a dual-core ARM Cortex-A9, with each core using out-of-order execution
and dual instruction issue. Each core includes the optional floating-point unit.

The GPU has hardware acceleration for programmable pixel shading, pro-
grammable vertex and lighting, and 3D graphics, but it does not include the GPU
computing features needed to run CUDA or OpenCL programs.

 4.7 Putting It All Together: Mobile versus Server GPUs
and Tesla versus Core i7

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

324 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

The die size is 57 mm2 (7.5 × 7.5 mm) in a 40 nm TSMC process, and it con-
tains 242 million transistors. It uses 1.5 watts.

The NVIDIA GTX 480 in Figure 4.26 is the first implementation of the Fermi
architecture. The clock rate is 1.4 GHz, and it includes 15 SIMD processors. The
chip itself has 16, but to improve yield only 15 of the 16 need work for this prod-
uct. The path to GDDR5 memory is 384 (6 × 64) bits wide, and it interfaces that
clock at 1.84 GHz, offering a peak memory bandwidth of 177 GBytes/sec by
transferring on both clock edges of double data rate memory. It connects to the
host system processor and memory via a PCI Express 2.0 × 16 link, which has a
peak bidirectional rate of 12 GBytes/sec.

All physical characteristics of the GTX 480 die are impressively large: It con-
tains 3.0 billion transistors, the die size is 520 mm2 (22.8 × 22.8 mm) in a 40 nm
TSMC process, and the typical power is 167 watts. The whole module is 250
watts, which includes the GPU, GDRAMs, fans, power regulators, and so on.

Comparison of a GPU and a MIMD with Multimedia SIMD

A group of Intel researchers published a paper [Lee et al. 2010] comparing a
quad-core Intel i7 (see Chapter 3) with multimedia SIMD extensions to the pre-
vious generation GPU, the Tesla GTX 280. Figure 4.27 lists the characteristics

NVIDIA Tegra 2 NVIDIA Fermi GTX 480

Market Mobile client Desktop, server

System processor Dual-Core ARM Cortex-A9 Not applicable

System interface Not applicable PCI Express 2.0 × 16

System interface
bandwidth Not applicable

6 GBytes/sec (each
direction), 12 GBytes/sec

(total)

Clock rate Up to 1 GHz 1.4 GHz

SIMD multiprocessors Unavailable 15

SIMD lanes/SIMD
multiprocessor

Unavailable 32

Memory interface 32-bit LP-DDR2/DDR2 384-bit GDDR5

Memory bandwidth 2.7 GBytes/sec 177 GBytes/sec

Memory capacity 1 GByte 1.5 GBytes

Transistors 242 M 3030 M

Process 40 nm TSMC process G 40 nm TSMC process G

Die area 57 mm2 520 mm2

Power 1.5 watts 167 watts

Figure 4.26 Key features of the GPUs for mobile clients and servers. The Tegra 2 is
the reference platform for Android OS and is found in the LG Optimus 2X cell phone.

4.7 Putting It All Together: Mobile versus Server GPUs and Tesla versus Core i7 ■ 325

of the two systems. Both products were purchased in Fall 2009. The Core i7 is
in Intel’s 45-nanometer semiconductor technology while the GPU is in TSMC’s
65-nanometer technology. Although it might have been more fair to have a com-
parison by a neutral party or by both interested parties, the purpose of this sec-
tion is not to determine how much faster one product is than another, but to try
to understand the relative value of features of these two contrasting architecture
styles.

The rooflines of the Core i7 920 and GTX 280 in Figure 4.28 illustrate the
differences in the computers. The 920 has a slower clock rate than the 960
(2.66 GHz versus 3.2 GHz), but the rest of the system is the same. Not only
does the GTX 280 have much higher memory bandwidth and double-precision
floating-point performance, but also its double-precision ridge point is consid-
erably to the left. As mentioned above, it is much easier to hit peak computa-
tional performance the further the ridge point of the roofline is to the left. The
double-precision ridge point is 0.6 for the GTX 280 versus 2.6 for the Core i7.
For single-precision performance, the ridge point moves far to the right, as it’s
much harder to hit the roof of single-precision performance because it is so

Core i7-
960 GTX 280 GTX 480

 Ratio
280/i7

 Ratio
480/i7

Number of processing elements (cores or SMs) 4 30 15 7.5 3.8

Clock frequency (GHz) 3.2 1.3 1.4 0.41 0.44

Die size 263 576 520 2.2 2.0

Technology Intel 45 nm TSMC 65 nm TSMC 40 nm 1.6 1.0

Power (chip, not module) 130 130 167 1.0 1.3

Transistors 700 M 1400 M 3030 M 2.0 4.4

Memory bandwidth (GBytes/sec) 32 141 177 4.4 5.5

Single-precision SIMD width 4 8 32 2.0 8.0

Double-precision SIMD width 2 1 16 0.5 8.0

Peak single-precision scalar FLOPS (GFLOP/Sec) 26 117 63 4.6 2.5

Peak single-precision SIMD FLOPS (GFLOP/Sec) 102 311 to 933 515 or 1344 3.0–9.1 6.6–13.1

(SP 1 add or multiply) N.A. (311) (515) (3.0) (6.6)

(SP 1 instruction fused multiply-adds) N.A. (622) (1344) (6.1) (13.1)

(Rare SP dual issue fused multiply-add and multiply) N.A. (933) N.A. (9.1) --

Peak double-precision SIMD FLOPS (GFLOP/sec) 51 78 515 1.5 10.1

Figure 4.27 Intel Core i7-960, NVIDIA GTX 280, and GTX 480 specifications. The rightmost columns show the
ratios of GTX 280 and GTX 480 to Core i7. For single-precision SIMD FLOPS on the GTX 280, the higher speed (933)
comes from a very rare case of dual issuing of fused multiply-add and multiply. More reasonable is 622 for single
fused multiply-adds. Although the case study is between the 280 and i7, we include the 480 to show its relationship
to the 280 since it is described in this chapter. Note that these memory bandwidths are higher than in Figure 4.28
because these are DRAM pin bandwidths and those in Figure 4.28 are at the processors as measured by a benchmark
program. (From Table 2 in Lee et al. [2010].)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

326 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Figure 4.28 Roofline model [Williams et al. 2009]. These rooflines show double-precision floating-point perfor-
mance in the top row and single-precision performance in the bottom row. (The DP FP performance ceiling is also in
the bottom row to give perspective.) The Core i7 920 on the left has a peak DP FP performance of 42.66 GFLOP/sec, a
SP FP peak of 85.33 GFLOP/sec, and a peak memory bandwidth of 16.4 GBytes/sec. The NVIDIA GTX 280 has a DP FP
peak of 78 GFLOP/sec, SP FP peak of 624 GFLOP/sec, and 127 GBytes/sec of memory bandwidth. The dashed vertical
line on the left represents an arithmetic intensity of 0.5 FLOP/byte. It is limited by memory bandwidth to no more
than 8 DP GFLOP/sec or 8 SP GFLOP/sec on the Core i7. The dashed vertical line to the right has an arithmetic inten-
sity of 4 FLOP/byte. It is limited only computationally to 42.66 DP GFLOP/sec and 64 SP GFLOP/sec on the Core i7 and
78 DP GFLOP/sec and 512 DP GFLOP/sec on the GTX 280. To hit the highest computation rate on the Core i7 you
need to use all 4 cores and SSE instructions with an equal number of multiplies and adds. For the GTX 280, you need
to use fused multiply-add instructions on all multithreaded SIMD processors. Guz et al. [2009] have an interesting
analytic model for these two architectures.

128

64

32

16

8

4

2

1

128

64

32

16

8

4

2

1

Core i7 920
(Nehalem)

1024

512

256

128

64

32

16

8
1 2

Arithmetic intensity
4 8 161/8 1/4 1/2

1 2
Arithmetic intensity

4 8 161/8 1/4 1/2 1 2
Arithmetic intensity

4 8 161/8 1/4 1/2

1 2
Arithmetic intensity

4 8 161/8 1/4 1/2

Core i7 920
(Nehalem)

NVIDIA GTX280

1024

512

256

128

64

32

16

8

NVIDIA GTX280

D
ou

bl
e-

pr
ec

is
io

n
G

F
LO

P
/s

ec

D
ou

bl
e-

pr
ec

is
io

n
G

F
LO

P
/s

ec

S
in

gl
e-

pr
ec

is
io

n
G

F
LO

P
/s

ec

S
in

gl
e-

pr
ec

is
io

n
G

F
LO

P
/s

ec

Peak = 42.66 GFLOP/s

Stre
am

=16
.4

GB/se
c

Stre
am

=12
7GB/se

c
78 GF/sec

78 GF/sec

Stre
am

=12
7GB/se

c

624 GF/sec

Stre
am

=16
.4

GB/se
c

85.33 GF/sec

42.66 GF/sec

4.7 Putting It All Together: Mobile versus Server GPUs and Tesla versus Core i7 ■ 327

much higher. Note that the arithmetic intensity of the kernel is based on the
bytes that go to main memory, not the bytes that go to cache memory. Thus,
caching can change the arithmetic intensity of a kernel on a particular com-
puter, presuming that most references really go to the cache. The Rooflines help
explain the relative performance in this case study. Note also that this band-
width is for unit-stride accesses in both architectures. Real gather-scatter
addresses that are not coalesced are slower on the GTX 280 and on the Core i7,
as we shall see.

 The researchers said that they selected the benchmark programs by analyzing
the computational and memory characteristics of four recently proposed bench-
mark suites and then “formulated the set of throughput computing kernels that
capture these characteristics.” Figure 4.29 describes these 14 kernels, and Figure
4.30 shows the performance results, with larger numbers meaning faster.

Kernel Application SIMD TLP Characteristics

SGEMM (SGEMM) Linear algebra Regular Across 2D tiles Compute bound after tiling

Monte Carlo (MC) Computational
finance

Regular Across paths Compute bound

Convolution (Conv) Image analysis Regular Across pixels Compute bound; BW bound for
small filters

FFT (FFT) Signal processing Regular Across smaller
FFTs

Compute bound or BW bound
depending on size

SAXPY (SAXPY) Dot product Regular Across vector BW bound for large vectors

LBM (LBM) Time migration Regular Across cells BW bound

Constraint solver (Solv) Rigid body physics Gather/Scatter Across constraints Synchronization bound

SpMV (SpMV) Sparse solver Gather Across non-zero BW bound for typical large
matrices

GJK (GJK) Collision detection Gather/Scatter Across objects Compute bound

Sort (Sort) Database Gather/Scatter Across elements Compute bound

Ray casting (RC) Volume rendering Gather Across rays 4-8 MB first level working set;
over 500 MB last level working
set

Search (Search) Database Gather/Scatter Across queries Compute bound for small tree,
BW bound at bottom of tree for
large tree

Histogram (Hist) Image analysis Requires conflict
detection

Across pixels Reduction/synchronization
bound

Figure 4.29 Throughput computing kernel characteristics (from Table 1 in Lee et al. [2010].) The name in paren-
theses identifies the benchmark name in this section. The authors suggest that code for both machines had equal
optimization effort.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

328 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Given that the raw performance specifications of the GTX 280 vary from
2.5× slower (clock rate) to 7.5× faster (cores per chip) while the performance
varies from 2.0× slower (Solv) to 15.2× faster (GJK), the Intel researchers
explored the reasons for the differences:

■ Memory bandwidth. The GPU has 4.4× the memory bandwidth, which helps
explain why LBM and SAXPY run 5.0 and 5.3× faster; their working sets are
hundreds of megabytes and hence don’t fit into the Core i7 cache. (To access
memory intensively, they did not use cache blocking on SAXPY.) Hence, the
slope of the rooflines explains their performance. SpMV also has a large
working set, but it only runs 1.9× because the double-precision floating point
of the GTX 280 is only 1.5× faster than the Core i7. (Recall that the Fermi
GTX 480 double-precision is 4× faster than the Tesla GTX 280.)

■ Compute bandwidth. Five of the remaining kernels are compute bound:
SGEMM, Conv, FFT, MC, and Bilat. The GTX is faster by 3.9, 2.8, 3.0, 1.8,
and 5.7, respectively. The first three of these use single-precision floating-
point arithmetic, and GTX 280 single precision is 3 to 6× faster. (The
9× faster than the Core i7 as shown in Figure 4.27 occurs only in the very
special case when the GTX 280 can issue a fused multiply-add and a multiply
per clock cycle.) MC uses double precision, which explains why it’s only
1.8× faster since DP performance is only 1.5× faster. Bilat uses transcenden-
tal functions, which the GTX 280 supports directly (see Figure 4.17). The

Kernel Units Core i7-960 GTX 280
GTX 280/

i7-960

SGEMM GFLOP/sec 94 364 3.9

MC Billion paths/sec 0.8 1.4 1.8

Conv Million pixels/sec 1250 3500 2.8

FFT GFLOP/sec 71.4 213 3.0

SAXPY GBytes/sec 16.8 88.8 5.3

LBM Million lookups/sec 85 426 5.0

Solv Frames/sec 103 52 0.5

SpMV GFLOP/sec 4.9 9.1 1.9

GJK Frames/sec 67 1020 15.2

Sort Million elements/sec 250 198 0.8

RC Frames/sec 5 8.1 1.6

Search Million queries/sec 50 90 1.8

Hist Million pixels/sec 1517 2583 1.7

Bilat Million pixels/sec 83 475 5.7

Figure 4.30 Raw and relative performance measured for the two platforms. In this
study, SAXPY is just used as a measure of memory bandwidth, so the right unit is
GBytes/sec and not GFLOP/sec. (Based on Table 3 in [Lee et al. 2010].)

4.7 Putting It All Together: Mobile versus Server GPUs and Tesla versus Core i7 ■ 329

Core i7 spends two-thirds of its time calculating transcendental functions, so
the GTX 280 is 5.7× faster. This observation helps point out the value of
hardware support for operations that occur in your workload: double-preci-
sion floating point and perhaps even transcendentals.

■ Cache benefits. Ray casting (RC) is only 1.6× faster on the GTX because
cache blocking with the Core i7 caches prevents it from becoming memory
bandwidth bound, as it is on GPUs. Cache blocking can help Search, too. If
the index trees are small so that they fit in the cache, the Core i7 is twice as
fast. Larger index trees make them memory bandwidth bound. Overall, the
GTX 280 runs search 1.8× faster. Cache blocking also helps Sort. While most
programmers wouldn’t run Sort on a SIMD processor, it can be written with a
1-bit Sort primitive called split. However, the split algorithm executes many
more instructions than a scalar sort does. As a result, the GTX 280 runs only
0.8× as fast as the Core i7. Note that caches also help other kernels on the
Core i7, since cache blocking allows SGEMM, FFT, and SpMV to become
compute bound. This observation re-emphasizes the importance of cache
blocking optimizations in Chapter 2. (It would be interesting to see how
caches of the Fermi GTX 480 will affect the six kernels mentioned in this
paragraph.)

■ Gather-Scatter. The multimedia SIMD extensions are of little help if the data
are scattered throughout main memory; optimal performance comes only
when data are aligned on 16-byte boundaries. Thus, GJK gets little benefit
from SIMD on the Core i7. As mentioned above, GPUs offer gather-scatter
addressing that is found in a vector architecture but omitted from SIMD
extensions. The address coalescing unit helps as well by combining accesses
to the same DRAM line, thereby reducing the number of gathers and scatters.
The memory controller also batches accesses to the same DRAM page
together. This combination means the GTX 280 runs GJK a startling 15.2×
faster than the Core i7, which is larger than any single physical parameter in
Figure 4.27. This observation reinforces the importance of gather-scatter to
vector and GPU architectures that is missing from SIMD extensions.

■ Synchronization. The performance synchronization of is limited by atomic
updates, which are responsible for 28% of the total runtime on the Core i7
despite its having a hardware fetch-and-increment instruction. Thus, Hist is
only 1.7× faster on the GTX 280. As mentioned above, the atomic updates of
the Fermi GTX 480 are 5 to 20× faster than those of the Tesla GTX 280, so
once again it would be interesting to run Hist on the newer GPU. Solv solves
a batch of independent constraints in a small amount of computation followed
by barrier synchronization. The Core i7 benefits from the atomic instructions
and a memory consistency model that ensures the right results even if not all
previous accesses to memory hierarchy have completed. Without the memory
consistency model, the GTX 280 version launches some batches from the
system processor, which leads to the GTX 280 running 0.5× as fast as the
Core i7. This observation points out how synchronization performance can be
important for some data parallel problems.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

330 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

It is striking how often weaknesses in the Tesla GTX 280 that were uncov-
ered by kernels selected by Intel researchers were already being addressed in the
successor architecture to Tesla: Fermi has faster double-precision floating-point
performance, atomic operations, and caches. (In a related study, IBM researchers
made the same observation [Bordawekar 2010].) It was also interesting that the
gather-scatter support of vector architectures that predate the SIMD instructions
by decades was so important to the effective usefulness of these SIMD exten-
sions, which some had predicted before the comparison [Gebis and Patterson
2007] The Intel researchers noted that 6 of the 14 kernels would exploit SIMD
better with more efficient gather-scatter support on the Core i7. This study cer-
tainly establishes the importance of cache blocking as well. It will be interesting
to see if future generations of the multicore and GPU hardware, compilers, and
libraries respond with features that improve performance on such kernels.

We hope that there will be more such multicore-GPU comparisons. Note
that an important feature missing from this comparison was describing the level
of effort to get the results for the two systems. Ideally, future comparisons
would release the code used on both systems so that others could recreate the
same experiments on different hardware platforms and possibly improve on the
results.

While data-level parallelism is the easiest form of parallelism after ILP from the
programmer’s perspective, and plausibly the easiest from the architect’s perspec-
tive, it still has many fallacies and pitfalls.

Fallacy GPUs suffer from being coprocessors.

While the split between main memory and GPU memory has disadvantages,
there are advantages to being at a distance from the CPU.

For example, PTX exists in part because of the I/O device nature of GPUs.
This level of indirection between the compiler and the hardware gives GPU
architects much more flexibility than system processor architects. It’s often hard
to know in advance whether an architecture innovation will be well supported by
compilers and libraries and be important to applications. Sometimes a new mech-
anism will even prove useful for one or two generations and then fade in impor-
tance as the IT world changes. PTX allows GPU architects to try innovations
speculatively and drop them in subsequent generations if they disappoint or fade
in importance, which encourages experimentation. The justification for inclusion
is understandably much higher for system processors—and hence much less
experimentation can occur—as distributing binary machine code normally
implies that new features must be supported by all future generations of that
architecture.

A demonstration of the value of PTX is that the Fermi architecture radically
changed the hardware instruction set—from being memory-oriented like x86 to

4.8 Fallacies and Pitfalls

4.8 Fallacies and Pitfalls ■ 331

being register-oriented like MIPS as well as doubling the address size to 64
bits—without disrupting the NVIDIA software stack.

Pitfall Concentrating on peak performance in vector architectures and ignoring start-up
overhead.

Early memory-memory vector processors such as the TI ASC and the CDC
STAR-100 had long start-up times. For some vector problems, vectors had to be
longer than 100 for the vector code to be faster than the scalar code! On the
CYBER 205—derived from the STAR-100—the start-up overhead for DAXPY
is 158 clock cycles, which substantially increases the break-even point. If the
clock rates of the Cray-1 and the CYBER 205 were identical, the Cray-1 would
be faster until the vector length is greater than 64. Because the Cray-1 clock
was also faster (even though the 205 was newer), the crossover point was a
vector length over 100.

Pitfall Increasing vector performance, without comparable increases in scalar per-
formance.

This imbalance was a problem on many early vector processors, and a place
where Seymour Cray (the architect of the Cray computers) rewrote the rules.
Many of the early vector processors had comparatively slow scalar units (as well
as large start-up overheads). Even today, a processor with lower vector perfor-
mance but better scalar performance can outperform a processor with higher peak
vector performance. Good scalar performance keeps down overhead costs (strip
mining, for example) and reduces the impact of Amdahl’s law.

A good example of this comes from comparing a fast scalar processor and a
vector processor with lower scalar performance. The Livermore Fortran kernels
are a collection of 24 scientific kernels with varying degrees of vectorization.
Figure 4.31 shows the performance of two different processors on this bench-
mark. Despite the vector processor’s higher peak performance, its low scalar

Processor

Minimum rate
for any loop

(MFLOPS)

Maximum rate
for any loop

(MFLOPS)

Harmonic mean
of all 24 loops

(MFLOPS)

MIPS M/120-5 0.80 3.89 1.85

Stardent-1500 0.41 10.08 1.72

Figure 4.31 Performance measurements for the Livermore Fortran kernels on two

different processors. Both the MIPS M/120-5 and the Stardent-1500 (formerly the
Ardent Titan-1) use a 16.7 MHz MIPS R2000 chip for the main CPU. The Stardent-1500
uses its vector unit for scalar FP and has about half the scalar performance (as mea-
sured by the minimum rate) of the MIPS M/120-5, which uses the MIPS R2010 FP chip.
The vector processor is more than a factor of 2.5× faster for a highly vectorizable loop
(maximum rate). However, the lower scalar performance of the Stardent-1500 negates
the higher vector performance when total performance is measured by the harmonic
mean on all 24 loops.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

332 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

performance makes it slower than a fast scalar processor as measured by the har-
monic mean.

The flip of this danger today is increasing vector performance—say, by
increasing the number of lanes—without increasing scalar performance. Such
myopia is another path to an unbalanced computer.

The next fallacy is closely related.

Fallacy You can get good vector performance without providing memory bandwidth.

As we saw with the DAXPY loop and the Roofline model, memory bandwidth is
quite important to all SIMD architectures. DAXPY requires 1.5 memory references
per floating-point operation, and this ratio is typical of many scientific codes. Even
if the floating-point operations took no time, a Cray-1 could not increase the perfor-
mance of the vector sequence used, since it is memory limited. The Cray-1 perfor-
mance on Linpack jumped when the compiler used blocking to change the
computation so that values could be kept in the vector registers. This approach low-
ered the number of memory references per FLOP and improved the performance
by nearly a factor of two! Thus, the memory bandwidth on the Cray-1 became suf-
ficient for a loop that formerly required more bandwidth.

Fallacy On GPUs, just add more threads if you don’t have enough memory performance.

GPUs use many CUDA threads to hide the latency to main memory. If memory
accesses are scattered or not correlated among CUDA threads, the memory sys-
tem will get progressively slower in responding to each individual request. Even-
tually, even many threads will not cover the latency. For the “more CUDA
threads” strategy to work, not only do you need lots of CUDA Threads, but the
CUDA threads themselves also must be well behaved in terms of locality of
memory accesses.

Data-level parallelism is increasing in importance for personal mobile devices,
given the popularity of applications showing the importance of audio, video, and
games on these devices. When combined with an easier to program model than
task-level parallelism and potentially better energy efficiency, it’s easy to predict
a renaissance for data-level parallelism in this next decade. Indeed, we can
already see this emphasis in products, as both GPUs and traditional processors
have been increasing the number of SIMD lanes at least as fast as they have been
adding processors (see Figure 4.1 on page 263).

Hence, we are seeing system processors take on more of the characteristics of
GPUs, and vice versa. One of the biggest differences in performance between
conventional processors and GPUs has been for gather-scatter addressing. Tradi-
tional vector architectures show how to add such addressing to SIMD instruc-
tions, and we expect to see more ideas added from the well-proven vector
architectures to SIMD extensions over time.

 4.9 Concluding Remarks

4.9 Concluding Remarks ■ 333

As we said at the opening of Section 4.4, the GPU question is not simply
which architecture is best, but, given the hardware investment to do graphics well,
how can it be enhanced to support computation that is more general? Although
vector architectures have many advantages on paper, it remains to be proven
whether vector architectures can be as good a foundation for graphics as GPUs.

GPU SIMD processors and compilers are still of relatively simple design.
Techniques that are more aggressive will likely be introduced over time to
increase GPU utilization, especially since GPU computing applications are just
starting to be developed. By studying these new programs, GPU designers will
surely discover and implement new machine optimizations. One question is
whether the scalar processor (or control processor), which serves to save hard-
ware and energy in vector processors, will appear within GPUs.

The Fermi architecture has already included many features found in conven-
tional processors to make GPUs more mainstream, but there are still others neces-
sary to close the gap. Here are a few we expect to be addressed in the near future.

■ Virtualizable GPUs. Virtualization has proved important for servers and is
the foundation of cloud computing (see Chapter 6). For GPUs to be included
in the cloud, they will need to be just as virtualizable as the processors and
memory that they are attached to.

■ Relatively small size of GPU memory. A commonsense use of faster compu-
tation is to solve bigger problems, and bigger problems often have a larger
memory footprint. This GPU inconsistency between speed and size can be
addressed with more memory capacity. The challenge is to maintain high
bandwidth while increasing capacity.

■ Direct I/O to GPU memory. Real programs do I/O to storage devices as well as
to frame buffers, and large programs can require a lot of I/O as well as a size-
able memory. Today’s GPU systems must transfer between I/O devices and
system memory and then between system memory and GPU memory. This
extra hop significantly lowers I/O performance in some programs, making
GPUs less attractive. Amdahl’s law warns us what happens when you neglect
one piece of the task while accelerating others. We expect that future GPUs
will make all I/O first-class citizens, just as it does for frame buffer I/O today.

■ Unified physical memories. An alternative solution to the prior two bullets is
to have a single physical memory for the system and GPU, just as some inex-
pensive GPUs do for PMDs and laptops. The AMD Fusion architecture,
announced just as this edition was being finished, is an initial merger between
traditional GPUs and traditional CPUs. NVIDIA also announced Project
Denver, which combines an ARM scalar processor with NVIDIA GPUs in a
single address space. When these systems are shipped, it will be interesting to
learn just how tightly integrated they are and the impact of integration on per-
formance and energy of both data parallel and graphics applications.

Having covered the many versions of SIMD, the next chapter dives into the
realm of MIMD.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

334 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Section L.6 (available online) features a discussion on the Illiac IV (a representative
of the early SIMD architectures) and the Cray-1 (a representative of vector architec-
tures). We also look at multimedia SIMD extensions and the history of GPUs.

Case Study: Implementing a Vector Kernel on a Vector
Processor and GPU

Concepts illustrated by this case study

■ Programming Vector Processors

■ Programming GPUs

■ Performance Estimation

MrBayes is a popular and well-known computational biology application for inferring
the evolutionary histories among a set of input species based on their multiply-aligned
DNA sequence data of length n. MrBayes works by performing a heuristic search
over the space of all binary tree topologies for which the inputs are the leaves. In order
to evaluate a particular tree, the application must compute an n × 4 conditional likeli-
hood table (named clP) for each interior node. The table is a function of the condi-
tional likelihood tables of the node’s two descendent nodes (clL and clR, single
precision floating point) and their associated n × 4 × 4 transition probability tables
(tiPL and tiPR, single precision floating point). One of this application’s kernels is
the computation of this conditional likelihood table and is shown below:

for (k=0; k<seq_length; k++) {

clP[h++] = (tiPL[AA]*clL[A] + tiPL[AC]*clL[C] + tiPL[AG]*clL[G] + tiPL[AT]*clL[T])
*(tiPR[AA]*clR[A] + tiPR[AC]*clR[C] + tiPR[AG]*clR[G] + tiPR[AT]*clR[T]);

clP[h++] = (tiPL[CA]*clL[A] + tiPL[CC]*clL[C] + tiPL[CG]*clL[G] + tiPL[CT]*clL[T])
*(tiPR[CA]*clR[A] + tiPR[CC]*clR[C] + tiPR[CG]*clR[G] + tiPR[CT]*clR[T]);

clP[h++] = (tiPL[GA]*clL[A] + tiPL[GC]*clL[C] + tiPL[GG]*clL[G] + tiPL[GT]*clL[T])
*(tiPR[GA]*clR[A] + tiPR[GC]*clR[C] + tiPR[GG]*clR[G] + tiPR[GT]*clR[T]);

clP[h++] = (tiPL[TA]*clL[A] + tiPL[TC]*clL[C] + tiPL[TG]*clL[G] + tiPL[TT]*clL[T])
*(tiPR[TA]*clR[A] + tiPR[TC]*clR[C] + tiPR[TG]*clR[G] + tiPR[TT]*clR[T]);

clL += 4;

clR += 4;

tiPL += 16;

tiPR += 16;

}

4.10 Historical Perspective and References

Case Study and Exercises by Jason D. Bakos

Case Study and Exercises by Jason D. Bakos ■ 335

 4.1 [25] <4.2, 4.3> Assume the constants shown in Figure 4.32. Show the code for
MIPS and VMIPS. Assume we cannot use scatter-gather loads or stores. Assume the
starting addresses of tiPL, tiPR, clL, clR, and clP are in RtiPL, RtiPR, RclL,
RclR, and RclP, respectively. Assume the VMIPS register length is user programma-
ble and can be assigned by setting the special register VL (e.g., li VL 4). To facilitate
vector addition reductions, assume that we add the following instructions to VMIPS:

SUMR.S Fd, Vs Vector Summation Reduction Single Precision:

This instruction performs a summation reduction on a vector register Vs, writing
to the sum into scalar register Fd.

 4.2 [5] <4.2, 4.3> Assuming seq_length == 500, what is the dynamic instruction
count for both implementations?

 4.3 [25] <4.2, 4.3> Assume that the vector reduction instruction is executed on the
vector functional unit, similar to a vector add instruction. Show how the code
sequence lays out in convoys assuming a single instance of each vector func-
tional unit. How many chimes will the code require? How many cycles per FLOP
are needed, ignoring vector instruction issue overhead?

 4.4 [15] <4.2, 4.3> Now assume that we can use scatter-gather loads and stores (LVI
and SVI). Assume that tiPL, tiPR, clL, clR, and clP are arranged consecutively
in memory. For example, if seq_length==500, the tiPR array would begin 500 *
4 bytes after the tiPL array. How does this affect the way you can write the
VMIPS code for this kernel? Assume that you can initialize vector registers with
integers using the following technique which would, for example, initialize vec-
tor register V1 with values (0,0,2000,2000):

LI R2,0

SW R2,vec

SW R2,vec+4

LI R2,2000

SW R2,vec+8

SW R2,vec+12

LV V1,vec

Constants Values

AA,AC,AG,AT 0,1,2,3

CA,CC,CG,CT 4,5,6,7

GA,GC,GG,GT 8,9,10,11

TA,TC,TG,TT 12,13,14,15

A,C,G,T 0,1,2,3

Figure 4.32 Constants and values for the case study.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

336 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Assume the maximum vector length is 64. Is there any way performance can be
improved using gather-scatter loads? If so, by how much?

 4.5 [25] <4.4> Now assume we want to implement the MrBayes kernel on a GPU
using a single thread block. Rewrite the C code of the kernel using CUDA.
Assume that pointers to the conditional likelihood and transition probability
tables are specified as parameters to the kernel. Invoke one thread for each itera-
tion of the loop. Load any reused values into shared memory before performing
operations on it.

 4.6 [15] <4.4> With CUDA we can use coarse-grain parallelism at the block level to
compute the conditional likelihoods of multiple nodes in parallel. Assume that we
want to compute the conditional likelihoods from the bottom of the tree up.
Assume that the conditional likelihood and transition probability arrays are orga-
nized in memory as described in question 4 and the group of tables for each of the
12 leaf nodes is also stored in consecutive memory locations in the order of node
number. Assume that we want to compute the conditional likelihood for nodes 12
to 17, as shown in Figure 4.33. Change the method by which you compute the
array indices in your answer from Exercise 4.5 to include the block number.

 4.7 [15] <4.4> Convert your code from Exercise 4.6 into PTX code. How many
instructions are needed for the kernel?

 4.8 [10] <4.4> How well do you expect this code to perform on a GPU? Explain your
answer.

Figure 4.33 Sample tree.

0 1 2 3 4 5 6 7 8 9 10 11

12 13

18 19

21

22

20

14 15 16 17

Case Study and Exercises by Jason D. Bakos ■ 337

Exercises

 4.9 [10/20/20/15/15] <4.2> Consider the following code, which multiplies two vec-
tors that contain single-precision complex values:

for (i=0;i<300;i++) {

c_re[i] = a_re[i] * b_re[i] – a_im[i] * b_im[i];

c_im[i] = a_re[i] * b_im[i] + a_im[i] * b_re[i];

}

Assume that the processor runs at 700 MHz and has a maximum vector length of
64. The load/store unit has a start-up overhead of 15 cycles; the multiply unit, 8
cycles; and the add/subtract unit, 5 cycles.

a. [10] <4.2> What is the arithmetic intensity of this kernel? Justify your
answer.

b. [20] <4.2> Convert this loop into VMIPS assembly code using strip mining.

c. [20] <4.2> Assuming chaining and a single memory pipeline, how many
chimes are required? How many clock cycles are required per complex result
value, including start-up overhead?

d. [15] <4.2> If the vector sequence is chained, how many clock cycles are
required per complex result value, including overhead?

e. [15] <4.2> Now assume that the processor has three memory pipelines and
chaining. If there are no bank conflicts in the loop’s accesses, how many
clock cycles are required per result?

 4.10 [30] <4.4> In this problem, we will compare the performance of a vector proces-
sor with a hybrid system that contains a scalar processor and a GPU-based copro-
cessor. In the hybrid system, the host processor has superior scalar performance
to the GPU, so in this case all scalar code is executed on the host processor while
all vector code is executed on the GPU. We will refer to the first system as the
vector computer and the second system as the hybrid computer. Assume that your
target application contains a vector kernel with an arithmetic intensity of 0.5
FLOPs per DRAM byte accessed; however, the application also has a scalar com-
ponent which that must be performed before and after the kernel in order to pre-
pare the input vectors and output vectors, respectively. For a sample dataset, the
scalar portion of the code requires 400 ms of execution time on both the vector
processor and the host processor in the hybrid system. The kernel reads input
vectors consisting of 200 MB of data and has output data consisting of 100 MB
of data. The vector processor has a peak memory bandwidth of 30 GB/sec and
the GPU has a peak memory bandwidth of 150 GB/sec. The hybrid system has an
additional overhead that requires all input vectors to be transferred between the
host memory and GPU local memory before and after the kernel is invoked. The
hybrid system has a direct memory access (DMA) bandwidth of 10 GB/sec and
an average latency of 10 ms. Assume that both the vector processor and GPU are

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

338 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

performance bound by memory bandwidth. Compute the execution time required
by both computers for this application.

 4.11 [15/25/25] <4.4, 4.5> Section 4.5 discussed the reduction operation that reduces
a vector down to a scalar by repeated application of an operation. A reduction is a
special type of a loop recurrence. An example is shown below:

dot=0.0;

for (i=0;i<64;i++) dot = dot + a[i] * b[i];

A vectorizing compiler might apply a transformation called scalar expansion,
which expands dot into a vector and splits the loop such that the multiply can be
performed with a vector operation, leaving the reduction as a separate scalar
operation:

for (i=0;i<64;i++) dot[i] = a[i] * b[i];

for (i=1;i<64;i++) dot[0] = dot[0] + dot[i];

As mentioned in Section 4.5, if we allow the floating-point addition to be asso-
ciative, there are several techniques available for parallelizing the reduction.

a. [15] <4.4, 4.5> One technique is called recurrence doubling, which adds
sequences of progressively shorter vectors (i.e., two 32-element vectors, then
two 16-element vectors, and so on). Show how the C code would look for
executing the second loop in this way.

b. [25] <4.4, 4.5> In some vector processors, the individual elements within the
vector registers are addressable. In this case, the operands to a vector opera-
tion may be two different parts of the same vector register. This allows
another solution for the reduction called partial sums. The idea is to reduce
the vector to m sums where m is the total latency through the vector func-
tional unit, including the operand read and write times. Assume that the
VMIPS vector registers are addressable (e.g., you can initiate a vector opera-
tion with the operand V1(16), indicating that the input operand begins with
element 16). Also, assume that the total latency for adds, including the oper-
and read and result write, is eight cycles. Write a VMIPS code sequence that
reduces the contents of V1 to eight partial sums.

c. [25] <4.4, 4.5> When performing a reduction on a GPU, one thread is associ-
ated with each element in the input vector. The first step is for each thread to
write its corresponding value into shared memory. Next, each thread enters a
loop that adds each pair of input values. This reduces the number of elements
by half after each iteration, meaning that the number of active threads also
reduces by half after each iteration. In order to maximize the performance of
the reduction, the number of fully populated warps should be maximized
throughout the course of the loop. In other words, the active threads should
be contiguous. Also, each thread should index the shared array in such a way
as to avoid bank conflicts in the shared memory. The following loop violates

Case Study and Exercises by Jason D. Bakos ■ 339

only the first of these guidelines and also uses the modulo operator which is
very expensive for GPUs:

unsigned int tid = threadIdx.x;

 for(unsigned int s=1; s < blockDim.x; s *= 2) {

 if ((tid % (2*s)) == 0) {

 sdata[tid] += sdata[tid + s];

 }

 __syncthreads();

 }

Rewrite the loop to meet these guidelines and eliminate the use of the modulo
operator. Assume that there are 32 threads per warp and a bank conflict occurs
whenever two or more threads from the same warp reference an index whose
modulo by 32 are equal.

 4.12 [10/10/10/10] <4.3> The following kernel performs a portion of the finite-
difference time-domain (FDTD) method for computing Maxwell’s equations
in a three-dimensional space, part of one of the SPEC06fp benchmarks:

for (int x=0; x<NX-1; x++) {

 for (int y=0; y<NY-1; y++) {

 for (int z=0; z<NZ-1; z++) {

 int index = x*NY*NZ + y*NZ + z;

 if (y>0 && x >0) {

 material = IDx[index];

 dH1 = (Hz[index] – Hz[index-incrementY])/dy[y];

 dH2 = (Hy[index] – Hy[index-incrementZ])/dz[z];

 Ex[index] = Ca[material]*Ex[index]+Cb[material]*(dH2-dH1);

}}}}

Assume that dH1, dH2, Hy, Hz, dy, dz, Ca, Cb, and Ex are all single-precision
floating-point arrays. Assume IDx is an array of unsigned int.

a. [10] <4.3> What is the arithmetic intensity of this kernel?

b. [10] <4.3> Is this kernel amenable to vector or SIMD execution? Why or why
not?

c. [10] <4.3> Assume this kernel is to be executed on a processor that has 30
GB/sec of memory bandwidth. Will this kernel be memory bound or compute
bound?

d. [10] <4.3> Develop a roofline model for this processor, assuming it has a
peak computational throughput of 85 GFLOP/sec.

 4.13 [10/15] <4.4> Assume a GPU architecture that contains 10 SIMD processors.
Each SIMD instruction has a width of 32 and each SIMD processor contains 8
lanes for single-precision arithmetic and load/store instructions, meaning that

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

340 ■ Chapter Four Data-Level Parallelism in Vector, SIMD, and GPU Architectures

each non-diverged SIMD instruction can produce 32 results every 4 cycles.
Assume a kernel that has divergent branches that causes on average 80% of
threads to be active. Assume that 70% of all SIMD instructions executed are sin-
gle-precision arithmetic and 20% are load/store. Since not all memory latencies
are covered, assume an average SIMD instruction issue rate of 0.85. Assume that
the GPU has a clock speed of 1.5 GHz.

a. [10] <4.4> Compute the throughput, in GFLOP/sec, for this kernel on this
GPU.

b. [15] <4.4> Assume that you have the following choices:

(1) Increasing the number of single-precision lanes to 16
(2) Increasing the number of SIMD processors to 15 (assume this change

doesn't affect any other performance metrics and that the code scales to
the additional processors)

(3) Adding a cache that will effectively reduce memory latency by 40%,
which will increase instruction issue rate to 0.95

What is speedup in throughput for each of these improvements?

 4.14 [10/15/15] <4.5> In this exercise, we will examine several loops and analyze
their potential for parallelization.

a. [10] <4.5> Does the following loop have a loop-carried dependency?

for (i=0;i<100;i++) {

 A[i] = B[2*i+4];

 B[4*i+5] = A[i];

 }

b. [15] <4.5> In the following loop, find all the true dependences, output depen-
dences, and antidependences. Eliminate the output dependences and antide-
pendences by renaming.

for (i=0;i<100;i++) {

 A[i] = A[i] * B[i]; /* S1 */

 B[i] = A[i] + c; /* S2 */

 A[i] = C[i] * c; /* S3 */

 C[i] = D[i] * A[i]; /* S4 */

c. [15] <4.5> Consider the following loop:

for (i=0;i < 100;i++) {

 A[i] = A[i] + B[i]; /* S1 */

 B[i+1] = C[i] + D[i]; /* S2 */

}

Are there dependences between S1 and S2? Is this loop parallel? If not, show how
to make it parallel.

Case Study and Exercises by Jason D. Bakos ■ 341

 4.15 [10] <4.4> List and describe at least four factors that influence the performance
of GPU kernels. In other words, which runtime behaviors that are caused by the
kernel code cause a reduction in resource utilization during kernel execution?

 4.16 [10] <4.4> Assume a hypothetical GPU with the following characteristics:

■ Clock rate 1.5 GHz

■ Contains 16 SIMD processors, each containing 16 single-precision floating-
point units

■ Has 100 GB/sec off-chip memory bandwidth

Without considering memory bandwidth, what is the peak single-precision
floating-point throughput for this GPU in GLFOP/sec, assuming that all mem-
ory latencies can be hidden? Is this throughput sustainable given the memory
bandwidth limitation?

 4.17 [60] <4.4> For this programming exercise, you will write and characterize the
behavior of a CUDA kernel that contains a high amount of data-level parallelism
but also contains conditional execution behavior. Use the NVIDIA CUDA Tool-
kit along with GPU-SIM from the University of British Columbia (http://
www.ece.ubc.ca/~aamodt/gpgpu-sim/) or the CUDA Profiler to write and com-
pile a CUDA kernel that performs 100 iterations of Conway’s Game of Life for a
256 × 256 game board and returns the final state of the game board to the host.
Assume that the board is initialized by the host. Associate one thread with each
cell. Make sure you add a barrier after each game iteration. Use the following
game rules:

■ Any live cell with fewer than two live neighbors dies.

■ Any live cell with two or three live neighbors lives on to the next generation.

■ Any live cell with more than three live neighbors dies.

■ Any dead cell with exactly three live neighbors becomes a live cell.

After finishing the kernel answer the following questions:

a. [60] <4.4> Compile your code using the –ptx option and inspect the PTX rep-
resentation of your kernel. How many PTX instructions make up the PTX
implementation of your kernel? Did the conditional sections of your kernel
include branch instructions or only predicated non-branch instructions?

b. [60] <4.4> After executing your code in the simulator, what is the dynamic
instruction count? What is the achieved instructions per cycle (IPC) or
instruction issue rate? What is the dynamic instruction breakdown in terms of
control instructions, arithmetic-logical unit (ALU) instructions, and memory
instructions? Are there any shared memory bank conflicts? What is the effec-
tive off-chip memory bandwidth?

c. [60] <4.4> Implement an improved version of your kernel where off-chip
memory references are coalesced and observe the differences in runtime
performance.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.ece.ubc.ca/~aamodt/gpgpu-sim/
http://www.ece.ubc.ca/~aamodt/gpgpu-sim/
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

5.1 Introduction 344

5.2 Centralized Shared-Memory Architectures 351

5.3 Performance of Symmetric Shared-Memory Multiprocessors 366

5.4 Distributed Shared-Memory and Directory-Based Coherence 378

5.5 Synchronization: The Basics 386

5.6 Models of Memory Consistency: An Introduction 392

5.7 Crosscutting Issues 395

5.8 Putting It All Together: Multicore Processors and Their Performance 400

5.9 Fallacies and Pitfalls 405

5.10 Concluding Remarks 409

5.11 Historical Perspectives and References 412

Case Studies and Exercises by Amr Zaky and David A. Wood 412

5
Thread-Level Parallelism 1

The turning away from the conventional organization came in the

middle 1960s, when the law of diminishing returns began to take

effect in the effort to increase the operational speed of a computer. . . .

Electronic circuits are ultimately limited in their speed of operation by

the speed of light . . . and many of the circuits were already operating

in the nanosecond range.

W. Jack Bouknight et al.
The Illiac IV System (1972)

We are dedicating all of our future product development to multicore de-

signs. We believe this is a key inflection point for the industry.

Intel President Paul Otellini,
describing Intel’s future direction at the

Intel Developer Forum in 2005

Computer Architecture. DOI: 10.1016/B978-0-12-383872-8.00006-9
© 2012 Elsevier, Inc. All rights reserved.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://dx.doi.org/10.1016/B978-0-12-383872-8.00006-9
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

344 ■ Chapter Five Thread-Level Parallelism

As the quotations that open this chapter show, the view that advances in uni-
processor architecture were nearing an end has been held by some researchers for
many years. Clearly, these views were premature; in fact, during the period of
1986–2003, uniprocessor performance growth, driven by the microprocessor,
was at its highest rate since the first transistorized computers in the late 1950s
and early 1960s.

Nonetheless, the importance of multiprocessors was growing throughout the
1990s as designers sought a way to build servers and supercomputers that
achieved higher performance than a single microprocessor, while exploiting the
tremendous cost-performance advantages of commodity microprocessors. As we
discussed in Chapters 1 and 3, the slowdown in uniprocessor performance arising
from diminishing returns in exploiting instruction-level parallelism (ILP) com-
bined with growing concern over power, is leading to a new era in computer
architecture—an era where multiprocessors play a major role from the low end to
the high end. The second quotation captures this clear inflection point.

This increased importance of multiprocessing reflects several major factors:

■ The dramatically lower efficiencies in silicon and energy use that were
encountered between 2000 and 2005 as designers attempted to find and
exploit more ILP, which turned out to be inefficient, since power and sili-
con costs grew faster than performance. Other than ILP, the only scalable
and general-purpose way we know how to increase performance faster
than the basic technology allows (from a switching perspective) is through
multiprocessing.

■ A growing interest in high-end servers as cloud computing and software-as-
a-service become more important.

■ A growth in data-intensive applications driven by the availability of massive
amounts of data on the Internet.

■ The insight that increasing performance on the desktop is less important (out-
side of graphics, at least), either because current performance is acceptable or
because highly compute- and data-intensive applications are being done in
the cloud.

■ An improved understanding of how to use multiprocessors effectively, espe-
cially in server environments where there is significant natural parallelism,
arising from large datasets, natural parallelism (which occurs in scientific
codes), or parallelism among large numbers of independent requests (request-
level parallelism).

■ The advantages of leveraging a design investment by replication rather than
unique design; all multiprocessor designs provide such leverage.

In this chapter, we focus on exploiting thread-level parallelism (TLP). TLP
implies the existence of multiple program counters and hence is exploited primarily

5.1 Introduction

5.1 Introduction ■ 345

through MIMDs. Although MIMDs have been around for decades, the movement
of thread-level parallelism to the forefront across the range of computing from
embedded applications to high-end severs is relatively recent. Likewise, the exten-
sive use of thread-level parallelism for general-purpose applications, versus scien-
tific applications, is relatively new.

Our focus in this chapter is on multiprocessors, which we define as comput-
ers consisting of tightly coupled processors whose coordination and usage are
typically controlled by a single operating system and that share memory through
a shared address space. Such systems exploit thread-level parallelism through
two different software models. The first is the execution of a tightly coupled set
of threads collaborating on a single task, which is typically called parallel pro-
cessing. The second is the execution of multiple, relatively independent pro-
cesses that may originate from one or more users, which is a form of request-
level parallelism, although at a much smaller scale than what we explore in the
next chapter. Request-level parallelism may be exploited by a single application
running on multiple processors, such as a database responding to queries, or mul-
tiple applications running independently, often called multiprogramming.

The multiprocessors we examine in this chapter typically range in size from a
dual processor to dozens of processors and communicate and coordinate through
the sharing of memory. Although sharing through memory implies a shared
address space, it does not necessarily mean there is a single physical memory.
Such multiprocessors include both single-chip systems with multiple cores,
known as multicore, and computers consisting of multiple chips, each of which
may be a multicore design.

In addition to true multiprocessors, we will return to the topic of multithread-
ing, a technique that supports multiple threads executing in an interleaved fash-
ion on a single multiple issue processor. Many multicore processors also include
support for multithreading.

In the next chapter, we consider ultrascale computers built from very large
numbers of processors, connected with networking technology and often called
clusters; these large-scale systems are typically used for cloud computing with a
model that assumes either massive numbers of independent requests or highly
parallel, intensive compute tasks. When these clusters grow to tens of thousands
of servers and beyond, we call them warehouse-scale computers.

In addition to the multiprocessors we study here and the warehouse-scaled
systems of the next chapter, there are a range of special large-scale multiprocessor
systems, sometimes called multicomputers, which are less tightly coupled than the
multiprocessors examined in this chapter but more tightly coupled than the ware-
house-scale systems of the next. The primary use for such multicomputers is in
high-end scientific computation. Many other books, such as Culler, Singh, and
Gupta [1999], cover such systems in detail. Because of the large and changing
nature of the field of multiprocessing (the just-mentioned Culler et al. reference is
over 1000 pages and discusses only multiprocessing!), we have chosen to focus
our attention on what we believe is the most important and general-purpose por-
tions of the computing space. Appendix I discusses some of the issues that arise in
building such computers in the context of large-scale scientific applications.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

346 ■ Chapter Five Thread-Level Parallelism

Thus, our focus will be on multiprocessors with a small to moderate number
of processors (2 to 32). Such designs vastly dominate in terms of both units and
dollars. We will pay only slight attention to the larger-scale multiprocessor
design space (33 or more processors), primarily in Appendix I, which covers
more aspects of the design of such processors, as well as the behavior perfor-
mance for parallel scientific workloads, a primary class of applications for large-
scale multiprocessors. In large-scale multiprocessors, the interconnection
networks are a critical part of the design; Appendix F focuses on that topic.

Multiprocessor Architecture: Issues and Approach

To take advantage of an MIMD multiprocessor with n processors, we must usu-
ally have at least n threads or processes to execute. The independent threads
within a single process are typically identified by the programmer or created by
the operating system (from multiple independent requests). At the other extreme,
a thread may consist of a few tens of iterations of a loop, generated by a parallel
compiler exploiting data parallelism in the loop. Although the amount of compu-
tation assigned to a thread, called the grain size, is important in considering how
to exploit thread-level parallelism efficiently, the important qualitative distinction
from instruction-level parallelism is that thread-level parallelism is identified at a
high level by the software system or programmer and that the threads consist of
hundreds to millions of instructions that may be executed in parallel.

Threads can also be used to exploit data-level parallelism, although the over-
head is likely to be higher than would be seen with an SIMD processor or with a
GPU (see Chapter 4). This overhead means that grain size must be sufficiently
large to exploit the parallelism efficiently. For example, although a vector proces-
sor or GPU may be able to efficiently parallelize operations on short vectors, the
resulting grain size when the parallelism is split among many threads may be so
small that the overhead makes the exploitation of the parallelism prohibitively
expensive in an MIMD.

Existing shared-memory multiprocessors fall into two classes, depending on
the number of processors involved, which in turn dictates a memory organization
and interconnect strategy. We refer to the multiprocessors by their memory orga-
nization because what constitutes a small or large number of processors is likely
to change over time.

The first group, which we call symmetric (shared-memory) multiprocessors
(SMPs), or centralized shared-memory multiprocessors, features small numbers
of cores, typically eight or fewer. For multiprocessors with such small processor
counts, it is possible for the processors to share a single centralized memory that
all processors have equal access to, hence the term symmetric. In multicore chips,
the memory is effectively shared in a centralized fashion among the cores, and all
existing multicores are SMPs. When more than one multicore is connected, there
are separate memories for each multicore, so the memory is distributed rather
than centralized.

SMP architectures are also sometimes called uniform memory access (UMA)
multiprocessors, arising from the fact that all processors have a uniform latency

5.1 Introduction ■ 347

from memory, even if the memory is organized into multiple banks. Figure 5.1
shows what these multiprocessors look like. The architecture of SMPs is the
topic of Section 5.2, and we explain the approach in the context of a multicore.

The alternative design approach consists of multiprocessors with physically
distributed memory, called distributed shared memory (DSM). Figure 5.2 shows
what these multiprocessors look like. To support larger processor counts, mem-
ory must be distributed among the processors rather than centralized; otherwise,
the memory system would not be able to support the bandwidth demands of a
larger number of processors without incurring excessively long access latency.
With the rapid increase in processor performance and the associated increase in a
processor’s memory bandwidth requirements, the size of a multiprocessor for
which distributed memory is preferred continues to shrink. The introduction of
multicore processors has meant that even two-chip multiprocessors use distrib-
uted memory. The larger number of processors also raises the need for a high-
bandwidth interconnect, of which we will see examples in Appendix F. Both

Figure 5.1 Basic structure of a centralized shared-memory multiprocessor based on

a multicore chip. Multiple processor–cache subsystems share the same physical mem-
ory, typically with one level of shared cache, and one or more levels of private per-core
cache. The key architectural property is the uniform access time to all of the memory
from all of the processors. In a multichip version the shared cache would be omitted
and the bus or interconnection network connecting the processors to memory would
run between chips as opposed to within a single chip.

ProcessorProcessorProcessorProcessor

Main memory I/O system

One or
more levels

of cache

One or
more levels

of cache

One or
more levels

of cache

One or
more levels

of cache

Shared cache

Private
caches

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

348 ■ Chapter Five Thread-Level Parallelism

directed networks (i.e., switches) and indirect networks (typically multidimen-
sional meshes) are used.

Distributing the memory among the nodes both increases the bandwidth
and reduces the latency to local memory. A DSM multiprocessor is also called
a NUMA (nonuniform memory access), since the access time depends on the
location of a data word in memory. The key disadvantages for a DSM are that
communicating data among processors becomes somewhat more complex, and
a DSM requires more effort in the software to take advantage of the increased
memory bandwidth afforded by distributed memories. Because all multicore-
based multiprocessors with more than one processor chip (or socket) use
distributed memory, we will explain the operation of distributed memory multi-
processors from this viewpoint.

In both SMP and DSM architectures, communication among threads occurs
through a shared address space, meaning that a memory reference can be made
by any processor to any memory location, assuming it has the correct access
rights. The term shared memory associated with both SMP and DSM refers to the
fact that the address space is shared.

In contrast, the clusters and warehouse-scale computers of the next chapter
look like individual computers connected by a network, and the memory of one
processor cannot be accessed by another processor without the assistance of soft-
ware protocols running on both processors. In such designs, message-passing
protocols are used to communicate data among processors.

Figure 5.2 The basic architecture of a distributed-memory multiprocessor in 2011 typically consists of a multi-
core multiprocessor chip with memory and possibly I/O attached and an interface to an interconnection net-
work that connects all the nodes. Each processor core shares the entire memory, although the access time to the
lock memory attached to the core’s chip will be much faster than the access time to remote memories.

Memory I/O

Interconnection network

Memory I/O Memory I/O

Multicore
MP

Multicore
MP

Multicore
MP

Multicore
MP

Memory I/O

I/O MemoryMemory I/O Memory I/O Memory I/O

Multicore
MP

Multicore
MP

Multicore
MP

Multicore
MP

5.1 Introduction ■ 349

Challenges of Parallel Processing

The application of multiprocessors ranges from running independent tasks with
essentially no communication to running parallel programs where threads must
communicate to complete the task. Two important hurdles, both explainable with
Amdahl’s law, make parallel processing challenging. The degree to which these
hurdles are difficult or easy is determined both by the application and by the
architecture.

The first hurdle has to do with the limited parallelism available in programs,
and the second arises from the relatively high cost of communications. Limita-
tions in available parallelism make it difficult to achieve good speedups in any
parallel processor, as our first example shows.

Example Suppose you want to achieve a speedup of 80 with 100 processors. What fraction
of the original computation can be sequential?

Answer Recall from Chapter 1 that Amdahl’s law is

For simplicity in this example, assume that the program operates in only two
modes: parallel with all processors fully used, which is the enhanced mode, or
serial with only one processor in use. With this simplification, the speedup in
enhanced mode is simply the number of processors, while the fraction of
enhanced mode is the time spent in parallel mode. Substituting into the previous
equation:

Simplifying this equation yields:

Thus, to achieve a speedup of 80 with 100 processors, only 0.25% of the original
computation can be sequential. Of course, to achieve linear speedup (speedup of
n with n processors), the entire program must usually be parallel with no serial
portions. In practice, programs do not just operate in fully parallel or sequential
mode, but often use less than the full complement of the processors when running
in parallel mode.

Speedup
1

Fractionenhanced

Speedupenhanced
-------------------------------------- (1 – Fractionenhanced)+

--=

80
1

Fractionparallel

100
---------------------------------- (1 – Fractionparallel)+

--=

0.8 Fractionparallel× 80 (1 – Fractionparallel×)+ 1=

80 79.2 Fractionparallel×– 1=

Fractionparallel
80 1–
79.2

---------------=

Fractionparallel 0.9975=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

350 ■ Chapter Five Thread-Level Parallelism

The second major challenge in parallel processing involves the large latency
of remote access in a parallel processor. In existing shared-memory multiproces-
sors, communication of data between separate cores may cost 35 to 50 clock
cycles and among cores on separate chips anywhere from 100 clock cycles to as
much as 500 or more clock cycles (for large-scale multiprocessors), depending
on the communication mechanism, the type of interconnection network, and the
scale of the multiprocessor. The effect of long communication delays is clearly
substantial. Let’s consider a simple example.

Example Suppose we have an application running on a 32-processor multiprocessor, which
has a 200 ns time to handle reference to a remote memory. For this application,
assume that all the references except those involving communication hit in the
local memory hierarchy, which is slightly optimistic. Processors are stalled on a
remote request, and the processor clock rate is 3.3 GHz. If the base CPI (assum-
ing that all references hit in the cache) is 0.5, how much faster is the multiproces-
sor if there is no communication versus if 0.2% of the instructions involve a
remote communication reference?

Answer It is simpler to first calculate the clock cycles per instruction. The effective CPI
for the multiprocessor with 0.2% remote references is

The remote request cost is

Hence, we can compute the CPI:

CPI = 0.5 + 1.2 = 1.7

The multiprocessor with all local references is 1.7/0.5 = 3.4 times faster. In
practice, the performance analysis is much more complex, since some fraction
of the noncommunication references will miss in the local hierarchy and the
remote access time does not have a single constant value. For example, the cost
of a remote reference could be quite a bit worse, since contention caused by
many references trying to use the global interconnect can lead to increased
delays.

These problems—insufficient parallelism and long-latency remote communi-
cation—are the two biggest performance challenges in using multiprocessors.
The problem of inadequate application parallelism must be attacked primarily in
software with new algorithms that offer better parallel performance, as well as by
software systems that maximize the amount of time spent executing with the full

CPI Base CPI Remote request rate Remote request cost×+=

0.5 0.2% Remote request cost×+=

Remote access cost
Cycle time

--
200 ns
0.3 ns
---------------= 666 cycles=

5.2 Centralized Shared-Memory Architectures ■ 351

complement of processors. Reducing the impact of long remote latency can be
attacked both by the architecture and by the programmer. For example, we can
reduce the frequency of remote accesses with either hardware mechanisms, such
as caching shared data, or software mechanisms, such as restructuring the data to
make more accesses local. We can try to tolerate the latency by using multi-
threading (discussed later in this chapter) or by using prefetching (a topic we
cover extensively in Chapter 2).

Much of this chapter focuses on techniques for reducing the impact of long
remote communication latency. For example, Sections 5.2 through 5.4 discuss
how caching can be used to reduce remote access frequency, while maintaining
a coherent view of memory. Section 5.5 discusses synchronization, which,
because it inherently involves interprocessor communication and also can limit
parallelism, is a major potential bottleneck. Section 5.6 covers latency-hiding
techniques and memory consistency models for shared memory. In Appendix I,
we focus primarily on larger-scale multiprocessors that are used predominantly
for scientific work. In that appendix, we examine the nature of such applica-
tions and the challenges of achieving speedup with dozens to hundreds of
processors.

The observation that the use of large, multilevel caches can substantially reduce
the memory bandwidth demands of a processor is the key insight that motivates
centralized memory multiprocessors. Originally, these processors were all single-
core and often took an entire board, and memory was located on a shared bus.
With more recent, higher-performance processors, the memory demands have
outstripped the capability of reasonable buses, and recent microprocessors
directly connect memory to a single chip, which is sometimes called a backside
or memory bus to distinguish it from the bus used to connect to I/O. Accessing a
chip’s local memory whether for an I/O operation or for an access from another
chip requires going through the chip that “owns” that memory. Thus, access to
memory is asymmetric: faster to the local memory and slower to the remote
memory. In a multicore that memory is shared among all the cores on a single
chip, but the asymmetric access to the memory of one multicore from the mem-
ory of another remains.

Symmetric shared-memory machines usually support the caching of both
shared and private data. Private data are used by a single processor, while shared
data are used by multiple processors, essentially providing communication among
the processors through reads and writes of the shared data. When a private item is
cached, its location is migrated to the cache, reducing the average access time as
well as the memory bandwidth required. Since no other processor uses the data,
the program behavior is identical to that in a uniprocessor. When shared data are
cached, the shared value may be replicated in multiple caches. In addition to the
reduction in access latency and required memory bandwidth, this replication also

5.2 Centralized Shared-Memory Architectures

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

352 ■ Chapter Five Thread-Level Parallelism

provides a reduction in contention that may exist for shared data items that are
being read by multiple processors simultaneously. Caching of shared data, how-
ever, introduces a new problem: cache coherence.

What Is Multiprocessor Cache Coherence?

Unfortunately, caching shared data introduces a new problem because the view
of memory held by two different processors is through their individual caches,
which, without any additional precautions, could end up seeing two different val-
ues. Figure 5.3 illustrates the problem and shows how two different processors
can have two different values for the same location. This difficulty is generally
referred to as the cache coherence problem. Notice that the coherence problem
exists because we have both a global state, defined primarily by the main mem-
ory, and a local state, defined by the individual caches, which are private to each
processor core. Thus, in a multicore where some level of caching may be shared
(for example, an L3), while some levels are private (for example, L1 and L2), the
coherence problem still exists and must be solved.

Informally, we could say that a memory system is coherent if any read of a
data item returns the most recently written value of that data item. This defini-
tion, although intuitively appealing, is vague and simplistic; the reality is much
more complex. This simple definition contains two different aspects of memory
system behavior, both of which are critical to writing correct shared-memory pro-
grams. The first aspect, called coherence, defines what values can be returned by
a read. The second aspect, called consistency, determines when a written value
will be returned by a read. Let’s look at coherence first.

A memory system is coherent if

1. A read by processor P to location X that follows a write by P to X, with no
writes of X by another processor occurring between the write and the read by
P, always returns the value written by P.

Time Event
Cache contents
for processor A

Cache contents
for processor B

Memory
contents for

location X

0 1

1 Processor A reads X 1 1

2 Processor B reads X 1 1 1

3 Processor A stores 0
into X

0 1 0

Figure 5.3 The cache coherence problem for a single memory location (X), read and
written by two processors (A and B). We initially assume that neither cache contains
the variable and that X has the value 1. We also assume a write-through cache; a write-
back cache adds some additional but similar complications. After the value of X has
been written by A, A’s cache and the memory both contain the new value, but B’s cache
does not, and if B reads the value of X it will receive 1!

5.2 Centralized Shared-Memory Architectures ■ 353

2. A read by a processor to location X that follows a write by another processor
to X returns the written value if the read and write are sufficiently separated
in time and no other writes to X occur between the two accesses.

3. Writes to the same location are serialized; that is, two writes to the same loca-
tion by any two processors are seen in the same order by all processors. For
example, if the values 1 and then 2 are written to a location, processors can
never read the value of the location as 2 and then later read it as 1.

The first property simply preserves program order—we expect this property
to be true even in uniprocessors. The second property defines the notion of
what it means to have a coherent view of memory: If a processor could
continuously read an old data value, we would clearly say that memory was
incoherent.

The need for write serialization is more subtle, but equally important. Sup-
pose we did not serialize writes, and processor P1 writes location X followed by
P2 writing location X. Serializing the writes ensures that every processor will see
the write done by P2 at some point. If we did not serialize the writes, it might be
the case that some processors could see the write of P2 first and then see the write
of P1, maintaining the value written by P1 indefinitely. The simplest way to
avoid such difficulties is to ensure that all writes to the same location are seen in
the same order; this property is called write serialization.

Although the three properties just described are sufficient to ensure coher-
ence, the question of when a written value will be seen is also important. To see
why, observe that we cannot require that a read of X instantaneously see the
value written for X by some other processor. If, for example, a write of X on one
processor precedes a read of X on another processor by a very small time, it may
be impossible to ensure that the read returns the value of the data written, since
the written data may not even have left the processor at that point. The issue of
exactly when a written value must be seen by a reader is defined by a memory
consistency model—a topic discussed in Section 5.6.

Coherence and consistency are complementary: Coherence defines the
behavior of reads and writes to the same memory location, while consistency
defines the behavior of reads and writes with respect to accesses to other mem-
ory locations. For now, make the following two assumptions. First, a write does
not complete (and allow the next write to occur) until all processors have seen
the effect of that write. Second, the processor does not change the order of any
write with respect to any other memory access. These two conditions mean
that, if a processor writes location A followed by location B, any processor that
sees the new value of B must also see the new value of A. These restrictions
allow the processor to reorder reads, but forces the processor to finish a write in
program order. We will rely on this assumption until we reach Section 5.6,
where we will see exactly the implications of this definition, as well as the
alternatives.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

354 ■ Chapter Five Thread-Level Parallelism

Basic Schemes for Enforcing Coherence

The coherence problem for multiprocessors and I/O, although similar in origin, has
different characteristics that affect the appropriate solution. Unlike I/O, where mul-
tiple data copies are a rare event—one to be avoided whenever possible—a pro-
gram running on multiple processors will normally have copies of the same data in
several caches. In a coherent multiprocessor, the caches provide both migration and
replication of shared data items.

Coherent caches provide migration, since a data item can be moved to a local
cache and used there in a transparent fashion. This migration reduces both the
latency to access a shared data item that is allocated remotely and the bandwidth
demand on the shared memory.

Coherent caches also provide replication for shared data that are being
simultaneously read, since the caches make a copy of the data item in the local
cache. Replication reduces both latency of access and contention for a read
shared data item. Supporting this migration and replication is critical to perfor-
mance in accessing shared data. Thus, rather than trying to solve the problem by
avoiding it in software, multiprocessors adopt a hardware solution by introducing
a protocol to maintain coherent caches.

The protocols to maintain coherence for multiple processors are called cache
coherence protocols. Key to implementing a cache coherence protocol is tracking
the state of any sharing of a data block. There are two classes of protocols in use,
each of which uses different techniques to track the sharing status:

■ Directory based—The sharing status of a particular block of physical mem-
ory is kept in one location, called the directory. There are two very different
types of directory-based cache coherence. In an SMP, we can use one central-
ized directory, associated with the memory or some other single serialization
point, such as the outermost cache in a multicore. In a DSM, it makes no
sense to have a single directory, since that would create a single point of con-
tention and make it difficult to scale to many multicore chips given the mem-
ory demands of multicores with eight or more cores. Distributed directories
are more complex than a single directory, and such designs are the subject of
Section 5.4.

■ Snooping—Rather than keeping the state of sharing in a single directory,
every cache that has a copy of the data from a block of physical memory
could track the sharing status of the block. In an SMP, the caches are typically
all accessible via some broadcast medium (e.g., a bus connects the per-core
caches to the shared cache or memory), and all cache controllers monitor or
snoop on the medium to determine whether or not they have a copy of a block
that is requested on a bus or switch access. Snooping can also be used as the
coherence protocol for a multichip multiprocessor, and some designs support
a snooping protocol on top of a directory protocol within each multicore!

Snooping protocols became popular with multiprocessors using microproces-
sors (single-core) and caches attached to a single shared memory by a bus.

5.2 Centralized Shared-Memory Architectures ■ 355

The bus provided a convenient broadcast medium to implement the snooping
protocols. Multicore architectures changed the picture significantly, since all
multicores share some level of cache on the chip. Thus, some designs switched to
using directory protocols, since the overhead was small. To allow the reader to
become familiar with both types of protocols, we focus on a snooping protocol
here and discuss a directory protocol when we come to DSM architectures.

Snooping Coherence Protocols

There are two ways to maintain the coherence requirement described in the prior
subsection. One method is to ensure that a processor has exclusive access to a
data item before it writes that item. This style of protocol is called a write invali-
date protocol because it invalidates other copies on a write. It is by far the most
common protocol. Exclusive access ensures that no other readable or writable
copies of an item exist when the write occurs: All other cached copies of the item
are invalidated.

Figure 5.4 shows an example of an invalidation protocol with write-back
caches in action. To see how this protocol ensures coherence, consider a write
followed by a read by another processor: Since the write requires exclusive
access, any copy held by the reading processor must be invalidated (hence, the
protocol name). Thus, when the read occurs, it misses in the cache and is forced
to fetch a new copy of the data. For a write, we require that the writing processor
have exclusive access, preventing any other processor from being able to write

Processor activity Bus activity
Contents of

processor A’s cache
Contents of

processor B’s cache
Contents of

memory location X

0

Processor A reads X Cache miss for X 0 0

Processor B reads X Cache miss for X 0 0 0

Processor A writes a 1
to X

Invalidation for X 1 0

Processor B reads X Cache miss for X 1 1 1

Figure 5.4 An example of an invalidation protocol working on a snooping bus for a single cache block (X) with

write-back caches. We assume that neither cache initially holds X and that the value of X in memory is 0. The proces-
sor and memory contents show the value after the processor and bus activity have both completed. A blank indi-
cates no activity or no copy cached. When the second miss by B occurs, processor A responds with the value
canceling the response from memory. In addition, both the contents of B’s cache and the memory contents of X are
updated. This update of memory, which occurs when a block becomes shared, simplifies the protocol, but it is possi-
ble to track the ownership and force the write-back only if the block is replaced. This requires the introduction of an
additional state called “owner,” which indicates that a block may be shared, but the owning processor is responsible
for updating any other processors and memory when it changes the block or replaces it. If a multicore uses a shared
cache (e.g., L3), then all memory is seen through the shared cache; L3 acts like the memory in this example, and
coherency must be handled for the private L1 and L2 for each core. It is this observation that led some designers to
opt for a directory protocol within the multicore. To make this work the L3 cache must be inclusive (see page 397).

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

356 ■ Chapter Five Thread-Level Parallelism

simultaneously. If two processors do attempt to write the same data simultane-
ously, one of them wins the race (we’ll see how we decide who wins shortly),
causing the other processor’s copy to be invalidated. For the other processor to
complete its write, it must obtain a new copy of the data, which must now contain
the updated value. Therefore, this protocol enforces write serialization.

The alternative to an invalidate protocol is to update all the cached copies of a
data item when that item is written. This type of protocol is called a write update
or write broadcast protocol. Because a write update protocol must broadcast all
writes to shared cache lines, it consumes considerably more bandwidth. For this
reason, recent multiprocessors have opted to implement a write invalidate proto-
col, and we will focus only on invalidate protocols for the rest of the chapter.

Basic Implementation Techniques

The key to implementing an invalidate protocol in a multicore is the use of the bus,
or another broadcast medium, to perform invalidates. In older multiple-chip multi-
processors, the bus used for coherence is the shared-memory access bus. In a multi-
core, the bus can be the connection between the private caches (L1 and L2 in the
Intel Core i7) and the shared outer cache (L3 in the i7). To perform an invalidate,
the processor simply acquires bus access and broadcasts the address to be invali-
dated on the bus. All processors continuously snoop on the bus, watching the
addresses. The processors check whether the address on the bus is in their cache. If
so, the corresponding data in the cache are invalidated.

When a write to a block that is shared occurs, the writing processor must
acquire bus access to broadcast its invalidation. If two processors attempt to write
shared blocks at the same time, their attempts to broadcast an invalidate opera-
tion will be serialized when they arbitrate for the bus. The first processor to
obtain bus access will cause any other copies of the block it is writing to be inval-
idated. If the processors were attempting to write the same block, the serialization
enforced by the bus also serializes their writes. One implication of this scheme is
that a write to a shared data item cannot actually complete until it obtains bus
access. All coherence schemes require some method of serializing accesses to the
same cache block, either by serializing access to the communication medium or
another shared structure.

In addition to invalidating outstanding copies of a cache block that is being
written into, we also need to locate a data item when a cache miss occurs. In a
write-through cache, it is easy to find the recent value of a data item, since all
written data are always sent to the memory, from which the most recent value of
a data item can always be fetched. (Write buffers can lead to some additional
complexities and must effectively be treated as additional cache entries.)

For a write-back cache, the problem of finding the most recent data value is
harder, since the most recent value of a data item can be in a private cache rather
than in the shared cache or memory. Happily, write-back caches can use the same
snooping scheme both for cache misses and for writes: Each processor snoops
every address placed on the shared bus. If a processor finds that it has a dirty

5.2 Centralized Shared-Memory Architectures ■ 357

copy of the requested cache block, it provides that cache block in response to the
read request and causes the memory (or L3) access to be aborted. The additional
complexity comes from having to retrieve the cache block from another proces-
sor’s private cache (L1 or L2), which can often take longer than retrieving it from
L3. Since write-back caches generate lower requirements for memory bandwidth,
they can support larger numbers of faster processors. As a result, all multicore
processors use write-back at the outermost levels of the cache, and we will exam-
ine the implementation of coherence with write-back caches.

The normal cache tags can be used to implement the process of snooping, and
the valid bit for each block makes invalidation easy to implement. Read misses,
whether generated by an invalidation or by some other event, are also straightfor-
ward since they simply rely on the snooping capability. For writes we would like
to know whether any other copies of the block are cached because, if there are no
other cached copies, then the write need not be placed on the bus in a write-back
cache. Not sending the write reduces both the time to write and the required
bandwidth.

To track whether or not a cache block is shared, we can add an extra state bit
associated with each cache block, just as we have a valid bit and a dirty bit. By
adding a bit indicating whether the block is shared, we can decide whether a
write must generate an invalidate. When a write to a block in the shared state
occurs, the cache generates an invalidation on the bus and marks the block as
exclusive. No further invalidations will be sent by that core for that block. The
core with the sole copy of a cache block is normally called the owner of the cache
block.

When an invalidation is sent, the state of the owner’s cache block is changed
from shared to unshared (or exclusive). If another processor later requests this
cache block, the state must be made shared again. Since our snooping cache also
sees any misses, it knows when the exclusive cache block has been requested by
another processor and the state should be made shared.

Every bus transaction must check the cache-address tags, which could poten-
tially interfere with processor cache accesses. One way to reduce this interference is
to duplicate the tags and have snoop accesses directed to the duplicate tags. Another
approach is to use a directory at the shared L3 cache; the directory indicates whether
a given block is shared and possibly which cores have copies. With the directory
information, invalidates can be directed only to those caches with copies of the
cache block. This requires that L3 must always have a copy of any data item in L1 or
L2, a property called inclusion, which we will return to in Section 5.7.

An Example Protocol

A snooping coherence protocol is usually implemented by incorporating a finite-
state controller in each core. This controller responds to requests from the
processor in the core and from the bus (or other broadcast medium), changing the
state of the selected cache block, as well as using the bus to access data or to inval-
idate it. Logically, you can think of a separate controller being associated with

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

358 ■ Chapter Five Thread-Level Parallelism

each block; that is, snooping operations or cache requests for different blocks can
proceed independently. In actual implementations, a single controller allows mul-
tiple operations to distinct blocks to proceed in interleaved fashion (that is, one
operation may be initiated before another is completed, even though only one
cache access or one bus access is allowed at a time). Also, remember that,
although we refer to a bus in the following description, any interconnection net-
work that supports a broadcast to all the coherence controllers and their associated
private caches can be used to implement snooping.

The simple protocol we consider has three states: invalid, shared, and mod-
ified. The shared state indicates that the block in the private cache is potentially
shared, while the modified state indicates that the block has been updated in the
private cache; note that the modified state implies that the block is exclusive.
Figure 5.5 shows the requests generated by a core (in the top half of the table)

Request Source

State of
addressed
cache block

Type of
cache action Function and explanation

Read hit Processor Shared or
modified

Normal hit Read data in local cache.

Read miss Processor Invalid Normal miss Place read miss on bus.

Read miss Processor Shared Replacement Address conflict miss: place read miss on bus.

Read miss Processor Modified Replacement Address conflict miss: write-back block, then place read miss on
bus.

Write hit Processor Modified Normal hit Write data in local cache.

Write hit Processor Shared Coherence Place invalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data
but only change the state.

Write miss Processor Invalid Normal miss Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block, then place write miss on
bus.

Read miss Bus Shared No action Allow shared cache or memory to service read miss.

Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state
to shared.

Invalidate Bus Shared Coherence Attempt to write shared block; invalidate the block.

Write miss Bus Shared Coherence Attempt to write shared block; invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere; write-back the
cache block and make its state invalid in the local cache.

Figure 5.5 The cache coherence mechanism receives requests from both the core’s processor and the shared
bus and responds to these based on the type of request, whether it hits or misses in the local cache, and the state
of the local cache block specified in the request. The fourth column describes the type of cache action as normal
hit or miss (the same as a uniprocessor cache would see), replacement (a uniprocessor cache replacement miss), or
coherence (required to maintain cache coherence); a normal or replacement action may cause a coherence action
depending on the state of the block in other caches. For read, misses, write misses, or invalidates snooped from the
bus, an action is required only if the read or write addresses match a block in the local cache and the block is valid.

5.2 Centralized Shared-Memory Architectures ■ 359

as well as those coming from the bus (in the bottom half of the table). This pro-
tocol is for a write-back cache but is easily changed to work for a write-through
cache by reinterpreting the modified state as an exclusive state and updating
the cache on writes in the normal fashion for a write-through cache. The most
common extension of this basic protocol is the addition of an exclusive state,
which describes a block that is unmodified but held in only one private cache.
We describe this and other extensions on page 362.

When an invalidate or a write miss is placed on the bus, any cores whose pri-
vate caches have copies of the cache block invalidate it. For a write miss in a
write-back cache, if the block is exclusive in just one private cache, that cache
also writes back the block; otherwise, the data can be read from the shared cache
or memory.

Figure 5.6 shows a finite-state transition diagram for a single private cache
block using a write invalidation protocol and a write-back cache. For simplicity,
the three states of the protocol are duplicated to represent transitions based on
processor requests (on the left, which corresponds to the top half of the table in
Figure 5.5), as opposed to transitions based on bus requests (on the right, which
corresponds to the bottom half of the table in Figure 5.5). Boldface type is used
to distinguish the bus actions, as opposed to the conditions on which a state tran-
sition depends. The state in each node represents the state of the selected private
cache block specified by the processor or bus request.

All of the states in this cache protocol would be needed in a uniprocessor
cache, where they would correspond to the invalid, valid (and clean), and dirty
states. Most of the state changes indicated by arcs in the left half of Figure 5.6
would be needed in a write-back uniprocessor cache, with the exception being
the invalidate on a write hit to a shared block. The state changes represented by
the arcs in the right half of Figure 5.6 are needed only for coherence and would
not appear at all in a uniprocessor cache controller.

As mentioned earlier, there is only one finite-state machine per cache, with
stimuli coming either from the attached processor or from the bus. Figure 5.7
shows how the state transitions in the right half of Figure 5.6 are combined
with those in the left half of the figure to form a single state diagram for each
cache block.

To understand why this protocol works, observe that any valid cache block
is either in the shared state in one or more private caches or in the exclusive
state in exactly one cache. Any transition to the exclusive state (which is
required for a processor to write to the block) requires an invalidate or write
miss to be placed on the bus, causing all local caches to make the block invalid.
In addition, if some other local cache had the block in exclusive state, that local
cache generates a write-back, which supplies the block containing the desired
address. Finally, if a read miss occurs on the bus to a block in the exclusive
state, the local cache with the exclusive copy changes its state to shared.

The actions in gray in Figure 5.7, which handle read and write misses on the
bus, are essentially the snooping component of the protocol. One other property
that is preserved in this protocol, and in most other protocols, is that any memory
block in the shared state is always up to date in the outer shared cache (L2 or L3,

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

360 ■ Chapter Five Thread-Level Parallelism

or memory if there is no shared cache), which simplifies the implementation. In
fact, it does not matter whether the level out from the private caches is a shared
cache or memory; the key is that all accesses from the cores go through that level.

Although our simple cache protocol is correct, it omits a number of complica-
tions that make the implementation much trickier. The most important of these is
that the protocol assumes that operations are atomic—that is, an operation can be
done in such a way that no intervening operation can occur. For example, the pro-
tocol described assumes that write misses can be detected, acquire the bus, and

Figure 5.6 A write invalidate, cache coherence protocol for a private write-back cache showing the states and
state transitions for each block in the cache. The cache states are shown in circles, with any access permitted by the
local processor without a state transition shown in parentheses under the name of the state. The stimulus causing a
state change is shown on the transition arcs in regular type, and any bus actions generated as part of the state transi-
tion are shown on the transition arc in bold. The stimulus actions apply to a block in the private cache, not to a spe-
cific address in the cache. Hence, a read miss to a block in the shared state is a miss for that cache block but for a
different address. The left side of the diagram shows state transitions based on actions of the processor associated
with this cache; the right side shows transitions based on operations on the bus. A read miss in the exclusive or
shared state and a write miss in the exclusive state occur when the address requested by the processor does not
match the address in the local cache block. Such a miss is a standard cache replacement miss. An attempt to write a
block in the shared state generates an invalidate. Whenever a bus transaction occurs, all private caches that contain
the cache block specified in the bus transaction take the action dictated by the right half of the diagram. The proto-
col assumes that memory (or a shared cache) provides data on a read miss for a block that is clean in all local caches.
In actual implementations, these two sets of state diagrams are combined. In practice, there are many subtle varia-
tions on invalidate protocols, including the introduction of the exclusive unmodified state, as to whether a processor
or memory provides data on a miss. In a multicore chip, the shared cache (usually L3, but sometimes L2) acts as the
equivalent of memory, and the bus is the bus between the private caches of each core and the shared cache, which
in turn interfaces to the memory.

CPU read hit

Shared
(read only)

CPU write miss

Write-back cache block
Place write miss on bus

CPU write hit
CPU read hit

Exclusive
(read/write)

Exclusive
(read/write)

Cache state transitions
based on requests from CPU

P
la

ce
 w

ri
te

m
is

s
o

n
 b

u
s

Invalid CPU read
Place read miss on bus

CPU write

CPU re
ad

 m
iss

W

rit
e-

bac
k b

lo
ck

Plac
e r

ea
d m

iss
 o

n b
us

Plac
e i

nv
ali

dat
e o

n b
us

 C
PU w

rit
e

CPU w
rit

e
m

iss

Plac
e w

rit
e m

iss
 o

n b
us Place read

miss on bus

CPU
read
miss

Cache state transitions based
on requests from the bus

Write miss
for this block

W
rit

e-
bac

k b
lo

ck
; a

bort

m
em

ory
 ac

ce
ss

W
ri

te
-b

ac
k

b
lo

ck
;

ab
o

rt
 m

em
o

ry
ac

ce
ss

Read miss
for this block

CPU
read
miss

Shared
(read only)

Invalid

Invalidate for
this block

Write miss for this block

5.2 Centralized Shared-Memory Architectures ■ 361

receive a response as a single atomic action. In reality this is not true. In fact,
even a read miss might not be atomic; after detecting a miss in the L2 of a multi-
core, the core must arbitrate for access to the bus connecting to the shared L3.
Nonatomic actions introduce the possibility that the protocol can deadlock,
meaning that it reaches a state where it cannot continue. We will explore these
complications later in this section and when we examine DSM designs.

With multicore processors, the coherence among the processor cores is all
implemented on chip, using either a snooping or simple central directory proto-
col. Many dual-processor chips, including the Intel Xeon and AMD Opteron,
supported multichip multiprocessors that could be built by connecting a high-
speed interface (called Quickpath or Hypertransport, respectively). These next-
level interconnects are not just extensions of the shared bus, but use a different
approach for interconnecting multicores.

Figure 5.7 Cache coherence state diagram with the state transitions induced by the

local processor shown in black and by the bus activities shown in gray. As in
Figure 5.6, the activities on a transition are shown in bold.

CPU write hit
CPU read hit

Write miss
for block

CPU write

P
la

ce
 w

rit
e

m
is

s
on

 b
us

Rea
d

m
iss

 fo
r b

loc
k

CPU re
ad

 m
iss

W
rit

e-
bac

k b
lo

ck

Plac
e

inv
ali

da
te

 o
n

bu
s

CPU w
rit

e

Place read miss on bus

Write miss for this block

CPU read

CPU write miss

Invalid

Invalidate for this block

W
rit

e-
bac

k d
at

a;
 p

lac
e r

ea
d m

iss
 o

n b
us

Shared
(read only)

W
ri

te
-b

ac
k

b
lo

ck

CPU w
rit

e
m

iss

Plac
e

writ
e

m
iss

 o
n

bu
s

CPU
read
hit

Write-back data
Place write miss on bus

CPU
read
miss

Place read
miss on bus

Exclusive
(read/write)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

362 ■ Chapter Five Thread-Level Parallelism

A multiprocessor built with multiple multicore chips will have a distributed
memory architecture and will need an interchip coherency mechanism above and
beyond the one within the chip. In most cases, some form of directory scheme
is used.

Extensions to the Basic Coherence Protocol

The coherence protocol we have just described is a simple three-state protocol
and is often referred to by the first letter of the states, making it a MSI (Modified,
Shared, Invalid) protocol. There are many extensions of this basic protocol,
which we mentioned in the captions of figures in this section. These extensions
are created by adding additional states and transactions, which optimize certain
behaviors, possibly resulting in improved performance. Two of the most common
extensions are

1. MESI adds the state Exclusive to the basic MSI protocol to indicate when a
cache block is resident only in a single cache but is clean. If a block is in the
E state, it can be written without generating any invalidates, which optimizes
the case where a block is read by a single cache before being written by that
same cache. Of course, when a read miss to a block in the E state occurs, the
block must be changed to the S state to maintain coherence. Because all sub-
sequent accesses are snooped, it is possible to maintain the accuracy of this
state. In particular, if another processor issues a read miss, the state is
changed from exclusive to shared. The advantage of adding this state is that a
subsequent write to a block in the exclusive state by the same core need not
acquire bus access or generate an invalidate, since the block is known to be
exclusively in this local cache; the processor merely changes the state to
modified. This state is easily added by using the bit that encodes the coherent
state as an exclusive state and using the dirty bit to indicate that a bock is
modified. The popular MESI protocol, which is named for the four states it
includes (Modified, Exclusive, Shared, and Invalid), uses this structure. The
Intel i7 uses a variant of a MESI protocol, called MESIF, which adds a state
(Forward) to designate which sharing processor should respond to a request.
It is designed to enhance performance in distributed memory organizations.

2. MOESI adds the state Owned to the MESI protocol to indicate that the associ-
ated block is owned by that cache and out-of-date in memory. In MSI and
MESI protocols, when there is an attempt to share a block in the Modified state,
the state is changed to Shared (in both the original and newly sharing cache),
and the block must be written back to memory. In a MOESI protocol, the block
can be changed from the Modified to Owned state in the original cache without
writing it to memory. Other caches, which are newly sharing the block, keep
the block in the Shared state; the O state, which only the original cache holds,
indicates that the main memory copy is out of date and that the designated
cache is the owner. The owner of the block must supply it on a miss, since
memory is not up to date and must write the block back to memory if it is
replaced. The AMD Opteron uses the MOESI protocol.

5.2 Centralized Shared-Memory Architectures ■ 363

The next section examines the performance of these protocols for our parallel
and multiprogrammed workloads; the value of these extensions to a basic proto-
col will be clear when we examine the performance. But, before we do that, let’s
take a brief look at the limitations on the use of a symmetric memory structure
and a snooping coherence scheme.

Limitations in Symmetric Shared-Memory Multiprocessors
and Snooping Protocols

As the number of processors in a multiprocessor grows, or as the memory
demands of each processor grow, any centralized resource in the system can
become a bottleneck. Using the higher bandwidth connection available on-chip
and a shared L3 cache, which is faster than memory, designers have managed to
support four to eight high-performance cores in a symmetric fashion. Such an
approach is unlikely to scale much past eight cores, and it will not work once
multiple multicores are combined.

Snooping bandwidth at the caches can also become a problem, since every
cache must examine every miss placed on the bus. As we mentioned, duplicat-
ing the tags is one solution. Another approach, which has been adopted in some
recent multicores, is to place a directory at the level of the outermost cache.
The directory explicitly indicates which processor’s caches have copies of
every item in the outermost cache. This is the approach Intel uses on the i7 and
Xeon 7000 series. Note that the use of this directory does not eliminate the bot-
tleneck due to a shared bus and L3 among the processors, but it is much simpler
to implement than the distributed directory schemes that we will examine in
Section 5.4.

How can a designer increase the memory bandwidth to support either more or
faster processors? To increase the communication bandwidth between processors
and memory, designers have used multiple buses as well as interconnection net-
works, such as crossbars or small point-to-point networks. In such designs, the
memory system (either main memory or a shared cache) can be configured into
multiple physical banks, so as to boost the effective memory bandwidth while
retaining uniform access time to memory. Figure 5.8 shows how such a system
might look if it where implemented with a single-chip multicore. Although such
an approach might be used to allow more than four cores to be interconnected on
a single chip, it does not scale well to a multichip multiprocessor that uses multi-
core building blocks, since the memory is already attached to the individual mul-
ticore chips, rather than centralized.

The AMD Opteron represents another intermediate point in the spectrum
between a snooping and a directory protocol. Memory is directly connected to
each multicore chip, and up to four multicore chips can be connected. The sys-
tem is a NUMA, since local memory is somewhat faster. The Opteron imple-
ments its coherence protocol using the point-to-point links to broadcast up to
three other chips. Because the interprocessor links are not shared, the only
way a processor can know when an invalid operation has completed is by an
explicit acknowledgment. Thus, the coherence protocol uses a broadcast to

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

364 ■ Chapter Five Thread-Level Parallelism

find potentially shared copies, like a snooping protocol, but uses the acknowl-
edgments to order operations, like a directory protocol. Because local memory
is only somewhat faster than remote memory in the Opteron implementation,
some software treats an Opteron multiprocessor as having uniform memory
access.

A snooping cache coherence protocol can be used without a centralized
bus, but still requires that a broadcast be done to snoop the individual caches on
every miss to a potentially shared cache block. This cache coherence traffic
creates another limit on the scale and the speed of the processors. Because
coherence traffic is unaffected by larger caches, faster processors will inevita-
bly overwhelm the network and the ability of each cache to respond to snoop
requests from all the other caches. In Section 5.4, we examine directory-based
protocols, which eliminate the need for broadcast to all caches on a miss. As
processor speeds and the number of cores per processor increase, more
designers are likely to opt for such protocols to avoid the broadcast limit of a
snooping protocol.

Figure 5.8 A multicore single-chip multiprocessor with uniform memory access
through a banked shared cache and using an interconnection network rather than
a bus.

Processor

Interconnection network

I/O system

Processor Processor Processor

Memory

Bank 3
shared
cache

Bank 2
shared
cache

Bank 1
shared
cache

Bank 0
shared
cache

One or
more levels
of private

cache

One or
more levels
of private

cache

One or
more levels
of private

cache

One or
more levels
of private

cache

5.2 Centralized Shared-Memory Architectures ■ 365

Implementing Snooping Cache Coherence

The devil is in the details.

Classic proverb

When we wrote the first edition of this book in 1990, our final “Putting It All
Together” was a 30-processor, single-bus multiprocessor using snoop-based
coherence; the bus had a capacity of just over 50 MB/sec, which would not be
enough bus bandwidth to support even one core of an Intel i7 in 2011! When we
wrote the second edition of this book in 1995, the first cache coherence multipro-
cessors with more than a single bus had recently appeared, and we added an
appendix describing the implementation of snooping in a system with multiple
buses. In 2011, most multicore processors that support only a single-chip multi-
processor have opted to use a shared bus structure connecting to either a shared
memory or a shared cache. In contrast, every multicore multiprocessor system
that supports 16 or more cores uses an interconnect other than a single bus, and
designers must face the challenge of implementing snooping without the simpli-
fication of a bus to serialize events.

As we said earlier, the major complication in actually implementing the
snooping coherence protocol we have described is that write and upgrade
misses are not atomic in any recent multiprocessor. The steps of detecting a
write or upgrade miss, communicating with the other processors and memory,
getting the most recent value for a write miss and ensuring that any invali-
dates are processed, and updating the cache cannot be done as if they took a
single cycle.

In a single multicore chip, these steps can be made effectively atomic by arbi-
trating for the bus to the shared cache or memory first (before changing the cache
state) and not releasing the bus until all actions are complete. How can the pro-
cessor know when all the invalidates are complete? In some multicores, a single
line is used to signal when all necessary invalidates have been received and are
being processed. Following that signal, the processor that generated the miss can
release the bus, knowing that any required actions will be completed before any
activity related to the next miss. By holding the bus exclusively during these
steps, the processor effectively makes the individual steps atomic.

In a system without a bus, we must find some other method of making the
steps in a miss atomic. In particular, we must ensure that two processors that at-
tempt to write the same block at the same time, a situation which is called a race,
are strictly ordered: One write is processed and precedes before the next is begun.
It does not matter which of two writes in a race wins the race, just that there be
only a single winner whose coherence actions are completed first. In a snooping
system, ensuring that a race has only one winner is accomplished by using broad-
cast for all misses as well as some basic properties of the interconnection net-
work. These properties, together with the ability to restart the miss handling of
the loser in a race, are the keys to implementing snooping cache coherence with-
out a bus. We explain the details in Appendix I.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

366 ■ Chapter Five Thread-Level Parallelism

It is possible to combine snooping and directories, and several designs use
snooping within a multicore and directories among multiple chips or, vice versa,
directories within a multicore and snooping among multiple chips.

In a multicore using a snooping coherence protocol, several different phenomena
combine to determine performance. In particular, the overall cache performance
is a combination of the behavior of uniprocessor cache miss traffic and the traffic
caused by communication, which results in invalidations and subsequent cache
misses. Changing the processor count, cache size, and block size can affect these
two components of the miss rate in different ways, leading to overall system
behavior that is a combination of the two effects.

Appendix B breaks the uniprocessor miss rate into the three C’s classification
(capacity, compulsory, and conflict) and provides insight into both application
behavior and potential improvements to the cache design. Similarly, the misses
that arise from interprocessor communication, which are often called coherence
misses, can be broken into two separate sources.

The first source is the so-called true sharing misses that arise from the
communication of data through the cache coherence mechanism. In an invali-
dation-based protocol, the first write by a processor to a shared cache block
causes an invalidation to establish ownership of that block. Additionally, when
another processor attempts to read a modified word in that cache block, a miss
occurs and the resultant block is transferred. Both these misses are classified
as true sharing misses since they directly arise from the sharing of data among
processors.

The second effect, called false sharing, arises from the use of an invalidation-
based coherence algorithm with a single valid bit per cache block. False sharing
occurs when a block is invalidated (and a subsequent reference causes a miss)
because some word in the block, other than the one being read, is written into. If
the word written into is actually used by the processor that received the invali-
date, then the reference was a true sharing reference and would have caused a
miss independent of the block size. If, however, the word being written and the
word read are different and the invalidation does not cause a new value to be
communicated, but only causes an extra cache miss, then it is a false sharing
miss. In a false sharing miss, the block is shared, but no word in the cache is actu-
ally shared, and the miss would not occur if the block size were a single word.
The following example makes the sharing patterns clear.

Example Assume that words x1 and x2 are in the same cache block, which is in the shared
state in the caches of both P1 and P2. Assuming the following sequence of
events, identify each miss as a true sharing miss, a false sharing miss, or a hit.

5.3 Performance of Symmetric Shared-Memory
Multiprocessors

5.3 Performance of Symmetric Shared-Memory Multiprocessors ■ 367

Any miss that would occur if the block size were one word is designated a true
sharing miss.

Answer Here are the classifications by time step:

1. This event is a true sharing miss, since x1 was read by P2 and needs to be
invalidated from P2.

2. This event is a false sharing miss, since x2 was invalidated by the write of x1
in P1, but that value of x1 is not used in P2.

3. This event is a false sharing miss, since the block containing x1 is marked
shared due to the read in P2, but P2 did not read x1. The cache block contain-
ing x1 will be in the shared state after the read by P2; a write miss is required
to obtain exclusive access to the block. In some protocols this will be handled
as an upgrade request, which generates a bus invalidate, but does not transfer
the cache block.

4. This event is a false sharing miss for the same reason as step 3.

5. This event is a true sharing miss, since the value being read was written by P2.

Although we will see the effects of true and false sharing misses in commer-
cial workloads, the role of coherence misses is more significant for tightly cou-
pled applications that share significant amounts of user data. We examine their
effects in detail in Appendix I, when we consider the performance of a parallel
scientific workload.

A Commercial Workload

In this section, we examine the memory system behavior of a four-processor
shared-memory multiprocessor when running a general-purpose commercial
workload. The study we examine was done with a four-processor Alpha system
in 1998, but it remains the most comprehensive and insightful study of the per-
formance of a multiprocessor for such workloads. The results were collected
either on an AlphaServer 4100 or using a configurable simulator modeled after
the AlphaServer 4100. Each processor in the AlphaServer 4100 is an Alpha
21164, which issues up to four instructions per clock and runs at 300 MHz.

Time P1 P2

1 Write x1

2 Read x2

3 Write x1

4 Write x2

5 Read x2

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

368 ■ Chapter Five Thread-Level Parallelism

Although the clock rate of the Alpha processor in this system is considerably
slower than processors in systems designed in 2011, the basic structure of the
system, consisting of a four-issue processor and a three-level cache hierarchy,
is very similar to the multicore Intel i7 and other processors, as shown in
Figure 5.9. In particular, the Alpha caches are somewhat smaller, but the miss
times are also lower than on an i7. Thus, the behavior of the Alpha system
should provide interesting insights into the behavior of modern multicore
designs.

The workload used for this study consists of three applications:

1. An online transaction-processing (OLTP) workload modeled after TPC-B
(which has memory behavior similar to its newer cousin TPC-C, described in
Chapter 1) and using Oracle 7.3.2 as the underlying database. The workload
consists of a set of client processes that generate requests and a set of servers
that handle them. The server processes consume 85% of the user time, with
the remaining going to the clients. Although the I/O latency is hidden by
careful tuning and enough requests to keep the processor busy, the server pro-
cesses typically block for I/O after about 25,000 instructions.

2. A decision support system (DSS) workload based on TPC-D, the older cousin
of the heavily used TPC-E, which also uses Oracle 7.3.2 as the underlying
database. The workload includes only 6 of the 17 read queries in TPC-D,

Cache level Characteristic Alpha 21164 Intel i7

L1 Size 8 KB I/8 KB D 32 KB I/32 KB D

Associativity Direct mapped 4-way I/8-way D

Block size 32 B 64 B

Miss penalty 7 10

L2 Size 96 KB 256 KB

Associativity 3-way 8-way

Block size 32 B 64 B

Miss penalty 21 35

L3 Size 2 MB 2 MB per core

Associativity Direct mapped 16-way

Block size 64 B 64 B

Miss penalty 80 ~100

Figure 5.9 The characteristics of the cache hierarchy of the Alpha 21164 used in this
study and the Intel i7. Although the sizes are larger and the associativity is higher on
the i7, the miss penalties are also higher, so the behavior may differ only slightly. For
example, from Appendix B, we can estimate the miss rates of the smaller Alpha L1
cache as 4.9% and 3% for the larger i7 L1 cache, so the average L1 miss penalty per ref-
erence is 0.34 for the Alpha and 0.30 for the i7. Both systems have a high penalty (125
cycles or more) for a transfer required from a private cache. The i7 also shares its L3
among all the cores.

5.3 Performance of Symmetric Shared-Memory Multiprocessors ■ 369

although the 6 queries examined in the benchmark span the range of activities
in the entire benchmark. To hide the I/O latency, parallelism is exploited both
within queries, where parallelism is detected during a query formulation pro-
cess, and across queries. Blocking calls are much less frequent than in the
OLTP benchmark; the 6 queries average about 1.5 million instructions before
blocking.

3. A Web index search (AltaVista) benchmark based on a search of a memory-
mapped version of the AltaVista database (200 GB). The inner loop is heavily
optimized. Because the search structure is static, little synchronization is
needed among the threads. AltaVista was the most popular Web search
engine before the arrival of Google.

Figure 5.10 shows the percentages of time spent in user mode, in the kernel,
and in the idle loop. The frequency of I/O increases both the kernel time and the
idle time (see the OLTP entry, which has the largest I/O-to-computation ratio).
AltaVista, which maps the entire search database into memory and has been
extensively tuned, shows the least kernel or idle time.

Performance Measurements of the Commercial Workload

We start by looking at the overall processor execution for these benchmarks on the
four-processor system; as discussed on page 367, these benchmarks include sub-
stantial I/O time, which is ignored in the processor time measurements. We group
the six DSS queries as a single benchmark, reporting the average behavior. The
effective CPI varies widely for these benchmarks, from a CPI of 1.3 for the Alta-
Vista Web search, to an average CPI of 1.6 for the DSS workload, to 7.0 for the
OLTP workload. Figure 5.11 shows how the execution time breaks down into
instruction execution, cache and memory system access time, and other stalls
(which are primarily pipeline resource stalls but also include translation lookaside
buffer (TLB) and branch mispredict stalls). Although the performance of the DSS

Benchmark % Time user mode % Time kernel
% Time

processor idle

OLTP 71 18 11

DSS (average across
all queries)

87 4 9

AltaVista >98 <1 <1

Figure 5.10 The distribution of execution time in the commercial workloads. The
OLTP benchmark has the largest fraction of both OS time and processor idle time
(which is I/O wait time). The DSS benchmark shows much less OS time, since it does
less I/O, but still more than 9% idle time. The extensive tuning of the AltaVista search
engine is clear in these measurements. The data for this workload were collected by
Barroso, Gharachorloo, and Bugnion [1998] on a four-processor AlphaServer 4100.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

370 ■ Chapter Five Thread-Level Parallelism

and AltaVista workloads is reasonable, the performance of the OLTP workload is
very poor, due to a poor performance of the memory hierarchy.

Since the OLTP workload demands the most from the memory system with
large numbers of expensive L3 misses, we focus on examining the impact of L3
cache size, processor count, and block size on the OLTP benchmark. Figure 5.12
shows the effect of increasing the cache size, using two-way set associative cach-
es, which reduces the large number of conflict misses. The execution time is im-
proved as the L3 cache grows due to the reduction in L3 misses. Surprisingly,
almost all of the gain occurs in going from 1 to 2 MB, with little additional gain
beyond that, despite the fact that cache misses are still a cause of significant per-
formance loss with 2 MB and 4 MB caches. The question is, Why?

To better understand the answer to this question, we need to determine what
factors contribute to the L3 miss rate and how they change as the L3 cache
grows. Figure 5.13 shows these data, displaying the number of memory access
cycles contributed per instruction from five sources. The two largest sources of
L3 memory access cycles with a 1 MB L3 are instruction and capacity/conflict

Figure 5.11 The execution time breakdown for the three programs (OLTP, DSS, and
AltaVista) in the commercial workload. The DSS numbers are the average across six dif-
ferent queries. The CPI varies widely from a low of 1.3 for AltaVista, to 1.61 for the DSS
queries, to 7.0 for OLTP. (Individually, the DSS queries show a CPI range of 1.3 to 1.9.)
“Other stalls” includes resource stalls (implemented with replay traps on the 21164),
branch mispredict, memory barrier, and TLB misses. For these benchmarks, resource-
based pipeline stalls are the dominant factor. These data combine the behavior of user
and kernel accesses. Only OLTP has a significant fraction of kernel accesses, and the ker-
nel accesses tend to be better behaved than the user accesses! All the measurements
shown in this section were collected by Barroso, Gharachorloo, and Bugnion [1998].

100%

90%

80%

70%

60%

50%
P

er
ce

nt
ag

e
 o

f e
xe

cu
tio

n
tim

e
40%

30%

20%

10%

0%
OLTP DSS AltaVista

Other stalls
Memory access
L3 access
L2 access
Instruction execution

5.3 Performance of Symmetric Shared-Memory Multiprocessors ■ 371

Figure 5.12 The relative performance of the OLTP workload as the size of the L3

cache, which is set as two-way set associative, grows from 1 MB to 8 MB. The idle time
also grows as cache size is increased, reducing some of the performance gains. This
growth occurs because, with fewer memory system stalls, more server processes are
needed to cover the I/O latency. The workload could be retuned to increase the compu-
tation/communication balance, holding the idle time in check. The PAL code is a set of
sequences of specialized OS-level instructions executed in privileged mode; an exam-
ple is the TLB miss handler.

Figure 5.13 The contributing causes of memory access cycle shift as the cache size

is increased. The L3 cache is simulated as two-way set associative.

100

90

80

70

60

50

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

40

30

20

10

0
1 2 4 8

L3 cache size (MB)

PAL code
Memory access
L2/L3 cache access

Idle

Instruction execution

3.25

3

2.75

2.5

2.25

2

1.75

1.5

1.25

1

0.75

0.5

0.25

M
em

or
y

cy
cl

es
 p

er
 in

st
ru

ct
io

n

0
1 2 4 8

Cache size (MB)

Compulsory
Capacity/conflict

False sharing

Instruction

True sharing

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

372 ■ Chapter Five Thread-Level Parallelism

misses. With a larger L3, these two sources shrink to be minor contributors.
Unfortunately, the compulsory, false sharing, and true sharing misses are unaf-
fected by a larger L3. Thus, at 4 MB and 8 MB, the true sharing misses gener-
ate the dominant fraction of the misses; the lack of change in true sharing
misses leads to the limited reductions in the overall miss rate when increasing
the L3 cache size beyond 2 MB.

Increasing the cache size eliminates most of the uniprocessor misses while
leaving the multiprocessor misses untouched. How does increasing the processor
count affect different types of misses? Figure 5.14 shows these data assuming a
base configuration with a 2 MB, two-way set associative L3 cache. As we might
expect, the increase in the true sharing miss rate, which is not compensated for by
any decrease in the uniprocessor misses, leads to an overall increase in the mem-
ory access cycles per instruction.

The final question we examine is whether increasing the block size—which
should decrease the instruction and cold miss rate and, within limits, also reduce
the capacity/conflict miss rate and possibly the true sharing miss rate—is helpful
for this workload. Figure 5.15 shows the number of misses per 1000 instructions
as the block size is increased from 32 to 256 bytes. Increasing the block size from
32 to 256 bytes affects four of the miss rate components:

■ The true sharing miss rate decreases by more than a factor of 2, indicating
some locality in the true sharing patterns.

■ The compulsory miss rate significantly decreases, as we would expect.

Figure 5.14 The contribution to memory access cycles increases as processor count
increases primarily due to increased true sharing. The compulsory misses slightly
increase since each processor must now handle more compulsory misses.

3

2.5

2

1.5

1

0.5

0

M
em

or
y

cy
cl

es
 p

er
 in

st
ru

ct
io

n

1 2 4 6 8
Processor count

Compulsory
Capacity/conflict

False sharing

Instruction

True sharing

5.3 Performance of Symmetric Shared-Memory Multiprocessors ■ 373

■ The conflict/capacity misses show a small decrease (a factor of 1.26 compared
to a factor of 8 increase in block size), indicating that the spatial locality is not
high in the uniprocessor misses that occur with L3 caches larger than 2 MB.

■ The false sharing miss rate, although small in absolute terms, nearly doubles.

The lack of a significant effect on the instruction miss rate is startling. If
there were an instruction-only cache with this behavior, we would conclude
that the spatial locality is very poor. In the case of a mixed L2 cache, other
effects such as instruction-data conflicts may also contribute to the high
instruction cache miss rate for larger blocks. Other studies have documented
the low spatial locality in the instruction stream of large database and OLTP
workloads, which have lots of short basic blocks and special-purpose code
sequences. Based on these data, the miss penalty for a larger block size L3 to
perform as well as the 32-byte block size L3 can be expressed as a multiplier
on the 32-byte block size penalty:

Figure 5.15 The number of misses per 1000 instructions drops steadily as the block

size of the L3 cache is increased, making a good case for an L3 block size of at least

128 bytes. The L3 cache is 2 MB, two-way set associative.

Block size
Miss penalty relative to

32-byte block miss penalty

64 bytes 1.19

128 bytes 1.36

256 bytes 1.52

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

M
is

se
s

pe
r

10
00

 in
st

ru
ct

io
ns

32 64 128 256

Block size (bytes)

Compulsory
Capacity/conflict

False sharing

Instruction

True sharing

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

374 ■ Chapter Five Thread-Level Parallelism

With modern DDR SDRAMs that make block access fast, these numbers seem
attainable, especially at the 128 byte block size. Of course, we must also worry
about the effects of the increased traffic to memory and possible contention for
the memory with other cores. This latter effect may easily negate the gains
obtained from improving the performance of a single processor.

A Multiprogramming and OS Workload

Our next study is a multiprogrammed workload consisting of both user activity
and OS activity. The workload used is two independent copies of the compile
phases of the Andrew benchmark, a benchmark that emulates a software devel-
opment environment. The compile phase consists of a parallel version of the
Unix “make” command executed using eight processors. The workload runs for
5.24 seconds on eight processors, creating 203 processes and performing 787
disk requests on three different file systems. The workload is run with 128 MB of
memory, and no paging activity takes place.

The workload has three distinct phases: compiling the benchmarks, which
involves substantial compute activity; installing the object files in a library; and
removing the object files. The last phase is completely dominated by I/O, and
only two processes are active (one for each of the runs). In the middle phase, I/O
also plays a major role, and the processor is largely idle. The overall workload is
much more system and I/O intensive than the highly tuned commercial workload.

For the workload measurements, we assume the following memory and I/O
systems:

■ Level 1 instruction cache—32 KB, two-way set associative with a 64-byte
block, 1 clock cycle hit time.

■ Level 1 data cache—32 KB, two-way set associative with a 32-byte block,
1 clock cycle hit time. We vary the L1 data cache to examine its effect on
cache behavior.

■ Level 2 cache—1 MB unified, two-way set associative with a 128-byte block,
10 clock cycle hit time.

■ Main memory—Single memory on a bus with an access time of 100 clock
cycles.

■ Disk system—Fixed-access latency of 3 ms (less than normal to reduce idle time).

Figure 5.16 shows how the execution time breaks down for the eight pro-
cessors using the parameters just listed. Execution time is broken down into
four components:

1. Idle—Execution in the kernel mode idle loop

2. User—Execution in user code

3. Synchronization—Execution or waiting for synchronization variables

4. Kernel—Execution in the OS that is neither idle nor in synchronization
access

5.3 Performance of Symmetric Shared-Memory Multiprocessors ■ 375

This multiprogramming workload has a significant instruction cache perfor-
mance loss, at least for the OS. The instruction cache miss rate in the OS for a 64-
byte block size, two-way set associative cache varies from 1.7% for a 32 KB
cache to 0.2% for a 256 KB cache. User-level instruction cache misses are
roughly one-sixth of the OS rate, across the variety of cache sizes. This partially
accounts for the fact that, although the user code executes nine times as many
instructions as the kernel, those instructions take only about four times as long as
the smaller number of instructions executed by the kernel.

Performance of the Multiprogramming and OS Workload

In this subsection, we examine the cache performance of the multiprogrammed
workload as the cache size and block size are changed. Because of differences
between the behavior of the kernel and that of the user processes, we keep these
two components separate. Remember, though, that the user processes execute
more than eight times as many instructions, so that the overall miss rate is deter-
mined primarily by the miss rate in user code, which, as we will see, is often one-
fifth of the kernel miss rate.

Although the user code executes more instructions, the behavior of the oper-
ating system can cause more cache misses than the user processes for two reasons
beyond larger code size and lack of locality. First, the kernel initializes all pages
before allocating them to a user, which significantly increases the compulsory
component of the kernel’s miss rate. Second, the kernel actually shares data and
thus has a nontrivial coherence miss rate. In contrast, user processes cause coher-
ence misses only when the process is scheduled on a different processor, and this
component of the miss rate is small.

Figure 5.17 shows the data miss rate versus data cache size and versus block
size for the kernel and user components. Increasing the data cache size affects
the user miss rate more than it affects the kernel miss rate. Increasing the block
size has beneficial effects for both miss rates, since a larger fraction of the
misses arise from compulsory and capacity, both of which can be potentially

User
execution

Kernel
execution

Synchronization
wait

Processor idle
(waiting for I/O)

Instructions executed 27% 3% 1% 69%

Execution time 27% 7% 2% 64%

Figure 5.16 The distribution of execution time in the multiprogrammed parallel

“make” workload. The high fraction of idle time is due to disk latency when only one of
the eight processors is active. These data and the subsequent measurements for this
workload were collected with the SimOS system [Rosenblum et al. 1995]. The actual
runs and data collection were done by M. Rosenblum, S. Herrod, and E. Bugnion of
Stanford University.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

376 ■ Chapter Five Thread-Level Parallelism

improved with larger block sizes. Since coherence misses are relatively rarer,
the negative effects of increasing block size are small. To understand why the
kernel and user processes behave differently, we can look at how the kernel
misses behave.

Figure 5.18 shows the variation in the kernel misses versus increases in cache
size and in block size. The misses are broken into three classes: compulsory
misses, coherence misses (from both true and false sharing), and capacity/con-
flict misses (which include misses caused by interference between the OS and the
user process and between multiple user processes). Figure 5.18 confirms that, for
the kernel references, increasing the cache size reduces only the uniprocessor
capacity/conflict miss rate. In contrast, increasing the block size causes a
reduction in the compulsory miss rate. The absence of large increases in the
coherence miss rate as block size is increased means that false sharing effects are
probably insignificant, although such misses may be offsetting some of the gains
from reducing the true sharing misses.

If we examine the number of bytes needed per data reference, as in
Figure 5.19, we see that the kernel has a higher traffic ratio that grows with
block size. It is easy to see why this occurs: When going from a 16-byte block to
a 128-byte block, the miss rate drops by about 3.7, but the number of bytes

Figure 5.17 The data miss rates for the user and kernel components behave differently for increases in the L1
data cache size (on the left) versus increases in the L1 data cache block size (on the right). Increasing the L1 data
cache from 32 KB to 256 KB (with a 32-byte block) causes the user miss rate to decrease proportionately more than
the kernel miss rate: the user-level miss rate drops by almost a factor of 3, while the kernel-level miss rate drops only
by a factor of 1.3. The miss rate for both user and kernel components drops steadily as the L1 block size is increased
(while keeping the L1 cache at 32 KB). In contrast to the effects of increasing the cache size, increasing the block size
improves the kernel miss rate more significantly (just under a factor of 4 for the kernel references when going from
16-byte to 128-byte blocks versus just under a factor of 3 for the user references).

4%

5%

6%

7%

3%

2%

1%

M
is

s
ra

te

M
is

s
ra

te

0%

Cache size (KB)

32 64 128 256

Kernel miss rate

User miss rate

6%

7%

8%

9%

10%

4%

5%

3%

1%

2%

0%

Block size (bytes)

16 32 64 128

Kernel miss rate

User miss rate

5.3 Performance of Symmetric Shared-Memory Multiprocessors ■ 377

transferred per miss increases by 8, so the total miss traffic increases by just
over a factor of 2. The user program also more than doubles as the block size
goes from 16 to 128 bytes, but it starts out at a much lower level.

For the multiprogrammed workload, the OS is a much more demanding
user of the memory system. If more OS or OS-like activity is included in the
workload, and the behavior is similar to what was measured for this workload,
it will become very difficult to build a sufficiently capable memory system.
One possible route to improving performance is to make the OS more cache
aware, through either better programming environments or through program-
mer assistance. For example, the OS reuses memory for requests that arise from
different system calls. Despite the fact that the reused memory will be com-
pletely overwritten, the hardware, not recognizing this, will attempt to preserve
coherency and the possibility that some portion of a cache block may be read,
even if it is not. This behavior is analogous to the reuse of stack locations on
procedure invocations. The IBM Power series has support to allow the com-
piler to indicate this type of behavior on procedure invocations, and the newest

Figure 5.18 The components of the kernel data miss rate change as the L1 data

cache size is increased from 32 KB to 256 KB, when the multiprogramming workload

is run on eight processors. The compulsory miss rate component stays constant, since
it is unaffected by cache size. The capacity component drops by more than a factor of 2,
while the coherence component nearly doubles. The increase in coherence misses
occurs because the probability of a miss being caused by an invalidation increases with
cache size, since fewer entries are bumped due to capacity. As we would expect, the
increasing block size of the L1 data cache substantially reduces the compulsory miss
rate in the kernel references. It also has a significant impact on the capacity miss rate,
decreasing it by a factor of 2.4 over the range of block sizes. The increased block size
has a small reduction in coherence traffic, which appears to stabilize at 64 bytes, with
no change in the coherence miss rate in going to 128-byte lines. Because there are no
significant reductions in the coherence miss rate as the block size increases, the fraction
of the miss rate due to coherence grows from about 7% to about 15%.

M
is

s
ra

te

M
is

s
ra

te

0%

2%

4%

6%

5%

3%

1%

32 64 128
Cache size (KB)

256

7%

0%

2%

4%

9%

8%

7%

6%

5%

3%

1%

16 32 64
Block size (bytes)

128

10%

Compulsory
Coherence
Capacity/conflict

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

378 ■ Chapter Five Thread-Level Parallelism

AMD processors have similar support. It is harder to detect such behavior by
the OS, and doing so may require programmer assistance, but the payoff is
potentially even greater.

OS and commercial workloads pose tough challenges for multiprocessor
memory systems, and unlike scientific applications, which we examine in
Appendix I, they are less amenable to algorithmic or compiler restructuring. As
the number of cores increases predicting the behavior of such applications is
likely to get more difficult. Emulation or simulation methodologies that allow the
simulation of hundreds of cores with large applications (including operating sys-
tems) will be crucial to maintaining an analytical and quantitative approach to
design.

As we saw in Section 5.2, a snooping protocol requires communication with all
caches on every cache miss, including writes of potentially shared data. The
absence of any centralized data structure that tracks the state of the caches is both
the fundamental advantage of a snooping-based scheme, since it allows it to be
inexpensive, as well as its Achilles’ heel when it comes to scalability.

For example, consider a multiprocessor composed of four 4-core multicores
capable of sustaining one data reference per clock and a 4 GHz clock. From the data
in Section I.5 of Appendix I, we can see that the applications may require 4 GB/sec
to 170 GB/sec of bus bandwidth. Although the caches in those experiments are

Figure 5.19 The number of bytes needed per data reference grows as block size is
increased for both the kernel and user components. It is interesting to compare this
chart against the data on scientific programs shown in Appendix I.

3.5

2.0

2.5

3.0

1.5

1.0

0.5
M

em
or

y
tr

af
fic

 m
ea

su
re

d
as

 b
yt

es

pe
r

da
ta

 r
ef

er
en

ce
0.0

Block size (bytes)

16 32 64 128

Kernel traffic

User traffic

5.4 Distributed Shared-Memory and Directory-Based
Coherence

5.4 Distributed Shared-Memory and Directory-Based Coherence ■ 379

small, most of the traffic is coherence traffic, which is unaffected by cache size.
Although a modern bus might accommodate 4 GB/sec, 170 GB/sec is far beyond the
capability of any bus-based system. In the last few years, the development of multi-
core processors forced all designers to shift to some form of distributed memory to
support the bandwidth demands of the individual processors.

We can increase the memory bandwidth and interconnection bandwidth by
distributing the memory, as shown in Figure 5.2 on page 348; this immediately
separates local memory traffic from remote memory traffic, reducing the band-
width demands on the memory system and on the interconnection network.
Unless we eliminate the need for the coherence protocol to broadcast on every
cache miss, distributing the memory will gain us little.

As we mentioned earlier, the alternative to a snooping-based coherence pro-
tocol is a directory protocol. A directory keeps the state of every block that may
be cached. Information in the directory includes which caches (or collections of
caches) have copies of the block, whether it is dirty, and so on. Within a multi-
core with a shared outermost cache (say, L3), it is easy to implement a directory
scheme: Simply keep a bit vector of the size equal to the number of cores for
each L3 block. The bit vector indicates which private caches may have copies of
a block in L3, and invalidations are only sent to those caches. This works per-
fectly for a single multicore if L3 is inclusive, and this scheme is the one used in
the Intel i7.

The solution of a single directory used in a multicore is not scalable, even
though it avoids broadcast. The directory must be distributed, but the distribu-
tion must be done in a way that the coherence protocol knows where to find the
directory information for any cached block of memory. The obvious solution is
to distribute the directory along with the memory, so that different coherence
requests can go to different directories, just as different memory requests go to
different memories. A distributed directory retains the characteristic that the
sharing status of a block is always in a single known location. This property,
together with the maintenance of information that says what other nodes may be
caching the block, is what allows the coherence protocol to avoid broadcast.
Figure 5.20 shows how our distributed-memory multiprocessor looks with the
directories added to each node.

The simplest directory implementations associate an entry in the directory
with each memory block. In such implementations, the amount of information is
proportional to the product of the number of memory blocks (where each block is
the same size as the L2 or L3 cache block) times the number of nodes, where a
node is a single multicore processor or a small collection of processors that
implements coherence internally. This overhead is not a problem for multiproces-
sors with less than a few hundred processors (each of which might be a multi-
core) because the directory overhead with a reasonable block size will be
tolerable. For larger multiprocessors, we need methods to allow the directory
structure to be efficiently scaled, but only supercomputer-sized systems need to
worry about this.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

380 ■ Chapter Five Thread-Level Parallelism

Directory-Based Cache Coherence Protocols: The Basics

Just as with a snooping protocol, there are two primary operations that a directory
protocol must implement: handling a read miss and handling a write to a shared,
clean cache block. (Handling a write miss to a block that is currently shared is a
simple combination of these two.) To implement these operations, a directory
must track the state of each cache block. In a simple protocol, these states could
be the following:

■ Shared—One or more nodes have the block cached, and the value in memory
is up to date (as well as in all the caches).

■ Uncached—No node has a copy of the cache block.

■ Modified—Exactly one node has a copy of the cache block, and it has written
the block, so the memory copy is out of date. The processor is called the
owner of the block.

In addition to tracking the state of each potentially shared memory block, we
must track which nodes have copies of that block, since those copies will need to
be invalidated on a write. The simplest way to do this is to keep a bit vector for

Figure 5.20 A directory is added to each node to implement cache coherence in a distributed-memory multi-
processor. In this case, a node is shown as a single multicore chip, and the directory information for the associated
memory may reside either on or off the multicore. Each directory is responsible for tracking the caches that share the
memory addresses of the portion of memory in the node. The coherence mechanism would handle both the main-
tenance of the directory information and any coherence actions needed within the multicore node.

Interconnection network

Multicore
processor
+ caches

Memory I/O

Directory

Memory I/O

Directory

Memory I/O

Directory

Memory I/O

Memory

Directory

Memory I/O Memory MemoryI/O I/O Memory I/O

Directory Directory Directory Directory

Multicore
processor
+ caches

Multicore
processor
+ caches

Multicore
processor
+ caches

Multicore
processor
+ caches

Multicore
processor
+ caches

Multicore
processor
+ caches

Multicore
processor
+ caches

5.4 Distributed Shared-Memory and Directory-Based Coherence ■ 381

each memory block. When the block is shared, each bit of the vector indicates
whether the corresponding processor chip (which is likely a multicore) has a
copy of that block. We can also use the bit vector to keep track of the owner of
the block when the block is in the exclusive state. For efficiency reasons, we also
track the state of each cache block at the individual caches.

The states and transitions for the state machine at each cache are identical to
what we used for the snooping cache, although the actions on a transition are
slightly different. The processes of invalidating and locating an exclusive copy of
a data item are different, since they both involve communication between the
requesting node and the directory and between the directory and one or more
remote nodes. In a snooping protocol, these two steps are combined through the
use of a broadcast to all the nodes.

Before we see the protocol state diagrams, it is useful to examine a catalog
of the message types that may be sent between the processors and the directories
for the purpose of handling misses and maintaining coherence. Figure 5.21 shows
the types of messages sent among nodes. The local node is the node where a
request originates. The home node is the node where the memory location and the

Message type Source Destination
Message
contents Function of this message

Read miss Local cache Home directory P, A Node P has a read miss at address A;
request data and make P a read sharer.

Write miss Local cache Home directory P, A Node P has a write miss at address A;
request data and make P the exclusive owner.

Invalidate Local cache Home directory A Request to send invalidates to all remote caches
that are caching the block at address A.

Invalidate Home directory Remote cache A Invalidate a shared copy of data at address A.

Fetch Home directory Remote cache A Fetch the block at address A and send it to its
home directory; change the state of A in the
remote cache to shared.

Fetch/invalidate Home directory Remote cache A Fetch the block at address A and send it to its
home directory; invalidate the block in the
cache.

Data value reply Home directory Local cache D Return a data value from the home memory.

Data write-back Remote cache Home directory A, D Write-back a data value for address A.

Figure 5.21 The possible messages sent among nodes to maintain coherence, along with the source and desti-

nation node, the contents (where P = requesting node number, A = requested address, and D = data contents),

and the function of the message. The first three messages are requests sent by the local node to the home. The
fourth through sixth messages are messages sent to a remote node by the home when the home needs the data to
satisfy a read or write miss request. Data value replies are used to send a value from the home node back to the
requesting node. Data value write-backs occur for two reasons: when a block is replaced in a cache and must be writ-
ten back to its home memory, and also in reply to fetch or fetch/invalidate messages from the home. Writing back
the data value whenever the block becomes shared simplifies the number of states in the protocol, since any dirty
block must be exclusive and any shared block is always available in the home memory.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

382 ■ Chapter Five Thread-Level Parallelism

directory entry of an address reside. The physical address space is statically dis-
tributed, so the node that contains the memory and directory for a given physical
address is known. For example, the high-order bits may provide the node num-
ber, while the low-order bits provide the offset within the memory on that node.
The local node may also be the home node. The directory must be accessed when
the home node is the local node, since copies may exist in yet a third node, called
a remote node.

A remote node is the node that has a copy of a cache block, whether exclusive
(in which case it is the only copy) or shared. A remote node may be the same as
either the local node or the home node. In such cases, the basic protocol does not
change, but interprocessor messages may be replaced with intraprocessor
messages.

In this section, we assume a simple model of memory consistency. To mini-
mize the type of messages and the complexity of the protocol, we make an
assumption that messages will be received and acted upon in the same order
they are sent. This assumption may not be true in practice and can result in addi-
tional complications, some of which we address in Section 5.6 when we discuss
memory consistency models. In this section, we use this assumption to ensure
that invalidates sent by a node are honored before new messages are transmitted,
just as we assumed in the discussion of implementing snooping protocols. As
we did in the snooping case, we omit some details necessary to implement the
coherence protocol. In particular, the serialization of writes and knowing that
the invalidates for a write have completed are not as simple as in the broadcast-
based snooping mechanism. Instead, explicit acknowledgments are required in
response to write misses and invalidate requests. We discuss these issues in
more detail in Appendix I.

An Example Directory Protocol

The basic states of a cache block in a directory-based protocol are exactly
like those in a snooping protocol, and the states in the directory are also analo-
gous to those we showed earlier. Thus, we can start with simple state diagrams
that show the state transitions for an individual cache block and then examine the
state diagram for the directory entry corresponding to each block in memory. As
in the snooping case, these state transition diagrams do not represent all the
details of a coherence protocol; however, the actual controller is highly dependent
on a number of details of the multiprocessor (message delivery properties, buffer-
ing structures, and so on). In this section, we present the basic protocol state dia-
grams. The knotty issues involved in implementing these state transition diagrams
are examined in Appendix I.

Figure 5.22 shows the protocol actions to which an individual cache responds.
We use the same notation as in the last section, with requests coming from outside
the node in gray and actions in bold. The state transitions for an individual cache

5.4 Distributed Shared-Memory and Directory-Based Coherence ■ 383

are caused by read misses, write misses, invalidates, and data fetch requests;
Figure 5.22 shows these operations. An individual cache also generates read miss,
write miss, and invalidate messages that are sent to the home directory. Read and
write misses require data value replies, and these events wait for replies before
changing state. Knowing when invalidates complete is a separate problem and is
handled separately.

Figure 5.22 State transition diagram for an individual cache block in a directory-

based system. Requests by the local processor are shown in black, and those from the
home directory are shown in gray. The states are identical to those in the snooping
case, and the transactions are very similar, with explicit invalidate and write-back
requests replacing the write misses that were formerly broadcast on the bus. As we did
for the snooping controller, we assume that an attempt to write a shared cache block is
treated as a miss; in practice, such a transaction can be treated as an ownership request
or upgrade request and can deliver ownership without requiring that the cache block
be fetched.

Modified
(read/write)

CPU write hit
CPU read hit

Fetch
invalidate

CPU write

S
en

d
 w

ri
te

 m
is

s
m

es
sa

g
e

Fe
tch

CPU re
ad

 m
iss

Dat
a w

rit
e-

bac
k

Sen
d in

va
lid

at
e m

es
sa

ge
CPU w

rit
e

hit

Send read miss message

Read miss

CPU read

CPU read hit

CPU write miss

Data write-back
Write miss

CPU
read
miss

Invalidate

Dat
a w

rit
e-

bac
k;

 re
ad

 m
iss

D
at

a
w

ri
te

-b
ac

k

Sen
d w

rit
e m

iss
 m

es
sa

ge

CPU w
rit

e
m

iss

Invalid
Shared

(read only)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

384 ■ Chapter Five Thread-Level Parallelism

The operation of the state transition diagram for a cache block in Figure 5.22
is essentially the same as it is for the snooping case: The states are identical, and
the stimulus is almost identical. The write miss operation, which was broadcast
on the bus (or other network) in the snooping scheme, is replaced by the data
fetch and invalidate operations that are selectively sent by the directory control-
ler. Like the snooping protocol, any cache block must be in the exclusive state
when it is written, and any shared block must be up to date in memory. In many
multicore processors, the outermost level in the processor cache is shared among
the cores (as is the L3 in the Intel i7, the AMD Opteron, and the IBM Power7),
and hardware at that level maintains coherence among the private caches of each
core on the same chip, using either an internal directory or snooping. Thus, the
on-chip multicore coherence mechanism can be used to extend coherence among
a larger set of processors by simply interfacing to the outermost shared cache.
Because this interface is at L3, contention between the processor and coherence
requests is less of an issue, and duplicating the tags could be avoided.

In a directory-based protocol, the directory implements the other half of the
coherence protocol. A message sent to a directory causes two different types of
actions: updating the directory state and sending additional messages to satisfy
the request. The states in the directory represent the three standard states for a
block; unlike in a snooping scheme, however, the directory state indicates the
state of all the cached copies of a memory block, rather than for a single cache
block.

The memory block may be uncached by any node, cached in multiple nodes
and readable (shared), or cached exclusively and writable in exactly one node. In
addition to the state of each block, the directory must track the set of nodes that
have a copy of a block; we use a set called Sharers to perform this function. In
multiprocessors with fewer than 64 nodes (each of which may represent four to
eight times as many processors), this set is typically kept as a bit vector.
Directory requests need to update the set Sharers and also read the set to perform
invalidations.

Figure 5.23 shows the actions taken at the directory in response to mes-
sages received. The directory receives three different requests: read miss, write
miss, and data write-back. The messages sent in response by the directory are
shown in bold, while the updating of the set Sharers is shown in bold italics.
Because all the stimulus messages are external, all actions are shown in gray.
Our simplified protocol assumes that some actions are atomic, such as request-
ing a value and sending it to another node; a realistic implementation cannot
use this assumption.

To understand these directory operations, let’s examine the requests received
and actions taken state by state. When a block is in the uncached state, the copy
in memory is the current value, so the only possible requests for that block are

■ Read miss—The requesting node is sent the requested data from memory, and
the requestor is made the only sharing node. The state of the block is made
shared.

5.4 Distributed Shared-Memory and Directory-Based Coherence ■ 385

■ Write miss—The requesting node is sent the value and becomes the sharing
node. The block is made exclusive to indicate that the only valid copy is
cached. Sharers indicates the identity of the owner.

When the block is in the shared state, the memory value is up to date, so the same
two requests can occur:

■ Read miss—The requesting node is sent the requested data from memory, and
the requesting node is added to the sharing set.

■ Write miss—The requesting node is sent the value. All nodes in the set Shar-
ers are sent invalidate messages, and the Sharers set is to contain the identity
of the requesting node. The state of the block is made exclusive.

When the block is in the exclusive state, the current value of the block is held in a
cache on the node identified by the set Sharers (the owner), so there are three
possible directory requests:

Figure 5.23 The state transition diagram for the directory has the same states and

structure as the transition diagram for an individual cache. All actions are in gray
because they are all externally caused. Bold indicates the action taken by the directory
in response to the request.

S
h

ar
er

s
=

{}

In
va

lid
at

e;
 S

har
er

s =
 {P

};
dat

a v
alu

e r
ep

ly

Data value reply
Sharers = Sharers + {P}

D
at

a
va

lu
e

re
p

ly
;

S
h

ar
er

s
=

{P
}

Data value reply;
Sharers = {P}

Write
miss

Fet
ch

; d
at

a v
alu

e r
ep

ly;
 S

har
er

s =
 S

har
er

s +
 {P

}

Rea
d

m
iss

W
rit

e
m

iss

Uncached

Fetch/invalidate
Data value reply
Sharers = {P}

Read
miss

Data
write-back

Write miss

Read miss

Shared
(read only)

Exclusive
(read/write)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

386 ■ Chapter Five Thread-Level Parallelism

■ Read miss—The owner is sent a data fetch message, which causes the state of
the block in the owner’s cache to transition to shared and causes the owner to
send the data to the directory, where it is written to memory and sent back to
the requesting processor. The identity of the requesting node is added to the
set Sharers, which still contains the identity of the processor that was the
owner (since it still has a readable copy).

■ Data write-back—The owner is replacing the block and therefore must write
it back. This write-back makes the memory copy up to date (the home direc-
tory essentially becomes the owner), the block is now uncached, and the
Sharers set is empty.

■ Write miss—The block has a new owner. A message is sent to the old owner,
causing the cache to invalidate the block and send the value to the directory,
from which it is sent to the requesting node, which becomes the new owner.
Sharers is set to the identity of the new owner, and the state of the block
remains exclusive.

This state transition diagram in Figure 5.23 is a simplification, just as it was in
the snooping cache case. In the case of a directory, as well as a snooping scheme
implemented with a network other than a bus, our protocols will need to deal with
nonatomic memory transactions. Appendix I explores these issues in depth.

The directory protocols used in real multiprocessors contain additional opti-
mizations. In particular, in this protocol when a read or write miss occurs for a
block that is exclusive, the block is first sent to the directory at the home node.
From there it is stored into the home memory and also sent to the original
requesting node. Many of the protocols in use in commercial multiprocessors for-
ward the data from the owner node to the requesting node directly (as well as per-
forming the write-back to the home). Such optimizations often add complexity
by increasing the possibility of deadlock and by increasing the types of messages
that must be handled.

Implementing a directory scheme requires solving most of the same chal-
lenges we discussed for snooping protocols beginning on page 365. There are,
however, new and additional problems, which we describe in Appendix I. In Sec-
tion 5.8, we briefly describe how modern multicores extend coherence beyond a
single chip. The combinations of multichip coherence and multicore coherence
include all four possibilities of snooping/snooping (AMD Opteron), snooping/
directory, directory/snooping, and directory/directory!

Synchronization mechanisms are typically built with user-level software routines
that rely on hardware-supplied synchronization instructions. For smaller multipro-
cessors or low-contention situations, the key hardware capability is an
uninterruptible instruction or instruction sequence capable of atomically retrieving
and changing a value. Software synchronization mechanisms are then constructed

5.5 Synchronization: The Basics

5.5 Synchronization: The Basics ■ 387

using this capability. In this section, we focus on the implementation of lock and
unlock synchronization operations. Lock and unlock can be used straight-
forwardly to create mutual exclusion, as well as to implement more complex syn-
chronization mechanisms.

In high-contention situations, synchronization can become a performance
bottleneck because contention introduces additional delays and because latency
is potentially greater in such a multiprocessor. We discuss how the basic synchro-
nization mechanisms of this section can be extended for large processor counts in
Appendix I.

Basic Hardware Primitives

The key ability we require to implement synchronization in a multiprocessor is a
set of hardware primitives with the ability to atomically read and modify a mem-
ory location. Without such a capability, the cost of building basic synchronization
primitives will be too high and will increase as the processor count increases.
There are a number of alternative formulations of the basic hardware primitives,
all of which provide the ability to atomically read and modify a location, together
with some way to tell if the read and write were performed atomically. These
hardware primitives are the basic building blocks that are used to build a wide
variety of user-level synchronization operations, including things such as locks
and barriers. In general, architects do not expect users to employ the basic hard-
ware primitives, but instead expect that the primitives will be used by system
programmers to build a synchronization library, a process that is often complex
and tricky. Let’s start with one such hardware primitive and show how it can be
used to build some basic synchronization operations.

One typical operation for building synchronization operations is the atomic
exchange, which interchanges a value in a register for a value in memory. To see
how to use this to build a basic synchronization operation, assume that we want
to build a simple lock where the value 0 is used to indicate that the lock is free
and 1 is used to indicate that the lock is unavailable. A processor tries to set the
lock by doing an exchange of 1, which is in a register, with the memory address
corresponding to the lock. The value returned from the exchange instruction is 1
if some other processor had already claimed access and 0 otherwise. In the latter
case, the value is also changed to 1, preventing any competing exchange from
also retrieving a 0.

For example, consider two processors that each try to do the exchange simul-
taneously: This race is broken since exactly one of the processors will perform
the exchange first, returning 0, and the second processor will return 1 when it
does the exchange. The key to using the exchange (or swap) primitive to imple-
ment synchronization is that the operation is atomic: The exchange is indivisible,
and two simultaneous exchanges will be ordered by the write serialization mech-
anisms. It is impossible for two processors trying to set the synchronization vari-
able in this manner to both think they have simultaneously set the variable.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

388 ■ Chapter Five Thread-Level Parallelism

There are a number of other atomic primitives that can be used to implement
synchronization. They all have the key property that they read and update a mem-
ory value in such a manner that we can tell whether or not the two operations
executed atomically. One operation, present in many older multiprocessors, is
test-and-set, which tests a value and sets it if the value passes the test. For exam-
ple, we could define an operation that tested for 0 and set the value to 1, which
can be used in a fashion similar to how we used atomic exchange. Another atomic
synchronization primitive is fetch-and-increment: It returns the value of a mem-
ory location and atomically increments it. By using the value 0 to indicate that the
synchronization variable is unclaimed, we can use fetch-and-increment, just as
we used exchange. There are other uses of operations like fetch-and-increment,
which we will see shortly.

Implementing a single atomic memory operation introduces some challenges,
since it requires both a memory read and a write in a single, uninterruptible
instruction. This requirement complicates the implementation of coherence, since
the hardware cannot allow any other operations between the read and the write,
and yet must not deadlock.

An alternative is to have a pair of instructions where the second instruction
returns a value from which it can be deduced whether the pair of instructions was
executed as if the instructions were atomic. The pair of instructions is effectively
atomic if it appears as if all other operations executed by any processor occurred
before or after the pair. Thus, when an instruction pair is effectively atomic, no
other processor can change the value between the instruction pair.

The pair of instructions includes a special load called a load linked or load
locked and a special store called a store conditional. These instructions are used
in sequence: If the contents of the memory location specified by the load linked
are changed before the store conditional to the same address occurs, then the
store conditional fails. If the processor does a context switch between the two
instructions, then the store conditional also fails. The store conditional is defined
to return 1 if it was successful and a 0 otherwise. Since the load linked returns the
initial value and the store conditional returns 1 only if it succeeds, the following
sequence implements an atomic exchange on the memory location specified by
the contents of R1:

try: MOV R3,R4 ;mov exchange value
LL R2,0(R1);load linked
SC R3,0(R1);store conditional
BEQZR3,try ;branch store fails
MOV R4,R2 ;put load value in R4

At the end of this sequence the contents of R4 and the memory location specified
by R1 have been atomically exchanged (ignoring any effect from delayed
branches). Anytime a processor intervenes and modifies the value in memory
between the LL and SC instructions, the SC returns 0 in R3, causing the code
sequence to try again.

5.5 Synchronization: The Basics ■ 389

An advantage of the load linked/store conditional mechanism is that it can be
used to build other synchronization primitives. For example, here is an atomic
fetch-and-increment:

try: LL R2,0(R1) ;load linked
DADDUIR3,R2,#1 ;increment
SC R3,0(R1) ;store conditional
BEQZ R3,try ;branch store fails

These instructions are typically implemented by keeping track of the address
specified in the LL instruction in a register, often called the link register. If an
interrupt occurs, or if the cache block matching the address in the link register is
invalidated (for example, by another SC), the link register is cleared. The SC
instruction simply checks that its address matches that in the link register. If so,
the SC succeeds; otherwise, it fails. Since the store conditional will fail after
either another attempted store to the load linked address or any exception, care
must be taken in choosing what instructions are inserted between the two instruc-
tions. In particular, only register-register instructions can safely be permitted;
otherwise, it is possible to create deadlock situations where the processor can
never complete the SC. In addition, the number of instructions between the load
linked and the store conditional should be small to minimize the probability that
either an unrelated event or a competing processor causes the store conditional to
fail frequently.

Implementing Locks Using Coherence

Once we have an atomic operation, we can use the coherence mechanisms of a
multiprocessor to implement spin locks—locks that a processor continuously tries
to acquire, spinning around a loop until it succeeds. Spin locks are used when
programmers expect the lock to be held for a very short amount of time and when
they want the process of locking to be low latency when the lock is available.
Because spin locks tie up the processor, waiting in a loop for the lock to become
free, they are inappropriate in some circumstances.

The simplest implementation, which we would use if there were no cache
coherence, would be to keep the lock variables in memory. A processor could
continually try to acquire the lock using an atomic operation, say, atomic
exchange from page 387, and test whether the exchange returned the lock as
free. To release the lock, the processor simply stores the value 0 to the lock.
Here is the code sequence to lock a spin lock whose address is in R1 using an
atomic exchange:

DADDUIR2,R0,#1
lockit: EXCHR2,0(R1) ;atomic exchange

BNEZR2,lockit ;already locked?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

390 ■ Chapter Five Thread-Level Parallelism

If our multiprocessor supports cache coherence, we can cache the locks
using the coherence mechanism to maintain the lock value coherently. Cach-
ing locks has two advantages. First, it allows an implementation where the
process of “spinning” (trying to test and acquire the lock in a tight loop) could
be done on a local cached copy rather than requiring a global memory access
on each attempt to acquire the lock. The second advantage comes from the
observation that there is often locality in lock accesses; that is, the processor
that used the lock last will use it again in the near future. In such cases, the
lock value may reside in the cache of that processor, greatly reducing the time
to acquire the lock.

Obtaining the first advantage—being able to spin on a local cached copy rather
than generating a memory request for each attempt to acquire the lock—requires a
change in our simple spin procedure. Each attempt to exchange in the loop directly
above requires a write operation. If multiple processors are attempting to get the
lock, each will generate the write. Most of these writes will lead to write misses,
since each processor is trying to obtain the lock variable in an exclusive state.

Thus, we should modify our spin lock procedure so that it spins by doing
reads on a local copy of the lock until it successfully sees that the lock is
available. Then it attempts to acquire the lock by doing a swap operation. A
processor first reads the lock variable to test its state. A processor keeps read-
ing and testing until the value of the read indicates that the lock is unlocked.
The processor then races against all other processes that were similarly “spin
waiting” to see who can lock the variable first. All processes use a swap
instruction that reads the old value and stores a 1 into the lock variable. The
single winner will see the 0, and the losers will see a 1 that was placed there
by the winner. (The losers will continue to set the variable to the locked
value, but that doesn’t matter.) The winning processor executes the code after
the lock and, when finished, stores a 0 into the lock variable to release the
lock, which starts the race all over again. Here is the code to perform this spin
lock (remember that 0 is unlocked and 1 is locked):

lockit: LDR2,0(R1) ;load of lock
BNEZR2,lockit ;not available-spin
DADDUIR2,R0,#1 ;load locked value
EXCHR2,0(R1) ;swap
BNEZR2,lockit ;branch if lock wasn’t 0

Let’s examine how this “spin lock” scheme uses the cache coherence mecha-
nisms. Figure 5.24 shows the processor and bus or directory operations for multi-
ple processes trying to lock a variable using an atomic swap. Once the processor
with the lock stores a 0 into the lock, all other caches are invalidated and must
fetch the new value to update their copy of the lock. One such cache gets the
copy of the unlocked value (0) first and performs the swap. When the cache miss
of other processors is satisfied, they find that the variable is already locked, so
they must return to testing and spinning.

5.5 Synchronization: The Basics ■ 391

This example shows another advantage of the load linked/store conditional
primitives: The read and write operations are explicitly separated. The load
linked need not cause any bus traffic. This fact allows the following simple code
sequence, which has the same characteristics as the optimized version using
exchange (R1 has the address of the lock, the LL has replaced the LD, and the SC
has replaced the EXCH):

lockit: LLR2,0(R1) ;load linked
BNEZR2,lockit ;not available-spin
DADDUIR2,R0,#1 ;locked value
SCR2,0(R1) ;store
BEQZR2,lockit ;branch if store fails

The first branch forms the spinning loop; the second branch resolves races when
two processors see the lock available simultaneously.

Step P0 P1 P2
Coherence state of
lock at end of step Bus/directory activity

1 Has lock Begins spin, testing if
lock = 0

Begins spin, testing
if lock = 0

Shared Cache misses for P1 and P2
satisfied in either order. Lock
state becomes shared.

2 Set lock to 0 (Invalidate received) (Invalidate received) Exclusive (P0) Write invalidate of lock
variable from P0.

3 Cache miss Cache miss Shared Bus/directory services P2
cache miss; write-back
from P0; state shared.

4 (Waits while bus/
directory busy)

Lock = 0 test
succeeds

Shared Cache miss for P2 satisfied

5 Lock = 0 Executes swap, gets
cache miss

Shared Cache miss for P1 satisfied

6 Executes swap,
gets cache miss

Completes swap:
returns 0 and sets
lock = 1

Exclusive (P2) Bus/directory services P2
cache miss; generates
invalidate; lock is exclusive.

7 Swap completes and
returns 1, and sets
lock = 1

Enter critical section Exclusive (P1) Bus/directory services P1
cache miss; sends invalidate
and generates write-back
from P2.

8 Spins, testing if
lock = 0

None

Figure 5.24 Cache coherence steps and bus traffic for three processors, P0, P1, and P2. This figure assumes write
invalidate coherence. P0 starts with the lock (step 1), and the value of the lock is 1 (i.e., locked); it is initially exclusive
and owned by P0 before step 1 begins. P0 exits and unlocks the lock (step 2). P1 and P2 race to see which reads the
unlocked value during the swap (steps 3 to 5). P2 wins and enters the critical section (steps 6 and 7), while P1’s
attempt fails so it starts spin waiting (steps 7 and 8). In a real system, these events will take many more than 8 clock
ticks, since acquiring the bus and replying to misses take much longer. Once step 8 is reached, the process can repeat
with P2, eventually getting exclusive access and setting the lock to 0.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

392 ■ Chapter Five Thread-Level Parallelism

Cache coherence ensures that multiple processors see a consistent view of mem-
ory. It does not answer the question of how consistent the view of memory must
be. By “how consistent” we are really asking when must a processor see a value
that has been updated by another processor? Since processors communicate
through shared variables (used both for data values and for synchronization), the
question boils down to this: In what order must a processor observe the data
writes of another processor? Since the only way to “observe the writes of another
processor” is through reads, the question becomes what properties must be
enforced among reads and writes to different locations by different processors?

Although the question of how consistent memory must be seems simple, it is
remarkably complicated, as we can see with a simple example. Here are two code
segments from processes P1 and P2, shown side by side:

P1: A = 0; P2: B = 0;

A = 1; B = 1;

L1: if (B == 0)... L2: if (A == 0)...

Assume that the processes are running on different processors, and that locations
A and B are originally cached by both processors with the initial value of 0. If
writes always take immediate effect and are immediately seen by other proces-
sors, it will be impossible for both if statements (labeled L1 and L2) to evaluate
their conditions as true, since reaching the if statement means that either A or B
must have been assigned the value 1. But suppose the write invalidate is delayed,
and the processor is allowed to continue during this delay. Then, it is possible that
both P1 and P2 have not seen the invalidations for B and A (respectively) before
they attempt to read the values. The question now is should this behavior be
allowed, and, if so, under what conditions?

The most straightforward model for memory consistency is called sequential
consistency. Sequential consistency requires that the result of any execution be
the same as if the memory accesses executed by each processor were kept in
order and the accesses among different processors were arbitrarily interleaved.
Sequential consistency eliminates the possibility of some nonobvious execution
in the previous example because the assignments must be completed before the if
statements are initiated.

The simplest way to implement sequential consistency is to require a proces-
sor to delay the completion of any memory access until all the invalidations
caused by that access are completed. Of course, it is equally effective to delay the
next memory access until the previous one is completed. Remember that memory
consistency involves operations among different variables: The two accesses that
must be ordered are actually to different memory locations. In our example, we
must delay the read of A or B (A == 0 or B == 0) until the previous write has

5.6 Models of Memory Consistency: An Introduction

5.6 Models of Memory Consistency: An Introduction ■ 393

completed (B = 1 or A = 1). Under sequential consistency, we cannot, for example,
simply place the write in a write buffer and continue with the read.

Although sequential consistency presents a simple programming paradigm, it
reduces potential performance, especially in a multiprocessor with a large num-
ber of processors or long interconnect delays, as we can see in the following
example.

Example Suppose we have a processor where a write miss takes 50 cycles to establish
ownership, 10 cycles to issue each invalidate after ownership is established, and
80 cycles for an invalidate to complete and be acknowledged once it is issued.
Assuming that four other processors share a cache block, how long does a write
miss stall the writing processor if the processor is sequentially consistent?
Assume that the invalidates must be explicitly acknowledged before the coher-
ence controller knows they are completed. Suppose we could continue executing
after obtaining ownership for the write miss without waiting for the invalidates;
how long would the write take?

Answer When we wait for invalidates, each write takes the sum of the ownership time plus
the time to complete the invalidates. Since the invalidates can overlap, we need
only worry about the last one, which starts 10 + 10 + 10 + 10 = 40 cycles after
ownership is established. Hence, the total time for the write is 50 + 40 + 80 = 170
cycles. In comparison, the ownership time is only 50 cycles. With appropriate
write buffer implementations, it is even possible to continue before ownership is
established.

To provide better performance, researchers and architects have explored two
different routes. First, they developed ambitious implementations that preserve
sequential consistency but use latency-hiding techniques to reduce the penalty;
we discuss these in Section 5.7. Second, they developed less restrictive memory
consistency models that allow for faster hardware. Such models can affect how
the programmer sees the multiprocessor, so before we discuss these less restric-
tive models, let’s look at what the programmer expects.

The Programmer’s View

Although the sequential consistency model has a performance disadvantage,
from the viewpoint of the programmer it has the advantage of simplicity. The
challenge is to develop a programming model that is simple to explain and yet
allows a high-performance implementation.

One such programming model that allows us to have a more efficient imple-
mentation is to assume that programs are synchronized. A program is synchro-
nized if all accesses to shared data are ordered by synchronization operations. A
data reference is ordered by a synchronization operation if, in every possible

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

394 ■ Chapter Five Thread-Level Parallelism

execution, a write of a variable by one processor and an access (either a read or a
write) of that variable by another processor are separated by a pair of synchroni-
zation operations, one executed after the write by the writing processor and one
executed before the access by the second processor. Cases where variables may
be updated without ordering by synchronization are called data races because the
execution outcome depends on the relative speed of the processors, and, like
races in hardware design, the outcome is unpredictable, which leads to another
name for synchronized programs: data-race-free.

As a simple example, consider a variable being read and updated by two dif-
ferent processors. Each processor surrounds the read and update with a lock and
an unlock, both to ensure mutual exclusion for the update and to ensure that the
read is consistent. Clearly, every write is now separated from a read by the other
processor by a pair of synchronization operations: one unlock (after the write)
and one lock (before the read). Of course, if two processors are writing a variable
with no intervening reads, then the writes must also be separated by synchroniza-
tion operations.

It is a broadly accepted observation that most programs are synchronized.
This observation is true primarily because if the accesses were unsynchronized,
the behavior of the program would likely be unpredictable because the speed of
execution would determine which processor won a data race and thus affect the
results of the program. Even with sequential consistency, reasoning about such
programs is very difficult.

Programmers could attempt to guarantee ordering by constructing their own
synchronization mechanisms, but this is extremely tricky, can lead to buggy pro-
grams, and may not be supported architecturally, meaning that they may not
work in future generations of the multiprocessor. Instead, almost all program-
mers will choose to use synchronization libraries that are correct and optimized
for the multiprocessor and the type of synchronization.

Finally, the use of standard synchronization primitives ensures that even if
the architecture implements a more relaxed consistency model than sequential
consistency, a synchronized program will behave as if the hardware implemented
sequential consistency.

Relaxed Consistency Models: The Basics

The key idea in relaxed consistency models is to allow reads and writes to com-
plete out of order, but to use synchronization operations to enforce ordering, so
that a synchronized program behaves as if the processor were sequentially con-
sistent. There are a variety of relaxed models that are classified according to what
read and write orderings they relax. We specify the orderings by a set of rules of
the form X→Y, meaning that operation X must complete before operation Y is
done. Sequential consistency requires maintaining all four possible orderings:
R→W, R→R, W→R, and W→W. The relaxed models are defined by which of
these four sets of orderings they relax:

5.7 Crosscutting Issues ■ 395

1. Relaxing the W→R ordering yields a model known as total store ordering or
processor consistency. Because this ordering retains ordering among writes,
many programs that operate under sequential consistency operate under this
model, without additional synchronization.

2. Relaxing the W→W ordering yields a model known as partial store order.

3. Relaxing the R→W and R→R orderings yields a variety of models including
weak ordering, the PowerPC consistency model, and release consistency,
depending on the details of the ordering restrictions and how synchronization
operations enforce ordering.

By relaxing these orderings, the processor can possibly obtain significant perfor-
mance advantages. There are, however, many complexities in describing relaxed
consistency models, including the advantages and complexities of relaxing dif-
ferent orders, defining precisely what it means for a write to complete, and decid-
ing when processors can see values that the processor itself has written. For more
information about the complexities, implementation issues, and performance
potential from relaxed models, we highly recommend the excellent tutorial by
Adve and Gharachorloo [1996].

Final Remarks on Consistency Models

At the present time, many multiprocessors being built support some sort of relaxed
consistency model, varying from processor consistency to release consistency.
Since synchronization is highly multiprocessor specific and error prone, the expec-
tation is that most programmers will use standard synchronization libraries and will
write synchronized programs, making the choice of a weak consistency model
invisible to the programmer and yielding higher performance.

An alternative viewpoint, which we discuss more extensively in the next sec-
tion, argues that with speculation much of the performance advantage of relaxed
consistency models can be obtained with sequential or processor consistency.

A key part of this argument in favor of relaxed consistency revolves around
the role of the compiler and its ability to optimize memory access to potentially
shared variables; this topic is also discussed in Section 5.7.

Because multiprocessors redefine many system characteristics (e.g., performance
assessment, memory latency, and the importance of scalability), they introduce
interesting design problems that cut across the spectrum, affecting both hardware
and software. In this section, we give several examples related to the issue of
memory consistency. We then examine the performance gained when multi-
threading is added to multiprocessing.

5.7 Crosscutting Issues

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

396 ■ Chapter Five Thread-Level Parallelism

Compiler Optimization and the Consistency Model

Another reason for defining a model for memory consistency is to specify the
range of legal compiler optimizations that can be performed on shared data. In
explicitly parallel programs, unless the synchronization points are clearly defined
and the programs are synchronized, the compiler cannot interchange a read and a
write of two different shared data items because such transformations might
affect the semantics of the program. This prevents even relatively simple optimi-
zations, such as register allocation of shared data, because such a process usually
interchanges reads and writes. In implicitly parallelized programs—for example,
those written in High Performance FORTRAN (HPF)—programs must be syn-
chronized and the synchronization points are known, so this issue does not arise.
Whether compilers can get significant advantage from more relaxed consistency
models remains an open question, both from a research viewpoint and from a
practical viewpoint, where the lack of uniform models is likely to retard progress
on deploying compilers.

Using Speculation to Hide Latency in
Strict Consistency Models

As we saw in Chapter 3, speculation can be used to hide memory latency. It can
also be used to hide latency arising from a strict consistency model, giving much
of the benefit of a relaxed memory model. The key idea is for the processor to use
dynamic scheduling to reorder memory references, letting them possibly execute
out of order. Executing the memory references out of order may generate viola-
tions of sequential consistency, which might affect the execution of the program.
This possibility is avoided by using the delayed commit feature of a speculative
processor. Assume the coherency protocol is based on invalidation. If the proces-
sor receives an invalidation for a memory reference before the memory reference
is committed, the processor uses speculation recovery to back out of the compu-
tation and restart with the memory reference whose address was invalidated.

If the reordering of memory requests by the processor yields an execution
order that could result in an outcome that differs from what would have been seen
under sequential consistency, the processor will redo the execution. The key to
using this approach is that the processor need only guarantee that the result
would be the same as if all accesses were completed in order, and it can achieve
this by detecting when the results might differ. The approach is attractive because
the speculative restart will rarely be triggered. It will only be triggered when
there are unsynchronized accesses that actually cause a race [Gharachorloo,
Gupta, and Hennessy 1992].

Hill [1998] advocated the combination of sequential or processor consistency
together with speculative execution as the consistency model of choice. His argu-
ment has three parts. First, an aggressive implementation of either sequential con-
sistency or processor consistency will gain most of the advantage of a more relaxed
model. Second, such an implementation adds very little to the implementation cost

5.7 Crosscutting Issues ■ 397

of a speculative processor. Third, such an approach allows the programmer to rea-
son using the simpler programming models of either sequential or processor con-
sistency. The MIPS R10000 design team had this insight in the mid-1990s and
used the R10000’s out-of-order capability to support this type of aggressive
implementation of sequential consistency.

One open question is how successful compiler technology will be in optimiz-
ing memory references to shared variables. The state of optimization technology
and the fact that shared data are often accessed via pointers or array indexing
have limited the use of such optimizations. If this technology became available
and led to significant performance advantages, compiler writers would want to be
able to take advantage of a more relaxed programming model.

Inclusion and Its Implementation

All multiprocessors use multilevel cache hierarchies to reduce both the demand
on the global interconnect and the latency of cache misses. If the cache also pro-
vides multilevel inclusion—every level of cache hierarchy is a subset of the level
further away from the processor—then we can use the multilevel structure to re-
duce the contention between coherence traffic and processor traffic that occurs
when snoops and processor cache accesses must contend for the cache. Many
multiprocessors with multilevel caches enforce the inclusion property, although
recent multiprocessors with smaller L1 caches and different block sizes have
sometimes chosen not to enforce inclusion. This restriction is also called the sub-
set property because each cache is a subset of the cache below it in the hierarchy.

At first glance, preserving the multilevel inclusion property seems trivial.
Consider a two-level example: Any miss in L1 either hits in L2 or generates a
miss in L2, causing it to be brought into both L1 and L2. Likewise, any invalidate
that hits in L2 must be sent to L1, where it will cause the block to be invalidated
if it exists.

The catch is what happens when the block sizes of L1 and L2 are different.
Choosing different block sizes is quite reasonable, since L2 will be much larger and
have a much longer latency component in its miss penalty, and thus will want to use
a larger block size. What happens to our “automatic” enforcement of inclusion
when the block sizes differ? A block in L2 represents multiple blocks in L1, and a
miss in L2 causes the replacement of data that is equivalent to multiple L1 blocks.
For example, if the block size of L2 is four times that of L1, then a miss in L2 will
replace the equivalent of four L1 blocks. Let’s consider a detailed example.

Example Assume that L2 has a block size four times that of L1. Show how a miss for an
address that causes a replacement in L1 and L2 can lead to violation of the inclu-
sion property.

Answer Assume that L1 and L2 are direct mapped and that the block size of L1 is b bytes
and the block size of L2 is 4b bytes. Suppose L1 contains two blocks with starting

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

398 ■ Chapter Five Thread-Level Parallelism

addresses x and x + b and that x mod 4b = 0, meaning that x also is the starting
address of a block in L2; then that single block in L2 contains the L1 blocks x, x + b,
x + 2b, and x + 3b. Suppose the processor generates a reference to block y that maps
to the block containing x in both caches and hence misses. Since L2 missed, it
fetches 4b bytes and replaces the block containing x, x + b, x + 2b, and x + 3b, while
L1 takes b bytes and replaces the block containing x. Since L1 still contains x + b,
but L2 does not, the inclusion property no longer holds.

To maintain inclusion with multiple block sizes, we must probe the higher
levels of the hierarchy when a replacement is done at the lower level to ensure
that any words replaced in the lower level are invalidated in the higher-level
caches; different levels of associativity create the same sort of problems. In 2011,
designers still appear to be split on the enforcement of inclusion. Baer and Wang
[1988] described the advantages and challenges of inclusion in detail. The Intel
i7 uses inclusion for L3, meaning that L3 always includes the contents of all of
L2 and L1. This allows them to implement a straightforward directory scheme at
L3 and to minimize the interference from snooping on L1 and L2 to those cir-
cumstances where the directory indicates that L1 or L2 have a cached copy. The
AMD Opteron, in contrast, makes L2 inclusive of L1 but has no such restriction
for L3. They use a snooping protocol, but only needs to snoop at L2 unless there
is a hit, in which case a snoop is sent to L1.

Performance Gains from Using Multiprocessing and
Multithreading

In this section, we look at two different studies of the effectiveness of using
multithreading on a multicore processor; we will return to this topic in the next
section, when we examine the performance of the Intel i7. Our two studies are
based on the Sun T1, which we introduced in Chapter 3, and the IBM Power5
processor.

We look at the performance of the T1 multicore using the same three server-
oriented benchmarks—TPC-C, SPECJBB (the SPEC Java Business Benchmark),
and SPECWeb99—that we examined in Chapter 3. The SPECWeb99 benchmark
is only run on a four-core version of T1 because it cannot scale to use the full 32
threads of an eight-core processor; the other two benchmarks are run with eight
cores and four threads each for a total of 32 threads. Figure 5.25 shows the per-
thread and per-core CPIs and the effective CPI and instructions per clock (IPC)
for the eight-core T1.

The IBM Power 5 is a dual-core that supports simultaneous multithreading
(SMT). To examine the performance of multithreading in a multiprocessor, mea-
surements were made on an IBM system with eight Power 5 processors, using only
one core on each one. Figure 5.26 shows the speedup for an eight-processor
Power5 multiprocessor, with and without SMT, for the SPECRate2000 bench-
marks, as described in the caption. On average, the SPECintRate is 1.23 times
faster, while the SPECfpRate is 1.16 times faster. Note that a few floating-point

5.7 Crosscutting Issues ■ 399

Benchmark Per-thread CPI Per-core CPI Effective CPI for eight cores Effective IPC for eight cores

TPC-C 7.2 1.8 0.225 4.4

SPECJBB 5.6 1.40 0.175 5.7

SPECWeb99 6.6 1.65 0.206 4.8

Figure 5.25 The per-thread CPI, the per-core CPI, the effective eight-core CPI, and the effective IPC (inverse of

CPI) for the eight-core Sun T1 processor.

Figure 5.26 A comparison of SMT and single-thread (ST) performance on the eight-processor IBM eServer p5

575. Note that the y-axis starts at a speedup of 0.9, a performance loss. Only one processor in each Power5 core is
active, which should slightly improve the results from SMT by decreasing destructive interference in the memory
system. The SMT results are obtained by creating 16 user threads, while the ST results use only eight threads; with
only one thread per processor, the Power5 is switched to single-threaded mode by the OS. These results were col-
lected by John McCalpin of IBM. As we can see from the data, the standard deviation of the results for the SPECfpRate
is higher than for SPECintRate (0.13 versus 0.07), indicating that the SMT improvement for FP programs is likely to
vary widely.

wupwise
swim
mgrid
applu
mesa
galgel

art
equake
facerec
ammp
lucas

fma3d
sixtrack

apptu

gzip
vpr
gcc
mcf

crafty
parser

eon
perlbmk

gap
vortex
bzip2
twolf

0.9 1.0 1.1 1.2
Speedup

1.3 1.4 1.5

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

400 ■ Chapter Five Thread-Level Parallelism

benchmarks experience a slight decrease in performance in SMT mode, with the
maximum reduction in speedup being 0.93. Although one might expect that SMT
would do a better job of hiding the higher miss rates of the SPECFP benchmarks, it
appears that limits in the memory system are encountered when running in SMT
mode on such benchmarks.

In 2011, multicore is a theme of all new processors. The implementations vary
widely, as does their support for larger multichip multiprocessors. In this section,
we examine the design of four different multicore processors and some perfor-
mance characteristics.

Figure 5.27 shows the key characteristics of four multicore processors
designed for server applications. The Intel Xeon is based on the same design as
the i7, but it has more cores, a slightly slower clock rate (power is the limitation),
and a larger L3 cache. The AMD Opteron and desktop Phenom share the same
basic core, while the SUN T2 is related to the SUN T1 we encountered in Chapter
3. The Power7 is an extension of the Power5 with more cores and bigger caches.

First, we compare the performance and performance scalability of three of
these multicore processors (omitting the AMD Opteron where insufficient data
are available) when configured as multichip multiprocessors.

In addition to how these three microprocessors differ in their emphasis on
ILP versus TLP, there are significant differences in their target markets. Thus, our
focus will be less on comparative absolute performance and more on scalability
of performance as additional processors are added. After we examine this data,
we will examine the multicore performance of the Intel Core i7 in more detail.

We show the performance for three benchmark sets: SPECintRate,
SPECfpRate, and SPECjbb2005. The SPECRate benchmarks, which we clump
together, illustrate the performance of these multiprocessors for request-level par-
allelism, since it is characterized by the parallel and overlapped execution of inde-
pendent programs. In particular, nothing other than systems services is shared.
SPECjbb2005 is a scalable Java business benchmark that models a three-tier
client/server system, with the focus on the server, and is similar to the benchmark
used in SPECPower, which we examined in Chapter 1. The benchmark exercises
the implementations of the Java Virtual Machine, just in time compiler, garbage
collection, threads, and some aspects of the operating system; it also tests scalabil-
ity of multiprocessor systems.

Figure 5.28 shows the performance of the SPECRate CPU benchmarks as
core counts are increased. Nearly linear speedup is achieved as the number of
processor chips and hence the core count is increased.

Figure 5.29 shows similar data for the SPECjbb2005 benchmark. The trade-
offs between exploiting more ILP and focusing on just TLP are complex and are
highly workload dependent. SPECjbb2005 is a workload that scales up as addi-
tional processors are added, holding the time, rather than the problem size,

5.8 Putting It All Together: Multicore Processors
and Their Performance

5.8 Putting It All Together: Multicore Processors and Their Performance ■ 401

constant. In this case, there appears to be ample parallelism to get linear speedup
through 64 cores. We will return to this topic in the concluding remarks, but first
let’s take a more detailed look at the performance of the Intel Core i7 in a single-
chip, four-core mode.

Performance and Energy Efficiency of the Intel Core i7
Multicore

In this section, we examine the performance of the i7 on the same two groups of
benchmarks we considered in Chapter 3: the parallel Java benchmarks and the
parallel PARSEC benchmarks (described in detail in Figure 3.34 on page 231).

Feature AMD Opteron 8439 IBM Power 7 Intel Xenon 7560 Sun T2

Transistors 904 M 1200 M 2300 M 500 M

Power (nominal) 137 W 140 W 130 W 95 W

Max. cores/chip 6 8 8 8

Multithreading No SMT SMT Fine-grained

Threads/core 1 4 2 8

Instruction issue/clock 3 from one thread 6 from one thread 4 from one thread 2 from 2 threads

Clock rate 2.8 GHz 4.1 GHz 2.7 GHz 1.6 GHz

Outermost cache L3; 6 MB; shared L3; 32 MB (using
embedded DRAM);

shared or private/core

L3; 24 MB; shared L2; 4 MB; shared

Inclusion No, although L2 is
superset of L1

Yes, L3 superset Yes, L3 superset Yes

Multicore coherence
protocol

MOESI Extended MESI with
behavioral and locality

hints (13-state
protocol)

MESIF MOESI

Multicore coherence
implementation

Snooping Directory at L3 Directory at L3 Directory at L2

Extended coherence
support

Up to 8 processor
chips can be

connected with
HyperTransport in a
ring, using directory
or snooping. System

is NUMA.

Up to 32 processor
chips can be connected

with the SMP links.
Dynamic distributed
directory structure.
Memory access is

symmetric outside of an
8-core chip.

Up to 8 processor
cores can be

implemented via
Quickpath

Interconnect. Support
for directories with

external logic.

Implemented via four
coherence links per

processor that can be
used to snoop. Up to

two chips directly
connect, and up to
four connect using

external ASICs.

Figure 5.27 Summary of the characteristics of four recent high-end multicore processors (2010 releases)

designed for servers. The table includes the highest core count versions of these processors; there are versions with
lower core counts and higher clock rates for several of these processors. The L3 in the IBM Power7 can be all shared
or partitioned into faster private regions dedicated to individual cores. We include only single-chip implementations
of multicores.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

402 ■ Chapter Five Thread-Level Parallelism

First, we look at the multicore performance and scaling versus a single-core with-
out the use of SMT. Then, we combine both the multicore and SMT capability.
All the data in this section, like that in the earlier i7 SMT evaluation (Chapter 3,
Section 3.13) come from Esmaeilzadeh et al. [2011]. The dataset is the same as
that used earlier (see Figure 3.34 on page 231), except that the Java benchmarks
tradebeans and pjbb2005 are removed (leaving only the five scalable Java bench-
marks); tradebeans and pjbb2005 never achieve speedup above 1.55 even with
four cores and a total of eight threads, and thus are not appropriate for evaluating
more cores.

Figure 5.30 plots both the speedup and energy efficiency of the Java and
PARSEC benchmarks without the use of SMT. Showing energy efficiency means
we are plotting the ratio of the energy consumed by the two- or four-core run by
the energy consumed by the single-core run; thus, higher energy efficiency is
better, with a value of 1.0 being the break-even point. The unused cores in all
cases were in deep sleep mode, which minimized their power consumption by

Figure 5.28 The performance on the SPECRate benchmarks for three multicore processors as the number of
processor chips is increased. Notice for this highly parallel benchmark, nearly linear speedup is achieved. Both plots
are on a log-log scale, so linear speedup is a straight line.

Figure 5.29 The performance on the SPECjbb2005 benchmark for three multicore
processors as the number of processor chips is increased. Notice for this parallel
benchmark, nearly linear speedup is achieved.

16 32 64
64

128

256

512

1024

2048

4096

8

P
er

fo
rm

an
ce

Cores

64

256

1024

4096

8 16 32 64

Total cores

SPECintRate SPECfpRate

P
er

fo
rm

an
ce

UltraSPARC T2
Xeon X7560
Power7

128 K

512 K

2048 K

8192 K

8 16 32 64

Cores

P
er

fo
rm

an
ce

UltraSPARC T2
Xeon X7560
Power7

5.8 Putting It All Together: Multicore Processors and Their Performance ■ 403

essentially turning them off. In comparing the data for the single-core and multi-
core benchmarks, it is important to remember that the full energy cost of the L3
cache and memory interface is paid in the single-core (as well as the multicore)
case. This fact increases the likelihood that energy consumption will improve for
applications that scale reasonably well. Harmonic mean is used to summarize
results with the implication described in the caption.

As the figure shows, the PARSEC benchmarks get better speedup than the
Java benchmarks, achieving 76% speedup efficiency (i.e., actual speedup divided
by processor count) on four cores, while the Java benchmarks achieve 67%
speedup efficiency on four cores. Although this observation is clear from the
data, analyzing why this difference exists is difficult. For example, it is quite pos-
sible that Amdahl’s law effects have reduced the speedup for the Java workload.
In addition, interaction between the processor architecture and the application,
which affects issues such as the cost of synchronization or communication, may
also play a role. In particular, well-parallelized applications, such as those in
PARSEC, sometimes benefit from an advantageous ratio between computation
and communication, which reduces the dependence on communications costs.
(See Appendix I.)

These differences in speedup translate to differences in energy efficiency.
For example, the PARSEC benchmarks actually slightly improve energy effi-
ciency over the single-core version; this result may be significantly affected

Figure 5.30 This chart shows the speedup for two- and four-core executions of the

parallel Java and PARSEC workloads without SMT. These data were collected by
Esmaeilzadeh et al. [2011] using the same setup as described in Chapter 3. Turbo Boost
is turned off. The speedup and energy efficiency are summarized using harmonic
mean, implying a workload where the total time spent running each 2p benchmark is
equivalent.

1

3.5 1.06

1.04

1.02

1.00

0.98

i7
 2

P
 a

nd
 4

P
 e

ne
rg

y
ef

fic
ie

nc
y

i7
 2

P
 a

nd
 4

P
 s

pe
ed

up

0.96

0.94

0.92

0.90

0.88

0.86

3

2.5

2

1.5

Java speedup
PARSEC speedup
Java energy efficiency
PARSEC energy efficiency

2P 4P

Cores

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

404 ■ Chapter Five Thread-Level Parallelism

by the fact that the L3 cache is more effectively used in the multicore runs
than in the single-core case and the energy cost is identical in both cases.
Thus, for the PARSEC benchmarks, the multicore approach achieves what
designers hoped for when they switched from an ILP-focused design to a
multicore design; namely, it scales performance as fast or faster than scaling
power, resulting in constant or even improved energy efficiency. In the Java
case, we see that neither the two- or four-core runs break even in energy effi-
ciency due to the lower speedup levels of the Java workload (although Java
energy efficiency for the 2p run is the same as for PARSEC!). The energy
efficiency in the four-core Java case is reasonably high (0.94). It is likely that
an ILP-centric processor would need even more power to achieve a compara-
ble speedup on either the PARSEC or Java workload. Thus, the TLP-centric
approach is also certainly better than the ILP-centric approach for improving
performance for these applications.

Putting Multicore and SMT Together

Finally, we consider the combination of multicore and multithreading by mea-
suring the two benchmark sets for two to four processors and one to two threads
(a total of four data points and up to eight threads). Figure 5.31 shows the

Figure 5.31 This chart shows the speedup for two- and four-core executions of the
parallel Java and PARSEC workloads both with and without SMT. Remember that the
results above vary in the number of threads from two to eight, and reflect both archi-
tectural effects and application characteristics. Harmonic mean is used to summarize
results, as discussed in the caption of Figure 5.30.

1
2Px1T 2Px2T 4Px1T 4Px2T

1.5

4 1.20

1.15

1.10

1.05

i7
 2

P
x1

T
, 2

P
x2

T
, 4

P
x1

T
, a

nd
 4

P
x2

T
 s

pe
ed

up

i7
 2

P
x1

T
, 2

P
x2

T
, 4

P
x1

T
, a

nd
 4

P
x2

T
 e

ne
rg

y
ef

fic
ie

nc
y

1.00

0.95

0.90

0.85

0.80

3.5

3

2.5

2

Java speedup
PARSEC speedup
Java energy efficiency
PARSEC energy efficiency

5.9 Fallacies and Pitfalls ■ 405

speedup and energy efficiency obtained on the Intel i7 when the processor count
is two or four and SMT is or is not employed, using harmonic mean to summa-
rize the two benchmarks sets. Clearly, SMT can add to performance when there
is sufficient thread-level parallelism available even in the multicore situation.
For example, in the four-core, no-SMT case the speedup efficiencies were 67%
and 76% for Java and PARSEC, respectively. With SMT on four cores, those
ratios are an astonishing 83% and 97%!

Energy efficiency presents a slightly different picture. In the case of PAR-
SEC, speedup is essentially linear for the four-core SMT case (eight threads), and
power scales more slowly, resulting in an energy efficiency of 1.1 for that case.
The Java situation is more complex; energy efficiency peaks for the two-core
SMT (four-thread) run at 0.97 and drops to 0.89 in the four-core SMT (8-thread)
run. It seems highly likely that the Java benchmarks are encountering Amdahl’s
law effects when more than four threads are deployed. As some architects have
observed, multicore does shift more responsibility for performance (and hence
energy efficiency) to the programmer, and the results for the Java workload
certainly bear this out.

Given the lack of maturity in our understanding of parallel computing, there are
many hidden pitfalls that will be uncovered either by careful designers or by
unfortunate ones. Given the large amount of hype that has surrounded multi-
processors over the years, common fallacies abound. We have included a selec-
tion of these.

Pitfall Measuring performance of multiprocessors by linear speedup versus execution time.

“Mortar shot” graphs—plotting performance versus number of processors, show-
ing linear speedup, a plateau, and then a falling off—have long been used to
judge the success of parallel processors. Although speedup is one facet of a paral-
lel program, it is not a direct measure of performance. The first question is the
power of the processors being scaled: A program that linearly improves perfor-
mance to equal 100 Intel Atom processors (the low-end processor used for net-
books) may be slower than the version run on an eight-core Xeon. Be especially
careful of floating-point-intensive programs; processing elements without hard-
ware assist may scale wonderfully but have poor collective performance.

Comparing execution times is fair only if you are comparing the best algo-
rithms on each computer. Comparing the identical code on two computers may
seem fair, but it is not; the parallel program may be slower on a uniprocessor than
a sequential version. Developing a parallel program will sometimes lead to algo-
rithmic improvements, so comparing the previously best-known sequential pro-
gram with the parallel code—which seems fair—will not compare equivalent

5.9 Fallacies and Pitfalls

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

406 ■ Chapter Five Thread-Level Parallelism

algorithms. To reflect this issue, the terms relative speedup (same program) and
true speedup (best program) are sometimes used.

Results that suggest superlinear performance, when a program on n pro-
cessors is more than n times faster than the equivalent uniprocessor, may indicate
that the comparison is unfair, although there are instances where “real” superlin-
ear speedups have been encountered. For example, some scientific applications
regularly achieve superlinear speedup for small increases in processor count (2 or
4 to 8 or 16). These results usually arise because critical data structures that do
not fit into the aggregate caches of a multiprocessor with 2 or 4 processors fit into
the aggregate cache of a multiprocessor with 8 or 16 processors.

In summary, comparing performance by comparing speedups is at best
tricky and at worst misleading. Comparing the speedups for two different mul-
tiprocessors does not necessarily tell us anything about the relative perfor-
mance of the multiprocessors. Even comparing two different algorithms on the
same multiprocessor is tricky, since we must use true speedup, rather than rela-
tive speedup, to obtain a valid comparison.

Fallacy Amdahl’s law doesn’t apply to parallel computers.

In 1987, the head of a research organization claimed that Amdahl’s law (see
Section 1.9) had been broken by an MIMD multiprocessor. This statement
hardly meant, however, that the law has been overturned for parallel comput-
ers; the neglected portion of the program will still limit performance. To
understand the basis of the media reports, let’s see what Amdahl [1967] origi-
nally said:

A fairly obvious conclusion which can be drawn at this point is that the effort
expended on achieving high parallel processing rates is wasted unless it is
accompanied by achievements in sequential processing rates of very nearly the
same magnitude. [p. 483]

One interpretation of the law was that, since portions of every program must be
sequential, there is a limit to the useful economic number of processors—say,
100. By showing linear speedup with 1000 processors, this interpretation of
Amdahl’s law was disproved.

The basis for the statement that Amdahl’s law had been “overcome” was the
use of scaled speedup, also called weak scaling. The researchers scaled the bench-
mark to have a dataset size that was 1000 times larger and compared the uniproces-
sor and parallel execution times of the scaled benchmark. For this particular
algorithm, the sequential portion of the program was constant independent of the
size of the input, and the rest was fully parallel—hence, linear speedup with 1000
processors. Because the running time grew faster than linear, the program actually
ran longer after scaling, even with 1000 processors.

Speedup that assumes scaling of the input is not the same as true speedup and
reporting it as if it were is misleading. Since parallel benchmarks are often run on
different-sized multiprocessors, it is important to specify what type of application
scaling is permissible and how that scaling should be done. Although simply

5.9 Fallacies and Pitfalls ■ 407

scaling the data size with processor count is rarely appropriate, assuming a fixed
problem size for a much larger processor count (called strong scaling) is often
inappropriate, as well, since it is likely that users given a much larger multipro-
cessor would opt to run a larger or more detailed version of an application. See
Appendix I for more discussion on this important topic.

Fallacy Linear speedups are needed to make multiprocessors cost effective.

It is widely recognized that one of the major benefits of parallel computing is to
offer a “shorter time to solution” than the fastest uniprocessor. Many people,
however, also hold the view that parallel processors cannot be as cost effective as
uniprocessors unless they can achieve perfect linear speedup. This argument says
that, because the cost of the multiprocessor is a linear function of the number
of processors, anything less than linear speedup means that the performance/cost
ratio decreases, making a parallel processor less cost effective than using a uni-
processor.

The problem with this argument is that cost is not only a function of proces-
sor count but also depends on memory, I/O, and the overhead of the system (box,
power supply, interconnect, and so on). It also makes less sense in the multicore
era, when there are multiple processors per chip.

The effect of including memory in the system cost was pointed out by Wood
and Hill [1995]. We use an example based on more recent data using TPC-C and
SPECRate benchmarks, but the argument could also be made with a parallel sci-
entific application workload, which would likely make the case even stronger.

Figure 5.32 shows the speedup for TPC-C, SPECintRate, and SPECfpRate on
an IBM eServer p5 multiprocessor configured with 4 to 64 processors. The figure
shows that only TPC-C achieves better than linear speedup. For SPECintRate
and SPECfpRate, speedup is less than linear, but so is the cost, since unlike TPC-C
the amount of main memory and disk required both scale less than linearly.

As Figure 5.33 shows, larger processor counts can actually be more cost effec-
tive than the four-processor configuration. In comparing the cost-performance of
two computers, we must be sure to include accurate assessments of both total sys-
tem cost and what performance is achievable. For many applications with larger
memory demands, such a comparison can dramatically increase the attractiveness
of using a multiprocessor.

Pitfall Not developing the software to take advantage of, or optimize for, a multiproces-
sor architecture.

There is a long history of software lagging behind on multiprocessors, proba-
bly because the software problems are much harder. We give one example to
show the subtlety of the issues, but there are many examples we could choose
from!

One frequently encountered problem occurs when software designed for a
uniprocessor is adapted to a multiprocessor environment. For example, the SGI
operating system in 2000 originally protected the page table data structure with
a single lock, assuming that page allocation is infrequent. In a uniprocessor,

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

408 ■ Chapter Five Thread-Level Parallelism

this does not represent a performance problem. In a multiprocessor, it can
become a major performance bottleneck for some programs. Consider a pro-
gram that uses a large number of pages that are initialized at start-up, which
UNIX does for statically allocated pages. Suppose the program is parallelized
so that multiple processes allocate the pages. Because page allocation requires
the use of the page table data structure, which is locked whenever it is in use,
even an OS kernel that allows multiple threads in the OS will be serialized if
the processes all try to allocate their pages at once (which is exactly what we
might expect at initialization time!).

This page table serialization eliminates parallelism in initialization and has sig-
nificant impact on overall parallel performance. This performance bottleneck per-
sists even under multiprogramming. For example, suppose we split the parallel
program apart into separate processes and run them, one process per processor, so
that there is no sharing between the processes. (This is exactly what one user did,
since he reasonably believed that the performance problem was due to unintended
sharing or interference in his application.) Unfortunately, the lock still serializes all
the processes, so even the multiprogramming performance is poor. This pitfall indi-
cates the kind of subtle but significant performance bugs that can arise when soft-
ware runs on multiprocessors. Like many other key software components, the OS

Figure 5.32 Speedup for three benchmarks on an IBM eServer p5 multiprocessor
when configured with 4, 8, 16, 32, and 64 processors. The dashed line shows linear
speedup.

S
p

e
e

d
u

p

72

64

56

48

40

32

24

16

8

0

Linear speedup
Speedup TPM
Speedup SPECintRate
Speedup SPECfpRate

0
Processor count

8 16 24 32 40 48 56 64

5.10 Concluding Remarks ■ 409

algorithms and data structures must be rethought in a multiprocessor context. Plac-
ing locks on smaller portions of the page table effectively eliminates the problem.
Similar problems exist in memory structures, which increases the coherence traffic
in cases where no sharing is actually occurring.

As multicore became the dominant theme in everything from desktops to
servers, the lack of an adequate investment in parallel software became appar-
ent. Given the lack of focus, it will likely be many years before the software
systems we use adequately exploit this growing numbers of cores.

For more than 30 years, researchers and designers have predicted the end of uni-
processors and their dominance by multiprocessors. Until the early years of this
century, this prediction was constantly proven wrong. As we saw in Chapter 3,
the costs of trying to find and exploit more ILP are prohibitive in efficiency (both

Figure 5.33 The performance/cost relative to a 4-processor system for three benchmarks run on an IBM eServer

p5 multiprocessor containing from 4 to 64 processors shows that the larger processor counts can be as cost

effective as the 4-processor configuration. For TPC-C the configurations are those used in the official runs, which
means that disk and memory scale nearly linearly with processor count, and a 64-processor machine is approxi-
mately twice as expensive as a 32-processor version. In contrast, the disk and memory are scaled more slowly
(although still faster than necessary to achieve the best SPECRate at 64 processors). In particular, the disk configura-
tions go from one drive for the 4-processor version to four drives (140 GB) for the 64-processor version. Memory is
scaled from 8 GB for the 4-processor system to 20 GB for the 64-processor system.

P
er

fo
rm

an
ce

/c
os

t r
el

at
iv

e
to

 fo
ur

-p
ro

ce
ss

or
 s

ys
te

m

1.15

1.10

1.05

0

1.00

0.95

0.90

0.85

Processor count

8 16 24 32 40 48 56 64

TPM performance/cost
SPECint performance/cost
SPECfp performance/cost

5.10 Concluding Remarks

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

410 ■ Chapter Five Thread-Level Parallelism

in silicon area and in power). Of course, multicore does not solve the power
problem, since it clearly increases both the transistor count and the active number
of transistors switching, which are the two dominant contributions to power.

However, multicore does alter the game. By allowing idle cores to be placed
in power-saving mode, some improvement in power efficiency can be achieved,
as the results in this chapter have shown. More importantly, multicore shifts the
burden for keeping the processor busy by relying more on TLP, which the appli-
cation and programmer are responsible for identifying, rather than on ILP, for
which the hardware is responsible. As we saw, these differences clearly played
out in the multicore performance and energy efficiency of the Java versus the
PARSEC benchmarks.

Although multicore provides some direct help with the energy efficiency
challenge and shifts much of the burden to the software system, there remain dif-
ficult challenges and unresolved questions. For example, attempts to exploit
thread-level versions of aggressive speculation have so far met the same fate as
their ILP counterparts. That is, the performance gains have been modest and are
likely less than the increase in energy consumption, so ideas such as speculative
threads or hardware run-ahead have not been successfully incorporated in proces-
sors. As in speculation for ILP, unless the speculation is almost always right, the
costs exceed the benefits.

In addition to the central problems of programming languages and compiler
technology, multicore has reopened another long-standing question in computer
architecture: Is it worthwhile to consider heterogeneous processors? Although no
such multicore has yet been delivered and heterogeneous multiprocessors have
had only limited success in special-purpose computers or embedded systems, the
possibilities are much broader in a multicore environment. As with many issues
in multiprocessing, the answer will likely depend on the software models and
programming systems. If compilers and operating systems can effectively use
heterogeneous processors, they will become more mainstream. At the present,
dealing effectively with modest numbers of homogeneous core strains is beyond
existing compiler capability for many applications, but multiprocessors that have
heterogeneous cores with clear differences in functional capability and obvious
methods to decompose an application are becoming more commonplace, includ-
ing special processing units such as GPUs and media processors. Emphasis on
energy efficiency could also lead to cores with different performance to power
ratios being included.

In the 1995 edition of this text, we concluded the chapter with a discussion of
two then-current controversial issues:

1. What architecture would very large-scale, microprocessor-based multiproces-
sors use?

2. What was the role for multiprocessing in the future of microprocessor
architecture?

The intervening years have largely resolved these two questions.

5.10 Concluding Remarks ■ 411

Because very large-scale multiprocessors did not become a major and grow-
ing market, the only cost effective way to build such large-scale multiprocessors
was to use clusters where the individual nodes are either single multicore micro-
processors or small-scale, shared-memory multiprocessors (typically two to four
multicores), and the interconnect technology is standard network technology.
These clusters, which have been scaled to tens of thousands of processors and
installed in specially designed “warehouses,” are the subject of the next chapter.

The answer to the second question has become crystal clear in the last six or
seven years: The future performance growth in microprocessors will come from
the exploitation of thread-level parallelism through multicore processors rather
than through exploiting more ILP.

As a consequence of this, cores have become the new building blocks of
chips, and vendors offer a variety of chips based around one core design using
varying numbers of cores and L3 caches. For example, Figure 5.34 shows the
Intel processor family built using the just the Nehalem core (used in the Xeon
7560 and i7)!

In the 1980s and 1990s, with the birth and development of ILP, software in the
form of optimizing compilers that could exploit ILP was key to its success. Simi-
larly, the successful exploitation of thread-level parallelism will depend as much on
the development of suitable software systems as it will on the contributions of com-
puter architects. Given the slow progress on parallel software in the past 30-plus
years, it is likely that exploiting thread-level parallelism broadly will remain chal-
lenging for years to come. Furthermore, your authors believe that there is signifi-
cant opportunity for better multicore architectures. To design those architects will
require a quantitative design discipline and the ability to accurately model tens to
hundreds of cores running trillions of instructions, including large-scale applica-
tions and operating systems. Without such a methodology and capability, architects
will be shooting in the dark. Sometimes you’re lucky, but often you miss.

Processor Series Cores L3 cache Power (typical)
Clock rate

(GHz) Price

Xeon 7500 8 18–24 MB 130 W 2–2.3 $2837–3692

Xeon 5600 4–6 w/wo SMT 12 MB 40–130 W 1.86–3.33 $440–1663

Xeon 3400–3500 4 w/wo SMT 8 MB 45–130 W 1.86–3.3 $189–999

Xeon 5500 2–4 4–8 MB 80–130 W 1.86–3.3 $80–1600

i7 860–975 4 8 MB 82 W–130 W 2.53–3.33 $284–999

i7 mobile 720–970 4 6–8 MB 45–55 W 1.6–2.1 $364–378

i5 750–760 4 wo SMT 8 MB 80 W 2.4–2.8 $196–209

i3 330–350 2 w/wo SMT 3 MB 35 W 2.1–2.3

Figure 5.34 The characteristics for a range of Intel parts based on the Nehalem microarchitecture. This chart still
collapses a variety of entries in each row (from 2 to 8!). The price is for an order of 1000 units.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

412 ■ Chapter Five Thread-Level Parallelism

Section L.7 (available online) looks at the history of multiprocessors and parallel
processing. Divided by both time period and architecture, the section features
discussions on early experimental multiprocessors and some of the great debates
in parallel processing. Recent advances are also covered. References for further
reading are included.

Case Study 1: Single-Chip Multicore Multiprocessor

Concepts illustrated by this case study

■ Snooping Coherence Protocol Transitions

■ Coherence Protocol Performance

■ Coherence Protocol Optimizations

■ Synchronization

■ Memory Consistency Models Performance

The simple, multicore multiprocessor illustrated in Figure 5.35 represents a com-
monly implemented symmetric shared-memory architecture. Each processor has
a single, private cache with coherence maintained using the snooping coherence
protocol of Figure 5.7. Each cache is direct-mapped, with four blocks each hold-
ing two words. To simplify the illustration, the cache-address tag contains the full
address, and each word shows only two hex characters, with the least significant
word on the right. The coherence states are denoted M, S, and I (Modified,
Shared, and Invalid).

 5.1 [10/10/10/10/10/10/10] <5.2> For each part of this exercise, assume the initial
cache and memory state as illustrated in Figure 5.35. Each part of this exercise
specifies a sequence of one or more CPU operations of the form:

P#: <op> <address> [<value>]

where P# designates the CPU (e.g., P0), <op> is the CPU operation (e.g., read or
write), <address> denotes the memory address, and <value> indicates the new
word to be assigned on a write operation. Treat each action below as independently
applied to the initial state as given in Figure 5.35. What is the resulting state (i.e.,
coherence state, tags, and data) of the caches and memory after the given action?
Show only the blocks that change; for example, P0.B0: (I, 120, 00 01) indicates
that CPU P0’s block B0 has the final state of I, tag of 120, and data words 00 and
01. Also, what value is returned by each read operation?

5.11 Historical Perspectives and References

Case Studies and Exercises by Amr Zaky
and David A. Wood

Case Studies and Exercises by Amr Zaky and David A. Wood ■ 413

a. [10] <5.2> P0: read 120

b. [10] <5.2> P0: write 120 <-- 80

c. [10] <5.2> P3: write 120 <-- 80

d. [10] <5.2> P1: read 110

e. [10] <5.2> P0: write 108 <-- 48

f. [10] <5.2> P0: write 130 <-- 78

g. [10] <5.2> P3: write 130 <-- 78

 5.2 [20/20/20/20] <5.3> The performance of a snooping cache-coherent multiproces-
sor depends on many detailed implementation issues that determine how quickly
a cache responds with data in an exclusive or M state block. In some implementa-
tions, a CPU read miss to a cache block that is exclusive in another processor’s

Figure 5.35 Multicore (point-to-point) multiprocessor.

P0 P1 P3

.
B0
B1
B2
B3

B0
B1
B2
B3

B0
B1
B2
B3

I 100

Coherency
state

Coherency
state

Address
tag Data

Coherency
state

Address
tag Data

00
00
00
00

00
00
00
00

Data

00
00
00
00

10
08
30
10

10
68
10
18

20
08
10
10

108
110
118

100
128
110
118

Memory

On-chip interconnect (with coherency manager)

Address
tag

120
108
110
118

S
M
I

I
M
I
S

S
S
I
I

Address Data

....

100
108
110
118
120
128
130
...

....

00
00
00
00
00
00
00
...

....

10
08
10
18
20
28
30
...

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

414 ■ Chapter Five Thread-Level Parallelism

cache is faster than a miss to a block in memory. This is because caches are
smaller, and thus faster, than main memory. Conversely, in some implementa-
tions, misses satisfied by memory are faster than those satisfied by caches. This
is because caches are generally optimized for “front side” or CPU references,
rather than “back side” or snooping accesses. For the multiprocessor illustrated in
Figure 5.35, consider the execution of a sequence of operations on a single CPU
where

■ CPU read and write hits generate no stall cycles.

■ CPU read and write misses generate Nmemory and Ncache stall cycles if satis-
fied by memory and cache, respectively.

■ CPU write hits that generate an invalidate incur Ninvalidate stall cycles.

■ A write-back of a block, due to either a conflict or another processor’s
request to an exclusive block, incurs an additional Nwriteback stall cycles.

Consider two implementations with different performance characteristics sum-
marized in Figure 5.36. Consider the following sequence of operations assum-
ing the initial cache state in Figure 5.35. For simplicity, assume that the second
operation begins after the first completes (even though they are on different
processors):

P1: read 110
P3: read 110

For Implementation 1, the first read generates 50 stall cycles because the read is
satisfied by P0’s cache. P1 stalls for 40 cycles while it waits for the block, and P0
stalls for 10 cycles while it writes the block back to memory in response to P1’s
request. Thus, the second read by P3 generates 100 stall cycles because its miss is
satisfied by memory, and this sequence generates a total of 150 stall cycles. For
the following sequences of operations, how many stall cycles are generated by
each implementation?

Parameter Implementation 1 Implementation 2

Nmemory 100 100

Ncache 40 130

Ninvalidate 15 15

Nwriteback 10 10

Figure 5.36 Snooping coherence latencies.

Case Studies and Exercises by Amr Zaky and David A. Wood ■ 415

a. [20] <5.3> P0: read 120
P0: read 128
P0: read 130

b. [20] <5.3> P0: read 100
P0: write 108 <-- 48
P0: write 130 <-- 78

c. [20] <5.3> P1: read 120
P1: read 128
P1: read 130

d. [20] <5.3> P1: read 100
P1: write 108 <-- 48
P1: write 130 <-- 78

 5.3 [20] <5.2> Many snooping coherence protocols have additional states, state tran-
sitions, or bus transactions to reduce the overhead of maintaining cache coher-
ency. In Implementation 1 of Exercise 5.2, misses are incurring fewer stall cycles
when they are supplied by cache than when they are supplied by memory. Some
coherence protocols try to improve performance by increasing the frequency of
this case. A common protocol optimization is to introduce an Owned state (usu-
ally denoted O). The Owned state behaves like the Shared state in that nodes may
only read Owned blocks, but it behaves like the Modified state in that nodes must
supply data on other nodes’ read and write misses to Owned blocks. A read miss
to a block in either the Modified or Owned states supplies data to the requesting
node and transitions to the Owned state. A write miss to a block in either state
Modified or Owned supplies data to the requesting node and transitions to state
Invalid. This optimized MOSI protocol only updates memory when a node
replaces a block in state Modified or Owned. Draw new protocol diagrams with
the additional state and transitions.

 5.4 [20/20/20/20] <5.2> For the following code sequences and the timing parameters
for the two implementations in Figure 5.36, compute the total stall cycles for the
base MSI protocol and the optimized MOSI protocol in Exercise 5.3. Assume that
state transitions that do not require bus transactions incur no additional stall cycles.

a. [20] <5.2> P0: read 110
P3: read 110
P0: read 110

b. [20] <5.2> P1: read 120
P3: read 120
P0: read 120

c. [20] <5.2> P0: write 120 <-- 80
P3: read 120
P0: read 120

d. [20] <5.2> P0: write 108 <-- 88
P3: read 108
P0: write 108 <-- 98

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

416 ■ Chapter Five Thread-Level Parallelism

 5.5 [20] <5.2> Some applications read a large dataset first, then modify most or all of
it. The base MSI coherence protocol will first fetch all of the cache blocks in the
Shared state and then be forced to perform an invalidate operation to upgrade
them to the Modified state. The additional delay has a significant impact on
some workloads. An additional protocol optimization eliminates the need to
upgrade blocks that are read and later written by a single processor. This optimi-
zation adds the Exclusive (E) state to the protocol, indicating that no other node
has a copy of the block, but it has not yet been modified. A cache block enters the
Exclusive state when a read miss is satisfied by memory and no other node has a
valid copy. CPU reads and writes to that block proceed with no further bus traf-
fic, but CPU writes cause the coherence state to transition to Modified. Exclusive
differs from Modified because the node may silently replace Exclusive blocks
(while Modified blocks must be written back to memory). Also, a read miss to an
Exclusive block results in a transition to Shared but does not require the node to
respond with data (since memory has an up-to-date copy). Draw new protocol
diagrams for a MESI protocol that adds the Exclusive state and transitions to the
base MSI protocol’s Modified, Shared, and Invalid states.

 5.6 [20/20/20/20/20] <5.2> Assume the cache contents of Figure 5.35 and the timing
of Implementation 1 in Figure 5.36. What are the total stall cycles for the follow-
ing code sequences with both the base protocol and the new MESI protocol in
Exercise 5.5? Assume that state transitions that do not require interconnect trans-
actions incur no additional stall cycles.

a. [20] <5.2> P0: read 100
P0: write 100 <-- 40

b. [20] <5.2> P0: read 120
P0: write 120 <-- 60

c. [20] <5.2> P0: read 100
P0: read 120

d. [20] <5.2> P0: read 100
P1: write 100 <-- 60

e. [20] <5.2> P0: read 100
P0: write 100 <-- 60
P1: write 100 <-- 40

 5.7 [20/20/20/20] <5.5> The spin lock is the simplest synchronization mechanism
possible on most commercial shared-memory machines. This spin lock relies on
the exchange primitive to atomically load the old value and store a new value.
The lock routine performs the exchange operation repeatedly until it finds the
lock unlocked (i.e., the returned value is 0):

DADDUI R2,R0,#1
lockit: EXCH R2,0(R1)

BNEZ R2, lockit

Case Studies and Exercises by Amr Zaky and David A. Wood ■ 417

Unlocking a spin lock simply requires a store of the value 0:

unlock: SW R0,0(R1)

As discussed in Section 5.5, the more optimized spin lock employs cache coher-
ence and uses a load to check the lock, allowing it to spin with a shared variable
in the cache:

lockit: LD R2, 0(R1)
BNEZ R2, lockit
DADDUI R2,R0,#1
EXCH R2,0(R1)
BNEZ R2, lockit

Assume that processors P0, P1, and P3 are all trying to acquire a lock at address
0x100 (i.e., register R1 holds the value 0x100). Assume the cache contents from
Figure 5.35 and the timing parameters from Implementation 1 in Figure 5.36. For
simplicity, assume that the critical sections are 1000 cycles long.

a. [20] <5.5> Using the simple spin lock, determine approximately how many
memory stall cycles each processor incurs before acquiring the lock.

b. [20] <5.5> Using the optimized spin lock, determine approximately how
many memory stall cycles each processor incurs before acquiring the lock.

c. [20] <5.5> Using the simple spin lock, approximately how many interconnect
transactions occur?

d. [20] <5.5> Using the test-and-test-and-set spin lock, approximately how
many interconnect transactions occur?

 5.8 [20/20/20/20] <5.6> Sequential consistency (SC) requires that all reads and
writes appear to have executed in some total order. This may require the proces-
sor to stall in certain cases before committing a read or write instruction. Con-
sider the following code sequence:

write A
read B

where the write A results in a cache miss and the read B results in a cache hit.
Under SC, the processor must stall read B until after it can order (and thus perform)
write A. Simple implementations of SC will stall the processor until the cache
receives the data and can perform the write. Weaker consistency models relax the
ordering constraints on reads and writes, reducing the cases that the processor must
stall. The Total Store Order (TSO) consistency model requires that all writes appear
to occur in a total order but allows a processor’s reads to pass its own writes. This
allows processors to implement write buffers that hold committed writes that have
not yet been ordered with respect to other processors’ writes. Reads are allowed to
pass (and potentially bypass) the write buffer in TSO (which they could not do
under SC). Assume that one memory operation can be performed per cycle and that
operations that hit in the cache or that can be satisfied by the write buffer introduce
no stall cycles. Operations that miss incur the latencies listed in Figure 5.36.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

418 ■ Chapter Five Thread-Level Parallelism

Assume the cache contents of Figure 5.35. How many stall cycles occur prior to
each operation for both the SC and TSO consistency models?

a. [20] <5.6> P0: write 110 <-- 80
P0: read 108

b. [20] <5.6> P0: write 100 <-- 80
P0: read 108

c. [20] <5.6> P0: write 110 <-- 80
P0: write 100 <-- 90

d. [20] <5.6> P0: write 100 <-- 80
P0: write 110 <-- 90

Case Study 2: Simple Directory-Based Coherence

Concepts illustrated by this case study

■ Directory Coherence Protocol Transitions

■ Coherence Protocol Performance

■ Coherence Protocol Optimizations

Consider the distributed shared-memory system illustrated in Figure 5.37. It con-
sists of two four-core chips. The processor in each chip share an L2 cache (L2$),
and the two chips are connected via a point-to-point interconnect. The system
memory is distributed across the two chips. Figure 5.38 zooms in on part of this
system. Pi,j denotes processor i in chip j. Each processor has a single direct-
mapped L1 cache that holds two blocks, each holding two words. Each chip has a
single direct-mapped L2 cache that holds two blocks, each holding two words. To
simplify the illustration, the cache address tags contain the full address and each
word shows only two hex characters, with the least significant word on the right.
The L1 cache states are denoted M, S, and I for Modified, Shared, and Invalid.
Both the L2 caches and memories have directories. The directory states are denoted
DM, DS, and DI for Directory Modified, Directory Shared, and Directory Invalid.
The simple directory protocol is described in Figures 5.22 and 5.23. The L2 direc-
tory lists the local sharers/owners and additionally records if a line is shared exter-
nally in another chip; for example, P1,0;E denotes that a line is shared by local
processor P1,0 and is externally shared in some other chip. The memory directory
has a list of the chip sharers/owners of a line; for example, C0,C1 denotes that a
line is shared in chips 0 and 1.

 5.9 [10/10/10/10/15/15/15/15] <5.4> For each part of this exercise, assume the initial
cache and memory state in Figure 5.38. Each part of this exercise specifies a
sequence of one or more CPU operations of the form:

P#: <op> <address> [<-- <value>]

Case Studies and Exercises by Amr Zaky and David A. Wood ■ 419

where P# designates the CPU (e.g., P0,0), <op> is the CPU operation (e.g., read
or write), <address> denotes the memory address, and <value> indicates the
new word to be assigned on a write operation. What is the final state (i.e., coher-
ence state, sharers/owners, tags, and data) of the caches and memory after the
given sequence of CPU operations has completed? Also, what value is returned
by each read operation?

Figure 5.37 Multichip, multicore multiprocessor with DSM.

Figure 5.38 Cache and memory states in the multichip, multicore multiprocessor.

Chip0 Chip1

P0

P3

P1

P2

P0

P3

P1

P2

M0 M1

L2$ L2$

P3,1

.

L2$,1

M1

L2$, 0

M0

Address Address

Address

Address
tag Data

Data

State

State

B0 DM P0,1 100 00 10
08
68
18

00
00
00

108
130
118

P0,0; E
P1,0
P1,0

DM
DS

DS

B1
B2
B3

100 DM C0 00
00
00
00

10
08
10
18C0

C0, C1
-

DS
DI
DS

108
110
118

P0,0

Coherency
state

B0
B1

M
S

100
108 00

00
08
10

Address
tag Data

P0,1

B0
B1

M
S

130
118 00

00
18
68

Coherency
state

Address
tag Data

Coherency
state

Address
tag Data

B0
B1

B0 DS P3,1 120 00
00
00
00

20
08
10
20

108P3,1; E
-
-

-
-

DS
DI
DI

B1
B2
B3

120 DS C1 00
00
00
00

20
28
68
96

C0
-

-

DI
DM
DI

128
130
138

S
S

120
108 00

00
08
20

Address
tag Data

Data

State

Address State

Owner/
sharers

Owner/
sharers

Owner/sharersOwner/sharers

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

420 ■ Chapter Five Thread-Level Parallelism

a. [10] <5.4> P0,0: read 100

b. [10] <5.4> P0,0: read 128

c. [10] <5.4> P0,0: write 128 <-- 78

d. [10] <5.4> P0,0: read 120

e. [15] <5.4> P0,0: read 120
P1,0: read 120

f. [15] <5.4> P0,0: read 120
P1,0: write 120 <-- 80

g. [15] <5.4> P0,0: write 120 <-- 80
P1,0: read 120

h. [15] <5.4> P0,0: write 120 <-- 80
P1,0: write 120 <-- 90

 5.10 [10/10/10/10] <5.4> Directory protocols are more scalable than snooping proto-
cols because they send explicit request and invalidate messages to those nodes
that have copies of a block, while snooping protocols broadcast all requests and
invalidates to all nodes. Consider the eight-processor system illustrated in
Figure 5.37 and assume that all caches not shown have invalid blocks. For each
of the sequences below, identify which nodes (chip/processor) receive each
request and invalidate.

a. [10] <5.4> P0,0: write 100 <-- 80

b. [10] <5.4> P0,0: write 108 <-- 88

c. [10] <5.4> P0,0: write 118 <-- 90

d. [10] <5.4> P1,0: write 128 <-- 98

 5.11 [25] <5.4> Exercise 5.3 asked you to add the Owned state to the simple MSI snoop-
ing protocol. Repeat the question, but with the simple directory protocol above.

 5.12 [25] <5.4> Discuss why adding an Exclusive state is much more difficult to do
with the simple directory protocol than it is in a snooping protocol. Give an
example of the kinds of issues that arise.

Case Study 3: Advanced Directory Protocol

Concepts illustrated by this case study

■ Directory Coherence Protocol Implementation

■ Coherence Protocol Performance

■ Coherence Protocol Optimizations

The directory coherence protocol in Case Study 2 describes directory coherence at
an abstract level but assumes atomic transitions much like the simple snooping sys-
tem. High-performance directory systems use pipelined, switched interconnects

Case Studies and Exercises by Amr Zaky and David A. Wood ■ 421

that greatly improve bandwidth but also introduce transient states and nonatomic
transactions. Directory cache coherence protocols are more scalable than snooping
cache coherence protocols for two reasons. First, snooping cache coherence proto-
cols broadcast requests to all nodes, limiting their scalability. Directory protocols
use a level of indirection—a message to the directory—to ensure that requests are
only sent to the nodes that have copies of a block. Second, the address network of a
snooping system must deliver requests in a total order, while directory protocols
can relax this constraint. Some directory protocols assume no network ordering,
which is beneficial since it allows adaptive routing techniques to improve network
bandwidth. Other protocols rely on point-to-point order (i.e., messages from node
P0 to node P1 will arrive in order). Even with this ordering constraint, directory
protocols usually have more transient states than snooping protocols. Figure 5.39

State Read Write
Replace-
ment Inv

Forwarded_
GetS

Forwarded_
GetM

PutM_
Ack Data Last Ack

I Send
GetS/ISD

Send
GetM/
IMAD

error Send
Ack/I

error error error error error

S Do read Send
GetM/
IMAD

I Send
Ack/I

error error error error error

M Do read Do write Send
PutM/MIA

error Send Data,
send PutMS/
MSA

Send Data/I error error error

ISD z z z Send
Ack/ISID

error error error Save
Data, do
Read/S

error

ISID z z z Send Ack error error error Save
Data, do
Read/I

error

IMAD z z z Send Ack error error error Save
Data/
IMA

error

IMA z z z error IMSA IMIA error error Do Write/M

IMIA z z z error error error error error Do Write,
send Data/I

IMSA z z z Send
Ack/
IMIA

z z error error Do write,
send Data/S

MSA Do read z z error Send Data Send Data
MIA

/S error error

MIA z z z error Send Data Send Data/I /I error error

Figure 5.39 Broadcast snooping cache controller transitions.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

422 ■ Chapter Five Thread-Level Parallelism

presents the cache controller state transitions for a simplified directory protocol that
relies on point-to-point network ordering. Figure 5.40 presents the directory con-
troller’s state transitions.

For each block, the directory maintains a state and a current owner field or
a current sharers’ list (if any). For the sake of the following discussion and
ensuing problem, assume that the L2 caches are disabled. Assume that the
memory directory lists sharers/owners at a processor granularity. For example,
in Figure 5.38, the memory directory for line 108 would be “P0, 0; P3, 0” rather
than “C0, C1”. Also, assume that messages cross chip boundaries—if needed—
in a transparent way.

The row is indexed by the current state, and the column by the event deter-
mines the <action/nextstate> tuple. If only a next state is listed, then no action is
required. Impossible cases are marked “error” and represent error conditions; “z”
means the requested event cannot currently be processed.

The following example illustrates the basic operation of this protocol. Suppose
a processor attempts a write to a block in state I (Invalid). The corresponding tuple
is “send GetM/IMAD,” indicating that the cache controller should send a GetM
(GetModified) request to the directory and transition to state IMAD. In the simplest
case, the request message finds the directory in state DI (Directory Invalid), indi-
cating that no other cache has a copy. The directory responds with a Data message
that also contains the number of Acks to expect (in this case, zero). In this simpli-
fied protocol, the cache controller treats this single message as two messages: a
Data message followed by a Last Ack event. The Data message is processed first,
saving the data and transitioning to IMA. The Last Ack event is then processed,
transitioning to state M. Finally, the write can be performed in state M.

If the GetM finds the directory in state DS (Directory Shared), the directory
will send Invalidate (INV) messages to all nodes on the sharers’ list, send Data to

State GetS GetM PutM (owner)
PutMS
(nonowner) PutM (owner)

PutMS
(nonowner)

DI Send Data, add to
sharers/DS

Send Data, clear
sharers, set owner/
DM

error Send PutM_Ack error Send PutM_Ack

DS Send Data, add to
sharers/DS

Send INVs to
sharers, set owner,
send Data/DM

error Send PutM_Ack error Send PutM_Ack

DM Forward GetS,
add to sharers/
DMSD

Forward GetM,
send INVs to
sharers, clear
sharers, set owner

Save Data, send
PutM_Ack/DI

Send PutM_Ack Save Data, add
to sharers, send
PutM_Ack/DS

Send PutM_Ack

DMSD Forward GetS,
add to sharers

Forward GetM,
send INVs to
sharers, clear
sharers, set owner/
DM

Save Data, send
PutM_Ack/DS

Send PutM_Ack Save Data, add
to sharers, send
PutM_Ack/DS

Send PutM_Ack

Figure 5.40 Directory controller transitions.

Case Studies and Exercises by Amr Zaky and David A. Wood ■ 423

the requester with the number of sharers, and transition to state M. When the INV
messages arrive at the sharers, they will find the block in either state S or state I
(if they have silently invalidated the block). In either case, the sharer will send an
Ack directly to the requesting node. The requester will count the Acks it has
received and compare that to the number sent back with the Data message. When
all the Acks have arrived, the Last Ack event occurs, triggering the cache to tran-
sition to state M and allowing the write to proceed. Note that it is possible for all
the Acks to arrive before the Data message, but not for the Last Ack event to
occur. This is because the Data message contains the Ack count. Thus, the proto-
col assumes that the Data message is processed before the Last Ack event.

 5.13 [10/10/10/10/10/10] <5.4> Consider the advanced directory protocol described
above and the cache contents from Figure 5.38. What is the sequence of transient
states that the affected cache blocks move through in each of the following cases?

a. [10] <5.4> P0,0: read 100

b. [10] <5.4> P0,0: read 120

c. [10] <5.4> P0,0: write 120 <-- 80

d. [10] <5.4> P3,1: write 120 <-- 80

e. [10] <5.4> P1,0: read 110

f. [10] <5.4> P0,0: write 108 <-- 48

 5.14 [15/15/15/15/15/15/15] <5.4> Consider the advanced directory protocol
described above and the cache contents from Figure 5.38. What is the sequence
of transient states that the affected cache blocks move through in each of the fol-
lowing cases? In all cases, assume that the processors issue their requests in the
same cycle, but the directory orders the requests in top-down order. Assume that
the controllers’ actions appear to be atomic (e.g., the directory controller will per-
form all the actions required for the DS --> DM transition before handling another
request for the same block).

a. [15] <5.4> P0,0: read 120
P1,0: read 120

b. [15] <5.4> P0,0: read 120
P1,0: write 120 <-- 80

c. [15] <5.4> P0,0: write 120
P1,0: read 120

d. [15] <5.4> P0,0: write 120 <-- 80
P1,0: write 120 <-- 90

e. [15] <5.4> P0,0: replace 110
P1,0: read 110

f. [15] <5.4> P1,0: write 110 <-- 80
P0,0: replace 110

g. [15] <5.4> P1,0: read 110
P0,0: replace 110

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

424 ■ Chapter Five Thread-Level Parallelism

 5.15 [20/20/20/20/20] <5.4> For the multiprocessor illustrated in Figure 5.37 (with L2
caches disabled) implementing the protocol described in Figure 5.39 and Figure
5.40, assume the following latencies:

■ CPU read and write hits generate no stall cycles.

■ Completing a miss (e.g., do Read and do Write) takes Lack cycles only if it is
performed in response to the Last Ack event (otherwise, it gets done while
the data are copied to cache).

■ A CPU read or write that generates a replacement event issues the corre-
sponding GetShared or GetModified message before the PutModified mes-
sage (e.g., using a write-back buffer).

■ A cache controller event that sends a request or acknowledgment message
(e.g., GetShared) has latency Lsend_msg cycles.

■ A cache controller event that reads the cache and sends a data message has
latency Lsend_data cycles.

■ A cache controller event that receives a data message and updates the cache
has latency Lrcv_data.

■ A memory controller incurs Lsend_msg latency when it forwards a request
message.

■ A memory controller incurs an additional Linv number of cycles for each
invalidate that it must send.

■ A cache controller incurs latency Lsend_msg for each invalidate that it receives
(latency is until it sends the Ack message).

■ A memory controller has latency Lread_memory cycles to read memory and
send a data message.

■ A memory controller has latency Lwrite_memory to write a data message to
memory (latency is until it sends the Ack message).

■ A non-data message (e.g., request, invalidate, Ack) has network latency
Lreq_msg cycles.

■ A data message has network latency Ldata_msg cycles.

■ Add a latency of 20 cycles to any message that crosses from chip 0 to chip 1
and vice versa.

Consider an implementation with the performance characteristics summa-
rized in Figure 5.41.

For the sequences of operations below, the cache contents of Figure 5.38, and
the directory protocol above, what is the latency observed by each processor node?

a. [20] <5.4> P0,0: read 100

b. [20] <5.4> P0,0: read 128

c. [20] <5.4> P0,0: write 128 <-- 68

d. [20] <5.4> P0,0: write 120 <-- 50

e. [20] <5.4> P0,0: write 108 <-- 80

Case Studies and Exercises by Amr Zaky and David A. Wood ■ 425

 5.16 [20] <5.4> In the case of a cache miss, both the switched snooping protocol
described earlier and the directory protocol in this case study perform the read or
write operation as soon as possible. In particular, they do the operation as part of
the transition to the stable state, rather than transitioning to the stable state and
simply retrying the operation. This is not an optimization. Rather, to ensure for-
ward progress, protocol implementations must ensure that they perform at least
one CPU operation before relinquishing a block. Suppose the coherence protocol
implementation did not do this. Explain how this might lead to livelock. Give a
simple code example that could stimulate this behavior.

 5.17 [20/30] <5.4> Some directory protocols add an Owned (O) state to the proto-
col, similar to the optimization discussed for snooping protocols. The Owned
state behaves like the Shared state in that nodes may only read Owned blocks,
but it behaves like the Modified state in that nodes must supply data on other
nodes’ Get requests to Owned blocks. The Owned state eliminates the case
where a GetShared request to a block in state Modified requires the node to
send the data to both the requesting processor and the memory. In a MOSI
directory protocol, a GetShared request to a block in either the Modified or
Owned states supplies data to the requesting node and transitions to the Owned
state. A GetModified request in state Owned is handled like a request in state
Modified. This optimized MOSI protocol only updates memory when a node
replaces a block in state Modified or Owned.

a. [20] <5.4> Explain why the MSA state in the protocol is essentially a “tran-
sient” Owned state.

b. [30] <5.4> Modify the cache and directory protocol tables to support a stable
Owned state.

 5.18 [25/25] <5.4> The advanced directory protocol described above relies on a point-
to-point ordered interconnect to ensure correct operation. Assuming the initial
cache contents of Figure 5.38 and the following sequences of operations, explain
what problem could arise if the interconnect failed to maintain point-to-point

Action Latency

Send_msg 6

Send_data 20

Rcv_data 15

Read-memory 100

Write-memory 20

inv 1

ack 4

Req-msg 15

Data-msg 30

Figure 5.41 Directory coherence latencies.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

426 ■ Chapter Five Thread-Level Parallelism

ordering. Assume that the processors perform the requests at the same time, but
they are processed by the directory in the order shown.

a. [25] <5.4> P1,0: read 110
P3,1: write 110 <-- 90

b. [25] <5.4> P1,0: read 110
P0,0: replace 110

Exercises

 5.19 [15] <5.1> Assume that we have a function for an application of the form F(i, p),
which gives the fraction of time that exactly i processors are usable given that a
total of p processors is available. That means that

Assume that when i processors are in use, the applications run i times faster. Rewrite
Amdahl’s law so it gives the speedup as a function of p for some application.

 5.20 [15/20/10] <5.1> In this exercise, we examine the effect of the interconnection
network topology on the clock cycles per instruction (CPI) of programs running
on a 64-processor distributed-memory multiprocessor. The processor clock rate
is 3.3 GHz and the base CPI of an application with all references hitting in the
cache is 0.5. Assume that 0.2% of the instructions involve a remote communica-
tion reference. The cost of a remote communication reference is (100 + 10h) ns,
where h is the number of communication network hops that a remote reference
has to make to the remote processor memory and back. Assume that all commu-
nication links are bidirectional.

a. [15] <5.1> Calculate the worst-case remote communication cost when the 64
processors are arranged as a ring, as an 8×8 processor grid, or as a hypercube.
(Hint: The longest communication path on a 2n hypercube has n links.)

b. [20] <5.1> Compare the base CPI of the application with no remote commu-
nication to the CPI achieved with each of the three topologies in part (a).

c. [10] <5.1> How much faster is the application with no remote communica-
tion compared to its performance with remote communication on each of the
three topologies in part (a).

 5.21 [15] <5.2> Show how the basic snooping protocol of Figure 5.7 can be changed
for a write-through cache. What is the major hardware functionality that is not
needed with a write-through cache compared with a write-back cache?

 5.22 [20] <5.2> Add a clean exclusive state to the basic snooping cache coherence
protocol (Figure 5.7). Show the protocol in the format of Figure 5.7.

 5.23 [15] <5.2> One proposed solution for the problem of false sharing is to add a
valid bit per word. This would allow the protocol to invalidate a word without
removing the entire block, letting a processor keep a portion of a block in its

F(i, p) 1=

i 1=

p

Case Studies and Exercises by Amr Zaky and David A. Wood ■ 427

cache while another processor writes a different portion of the block. What extra
complications are introduced into the basic snooping cache coherence protocol
(Figure 5.7) if this capability is included? Remember to consider all possible pro-
tocol actions.

 5.24 [15/20] <5.3> This exercise studies the impact of aggressive techniques to
exploit instruction-level parallelism in the processor when used in the design of
shared-memory multiprocessor systems. Consider two systems identical except
for the processor. System A uses a processor with a simple single-issue in-order
pipeline, while system B uses a processor with four-way issue, out-of-order exe-
cution, and a reorder buffer with 64 entries.

a. [15] <5.3> Following the convention of Figure 5.11, let us divide the execu-
tion time into instruction execution, cache access, memory access, and other
stalls. How would you expect each of these components to differ between
system A and system B?

b. [10] <5.3> Based on the discussion of the behavior of the On-Line Transaction
Processing (OLTP) workload in Section 5.3, what is the important difference
between the OLTP workload and other benchmarks that limits benefit from a
more aggressive processor design?

 5.25 [15] <5.3> How would you change the code of an application to avoid false shar-
ing? What might be done by a compiler and what might require programmer
directives?

 5.26 [15] <5.4> Assume a directory-based cache coherence protocol. The directory
currently has information that indicates that processor P1 has the data in “exclu-
sive” mode. If the directory now gets a request for the same cache block from
processor P1, what could this mean? What should the directory controller do?
(Such cases are called race conditions and are the reason why coherence proto-
cols are so difficult to design and verify.)

 5.27 [20] <5.4> A directory controller can send invalidates for lines that have been
replaced by the local cache controller. To avoid such messages and to keep the
directory consistent, replacement hints are used. Such messages tell the controller
that a block has been replaced. Modify the directory coherence protocol of
Section 5.4 to use such replacement hints.

 5.28 [20/30] <5.4> One downside of a straightforward implementation of directories
using fully populated bit vectors is that the total size of the directory information
scales as the product (i.e., processor count × memory blocks). If memory is
grown linearly with processor count, the total size of the directory grows quadrat-
ically in the processor count. In practice, because the directory needs only 1 bit
per memory block (which is typically 32 to 128 bytes), this problem is not
serious for small to moderate processor counts. For example, assuming a
128-byte block, the amount of directory storage compared to main memory is the
processor count/1024, or about 10% additional storage with 100 processors. This
problem can be avoided by observing that we only need to keep an amount of
information that is proportional to the cache size of each processor. We explore
some solutions in these exercises.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

428 ■ Chapter Five Thread-Level Parallelism

a. [20] <5.4> One method to obtain a scalable directory protocol is to organize
the multiprocessor as a logical hierarchy with the processors as leaves of the
hierarchy and directories positioned at the root of each subtree. The directory
at each subtree records which descendants cache which memory blocks, as
well as which memory blocks with a home in that subtree are cached outside
the subtree. Compute the amount of storage needed to record the processor
information for the directories, assuming that each directory is fully associa-
tive. Your answer should also incorporate both the number of nodes at each
level of the hierarchy as well as the total number of nodes.

b. [30] <5.4> An alternative approach to implementing directory schemes is to
implement bit vectors that are not dense. There are two strategies; one
reduces the number of bit vectors needed, and the other reduces the number
of bits per vector. Using traces, you can compare these schemes. First, imple-
ment the directory as a four-way set associative cache storing full bit vectors,
but only for the blocks that are cached outside the home node. If a directory
cache miss occurs, choose a directory entry and invalidate the entry. Second,
implement the directory so that every entry has 8 bits. If a block is cached in
only one node outside its home, this field contains the node number. If the
block is cached in more than one node outside its home, this field is a bit vec-
tor, with each bit indicating a group of eight processors, at least one of which
caches the block. Using traces of 64-processor execution, simulate the behav-
ior of these schemes. Assume a perfect cache for nonshared references so as
to focus on coherency behavior. Determine the number of extraneous invali-
dations as the directory cache size in increased.

 5.29 [10] <5.5> Implement the classical test-and-set instruction using the load-linked/
store-conditional instruction pair.

 5.30 [15] <5.5> One performance optimization commonly used is to pad synchroniza-
tion variables to not have any other useful data in the same cache line as the syn-
chronization variable. Construct a pathological example when not doing this can
hurt performance. Assume a snooping write invalidate protocol.

 5.31 [30] <5.5> One possible implementation of the load-linked/store-conditional
pair for multicore processors is to constrain these instructions to using uncached
memory operations. A monitor unit intercepts all reads and writes from any core
to the memory. It keeps track of the source of the load-linked instructions and
whether any intervening stores occur between the load-linked and its corre-
sponding store-conditional instruction. The monitor can prevent any failing
store conditional from writing any data and can use the interconnect signals to
inform the processor that this store failed. Design such a monitor for a memory
system supporting a four-core symmetric multiprocessor (SMP). Take into
account that, generally, read and write requests can have different data sizes
(4, 8, 16, 32 bytes). Any memory location can be the target of a load-linked/
store-conditional pair, and the memory monitor should assume that load-linked/
store-conditional references to any location can, possibly, be interleaved with
regular accesses to the same location. The monitor complexity should be inde-
pendent of the memory size.

Case Studies and Exercises by Amr Zaky and David A. Wood ■ 429

 5.32 [10/12/10/12] <5.6> As discussed in Section 5.6 the memory consistency model
provides a specification of how the memory system will appear to the program-
mer. Consider the following code segment, where the initial values are

A=flag=C=0.
P1 P2
A= 2000 while (flag ==1){;}
flag=1 C=A

a. [10] <5.6> At the end of the code segment, what is the value you would
expect for C?

b. [12] <5.6> A system with a general-purpose interconnection network, a direc-
tory-based cache coherence protocol, and support for nonblocking loads gen-
erates a result where C is 0. Describe a scenario where this result is possible.

c. [10] <5.6> If you wanted to make the system sequentially consistent, what
are the key constraints you would need to impose?

Assume that a processor supports a relaxed memory consistency model. A
relaxed consistency model requires synchronization to be explicitly identified.
Assume that the processor supports a “barrier” instruction, which ensures that all
memory operations preceding the barrier instruction complete before any mem-
ory operations following the barrier are allowed to begin. Where would you
include barrier instructions in the above code segment to ensure that you get the
“intuitive results” of sequential consistency?

 5.33 [25] <5.7> Prove that in a two-level cache hierarchy, where L1 is closer to the
processor, inclusion is maintained with no extra action if L2 has at least as much
associativity as L1, both caches use line replaceable unit (LRU) replacement, and
both caches have the same block sizes.

 5.34 [Discussion] <5.7> When trying to perform detailed performance evaluation of a
multiprocessor system, system designers use one of three tools: analytical mod-
els, trace-driven simulation, and execution-driven simulation. Analytical models
use mathematical expressions to model the behavior of programs. Trace-driven
simulations run the applications on a real machine and generate a trace, typically
of memory operations. These traces can be replayed through a cache simulator or
a simulator with a simple processor model to predict the performance of the sys-
tem when various parameters are changed. Execution-driven simulators simulate
the entire execution maintaining an equivalent structure for the processor state
and so on. What are the accuracy and speed trade-offs between these approaches?

 5.35 [40] <5.7, 5.9> Multiprocessors and clusters usually show performance increases
as you increase the number of the processors, with the ideal being n× speedup for
n processors. The goal of this biased benchmark is to make a program that gets
worse performance as you add processors. This means, for example, that one pro-
cessor on the multiprocessor or cluster runs the program fastest, two are slower,
four are slower than two, and so on. What are the key performance characteristics
for each organization that give inverse linear speedup?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

6.1 Introduction 432

6.2 Programming Models and Workloads for Warehouse-Scale Computers 436

6.3 Computer Architecture of Warehouse-Scale Computers 441

6.4 Physical Infrastructure and Costs of Warehouse-Scale Computers 446

6.5 Cloud Computing: The Return of Utility Computing 455

6.6 Crosscutting Issues 461

6.7 Putting It All Together: A Google Warehouse-Scale Computer 464

6.8 Fallacies and Pitfalls 471

6.9 Concluding Remarks 475

6.10 Historical Perspectives and References 476

Case Studies and Exercises by Parthasarathy Ranganathan 476

6
Warehouse-Scale Computers

to Exploit Request-Level and

Data-Level Parallelism 1

The datacenter is the computer.

Luiz André Barroso,
Google (2007)

A hundred years ago, companies stopped generating their own power

with steam engines and dynamos and plugged into the newly built

electric grid. The cheap power pumped out by electric utilities didn’t

just change how businesses operate. It set off a chain reaction of eco-

nomic and social transformations that brought the modern world into

existence. Today, a similar revolution is under way. Hooked up to the

Internet’s global computing grid, massive information-processing plants

have begun pumping data and software code into our homes and busi-

nesses. This time, it’s computing that’s turning into a utility.

Nicholas Carr
The Big Switch: Rewiring the World, from

Edison to Google (2008)

Computer Architecture. DOI: 10.1016/B978-0-12-383872-8.00007-0
© 2012 Elsevier, Inc. All rights reserved.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://dx.doi.org/10.1016/B978-0-12-383872-8.00007-0
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

432 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

Anyone can build a fast CPU. The trick is to build a fast system.

Seymour Cray
Considered the father of the supercomputer

The warehouse-scale computer (WSC)1 is the foundation of Internet services
many people use every day: search, social networking, online maps, video shar-
ing, online shopping, email services, and so on. The tremendous popularity of
such Internet services necessitated the creation of WSCs that could keep up with
the rapid demands of the public. Although WSCs may appear to be just large
datacenters, their architecture and operation are quite different, as we shall see.
Today’s WSCs act as one giant machine and cost on the order of $150M for the
building, the electrical and cooling infrastructure, the servers, and the networking
equipment that connects and houses 50,000 to 100,000 servers. Moreover, the
rapid growth of cloud computing (see Section 6.5) makes WSCs available to any-
one with a credit card.

Computer architecture extends naturally to designing WSCs. For example,
Luiz Barroso of Google (quoted earlier) did his dissertation research in computer
architecture. He believes an architect’s skills of designing for scale, designing for
dependability, and a knack for debugging hardware are very helpful in the cre-
ation and operation of WSCs.

At this extreme scale, which requires innovation in power distribution, cool-
ing, monitoring, and operations, the WSC is the modern descendant of the super-
computer—making Seymour Cray the godfather of today’s WSC architects. His
extreme computers handled computations that could be done nowhere else, but
were so expensive that only a few companies could afford them. This time the
target is providing information technology for the world instead of high-
performance computing (HPC) for scientists and engineers; hence, WSCs argu-
ably play a more important role for society today than Cray’s supercomputers did
in the past.

Unquestionably, WSCs have many orders of magnitude more users than
high-performance computing, and they represent a much larger share of the IT
market. Whether measured by number of users or revenue, Google is at least 250
times larger than Cray Research ever was.

1 This chapter is based on material from the book The Datacenter as a Computer: An Introduction to the Design of
Warehouse-Scale Machines, by Luiz André Barroso and Urs Hölzle of Google [2009]; the blog Perspectives at
mvdirona.com and the talks “Cloud-Computing Economies of Scale” and “Data Center Networks Are in My Way,”
by James Hamilton of Amazon Web Services [2009, 2010]; and the technical report Above the Clouds: A Berkeley
View of Cloud Computing, by Michael Armbrust et al. [2009].

6.1 Introduction

http://www.mvdirona.com

6.1 Introduction ■ 433

WSC architects share many goals and requirements with server architects:

■ Cost-performance—Work done per dollar is critical in part because of the
scale. Reducing the capital cost of a WSC by 10% could save $15M.

■ Energy efficiency—Power distribution costs are functionally related to power
consumption; you need sufficient power distribution before you can consume
power. Mechanical system costs are functionally related to power: You need to
get out the heat that you put in. Hence, peak power and consumed power drive
both the cost of power distribution and the cost of cooling systems. Moreover,
energy efficiency is an important part of environmental stewardship. Hence,
work done per joule is critical for both WSCs and servers because of the high
cost of building the power and mechanical infrastructure for a warehouse of
computers and for the monthly utility bills to power servers.

■ Dependability via redundancy—The long-running nature of Internet services
means that the hardware and software in a WSC must collectively provide at
least 99.99% of availability; that is, it must be down less than 1 hour per year.
Redundancy is the key to dependability for both WSCs and servers. While
server architects often utilize more hardware offered at higher costs to reach
high availability, WSC architects rely instead on multiple cost-effective serv-
ers connected by a low-cost network and redundancy managed by software.
Furthermore, if the goal is to go much beyond “four nines” of availability,
you need multiple WSCs to mask events that can take out whole WSCs.
Multiple WSCs also reduce latency for services that are widely deployed.

■ Network I/O—Server architects must provide a good network interface to the
external world, and WSC architects must also. Networking is needed to keep
data consistent between multiple WSCs as well as to interface to the public.

■ Both interactive and batch processing workloads—While you expect highly
interactive workloads for services like search and social networking with mil-
lions of users, WSCs, like servers, also run massively parallel batch programs
to calculate metadata useful to such services. For example, MapReduce jobs
are run to convert the pages returned from crawling the Web into search indi-
ces (see Section 6.2).

Not surprisingly, there are also characteristics not shared with server architecture:

■ Ample parallelism—A concern for a server architect is whether the applica-
tions in the targeted marketplace have enough parallelism to justify the
amount of parallel hardware and whether the cost is too high for sufficient
communication hardware to exploit this parallelism. A WSC architect has no
such concern. First, batch applications benefit from the large number of inde-
pendent datasets that require independent processing, such as billions of Web
pages from a Web crawl. This processing is data-level parallelism applied to
data in storage instead of data in memory, which we saw in Chapter 4. Second,
interactive Internet service applications, also known as software as a service
(SaaS), can benefit from millions of independent users of interactive Internet

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

434 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

services. Reads and writes are rarely dependent in SaaS, so SaaS rarely needs
to synchronize. For example, search uses a read-only index and email is nor-
mally reading- and writing-independent information. We call this type of easy
parallelism request-level parallelism, as many independent efforts can
proceed in parallel naturally with little need for communication or synchroni-
zation; for example, journal-based updating can reduce throughput demands.
Given the success of SaaS and WSCs, more traditional applications such as
relational databases have been weakened to rely on request-level parallelism.
Even read-/write-dependent features are sometimes dropped to offer storage
that can scale to the size of modern WSCs.

■ Operational costs count—Server architects usually design their systems for
peak performance within a cost budget and worry about power only to make
sure they don’t exceed the cooling capacity of their enclosure. They usually
ignore operational costs of a server, assuming that they pale in comparison to
purchase costs. WSCs have longer lifetimes—the building and electrical and
cooling infrastructure are often amortized over 10 or more years—so the
operational costs add up: Energy, power distribution, and cooling represent
more than 30% of the costs of a WSC in 10 years.

■ Scale and the opportunities/problems associated with scale—Often extreme
computers are extremely expensive because they require custom hardware,
and yet the cost of customization cannot be effectively amortized since few
extreme computers are made. However, when you purchase 50,000 servers
and the infrastructure that goes with it to construct a single WSC, you do get
volume discounts. WSCs are so massive internally that you get economy of
scale even if there are not many WSCs. As we shall see in Sections 6.5 and
6.10, these economies of scale led to cloud computing, as the lower per-unit
costs of a WSC meant that companies could rent them at a profit below what
it costs outsiders to do it themselves. The flip side of 50,000 servers is fail-
ures. Figure 6.1 shows outages and anomalies for 2400 servers. Even if a
server had a mean time to failure (MTTF) of an amazing 25 years (200,000
hours), the WSC architect would need to design for 5 server failures a day.
Figure 6.1 lists the annualized disk failure rate as 2% to 10%. If there were 4
disks per server and their annual failure rate was 4%, with 50,000 servers the
WSC architect should expect to see one disk fail per hour.

Example Calculate the availability of a service running on the 2400 servers in Figure 6.1.
Unlike a service in a real WSC, in this example the service cannot tolerate hard-
ware or software failures. Assume that the time to reboot software is 5 minutes
and the time to repair hardware is 1 hour.

Answer We can estimate service availability by calculating the time of outages due to
failures of each component. We’ll conservatively take the lowest number in each
category in Figure 6.1 and split the 1000 outages evenly between four compo-
nents. We ignore slow disks—the fifth component of the 1000 outages—since

6.1 Introduction ■ 435

they hurt performance but not availability, and power utility failures, since the
uninterruptible power supply (UPS) system hides 99% of them.

Since there are 365 × 24 or 8760 hours in a year, availability is:

That is, without software redundancy to mask the many outages, a service on
those 2400 servers would be down on average one day a week, or zero nines of
availability!

As Section 6.10 explains, the forerunners of WSCs are computer clusters.
Clusters are collections of independent computers that are connected together
using standard local area networks (LANs) and off-the-shelf switches. For work-
loads that did not require intensive communication, clusters offered much more
cost-effective computing than shared memory multiprocessors. (Shared memory
multiprocessors were the forerunners of the multicore computers discussed in
Chapter 5.) Clusters became popular in the late 1990s for scientific computing and
then later for Internet services. One view of WSCs is that they are just the logical
evolution from clusters of hundreds of servers to tens of thousands of servers
today.

Approx. number
events in 1st year Cause Consequence

1 or 2 Power utility failures Lose power to whole WSC; doesn’t bring down WSC if UPS and
generators work (generators work about 99% of time).

4 Cluster upgrades

Planned outage to upgrade infrastructure, many times for evolving
networking needs such as recabling, to switch firmware upgrades, and
so on. There are about 9 planned cluster outages for every unplanned
outage.

1000s

Hard-drive failures 2% to 10% annual disk failure rate [Pinheiro 2007]

Slow disks Still operate, but run 10x to 20x more slowly

Bad memories One uncorrectable DRAM error per year [Schroeder et al. 2009]

Misconfigured machines Configuration led to ~30% of service disruptions [Barroso and HÖlzle
2009]

Flaky machines 1% of servers reboot more than once a week [Barroso and HÖlzle 2009]

5000 Individual server crashes Machine reboot, usually takes about 5 minutes

Figure 6.1 List of outages and anomalies with the approximate frequencies of occurrences in the first year of a

new cluster of 2400 servers. We label what Google calls a cluster an array; see Figure 6.5. (Based on Barroso [2010].)

Hours Outageservice 4 250 250 250+ + +() 1 hour 250 5000+()+× 5 minutes×=

754 438 1192 hours=+=

Availabilitysystem
8760 1192–()

8760
---------------------------------- 7568

8760
------------ 86%= = =

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

436 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

A natural question is whether WSCs are similar to modern clusters for high-
performance computing. Although some have similar scale and cost—there are
HPC designs with a million processors that cost hundreds of millions of dol-
lars—they generally have much faster processors and much faster networks
between the nodes than are found in WSCs because the HPC applications are
more interdependent and communicate more frequently (see Section 6.3). HPC
designs also tend to use custom hardware—especially in the network—so they
often don’t get the cost benefits from using commodity chips. For example, the
IBM Power 7 microprocessor alone can cost more and use more power than an
entire server node in a Google WSC. The programming environment also empha-
sizes thread-level parallelism or data-level parallelism (see Chapters 4 and 5),
typically emphasizing latency to complete a single task as opposed to bandwidth
to complete many independent tasks via request-level parallelism. The HPC clus-
ters also tend to have long-running jobs that keep the servers fully utilized, even
for weeks at a time, while the utilization of servers in WSCs ranges between 10%
and 50% (see Figure 6.3 on page 440) and varies every day.

How do WSCs compare to conventional datacenters? The operators of a con-
ventional datacenter generally collect machines and third-party software from
many parts of an organization and run them centrally for others. Their main focus
tends to be consolidation of the many services onto fewer machines, which are
isolated from each other to protect sensitive information. Hence, virtual machines
are increasingly important in datacenters. Unlike WSCs, conventional datacenters
tend to have a great deal of hardware and software heterogeneity to serve their
varied customers inside an organization. WSC programmers customize third-party
software or build their own, and WSCs have much more homogeneous hardware;
the WSC goal is to make the hardware/software in the warehouse act like a single
computer that typically runs a variety of applications. Often the largest cost in a
conventional datacenter is the people to maintain it, whereas, as we shall see in
Section 6.4, in a well-designed WSC the server hardware is the greatest cost, and
people costs shift from the topmost to nearly irrelevant. Conventional datacenters
also don’t have the scale of a WSC, so they don’t get the economic benefits of
scale mentioned above. Hence, while you might consider a WSC as an extreme
datacenter, in that computers are housed separately in a space with special electri-
cal and cooling infrastructure, typical datacenters share little with the challenges
and opportunities of a WSC, either architecturally or operationally.

Since few architects understand the software that runs in a WSC, we start
with the workload and programming model of a WSC.

If a problem has no solution, it may not be a problem, but a fact—not to be
solved, but to be coped with over time.

 Shimon Peres

6.2 Programming Models and Workloads for
Warehouse-Scale Computers

6.2 Programming Models and Workloads for Warehouse-Scale Computers ■ 437

In addition to the public-facing Internet services such as search, video sharing, and
social networking that make them famous, WSCs also run batch applications, such
as converting videos into new formats or creating search indexes from Web crawls.

Today, the most popular framework for batch processing in a WSC is Map-
Reduce [Dean and Ghemawat 2008] and its open-source twin Hadoop. Figure 6.2
shows the increasing popularity of MapReduce at Google over time. (Facebook
runs Hadoop on 2000 batch-processing servers of the 60,000 servers it is esti-
mated to have in 2011.) Inspired by the Lisp functions of the same name, Map
first applies a programmer-supplied function to each logical input record. Map
runs on thousands of computers to produce an intermediate result of key-value
pairs. Reduce collects the output of those distributed tasks and collapses them
using another programmer-defined function. With appropriate software support,
both are highly parallel yet easy to understand and to use. Within 30 minutes, a
novice programmer can run a MapReduce task on thousands of computers.

For example, one MapReduce program calculates the number of occurrences of
every English word in a large collection of documents. Below is a simplified ver-
sion of that program, which shows just the inner loop and assumes just one occur-
rence of all English words found in a document [Dean and Ghemawat 2008]:

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1”); // Produce list of all words

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v); // get integer from key-value pair
Emit(AsString(result));

Aug-04 Mar-06 Sep-07 Sep-09

Number of MapReduce jobs 29,000 171,000 2,217,000 3,467,000

Average completion time (seconds) 634 874 395 475

Server years used 217 2002 11,081 25,562

Input data read (terabytes) 3288 52,254 403,152 544,130

Intermediate data (terabytes) 758 6743 34,774 90,120

Output data written (terabytes) 193 2970 14,018 57,520

Average number of servers per job 157 268 394 488

Figure 6.2 Annual MapReduce usage at Google over time. Over five years the
number of MapReduce jobs increased by a factor of 100 and the average number of
servers per job increased by a factor of 3. In the last two years the increases were factors
of 1.6 and 1.2, respectively [Dean 2009]. Figure 6.16 on page 459 estimates that running
the 2009 workload on Amazon’s cloud computing service EC2 would cost $133M.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

438 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

The function EmitIntermediate used in the Map function emits each word in
the document and the value one. Then the Reduce function sums all the values
per word for each document using ParseInt() to get the number of occurrences
per word in all documents. The MapReduce runtime environment schedules map
tasks and reduce task to the nodes of a WSC. (The complete version of the pro-
gram is found in Dean and Ghemawat [2004].)

MapReduce can be thought of as a generalization of the single-instruction,
multiple-data (SIMD) operation (Chapter 4)—except that you pass a function to
be applied to the data—that is followed by a function that is used in a reduction
of the output from the Map task. Because reductions are commonplace even in
SIMD programs, SIMD hardware often offers special operations for them. For
example, Intel’s recent AVX SIMD instructions include “horizontal” instructions
that add pairs of operands that are adjacent in registers.

To accommodate variability in performance from thousands of computers,
the MapReduce scheduler assigns new tasks based on how quickly nodes com-
plete prior tasks. Obviously, a single slow task can hold up completion of a large
MapReduce job. In a WSC, the solution to slow tasks is to provide software
mechanisms to cope with such variability that is inherent at this scale. This
approach is in sharp contrast to the solution for a server in a conventional data-
center, where traditionally slow tasks mean hardware is broken and needs to be
replaced or that server software needs tuning and rewriting. Performance hetero-
geneity is the norm for 50,000 servers in a WSC. For example, toward the end of
a MapReduce program, the system will start backup executions on other nodes of
the tasks that haven’t completed yet and take the result from whichever finishes
first. In return for increasing resource usage a few percent, Dean and Ghemawat
[2008] found that some large tasks complete 30% faster.

Another example of how WSCs differ is the use of data replication to over-
come failures. Given the amount of equipment in a WSC, it’s not surprising that
failures are commonplace, as the prior example attests. To deliver on 99.99%
availability, systems software must cope with this reality in a WSC. To reduce
operational costs, all WSCs use automated monitoring software so that one oper-
ator can be responsible for more than 1000 servers.

Programming frameworks such as MapReduce for batch processing and
externally facing SaaS such as search rely upon internal software services for
their success. For example, MapReduce relies on the Google File System (GFS)
(Ghemawat, Gobioff, and Leung [2003]) to supply files to any computer, so that
MapReduce tasks can be scheduled anywhere.

In addition to GFS, examples of such scalable storage systems include Ama-
zon’s key value storage system Dynamo [DeCandia et al. 2007] and the Google
record storage system Bigtable [Chang 2006]. Note that such systems often build
upon each other. For example, Bigtable stores its logs and data on GFS, much as
a relational database may use the file system provided by the kernel operating
system.

These internal services often make different decisions than similar software
running on single servers. As an example, rather than assuming storage is reli-
able, such as by using RAID storage servers, these systems often make complete

6.2 Programming Models and Workloads for Warehouse-Scale Computers ■ 439

replicas of the data. Replicas can help with read performance as well as with
availability; with proper placement, replicas can overcome many other system
failures, like those in Figure 6.1. Some systems use erasure encoding rather than
full replicas, but the constant is cross-server redundancy rather than within-a-
server or within-a-storage array redundancy. Hence, failure of the entire server or
storage device doesn't negatively affect availability of the data.

Another example of the different approach is that WSC storage software often
uses relaxed consistency rather than following all the ACID (atomicity, consis-
tency, isolation, and durability) requirements of conventional database systems.
The insight is that it’s important for multiple replicas of data to agree eventually,
but for most applications they need not be in agreement at all times. For example,
eventual consistency is fine for video sharing. Eventual consistency makes storage
systems much easier to scale, which is an absolute requirement for WSCs.

The workload demands of these public interactive services all vary consider-
ably; even a popular global service such as Google search varies by a factor of
two depending on the time of day. When you factor in weekends, holidays, and
popular times of year for some applications—such as photograph sharing ser-
vices after Halloween or online shopping before Christmas—you can see consid-
erably greater variation in server utilization for Internet services. Figure 6.3
shows average utilization of 5000 Google servers over a 6-month period. Note
that less than 0.5% of servers averaged 100% utilization, and most servers oper-
ated between 10% and 50% utilization. Stated alternatively, just 10% of all serv-
ers were utilized more than 50%. Hence, it’s much more important for servers in
a WSC to perform well while doing little than to just to perform efficiently at
their peak, as they rarely operate at their peak.

In summary, WSC hardware and software must cope with variability in load
based on user demand and in performance and dependability due to the vagaries
of hardware at this scale.

Example As a result of measurements like those in Figure 6.3, the SPECPower benchmark
measures power and performance from 0% load to 100% in 10% increments (see
Chapter 1). The overall single metric that summarizes this benchmark is the sum
of all the performance measures (server-side Java operations per second) divided
by the sum of all power measurements in watts. Thus, each level is equally likely.
How would the numbers summary metric change if the levels were weighted by
the utilization frequencies in Figure 6.3?

Answer Figure 6.4 shows the original weightings and the new weighting that match
Figure 6.3. These weightings reduce the performance summary by 30% from
3210 ssj_ops/watt to 2454.

Given the scale, software must handle failures, which means there is little
reason to buy “gold-plated” hardware that reduces the frequency of failures.
The primary impact would be to increase cost. Barroso and Hölzle [2009]
found a factor of 20 difference in price-performance between a high-end

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

440 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

Figure 6.3 Average CPU utilization of more than 5000 servers during a 6-month
period at Google. Servers are rarely completely idle or fully utilized, instead operating
most of the time at between 10% and 50% of their maximum utilization. (From Figure 1
in Barroso and Hölzle [2007].) The column the third from the right in Figure 6.4 calcu-
lates percentages plus or minus 5% to come up with the weightings; thus, 1.2% for the
90% row means that 1.2% of servers were between 85% and 95% utilized.

 Load Performance Watts
SPEC

weightings
Weighted

performance
Weighted

watts
Figure 6.3

weightings
Weighted

performance
Weighted

watts

100% 2,889,020 662 9.09% 262,638 60 0.80% 22,206 5

90% 2,611,130 617 9.09% 237,375 56 1.20% 31,756 8

80% 2,319,900 576 9.09% 210,900 52 1.50% 35,889 9

70% 2,031,260 533 9.09% 184,660 48 2.10% 42,491 11

60% 1,740,980 490 9.09% 158,271 45 5.10% 88,082 25

50% 1,448,810 451 9.09% 131,710 41 11.50% 166,335 52

40% 1,159,760 416 9.09% 105,433 38 19.10% 221,165 79

30% 869,077 382 9.09% 79,007 35 24.60% 213,929 94

20% 581,126 351 9.09% 52,830 32 15.30% 88,769 54

10% 290,762 308 9.09% 26,433 28 8.00% 23,198 25

0% 0 181 9.09% 0 16 10.90% 0 20

Total 15,941,825 4967 1,449,257 452 933,820 380

ssj_ops/Watt 3210 ssj_ops/Watt 2454

Figure 6.4 SPECPower result from Figure 6.17 using the weightings from Figure 6.3 instead of even
weightings.

0
0

0.005

0.01

0.015

0.02

0.025

0.03

0.1 0.2 0.3 0.4 0.5

CPU utilization

F
ra

ct
io

n
of

 ti
m

e

0.6 0.7 0.8 0.9 1.0

6.3 Computer Architecture of Warehouse-Scale Computers ■ 441

HP shared-memory multiprocessor and a commodity HP server when running
the TPC-C database benchmark. Unsurprisingly, Google buys low-end com-
modity servers.

Such WSC services also tend to develop their own software rather than buy
third-party commercial software, in part to cope with the huge scale and in part
to save money. For example, even on the best price-performance platform for
TPC-C in 2011, including the cost of the Oracle database and Windows operat-
ing system doubles the cost of the Dell Poweredge 710 server. In contrast,
Google runs Bigtable and the Linux operating system on its servers, for which it
pays no licensing fees.

Given this review of the applications and systems software of a WSC, we are
ready to look at the computer architecture of a WSC.

Networks are the connective tissue that binds 50,000 servers together. Analogous
to the memory hierarchy of Chapter 2, WSCs use a hierarchy of networks. Figure
6.5 shows one example. Ideally, the combined network would provide nearly the
performance of a custom high-end switch for 50,000 servers at nearly the cost per
port of a commodity switch designed for 50 servers. As we shall see in Section
6.6, the current solutions are far from that ideal, and networks for WSCs are an
area of active exploration.

The 19-inch (48.26-cm) rack is still the standard framework to hold servers,
despite this standard going back to railroad hardware from the 1930s. Servers
are measured in the number of rack units (U) that they occupy in a rack. One U
is 1.75 inches (4.45 cm) high, and that is the minimum space a server can
occupy.

A 7-foot (213.36-cm) rack offers 48 U, so it’s not a coincidence that the most
popular switch for a rack is a 48-port Ethernet switch. This product has become a
commodity that costs as little as $30 per port for a 1 Gbit/sec Ethernet link in
2011 [Barroso and Hölzle 2009]. Note that the bandwidth within the rack is the
same for each server, so it does not matter where the software places the sender
and the receiver as long as they are within the same rack. This flexibility is ideal
from a software perspective.

These switches typically offer two to eight uplinks, which leave the rack to
go to the next higher switch in the network hierarchy. Thus, the bandwidth leav-
ing the rack is 6 to 24 times smaller—48/8 to 48/2—than the bandwidth within
the rack. This ratio is called oversubscription. Alas, large oversubscription means
programmers must be aware of the performance consequences when placing
senders and receivers in different racks. This increased software-scheduling
burden is another argument for network switches designed specifically for the
datacenter.

6.3 Computer Architecture of Warehouse-Scale
Computers

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

442 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

Storage

A natural design is to fill a rack with servers, minus whatever space you need for
the commodity Ethernet rack switch. This design leaves open the question of
where the storage is placed. From a hardware construction perspective, the sim-
plest solution would be to include disks inside the server, and rely on Ethernet
connectivity for access to information on the disks of remote servers. The alter-
native would be to use network attached storage (NAS), perhaps over a storage
network like Infiniband. The NAS solution is generally more expensive per tera-
byte of storage, but it provides many features, including RAID techniques to
improve dependability of the storage.

As you might expect from the philosophy expressed in the prior section,
WSCs generally rely on local disks and provide storage software that handles con-
nectivity and dependability. For example, GFS uses local disks and maintains at
least three replicas to overcome dependability problems. This redundancy covers
not just local disk failures, but also power failures to racks and to whole clusters.
The eventual consistency flexibility of GFS lowers the cost of keeping replicas
consistent, which also reduces the network bandwidth requirements of the storage

Figure 6.5 Hierarchy of switches in a WSC. (Based on Figure 1.2 of Barroso and Hölzle
[2009].)

1U Server

Rack
switch

Rack

Array
switch

6.3 Computer Architecture of Warehouse-Scale Computers ■ 443

system. Local access patterns also mean high bandwidth to local storage, as we’ll
see shortly.

Beware that there is confusion about the term cluster when talking about the
architecture of a WSC. Using the definition in Section 6.1, a WSC is just an
extremely large cluster. In contrast, Barroso and Hölzle [2009] used the term
cluster to mean the next-sized grouping of computers, in this case about 30 racks.
In this chapter, to avoid confusion we will use the term array to mean a collection
of racks, preserving the original meaning of the word cluster to mean anything
from a collection of networked computers within a rack to an entire warehouse
full of networked computers.

Array Switch

The switch that connects an array of racks is considerably more expensive than the
48-port commodity Ethernet switch. This cost is due in part because of the higher
connectivity and in part because the bandwidth through the switch must be much
higher to reduce the oversubscription problem. Barroso and Hölzle [2009]
reported that a switch that has 10 times the bisection bandwidth—basically, the
worst-case internal bandwidth—of a rack switch costs about 100 times as much.
One reason is that the cost of switch bandwidth for n ports can grow as n2.

Another reason for the high costs is that these products offer high profit mar-
gins for the companies that produce them. They justify such prices in part by pro-
viding features such as packet inspection that are expensive because they must
operate at very high rates. For example, network switches are major users of
content-addressable memory chips and of field-programmable gate arrays
(FPGAs), which help provide these features, but the chips themselves are expen-
sive. While such features may be valuable for Internet settings, they are generally
unused inside the datacenter.

WSC Memory Hierarchy

Figure 6.6 shows the latency, bandwidth, and capacity of memory hierarchy
inside a WSC, and Figure 6.7 shows the same data visually. These figures are
based on the following assumptions [Barroso and Hölzle 2009]:

Local Rack Array

DRAM latency (microseconds) 0.1 100 300

Disk latency (microseconds) 10,000 11,000 12,000

DRAM bandwidth (MB/sec) 20,000 100 10

Disk bandwidth (MB/sec) 200 100 10

DRAM capacity (GB) 16 1040 31,200

Disk capacity (GB) 2000 160,000 4,800,000

Figure 6.6 Latency, bandwidth, and capacity of the memory hierarchy of a WSC

[Barroso and Hölzle 2009]. Figure 6.7 plots this same information.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

444 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

■ Each server contains 16 GBytes of memory with a 100-nanosecond access
time and transfers at 20 GBytes/sec and 2 terabytes of disk that offers a
10-millisecond access time and transfers at 200 MBytes/sec. There are two
sockets per board, and they share one 1 Gbit/sec Ethernet port.

■ Every pair of racks includes one rack switch and holds 80 2U servers (see
Section 6.7). Networking software plus switch overhead increases the latency
to DRAM to 100 microseconds and the disk access latency to 11 millisec-
onds. Thus, the total storage capacity of a rack is roughly 1 terabyte of
DRAM and 160 terabytes of disk storage. The 1 Gbit/sec Ethernet limits the
remote bandwidth to DRAM or disk within the rack to 100 MBytes/sec.

■ The array switch can handle 30 racks, so storage capacity of an array goes up
by a factor of 30: 30 terabytes of DRAM and 4.8 petabytes of disk. The array
switch hardware and software increases latency to DRAM within an array to
500 microseconds and disk latency to 12 milliseconds. The bandwidth of the
array switch limits the remote bandwidth to either array DRAM or array disk
to 10 MBytes/sec.

Figure 6.7 Graph of latency, bandwidth, and capacity of the memory hierarchy of a WSC for data in Figure 6.6
[Barroso and Hölzle 2009].

Local
0

1

10

100

1000

10000

100000

1000000

10000000

Rack Array

Disk capacity (GB)

Disk latency (μsec)

DRAM latency (μsec)
Disk bandwidth (MB/sec)

DRAM bandwidth
(MB/sec)

Disk bandwidth (MB/sec)

DRAM capacity (GB)

6.3 Computer Architecture of Warehouse-Scale Computers ■ 445

Figures 6.6 and 6.7 show that network overhead dramatically increases
latency from local DRAM to rack DRAM and array DRAM, but both still have
more than 10 times better latency than the local disk. The network collapses the
difference in bandwidth between rack DRAM and rack disk and between array
DRAM and array disk.

The WSC needs 20 arrays to reach 50,000 servers, so there is one more level
of the networking hierarchy. Figure 6.8 shows the conventional Layer 3 routers to
connect the arrays together and to the Internet.

Most applications fit on a single array within a WSC. Those that need more
than one array use sharding or partitioning, meaning that the dataset is split into
independent pieces and then distributed to different arrays. Operations on the
whole dataset are sent to the servers hosting the pieces, and the results are
coalesced by the client computer.

Example What is the average memory latency assuming that 90% of accesses are local to
the server, 9% are outside the server but within the rack, and 1% are outside the
rack but within the array?

Answer The average memory access time is

or a factor of more than 120 slowdown versus 100% local accesses. Clearly,
locality of access within a server is vital for WSC performance.

Figure 6.8 The Layer 3 network used to link arrays together and to the Internet [Greenberg et al. 2009]. Some
WSCs use a separate border router to connect the Internet to the datacenter Layer 3 switches.

Internet

LB LB

CR CR

Internet

SSSS

SS

AR AR ARAR

Key:
 • CR = L3 core router
 • AR = L3 access router
 • S = Array switch
 • LB = Load balancer
 • A = Rack of 80 servers
 with rack switchAAAA

.. ..

...

...

AA

Datacenter
Layer 3

Layer 2

90% 0.1×() 9% 100×() 1% 300×()+ + 0.09 9 3+ + 12.09 microseconds= =

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

446 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

Example How long does it take to transfer 1000 MB between disks within the server,
between servers in the rack, and between servers in different racks in the array?
How much faster is it to transfer 1000 MB between DRAM in the three cases?

Answer A 1000 MB transfer between disks takes:

A memory-to-memory block transfer takes

Thus, for block transfers outside a single server, it doesn’t even matter whether
the data are in memory or on disk since the rack switch and array switch are the
bottlenecks. These performance limits affect the design of WSC software and
inspire the need for higher performance switches (see Section 6.6).

Given the architecture of the IT equipment, we are now ready to see how to
house, power, and cool it and to discuss the cost to build and operate the whole
WSC, as compared to just the IT equipment within it.

To build a WSC, you first need to build a warehouse. One of the first questions is
where? Real estate agents emphasize location, but location for a WSC means prox-
imity to Internet backbone optical fibers, low cost of electricity, and low risk from
environmental disasters, such as earthquakes, floods, and hurricanes. For a com-
pany with many WSCs, another concern is finding a place geographically near a
current or future population of Internet users, so as to reduce latency over the Inter-
net. There are also many more mundane concerns, such as property tax rates.

Infrastructure costs for power distribution and cooling dwarf the construction
costs of a WSC, so we concentrate on the former. Figures 6.9 and 6.10 show the
power distribution and cooling infrastructure within a WSC.

Although there are many variations deployed, in North America electrical
power typically goes through about five steps and four voltage changes on the
way to the server, starting with the high-voltage lines at the utility tower of
115,000 volts:

1. The substation switches from 115,000 volts to medium-voltage lines of
13,200 volts, with an efficiency of 99.7%.

Within server = 1000/200 = 5 seconds

Within rack = 1000/100 = 10 seconds

Within array = 1000/10 = 100 seconds

Within server = 1000/20000 = 0.05 seconds

Within rack = 1000/100 = 10 seconds

Within array = 1000/10 = 100 seconds

6.4 Physical Infrastructure and Costs of
Warehouse-Scale Computers

6.4 Physical Infrastructure and Costs of Warehouse-Scale Computers ■ 447

2. To prevent the whole WSC from going offline if power is lost, a WSC has an
uninterruptible power supply (UPS), just as some servers do. In this case, it
involves large diesel engines that can take over from the utility company in
an emergency and batteries or flywheels to maintain power after the service is
lost but before the diesel engines are ready. The generators and batteries can
take up so much space that they are typically located in a separate room from
the IT equipment. The UPS plays three roles: power conditioning (maintain
proper voltage levels and other characteristics), holding the electrical load
while the generators start and come on line, and holding the electrical load
when switching back from the generators to the electrical utility. The effi-
ciency of this very large UPS is 94%, so the facility loses 6% of the power by
having a UPS. The WSC UPS can account for 7% to 12% of the cost of all
the IT equipment.

3. Next in the system is a power distribution unit (PDU) that converts to low-
voltage, internal, three-phase power at 480 volts. The conversion efficiency is
98%. A typical PDU handles 75 to 225 kilowatts of load, or about 10 racks.

4. There is yet another down step to two-phase power at 208 volts that servers
can use, once again at 98% efficiency. (Inside the server, there are more steps
to bring the voltage down to what chips can use; see Section 6.7.)

Figure 6.9 Power distribution and where losses occur. Note that the best improvement is 11%. (From Hamilton
[2010].)

0.3% loss
99.7% efficient

2% loss
98% efficient

2% loss
98% efficient

6% loss
94% efficient, ~97% available

~1% loss in switch
gear & conductors

UPS:

Rotary or Battery
Transformers Transformers

High-voltage
utility distribution

IT Load
(servers, storage, net, …)Generators

UPS & Gen
often on 480 v115

kv

13.2
kv

20
8

V

Substation

13.2 kv 13.2 kv 480 V

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

448 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

5. The connectors, breakers, and electrical wiring to the server have a collective
efficiency of 99%.

WSCs outside North America use different conversion values, but the overall
design is similar.

Putting it all together, the efficiency of turning 115,000-volt power from the
utility into 208-volt power that servers can use is 89%:

99.7% × 94% × 98% × 98% × 99% = 89%

This overall efficiency leaves only a little over 10% room for improvement, but
as we shall see, engineers still try to make it better.

There is considerably more opportunity for improvement in the cooling
infrastructure. The computer room air-conditioning (CRAC) unit cools the air in
the server room using chilled water, similar to how a refrigerator removes heat
by releasing it outside of the refrigerator. As a liquid absorbs heat, it evaporates.
Conversely, when a liquid releases heat, it condenses. Air conditioners pump the
liquid into coils under low pressure to evaporate and absorb heat, which is then
sent to an external condenser where it is released. Thus, in a CRAC unit, fans
push warm air past a set of coils filled with cold water and a pump moves the
warmed water to the external chillers to be cooled down. The cool air for servers
is typically between 64°F and 71°F (18°C and 22°C). Figure 6.10 shows the
large collection of fans and water pumps that move air and water throughout the
system.

Figure 6.10 Mechanical design for cooling systems. CWS stands for circulating water system. (From Hamilton
[2010].)

Computer
room air
handler

Cooling
tower

CWS
pump

Heat
exchanger

(Water-side economizer)

A/C
condenser

Primary
pump

A/C
evaporator

Leakage

Cold

H
ot

Diluted hot/cold mix

C
ol

d

Fans

Air impeller

Server fans 6 to 9 W each

A/C
compressor

B
low

 dow
n &

 evaporative loss at
8

M
W

 facility: ~
200,000 gal/day

6.4 Physical Infrastructure and Costs of Warehouse-Scale Computers ■ 449

Clearly, one of the simplest ways to improve energy efficiency is simply to
run the IT equipment at higher temperatures so that the air need not be cooled as
much. Some WSCs run their equipment considerably above 71°F (22°C).

In addition to chillers, cooling towers are used in some datacenters to lever-
age the colder outside air to cool the water before it is sent to the chillers. The
temperature that matters is called the wet-bulb temperature. The wet-bulb tem-
perature is measured by blowing air on the bulb end of a thermometer that has
water on it. It is the lowest temperature that can be achieved by evaporating water
with air.

Warm water flows over a large surface in the tower, transferring heat to the
outside air via evaporation and thereby cooling the water. This technique is called
airside economization. An alternative is use cold water instead of cold air.
Google’s WSC in Belgium uses a water-to-water intercooler that takes cold water
from an industrial canal to chill the warm water from inside the WSC.

Airflow is carefully planned for the IT equipment itself, with some designs
even using airflow simulators. Efficient designs preserve the temperature of the
cool air by reducing the chances of it mixing with hot air. For example, a WSC can
have alternating aisles of hot air and cold air by orienting servers in opposite direc-
tions in alternating rows of racks so that hot exhaust blows in alternating directions.

In addition to energy losses, the cooling system also uses up a lot of water
due to evaporation or to spills down sewer lines. For example, an 8 MW facility
might use 70,000 to 200,000 gallons of water per day.

The relative power costs of cooling equipment to IT equipment in a typical
datacenter [Barroso and Hölzle 2009] are as follows:

■ Chillers account for 30% to 50% of the IT equipment power.

■ CRAC accounts for 10% to 20% of the IT equipment power, due mostly to fans.

Surprisingly, it’s not obvious to figure out how many servers a WSC can
support after you subtract the overheads for power distribution and cooling. The
so-called nameplate power rating from the server manufacturer is always con-
servative; it’s the maximum power a server can draw. The first step then is to
measure a single server under a variety of workloads to be deployed in the
WSC. (Networking is typically about 5% of power consumption, so it can be
ignored to start.)

To determine the number of servers for a WSC, the available power for IT
could just be divided by the measured server power; however, this would again
be too conservative according to Fan, Weber, and Barroso [2007]. They found
that there is a significant gap between what thousands of servers could theoret-
ically do in the worst case and what they will do in practice, since no real work-
loads will keep thousands of servers all simultaneously at their peaks. They
found that they could safely oversubscribe the number of servers by as much as
40% based on the power of a single server. They recommended that WSC
architects should do that to increase the average utilization of power within a
WSC; however, they also suggested using extensive monitoring software along

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

450 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

with a safety mechanism that deschedules lower priority tasks in case the work-
load shifts.

Breaking down power usage inside the IT equipment itself, Barroso and
Hölzle [2009] reported the following for a Google WSC deployed in 2007:

■ 33% of power for processors

■ 30% for DRAM

■ 10% for disks

■ 5% for networking

■ 22% for other reasons (inside the server)

Measuring Efficiency of a WSC

A widely used, simple metric to evaluate the efficiency of a datacenter or a WSC
is called power utilization effectiveness (or PUE):

PUE = (Total facility power)/(IT equipment power)

Thus, PUE must be greater than or equal to 1, and the bigger the PUE the less
efficient the WSC.

Greenberg et al. [2006] reported on the PUE of 19 datacenters and the portion
of the overhead that went into the cooling infrastructure. Figure 6.11 shows what
they found, sorted by PUE from most to least efficient. The median PUE is 1.69,
with the cooling infrastructure using more than half as much power as the servers
themselves—on average, 0.55 of the 1.69 is for cooling. Note that these are aver-
age PUEs, which can vary daily depending on workload and even external air
temperature, as we shall see.

Since performance per dollar is the ultimate metric, we still need to measure
performance. As Figure 6.7 above shows, bandwidth drops and latency increases
depending on the distance to the data. In a WSC, the DRAM bandwidth within a
server is 200 times larger than within a rack, which in turn is 10 times larger than
within an array. Thus, there is another kind of locality to consider in the place-
ment of data and programs within a WSC.

While designers of a WSC often focus on bandwidth, programmers develop-
ing applications on a WSC are also concerned with latency, since latency is visi-
ble to users. Users’ satisfaction and productivity are tied to response time of a
service. Several studies from the timesharing days report that user productivity is
inversely proportional to time for an interaction, which was typically broken
down into human entry time, system response time, and time for the person to
think about the response before entering the next entry. The results of experi-
ments showed that cutting system response time 30% shaved the time of an inter-
action by 70%. This implausible result is explained by human nature: People
need less time to think when given a faster response, as they are less likely to get
distracted and remain “on a roll.”

Figure 6.12 shows the results of such an experiment for the Bing search engine,
where delays of 50 ms to 2000 ms were inserted at the search server. As expected

6.4 Physical Infrastructure and Costs of Warehouse-Scale Computers ■ 451

from previous studies, time to next click roughly doubled the delay; that is, a 200
ms delay at the server led to a 500 ms increase in time to next click. Revenue
dropped linearly with increasing delay, as did user satisfaction. A separate study on
the Google search engine found that these effects lingered long after the 4-week
experiment ended. Five weeks later, there were 0.1% fewer searchers per day for
users who experienced 200 ms delays, and there were 0.2% fewer searches from
users who experienced 400 ms delays. Given the amount of money made in search,
even such small changes are disconcerting. In fact, the results were so negative that
they ended the experiment prematurely [Schurman and Brutlag 2009].

Figure 6.11 Power utilization efficiency of 19 datacenters in 2006 [Greenberg et al. 2006]. The power for air
conditioning (AC) and other uses (such as power distribution) is normalized to the power for the IT equipment in
calculating the PUE. Thus, power for IT equipment must be 1.0 and AC varies from about 0.30 to 1.40 times the
power of the IT equipment. Power for “other” varies from about 0.05 to 0.60 of the IT equipment.

Server delay
(ms)

Increased time
to next click (ms)

Queries/
user

Any clicks/
user

User
satisfaction

Revenue/
user

50 -- -- -- -- --

200 500 -- −0.3% −0.4% --

500 1200 -- −1.0% −0.9% −1.2%

1000 1900 −0.7% −1.9% −1.6% −2.8%

2000 3100 −1.8% −4.4% −3.8% −4.3%

Figure 6.12 Negative impact of delays at Bing search server on user behavior

Schurman and Brutlag [2009].

P
ow

er
 u

sa
ge

 e
ffe

ct
iv

en
es

s
(P

U
E

)

0 0.5 1 1.5 2 2.5 3 3.5

IT
AC
Other

1.33

1.35

1.43

1.47

1.49

1.52

1.59

1.67

1.69

1.69

1.69

1.82

2.04

2.04

2.13

2.33

2.38

2.63

3.03

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

452 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

Because of this extreme concern with satisfaction of all users of an Internet
service, performance goals are typically specified that a high percentage of
requests be below a latency threshold rather just offer a target for the average
latency. Such threshold goals are called service level objectives (SLOs) or
service level agreements (SLAs). An SLO might be that 99% of requests must be
below 100 milliseconds. Thus, the designers of Amazon’s Dynamo key-value
storage system decided that, for services to offer good latency on top of
Dynamo, their storage system had to deliver on its latency goal 99.9% of the
time [DeCandia et al. 2007]. For example, one improvement of Dynamo helped
the 99.9th percentile much more than the average case, which reflects their
priorities.

Cost of a WSC

As mentioned in the introduction, unlike most architects, designers of WSCs
worry about operational costs as well as the cost to build the WSC. Accounting
labels the former costs as operational expenditures (OPEX) and the latter costs as
capital expenditures (CAPEX).

To put the cost of energy into perspective, Hamilton [2010] did a case study
to estimate the costs of a WSC. He determined that the CAPEX of this 8 MW
facility was $88M, and that the roughly 46,000 servers and corresponding net-
working equipment added another $79M to the CAPEX for the WSC. Figure
6.13 shows the rest of the assumptions for the case study.

We can now price the total cost of energy, since U.S. accounting rules allow
us to convert CAPEX into OPEX. We can just amortize CAPEX as a fixed
amount each month for the effective life of the equipment. Figure 6.14 breaks
down the monthly OPEX for this case study. Note that the amortization rates dif-
fer significantly, from 10 years for the facility to 4 years for the networking
equipment and 3 years for the servers. Hence, the WSC facility lasts a decade,
but you need to replace the servers every 3 years and the networking equipment
every 4 years. By amortizing the CAPEX, Hamilton came up with a monthly
OPEX, including accounting for the cost of borrowing money (5% annually) to
pay for the WSC. At $3.8M, the monthly OPEX is about 2% of the CAPEX.

This figure allows us to calculate a handy guideline to keep in mind when
making decisions about which components to use when being concerned about
energy. The fully burdened cost of a watt per year in a WSC, including the cost of
amortizing the power and cooling infrastructure, is

The cost is roughly $2 per watt-year. Thus, to reduce costs by saving energy you
shouldn’t spend more than $2 per watt-year (see Section 6.8).

Note that more than a third of OPEX is related to power, with that category
trending up while server costs are trending down over time. The networking

Monthly cost of infrastructure monthly cost of power+
Facility size in watts

-- 12× $765K $475K+
8M

--------------------------------------- 12× $1.86= =

6.4 Physical Infrastructure and Costs of Warehouse-Scale Computers ■ 453

equipment is significant at 8% of total OPEX and 19% of the server CAPEX, and
networking equipment is not trending down as quickly as servers are. This differ-
ence is especially true for the switches in the networking hierarchy above the
rack, which represent most of the networking costs (see Section 6.6). People
costs for security and facilities management are just 2% of OPEX. Dividing the
OPEX in Figure 6.14 by the number of servers and hours per month, the cost is
about $0.11 per server per hour.

Size of facility (critical load watts) 8,000,000

Average power usage (%) 80%

Power usage effectiveness 1.45

Cost of power ($/kwh) $0.07

% Power and cooling infrastructure (% of total facility cost) 82%

CAPEX for facility (not including IT equipment) $88,000,000

Number of servers 45,978

Cost/server $1450

CAPEX for servers $66,700,000

Number of rack switches 1150

Cost/rack switch $4800

Number of array switches 22

Cost/array switch $300,000

Number of layer 3 switches 2

Cost/layer 3 switch $500,000

Number of border routers 2

Cost/border router $144,800

CAPEX for networking gear $12,810,000

Total CAPEX for WSC $167,510,000

Server amortization time 3 years

Networking amortization time 4 years

Facilities amortization time 10 years

Annual cost of money 5%

Figure 6.13 Case study for a WSC, based on Hamilton [2010], rounded to nearest

$5000. Internet bandwidth costs vary by application, so they are not included here. The
remaining 18% of the CAPEX for the facility includes buying the property and the cost
of construction of the building. We added people costs for security and facilities man-
agement in Figure 6.14, which were not part of the case study. Note that Hamilton’s
estimates were done before he joined Amazon, and they are not based on the WSC of a
particular company.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

454 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

Example The cost of electricity varies by region in the United States from $0.03 to $0.15 per
kilowatt-hour. What is the impact on hourly server costs of these two extreme rates?

Answer We multiply the critical load of 8 MW by the PUE and by the average power
usage from Figure 6.13 to calculate the average power usage:

The monthly cost for power then goes from $475,000 in Figure 6.14 to $205,000
at $0.03 per kilowatt-hour and to $1,015,000 at $0.15 per kilowatt-hour. These
changes in electricity cost change the hourly server costs from $0.11 to $0.10 and
$0.13, respectively.

Example What would happen to monthly costs if the amortization times were all made to
be the same—say, 5 years? How does that change the hourly cost per server?

Answer The spreadsheet is available online at http://mvdirona.com/jrh/TalksAndPapers/
PerspectivesDataCenterCostAndPower.xls. Changing the amortization time to 5
years changes the first four rows of Figure 6.14 to

Expense (% total) Category Monthly cost Percent monthly cost

 Amortized CAPEX (85%)

Servers $2,000,000 53%

Networking equipment $290,000 8%

Power and cooling infrastructure $765,000 20%

Other infrastructure $170,000 4%

 OPEX (15%)
Monthly power use $475,000 13%

Monthly people salaries and benefits $85,000 2%

Total OPEX $3,800,000 100%

Figure 6.14 Monthly OPEX for Figure 6.13, rounded to the nearest $5000. Note that the 3-year amortization for
servers means you need to purchase new servers every 3 years, whereas the facility is amortized for 10 years. Hence,
the amortized capital costs for servers are about 3 times more than for the facility. People costs include 3 security
guard positions continuously for 24 hours a day, 365 days a year, at $20 per hour per person, and 1 facilities person
for 24 hours a day, 365 days a year, at $30 per hour. Benefits are 30% of salaries. This calculation doesn’t include the
cost of network bandwidth to the Internet, as it varies by application, nor vendor maintenance fees, as that varies by
equipment and by negotiations.

Servers $1,260,000 37%

Networking equipment $242,000 7%

Power and cooling infrastructure $1,115,000 33%

Other infrastructure $245,000 7%

8 1.45 80%×× 9.28 Megawatts=

http://www.mvdirona.com/jrh/TalksAndPapers/PerspectivesDataCenterCostAndPower.xls
http://www.mvdirona.com/jrh/TalksAndPapers/PerspectivesDataCenterCostAndPower.xls

6.5 Cloud Computing: The Return of Utility Computing ■ 455

and the total monthly OPEX is $3,422,000. If we replaced everything every 5
years, the cost would be $0.103 per server hour, with more of the amortized costs
now being for the facility rather than the servers, as in Figure 6.14.

The rate of $0.11 per server per hour can be much less than the cost for many
companies that own and operate their own (smaller) conventional datacenters.
The cost advantage of WSCs led large Internet companies to offer computing as a
utility where, like electricity, you pay only for what you use. Today, utility com-
puting is better known as cloud computing.

If computers of the kind I have advocated become the computers of the
future, then computing may someday be organized as a public utility just as
the telephone system is a public utility. . . . The computer utility could become
the basis of a new and important industry.

John McCarthy

MIT centennial celebration (1961)

Driven by the demand of an increasing number of users, Internet companies such
as Amazon, Google, and Microsoft built increasingly larger warehouse-scale
computers from commodity components. This demand led to innovations in sys-
tems software to support operating at this scale, including Bigtable, Dynamo,
GFS, and MapReduce. It also demanded improvement in operational techniques
to deliver a service available at least 99.99% of the time despite component fail-
ures and security attacks. Examples of these techniques include failover, fire-
walls, virtual machines, and protection against distributed denial-of-service
attacks. With the software and expertise providing the ability to scale and
increasing customer demand that justified the investment, WSCs with 50,000 to
100,000 servers have become commonplace in 2011.

With increasing scale came increasing economies of scale. Based on a study
in 2006 that compared a WSC with a datacenter with only 1000 servers,
Hamilton [2010] reported the following advantages:

■ 5.7 times reduction in storage costs—It cost the WSC $4.6 per GByte per
year for disk storage versus $26 per GByte for the datacenter.

■ 7.1 times reduction in administrative costs—The ratio of servers per adminis-
trator was over 1000 for the WSC versus just 140 for the datacenter.

■ 7.3 times reduction in networking costs—Internet bandwidth cost the WSC
$13 per Mbit/sec/month versus $95 for the datacenter. Unsurprisingly, you
can negotiate a much better price per Mbit/sec if you order 1000 Mbit/sec
than if you order 10 Mbit/sec.

6.5 Cloud Computing: The Return of Utility Computing

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

456 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

Another economy of scale comes during purchasing. The high level of pur-
chasing leads to volume discount prices on the servers and networking gear. It
also allows optimization of the supply chain. Dell, IBM, and SGI will deliver on
new orders in a week to a WSC instead of 4 to 6 months. Short delivery time
makes it much easier to grow the utility to match the demand.

Economies of scale also apply to operational costs. From the prior section,
we saw that many datacenters operate with a PUE of 2.0. Large firms can justify
hiring mechanical and power engineers to develop WSCs with lower PUEs, in
the range of 1.2 (see Section 6.7).

Internet services need to be distributed to multiple WSCs for both depend-
ability and to reduce latency, especially for international markets. All large firms
use multiple WSCs for that reason. It’s much more expensive for individual firms
to create multiple, small datacenters around the world than a single datacenter in
the corporate headquarters.

Finally, for the reasons presented in Section 6.1, servers in datacenters tend to
be utilized only 10% to 20% of the time. By making WSCs available to the pub-
lic, uncorrelated peaks between different customers can raise average utilization
above 50%.

Thus, economies of scale for a WSC offer factors of 5 to 7 for several compo-
nents of a WSC plus a few factors of 1.5 to 2 for the entire WSC.

While there are many cloud computing providers, we feature Amazon Web
Services (AWS) in part because of its popularity and in part because of the low
level and hence more flexible abstraction of their service. Google App Engine
and Microsoft Azure raise the level of abstraction to managed runtimes and to
offer automatic scaling services, which are a better match to some customers, but
not as good a match as AWS to the material in this book.

Amazon Web Services

Utility computing goes back to commercial timesharing systems and even batch
processing systems of the 1960s and 1970s, where companies only paid for a ter-
minal and a phone line and then were billed based on how much computing they
used. Many efforts since the end of timesharing then have tried to offer such pay
as you go services, but they were often met with failure.

When Amazon started offering utility computing via the Amazon Simple
Storage Service (Amazon S3) and then Amazon Elastic Computer Cloud
(Amazon EC2) in 2006, it made some novel technical and business decisions:

■ Virtual Machines. Building the WSC using x86-commodity computers run-
ning the Linux operating system and the Xen virtual machine solved several
problems. First, it allowed Amazon to protect users from each other. Second,
it simplified software distribution within a WSC, in that customers only
need install an image and then AWS will automatically distribute it to all the
instances being used. Third, the ability to kill a virtual machine reliably

6.5 Cloud Computing: The Return of Utility Computing ■ 457

makes it easy for Amazon and customers to control resource usage. Fourth,
since Virtual Machines can limit the rate at which they use the physical pro-
cessors, disks, and the network as well as the amount of main memory, that
gave AWS multiple price points: the lowest price option by packing multiple
virtual cores on a single server, the highest price option of exclusive access
to all the machine resources, as well as several intermediary points. Fifth,
Virtual Machines hide the identity of older hardware, allowing AWS to con-
tinue to sell time on older machines that might otherwise be unattractive to
customers if they knew their age. Finally, Virtual Machines allow AWS to
introduce new and faster hardware by either packing even more virtual cores
per server or simply by offering instances that have higher performance per
virtual core; virtualization means that offered performance need not be an
integer multiple of the performance of the hardware.

■ Very low cost. When AWS announced a rate of $0.10 per hour per instance in
2006, it was a startlingly low amount. An instance is one Virtual Machine,
and at $0.10 per hour AWS allocated two instances per core on a multicore
server. Hence, one EC2 computer unit is equivalent to a 1.0 to 1.2 GHz AMD
Opteron or Intel Xeon of that era.

■ (Initial) reliance on open source software. The availability of good-quality
software that had no licensing problems or costs associated with running on
hundreds or thousands of servers made utility computing much more eco-
nomical for both Amazon and its customers. More recently, AWS started
offering instances including commercial third-party software at higher prices.

■ No (initial) guarantee of service. Amazon originally promised only best
effort. The low cost was so attractive that many could live without a service
guarantee. Today, AWS provides availability SLAs of up to 99.95% on ser-
vices such as Amazon EC2 and Amazon S3. Additionally, Amazon S3 was
designed for 99.999999999% durability by saving multiple replicas of each
object across multiple locations. That is, the chances of permanently losing
an object are one in 100 billion. AWS also provides a Service Health Dash-
board that shows the current operational status of each of the AWS services in
real time, so that AWS uptime and performance are fully transparent.

■ No contract required. In part because the costs are so low, all that is necessary
to start using EC2 is a credit card.

Figure 6.15 shows the hourly price of the many types of EC2 instances in
2011. In addition to computation, EC2 charges for long-term storage and for
Internet traffic. (There is no cost for network traffic inside AWS regions.) Elastic
Block Storage costs $0.10 per GByte per month and $0.10 per million I/O
requests. Internet traffic costs $0.10 per GByte going to EC2 and $0.08 to $0.15
per GByte leaving from EC2, depending on the volume. Putting this into histori-
cal perspective, for $100 per month you can use the equivalent capacity of the
sum of the capacities of all magnetic disks produced in 1960!

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

458 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

Example Calculate the cost of running the average MapReduce jobs in Figure 6.2 on
page 437 on EC2. Assume there are plenty of jobs, so there is no significant extra
cost to round up so as to get an integer number of hours. Ignore the monthly stor-
age costs, but include the cost of disk I/Os for AWS’s Elastic Block Storage
(EBS). Next calculate the cost per year to run all the MapReduce jobs.

Answer The first question is what is the right size instance to match the typical server at
Google? Figure 6.21 on page 467 in Section 6.7 shows that in 2007 a typical
Google server had four cores running at 2.2 GHz with 8 GB of memory. Since a
single instance is one virtual core that is equivalent to a 1 to 1.2 GHz AMD
Opteron, the closest match in Figure 6.15 is a High-CPU Extra Large with eight
virtual cores and 7.0 GB of memory. For simplicity, we’ll assume the average
EBS storage access is 64 KB in order to calculate the number of I/Os.

Instance Per hour
Ratio to

small
Compute

units
Virtual
cores

Compute
units/core

Memory
(GB)

Disk
(GB)

Address
size

Micro $0.020 0.5–2.0 0.5–2.0 1 0.5–2.0 0.6 EBS 32/64 bit

Standard Small $0.085 1.0 1.0 1 1.00 1.7 160 32 bit

Standard Large $0.340 4.0 4.0 2 2.00 7.5 850 64 bit

Standard Extra Large $0.680 8.0 8.0 4 2.00 15.0 1690 64 bit

High-Memory Extra Large $0.500 5.9 6.5 2 3.25 17.1 420 64 bit

High-Memory Double
Extra Large

$1.000 11.8 13.0 4 3.25 34.2 850 64 bit

High-Memory Quadruple
Extra Large

$2.000 23.5 26.0 8 3.25 68.4 1690 64 bit

High-CPU Medium $0.170 2.0 5.0 2 2.50 1.7 350 32 bit

High-CPU Extra Large $0.680 8.0 20.0 8 2.50 7.0 1690 64 bit

Cluster Quadruple Extra
Large

$1.600 18.8 33.5 8 4.20 23.0 1690 64 bit

Figure 6.15 Price and characteristics of on-demand EC2 instances in the United States in the Virginia region in
January 2011. Micro Instances are the newest and cheapest category, and they offer short bursts of up to 2.0
compute units for just $0.02 per hour. Customers report that Micro Instances average about 0.5 compute units.
Cluster-Compute Instances in the last row, which AWS identifies as dedicated dual-socket Intel Xeon X5570 serv-
ers with four cores per socket running at 2.93 GHz, offer 10 Gigabit/sec networks. They are intended for HPC appli-
cations. AWS also offers Spot Instances at much less cost, where you set the price you are willing to pay and the
number of instances you are willing to run, and then AWS will run them when the spot price drops below your
level. They run until you stop them or the spot price exceeds your limit. One sample during the daytime in January
2011 found that the spot price was a factor of 2.3 to 3.1 lower, depending on the instance type. AWS also offers
Reserved Instances for cases where customers know they will use most of the instance for a year. You pay a yearly
fee per instance and then an hourly rate that is about 30% of column 1 to use it. If you used a Reserved Instance
100% for a whole year, the average cost per hour including amortization of the annual fee would be about 65% of
the rate in the first column. The server equivalent to those in Figures 6.13 and 6.14 would be a Standard Extra
Large or High-CPU Extra Large Instance, which we calculated to cost $0.11 per hour.

6.5 Cloud Computing: The Return of Utility Computing ■ 459

Figure 6.16 calculates the average and total cost per year of running the Google
MapReduce workload on EC2. The average 2009 MapReduce job would cost a
little under $40 on EC2, and the total workload for 2009 would cost $133M on
AWS. Note that EBS accesses are about 1% of total costs for these jobs.

Example Given that the costs of MapReduce jobs are growing and already exceed $100M
per year, imagine that your boss wants you to investigate ways to lower costs.
Two potentially lower cost options are either AWS Reserved Instances or AWS
Spot Instances. Which would you recommend?

Answer AWS Reserved Instances charge a fixed annual rate plus an hourly per-use rate.
In 2011, the annual cost for the High-CPU Extra Large Instance is $1820 and the
hourly rate is $0.24. Since we pay for the instances whether they are used or not,
let’s assume that the average utilization of Reserved Instances is 80%. Then the
average price per hour becomes:

Thus, the savings using Reserved Instances would be roughly 17% or $23M for
the 2009 MapReduce workload.

Sampling a few days in January 2011, the hourly cost of a High-CPU Extra
Large Spot Instance averages $0.235. Since that is the minimum price to bid to
get one server, that cannot be the average cost since you usually want to run tasks
to completion without being bumped. Let’s assume you need to pay double the
minimum price to run large MapReduce jobs to completion. The cost savings for
Spot Instances for the 2009 workload would be roughly 31% or $41M.

Aug-04 Mar-06 Sep-07 Sep-09

Average completion time (hours) 0.15 0.21 0.10 0.11

Average number of servers per job 157 268 394 488

Cost per hour of EC2 High-CPU XL instance $0.68 $0.68 $0.68 $0.68

Average EC2 cost per MapReduce job $16.35 $38.47 $25.56 $38.07

Average number of EBS I/O requests (millions) 2.34 5.80 3.26 3.19

EBS cost per million I/O requests $0.10 $0.10 $0.10 $0.10

Average EBS I/O cost per MapReduce job $0.23 $0.58 $0.33 $0.32

Average total cost per MapReduce job $16.58 $39.05 $25.89 $38.39

Annual number of MapReduce jobs 29,000 171,000 2,217,000 3,467,000

Total cost of MapReduce jobs on EC2/EBS $480,910 $6,678,011 $57,394,985 $133,107,414

Figure 6.16 Estimated cost if you ran the Google MapReduce workload (Figure 6.2) using 2011 prices for AWS

ECS and EBS (Figure 6.15). Since we are using 2011 prices, these estimates are less accurate for earlier years than for
the more recent ones.

Annual price
Hours per year
----------------------------------- Hourly price+

Utilization
--

$1820
8760

--------------- $0.24+

80%
----------------------------------- 0.21 0.24+() 1.25× $0.56= = =

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

460 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

Thus, you tentatively recommend Spot Instances to your boss since there is less
of an up-front commitment and they may potentially save more money. However,
you tell your boss you need to try to run MapReduce jobs on Spot Instances to
see what you actually end up paying to ensure that jobs run to completion and
that there really are hundreds of High-CPU Extra Large Instances available to run
these jobs daily.

In addition to the low cost and a pay-for-use model of utility computing,
another strong attractor for cloud computing users is that the cloud computing
providers take on the risks of over-provisioning or under-provisioning. Risk
avoidance is a godsend for startup companies, as either mistake could be fatal. If
too much of the precious investment is spent on servers before the product is
ready for heavy use, the company could run out of money. If the service suddenly
became popular, but there weren’t enough servers to match the demand, the com-
pany could make a very bad impression with the potential new customers it des-
perately needs to grow.

The poster child for this scenario is FarmVille from Zynga, a social network-
ing game on Facebook. Before FarmVille was announced, the largest social game
was about 5 million daily players. FarmVille had 1 million players 4 days after
launch and 10 million players after 60 days. After 270 days, it had 28 million
daily players and 75 million monthly players. Because they were deployed on
AWS, they were able to grow seamlessly with the number of users. Moreover, it
sheds load based on customer demand.

More established companies are taking advantage of the scalability of the
cloud, as well. In 2011, Netflix migrated its Web site and streaming video service
from a conventional datacenter to AWS. Netflix’s goal was to let users watch a
movie on, say, their cell phone while commuting home and then seamlessly
switch to their television when they arrive home to continue watching their
movie where they left off. This effort involves batch processing to convert new
movies to the myriad formats they need to deliver movies on cell phones, tablets,
laptops, game consoles, and digital video recorders. These batch AWS jobs can
take thousands of machines several weeks to complete the conversions. The
transactional backend for streaming is done in AWS and the delivery of encoded
files is done via Content Delivery Networks such as Akamai and Level 3. The
online service is much less expensive than mailing DVDs, and the resulting low
cost has made the new service popular. One study put Netflix as 30% of Internet
download traffic in the United States during peak evening periods. (In contrast,
YouTube was just 10% in the same 8 p.m. to 10 p.m. period.) In fact, the overall
average is 22% of Internet traffic, making Netflix alone responsible for the larg-
est portion of Internet traffic in North America. Despite accelerating growth rates
in Netflix subscriber accounts, the growth rate of Netflix’s datacenter has been
halted, and all capacity expansion going forward has been done via AWS.

Cloud computing has made the benefits of WSC available to everyone. Cloud
computing offers cost associativity with the illusion of infinite scalability at no
extra cost to the user: 1000 servers for 1 hour cost no more than 1 server for

6.6 Crosscutting Issues ■ 461

1000 hours. It is up to the cloud computing provider to ensure that there are
enough servers, storage, and Internet bandwidth available to meet the demand.
The optimized supply chain mentioned above, which drops time-to-delivery to a
week for new computers, is a considerable aid in providing that illusion without
bankrupting the provider. This transfer of risks, cost associativity, and pay-as-
you-go pricing is a powerful argument for companies of varying sizes to use
cloud computing.

Two crosscutting issues that shape the cost-performance of WSCs and hence
cloud computing are the WSC network and the efficiency of the server hardware
and software.

Net gear is the SUV of the datacenter.

James Hamilton (2009)

WSC Network as a Bottleneck

Section 6.4 showed that the networking gear above the rack switch is a signifi-
cant fraction of the cost of a WSC. Fully configured, the list price of a 128-port
1 Gbit datacenter switch from Juniper (EX8216) is $716,000 without optical
interfaces and $908,000 with them. (These list prices are heavily discounted, but
they still cost more than 50 times as much as a rack switch did.) These switches
also tend be power hungry. For example, the EX8216 consumes about 19,200
watts, which is 500 to 1000 times more than a server in a WSC. Moreover, these
large switches are manually configured and fragile at a large scale. Because of
their price, it is difficult to afford more than dual redundancy in a WSC using
these large switches, which limits the options for fault tolerance [Hamilton 2009].

However, the real impact on switches is how oversubscription affects the
design of software and the placement of services and data within the WSC. The
ideal WSC network would be a black box whose topology and bandwidth are
uninteresting because there are no restrictions: You could run any workload in
any place and optimize for server utilization rather than network traffic locality.
The WSC network bottlenecks today constrain data placement, which in turn
complicates WSC software. As this software is one of the most valuable assets of
a WSC company, the cost of this added complexity can be significant.

For readers interested learning more about switch design, Appendix F
describes the issues involved in the design of interconnection networks. In addi-
tion, Thacker [2007] proposed borrowing networking technology from supercom-
puting to overcome the price and performance problems. Vahdat et al. [2010] did
as well, and proposed a networking infrastructure that can scale to 100,000 ports
and 1 petabit/sec of bisection bandwidth. A major benefit of these novel datacen-
ter switches is to simplify the software challenges due to oversubscription.

6.6 Crosscutting Issues

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

462 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

Using Energy Efficiently Inside the Server

While PUE measures the efficiency of a WSC, it has nothing to say about what
goes on inside the IT equipment itself. Thus, another source of electrical ineffi-
ciency not covered in Figure 6.9 is the power supply inside the server, which con-
verts input of 208 volts or 110 volts to the voltages that chips and disks use,
typically 3.3, 5, and 12 volts. The 12 volts are further stepped down to 1.2 to 1.8
volts on the board, depending on what the microprocessor and memory require. In
2007, many power supplies were 60% to 80% efficient, which meant there were
greater losses inside the server than there were going through the many steps and
voltage changes from the high-voltage lines at the utility tower to supply the low-
voltage lines at the server. One reason is that they have to supply a range of volt-
ages to the chips and the disks, since they have no idea what is on the mother-
board. A second reason is that the power supply is often oversized in watts for
what is on the board. Moreover, such power supplies are often at their worst effi-
ciency at 25% load or less, even though as Figure 6.3 on page 440 shows, many
WSC servers operate in that range. Computer motherboards also have voltage reg-
ulator modules (VRMs), and they can have relatively low efficiency as well.

To improve the state of the art, Figure 6.17 shows the Climate Savers Com-
puting Initiative standards [2007] for rating power supplies and their goals over
time. Note that the standard specifies requirements at 20% and 50% loading in
addition to 100% loading.

In addition to the power supply, Barroso and Hölzle [2007] said the goal for
the whole server should be energy proportionality; that is, servers should con-
sume energy in proportion to the amount of work performed. Figure 6.18 shows
how far we are from achieving that ideal goal using SPECpower, a server bench-
mark that measures energy used at different performance levels (Chapter 1). The
energy proportional line is added to the actual power usage of the most efficient
server for SPECpower as of July 2010. Most servers will not be that efficient; it
was up to 2.5 times better than other systems benchmarked that year, and late in a
benchmark competition systems are often configured in ways to win the bench-
mark that are not typical of systems in the field. For example, the best-rated
SPECpower servers use solid-state disks whose capacity is smaller than main
memory! Even so, this very efficient system still uses almost 30% of the full

Loading
conditioning Base

Bronze
(June 2008)

Silver
(June 2009)

Gold
(June 2010)

20% 80% 82% 85% 87%

50% 80% 85% 88% 90%

100% 80% 82% 85% 87%

Figure 6.17 Efficiency ratings and goals for power supplies over time of the Climate
Savers Computing Initiative. These ratings are for Multi-Output Power Supply Units,
which refer to desktop and server power supplies in nonredundant systems. There is a
slightly higher standard for single-output PSUs, which are typically used in redundant
configurations (1U/2U single-, dual-, and four-socket and blade servers).

6.6 Crosscutting Issues ■ 463

power when idle and almost 50% of full power at just 10% load. Thus, energy
proportionality remains a lofty goal instead of a proud achievement.

Systems software is designed to use all of an available resource if it poten-
tially improves performance, without concern for the energy implications. For
example, operating systems use all of memory for program data or for file
caches, despite the fact that much of the data will likely never be used. Software
architects need to consider energy as well as performance in future designs
[Carter and Rajamani 2010].

Example Using the data of the kind in Figure 6.18, what is the saving in power going from
five servers at 10% utilization versus one server at 50% utilization?

Answer A single server at 10% load is 308 watts and at 50% load is 451 watts. The sav-
ings is then

or about a factor of 3.4. If we want to be good environmental stewards in our
WSC, we must consolidate servers when utilizations drop, purchase servers that
are more energy proportional, or find something else that is useful to run in peri-
ods of low activity.

Figure 6.18 The best SPECpower results as of July 2010 versus the ideal energy

proportional behavior. The system was the HP ProLiant SL2x170z G6, which uses a
cluster of four dual-socket Intel Xeon L5640s with each socket having six cores running
at 2.27 GHz. The system had 64 GB of DRAM and a tiny 60 GB SSD for secondary stor-
age. (The fact that main memory is larger than disk capacity suggests that this system
was tailored to this benchmark.) The software used was IBM Java Virtual Machine ver-
sion 9 and Windows Server 2008, Enterprise Edition.

0

100

200

300

400

500

600

700

0 300 600 900 1200 1500 1800 2100 2400 2700 3000

W
at

ts

Workload: 1000 operations/second

Actual power

Energy proportional power

5 308 451⁄× 1540 451⁄() 3.4≈=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

464 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

Given the background from these six sections, we are now ready to appreci-
ate the work of the Google WSC architects.

Since many companies with WSCs are competing vigorously in the marketplace,
up until recently, they have been reluctant to share their latest innovations with
the public (and each other). In 2009, Google described a state-of-the-art WSC as
of 2005. Google graciously provided an update of the 2007 status of their WSC,
making this section the most up-to-date description of a Google WSC [Clidaras,
Johnson, and Felderman 2010]. Even more recently, Facebook decribed their lat-
est datacenter as part of http://opencompute.org.

Containers

Both Google and Microsoft have built WSCs using shipping containers. The idea
of building a WSC from containers is to make WSC design modular. Each con-
tainer is independent, and the only external connections are networking, power,
and water. The containers in turn supply networking, power, and cooling to the
servers placed inside them, so the job of the WSC is to supply networking,
power, and cold water to the containers and to pump the resulting warm water to
external cooling towers and chillers.

The Google WSC that we are looking at contains 45 40-foot-long containers
in a 300-foot by 250-foot space, or 75,000 square feet (about 7000 square
meters). To fit in the warehouse, 30 of the containers are stacked two high, or 15
pairs of stacked containers. Although the location was not revealed, it was built
at the time that Google developed WSCs in The Dalles, Oregon, which provides
a moderate climate and is near cheap hydroelectric power and Internet backbone
fiber. This WSC offers 10 megawatts with a PUE of 1.23 over the prior 12
months. Of that 0.230 of PUE overhead, 85% goes to cooling losses (0.195 PUE)
and 15% (0.035) goes to power losses. The system went live in November 2005,
and this section describes its state as of 2007.

A Google container can handle up to 250 kilowatts. That means the container
can handle 780 watts per square foot (0.09 square meters), or 133 watts per
square foot across the entire 75,000-square-foot space with 40 containers. How-
ever, the containers in this WSC average just 222 kilowatts

Figure 6.19 is a cutaway drawing of a Google container. A container holds up
to 1160 servers, so 45 containers have space for 52,200 servers. (This WSC has
about 40,000 servers.) The servers are stacked 20 high in racks that form two
long rows of 29 racks (also called bays) each, with one row on each side of the
container. The rack switches are 48-port, 1 Gbit/sec Ethernet switches, which are
placed in every other rack.

6.7 Putting It All Together: A Google Warehouse-
Scale Computer

http://www.opencompute.org

6.7 Putting It All Together: A Google Warehouse-Scale Computer ■ 465

Cooling and Power in the Google WSC

Figure 6.20 is a cross-section of the container that shows the airflow. The com-
puter racks are attached to the ceiling of the container. The cooling is below a
raised floor that blows into the aisle between the racks. Hot air is returned from
behind the racks. The restricted space of the container prevents the mixing of hot
and cold air, which improves cooling efficiency. Variable-speed fans are run at
the lowest speed needed to cool the rack as opposed to a constant speed.

The “cold” air is kept 81°F (27°C), which is balmy compared to the tempera-
tures in many conventional datacenters. One reason datacenters traditionally run
so cold is not for the IT equipment, but so that hot spots within the datacenter
don’t cause isolated problems. By carefully controlling airflow to prevent hot
spots, the container can run at a much higher temperature.

Figure 6.19 Google customizes a standard 1AAA container: 40 x 8 x 9.5 feet (12.2 x 2.4 x 2.9 meters). The servers
are stacked up to 20 high in racks that form two long rows of 29 racks each, with one row on each side of the con-
tainer. The cool aisle goes down the middle of the container, with the hot air return being on the outside. The hang-
ing rack structure makes it easier to repair the cooling system without removing the servers. To allow people inside
the container to repair components, it contains safety systems for fire detection and mist-based suppression, emer-
gency egress and lighting, and emergency power shut-off. Containers also have many sensors: temperature, airflow
pressure, air leak detection, and motion-sensing lighting. A video tour of the datacenter can be found at http://
www.google.com/corporate/green/datacenters/summit.html. Microsoft, Yahoo!, and many others are now building
modular datacenters based upon these ideas but they have stopped using ISO standard containers since the size is
inconvenient.

116
119

140

125

143

101

100
104

146

122

143

131
113

107

142

137

164

134

111

107

158
152161

155

128

149

155
152

116

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.google.com/corporate/green/datacenters/summit.html
http://www.google.com/corporate/green/datacenters/summit.html
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

466 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

External chillers have cutouts so that, if the weather is right, only the outdoor
cooling towers need cool the water. The chillers are skipped if the temperature of
the water leaving the cooling tower is 70°F (21°C) or lower.

Note that if it’s too cold outside, the cooling towers need heaters to prevent
ice from forming. One of the advantages of placing a WSC in The Dalles is that
the annual wet-bulb temperature ranges from 15°F to 66°F (−9°C to 19°C) with
an average of 41°F (5°C), so the chillers can often be turned off. In contrast,

Figure 6.20 Airflow within the container shown in Figure 6.19. This cross-section dia-
gram shows two racks on each side of the container. Cold air blows into the aisle in the
middle of the container and is then sucked into the servers. Warm air returns at the
edges of the container. This design isolates cold and warm airflows.

©
 H

en
ne

ss
y,

 J
oh

n
L

.;
Pa

tte
rs

on
, D

av
id

 A
.,

O
ct

 0
7,

 2
01

1,
 C

om
pu

te
r

A
rc

hi
te

ct
ur

e
: A

 Q
ua

nt
ita

tiv
e

A
pp

ro
ac

h
M

or
ga

n
K

au
fm

an
n,

 B
ur

lin
gt

on
, I

SB
N

: 9
78

01
23

83
87

35
gw

u|
e9

d7
41

f8
60

1e
36

4e
37

bf
39

5d
e9

f5
4a

80
81

a9
7a

67
|1

34
88

85
98

8

6.7 Putting It All Together: A Google Warehouse-Scale Computer ■ 467

Las Vegas, Nevada, ranges from –42°F to 62°F (–41°C to 17°C) with an average
of 29°F (–2°C). In addition, having to cool only to 81°F (27°C) inside the con-
tainer makes it much more likely that Mother Nature will be able to cool the water.

Figure 6.21 shows the server designed by Google for this WSC. To improve
efficiency of the power supply, it only supplies 12 volts to the motherboard and
the motherboard supplies just enough for the number of disks it has on the board.
(Laptops power their disks similarly.) The server norm is to supply the many
voltage levels needed by the disks and chips directly. This simplification means
the 2007 power supply can run at 92% efficiency, going far above the Gold rating
for power supplies in 2010 (Figure 6.17).

Google engineers realized that 12 volts meant that the UPS could simply be a
standard battery on each shelf. Hence, rather than have a separate battery room,
which Figure 6.9 shows as 94% efficient, each server has its own lead acid bat-
tery that is 99.99% efficient. This “distributed UPS” is deployed incrementally
with each machine, which means there is no money or power spent on overcapac-
ity. They use standard off-the-shelf UPS units to protect network switches.

What about saving power by using dynamic voltage-frequency scaling
(DVFS), which Chapter 1 describes? DVFS was not deployed in this family of
machines since the impact on latency was such that it was only feasible in very
low activity regions for online workloads, and even in those cases the system-
wide savings were very small. The complex management control loop needed to
deploy it therefore could not be justified.

Figure 6.21 Server for Google WSC. The power supply is on the left and the two disks
are on the top. The two fans below the left disk cover the two sockets of the AMD Bar-
celona microprocessor, each with two cores, running at 2.2 GHz. The eight DIMMs in
the lower right each hold 1 GB, giving a total of 8 GB. There is no extra sheet metal, as
the servers are plugged into the battery and a separate plenum is in the rack for each
server to help control the airflow. In part because of the height of the batteries, 20
servers fit in a rack.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

468 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

One of the keys to achieving the PUE of 1.23 was to put measurement
devices (called current transformers) in all circuits throughout the containers and
elsewhere in the WSC to measure the actual power usage. These measurements
allowed Google to tune the design of the WSC over time.

Google publishes the PUE of its WSCs each quarter. Figure 6.22 plots the
PUE for 10 Google WSCs from the third quarter in 2007 to the second quarter in
2010; this section describes the WSC labeled Google A. Google E operates with
a PUE of 1.16 with cooling being only 0.105, due to the higher operational tem-
peratures and chiller cutouts. Power distribution is just 0.039, due to the distrib-
uted UPS and single voltage power supply. The best WSC result was 1.12, with
Google A at 1.23. In April 2009, the trailing 12-month average weighted by
usage across all datacenters was 1.19.

Servers in a Google WSC

The server in Figure 6.21 has two sockets, each containing a dual-core AMD
Opteron processor running at 2.2 GHz. The photo shows eight DIMMS, and

Figure 6.22 Power usage effectiveness (PUE) of 10 Google WSCs over time. Google
A is the WSC described in this section. It is the highest line in Q3 ’07 and Q2 ’10. (From
www.google.com/corporate/green/datacenters/measuring.htm.) Facebook recently announced a
new datacenter that should deliver an impressive PUE of 1.07 (see http://opencompute.org/).
The Prineville Oregon Facility has no air conditioning and no chilled water. It relies
strictly on outside air, which is brought in one side of the building, filtered, cooled via
misters, pumped across the IT equipment, and then sent out the building by exhaust
fans. In addition, the servers use a custom power supply that allows the power distribu-
tion system to skip one of the voltage conversion steps in Figure 6.9.

1.4

1.3

1.2

1.1

1.0

Q3
’07

Q4
’07

Q1
’08

Q2
’08

Q3
’08

Q4
’08

Q1
’09

Q2
’09

Q3
’09

Q4
’09

Q1
’10

Q2
’10

Q3
’10

Q4
’10

A
B
C
D

E
F
G
H

I
J

http://www.google.com/corporate/green/datacenters/measuring.htm
http://www.opencompute.org/

6.7 Putting It All Together: A Google Warehouse-Scale Computer ■ 469

these servers are typically deployed with 8 GB of DDR2 DRAM. A novel feature
is that the memory bus is downclocked to 533 MHz from the standard 666 MHz
since the slower bus has little impact on performance but a significant impact on
power.

The baseline design has a single network interface card (NIC) for a 1 Gbit/sec
Ethernet link. Although the photo in Figure 6.21 shows two SATA disk drives,
the baseline server has just one. The peak power of the baseline is about 160
watts, and idle power is 85 watts.

This baseline node is supplemented to offer a storage (or “diskfull”) node.
First, a second tray containing 10 SATA disks is connected to the server. To get
one more disk, a second disk is placed into the empty spot on the motherboard,
giving the storage node 12 SATA disks. Finally, since a storage node could satu-
rate a single 1 Gbit/sec Ethernet link, a second Ethernet NIC was added. Peak
power for a storage node is about 300 watts, and it idles at 198 watts.

Note that the storage node takes up two slots in the rack, which is one reason
why Google deployed 40,000 instead of 52,200 servers in the 45 containers. In
this facility, the ratio was about two compute nodes for every storage node, but
that ratio varied widely across Google’s WSCs. Hence, Google A had about
190,000 disks in 2007, or an average of almost 5 disks per server.

Networking in a Google WSC

The 40,000 servers are divided into three arrays of more than 10,000 servers
each. (Arrays are called clusters in Google terminology.) The 48-port rack switch
uses 40 ports to connect to servers, leaving 8 for uplinks to the array switches.

Array switches are configured to support up to 480 1 Gbit/sec Ethernet links
and a few 10 Gbit/sec ports. The 1 Gigabit ports are used to connect to the rack
switches, as each rack switch has a single link to each of the array switches. The
10 Gbit/sec ports connect to each of two datacenter routers, which aggregate all
array routers and provide connectivity to the outside world. The WSC uses two
datacenter routers for dependability, so a single datacenter router failure does not
take out the whole WSC.

The number of uplink ports used per rack switch varies from a minimum of 2
to a maximum of 8. In the dual-port case, rack switches operate at an oversub-
scription rate of 20:1. That is, there is 20 times the network bandwidth inside the
switch as there was exiting the switch. Applications with significant traffic
demands beyond a rack tended to suffer from poor network performance. Hence,
the 8-port uplink design, which provided a lower oversubscription rate of just
5:1, was used for arrays with more demanding traffic requirements.

Monitoring and Repair in a Google WSC

For a single operator to be responsible for more than 1000 servers, you need an
extensive monitoring infrastructure and some automation to help with routine
events.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

470 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

Google deploys monitoring software to track the health of all servers and net-
working gear. Diagnostics are running all the time. When a system fails, many of
the possible problems have simple automated solutions. In this case, the next step
is to reboot the system and then to try to reinstall software components. Thus, the
procedure handles the majority of the failures.

Machines that fail these first steps are added to a queue of machines to be
repaired. The diagnosis of the problem is placed into the queue along with the ID
of the failed machine.

To amortize the cost of repair, failed machines are addressed in batches by
repair technicians. When the diagnosis software is confident in its assessment,
the part is immediately replaced without going through the manual diagnosis pro-
cess. For example, if the diagnostic says disk 3 of a storage node is bad, the disk
is replaced immediately. Failed machines with no diagnostic or with low-
confidence diagnostics are examined manually.

The goal is to have less than 1% of all nodes in the manual repair queue at
any one time. The average time in the repair queue is a week, even though it
takes much less time for repair technician to fix it. The longer latency suggests
the importance of repair throughput, which affects cost of operations. Note that
the automated repairs of the first step take minutes for a reboot/reinstall to hours
for running directed stress tests to make sure the machine is indeed operational.

These latencies do not take into account the time to idle the broken servers.
The reason is that a big variable is the amount of state in the node. A stateless
node takes much less time than a storage node whose data may need to be evacu-
ated before it can be replaced.

Summary

As of 2007, Google had already demonstrated several innovations to improve the
energy efficiency of its WSCs to deliver a PUE of 1.23 in Google A:

■ In addition to providing an inexpensive shell to enclose servers, the modified
shipping containers separate hot and cold air plenums, which helps reduce the
variation in intake air temperature for servers. With less severe worst-case hot
spots, cold air can be delivered at warmer temperatures.

■ These containers also shrink the distance of the air circulation loop, which
reduces energy to move air.

■ Operating servers at higher temperatures means that air only has to be chilled
to 81°F (27°C) instead of the traditional 64°F to 71°F (18°C to 22°C).

■ A higher target cold air temperature helps put the facility more often within
the range that can be sustained by evaporative cooling solutions (cooling tow-
ers), which are more energy efficient than traditional chillers.

■ Deploying WSCs in temperate climates to allow use of evaporative cooling
exclusively for portions of the year.

■ Deploying extensive monitoring hardware and software to measure actual
PUE versus designed PUE improves operational efficiency.

6.8 Fallacies and Pitfalls ■ 471

■ Operating more servers than the worst-case scenario for the power distribu-
tion system would suggest, since it’s statistically unlikely that thousands of
servers would all be highly busy simultaneously, yet rely on the monitoring
system to off-load work in the unlikely case that they did [Fan, Weber, and
Barroso 2007] [Ranganathan et al. 2006]. PUE improves because the facility
is operating closer to its fully designed capacity, where it is at its most effi-
cient because the servers and cooling systems are not energy proportional.
Such increased utilization reduces demand for new servers and new WSCs.

■ Designing motherboards that only need a single 12-volt supply so that the
UPS function could be supplied by standard batteries associated with each
server instead of a battery room, thereby lowering costs and reducing one
source of inefficiency of power distribution within a WSC.

■ Carefully designing the server board itself to improve its energy efficiency. For
example, underclocking the front-side bus on these microprocessors reduces
energy usage with negligible performance impact. (Note that such optimiza-
tions do not impact PUE but do reduce overall WSC energy consumption.)

WSC design must have improved in the intervening years, as Google’s best WSC
has dropped the PUE from 1.23 for Google A to 1.12. Facebook announced in
2011 that they had driven PUE down to 1.07 in their new datacenter (see http://
opencompute.org/). It will be interesting to see what innovations remain to
improve further the WSC efficiency so that we are good guardians of our envi-
ronment. Perhaps in the future we will even consider the energy cost to manufac-
ture the equipment within a WSC [Chang et al. 2010].

Despite WSC being less than a decade old, WSC architects like those at Google
have already uncovered many pitfalls and fallacies about WSCs, often learned
the hard way. As we said in the introduction, WSC architects are today’s Sey-
mour Crays.

Fallacy Cloud computing providers are losing money.

A popular question about cloud computing is whether it’s profitable at these low
prices.

Based on AWS pricing from Figure 6.15, we could charge $0.68 per hour per
server for computation. (The $0.085 per hour price is for a Virtual Machine
equivalent to one EC2 compute unit, not a full server.) If we could sell 50% of
the server hours, that would generate $0.34 of income per hour per server. (Note
that customers pay no matter how little they use the servers they occupy, so sell-
ing 50% of the server hours doesn’t necessarily mean that average server utiliza-
tion is 50%.)

Another way to calculate income would be to use AWS Reserved Instances,
where customers pay a yearly fee to reserve an instance and then a lower rate per

6.8 Fallacies and Pitfalls

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.opencompute.org/
http://www.opencompute.org/
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

472 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

hour to use it. Combining the charges together, AWS would receive $0.45 of
income per hour per server for a full year.

If we could sell 750 GB per server for storage using AWS pricing, in addition
to the computation income, that would generate another $75 per month per
server, or another $0.10 per hour.

These numbers suggest an average income of $0.44 per hour per server (via
On-Demand Instances) to $0.55 per hour (via Reserved Instances). From Figure
6.13, we calculated the cost per server as $0.11 per hour for the WSC in Section
6.4. Although the costs in Figure 6.13 are estimates that are not based on actual
AWS costs and the 50% sales for server processing and 750 GB utilization of per
server storage are just examples, these assumptions suggest a gross margin of
75% to 80%. Assuming these calculations are reasonable, they suggest that cloud
computing is profitable, especially for a service business.

Fallacy Capital costs of the WSC facility are higher than for the servers that it houses.

While a quick look at Figure 6.13 on page 453 might lead you to that conclusion,
that glimpse ignores the length of amortization for each part of the full WSC.
However, the facility lasts 10 to 15 years while the servers need to be repurchased
every 3 or 4 years. Using the amortization times in Figure 6.13 of 10 years and 3
years, respectively, the capital expenditures over a decade are $72M for the facil-
ity and 3.3 × $67M, or $221M, for servers. Thus, the capital costs for servers in a
WSC over a decade are a factor of three higher than for the WSC facility.

Pitfall Trying to save power with inactive low power modes versus active low power
modes.

Figure 6.3 on page 440 shows that the average utilization of servers is between
10% and 50%. Given the concern on operational costs of a WSC from Section
6.4, you would think low power modes would be a huge help.

As Chapter 1 mentions, you cannot access DRAMs or disks in these inactive
low power modes, so you must return to fully active mode to read or write, no
matter how low the rate. The pitfall is that the time and energy required to return
to fully active mode make inactive low power modes less attractive. Figure 6.3
shows that almost all servers average at least 10% utilization, so you might
expect long periods of low activity but not long periods of inactivity.

In contrast, processors still run in lower power modes at a small multiple of
the regular rate, so active low power modes are much easier to use. Note that the
time to move to fully active mode for processors is also measured in microsec-
onds, so active low power modes also address the latency concerns about low
power modes.

Pitfall Using too wimpy a processor when trying to improve WSC cost-performance.

Amdahl’s law still applies to WSC, as there will be some serial work for each
request, and that can increase request latency if it runs on a slow server [Hölzle
2010] [Lim et al. 2008]. If the serial work increases latency, then the cost of using
a wimpy processor must include the software development costs to optimize the

6.8 Fallacies and Pitfalls ■ 473

code to return it to the lower latency. The larger number of threads of many slow
servers can also be more difficult to schedule and load balance, and thus the vari-
ability in thread performance can lead to longer latencies. A 1 in 1000 chance of
bad scheduling is probably not an issue with 10 tasks, but it is with 1000 tasks
when you have to wait for the longest task. Many smaller servers can also lead to
lower utilization, as it’s clearly easier to schedule when there are fewer things to
schedule. Finally, even some parallel algorithms get less efficient when the prob-
lem is partitioned too finely. The Google rule of thumb is currently to use the
low-end range of server class computers [Barroso and Hölzle 2009].

As a concrete example, Reddi et al. [2010] compared embedded micro-
processors (Atom) and server microprocessors (Nehalem Xeon) running the
Bing search engine. They found that the latency of a query was about three
times longer on Atom than on Xeon. Moreover, the Xeon was more robust.
As load increases on Xeon, quality of service degrades gradually and mod-
estly. Atom quickly violates its quality-of-service target as it tries to absorb
additional load.

This behavior translates directly into search quality. Given the importance of
latency to the user, as Figure 6.12 suggests, the Bing search engine uses multiple
strategies to refine search results if the query latency has not yet exceeded a cut-
off latency. The lower latency of the larger Xeon nodes means they can spend
more time refining search results. Hence, even when the Atom had almost no
load, it gave worse answers in 1% of the queries than Xeon. At normal loads, 2%
of the answers were worse.

Fallacy Given improvements in DRAM dependability and the fault tolerance of WSC sys-
tems software, you don’t need to spend extra for ECC memory in a WSC.

Since ECC adds 8 bits to every 64 bits of DRAM, potentially you could save a
ninth of the DRAM costs by eliminating error-correcting code (ECC), especially
since measurements of DRAM had claimed failure rates of 1000 to 5000 FIT
(failures per billion hours of operation) per megabit [Tezzaron Semiconductor
2004].

Schroeder, Pinheiro, and Weber [2009] studied measurements of the DRAMs
with ECC protection at the majority of Google’s WSCs, which was surely many
hundreds of thousands of servers, over a 2.5-year period. They found 15 to 25
times higher FIT rates than had been published, or 25,000 to 70,000 failures per
megabit. Failures affected more than 8% of DIMMs, and the average DIMM had
4000 correctable errors and 0.2 uncorrectable errors per year. Measured at the
server, about a third experienced DRAM errors each year, with an average of
22,000 correctable errors and 1 uncorrectable error per year. That is, for one-third
of the servers, one memory error is corrected every 2.5 hours. Note that these
systems used the more powerful chipkill codes rather than the simpler SECDED
codes. If the simpler scheme had been used, the uncorrectable error rates would
have been 4 to 10 times higher.

In a WSC that only had parity error protection, the servers would have to
reboot for each memory parity error. If the reboot time were 5 minutes, one-third
of the machines would spend 20% of their time rebooting! Such behavior would

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

474 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

lower the performance of the $150M facility by about 6%. Moreover, these sys-
tems would suffer many uncorrectable errors without operators being notified
that they occurred.

In the early years, Google used DRAM that didn’t even have parity protec-
tion. In 2000, during testing before shipping the next release of the search index,
it started suggesting random documents in response to test queries [Barroso and
Hölzle 2009]. The reason was a stuck-at-zero fault in some DRAMs, which cor-
rupted the new index. Google added consistency checks to detect such errors in
the future. As WSC grew in size and as ECC DIMMs became more affordable,
ECC became the standard in Google WSCs. ECC has the added benefit of mak-
ing it much easier to find broken DIMMs during repair.

Such data suggest why the Fermi GPU (Chapter 4) adds ECC to its memory
where its predecessors didn’t even have parity protection. Moreover, these FIT
rates cast doubts on efforts to use the Intel Atom processor in a WSC—due to its
improved power efficiency—since the 2011 chip set does not support ECC
DRAM.

Fallacy Turning off hardware during periods of low activity improves cost-performance of
a WSC.

Figure 6.14 on page 454 shows that the cost of amortizing the power distribution
and cooling infrastructure is 50% higher than the entire monthly power bill.
Hence, while it certainly would save some money to compact workloads and turn
off idle machines, even if you could save half the power it would only reduce the
monthly operational bill by 7%. There would also be practical problems to over-
come, since the extensive WSC monitoring infrastructure depends on being able
to poke equipment and see it respond. Another advantage of energy proportional-
ity and active low power modes is that they are compatible with the WSC moni-
toring infrastructure, which allows a single operator to be responsible for more
than 1000 servers.

The conventional WSC wisdom is to run other valuable tasks during periods
of low activity so as to recoup the investment in power distribution and cooling.
A prime example is the batch MapReduce jobs that create indices for search.
Another example of getting value from low utilization is spot pricing on AWS,
which the caption in Figure 6.15 on page 458 describes. AWS users who are flex-
ible about when their tasks are run can save a factor of 2.7 to 3 for computation
by letting AWS schedule the tasks more flexibly using Spot Instances, such as
when the WSC would otherwise have low utilization.

Fallacy Replacing all disks with Flash memory will improve cost-performance of a WSC.

Flash memory is much faster than disk for some WSC workloads, such as those
doing many random reads and writes. For example, Facebook deployed Flash
memory packaged as solid-state disks (SSDs) as a write-back cache called Flash-
cache as part of its file system in its WSC, so that hot files stay in Flash and cold
files stay on disk. However, since all performance improvements in a WSC must

6.9 Concluding Remarks ■ 475

be judged on cost-performance, before replacing all the disks with SSD the ques-
tion is really I/Os per second per dollar and storage capacity per dollar. As we
saw in Chapter 2, Flash memory costs at least 20 times more per GByte than
magnetic disks: $2.00/GByte versus $0.09/Gbyte.

Narayanan et al. [2009] looked at migrating workloads from disk to SSD by
simulating workload traces from small and large datacenters. Their conclusion
was that SSDs were not cost effective for any of their workloads due to the low
storage capacity per dollar. To reach the break-even point, Flash memory storage
devices need to improve capacity per dollar by a factor of 3 to 3000, depending
on the workload.

Even when you factor power into the equation, it’s hard to justify replacing
disk with Flash for data that are infrequently accessed. A one-terabyte disk uses
about 10 watts of power, so, using the $2 per watt-year rule of thumb from Sec-
tion 6.4, the most you could save from reduced energy is $20 a year per disk.
However, the CAPEX cost in 2011 for a terabyte of storage is $2000 for Flash
and only $90 for disk.

Inheriting the title of building the world’s biggest computers, computer architects
of WSCs are designing the large part of the future IT that completes the mobile
client. Many of us use WSCs many times a day, and the number of times per day
and the number of people using WSCs will surely increase in the next decade.
Already more than half of the nearly seven billion people on the planet have cell
phones. As these devices become Internet ready, many more people from around
the world will be able to benefit from WSCs.

Moreover, the economies of scale uncovered by WSC have realized the long
dreamed of goal of computing as a utility. Cloud computing means anyone any-
where with good ideas and business models can tap thousands of servers to
deliver their vision almost instantly. Of course, there are important obstacles that
could limit the growth of cloud computing around standards, privacy, and the rate
of growth of Internet bandwidth, but we foresee them being addressed so that
cloud computing can flourish.

Given the increasing number of cores per chip (see Chapter 5), clusters will
increase to include thousands of cores. We believe the technologies developed to
run WSC will prove useful and trickle down to clusters, so that clusters will run
the same virtual machines and systems software developed for WSC. One advan-
tage would be easy support of “hybrid” datacenters, where the workload could
easily be shipped to the cloud in a crunch and then shrink back afterwards to rely-
ing only on local computing.

Among the many attractive features of cloud computing is that it offers
economic incentives for conservation. Whereas it is hard to convince cloud
computing providers to turn off unused equipment to save energy given the

6.9 Concluding Remarks

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

476 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

cost of the infrastructure investment, it is easy to convince cloud computing
users to give up idle instances since they are paying for them whether or not
they are doing anything useful. Similarly, charging by use encourages program-
mers to use computation, communication, and storage efficiently, which can be
difficult to encourage without an understandable pricing scheme. The explicit
pricing also makes it possible for researchers to evaluate innovations in cost-
performance instead of just performance, since costs are now easily measured
and believable. Finally, cloud computing means that researchers can evaluate
their ideas at the scale of thousands of computers, which in the past only large
companies could afford.

We believe that WSCs are changing the goals and principles of server design,
just as the needs of mobile clients are changing the goals and principles of micro-
processor design. Both are revolutionizing the software industry, as well. Perfor-
mance per dollar and performance per joule drive both mobile client hardware and
the WSC hardware, and parallelism is the key to delivering on those sets of goals.

Architects will play a vital role in both halves of this exciting future world.
We look forward to seeing—and to using—what will come.

Section L.8 (available online) covers the development of clusters that were the
foundation of WSC and of utility computing. (Readers interested in learning
more should start with Barroso and Hölzle [2009] and the blog postings and talks
of James Hamilton at http://perspectives.mvdirona.com.)

Case Study 1: Total Cost of Ownership Influencing Warehouse-
Scale Computer Design Decisions

Concepts illustrated by this case study

■ Total Cost of Ownership (TCO)

■ Influence of Server Cost and Power on the Entire WSC

■ Benefits and Drawbacks of Low-Power Servers

Total cost of ownership is an important metric for measuring the effectiveness of
a warehouse-scale computer (WSC). TCO includes both the CAPEX and OPEX
described in Section 6.4 and reflects the ownership cost of the entire datacenter to
achieve a certain level of performance. In considering different servers, net-
works, and storage architectures, TCO is often the important comparison metric

6.10 Historical Perspectives and References

Case Studies and Exercises by Parthasarathy
Ranganathan

http://www.perspectives.mvdirona.com

Case Studies and Exercises by Parthasarathy Ranganathan ■ 477

used by datacenter owners to decide which options are best; however, TCO is a
multidimensional computation that takes into account many different factors.
The goal of this case study is to take a detailed look into WSCs, how different
architectures influence TCO, and how TCO drives operator decisions. This case
study will use the numbers from Figure 6.13 and Section 6.4, and assumes that
the described WSC achieves the operator’s target level of performance. TCO is
often used to compare different server options that have multiple dimensions.
The exercises in this case study examine how such comparisons are made in the
context of WSCs and the complexity involved in making the decisions.

6.1 [5/5/10] <6.2, 6.4> In this chapter, data-level parallelism has been discussed as a
way for WSCs to achieve high performance on large problems. Conceivably,
even greater performance can be obtained by using high-end servers; however,
higher performance servers often come with a nonlinear price increase.

a. [5] <6.4> Assuming servers that are 10% faster at the same utilization, but
20% more expensive, what is the CAPEX for the WSC?

b. [5] <6.4> If those servers also use 15% more power, what is the OPEX?

c. [10] <6.2, 6.4> Given the speed improvement and power increase, what must
the cost of the new servers be to be comparable to the original cluster? (Hint:
Based on this TCO model, you may have to change the critical load of the
facility.)

6.2 [5/10] <6.4, 6.8> To achieve a lower OPEX, one appealing alternative is to use
low-power versions of servers to reduce the total electricity required to run the
servers; however, similar to high-end servers, low-power versions of high-end
components also have nonlinear trade-offs.

a. [5] <6.4, 6.8> If low-power server options offered 15% lower power at the
same performance but are 20% more expensive, are they a good trade-off?

b. [10] <6.4, 6.8> At what cost do the servers become comparable to the origi-
nal cluster? What if the price of electricity doubles?

6.3 [5/10/15] <6.4, 6.6> Servers that have different operating modes offer opportuni-
ties for dynamically running different configurations in the cluster to match
workload usage. Use the data in Figure 6.23 for the power/performance modes
for a given low-power server.

a. [5] <6.4, 6.6> If a server operator decided to save power costs by running all
servers at medium performance, how many servers would be needed to
achieve the same level of performance?

Mode Performance Power

High 100% 100%

Medium 75% 60%

Low 59% 38%

Figure 6.23 Power–performance modes for low-power servers.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

478 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

b. [10] <6.4, 6.6> What are the CAPEX and OPEX of such a configuration?

c. [15] <6.4, 6.6> If there was an alternative to purchase a server that is 20%
cheaper but slower and uses less power, find the performance–power curve
that provides a TCO comparable to the baseline server.

6.4 [Discussion] <6.4> Discuss the trade-offs and benefits of the two options in
Exercise 6.3, assuming a constant workload being run on the servers.

6.5 [Discussion] <6.2, 6.4> Unlike high-performance computing (HPC) clusters,
WSCs often experience significant workload fluctuation throughout the day. Dis-
cuss the trade-offs and benefits of the two options in Exercise 6.3, this time
assuming a workload that varies.

6.6 [Discussion] <6.4, 6.7> The TCO model presented so far abstracts away a signif-
icant amount of lower level details. Discuss the impact of these abstractions to
the overall accuracy of the TCO model. When are these abstractions safe to
make? In what cases would greater detail provide significantly different answers?

Case Study 2: Resource Allocation in WSCs and TCO

Concepts illustrated by this case study

■ Server and Power Provisioning within a WSC

■ Time-Variance of Workloads

■ Effects of Variance on TCO

Some of the key challenges to deploying efficient WSCs are provisioning
resources properly and utilizing them to their fullest. This problem is complex
due to the size of WSCs as well as the potential variance of the workloads being
run. The exercises in this case study show how different uses of resources can
affect TCO.

6.7 [5/5/10] <6.4> One of the challenges in provisioning a WSC is determining the
proper power load, given the facility size. As described in the chapter, nameplate
power is often a peak value that is rarely encountered.

a. [5] <6.4> Estimate how the per-server TCO changes if the nameplate server
power is 200 watts and the cost is $3000.

b. [5] <6.4> Also consider a higher power, but cheaper option whose power is
300 watts and costs $2000.

c. [10] <6.4> How does the per-server TCO change if the actual average power
usage of the servers is only 70% of the nameplate power?

6.8 [15/10] <6.2, 6.4> One assumption in the TCO model is that the critical load of
the facility is fixed, and the amount of servers fits that critical load. In reality, due
to the variations of server power based on load, the critical power used by a facil-
ity can vary at any given time. Operators must initially provision the datacenter

Case Studies and Exercises by Parthasarathy Ranganathan ■ 479

based on its critical power resources and an estimate of how much power is used
by the datacenter components.

a. [15] <6.2, 6.4> Extend the TCO model to initially provision a WSC based on
a server with a nameplate power of 300 watts, but also calculate the actual
monthly critical power used and TCO assuming the server averages 40%
utilization and 225 watts. How much capacity is left unused?

b. [10] <6.2, 6.4> Repeat this exercise with a 500-watt server that averages 20%
utilization and 300 watts.

6.9 [10] <6.4, 6.5> WSCs are often used in an interactive manner with end users, as
mentioned in Section 6.5. This interactive usage often leads to time-of-day fluc-
tuations, with peaks correlating to specific time periods. For example, for Netflix
rentals, there is a peak during the evening periods of 8 to 10 p.m.; the entirety of
these time-of-day effects is significant. Compare the per-server TCO of a data-
center with a capacity to match the utilization at 4 a.m. compared to 9 p.m.

6.10 [Discussion/15] <6.4, 6.5> Discuss some options to better utilize the excess serv-
ers during the off-peak hours or options to save costs. Given the interactive
nature of WSCs, what are some of the challenges to aggressively reducing power
usage?

6.11 [Discussion/25] <6.4, 6.6> Propose one possible way to improve TCO by focusing
on reducing server power. What are the challenges to evaluating your proposal?
Estimate the TCO improvements based on your proposal. What are advantages and
drawbacks?

Exercises

6.12 [10/10/10] <6.1> One of the important enablers of WSC is ample request-level
parallelism, in contrast to instruction or thread-level parallelism. This question
explores the implication of different types of parallelism on computer architec-
ture and system design.

a. [10] <6.1> Discuss scenarios where improving the instruction- or thread-
level parallelism would provide greater benefits than achievable through
request-level parallelism.

b. [10] <6.1> What are the software design implications of increasing request-
level parallelism?

c. [10] <6.1> What are potential drawbacks of increasing request-level parallelism?

6.13 [Discussion/15/15] <6.2> When a cloud computing service provider receives
jobs consisting of multiple Virtual Machines (VMs) (e.g., a MapReduce job),
many scheduling options exist. The VMs can be scheduled in a round-robin
manner to spread across all available processors and servers or they can be con-
solidated to use as few processors as possible. Using these scheduling options,
if a job with 24 VMs was submitted and 30 processors were available in the
cloud (each able to run up to 3 VMs), round-robin would use 24 processors,

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

480 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

while consolidated scheduling would use 8 processors. The scheduler can also
find available processor cores at different scopes: socket, server, rack, and an
array of racks.

a. [Discussion] <6.2> Assuming that the submitted jobs are all compute-heavy
workloads, possibly with different memory bandwidth requirements, what
are the pros and cons of round-robin versus consolidated scheduling in terms
of power and cooling costs, performance, and reliability?

b. [15] <6.2> Assuming that the submitted jobs are all I/O-heavy workloads,
what are the pros and cons of round-robin versus consolidated scheduling, at
different scopes?

c. [15] <6.2> Assuming that the submitted jobs are network-heavy workloads,
what are the pros and cons of round-robin versus consolidated scheduling, at
different scopes?

6.14 [15/15/10/10] <6.2, 6.3> MapReduce enables large amounts of parallelism by
having data-independent tasks run on multiple nodes, often using commodity
hardware; however, there are limits to the level of parallelism. For example, for
redundancy, MapReduce will write data blocks to multiple nodes, consuming
disk and potentially network bandwidth. Assume a total dataset size of 300 GB, a
network bandwidth of 1 Gb/sec, a 10 sec/GB map rate, and a 20 sec/GB reduce
rate. Also assume that 30% of the data must be read from remote nodes, and each
output file is written to two other nodes for redundancy. Use Figure 6.6 for all
other parameters.

a. [15] <6.2, 6.3> Assume that all nodes are in the same rack. What is the
expected runtime with 5 nodes? 10 nodes? 100 nodes? 1000 nodes? Discuss
the bottlenecks at each node size.

b. [15] <6.2, 6.3> Assume that there are 40 nodes per rack and that any remote
read/write has an equal chance of going to any node. What is the expected
runtime at 100 nodes? 1000 nodes?

c. [10] <6.2, 6.3> An important consideration is minimizing data movement as
much as possible. Given the significant slowdown of going from local to rack
to array accesses, software must be strongly optimized to maximize locality.
Assume that there are 40 nodes per rack, and 1000 nodes are used in the
MapReduce job. What is the runtime if remote accesses are within the same
rack 20% of the time? 50% of the time? 80% of the time?

d. [10] <6.2, 6.3> Given the simple MapReduce program in Section 6.2, discuss
some possible optimizations to maximize the locality of the workload.

6.15 [20/20/10/20/20/20] <6.2> WSC programmers often use data replication to over-
come failures in the software. Hadoop HDFS, for example, employs three-way
replication (one local copy, one remote copy in the rack, and one remote copy in
a separate rack), but it’s worth examining when such replication is needed.

a. [20] <6.2> A Hadoop World 2010 attendee survey showed that over half of
the Hadoop clusters had 10 nodes or less, with dataset sizes of 10 TB or less.

Case Studies and Exercises by Parthasarathy Ranganathan ■ 481

Using the failure frequency data in Figure 6.1, what kind of availability does
a 10-node Hadoop cluster have with one-, two-, and three-way replications?

b. [20] <6.2> Assuming the failure data in Figure 6.1 and a 1000-node Hadoop
cluster, what kind of availability does it have with one-, two-, and three-way
replications?

c. [10] <6.2> The relative overhead of replication varies with the amount of
data written per local compute hour. Calculate the amount of extra I/O traffic
and network traffic (within and across rack) for a 1000-node Hadoop job that
sorts 1 PB of data, where the intermediate results for data shuffling are writ-
ten to the HDFS.

d. [20] <6.2> Using Figure 6.6, calculate the time overhead for two- and
three-way replications. Using the failure rates shown in Figure 6.1, com-
pare the expected execution times for no replication versus two- and three-
way replications.

e. [20] <6.2> Now consider a database system applying replication on logs,
assuming each transaction on average accesses the hard disk once and gener-
ates 1 KB of log data. Calculate the time overhead for two- and three-way
replications. What if the transaction is executed in-memory and takes 10 μs?

f. [20] <6.2> Now consider a database system with ACID consistency that
requires two network round-trips for two-phase commitment. What is the
time overhead for maintaining consistency as well as replications?

6.16 [15/15/20/15/] <6.1, 6.2, 6.8> Although request-level parallelism allows many
machines to work on a single problem in parallel, thereby achieving greater over-
all performance, one of the challenges is avoiding dividing the problem too
finely. If we look at this problem in the context of service level agreements
(SLAs), using smaller problem sizes through greater partitioning can require
increased effort to achieve the target SLA. Assume an SLA of 95% of queries
respond at 0.5 sec or faster, and a parallel architecture similar to MapReduce that
can launch multiple redundant jobs to achieve the same result. For the following
questions, assume the query–response time curve shown in Figure 6.24. The
curve shows the latency of response, based on the number of queries per second,
for a baseline server as well as a “small” server that uses a slower processor
model.

a. [15] <6.1, 6.2, 6.8> How many servers are required to achieve that SLA,
assuming that the WSC receives 30,000 queries per second, and the query–
response time curve shown in Figure 6.24? How many “small” servers are
required to achieve that SLA, given this response-time probability curve?
Looking only at server costs, how much cheaper must the “wimpy” servers
be than the normal servers to achieve a cost advantage for the target SLA?

b. [15] <6.1, 6.2, 6.8> Often “small” servers are also less reliable due to cheaper
components. Using the numbers from Figure 6.1, assume that the number of
events due to flaky machines and bad memories increases by 30%. How
many “small” servers are required now? How much cheaper must those serv-
ers be than the standard servers?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

482 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

c. [20] <6.1, 6.2, 6.8> Now assume a batch processing environment. The
“small” servers provide 30% of the overall performance of the regular serv-
ers. Still assuming the reliability numbers from Exercise 6.15 part (b), how
many “wimpy” nodes are required to provide the same expected throughput
of a 2400-node array of standard servers, assuming perfect linear scaling of
performance to node size and an average task length of 10 minutes per node?
What if the scaling is 85%? 60%?

d. [15] <6.1, 6.2, 6.8> Often the scaling is not a linear function, but instead a
logarithmic function. A natural response may be instead to purchase larger
nodes that have more computational power per node to minimize the array
size. Discuss some of the trade-offs with this architecture.

6.17 [10/10/15] <6.3, 6.8> One trend in high-end servers is toward the inclusion of
nonvolatile Flash memory in the memory hierarchy, either through solid-state
disks (SSDs) or PCI Express-attached cards. Typical SSDs have a bandwidth of
250 MB/sec and latency of 75 μs, whereas PCIe cards have a bandwidth of
600 MB/sec and latency of 35 μs.

a. [10] Take Figure 6.7 and include these points in the local server hierarchy.
Assuming that identical performance scaling factors as DRAM are accessed
at different hierarchy levels, how do these Flash memory devices compare
when accessed across the rack? Across the array?

b. [10] Discuss some software-based optimizations that can utilize the new level
of the memory hierarchy.

c. [25] Repeat part (a), instead assuming that each node has a 32 GB PCIe card
that is able to cache 50% of all disk accesses.

d. [15] As discussed in “Fallacies and Pitfalls” (Section 6.8), replacing all disks
with SSDs is not necessarily a cost-effective strategy. Consider a WSC opera-
tor that uses it to provide cloud services. Discuss some scenarios where using
SSDs or other Flash memory would make sense.

Figure 6.24 Query–response time curve.

La
te

nc
y

(s
)

1

3

2.5

1.5

0.5

2

1

0
2 3 4 5 6 7 8 9 10

Queries per second, for one server

Baseline
Small

Case Studies and Exercises by Parthasarathy Ranganathan ■ 483

6.18 [20/20/Discussion] <6.3> Memory Hierarchy: Caching is heavily used in some
WSC designs to reduce latency, and there are multiple caching options to satisfy
varying access patterns and requirements.

a. [20] Let’s consider the design options for streaming rich media from the Web
(e.g., Netflix). First we need to estimate the number of movies, number of
encode formats per movie, and concurrent viewing users. In 2010, Netflix
had 12,000 titles for online streaming, each title having at least four encode
formats (at 500, 1000, 1600, and 2200 kbps). Let’s assume that there are
100,000 concurrent viewers for the entire site, and an average movie is one
hour long. Estimate the total storage capacity, I/O and network bandwidths,
and video-streaming-related computation requirements.

b. [20] What are the access patterns and reference locality characteristics per
user, per movie, and across all movies? (Hint: Random versus sequential,
good versus poor temporal and spatial locality, relatively small versus large
working set size.)

c. [Discussion] What movie storage options exist by using DRAM, SSD, and
hard drives? Compare them in performance and TCO.

6.19 [10/20/20/Discussion/Discussion] <6.3> Consider a social networking Web site
with 100 million active users posting updates about themselves (in text and pic-
tures) as well as browsing and interacting with updates in their social networks.
To provide low latency, Facebook and many other Web sites use memcached as a
caching layer before the backend storage/database tiers.

a. [10] Estimate the data generation and request rates per user and across the
entire site.

b. [20] For the social networking Web site discussed here, how much DRAM is
needed to host its working set? Using servers each having 96 GB DRAM,
estimate how many local versus remote memory accesses are needed to gen-
erate a user’s home page?

c. [20] Now consider two candidate memcached server designs, one using con-
ventional Xeon processors and the other using smaller cores, such as Atom
processors. Given that memcached requires large physical memory but has
low CPU utilization, what are the pros and cons of these two designs?

d. [Discussion] Today’s tight coupling between memory modules and proces-
sors often requires an increase in CPU socket count in order to provide large
memory support. List other designs to provide large physical memory with-
out proportionally increasing the number of sockets in a server. Compare
them based on performance, power, costs, and reliability.

e. [Discussion] The same user’s information can be stored in both the mem-
cached and storage servers, and such servers can be physically hosted in dif-
ferent ways. Discuss the pros and cons of the following server layout in the
WSC: (1) memcached collocated on the same storage server, (2) memcached
and storage server on separate nodes in the same rack, or (3) memcached
servers on the same racks and storage servers collocated on separate racks.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

484 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

6.20 [5/5/10/10/Discussion/Discussion] <6.3, 6.6> Datacenter Networking: Map-
Reduce and WSC are a powerful combination to tackle large-scale data process-
ing; for example, Google in 2008 sorted one petabyte (1 PB) of records in a little
more than 6 hours using 4000 servers and 48,000 hard drives.

a. [5] Derive disk bandwidth from Figure 6.1 and associated text. How many
seconds does it take to read the data into main memory and write the sorted
results back?

b. [5] Assuming each server has two 1 Gb/sec Ethernet network interface cards
(NICs) and the WSC switch infrastructure is oversubscribed by a factor of 4,
how many seconds does it take to shuffle the entire dataset across 4000
servers?

c. [10] Assuming network transfer is the performance bottleneck for petabyte
sort, can you estimate what oversubscription ratio Google has in their
datacenter?

d. [10] Now let’s examine the benefits of having 10 Gb/sec Ethernet without
oversubscription—for example, using a 48-port 10 Gb/sec Ethernet (as used
by the 2010 Indy sort benchmark winner TritonSort). How long does it take
to shuffle the 1 PB of data?

e. [Discussion] Compare the two approaches here: (1) the massively scale-out
approach with high network oversubscription ratio, and (2) a relatively small-
scale system with a high-bandwidth network. What are their potential bottle-
necks? What are their advantages and disadvantages, in terms of scalability
and TCO?

f. [Discussion] Sort and many important scientific computing workloads are
communication heavy, while many other workloads are not. List three exam-
ple workloads that do not benefit from high-speed networking. What EC2
instances would you recommend to use for these two classes of workloads?

6.21 [10/25/Discussion] <6.4, 6.6> Because of the massive scale of WSCs, it is very
important to properly allocate network resources based on the workloads that are
expected to be run. Different allocations can have significant impacts on both the
performance and total cost of ownership.

a. [10] Using the numbers in the spreadsheet detailed in Figure 6.13, what is the
oversubscription ratio at each access-layer switch? What is the impact on
TCO if the oversubscription ratio is cut in half? What if it is doubled?

b. [25] Reducing the oversubscription ratio can potentially improve the perfor-
mance if a workload is network-limited. Assume a MapReduce job that uses
120 servers and reads 5 TB of data. Assume the same ratio of read/intermedi-
ate/output data as in Figure 6.2, Sep-09, and use Figure 6.6 to define the
bandwidths of the memory hierarchy. For data reading, assume that 50% of
data is read from remote disks; of that, 80% is read from within the rack and
20% is read from within the array. For intermediate data and output data,
assume that 30% of the data uses remote disks; of that, 90% is within the rack
and 10% is within the array. What is the overall performance improvement

Case Studies and Exercises by Parthasarathy Ranganathan ■ 485

when reducing the oversubscription ratio by half? What is the performance if
it is doubled? Calculate the TCO in each case.

c. [Discussion] We are seeing the trend to more cores per system. We are also
seeing the increasing adoption of optical communication (with potentially
higher bandwidth and improved energy efficiency). How do you think these
and other emerging technology trends will affect the design of future WSCs?

6.22 [5/15/15/20/25] <6.5> Realizing the Capability of Amazon Web Services: Imag-
ine you are the site operation and infrastructure manager of an Alexa.com top site
and are considering using Amazon Web Services (AWS). What factors do you
need to consider in determining whether to migrate to AWS, what services and
instance types to use and how much cost could you save? You can use Alexa and
site traffic information (e.g., Wikipedia provides page view stats) to estimate the
amount of traffic received by a top site, or you can take concrete examples from
the Web, such as the following example from DrupalCon San Francisco 2010:
http://2bits.com/sites/2bits.com/files/drupal-single-server-2.8-million-page-views-
a-day.pdf. The slides describe an Alexa #3400 site that receives 2.8 million page
views per day, using a single server. The server has two quad-core Xeon 2.5 GHz
processors with 8 GB DRAM and three 15 K RPM SAS hard drives in a RAID1
configuration, and it costs about $400 per month. The site uses caching heavily,
and the CPU utilization ranges from 50% to 250% (roughly 0.5 to 2.5 cores
busy).

a. [5] Looking at the available EC2 instances (http://aws.amazon.com/ec2/
instance-types/) , what instance types match or exceed the current server
configuration?

b. [15] Looking at the EC2 pricing information (http://aws.amazon.com/ec2/
pricing/) , select the most cost-efficient EC2 instances (combinations
allowed) to host the site on AWS. What’s the monthly cost for EC2?

c. [15] Now add the costs for IP address and network traffic to the equation, and
suppose the site transfers 100 GB/day in and out on the Internet. What’s the
monthly cost for the site now?

d. [20] AWS also offers the Micro Instance for free for 1 year to new customers
and 15 GB bandwidth each for traffic going in and out across AWS. Based on
your estimation of peak and average traffic from your department Web server,
can you host it for free on AWS?

e. [25] A much larger site, Netflix.com, has also migrated their streaming and
encoding infrastructure to AWS. Based on their service characteristics, what
AWS services could be used by Netflix and for what purposes?

6.23 [Discussion/Discussion/20/20/Discussion] <6.4> Figure 6.12 shows the impact
of user perceived response time on revenue, and motivates the need to achieve
high-throughput while maintaining low latency.

a. [Discussion] Taking Web search as an example, what are the possible ways of
reducing query latency?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.2bits.com/sites/2bits.com/files/drupal-single-server-2.8-million-page-views a-day.pdf
http://www.2bits.com/sites/2bits.com/files/drupal-single-server-2.8-million-page-views a-day.pdf
http://www.aws.amazon.com/ec2/instance-types/
http://www.aws.amazon.com/ec2/instance-types/
http://www.aws.amazon.com/ec2/pricing/
http://www.aws.amazon.com/ec2/pricing/
http://www.Alexa.com
http://www.Netflix.com
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

486 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

b. [Discussion] What monitoring statistics can you collect to help understand
where time is spent? How do you plan to implement such a monitoring tool?

c. [20] Assuming that the number of disk accesses per query follows a normal
distribution, with an average of 2 and standard deviation of 3, what kind of
disk access latency is needed to satisfy a latency SLA of 0.1 sec for 95% of
the queries?

d. [20] In-memory caching can reduce the frequencies of long-latency events
(e.g., accessing hard drives). Assuming a steady-state hit rate of 40%, hit
latency of 0.05 sec, and miss latency of 0.2 sec, does caching help meet a
latency SLA of 0.1 sec for 95% of the queries?

e. [Discussion] When can cached content become stale or even inconsistent?
How often can this happen? How can you detect and invalidate such content?

6.24 [15/15/20] <6.4> The efficiency of typical power supply units (PSUs) varies as
the load changes; for example, PSU efficiency can be about 80% at 40% load
(e.g., output 40 watts from a 100-watt PSU), 75% when the load is between 20%
and 40%, and 65% when the load is below 20%.

a. [15] Assume a power-proportional server whose actual power is proportional
to CPU utilization, with a utilization curve as shown in Figure 6.3. What is
the average PSU efficiency?

b. [15] Suppose the server employs 2N redundancy for PSUs (i.e., doubles the
number of PSUs) to ensure stable power when one PSU fails. What is the
average PSU efficiency?

c. [20] Blade server vendors use a shared pool of PSUs not only to provide
redundancy but also to dynamically match the number of PSUs to the server’s
actual power consumption. The HP c7000 enclosure uses up to six PSUs for a
total of 16 servers. In this case, what is the average PSU efficiency for the
enclosure of server with the same utilization curve?

6.25 [5/Discussion/10/15/Discussion/Discussion/Discussion] <6.4> Power stranding
is a term used to refer to power capacity that is provisioned but not used in a data-
center. Consider the data presented in Figure 6.25 [Fan, Weber, and Barroso
2007] for different groups of machines. (Note that what this paper calls a “clus-
ter” is what we have referred to as an “array” in this chapter.)

a. [5] What is the stranded power at (1) the rack level, (2) the power distribution
unit level, and (3) the array (cluster) level? What are the trends with oversub-
scription of power capacity at larger groups of machines?

b. [Discussion] What do you think causes the differences between power strand-
ing at different groups of machines?

c. [10] Consider an array-level collection of machines where the total machines
never use more than 72% of the aggregate power (this is sometimes also
referred to as the ratio between the peak-of-sum and sum-of-peaks usage).
Using the cost model in the case study, compute the cost savings from com-
paring a datacenter provisioned for peak capacity and one provisioned for
actual use.

Case Studies and Exercises by Parthasarathy Ranganathan ■ 487

d. [15] Assume that the datacenter designer chose to include additional servers
at the array level to take advantage of the stranded power. Using the example
configuration and assumptions in part (a), compute how many more servers
can now be included in the warehouse-scale computer for the same total
power provisioning.

e. [Discussion] What is needed to make the optimization of part (d) work in a
real-world deployment? (Hint: Think about what needs to happen to cap
power in the rare case when all the servers in the array are used at peak
power.)

f. [Discussion] Two kinds of policies can be envisioned to manage power caps
[Ranganathan et al. 2006]: (1) preemptive policies where power budgets are
predetermined (“don’t assume you can use more power; ask before you do!”)
or (2) reactive policies where power budgets are throttled in the event of a
power budget violation (“use as much power as needed until told you
can’t!”). Discuss the trade-offs between these approaches and when you
would use each type.

g. [Discussion] What happens to the total stranded power if systems become
more energy proportional (assume workloads similar to that of Figure 6.4)?

6.26 [5/20/Discussion] <6.4, 6.7> Section 6.7 discussed the use of per-server battery
sources in the Google design. Let us examine the consequences of this design.

a. [5] Assume that the use of a battery as a mini-server-level UPS is 99.99%
efficient and eliminates the need for a facility-wide UPS that is only 92%
efficient. Assume that substation switching is 99.7% efficient and that the
efficiency for the PDU, step-down stages, and other electrical breakers are
98%, 98%, and 99%, respectively. Calculate the overall power infrastructure
efficiency improvements from using a per-server battery backup.

Figure 6.25 Cumulative distribution function (CDF) of a real datacenter.

1 1

0.99

0.98

0.97

0.96

0.95

0.8

0.6

0.4

0.2

0
0.4 0.5 0.6 0.80.7 0.9 0.65 0.7 0.75 0.8 0.90.85 0.95 1

Normalized power Normalized power

(a) Full distribution (b) Zoomed view

C
D

F

C
D

F

1

Rack
PDU

Cluster

Rack
PDU

Cluster

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

488 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

b. [20] Assume that the UPS is 10% of the cost of the IT equipment. Using the
rest of the assumptions from the cost model in the case study, what is the
break-even point for the costs of the battery (as a fraction of the cost of a sin-
gle server) at which the total cost of ownership for a battery-based solution is
better than that for a facility-wide UPS?

c. [Discussion] What are the other trade-offs between these two approaches? In
particular, how do you think the manageability and failure model will change
across these two different designs?

6.27 [5/5/Discussion] <6.4> For this exercise, consider a simplified equation for
the total operational power of a WSC as follows: Total operational power =
(1 + Cooling inefficiency multiplier) * IT equipment power.

a. [5] Assume an 8 MW datacenter at 80% power usage, electricity costs of
$0.10 per kilowatt-hour, and a cooling-inefficiency multiplier of 0.8. Com-
pare the cost savings from (1) an optimization that improves cooling effi-
ciency by 20%, and (2) an optimization that improves the energy efficiency
of the IT equipment by 20%.

b. [5] What is the percentage improvement in IT equipment energy efficiency
needed to match the cost savings from a 20% improvement in cooling
efficiency?

c. [Discussion/10] What conclusions can you draw about the relative impor-
tance of optimizations that focus on server energy efficiency and cooling
energy efficiency?

6.28 [5/5/Discussion] <6.4> As discussed in this chapter, the cooling equipment in
WSCs can themselves consume a lot of energy. Cooling costs can be lowered by
proactively managing temperature. Temperature-aware workload placement is
one optimization that has been proposed to manage temperature to reduce cool-
ing costs. The idea is to identify the cooling profile of a given room and map the
hotter systems to the cooler spots, so that at the WSC level the requirements for
overall cooling are reduced.

a. [5] The coefficient of performance (COP) of a CRAC unit is defined as the
ratio of heat removed (Q) to the amount of work necessary (W) to remove
that heat. The COP of a CRAC unit increases with the temperature of the air
the CRAC unit pushes into the plenum. If air returns to the CRAC unit at 20
degrees Celsius and we remove 10KW of heat with a COP of 1.9, how much
energy do we expend in the CRAC unit? If cooling the same volume of air,
but now returning at 25 degrees Celsius, takes a COP of 3.1, how much
energy do we expend in the CRAC unit now?

b. [5] Assume a workload distribution algorithm is able to match the hot work-
loads well with the cool spots to allow the computer room air-conditioning
(CRAC) unit to be run at higher temperature to improve cooling efficiencies
like in the exercise above. What is the power savings between the two cases
described above?

c. [Discussion] Given the scale of WSC systems, power management can be a
complex, multifaceted problem. Optimizations to improve energy efficiency

Case Studies and Exercises by Parthasarathy Ranganathan ■ 489

can be implemented in hardware and in software, at the system level, and at
the cluster level for the IT equipment or the cooling equipment, etc. It is
important to consider these interactions when designing an overall energy-
efficiency solution for the WSC. Consider a consolidation algorithm that
looks at server utilization and consolidates different workload classes on the
same server to increase server utilization (this can potentially have the server
operating at higher energy efficiency if the system is not energy propor-
tional). How would this optimization interact with a concurrent algorithm
that tried to use different power states (see ACPI, Advanced Configuration
Power Interface, for some examples)? What other examples can you think of
where multiple optimizations can potentially conflict with one another in a
WSC? How would you solve this problem?

6.29 [5/10/15/20] <6.2> Energy proportionality (sometimes also referred to as energy
scale-down) is the attribute of the system to consume no power when idle, but
more importantly gradually consume more power in proportion to the activity
level and work done. In this exercise, we will examine the sensitivity of energy
consumption to different energy proportionality models. In the exercises below,
unless otherwise mentioned, use the data in Figure 6.4 as the default.

a. [5] A simple way to reason about energy proportionality is to assume linearity
between activity and power usage. Using just the peak power and idle power
data from Figure 6.4 and a linear interpolation, plot the energy-efficiency trends
across varying activities. (Energy efficiency is expressed as performance per
watt.) What happens if idle power (at 0% activity) is half of what is assumed in
Figure 6.4? What happens if idle power is zero?

b. [10] Plot the energy-efficiency trends across varying activities, but use the
data from column 3 of Figure 6.4 for power variation. Plot the energy effi-
ciency assuming that the idle power (alone) is half of what is assumed in
Figure 6.4. Compare these plots with the linear model in the previous exer-
cise. What conclusions can you draw about the consequences of focusing
purely on idle power alone?

c. [15] Assume the system utilization mix in column 7 of Figure 6.4. For sim-
plicity, assume a discrete distribution across 1000 servers, with 109 servers at
0% utilization, 80 servers at 10% utilizations, etc. Compute the total perfor-
mance and total energy for this workload mix using the assumptions in part
(a) and part (b).

d. [20] One could potentially design a system that has a sublinear power versus
load relationship in the region of load levels between 0% and 50%. This
would have an energy-efficiency curve that peaks at lower utilizations (at the
expense of higher utilizations). Create a new version of column 3 from
Figure 6.4 that shows such an energy-efficiency curve. Assume the system
utilization mix in column 7 of Figure 6.4. For simplicity, assume a discrete
distribution across 1000 servers, with 109 servers at 0% utilization, 80 serv-
ers at 10% utilizations, etc. Compute the total performance and total energy
for this workload mix.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

490 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

6.30 [15/20/20] <6.2, 6.6> This exercise illustrates the interactions of energy propor-
tionality models with optimizations such as server consolidation and energy-
efficient server designs. Consider the scenarios shown in Figure 6.26 and
Figure 6.27.

a. [15] Consider two servers with the power distributions shown in Figure 6.26:
case A (the server considered in Figure 6.4) and case B (a less energy-propor-
tional but more energy-efficient server than case A). Assume the system utili-
zation mix in column 7 of Figure 6.4. For simplicity, assume a discrete
distribution across 1000 servers, with 109 servers at 0% utilization, 80 serv-
ers at 10% utilizations, etc., as shown in row 1 of Figure 6.27. Assume per-
formance variation based on column 2 of Figure 6.4. Compare the total
performance and total energy for this workload mix for the two server types.

b. [20] Consider a cluster of 1000 servers with data similar to the data shown in
Figure 6.4 (and summarized in the first rows of Figures 6.26 and 6.27). What
are the total performance and total energy for the workload mix with these
assumptions? Now assume that we were able to consolidate the workloads to
model the distribution shown in case C (second row of Figure 6.27). What are
the total performance and total energy now? How does the total energy com-
pare with a system that has a linear energy-proportional model with idle
power of zero watts and peak power of 662 watts?

c. [20] Repeat part (b), but with the power model of server B, and compare with
the results of part (a).

6.31 [10/Discussion] <6.2, 6.4, 6.6> System-Level Energy Proportionality Trends:
Consider the following breakdowns of the power consumption of a server:

CPU, 50%; memory, 23%; disks, 11%; networking/other, 16%
CPU, 33%; memory, 30%; disks, 10%; networking/other, 27%

a. [10] Assume a dynamic power range of 3.0× for the CPU (i.e., the power con-
sumption of the CPU at idle is one-third that of its power consumption at

Activity (%) 0 10 20 30 40 50 60 70 80 90 100

Power, case A (W) 181 308 351 382 416 451 490 533 576 617 662

Power, case B (W) 250 275 325 340 395 405 415 425 440 445 450

Figure 6.26 Power distribution for two servers.

Activity (%) 0 10 20 30 40 50 60 70 80 90 100

No. servers, case A and B 109 80 153 246 191 115 51 21 15 12 8

No. servers, case C 504 6 8 11 26 57 95 123 76 40 54

Figure 6.27 Utilization distributions across cluster, without and with consolidation.

Case Studies and Exercises by Parthasarathy Ranganathan ■ 491

peak). Assume that the dynamic range of the memory systems, disks, and the
networking/other categories above are respectively 2.0×, 1.3×, and 1.2×.
What is the overall dynamic range for the total system for the two cases?

b. [Discussion/10] What can you learn from the results of part (a)? How would
we achieve better energy proportionality at the system level? (Hint: Energy
proportionality at a system level cannot be achieved through CPU optimiza-
tions alone, but instead requires improvement across all components.)

6.32 [30] <6.4> Pitt Turner IV et al. [2008] presented a good overview of datacenter
tier classifications. Tier classifications define site infrastructure performance. For
simplicity, consider the key differences as shown in Figure 6.25 (adapted from
Pitt Turner IV et al. [2008]). Using the TCO model in the case study, compare the
cost implications of the different tiers shown.

6.33 [Discussion] <6.4> Based on the observations in Figure 6.13, what can you say
qualitatively about the trade-offs between revenue loss from downtime and costs
incurred for uptime?

6.34 [15/Discussion] <6.4> Some recent studies have defined a metric called TPUE,
which stands for “true PUE” or “total PUE.” TPUE is defined as PUE * SPUE.
PUE, the power utilization effectiveness, is defined in Section 6.4 as the ratio of
the total facility power over the total IT equipment power. SPUE, or server PUE,
is a new metric analogous to PUE, but instead applied to computing equipment,
and is defined as the ratio of total server input power to its useful power, where
useful power is defined as the power consumed by the electronic components
directly involved in the computation: motherboard, disks, CPUs, DRAM, I/O
cards, and so on. In other words, the SPUE metric captures inefficiencies associ-
ated with the power supplies, voltage regulators, and fans housed on a server.

a. [15] <6.4> Consider a design that uses a higher supply temperature for the
CRAC units. The efficiency of the CRAC unit is approximately a quadratic
function of the temperature, and this design therefore improves the overall
PUE, let’s assume by 7%. (Assume baseline PUE of 1.7.) However, the
higher temperature at the server level triggers the on-board fan controller to

Tier 1 Single path for power and cooling distributions, without
redundant components

99.0%

Tier 2 (N + 1) redundancy = two power and cooling distribution
paths

99.7%

Tier 3 (N + 2) redundancy = three power and cooling distribution
paths for uptime even during maintenance

99.98%

Tier 4 Two active power and cooling distribution paths, with
redundant components in each path, to tolerate any single
equipment failure without impacting the load

99.995%

Figure 6.28 Overview of data center tier classifications. (Adapted from Pitt Turner IV
et al. [2008].)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

492 ■ Chapter Six Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism

operate the fan at much higher speeds. The fan power is a cubic function of
speed, and the increased fan speed leads to a degradation of SPUE. Assume a
fan power model:

Fan power = 284 * ns * ns * ns – 75 * ns * ns,

where ns is the normalized fan speed = fan speed in rpm/18,000

and a baseline server power of 350 W. Compute the SPUE if the fan speed
increases from (1) 10,000 rpm to 12,500 rpm and (2) 10,000 rpm to 18,000
rpm. Compare the PUE and TPUE in both these cases. (For simplicity, ignore
the inefficiencies with power delivery in the SPUE model.)

b. [Discussion] Part (a) illustrates that, while PUE is an excellent metric to cap-
ture the overhead of the facility, it does not capture the inefficiencies within
the IT equipment itself. Can you identify another design where TPUE is
potentially lower than PUE? (Hint: See Exercise 6.26.)

6.35 [Discussion/30/Discussion] <6.2> Two recently released benchmarks provide
a good starting point for energy-efficiency accounting in servers—the
SPECpower_ssj2008 benchmark (available at http://www.spec.org/power_
ssj2008/) and the JouleSort metric (available at http://sortbenchmark.org/) .

a. [Discussion] <6.2> Look up the descriptions of the two benchmarks. How are
they similar? How are they different? What would you do to improve these
benchmarks to better address the goal of improving WSC energy efficiency?

b. [30] <6.2> JouleSort measures the total system energy to perform an out-of-
core sort and attempts to derive a metric that enables the comparison of systems
ranging from embedded devices to supercomputers. Look up the description of
the JouleSort metric at http://sortbenchmark.org. Download a publicly avail-
able version of the sort algorithm and run it on different classes of machines—a
laptop, a PC, a mobile phone, etc.—or with different configurations. What can
you learn from the JouleSort ratings for different setups?

c. [Discussion] <6.2> Consider the system with the best JouleSort rating from
your experiments above. How would you improve the energy efficiency? For
example, try rewriting the sort code to improve the JouleSort rating.

6.36 [10/10/15] <6.1, 6.2> Figure 6.1 is a listing of outages in an array of servers.
When dealing with the large scale of WSCs, it is important to balance cluster
design and software architectures to achieve the required uptime without incur-
ring significant costs. This question explores the implications of achieving avail-
ability through hardware only.

a. [10] <6.1, 6.2> Assuming that an operator wishes to achieve 95% availability
through server hardware improvements alone, how many events of each type
would have to be reduced? For now, assume that individual server crashes are
completely handled through redundant machines.

b. [10] <6.1, 6.2> How does the answer to part (a) change if the individual
server crashes are handled by redundancy 50% of the time? 20% of the time?
None of the time?

http://www.spec.org/power_ssj2008/
http://www.spec.org/power_ssj2008/
http://www.sortbenchmark.org/
http://www.sortbenchmark.org/

Case Studies and Exercises by Parthasarathy Ranganathan ■ 493

c. [15] <6.1, 6.2> Discuss the importance of software redundancy to achieving a
high level of availability. If a WSC operator considered buying machines that
were cheaper, but 10% less reliable, what implications would that have on the
software architecture? What are the challenges associated with software
redundancy?

6.37 [15] <6.1, 6.8> Look up the current prices of standard DDR3 DRAM versus
DDR3 DRAM that has error-correcting code (ECC). What is the increase in price
per bit for achieving the higher reliability that ECC provides? Using the DRAM
prices alone, and the data provided in Section 6.8, what is the uptime per dollar of
a WSC with non-ECC versus ECC DRAM?

6.38 [5/Discussion] <6.1> WSC Reliability and Manageability Concerns:

a. [5] Consider a cluster of servers costing $2000 each. Assuming an annual
failure rate of 5%, an average of an hour of service time per repair, and
replacement parts requiring 10% of the system cost per failure, what is the
annual maintenance cost per server? Assume an hourly rate of $100 per hour
for a service technician.

b. [Discussion] Comment on the differences between this manageability model
versus that in a traditional enterprise datacenter with a large number of small
or medium-sized applications each running on its own dedicated hardware
infrastructure.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A.1 Introduction A-2

A.2 Classifying Instruction Set Architectures A-3

A.3 Memory Addressing A-7

A.4 Type and Size of Operands A-13

A.5 Operations in the Instruction Set A-14

A.6 Instructions for Control Flow A-16

A.7 Encoding an Instruction Set A-21

A.8 Crosscutting Issues: The Role of Compilers A-24

A.9 Putting It All Together: The MIPS Architecture A-32

A.10 Fallacies and Pitfalls A-39

A.11 Concluding Remarks A-45

A.12 Historical Perspective and References A-47

 Exercises by Gregory D. Peterson A-47

A
Instruction Set Principles 1

A n Add the number in storage location n into the accumulator.

E n If the number in the accumulator is greater than or equal to

zero execute next the order which stands in storage location n;
otherwise proceed serially.

Z Stop the machine and ring the warning bell.

Wilkes and Renwick
Selection from the List of 18 Machine

Instructions for the EDSAC (1949)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-2 ■ Appendix A Instruction Set Principles

In this appendix we concentrate on instruction set architecture—the portion of the
computer visible to the programmer or compiler writer. Most of this material
should be review for readers of this book; we include it here for background. This
appendix introduces the wide variety of design alternatives available to the instruc-
tion set architect. In particular, we focus on four topics. First, we present a taxon-
omy of instruction set alternatives and give some qualitative assessment of the
advantages and disadvantages of various approaches. Second, we present and ana-
lyze some instruction set measurements that are largely independent of a specific
instruction set. Third, we address the issue of languages and compilers and their
bearing on instruction set architecture. Finally, the “Putting It All Together” section
shows how these ideas are reflected in the MIPS instruction set, which is typical of
RISC architectures. We conclude with fallacies and pitfalls of instruction set
design.

To illustrate the principles further, Appendix K also gives four examples of
general-purpose RISC architectures (MIPS, PowerPC, Precision Architecture,
SPARC), four embedded RISC processors (ARM, Hitachi SH, MIPS 16, Thumb),
and three older architectures (80x86, IBM 360/370, and VAX). Before we discuss
how to classify architectures, we need to say something about instruction set mea-
surement.

Throughout this appendix, we examine a wide variety of architectural mea-
surements. Clearly, these measurements depend on the programs measured and
on the compilers used in making the measurements. The results should not be
interpreted as absolute, and you might see different data if you did the measure-
ment with a different compiler or a different set of programs. We believe that the
measurements in this appendix are reasonably indicative of a class of typical
applications. Many of the measurements are presented using a small set of bench-
marks, so that the data can be reasonably displayed and the differences among
programs can be seen. An architect for a new computer would want to analyze a
much larger collection of programs before making architectural decisions. The
measurements shown are usually dynamic—that is, the frequency of a measured
event is weighed by the number of times that event occurs during execution of
the measured program.

Before starting with the general principles, let’s review the three application
areas from Chapter 1. Desktop computing emphasizes the performance of pro-
grams with integer and floating-point data types, with little regard for program
size. For example, code size has never been reported in the five generations of
SPEC benchmarks. Servers today are used primarily for database, file server, and
Web applications, plus some time-sharing applications for many users. Hence,
floating-point performance is much less important for performance than integers
and character strings, yet virtually every server processor still includes floating-
point instructions. Personal mobile devices and embedded applications value cost
and energy, so code size is important because less memory is both cheaper and
lower energy, and some classes of instructions (such as floating point) may be
optional to reduce chip costs.

A.1 Introduction

A.2 Classifying Instruction Set Architectures ■ A-3

Thus, instruction sets for all three applications are very similar. In fact, the
MIPS architecture that drives this appendix has been used successfully in desk-
tops, servers, and embedded applications.

One successful architecture very different from RISC is the 80x86 (see
Appendix K). Surprisingly, its success does not necessarily belie the advantages
of a RISC instruction set. The commercial importance of binary compatibility
with PC software combined with the abundance of transistors provided by
Moore’s law led Intel to use a RISC instruction set internally while supporting an
80x86 instruction set externally. Recent 80x86 microprocessors, such as the Pen-
tium 4, use hardware to translate from 80x86 instructions to RISC-like instruc-
tions and then execute the translated operations inside the chip. They maintain
the illusion of 80x86 architecture to the programmer while allowing the computer
designer to implement a RISC-style processor for performance.

Now that the background is set, we begin by exploring how instruction set
architectures can be classified.

The type of internal storage in a processor is the most basic differentiation, so in
this section we will focus on the alternatives for this portion of the architecture.
The major choices are a stack, an accumulator, or a set of registers. Operands
may be named explicitly or implicitly: The operands in a stack architecture are
implicitly on the top of the stack, and in an accumulator architecture one operand
is implicitly the accumulator. The general-purpose register architectures have
only explicit operands—either registers or memory locations. Figure A.1 shows a
block diagram of such architectures, and Figure A.2 shows how the code
sequence C = A + B would typically appear in these three classes of instruction
sets. The explicit operands may be accessed directly from memory or may need
to be first loaded into temporary storage, depending on the class of architecture
and choice of specific instruction.

As the figures show, there are really two classes of register computers. One
class can access memory as part of any instruction, called register-memory archi-
tecture, and the other can access memory only with load and store instructions,
called load-store architecture. A third class, not found in computers shipping
today, keeps all operands in memory and is called a memory-memory architec-
ture. Some instruction set architectures have more registers than a single accumu-
lator but place restrictions on uses of these special registers. Such an architecture
is sometimes called an extended accumulator or special-purpose register com-
puter.

Although most early computers used stack or accumulator-style architectures,
virtually every new architecture designed after 1980 uses a load-store register
architecture. The major reasons for the emergence of general-purpose register
(GPR) computers are twofold. First, registers—like other forms of storage inter-
nal to the processor—are faster than memory. Second, registers are more efficient

A.2 Classifying Instruction Set Architectures

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-4 ■ Appendix A Instruction Set Principles

Figure A.1 Operand locations for four instruction set architecture classes. The arrows indicate whether the oper-
and is an input or the result of the arithmetic-logical unit (ALU) operation, or both an input and result. Lighter shades
indicate inputs, and the dark shade indicates the result. In (a), a Top Of Stack register (TOS) points to the top input
operand, which is combined with the operand below. The first operand is removed from the stack, the result takes
the place of the second operand, and TOS is updated to point to the result. All operands are implicit. In (b), the Accu-
mulator is both an implicit input operand and a result. In (c), one input operand is a register, one is in memory, and
the result goes to a register. All operands are registers in (d) and, like the stack architecture, can be transferred to
memory only via separate instructions: push or pop for (a) and load or store for (d).

Stack Accumulator
Register
(register-memory) Register (load-store)

Push A Load A Load R1,A Load R1,A

Push B Add B Add R3,R1,B Load R2,B

Add Store C Store R3,C Add R3,R1,R2

Pop C Store R3,C

Figure A.2 The code sequence for C = A + B for four classes of instruction sets. Note
that the Add instruction has implicit operands for stack and accumulator architectures
and explicit operands for register architectures. It is assumed that A, B, and C all belong
in memory and that the values of A and B cannot be destroyed. Figure A.1 shows the
Add operation for each class of architecture.

(a) Stack (b) Accumulator (c) Register-memory

TOS

ALU

. . .

. . .

. . .

ALU

. . .

. . .

ALU

. . .

. . .

. . .

. . .

(d) Register-register/
load-store

ALU

. . .

. . .

. . .

. . .

Memory

Processor

A.2 Classifying Instruction Set Architectures ■ A-5

for a compiler to use than other forms of internal storage. For example, on a reg-
ister computer the expression (A * B) – (B * C) – (A * D) may be evaluated
by doing the multiplications in any order, which may be more efficient because
of the location of the operands or because of pipelining concerns (see Chapter 3).
Nevertheless, on a stack computer the hardware must evaluate the expression in
only one order, since operands are hidden on the stack, and it may have to load an
operand multiple times.

More importantly, registers can be used to hold variables. When variables are
allocated to registers, the memory traffic reduces, the program speeds up (since
registers are faster than memory), and the code density improves (since a register
can be named with fewer bits than can a memory location).

As explained in Section A.8, compiler writers would prefer that all registers
be equivalent and unreserved. Older computers compromise this desire by dedi-
cating registers to special uses, effectively decreasing the number of general-
purpose registers. If the number of truly general-purpose registers is too small,
trying to allocate variables to registers will not be profitable. Instead, the com-
piler will reserve all the uncommitted registers for use in expression evaluation.

How many registers are sufficient? The answer, of course, depends on the
effectiveness of the compiler. Most compilers reserve some registers for expres-
sion evaluation, use some for parameter passing, and allow the remainder to be
allocated to hold variables. Modern compiler technology and its ability to effec-
tively use larger numbers of registers has led to an increase in register counts in
more recent architectures.

Two major instruction set characteristics divide GPR architectures. Both char-
acteristics concern the nature of operands for a typical arithmetic or logical
instruction (ALU instruction). The first concerns whether an ALU instruction has
two or three operands. In the three-operand format, the instruction contains one
result operand and two source operands. In the two-operand format, one of the
operands is both a source and a result for the operation. The second distinction
among GPR architectures concerns how many of the operands may be memory
addresses in ALU instructions. The number of memory operands supported by a
typical ALU instruction may vary from none to three. Figure A.3 shows combina-
tions of these two attributes with examples of computers. Although there are
seven possible combinations, three serve to classify nearly all existing computers.
As we mentioned earlier, these three are load-store (also called register-register),
register-memory, and memory-memory.

Figure A.4 shows the advantages and disadvantages of each of these alterna-
tives. Of course, these advantages and disadvantages are not absolutes: They are
qualitative and their actual impact depends on the compiler and implementation
strategy. A GPR computer with memory-memory operations could easily be
ignored by the compiler and used as a load-store computer. One of the most per-
vasive architectural impacts is on instruction encoding and the number of instruc-
tions needed to perform a task. We see the impact of these architectural
alternatives on implementation approaches in Appendix C and Chapter 3.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-6 ■ Appendix A Instruction Set Principles

Summary: Classifying Instruction Set Architectures

Here and at the end of Sections A.3 through A.8 we summarize those characteris-
tics we would expect to find in a new instruction set architecture, building the
foundation for the MIPS architecture introduced in Section A.9. From this sec-
tion we should clearly expect the use of general-purpose registers. Figure A.4,

Number of
memory

addresses

Maximum number
of operands

allowed Type of architecture Examples

0 3 Load-store Alpha, ARM, MIPS, PowerPC, SPARC, SuperH,
TM32

1 2 Register-memory IBM 360/370, Intel 80x86, Motorola 68000,
TI TMS320C54x

2 2 Memory-memory VAX (also has three-operand formats)

3 3 Memory-memory VAX (also has two-operand formats)

Figure A.3 Typical combinations of memory operands and total operands per typical ALU instruction with
examples of computers. Computers with no memory reference per ALU instruction are called load-store or register-
register computers. Instructions with multiple memory operands per typical ALU instruction are called register-
memory or memory-memory, according to whether they have one or more than one memory operand.

Type Advantages Disadvantages

Register-register
(0, 3)

Simple, fixed-length instruction encoding.
Simple code generation model. Instructions
take similar numbers of clocks to execute
(see Appendix C).

Higher instruction count than architectures with
memory references in instructions. More instructions
and lower instruction density lead to larger
programs.

Register-memory
(1, 2)

Data can be accessed without a separate load
instruction first. Instruction format tends to
be easy to encode and yields good density.

Operands are not equivalent since a source operand
in a binary operation is destroyed. Encoding a
register number and a memory address in each
instruction may restrict the number of registers.
Clocks per instruction vary by operand location.

Memory-memory
(2, 2) or (3, 3)

Most compact. Doesn’t waste registers for
temporaries.

Large variation in instruction size, especially for
three-operand instructions. In addition, large
variation in work per instruction. Memory accesses
create memory bottleneck. (Not used today.)

Figure A.4 Advantages and disadvantages of the three most common types of general-purpose register com-
puters. The notation (m, n) means m memory operands and n total operands. In general, computers with fewer alter-
natives simplify the compiler’s task since there are fewer decisions for the compiler to make (see Section A.8).
Computers with a wide variety of flexible instruction formats reduce the number of bits required to encode the pro-
gram. The number of registers also affects the instruction size since you need log2 (number of registers) for each reg-
ister specifier in an instruction. Thus, doubling the number of registers takes 3 extra bits for a register-register
architecture, or about 10% of a 32-bit instruction.

A.3 Memory Addressing ■ A-7

combined with Appendix C on pipelining, leads to the expectation of a load-store
version of a general-purpose register architecture.

With the class of architecture covered, the next topic is addressing operands.

Independent of whether the architecture is load-store or allows any operand to be
a memory reference, it must define how memory addresses are interpreted and
how they are specified. The measurements presented here are largely, but not
completely, computer independent. In some cases the measurements are signifi-
cantly affected by the compiler technology. These measurements have been made
using an optimizing compiler, since compiler technology plays a critical role.

Interpreting Memory Addresses

How is a memory address interpreted? That is, what object is accessed as a
function of the address and the length? All the instruction sets discussed in this
book are byte addressed and provide access for bytes (8 bits), half words (16 bits),
and words (32 bits). Most of the computers also provide access for double words
(64 bits).

There are two different conventions for ordering the bytes within a larger
object. Little Endian byte order puts the byte whose address is “x . . . x000” at
the least-significant position in the double word (the little end). The bytes are
numbered:

Big Endian byte order puts the byte whose address is “x . . . x000” at the most-
significant position in the double word (the big end). The bytes are numbered:

When operating within one computer, the byte order is often unnoticeable—
only programs that access the same locations as both, say, words and bytes, can
notice the difference. Byte order is a problem when exchanging data among com-
puters with different orderings, however. Little Endian ordering also fails to
match the normal ordering of words when strings are compared. Strings appear
“SDRAWKCAB” (backwards) in the registers.

A second memory issue is that in many computers, accesses to objects larger
than a byte must be aligned. An access to an object of size s bytes at byte address
A is aligned if A mod s = 0. Figure A.5 shows the addresses at which an access is
aligned or misaligned.

Why would someone design a computer with alignment restrictions? Mis-
alignment causes hardware complications, since the memory is typically aligned
on a multiple of a word or double-word boundary. A misaligned memory access

7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7

A.3 Memory Addressing

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-8 ■ Appendix A Instruction Set Principles

may, therefore, take multiple aligned memory references. Thus, even in comput-
ers that allow misaligned access, programs with aligned accesses run faster.

Even if data are aligned, supporting byte, half-word, and word accesses
requires an alignment network to align bytes, half words, and words in 64-bit
registers. For example, in Figure A.5, suppose we read a byte from an address
with its 3 low-order bits having the value 4. We will need to shift right 3 bytes to
align the byte to the proper place in a 64-bit register. Depending on the instruc-
tion, the computer may also need to sign-extend the quantity. Stores are easy:
Only the addressed bytes in memory may be altered. On some computers a byte,
half-word, and word operation does not affect the upper portion of a register.
Although all the computers discussed in this book permit byte, half-word, and
word accesses to memory, only the IBM 360/370, Intel 80x86, and VAX support
ALU operations on register operands narrower than the full width.

Now that we have discussed alternative interpretations of memory addresses,
we can discuss the ways addresses are specified by instructions, called address-
ing modes.

Value of 3 low-order bits of byte address

Width of object 0 1 2 3 4 5 6 7

1 byte (byte) Aligned Aligned Aligned Aligned Aligned Aligned Aligned Aligned

2 bytes (half word) Aligned Aligned Aligned Aligned

2 bytes (half word) Misaligned Misaligned Misaligned Misaligned

4 bytes (word) Aligned Aligned

4 bytes (word) Misaligned Misaligned

4 bytes (word) Misaligned Misaligned

4 bytes (word) Misaligned Misaligned

8 bytes (double word) Aligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

Figure A.5 Aligned and misaligned addresses of byte, half-word, word, and double-word objects for byte-
addressed computers. For each misaligned example some objects require two memory accesses to complete. Every
aligned object can always complete in one memory access, as long as the memory is as wide as the object. The figure
shows the memory organized as 8 bytes wide. The byte offsets that label the columns specify the low-order 3 bits of
the address.

A.3 Memory Addressing ■ A-9

Addressing Modes

Given an address, we now know what bytes to access in memory. In this sub-
section we will look at addressing modes—how architectures specify the address
of an object they will access. Addressing modes specify constants and registers in
addition to locations in memory. When a memory location is used, the actual
memory address specified by the addressing mode is called the effective address.

Figure A.6 shows all the data addressing modes that have been used in recent
computers. Immediates or literals are usually considered memory addressing

Addressing mode Example instruction Meaning When used

Register Add R4,R3 Regs[R4] ← Regs[R4]
+ Regs[R3]

When a value is in a register.

Immediate Add R4,#3 Regs[R4] ← Regs[R4] + 3 For constants.

Displacement Add R4,100(R1) Regs[R4] ← Regs[R4]
+ Mem[100 + Regs[R1]]

Accessing local variables
(+ simulates register indirect,
direct addressing modes).

Register indirect Add R4,(R1) Regs[R4] ← Regs[R4]
+ Mem[Regs[R1]]

Accessing using a pointer or a
computed address.

Indexed Add R3,(R1 + R2) Regs[R3] ← Regs[R3]
+ Mem[Regs[R1] + Regs[R2]]

Sometimes useful in array
addressing: R1 = base of array;
R2 = index amount.

Direct or
absolute

Add R1,(1001) Regs[R1] ← Regs[R1]
+ Mem[1001]

Sometimes useful for accessing
static data; address constant may
need to be large.

Memory indirect Add R1,@(R3) Regs[R1] ← Regs[R1]
+ Mem[Mem[Regs[R3]]]

If R3 is the address of a pointer p,
then mode yields *p.

Autoincrement Add R1,(R2)+ Regs[R1] ← Regs[R1]
+ Mem[Regs[R2]]

Regs[R2] ← Regs[R2] + d

Useful for stepping through arrays
within a loop. R2 points to start of
array; each reference increments
R2 by size of an element, d.

Autodecrement Add R1, –(R2) Regs[R2] ← Regs[R2] – d
Regs[R1] ← Regs[R1]

+ Mem[Regs[R2]]

Same use as autoincrement.
Autodecrement/-increment can
also act as push/pop to implement
a stack.

Scaled Add R1,100(R2)[R3] Regs[R1] ← Regs[R1]
+ Mem[100 + Regs[R2]

+ Regs[R3] d]

Used to index arrays. May be
applied to any indexed addressing
mode in some computers.*

Figure A.6 Selection of addressing modes with examples, meaning, and usage. In autoincrement/-decrement
and scaled addressing modes, the variable d designates the size of the data item being accessed (i.e., whether the
instruction is accessing 1, 2, 4, or 8 bytes). These addressing modes are only useful when the elements being
accessed are adjacent in memory. RISC computers use displacement addressing to simulate register indirect with 0
for the address and to simulate direct addressing using 0 in the base register. In our measurements, we use the first
name shown for each mode. The extensions to C used as hardware descriptions are defined on page A-36.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-10 ■ Appendix A Instruction Set Principles

modes (even though the value they access is in the instruction stream), although
registers are often separated since they don’t normally have memory addresses.
We have kept addressing modes that depend on the program counter, called PC-
relative addressing, separate. PC-relative addressing is used primarily for speci-
fying code addresses in control transfer instructions, discussed in Section A.6.

Figure A.6 shows the most common names for the addressing modes, though
the names differ among architectures. In this figure and throughout the book, we
will use an extension of the C programming language as a hardware description
notation. In this figure, only one non-C feature is used: The left arrow (←) is used
for assignment. We also use the array Mem as the name for main memory and the
array Regs for registers. Thus, Mem[Regs[R1]] refers to the contents of the memory
location whose address is given by the contents of register 1 (R1). Later, we will
introduce extensions for accessing and transferring data smaller than a word.

Addressing modes have the ability to significantly reduce instruction counts;
they also add to the complexity of building a computer and may increase the
average clock cycles per instruction (CPI) of computers that implement those
modes. Thus, the usage of various addressing modes is quite important in helping
the architect choose what to include.

Figure A.7 shows the results of measuring addressing mode usage patterns in
three programs on the VAX architecture. We use the old VAX architecture for a
few measurements in this appendix because it has the richest set of addressing
modes and the fewest restrictions on memory addressing. For example, Figure A.6
on page A-9 shows all the modes the VAX supports. Most measurements in this
appendix, however, will use the more recent register-register architectures to show
how programs use instruction sets of current computers.

As Figure A.7 shows, displacement and immediate addressing dominate
addressing mode usage. Let’s look at some properties of these two heavily used
modes.

Displacement Addressing Mode

The major question that arises for a displacement-style addressing mode is that of
the range of displacements used. Based on the use of various displacement sizes,
a decision of what sizes to support can be made. Choosing the displacement field
sizes is important because they directly affect the instruction length. Figure A.8
shows the measurements taken on the data access on a load-store architecture
using our benchmark programs. We look at branch offsets in Section A.6—data
accessing patterns and branches are different; little is gained by combining them,
although in practice the immediate sizes are made the same for simplicity.

Immediate or Literal Addressing Mode

Immediates can be used in arithmetic operations, in comparisons (primarily for
branches), and in moves where a constant is wanted in a register. The last case
occurs for constants written in the code—which tend to be small—and for

A.3 Memory Addressing ■ A-11

address constants, which tend to be large. For the use of immediates it is impor-
tant to know whether they need to be supported for all operations or for only a
subset. Figure A.9 shows the frequency of immediates for the general classes of
integer and floating-point operations in an instruction set.

Another important instruction set measurement is the range of values for
immediates. Like displacement values, the size of immediate values affects
instruction length. As Figure A.10 shows, small immediate values are most heav-
ily used. Large immediates are sometimes used, however, most likely in address-
ing calculations.

Summary: Memory Addressing

First, because of their popularity, we would expect a new architecture to support
at least the following addressing modes: displacement, immediate, and register
indirect. Figure A.7 shows that they represent 75% to 99% of the addressing
modes used in our measurements. Second, we would expect the size of the
address for displacement mode to be at least 12 to 16 bits, since the caption in
Figure A.8 suggests these sizes would capture 75% to 99% of the displacements.

Figure A.7 Summary of use of memory addressing modes (including immediates).

These major addressing modes account for all but a few percent (0% to 3%) of the
memory accesses. Register modes, which are not counted, account for one-half of the
operand references, while memory addressing modes (including immediate) account
for the other half. Of course, the compiler affects what addressing modes are used; see
Section A.8. The memory indirect mode on the VAX can use displacement, autoincre-
ment, or autodecrement to form the initial memory address; in these programs, almost
all the memory indirect references use displacement mode as the base. Displacement
mode includes all displacement lengths (8, 16, and 32 bits). The PC-relative addressing
modes, used almost exclusively for branches, are not included. Only the addressing
modes with an average frequency of over 1% are shown.

0% 10% 20% 30% 40% 50% 60%

24%

11%

39%

32%

40%

3%

43%
17%

55%

0%

6%
16%Scaled

Register indirect

Immediate

Displacement

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

1%
6%Memory indirect

TeX
spice
gcc 1%

Frequency of the addressing mode

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-12 ■ Appendix A Instruction Set Principles

Figure A.8 Displacement values are widely distributed. There are both a large number of small values and a fair
number of large values. The wide distribution of displacement values is due to multiple storage areas for variables
and different displacements to access them (see Section A.8) as well as the overall addressing scheme the compiler
uses. The x-axis is log2 of the displacement, that is, the size of a field needed to represent the magnitude of the dis-
placement. Zero on the x-axis shows the percentage of displacements of value 0. The graph does not include the
sign bit, which is heavily affected by the storage layout. Most displacements are positive, but a majority of the largest
displacements (14+ bits) are negative. Since these data were collected on a computer with 16-bit displacements,
they cannot tell us about longer displacements. These data were taken on the Alpha architecture with full optimiza-
tion (see Section A.8) for SPEC CPU2000, showing the average of integer programs (CINT2000) and the average of
floating-point programs (CFP2000).

Figure A.9 About one-quarter of data transfers and ALU operations have an imme-
diate operand. The bottom bars show that integer programs use immediates in about
one-fifth of the instructions, while floating-point programs use immediates in about
one-sixth of the instructions. For loads, the load immediate instruction loads 16 bits
into either half of a 32-bit register. Load immediates are not loads in a strict sense
because they do not access memory. Occasionally a pair of load immediates is used to
load a 32-bit constant, but this is rare. (For ALU operations, shifts by a constant amount
are included as operations with immediate operands.) The programs and computer
used to collect these statistics are the same as in Figure A.8.

30%

35%

40%

25%

20%

15%

10%

5%

0%
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
er

ce
nt

ag
e

of
 d

is
pl

ac
em

en
t

Number of bits of displacement

Floating-point average

Integer average

15

0% 5% 10% 15% 20% 25%

Loads

ALU operations

All instructions
21%

16%

25%
19%

23%
22%

30%

Floating-point average
Integer average

A.4 Type and Size of Operands ■ A-13

Third, we would expect the size of the immediate field to be at least 8 to 16 bits.
This claim is not substantiated by the caption of the figure to which it refers.

Having covered instruction set classes and decided on register-register archi-
tectures, plus the previous recommendations on data addressing modes, we next
cover the sizes and meanings of data.

How is the type of an operand designated? Normally, encoding in the opcode
designates the type of an operand—this is the method used most often. Alterna-
tively, the data can be annotated with tags that are interpreted by the hardware.
These tags specify the type of the operand, and the operation is chosen accord-
ingly. Computers with tagged data, however, can only be found in computer
museums.

Let’s start with desktop and server architectures. Usually the type of an
operand—integer, single-precision floating point, character, and so on—effectively
gives its size. Common operand types include character (8 bits), half word (16 bits),
word (32 bits), single-precision floating point (also 1 word), and double-precision

Figure A.10 The distribution of immediate values. The x-axis shows the number of bits needed to represent the
magnitude of an immediate value—0 means the immediate field value was 0. The majority of the immediate values
are positive. About 20% were negative for CINT2000, and about 30% were negative for CFP2000. These measure-
ments were taken on an Alpha, where the maximum immediate is 16 bits, for the same programs as in Figure A.8. A
similar measurement on the VAX, which supported 32-bit immediates, showed that about 20% to 25% of immedi-
ates were longer than 16 bits. Thus, 16 bits would capture about 80% and 8 bits about 50%.

30%

35%

40%

45%

25%

20%

15%

10%

5%

0%
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
er

ce
nt

ag
e

of
 im

m
ed

ia
te

s

Number of bits needed for immediate

Floating-point average

Integer average

15

A.4 Type and Size of Operands

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-14 ■ Appendix A Instruction Set Principles

floating point (2 words). Integers are almost universally represented as two’s
complement binary numbers. Characters are usually in ASCII, but the 16-bit
Unicode (used in Java) is gaining popularity with the internationalization of
computers. Until the early 1980s, most computer manufacturers chose their own
floating-point representation. Almost all computers since that time follow the same
standard for floating point, the IEEE standard 754. The IEEE floating-point standard
is discussed in detail in Appendix J.

Some architectures provide operations on character strings, although such
operations are usually quite limited and treat each byte in the string as a single
character. Typical operations supported on character strings are comparisons
and moves.

For business applications, some architectures support a decimal format,
usually called packed decimal or binary-coded decimal—4 bits are used to
encode the values 0 to 9, and 2 decimal digits are packed into each byte.
Numeric character strings are sometimes called unpacked decimal, and opera-
tions—called packing and unpacking—are usually provided for converting
back and forth between them.

One reason to use decimal operands is to get results that exactly match deci-
mal numbers, as some decimal fractions do not have an exact representation in
binary. For example, 0.1010 is a simple fraction in decimal, but in binary it
requires an infinite set of repeating digits: 0.0001100110011. . . 2. Thus, calcula-
tions that are exact in decimal can be close but inexact in binary, which can be a
problem for financial transactions. (See Appendix J to learn more about precise
arithmetic.)

Our SPEC benchmarks use byte or character, half-word (short integer), word
(integer), double-word (long integer), and floating-point data types. Figure A.11
shows the dynamic distribution of the sizes of objects referenced from memory
for these programs. The frequency of access to different data types helps in
deciding what types are most important to support efficiently. Should the com-
puter have a 64-bit access path, or would taking two cycles to access a double
word be satisfactory? As we saw earlier, byte accesses require an alignment net-
work: How important is it to support bytes as primitives? Figure A.11 uses mem-
ory references to examine the types of data being accessed.

In some architectures, objects in registers may be accessed as bytes or half
words. However, such access is very infrequent—on the VAX, it accounts for no
more than 12% of register references, or roughly 6% of all operand accesses in
these programs.

The operators supported by most instruction set architectures can be categorized
as in Figure A.12. One rule of thumb across all architectures is that the most
widely executed instructions are the simple operations of an instruction set. For
example, Figure A.13 shows 10 simple instructions that account for 96% of

A.5 Operations in the Instruction Set

A.5 Operations in the Instruction Set ■ A-15

Figure A.11 Distribution of data accesses by size for the benchmark programs. The
double-word data type is used for double-precision floating point in floating-point pro-
grams and for addresses, since the computer uses 64-bit addresses. On a 32-bit address
computer the 64-bit addresses would be replaced by 32-bit addresses, and so almost all
double-word accesses in integer programs would become single-word accesses.

Operator type Examples

Arithmetic and logical Integer arithmetic and logical operations: add, subtract, and, or,
multiply, divide

Data transfer Loads-stores (move instructions on computers with memory
addressing)

Control Branch, jump, procedure call and return, traps

System Operating system call, virtual memory management instructions

Floating point Floating-point operations: add, multiply, divide, compare

Decimal Decimal add, decimal multiply, decimal-to-character conversions

String String move, string compare, string search

Graphics Pixel and vertex operations, compression/decompression
operations

Figure A.12 Categories of instruction operators and examples of each. All comput-
ers generally provide a full set of operations for the first three categories. The support
for system functions in the instruction set varies widely among architectures, but all
computers must have some instruction support for basic system functions. The amount
of support in the instruction set for the last four categories may vary from none to an
extensive set of special instructions. Floating-point instructions will be provided in any
computer that is intended for use in an application that makes much use of floating
point. These instructions are sometimes part of an optional instruction set. Decimal and
string instructions are sometimes primitives, as in the VAX or the IBM 360, or may be
synthesized by the compiler from simpler instructions. Graphics instructions typically
operate on many smaller data items in parallel—for example, performing eight 8-bit
additions on two 64-bit operands.

0% 20% 40% 60% 80%

Byte
(8 bits)

Half word
(16 bits)

Word
(32 bits)

Double word
(64 bits)

10%
1%

5%
0%

26%
29%

59%
70%

Floating-point average

Integer average

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-16 ■ Appendix A Instruction Set Principles

instructions executed for a collection of integer programs running on the popular
Intel 80x86. Hence, the implementor of these instructions should be sure to make
these fast, as they are the common case.

As mentioned before, the instructions in Figure A.13 are found in every com-
puter for every application––desktop, server, embedded––with the variations of
operations in Figure A.12 largely depending on which data types that the instruc-
tion set includes.

Because the measurements of branch and jump behavior are fairly independent of
other measurements and applications, we now examine the use of control flow
instructions, which have little in common with the operations of the previous
sections.

There is no consistent terminology for instructions that change the flow of
control. In the 1950s they were typically called transfers. Beginning in 1960 the
name branch began to be used. Later, computers introduced additional names.
Throughout this book we will use jump when the change in control is uncondi-
tional and branch when the change is conditional.

We can distinguish four different types of control flow change:

■ Conditional branches

■ Jumps

Rank 80x86 instruction
Integer average

(% total executed)

1 load 22%

2 conditional branch 20%

3 compare 16%

4 store

5 add

6 and

7 sub 5%

8 move register-register 4%

9 call 1%

10 return 1%

Total 96%

12%

8%

6%

Figure A.13 The top 10 instructions for the 80x86. Simple instructions dominate this
list and are responsible for 96% of the instructions executed. These percentages are the
average of the five SPECint92 programs.

A.6 Instructions for Control Flow

A.6 Instructions for Control Flow ■ A-17

■ Procedure calls

■ Procedure returns

We want to know the relative frequency of these events, as each event is differ-
ent, may use different instructions, and may have different behavior. Figure A.14
shows the frequencies of these control flow instructions for a load-store computer
running our benchmarks.

Addressing Modes for Control Flow Instructions

The destination address of a control flow instruction must always be specified.
This destination is specified explicitly in the instruction in the vast majority of
cases—procedure return being the major exception, since for return the target
is not known at compile time. The most common way to specify the destination
is to supply a displacement that is added to the program counter (PC). Control
flow instructions of this sort are called PC-relative. PC-relative branches or
jumps are advantageous because the target is often near the current instruction,
and specifying the position relative to the current PC requires fewer bits. Using
PC-relative addressing also permits the code to run independently of where it is
loaded. This property, called position independence, can eliminate some work
when the program is linked and is also useful in programs linked dynamically
during execution.

To implement returns and indirect jumps when the target is not known at
compile time, a method other than PC-relative addressing is required. Here, there
must be a way to specify the target dynamically, so that it can change at runtime.
This dynamic address may be as simple as naming a register that contains the tar-
get address; alternatively, the jump may permit any addressing mode to be used
to supply the target address.

Figure A.14 Breakdown of control flow instructions into three classes: calls or

returns, jumps, and conditional branches. Conditional branches clearly dominate.
Each type is counted in one of three bars. The programs and computer used to collect
these statistics are the same as those in Figure A.8.

0% 25% 50% 75%

Call/return

Jump

Conditional branch
75%

82%

6%
10%

19%
8%

100%

Frequency of branch instructions

Floating-point average

Integer average

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-18 ■ Appendix A Instruction Set Principles

These register indirect jumps are also useful for four other important features:

■ Case or switch statements, found in most programming languages (which
select among one of several alternatives)

■ Virtual functions or methods in object-oriented languages like C++ or Java
(which allow different routines to be called depending on the type of the
argument)

■ High-order functions or function pointers in languages like C or C++ (which
allow functions to be passed as arguments, giving some of the flavor of
object-oriented programming)

■ Dynamically shared libraries (which allow a library to be loaded and linked
at runtime only when it is actually invoked by the program rather than loaded
and linked statically before the program is run)

In all four cases the target address is not known at compile time, and hence is
usually loaded from memory into a register before the register indirect jump.

As branches generally use PC-relative addressing to specify their targets, an
important question concerns how far branch targets are from branches. Knowing
the distribution of these displacements will help in choosing what branch offsets
to support, and thus will affect the instruction length and encoding. Figure A.15
shows the distribution of displacements for PC-relative branches in instructions.
About 75% of the branches are in the forward direction.

Figure A.15 Branch distances in terms of number of instructions between the target and the branch instruction.
The most frequent branches in the integer programs are to targets that can be encoded in 4 to 8 bits. This result tells
us that short displacement fields often suffice for branches and that the designer can gain some encoding density by
having a shorter instruction with a smaller branch displacement. These measurements were taken on a load-store
computer (Alpha architecture) with all instructions aligned on word boundaries. An architecture that requires fewer
instructions for the same program, such as a VAX, would have shorter branch distances. However, the number of bits
needed for the displacement may increase if the computer has variable-length instructions to be aligned on any byte
boundary. The programs and computer used to collect these statistics are the same as those in Figure A.8.

30%

25%

20%

15%

10%

5%

0%
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
er

ce
nt

ag
e

of
 d

is
ta

nc
e

Bits of branch displacement

Floating-point average

Integer
average

15 16 17 18 19 20

A.6 Instructions for Control Flow ■ A-19

Conditional Branch Options

Since most changes in control flow are branches, deciding how to specify the
branch condition is important. Figure A.16 shows the three primary techniques in
use today and their advantages and disadvantages.

One of the most noticeable properties of branches is that a large number of
the comparisons are simple tests, and a large number are comparisons with zero.
Thus, some architectures choose to treat these comparisons as special cases,
especially if a compare and branch instruction is being used. Figure A.17 shows
the frequency of different comparisons used for conditional branching.

Procedure Invocation Options

Procedure calls and returns include control transfer and possibly some state sav-
ing; at a minimum the return address must be saved somewhere, sometimes in a
special link register or just a GPR. Some older architectures provide a mecha-
nism to save many registers, while newer architectures require the compiler to
generate stores and loads for each register saved and restored.

There are two basic conventions in use to save registers: either at the call site
or inside the procedure being called. Caller saving means that the calling proce-
dure must save the registers that it wants preserved for access after the call, and
thus the called procedure need not worry about registers. Callee saving is the
opposite: the called procedure must save the registers it wants to use, leaving the
caller unrestrained. There are times when caller save must be used because of
access patterns to globally visible variables in two different procedures. For

Name Examples How condition is tested Advantages Disadvantages

Condition
code (CC)

80x86, ARM,
PowerPC,
SPARC, SuperH

Tests special bits set by
ALU operations, possibly
under program control.

Sometimes condition
is set for free.

CC is extra state. Condition
codes constrain the ordering of
instructions since they pass
information from one instruction
to a branch.

Condition
register

Alpha, MIPS Tests arbitrary register
with the result of a
comparison.

Simple. Uses up a register.

Compare
and branch

PA-RISC, VAX Compare is part of the
branch. Often compare is
limited to subset.

One instruction rather
than two for a branch.

May be too much work per
instruction for pipelined
execution.

Figure A.16 The major methods for evaluating branch conditions, their advantages, and their disadvantages.

Although condition codes can be set by ALU operations that are needed for other purposes, measurements on pro-
grams show that this rarely happens. The major implementation problems with condition codes arise when the con-
dition code is set by a large or haphazardly chosen subset of the instructions, rather than being controlled by a bit in
the instruction. Computers with compare and branch often limit the set of compares and use a condition register for
more complex compares. Often, different techniques are used for branches based on floating-point comparison ver-
sus those based on integer comparison. This dichotomy is reasonable since the number of branches that depend on
floating-point comparisons is much smaller than the number depending on integer comparisons.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-20 ■ Appendix A Instruction Set Principles

example, suppose we have a procedure P1 that calls procedure P2, and both pro-
cedures manipulate the global variable x. If P1 had allocated x to a register, it
must be sure to save x to a location known by P2 before the call to P2. A com-
piler’s ability to discover when a called procedure may access register-allocated
quantities is complicated by the possibility of separate compilation. Suppose P2
may not touch x but can call another procedure, P3, that may access x, yet P2 and
P3 are compiled separately. Because of these complications, most compilers will
conservatively caller save any variable that may be accessed during a call.

In the cases where either convention could be used, some programs will be
more optimal with callee save and some will be more optimal with caller save. As
a result, most real systems today use a combination of the two mechanisms. This
convention is specified in an application binary interface (ABI) that sets down the
basic rules as to which registers should be caller saved and which should be callee
saved. Later in this appendix we will examine the mismatch between sophisti-
cated instructions for automatically saving registers and the needs of the compiler.

Summary: Instructions for Control Flow

Control flow instructions are some of the most frequently executed instructions.
Although there are many options for conditional branches, we would expect branch
addressing in a new architecture to be able to jump to hundreds of instructions

Figure A.17 Frequency of different types of compares in conditional branches. Less
than (or equal) branches dominate this combination of compiler and architecture.
These measurements include both the integer and floating-point compares in
branches. The programs and computer used to collect these statistics are the same as
those in Figure A.8.

Greater than

Greater than or equal

Equal

Not equal

Less than or equal

 Less than
35%

34%

33%
44%

0%
0%

0%
11%

18%
16%

2%
5%

0% 10% 20% 30% 40% 50%
Frequency of comparison types in branches

Floating-point average
Integer average

A.7 Encoding an Instruction Set ■ A-21

either above or below the branch. This requirement suggests a PC-relative branch
displacement of at least 8 bits. We would also expect to see register indirect and
PC-relative addressing for jump instructions to support returns as well as many
other features of current systems.

We have now completed our instruction architecture tour at the level seen by an
assembly language programmer or compiler writer. We are leaning toward a load-
store architecture with displacement, immediate, and register indirect addressing
modes. These data are 8-, 16-, 32-, and 64-bit integers and 32- and 64-bit floating-
point data. The instructions include simple operations, PC-relative conditional
branches, jump and link instructions for procedure call, and register indirect jumps
for procedure return (plus a few other uses).

Now we need to select how to represent this architecture in a form that makes
it easy for the hardware to execute.

Clearly, the choices mentioned above will affect how the instructions are encoded
into a binary representation for execution by the processor. This representation
affects not only the size of the compiled program but also the implementation of
the processor, which must decode this representation to quickly find the opera-
tion and its operands. The operation is typically specified in one field, called the
opcode. As we shall see, the important decision is how to encode the addressing
modes with the operations.

This decision depends on the range of addressing modes and the degree of
independence between opcodes and modes. Some older computers have one to
five operands with 10 addressing modes for each operand (see Figure A.6). For
such a large number of combinations, typically a separate address specifier is
needed for each operand: The address specifier tells what addressing mode is
used to access the operand. At the other extreme are load-store computers with
only one memory operand and only one or two addressing modes; obviously, in
this case, the addressing mode can be encoded as part of the opcode.

When encoding the instructions, the number of registers and the number of
addressing modes both have a significant impact on the size of instructions, as the
register field and addressing mode field may appear many times in a single
instruction. In fact, for most instructions many more bits are consumed in encod-
ing addressing modes and register fields than in specifying the opcode. The archi-
tect must balance several competing forces when encoding the instruction set:

1. The desire to have as many registers and addressing modes as possible.

2. The impact of the size of the register and addressing mode fields on the aver-
age instruction size and hence on the average program size.

3. A desire to have instructions encoded into lengths that will be easy to handle
in a pipelined implementation. (The value of easily decoded instructions is
discussed in Appendix C and Chapter 3.) As a minimum, the architect wants

A.7 Encoding an Instruction Set

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-22 ■ Appendix A Instruction Set Principles

instructions to be in multiples of bytes, rather than an arbitrary bit length.
Many desktop and server architects have chosen to use a fixed-length instruc-
tion to gain implementation benefits while sacrificing average code size.

Figure A.18 shows three popular choices for encoding the instruction set. The
first we call variable, since it allows virtually all addressing modes to be with all
operations. This style is best when there are many addressing modes and opera-
tions. The second choice we call fixed, since it combines the operation and the
addressing mode into the opcode. Often fixed encoding will have only a single
size for all instructions; it works best when there are few addressing modes and
operations. The trade-off between variable encoding and fixed encoding is size of
programs versus ease of decoding in the processor. Variable tries to use as few
bits as possible to represent the program, but individual instructions can vary
widely in both size and the amount of work to be performed.

Let’s look at an 80x86 instruction to see an example of the variable encoding:

add EAX,1000(EBX)

Figure A.18 Three basic variations in instruction encoding: variable length, fixed
length, and hybrid. The variable format can support any number of operands, with
each address specifier determining the addressing mode and the length of the speci-
fier for that operand. It generally enables the smallest code representation, since
unused fields need not be included. The fixed format always has the same number of
operands, with the addressing modes (if options exist) specified as part of the opcode.
It generally results in the largest code size. Although the fields tend not to vary in their
location, they will be used for different purposes by different instructions. The hybrid
approach has multiple formats specified by the opcode, adding one or two fields to
specify the addressing mode and one or two fields to specify the operand address.

Operation and
no. of operands

Address
specifier 1

Address
field 1

Address
field 1

Operation Address
field 2

Address
field 3

Address
specifier

Operation Address
field
Address
field

Address
specifier 1

Operation Address
specifier 2

Address
field

Address
specifier

Operation Address
field 1

Address
field 2

Address
specifier n

Address
field n

(a) Variable (e.g., Intel 80x86, VAX)

(b) Fixed (e.g., Alpha, ARM, MIPS, PowerPC, SPARC, SuperH)

(c) Hybrid (e.g., IBM 360/370, MIPS16, Thumb, TI TMS320C54x)

A.7 Encoding an Instruction Set ■ A-23

The name add means a 32-bit integer add instruction with two operands, and this
opcode takes 1 byte. An 80x86 address specifier is 1 or 2 bytes, specifying the
source/destination register (EAX) and the addressing mode (displacement in this
case) and base register (EBX) for the second operand. This combination takes 1
byte to specify the operands. When in 32-bit mode (see Appendix K), the size of
the address field is either 1 byte or 4 bytes. Since 1000 is bigger than 28, the total
length of the instruction is

1 + 1 + 4 = 6 bytes

The length of 80x86 instructions varies between 1 and 17 bytes. 80x86 programs
are generally smaller than the RISC architectures, which use fixed formats (see
Appendix K).

Given these two poles of instruction set design of variable and fixed, the third
alternative immediately springs to mind: Reduce the variability in size and work
of the variable architecture but provide multiple instruction lengths to reduce
code size. This hybrid approach is the third encoding alternative, and we’ll see
examples shortly.

Reduced Code Size in RISCs

As RISC computers started being used in embedded applications, the 32-bit fixed
format became a liability since cost and hence smaller code are important. In
response, several manufacturers offered a new hybrid version of their RISC
instruction sets, with both 16-bit and 32-bit instructions. The narrow instructions
support fewer operations, smaller address and immediate fields, fewer registers,
and the two-address format rather than the classic three-address format of RISC
computers. Appendix K gives two examples, the ARM Thumb and MIPS
MIPS16, which both claim a code size reduction of up to 40%.

In contrast to these instruction set extensions, IBM simply compresses its
standard instruction set and then adds hardware to decompress instructions as
they are fetched from memory on an instruction cache miss. Thus, the instruction
cache contains full 32-bit instructions, but compressed code is kept in main mem-
ory, ROMs, and the disk. The advantage of MIPS16 and Thumb is that instruc-
tion caches act as if they are about 25% larger, while IBM’s CodePack means that
compilers need not be changed to handle different instruction sets and instruction
decoding can remain simple.

CodePack starts with run-length encoding compression on any PowerPC pro-
gram and then loads the resulting compression tables in a 2 KB table on chip.
Hence, every program has its own unique encoding. To handle branches, which
are no longer to an aligned word boundary, the PowerPC creates a hash table in
memory that maps between compressed and uncompressed addresses. Like a
TLB (see Chapter 2), it caches the most recently used address maps to reduce the
number of memory accesses. IBM claims an overall performance cost of 10%,
resulting in a code size reduction of 35% to 40%.

Hitachi simply invented a RISC instruction set with a fixed 16-bit format,
called SuperH, for embedded applications (see Appendix K). It has 16 rather than

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-24 ■ Appendix A Instruction Set Principles

32 registers to make it fit the narrower format and fewer instructions but other-
wise looks like a classic RISC architecture.

Summary: Encoding an Instruction Set

Decisions made in the components of instruction set design discussed in previous
sections determine whether the architect has the choice between variable and fixed
instruction encodings. Given the choice, the architect more interested in code size
than performance will pick variable encoding, and the one more interested in per-
formance than code size will pick fixed encoding. Appendix E gives 13 examples
of the results of architects’ choices. In Appendix C and Chapter 3, the impact of
variability on performance of the processor will be discussed further.

We have almost finished laying the groundwork for the MIPS instruction set
architecture that will be introduced in Section A.9. Before we do that, however, it
will be helpful to take a brief look at compiler technology and its effect on pro-
gram properties.

Today almost all programming is done in high-level languages for desktop and
server applications. This development means that since most instructions exe-
cuted are the output of a compiler, an instruction set architecture is essentially a
compiler target. In earlier times for these applications, architectural decisions
were often made to ease assembly language programming or for a specific ker-
nel. Because the compiler will significantly affect the performance of a computer,
understanding compiler technology today is critical to designing and efficiently
implementing an instruction set.

Once it was popular to try to isolate the compiler technology and its effect on
hardware performance from the architecture and its performance, just as it was
popular to try to separate architecture from its implementation. This separation is
essentially impossible with today’s desktop compilers and computers. Architec-
tural choices affect the quality of the code that can be generated for a computer
and the complexity of building a good compiler for it, for better or for worse.

In this section, we discuss the critical goals in the instruction set primarily
from the compiler viewpoint. It starts with a review of the anatomy of current
compilers. Next we discuss how compiler technology affects the decisions of the
architect, and how the architect can make it hard or easy for the compiler to pro-
duce good code. We conclude with a review of compilers and multimedia opera-
tions, which unfortunately is a bad example of cooperation between compiler
writers and architects.

The Structure of Recent Compilers

To begin, let’s look at what optimizing compilers are like today. Figure A.19
shows the structure of recent compilers.

A.8 Crosscutting Issues: The Role of Compilers

A.8 Crosscutting Issues: The Role of Compilers ■ A-25

A compiler writer’s first goal is correctness—all valid programs must be
compiled correctly. The second goal is usually speed of the compiled code. Typi-
cally, a whole set of other goals follows these two, including fast compilation,
debugging support, and interoperability among languages. Normally, the passes
in the compiler transform higher-level, more abstract representations into pro-
gressively lower-level representations. Eventually it reaches the instruction set.
This structure helps manage the complexity of the transformations and makes
writing a bug-free compiler easier.

The complexity of writing a correct compiler is a major limitation on the
amount of optimization that can be done. Although the multiple-pass structure
helps reduce compiler complexity, it also means that the compiler must order and
perform some transformations before others. In the diagram of the optimizing
compiler in Figure A.19, we can see that certain high-level optimizations are per-
formed long before it is known what the resulting code will look like. Once such
a transformation is made, the compiler can’t afford to go back and revisit all
steps, possibly undoing transformations. Such iteration would be prohibitive,
both in compilation time and in complexity. Thus, compilers make assumptions
about the ability of later steps to deal with certain problems. For example, com-
pilers usually have to choose which procedure calls to expand inline before they

Figure A.19 Compilers typically consist of two to four passes, with more highly opti-

mizing compilers having more passes. This structure maximizes the probability that a
program compiled at various levels of optimization will produce the same output when
given the same input. The optimizing passes are designed to be optional and may be
skipped when faster compilation is the goal and lower-quality code is acceptable. A
pass is simply one phase in which the compiler reads and transforms the entire pro-
gram. (The term phase is often used interchangeably with pass.) Because the optimiz-
ing passes are separated, multiple languages can use the same optimizing and code
generation passes. Only a new front end is required for a new language.

Language dependent;
machine independent

Dependencies
Transform language to
common intermediate form

Function

Front end per
language

High-level
optimizations

Global
optimizer

Code generator

Intermediate
representation

For example, loop
transformations and
procedure inlining
(also called
procedure integration)

Including global and local
optimizations + register
allocation

Detailed instruction selection
and machine-dependent
optimizations; may include
or be followed by assembler

Somewhat language
dependent; largely machine
independent

Small language dependencies;
machine dependencies slight
(e.g., register counts/types)

Highly machine dependent;
language independent

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-26 ■ Appendix A Instruction Set Principles

know the exact size of the procedure being called. Compiler writers call this
problem the phase-ordering problem.

How does this ordering of transformations interact with the instruction set
architecture? A good example occurs with the optimization called global com-
mon subexpression elimination. This optimization finds two instances of an
expression that compute the same value and saves the value of the first computa-
tion in a temporary. It then uses the temporary value, eliminating the second com-
putation of the common expression.

For this optimization to be significant, the temporary must be allocated to a
register. Otherwise, the cost of storing the temporary in memory and later reload-
ing it may negate the savings gained by not recomputing the expression. There
are, in fact, cases where this optimization actually slows down code when the
temporary is not register allocated. Phase ordering complicates this problem
because register allocation is typically done near the end of the global optimiza-
tion pass, just before code generation. Thus, an optimizer that performs this opti-
mization must assume that the register allocator will allocate the temporary to a
register.

Optimizations performed by modern compilers can be classified by the style
of the transformation, as follows:

■ High-level optimizations are often done on the source with output fed to later
optimization passes.

■ Local optimizations optimize code only within a straight-line code fragment
(called a basic block by compiler people).

■ Global optimizations extend the local optimizations across branches and
introduce a set of transformations aimed at optimizing loops.

■ Register allocation associates registers with operands.

■ Processor-dependent optimizations attempt to take advantage of specific
architectural knowledge.

Register Allocation

Because of the central role that register allocation plays, both in speeding up the
code and in making other optimizations useful, it is one of the most important—if
not the most important—of the optimizations. Register allocation algorithms
today are based on a technique called graph coloring. The basic idea behind
graph coloring is to construct a graph representing the possible candidates for
allocation to a register and then to use the graph to allocate registers. Roughly
speaking, the problem is how to use a limited set of colors so that no two adjacent
nodes in a dependency graph have the same color. The emphasis in the approach
is to achieve 100% register allocation of active variables. The problem of color-
ing a graph in general can take exponential time as a function of the size of the
graph (NP-complete). There are heuristic algorithms, however, that work well in
practice, yielding close allocations that run in near-linear time.

A.8 Crosscutting Issues: The Role of Compilers ■ A-27

Graph coloring works best when there are at least 16 (and preferably more)
general-purpose registers available for global allocation for integer variables and
additional registers for floating point. Unfortunately, graph coloring does not
work very well when the number of registers is small because the heuristic algo-
rithms for coloring the graph are likely to fail.

Impact of Optimizations on Performance

It is sometimes difficult to separate some of the simpler optimizations—local and
processor-dependent optimizations—from transformations done in the code gen-
erator. Examples of typical optimizations are given in Figure A.20. The last col-
umn of Figure A.20 indicates the frequency with which the listed optimizing
transforms were applied to the source program.

Figure A.21 shows the effect of various optimizations on instructions exe-
cuted for two programs. In this case, optimized programs executed roughly 25%
to 90% fewer instructions than unoptimized programs. The figure illustrates the
importance of looking at optimized code before suggesting new instruction set
features, since a compiler might completely remove the instructions the architect
was trying to improve.

The Impact of Compiler Technology on the Architect’s
Decisions

The interaction of compilers and high-level languages significantly affects how
programs use an instruction set architecture. There are two important questions:
How are variables allocated and addressed? How many registers are needed to
allocate variables appropriately? To address these questions, we must look at the
three separate areas in which current high-level languages allocate their data:

■ The stack is used to allocate local variables. The stack is grown or shrunk on
procedure call or return, respectively. Objects on the stack are addressed rela-
tive to the stack pointer and are primarily scalars (single variables) rather than
arrays. The stack is used for activation records, not as a stack for evaluating
expressions. Hence, values are almost never pushed or popped on the stack.

■ The global data area is used to allocate statically declared objects, such as
global variables and constants. A large percentage of these objects are arrays
or other aggregate data structures.

■ The heap is used to allocate dynamic objects that do not adhere to a stack dis-
cipline. Objects in the heap are accessed with pointers and are typically not
scalars.

Register allocation is much more effective for stack-allocated objects than for
global variables, and register allocation is essentially impossible for heap-
allocated objects because they are accessed with pointers. Global variables and
some stack variables are impossible to allocate because they are aliased—there

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-28 ■ Appendix A Instruction Set Principles

are multiple ways to refer to the address of a variable, making it illegal to put it
into a register. (Most heap variables are effectively aliased for today’s compiler
technology.)

For example, consider the following code sequence, where & returns the
address of a variable and * dereferences a pointer:

Optimization name Explanation
Percentage of the total number of
optimizing transforms

High-level At or near the source level; processor-
independent

Procedure integration Replace procedure call by procedure body N.M.

Local Within straight-line code

Common subexpression
elimination

Replace two instances of the same
computation by single copy

18%

Constant propagation Replace all instances of a variable that
is assigned a constant with the constant

22%

Stack height reduction Rearrange expression tree to minimize
resources needed for expression evaluation

N.M.

Global Across a branch

Global common subexpression
elimination

Same as local, but this version crosses
branches

13%

Copy propagation Replace all instances of a variable A that has
been assigned X (i.e., A = X) with X

11%

Code motion Remove code from a loop that computes
same value each iteration of the loop

16%

Induction variable elimination Simplify/eliminate array addressing
calculations within loops

2%

Processor-dependent Depends on processor knowledge

Strength reduction Many examples, such as replace multiply by
a constant with adds and shifts

N.M.

Pipeline scheduling Reorder instructions to improve pipeline
performance

N.M.

Branch offset optimization Choose the shortest branch displacement that
reaches target

N.M.

Figure A.20 Major types of optimizations and examples in each class. These data tell us about the relative fre-
quency of occurrence of various optimizations. The third column lists the static frequency with which some of the
common optimizations are applied in a set of 12 small Fortran and Pascal programs. There are nine local and global
optimizations done by the compiler included in the measurement. Six of these optimizations are covered in the fig-
ure, and the remaining three account for 18% of the total static occurrences. The abbreviation N.M. means that the
number of occurrences of that optimization was not measured. Processor-dependent optimizations are usually done
in a code generator, and none of those was measured in this experiment. The percentage is the portion of the static
optimizations that are of the specified type. Data from Chow [1983] (collected using the Stanford UCODE compiler).

A.8 Crosscutting Issues: The Role of Compilers ■ A-29

p = &a-- gets address of a in p
a = ...-- assigns to a directly
*p = ...-- uses p to assign to a
...a...-- accesses a

The variable a could not be register allocated across the assignment to *p without
generating incorrect code. Aliasing causes a substantial problem because it is
often difficult or impossible to decide what objects a pointer may refer to. A
compiler must be conservative; some compilers will not allocate any local vari-
ables of a procedure in a register when there is a pointer that may refer to one of
the local variables.

How the Architect Can Help the Compiler Writer

Today, the complexity of a compiler does not come from translating simple state-
ments like A = B + C. Most programs are locally simple, and simple translations
work fine. Rather, complexity arises because programs are large and globally
complex in their interactions, and because the structure of compilers means deci-
sions are made one step at a time about which code sequence is best.

Compiler writers often are working under their own corollary of a basic prin-
ciple in architecture: Make the frequent cases fast and the rare case correct. That
is, if we know which cases are frequent and which are rare, and if generating

Figure A.21 Change in instruction count for the programs lucas and mcf from the

SPEC2000 as compiler optimization levels vary. Level 0 is the same as unoptimized
code. Level 1 includes local optimizations, code scheduling, and local register alloca-
tion. Level 2 includes global optimizations, loop transformations (software pipelining),
and global register allocation. Level 3 adds procedure integration. These experiments
were performed on Alpha compilers.

mcf, level 0P
ro

gr
am

, c
om

pi
le

r
op

tim
iz

at
io

n
le

ve
l

100%0% 20% 40% 60% 80%

Branches/calls

Floating-point ALU ops

Loads-stores

Integer ALU ops

Percentage of unoptimized instructions executed

mcf, level 1

mcf, level 2

mcf, level 3

lucas, level 0

lucas, level 1

lucas, level 2

lucas, level 3 11%

12%

21%

100%

76%

76%

84%

100%

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-30 ■ Appendix A Instruction Set Principles

code for both is straightforward, then the quality of the code for the rare case may
not be very important—but it must be correct!

Some instruction set properties help the compiler writer. These properties
should not be thought of as hard-and-fast rules, but rather as guidelines that will
make it easier to write a compiler that will generate efficient and correct code.

■ Provide regularity—Whenever it makes sense, the three primary components
of an instruction set—the operations, the data types, and the addressing
modes—should be orthogonal. Two aspects of an architecture are said to be
orthogonal if they are independent. For example, the operations and address-
ing modes are orthogonal if, for every operation to which one addressing
mode can be applied, all addressing modes are applicable. This regularity
helps simplify code generation and is particularly important when the deci-
sion about what code to generate is split into two passes in the compiler. A
good counterexample of this property is restricting what registers can be used
for a certain class of instructions. Compilers for special-purpose register
architectures typically get stuck in this dilemma. This restriction can result in
the compiler finding itself with lots of available registers, but none of the
right kind!

■ Provide primitives, not solutions—Special features that “match” a language
construct or a kernel function are often unusable. Attempts to support high-
level languages may work only with one language or do more or less than is
required for a correct and efficient implementation of the language. An exam-
ple of how such attempts have failed is given in Section A.10.

■ Simplify trade-offs among alternatives—One of the toughest jobs a compiler
writer has is figuring out what instruction sequence will be best for every seg-
ment of code that arises. In earlier days, instruction counts or total code size
might have been good metrics, but—as we saw in Chapter 1—this is no lon-
ger true. With caches and pipelining, the trade-offs have become very com-
plex. Anything the designer can do to help the compiler writer understand the
costs of alternative code sequences would help improve the code. One of the
most difficult instances of complex trade-offs occurs in a register-memory
architecture in deciding how many times a variable should be referenced
before it is cheaper to load it into a register. This threshold is hard to compute
and, in fact, may vary among models of the same architecture.

■ Provide instructions that bind the quantities known at compile time as con-
stants—A compiler writer hates the thought of the processor interpreting at
runtime a value that was known at compile time. Good counterexamples of
this principle include instructions that interpret values that were fixed at com-
pile time. For instance, the VAX procedure call instruction (calls) dynami-
cally interprets a mask saying what registers to save on a call, but the mask is
fixed at compile time (see Section A.10).

A.8 Crosscutting Issues: The Role of Compilers ■ A-31

Compiler Support (or Lack Thereof) for Multimedia
Instructions

Alas, the designers of the SIMD instructions (see Section 4.3 in Chapter 4) basi-
cally ignored the previous subsection. These instructions tend to be solutions, not
primitives; they are short of registers; and the data types do not match existing pro-
gramming languages. Architects hoped to find an inexpensive solution that would
help some users, but often only a few low-level graphics library routines use them.

The SIMD instructions are really an abbreviated version of an elegant archi-
tecture style that has its own compiler technology. As explained in Section 4.2,
vector architectures operate on vectors of data. Invented originally for scientific
codes, multimedia kernels are often vectorizable as well, albeit often with
shorter vectors. As Section 4.3 suggests, we can think of Intel’s MMX and SSE
or PowerPC’s AltiVec as simply short vector computers: MMX with vectors of
eight 8-bit elements, four 16-bit elements, or two 32-bit elements, and AltiVec
with vectors twice that length. They are implemented as simply adjacent, narrow
elements in wide registers.

These microprocessor architectures build the vector register size into the
architecture: the sum of the sizes of the elements is limited to 64 bits for MMX
and 128 bits for AltiVec. When Intel decided to expand to 128-bit vectors, it
added a whole new set of instructions, called Streaming SIMD Extension (SSE).

A major advantage of vector computers is hiding latency of memory access
by loading many elements at once and then overlapping execution with data
transfer. The goal of vector addressing modes is to collect data scattered about
memory, place them in a compact form so that they can be operated on effi-
ciently, and then place the results back where they belong.

Vector computers include strided addressing and gather/scatter addressing
(see Section 4.2) to increase the number of programs that can be vectorized.
Strided addressing skips a fixed number of words between each access, so
sequential addressing is often called unit stride addressing. Gather and scatter
find their addresses in another vector register: Think of it as register indirect
addressing for vector computers. From a vector perspective, in contrast, these
short-vector SIMD computers support only unit strided accesses: Memory
accesses load or store all elements at once from a single wide memory location.
Since the data for multimedia applications are often streams that start and end in
memory, strided and gather/scatter addressing modes are essential to successful
vectorization (see Section 4.7).

Example As an example, compare a vector computer to MMX for color representation
conversion of pixels from RGB (red, green, blue) to YUV (luminosity chromi-
nance), with each pixel represented by 3 bytes. The conversion is just three lines
of C code placed in a loop:

Y = (9798*R + 19235*G + 3736*B) / 32768;
U = (-4784*R - 9437*G + 4221*B) / 32768 + 128;
V = (20218*R - 16941*G - 3277*B) / 32768 + 128;

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-32 ■ Appendix A Instruction Set Principles

A 64-bit-wide vector computer can calculate 8 pixels simultaneously. One vector
computer for media with strided addresses takes

■ 3 vector loads (to get RGB)

■ 3 vector multiplies (to convert R)

■ 6 vector multiply adds (to convert G and B)

■ 3 vector shifts (to divide by 32,768)

■ 2 vector adds (to add 128)

■ 3 vector stores (to store YUV)

The total is 20 instructions to perform the 20 operations in the previous C code to
convert 8 pixels [Kozyrakis 2000]. (Since a vector might have 32 64-bit ele-
ments, this code actually converts up to 32 × 8 or 256 pixels.)

In contrast, Intel’s Web site shows that a library routine to perform the same
calculation on 8 pixels takes 116 MMX instructions plus 6 80x86 instructions
[Intel 2001]. This sixfold increase in instructions is due to the large number of
instructions to load and unpack RGB pixels and to pack and store YUV pixels,
since there are no strided memory accesses.

Having short, architecture-limited vectors with few registers and simple
memory addressing modes makes it more difficult to use vectorizing compiler
technology. Hence, these SIMD instructions are more likely to be found in hand-
coded libraries than in compiled code.

Summary: The Role of Compilers

This section leads to several recommendations. First, we expect a new instruction
set architecture to have at least 16 general-purpose registers—not counting sepa-
rate registers for floating-point numbers—to simplify allocation of registers
using graph coloring. The advice on orthogonality suggests that all supported
addressing modes apply to all instructions that transfer data. Finally, the last three
pieces of advice—provide primitives instead of solutions, simplify trade-offs
between alternatives, don’t bind constants at runtime—all suggest that it is better
to err on the side of simplicity. In other words, understand that less is more in the
design of an instruction set. Alas, SIMD extensions are more an example of good
marketing than of outstanding achievement of hardware–software co-design.

In this section we describe a simple 64-bit load-store architecture called MIPS. The
instruction set architecture of MIPS and RISC relatives was based on observations
similar to those covered in the last sections. (In Section L.3 we discuss how and

A.9 Putting It All Together: The MIPS Architecture

A.9 Putting It All Together: The MIPS Architecture ■ A-33

why these architectures became popular.) Reviewing our expectations from each
section, for desktop applications:

■ Section A.2—Use general-purpose registers with a load-store architecture.

■ Section A.3—Support these addressing modes: displacement (with an address
offset size of 12 to 16 bits), immediate (size 8 to 16 bits), and register indirect.

■ Section A.4—Support these data sizes and types: 8-, 16-, 32-, and 64-bit inte-
gers and 64-bit IEEE 754 floating-point numbers.

■ Section A.5—Support these simple instructions, since they will dominate the
number of instructions executed: load, store, add, subtract, move register-
register, and shift.

■ Section A.6—Compare equal, compare not equal, compare less, branch (with
a PC-relative address at least 8 bits long), jump, call, and return.

■ Section A.7—Use fixed instruction encoding if interested in performance, and
use variable instruction encoding if interested in code size.

■ Section A.8—Provide at least 16 general-purpose registers, be sure all
addressing modes apply to all data transfer instructions, and aim for a mini-
malist instruction set. This section didn’t cover floating-point programs, but
they often use separate floating-point registers. The justification is to increase
the total number of registers without raising problems in the instruction for-
mat or in the speed of the general-purpose register file. This compromise,
however, is not orthogonal.

We introduce MIPS by showing how it follows these recommendations. Like
most recent computers, MIPS emphasizes

■ A simple load-store instruction set

■ Design for pipelining efficiency (discussed in Appendix C), including a fixed
instruction set encoding

■ Efficiency as a compiler target

MIPS provides a good architectural model for study, not only because of the pop-
ularity of this type of processor, but also because it is an easy architecture to
understand. We will use this architecture again in Appendix C and in Chapter 3,
and it forms the basis for a number of exercises and programming projects.

In the years since the first MIPS processor in 1985, there have been many
versions of MIPS (see Appendix K). We will use a subset of what is now called
MIPS64, which will often abbreviate to just MIPS, but the full instruction set is
found in Appendix K.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-34 ■ Appendix A Instruction Set Principles

Registers for MIPS

MIPS64 has 32 64-bit general-purpose registers (GPRs), named R0, R1, . . . , R31.
GPRs are also sometimes known as integer registers. Additionally, there is a set
of 32 floating-point registers (FPRs), named F0, F1, . . . , F31, which can hold
32 single-precision (32-bit) values or 32 double-precision (64-bit) values. (When
holding one single-precision number, the other half of the FPR is unused.) Both
single- and double-precision floating-point operations (32-bit and 64-bit) are
provided. MIPS also includes instructions that operate on two single-precision
operands in a single 64-bit floating-point register.

The value of R0 is always 0. We shall see later how we can use this register to
synthesize a variety of useful operations from a simple instruction set.

A few special registers can be transferred to and from the general-purpose
registers. An example is the floating-point status register, used to hold informa-
tion about the results of floating-point operations. There are also instructions for
moving between an FPR and a GPR.

Data Types for MIPS

The data types are 8-bit bytes, 16-bit half words, 32-bit words, and 64-bit double
words for integer data and 32-bit single precision and 64-bit double precision for
floating point. Half words were added because they are found in languages like C
and are popular in some programs, such as the operating systems, concerned
about size of data structures. They will also become more popular if Unicode
becomes widely used. Single-precision floating-point operands were added for
similar reasons. (Remember the early warning that you should measure many
more programs before designing an instruction set.)

The MIPS64 operations work on 64-bit integers and 32- or 64-bit floating
point. Bytes, half words, and words are loaded into the general-purpose registers
with either zeros or the sign bit replicated to fill the 64 bits of the GPRs. Once
loaded, they are operated on with the 64-bit integer operations.

Addressing Modes for MIPS Data Transfers

The only data addressing modes are immediate and displacement, both with 16-bit
fields. Register indirect is accomplished simply by placing 0 in the 16-bit dis-
placement field, and absolute addressing with a 16-bit field is accomplished by
using register 0 as the base register. Embracing zero gives us four effective modes,
although only two are supported in the architecture.

MIPS memory is byte addressable with a 64-bit address. It has a mode bit that
allows software to select either Big Endian or Little Endian. As it is a load-store
architecture, all references between memory and either GPRs or FPRs are
through loads or stores. Supporting the data types mentioned above, memory
accesses involving GPRs can be to a byte, half word, word, or double word. The
FPRs may be loaded and stored with single-precision or double-precision num-
bers. All memory accesses must be aligned.

A.9 Putting It All Together: The MIPS Architecture ■ A-35

MIPS Instruction Format

Since MIPS has just two addressing modes, these can be encoded into the
opcode. Following the advice on making the processor easy to pipeline and
decode, all instructions are 32 bits with a 6-bit primary opcode. Figure A.22
shows the instruction layout. These formats are simple while providing 16-bit
fields for displacement addressing, immediate constants, or PC-relative branch
addresses.

Appendix K shows a variant of MIPS––called MIPS16––which has 16-bit
and 32-bit instructions to improve code density for embedded applications. We
will stick to the traditional 32-bit format in this book.

MIPS Operations

MIPS supports the list of simple operations recommended above plus a few oth-
ers. There are four broad classes of instructions: loads and stores, ALU opera-
tions, branches and jumps, and floating-point operations.

Figure A.22 Instruction layout for MIPS. All instructions are encoded in one of three
types, with common fields in the same location in each format.

I-type instruction

rs rt Immediate

Encodes: Loads and stores of bytes, half words, words,
double words. All immediates (rt rs op immediate)

6 5 5 16

Conditional branch instructions (rs is register, rd unused)
Jump register, jump and link register
 (rd = 0, rs = destination, immediate = 0)

R-type instruction

rs shamtrt

6 5 5 65 5

funct

Opcode

J-type instruction

Offset added to PC

6 26

Jump and jump and link
Trap and return from exception

Opcode

Opcode rd

Register-register ALU operations: rd rs funct rt
 Function encodes the data path operation: Add, Sub, . . .
 Read/write special registers and moves

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-36 ■ Appendix A Instruction Set Principles

Any of the general-purpose or floating-point registers may be loaded or
stored, except that loading R0 has no effect. Figure A.23 gives examples of the
load and store instructions. Single-precision floating-point numbers occupy half
a floating-point register. Conversions between single and double precision must
be done explicitly. The floating-point format is IEEE 754 (see Appendix J). A list
of all the MIPS instructions in our subset appears in Figure A.26 (page A-40).

To understand these figures we need to introduce a few additional extensions
to our C description language used initially on page A-9:

■ A subscript is appended to the symbol ← whenever the length of the datum
being transferred might not be clear. Thus, ←n means transfer an n-bit quan-
tity. We use x, y ← z to indicate that z should be transferred to x and y.

■ A subscript is used to indicate selection of a bit from a field. Bits are labeled
from the most-significant bit starting at 0. The subscript may be a single digit
(e.g., Regs[R4]0 yields the sign bit of R4) or a subrange (e.g., Regs[R3]56..63
yields the least-significant byte of R3).

■ The variable Mem, used as an array that stands for main memory, is indexed by
a byte address and may transfer any number of bytes.

■ A superscript is used to replicate a field (e.g., 048 yields a field of zeros of
length 48 bits).

■ The symbol ## is used to concatenate two fields and may appear on either
side of a data transfer.

Example instruction Instruction name Meaning

LD R1,30(R2) Load double word Regs[R1]←64 Mem[30+Regs[R2]]

LD R1,1000(R0) Load double word Regs[R1]←64 Mem[1000+0]

LW R1,60(R2) Load word Regs[R1]←64 (Mem[60+Regs[R2]]0)
32 ## Mem[60+Regs[R2]]

LB R1,40(R3) Load byte Regs[R1]←64 (Mem[40+Regs[R3]]0)
56 ##

Mem[40+Regs[R3]]

LBU R1,40(R3) Load byte unsigned Regs[R1]←64 056 ## Mem[40+Regs[R3]]

LH R1,40(R3) Load half word Regs[R1]←64 (Mem[40+Regs[R3]]0)
48 ##

Mem[40+Regs[R3]] ## Mem[41+Regs[R3]]

L.S F0,50(R3) Load FP single Regs[F0]←64 Mem[50+Regs[R3]] ## 0
32

L.D F0,50(R2) Load FP double Regs[F0]←64 Mem[50+Regs[R2]]

SD R3,500(R4) Store double word Mem[500+Regs[R4]]←64 Regs[R3]

SW R3,500(R4) Store word Mem[500+Regs[R4]]←32 Regs[R3]32..63

S.S F0,40(R3) Store FP single Mem[40+Regs[R3]]←32 Regs[F0]0..31

S.D F0,40(R3) Store FP double Mem[40+Regs[R3]]←64 Regs[F0]

SH R3,502(R2) Store half Mem[502+Regs[R2]]←16 Regs[R3]48..63

SB R2,41(R3) Store byte Mem[41+Regs[R3]]← Regs[R2]8 56..63

Figure A.23 The load and store instructions in MIPS. All use a single addressing mode and require that the mem-
ory value be aligned. Of course, both loads and stores are available for all the data types shown.

A.9 Putting It All Together: The MIPS Architecture ■ A-37

As an example, assuming that R8 and R10 are 64-bit registers:

Regs[R10]32..63 ← 32(Mem[Regs[R8]]0)24 ## Mem[Regs[R8]]

means that the byte at the memory location addressed by the contents of register
R8 is sign-extended to form a 32-bit quantity that is stored into the lower half of
register R10. (The upper half of R10 is unchanged.)

All ALU instructions are register-register instructions. Figure A.24 gives
some examples of the arithmetic/logical instructions. The operations include sim-
ple arithmetic and logical operations: add, subtract, AND, OR, XOR, and shifts.
Immediate forms of all these instructions are provided using a 16-bit sign-
extended immediate. The operation LUI (load upper immediate) loads bits 32
through 47 of a register, while setting the rest of the register to 0. LUI allows a
32-bit constant to be built in two instructions, or a data transfer using any con-
stant 32-bit address in one extra instruction.

As mentioned above, R0 is used to synthesize popular operations. Loading a
constant is simply an add immediate where the source operand is R0, and a
register-register move is simply an add where one of the sources is R0. (We
sometimes use the mnemonic LI, standing for load immediate, to represent the
former, and the mnemonic MOV for the latter.)

MIPS Control Flow Instructions

MIPS provides compare instructions, which compare two registers to see if the
first is less than the second. If the condition is true, these instructions place a 1 in
the destination register (to represent true); otherwise, they place the value 0.
Because these operations “set” a register, they are called set-equal, set-not-equal,
set-less-than, and so on. There are also immediate forms of these compares.

Control is handled through a set of jumps and a set of branches. Figure A.25
gives some typical branch and jump instructions. The four jump instructions are
differentiated by the two ways to specify the destination address and by whether
or not a link is made. Two jumps use a 26-bit offset shifted 2 bits and then replace

Example instruction Instruction name Meaning

DADDU R1,R2,R3 Add unsigned Regs[R1]← Regs[R2]+Regs[R3]
DADDIU R1,R2,#3 Add immediate unsigned Regs[R1]← Regs[R2]+3
LUI R1,#42 Load upper immediate Regs[R1]← 032##42##016

DSLL R1,R2,#5 Shift left logical Regs[R1]← Regs[R2]<<5
SLT R1,R2,R3 Set less than if (Regs[R2]<Regs[R3])

Regs[R1] ← 1 else Regs[R1]←0

Figure A.24 Examples of arithmetic/logical instructions on MIPS, both with and

without immediates.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-38 ■ Appendix A Instruction Set Principles

the lower 28 bits of the program counter (of the instruction sequentially following
the jump) to determine the destination address. The other two jump instructions
specify a register that contains the destination address. There are two flavors of
jumps: plain jump and jump and link (used for procedure calls). The latter places
the return address—the address of the next sequential instruction—in R31.

All branches are conditional. The branch condition is specified by the
instruction, which may test the register source for zero or nonzero; the register
may contain a data value or the result of a compare. There are also conditional
branch instructions to test for whether a register is negative and for equality
between two registers. The branch-target address is specified with a 16-bit signed
offset that is shifted left two places and then added to the program counter, which
is pointing to the next sequential instruction. There is also a branch to test the
floating-point status register for floating-point conditional branches, described
later.

Appendix C and Chapter 3 show that conditional branches are a major chal-
lenge to pipelined execution; hence, many architectures have added instructions
to convert a simple branch into a conditional arithmetic instruction. MIPS
included conditional move on zero or not zero. The value of the destination regis-
ter either is left unchanged or is replaced by a copy of one of the source registers
depending on whether or not the value of the other source register is zero.

MIPS Floating-Point Operations

Floating-point instructions manipulate the floating-point registers and indicate
whether the operation to be performed is single or double precision. The
operations MOV.S and MOV.D copy a single-precision (MOV.S) or double-precision

Example
instruction Instruction name Meaning

J name Jump PC36..63←name

JAL name Jump and link Regs[R31]←PC+8; PC36..63←name;
((PC + 4)–227) ≤ name < ((PC+4)+227)

JALR R2 Jump and link register Regs[R31]←PC+8; PC←Regs[R2]

JR R3 Jump register PC←Regs[R3]

BEQZ R4,name Branch equal zero if (Regs[R4]==0) PC←name;
((PC+4)–217) ≤ name < ((PC+4)+217)

BNE R3,R4,name Branch not equal zero if (Regs[R3]!= Regs[R4]) PC←name;
((PC+4)–217) ≤ name < ((PC+4)+217)

MOVZ R1,R2,R3 Conditional move
if zero

if (Regs[R3]==0) Regs[R1]←Regs[R2]

Figure A.25 Typical control flow instructions in MIPS. All control instructions, except
jumps to an address in a register, are PC-relative. Note that the branch distances are
longer than the address field would suggest; since MIPS instructions are all 32 bits long,
the byte branch address is multiplied by 4 to get a longer distance.

A.10 Fallacies and Pitfalls ■ A-39

(MOV.D) floating-point register to another register of the same type. The opera-
tions MFC1, MTC1, DMFC1, and DMTC1 move data between a single or double float-
ing-point register and an integer register. Conversions from integer to floating
point are also provided, and vice versa.

The floating-point operations are add, subtract, multiply, and divide; a suffix
D is used for double precision, and a suffix S is used for single precision (e.g.,
ADD.D, ADD.S, SUB.D, SUB.S, MUL.D, MUL.S, DIV.D, DIV.S). Floating-point
compares set a bit in the special floating-point status register that can be tested
with a pair of branches: BC1T and BC1F, branch floating-point true and branch
floating-point false.

To get greater performance for graphics routines, MIPS64 has instructions
that perform two 32-bit floating-point operations on each half of the 64-bit
floating-point register. These paired single operations include ADD.PS, SUB.PS,
MUL.PS, and DIV.PS. (They are loaded and stored using double-precision loads
and stores.)

Giving a nod toward the importance of multimedia applications, MIPS64 also
includes both integer and floating-point multiply-add instructions: MADD, MADD.S,
MADD.D, and MADD.PS. The registers are all the same width in these combined
operations. Figure A.26 contains a list of a subset of MIPS64 operations and their
meanings.

MIPS Instruction Set Usage

To give an idea of which instructions are popular, Figure A.27 shows the fre-
quency of instructions and instruction classes for five SPECint2000 programs,
and Figure A.28 shows the same data for five SPECfp2000 programs.

Architects have repeatedly tripped on common, but erroneous, beliefs. In this
section we look at a few of them.

Pitfall Designing a “high-level” instruction set feature specifically oriented to supporting
a high-level language structure.

Attempts to incorporate high-level language features in the instruction set have
led architects to provide powerful instructions with a wide range of flexibility.
However, often these instructions do more work than is required in the frequent
case, or they don’t exactly match the requirements of some languages. Many
such efforts have been aimed at eliminating what in the 1970s was called the
semantic gap. Although the idea is to supplement the instruction set with
additions that bring the hardware up to the level of the language, the additions

A.10 Fallacies and Pitfalls

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-40 ■ Appendix A Instruction Set Principles

Instruction type/opcode Instruction meaning

Data transfers Move data between registers and memory, or between the integer and FP or special
registers; only memory address mode is 16-bit displacement + contents of a GPR

LB,LBU,SB Load byte, load byte unsigned, store byte (to/from integer registers)

LH,LHU,SH Load half word, load half word unsigned, store half word (to/from integer registers)

LW,LWU,SW Load word, load word unsigned, store word (to/from integer registers)

LD,SD Load double word, store double word (to/from integer registers)

L.S,L.D,S.S,S.D Load SP float, load DP float, store SP float, store DP float

MFC0,MTC0 Copy from/to GPR to/from a special register

MOV.S,MOV.D Copy one SP or DP FP register to another FP register

MFC1,MTC1 Copy 32 bits to/from FP registers from/to integer registers

Arithmetic/logical Operations on integer or logical data in GPRs; signed arithmetic trap on overflow

DADD,DADDI,DADDU,DADDIU Add, add immediate (all immediates are 16 bits); signed and unsigned

DSUB,DSUBU Subtract; signed and unsigned

DMUL,DMULU,DDIV,
DDIVU,MADD

Multiply and divide, signed and unsigned; multiply-add; all operations take and yield 64-
bit values

AND,ANDI And, and immediate

OR,ORI,XOR,XORI Or, or immediate, exclusive or, exclusive or immediate

LUI Load upper immediate; loads bits 32 to 47 of register with immediate, then sign-extends

DSLL,DSRL,DSRA,DSLLV,
DSRLV,DSRAV

Shifts: both immediate (DS__) and variable form (DS__V); shifts are shift left logical,
right logical, right arithmetic

SLT,SLTI,SLTU,SLTIU Set less than, set less than immediate; signed and unsigned

Control Conditional branches and jumps; PC-relative or through register

BEQZ,BNEZ Branch GPRs equal/not equal to zero; 16-bit offset from PC + 4

BEQ,BNE Branch GPR equal/not equal; 16-bit offset from PC + 4

BC1T,BC1F Test comparison bit in the FP status register and branch; 16-bit offset from PC + 4

MOVN,MOVZ Copy GPR to another GPR if third GPR is negative, zero

J,JR Jumps: 26-bit offset from PC + 4 (J) or target in register (JR)

JAL,JALR Jump and link: save PC + 4 in R31, target is PC-relative (JAL) or a register (JALR)

TRAP Transfer to operating system at a vectored address

ERET Return to user code from an exception; restore user mode

Floating point FP operations on DP and SP formats

ADD.D,ADD.S,ADD.PS Add DP, SP numbers, and pairs of SP numbers

SUB.D,SUB.S,SUB.PS Subtract DP, SP numbers, and pairs of SP numbers

MUL.D,MUL.S,MUL.PS Multiply DP, SP floating point, and pairs of SP numbers

MADD.D,MADD.S,MADD.PS Multiply-add DP, SP numbers, and pairs of SP numbers

DIV.D,DIV.S,DIV.PS Divide DP, SP floating point, and pairs of SP numbers

CVT._._ Convert instructions: CVT.x.y converts from type x to type y, where x and y are L
(64-bit integer), W (32-bit integer), D (DP), or S (SP). Both operands are FPRs.

C.__.D,C.__.S DP and SP compares: “__” = LT,GT,LE,GE,EQ,NE; sets bit in FP status register

Figure A.26 Subset of the instructions in MIPS64. Figure A.22 lists the formats of these instructions. SP = single
precision; DP = double precision. This list can also be found on the back inside cover.

A.10 Fallacies and Pitfalls ■ A-41

can generate what Wulf, Levin, and Harbison [1981] have called a semantic
clash:

. . . by giving too much semantic content to the instruction, the computer
designer made it possible to use the instruction only in limited contexts. [p. 43]

More often the instructions are simply overkill—they are too general for the
most frequent case, resulting in unneeded work and a slower instruction. Again,
the VAX CALLS is a good example. CALLS uses a callee save strategy (the registers

Instruction gap gcc gzip mcf perlbmk
Integer
average

load 26.5% 25.1% 20.1% 30.3% 28.7% 26%

store 10.3% 13.2% 5.1% 4.3% 16.2% 10%

add 21.1% 19.0% 26.9% 10.1% 16.7% 19%

sub 1.7% 2.2% 5.1% 3.7% 2.5% 3%

mul 1.4% 0.1% 0%

compare 2.8% 6.1% 6.6% 6.3% 3.8% 5%

load imm 4.8% 2.5% 1.5% 0.1% 1.7% 2%

cond branch 9.3% 12.1% 11.0% 17.5% 10.9% 12%

cond move 0.4% 0.6% 1.1% 0.1% 1.9% 1%

jump 0.8% 0.7% 0.8% 0.7% 1.7% 1%

call 1.6% 0.6% 0.4% 3.2% 1.1% 1%

return 1.6% 0.6% 0.4% 3.2% 1.1% 1%

shift 3.8% 1.1% 2.1% 1.1% 0.5% 2%

AND 4.3% 4.6% 9.4% 0.2% 1.2% 4%

OR 7.9% 8.5% 4.8% 17.6% 8.7% 9%

XOR 1.8% 2.1% 4.4% 1.5% 2.8% 3%

other logical 0.1% 0.4% 0.1% 0.1% 0.3% 0%

load FP 0%

store FP 0%

add FP 0%

sub FP 0%

mul FP 0%

div FP 0%

mov reg-reg FP 0%

compare FP 0%

cond mov FP 0%

other FP 0%

Figure A.27 MIPS dynamic instruction mix for five SPECint2000 programs. Note that integer register-register
move instructions are included in the OR instruction. Blank entries have the value 0.0%.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-42 ■ Appendix A Instruction Set Principles

to be saved are specified by the callee), but the saving is done by the call instruc-
tion in the caller. The CALLS instruction begins with the arguments pushed on the
stack, and then takes the following steps:

1. Align the stack if needed.

2. Push the argument count on the stack.

3. Save the registers indicated by the procedure call mask on the stack (as men-
tioned in Section A.8). The mask is kept in the called procedure’s code—this

Instruction applu art equake lucas swim FP average

load 13.8% 18.1% 22.3% 10.6% 9.1% 15%

store 2.9% 0.8% 3.4% 1.3% 2%

add 30.4% 30.1% 17.4% 11.1% 24.4% 23%

sub 2.5% 0.1% 2.1% 3.8% 2%

mul 2.3% 1.2% 1%

compare 7.4% 2.1% 2%

load imm 13.7% 1.0% 1.8% 9.4% 5%

cond branch 2.5% 11.5% 2.9% 0.6% 1.3% 4%

cond mov 0.3% 0.1% 0%

jump 0.1% 0%

call 0.7% 0%

return 0.7% 0%

shift 0.7% 0.2% 1.9% 1%

AND 0.2% 1.8% 0%

OR 0.8% 1.1% 2.3% 1.0% 7.2% 2%

XOR 3.2% 0.1% 1%

other logical 0.1% 0%

load FP 11.4% 12.0% 19.7% 16.2% 16.8% 15%

store FP 4.2% 4.5% 2.7% 18.2% 5.0% 7%

add FP 2.3% 4.5% 9.8% 8.2% 9.0% 7%

sub FP 2.9% 1.3% 7.6% 4.7% 3%

mul FP 8.6% 4.1% 12.9% 9.4% 6.9% 8%

div FP 0.3% 0.6% 0.5% 0.3% 0%

mov reg-reg FP 0.7% 0.9% 1.2% 1.8% 0.9% 1%

compare FP 0.9% 0.6% 0.8% 0%

cond mov FP 0.6% 0.8% 0%

other FP 1.6% 0%

Figure A.28 MIPS dynamic instruction mix for five programs from SPECfp2000. Note that integer register-register
move instructions are included in the OR instruction. Blank entries have the value 0.0%.

A.10 Fallacies and Pitfalls ■ A-43

permits the callee to specify the registers to be saved by the caller even with
separate compilation.

4. Push the return address on the stack, and then push the top and base of stack
pointers (for the activation record).

5. Clear the condition codes, which sets the trap enable to a known state.

6. Push a word for status information and a zero word on the stack.

7. Update the two stack pointers.

8. Branch to the first instruction of the procedure.

The vast majority of calls in real programs do not require this amount of
overhead. Most procedures know their argument counts, and a much faster link-
age convention can be established using registers to pass arguments rather than
the stack in memory. Furthermore, the CALLS instruction forces two registers to
be used for linkage, while many languages require only one linkage register.
Many attempts to support procedure call and activation stack management have
failed to be useful, either because they do not match the language needs or
because they are too general and hence too expensive to use.

The VAX designers provided a simpler instruction, JSB, that is much faster
since it only pushes the return PC on the stack and jumps to the procedure.
However, most VAX compilers use the more costly CALLS instructions. The call
instructions were included in the architecture to standardize the procedure link-
age convention. Other computers have standardized their calling convention by
agreement among compiler writers and without requiring the overhead of a com-
plex, very general procedure call instruction.

Fallacy There is such a thing as a typical program.

Many people would like to believe that there is a single “typical” program that
could be used to design an optimal instruction set. For example, see the synthetic
benchmarks discussed in Chapter 1. The data in this appendix clearly show that
programs can vary significantly in how they use an instruction set. For example,
Figure A.29 shows the mix of data transfer sizes for four of the SPEC2000 pro-
grams: It would be hard to say what is typical from these four programs. The
variations are even larger on an instruction set that supports a class of applica-
tions, such as decimal instructions, that are unused by other applications.

Pitfall Innovating at the instruction set architecture to reduce code size without account-
ing for the compiler.

Figure A.30 shows the relative code sizes for four compilers for the MIPS
instruction set. Whereas architects struggle to reduce code size by 30% to 40%,
different compiler strategies can change code size by much larger factors. Similar
to performance optimization techniques, the architect should start with the tight-
est code the compilers can produce before proposing hardware innovations to
save space.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-44 ■ Appendix A Instruction Set Principles

Fallacy An architecture with flaws cannot be successful.

The 80x86 provides a dramatic example: The instruction set architecture is one
only its creators could love (see Appendix K). Succeeding generations of Intel
engineers have tried to correct unpopular architectural decisions made in design-
ing the 80x86. For example, the 80x86 supports segmentation, whereas all others
picked paging; it uses extended accumulators for integer data, but other proces-
sors use general-purpose registers; and it uses a stack for floating-point data,
when everyone else abandoned execution stacks long before.

Figure A.29 Data reference size of four programs from SPEC2000. Although you can
calculate an average size, it would be hard to claim the average is typical of programs.

Compiler
Apogee Software

Version 4.1

Green Hills
Multi2000
Version 2.0

Algorithmics
SDE4.0B IDT/c 7.2.1

Architecture MIPS IV MIPS IV MIPS 32 MIPS 32

Processor NEC VR5432 NEC VR5000 IDT 32334 IDT 79RC32364

Autocorrelation kernel 1.0 2.1 1.1 2.7

Convolutional encoder kernel 1.0 1.9 1.2 2.4

Fixed-point bit allocation kernel 1.0 2.0 1.2 2.3

Fixed-point complex FFT kernel 1.0 1.1 2.7 1.8

Viterbi GSM decoder kernel 1.0 1.7 0.8 1.1

Geometric mean of five kernels 1.0 1.7 1.4 2.0

Figure A.30 Code size relative to Apogee Software Version 4.1 C compiler for Telecom application of EEMBC
benchmarks. The instruction set architectures are virtually identical, yet the code sizes vary by factors of 2. These
results were reported February–June 2000.

0% 20% 40% 60% 80% 100%

Byte
(8 bits)

Half word
(16 bits)

Word
(32 bits)

Double word
(64 bits)

18%
22%

0%
0%

3%
19%

0%
0%

18%
28%

6%
40%

62%
31%

94%
60%

applu

equake

gzip

perl

A.11 Concluding Remarks ■ A-45

Despite these major difficulties, the 80x86 architecture has been enormously
successful. The reasons are threefold: First, its selection as the microprocessor in
the initial IBM PC makes 80x86 binary compatibility extremely valuable. Sec-
ond, Moore’s law provided sufficient resources for 80x86 microprocessors to
translate to an internal RISC instruction set and then execute RISC-like instruc-
tions. This mix enables binary compatibility with the valuable PC software base
and performance on par with RISC processors. Third, the very high volumes of
PC microprocessors mean Intel can easily pay for the increased design cost of
hardware translation. In addition, the high volumes allow the manufacturer to go
up the learning curve, which lowers the cost of the product.

The larger die size and increased power for translation may be a liability for
embedded applications, but it makes tremendous economic sense for the desktop.
And its cost-performance in the desktop also makes it attractive for servers, with
its main weakness for servers being 32-bit addresses, which was resolved with
the 64-bit addresses of AMD64 (see Chapter 2).

Fallacy You can design a flawless architecture.

All architecture design involves trade-offs made in the context of a set of hard-
ware and software technologies. Over time those technologies are likely to
change, and decisions that may have been correct at the time they were made
look like mistakes. For example, in 1975 the VAX designers overemphasized the
importance of code size efficiency, underestimating how important ease of
decoding and pipelining would be five years later. An example in the RISC camp
is delayed branch (see Appendix K). It was a simple matter to control pipeline
hazards with five-stage pipelines, but a challenge for processors with longer
pipelines that issue multiple instructions per clock cycle. In addition, almost all
architectures eventually succumb to the lack of sufficient address space.

In general, avoiding such flaws in the long run would probably mean compro-
mising the efficiency of the architecture in the short run, which is dangerous, since
a new instruction set architecture must struggle to survive its first few years.

The earliest architectures were limited in their instruction sets by the hardware
technology of that time. As soon as the hardware technology permitted, computer
architects began looking for ways to support high-level languages. This search
led to three distinct periods of thought about how to support programs efficiently.
In the 1960s, stack architectures became popular. They were viewed as being a
good match for high-level languages—and they probably were, given the com-
piler technology of the day. In the 1970s, the main concern of architects was how
to reduce software costs. This concern was met primarily by replacing software
with hardware, or by providing high-level architectures that could simplify the
task of software designers. The result was both the high-level language computer
architecture movement and powerful architectures like the VAX, which has a

A.11 Concluding Remarks

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-46 ■ Appendix A Instruction Set Principles

large number of addressing modes, multiple data types, and a highly orthogonal
architecture. In the 1980s, more sophisticated compiler technology and a
renewed emphasis on processor performance saw a return to simpler architec-
tures, based mainly on the load-store style of computer.

The following instruction set architecture changes occurred in the 1990s:

■ Address size doubles—The 32-bit address instruction sets for most desktop
and server processors were extended to 64-bit addresses, expanding the width
of the registers (among other things) to 64 bits. Appendix K gives three
examples of architectures that have gone from 32 bits to 64 bits.

■ Optimization of conditional branches via conditional execution—In Chapter 3,
we see that conditional branches can limit the performance of aggressive com-
puter designs. Hence, there was interest in replacing conditional branches with
conditional completion of operations, such as conditional move (see Appendix
H), which was added to most instruction sets.

■ Optimization of cache performance via prefetch—Chapter 2 explains the
increasing role of memory hierarchy in the performance of computers, with a
cache miss on some computers taking as many instruction times as page
faults took on earlier computers. Hence, prefetch instructions were added to
try to hide the cost of cache misses by prefetching (see Chapter 2).

■ Support for multimedia—Most desktop and embedded instruction sets were
extended with support for multimedia applications.

■ Faster floating-point operations—Appendix J describes operations added to
enhance floating-point performance, such as operations that perform a multi-
ply and an add and paired single execution. (We include them in MIPS.)

Between 1970 and 1985 many thought the primary job of the computer archi-
tect was the design of instruction sets. As a result, textbooks of that era empha-
size instruction set design, much as computer architecture textbooks of the 1950s
and 1960s emphasized computer arithmetic. The educated architect was expected
to have strong opinions about the strengths and especially the weaknesses of the
popular computers. The importance of binary compatibility in quashing innova-
tions in instruction set design was unappreciated by many researchers and text-
book writers, giving the impression that many architects would get a chance to
design an instruction set.

The definition of computer architecture today has been expanded to include
design and evaluation of the full computer system—not just the definition of the
instruction set and not just the processor—and hence there are plenty of topics
for the architect to study. In fact, the material in this appendix was a central point
of the book in its first edition in 1990, but now is included in an appendix primar-
ily as reference material!

Appendix K may satisfy readers interested in instruction set architecture; it
describes a variety of instruction sets, which are either important in the market-
place today or historically important, and it compares nine popular load-store
computers with MIPS.

Exercises by Gregory D. Peterson ■ A-47

Section L.4 (available online) features a discussion on the evolution of instruction
sets and includes references for further reading and exploration of related topics.

A.1 [15] <A.9> Compute the effective CPI for MIPS using Figure A.27. Assume we
have made the following measurements of average CPI for instruction types:

Assume that 60% of the conditional branches are taken and that all instruc-
tions in the “other” category of Figure A.27 are ALU instructions. Average the
instruction frequencies of gap and gcc to obtain the instruction mix.

A.2 [15] <A.9> Compute the effective CPI for MIPS using Figure A.27 and the table
above. Average the instruction frequencies of gzip and perlbmk to obtain the
instruction mix.

A.3 [20] <A.9> Compute the effective CPI for MIPS using Figure A.28. Assume we
have made the following measurements of average CPI for instruction types:

Instruction Clock Cycles

All ALU instructions 1.0

Loads-stores 1.4

Conditional branches

Taken 2.0

 Not taken 1.5

Jumps 1.2

Instruction Clock Cycles

All ALU instructions 1.0

Loads-stores 1.4

Conditional branches:

Taken 2.0

 Not taken 1.5

Jumps 1.2

FP multiply 6.0

FP add 4.0

FP divide 20.0

Load-store FP 1.5

Other FP 2.0

A.12 Historical Perspective and References

Exercises by Gregory D. Peterson

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-48 ■ Appendix A Instruction Set Principles

Assume that 60% of the conditional branches are taken and that all instruc-
tions in the “other” category of Figure A.28 are ALU instructions. Average the
instruction frequencies of lucas and swim to obtain the instruction mix.

A.4 [20] <A.9> Compute the effective CPI for MIPS using Figure A.28 and the table
above. Average the instruction frequencies of applu and art to obtain the instruc-
tion mix.

A.5 [10] <A.8> Consider this high-level code sequence of three statements:

A = B + C;
B = A + C;
D = A – B;

Use the technique of copy propagation (see Figure A.20) to transform the
code sequence to the point where no operand is a computed value. Note the
instances in which the transformation has reduced the computational work of a
statement and those cases where the work has increased. What does this suggest
about the technical challenge faced in trying to satisfy the desire for optimizing
compilers?

A.6 [30] <A.8> Compiler optimizations may result in improvements to code size
and/or performance. Consider one or more of the benchmark programs from the
SPEC CPU2006 suite. Use a processor available to you and the GNU C com-
piler to optimize the program using no optimization, –O1, –O2, and –O3. Com-
pare the performance and size of the resulting programs. Also compare your
results to Figure A.21.

A.7 [20/20] <A.2, A.9> Consider the following fragment of C code:

for (i = 0; i <= 100; i++)
{ A[i] = B[i] + C; }

Assume that A and B are arrays of 64-bit integers, and C and i are 64-bit inte-
gers. Assume that all data values and their addresses are kept in memory (at
addresses 1000, 3000, 5000, and 7000 for A, B, C, and i, respectively) except
when they are operated on. Assume that values in registers are lost between itera-
tions of the loop.

a. [20] <A.2, A.9> Write the code for MIPS. How many instructions are
required dynamically? How many memory-data references will be executed?
What is the code size in bytes?

b. [20] <A.2> Write the code for x86. How many instructions are required
dynamically? How many memory-data references will be executed? What is
the code size in bytes?

A.8 [10/10/10] <A.2, A.7> For the following we consider instruction encoding for
instruction set architectures.

Exercises by Gregory D. Peterson ■ A-49

a. [10] <A.2, A.7> Consider the case of a processor with an instruction length of
12 bits and with 32 general-purpose registers so the size of the address fields
is 5 bits. Is it possible to have instruction encodings for the following?

■ 3 two-address instructions

■ 30 one-address instructions

■ 45 zero-address instructions

b. [10] <A.2, A.7> Assuming the same instruction length and address field sizes
as above, determine if it is possible to have

■ 3 two-address instructions

■ 31 one-address instructions

■ 35 zero-address instructions

Explain your answer.

c. [10] <A.2, A.7> Assume the same instruction length and address field sizes
as above. Further assume there are already 3 two-address and 24 zero-address
instructions. What is the maximum number of one-address instructions that
can be encoded for this processor?

A.9 [10/15] <A.2> For the following assume that values A, B, C, D, E, and F reside in
memory. Also assume that instruction operation codes are represented in 8 bits,
memory addresses are 64 bits, and register addresses are 6 bits.

a. [10] <A.2> For each instruction set architecture shown in Figure A.2, how
many addresses, or names, appear in each instruction for the code to compute
C = A + B, and what is the total code size?

b. [15] <A.2> Some of the instruction set architectures in Figure A.2 destroy
operands in the course of computation. This loss of data values from proces-
sor internal storage has performance consequences. For each architecture in
Figure A.2, write the code sequence to compute:

C = A + B
D = A – E
F = C + D

In your code, mark each operand that is destroyed during execution and
mark each “overhead” instruction that is included just to overcome this loss
of data from processor internal storage. What is the total code size, the num-
ber of bytes of instructions and data moved to or from memory, the number of
overhead instructions, and the number of overhead data bytes for each of
your code sequences?

A.10 [20] <A.2, A.7, A.9> The design of MIPS provides for 32 general-purpose regis-
ters and 32 floating-point registers. If registers are good, are more registers bet-
ter? List and discuss as many trade-offs as you can that should be considered by
instruction set architecture designers examining whether to, and how much to,
increase the number of MIPS registers.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-50 ■ Appendix A Instruction Set Principles

A.11 [5] <A.3> Consider a C struct that includes the following members:

struct foo {
char a;
bool b;
int c;
double d;
short e;
float f;
double g;
char * cptr;
float * fptr;
int x;

};

For a 32-bit machine, what is the size of the foo struct? What is the minimum
size required for this struct, assuming you may arrange the order of the struct
members as you wish? What about for a 64-bit machine?

A.12 [30] <A.7> Many computer manufacturers now include tools or simulators that
allow you to measure the instruction set usage of a user program. Among the
methods in use are machine simulation, hardware-supported trapping, and a com-
piler technique that instruments the object code module by inserting counters.
Find a processor available to you that includes such a tool. Use it to measure the
instruction set mix for one of the SPEC CPU2006 benchmarks. Compare the
results to those shown in this chapter.

A.13 [30] <A.8> Newer processors such as Intel’s i7 Sandy Bridge include support for
AVX vector/multimedia instructions. Write a dense matrix multiply function
using single-precision values and compile it with different compilers and optimi-
zation flags. Linear algebra codes using Basic Linear Algebra Subroutine
(BLAS) routines such as SGEMM include optimized versions of dense matrix
multiply. Compare the code size and performance of your code to that of BLAS
SGEMM. Explore what happens when using double-precision values and
DGEMM.

A.14 [30] <A.8> For the SGEMM code developed above for the i7 processor, include
the use of AVX intrinsics to improve the performance. In particular, try to vector-
ize your code to better utilize the AVX hardware. Compare the code size and per-
formance to the original code.

A.15 [30] <A.7, A.9> SPIM is a popular simulator for simulating MIPS processors.
Use SPIM to measure the instruction set mix for some SPEC CPU2006 bench-
mark programs.

A.16 [35/35/35/35] <A.2–A.8> gcc targets most modern instruction set architectures
(see www.gnu.org/software/gcc/). Create a version of gcc for several architec-
tures that you have access to, such as x86, MIPS, PowerPC, and ARM.

a. [35] <A.2–A.8> Compile a subset of SPEC CPU2006 integer benchmarks
and create a table of code sizes. Which architecture is best for each program?

http://www.gnu.org/software/gcc/

Exercises by Gregory D. Peterson ■ A-51

b. [35] <A.2–A.8> Compile a subset of SPEC CPU2006 floating-point bench-
marks and create a table of code sizes. Which architecture is best for each
program?

c. [35] <A.2–A.8> Compile a subset of EEMBC AutoBench benchmarks (see
www.eembc.org/home.php) and create a table of code sizes. Which architec-
ture is best for each program?

d. [35] <A.2–A.8> Compile a subset of EEMBC FPBench floating-point bench-
marks and create a table of code sizes. Which architecture is best for each
program?

A.17 [40] <A.2–A.8> Power efficiency has become very important for modern proces-
sors, particularly for embedded systems. Create a version of gcc for two architec-
tures that you have access to, such as x86, MIPS, PowerPC, and ARM. Compile
a subset of EEMBC benchmarks while using EnergyBench to measure energy
usage during execution. Compare code size, performance, and energy usage for
the processors. Which is best for each program?

A.18 [20/15/15/20] Your task is to compare the memory efficiency of four different
styles of instruction set architectures. The architecture styles are

■ Accumulator—All operations occur between a single register and a mem-
ory location.

■ Memory-memory—All instruction addresses reference only memory loca-
tions.

■ Stack—All operations occur on top of the stack. Push and pop are the only
instructions that access memory; all others remove their operands from the
stack and replace them with the result. The implementation uses a hard-
wired stack for only the top two stack entries, which keeps the processor
circuit very small and low cost. Additional stack positions are kept in
memory locations, and accesses to these stack positions require memory
references.

■ Load-store—All operations occur in registers, and register-to-register in-
structions have three register names per instruction.

To measure memory efficiency, make the following assumptions about all
four instruction sets:

■ All instructions are an integral number of bytes in length.

■ The opcode is always one byte (8 bits).

■ Memory accesses use direct, or absolute, addressing.

■ The variables A, B, C, and D are initially in memory.

a. [20] <A.2, A.3> Invent your own assembly language mnemonics (Figure A.2
provides a useful sample to generalize), and for each architecture write the

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.eembc.org/home.php
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-52 ■ Appendix A Instruction Set Principles

best equivalent assembly language code for this high-level language code
sequence:

A = B + C;
B = A + C;
D = A – B;

b. [15] <A.3> Label each instance in your assembly codes for part (a) where a
value is loaded from memory after having been loaded once. Also label each
instance in your code where the result of one instruction is passed to another
instruction as an operand, and further classify these events as involving stor-
age within the processor or storage in memory.

c. [15] <A.7> Assume that the given code sequence is from a small, embedded
computer application, such as a microwave oven controller, that uses a 16-bit
memory address and data operands. If a load-store architecture is used,
assume it has 16 general-purpose registers. For each architecture answer the
following questions: How many instruction bytes are fetched? How many
bytes of data are transferred from/to memory? Which architecture is most
efficient as measured by total memory traffic (code + data)?

d. [20] <A.7> Now assume a processor with 64-bit memory addresses and data
operands. For each architecture answer the questions of part (c). How have
the relative merits of the architectures changed for the chosen metrics?

A.19 [30] <A.2, A.3> Use the four different instruction set architecture styles from
above, but assume that the memory operations supported include register indirect
as well as direct addressing. Invent your own assembly language mnemonics
(Figure A.2 provides a useful sample to generalize), and for each architecture
write the best equivalent assembly language code for this fragment of C code:

for (i = 0; i <= 100; i++)
{ A[i] = B[i] + C; }

Assume that A and B are arrays of 64-bit integers, and C and i are 64-bit
integers.

The second and third columns contain the cumulative percentage of the data
references and branches, respectively, that can be accommodated with the corre-
sponding number of bits of magnitude in the displacement. These are the average
distances of all the integer and floating-point programs in Figures A.8 and A.15.

A.20 [20/20/20] <A.3> We are designing instruction set formats for a load-store archi-
tecture and are trying to decide whether it is worthwhile to have multiple offset
lengths for branches and memory references. The length of an instruction would
be equal to 16 bits + offset length in bits, so ALU instructions will be 16 bits.
Figure A.31 contains data on offset size for the Alpha architecture with full opti-
mization for SPEC CPU2000. For instruction set frequencies, use the data for
MIPS from the average of the five benchmarks for the load-store machine in Fig-
ure A.27. Assume that the miscellaneous instructions are all ALU instructions
that use only registers.

Exercises by Gregory D. Peterson ■ A-53

a. [20] <A.3> Suppose offsets are permitted to be 0, 8, 16, or 24 bits in length,
including the sign bit. What is the average length of an executed instruction?

b. [20] <A.3> Suppose we want a fixed-length instruction and we chose a 24-bit
instruction length (for everything, including ALU instructions). For every
offset of longer than 8 bits, additional instructions are required. Determine
the number of instruction bytes fetched in this machine with fixed instruction
size versus those fetched with a byte-variable-sized instruction as defined in
part (a).

c. [20] <A.3> Now suppose we use a fixed offset length of 24 bits so that no
additional instruction is ever required. How many instruction bytes would be
required? Compare this result to your answer to part (b).

A.21 [20/20] <A.3, A.6, A.9> The size of displacement values needed for the displace-
ment addressing mode or for PC-relative addressing can be extracted from com-

Number of offset
magnitude bits

Cumulative data
references Cumulative branches

0 30.4% 0.1%

1 33.5% 2.8%

2 35.0% 10.5%

3 40.0% 22.9%

4 47.3% 36.5%

5 54.5% 57.4%

6 60.4% 72.4%

7 66.9% 85.2%

8 71.6% 90.5%

9 73.3% 93.1%

10 74.2% 95.1%

11 74.9% 96.0%

12 76.6% 96.8%

13 87.9% 97.4%

14 91.9% 98.1%

15 100% 98.5%

16 100% 99.5%

17 100% 99.8%

18 100% 99.9%

19 100% 100%

20 100% 100%

21 100% 100%

Figure A.31 Data on offset size for the Alpha architecture with full optimization for
SPEC CPU2000.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

A-54 ■ Appendix A Instruction Set Principles

piled applications. Use a disassembler with one or more of the SPEC CPU2006
benchmarks compiled for the MIPS processor.

a. [20] <A.3, A.9> For each instruction using displacement addressing, record
the displacement value used. Create a histogram of displacement values.
Compare the results to those shown in this chapter in Figure A.8.

b. [20] <A.6, A.9> For each branch instruction using PC-relative addressing,
record the displacement value used. Create a histogram of displacement val-
ues. Compare the results to those shown in this chapter in Figure A.15.

A.22 [15/15/10/10] <A.3> The value represented by the hexadecimal number 434F
4D50 5554 4552 is to be stored in an aligned 64-bit double word.

a. [15] <A.3> Using the physical arrangement of the first row in Figure A.5,
write the value to be stored using Big Endian byte order. Next, interpret each
byte as an ASCII character and below each byte write the corresponding char-
acter, forming the character string as it would be stored in Big Endian order.

b. [15] <A.3> Using the same physical arrangement as in part (a), write the
value to be stored using Little Endian byte order, and below each byte write
the corresponding ASCII character.

c. [10] <A.3> What are the hexadecimal values of all misaligned 2-byte words
that can be read from the given 64-bit double word when stored in Big
Endian byte order?

d. [10] <A.3> What are the hexadecimal values of all misaligned 4-byte words
that can be read from the given 64-bit double word when stored in Little
Endian byte order?

A.23 [Discussion] <A.2–A.12> Consider typical applications for desktop, server,
cloud, and embedded computing. How would instruction set architecture be
impacted for machines targeting each of these markets?

This page intentionally left blank

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B.1 Introduction B-2

B.2 Cache Performance B-16

B.3 Six Basic Cache Optimizations B-22

B.4 Virtual Memory B-40

B.5 Protection and Examples of Virtual Memory B-49

B.6 Fallacies and Pitfalls B-57

B.7 Concluding Remarks B-59

B.8 Historical Perspective and References B-59

 Exercises by Amr Zaky B-60

B
Review of Memory Hierarchy 1

Cache: a safe place for hiding or storing things.

Webster’s New World Dictionary of the
American Language

Second College Edition (1976)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-2 ■ Appendix B Review of Memory Hierarchy

This appendix is a quick refresher of the memory hierarchy, including the basics
of cache and virtual memory, performance equations, and simple optimizations.
This first section reviews the following 36 terms:

If this review goes too quickly, you might want to look at Chapter 7 in Computer
Organization and Design, which we wrote for readers with less experience.

Cache is the name given to the highest or first level of the memory hierarchy
encountered once the address leaves the processor. Since the principle of locality
applies at many levels, and taking advantage of locality to improve performance
is popular, the term cache is now applied whenever buffering is employed to
reuse commonly occurring items. Examples include file caches, name caches,
and so on.

When the processor finds a requested data item in the cache, it is called a
cache hit. When the processor does not find a data item it needs in the cache, a
cache miss occurs. A fixed-size collection of data containing the requested word,
called a block or line run, is retrieved from the main memory and placed into the
cache. Temporal locality tells us that we are likely to need this word again in the
near future, so it is useful to place it in the cache where it can be accessed
quickly. Because of spatial locality, there is a high probability that the other data
in the block will be needed soon.

The time required for the cache miss depends on both the latency and band-
width of the memory. Latency determines the time to retrieve the first word of the
block, and bandwidth determines the time to retrieve the rest of this block. A
cache miss is handled by hardware and causes processors using in-order execution
to pause, or stall, until the data are available. With out-of-order execution, an

cache fully associative write allocate

virtual memory dirty bit unified cache

memory stall cycles block offset misses per instruction

direct mapped write-back block

valid bit data cache locality

block address hit time address trace

write-through cache miss set

instruction cache page fault random replacement

average memory access time miss rate index field

cache hit n-way set associative no-write allocate

page least recently used write buffer

miss penalty tag field write stall

 B.1 Introduction

B.1 Introduction ■ B-3

instruction using the result must still wait, but other instructions may proceed dur-
ing the miss.

Similarly, not all objects referenced by a program need to reside in main
memory. Virtual memory means some objects may reside on disk. The address
space is usually broken into fixed-size blocks, called pages. At any time, each
page resides either in main memory or on disk. When the processor references an
item within a page that is not present in the cache or main memory, a palt occurs,
and the entire page is moved from the disk to main memory. Since page faults
take so long, they are handled in software and the processor is not stalled. The
processor usually switches to some other task while the disk access occurs. From
a high-level perspective, the reliance on locality of references and the relative
relationships in size and relative cost per bit of cache versus main memory are
similar to those of main memory versus disk.

Figure B.1 shows the range of sizes and access times of each level in the
memory hierarchy for computers ranging from high-end desktops to low-end
servers.

Cache Performance Review

Because of locality and the higher speed of smaller memories, a memory hierar-
chy can substantially improve performance. One method to evaluate cache per-
formance is to expand our processor execution time equation from Chapter 1.

Level 1 2 3 4

Name Registers Cache Main memory Disk storage

Typical size <1 KB 32 KB–8 MB <512 GB >1 TB

Implementation technology Custom memory with
multiple ports, CMOS

On-chip CMOS
SRAM

CMOS DRAM Magnetic disk

Access time (ns) 0.15–0.30 0.5–15 30–200 5,000,000

Bandwidth (MB/sec) 100,000–1,000,000 10,000–40,000 5000–20,000 50–500

Managed by Compiler Hardware Operating system Operating
system/
operator

Backed by Cache Main memory Disk Other disks
and DVD

Figure B.1 The typical levels in the hierarchy slow down and get larger as we move away from the processor for

a large workstation or small server. Embedded computers might have no disk storage and much smaller memories
and caches. The access times increase as we move to lower levels of the hierarchy, which makes it feasible to manage
the transfer less responsively. The implementation technology shows the typical technology used for these func-
tions. The access time is given in nanoseconds for typical values in 2006; these times will decrease over time. Band-
width is given in megabytes per second between levels in the memory hierarchy. Bandwidth for disk storage
includes both the media and the buffered interfaces.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-4 ■ Appendix B Review of Memory Hierarchy

We now account for the number of cycles during which the processor is stalled
waiting for a memory access, which we call the memory stall cycles. The perfor-
mance is then the product of the clock cycle time and the sum of the processor
cycles and the memory stall cycles:

This equation assumes that the CPU clock cycles include the time to handle a
cache hit and that the processor is stalled during a cache miss. Section B.2 reex-
amines this simplifying assumption.

The number of memory stall cycles depends on both the number of misses
and the cost per miss, which is called the miss penalty:

The advantage of the last form is that the components can be easily measured.
We already know how to measure instruction count (IC). (For speculative pro-
cessors, we only count instructions that commit.) Measuring the number of
memory references per instruction can be done in the same fashion; every
instruction requires an instruction access, and it is easy to decide if it also
requires a data access.

Note that we calculated miss penalty as an average, but we will use it below
as if it were a constant. The memory behind the cache may be busy at the time of
the miss because of prior memory requests or memory refresh. The number of
clock cycles also varies at interfaces between different clocks of the processor,
bus, and memory. Thus, please remember that using a single number for miss
penalty is a simplification.

The component miss rate is simply the fraction of cache accesses that result in
a miss (i.e., number of accesses that miss divided by number of accesses). Miss
rates can be measured with cache simulators that take an address trace of the
instruction and data references, simulate the cache behavior to determine which
references hit and which miss, and then report the hit and miss totals. Many micro-
processors today provide hardware to count the number of misses and memory
references, which is a much easier and faster way to measure miss rate.

The formula above is an approximation since the miss rates and miss penal-
ties are often different for reads and writes. Memory stall clock cycles could
then be defined in terms of the number of memory accesses per instruction,
miss penalty (in clock cycles) for reads and writes, and miss rate for reads and
writes:

Memory stall clock cycles = IC × Reads per instruction × Read miss rate × Read miss penalty
+ IC × Writes per instruction × Write miss rate × Write miss penalty

CPU execution time CPU clock cycles Memory stall cycles+() Clock cycle time×=

Memory stall cycles Number of misses Miss penalty×=

IC
Misses

Instruction
-------------------------- Miss penalty××=

IC
Memory accesses

Instruction
-- Miss rate× Miss penalty××=

B.1 Introduction ■ B-5

We normally simplify the complete formula by combining the reads and writes
and finding the average miss rates and miss penalty for reads and writes:

Memory stall clock cycles = IC × × Miss rate × Miss penalty

The miss rate is one of the most important measures of cache design, but, as
we will see in later sections, not the only measure.

Example Assume we have a computer where the cycles per instruction (CPI) is 1.0 when
all memory accesses hit in the cache. The only data accesses are loads and stores,
and these total 50% of the instructions. If the miss penalty is 25 clock cycles and
the miss rate is 2%, how much faster would the computer be if all instructions
were cache hits?

Answer First compute the performance for the computer that always hits:

Now for the computer with the real cache, first we compute memory stall cycles:

where the middle term (1 + 0.5) represents one instruction access and 0.5 data
accesses per instruction. The total performance is thus

The performance ratio is the inverse of the execution times:

The computer with no cache misses is 1.75 times faster.

Some designers prefer measuring miss rate as misses per instruction rather
than misses per memory reference. These two are related:

The latter formula is useful when you know the average number of memory
accesses per instruction because it allows you to convert miss rate into misses per

Memory accesses
Instruction

--

CPU execution time CPU clock cycles Memory stall cycles+() Clock cycle×=

IC CPI× 0+() Clock cycle×=

IC 1.0 Clock cycle××=

Memory stall cycles IC
Memory accesses

Instruction
-- Miss rate× Miss penalty××=

IC 1 0.5+() 0.02 25×××=

IC 0.75×=

CPU execution timecache IC 1.0× IC 0.75×+() Clock cycle×=

1.75 IC Clock cycle××=

CPU execution timecache

CPU execution time

1.75 IC Clock cycle××
1.0 IC Clock cycle××

---=

1.75=

Misses
Instruction

Miss rate Memory accesses×
Instruction count

---= Miss rate
Memory accesses

Instruction
--×=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-6 ■ Appendix B Review of Memory Hierarchy

instruction, and vice versa. For example, we can turn the miss rate per memory
reference in the previous example into misses per instruction:

By the way, misses per instruction are often reported as misses per 1000
instructions to show integers instead of fractions. Thus, the answer above could
also be expressed as 30 misses per 1000 instructions.

The advantage of misses per instruction is that it is independent of the hard-
ware implementation. For example, speculative processors fetch about twice as
many instructions as are actually committed, which can artificially reduce the
miss rate if measured as misses per memory reference rather than per instruction.
The drawback is that misses per instruction is architecture dependent; for exam-
ple, the average number of memory accesses per instruction may be very different
for an 80x86 versus MIPS. Thus, misses per instruction are most popular with
architects working with a single computer family, although the similarity of RISC
architectures allows one to give insights into others.

Example To show equivalency between the two miss rate equations, let’s redo the example
above, this time assuming a miss rate per 1000 instructions of 30. What is mem-
ory stall time in terms of instruction count?

Answer Recomputing the memory stall cycles:

We get the same answer as on page B-5, showing equivalence of the two equations.

Four Memory Hierarchy Questions

We continue our introduction to caches by answering the four common questions
for the first level of the memory hierarchy:

Q1: Where can a block be placed in the upper level? (block placement)

Q2: How is a block found if it is in the upper level? (block identification)

Q3: Which block should be replaced on a miss? (block replacement)

Q4: What happens on a write? (write strategy)

Misses
Instruction
-------------------------- Miss rate

Memory accesses
Instruction

--× 0.02 1.5()× 0.030= = =

Memory stall cycles Number of misses Miss penalty×=

IC
Misses

Instruction
-------------------------- Miss penalty××=

IC ⁄ 1000
Misses

Instruction 1000×
-- Miss penalty××=

IC ⁄ 1000 30 25××=

IC ⁄ 1000 750×=

IC 0.75×=

B.1 Introduction ■ B-7

The answers to these questions help us understand the different trade-offs of
memories at different levels of a hierarchy; hence, we ask these four questions on
every example.

Q1: Where Can a Block Be Placed in a Cache?

Figure B.2 shows that the restrictions on where a block is placed create three
categories of cache organization:

■ If each block has only one place it can appear in the cache, the cache is said to
be direct mapped. The mapping is usually

(Block address) MOD (Number of blocks in cache)

■ If a block can be placed anywhere in the cache, the cache is said to be fully
associative.

■ If a block can be placed in a restricted set of places in the cache, the cache is
set associative. A set is a group of blocks in the cache. A block is first
mapped onto a set, and then the block can be placed anywhere within that set.
The set is usually chosen by bit selection; that is,

(Block address) MOD (Number of sets in cache)

If there are n blocks in a set, the cache placement is called n-way set
associative.

The range of caches from direct mapped to fully associative is really a continuum
of levels of set associativity. Direct mapped is simply one-way set associative,
and a fully associative cache with m blocks could be called “m-way set associa-
tive.” Equivalently, direct mapped can be thought of as having m sets, and fully
associative as having one set.

The vast majority of processor caches today are direct mapped, two-way set
associative, or four-way set associative, for reasons we will see shortly.

Q2: How Is a Block Found If It Is in the Cache?

Caches have an address tag on each block frame that gives the block address. The
tag of every cache block that might contain the desired information is checked to
see if it matches the block address from the processor. As a rule, all possible tags
are searched in parallel because speed is critical.

There must be a way to know that a cache block does not have valid informa-
tion. The most common procedure is to add a valid bit to the tag to say whether or
not this entry contains a valid address. If the bit is not set, there cannot be a match
on this address.

Before proceeding to the next question, let’s explore the relationship of a
processor address to the cache. Figure B.3 shows how an address is divided.
The first division is between the block address and the block offset. The block

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-8 ■ Appendix B Review of Memory Hierarchy

frame address can be further divided into the tag field and the index field. The
block offset field selects the desired data from the block, the index field selects
the set, and the tag field is compared against it for a hit. Although the compari-
son could be made on more of the address than the tag, there is no need because
of the following:

■ The offset should not be used in the comparison, since the entire block is
present or not, and hence all block offsets result in a match by definition.

■ Checking the index is redundant, since it was used to select the set to be
checked. An address stored in set 0, for example, must have 0 in the index
field or it couldn’t be stored in set 0; set 1 must have an index value of 1; and
so on. This optimization saves hardware and power by reducing the width of
memory size for the cache tag.

Figure B.2 This example cache has eight block frames and memory has 32 blocks.
The three options for caches are shown left to right. In fully associative, block 12 from
the lower level can go into any of the eight block frames of the cache. With direct
mapped, block 12 can only be placed into block frame 4 (12 modulo 8). Set associative,
which has some of both features, allows the block to be placed anywhere in set 0 (12
modulo 4). With two blocks per set, this means block 12 can be placed either in block 0
or in block 1 of the cache. Real caches contain thousands of block frames, and real
memories contain millions of blocks. The set associative organization has four sets with
two blocks per set, called two-way set associative. Assume that there is nothing in the
cache and that the block address in question identifies lower-level block 12.

Fully associative:
block 12 can go
anywhere

Direct mapped:
block 12 can go
only into block 4
(12 MOD 8)

Set associative:
block 12 can go
anywhere in set 0
(12 MOD 4)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7Block
no.

Block
no.

Block
no.

Set
0

Set
1

Set
2

Set
3

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block
Block frame address

no.

Cache

Memory

B.1 Introduction ■ B-9

If the total cache size is kept the same, increasing associativity increases the
number of blocks per set, thereby decreasing the size of the index and increasing
the size of the tag. That is, the tag-index boundary in Figure B.3 moves to the
right with increasing associativity, with the end point of fully associative caches
having no index field.

Q3: Which Block Should Be Replaced on a Cache Miss?

When a miss occurs, the cache controller must select a block to be replaced with
the desired data. A benefit of direct-mapped placement is that hardware decisions
are simplified—in fact, so simple that there is no choice: Only one block frame is
checked for a hit, and only that block can be replaced. With fully associative or
set associative placement, there are many blocks to choose from on a miss. There
are three primary strategies employed for selecting which block to replace:

■ Random—To spread allocation uniformly, candidate blocks are randomly
selected. Some systems generate pseudorandom block numbers to get repro-
ducible behavior, which is particularly useful when debugging hardware.

■ Least recently used (LRU)—To reduce the chance of throwing out informa-
tion that will be needed soon, accesses to blocks are recorded. Relying on the
past to predict the future, the block replaced is the one that has been unused
for the longest time. LRU relies on a corollary of locality: If recently used
blocks are likely to be used again, then a good candidate for disposal is the
least recently used block.

■ First in, first out (FIFO)—Because LRU can be complicated to calculate, this
approximates LRU by determining the oldest block rather than the LRU.

A virtue of random replacement is that it is simple to build in hardware. As the
number of blocks to keep track of increases, LRU becomes increasingly
expensive and is usually only approximated. A common approximation (often
called pseudo-LRU) has a set of bits for each set in the cache with each bit cor-
responding to a single way (a way is bank in a set associative cache; there are
four ways in four-way set associative cache) in the cache. When a set is
accessed, the bit corresponding to the way containing the desired block is turned
on; if all the bits associated with a set are turned on, they are reset with the
exception of the most recently turned on bit. When a block must be replaced, the

Figure B.3 The three portions of an address in a set associative or direct-mapped

cache. The tag is used to check all the blocks in the set, and the index is used to select
the set. The block offset is the address of the desired data within the block. Fully asso-
ciative caches have no index field.

Tag Index
Block
offset

Block address

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-10 ■ Appendix B Review of Memory Hierarchy

processor chooses a block from the way whose bit is turned off, often randomly
if more than one choice is available. This approximates LRU, since the block
that is replaced will not have been accessed since the last time that all the blocks
in the set were accessed. Figure B.4 shows the difference in miss rates between
LRU, random, and FIFO replacement.

Q4: What Happens on a Write?

Reads dominate processor cache accesses. All instruction accesses are reads, and
most instructions don’t write to memory. Figures A.32 and A.33 in Appendix A
suggest a mix of 10% stores and 26% loads for MIPS programs, making writes
10%/(100% + 26% + 10%) or about 7% of the overall memory traffic. Of the
data cache traffic, writes are 10%/(26% + 10%) or about 28%. Making the com-
mon case fast means optimizing caches for reads, especially since processors tra-
ditionally wait for reads to complete but need not wait for writes. Amdahl’s law
(Section 1.9) reminds us, however, that high-performance designs cannot neglect
the speed of writes.

Fortunately, the common case is also the easy case to make fast. The block
can be read from the cache at the same time that the tag is read and compared, so
the block read begins as soon as the block address is available. If the read is a hit,
the requested part of the block is passed on to the processor immediately. If it is a
miss, there is no benefit—but also no harm except more power in desktop and
server computers; just ignore the value read.

Such optimism is not allowed for writes. Modifying a block cannot begin
until the tag is checked to see if the address is a hit. Because tag checking cannot
occur in parallel, writes normally take longer than reads. Another complexity is
that the processor also specifies the size of the write, usually between 1 and 8
bytes; only that portion of a block can be changed. In contrast, reads can access
more bytes than necessary without fear.

Associativity

Two-way Four-way Eight-way

Size LRU Random FIFO LRU Random FIFO LRU Random FIFO

16 KB 114.1 117.3 115.5 111.7 115.1 113.3 109.0 111.8 110.4

64 KB 103.4 104.3 103.9 102.4 102.3 103.1 99.7 100.5 100.3

256 KB 92.2 92.1 92.5 92.1 92.1 92.5 92.1 92.1 92.5

Figure B.4 Data cache misses per 1000 instructions comparing least recently used, random, and first in, first out
replacement for several sizes and associativities. There is little difference between LRU and random for the largest
size cache, with LRU outperforming the others for smaller caches. FIFO generally outperforms random in the smaller
cache sizes. These data were collected for a block size of 64 bytes for the Alpha architecture using 10 SPEC2000
benchmarks. Five are from SPECint2000 (gap, gcc, gzip, mcf, and perl) and five are from SPECfp2000 (applu, art,
equake, lucas, and swim). We will use this computer and these benchmarks in most figures in this appendix.

B.1 Introduction ■ B-11

The write policies often distinguish cache designs. There are two basic
options when writing to the cache:

■ Write-through—The information is written to both the block in the cache and
to the block in the lower-level memory.

■ Write-back—The information is written only to the block in the cache. The
modified cache block is written to main memory only when it is replaced.

To reduce the frequency of writing back blocks on replacement, a feature
called the dirty bit is commonly used. This status bit indicates whether the block
is dirty (modified while in the cache) or clean (not modified). If it is clean, the
block is not written back on a miss, since identical information to the cache is
found in lower levels.

Both write-back and write-through have their advantages. With write-back,
writes occur at the speed of the cache memory, and multiple writes within a block
require only one write to the lower-level memory. Since some writes don’t go to
memory, write-back uses less memory bandwidth, making write-back attractive
in multiprocessors. Since write-back uses the rest of the memory hierarchy and
memory interconnect less than write-through, it also saves power, making it
attractive for embedded applications.

Write-through is easier to implement than write-back. The cache is always
clean, so unlike write-back read misses never result in writes to the lower level.
Write-through also has the advantage that the next lower level has the most current
copy of the data, which simplifies data coherency. Data coherency is important for
multiprocessors and for I/O, which we examine in Chapter 4 and Appendix D.
Multilevel caches make write-through more viable for the upper-level caches, as
the writes need only propagate to the next lower level rather than all the way to
main memory.

As we will see, I/O and multiprocessors are fickle: They want write-back for
processor caches to reduce the memory traffic and write-through to keep the
cache consistent with lower levels of the memory hierarchy.

When the processor must wait for writes to complete during write-through,
the processor is said to write stall. A common optimization to reduce write stalls
is a write buffer, which allows the processor to continue as soon as the data are
written to the buffer, thereby overlapping processor execution with memory
updating. As we will see shortly, write stalls can occur even with write buffers.

Since the data are not needed on a write, there are two options on a
write miss:

■ Write allocate—The block is allocated on a write miss, followed by the write
hit actions above. In this natural option, write misses act like read misses.

■ No-write allocate—This apparently unusual alternative is write misses do not
affect the cache. Instead, the block is modified only in the lower-level memory.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-12 ■ Appendix B Review of Memory Hierarchy

Thus, blocks stay out of the cache in no-write allocate until the program tries to
read the blocks, but even blocks that are only written will still be in the cache
with write allocate. Let’s look at an example.

Example Assume a fully associative write-back cache with many cache entries that starts
empty. Below is a sequence of five memory operations (the address is in square
brackets):

Write Mem[100];
Write Mem[100];
Read Mem[200];
Write Mem[200];
Write Mem[100].

What are the number of hits and misses when using no-write allocate versus
write allocate?

Answer For no-write allocate, the address 100 is not in the cache, and there is no alloca-
tion on write, so the first two writes will result in misses. Address 200 is also not
in the cache, so the read is also a miss. The subsequent write to address 200 is a
hit. The last write to 100 is still a miss. The result for no-write allocate is four
misses and one hit.

For write allocate, the first accesses to 100 and 200 are misses, and the rest
are hits since 100 and 200 are both found in the cache. Thus, the result for write
allocate is two misses and three hits.

Either write miss policy could be used with write-through or write-back. Nor-
mally, write-back caches use write allocate, hoping that subsequent writes to that
block will be captured by the cache. Write-through caches often use no-write
allocate. The reasoning is that even if there are subsequent writes to that block,
the writes must still go to the lower-level memory, so what’s to be gained?

An Example: The Opteron Data Cache

To give substance to these ideas, Figure B.5 shows the organization of the data
cache in the AMD Opteron microprocessor. The cache contains 65,536 (64K)
bytes of data in 64-byte blocks with two-way set associative placement, least-
recently used replacement, write-back, and write allocate on a write miss.

Let’s trace a cache hit through the steps of a hit as labeled in Figure B.5. (The
four steps are shown as circled numbers.) As described in Section B.5, the
Opteron presents a 48-bit virtual address to the cache for tag comparison, which
is simultaneously translated into a 40-bit physical address.

The reason Opteron doesn’t use all 64 bits of virtual address is that its design-
ers don’t think anyone needs that big of a virtual address space yet, and the

B.1 Introduction ■ B-13

smaller size simplifies the Opteron virtual address mapping. The designers plan
to grow the virtual address in future microprocessors.

The physical address coming into the cache is divided into two fields: the
34-bit block address and the 6-bit block offset (64 = 26 and 34 + 6 = 40). The
block address is further divided into an address tag and cache index. Step 1
shows this division.

The cache index selects the tag to be tested to see if the desired block is in
the cache. The size of the index depends on cache size, block size, and set

Figure B.5 The organization of the data cache in the Opteron microprocessor. The 64 KB cache is two-way set
associative with 64-byte blocks. The 9-bit index selects among 512 sets. The four steps of a read hit, shown as circled
numbers in order of occurrence, label this organization. Three bits of the block offset join the index to supply the
RAM address to select the proper 8 bytes. Thus, the cache holds two groups of 4096 64-bit words, with each group
containing half of the 512 sets. Although not exercised in this example, the line from lower-level memory to the
cache is used on a miss to load the cache. The size of address leaving the processor is 40 bits because it is a physical
address and not a virtual address. Figure B.24 on page B-47 explains how the Opteron maps from virtual to physical
for a cache access.

<25>

Tag

(512
blocks)

(512
blocks)

Index

<9>

Block
offset
<6>

Block address

Valid
<1>

Data
<64>

CPU
address

Victim
buffer

Data
in

Data
out

Tag
<25>

=?

2:1 mux

Lower-level memory

=?

2

2

1

3

3

4

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-14 ■ Appendix B Review of Memory Hierarchy

associativity. For the Opteron cache the set associativity is set to two, and we
calculate the index as follows:

Hence, the index is 9 bits wide, and the tag is 34 – 9 or 25 bits wide. Although
that is the index needed to select the proper block, 64 bytes is much more than the
processor wants to consume at once. Hence, it makes more sense to organize the
data portion of the cache memory 8 bytes wide, which is the natural data word of
the 64-bit Opteron processor. Thus, in addition to 9 bits to index the proper cache
block, 3 more bits from the block offset are used to index the proper 8 bytes.
Index selection is step 2 in Figure B.5.

After reading the two tags from the cache, they are compared to the tag por-
tion of the block address from the processor. This comparison is step 3 in the fig-
ure. To be sure the tag contains valid information, the valid bit must be set or else
the results of the comparison are ignored.

Assuming one tag does match, the final step is to signal the processor to
load the proper data from the cache by using the winning input from a 2:1 mul-
tiplexor. The Opteron allows 2 clock cycles for these four steps, so the instruc-
tions in the following 2 clock cycles would wait if they tried to use the result of
the load.

Handling writes is more complicated than handling reads in the Opteron, as it
is in any cache. If the word to be written is in the cache, the first three steps are
the same. Since the Opteron executes out of order, only after it signals that the
instruction has committed and the cache tag comparison indicates a hit are the
data written to the cache.

So far we have assumed the common case of a cache hit. What happens on a
miss? On a read miss, the cache sends a signal to the processor telling it the data
are not yet available, and 64 bytes are read from the next level of the hierarchy.
The latency is 7 clock cycles to the first 8 bytes of the block, and then 2 clock
cycles per 8 bytes for the rest of the block. Since the data cache is set associative,
there is a choice on which block to replace. Opteron uses LRU, which selects the
block that was referenced longest ago, so every access must update the LRU bit.
Replacing a block means updating the data, the address tag, the valid bit, and the
LRU bit.

Since the Opteron uses write-back, the old data block could have been modi-
fied, and hence it cannot simply be discarded. The Opteron keeps 1 dirty bit per
block to record if the block was written. If the “victim” was modified, its data
and address are sent to the victim buffer. (This structure is similar to a write buf-
fer in other computers.) The Opteron has space for eight victim blocks. In paral-
lel with other cache actions, it writes victim blocks to the next level of the
hierarchy. If the victim buffer is full, the cache must wait.

A write miss is very similar to a read miss, since the Opteron allocates a
block on a read or a write miss.

2
Index Cache size

Block size Set associativity×
--

65,536
64 2×
---------------- 512 2

9
= = ==

B.1 Introduction ■ B-15

We have seen how it works, but the data cache cannot supply all the mem-
ory needs of the processor: The processor also needs instructions. Although a
single cache could try to supply both, it can be a bottleneck. For example, when
a load or store instruction is executed, the pipelined processor will simultane-
ously request both a data word and an instruction word. Hence, a single cache
would present a structural hazard for loads and stores, leading to stalls. One
simple way to conquer this problem is to divide it: One cache is dedicated to
instructions and another to data. Separate caches are found in most recent pro-
cessors, including the Opteron. Hence, it has a 64 KB instruction cache as well
as the 64 KB data cache.

The processor knows whether it is issuing an instruction address or a data
address, so there can be separate ports for both, thereby doubling the bandwidth
between the memory hierarchy and the processor. Separate caches also offer the
opportunity of optimizing each cache separately: Different capacities, block
sizes, and associativities may lead to better performance. (In contrast to the
instruction caches and data caches of the Opteron, the terms unified or mixed are
applied to caches that can contain either instructions or data.)

Figure B.6 shows that instruction caches have lower miss rates than data
caches. Separating instructions and data removes misses due to conflicts between
instruction blocks and data blocks, but the split also fixes the cache space
devoted to each type. Which is more important to miss rates? A fair comparison
of separate instruction and data caches to unified caches requires the total cache
size to be the same. For example, a separate 16 KB instruction cache and 16 KB
data cache should be compared to a 32 KB unified cache. Calculating the average
miss rate with separate instruction and data caches necessitates knowing the per-
centage of memory references to each cache. From the data in Appendix A we
find the split is 100%/(100% + 26% + 10%) or about 74% instruction references
to (26% + 10%)/(100% + 26% + 10%) or about 26% data references. Splitting
affects performance beyond what is indicated by the change in miss rates, as we
will see shortly.

Size (KB)
Instruction

cache Data cache
Unified
cache

8 8.16 44.0 63.0

16 3.82 40.9 51.0

32 1.36 38.4 43.3

64 0.61 36.9 39.4

128 0.30 35.3 36.2

256 0.02 32.6 32.9

Figure B.6 Miss per 1000 instructions for instruction, data, and unified caches of dif-

ferent sizes. The percentage of instruction references is about 74%. The data are for
two-way associative caches with 64-byte blocks for the same computer and bench-
marks as Figure B.4.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-16 ■ Appendix B Review of Memory Hierarchy

Because instruction count is independent of the hardware, it is tempting to evaluate
processor performance using that number. Such indirect performance measures
have waylaid many a computer designer. The corresponding temptation for evalu-
ating memory hierarchy performance is to concentrate on miss rate because it, too,
is independent of the speed of the hardware. As we will see, miss rate can be just as
misleading as instruction count. A better measure of memory hierarchy perfor-
mance is the average memory access time:

Average memory access time = Hit time + Miss rate × Miss penalty

where hit time is the time to hit in the cache; we have seen the other two terms
before. The components of average access time can be measured either in abso-
lute time—say, 0.25 to 1.0 nanoseconds on a hit—or in the number of clock
cycles that the processor waits for the memory—such as a miss penalty of 150 to
200 clock cycles. Remember that average memory access time is still an indirect
measure of performance; although it is a better measure than miss rate, it is not a
substitute for execution time.

This formula can help us decide between split caches and a unified cache.

Example Which has the lower miss rate: a 16 KB instruction cache with a 16 KB data
cache or a 32 KB unified cache? Use the miss rates in Figure B.6 to help calcu-
late the correct answer, assuming 36% of the instructions are data transfer
instructions. Assume a hit takes 1 clock cycle and the miss penalty is 100 clock
cycles. A load or store hit takes 1 extra clock cycle on a unified cache if there is
only one cache port to satisfy two simultaneous requests. Using the pipelining
terminology of Chapter 3, the unified cache leads to a structural hazard. What is
the average memory access time in each case? Assume write-through caches with
a write buffer and ignore stalls due to the write buffer.

Answer First let’s convert misses per 1000 instructions into miss rates. Solving the gen-
eral formula from above, the miss rate is

Since every instruction access has exactly one memory access to fetch the
instruction, the instruction miss rate is

Since 36% of the instructions are data transfers, the data miss rate is

 B.2 Cache Performance

Miss rate

Misses
1000 Instructions
--- 1000⁄

Memory accesses
Instruction

--
--=

Miss rate16 KB instruction
3.82 1000⁄

1.00
-------------------------- 0.004==

Miss rate16 KB data
40.9 1000⁄

0.36
-------------------------- 0.114==

B.2 Cache Performance ■ B-17

The unified miss rate needs to account for instruction and data accesses:

As stated above, about 74% of the memory accesses are instruction references.
Thus, the overall miss rate for the split caches is

(74% × 0.004) + (26% × 0.114) = 0.0326

Thus, a 32 KB unified cache has a slightly lower effective miss rate than two
16 KB caches.

The average memory access time formula can be divided into instruction and
data accesses:

Therefore, the time for each organization is

Hence, the split caches in this example—which offer two memory ports per clock
cycle, thereby avoiding the structural hazard—have a better average memory access
time than the single-ported unified cache despite having a worse effective miss rate.

Average Memory Access Time and Processor Performance

An obvious question is whether average memory access time due to cache misses
predicts processor performance.

First, there are other reasons for stalls, such as contention due to I/O devices
using memory. Designers often assume that all memory stalls are due to cache
misses, since the memory hierarchy typically dominates other reasons for stalls.
We use this simplifying assumption here, but be sure to account for all memory
stalls when calculating final performance.

Second, the answer also depends on the processor. If we have an in-order exe-
cution processor (see Chapter 3), then the answer is basically yes. The processor
stalls during misses, and the memory stall time is strongly correlated to average
memory access time. Let’s make that assumption for now, but we’ll return to out-
of-order processors in the next subsection.

Miss rate32 KB unified
43.3 1000⁄

1.00 0.36+
--------------------------- 0.0318==

Average memory access time

% instructions Hit time Instruction miss rate Miss penalty×+()×=

+ % data Hit time Data miss rate Miss penalty×+()×

Average memory access timesplit

74% 1 0.004 200×+() 26% 1 0.114 200×+()×+×=

74% 1.80×() 26% 23.80×()+ 1.332 6.188+ 7.52= = =

Average memory access timeunified

74% 1 0.0318 200×+() 26% 1 1 0.0318 200×+ +()×+×=

74% 7.36×() 26% 8.36×()+ 5.446 2.174+ 7.62= = =

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-18 ■ Appendix B Review of Memory Hierarchy

As stated in the previous section, we can model CPU time as:

CPU time = (CPU execution clock cycles + Memory stall clock cycles) × Clock cycle time

This formula raises the question of whether the clock cycles for a cache hit
should be considered part of CPU execution clock cycles or part of memory stall
clock cycles. Although either convention is defensible, the most widely accepted
is to include hit clock cycles in CPU execution clock cycles.

We can now explore the impact of caches on performance.

Example Let’s use an in-order execution computer for the first example. Assume that the
cache miss penalty is 200 clock cycles, and all instructions normally take 1.0
clock cycles (ignoring memory stalls). Assume that the average miss rate is 2%,
there is an average of 1.5 memory references per instruction, and the average
number of cache misses per 1000 instructions is 30. What is the impact on perfor-
mance when behavior of the cache is included? Calculate the impact using both
misses per instruction and miss rate.

Answer

The performance, including cache misses, is

CPU timewith cache = IC × [1.0 + (30/1000 × 200)] × Clock cycle time
= IC × 7.00 × Clock cycle time

Now calculating performance using miss rate:

CPU timewith cache = IC × [1.0 + (1.5 × 2% × 200)] × Clock cycle time
= IC × 7.00 × Clock cycle time

The clock cycle time and instruction count are the same, with or without a
cache. Thus, CPU time increases sevenfold, with CPI from 1.00 for a “perfect
cache” to 7.00 with a cache that can miss. Without any memory hierarchy at all
the CPI would increase again to 1.0 + 200 × 1.5 or 301—a factor of more than 40
times longer than a system with a cache!

As this example illustrates, cache behavior can have enormous impact on per-
formance. Furthermore, cache misses have a double-barreled impact on a proces-
sor with a low CPI and a fast clock:

1. The lower the CPIexecution, the higher the relative impact of a fixed number of
cache miss clock cycles.

2. When calculating CPI, the cache miss penalty is measured in processor clock
cycles for a miss. Therefore, even if memory hierarchies for two computers

CPU time = IC CPIexecution
Memory stall clock cycles

Instruction
---+× Clock cycle time×

CPU time IC CPIexecution Miss rate+× Memory accesses
Instruction

-- Miss penalty×× Clock cycle time×=

B.2 Cache Performance ■ B-19

are identical, the processor with the higher clock rate has a larger number of
clock cycles per miss and hence a higher memory portion of CPI.

The importance of the cache for processors with low CPI and high clock rates is
thus greater, and, consequently, greater is the danger of neglecting cache
behavior in assessing performance of such computers. Amdahl’s law strikes
again!

Although minimizing average memory access time is a reasonable goal—
and we will use it in much of this appendix—keep in mind that the final goal is
to reduce processor execution time. The next example shows how these two
can differ.

Example What is the impact of two different cache organizations on the performance of a
processor? Assume that the CPI with a perfect cache is 1.6, the clock cycle time
is 0.35 ns, there are 1.4 memory references per instruction, the size of both
caches is 128 KB, and both have a block size of 64 bytes. One cache is direct
mapped and the other is two-way set associative. Figure B.5 shows that for set
associative caches we must add a multiplexor to select between the blocks in the
set depending on the tag match. Since the speed of the processor can be tied
directly to the speed of a cache hit, assume the processor clock cycle time must
be stretched 1.35 times to accommodate the selection multiplexor of the set asso-
ciative cache. To the first approximation, the cache miss penalty is 65 ns for
either cache organization. (In practice, it is normally rounded up or down to an
integer number of clock cycles.) First, calculate the average memory access time
and then processor performance. Assume the hit time is 1 clock cycle, the miss
rate of a direct-mapped 128 KB cache is 2.1%, and the miss rate for a two-way
set associative cache of the same size is 1.9%.

Answer Average memory access time is

Average memory access time = Hit time + Miss rate × Miss penalty

Thus, the time for each organization is

Average memory access time1-way = 0.35 + (.021 × 65) = 1.72 ns
Average memory access time2-way = 0.35 × 1.35 + (.019 × 65) = 1.71 ns

The average memory access time is better for the two-way set-associative cache.
The processor performance is

CPU time IC CPIexecution
Misses

Instruction
-------------------------- Miss penalty× Clock cycle time×+×=

IC CPIexecution Clock cycle time××=

Miss rate
Memory accesses

Instruction
-- Miss penalty Clock cycle time×××+

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-20 ■ Appendix B Review of Memory Hierarchy

Substituting 65 ns for (Miss penalty × Clock cycle time), the performance of each
cache organization is

and relative performance is

In contrast to the results of average memory access time comparison, the direct-
mapped cache leads to slightly better average performance because the clock
cycle is stretched for all instructions for the two-way set associative case, even if
there are fewer misses. Since CPU time is our bottom-line evaluation and since
direct mapped is simpler to build, the preferred cache is direct mapped in this
example.

Miss Penalty and Out-of-Order Execution Processors

For an out-of-order execution processor, how do you define “miss penalty”? Is it
the full latency of the miss to memory, or is it just the “exposed” or nonover-
lapped latency when the processor must stall? This question does not arise in pro-
cessors that stall until the data miss completes.

Let’s redefine memory stalls to lead to a new definition of miss penalty as
nonoverlapped latency:

Similarly, as some out-of-order processors stretch the hit time, that portion of the
performance equation could be divided by total hit latency less overlapped hit
latency. This equation could be further expanded to account for contention for
memory resources in an out-of-order processor by dividing total miss latency into
latency without contention and latency due to contention. Let’s just concentrate
on miss latency.

We now have to decide the following:

■ Length of memory latency—What to consider as the start and the end of a
memory operation in an out-of-order processor

■ Length of latency overlap—What is the start of overlap with the processor (or,
equivalently, when do we say a memory operation is stalling the processor)

CPU time1-way IC 1.6 0.35 0.021 1.4× 65×()+×[]× 2.47 IC×= =

CPU time2-way IC 1.6 0.35 1.35× 0.019 1.4× 65×()+×[]× 2.49 IC×= =

CPU time2-way

CPU time1-way

2.49 Instruction count×
2.47 Instruction count×

2.49
2.47
---------- 1.01= ==

Memory stall cycles
Instruction

--
Misses

Instruction
-------------------------- Total miss latency Overlapped miss latency–()×=

B.2 Cache Performance ■ B-21

Given the complexity of out-of-order execution processors, there is no single
correct definition.

Since only committed operations are seen at the retirement pipeline stage, we
say a processor is stalled in a clock cycle if it does not retire the maximum possi-
ble number of instructions in that cycle. We attribute that stall to the first instruc-
tion that could not be retired. This definition is by no means foolproof. For
example, applying an optimization to improve a certain stall time may not always
improve execution time because another type of stall—hidden behind the targeted
stall—may now be exposed.

For latency, we could start measuring from the time the memory instruction is
queued in the instruction window, or when the address is generated, or when the
instruction is actually sent to the memory system. Any option works as long as it
is used in a consistent fashion.

Example Let’s redo the example above, but this time we assume the processor with the
longer clock cycle time supports out-of-order execution yet still has a direct-
mapped cache. Assume 30% of the 65 ns miss penalty can be overlapped; that is,
the average CPU memory stall time is now 45.5 ns.

Answer Average memory access time for the out-of-order (OOO) computer is

Average memory access time1-way,OOO = 0.35 × 1.35 + (0.021 × 45.5) = 1.43 ns

The performance of the OOO cache is

Hence, despite a much slower clock cycle time and the higher miss rate of a
direct-mapped cache, the out-of-order computer can be slightly faster if it can
hide 30% of the miss penalty.

In summary, although the state of the art in defining and measuring memory
stalls for out-of-order processors is complex, be aware of the issues because they
significantly affect performance. The complexity arises because out-of-order pro-
cessors tolerate some latency due to cache misses without hurting performance.
Consequently, designers normally use simulators of the out-of-order processor
and memory when evaluating trade-offs in the memory hierarchy to be sure that
an improvement that helps the average memory latency actually helps program
performance.

To help summarize this section and to act as a handy reference, Figure B.7
lists the cache equations in this appendix.

CPU time1-way,OOO IC 1.6 0.35 1.35× 0.021 1.4× 45.5×()+×[]× 2.09 IC×= =

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-22 ■ Appendix B Review of Memory Hierarchy

The average memory access time formula gave us a framework to present cache
optimizations for improving cache performance:

Average memory access time = Hit time + Miss rate × Miss penalty

Hence, we organize six cache optimizations into three categories:

■ Reducing the miss rate—larger block size, larger cache size, and higher asso-
ciativity

■ Reducing the miss penalty—multilevel caches and giving reads priority over
writes

■ Reducing the time to hit in the cache—avoiding address translation when
indexing the cache

Figure B.18 on page B-40 concludes this section with a summary of the imple-
mentation complexity and the performance benefits of these six techniques.

Figure B.7 Summary of performance equations in this appendix. The first equation calculates the cache index
size, and the rest help evaluate performance. The final two equations deal with multilevel caches, which are
explained early in the next section. They are included here to help make the figure a useful reference.

2
index Cache size

Block size Set associativity×
--=

CPU execution time CPU clock cycles Memory stall cycles+() Clock cycle time×=

Memory stall cycles Number of misses Miss penalty×=

Memory stall cycles IC
Misses

Instruction
-------------------------- Miss penalty××=

Misses
Instruction
-------------------------- Miss rate

Memory accesses
Instruction

--×=

Average memory access time Hit time Miss rate Miss penalty×+=

CPU execution time IC CPIexecution
Memory stall clock cycles

Instruction
---+× Clock cycle time×=

CPU execution time IC CPIexecution
Misses

Instruction
-------------------------- Miss penalty×+× Clock cycle time×=

CPU execution time IC CPIexecution Miss rate
Memory accesses

Instruction
--× Miss penalty×+× Clock cycle time×=

Memory stall cycles
Instruction

--
Misses

Instruction
-------------------------- Total miss latency Overlapped miss latency–()×=

Average memory access time Hit timeL1 Miss rateL1 Hit timeL2 Miss rateL2+ Miss penaltyL2×()×+=

Memory stall cycles
Instruction

--
MissesL1

Instruction
-------------------------- Hit timeL2×

MissesL2

Instruction
-------------------------- Miss penaltyL2×+=

 B.3 Six Basic Cache Optimizations

B.3 Six Basic Cache Optimizations ■ B-23

The classical approach to improving cache behavior is to reduce miss rates, and
we present three techniques to do so. To gain better insights into the causes of
misses, we first start with a model that sorts all misses into three simple categories:

■ Compulsory—The very first access to a block cannot be in the cache, so the
block must be brought into the cache. These are also called cold-start misses
or first-reference misses.

■ Capacity—If the cache cannot contain all the blocks needed during execution
of a program, capacity misses (in addition to compulsory misses) will occur
because of blocks being discarded and later retrieved.

■ Conflict—If the block placement strategy is set associative or direct mapped,
conflict misses (in addition to compulsory and capacity misses) will occur
because a block may be discarded and later retrieved if too many blocks map
to its set. These misses are also called collision misses. The idea is that hits in
a fully associative cache that become misses in an n-way set-associative
cache are due to more than n requests on some popular sets.

(Chapter 5 adds a fourth C, for coherency misses due to cache flushes to keep
multiple caches coherent in a multiprocessor; we won’t consider those here.)

Figure B.8 shows the relative frequency of cache misses, broken down by
the three C’s. Compulsory misses are those that occur in an infinite cache.
Capacity misses are those that occur in a fully associative cache. Conflict misses
are those that occur going from fully associative to eight-way associative, four-
way associative, and so on. Figure B.9 presents the same data graphically. The
top graph shows absolute miss rates; the bottom graph plots the percentage of all
the misses by type of miss as a function of cache size.

To show the benefit of associativity, conflict misses are divided into misses
caused by each decrease in associativity. Here are the four divisions of conflict
misses and how they are calculated:

■ Eight-way—Conflict misses due to going from fully associative (no conflicts)
to eight-way associative

■ Four-way—Conflict misses due to going from eight-way associative to four-
way associative

■ Two-way—Conflict misses due to going from four-way associative to two-
way associative

■ One-way—Conflict misses due to going from two-way associative to one-
way associative (direct mapped)

As we can see from the figures, the compulsory miss rate of the SPEC2000
programs is very small, as it is for many long-running programs.

Having identified the three C’s, what can a computer designer do about them?
Conceptually, conflicts are the easiest: Fully associative placement avoids all
conflict misses. Full associativity is expensive in hardware, however, and may
slow the processor clock rate (see the example on page B-29), leading to lower
overall performance.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-24 ■ Appendix B Review of Memory Hierarchy

Cache size (KB)
Degree

associative
Total miss

rate

Miss rate components (relative percent)
(sum = 100% of total miss rate)

Compulsory Capacity Conflict

4 1-way 0.098 0.0001 0.1% 0.070 72% 0.027 28%

4 2-way 0.076 0.0001 0.1% 0.070 93% 0.005 7%

4 4-way 0.071 0.0001 0.1% 0.070 99% 0.001 1%

4 8-way 0.071 0.0001 0.1% 0.070 100% 0.000 0%

8 1-way 0.068 0.0001 0.1% 0.044 65% 0.024 35%

8 2-way 0.049 0.0001 0.1% 0.044 90% 0.005 10%

8 4-way 0.044 0.0001 0.1% 0.044 99% 0.000 1%

8 8-way 0.044 0.0001 0.1% 0.044 100% 0.000 0%

16 1-way 0.049 0.0001 0.1% 0.040 82% 0.009 17%

16 2-way 0.041 0.0001 0.2% 0.040 98% 0.001 2%

16 4-way 0.041 0.0001 0.2% 0.040 99% 0.000 0%

16 8-way 0.041 0.0001 0.2% 0.040 100% 0.000 0%

32 1-way 0.042 0.0001 0.2% 0.037 89% 0.005 11%

32 2-way 0.038 0.0001 0.2% 0.037 99% 0.000 0%

32 4-way 0.037 0.0001 0.2% 0.037 100% 0.000 0%

32 8-way 0.037 0.0001 0.2% 0.037 100% 0.000 0%

64 1-way 0.037 0.0001 0.2% 0.028 77% 0.008 23%

64 2-way 0.031 0.0001 0.2% 0.028 91% 0.003 9%

64 4-way 0.030 0.0001 0.2% 0.028 95% 0.001 4%

64 8-way 0.029 0.0001 0.2% 0.028 97% 0.001 2%

128 1-way 0.021 0.0001 0.3% 0.019 91% 0.002 8%

128 2-way 0.019 0.0001 0.3% 0.019 100% 0.000 0%

128 4-way 0.019 0.0001 0.3% 0.019 100% 0.000 0%

128 8-way 0.019 0.0001 0.3% 0.019 100% 0.000 0%

256 1-way 0.013 0.0001 0.5% 0.012 94% 0.001 6%

256 2-way 0.012 0.0001 0.5% 0.012 99% 0.000 0%

256 4-way 0.012 0.0001 0.5% 0.012 99% 0.000 0%

256 8-way 0.012 0.0001 0.5% 0.012 99% 0.000 0%

512 1-way 0.008 0.0001 0.8% 0.005 66% 0.003 33%

512 2-way 0.007 0.0001 0.9% 0.005 71% 0.002 28%

512 4-way 0.006 0.0001 1.1% 0.005 91% 0.000 8%

512 8-way 0.006 0.0001 1.1% 0.005 95% 0.000 4%

Figure B.8 Total miss rate for each size cache and percentage of each according to the three C’s. Compulsory
misses are independent of cache size, while capacity misses decrease as capacity increases, and conflict misses
decrease as associativity increases. Figure B.9 shows the same information graphically. Note that a direct-mapped
cache of size N has about the same miss rate as a two-way set-associative cache of size N/2 up through 128 K. Caches
larger than 128 KB do not prove that rule. Note that the Capacity column is also the fully associative miss rate. Data
were collected as in Figure B.4 using LRU replacement.

B.3 Six Basic Cache Optimizations ■ B-25

There is little to be done about capacity except to enlarge the cache. If the
upper-level memory is much smaller than what is needed for a program, and a
significant percentage of the time is spent moving data between two levels in the
hierarchy, the memory hierarchy is said to thrash. Because so many replacements
are required, thrashing means the computer runs close to the speed of the lower-
level memory, or maybe even slower because of the miss overhead.

Figure B.9 Total miss rate (top) and distribution of miss rate (bottom) for each size

cache according to the three C’s for the data in Figure B.8. The top diagram shows
the actual data cache miss rates, while the bottom diagram shows the percentage in
each category. (Space allows the graphs to show one extra cache size than can fit in
Figure B.8.)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

M
is

s
ra

te
 p

er
 ty

pe

M
is

s
ra

te
 p

er
 ty

pe

10244 8 16 32 64 128 256 512

1-way
2-way
4-way
8-way
Capacity
Compulsory

Cache size (KB)

0%

100%

80%

60%

40%

20%

Cache size (KB)
4 8 16 32 64 128 256 512 1024

1-way
2-way
4-way
8-way
Capacity
Compulsory

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-26 ■ Appendix B Review of Memory Hierarchy

Another approach to improving the three C’s is to make blocks larger to
reduce the number of compulsory misses, but, as we will see shortly, large blocks
can increase other kinds of misses.

The three C’s give insight into the cause of misses, but this simple model
has its limits; it gives you insight into average behavior but may not explain an
individual miss. For example, changing cache size changes conflict misses as
well as capacity misses, since a larger cache spreads out references to more
blocks. Thus, a miss might move from a capacity miss to a conflict miss as
cache size changes. Note that the three C’s also ignore replacement policy,
since it is difficult to model and since, in general, it is less significant. In spe-
cific circumstances the replacement policy can actually lead to anomalous
behavior, such as poorer miss rates for larger associativity, which contradicts
the three C’s model. (Some have proposed using an address trace to determine
optimal placement in memory to avoid placement misses from the three C’s
model; we’ve not followed that advice here.)
 Alas, many of the techniques that reduce miss rates also increase hit time or
miss penalty. The desirability of reducing miss rates using the three optimizations
must be balanced against the goal of making the whole system fast. This first
example shows the importance of a balanced perspective.

First Optimization: Larger Block Size to Reduce Miss Rate

The simplest way to reduce miss rate is to increase the block size. Figure B.10
shows the trade-off of block size versus miss rate for a set of programs and cache
sizes. Larger block sizes will reduce also compulsory misses. This reduction
occurs because the principle of locality has two components: temporal locality
and spatial locality. Larger blocks take advantage of spatial locality.

At the same time, larger blocks increase the miss penalty. Since they reduce
the number of blocks in the cache, larger blocks may increase conflict misses and
even capacity misses if the cache is small. Clearly, there is little reason to
increase the block size to such a size that it increases the miss rate. There is also
no benefit to reducing miss rate if it increases the average memory access time.
The increase in miss penalty may outweigh the decrease in miss rate.

Example Figure B.11 shows the actual miss rates plotted in Figure B.10. Assume the mem-
ory system takes 80 clock cycles of overhead and then delivers 16 bytes every 2
clock cycles. Thus, it can supply 16 bytes in 82 clock cycles, 32 bytes in 84 clock
cycles, and so on. Which block size has the smallest average memory access time
for each cache size in Figure B.11?

Answer Average memory access time is

Average memory access time = Hit time + Miss rate × Miss penalty

B.3 Six Basic Cache Optimizations ■ B-27

If we assume the hit time is 1 clock cycle independent of block size, then the
access time for a 16-byte block in a 4 KB cache is

Average memory access time = 1 + (8.57% × 82) = 8.027 clock cycles

and for a 256-byte block in a 256 KB cache the average memory access time is

Average memory access time = 1 + (0.49% × 112) = 1.549 clock cycles

Figure B.10 Miss rate versus block size for five different-sized caches. Note that miss
rate actually goes up if the block size is too large relative to the cache size. Each line rep-
resents a cache of different size. Figure B.11 shows the data used to plot these lines.
Unfortunately, SPEC2000 traces would take too long if block size were included, so
these data are based on SPEC92 on a DECstation 5000 [Gee et al. 1993].

Cache size

Block size 4K 16K 64K 256K

16 8.57% 3.94% 2.04% 1.09%

32 7.24% 2.87% 1.35% 0.70%

64 7.00% 2.64% 1.06% 0.51%

128 7.78% 2.77% 1.02% 0.49%

256 9.51% 3.29% 1.15% 0.49%

Figure B.11 Actual miss rate versus block size for the five different-sized caches in

Figure B.10. Note that for a 4 KB cache, 256-byte blocks have a higher miss rate than
32-byte blocks. In this example, the cache would have to be 256 KB in order for a
256-byte block to decrease misses.

Block size

16 32 64 128 256

M
is

s
ra

te

5%

10%

0%

64K

16K

4K

256K

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-28 ■ Appendix B Review of Memory Hierarchy

Figure B.12 shows the average memory access time for all block and cache sizes
between those two extremes. The boldfaced entries show the fastest block size
for a given cache size: 32 bytes for 4 KB and 64 bytes for the larger caches.
These sizes are, in fact, popular block sizes for processor caches today.

As in all of these techniques, the cache designer is trying to minimize both
the miss rate and the miss penalty. The selection of block size depends on both
the latency and bandwidth of the lower-level memory. High latency and high
bandwidth encourage large block size since the cache gets many more bytes per
miss for a small increase in miss penalty. Conversely, low latency and low band-
width encourage smaller block sizes since there is little time saved from a larger
block. For example, twice the miss penalty of a small block may be close to the
penalty of a block twice the size. The larger number of small blocks may also
reduce conflict misses. Note that Figures B.10 and B.12 show the difference
between selecting a block size based on minimizing miss rate versus minimizing
average memory access time.

 After seeing the positive and negative impact of larger block size on compul-
sory and capacity misses, the next two subsections look at the potential of higher
capacity and higher associativity.

Second Optimization: Larger Caches to Reduce Miss Rate

The obvious way to reduce capacity misses in Figures B.8 and B.9 is to increase
capacity of the cache. The obvious drawback is potentially longer hit time and
higher cost and power. This technique has been especially popular in off-chip
caches.

Third Optimization: Higher Associativity to Reduce Miss Rate

Figures B.8 and B.9 show how miss rates improve with higher associativity. There
are two general rules of thumb that can be gleaned from these figures. The first is

Cache size

Block size Miss penalty 4K 16K 64K 256K

16 82 8.027 4.231 2.673 1.894

32 84 7.082 3.411 2.134 1.588

64 88 7.160 3.323 1.933 1.449

128 96 8.469 3.659 1.979 1.470

256 112 11.651 4.685 2.288 1.549

Figure B.12 Average memory access time versus block size for five different-sized
caches in Figure B.10. Block sizes of 32 and 64 bytes dominate. The smallest average
time per cache size is boldfaced.

B.3 Six Basic Cache Optimizations ■ B-29

that eight-way set associative is for practical purposes as effective in reducing
misses for these sized caches as fully associative. You can see the difference by
comparing the eight-way entries to the capacity miss column in Figure B.8, since
capacity misses are calculated using fully associative caches.

The second observation, called the 2:1 cache rule of thumb, is that a direct-
mapped cache of size N has about the same miss rate as a two-way set associative
cache of size N/2. This held in three C’s figures for cache sizes less than 128 KB.

Like many of these examples, improving one aspect of the average memory
access time comes at the expense of another. Increasing block size reduces miss
rate while increasing miss penalty, and greater associativity can come at the cost
of increased hit time. Hence, the pressure of a fast processor clock cycle encour-
ages simple cache designs, but the increasing miss penalty rewards associativity,
as the following example suggests.

Example Assume that higher associativity would increase the clock cycle time as listed
below:

Clock cycle time2-way = 1.36 × Clock cycle time1-way
Clock cycle time4-way = 1.44 × Clock cycle time1-way
Clock cycle time8-way = 1.52 × Clock cycle time1-way

Assume that the hit time is 1 clock cycle, that the miss penalty for the direct-
mapped case is 25 clock cycles to a level 2 cache (see next subsection) that never
misses, and that the miss penalty need not be rounded to an integral number of
clock cycles. Using Figure B.8 for miss rates, for which cache sizes are each of
these three statements true?

Average memory access time8-way < Average memory access time4-way
Average memory access time4-way < Average memory access time2-way
Average memory access time2-way < Average memory access time1-way

Associativity

Cache size (KB) 1-way 2-way 4-way 8-way

4 3.44 3.25 3.22 3.28

8 2.69 2.58 2.55 2.62

16 2.23 2.40 2.46 2.53

32 2.06 2.30 2.37 2.45

64 1.92 2.14 2.18 2.25

128 1.52 1.84 1.92 2.00

256 1.32 1.66 1.74 1.82

512 1.20 1.55 1.59 1.66

Figure B.13 Average memory access time using miss rates in Figure B.8 for parame-

ters in the example. Boldface type means that this time is higher than the number to
the left, that is, higher associativity increases average memory access time.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-30 ■ Appendix B Review of Memory Hierarchy

Answer Average memory access time for each associativity is

Average memory access time8-way = Hit time8-way + Miss rate8-way × Miss penalty8-way
= 1.52 + Miss rate8-way × 25

Average memory access time4-way = 1.44 + Miss rate4-way × 25
Average memory access time2-way = 1.36 + Miss rate2-way × 25
Average memory access time1-way = 1.00 + Miss rate1-way × 25

The miss penalty is the same time in each case, so we leave it as 25 clock cycles.
For example, the average memory access time for a 4 KB direct-mapped cache is

Average memory access time1-way = 1.00 + (0.098 × 25) = 3.44

and the time for a 512 KB, eight-way set associative cache is

Average memory access time8-way = 1.52 + (0.006 × 25) = 1.66

Using these formulas and the miss rates from Figure B.8, Figure B.13 shows the
average memory access time for each cache and associativity. The figure shows
that the formulas in this example hold for caches less than or equal to 8 KB for up
to four-way associativity. Starting with 16 KB, the greater hit time of larger asso-
ciativity outweighs the time saved due to the reduction in misses.

Note that we did not account for the slower clock rate on the rest of the program
in this example, thereby understating the advantage of direct-mapped cache.

Fourth Optimization: Multilevel Caches to
Reduce Miss Penalty

Reducing cache misses had been the traditional focus of cache research, but the
cache performance formula assures us that improvements in miss penalty can be
just as beneficial as improvements in miss rate. Moreover, Figure 2.2 on page 74
shows that technology trends have improved the speed of processors faster than
DRAMs, making the relative cost of miss penalties increase over time.

This performance gap between processors and memory leads the architect to
this question: Should I make the cache faster to keep pace with the speed of pro-
cessors, or make the cache larger to overcome the widening gap between the pro-
cessor and main memory?

One answer is, do both. Adding another level of cache between the original
cache and memory simplifies the decision. The first-level cache can be small
enough to match the clock cycle time of the fast processor. Yet, the second-level
cache can be large enough to capture many accesses that would go to main mem-
ory, thereby lessening the effective miss penalty.

Although the concept of adding another level in the hierarchy is straightfor-
ward, it complicates performance analysis. Definitions for a second level of cache
are not always straightforward. Let’s start with the definition of average memory

B.3 Six Basic Cache Optimizations ■ B-31

access time for a two-level cache. Using the subscripts L1 and L2 to refer, respec-
tively, to a first-level and a second-level cache, the original formula is

Average memory access time = Hit timeL1 + Miss rateL1 × Miss penaltyL1

and
Miss penaltyL1 = Hit timeL2 + Miss rateL2 × Miss penaltyL2

so

Average memory access time = Hit timeL1 + Miss rateL1
× (Hit timeL2 + Miss rateL2 × Miss penaltyL2)

In this formula, the second-level miss rate is measured on the leftovers from the
first-level cache. To avoid ambiguity, these terms are adopted here for a two-level
cache system:

■ Local miss rate—This rate is simply the number of misses in a cache divided
by the total number of memory accesses to this cache. As you would expect,
for the first-level cache it is equal to Miss rateL1, and for the second-level
cache it is Miss rateL2.

■ Global miss rate—The number of misses in the cache divided by the total
number of memory accesses generated by the processor. Using the terms
above, the global miss rate for the first-level cache is still just Miss rateL1, but
for the second-level cache it is Miss rateL1 × Miss rateL2.

This local miss rate is large for second-level caches because the first-level
cache skims the cream of the memory accesses. This is why the global miss rate
is the more useful measure: It indicates what fraction of the memory accesses
that leave the processor go all the way to memory.

Here is a place where the misses per instruction metric shines. Instead of con-
fusion about local or global miss rates, we just expand memory stalls per instruc-
tion to add the impact of a second-level cache.

Average memory stalls per instruction = Misses per instructionL1 × Hit timeL2
+ Misses per instructionL2 × Miss penaltyL2

Example Suppose that in 1000 memory references there are 40 misses in the first-level
cache and 20 misses in the second-level cache. What are the various miss rates?
Assume the miss penalty from the L2 cache to memory is 200 clock cycles, the
hit time of the L2 cache is 10 clock cycles, the hit time of L1 is 1 clock cycle, and
there are 1.5 memory references per instruction. What is the average memory
access time and average stall cycles per instruction? Ignore the impact of writes.

Answer The miss rate (either local or global) for the first-level cache is 40/1000 or 4%.
The local miss rate for the second-level cache is 20/40 or 50%. The global miss
rate of the second-level cache is 20/1000 or 2%. Then

Average memory access time = Hit timeL1 + Miss rateL1 × (Hit timeL2 + Miss rateL2 × Miss penaltyL2)
 = 1 + 4% × (10 + 50% × 200) = 1 + 4% × 110 = 5.4 clock cycles

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-32 ■ Appendix B Review of Memory Hierarchy

To see how many misses we get per instruction, we divide 1000 memory refer-
ences by 1.5 memory references per instruction, which yields 667 instructions.
Thus, we need to multiply the misses by 1.5 to get the number of misses per 1000
instructions. We have 40 × 1.5 or 60 L1 misses, and 20 × 1.5 or 30 L2 misses, per
1000 instructions. For average memory stalls per instruction, assuming the
misses are distributed uniformly between instructions and data:

Average memory stalls per instruction = Misses per instructionL1 × Hit timeL2 + Misses per instructionL2
× Miss penaltyL2

= (60/1000) × 10 + (30/1000) × 200
= 0.060 × 10 + 0.030 × 200 = 6.6 clock cycles

If we subtract the L1 hit time from the average memory access time (AMAT) and
then multiply by the average number of memory references per instruction, we
get the same average memory stalls per instruction:

(5.4 – 1.0) × 1.5 = 4.4 × 1.5 = 6.6 clock cycles

As this example shows, there may be less confusion with multilevel caches when
calculating using misses per instruction versus miss rates.

Note that these formulas are for combined reads and writes, assuming a write-
back first-level cache. Obviously, a write-through first-level cache will send all
writes to the second level, not just the misses, and a write buffer might be used.

Figures B.14 and B.15 show how miss rates and relative execution time change
with the size of a second-level cache for one design. From these figures we can
gain two insights. The first is that the global cache miss rate is very similar to the
single cache miss rate of the second-level cache, provided that the second-level
cache is much larger than the first-level cache. Hence, our intuition and knowledge
about the first-level caches apply. The second insight is that the local cache miss
rate is not a good measure of secondary caches; it is a function of the miss rate of
the first-level cache, and hence can vary by changing the first-level cache. Thus,
the global cache miss rate should be used when evaluating second-level caches.

With these definitions in place, we can consider the parameters of second-
level caches. The foremost difference between the two levels is that the speed of
the first-level cache affects the clock rate of the processor, while the speed of the
second-level cache only affects the miss penalty of the first-level cache. Thus, we
can consider many alternatives in the second-level cache that would be ill chosen
for the first-level cache. There are two major questions for the design of the
second-level cache: Will it lower the average memory access time portion of the
CPI, and how much does it cost?

The initial decision is the size of a second-level cache. Since everything in
the first-level cache is likely to be in the second-level cache, the second-level
cache should be much bigger than the first. If second-level caches are just a little
bigger, the local miss rate will be high. This observation inspires the design of
huge second-level caches—the size of main memory in older computers!

B.3 Six Basic Cache Optimizations ■ B-33

One question is whether set associativity makes more sense for second-level
caches.

Example Given the data below, what is the impact of second-level cache associativity on
its miss penalty?

■ Hit timeL2 for direct mapped = 10 clock cycles.

■ Two-way set associativity increases hit time by 0.1 clock cycle to 10.1 clock
cycles.

■ Local miss rateL2 for direct mapped = 25%.

■ Local miss rateL2 for two-way set associative = 20%.

■ Miss penaltyL2 = 200 clock cycles.

Answer For a direct-mapped second-level cache, the first-level cache miss penalty is

Miss penalty1-way L2 = 10 + 25% × 200 = 60.0 clock cycles

Figure B.14 Miss rates versus cache size for multilevel caches. Second-level caches
smaller than the sum of the two 64 KB first-level caches make little sense, as reflected in
the high miss rates. After 256 KB the single cache is within 10% of the global miss rates.
The miss rate of a single-level cache versus size is plotted against the local miss rate and
global miss rate of a second-level cache using a 32 KB first-level cache. The L2 caches (uni-
fied) were two-way set associative with replacement. Each had split L1 instruction and
data caches that were 64 KB two-way set associative with LRU replacement. The block size
for both L1 and L2 caches was 64 bytes. Data were collected as in Figure B.4.

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

M
is

s
ra

te

99% 99% 98%

4 8 16 32 64 128 256 512 1024 2048 4096
Cache size (KB)

96%

55%

6% 5% 4% 4% 4% 3%

3% 3%
2% 2% 2% 1% 1%

4% 4%

46%

39%
34%

51%

88%

67%

Local miss rate

Global miss rate

Single cache miss rate

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-34 ■ Appendix B Review of Memory Hierarchy

Adding the cost of associativity increases the hit cost only 0.1 clock cycle, mak-
ing the new first-level cache miss penalty:

Miss penalty2-way L2 = 10.1 + 20% × 200 = 50.1 clock cycles

In reality, second-level caches are almost always synchronized with the first-
level cache and processor. Accordingly, the second-level hit time must be an inte-
gral number of clock cycles. If we are lucky, we shave the second-level hit time
to 10 cycles; if not, we round up to 11 cycles. Either choice is an improvement
over the direct-mapped second-level cache:

Miss penalty2-way L2 = 10 + 20% × 200 = 50.0 clock cycles
Miss penalty2-way L2 = 11 + 20% × 200 = 51.0 clock cycles

Now we can reduce the miss penalty by reducing the miss rate of the second-
level caches.

Another consideration concerns whether data in the first-level cache are in
the second-level cache. Multilevel inclusion is the natural policy for memory
hierarchies: L1 data are always present in L2. Inclusion is desirable because con-
sistency between I/O and caches (or among caches in a multiprocessor) can be
determined just by checking the second-level cache.

Figure B.15 Relative execution time by second-level cache size. The two bars are for
different clock cycles for an L2 cache hit. The reference execution time of 1.00 is for an
8192 KB second-level cache with a 1-clock-cycle latency on a second-level hit. These
data were collected the same way as in Figure B.14, using a simulator to imitate the
Alpha 21264.

8192

S
ec

on
d-

le
ve

l c
ac

he
 s

iz
e

(K
B

)

4096

2048

1024

512

256

1.00 1.25 1.50 1.75 2.00 2.25 2.50
Relative execution time

1.60
1.65

1.10
1.14

1.02
1.06

2.34
2.39

1.94
1.99

1.76
1.82

L2 hit = 8 clock cycles
L2 hit = 16 clock cycles

B.3 Six Basic Cache Optimizations ■ B-35

One drawback to inclusion is that measurements can suggest smaller blocks
for the smaller first-level cache and larger blocks for the larger second-level
cache. For example, the Pentium 4 has 64-byte blocks in its L1 caches and 128-
byte blocks in its L2 cache. Inclusion can still be maintained with more work on a
second-level miss. The second-level cache must invalidate all first-level blocks
that map onto the second-level block to be replaced, causing a slightly higher first-
level miss rate. To avoid such problems, many cache designers keep the block size
the same in all levels of caches.

However, what if the designer can only afford an L2 cache that is slightly big-
ger than the L1 cache? Should a significant portion of its space be used as a
redundant copy of the L1 cache? In such cases a sensible opposite policy is mul-
tilevel exclusion: L1 data are never found in an L2 cache. Typically, with exclu-
sion a cache miss in L1 results in a swap of blocks between L1 and L2 instead of
a replacement of an L1 block with an L2 block. This policy prevents wasting
space in the L2 cache. For example, the AMD Opteron chip obeys the exclusion
property using two 64 KB L1 caches and 1 MB L2 cache.

As these issues illustrate, although a novice might design the first- and
second-level caches independently, the designer of the first-level cache has a
simpler job given a compatible second-level cache. It is less of a gamble to use a
write-through, for example, if there is a write-back cache at the next level to act
as a backstop for repeated writes and it uses multilevel inclusion.

The essence of all cache designs is balancing fast hits and few misses. For
second-level caches, there are many fewer hits than in the first-level cache, so the
emphasis shifts to fewer misses. This insight leads to much larger caches and
techniques to lower the miss rate, such as higher associativity and larger blocks.

Fifth Optimization: Giving Priority to Read Misses over Writes
to Reduce Miss Penalty

This optimization serves reads before writes have been completed. We start with
looking at the complexities of a write buffer.

With a write-through cache the most important improvement is a write buffer
of the proper size. Write buffers, however, do complicate memory accesses
because they might hold the updated value of a location needed on a read miss.

Example Look at this code sequence:

SW R3, 512(R0) ;M[512] ← R3 (cache index 0)
LW R1, 1024(R0) ;R1 ← M[1024] (cache index 0)
LW R2, 512(R0) ;R2 ← M[512] (cache index 0)

Assume a direct-mapped, write-through cache that maps 512 and 1024 to the
same block, and a four-word write buffer that is not checked on a read miss. Will
the value in R2 always be equal to the value in R3?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-36 ■ Appendix B Review of Memory Hierarchy

Answer Using the terminology from Chapter 2, this is a read-after-write data hazard in
memory. Let’s follow a cache access to see the danger. The data in R3 are placed
into the write buffer after the store. The following load uses the same cache index
and is therefore a miss. The second load instruction tries to put the value in loca-
tion 512 into register R2; this also results in a miss. If the write buffer hasn’t
completed writing to location 512 in memory, the read of location 512 will put
the old, wrong value into the cache block, and then into R2. Without proper pre-
cautions, R3 would not be equal to R2!

The simplest way out of this dilemma is for the read miss to wait until the
write buffer is empty. The alternative is to check the contents of the write buffer
on a read miss, and if there are no conflicts and the memory system is available,
let the read miss continue. Virtually all desktop and server processors use the lat-
ter approach, giving reads priority over writes.

The cost of writes by the processor in a write-back cache can also be reduced.
Suppose a read miss will replace a dirty memory block. Instead of writing the
dirty block to memory, and then reading memory, we could copy the dirty block
to a buffer, then read memory, and then write memory. This way the processor
read, for which the processor is probably waiting, will finish sooner. Similar to
the previous situation, if a read miss occurs, the processor can either stall until
the buffer is empty or check the addresses of the words in the buffer for conflicts.

Now that we have five optimizations that reduce cache miss penalties or miss
rates, it is time to look at reducing the final component of average memory access
time. Hit time is critical because it can affect the clock rate of the processor; in
many processors today the cache access time limits the clock cycle rate, even for
processors that take multiple clock cycles to access the cache. Hence, a fast hit
time is multiplied in importance beyond the average memory access time formula
because it helps everything.

Sixth Optimization: Avoiding Address Translation during
Indexing of the Cache to Reduce Hit Time

Even a small and simple cache must cope with the translation of a virtual address
from the processor to a physical address to access memory. As described in Sec-
tion B.4, processors treat main memory as just another level of the memory hier-
archy, and thus the address of the virtual memory that exists on disk must be
mapped onto the main memory.

The guideline of making the common case fast suggests that we use virtual
addresses for the cache, since hits are much more common than misses. Such
caches are termed virtual caches, with physical cache used to identify the tradi-
tional cache that uses physical addresses. As we will shortly see, it is important to
distinguish two tasks: indexing the cache and comparing addresses. Thus, the
issues are whether a virtual or physical address is used to index the cache and
whether a virtual or physical address is used in the tag comparison. Full virtual

B.3 Six Basic Cache Optimizations ■ B-37

addressing for both indices and tags eliminates address translation time from a
cache hit. Then why doesn’t everyone build virtually addressed caches?

One reason is protection. Page-level protection is checked as part of the vir-
tual to physical address translation, and it must be enforced no matter what. One
solution is to copy the protection information from the TLB on a miss, add a field
to hold it, and check it on every access to the virtually addressed cache.

Another reason is that every time a process is switched, the virtual addresses
refer to different physical addresses, requiring the cache to be flushed. Figure B.16
shows the impact on miss rates of this flushing. One solution is to increase the
width of the cache address tag with a process-identifier tag (PID). If the operating
system assigns these tags to processes, it only need flush the cache when a PID is
recycled; that is, the PID distinguishes whether or not the data in the cache are for

Figure B.16 Miss rate versus virtually addressed cache size of a program measured

three ways: without process switches (uniprocess), with process switches using a

process-identifier tag (PID), and with process switches but without PIDs (purge).

PIDs increase the uniprocess absolute miss rate by 0.3% to 0.6% and save 0.6% to 4.3%
over purging. Agarwal [1987] collected these statistics for the Ultrix operating system
running on a VAX, assuming direct-mapped caches with a block size of 16 bytes. Note
that the miss rate goes up from 128K to 256K. Such nonintuitive behavior can occur in
caches because changing size changes the mapping of memory blocks onto cache
blocks, which can change the conflict miss rate.

M
is

s
ra

te

20%

18%

16%

14%

12%

10%

8%

6%

4%

2%

0%

0.6%
0.4%

18.8%

1.1%

0.5%

13.0%

1.8%

0.6%

8.7%

2.7%

0.6%

3.9%

3.4%

0.4%

2.7%

3.9%

0.4%
0.9%

4.1%

0.3%
0.4%

4.3%

0.3%
0.3%

4.3%

0.3%
0.3%

4.3%

0.3%
0.3%

Cache size
2K 4K 8K 16K 32K 64K 128K 256K 512K 1024K

Purge
PIDs
Uniprocess

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-38 ■ Appendix B Review of Memory Hierarchy

this program. Figure B.16 shows the improvement in miss rates by using PIDs to
avoid cache flushes.

A third reason why virtual caches are not more popular is that operating sys-
tems and user programs may use two different virtual addresses for the same
physical address. These duplicate addresses, called synonyms or aliases, could
result in two copies of the same data in a virtual cache; if one is modified, the
other will have the wrong value. With a physical cache this wouldn’t happen,
since the accesses would first be translated to the same physical cache block.

Hardware solutions to the synonym problem, called antialiasing, guarantee
every cache block a unique physical address. For example, the AMD Opteron
uses a 64 KB instruction cache with a 4 KB page and two-way set associativity;
hence, the hardware must handle aliases involved with the three virtual address
bits in the set index. It avoids aliases by simply checking all eight possible loca-
tions on a miss—two blocks in each of four sets—to be sure that none matches
the physical address of the data being fetched. If one is found, it is invalidated, so
when the new data are loaded into the cache their physical address is guaranteed
to be unique.

Software can make this problem much easier by forcing aliases to share some
address bits. An older version of UNIX from Sun Microsystems, for example,
required all aliases to be identical in the last 18 bits of their addresses; this restric-
tion is called page coloring. Note that page coloring is simply set associative map-
ping applied to virtual memory: The 4 KB (212) pages are mapped using 64 (26)
sets to ensure that the physical and virtual addresses match in the last 18 bits. This
restriction means a direct-mapped cache that is 218 (256K) bytes or smaller can
never have duplicate physical addresses for blocks. From the perspective of the
cache, page coloring effectively increases the page offset, as software guarantees
that the last few bits of the virtual and physical page address are identical.

The final area of concern with virtual addresses is I/O. I/O typically uses
physical addresses and thus would require mapping to virtual addresses to inter-
act with a virtual cache. (The impact of I/O on caches is further discussed in
Appendix D.)

One alternative to get the best of both virtual and physical caches is to use
part of the page offset—the part that is identical in both virtual and physical
addresses—to index the cache. At the same time as the cache is being read using
that index, the virtual part of the address is translated, and the tag match uses
physical addresses.

This alternative allows the cache read to begin immediately, and yet the tag
comparison is still with physical addresses. The limitation of this virtually
indexed, physically tagged alternative is that a direct-mapped cache can be no
bigger than the page size. For example, in the data cache in Figure B.5 on page
B-13, the index is 9 bits and the cache block offset is 6 bits. To use this trick, the
virtual page size would have to be at least 2(9+6) bytes or 32 KB. If not, a portion
of the index must be translated from virtual to physical address. Figure B.17
shows the organization of the caches, translation lookaside buffers (TLBs), and
virtual memory when this technique is used.

B.3 Six Basic Cache Optimizations ■ B-39

Associativity can keep the index in the physical part of the address and yet
still support a large cache. Recall that the size of the index is controlled by this
formula:

For example, doubling associativity and doubling the cache size does not
change the size of the index. The IBM 3033 cache, as an extreme example, is
16-way set associative, even though studies show there is little benefit to miss

Figure B.17 The overall picture of a hypothetical memory hierarchy going from virtual address to L2 cache

access. The page size is 16 KB. The TLB is two-way set associative with 256 entries. The L1 cache is a direct-mapped
16 KB, and the L2 cache is a four-way set associative with a total of 4 MB. Both use 64-byte blocks. The virtual address
is 64 bits and the physical address is 40 bits.

L1 tag compare address <26>

L2 cache tag <21> L2 data <512>

=? =?

=?

TLB tag compare address <43> TLB index <7>

Virtual address <64>

Physical address <40>

Virtual page number <50>

L2 tag compare address <21> L2 cache index <14> Block offset <6>

Page offset <14>

L1 cache tag <26> L1 data <512>

To CPU

To CPU

To CPU

To L1 cache or CPU

L1 cache index <8> Block offset <6>

TLB tag <43> TLB data <26>

2
Index Cache size

Block size Set associativity×
--=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-40 ■ Appendix B Review of Memory Hierarchy

rates above 8-way set associativity. This high associativity allows a 64 KB
cache to be addressed with a physical index, despite the handicap of 4 KB
pages in the IBM architecture.

Summary of Basic Cache Optimization

The techniques in this section to improve miss rate, miss penalty, and hit time
generally impact the other components of the average memory access equation
as well as the complexity of the memory hierarchy. Figure B.18 summarizes
these techniques and estimates the impact on complexity, with + meaning that
the technique improves the factor, – meaning it hurts that factor, and blank
meaning it has no impact. No optimization in this figure helps more than one
category.

. . . a system has been devised to make the core drum combination appear to the
programmer as a single level store, the requisite transfers taking place
automatically.

Kilburn et al. [1962]

At any instant in time computers are running multiple processes, each with its
own address space. (Processes are described in the next section.) It would be too
expensive to dedicate a full address space worth of memory for each process,

Technique
Hit

time
Miss

penalty
Miss
rate

Hardware
complexity Comment

Larger block size – + 0 Trivial; Pentium 4 L2 uses 128 bytes

Larger cache size – + 1 Widely used, especially for L2
caches

Higher associativity – + 1 Widely used

Multilevel caches + 2 Costly hardware; harder if L1 block
size ≠ L2 block size; widely used

Read priority over writes + 1 Widely used

Avoiding address translation during
cache indexing

+ 1 Widely used

Figure B.18 Summary of basic cache optimizations showing impact on cache performance and complexity for
the techniques in this appendix. Generally a technique helps only one factor. + means that the technique improves
the factor, – means it hurts that factor, and blank means it has no impact. The complexity measure is subjective, with
0 being the easiest and 3 being a challenge.

 B.4 Virtual Memory

B.4 Virtual Memory ■ B-41

especially since many processes use only a small part of their address space.
Hence, there must be a means of sharing a smaller amount of physical memory
among many processes.

One way to do this, virtual memory, divides physical memory into blocks and
allocates them to different processes. Inherent in such an approach must be a pro-
tection scheme that restricts a process to the blocks belonging only to that pro-
cess. Most forms of virtual memory also reduce the time to start a program, since
not all code and data need be in physical memory before a program can begin.

Although protection provided by virtual memory is essential for current com-
puters, sharing is not the reason that virtual memory was invented. If a program
became too large for physical memory, it was the programmer’s job to make it fit.
Programmers divided programs into pieces, then identified the pieces that were
mutually exclusive, and loaded or unloaded these overlays under user program
control during execution. The programmer ensured that the program never tried
to access more physical main memory than was in the computer, and that the
proper overlay was loaded at the proper time. As you can well imagine, this
responsibility eroded programmer productivity.

Virtual memory was invented to relieve programmers of this burden; it auto-
matically manages the two levels of the memory hierarchy represented by main
memory and secondary storage. Figure B.19 shows the mapping of virtual mem-
ory to physical memory for a program with four pages.

Figure B.19 The logical program in its contiguous virtual address space is shown on

the left. It consists of four pages, A, B, C, and D. The actual location of three of the
blocks is in physical main memory and the other is located on the disk.

0

4K

8K

12K

16K

20K

24K

28K

Physical
address

Physical
main memory

Disk
D

0

4K

8K

12K

Virtual
address

Virtual memory

A

B

C

D

C

A

B

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-42 ■ Appendix B Review of Memory Hierarchy

In addition to sharing protected memory space and automatically managing
the memory hierarchy, virtual memory also simplifies loading the program for
execution. Called relocation, this mechanism allows the same program to run in
any location in physical memory. The program in Figure B.19 can be placed any-
where in physical memory or disk just by changing the mapping between them.
(Prior to the popularity of virtual memory, processors would include a relocation
register just for that purpose.) An alternative to a hardware solution would be
software that changed all addresses in a program each time it was run.

Several general memory hierarchy ideas from Chapter 1 about caches are
analogous to virtual memory, although many of the terms are different. Page or
segment is used for block, and page fault or address fault is used for miss. With
virtual memory, the processor produces virtual addresses that are translated by a
combination of hardware and software to physical addresses, which access main
memory. This process is called memory mapping or address translation. Today,
the two memory hierarchy levels controlled by virtual memory are DRAMs and
magnetic disks. Figure B.20 shows a typical range of memory hierarchy parame-
ters for virtual memory.

There are further differences between caches and virtual memory beyond
those quantitative ones mentioned in Figure B.20:

■ Replacement on cache misses is primarily controlled by hardware, while vir-
tual memory replacement is primarily controlled by the operating system.
The longer miss penalty means it’s more important to make a good decision,
so the operating system can be involved and take time deciding what to
replace.

■ The size of the processor address determines the size of virtual memory, but
the cache size is independent of the processor address size.

Parameter First-level cache Virtual memory

Block (page) size 16–128 bytes 4096–65,536 bytes

Hit time 1–3 clock cycles 100–200 clock cycles

Miss penalty 8–200 clock cycles 1,000,000–10,000,000 clock cycles

(access time) (6–160 clock cycles) (800,000–8,000,000 clock cycles)

(transfer time) (2–40 clock cycles) (200,000–2,000,000 clock cycles)

Miss rate 0.1–10% 0.00001–0.001%

Address mapping 25–45-bit physical address
to 14–20-bit cache address

32–64-bit virtual address to
25–45-bit physical address

Figure B.20 Typical ranges of parameters for caches and virtual memory. Virtual
memory parameters represent increases of 10 to 1,000,000 times over cache para-
meters. Normally, first-level caches contain at most 1 MB of data, whereas physical
memory contains 256 MB to 1 TB.

B.4 Virtual Memory ■ B-43

■ In addition to acting as the lower-level backing store for main memory in the
hierarchy, secondary storage is also used for the file system. In fact, the file sys-
tem occupies most of secondary storage. It is not normally in the address space.

Virtual memory also encompasses several related techniques. Virtual mem-
ory systems can be categorized into two classes: those with fixed-size blocks,
called pages, and those with variable-size blocks, called segments. Pages are typ-
ically fixed at 4096 to 8192 bytes, while segment size varies. The largest segment
supported on any processor ranges from 216 bytes up to 232 bytes; the smallest
segment is 1 byte. Figure B.21 shows how the two approaches might divide code
and data.

The decision to use paged virtual memory versus segmented virtual memory
affects the processor. Paged addressing has a single fixed-size address divided into
page number and offset within a page, analogous to cache addressing. A single

Figure B.21 Example of how paging and segmentation divide a program.

Page Segment

Words per address One Two (segment and offset)

Programmer visible? Invisible to application
programmer

May be visible to application
programmer

Replacing a block Trivial (all blocks are the
same size)

Difficult (must find contiguous,
variable-size, unused portion of
main memory)

Memory use inefficiency Internal fragmentation
(unused portion of page)

External fragmentation (unused
pieces of main memory)

Efficient disk traffic Yes (adjust page size to
balance access time and
transfer time)

Not always (small segments may
transfer just a few bytes)

Figure B.22 Paging versus segmentation. Both can waste memory, depending on the
block size and how well the segments fit together in main memory. Programming lan-
guages with unrestricted pointers require both the segment and the address to be
passed. A hybrid approach, called paged segments, shoots for the best of both worlds:
Segments are composed of pages, so replacing a block is easy, yet a segment may be
treated as a logical unit.

Code Data

Paging

Segmentation

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-44 ■ Appendix B Review of Memory Hierarchy

address does not work for segmented addresses; the variable size of segments
requires 1 word for a segment number and 1 word for an offset within a segment,
for a total of 2 words. An unsegmented address space is simpler for the compiler.

The pros and cons of these two approaches have been well documented in
operating systems textbooks; Figure B.22 summarizes the arguments. Because of
the replacement problem (the third line of the figure), few computers today use
pure segmentation. Some computers use a hybrid approach, called paged
segments, in which a segment is an integral number of pages. This simplifies
replacement because memory need not be contiguous, and the full segments need
not be in main memory. A more recent hybrid is for a computer to offer multiple
page sizes, with the larger sizes being powers of 2 times the smallest page size.
The IBM 405CR embedded processor, for example, allows 1 KB, 4 KB (22 ×
1 KB), 16 KB (24 × 1 KB), 64 KB (26 × 1 KB), 256 KB (28 × 1 KB), 1024 KB
(210 × 1 KB), and 4096 KB (212 × 1 KB) to act as a single page.

Four Memory Hierarchy Questions Revisited

We are now ready to answer the four memory hierarchy questions for virtual memory.

Q1: Where Can a Block Be Placed in Main Memory?

The miss penalty for virtual memory involves access to a rotating magnetic stor-
age device and is therefore quite high. Given the choice of lower miss rates or a
simpler placement algorithm, operating systems designers normally pick lower
miss rates because of the exorbitant miss penalty. Thus, operating systems allow
blocks to be placed anywhere in main memory. According to the terminology in
Figure B.2 on page B-8, this strategy would be labeled fully associative.

Q2: How Is a Block Found If It Is in Main Memory?

Both paging and segmentation rely on a data structure that is indexed by the page
or segment number. This data structure contains the physical address of the
block. For segmentation, the offset is added to the segment’s physical address to
obtain the final physical address. For paging, the offset is simply concatenated to
this physical page address (see Figure B.23).

This data structure, containing the physical page addresses, usually takes the
form of a page table. Indexed by the virtual page number, the size of the table is
the number of pages in the virtual address space. Given a 32-bit virtual address,
4 KB pages, and 4 bytes per page table entry (PTE), the size of the page table
would be (232/212) × 22 = 222 or 4 MB.

To reduce the size of this data structure, some computers apply a hashing
function to the virtual address. The hash allows the data structure to be the length
of the number of physical pages in main memory. This number could be much
smaller than the number of virtual pages. Such a structure is called an inverted
page table. Using the previous example, a 512 MB physical memory would only
need 1 MB (8 × 512 MB/4 KB) for an inverted page table; the extra 4 bytes per

B.4 Virtual Memory ■ B-45

page table entry are for the virtual address. The HP/Intel IA-64 covers both bases
by offering both traditional pages tables and inverted page tables, leaving the
choice of mechanism to the operating system programmer.

To reduce address translation time, computers use a cache dedicated to these
address translations, called a translation lookaside buffer, or simply translation
buffer, described in more detail shortly.

Q3: Which Block Should Be Replaced on a Virtual Memory Miss?

As mentioned earlier, the overriding operating system guideline is minimizing
page faults. Consistent with this guideline, almost all operating systems try to
replace the least recently used (LRU) block because if the past predicts the
future, that is the one less likely to be needed.

To help the operating system estimate LRU, many processors provide a use
bit or reference bit, which is logically set whenever a page is accessed. (To
reduce work, it is actually set only on a translation buffer miss, which is
described shortly.) The operating system periodically clears the use bits and later
records them so it can determine which pages were touched during a particular
time period. By keeping track in this way, the operating system can select a page
that is among the least recently referenced.

Q4: What Happens on a Write?

The level below main memory contains rotating magnetic disks that take millions
of clock cycles to access. Because of the great discrepancy in access time, no one
has yet built a virtual memory operating system that writes through main mem-
ory to disk on every store by the processor. (This remark should not be inter-
preted as an opportunity to become famous by being the first to build one!) Thus,
the write strategy is always write-back.

Figure B.23 The mapping of a virtual address to a physical address via a page table.

Main
memory

Page
table

Virtual address

Virtual page number Page offset

Physical address

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-46 ■ Appendix B Review of Memory Hierarchy

Since the cost of an unnecessary access to the next-lower level is so high,
virtual memory systems usually include a dirty bit. It allows blocks to be written
to disk only if they have been altered since being read from the disk.

Techniques for Fast Address Translation

Page tables are usually so large that they are stored in main memory and are
sometimes paged themselves. Paging means that every memory access logically
takes at least twice as long, with one memory access to obtain the physical
address and a second access to get the data. As mentioned in Chapter 2, we use
locality to avoid the extra memory access. By keeping address translations in a
special cache, a memory access rarely requires a second access to translate the
data. This special address translation cache is referred to as a translation look
aside buffer (TLB), also called a translation buffer (TB).

A TLB entry is like a cache entry where the tag holds portions of the virtual
address and the data portion holds a physical page frame number, protection
field, valid bit, and usually a use bit and dirty bit. To change the physical page
frame number or protection of an entry in the page table, the operating system
must make sure the old entry is not in the TLB; otherwise, the system won’t
behave properly. Note that this dirty bit means the corresponding page is dirty,
not that the address translation in the TLB is dirty nor that a particular block in
the data cache is dirty. The operating system resets these bits by changing the
value in the page table and then invalidates the corresponding TLB entry.
When the entry is reloaded from the page table, the TLB gets an accurate copy
of the bits.

Figure B.24 shows the Opteron data TLB organization, with each step of the
translation labeled. This TLB uses fully associative placement; thus, the transla-
tion begins (steps 1 and 2) by sending the virtual address to all tags. Of course,
the tag must be marked valid to allow a match. At the same time, the type of
memory access is checked for a violation (also in step 2) against protection infor-
mation in the TLB.

For reasons similar to those in the cache case, there is no need to include the
12 bits of the page offset in the TLB. The matching tag sends the corresponding
physical address through effectively a 40:1 multiplexor (step 3). The page offset
is then combined with the physical page frame to form a full physical address
(step 4). The address size is 40 bits.

Address translation can easily be on the critical path determining the clock
cycle of the processor, so the Opteron uses virtually addressed, physically tagged
L1 caches.

Selecting a Page Size

The most obvious architectural parameter is the page size. Choosing the page is a
question of balancing forces that favor a larger page size versus those favoring a
smaller size. The following favor a larger size:

B.4 Virtual Memory ■ B-47

■ The size of the page table is inversely proportional to the page size; memory
(or other resources used for the memory map) can therefore be saved by mak-
ing the pages bigger.

■ As mentioned in Section B.3, a larger page size can allow larger caches with
fast cache hit times.

■ Transferring larger pages to or from secondary storage, possibly over a net-
work, is more efficient than transferring smaller pages.

■ The number of TLB entries is restricted, so a larger page size means that
more memory can be mapped efficiently, thereby reducing the number of
TLB misses.

It is for this final reason that recent microprocessors have decided to support
multiple page sizes; for some programs, TLB misses can be as significant on CPI
as the cache misses.

The main motivation for a smaller page size is conserving storage. A small
page size will result in less wasted storage when a contiguous region of virtual
memory is not equal in size to a multiple of the page size. The term for this
unused memory in a page is internal fragmentation. Assuming that each process
has three primary segments (text, heap, and stack), the average wasted storage
per process will be 1.5 times the page size. This amount is negligible for comput-
ers with hundreds of megabytes of memory and page sizes of 4 KB to 8 KB. Of
course, when the page sizes become very large (more than 32 KB), storage (both
main and secondary) could be wasted, as well as I/O bandwidth. A final concern
is process start-up time; many processes are small, so a large page size would
lengthen the time to invoke a process.

Figure B.24 Operation of the Opteron data TLB during address translation. The four
steps of a TLB hit are shown as circled numbers. This TLB has 40 entries. Section B.5
describes the various protection and access fields of an Opteron page table entry.

<28>

Virtual page
number
<36>

Page
offset
<12>

<1>
V

<1>
D

<1>
A

<36>
Tag

<28>
Physical address

(Low-order 12 bits
of address)

(High-order 28 bits of address)

40-bit
physical
address

R/W U/S

40:1 mux

21

4

<12>

3

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-48 ■ Appendix B Review of Memory Hierarchy

Summary of Virtual Memory and Caches

With virtual memory, TLBs, first-level caches, and second-level caches all map-
ping portions of the virtual and physical address space, it can get confusing what
bits go where. Figure B.25 gives a hypothetical example going from a 64-bit vir-
tual address to a 41-bit physical address with two levels of cache. This L1 cache
is virtually indexed, physically tagged since both the cache size and the page size
are 8 KB. The L2 cache is 4 MB. The block size for both is 64 bytes.

Figure B.25 The overall picture of a hypothetical memory hierarchy going from virtual address to L2 cache
access. The page size is 8 KB. The TLB is direct mapped with 256 entries. The L1 cache is a direct-mapped 8 KB, and
the L2 cache is a direct-mapped 4 MB. Both use 64-byte blocks. The virtual address is 64 bits and the physical address
is 41 bits. The primary difference between this simple figure and a real cache is replication of pieces of this figure.

L1 tag compare address <28>

L2 cache tag <19> L2 data <512>

=? =?

=?

TLB tag compare address <43> TLB index <8>

Virtual address <64>

Physical address <41>

Virtual page number <51>

L2 tag compare address <19> L2 cache index <16> Block offset <6>

Page offset <13>

L1 cache tag <43> L1 data <512>TLB tag <43> TLB data <28>

To CPU

To CPU

To CPU

To L1 cache or CPU

L1 cache index <7> Block offset <6>

B.5 Protection and Examples of Virtual Memory ■ B-49

First, the 64-bit virtual address is logically divided into a virtual page number
and page offset. The former is sent to the TLB to be translated into a physical
address, and the high bit of the latter is sent to the L1 cache to act as an index. If
the TLB match is a hit, then the physical page number is sent to the L1 cache tag
to check for a match. If it matches, it’s an L1 cache hit. The block offset then
selects the word for the processor.

If the L1 cache check results in a miss, the physical address is then used to try
the L2 cache. The middle portion of the physical address is used as an index to
the 4 MB L2 cache. The resulting L2 cache tag is compared to the upper part of
the physical address to check for a match. If it matches, we have an L2 cache hit,
and the data are sent to the processor, which uses the block offset to select the
desired word. On an L2 miss, the physical address is then used to get the block
from memory.

Although this is a simple example, the major difference between this drawing
and a real cache is replication. First, there is only one L1 cache. When there are
two L1 caches, the top half of the diagram is duplicated. Note that this would
lead to two TLBs, which is typical. Hence, one cache and TLB is for instructions,
driven from the PC, and one cache and TLB is for data, driven from the effective
address.

The second simplification is that all the caches and TLBs are direct mapped.
If any were n-way set associative, then we would replicate each set of tag mem-
ory, comparators, and data memory n times and connect data memories with an
n:1 multiplexor to select a hit. Of course, if the total cache size remained the
same, the cache index would also shrink by log2n bits according to the formula in
Figure B.7 on page B-22.

The invention of multiprogramming, where a computer would be shared by
several programs running concurrently, led to new demands for protection and
sharing among programs. These demands are closely tied to virtual memory in
computers today, and so we cover the topic here along with two examples of vir-
tual memory.

Multiprogramming leads to the concept of a process. Metaphorically, a pro-
cess is a program’s breathing air and living space—that is, a running program
plus any state needed to continue running it. Time-sharing is a variation of multi-
programming that shares the processor and memory with several interactive users
at the same time, giving the illusion that all users have their own computers.
Thus, at any instant it must be possible to switch from one process to another.
This exchange is called a process switch or context switch.

A process must operate correctly whether it executes continuously from
start to finish, or it is interrupted repeatedly and switched with other processes.
The responsibility for maintaining correct process behavior is shared by
designers of the computer and the operating system. The computer designer
must ensure that the processor portion of the process state can be saved and

 B.5 Protection and Examples of Virtual Memory

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-50 ■ Appendix B Review of Memory Hierarchy

restored. The operating system designer must guarantee that processes do not
interfere with each others’ computations.

The safest way to protect the state of one process from another would be to
copy the current information to disk. However, a process switch would then take
seconds—far too long for a time-sharing environment.

This problem is solved by operating systems partitioning main memory so
that several different processes have their state in memory at the same time. This
division means that the operating system designer needs help from the computer
designer to provide protection so that one process cannot modify another.
Besides protection, the computers also provide for sharing of code and data
between processes, to allow communication between processes or to save mem-
ory by reducing the number of copies of identical information.

Protecting Processes

Processes can be protected from one another by having their own page tables,
each pointing to distinct pages of memory. Obviously, user programs must be
prevented from modifying their page tables or protection would be circumvented.

Protection can be escalated, depending on the apprehension of the com-
puter designer or the purchaser. Rings added to the processor protection struc-
ture expand memory access protection from two levels (user and kernel) to
many more. Like a military classification system of top secret, secret, confi-
dential, and unclassified, concentric rings of security levels allow the most
trusted to access anything, the second most trusted to access everything except
the innermost level, and so on. The “civilian” programs are the least trusted
and, hence, have the most limited range of accesses. There may also be restric-
tions on what pieces of memory can contain code—execute protection—and
even on the entrance point between the levels. The Intel 80x86 protection
structure, which uses rings, is described later in this section. It is not clear
whether rings are an improvement in practice over the simple system of user
and kernel modes.

As the designer’s apprehension escalates to trepidation, these simple rings
may not suffice. Restricting the freedom given a program in the inner sanctum
requires a new classification system. Instead of a military model, the analogy of
this system is to keys and locks: A program can’t unlock access to the data unless
it has the key. For these keys, or capabilities, to be useful, the hardware and oper-
ating system must be able to explicitly pass them from one program to another
without allowing a program itself to forge them. Such checking requires a great
deal of hardware support if time for checking keys is to be kept low.

The 80x86 architecture has tried several of these alternatives over the years.
Since backwards compatibility is one of the guidelines of this architecture, the
most recent versions of the architecture include all of its experiments in virtual
memory. We’ll go over two of the options here: first the older segmented address
space and then the newer flat, 64-bit address space.

B.5 Protection and Examples of Virtual Memory ■ B-51

A Segmented Virtual Memory Example:
Protection in the Intel Pentium

The second system is the most dangerous system a man ever designs. . . . The
general tendency is to over-design the second system, using all the ideas and frills
that were cautiously sidetracked on the first one.

F. P. Brooks, Jr.

The Mythical Man-Month (1975)

The original 8086 used segments for addressing, yet it provided nothing for vir-
tual memory or for protection. Segments had base registers but no bound regis-
ters and no access checks, and before a segment register could be loaded the
corresponding segment had to be in physical memory. Intel’s dedication to virtual
memory and protection is evident in the successors to the 8086, with a few fields
extended to support larger addresses. This protection scheme is elaborate, with
many details carefully designed to try to avoid security loopholes. We’ll refer to
it as IA-32. The next few pages highlight a few of the Intel safeguards; if you find
the reading difficult, imagine the difficulty of implementing them!

The first enhancement is to double the traditional two-level protection model:
The IA-32 has four levels of protection. The innermost level (0) corresponds to
the traditional kernel mode, and the outermost level (3) is the least privileged
mode. The IA-32 has separate stacks for each level to avoid security breaches
between the levels. There are also data structures analogous to traditional page
tables that contain the physical addresses for segments, as well as a list of checks
to be made on translated addresses.

The Intel designers did not stop there. The IA-32 divides the address space,
allowing both the operating system and the user access to the full space. The IA-32
user can call an operating system routine in this space and even pass parameters to
it while retaining full protection. This safe call is not a trivial action, since the stack
for the operating system is different from the user’s stack. Moreover, the IA-32
allows the operating system to maintain the protection level of the called routine
for the parameters that are passed to it. This potential loophole in protection is pre-
vented by not allowing the user process to ask the operating system to access some-
thing indirectly that it would not have been able to access itself. (Such security
loopholes are called Trojan horses.)

The Intel designers were guided by the principle of trusting the operating
system as little as possible, while supporting sharing and protection. As an
example of the use of such protected sharing, suppose a payroll program writes
checks and also updates the year-to-date information on total salary and benefits
payments. Thus, we want to give the program the ability to read the salary and
year-to-date information and modify the year-to-date information but not the
salary. We will see the mechanism to support such features shortly. In the rest of
this subsection, we will look at the big picture of the IA-32 protection and exam-
ine its motivation.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-52 ■ Appendix B Review of Memory Hierarchy

Adding Bounds Checking and Memory Mapping

The first step in enhancing the Intel processor was getting the segmented address-
ing to check bounds as well as supply a base. Rather than a base address, the seg-
ment registers in the IA-32 contain an index to a virtual memory data structure
called a descriptor table. Descriptor tables play the role of traditional page tables.
On the IA-32 the equivalent of a page table entry is a segment descriptor. It con-
tains fields found in PTEs:

■ Present bit—Equivalent to the PTE valid bit, used to indicate this is a valid
translation

■ Base field—Equivalent to a page frame address, containing the physical
address of the first byte of the segment

■ Access bit—Like the reference bit or use bit in some architectures that is
helpful for replacement algorithms

■ Attributes field—Specifies the valid operations and protection levels for
operations that use this segment

There is also a limit field, not found in paged systems, which establishes the
upper bound of valid offsets for this segment. Figure B.26 shows examples of
IA-32 segment descriptors.

IA-32 provides an optional paging system in addition to this segmented
addressing. The upper portion of the 32-bit address selects the segment descriptor,
and the middle portion is an index into the page table selected by the descriptor.
We describe below the protection system that does not rely on paging.

Adding Sharing and Protection

To provide for protected sharing, half of the address space is shared by all pro-
cesses and half is unique to each process, called global address space and local
address space, respectively. Each half is given a descriptor table with the appro-
priate name. A descriptor pointing to a shared segment is placed in the global
descriptor table, while a descriptor for a private segment is placed in the local
descriptor table.

A program loads an IA-32 segment register with an index to the table and a
bit saying which table it desires. The operation is checked according to the
attributes in the descriptor, the physical address being formed by adding the off-
set in the processor to the base in the descriptor, provided the offset is less than
the limit field. Every segment descriptor has a separate 2-bit field to give the
legal access level of this segment. A violation occurs only if the program tries to
use a segment with a lower protection level in the segment descriptor.

We can now show how to invoke the payroll program mentioned above to
update the year-to-date information without allowing it to update salaries. The
program could be given a descriptor to the information that has the writable field
clear, meaning it can read but not write the data. A trusted program can then be
supplied that will only write the year-to-date information. It is given a descriptor

B.5 Protection and Examples of Virtual Memory ■ B-53

with the writable field set (Figure B.26). The payroll program invokes the trusted
code using a code segment descriptor with the conforming field set. This setting
means the called program takes on the privilege level of the code being called
rather than the privilege level of the caller. Hence, the payroll program can read
the salaries and call a trusted program to update the year-to-date totals, yet the
payroll program cannot modify the salaries. If a Trojan horse exists in this sys-
tem, to be effective it must be located in the trusted code whose only job is to
update the year-to-date information. The argument for this style of protection is
that limiting the scope of the vulnerability enhances security.

Figure B.26 The IA-32 segment descriptors are distinguished by bits in the attri-

butes field. Base, limit, present, readable, and writable are all self-explanatory. D gives
the default addressing size of the instructions: 16 bits or 32 bits. G gives the granularity
of the segment limit: 0 means in bytes and 1 means in 4 KB pages. G is set to 1 when
paging is turned on to set the size of the page tables. DPL means descriptor privilege
level—this is checked against the code privilege level to see if the access will be
allowed. Conforming says the code takes on the privilege level of the code being called
rather than the privilege level of the caller; it is used for library routines. The expand-
down field flips the check to let the base field be the high-water mark and the limit field
be the low-water mark. As you might expect, this is used for stack segments that grow
down. Word count controls the number of words copied from the current stack to the
new stack on a call gate. The other two fields of the call gate descriptor, destination
selector and destination offset, select the descriptor of the destination of the call and the
offset into it, respectively. There are many more than these three segment descriptors
in the IA-32 protection model.

Attributes Base Limit

8 bits 4 bits 32 bits 24 bits

Present

Code segment

DPL 11 Conforming Readable Accessed

Present

Data segment

DPL 10 Expand down Writable Accessed

Attributes Destination selector Destination offset

8 bits 16 bits 16 bits
Word
count

8 bits

Present

Call gate

DPL 0 00100

GD

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-54 ■ Appendix B Review of Memory Hierarchy

Adding Safe Calls from User to OS Gates and Inheriting Protection
Level for Parameters

Allowing the user to jump into the operating system is a bold step. How, then,
can a hardware designer increase the chances of a safe system without trusting
the operating system or any other piece of code? The IA-32 approach is to restrict
where the user can enter a piece of code, to safely place parameters on the proper
stack, and to make sure the user parameters don’t get the protection level of the
called code.

To restrict entry into others’ code, the IA-32 provides a special segment
descriptor, or call gate, identified by a bit in the attributes field. Unlike other
descriptors, call gates are full physical addresses of an object in memory; the off-
set supplied by the processor is ignored. As stated above, their purpose is to pre-
vent the user from randomly jumping anywhere into a protected or more
privileged code segment. In our programming example, this means the only place
the payroll program can invoke the trusted code is at the proper boundary. This
restriction is needed to make conforming segments work as intended.

What happens if caller and callee are “mutually suspicious,” so that neither
trusts the other? The solution is found in the word count field in the bottom
descriptor in Figure B.26. When a call instruction invokes a call gate descriptor,
the descriptor copies the number of words specified in the descriptor from the
local stack onto the stack corresponding to the level of this segment. This copy-
ing allows the user to pass parameters by first pushing them onto the local stack.
The hardware then safely transfers them onto the correct stack. A return from a
call gate will pop the parameters off both stacks and copy any return values to the
proper stack. Note that this model is incompatible with the current practice of
passing parameters in registers.

This scheme still leaves open the potential loophole of having the operating
system use the user’s address, passed as parameters, with the operating system’s
security level, instead of with the user’s level. The IA-32 solves this problem by
dedicating 2 bits in every processor segment register to the requested protection
level. When an operating system routine is invoked, it can execute an instruction
that sets this 2-bit field in all address parameters with the protection level of the
user that called the routine. Thus, when these address parameters are loaded into
the segment registers, they will set the requested protection level to the proper
value. The IA-32 hardware then uses the requested protection level to prevent
any foolishness: No segment can be accessed from the system routine using those
parameters if it has a more privileged protection level than requested.

A Paged Virtual Memory Example:
The 64-Bit Opteron Memory Management

AMD engineers found few uses of the elaborate protection model described
above. The popular model is a flat, 32-bit address space, introduced by the
80386, which sets all the base values of the segment registers to zero. Hence,

B.5 Protection and Examples of Virtual Memory ■ B-55

AMD dispensed with the multiple segments in the 64-bit mode. It assumes that
the segment base is zero and ignores the limit field. The page sizes are 4 KB,
2 MB, and 4 MB.

The 64-bit virtual address of the AMD64 architecture is mapped onto 52-bit
physical addresses, although implementations can implement fewer bits to sim-
plify hardware. The Opteron, for example, uses 48-bit virtual addresses and 40-bit
physical addresses. AMD64 requires that the upper 16 bits of the virtual address
be just the sign extension of the lower 48 bits, which it calls canonical form.

The size of page tables for the 64-bit address space is alarming. Hence,
AMD64 uses a multilevel hierarchical page table to map the address space to
keep the size reasonable. The number of levels depends on the size of the virtual
address space. Figure B.27 shows the four-level translation of the 48-bit virtual
addresses of the Opteron.

The offsets for each of these page tables come from four 9-bit fields. Address
translation starts with adding the first offset to the page-map level 4 base register
and then reading memory from this location to get the base of the next-level page

Figure B.27 The mapping of an Opteron virtual address. The Opteron virtual memory implementation with four
page table levels supports an effective physical address size of 40 bits. Each page table has 512 entries, so each level
field is 9 bits wide. The AMD64 architecture document allows the virtual address size to grow from the current 48 bits
to 64 bits, and the physical address size to grow from the current 40 bits to 52 bits.

63 48 47 39 38 30 29 21 20 12 11 0

000 . . . 0 or
111 . . . 1

Page-map L4 Page-dir-ptr Page-directory Page-table Page offset

Page-map L4
base addr (CR3)

Physical page frame number Page offset

Page-mp entry

Page-map L4 table

+

+

Page-dir-ptr entry

Page-directory
pointer table

+

Page-dir entry

Page-directory
table

+

Page-table entry

Page table

Physical address

Main memory

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-56 ■ Appendix B Review of Memory Hierarchy

table. The next address offset is in turn added to this newly fetched address, and
memory is accessed again to determine the base of the third page table. It hap-
pens again in the same fashion. The last address field is added to this final base
address, and memory is read using this sum to (finally) get the physical address
of the page being referenced. This address is concatenated with the 12-bit page
offset to get the full physical address. Note that the page table in the Opteron
architecture fits within a single 4 KB page.

The Opteron uses a 64-bit entry in each of these page tables. The first 12 bits
are reserved for future use, the next 52 bits contain the physical page frame num-
ber, and the last 12 bits give the protection and use information. Although the
fields vary some between the page table levels, here are the basic ones:

■ Presence—Says that page is present in memory.

■ Read/write—Says whether page is read-only or read-write.

■ User/supervisor—Says whether a user can access the page or if it is limited
to the upper three privilege levels.

■ Dirty—Says if page has been modified.

■ Accessed—Says if page has been read or written since the bit was last
cleared.

■ Page size—Says whether the last level is for 4 KB pages or 4 MB pages; if
it’s the latter, then the Opteron only uses three instead of four levels of pages.

■ No execute—Not found in the 80386 protection scheme, this bit was added to
prevent code from executing in some pages.

■ Page level cache disable—Says whether the page can be cached or not.

■ Page level write-through—Says whether the page allows write-back or write-
through for data caches.

Since the Opteron normally goes through four levels of tables on a TLB miss,
there are three potential places to check protection restrictions. The Opteron
obeys only the bottom-level PTE, checking the others only to be sure the valid bit
is set.

As the entry is 8 bytes long, each page table has 512 entries, and the
Opteron has 4 KB pages, the page tables are exactly one page long. Each of the
four level fields are 9 bits long, and the page offset is 12 bits. This derivation
leaves 64 – (4 × 9 + 12) or 16 bits to be sign extended to ensure canonical
addresses.

Although we have explained translation of legal addresses, what prevents the
user from creating illegal address translations and getting into mischief? The
page tables themselves are protected from being written by user programs. Thus,
the user can try any virtual address, but by controlling the page table entries the
operating system controls what physical memory is accessed. Sharing of memory
between processes is accomplished by having a page table entry in each address
space point to the same physical memory page.

The Opteron employs four TLBs to reduce address translation time, two for
instruction accesses and two for data accesses. Like multilevel caches, the

B.6 Fallacies and Pitfalls ■ B-57

Opteron reduces TLB misses by having two larger L2 TLBs: one for instructions
and one for data. Figure B.28 describes the data TLB.

Summary: Protection on the 32-Bit Intel Pentium vs. the
64-Bit AMD Opteron

Memory management in the Opteron is typical of most desktop or server com-
puters today, relying on page-level address translation and correct operation of
the operating system to provide safety to multiple processes sharing the com-
puter. Although presented as alternatives, Intel has followed AMD’s lead and
embraced the AMD64 architecture. Hence, both AMD and Intel support the 64-
bit extension of 80x86; yet, for compatibility reasons, both support the elaborate
segmented protection scheme.

If the segmented protection model looks harder to build than the AMD64
model, that’s because it is. This effort must be especially frustrating for the engi-
neers, since few customers use the elaborate protection mechanism. In addition,
the fact that the protection model is a mismatch to the simple paging protection
of UNIX-like systems means it will be used only by someone writing an operat-
ing system especially for this computer, which hasn’t happened yet.

Even a review of memory hierarchy has fallacies and pitfalls!

Pitfall Too small an address space.

Just five years after DEC and Carnegie Mellon University collaborated to design
the new PDP-11 computer family, it was apparent that their creation had a fatal

Parameter Description

Block size 1 PTE (8 bytes)

L1 hit time 1 clock cycle

L2 hit time 7 clock cycles

L1 TLB size Same for instruction and data TLBs: 40 PTEs per TLBs, with
32 4 KB pages and 8 for 2 MB or 4 MB pages

L2 TLB size Same for instruction and data TLBs: 512 PTEs of 4 KB pages

Block selection LRU

Write strategy (Not applicable)

L1 block placement Fully associative

L2 block placement 4-way set associative

Figure B.28 Memory hierarchy parameters of the Opteron L1 and L2 instruction and

data TLBs.

 B.6 Fallacies and Pitfalls

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-58 ■ Appendix B Review of Memory Hierarchy

flaw. An architecture announced by IBM six years before the PDP-11 was still
thriving, with minor modifications, 25 years later. And the DEC VAX, criticized
for including unnecessary functions, sold millions of units after the PDP-11 went
out of production. Why?

The fatal flaw of the PDP-11 was the size of its addresses (16 bits) as com-
pared to the address sizes of the IBM 360 (24 to 31 bits) and the VAX (32 bits).
Address size limits the program length, since the size of a program and the
amount of data needed by the program must be less than 2Address size. The reason
the address size is so hard to change is that it determines the minimum width of
anything that can contain an address: PC, register, memory word, and effective-
address arithmetic. If there is no plan to expand the address from the start, then
the chances of successfully changing address size are so slim that it normally
means the end of that computer family. Bell and Strecker [1976] put it like this:

There is only one mistake that can be made in computer design that is difficult to
recover from—not having enough address bits for memory addressing and mem-
ory management. The PDP-11 followed the unbroken tradition of nearly every
known computer. [p. 2]

A partial list of successful computers that eventually starved to death for lack of
address bits includes the PDP-8, PDP-10, PDP-11, Intel 8080, Intel 8086, Intel
80186, Intel 80286, Motorola 6800, AMI 6502, Zilog Z80, CRAY-1, and CRAY
X-MP.

The venerable 80x86 line bears the distinction of having been extended
twice, first to 32 bits with the Intel 80386 in 1985 and recently to 64 bits with the
AMD Opteron.

Pitfall Ignoring the impact of the operating system on the performance of the memory
hierarchy.

Figure B.29 shows the memory stall time due to the operating system spent on
three large workloads. About 25% of the stall time is either spent in misses in the
operating system or results from misses in the application programs because of
interference with the operating system.

Pitfall Relying on the operating systems to change the page size over time.

The Alpha architects had an elaborate plan to grow the architecture over time by
growing its page size, even building it into the size of its virtual address. When it
came time to grow page sizes with later Alphas, the operating system designers
balked and the virtual memory system was revised to grow the address space
while maintaining the 8 KB page.

Architects of other computers noticed very high TLB miss rates, and so
added multiple, larger page sizes to the TLB. The hope was that operating sys-
tems programmers would allocate an object to the largest page that made sense,
thereby preserving TLB entries. After a decade of trying, most operating systems
use these “superpages” only for handpicked functions: mapping the display
memory or other I/O devices, or using very large pages for the database code.

B.8 Historical Perspective and References ■ B-59

The difficulty of building a memory system to keep pace with faster processors is
underscored by the fact that the raw material for main memory is the same as that
found in the cheapest computer. It is the principle of locality that helps us here—
its soundness is demonstrated at all levels of the memory hierarchy in current
computers, from disks to TLBs.

However, the increasing relative latency to memory, taking hundreds of
clock cycles in 2011, means that programmers and compiler writers must be
aware of the parameters of the caches and TLBs if they want their programs to
perform well.

In Section L.3 (available online) we examine the history of caches, virtual mem-
ory, and virtual machines. (The historical section covers both this appendix and
Chapter 3.) IBM plays a prominent role in the history of all three. References for
further reading are included.

Time

Misses
% Time due to

application misses % Time due directly to OS misses
% Time

OS misses
and

application
conflictsWorkload

% in
applications

% in
OS

Inherent
application

misses

OS
conflicts

with
applications

OS
instruction

misses

Data
misses for
migration

Data
misses

in block
operations

Rest
of OS

misses

Pmake 47% 53% 14.1% 4.8% 10.9% 1.0% 6.2% 2.9% 25.8%

Multipgm 53% 47% 21.6% 3.4% 9.2% 4.2% 4.7% 3.4% 24.9%

Oracle 73% 27% 25.7% 10.2% 10.6% 2.6% 0.6% 2.8% 26.8%

Figure B.29 Misses and time spent in misses for applications and operating system. The operating system
adds about 25% to the execution time of the application. Each processor has a 64 KB instruction cache and a two-
level data cache with 64 KB in the first level and 256 KB in the second level; all caches are direct mapped with 16-
byte blocks. Collected on Silicon Graphics POWER station 4D/340, a multiprocessor with four 33 MHz R3000 pro-
cessors running three application workloads under a UNIX System V—Pmake, a parallel compile of 56 files; Multi-
pgm, the parallel numeric program MP3D running concurrently with Pmake and a five-screen edit session; and
Oracle, running a restricted version of the TP-1 benchmark using the Oracle database. (Data from Torrellas, Gupta,
and Hennessy [1992].)

 B.7 Concluding Remarks

 B.8 Historical Perspective and References

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-60 ■ Appendix B Review of Memory Hierarchy

B.1 [10/10/10/15] <B.1> You are trying to appreciate how important the principle of
locality is in justifying the use of a cache memory, so you experiment with a
computer having an L1 data cache and a main memory (you exclusively focus on
data accesses). The latencies (in CPU cycles) of the different kinds of accesses
are as follows: cache hit, 1 cycle; cache miss, 105 cycles; main memory access
with cache disabled, 100 cycles.

a. [10] <B.1> When you run a program with an overall miss rate of 5%, what
will the average memory access time (in CPU cycles) be?

b. [10] <B.1> Next, you run a program specifically designed to produce com-
pletely random data addresses with no locality. Toward that end, you use an
array of size 256 MB (all of it fits in the main memory). Accesses to random
elements of this array are continuously made (using a uniform random number
generator to generate the elements indices). If your data cache size is 64 KB,
what will the average memory access time be?

c. [10] <B.1> If you compare the result obtained in part (b) with the main mem-
ory access time when the cache is disabled, what can you conclude about the
role of the principle of locality in justifying the use of cache memory?

d. [15] <B.1> You observed that a cache hit produces a gain of 99 cycles (1 cycle
vs. 100), but it produces a loss of 5 cycles in the case of a miss (105 cycles vs.
100). In the general case, we can express these two quantities as G (gain) and
L (loss). Using these two quantities (G and L), identify the highest miss rate
after which the cache use would be disadvantageous.

B.2 [15/15] <B.1> For the purpose of this exercise, we assume that we have 512-byte
cache with 64-byte blocks. We will also assume that the main memory is 2 KB
large. We can regard the memory as an array of 64-byte blocks: M0, M1, …, M31.
Figure B.30 sketches the memory blocks that can reside in different cache blocks
if the cache was fully associative.

a. [15] <B.1> Show the contents of the table if cache is organized as a direct-
mapped cache.

b. [15] <B.1> Repeat part (a) with the cache organized as a four-way set associative
cache.

B.3 [10/10/10/10/15/10/15/20] <B.1> Cache organization is often influenced by the
desire to reduce the cache’s power consumption. For that purpose we assume that
the cache is physically distributed into a data array (holding the data), tag array
(holding the tags), and replacement array (holding information needed by
replacement policy). Furthermore, every one of these arrays is physically distrib-
uted into multiple sub-arrays (one per way) that can be individually accessed; for
example, a four-way set associative least recently used (LRU) cache would have

Exercises by Amr Zaky

Exercises by Amr Zaky ■ B-61

four data sub-arrays, four tag sub-arrays, and four replacement sub-arrays. We
assume that the replacement sub-arrays are accessed once per access when the
LRU replacement policy is used, and once per miss if the first-in, first-out (FIFO)
replacement policy is used. It is not needed when a random replacement policy is
used. For a specific cache, it was determined that the accesses to the different
arrays have the following power consumption weights:

Estimate the cache power usage (in power units) for the following configurations.
We assume the cache is four-way set associative. Main memory access power—
albeit important—is not considered here. Provide answers for the LRU, FIFO, and
random replacement policies.

a. [10]<B.1> A cache read hit. All arrays are read simultaneously.

b. [10] <B.1> Repeat part (a) for a cache read miss.

c. [10] <B.1> Repeat part (a) assuming that the cache access is split across two
cycles. In the first cycle, all the tag sub-arrays are accessed. In the second
cycle, only the sub-array whose tag matched will be accessed.

d. [10] <B.1> Repeat part (c) for a cache read miss (no data array accesses in the
second cycle).

e. [15] <B.1> Repeat part (c) assuming that logic is added to predict the cache
way to be accessed. Only the tag sub-array for the predicted way is accessed
in cycle one. A way hit (address match in predicted way) implies a cache hit.
A way miss dictates examining all the tag sub-arrays in the second cycle. In

Cache block Set Way
Memory blocks that can reside in

cache block

0 0 0 M0, M1, M2, …, M31

1 0 1 M0, M1, M2, …, M31

2 0 2 M0, M1, M2, …, M31

3 0 3 M0, M1, M2, …, M31

4 0 4 M0, M1, M2, …, M31

5 0 5 M0, M1, M2, …, M31

6 0 6 M0, M1, M2, …, M31

7 0 7 M0, M1, M2, …, M31

Figure B.30 Memory blocks that can reside in cache block.

Array
Power consumption weight
(per way accessed)

Data array 20 units

Tag Array 5 units

Miscellaneous array 1 unit

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-62 ■ Appendix B Review of Memory Hierarchy

case of a way hit, only one data sub-array (the one whose tag matched) is
accessed in cycle two. Assume there is way hit.

f. [10] <B.1> Repeat part (e) assuming that the way predictor missed (the way it
chose is wrong). When it fails, the way predictor adds an extra cycle in which
it accesses all the tag sub-arrays. Assume a cache read hit.

g. [15] <B.1> Repeat part (f) assuming a cache read miss.

h. [20] <B.1> Use parts (e), (f), and (g) for the general case where the work-
load has the following statistics: way-predictor miss rate = 5% and cache
miss rate = 3%. (Consider different replacement policies.)

B.4 [10/10/15/15/15/20] <B.1> We compare the write bandwidth requirements of
write-through versus write-back caches using a concrete example. Let us assume
that we have a 64 KB cache with a line size of 32 bytes. The cache will allocate a
line on a write miss. If configured as a write-back cache, it will write back the
whole dirty line if it needs to be replaced. We will also assume that the cache is
connected to the lower level in the hierarchy through a 64-bit-wide (8-byte-wide)
bus. The number of CPU cycles for a B-bytes write access on this bus is

For example, an 8-byte write would take cycles, whereas using

the same formula a 12-byte write would take 15 cycles. Answer the following
questions while referring to the C code snippet below:
…

#define PORTION 1 … Base = 8*i; for (unsigned int j=base;
j < base+PORTION; j++) //assume j is stored in a register

data[j] = j;

a. [10] <B.1> For a write-through cache, how many CPU cycles are spent on
write transfers to the memory for the all the combined iterations of the j loop?

b. [10] <B.1> If the cache is configured as a write-back cache, how many CPU
cycles are spent on writing back a cache line?

c. [15] <B.1> Change PORTION to 8 and repeat part (a).

d. [15] <B.1> What is the minimum number of array updates to the same cache
line (before replacing it) that would render the write-back cache superior?

e. [15] <B.1> Think of a scenario where all the words of the cache line will be
written (not necessarily using the above code) and a write-through cache will
require fewer total CPU cycles than the write-back cache.

B.5 [10/10/10/10/] <B.2> You are building a system around a processor with in-
order execution that runs at 1.1 GHz and has a CPI of 0.7 excluding memory
accesses. The only instructions that read or write data from memory are loads

10 5
B
8
--- 1–+

10 5
B
8
--- 1–+

Exercises by Amr Zaky ■ B-63

(20% of all instructions) and stores (5% of all instructions). The memory sys-
tem for this computer is composed of a split L1 cache that imposes no penalty
on hits. Both the I-cache and D-cache are direct mapped and hold 32 KB each.
The I-cache has a 2% miss rate and 32-byte blocks, and the D-cache is write-
through with a 5% miss rate and 16-byte blocks. There is a write buffer on the
D-cache that eliminates stalls for 95% of all writes. The 512 KB write-back,
unified L2 cache has 64-byte blocks and an access time of 15 ns. It is connected
to the L1 cache by a 128-bit data bus that runs at 266 MHz and can transfer one
128-bit word per bus cycle. Of all memory references sent to the L2 cache in
this system, 80% are satisfied without going to main memory. Also, 50% of all
blocks replaced are dirty. The 128-bit-wide main memory has an access latency
of 60 ns, after which any number of bus words may be transferred at the rate of
one per cycle on the 128-bit-wide 133 MHz main memory bus.

a. [10] <B.2> What is the average memory access time for instruction accesses?

b. [10] <B.2> What is the average memory access time for data reads?

c. [10] <B.2> What is the average memory access time for data writes?

d. [10] <B.2> What is the overall CPI, including memory accesses?

B.6 [10/15/15] <B.2> Converting miss rate (misses per reference) into misses per
instruction relies upon two factors: references per instruction fetched and the
fraction of fetched instructions that actually commits.

a. [10] <B.2> The formula for misses per instruction on page B-5 is written first in
terms of three factors: miss rate, memory accesses, and instruction count. Each
of these factors represents actual events. What is different about writing misses
per instruction as miss rate times the factor memory accesses per instruction?

b. [15] <B.2> Speculative processors will fetch instructions that do not commit.
The formula for misses per instruction on page B-5 refers to misses per
instruction on the execution path, that is, only the instructions that must actu-
ally be executed to carry out the program. Convert the formula for misses per
instruction on page B-5 into one that uses only miss rate, references per
instruction fetched, and fraction of fetched instructions that commit. Why
rely upon these factors rather than those in the formula on page B-5?

c. [15] <B.2> The conversion in part (b) could yield an incorrect value to the
extent that the value of the factor references per instruction fetched is not
equal to the number of references for any particular instruction. Rewrite the
formula of part (b) to correct this deficiency.

B.7 [20] <B.1, B.3> In systems with a write-through L1 cache backed by a write-
back L2 cache instead of main memory, a merging write buffer can be simplified.
Explain how this can be done. Are there situations where having a full write buf-
fer (instead of the simple version you’ve just proposed) could be helpful?

B.8 [20/20/15/25] <B.3> The LRU replacement policy is based on the assumption
that if address A1 is accessed less recently than address A2 in the past, then A2
will be accessed again before A1 in the future. Hence, A2 is given priority over
A1. Discuss how this assumption fails to hold when the a loop larger than the
instruction cache is being continuously executed. For example, consider a fully

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-64 ■ Appendix B Review of Memory Hierarchy

associative 128-byte instruction cache with a 4-byte block (every block can
exactly hold one instruction). The cache uses an LRU replacement policy.

a. [20] <B.3> What is the asymptotic instruction miss rate for a 64-byte loop
with a large number of iterations?

b. [20] <B.3> Repeat part (a) for loop sizes 192 bytes and 320 bytes.

c. [15] <B.3> If the cache replacement policy is changed to most recently used
(MRU) (replace the most recently accessed cache line), which of the three
above cases (64-, 192-, or 320-byte loops) would benefit from this policy?

d. [25] <B.3> Suggest additional replacement policies that might outperform
LRU.

B.9 [20] < B.3> Increasing a cache’s associativity (with all other parameters kept
constant), statistically reduces the miss rate. However, there can be pathological
cases where increasing a cache’s associativity would increase the miss rate for a
particular workload. Consider the case of direct mapped compared to a two-way
set associative cache of equal size. Assume that the set associative cache uses the
LRU replacement policy. To simplify, assume that the block size is one word.
Now construct a trace of word accesses that would produce more misses in the
two-way associative cache. (Hint: Focus on constructing a trace of accesses that
are exclusively directed to a single set of the two-way set associative cache, such
that the same trace would exclusively access two blocks in the direct-mapped
cache.)

B.10 [10/10/15] <B.3> Consider a two-level memory hierarchy made of L1 and L2
data caches. Assume that both caches use write-back policy on write hit and both
have the same block size. List the actions taken in response to the following
events:

a. [10] <B.3> An L1 cache miss when the caches are organized in an inclusive
hierarchy.

b. [10] <B.3> An L1 cache miss when the caches are organized in an exclusive
hierarchy.

c. [15] <B.3> In both parts (a) and (b), consider the possibility that the evicted
line might be clean or dirty.

B.11 [15/20] <B.2, B.3> Excluding some instructions from entering the cache can
reduce conflict misses.

a. [15] <B.3> Sketch a program hierarchy where parts of the program would be
better excluded from entering the instruction cache. (Hint: Consider a pro-
gram with code blocks that are placed in deeper loop nests than other blocks.)

b. [20] <B.2, B.3> Suggest software or hardware techniques to enforce exclu-
sion of certain blocks from the instruction cache.

B.12 [15] <B.4> A program is running on a computer with a four-entry fully associa-
tive (micro) translation lookaside buffer (TLB):

Exercises by Amr Zaky ■ B-65

The following is a trace of virtual page numbers accessed by a program. For
each access indicate whether it produces a TLB hit/miss and, if it accesses the
page table, whether it produces a page hit or fault. Put an X under the page table
column if it is not accessed.

VP# PP# Entry valid

5 30 1

7 1 0

10 10 1

15 25 1

Virtual page index Physical page # Present

0 3 Y

1 7 N

2 6 N

3 5 Y

4 14 Y

5 30 Y

6 26 Y

7 11 Y

8 13 N

9 18 N

10 10 Y

11 56 Y

12 110 Y

13 33 Y

14 12 N

15 25 Y

Virtual page accessed
TLB

(hit or miss)
Page table

(hit or fault)

1

5

9

14

10

6

15

12

7

2

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

B-66 ■ Appendix B Review of Memory Hierarchy

B.13 [15/15/15/15/] <B.4> Some memory systems handle TLB misses in software (as an
exception), while others use hardware for TLB misses.

a. [15] <B.4> What are the trade-offs between these two methods for handling
TLB misses?

b. [15] <B.4> Will TLB miss handling in software always be slower than TLB
miss handling in hardware? Explain.

c. [15] <B.4> Are there page table structures that would be difficult to handle in
hardware but possible in software? Are there any such structures that would
be difficult for software to handle but easy for hardware to manage?

d. [15] <B.4> Why are TLB miss rates for floating-point programs generally
higher than those for integer programs?

B.14 [25/25/25/25/20] <B.4> How big should a TLB be? TLB misses are usually very
fast (fewer than 10 instructions plus the cost of an exception), so it may not be
worth having a huge TLB just to lower the TLB miss rate a bit. Using the SimpleS-
calar simulator (www.cs.wisc.edu/~mscalar/simplescalar.html) and one or more
SPEC95 benchmarks, calculate the TLB miss rate and the TLB overhead (in per-
centage of time wasted handling TLB misses) for the following TLB configura-
tions. Assume that each TLB miss requires 20 instructions.

a. [25] <B.4> 128 entries, two-way set associative, 4 KB to 64 KB pages (going
by powers of 2).

b. [25] <B.4> 256 entries, two-way set associative, 4 KB to 64 KB pages (going
by powers of 2).

c. [25] <B.4> 512 entries, two-way set associative, 4 KB to 64 KB pages (going
by powers of 2).

d. [25] <B.4> 1024 entries, two-way set associative, 4 KB to 64 KB pages
(going by powers of 2).

e. [20] <B.4> What would be the effect on TLB miss rate and overhead for a
multitasking environment? How would the context switch frequency affect
the overhead?

B.15 [15/20/20] <B.5> It is possible to provide more flexible protection than that in
the Intel Pentium architecture by using a protection scheme similar to that used
in the Hewlett-Packard Precision Architecture (HP/PA). In such a scheme, each
page table entry contains a “protection ID” (key) along with access rights for
the page. On each reference, the CPU compares the protection ID in the page
table entry with those stored in each of four protection ID registers (access to
these registers requires that the CPU be in supervisor mode). If there is no
match for the protection ID in the page table entry or if the access is not a per-
mitted access (writing to a read-only page, for example), an exception is gener-
ated.

a. [15] <B.5> How could a process have more than four valid protection IDs at
any given time? In other words, suppose a process wished to have 10 protec-
tion IDs simultaneously. Propose a mechanism by which this could be done
(perhaps with help from software).

http://www.cs.wisc.edu/~mscalar/simplescalar.html

Exercises by Amr Zaky ■ B-67

b. [20] <B.5> Explain how this model could be used to facilitate the construction
of operating systems from relatively small pieces of code that can’t overwrite
each other (microkernels). What advantages might such an operating system
have over a monolithic operating system in which any code in the OS can
write to any memory location?

c. [20] <B.5> A simple design change to this system would allow two protec-
tion IDs for each page table entry, one for read access and the other for either
write or execute access (the field is unused if neither the writable nor execut-
able bit is set). What advantages might there be from having different protec-
tion IDs for read and write capabilities? (Hint: Could this make it easier to
share data and code between processes?)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C.1 Introduction C-2

C.2 The Major Hurdle of Pipelining—Pipeline Hazards C-11

C.3 How Is Pipelining Implemented? C-30

C.4 What Makes Pipelining Hard to Implement? C-43

C.5 Extending the MIPS Pipeline to Handle Multicycle Operations C-51

C.6 Putting It All Together: The MIPS R4000 Pipeline C-61

C.7 Crosscutting Issues C-70

C.8 Fallacies and Pitfalls C-80

C.9 Concluding Remarks C-81

C.10 Historical Perspective and References C-81

 Updated Exercises by Diana Franklin C-82

C
Pipelining: Basic and

Intermediate Concepts 1

It is quite a three-pipe problem.

Sir Arthur Conan Doyle
The Adventures of Sherlock Holmes

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-2 ■ Appendix C Pipelining: Basic and Intermediate Concepts

Many readers of this text will have covered the basics of pipelining in another
text (such as our more basic text Computer Organization and Design) or in
another course. Because Chapter 3 builds heavily on this material, readers should
ensure that they are familiar with the concepts discussed in this appendix before
proceeding. As you read Chapter 2, you may find it helpful to turn to this mate-
rial for a quick review.

We begin the appendix with the basics of pipelining, including discussing the
data path implications, introducing hazards, and examining the performance of
pipelines. This section describes the basic five-stage RISC pipeline that is the
basis for the rest of the appendix. Section C.2 describes the issue of hazards, why
they cause performance problems, and how they can be dealt with. Section C.3
discusses how the simple five-stage pipeline is actually implemented, focusing
on control and how hazards are dealt with.

Section C.4 discusses the interaction between pipelining and various aspects of
instruction set design, including discussing the important topic of exceptions and
their interaction with pipelining. Readers unfamiliar with the concepts of precise
and imprecise interrupts and resumption after exceptions will find this material
useful, since they are key to understanding the more advanced approaches in
Chapter 3.

Section C.5 discusses how the five-stage pipeline can be extended to handle
longer-running floating-point instructions. Section C.6 puts these concepts
together in a case study of a deeply pipelined processor, the MIPS R4000/4400,
including both the eight-stage integer pipeline and the floating-point pipeline.

Section C.7 introduces the concept of dynamic scheduling and the use of
scoreboards to implement dynamic scheduling. It is introduced as a crosscutting
issue, since it can be used to serve as an introduction to the core concepts in
Chapter 3, which focused on dynamically scheduled approaches. Section C.7 is
also a gentle introduction to the more complex Tomasulo’s algorithm covered in
Chapter 3. Although Tomasulo’s algorithm can be covered and understood with-
out introducing scoreboarding, the scoreboarding approach is simpler and easier
to comprehend.

What Is Pipelining?

Pipelining is an implementation technique whereby multiple instructions are
overlapped in execution; it takes advantage of parallelism that exists among the
actions needed to execute an instruction. Today, pipelining is the key implemen-
tation technique used to make fast CPUs.

A pipeline is like an assembly line. In an automobile assembly line, there are
many steps, each contributing something to the construction of the car. Each step
operates in parallel with the other steps, although on a different car. In a computer
pipeline, each step in the pipeline completes a part of an instruction. Like the

C.1 Introduction

C.1 Introduction ■ C-3

assembly line, different steps are completing different parts of different instruc-
tions in parallel. Each of these steps is called a pipe stage or a pipe segment. The
stages are connected one to the next to form a pipe—instructions enter at one
end, progress through the stages, and exit at the other end, just as cars would in
an assembly line.

In an automobile assembly line, throughput is defined as the number of cars
per hour and is determined by how often a completed car exits the assembly line.
Likewise, the throughput of an instruction pipeline is determined by how often an
instruction exits the pipeline. Because the pipe stages are hooked together, all the
stages must be ready to proceed at the same time, just as we would require in an
assembly line. The time required between moving an instruction one step down
the pipeline is a processor cycle. Because all stages proceed at the same time, the
length of a processor cycle is determined by the time required for the slowest
pipe stage, just as in an auto assembly line the longest step would determine the
time between advancing the line. In a computer, this processor cycle is usually
1 clock cycle (sometimes it is 2, rarely more).

The pipeline designer’s goal is to balance the length of each pipeline stage,
just as the designer of the assembly line tries to balance the time for each step in
the process. If the stages are perfectly balanced, then the time per instruction on
the pipelined processor—assuming ideal conditions—is equal to

Under these conditions, the speedup from pipelining equals the number of pipe
stages, just as an assembly line with n stages can ideally produce cars n times
as fast. Usually, however, the stages will not be perfectly balanced; further-
more, pipelining does involve some overhead. Thus, the time per instruction on
the pipelined processor will not have its minimum possible value, yet it can be
close.

Pipelining yields a reduction in the average execution time per instruction.
Depending on what you consider as the baseline, the reduction can be viewed as
decreasing the number of clock cycles per instruction (CPI), as decreasing the
clock cycle time, or as a combination. If the starting point is a processor that
takes multiple clock cycles per instruction, then pipelining is usually viewed as
reducing the CPI. This is the primary view we will take. If the starting point is a
processor that takes 1 (long) clock cycle per instruction, then pipelining
decreases the clock cycle time.

Pipelining is an implementation technique that exploits parallelism among
the instructions in a sequential instruction stream. It has the substantial advantage
that, unlike some speedup techniques (see Chapter 4), it is not visible to the pro-
grammer. In this appendix we will first cover the concept of pipelining using a
classic five-stage pipeline; other chapters investigate the more sophisticated
pipelining techniques in use in modern processors. Before we say more about
pipelining and its use in a processor, we need a simple instruction set, which we
introduce next.

Time per instruction on unpipelined machine
Number of pipe stages

--

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-4 ■ Appendix C Pipelining: Basic and Intermediate Concepts

The Basics of a RISC Instruction Set

Throughout this book we use a RISC (reduced instruction set computer) archi-
tecture or load-store architecture to illustrate the basic concepts, although
nearly all the ideas we introduce in this book are applicable to other processors.
In this section we introduce the core of a typical RISC architecture. In this
appendix, and throughout the book, our default RISC architecture is MIPS. In
many places, the concepts are significantly similar that they will apply to any
RISC. RISC architectures are characterized by a few key properties, which
dramatically simplify their implementation:

■ All operations on data apply to data in registers and typically change the
entire register (32 or 64 bits per register).

■ The only operations that affect memory are load and store operations that
move data from memory to a register or to memory from a register, respec-
tively. Load and store operations that load or store less than a full register
(e.g., a byte, 16 bits, or 32 bits) are often available.

■ The instruction formats are few in number, with all instructions typically
being one size.

These simple properties lead to dramatic simplifications in the implementation of
pipelining, which is why these instruction sets were designed this way.

 For consistency with the rest of the text, we use MIPS64, the 64-bit version
of the MIPS instruction set. The extended 64-bit instructions are generally desig-
nated by having a D on the start or end of the mnemonic. For example DADD is the
64-bit version of an add instruction, while LD is the 64-bit version of a load
instruction.

Like other RISC architectures, the MIPS instruction set provides 32 registers,
although register 0 always has the value 0. Most RISC architectures, like MIPS,
have three classes of instructions (see Appendix A for more detail):

1. ALU instructions—These instructions take either two registers or a register
and a sign-extended immediate (called ALU immediate instructions, they
have a 16-bit offset in MIPS), operate on them, and store the result into a
third register. Typical operations include add (DADD), subtract (DSUB), and
logical operations (such as AND or OR), which do not differentiate between
32-bit and 64-bit versions. Immediate versions of these instructions use the
same mnemonics with a suffix of I. In MIPS, there are both signed and
unsigned forms of the arithmetic instructions; the unsigned forms, which do
not generate overflow exceptions—and thus are the same in 32-bit and 64-bit
mode—have a U at the end (e.g., DADDU, DSUBU, DADDIU).

2. Load and store instructions—These instructions take a register source, called
the base register, and an immediate field (16-bit in MIPS), called the offset, as
operands. The sum—called the effective address—of the contents of the base
register and the sign-extended offset is used as a memory address. In the case
of a load instruction, a second register operand acts as the destination for the

C.1 Introduction ■ C-5

data loaded from memory. In the case of a store, the second register operand
is the source of the data that is stored into memory. The instructions load
word (LD) and store word (SD) load or store the entire 64-bit register contents.

3. Branches and jumps—Branches are conditional transfers of control. There
are usually two ways of specifying the branch condition in RISC architec-
tures: with a set of condition bits (sometimes called a condition code) or by a
limited set of comparisons between a pair of registers or between a register
and zero. MIPS uses the latter. For this appendix, we consider only compari-
sons for equality between two registers. In all RISC architectures, the branch
destination is obtained by adding a sign-extended offset (16 bits in MIPS) to
the current PC. Unconditional jumps are provided in many RISC architec-
tures, but we will not cover jumps in this appendix.

A Simple Implementation of a RISC Instruction Set

To understand how a RISC instruction set can be implemented in a pipelined
fashion, we need to understand how it is implemented without pipelining. This
section shows a simple implementation where every instruction takes at most 5
clock cycles. We will extend this basic implementation to a pipelined version,
resulting in a much lower CPI. Our unpipelined implementation is not the most
economical or the highest-performance implementation without pipelining.
Instead, it is designed to lead naturally to a pipelined implementation. Imple-
menting the instruction set requires the introduction of several temporary regis-
ters that are not part of the architecture; these are introduced in this section to
simplify pipelining. Our implementation will focus only on a pipeline for an inte-
ger subset of a RISC architecture that consists of load-store word, branch, and
integer ALU operations.

Every instruction in this RISC subset can be implemented in at most 5 clock
cycles. The 5 clock cycles are as follows.

1. Instruction fetch cycle (IF):

Send the program counter (PC) to memory and fetch the current instruction
from memory. Update the PC to the next sequential PC by adding 4 (since
each instruction is 4 bytes) to the PC.

2. Instruction decode/register fetch cycle (ID):

Decode the instruction and read the registers corresponding to register
source specifiers from the register file. Do the equality test on the registers
as they are read, for a possible branch. Sign-extend the offset field of the
instruction in case it is needed. Compute the possible branch target address
by adding the sign-extended offset to the incremented PC. In an aggressive
implementation, which we explore later, the branch can be completed at the
end of this stage by storing the branch-target address into the PC, if the con-
dition test yielded true.

Decoding is done in parallel with reading registers, which is possible
because the register specifiers are at a fixed location in a RISC architecture.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-6 ■ Appendix C Pipelining: Basic and Intermediate Concepts

This technique is known as fixed-field decoding. Note that we may read a
register we don’t use, which doesn’t help but also doesn’t hurt performance.
(It does waste energy to read an unneeded register, and power-sensitive
designs might avoid this.) Because the immediate portion of an instruction
is also located in an identical place, the sign-extended immediate is also cal-
culated during this cycle in case it is needed.

3. Execution/effective address cycle (EX):

The ALU operates on the operands prepared in the prior cycle, performing
one of three functions depending on the instruction type.

■ Memory reference—The ALU adds the base register and the offset to form
the effective address.

■ Register-Register ALU instruction—The ALU performs the operation
specified by the ALU opcode on the values read from the register file.

■ Register-Immediate ALU instruction—The ALU performs the operation
specified by the ALU opcode on the first value read from the register file
and the sign-extended immediate.

In a load-store architecture the effective address and execution cycles
can be combined into a single clock cycle, since no instruction needs to
simultaneously calculate a data address and perform an operation on the
data.

4. Memory access (MEM):

If the instruction is a load, the memory does a read using the effective
address computed in the previous cycle. If it is a store, then the memory
writes the data from the second register read from the register file using the
effective address.

5. Write-back cycle (WB):

■ Register-Register ALU instruction or load instruction:

Write the result into the register file, whether it comes from the memory
system (for a load) or from the ALU (for an ALU instruction).

In this implementation, branch instructions require 2 cycles, store instructions
require 4 cycles, and all other instructions require 5 cycles. Assuming a branch
frequency of 12% and a store frequency of 10%, a typical instruction distribution
leads to an overall CPI of 4.54. This implementation, however, is not optimal
either in achieving the best performance or in using the minimal amount of hard-
ware given the performance level; we leave the improvement of this design as an
exercise for you and instead focus on pipelining this version.

The Classic Five-Stage Pipeline for a RISC Processor

We can pipeline the execution described above with almost no changes by simply
starting a new instruction on each clock cycle. (See why we chose this design?)

C.1 Introduction ■ C-7

Each of the clock cycles from the previous section becomes a pipe stage—a cycle
in the pipeline. This results in the execution pattern shown in Figure C.1, which
is the typical way a pipeline structure is drawn. Although each instruction takes 5
clock cycles to complete, during each clock cycle the hardware will initiate a new
instruction and will be executing some part of the five different instructions.

You may find it hard to believe that pipelining is as simple as this; it’s not. In
this and the following sections, we will make our RISC pipeline “real” by dealing
with problems that pipelining introduces.

To start with, we have to determine what happens on every clock cycle of the
processor and make sure we don’t try to perform two different operations with
the same data path resource on the same clock cycle. For example, a single ALU
cannot be asked to compute an effective address and perform a subtract operation
at the same time. Thus, we must ensure that the overlap of instructions in the
pipeline cannot cause such a conflict. Fortunately, the simplicity of a RISC
instruction set makes resource evaluation relatively easy. Figure C.2 shows a
simplified version of a RISC data path drawn in pipeline fashion. As you can see,
the major functional units are used in different cycles, and hence overlapping the
execution of multiple instructions introduces relatively few conflicts. There are
three observations on which this fact rests.

First, we use separate instruction and data memories, which we would typi-
cally implement with separate instruction and data caches (discussed in Chapter 2).
The use of separate caches eliminates a conflict for a single memory that would
arise between instruction fetch and data memory access. Notice that if our pipe-
lined processor has a clock cycle that is equal to that of the unpipelined version,
the memory system must deliver five times the bandwidth. This increased demand
is one cost of higher performance.

Second, the register file is used in the two stages: one for reading in ID and
one for writing in WB. These uses are distinct, so we simply show the register
file in two places. Hence, we need to perform two reads and one write every

 Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Instruction i IF ID EX MEM WB

Instruction i + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Figure C.1 Simple RISC pipeline. On each clock cycle, another instruction is fetched and begins its five-cycle execu-
tion. If an instruction is started every clock cycle, the performance will be up to five times that of a processor that is
not pipelined. The names for the stages in the pipeline are the same as those used for the cycles in the unpipelined
implementation: IF = instruction fetch, ID = instruction decode, EX = execution, MEM = memory access, and WB =
write-back.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-8 ■ Appendix C Pipelining: Basic and Intermediate Concepts

clock cycle. To handle reads and a write to the same register (and for another
reason, which will become obvious shortly), we perform the register write in the
first half of the clock cycle and the read in the second half.

Third, Figure C.2 does not deal with the PC. To start a new instruction every
clock, we must increment and store the PC every clock, and this must be done
during the IF stage in preparation for the next instruction. Furthermore, we must
also have an adder to compute the potential branch target during ID. One further
problem is that a branch does not change the PC until the ID stage. This causes a
problem, which we ignore for now, but will handle shortly.

Although it is critical to ensure that instructions in the pipeline do not attempt
to use the hardware resources at the same time, we must also ensure that instruc-
tions in different stages of the pipeline do not interfere with one another. This
separation is done by introducing pipeline registers between successive stages of
the pipeline, so that at the end of a clock cycle all the results from a given stage
are stored into a register that is used as the input to the next stage on the next
clock cycle. Figure C.3 shows the pipeline drawn with these pipeline registers.

Figure C.2 The pipeline can be thought of as a series of data paths shifted in time. This shows the overlap among
the parts of the data path, with clock cycle 5 (CC 5) showing the steady-state situation. Because the register file is
used as a source in the ID stage and as a destination in the WB stage, it appears twice. We show that it is read in one
part of the stage and written in another by using a solid line, on the right or left, respectively, and a dashed line on
the other side. The abbreviation IM is used for instruction memory, DM for data memory, and CC for clock cycle.

A
LU

A
LU

RegRegIM DM

RegIM DM

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

P
ro

gr
am

 e
xe

cu
tio

n
or

de
r

(in
 in

st
ru

ct
io

ns
)

Reg

CC 8 CC 9

RegIM DM RegA
LU

RegIM DM Reg

A
LU

RegIM DM Reg

A
LU

C.1 Introduction ■ C-9

Although many figures will omit such registers for simplicity, they are
required to make the pipeline operate properly and must be present. Of course,
similar registers would be needed even in a multicycle data path that had no pipe-
lining (since only values in registers are preserved across clock boundaries). In
the case of a pipelined processor, the pipeline registers also play the key role of
carrying intermediate results from one stage to another where the source and des-
tination may not be directly adjacent. For example, the register value to be stored

Figure C.3 A pipeline showing the pipeline registers between successive pipeline stages. Notice that the regis-
ters prevent interference between two different instructions in adjacent stages in the pipeline. The registers also play
the critical role of carrying data for a given instruction from one stage to the other. The edge-triggered property of
registers—that is, that the values change instantaneously on a clock edge—is critical. Otherwise, the data from one
instruction could interfere with the execution of another!

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

DMIM

A
LU

DMIM

A
LU

DMIM

A
LU

IM

A
LU

IM

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-10 ■ Appendix C Pipelining: Basic and Intermediate Concepts

during a store instruction is read during ID, but not actually used until MEM; it is
passed through two pipeline registers to reach the data memory during the MEM
stage. Likewise, the result of an ALU instruction is computed during EX, but not
actually stored until WB; it arrives there by passing through two pipeline regis-
ters. It is sometimes useful to name the pipeline registers, and we follow the
convention of naming them by the pipeline stages they connect, so that the regis-
ters are called IF/ID, ID/EX, EX/MEM, and MEM/WB.

Basic Performance Issues in Pipelining

Pipelining increases the CPU instruction throughput—the number of instructions
completed per unit of time—but it does not reduce the execution time of an indi-
vidual instruction. In fact, it usually slightly increases the execution time of each
instruction due to overhead in the control of the pipeline. The increase in instruc-
tion throughput means that a program runs faster and has lower total execution
time, even though no single instruction runs faster!

The fact that the execution time of each instruction does not decrease puts lim-
its on the practical depth of a pipeline, as we will see in the next section. In addi-
tion to limitations arising from pipeline latency, limits arise from imbalance
among the pipe stages and from pipelining overhead. Imbalance among the pipe
stages reduces performance since the clock can run no faster than the time needed
for the slowest pipeline stage. Pipeline overhead arises from the combination of
pipeline register delay and clock skew. The pipeline registers add setup time,
which is the time that a register input must be stable before the clock signal that
triggers a write occurs, plus propagation delay to the clock cycle. Clock skew,
which is maximum delay between when the clock arrives at any two registers, also
contributes to the lower limit on the clock cycle. Once the clock cycle is as small
as the sum of the clock skew and latch overhead, no further pipelining is useful,
since there is no time left in the cycle for useful work. The interested reader
should see Kunkel and Smith [1986]. As we saw in Chapter 3, this overhead
affected the performance gains achieved by the Pentium 4 versus the Pentium III.

Example Consider the unpipelined processor in the previous section. Assume that it has a 1
ns clock cycle and that it uses 4 cycles for ALU operations and branches and 5
cycles for memory operations. Assume that the relative frequencies of these
operations are 40%, 20%, and 40%, respectively. Suppose that due to clock skew
and setup, pipelining the processor adds 0.2 ns of overhead to the clock. Ignoring
any latency impact, how much speedup in the instruction execution rate will we
gain from a pipeline?

Answer The average instruction execution time on the unpipelined processor is

Average instruction execution time Clock cycle Average CPI×=

1 ns 40% 20%+() 4 40% 5×+×[]×=

1 ns 4.4×=

4.4 ns=

C.2 The Major Hurdle of Pipelining—Pipeline Hazards ■ C-11

In the pipelined implementation, the clock must run at the speed of the slowest
stage plus overhead, which will be 1 + 0.2 or 1.2 ns; this is the average instruc-
tion execution time. Thus, the speedup from pipelining is

The 0.2 ns overhead essentially establishes a limit on the effectiveness of pipelin-
ing. If the overhead is not affected by changes in the clock cycle, Amdahl’s law
tells us that the overhead limits the speedup.

This simple RISC pipeline would function just fine for integer instructions if
every instruction were independent of every other instruction in the pipeline. In
reality, instructions in the pipeline can depend on one another; this is the topic of
the next section.

There are situations, called hazards, that prevent the next instruction in the
instruction stream from executing during its designated clock cycle. Hazards
reduce the performance from the ideal speedup gained by pipelining. There are
three classes of hazards:

1. Structural hazards arise from resource conflicts when the hardware cannot
support all possible combinations of instructions simultaneously in over-
lapped execution.

2. Data hazards arise when an instruction depends on the results of a previous
instruction in a way that is exposed by the overlapping of instructions in the
pipeline.

3. Control hazards arise from the pipelining of branches and other instructions
that change the PC.

Hazards in pipelines can make it necessary to stall the pipeline. Avoiding a
hazard often requires that some instructions in the pipeline be allowed to pro-
ceed while others are delayed. For the pipelines we discuss in this appendix,
when an instruction is stalled, all instructions issued later than the stalled
instruction—and hence not as far along in the pipeline—are also stalled.
Instructions issued earlier than the stalled instruction—and hence farther along
in the pipeline—must continue, since otherwise the hazard will never clear. As
a result, no new instructions are fetched during the stall. We will see several
examples of how pipeline stalls operate in this section—don’t worry, they
aren’t as complex as they might sound!

Speedup from pipelining
Average instruction time unpipelined

Average instruction time pipelined
---=

4.4 ns
1.2 ns
-------------- 3.7 times= =

C.2 The Major Hurdle of Pipelining—Pipeline Hazards

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-12 ■ Appendix C Pipelining: Basic and Intermediate Concepts

Performance of Pipelines with Stalls

A stall causes the pipeline performance to degrade from the ideal performance.
Let’s look at a simple equation for finding the actual speedup from pipelining,
starting with the formula from the previous section:

Pipelining can be thought of as decreasing the CPI or the clock cycle time. Since
it is traditional to use the CPI to compare pipelines, let’s start with that assump-
tion. The ideal CPI on a pipelined processor is almost always 1. Hence, we can
compute the pipelined CPI:

If we ignore the cycle time overhead of pipelining and assume that the stages are
perfectly balanced, then the cycle time of the two processors can be equal, lead-
ing to

One important simple case is where all instructions take the same number of
cycles, which must also equal the number of pipeline stages (also called the depth
of the pipeline). In this case, the unpipelined CPI is equal to the depth of the pipe-
line, leading to

If there are no pipeline stalls, this leads to the intuitive result that pipelining can
improve performance by the depth of the pipeline.

Alternatively, if we think of pipelining as improving the clock cycle time,
then we can assume that the CPI of the unpipelined processor, as well as that of
the pipelined processor, is 1. This leads to

Speedup from pipelining
Average instruction time unpipelined
Average instruction time pipelined

---=

CPI unpipelined Clock cycle unpipelined×
CPI pipelined Clock cycle pipelined×

---=

CPI unpipelined
CPI pipelined

Clock cycle unpipelined
Clock cycle pipelined

--×=

CPI pipelined Ideal CPI Pipeline stall clock cycles per instruction+=

1 Pipeline stall clock cycles per instruction+=

Speedup
CPI unpipelined

1 Pipeline stall cycles per instruction+
---=

Speedup
Pipeline depth

1 Pipeline stall cycles per instruction+
---=

Speedup from pipelining
CPI unpipelined
CPI pipelined

Clock cycle unpipelined

Clock cycle pipelined
--×=

1
1 Pipeline stall cycles per instruction+

Clock cycle unpipelined
Clock cycle pipelined

--×=

C.2 The Major Hurdle of Pipelining—Pipeline Hazards ■ C-13

In cases where the pipe stages are perfectly balanced and there is no overhead,
the clock cycle on the pipelined processor is smaller than the clock cycle of the
unpipelined processor by a factor equal to the pipelined depth:

This leads to the following:

Thus, if there are no stalls, the speedup is equal to the number of pipeline stages,
matching our intuition for the ideal case.

Structural Hazards

When a processor is pipelined, the overlapped execution of instructions requires
pipelining of functional units and duplication of resources to allow all possible
combinations of instructions in the pipeline. If some combination of instructions
cannot be accommodated because of resource conflicts, the processor is said to
have a structural hazard.

The most common instances of structural hazards arise when some functional
unit is not fully pipelined. Then a sequence of instructions using that unpipelined
unit cannot proceed at the rate of one per clock cycle. Another common way that
structural hazards appear is when some resource has not been duplicated enough
to allow all combinations of instructions in the pipeline to execute. For example,
a processor may have only one register-file write port, but under certain circum-
stances, the pipeline might want to perform two writes in a clock cycle. This will
generate a structural hazard.

When a sequence of instructions encounters this hazard, the pipeline will stall
one of the instructions until the required unit is available. Such stalls will
increase the CPI from its usual ideal value of 1.

Some pipelined processors have shared a single-memory pipeline for data
and instructions. As a result, when an instruction contains a data memory refer-
ence, it will conflict with the instruction reference for a later instruction, as
shown in Figure C.4. To resolve this hazard, we stall the pipeline for 1 clock
cycle when the data memory access occurs. A stall is commonly called a pipe-
line bubble or just bubble, since it floats through the pipeline taking space but
carrying no useful work. We will see another type of stall when we talk about
data hazards.

Designers often indicate stall behavior using a simple diagram with only the
pipe stage names, as in Figure C.5. The form of Figure C.5 shows the stall by
indicating the cycle when no action occurs and simply shifting instruction 3 to

Clock cycle pipelined
Clock cycle unpipelined

Pipeline depth
--=

Pipeline depth
Clock cycle unpipelined
Clock cycle pipelined

--=

Speedup from pipelining
1

1 Pipeline stall cycles per instruction+

Clock cycle unpipelined
Clock cycle pipelined

--×=

1
1 Pipeline stall cycles per instruction+
--- Pipeline depth×=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-14 ■ Appendix C Pipelining: Basic and Intermediate Concepts

the right (which delays its execution start and finish by 1 cycle). The effect of the
pipeline bubble is actually to occupy the resources for that instruction slot as it
travels through the pipeline.

Example Let’s see how much the load structural hazard might cost. Suppose that data ref-
erences constitute 40% of the mix, and that the ideal CPI of the pipelined proces-
sor, ignoring the structural hazard, is 1. Assume that the processor with the
structural hazard has a clock rate that is 1.05 times higher than the clock rate of
the processor without the hazard. Disregarding any other performance losses, is
the pipeline with or without the structural hazard faster, and by how much?

Answer There are several ways we could solve this problem. Perhaps the simplest is to
compute the average instruction time on the two processors:

Average instruction time =

Figure C.4 A processor with only one memory port will generate a conflict whenever a memory reference
occurs. In this example the load instruction uses the memory for a data access at the same time instruction 3 wants
to fetch an instruction from memory.

A
LU

A
LU

RegRegMem Mem

RegMem Mem

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

Reg

CC 8

RegMem Mem RegA
LU

RegMem Mem Reg

A
LU

RegMem Mem

A
LU

Load

Instruction 1

Instruction 2

Instruction 3

Instruction 4

CPI Clock cycle time×

C.2 The Major Hurdle of Pipelining—Pipeline Hazards ■ C-15

Since it has no stalls, the average instruction time for the ideal processor is sim-
ply the Clock cycle timeideal. The average instruction time for the processor with
the structural hazard is

Clearly, the processor without the structural hazard is faster; we can use the ratio
of the average instruction times to conclude that the processor without the hazard
is 1.3 times faster.

As an alternative to this structural hazard, the designer could provide a sepa-
rate memory access for instructions, either by splitting the cache into separate
instruction and data caches or by using a set of buffers, usually called instruction
buffers, to hold instructions. Chapter 5 discusses both the split cache and instruc-
tion buffer ideas.

If all other factors are equal, a processor without structural hazards will
always have a lower CPI. Why, then, would a designer allow structural hazards?
The primary reason is to reduce cost of the unit, since pipelining all the func-
tional units, or duplicating them, may be too costly. For example, processors that
support both an instruction and a data cache access every cycle (to prevent the
structural hazard of the above example) require twice as much total memory

 Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9

Load instruction IF ID EX MEM WB

Instruction i + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 Stall IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Instruction i + 5 IF ID EX MEM

Instruction i + 6 IF ID EX

10

Figure C.5 A pipeline stalled for a structural hazard—a load with one memory port. As shown here, the load
instruction effectively steals an instruction-fetch cycle, causing the pipeline to stall—no instruction is initiated on
clock cycle 4 (which normally would initiate instruction i + 3). Because the instruction being fetched is stalled, all
other instructions in the pipeline before the stalled instruction can proceed normally. The stall cycle will continue to
pass through the pipeline, so that no instruction completes on clock cycle 8. Sometimes these pipeline diagrams are
drawn with the stall occupying an entire horizontal row and instruction 3 being moved to the next row; in either
case, the effect is the same, since instruction i + 3 does not begin execution until cycle 5. We use the form above,
since it takes less space in the figure. Note that this figure assumes that instructions i + 1 and i + 2 are not memory
references.

Average instruction time CPI Clock cycle time×=

1 0.4 1×+()
Clock cycle timeideal

1.05
---×=

1.3 Clock cycle timeideal×=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-16 ■ Appendix C Pipelining: Basic and Intermediate Concepts

bandwidth and often have higher bandwidth at the pins. Likewise, fully pipelin-
ing a floating-point (FP) multiplier consumes lots of gates. If the structural haz-
ard is rare, it may not be worth the cost to avoid it.

Data Hazards

A major effect of pipelining is to change the relative timing of instructions by
overlapping their execution. This overlap introduces data and control hazards.
Data hazards occur when the pipeline changes the order of read/write accesses to
operands so that the order differs from the order seen by sequentially executing
instructions on an unpipelined processor. Consider the pipelined execution of
these instructions:

DADD R1,R2,R3
DSUB R4,R1,R5
AND R6,R1,R7
OR R8,R1,R9
XOR R10,R1,R11

All the instructions after the DADD use the result of the DADD instruction. As
shown in Figure C.6, the DADD instruction writes the value of R1 in the WB pipe
stage, but the DSUB instruction reads the value during its ID stage. This problem
is called a data hazard. Unless precautions are taken to prevent it, the DSUB
instruction will read the wrong value and try to use it. In fact, the value used by
the DSUB instruction is not even deterministic: Though we might think it logical
to assume that DSUB would always use the value of R1 that was assigned by an
instruction prior to DADD, this is not always the case. If an interrupt should occur
between the DADD and DSUB instructions, the WB stage of the DADD will complete,
and the value of R1 at that point will be the result of the DADD. This unpredictable
behavior is obviously unacceptable.

The AND instruction is also affected by this hazard. As we can see from
Figure C.6, the write of R1 does not complete until the end of clock cycle 5.
Thus, the AND instruction that reads the registers during clock cycle 4 will receive
the wrong results.

 The XOR instruction operates properly because its register read occurs in
clock cycle 6, after the register write. The OR instruction also operates without
incurring a hazard because we perform the register file reads in the second half of
the cycle and the writes in the first half.

The next subsection discusses a technique to eliminate the stalls for the haz-
ard involving the DSUB and AND instructions.

Minimizing Data Hazard Stalls by Forwarding

The problem posed in Figure C.6 can be solved with a simple hardware technique
called forwarding (also called bypassing and sometimes short-circuiting). The
key insight in forwarding is that the result is not really needed by the DSUB until

C.2 The Major Hurdle of Pipelining—Pipeline Hazards ■ C-17

after the DADD actually produces it. If the result can be moved from the pipeline
register where the DADD stores it to where the DSUB needs it, then the need for a
stall can be avoided. Using this observation, forwarding works as follows:

1. The ALU result from both the EX/MEM and MEM/WB pipeline registers is
always fed back to the ALU inputs.

2. If the forwarding hardware detects that the previous ALU operation has writ-
ten the register corresponding to a source for the current ALU operation, con-
trol logic selects the forwarded result as the ALU input rather than the value
read from the register file.

Notice that with forwarding, if the DSUB is stalled, the DADD will be completed
and the bypass will not be activated. This relationship is also true for the case of
an interrupt between the two instructions.

As the example in Figure C.6 shows, we need to forward results not only
from the immediately previous instruction but also possibly from an instruction

Figure C.6 The use of the result of the DADD instruction in the next three instructions causes a hazard, since the

register is not written until after those instructions read it.

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

Reg

DM

DM

DM

DADD R1, R2, R3

DSUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

Reg

Reg Reg

RegIM

IM

IM

Reg A
LU

A
LU

A
LU

A
LU

Reg

P
ro

gr
am

 e
xe

cu
tio

n
or

de
r

(in
 in

st
ru

ct
io

ns
)

IM

IM

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-18 ■ Appendix C Pipelining: Basic and Intermediate Concepts

that started 2 cycles earlier. Figure C.7 shows our example with the bypass paths
in place and highlighting the timing of the register read and writes. This code
sequence can be executed without stalls.

Forwarding can be generalized to include passing a result directly to the func-
tional unit that requires it: A result is forwarded from the pipeline register corre-
sponding to the output of one unit to the input of another, rather than just from
the result of a unit to the input of the same unit. Take, for example, the following
sequence:

DADD R1,R2,R3
LD R4,0(R1)
SD R4,12(R1)

Figure C.7 A set of instructions that depends on the DADD result uses forwarding paths to avoid the data hazard.
The inputs for the DSUB and AND instructions forward from the pipeline registers to the first ALU input. The OR
receives its result by forwarding through the register file, which is easily accomplished by reading the registers in
the second half of the cycle and writing in the first half, as the dashed lines on the registers indicate. Notice that the
forwarded result can go to either ALU input; in fact, both ALU inputs could use forwarded inputs from either the
same pipeline register or from different pipeline registers. This would occur, for example, if the AND instruction was
AND R6,R1,R4.

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

Reg

DM

DM

DM

DADD R1, R2, R3

DSUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

Reg

Reg Reg

RegIM

IM

IM

Reg A
LU

A
LU

A
LU

A
LU

Reg

P
ro

gr
am

 e
xe

cu
tio

n
or

de
r

(in
 in

st
ru

ct
io

ns
)

IM

IM

C.2 The Major Hurdle of Pipelining—Pipeline Hazards ■ C-19

To prevent a stall in this sequence, we would need to forward the values of the
ALU output and memory unit output from the pipeline registers to the ALU and
data memory inputs. Figure C.8 shows all the forwarding paths for this example.

Data Hazards Requiring Stalls

Unfortunately, not all potential data hazards can be handled by bypassing.
Consider the following sequence of instructions:

LD R1,0(R2)
DSUB R4,R1,R5
AND R6,R1,R7
OR R8,R1,R9

The pipelined data path with the bypass paths for this example is shown in
Figure C.9. This case is different from the situation with back-to-back ALU
operations. The LD instruction does not have the data until the end of clock
cycle 4 (its MEM cycle), while the DSUB instruction needs to have the data by
the beginning of that clock cycle. Thus, the data hazard from using the result
of a load instruction cannot be completely eliminated with simple hardware.
As Figure C.9 shows, such a forwarding path would have to operate backward

Figure C.8 Forwarding of operand required by stores during MEM. The result of the load is forwarded from the
memory output to the memory input to be stored. In addition, the ALU output is forwarded to the ALU input for the
address calculation of both the load and the store (this is no different than forwarding to another ALU operation). If
the store depended on an immediately preceding ALU operation (not shown above), the result would need to be for-
warded to prevent a stall.

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

DM

DM

DM

DADD R1, R2, R3

LD R4, 0(R1)

SD R4,12(R1)

Reg

Reg Reg

RegIM

IM

IM

A
LU

A
LU

A
LU

Reg

P
ro

gr
am

 e
xe

cu
tio

n
or

de
r

(in
 in

st
ru

ct
io

ns
)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-20 ■ Appendix C Pipelining: Basic and Intermediate Concepts

in time—a capability not yet available to computer designers! We can forward
the result immediately to the ALU from the pipeline registers for use in the
AND operation, which begins 2 clock cycles after the load. Likewise, the OR
instruction has no problem, since it receives the value through the register file.
For the DSUB instruction, the forwarded result arrives too late—at the end of a
clock cycle, when it is needed at the beginning.

The load instruction has a delay or latency that cannot be eliminated by for-
warding alone. Instead, we need to add hardware, called a pipeline interlock, to
preserve the correct execution pattern. In general, a pipeline interlock detects a
hazard and stalls the pipeline until the hazard is cleared. In this case, the interlock
stalls the pipeline, beginning with the instruction that wants to use the data until
the source instruction produces it. This pipeline interlock introduces a stall or
bubble, just as it did for the structural hazard. The CPI for the stalled instruction
increases by the length of the stall (1 clock cycle in this case).

Figure C.10 shows the pipeline before and after the stall using the names of the
pipeline stages. Because the stall causes the instructions starting with the DSUB to
move 1 cycle later in time, the forwarding to the AND instruction now goes
through the register file, and no forwarding at all is needed for the OR instruction.
The insertion of the bubble causes the number of cycles to complete this
sequence to grow by one. No instruction is started during clock cycle 4 (and none
finishes during cycle 6).

Figure C.9 The load instruction can bypass its results to the AND and OR instructions, but not to the DSUB, since
that would mean forwarding the result in “negative time.”

DM

A
LU

A
LU

A
LU

DM

CC 1 CC 2 CC 3 CC 4 CC 5

Time (in clock cycles)

LD R1, 0(R2)

DSUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

Reg

Reg

RegIM

IM

IM

IM Reg

Reg

P
ro

gr
am

 e
xe

cu
tio

n
or

de
r

(in
 in

st
ru

ct
io

ns
)

C.2 The Major Hurdle of Pipelining—Pipeline Hazards ■ C-21

Branch Hazards

Control hazards can cause a greater performance loss for our MIPS pipeline than
do data hazards. When a branch is executed, it may or may not change the PC to
something other than its current value plus 4. Recall that if a branch changes the
PC to its target address, it is a taken branch; if it falls through, it is not taken, or
untaken. If instruction i is a taken branch, then the PC is normally not changed
until the end of ID, after the completion of the address calculation and com-
parison.

Figure C.11 shows that the simplest method of dealing with branches is to
redo the fetch of the instruction following a branch, once we detect the branch
during ID (when instructions are decoded). The first IF cycle is essentially a stall,
because it never performs useful work. You may have noticed that if the branch is
untaken, then the repetition of the IF stage is unnecessary since the correct instruc-
tion was indeed fetched. We will develop several schemes to take advantage of
this fact shortly.

One stall cycle for every branch will yield a performance loss of 10% to 30%
depending on the branch frequency, so we will examine some techniques to deal
with this loss.

LD R1,0(R2) IF ID EX MEM WB

DSUB R4,R1,R5 IF ID EX MEM WB

AND R6,R1,R7 IF ID EX MEM WB

OR R8,R1,R9 IF ID EX MEM WB

LD R1,0(R2) IF ID EX MEM WB

DSUB R4,R1,R5 IF ID stall EX MEM WB

AND R6,R1,R7 IF stall ID EX MEM WB

OR R8,R1,R9 stall IF ID EX MEM WB

Figure C.10 In the top half, we can see why a stall is needed: The MEM cycle of the load produces a value that is

needed in the EX cycle of the DSUB, which occurs at the same time. This problem is solved by inserting a stall, as
shown in the bottom half.

Branch instruction IF ID EX MEM WB

Branch successor IF IF ID EX MEM WB

Branch successor + 1 IF ID EX MEM

Branch successor + 2 IF ID EX

Figure C.11 A branch causes a one-cycle stall in the five-stage pipeline. The instruc-
tion after the branch is fetched, but the instruction is ignored, and the fetch is restarted
once the branch target is known. It is probably obvious that if the branch is not taken,
the second IF for branch successor is redundant. This will be addressed shortly.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-22 ■ Appendix C Pipelining: Basic and Intermediate Concepts

Reducing Pipeline Branch Penalties

There are many methods for dealing with the pipeline stalls caused by branch
delay; we discuss four simple compile time schemes in this subsection. In these
four schemes the actions for a branch are static—they are fixed for each branch
during the entire execution. The software can try to minimize the branch penalty
using knowledge of the hardware scheme and of branch behavior. Chapter 3
looks at more powerful hardware and software techniques for both static and
dynamic branch prediction.

The simplest scheme to handle branches is to freeze or flush the pipeline,
holding or deleting any instructions after the branch until the branch destination
is known. The attractiveness of this solution lies primarily in its simplicity both
for hardware and software. It is the solution used earlier in the pipeline shown in
Figure C.11. In this case, the branch penalty is fixed and cannot be reduced by
software.

A higher-performance, and only slightly more complex, scheme is to treat
every branch as not taken, simply allowing the hardware to continue as if the
branch were not executed. Here, care must be taken not to change the processor
state until the branch outcome is definitely known. The complexity of this
scheme arises from having to know when the state might be changed by an
instruction and how to “back out” such a change.

In the simple five-stage pipeline, this predicted-not-taken or predicted-
untaken scheme is implemented by continuing to fetch instructions as if the
branch were a normal instruction. The pipeline looks as if nothing out of the ordi-
nary is happening. If the branch is taken, however, we need to turn the fetched
instruction into a no-op and restart the fetch at the target address. Figure C.12
shows both situations.

Untaken branch instruction IF ID EX MEM WB

Instruction i + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Taken branch instruction IF ID EX MEM WB

Instruction i + 1 IF idle idle idle idle

Branch target IF ID EX MEM WB

Branch target + 1 IF ID EX MEM WB

Branch target + 2 IF ID EX MEM WB

Figure C.12 The predicted-not-taken scheme and the pipeline sequence when the branch is untaken (top) and
taken (bottom). When the branch is untaken, determined during ID, we fetch the fall-through and just continue. If
the branch is taken during ID, we restart the fetch at the branch target. This causes all instructions following the
branch to stall 1 clock cycle.

C.2 The Major Hurdle of Pipelining—Pipeline Hazards ■ C-23

An alternative scheme is to treat every branch as taken. As soon as the branch
is decoded and the target address is computed, we assume the branch to be taken
and begin fetching and executing at the target. Because in our five-stage pipeline
we don’t know the target address any earlier than we know the branch outcome,
there is no advantage in this approach for this pipeline. In some processors—
especially those with implicitly set condition codes or more powerful (and hence
slower) branch conditions—the branch target is known before the branch out-
come, and a predicted-taken scheme might make sense. In either a predicted-
taken or predicted-not-taken scheme, the compiler can improve performance by
organizing the code so that the most frequent path matches the hardware’s
choice. Our fourth scheme provides more opportunities for the compiler to
improve performance.

A fourth scheme in use in some processors is called delayed branch. This
technique was heavily used in early RISC processors and works reasonably well
in the five-stage pipeline. In a delayed branch, the execution cycle with a branch
delay of one is

branch instruction
sequential successor1
branch target if taken

The sequential successor is in the branch delay slot. This instruction is executed
whether or not the branch is taken. The pipeline behavior of the five-stage pipe-
line with a branch delay is shown in Figure C.13. Although it is possible to have
a branch delay longer than one, in practice almost all processors with delayed
branch have a single instruction delay; other techniques are used if the pipeline
has a longer potential branch penalty.

Untaken branch instruction IF ID EX MEM WB

Branch delay instruction (i + 1) IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Taken branch instruction IF ID EX MEM WB

Branch delay instruction (i + 1) IF ID EX MEM WB

Branch target IF ID EX MEM WB

Branch target + 1 IF ID EX MEM WB

Branch target + 2 IF ID EX MEM WB

Figure C.13 The behavior of a delayed branch is the same whether or not the branch is taken. The instructions in
the delay slot (there is only one delay slot for MIPS) are executed. If the branch is untaken, execution continues with
the instruction after the branch delay instruction; if the branch is taken, execution continues at the branch target.
When the instruction in the branch delay slot is also a branch, the meaning is unclear: If the branch is not taken, what
should happen to the branch in the branch delay slot? Because of this confusion, architectures with delay branches
often disallow putting a branch in the delay slot.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-24 ■ Appendix C Pipelining: Basic and Intermediate Concepts

The job of the compiler is to make the successor instructions valid and useful.
A number of optimizations are used. Figure C.14 shows the three ways in which
the branch delay can be scheduled.

The limitations on delayed-branch scheduling arise from: (1) the restrictions on
the instructions that are scheduled into the delay slots, and (2) our ability to predict
at compile time whether a branch is likely to be taken or not. To improve the ability
of the compiler to fill branch delay slots, most processors with conditional branches
have introduced a canceling or nullifying branch. In a canceling branch, the instruc-
tion includes the direction that the branch was predicted. When the branch behaves
as predicted, the instruction in the branch delay slot is simply executed as it would

Figure C.14 Scheduling the branch delay slot. The top box in each pair shows the code before scheduling; the
bottom box shows the scheduled code. In (a), the delay slot is scheduled with an independent instruction from
before the branch. This is the best choice. Strategies (b) and (c) are used when (a) is not possible. In the code
sequences for (b) and (c), the use of R1 in the branch condition prevents the DADD instruction (whose destination is
R1) from being moved after the branch. In (b), the branch delay slot is scheduled from the target of the branch; usu-
ally the target instruction will need to be copied because it can be reached by another path. Strategy (b) is preferred
when the branch is taken with high probability, such as a loop branch. Finally, the branch may be scheduled from the
not-taken fall-through as in (c). To make this optimization legal for (b) or (c), it must be OK to execute the moved
instruction when the branch goes in the unexpected direction. By OK we mean that the work is wasted, but the pro-
gram will still execute correctly. This is the case, for example, in (c) if R7 were an unused temporary register when the
branch goes in the unexpected direction.

(a) From before (b) From target (c) From fall-through

DSUB R4, R5, R6

DADD R1, R2, R3

if R1 = 0 then

DADD R1, R2, R3

if R1 = 0 then

DSUB R4, R5, R6

DSUB R4, R5, R6

DADD R1, R2, R3

if R1 = 0 then

DADD R1, R2, R3

if R1 = 0 then

DADD R1, R2, R3

if R2 = 0 then

if R2 = 0 then

becomesbecomesbecomes

Delay slot

Delay slot

OR R7, R8, R9

DSUB R4, R5, R6

DADD R1, R2, R3

Delay slot

OR R7, R8, R9

DSUB R4, R5, R6

C.2 The Major Hurdle of Pipelining—Pipeline Hazards ■ C-25

normally be with a delayed branch. When the branch is incorrectly predicted, the
instruction in the branch delay slot is simply turned into a no-op.

Performance of Branch Schemes

What is the effective performance of each of these schemes? The effective pipe-
line speedup with branch penalties, assuming an ideal CPI of 1, is

Because of the following:

Pipeline stall cycles from branches = Branch frequency × Branch penalty

we obtain:

The branch frequency and branch penalty can have a component from both
unconditional and conditional branches. However, the latter dominate since they
are more frequent.

Example For a deeper pipeline, such as that in a MIPS R4000, it takes at least three pipe-
line stages before the branch-target address is known and an additional cycle
before the branch condition is evaluated, assuming no stalls on the registers in the
conditional comparison. A three-stage delay leads to the branch penalties for the
three simplest prediction schemes listed in Figure C.15.

Find the effective addition to the CPI arising from branches for this pipeline,
assuming the following frequencies:

Unconditional branch 4%

Conditional branch, untaken 6%

Conditional branch, taken 10%

Branch scheme Penalty unconditional Penalty untaken Penalty taken

Flush pipeline 2 3 3

Predicted taken 2 3 2

Predicted untaken 2 0 3

Figure C.15 Branch penalties for the three simplest prediction schemes for a deeper pipeline.

Pipeline speedup
Pipeline depth

1 Pipeline stall cycles from branches+
---=

Pipeline speedup
Pipeline depth

1 Branch frequency Branch penalty×+
---=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-26 ■ Appendix C Pipelining: Basic and Intermediate Concepts

Answer We find the CPIs by multiplying the relative frequency of unconditional, condi-
tional untaken, and conditional taken branches by the respective penalties. The
results are shown in Figure C.16.

The differences among the schemes are substantially increased with this lon-
ger delay. If the base CPI were 1 and branches were the only source of stalls, the
ideal pipeline would be 1.56 times faster than a pipeline that used the stall-pipe-
line scheme. The predicted-untaken scheme would be 1.13 times better than the
stall-pipeline scheme under the same assumptions.

Reducing the Cost of Branches through Prediction

As pipelines get deeper and the potential penalty of branches increases, using
delayed branches and similar schemes becomes insufficient. Instead, we need to
turn to more aggressive means for predicting branches. Such schemes fall into
two classes: low-cost static schemes that rely on information available at compile
time and strategies that predict branches dynamically based on program behavior.
We discuss both approaches here.

Static Branch Prediction

A key way to improve compile-time branch prediction is to use profile informa-
tion collected from earlier runs. The key observation that makes this worthwhile
is that the behavior of branches is often bimodally distributed; that is, an individ-
ual branch is often highly biased toward taken or untaken. Figure C.17 shows the
success of branch prediction using this strategy. The same input data were used
for runs and for collecting the profile; other studies have shown that changing the
input so that the profile is for a different run leads to only a small change in the
accuracy of profile-based prediction.

The effectiveness of any branch prediction scheme depends both on the accu-
racy of the scheme and the frequency of conditional branches, which vary in
SPEC from 3% to 24%. The fact that the misprediction rate for the integer pro-
grams is higher and such programs typically have a higher branch frequency is a
major limitation for static branch prediction. In the next section, we consider
dynamic branch predictors, which most recent processors have employed.

Additions to the CPI from branch costs

Branch scheme
Unconditional

branches
Untaken conditional

branches
Taken conditional

branches All branches

Frequency of event 4% 6% 10% 20%

Stall pipeline 0.08 0.18 0.30 0.56

Predicted taken 0.08 0.18 0.20 0.46

Predicted untaken 0.08 0.00 0.30 0.38

Figure C.16 CPI penalties for three branch-prediction schemes and a deeper pipeline.

C.2 The Major Hurdle of Pipelining—Pipeline Hazards ■ C-27

Dynamic Branch Prediction and Branch-Prediction Buffers

The simplest dynamic branch-prediction scheme is a branch-prediction buffer or
branch history table. A branch-prediction buffer is a small memory indexed by
the lower portion of the address of the branch instruction. The memory contains a
bit that says whether the branch was recently taken or not. This scheme is the
simplest sort of buffer; it has no tags and is useful only to reduce the branch delay
when it is longer than the time to compute the possible target PCs.

With such a buffer, we don’t know, in fact, if the prediction is correct—it may
have been put there by another branch that has the same low-order address bits.
But this doesn’t matter. The prediction is a hint that is assumed to be correct, and
fetching begins in the predicted direction. If the hint turns out to be wrong, the
prediction bit is inverted and stored back.

This buffer is effectively a cache where every access is a hit, and, as we will
see, the performance of the buffer depends on both how often the prediction is for
the branch of interest and how accurate the prediction is when it matches. Before
we analyze the performance, it is useful to make a small, but important, improve-
ment in the accuracy of the branch-prediction scheme.

Figure C.17 Misprediction rate on SPEC92 for a profile-based predictor varies

widely but is generally better for the floating-point programs, which have an aver-

age misprediction rate of 9% with a standard deviation of 4%, than for the integer

programs, which have an average misprediction rate of 15% with a standard devia-

tion of 5%. The actual performance depends on both the prediction accuracy and the
branch frequency, which vary from 3% to 24%.

M
is

pr
ed

ic
tio

n
ra

te
0%

25%

5%

10%

20%

15%

Benchmark

Integer Floating-point

hco
m

pr
es

s

eq
nt

ot
t

es
pr

es
so gc

c li

do
du

c
ea

r

yd
ro

2d

m
dlj

dp

su
2c

or

12%

22%

18%

11%
12%

5% 6%

9% 10%

15%

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-28 ■ Appendix C Pipelining: Basic and Intermediate Concepts

This simple 1-bit prediction scheme has a performance shortcoming: Even if
a branch is almost always taken, we will likely predict incorrectly twice, rather
than once, when it is not taken, since the misprediction causes the prediction bit
to be flipped.

To remedy this weakness, 2-bit prediction schemes are often used. In a 2-bit
scheme, a prediction must miss twice before it is changed. Figure C.18 shows the
finite-state processor for a 2-bit prediction scheme.

 A branch-prediction buffer can be implemented as a small, special “cache”
accessed with the instruction address during the IF pipe stage, or as a pair of bits
attached to each block in the instruction cache and fetched with the instruction. If
the instruction is decoded as a branch and if the branch is predicted as taken,
fetching begins from the target as soon as the PC is known. Otherwise, sequential
fetching and executing continue. As Figure C.18 shows, if the prediction turns
out to be wrong, the prediction bits are changed.

What kind of accuracy can be expected from a branch-prediction buffer using
2 bits per entry on real applications? Figure C.19 shows that for the SPEC89

Figure C.18 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a
branch that strongly favors taken or not taken—as many branches do—will be mispre-
dicted less often than with a 1-bit predictor. The 2 bits are used to encode the four
states in the system. The 2-bit scheme is actually a specialization of a more general
scheme that has an n-bit saturating counter for each entry in the prediction buffer. With
an n-bit counter, the counter can take on values between 0 and 2n – 1: When the coun-
ter is greater than or equal to one-half of its maximum value (2n – 1), the branch is pre-
dicted as taken; otherwise, it is predicted as untaken. Studies of n-bit predictors have
shown that the 2-bit predictors do almost as well, thus most systems rely on 2-bit
branch predictors rather than the more general n-bit predictors.

Taken

Taken

Taken

Taken

Not taken

Not taken

Not taken

Not taken

Predict taken
11

Predict taken
10

Predict not taken
01

Predict not taken
00

C.2 The Major Hurdle of Pipelining—Pipeline Hazards ■ C-29

benchmarks a branch-prediction buffer with 4096 entries results in a prediction
accuracy ranging from over 99% to 82%, or a misprediction rate of 1% to 18%.
A 4K entry buffer, like that used for these results, is considered small by 2005
standards, and a larger buffer could produce somewhat better results.

As we try to exploit more ILP, the accuracy of our branch prediction becomes
critical. As we can see in Figure C.19, the accuracy of the predictors for integer
programs, which typically also have higher branch frequencies, is lower than for
the loop-intensive scientific programs. We can attack this problem in two ways:
by increasing the size of the buffer and by increasing the accuracy of the scheme
we use for each prediction. A buffer with 4K entries, however, as Figure C.20
shows, performs quite comparably to an infinite buffer, at least for benchmarks
like those in SPEC. The data in Figure C.20 make it clear that the hit rate of the
buffer is not the major limiting factor. As we mentioned above, simply increasing

Figure C.19 Prediction accuracy of a 4096-entry 2-bit prediction buffer for the

SPEC89 benchmarks. The misprediction rate for the integer benchmarks (gcc, espresso,
eqntott, and li) is substantially higher (average of 11%) than that for the floating-point
programs (average of 4%). Omitting the floating-point kernels (nasa7, matrix300, and
tomcatv) still yields a higher accuracy for the FP benchmarks than for the integer bench-
marks. These data, as well as the rest of the data in this section, are taken from a branch-
prediction study done using the IBM Power architecture and optimized code for that
system. See Pan, So, and Rameh [1992]. Although these data are for an older version of a
subset of the SPEC benchmarks, the newer benchmarks are larger and would show
slightly worse behavior, especially for the integer benchmarks.

18%

tomcatv

spice

S
P

E
C

89
 b

en
ch

m
ar

ks
gcc

li

2% 4% 6% 8% 10% 12% 14% 16%

0%

1%

5%

9%

9%

12%

5%

10%

18%

nasa7

matrix300

doduc

fpppp

espresso

eqntott

1%

0%

Frequency of mispredictions

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-30 ■ Appendix C Pipelining: Basic and Intermediate Concepts

the number of bits per predictor without changing the predictor structure also has
little impact. Instead, we need to look at how we might increase the accuracy of
each predictor.

Before we proceed to basic pipelining, we need to review a simple implementa-
tion of an unpipelined version of MIPS.

Figure C.20 Prediction accuracy of a 4096-entry 2-bit prediction buffer versus an
infinite buffer for the SPEC89 benchmarks. Although these data are for an older ver-
sion of a subset of the SPEC benchmarks, the results would be comparable for newer
versions with perhaps as many as 8K entries needed to match an infinite 2-bit predictor.

nasa7
1%
0%

matrix300
0%
0%

tomcatv
1%
0%

doduc

spice

S
P

E
C

89
 b

en
ch

m
ar

ks

fpppp

gcc

espresso

eqntott

li

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%

4096 entries:
2 bits per entry

Unlimited entries:
2 bits per entry

Frequency of mispredictions

5%
5%

9%
9%

9%
9%

12%
11%

5%
5%

18%
18%

10%
10%

C.3 How Is Pipelining Implemented?

C.3 How Is Pipelining Implemented? ■ C-31

A Simple Implementation of MIPS

In this section we follow the style of Section C.1, showing first a simple unpipe-
lined implementation and then the pipelined implementation. This time, however,
our example is specific to the MIPS architecture.

In this subsection, we focus on a pipeline for an integer subset of MIPS that
consists of load-store word, branch equal to zero, and integer ALU operations.
Later in this appendix we will incorporate the basic floating-point operations.
Although we discuss only a subset of MIPS, the basic principles can be extended
to handle all the instructions. We initially used a less aggressive implementation
of a branch instruction. We show how to implement the more aggressive version
at the end of this section.

Every MIPS instruction can be implemented in at most 5 clock cycles. The 5
clock cycles are as follows:

1. Instruction fetch cycle (IF):

IR ← Mem[PC];
NPC ← PC + 4;

Operation—Send out the PC and fetch the instruction from memory into the
instruction register (IR); increment the PC by 4 to address the next sequential
instruction. The IR is used to hold the instruction that will be needed on sub-
sequent clock cycles; likewise, the register NPC is used to hold the next
sequential PC.

2. Instruction decode/register fetch cycle (ID):

A ← Regs[rs];
B ← Regs[rt];
Imm ← sign-extended immediate field of IR;

Operation—Decode the instruction and access the register file to read the
registers (rs and rt are the register specifiers). The outputs of the general-
purpose registers are read into two temporary registers (A and B) for use in
later clock cycles. The lower 16 bits of the IR are also sign extended and
stored into the temporary register Imm, for use in the next cycle.

Decoding is done in parallel with reading registers, which is possible
because these fields are at a fixed location in the MIPS instruction format.
Because the immediate portion of an instruction is located in an identical
place in every MIPS format, the sign-extended immediate is also calculated
during this cycle in case it is needed in the next cycle.

3. Execution/effective address cycle (EX):

The ALU operates on the operands prepared in the prior cycle, performing
one of four functions depending on the MIPS instruction type:

■ Memory reference:

ALUOutput ← A + Imm;

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-32 ■ Appendix C Pipelining: Basic and Intermediate Concepts

Operation—The ALU adds the operands to form the effective address and
places the result into the register ALUOutput.

■ Register-register ALU instruction:

ALUOutput ← A func B;
Operation—The ALU performs the operation specified by the function code
on the value in register A and on the value in register B. The result is placed
in the temporary register ALUOutput.

■ Register-Immediate ALU instruction:

ALUOutput ← A op Imm;
Operation—The ALU performs the operation specified by the opcode on
the value in register A and on the value in register Imm. The result is placed
in the temporary register ALUOutput.

■ Branch:

ALUOutput ← NPC + (Imm << 2);
Cond ← (A == 0)

Operation—The ALU adds the NPC to the sign-extended immediate value
in Imm, which is shifted left by 2 bits to create a word offset, to compute the
address of the branch target. Register A, which has been read in the prior
cycle, is checked to determine whether the branch is taken. Since we are
considering only one form of branch (BEQZ), the comparison is against 0.
Note that BEQZ is actually a pseudoinstruction that translates to a BEQ with
R0 as an operand. For simplicity, this is the only form of branch we con-
sider.

The load-store architecture of MIPS means that effective address and
execution cycles can be combined into a single clock cycle, since no
instruction needs to simultaneously calculate a data address, calculate an
instruction target address, and perform an operation on the data. The other
integer instructions not included above are jumps of various forms, which
are similar to branches.

4. Memory access/branch completion cycle (MEM):

The PC is updated for all instructions: PC ← NPC;

■ Memory reference:

LMD ← Mem[ALUOutput] or
Mem[ALUOutput] ← B;

Operation—Access memory if needed. If instruction is a load, data return
from memory and are placed in the LMD (load memory data) register; if it
is a store, then the data from the B register are written into memory. In
either case, the address used is the one computed during the prior cycle and
stored in the register ALUOutput.

■ Branch:

if (cond) PC ← ALUOutput

C.3 How Is Pipelining Implemented? ■ C-33

Operation—If the instruction branches, the PC is replaced with the branch
destination address in the register ALUOutput.

5. Write-back cycle (WB):

■ Register-register ALU instruction:

Regs[rd] ← ALUOutput;
■ Register-immediate ALU instruction:

Regs[rt] ← ALUOutput;
■ Load instruction:

Regs[rt] ← LMD;
Operation—Write the result into the register file, whether it comes from the
memory system (which is in LMD) or from the ALU (which is in ALUOut-
put); the register destination field is also in one of two positions (rd or rt)
depending on the effective opcode.

Figure C.21 shows how an instruction flows through the data path. At the end
of each clock cycle, every value computed during that clock cycle and required
on a later clock cycle (whether for this instruction or the next) is written into a
storage device, which may be memory, a general-purpose register, the PC, or a
temporary register (i.e., LMD, Imm, A, B, IR, NPC, ALUOutput, or Cond). The
temporary registers hold values between clock cycles for one instruction, while
the other storage elements are visible parts of the state and hold values between
successive instructions.

Although all processors today are pipelined, this multicycle implementation
is a reasonable approximation of how most processors would have been imple-
mented in earlier times. A simple finite-state machine could be used to imple-
ment the control following the 5-cycle structure shown above. For a much more
complex processor, microcode control could be used. In either event, an instruc-
tion sequence like that above would determine the structure of the control.

There are some hardware redundancies that could be eliminated in this multi-
cycle implementation. For example, there are two ALUs: one to increment the
PC and one used for effective address and ALU computation. Since they are not
needed on the same clock cycle, we could merge them by adding additional mul-
tiplexers and sharing the same ALU. Likewise, instructions and data could be
stored in the same memory, since the data and instruction accesses happen on dif-
ferent clock cycles.

Rather than optimize this simple implementation, we will leave the design as
it is in Figure C.21, since this provides us with a better base for the pipelined
implementation.

As an alternative to the multicycle design discussed in this section, we could
also have implemented the CPU so that every instruction takes 1 long clock cycle.
In such cases, the temporary registers would be deleted, since there would not be
any communication across clock cycles within an instruction. Every instruction
would execute in 1 long clock cycle, writing the result into the data memory, regis-
ters, or PC at the end of the clock cycle. The CPI would be one for such a processor.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-34 ■ Appendix C Pipelining: Basic and Intermediate Concepts

The clock cycle, however, would be roughly equal to five times the clock cycle of
the multicycle processor, since every instruction would need to traverse all the func-
tional units. Designers would never use this single-cycle implementation for two rea-
sons. First, a single-cycle implementation would be very inefficient for most CPUs
that have a reasonable variation among the amount of work, and hence in the clock
cycle time, needed for different instructions. Second, a single-cycle implementation
requires the duplication of functional units that could be shared in a multicycle
implementation. Nonetheless, this single-cycle data path allows us to illustrate how
pipelining can improve the clock cycle time, as opposed to the CPI, of a processor.

A Basic Pipeline for MIPS

As before, we can pipeline the data path of Figure C.21 with almost no changes
by starting a new instruction on each clock cycle. Because every pipe stage is

Figure C.21 The implementation of the MIPS data path allows every instruction to be executed in 4 or 5 clock
cycles. Although the PC is shown in the portion of the data path that is used in instruction fetch and the registers are
shown in the portion of the data path that is used in instruction decode/register fetch, both of these functional units
are read as well as written by an instruction. Although we show these functional units in the cycle corresponding to
where they are read, the PC is written during the memory access clock cycle and the registers are written during the
write-back clock cycle. In both cases, the writes in later pipe stages are indicated by the multiplexer output (in mem-
ory access or write-back), which carries a value back to the PC or registers. These backward-flowing signals introduce
much of the complexity of pipelining, since they indicate the possibility of hazards.

Instruction fetch
Instruction decode/

register fetch

Execute/
address

calculation

Memory
access

Write-
back

B

PC

4

ALU

16 32

Add

Data
memory

Registers

Sign-
extend

Instruction
memory

M
u
x

M
u
x

M
u
x

M
u
x

Zero?
Branch

taken
Cond

NPC

lmm

ALU
output

IR
A

LMD

C.3 How Is Pipelining Implemented? ■ C-35

active on every clock cycle, all operations in a pipe stage must complete in 1
clock cycle and any combination of operations must be able to occur at once.
Furthermore, pipelining the data path requires that values passed from one pipe
stage to the next must be placed in registers. Figure C.22 shows the MIPS pipe-
line with the appropriate registers, called pipeline registers or pipeline latches,
between each pipeline stage. The registers are labeled with the names of the
stages they connect. Figure C.22 is drawn so that connections through the pipe-
line registers from one stage to another are clear.

All of the registers needed to hold values temporarily between clock cycles
within one instruction are subsumed into these pipeline registers. The fields of
the instruction register (IR), which is part of the IF/ID register, are labeled when
they are used to supply register names. The pipeline registers carry both data and
control from one pipeline stage to the next. Any value needed on a later pipeline
stage must be placed in such a register and copied from one pipeline register to
the next, until it is no longer needed. If we tried to just use the temporary regis-
ters we had in our earlier unpipelined data path, values could be overwritten
before all uses were completed. For example, the field of a register operand used

Figure C.22 The data path is pipelined by adding a set of registers, one between each pair of pipe stages. The
registers serve to convey values and control information from one stage to the next. We can also think of the PC as a
pipeline register, which sits before the IF stage of the pipeline, leading to one pipeline register for each pipe stage.
Recall that the PC is an edge-triggered register written at the end of the clock cycle; hence, there is no race condition
in writing the PC. The selection multiplexer for the PC has been moved so that the PC is written in exactly one stage
(IF). If we didn’t move it, there would be a conflict when a branch occurred, since two instructions would try to write
different values into the PC. Most of the data paths flow from left to right, which is from earlier in time to later. The
paths flowing from right to left (which carry the register write-back information and PC information on a branch)
introduce complications into our pipeline.

Data
memory

ALU

Sign-
extend

PC

Instruction
memory

ADD

IF/ID

4

ID/EX EX/MEM MEM/WB

IR6..10

MEM/WB.IR

M
u
x

M
u
x

M
u
x

IR11..15

Registers

Branch
taken

IR

16 32

M
u
x

Zero?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-36 ■ Appendix C Pipelining: Basic and Intermediate Concepts

for a write on a load or ALU operation is supplied from the MEM/WB pipeline
register rather than from the IF/ID register. This is because we want a load or
ALU operation to write the register designated by that operation, not the register
field of the instruction currently transitioning from IF to ID! This destination reg-
ister field is simply copied from one pipeline register to the next, until it is
needed during the WB stage.

Any instruction is active in exactly one stage of the pipeline at a time; there-
fore, any actions taken on behalf of an instruction occur between a pair of pipeline
registers. Thus, we can also look at the activities of the pipeline by examining what
has to happen on any pipeline stage depending on the instruction type. Figure C.23
shows this view. Fields of the pipeline registers are named so as to show the flow of
data from one stage to the next. Notice that the actions in the first two stages are
independent of the current instruction type; they must be independent because the
instruction is not decoded until the end of the ID stage. The IF activity depends on
whether the instruction in EX/MEM is a taken branch. If so, then the branch-target
address of the branch instruction in EX/MEM is written into the PC at the end of
IF; otherwise, the incremented PC will be written back. (As we said earlier, this
effect of branches leads to complications in the pipeline that we deal with in the
next few sections.) The fixed-position encoding of the register source operands is
critical to allowing the registers to be fetched during ID.

To control this simple pipeline we need only determine how to set the control
for the four multiplexers in the data path of Figure C.22. The two multiplexers in
the ALU stage are set depending on the instruction type, which is dictated by the
IR field of the ID/EX register. The top ALU input multiplexer is set by whether
the instruction is a branch or not, and the bottom multiplexer is set by whether the
instruction is a register-register ALU operation or any other type of operation.
The multiplexer in the IF stage chooses whether to use the value of the incre-
mented PC or the value of the EX/MEM.ALUOutput (the branch target) to write
into the PC. This multiplexer is controlled by the field EX/MEM.cond. The
fourth multiplexer is controlled by whether the instruction in the WB stage is a
load or an ALU operation. In addition to these four multiplexers, there is one
additional multiplexer needed that is not drawn in Figure C.22, but whose exis-
tence is clear from looking at the WB stage of an ALU operation. The destination
register field is in one of two different places depending on the instruction type
(register-register ALU versus either ALU immediate or load). Thus, we will need
a multiplexer to choose the correct portion of the IR in the MEM/WB register to
specify the register destination field, assuming the instruction writes a register.

Implementing the Control for the MIPS Pipeline

The process of letting an instruction move from the instruction decode stage (ID)
into the execution stage (EX) of this pipeline is usually called instruction issue;
an instruction that has made this step is said to have issued. For the MIPS integer
pipeline, all the data hazards can be checked during the ID phase of the pipeline.
If a data hazard exists, the instruction is stalled before it is issued. Likewise, we
can determine what forwarding will be needed during ID and set the appropriate

C.3 How Is Pipelining Implemented? ■ C-37

controls then. Detecting interlocks early in the pipeline reduces the hardware
complexity because the hardware never has to suspend an instruction that has
updated the state of the processor, unless the entire processor is stalled. Alterna-
tively, we can detect the hazard or forwarding at the beginning of a clock cycle
that uses an operand (EX and MEM for this pipeline). To show the differences in
these two approaches, we will show how the interlock for a read after write (RAW)
hazard with the source coming from a load instruction (called a load interlock) can
be implemented by a check in ID, while the implementation of forwarding paths

Stage Any instruction

IF IF/ID.IR ← Mem[PC];
IF/ID.NPC,PC ← (if ((EX/MEM.opcode == branch) & EX/MEM.cond){EX/MEM.
ALUOutput} else {PC+4});

ID ID/EX.A ← Regs[IF/ID.IR[rs]]; ID/EX.B ← Regs[IF/ID.IR[rt]];
ID/EX.NPC ← IF/ID.NPC; ID/EX.IR ← IF/ID.IR;
ID/EX.Imm ← sign-extend(IF/ID.IR[immediate field]);

ALU instruction Load or store instruction Branch instruction

EX EX/MEM.IR ← ID/EX.IR;
EX/MEM.ALUOutput ←
ID/EX.A func ID/EX.B;
or
EX/MEM.ALUOutput ←
ID/EX.A op ID/EX.Imm;

EX/MEM.IR to ID/EX.IR
EX/MEM.ALUOutput ←
ID/EX.A + ID/EX.Imm;

EX/MEM.B ← ID/EX.B;

EX/MEM.ALUOutput ←
ID/EX.NPC +
(ID/EX.Imm << 2);

EX/MEM.cond ←
(ID/EX.A == 0);

MEM MEM/WB.IR ← EX/MEM.IR;
MEM/WB.ALUOutput ←
EX/MEM.ALUOutput;

MEM/WB.IR ← EX/MEM.IR;
MEM/WB.LMD ←
Mem[EX/MEM.ALUOutput];
or
Mem[EX/MEM.ALUOutput] ←
EX/MEM.B;

WB Regs[MEM/WB.IR[rd]] ←
MEM/WB.ALUOutput;
or
Regs[MEM/WB.IR[rt]] ←
MEM/WB.ALUOutput;

For load only:
Regs[MEM/WB.IR[rt]] ←
MEM/WB.LMD;

Figure C.23 Events on every pipe stage of the MIPS pipeline. Let’s review the actions in the stages that are specific
to the pipeline organization. In IF, in addition to fetching the instruction and computing the new PC, we store the
incremented PC both into the PC and into a pipeline register (NPC) for later use in computing the branch-target
address. This structure is the same as the organization in Figure C.22, where the PC is updated in IF from one of two
sources. In ID, we fetch the registers, extend the sign of the lower 16 bits of the IR (the immediate field), and pass
along the IR and NPC. During EX, we perform an ALU operation or an address calculation; we pass along the IR and
the B register (if the instruction is a store). We also set the value of cond to 1 if the instruction is a taken branch. Dur-
ing the MEM phase, we cycle the memory, write the PC if needed, and pass along values needed in the final pipe
stage. Finally, during WB, we update the register field from either the ALU output or the loaded value. For simplicity
we always pass the entire IR from one stage to the next, although as an instruction proceeds down the pipeline, less
and less of the IR is needed.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-38 ■ Appendix C Pipelining: Basic and Intermediate Concepts

to the ALU inputs can be done during EX. Figure C.24 lists the variety of cir-
cumstances that we must handle.

Let’s start with implementing the load interlock. If there is a RAW hazard
with the source instruction being a load, the load instruction will be in the EX
stage when an instruction that needs the load data will be in the ID stage. Thus,
we can describe all the possible hazard situations with a small table, which can be
directly translated to an implementation. Figure C.25 shows a table that detects
all load interlocks when the instruction using the load result is in the ID stage.

Once a hazard has been detected, the control unit must insert the pipeline stall
and prevent the instructions in the IF and ID stages from advancing. As we said
earlier, all the control information is carried in the pipeline registers. (Carrying
the instruction along is enough, since all control is derived from it.) Thus, when
we detect a hazard we need only change the control portion of the ID/EX pipeline
register to all 0s, which happens to be a no-op (an instruction that does nothing,
such as DADD R0,R0,R0). In addition, we simply recirculate the contents of the
IF/ID registers to hold the stalled instruction. In a pipeline with more complex
hazards, the same ideas would apply: We can detect the hazard by comparing
some set of pipeline registers and shift in no-ops to prevent erroneous execution.

Implementing the forwarding logic is similar, although there are more cases
to consider. The key observation needed to implement the forwarding logic is

Situation
Example code
sequence Action

No dependence LD R1,45(R2)
DADD R5,R6,R7
DSUB R8,R6,R7
OR R9,R6,R7

No hazard possible because no dependence
exists on R1 in the immediately following
three instructions.

Dependence
requiring stall

LD R1,45(R2)
DADD R5,R1,R7
DSUB R8,R6,R7
OR R9,R6,R7

Comparators detect the use of R1 in the DADD
and stall the DADD (and DSUB and OR) before
the DADD begins EX.

Dependence
overcome by
forwarding

LD R1,45(R2)
DADD R5,R6,R7
DSUB R8,R1,R7
OR R9,R6,R7

Comparators detect use of R1 in DSUB and
forward result of load to ALU in time for DSUB
to begin EX.

Dependence with
accesses in order

LD R1,45(R2)
DADD R5,R6,R7
DSUB R8,R6,R7
OR R9,R1,R7

No action required because the read of R1 by
OR occurs in the second half of the ID phase,
while the write of the loaded data occurred in
the first half.

Figure C.24 Situations that the pipeline hazard detection hardware can see by com-
paring the destination and sources of adjacent instructions. This table indicates that
the only comparison needed is between the destination and the sources on the two
instructions following the instruction that wrote the destination. In the case of a stall,
the pipeline dependences will look like the third case once execution continues. Of
course, hazards that involve R0 can be ignored since the register always contains 0, and
the test above could be extended to do this.

C.3 How Is Pipelining Implemented? ■ C-39

that the pipeline registers contain both the data to be forwarded as well as the
source and destination register fields. All forwarding logically happens from
the ALU or data memory output to the ALU input, the data memory input, or the
zero detection unit. Thus, we can implement the forwarding by a comparison of
the destination registers of the IR contained in the EX/MEM and MEM/WB
stages against the source registers of the IR contained in the ID/EX and EX/
MEM registers. Figure C.26 shows the comparisons and possible forwarding
operations where the destination of the forwarded result is an ALU input for the
instruction currently in EX.

In addition to the comparators and combinational logic that we must deter-
mine when a forwarding path needs to be enabled, we also must enlarge the mul-
tiplexers at the ALU inputs and add the connections from the pipeline registers
that are used to forward the results. Figure C.27 shows the relevant segments of
the pipelined data path with the additional multiplexers and connections in place.

For MIPS, the hazard detection and forwarding hardware is reasonably sim-
ple; we will see that things become somewhat more complicated when we
extend this pipeline to deal with floating point. Before we do that, we need to
handle branches.

Dealing with Branches in the Pipeline

In MIPS, the branches (BEQ and BNE) require testing a register for equality to
another register, which may be R0. If we consider only the cases of BEQZ and
BNEZ, which require a zero test, it is possible to complete this decision by the end
of the ID cycle by moving the zero test into that cycle. To take advantage of an
early decision on whether the branch is taken, both PCs (taken and untaken) must
be computed early. Computing the branch-target address during ID requires an
additional adder because the main ALU, which has been used for this function so

Opcode field of ID/EX
(ID/EX.IR0..5)

Opcode field of IF/ID
(IF/ID.IR0..5) Matching operand fields

Load Register-register ALU ID/EX.IR[rt] == IF/
ID.IR[rs]

Load Register-register ALU ID/EX.IR[rt] == IF/
ID.IR[rt]

Load Load, store, ALU immediate,
or branch

ID/EX.IR[rt] == IF/
ID.IR[rs]

Figure C.25 The logic to detect the need for load interlocks during the ID stage of

an instruction requires three comparisons. Lines 1 and 2 of the table test whether the
load destination register is one of the source registers for a register-register operation
in ID. Line 3 of the table determines if the load destination register is a source for a load
or store effective address, an ALU immediate, or a branch test. Remember that the IF/ID
register holds the state of the instruction in ID, which potentially uses the load result,
while ID/EX holds the state of the instruction in EX, which is the load instruction.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-40 ■ Appendix C Pipelining: Basic and Intermediate Concepts

far, is not usable until EX. Figure C.28 shows the revised pipelined data path.
With the separate adder and a branch decision made during ID, there is only a
1-clock-cycle stall on branches. Although this reduces the branch delay to 1 cycle,

Pipeline register
containing source
instruction

Opcode
of source
instruction

Pipeline
register
containing
destination
instruction

Opcode of destination
instruction

Destination
of the
forwarded
result

Comparison
(if equal then
forward)

EX/MEM Register-
register ALU

ID/EX Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

EX/MEM.IR[rd] ==
ID/EX.IR[rs]

EX/MEM Register-
register ALU

ID/EX Register-register ALU Bottom ALU
input

EX/MEM.IR[rd] ==
ID/EX.IR[rt]

MEM/WB Register-
register ALU

ID/EX Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

MEM/WB.IR[rd] ==
ID/EX.IR[rs]

MEM/WB Register-
register ALU

ID/EX Register-register ALU Bottom ALU
input

MEM/WB.IR[rd] ==
ID/EX.IR[rt]

EX/MEM ALU
immediate

ID/EX Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

EX/MEM.IR[rt] ==
ID/EX.IR[rs]

EX/MEM ALU
immediate

ID/EX Register-register ALU Bottom ALU
input

EX/MEM.IR[rt] ==
ID/EX.IR[rt]

MEM/WB ALU
immediate

ID/EX Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

MEM/WB.IR[rt] ==
ID/EX.IR[rs]

MEM/WB ALU
immediate

ID/EX Register-register ALU Bottom ALU
input

MEM/WB.IR[rt] ==
ID/EX.IR[rt]

MEM/WB Load ID/EX Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

MEM/WB.IR[rt] ==
ID/EX.IR[rs]

MEM/WB Load ID/EX Register-register ALU Bottom ALU
input

MEM/WB.IR[rt] ==
ID/EX.IR[rt]

Figure C.26 Forwarding of data to the two ALU inputs (for the instruction in EX) can occur from the ALU result
(in EX/MEM or in MEM/WB) or from the load result in MEM/WB. There are 10 separate comparisons needed to tell
whether a forwarding operation should occur. The top and bottom ALU inputs refer to the inputs corresponding to
the first and second ALU source operands, respectively, and are shown explicitly in Figure C.21 on page C-34 and in
Figure C.27 on page C-41. Remember that the pipeline latch for destination instruction in EX is ID/EX, while the
source values come from the ALUOutput portion of EX/MEM or MEM/WB or the LMD portion of MEM/WB. There is
one complication not addressed by this logic: dealing with multiple instructions that write the same register. For
example, during the code sequence DADD R1, R2, R3; DADDI R1, R1, #2; DSUB R4, R3, R1, the logic must ensure that
the DSUB instruction uses the result of the DADDI instruction rather than the result of the DADD instruction. The logic
shown above can be extended to handle this case by simply testing that forwarding from MEM/WB is enabled only
when forwarding from EX/MEM is not enabled for the same input. Because the DADDI result will be in EX/MEM, it will
be forwarded, rather than the DADD result in MEM/WB.

C.3 How Is Pipelining Implemented? ■ C-41

it means that an ALU instruction followed by a branch on the result of the
instruction will incur a data hazard stall. Figure C.29 shows the branch portion of
the revised pipeline table from Figure C.23.

In some processors, branch hazards are even more expensive in clock cycles
than in our example, since the time to evaluate the branch condition and compute
the destination can be even longer. For example, a processor with separate
decode and register fetch stages will probably have a branch delay—the length of
the control hazard—that is at least 1 clock cycle longer. The branch delay, unless
it is dealt with, turns into a branch penalty. Many older CPUs that implement
more complex instruction sets have branch delays of 4 clock cycles or more, and
large, deeply pipelined processors often have branch penalties of 6 or 7. In gen-
eral, the deeper the pipeline, the worse the branch penalty in clock cycles. Of
course, the relative performance effect of a longer branch penalty depends on the
overall CPI of the processor. A low-CPI processor can afford to have more
expensive branches because the percentage of the processor’s performance that
will be lost from branches is less.

Figure C.27 Forwarding of results to the ALU requires the addition of three extra

inputs on each ALU multiplexer and the addition of three paths to the new inputs.

The paths correspond to a bypass of: (1) the ALU output at the end of the EX, (2) the
ALU output at the end of the MEM stage, and (3) the memory output at the end of the
MEM stage.

Data
memory

ALU

Zero?

ID/EX EX/MEM MEM/WB

M
u
x

M
u
x

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-42 ■ Appendix C Pipelining: Basic and Intermediate Concepts

Figure C.28 The stall from branch hazards can be reduced by moving the zero test and branch-target calcula-
tion into the ID phase of the pipeline. Notice that we have made two important changes, each of which removes 1
cycle from the 3-cycle stall for branches. The first change is to move both the branch-target address calculation and
the branch condition decision to the ID cycle. The second change is to write the PC of the instruction in the IF phase,
using either the branch-target address computed during ID or the incremented PC computed during IF. In compari-
son, Figure C.22 obtained the branch-target address from the EX/MEM register and wrote the result during the MEM
clock cycle. As mentioned in Figure C.22, the PC can be thought of as a pipeline register (e.g., as part of ID/IF), which
is written with the address of the next instruction at the end of each IF cycle.

Pipe stage Branch instruction

IF IF/ID.IR ← Mem[PC];
IF/ID.NPC,PC ← (if ((IF/ID.opcode == branch) & (Regs[IF/ID.IR6..10]
op 0)) {IF/ID.NPC + sign-extended (IF/ID.IR[immediate field] << 2) else {PC + 4});

ID ID/EX.A ← Regs[IF/ID.IR6..10]; ID/EX.B ← Regs[IF/ID.IR11..15];
ID/EX.IR ← IF/ID.IR;
ID/EX.Imm ← (IF/ID.IR16)

16##IF/ID.IR16..31
EX

MEM

WB

Figure C.29 This revised pipeline structure is based on the original in Figure C.23. It uses a separate adder, as in
Figure C.28, to compute the branch-target address during ID. The operations that are new or have changed are in
bold. Because the branch-target address addition happens during ID, it will happen for all instructions; the branch
condition (Regs[IF/ID.IR6..10] op 0) will also be done for all instructions. The selection of the sequential PC or the
branch-target PC still occurs during IF, but it now uses values from the ID stage that correspond to the values set by
the previous instruction. This change reduces the branch penalty by 2 cycles: one from evaluating the branch target
and condition earlier and one from controlling the PC selection on the same clock rather than on the next clock.
Since the value of cond is set to 0, unless the instruction in ID is a taken branch, the processor must decode the
instruction before the end of ID. Because the branch is done by the end of ID, the EX, MEM, and WB stages are
unused for branches. An additional complication arises for jumps that have a longer offset than branches. We can
resolve this by using an additional adder that sums the PC and lower 26 bits of the IR after shifting left by 2 bits.

Data
memory

ALU

Sign-
extend

16 32

PC

Instruction
memory

ADD

ADD

IF/ID

4

EX/MEM MEM/WB

IR
6..10

MEM/WB.IR

IR
11..15

Registers

Zero?

M
u
x

M
u
x

M
u
x

IR

ID/EX

C.4 What Makes Pipelining Hard to Implement? ■ C-43

Now that we understand how to detect and resolve hazards, we can deal with
some complications that we have avoided so far. The first part of this section
considers the challenges of exceptional situations where the instruction execution
order is changed in unexpected ways. In the second part of this section, we dis-
cuss some of the challenges raised by different instruction sets.

Dealing with Exceptions

Exceptional situations are harder to handle in a pipelined CPU because the over-
lapping of instructions makes it more difficult to know whether an instruction can
safely change the state of the CPU. In a pipelined CPU, an instruction is executed
piece by piece and is not completed for several clock cycles. Unfortunately, other
instructions in the pipeline can raise exceptions that may force the CPU to abort
the instructions in the pipeline before they complete. Before we discuss these
problems and their solutions in detail, we need to understand what types of situa-
tions can arise and what architectural requirements exist for supporting them.

Types of Exceptions and Requirements

The terminology used to describe exceptional situations where the normal execu-
tion order of instruction is changed varies among CPUs. The terms interrupt,
fault, and exception are used, although not in a consistent fashion. We use the
term exception to cover all these mechanisms, including the following:

■ I/O device request

■ Invoking an operating system service from a user program

■ Tracing instruction execution

■ Breakpoint (programmer-requested interrupt)

■ Integer arithmetic overflow

■ FP arithmetic anomaly

■ Page fault (not in main memory)

■ Misaligned memory accesses (if alignment is required)

■ Memory protection violation

■ Using an undefined or unimplemented instruction

■ Hardware malfunctions

■ Power failure

When we wish to refer to some particular class of such exceptions, we will use
a longer name, such as I/O interrupt, floating-point exception, or page fault.
Figure C.30 shows the variety of different names for the common exception
events above.

C.4 What Makes Pipelining Hard to Implement?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-44 ■ Appendix C Pipelining: Basic and Intermediate Concepts

Although we use the term exception to cover all of these events, individual
events have important characteristics that determine what action is needed in the
hardware. The requirements on exceptions can be characterized on five semi-
independent axes:

1. Synchronous versus asynchronous—If the event occurs at the same place
every time the program is executed with the same data and memory allocation,

Exception event IBM 360 VAX Motorola 680x0 Intel 80x86

I/O device request Input/output
interruption

Device interrupt Exception (L0 to L7
autovector)

Vectored interrupt

Invoking the operating
system service from a
user program

Supervisor call
interruption

Exception (change
mode supervisor trap)

Exception
(unimplemented
instruction)—
on Macintosh

Interrupt
(INT instruction)

Tracing instruction
execution

Not applicable Exception (trace fault) Exception (trace) Interrupt (single-
step trap)

Breakpoint Not applicable Exception
(breakpoint fault)

Exception (illegal
instruction or
breakpoint)

Interrupt
(breakpoint trap)

Integer arithmetic
overflow or underflow;
FP trap

Program interruption
(overflow or
underflow exception)

Exception (integer
overflow trap or
floating underflow
fault)

Exception
(floating-point
coprocessor errors)

Interrupt (overflow
trap or math unit
exception)

Page fault
(not in main memory)

Not applicable
(only in 370)

Exception (translation
not valid fault)

Exception (memory-
management unit
errors)

Interrupt
(page fault)

Misaligned memory
accesses

Program interruption
(specification
exception)

Not applicable Exception
(address error)

Not applicable

Memory protection
violations

Program interruption
(protection exception)

Exception (access
control violation
fault)

Exception
(bus error)

Interrupt
(protection
exception)

Using undefined
instructions

Program interruption
(operation exception)

Exception (opcode
privileged/reserved
fault)

Exception (illegal
instruction or break-
point/unimplemented
instruction)

Interrupt (invalid
opcode)

Hardware
malfunctions

Machine-check
interruption

Exception (machine-
check abort)

Exception
(bus error)

Not applicable

Power failure Machine-check
interruption

Urgent interrupt Not applicable Nonmaskable
interrupt

Figure C.30 The names of common exceptions vary across four different architectures. Every event on the IBM
360 and 80x86 is called an interrupt, while every event on the 680x0 is called an exception. VAX divides events into
interrupts or exceptions. The adjectives device, software, and urgent are used with VAX interrupts, whereas VAX
exceptions are subdivided into faults, traps, and aborts.

C.4 What Makes Pipelining Hard to Implement? ■ C-45

the event is synchronous. With the exception of hardware malfunctions, asyn-
chronous events are caused by devices external to the CPU and memory.
Asynchronous events usually can be handled after the completion of the
current instruction, which makes them easier to handle.

2. User requested versus coerced—If the user task directly asks for it, it is a
user-requested event. In some sense, user-requested exceptions are not really
exceptions, since they are predictable. They are treated as exceptions, how-
ever, because the same mechanisms that are used to save and restore the state
are used for these user-requested events. Because the only function of an
instruction that triggers this exception is to cause the exception, user-
requested exceptions can always be handled after the instruction has com-
pleted. Coerced exceptions are caused by some hardware event that is not
under the control of the user program. Coerced exceptions are harder to
implement because they are not predictable.

3. User maskable versus user nonmaskable—If an event can be masked or dis-
abled by a user task, it is user maskable. This mask simply controls whether
the hardware responds to the exception or not.

4. Within versus between instructions—This classification depends on whether
the event prevents instruction completion by occurring in the middle of exe-
cution—no matter how short—or whether it is recognized between instruc-
tions. Exceptions that occur within instructions are usually synchronous,
since the instruction triggers the exception. It’s harder to implement excep-
tions that occur within instructions than those between instructions, since the
instruction must be stopped and restarted. Asynchronous exceptions that
occur within instructions arise from catastrophic situations (e.g., hardware
malfunction) and always cause program termination.

5. Resume versus terminate—If the program’s execution always stops after the
interrupt, it is a terminating event. If the program’s execution continues after
the interrupt, it is a resuming event. It is easier to implement exceptions that
terminate execution, since the CPU need not be able to restart execution of
the same program after handling the exception.

Figure C.31 classifies the examples from Figure C.30 according to these five
categories. The difficult task is implementing interrupts occurring within instruc-
tions where the instruction must be resumed. Implementing such exceptions
requires that another program must be invoked to save the state of the executing
program, correct the cause of the exception, and then restore the state of the pro-
gram before the instruction that caused the exception can be tried again. This pro-
cess must be effectively invisible to the executing program. If a pipeline provides
the ability for the processor to handle the exception, save the state, and restart
without affecting the execution of the program, the pipeline or processor is said
to be restartable. While early supercomputers and microprocessors often lacked
this property, almost all processors today support it, at least for the integer pipe-
line, because it is needed to implement virtual memory (see Chapter 2).

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-46 ■ Appendix C Pipelining: Basic and Intermediate Concepts

Stopping and Restarting Execution

As in unpipelined implementations, the most difficult exceptions have two prop-
erties: (1) they occur within instructions (that is, in the middle of the instruction
execution corresponding to EX or MEM pipe stages), and (2) they must be
restartable. In our MIPS pipeline, for example, a virtual memory page fault result-
ing from a data fetch cannot occur until sometime in the MEM stage of the instruc-
tion. By the time that fault is seen, several other instructions will be in execution. A
page fault must be restartable and requires the intervention of another process, such
as the operating system. Thus, the pipeline must be safely shut down and the state
saved so that the instruction can be restarted in the correct state. Restarting is usu-
ally implemented by saving the PC of the instruction at which to restart. If the
restarted instruction is not a branch, then we will continue to fetch the sequential
successors and begin their execution in the normal fashion. If the restarted instruc-
tion is a branch, then we will reevaluate the branch condition and begin fetching
from either the target or the fall-through. When an exception occurs, the pipeline
control can take the following steps to save the pipeline state safely:

1. Force a trap instruction into the pipeline on the next IF.

2. Until the trap is taken, turn off all writes for the faulting instruction and for all
instructions that follow in the pipeline; this can be done by placing zeros into

Exception type
Synchronous vs.
asynchronous

User request
vs. coerced

User
maskable vs.
nonmaskable

Within vs.
between
instructions

Resume vs.
terminate

I/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction execution Synchronous User request User maskable Between Resume

Breakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflow Synchronous Coerced User maskable Within Resume

Floating-point arithmetic
overflow or underflow

Synchronous Coerced User maskable Within Resume

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accesses Synchronous Coerced User maskable Within Resume

Memory protection violations Synchronous Coerced Nonmaskable Within Resume

Using undefined instructions Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunctions Asynchronous Coerced Nonmaskable Within Terminate

Power failure Asynchronous Coerced Nonmaskable Within Terminate

Figure C.31 Five categories are used to define what actions are needed for the different exception types shown
in Figure C.30. Exceptions that must allow resumption are marked as resume, although the software may often
choose to terminate the program. Synchronous, coerced exceptions occurring within instructions that can be
resumed are the most difficult to implement. We might expect that memory protection access violations would
always result in termination; however, modern operating systems use memory protection to detect events such as
the first attempt to use a page or the first write to a page. Thus, CPUs should be able to resume after such exceptions.

C.4 What Makes Pipelining Hard to Implement? ■ C-47

the pipeline latches of all instructions in the pipeline, starting with the
instruction that generates the exception, but not those that precede that
instruction. This prevents any state changes for instructions that will not be
completed before the exception is handled.

3. After the exception-handling routine in the operating system receives control,
it immediately saves the PC of the faulting instruction. This value will be
used to return from the exception later.

When we use delayed branches, as mentioned in the last section, it is no lon-
ger possible to re-create the state of the processor with a single PC because the
instructions in the pipeline may not be sequentially related. So we need to save
and restore as many PCs as the length of the branch delay plus one. This is done
in the third step above.

After the exception has been handled, special instructions return the proces-
sor from the exception by reloading the PCs and restarting the instruction
stream (using the instruction RFE in MIPS). If the pipeline can be stopped so
that the instructions just before the faulting instruction are completed and those
after it can be restarted from scratch, the pipeline is said to have precise excep-
tions. Ideally, the faulting instruction would not have changed the state, and
correctly handling some exceptions requires that the faulting instruction have
no effects. For other exceptions, such as floating-point exceptions, the faulting
instruction on some processors writes its result before the exception can be
handled. In such cases, the hardware must be prepared to retrieve the source
operands, even if the destination is identical to one of the source operands.
Because floating-point operations may run for many cycles, it is highly likely
that some other instruction may have written the source operands (as we will
see in the next section, floating-point operations often complete out of order).
To overcome this, many recent high-performance CPUs have introduced two
modes of operation. One mode has precise exceptions and the other (fast or
performance mode) does not. Of course, the precise exception mode is slower,
since it allows less overlap among floating-point instructions. In some high-
performance CPUs, including the Alpha 21064, Power2, and MIPS R8000, the
precise mode is often much slower (>10 times) and thus useful only for debug-
ging of codes.

Supporting precise exceptions is a requirement in many systems, while in
others it is “just” valuable because it simplifies the operating system inter-
face. At a minimum, any processor with demand paging or IEEE arithmetic
trap handlers must make its exceptions precise, either in the hardware or with
some software support. For integer pipelines, the task of creating precise
exceptions is easier, and accommodating virtual memory strongly motivates
the support of precise exceptions for memory references. In practice, these
reasons have led designers and architects to always provide precise excep-
tions for the integer pipeline. In this section we describe how to implement
precise exceptions for the MIPS integer pipeline. We will describe techniques
for handling the more complex challenges arising in the floating-point pipe-
line in Section C.5.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-48 ■ Appendix C Pipelining: Basic and Intermediate Concepts

Exceptions in MIPS

Figure C.32 shows the MIPS pipeline stages and which problem exceptions
might occur in each stage. With pipelining, multiple exceptions may occur in the
same clock cycle because there are multiple instructions in execution. For exam-
ple, consider this instruction sequence:

This pair of instructions can cause a data page fault and an arithmetic exception
at the same time, since the LD is in the MEM stage while the DADD is in the EX
stage. This case can be handled by dealing with only the data page fault and then
restarting the execution. The second exception will reoccur (but not the first, if
the software is correct), and when the second exception occurs it can be handled
independently.

In reality, the situation is not as straightforward as this simple example.
Exceptions may occur out of order; that is, an instruction may cause an exception
before an earlier instruction causes one. Consider again the above sequence of
instructions, LD followed by DADD. The LD can get a data page fault, seen when
the instruction is in MEM, and the DADD can get an instruction page fault, seen
when the DADD instruction is in IF. The instruction page fault will actually occur
first, even though it is caused by a later instruction!

Since we are implementing precise exceptions, the pipeline is required to
handle the exception caused by the LD instruction first. To explain how this
works, let’s call the instruction in the position of the LD instruction i, and the
instruction in the position of the DADD instruction i + 1. The pipeline cannot sim-
ply handle an exception when it occurs in time, since that will lead to exceptions
occurring out of the unpipelined order. Instead, the hardware posts all exceptions
caused by a given instruction in a status vector associated with that instruction.
The exception status vector is carried along as the instruction goes down the
pipeline. Once an exception indication is set in the exception status vector, any
control signal that may cause a data value to be written is turned off (this includes

LD IF ID EX MEM WB

DADD IF ID EX MEM WB

Pipeline stage Problem exceptions occurring

IF Page fault on instruction fetch; misaligned memory access; memory
protection violation

ID Undefined or illegal opcode

EX Arithmetic exception

MEM Page fault on data fetch; misaligned memory access; memory
protection violation

WB None

Figure C.32 Exceptions that may occur in the MIPS pipeline. Exceptions raised from
instruction or data memory access account for six out of eight cases.

C.4 What Makes Pipelining Hard to Implement? ■ C-49

both register writes and memory writes). Because a store can cause an exception
during MEM, the hardware must be prepared to prevent the store from complet-
ing if it raises an exception.

When an instruction enters WB (or is about to leave MEM), the exception sta-
tus vector is checked. If any exceptions are posted, they are handled in the order in
which they would occur in time on an unpipelined processor—the exception corre-
sponding to the earliest instruction (and usually the earliest pipe stage for that
instruction) is handled first. This guarantees that all exceptions will be seen on
instruction i before any are seen on i + 1. Of course, any action taken in earlier pipe
stages on behalf of instruction i may be invalid, but since writes to the register file
and memory were disabled, no state could have been changed. As we will see in
Section C.5, maintaining this precise model for FP operations is much harder.

In the next subsection we describe problems that arise in implementing excep-
tions in the pipelines of processors with more powerful, longer-running instructions.

Instruction Set Complications

No MIPS instruction has more than one result, and our MIPS pipeline writes that
result only at the end of an instruction’s execution. When an instruction is guar-
anteed to complete, it is called committed. In the MIPS integer pipeline, all
instructions are committed when they reach the end of the MEM stage (or begin-
ning of WB) and no instruction updates the state before that stage. Thus, precise
exceptions are straightforward. Some processors have instructions that change
the state in the middle of the instruction execution, before the instruction and its
predecessors are guaranteed to complete. For example, autoincrement addressing
modes in the IA-32 architecture cause the update of registers in the middle of an
instruction execution. In such a case, if the instruction is aborted because of an
exception, it will leave the processor state altered. Although we know which
instruction caused the exception, without additional hardware support the excep-
tion will be imprecise because the instruction will be half finished. Restarting the
instruction stream after such an imprecise exception is difficult. Alternatively, we
could avoid updating the state before the instruction commits, but this may be
difficult or costly, since there may be dependences on the updated state: Consider
a VAX instruction that autoincrements the same register multiple times. Thus, to
maintain a precise exception model, most processors with such instructions have
the ability to back out any state changes made before the instruction is commit-
ted. If an exception occurs, the processor uses this ability to reset the state of the
processor to its value before the interrupted instruction started. In the next sec-
tion, we will see that a more powerful MIPS floating-point pipeline can introduce
similar problems, and Section C.7 introduces techniques that substantially com-
plicate exception handling.

A related source of difficulties arises from instructions that update memory
state during execution, such as the string copy operations on the VAX or IBM
360 (see Appendix K). To make it possible to interrupt and restart these instruc-
tions, the instructions are defined to use the general-purpose registers as working

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-50 ■ Appendix C Pipelining: Basic and Intermediate Concepts

registers. Thus, the state of the partially completed instruction is always in the
registers, which are saved on an exception and restored after the exception,
allowing the instruction to continue. In the VAX an additional bit of state records
when an instruction has started updating the memory state, so that when the pipe-
line is restarted the CPU knows whether to restart the instruction from the begin-
ning or from the middle of the instruction. The IA-32 string instructions also use
the registers as working storage, so that saving and restoring the registers saves
and restores the state of such instructions.

A different set of difficulties arises from odd bits of state that may create
additional pipeline hazards or may require extra hardware to save and restore.
Condition codes are a good example of this. Many processors set the condition
codes implicitly as part of the instruction. This approach has advantages, since
condition codes decouple the evaluation of the condition from the actual branch.
However, implicitly set condition codes can cause difficulties in scheduling any
pipeline delays between setting the condition code and the branch, since most
instructions set the condition code and cannot be used in the delay slots between
the condition evaluation and the branch.

Additionally, in processors with condition codes, the processor must decide
when the branch condition is fixed. This involves finding out when the condition
code has been set for the last time before the branch. In most processors with
implicitly set condition codes, this is done by delaying the branch condition eval-
uation until all previous instructions have had a chance to set the condition code.

Of course, architectures with explicitly set condition codes allow the delay
between condition test and the branch to be scheduled; however, pipeline control
must still track the last instruction that sets the condition code to know when the
branch condition is decided. In effect, the condition code must be treated as an
operand that requires hazard detection for RAW hazards with branches, just as
MIPS must do on the registers.

A final thorny area in pipelining is multicycle operations. Imagine trying to
pipeline a sequence of VAX instructions such as this:

MOVL R1,R2 ;moves between registers
ADDL3 42(R1),56(R1)+,@(R1) ;adds memory locations
SUBL2 R2,R3 ;subtracts registers
MOVC3 @(R1)[R2],74(R2),R3 ;moves a character string

These instructions differ radically in the number of clock cycles they will require,
from as low as one up to hundreds of clock cycles. They also require different
numbers of data memory accesses, from zero to possibly hundreds. The data haz-
ards are very complex and occur both between and within instructions. The sim-
ple solution of making all instructions execute for the same number of clock
cycles is unacceptable because it introduces an enormous number of hazards and
bypass conditions and makes an immensely long pipeline. Pipelining the VAX at
the instruction level is difficult, but a clever solution was found by the VAX 8800
designers. They pipeline the microinstruction execution; a microinstruction is a
simple instruction used in sequences to implement a more complex instruction
set. Because the microinstructions are simple (they look a lot like MIPS), the

C.5 Extending the MIPS Pipeline to Handle Multicycle Operations ■ C-51

pipeline control is much easier. Since 1995, all Intel IA-32 microprocessors have
used this strategy of converting the IA-32 instructions into microoperations, and
then pipelining the microoperations.

In comparison, load-store processors have simple operations with similar
amounts of work and pipeline more easily. If architects realize the relationship
between instruction set design and pipelining, they can design architectures for
more efficient pipelining. In the next section, we will see how the MIPS pipeline
deals with long-running instructions, specifically floating-point operations.

For many years, the interaction between instruction sets and implementations
was believed to be small, and implementation issues were not a major focus in
designing instruction sets. In the 1980s, it became clear that the difficulty and
inefficiency of pipelining could both be increased by instruction set complica-
tions. In the 1990s, all companies moved to simpler instructions sets with the
goal of reducing the complexity of aggressive implementations.

We now want to explore how our MIPS pipeline can be extended to handle
floating-point operations. This section concentrates on the basic approach and the
design alternatives, closing with some performance measurements of a MIPS
floating-point pipeline.

It is impractical to require that all MIPS FP operations complete in 1 clock
cycle, or even in 2. Doing so would mean accepting a slow clock or using enor-
mous amounts of logic in the FP units, or both. Instead, the FP pipeline will allow
for a longer latency for operations. This is easier to grasp if we imagine the FP
instructions as having the same pipeline as the integer instructions, with two
important changes. First, the EX cycle may be repeated as many times as needed
to complete the operation—the number of repetitions can vary for different oper-
ations. Second, there may be multiple FP functional units. A stall will occur if the
instruction to be issued will cause either a structural hazard for the functional unit
it uses or a data hazard.

For this section, let’s assume that there are four separate functional units in
our MIPS implementation:

1. The main integer unit that handles loads and stores, integer ALU operations,
and branches

2. FP and integer multiplier

3. FP adder that handles FP add, subtract, and conversion

4. FP and integer divider

If we also assume that the execution stages of these functional units are not
pipelined, then Figure C.33 shows the resulting pipeline structure. Because EX
is not pipelined, no other instruction using that functional unit may issue until

C.5 Extending the MIPS Pipeline to Handle Multicycle
Operations

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-52 ■ Appendix C Pipelining: Basic and Intermediate Concepts

the previous instruction leaves EX. Moreover, if an instruction cannot proceed
to the EX stage, the entire pipeline behind that instruction will be stalled.

In reality, the intermediate results are probably not cycled around the EX unit
as Figure C.33 suggests; instead, the EX pipeline stage has some number of clock
delays larger than 1. We can generalize the structure of the FP pipeline shown in
Figure C.33 to allow pipelining of some stages and multiple ongoing operations.
To describe such a pipeline, we must define both the latency of the functional
units and also the initiation interval or repeat interval. We define latency the
same way we defined it earlier: the number of intervening cycles between an
instruction that produces a result and an instruction that uses the result. The initi-
ation or repeat interval is the number of cycles that must elapse between issuing
two operations of a given type. For example, we will use the latencies and initia-
tion intervals shown in Figure C.34.

With this definition of latency, integer ALU operations have a latency of 0,
since the results can be used on the next clock cycle, and loads have a latency of
1, since their results can be used after one intervening cycle. Since most opera-
tions consume their operands at the beginning of EX, the latency is usually the
number of stages after EX that an instruction produces a result—for example,

Figure C.33 The MIPS pipeline with three additional unpipelined, floating-point,
functional units. Because only one instruction issues on every clock cycle, all instruc-
tions go through the standard pipeline for integer operations. The FP operations simply
loop when they reach the EX stage. After they have finished the EX stage, they proceed
to MEM and WB to complete execution.

EX

FP/integer
multiply

EX

Integer unit

EX

FP adder

EX

FP/integer
divider

IF ID MEM WB

C.5 Extending the MIPS Pipeline to Handle Multicycle Operations ■ C-53

zero stages for ALU operations and one stage for loads. The primary exception is
stores, which consume the value being stored 1 cycle later. Hence, the latency to
a store for the value being stored, but not for the base address register, will be
1 cycle less. Pipeline latency is essentially equal to 1 cycle less than the depth of
the execution pipeline, which is the number of stages from the EX stage to the
stage that produces the result. Thus, for the example pipeline just above, the
number of stages in an FP add is four, while the number of stages in an FP multi-
ply is seven. To achieve a higher clock rate, designers need to put fewer logic lev-
els in each pipe stage, which makes the number of pipe stages required for more
complex operations larger. The penalty for the faster clock rate is thus longer
latency for operations.

The example pipeline structure in Figure C.34 allows up to four outstanding
FP adds, seven outstanding FP/integer multiplies, and one FP divide. Figure C.35
shows how this pipeline can be drawn by extending Figure C.33. The repeat
interval is implemented in Figure C.35 by adding additional pipeline stages,
which will be separated by additional pipeline registers. Because the units are
independent, we name the stages differently. The pipeline stages that take multi-
ple clock cycles, such as the divide unit, are further subdivided to show the
latency of those stages. Because they are not complete stages, only one operation
may be active. The pipeline structure can also be shown using the familiar dia-
grams from earlier in the appendix, as Figure C.36 shows for a set of independent
FP operations and FP loads and stores. Naturally, the longer latency of the FP
operations increases the frequency of RAW hazards and resultant stalls, as we will
see later in this section.

The structure of the pipeline in Figure C.35 requires the introduction of the
additional pipeline registers (e.g., A1/A2, A2/A3, A3/A4) and the modification
of the connections to those registers. The ID/EX register must be expanded to
connect ID to EX, DIV, M1, and A1; we can refer to the portion of the register
associated with one of the next stages with the notation ID/EX, ID/DIV, ID/M1,
or ID/A1. The pipeline register between ID and all the other stages may be
thought of as logically separate registers and may, in fact, be implemented as sep-
arate registers. Because only one operation can be in a pipe stage at a time, the
control information can be associated with the register at the head of the stage.

Functional unit Latency Initiation interval

Integer ALU 0 1

Data memory (integer and FP loads) 1 1

FP add 3 1

FP multiply (also integer multiply) 6 1

FP divide (also integer divide) 24 25

Figure C.34 Latencies and initiation intervals for functional units.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-54 ■ Appendix C Pipelining: Basic and Intermediate Concepts

Hazards and Forwarding in Longer Latency Pipelines

There are a number of different aspects to the hazard detection and forwarding
for a pipeline like that shown in Figure C.35.

1. Because the divide unit is not fully pipelined, structural hazards can occur.
These will need to be detected and issuing instructions will need to be stalled.

Figure C.35 A pipeline that supports multiple outstanding FP operations. The FP multiplier and adder are fully
pipelined and have a depth of seven and four stages, respectively. The FP divider is not pipelined, but requires 24
clock cycles to complete. The latency in instructions between the issue of an FP operation and the use of the result of
that operation without incurring a RAW stall is determined by the number of cycles spent in the execution stages.
For example, the fourth instruction after an FP add can use the result of the FP add. For integer ALU operations, the
depth of the execution pipeline is always one and the next instruction can use the results.

MUL.D IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

ADD.D IF ID A1 A2 A3 A4 MEM WB

L.D IF ID EX MEM WB

S.D IF ID EX MEM WB

Figure C.36 The pipeline timing of a set of independent FP operations. The stages in italics show where data are
needed, while the stages in bold show where a result is available. The ”.D” extension on the instruction mnemonic
indicates double-precision (64-bit) floating-point operations. FP loads and stores use a 64-bit path to memory so
that the pipelining timing is just like an integer load or store.

EX

M1

FP/integer multiply

Integer unit

FP adder

FP/integer divider

IF ID MEM WB

M2 M3 M4 M5 M6

A1 A2 A3 A4

M7

DIV

C.5 Extending the MIPS Pipeline to Handle Multicycle Operations ■ C-55

2. Because the instructions have varying running times, the number of register
writes required in a cycle can be larger than 1.

3. Write after write (WAW) hazards are possible, since instructions no longer
reach WB in order. Note that write after read (WAR) hazards are not possible,
since the register reads always occur in ID.

4. Instructions can complete in a different order than they were issued, causing
problems with exceptions; we deal with this in the next subsection.

5. Because of longer latency of operations, stalls for RAW hazards will be more
frequent.

The increase in stalls arising from longer operation latencies is fundamentally the
same as that for the integer pipeline. Before describing the new problems that
arise in this FP pipeline and looking at solutions, let’s examine the potential
impact of RAW hazards. Figure C.37 shows a typical FP code sequence and the
resultant stalls. At the end of this section, we’ll examine the performance of this
FP pipeline for our SPEC subset.

Now look at the problems arising from writes, described as (2) and (3) in the
earlier list. If we assume that the FP register file has one write port, sequences of FP
operations, as well as an FP load together with FP operations, can cause conflicts
for the register write port. Consider the pipeline sequence shown in Figure C.38. In
clock cycle 11, all three instructions will reach WB and want to write the register
file. With only a single register file write port, the processor must serialize the
instruction completion. This single register port represents a structural hazard. We
could increase the number of write ports to solve this, but that solution may be
unattractive since the additional write ports would be used only rarely. This is
because the maximum steady-state number of write ports needed is 1. Instead, we
choose to detect and enforce access to the write port as a structural hazard.

There are two different ways to implement this interlock. The first is to track
the use of the write port in the ID stage and to stall an instruction before it issues,

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

L.D F4,0(R2) IF ID EX MEM WB

MUL.D F0,F4,F6 IF ID Stall M1 M2 M3 M4 M5 M6 M7 MEM WB

ADD.D F2,F0,F8 IF Stall ID Stall Stall Stall Stall Stall Stall A1 A2 A3 A4 MEM WB

S.D F2,0(R2) IF Stall Stall Stall Stall Stall Stall ID EX Stall Stall Stall MEM

7

Figure C.37 A typical FP code sequence showing the stalls arising from RAW hazards. The longer pipeline sub-
stantially raises the frequency of stalls versus the shallower integer pipeline. Each instruction in this sequence is
dependent on the previous and proceeds as soon as data are available, which assumes the pipeline has full bypass-
ing and forwarding. The S.D must be stalled an extra cycle so that its MEM does not conflict with the ADD.D. Extra
hardware could easily handle this case.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-56 ■ Appendix C Pipelining: Basic and Intermediate Concepts

just as we would for any other structural hazard. Tracking the use of the write
port can be done with a shift register that indicates when already-issued instruc-
tions will use the register file. If the instruction in ID needs to use the register file
at the same time as an instruction already issued, the instruction in ID is stalled
for a cycle. On each clock the reservation register is shifted 1 bit. This implemen-
tation has an advantage: It maintains the property that all interlock detection and
stall insertion occurs in the ID stage. The cost is the addition of the shift register
and write conflict logic. We will assume this scheme throughout this section.

An alternative scheme is to stall a conflicting instruction when it tries to enter
either the MEM or WB stage. If we wait to stall the conflicting instructions until
they want to enter the MEM or WB stage, we can choose to stall either instruc-
tion. A simple, though sometimes suboptimal, heuristic is to give priority to the
unit with the longest latency, since that is the one most likely to have caused
another instruction to be stalled for a RAW hazard. The advantage of this scheme
is that it does not require us to detect the conflict until the entrance of the MEM
or WB stage, where it is easy to see. The disadvantage is that it complicates pipe-
line control, as stalls can now arise from two places. Notice that stalling before
entering MEM will cause the EX, A4, or M7 stage to be occupied, possibly forc-
ing the stall to trickle back in the pipeline. Likewise, stalling before WB would
cause MEM to back up.

Our other problem is the possibility of WAW hazards. To see that these exist,
consider the example in Figure C.38. If the L.D instruction were issued one cycle
earlier and had a destination of F2, then it would create a WAW hazard, because
it would write F2 one cycle earlier than the ADD.D. Note that this hazard only
occurs when the result of the ADD.D is overwritten without any instruction ever
using it! If there were a use of F2 between the ADD.D and the L.D, the pipeline
would need to be stalled for a RAW hazard, and the L.D would not issue until the

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10

MUL.D F0,F4,F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

... IF ID EX MEM WB

... IF ID EX MEM WB

ADD.D F2,F4,F6 IF ID A1 A2 A3 A4 MEM WB

... IF ID EX MEM WB

... IF ID EX MEM WB

L.D F2,0(R2) IF ID EX MEM WB

11

Figure C.38 Three instructions want to perform a write-back to the FP register file simultaneously, as shown in
clock cycle 11. This is not the worst case, since an earlier divide in the FP unit could also finish on the same clock.
Note that although the MUL.D, ADD.D, and L.D all are in the MEM stage in clock cycle 10, only the L.D actually uses the
memory, so no structural hazard exists for MEM.

C.5 Extending the MIPS Pipeline to Handle Multicycle Operations ■ C-57

ADD.D was completed. We could argue that, for our pipeline, WAW hazards only
occur when a useless instruction is executed, but we must still detect them and
make sure that the result of the L.D appears in F2 when we are done. (As we will
see in Section C.8, such sequences sometimes do occur in reasonable code.)

There are two possible ways to handle this WAW hazard. The first approach
is to delay the issue of the load instruction until the ADD.D enters MEM. The sec-
ond approach is to stamp out the result of the ADD.D by detecting the hazard and
changing the control so that the ADD.D does not write its result. Then the L.D can
issue right away. Because this hazard is rare, either scheme will work fine—you
can pick whatever is simpler to implement. In either case, the hazard can be
detected during ID when the L.D is issuing, and stalling the L.D or making the
ADD.D a no-op is easy. The difficult situation is to detect that the L.D might finish
before the ADD.D, because that requires knowing the length of the pipeline and
the current position of the ADD.D. Luckily, this code sequence (two writes with no
intervening read) will be very rare, so we can use a simple solution: If an instruc-
tion in ID wants to write the same register as an instruction already issued, do not
issue the instruction to EX. In Section C.7, we will see how additional hardware
can eliminate stalls for such hazards. First, let’s put together the pieces for imple-
menting the hazard and issue logic in our FP pipeline.

In detecting the possible hazards, we must consider hazards among FP
instructions, as well as hazards between an FP instruction and an integer instruc-
tion. Except for FP loads-stores and FP-integer register moves, the FP and inte-
ger registers are distinct. All integer instructions operate on the integer registers,
while the FP operations operate only on their own registers. Thus, we need only
consider FP loads-stores and FP register moves in detecting hazards between FP
and integer instructions. This simplification of pipeline control is an additional
advantage of having separate register files for integer and floating-point data.
(The main advantages are a doubling of the number of registers, without making
either set larger, and an increase in bandwidth without adding more ports to either
set. The main disadvantage, beyond the need for an extra register file, is the small
cost of occasional moves needed between the two register sets.) Assuming that
the pipeline does all hazard detection in ID, there are three checks that must be
performed before an instruction can issue:

1. Check for structural hazards—Wait until the required functional unit is not
busy (this is only needed for divides in this pipeline) and make sure the regis-
ter write port is available when it will be needed.

2. Check for a RAW data hazard—Wait until the source registers are not listed as
pending destinations in a pipeline register that will not be available when this
instruction needs the result. A number of checks must be made here, depending
on both the source instruction, which determines when the result will be avail-
able, and the destination instruction, which determines when the value is
needed. For example, if the instruction in ID is an FP operation with source reg-
ister F2, then F2 cannot be listed as a destination in ID/A1, A1/A2, or A2/A3,
which correspond to FP add instructions that will not be finished when the
instruction in ID needs a result. (ID/A1 is the portion of the output register of

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-58 ■ Appendix C Pipelining: Basic and Intermediate Concepts

ID that is sent to A1.) Divide is somewhat more tricky, if we want to allow the
last few cycles of a divide to be overlapped, since we need to handle the case
when a divide is close to finishing as special. In practice, designers might
ignore this optimization in favor of a simpler issue test.

3. Check for a WAW data hazard—Determine if any instruction in A1, . . . , A4,
D, M1, . . . , M7 has the same register destination as this instruction. If so,
stall the issue of the instruction in ID.

Although the hazard detection is more complex with the multicycle FP opera-
tions, the concepts are the same as for the MIPS integer pipeline. The same is true
for the forwarding logic. The forwarding can be implemented by checking if the
destination register in any of the EX/MEM, A4/MEM, M7/MEM, D/MEM, or
MEM/WB registers is one of the source registers of a floating-point instruction. If
so, the appropriate input multiplexer will have to be enabled so as to choose the
forwarded data. In the exercises, you will have the opportunity to specify the logic
for the RAW and WAW hazard detection as well as for forwarding.

Multicycle FP operations also introduce problems for our exception mecha-
nisms, which we deal with next.

Maintaining Precise Exceptions

Another problem caused by these long-running instructions can be illustrated
with the following sequence of code:

DIV.D F0,F2,F4
ADD.D F10,F10,F8
SUB.D F12,F12,F14

This code sequence looks straightforward; there are no dependences. A problem
arises, however, because an instruction issued early may complete after an
instruction issued later. In this example, we can expect ADD.D and SUB.D to com-
plete before the DIV.D completes. This is called out-of-order completion and is
common in pipelines with long-running operations (see Section C.7). Because
hazard detection will prevent any dependence among instructions from being
violated, why is out-of-order completion a problem? Suppose that the SUB.D
causes a floating-point arithmetic exception at a point where the ADD.D has com-
pleted but the DIV.D has not. The result will be an imprecise exception, some-
thing we are trying to avoid. It may appear that this could be handled by letting
the floating-point pipeline drain, as we do for the integer pipeline. But the excep-
tion may be in a position where this is not possible. For example, if the DIV.D
decided to take a floating-point-arithmetic exception after the add completed, we
could not have a precise exception at the hardware level. In fact, because the
ADD.D destroys one of its operands, we could not restore the state to what it was
before the DIV.D, even with software help.

This problem arises because instructions are completing in a different order
than they were issued. There are four possible approaches to dealing with out-of-
order completion. The first is to ignore the problem and settle for imprecise

C.5 Extending the MIPS Pipeline to Handle Multicycle Operations ■ C-59

exceptions. This approach was used in the 1960s and early 1970s. It is still used
in some supercomputers, where certain classes of exceptions are not allowed or
are handled by the hardware without stopping the pipeline. It is difficult to use
this approach in most processors built today because of features such as virtual
memory and the IEEE floating-point standard that essentially require precise
exceptions through a combination of hardware and software. As mentioned ear-
lier, some recent processors have solved this problem by introducing two modes
of execution: a fast, but possibly imprecise mode and a slower, precise mode. The
slower precise mode is implemented either with a mode switch or by insertion of
explicit instructions that test for FP exceptions. In either case, the amount of
overlap and reordering permitted in the FP pipeline is significantly restricted so
that effectively only one FP instruction is active at a time. This solution is used in
the DEC Alpha 21064 and 21164, in the IBM Power1 and Power2, and in the
MIPS R8000.

A second approach is to buffer the results of an operation until all the opera-
tions that were issued earlier are complete. Some CPUs actually use this solution,
but it becomes expensive when the difference in running times among operations
is large, since the number of results to buffer can become large. Furthermore,
results from the queue must be bypassed to continue issuing instructions while
waiting for the longer instruction. This requires a large number of comparators
and a very large multiplexer.

There are two viable variations on this basic approach. The first is a history
file, used in the CYBER 180/990. The history file keeps track of the original val-
ues of registers. When an exception occurs and the state must be rolled back ear-
lier than some instruction that completed out of order, the original value of the
register can be restored from the history file. A similar technique is used for auto-
increment and autodecrement addressing on processors such as VAXes. Another
approach, the future file, proposed by Smith and Pleszkun [1988], keeps the
newer value of a register; when all earlier instructions have completed, the main
register file is updated from the future file. On an exception, the main register file
has the precise values for the interrupted state. In Chapter 3, we saw extensions
of this idea which are used in processors such as the PowerPC 620 and the MIPS
R10000 to allow overlap and reordering while preserving precise exceptions.

A third technique in use is to allow the exceptions to become somewhat
imprecise, but to keep enough information so that the trap-handling routines can
create a precise sequence for the exception. This means knowing what operations
were in the pipeline and their PCs. Then, after handling the exception, the soft-
ware finishes any instructions that precede the latest instruction completed, and
the sequence can restart. Consider the following worst-case code sequence:

Instruction1—A long-running instruction that eventually interrupts execution.

Instruction2, . . . , Instructionn–1—A series of instructions that are not
completed.

Instructionn—An instruction that is finished.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-60 ■ Appendix C Pipelining: Basic and Intermediate Concepts

Given the PCs of all the instructions in the pipeline and the exception return PC,
the software can find the state of instruction1 and instructionn. Because instruc-
tionn has completed, we will want to restart execution at instructionn+1. After
handling the exception, the software must simulate the execution of instruction1,
. . . , instructionn–1. Then we can return from the exception and restart at instruc-
tionn+1. The complexity of executing these instructions properly by the handler is
the major difficulty of this scheme.

There is an important simplification for simple MIPS-like pipelines: If
instruction2, . . . , instructionn are all integer instructions, we know that if
instructionn has completed then all of instruction2, . . . , instructionn–1 have
also completed. Thus, only FP operations need to be handled. To make this
scheme tractable, the number of floating-point instructions that can be over-
lapped in execution can be limited. For example, if we only overlap two
instructions, then only the interrupting instruction need be completed by soft-
ware. This restriction may reduce the potential throughput if the FP pipelines
are deep or if there are a significant number of FP functional units. This
approach is used in the SPARC architecture to allow overlap of floating-point
and integer operations.

The final technique is a hybrid scheme that allows the instruction issue to
continue only if it is certain that all the instructions before the issuing instruction
will complete without causing an exception. This guarantees that when an excep-
tion occurs, no instructions after the interrupting one will be completed and all of
the instructions before the interrupting one can be completed. This sometimes
means stalling the CPU to maintain precise exceptions. To make this scheme
work, the floating-point functional units must determine if an exception is possi-
ble early in the EX stage (in the first 3 clock cycles in the MIPS pipeline), so as to
prevent further instructions from completing. This scheme is used in the MIPS
R2000/3000, the R4000, and the Intel Pentium. It is discussed further in
Appendix J.

Performance of a MIPS FP Pipeline

The MIPS FP pipeline of Figure C.35 on page C-54 can generate both structural
stalls for the divide unit and stalls for RAW hazards (it also can have WAW haz-
ards, but this rarely occurs in practice). Figure C.39 shows the number of stall
cycles for each type of floating-point operation on a per-instance basis (i.e., the
first bar for each FP benchmark shows the number of FP result stalls for each FP
add, subtract, or convert). As we might expect, the stall cycles per operation track
the latency of the FP operations, varying from 46% to 59% of the latency of the
functional unit.

Figure C.40 gives the complete breakdown of integer and FP stalls for five
SPECfp benchmarks. There are four classes of stalls shown: FP result stalls, FP
compare stalls, load and branch delays, and FP structural delays. The compiler tries
to schedule both load and FP delays before it schedules branch delays. The total
number of stalls per instruction varies from 0.65 to 1.21.

C.6 Putting It All Together: The MIPS R4000 Pipeline ■ C-61

In this section, we look at the pipeline structure and performance of the MIPS
R4000 processor family, which includes the 4400. The R4000 implements
MIPS64 but uses a deeper pipeline than that of our five-stage design both for
integer and FP programs. This deeper pipeline allows it to achieve higher clock
rates by decomposing the five-stage integer pipeline into eight stages. Because
cache access is particularly time critical, the extra pipeline stages come from
decomposing the memory access. This type of deeper pipelining is sometimes
called superpipelining.

Figure C.39 Stalls per FP operation for each major type of FP operation for the

SPEC89 FP benchmarks. Except for the divide structural hazards, these data do not
depend on the frequency of an operation, only on its latency and the number of cycles
before the result is used. The number of stalls from RAW hazards roughly tracks the
latency of the FP unit. For example, the average number of stalls per FP add, subtract, or
convert is 1.7 cycles, or 56% of the latency (3 cycles). Likewise, the average number of
stalls for multiplies and divides are 2.8 and 14.2, respectively, or 46% and 59% of the
corresponding latency. Structural hazards for divides are rare, since the divide fre-
quency is low.

Number of stalls

0.0 25.05.0 10.0 20.015.0

doduc

ear

hydro2d

mdljdp

su2cor

0.6
18.6

1.6
1.5

0.7

0.0
24.5

2.9
1.2

2.1

0.0
0.4

3.2
2.5

2.3

0.0
12.4

2.5
2.0

1.6

2.0
15.4

3.7
1.7
1.7 Add/subtract/convert

Compares
Multiply
Divide
Divide structural

F
P

 S
P

E
C

 b
en

ch
m

ar
ks

C.6 Putting It All Together: The MIPS R4000 Pipeline

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-62 ■ Appendix C Pipelining: Basic and Intermediate Concepts

Figure C.41 shows the eight-stage pipeline structure using an abstracted
version of the data path. Figure C.42 shows the overlap of successive instruc-
tions in the pipeline. Notice that, although the instruction and data memory

Figure C.40 The stalls occurring for the MIPS FP pipeline for five of the SPEC89 FP
benchmarks. The total number of stalls per instruction ranges from 0.65 for su2cor to
1.21 for doduc, with an average of 0.87. FP result stalls dominate in all cases, with an
average of 0.71 stalls per instruction, or 82% of the stalled cycles. Compares generate
an average of 0.1 stalls per instruction and are the second largest source. The divide
structural hazard is only significant for doduc.

Figure C.41 The eight-stage pipeline structure of the R4000 uses pipelined instruction and data caches. The
pipe stages are labeled and their detailed function is described in the text. The vertical dashed lines represent the
stage boundaries as well as the location of pipeline latches. The instruction is actually available at the end of IS, but
the tag check is done in RF, while the registers are fetched. Thus, we show the instruction memory as operating
through RF. The TC stage is needed for data memory access, since we cannot write the data into the register until we
know whether the cache access was a hit or not.

Number of stalls

0.00 1.000.200.10 0.40 0.80 0.900.60 0.700.30 0.50

F
P

 S
P

E
C

 b
en

ch
m

ar
ks

doduc

ear

hydro2d

mdljdp

su2cor

0.01
0.01
0.02

0.61

0.00
0.03

0.10
0.88

0.00
0.04

0.22
0.54

0.00
0.07
0.09

0.52

0.08
0.08
0.07

0.98

FP result stalls

FP compare stalls

Branch/load stalls

FP structural

IF IS

Instruction memory Reg A
LU Data memory Reg

RF EX DF DS TC WB

C.6 Putting It All Together: The MIPS R4000 Pipeline ■ C-63

occupy multiple cycles, they are fully pipelined, so that a new instruction can
start on every clock. In fact, the pipeline uses the data before the cache hit
detection is complete; Chapter 2 discusses how this can be done in more detail.

The function of each stage is as follows:

■ IF—First half of instruction fetch; PC selection actually happens here,
together with initiation of instruction cache access.

■ IS—Second half of instruction fetch, complete instruction cache access.

■ RF—Instruction decode and register fetch, hazard checking, and instruction
cache hit detection.

■ EX—Execution, which includes effective address calculation, ALU opera-
tion, and branch-target computation and condition evaluation.

■ DF—Data fetch, first half of data cache access.

■ DS—Second half of data fetch, completion of data cache access.

■ TC—Tag check, to determine whether the data cache access hit.

■ WB—Write-back for loads and register-register operations.

In addition to substantially increasing the amount of forwarding required, this
longer-latency pipeline increases both the load and branch delays. Figure C.42
shows that load delays are 2 cycles, since the data value is available at the end of

Figure C.42 The structure of the R4000 integer pipeline leads to a 2-cycle load delay. A 2-cycle delay is possible
because the data value is available at the end of DS and can be bypassed. If the tag check in TC indicates a miss, the
pipeline is backed up a cycle, when the correct data are available.

CC 1

Time (in clock cycles)

CC 2

Instruction memory Reg A
LU Data memory Reg

Instruction memory Reg A
LU Data memory Reg

Instruction memory Reg A
LU Data memory Reg

Instruction memory

LD R1

Instruction 1

Instruction 2

ADDD R2, R1 Reg A
LU Data memory Reg

CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9 CC 10 CC 11

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-64 ■ Appendix C Pipelining: Basic and Intermediate Concepts

DS. Figure C.43 shows the shorthand pipeline schedule when a use immediately
follows a load. It shows that forwarding is required for the result of a load
instruction to a destination that is 3 or 4 cycles later.

Figure C.44 shows that the basic branch delay is 3 cycles, since the branch
condition is computed during EX. The MIPS architecture has a single-cycle
delayed branch. The R4000 uses a predicted-not-taken strategy for the remain-
ing 2 cycles of the branch delay. As Figure C.45 shows, untaken branches are
simply 1-cycle delayed branches, while taken branches have a 1-cycle delay
slot followed by 2 idle cycles. The instruction set provides a branch-likely
instruction, which we described earlier and which helps in filling the branch

 Clock number

Instruction number 1 2 3 4 5 6 7 8

LD R1,... IF IS RF EX DF DS TC WB

DADD R2,R1,... IF IS RF Stall Stall EX DF DS

DSUB R3,R1,... IF IS Stall Stall RF EX DF

OR R4,R1,... IF Stall Stall IS RF EX

9

Figure C.43 A load instruction followed by an immediate use results in a 2-cycle stall. Normal forwarding paths
can be used after 2 cycles, so the DADD and DSUB get the value by forwarding after the stall. The OR instruction gets
the value from the register file. Since the two instructions after the load could be independent and hence not stall,
the bypass can be to instructions that are 3 or 4 cycles after the load.

Figure C.44 The basic branch delay is 3 cycles, since the condition evaluation is performed during EX.

CC 1

Time (in clock cycles)

CC 2

Instruction memory Reg A
LU Data memory Reg

Instruction memory Reg A
LU Data memory Reg

Instruction memory Reg A
LU Data memory Reg

Instruction memory

BEQZ

Instruction 1

Instruction 2

Instruction 3

Target

Reg A
LU Data memory Reg

Instruction memory Reg A
LU Data memory

CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9 CC 10 CC 11

C.6 Putting It All Together: The MIPS R4000 Pipeline ■ C-65

delay slot. Pipeline interlocks enforce both the 2-cycle branch stall penalty on a
taken branch and any data hazard stall that arises from use of a load result.

In addition to the increase in stalls for loads and branches, the deeper pipeline
increases the number of levels of forwarding for ALU operations. In our MIPS
five-stage pipeline, forwarding between two register-register ALU instructions
could happen from the ALU/MEM or the MEM/WB registers. In the R4000
pipeline, there are four possible sources for an ALU bypass: EX/DF, DF/DS, DS/
TC, and TC/WB.

The Floating-Point Pipeline

The R4000 floating-point unit consists of three functional units: a floating-point
divider, a floating-point multiplier, and a floating-point adder. The adder logic is
used on the final step of a multiply or divide. Double-precision FP operations can
take from 2 cycles (for a negate) up to 112 cycles (for a square root). In addition,
the various units have different initiation rates. The FP functional unit can be
thought of as having eight different stages, listed in Figure C.46; these stages are
combined in different orders to execute various FP operations.

There is a single copy of each of these stages, and various instructions may
use a stage zero or more times and in different orders. Figure C.47 shows the

 Clock number

Instruction number 1 2 3 4 5 6 7 8

Branch instruction IF IS RF EX DF DS TC WB

Delay slot IF IS RF EX DF DS TC WB

Stall Stall Stall Stall Stall Stall Stall Stal
l

Stall Stall Stall Stall Stall Stall Stal
l

Branch target IF IS RF EX DF

 Clock number

Instruction number 1 2 3 4 5 6 7 8

Branch instruction IF IS RF EX DF DS TC WB

Delay slot IF IS RF EX DF DS TC WB

Branch instruction + 2 IF IS RF EX DF DS TC

Branch instruction + 3 IF IS RF EX DF DS

9

9

Figure C.45 A taken branch, shown in the top portion of the figure, has a 1-cycle delay slot followed by a 2-cycle

stall, while an untaken branch, shown in the bottom portion, has simply a 1-cycle delay slot. The branch instruc-
tion can be an ordinary delayed branch or a branch-likely, which cancels the effect of the instruction in the delay slot
if the branch is untaken.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-66 ■ Appendix C Pipelining: Basic and Intermediate Concepts

latency, initiation rate, and pipeline stages used by the most common double-
precision FP operations.

From the information in Figure C.47, we can determine whether a sequence
of different, independent FP operations can issue without stalling. If the timing of
the sequence is such that a conflict occurs for a shared pipeline stage, then a stall
will be needed. Figures C.48, C.49, C.50, and C.51 show four common possible
two-instruction sequences: a multiply followed by an add, an add followed by a
multiply, a divide followed by an add, and an add followed by a divide. The fig-
ures show all the interesting starting positions for the second instruction and
whether that second instruction will issue or stall for each position. Of course,
there could be three instructions active, in which case the possibilities for stalls
are much higher and the figures more complex.

Stage Functional unit Description

A FP adder Mantissa ADD stage

D FP divider Divide pipeline stage

E FP multiplier Exception test stage

M FP multiplier First stage of multiplier

N FP multiplier Second stage of multiplier

R FP adder Rounding stage

S FP adder Operand shift stage

U Unpack FP numbers

Figure C.46 The eight stages used in the R4000 floating-point pipelines.

FP instruction Latency Initiation interval Pipe stages

Add, subtract 4 3 U, S + A, A + R, R + S

Multiply 8 4 U, E + M, M, M, M, N, N + A, R

Divide 36 35 U, A, R, D28, D + A, D + R, D + A, D + R, A, R

Square root 112 111 U, E, (A+R)108, A, R

Negate 2 1 U, S

Absolute value 2 1 U, S

FP compare 3 2 U, A, R

Figure C.47 The latencies and initiation intervals for the FP operations both depend on the FP unit stages that a
given operation must use. The latency values assume that the destination instruction is an FP operation; the laten-
cies are 1 cycle less when the destination is a store. The pipe stages are shown in the order in which they are used for
any operation. The notation S + A indicates a clock cycle in which both the S and A stages are used. The notation D 28

indicates that the D stage is used 28 times in a row.

C.6 Putting It All Together: The MIPS R4000 Pipeline ■ C-67

Performance of the R4000 Pipeline

In this section, we examine the stalls that occur for the SPEC92 benchmarks
when running on the R4000 pipeline structure. There are four major causes of
pipeline stalls or losses:

1. Load stalls—Delays arising from the use of a load result 1 or 2 cycles after
the load

2. Branch stalls—Two-cycle stalls on every taken branch plus unfilled or can-
celed branch delay slots

3. FP result stalls—Stalls because of RAW hazards for an FP operand

Clock cycle

Operation Issue/stall 0 1 2 3 4 5 6 7 8 9 10 11

Multiply Issue U E + M M M M N N + A R

Add Issue U S + A A + R R + S

Issue U S + A A + R R + S

Issue U S + A A + R R + S

Stall U S + A A + R R + S

Stall U S + A A + R R + S

Issue U S + A A + R R + S

Issue U S + A A + R R + S

12

Figure C.48 An FP multiply issued at clock 0 is followed by a single FP add issued between clocks 1 and 7. The
second column indicates whether an instruction of the specified type stalls when it is issued n cycles later, where n is
the clock cycle number in which the U stage of the second instruction occurs. The stage or stages that cause a stall
are in bold. Note that this table deals with only the interaction between the multiply and one add issued between
clocks 1 and 7. In this case, the add will stall if it is issued 4 or 5 cycles after the multiply; otherwise, it issues without
stalling. Notice that the add will be stalled for 2 cycles if it issues in cycle 4 since on the next clock cycle it will still con-
flict with the multiply; if, however, the add issues in cycle 5, it will stall for only 1 clock cycle, since that will eliminate
the conflicts.

Clock cycle

Operation Issue/stall 0 1 2 3 4 5 6 7 8 9 10 11 12

Add Issue U S + A A + R R + S

Multiply Issue U E + M M M M N N + A R

Issue U M M M M N N + A R

Figure C.49 A multiply issuing after an add can always proceed without stalling, since the shorter instruction

clears the shared pipeline stages before the longer instruction reaches them.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-68 ■ Appendix C Pipelining: Basic and Intermediate Concepts

4. FP structural stalls—Delays because of issue restrictions arising from con-
flicts for functional units in the FP pipeline

Figure C.52 shows the pipeline CPI breakdown for the R4000 pipeline for the 10
SPEC92 benchmarks. Figure C.53 shows the same data but in tabular form.

From the data in Figures C.52 and C.53, we can see the penalty of the deeper
pipelining. The R4000’s pipeline has much longer branch delays than the classic

Clock cycle

Operation Issue/stall 25 26 27 28 29 30 31 32 33 34 35 36

Divide Issued in
cycle 0. . .

D D D D D D + A D + R D + A D + R A R

Add Issue U S + A A + R R + S

Issue U S + A A + R R + S

Stall U S + A A + R R + S

Stall U S + A A + R R + S

Stall U S + A A + R R + S

Stall U S + A A + R R + S

Stall U S + A A + R R + S

Stall U S + A A + R R + S

Issue U S + A A + R

Issue U S + A

Issue U

Figure C.50 An FP divide can cause a stall for an add that starts near the end of the divide. The divide starts at
cycle 0 and completes at cycle 35; the last 10 cycles of the divide are shown. Since the divide makes heavy use of the
rounding hardware needed by the add, it stalls an add that starts in any of cycles 28 to 33. Notice that the add start-
ing in cycle 28 will be stalled until cycle 36. If the add started right after the divide, it would not conflict, since the add
could complete before the divide needed the shared stages, just as we saw in Figure C.49 for a multiply and add. As
in the earlier figure, this example assumes exactly one add that reaches the U stage between clock cycles 26 and 35.

Clock cycle

Operation Issue/stall 0 1 2 3 4 5 6 7 8 9 10 11

Add Issue U S + A A + R R + S

Divide Stall U A R D D D D D D D D

Issue U A R D D D D D D D

Issue U A R D D D D D D

12

D

D

D

Figure C.51 A double-precision add is followed by a double-precision divide. If the divide starts 1 cycle after the
add, the divide stalls, but after that there is no conflict.

C.6 Putting It All Together: The MIPS R4000 Pipeline ■ C-69

Figure C.52 The pipeline CPI for 10 of the SPEC92 benchmarks, assuming a perfect

cache. The pipeline CPI varies from 1.2 to 2.8. The leftmost five programs are integer
programs, and branch delays are the major CPI contributor for these. The rightmost five
programs are FP, and FP result stalls are the major contributor for these. Figure C.53
shows the numbers used to construct this plot.

Benchmark Pipeline CPI Load stalls Branch stalls FP result stalls FP structural stalls

Compress 1.20 0.14 0.06 0.00 0.00

Eqntott 1.88 0.27 0.61 0.00 0.00

Espresso 1.42 0.07 0.35 0.00 0.00

Gcc 1.56 0.13 0.43 0.00 0.00

Li 1.64 0.18 0.46 0.00 0.00

Integer average 1.54 0.16 0.38 0.00 0.00

Doduc 2.84 0.01 0.22 1.39 0.22

Mdljdp2 2.66 0.01 0.31 1.20 0.15

Ear 2.17 0.00 0.46 0.59 0.12

Hydro2d 2.53 0.00 0.62 0.75 0.17

Su2cor 2.18 0.02 0.07 0.84 0.26

FP average 2.48 0.01 0.33 0.95 0.18

Overall average 2.00 0.10 0.36 0.46 0.09

Figure C.53 The total pipeline CPI and the contributions of the four major sources of stalls are shown. The major
contributors are FP result stalls (both for branches and for FP inputs) and branch stalls, with loads and FP structural
stalls adding less.

P
ip

el
in

e
C

P
I

0.00

3.00

0.50

1.00

2.00

1.50

2.50

SPEC92 benchmark
co

m
pr

es
s

eq
nt

ot
t

es
pr

es
so gc

c li

do
du

c
ea

r

hy
dr

o2
d

m
dlj

dp

su
2c

or

Base

Load stalls

Branch stalls

FP result stalls

FP structural stalls

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-70 ■ Appendix C Pipelining: Basic and Intermediate Concepts

five-stage pipeline. The longer branch delay substantially increases the cycles
spent on branches, especially for the integer programs with a higher branch fre-
quency. An interesting effect for the FP programs is that the latency of the FP
functional units leads to more result stalls than the structural hazards, which arise
both from the initiation interval limitations and from conflicts for functional units
from different FP instructions. Thus, reducing the latency of FP operations
should be the first target, rather than more pipelining or replication of the func-
tional units. Of course, reducing the latency would probably increase the struc-
tural stalls, since many potential structural stalls are hidden behind data hazards.

RISC Instruction Sets and Efficiency of Pipelining

We have already discussed the advantages of instruction set simplicity in building
pipelines. Simple instruction sets offer another advantage: They make it easier to
schedule code to achieve efficiency of execution in a pipeline. To see this, consider
a simple example: Suppose we need to add two values in memory and store the
result back to memory. In some sophisticated instruction sets this will take only a
single instruction; in others, it will take two or three. A typical RISC architecture
would require four instructions (two loads, an add, and a store). These instructions
cannot be scheduled sequentially in most pipelines without intervening stalls.

With a RISC instruction set, the individual operations are separate instruc-
tions and may be individually scheduled either by the compiler (using the tech-
niques we discussed earlier and more powerful techniques discussed in Chapter
3) or using dynamic hardware scheduling techniques (which we discuss next and
in further detail in Chapter 3). These efficiency advantages, coupled with the
greater ease of implementation, appear to be so significant that almost all recent
pipelined implementations of complex instruction sets actually translate their
complex instructions into simple RISC-like operations, and then schedule and
pipeline those operations. Chapter 3 shows that both the Pentium III and Pentium
4 use this approach.

Dynamically Scheduled Pipelines

Simple pipelines fetch an instruction and issue it, unless there is a data depen-
dence between an instruction already in the pipeline and the fetched instruction
that cannot be hidden with bypassing or forwarding. Forwarding logic reduces
the effective pipeline latency so that certain dependences do not result in haz-
ards. If there is an unavoidable hazard, then the hazard detection hardware stalls
the pipeline (starting with the instruction that uses the result). No new instruc-
tions are fetched or issued until the dependence is cleared. To overcome these

C.7 Crosscutting Issues

C.7 Crosscutting Issues ■ C-71

performance losses, the compiler can attempt to schedule instructions to avoid
the hazard; this approach is called compiler or static scheduling.

Several early processors used another approach, called dynamic scheduling,
whereby the hardware rearranges the instruction execution to reduce the stalls.
This section offers a simpler introduction to dynamic scheduling by explaining
the scoreboarding technique of the CDC 6600. Some readers will find it easier to
read this material before plunging into the more complicated Tomasulo scheme,
which is covered in Chapter 3.

All the techniques discussed in this appendix so far use in-order instruction
issue, which means that if an instruction is stalled in the pipeline, no later instruc-
tions can proceed. With in-order issue, if two instructions have a hazard between
them, the pipeline will stall, even if there are later instructions that are indepen-
dent and would not stall.

In the MIPS pipeline developed earlier, both structural and data hazards were
checked during instruction decode (ID): When an instruction could execute prop-
erly, it was issued from ID. To allow an instruction to begin execution as soon as
its operands are available, even if a predecessor is stalled, we must separate the
issue process into two parts: checking the structural hazards and waiting for the
absence of a data hazard. We decode and issue instructions in order; however, we
want the instructions to begin execution as soon as their data operands are avail-
able. Thus, the pipeline will do out-of-order execution, which implies out-of-
order completion. To implement out-of-order execution, we must split the ID
pipe stage into two stages:

1. Issue—Decode instructions, check for structural hazards.

2. Read operands—Wait until no data hazards, then read operands.

The IF stage proceeds the issue stage, and the EX stage follows the read oper-
ands stage, just as in the MIPS pipeline. As in the MIPS floating-point pipeline,
execution may take multiple cycles, depending on the operation. Thus, we may
need to distinguish when an instruction begins execution and when it completes
execution; between the two times, the instruction is in execution. This allows
multiple instructions to be in execution at the same time. In addition to these
changes to the pipeline structure, we will also change the functional unit design
by varying the number of units, the latency of operations, and the functional unit
pipelining so as to better explore these more advanced pipelining techniques.

Dynamic Scheduling with a Scoreboard

In a dynamically scheduled pipeline, all instructions pass through the issue stage
in order (in-order issue); however, they can be stalled or bypass each other in the
second stage (read operands) and thus enter execution out of order. Scoreboard-
ing is a technique for allowing instructions to execute out of order when there are
sufficient resources and no data dependences; it is named after the CDC 6600
scoreboard, which developed this capability.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-72 ■ Appendix C Pipelining: Basic and Intermediate Concepts

Before we see how scoreboarding could be used in the MIPS pipeline, it is
important to observe that WAR hazards, which did not exist in the MIPS floating-
point or integer pipelines, may arise when instructions execute out of order. For
example, consider the following code sequence:

DIV.D F0,F2,F4
ADD.D F10,F0,F8
SUB.D F8,F8,F14

There is an antidependence between the ADD.D and the SUB.D: If the pipeline exe-
cutes the SUB.D before the ADD.D, it will violate the antidependence, yielding
incorrect execution. Likewise, to avoid violating output dependences, WAW haz-
ards (e.g., as would occur if the destination of the SUB.D were F10) must also be
detected. As we will see, both these hazards are avoided in a scoreboard by stall-
ing the later instruction involved in the antidependence.

The goal of a scoreboard is to maintain an execution rate of one instruction
per clock cycle (when there are no structural hazards) by executing an instruction
as early as possible. Thus, when the next instruction to execute is stalled, other
instructions can be issued and executed if they do not depend on any active or
stalled instruction. The scoreboard takes full responsibility for instruction issue
and execution, including all hazard detection. Taking advantage of out-of-order
execution requires multiple instructions to be in their EX stage simultaneously.
This can be achieved with multiple functional units, with pipelined functional
units, or with both. Since these two capabilities—pipelined functional units and
multiple functional units—are essentially equivalent for the purposes of pipeline
control, we will assume the processor has multiple functional units.

The CDC 6600 had 16 separate functional units, including 4 floating-point
units, 5 units for memory references, and 7 units for integer operations. On a
processor for the MIPS architecture, scoreboards make sense primarily on the
floating-point unit since the latency of the other functional units is very small.
Let’s assume that there are two multipliers, one adder, one divide unit, and a sin-
gle integer unit for all memory references, branches, and integer operations.
Although this example is simpler than the CDC 6600, it is sufficiently powerful
to demonstrate the principles without having a mass of detail or needing very
long examples. Because both MIPS and the CDC 6600 are load-store architec-
tures, the techniques are nearly identical for the two processors. Figure C.54
shows what the processor looks like.

Every instruction goes through the scoreboard, where a record of the data
dependences is constructed; this step corresponds to instruction issue and replaces
part of the ID step in the MIPS pipeline. The scoreboard then determines when
the instruction can read its operands and begin execution. If the scoreboard
decides the instruction cannot execute immediately, it monitors every change in
the hardware and decides when the instruction can execute. The scoreboard
also controls when an instruction can write its result into the destination regis-
ter. Thus, all hazard detection and resolution are centralized in the scoreboard.
We will see a picture of the scoreboard later (Figure C.55 on page C-76), but

C.7 Crosscutting Issues ■ C-73

first we need to understand the steps in the issue and execution segment of the
pipeline.

Each instruction undergoes four steps in executing. (Since we are concen-
trating on the FP operations, we will not consider a step for memory access.)
Let’s first examine the steps informally and then look in detail at how the score-
board keeps the necessary information that determines when to progress from
one step to the next. The four steps, which replace the ID, EX, and WB steps in
the standard MIPS pipeline, are as follows:

1. Issue—If a functional unit for the instruction is free and no other active
instruction has the same destination register, the scoreboard issues the
instruction to the functional unit and updates its internal data structure. This
step replaces a portion of the ID step in the MIPS pipeline. By ensuring that

Figure C.54 The basic structure of a MIPS processor with a scoreboard. The score-
board’s function is to control instruction execution (vertical control lines). All of the data
flow between the register file and the functional units over the buses (the horizontal
lines, called trunks in the CDC 6600). There are two FP multipliers, an FP divider, an FP
adder, and an integer unit. One set of buses (two inputs and one output) serves a group
of functional units. The details of the scoreboard are shown in Figures C.55 to C.58.

Control/
status

Scoreboard
Control/
status

Integer unit

FP add

FP divide

FP mult

FP mult

Data busesRegisters

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-74 ■ Appendix C Pipelining: Basic and Intermediate Concepts

no other active functional unit wants to write its result into the destination
register, we guarantee that WAW hazards cannot be present. If a structural or
WAW hazard exists, then the instruction issue stalls, and no further instruc-
tions will issue until these hazards are cleared. When the issue stage stalls, it
causes the buffer between instruction fetch and issue to fill; if the buffer is a
single entry, instruction fetch stalls immediately. If the buffer is a queue with
multiple instructions, it stalls when the queue fills.

2. Read operands—The scoreboard monitors the availability of the source oper-
ands. A source operand is available if no earlier issued active instruction is
going to write it. When the source operands are available, the scoreboard tells
the functional unit to proceed to read the operands from the registers and
begin execution. The scoreboard resolves RAW hazards dynamically in this
step, and instructions may be sent into execution out of order. This step,
together with issue, completes the function of the ID step in the simple MIPS
pipeline.

3. Execution—The functional unit begins execution upon receiving operands.
When the result is ready, it notifies the scoreboard that it has completed
execution. This step replaces the EX step in the MIPS pipeline and takes mul-
tiple cycles in the MIPS FP pipeline.

4. Write result—Once the scoreboard is aware that the functional unit has com-
pleted execution, the scoreboard checks for WAR hazards and stalls the com-
pleting instruction, if necessary.

A WAR hazard exists if there is a code sequence like our earlier example
with ADD.D and SUB.D that both use F8. In that example, we had the code

DIV.D F0,F2,F4
ADD.D F10,F0,F8
SUB.D F8,F8,F14

ADD.D has a source operand F8, which is the same register as the destination
of SUB.D. But ADD.D actually depends on an earlier instruction. The score-
board will still stall the SUB.D in its write result stage until ADD.D reads its
operands. In general, then, a completing instruction cannot be allowed to
write its results when:

■ There is an instruction that has not read its operands that precedes (i.e., in
order of issue) the completing instruction, and

■ One of the operands is the same register as the result of the completing
instruction.

If this WAR hazard does not exist, or when it clears, the scoreboard tells the
functional unit to store its result to the destination register. This step
replaces the WB step in the simple MIPS pipeline.

At first glance, it might appear that the scoreboard will have difficulty sepa-
rating RAW and WAR hazards.

C.7 Crosscutting Issues ■ C-75

Because the operands for an instruction are read only when both operands are
available in the register file, this scoreboard does not take advantage of forward-
ing. Instead, registers are only read when they are both available. This is not as
large a penalty as you might initially think. Unlike our simple pipeline of earlier,
instructions will write their result into the register file as soon as they complete
execution (assuming no WAR hazards), rather than wait for a statically assigned
write slot that may be several cycles away. The effect is reduced pipeline latency
and benefits of forwarding. There is still one additional cycle of latency that
arises since the write result and read operand stages cannot overlap. We would
need additional buffering to eliminate this overhead.

Based on its own data structure, the scoreboard controls the instruction pro-
gression from one step to the next by communicating with the functional units.
There is a small complication, however. There are only a limited number of
source operand buses and result buses to the register file, which represents a
structural hazard. The scoreboard must guarantee that the number of functional
units allowed to proceed into steps 2 and 4 does not exceed the number of buses
available. We will not go into further detail on this, other than to mention that the
CDC 6600 solved this problem by grouping the 16 functional units together into
four groups and supplying a set of buses, called data trunks, for each group. Only
one unit in a group could read its operands or write its result during a clock.

Now let’s look at the detailed data structure maintained by a MIPS score-
board with five functional units. Figure C.55 shows what the scoreboard’s infor-
mation looks like partway through the execution of this simple sequence of
instructions:

L.D F6,34(R2)
L.D F2,45(R3)
MUL.D F0,F2,F4
SUB.D F8,F6,F2
DIV.D F10,F0,F6
ADD.D F6,F8,F2

There are three parts to the scoreboard:

1. Instruction status—Indicates which of the four steps the instruction is in.

2. Functional unit status—Indicates the state of the functional unit (FU). There
are nine fields for each functional unit:

■ Busy—Indicates whether the unit is busy or not.

■ Op—Operation to perform in the unit (e.g., add or subtract).

■ Fi—Destination register.

■ Fj, Fk—Source-register numbers.

■ Qj, Qk—Functional units producing source registers Fj, Fk.

■ Rj, Rk—Flags indicating when Fj, Fk are ready and not yet read. Set to No
after operands are read.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-76 ■ Appendix C Pipelining: Basic and Intermediate Concepts

3. Register result status—Indicates which functional unit will write each register,
if an active instruction has the register as its destination. This field is set to
blank whenever there are no pending instructions that will write that register.

Now let’s look at how the code sequence begun in Figure C.55 continues exe-
cution. After that, we will be able to examine in detail the conditions that the
scoreboard uses to control execution.

 Instruction status

Instruction Issue Read operands Execution complete Write result

L.D F6,34(R2) √ √ √
L.D F2,45(R3) √ √ √
MUL.D F0,F2,F4 √
SUB.D F8,F6,F2 √
DIV.D F10,F0,F6 √
ADD.D F6,F8,F2

Functional unit status

Name Busy Op Fi Fj Fk Qj Qk Rj Rk

Integer Yes Load F2 R3 No

Mult1 Yes Mult F0 F2 F4 Integer No

Mult2 No

Add Yes Sub F8 F6 F2 Integer Yes No

Divide Yes Div F10 F0 F6 Mult1 No

Register result status

F0 F2 F4 F6 F8 F10 F12 . . . F30

FU Mult1 Integer Add Divide

√

Yes

Yes

Figure C.55 Components of the scoreboard. Each instruction that has issued or is pending issue has an entry in
the instruction status table. There is one entry in the functional unit status table for each functional unit. Once an
instruction issues, the record of its operands is kept in the functional unit status table. Finally, the register result table
indicates which unit will produce each pending result; the number of entries is equal to the number of registers. The
instruction status table says that: (1) the first L.D has completed and written its result, and (2) the second L.D has
completed execution but has not yet written its result. The MUL.D, SUB.D, and DIV.D have all issued but are stalled,
waiting for their operands. The functional unit status says that the first multiply unit is waiting for the integer unit,
the add unit is waiting for the integer unit, and the divide unit is waiting for the first multiply unit. The ADD.D instruc-
tion is stalled because of a structural hazard; it will clear when the SUB.D completes. If an entry in one of these score-
board tables is not being used, it is left blank. For example, the Rk field is not used on a load and the Mult2 unit is
unused, hence their fields have no meaning. Also, once an operand has been read, the Rj and Rk fields are set to No.
Figure C.58 shows why this last step is crucial.

C.7 Crosscutting Issues ■ C-77

Example Assume the following EX cycle latencies (chosen to illustrate the behavior and
not representative) for the floating-point functional units: Add is 2 clock cycles,
multiply is 10 clock cycles, and divide is 40 clock cycles. Using the code seg-
ment in Figure C.55 and beginning with the point indicated by the instruction sta-
tus in Figure C.55, show what the status tables look like when MUL.D and DIV.D
are each ready to go to the write result state.

Answer There are RAW data hazards from the second L.D to MUL.D, ADD.D, and SUB.D,
from MUL.D to DIV.D, and from SUB.D to ADD.D. There is a WAR data hazard
between DIV.D and ADD.D and SUB.D. Finally, there is a structural hazard on the
add functional unit for ADD.D and SUB.D. What the tables look like when MUL.D
and DIV.D are ready to write their results is shown in Figures C.56 and C.57,
respectively.

Now we can see how the scoreboard works in detail by looking at what has to
happen for the scoreboard to allow each instruction to proceed. Figure C.58
shows what the scoreboard requires for each instruction to advance and the book-
keeping action necessary when the instruction does advance. The scoreboard
records operand specifier information, such as register numbers. For example, we
must record the source registers when an instruction is issued. Because we refer
to the contents of a register as Regs[D], where D is a register name, there is no
ambiguity. For example, Fj[FU]← S1 causes the register name S1 to be placed in
Fj[FU], rather than the contents of register S1.

The costs and benefits of scoreboarding are interesting considerations. The
CDC 6600 designers measured a performance improvement of 1.7 for FOR-
TRAN programs and 2.5 for hand-coded assembly language. However, this was
measured in the days before software pipeline scheduling, semiconductor main
memory, and caches (which lower memory access time). The scoreboard on the
CDC 6600 had about as much logic as one of the functional units, which is sur-
prisingly low. The main cost was in the large number of buses—about four times
as many as would be required if the CPU only executed instructions in order (or
if it only initiated one instruction per execute cycle). The recently increasing
interest in dynamic scheduling is motivated by attempts to issue more instruc-
tions per clock (so the cost of more buses must be paid anyway) and by ideas like
speculation (explored in Section 4.7) that naturally build on dynamic scheduling.

A scoreboard uses the available ILP to minimize the number of stalls arising
from the program’s true data dependences. In eliminating stalls, a scoreboard is
limited by several factors:

1. The amount of parallelism available among the instructions—This deter-
mines whether independent instructions can be found to execute. If each
instruction depends on its predecessor, no dynamic scheduling scheme can
reduce stalls. If the instructions in the pipeline simultaneously must be cho-
sen from the same basic block (as was true in the 6600), this limit is likely to
be quite severe.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-78 ■ Appendix C Pipelining: Basic and Intermediate Concepts

2. The number of scoreboard entries—This determines how far ahead the pipe-
line can look for independent instructions. The set of instructions examined
as candidates for potential execution is called the window. The size of the
scoreboard determines the size of the window. In this section, we assume a
window does not extend beyond a branch, so the window (and the score-
board) always contains straight-line code from a single basic block. Chapter 3
shows how the window can be extended beyond a branch.

3. The number and types of functional units—This determines the importance of
structural hazards, which can increase when dynamic scheduling is used.

Instruction status

Instruction Issue Read operands Execution complete
Write
result

L.D F6,34(R2) √ √ √
L.D F2,45(R3) √ √ √
MUL.D F0,F2,F4 √ √ √
SUB.D F8,F6,F2 √ √ √
DIV.D F10,F0,F6 √
ADD.D F6,F8,F2 √ √ √

Functional unit status

Name Busy Op Fi Fj Fk Qj Qk Rj Rk

Integer No

Mult1 Yes Mult F0 F2 F4 No No

Mult2 No

Add Yes Add F6 F8 F2 No No

Divide Yes Div F10 F0 F6 Mult1 No Yes

Register result status

F0 F2 F4 F6 F8 F10 F12 . . . F30

FU Mult 1 Add Divide

√
√

√

Figure C.56 Scoreboard tables just before the MUL.D goes to write result. The DIV.D has not yet read either of its
operands, since it has a dependence on the result of the multiply. The ADD.D has read its operands and is in execu-
tion, although it was forced to wait until the SUB.D finished to get the functional unit. ADD.D cannot proceed to write
result because of the WAR hazard on F6, which is used by the DIV.D. The Q fields are only relevant when a functional
unit is waiting for another unit.

C.7 Crosscutting Issues ■ C-79

4. The presence of antidependences and output dependences—These lead to
WAR and WAW stalls.

Chapter 3 focuses on techniques that attack the problem of exposing and better
utilizing available instruction-level parallelism (ILP). The second and third factors
can be attacked by increasing the size of the scoreboard and the number of func-
tional units; however, these changes have cost implications and may also affect
cycle time. WAW and WAR hazards become more important in dynamically
scheduled processors because the pipeline exposes more name dependences.
WAW hazards also become more important if we use dynamic scheduling with a
branch-prediction scheme that allows multiple iterations of a loop to overlap.

Instruction status

Instruction Issue Read operands Execution complete
Write
result

L.D F6,34(R2)d √ √ √
L.D F2,45(R3) √ √ √
MUL.D F0,F2,F4 √ √ √
SUB.D F8,F6,F2 √ √ √
DIV.D F10,F0,F6 √ √ √
ADD.D F6,F8,F2 √ √ √

Functional unit status

Name Busy Op Fi Fj Fk Qj Qk Rj Rk

Integer No

Mult1 Yes Mult F0 F2 F4 No No

Mult2 No

Add Yes Add F6 F8 F2 No No

Divide Yes Div F10 F0 F6 No Yes

 Register result status

F0 F2 F4 F6 F8 F10 F12 . . . F30

FU Mult 1 Add Divide

√
√
√
√

√

Figure C.57 Scoreboard tables just before the DIV.D goes to write result. ADD.D was able to complete as soon as
DIV.D passed through read operands and got a copy of F6. Only the DIV.D remains to finish.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-80 ■ Appendix C Pipelining: Basic and Intermediate Concepts

Pitfall Unexpected execution sequences may cause unexpected hazards.

At first glance, WAW hazards look like they should never occur in a code
sequence because no compiler would ever generate two writes to the same regis-
ter without an intervening read, but they can occur when the sequence is unex-
pected. For example, the first write might be in the delay slot of a taken branch
when the scheduler thought the branch would not be taken. Here is the code
sequence that could cause this:

BNEZ R1,foo
DIV.D F0,F2,F4; moved into delay slot

;from fall through
.....
.....

foo: L.D F0,qrs

If the branch is taken, then before the DIV.D can complete, the L.D will reach
WB, causing a WAW hazard. The hardware must detect this and may stall the
issue of the L.D. Another way this can happen is if the second write is in a trap
routine. This occurs when an instruction that traps and is writing results contin-
ues and completes after an instruction that writes the same register in the trap
handler. The hardware must detect and prevent this as well.

Pitfall Extensive pipelining can impact other aspects of a design, leading to overall worse
cost-performance.

Instruction status Wait until Bookkeeping

Issue Not busy [FU] and not result [D] Busy[FU]←yes; Op[FU]←op; Fi[FU]←D;
Fj[FU]←S1; Fk[FU]←S2;
Qj←Result[S1]; Qk← Result[S2];
Rj← not Qj; Rk← not Qk; Result[D]←FU;

Read operands Rj and Rk Rj← No; Rk← No; Qj←0; Qk←0

Execution complete Functional unit done

Write result ∀f((Fj[f] ¦ Fi[FU] or Rj[f] = No) &
(Fk[f] ¦ Fi[FU] or Rk[f] = No))

∀f(if Qj[f]=FU then Rj[f]←Yes);
∀f(if Qk[f]=FU then Rk[f]←Yes);
Result[Fi[FU]]← 0; Busy[FU]← No

Figure C.58 Required checks and bookkeeping actions for each step in instruction execution. FU stands for the
functional unit used by the instruction, D is the destination register name, S1 and S2 are the source register names,
and op is the operation to be done. To access the scoreboard entry named Fj for functional unit FU we use the nota-
tion Fj[FU]. Result[D] is the name of the functional unit that will write register D. The test on the write result case pre-
vents the write when there is a WAR hazard, which exists if another instruction has this instruction’s destination
(Fi[FU]) as a source (Fj[f] or Fk[f]) and if some other instruction has written the register (Rj = Yes or Rk = Yes). The vari-
able f is used for any functional unit.

C.8 Fallacies and Pitfalls

C.10 Historical Perspective and References ■ C-81

The best example of this phenomenon comes from two implementations of the
VAX, the 8600 and the 8700. When the 8600 was initially delivered, it had a
cycle time of 80 ns. Subsequently, a redesigned version, called the 8650, with a
55 ns clock was introduced. The 8700 has a much simpler pipeline that operates
at the microinstruction level, yielding a smaller CPU with a faster clock cycle of
45 ns. The overall outcome is that the 8650 has a CPI advantage of about 20%,
but the 8700 has a clock rate that is about 20% faster. Thus, the 8700 achieves the
same performance with much less hardware.

Pitfall Evaluating dynamic or static scheduling on the basis of unoptimized code.

Unoptimized code—containing redundant loads, stores, and other operations that
might be eliminated by an optimizer—is much easier to schedule than “tight”
optimized code. This holds for scheduling both control delays (with delayed
branches) and delays arising from RAW hazards. In gcc running on an R3000,
which has a pipeline almost identical to that of Section C.1, the frequency of idle
clock cycles increases by 18% from the unoptimized and scheduled code to the
optimized and scheduled code. Of course, the optimized program is much faster,
since it has fewer instructions. To fairly evaluate a compile-time scheduler or
runtime dynamic scheduling, you must use optimized code, since in the real sys-
tem you will derive good performance from other optimizations in addition to
scheduling.

At the beginning of the 1980s, pipelining was a technique reserved primarily for
supercomputers and large multimillion dollar mainframes. By the mid-1980s, the
first pipelined microprocessors appeared and helped transform the world of com-
puting, allowing microprocessors to bypass minicomputers in performance and
eventually to take on and outperform mainframes. By the early 1990s, high-end
embedded microprocessors embraced pipelining, and desktops were headed
toward the use of the sophisticated dynamically scheduled, multiple-issue
approaches discussed in Chapter 3. The material in this appendix, which was
considered reasonably advanced for graduate students when this text first
appeared in 1990, is now considered basic undergraduate material and can be
found in processors costing less than $2!

Section L.5 (available online) features a discussion on the development of pipe-
lining and instruction-level parallelism covering both this appendix and the mate-
rial in Chapter 3. We provide numerous references for further reading and
exploration of these topics.

C.9 Concluding Remarks

C.10 Historical Perspective and References

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-82 ■ Appendix C Pipelining: Basic and Intermediate Concepts

C.1 [15/15/15/15/25/10/15] <A.2> Use the following code fragment:

Loop: LD R1,0(R2) ;load R1 from address 0+R2
DADDI R1,R1,#1 ;R1=R1+1
SD R1,0,(R2) ;store R1 at address 0+R2
DADDI R2,R2,#4 ;R2=R2+4
DSUB R4,R3,R2 ;R4=R3-R2
BNEZ R4,Loop ;branch to Loop if R4!=0

Assume that the initial value of R3 is R2 + 396.

a. [15] <C.2> Data hazards are caused by data dependences in the code.
Whether a dependency causes a hazard depends on the machine implementa-
tion (i.e., number of pipeline stages). List all of the data dependences in the
code above. Record the register, source instruction, and destination instruc-
tion; for example, there is a data dependency for register R1 from the LD to
the DADDI.

b. [15] <C.2> Show the timing of this instruction sequence for the 5-stage RISC
pipeline without any forwarding or bypassing hardware but assuming that a
register read and a write in the same clock cycle “forwards” through the reg-
ister file, as shown in Figure C.6. Use a pipeline timing chart like that in Fig-
ure C.5. Assume that the branch is handled by flushing the pipeline. If all
memory references take 1 cycle, how many cycles does this loop take to exe-
cute?

c. [15] <C.2> Show the timing of this instruction sequence for the 5-stage RISC
pipeline with full forwarding and bypassing hardware. Use a pipeline timing
chart like that shown in Figure C.5. Assume that the branch is handled by
predicting it as not taken. If all memory references take 1 cycle, how many
cycles does this loop take to execute?

d. [15] <C.2> Show the timing of this instruction sequence for the 5-stage RISC
pipeline with full forwarding and bypassing hardware. Use a pipeline timing
chart like that shown in Figure C.5. Assume that the branch is handled by
predicting it as taken. If all memory references take 1 cycle, how many cycles
does this loop take to execute?

e. [25] <C.2> High-performance processors have very deep pipelines—more
than 15 stages. Imagine that you have a 10-stage pipeline in which every stage
of the 5-stage pipeline has been split in two. The only catch is that, for data
forwarding, data are forwarded from the end of a pair of stages to the begin-
ning of the two stages where they are needed. For example, data are forwarded
from the output of the second execute stage to the input of the first execute
stage, still causing a 1-cycle delay. Show the timing of this instruction
sequence for the 10-stage RISC pipeline with full forwarding and bypassing
hardware. Use a pipeline timing chart like that shown in Figure C.5. Assume

Updated Exercises by Diana Franklin

Updated Exercises by Diana Franklin ■ C-83

that the branch is handled by predicting it as taken. If all memory references
take 1 cycle, how many cycles does this loop take to execute?

f. [10] <C.2> Assume that in the 5-stage pipeline the longest stage requires 0.8
ns, and the pipeline register delay is 0.1 ns. What is the clock cycle time of
the 5-stage pipeline? If the 10-stage pipeline splits all stages in half, what is
the cycle time of the 10-stage machine?

g. [15] <C.2> Using your answers from parts (d) and (e), determine the cycles
per instruction (CPI) for the loop on a 5-stage pipeline and a 10-stage pipe-
line. Make sure you count only from when the first instruction reaches the
write-back stage to the end. Do not count the start-up of the first instruction.
Using the clock cycle time calculated in part (f), calculate the average
instruction execute time for each machine.

C.2 [15/15] <C.2> Suppose the branch frequencies (as percentages of all instructions)
are as follows:

Conditional branches 15%
Jumps and calls 1%
Taken conditional branches 60% are taken

a. [15] <C.2> We are examining a four-deep pipeline where the branch is
resolved at the end of the second cycle for unconditional branches and at the
end of the third cycle for conditional branches. Assuming that only the first
pipe stage can always be done independent of whether the branch goes and
ignoring other pipeline stalls, how much faster would the machine be without
any branch hazards?

b. [15] <C.2> Now assume a high-performance processor in which we have a
15-deep pipeline where the branch is resolved at the end of the fifth cycle for
unconditional branches and at the end of the tenth cycle for conditional
branches. Assuming that only the first pipe stage can always be done inde-
pendent of whether the branch goes and ignoring other pipeline stalls, how
much faster would the machine be without any branch hazards?

C.3 [5/15/10/10] <C.2> We begin with a computer implemented in single-cycle
implementation. When the stages are split by functionality, the stages do not
require exactly the same amount of time. The original machine had a clock cycle
time of 7 ns. After the stages were split, the measured times were IF, 1 ns; ID, 1.5
ns; EX, 1 ns; MEM, 2 ns; and WB, 1.5 ns. The pipeline register delay is 0.1 ns.

a. [5] <C.2> What is the clock cycle time of the 5-stage pipelined machine?

b. [15] <C.2> If there is a stall every 4 instructions, what is the CPI of the new
machine?

c. [10] <C.2> What is the speedup of the pipelined machine over the single-
cycle machine?

d. [10] <C.2> If the pipelined machine had an infinite number of stages, what
would its speedup be over the single-cycle machine?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-84 ■ Appendix C Pipelining: Basic and Intermediate Concepts

C.4 [15] <C.1, C.2> A reduced hardware implementation of the classic five-stage
RISC pipeline might use the EX stage hardware to perform a branch instruction
comparison and then not actually deliver the branch target PC to the IF stage until
the clock cycle in which the branch instruction reaches the MEM stage. Control
hazard stalls can be reduced by resolving branch instructions in ID, but improv-
ing performance in one respect may reduce performance in other circumstances.
Write a small snippet of code in which calculating the branch in the ID stage
causes a data hazard, even with data forwarding.

C.5 [12/13/20/20/15/15] <C.2, C.3> For these problems, we will explore a pipeline
for a register-memory architecture. The architecture has two instruction formats:
a register-register format and a register-memory format. There is a single-mem-
ory addressing mode (offset + base register). There is a set of ALU operations
with the format:

ALUop Rdest, Rsrc1, Rsrc2

or

ALUop Rdest, Rsrc1, MEM

where the ALUop is one of the following: add, subtract, AND, OR, load (Rsrc1
ignored), or store. Rsrc or Rdest are registers. MEM is a base register and offset
pair. Branches use a full compare of two registers and are PC relative. Assume
that this machine is pipelined so that a new instruction is started every clock
cycle. The pipeline structure, similar to that used in the VAX 8700 micropipeline
[Clark 1987], is

The first ALU stage is used for effective address calculation for memory refer-
ences and branches. The second ALU cycle is used for operations and branch
comparison. RF is both a decode and register-fetch cycle. Assume that when a
register read and a register write of the same register occur in the same clock the
write data are forwarded.

a. [12] <C.2> Find the number of adders needed, counting any adder or incre-
menter; show a combination of instructions and pipe stages that justify this
answer. You need only give one combination that maximizes the adder count.

b. [13] <C.2> Find the number of register read and write ports and memory read
and write ports required. Show that your answer is correct by showing a com-
bination of instructions and pipeline stage indicating the instruction and the
number of read ports and write ports required for that instruction.

IF RF ALU1 MEM WB

IF RF ALU1 MEM ALU2 WB

IF RF ALU1 MEM ALU2 WB

IF RF ALU1 MEM ALU2 WB

IF RF ALU1 MEM ALU2 WB

IF RF ALU1 MEM ALU2 WB

Updated Exercises by Diana Franklin ■ C-85

c. [20] <C.3> Determine any data forwarding for any ALUs that will be needed.
Assume that there are separate ALUs for the ALU1 and ALU2 pipe stages.
Put in all forwarding among ALUs necessary to avoid or reduce stalls. Show
the relationship between the two instructions involved in forwarding using
the format of the table in Figure C.26 but ignoring the last two columns. Be
careful to consider forwarding across an intervening instruction—for exam-
ple,

ADD R1, ...
any instruction
ADD ..., R1, ...

d. [20] <C.3> Show all of the data forwarding requirements necessary to avoid
or reduce stalls when either the source or destination unit is not an ALU. Use
the same format as in Figure C.26, again ignoring the last two columns.
Remember to forward to and from memory references.

e. [15] <C.3> Show all the remaining hazards that involve at least one unit other
than an ALU as the source or destination unit. Use a table like that shown in
Figure C.25, but replace the last column with the lengths of the hazards.

f. [15] <C.2> Show all control hazards by example and state the length of the
stall. Use a format like that shown in Figure C.11, labeling each example.

C.6 [12/13/13/15/15] <C.1, C.2, C.3> We will now add support for register-memory
ALU operations to the classic five-stage RISC pipeline. To offset this increase in
complexity, all memory addressing will be restricted to register indirect (i.e., all
addresses are simply a value held in a register; no offset or displacement may be
added to the register value). For example, the register-memory instruction ADD
R4, R5, (R1) means add the contents of register R5 to the contents of the mem-
ory location with address equal to the value in register R1 and put the sum in reg-
ister R4. Register-register ALU operations are unchanged. The following items
apply to the integer RISC pipeline:

a. [12] <C.1> List a rearranged order of the five traditional stages of the RISC
pipeline that will support register-memory operations implemented exclu-
sively by register indirect addressing.

b. [13] <C.2, C.3> Describe what new forwarding paths are needed for the rear-
ranged pipeline by stating the source, destination, and information transferred
on each needed new path.

c. [13] <C.2, C.3> For the reordered stages of the RISC pipeline, what new data
hazards are created by this addressing mode? Give an instruction sequence
illustrating each new hazard.

d. [15] <C.3> List all of the ways that the RISC pipeline with register-memory
ALU operations can have a different instruction count for a given program
than the original RISC pipeline. Give a pair of specific instruction sequences,
one for the original pipeline and one for the rearranged pipeline, to illustrate
each way.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-86 ■ Appendix C Pipelining: Basic and Intermediate Concepts

e. [15] <C.3> Assume that all instructions take 1 clock cycle per stage. List all
of the ways that the register-memory RISC can have a different CPI for a
given program as compared to the original RISC pipeline.

C.7 [10/10] <C.3> In this problem, we will explore how deepening the pipeline
affects performance in two ways: faster clock cycle and increased stalls due to
data and control hazards. Assume that the original machine is a 5-stage pipeline
with a 1 ns clock cycle. The second machine is a 12-stage pipeline with a 0.6 ns
clock cycle. The 5-stage pipeline experiences a stall due to a data hazard every 5
instructions, whereas the 12-stage pipeline experiences 3 stalls every 8 instruc-
tions. In addition, branches constitute 20% of the instructions, and the mispredic-
tion rate for both machines is 5%.

a. [10] <C.3> What is the speedup of the 12-stage pipeline over the 5-stage
pipeline, taking into account only data hazards?

b. [10] <C.3> If the branch mispredict penalty for the first machine is 2 cycles
but the second machine is 5 cycles, what are the CPIs of each, taking into
account the stalls due to branch mispredictions?

C.8 [15] <C.5> Create a table showing the forwarding logic for the R4000 integer
pipeline using the same format as that shown in Figure C.26. Include only the
MIPS instructions we considered in Figure C.26.

C.9 [15] <C.5> Create a table showing the R4000 integer hazard detection using the
same format as that shown in Figure C.25. Include only the MIPS instructions we
considered in Figure C.26.

C.10 [25] <C.5> Suppose MIPS had only one register set. Construct the forwarding
table for the FP and integer instructions using the format of Figure C.26. Ignore
FP and integer divides.

C.11 [15] <C.5> Construct a table like that shown in Figure C.25 to check for WAW
stalls in the MIPS FP pipeline of Figure C.35. Do not consider FP divides.

C.12 [20/22/22] <C.4, C.6> In this exercise, we will look at how a common vector
loop runs on statically and dynamically scheduled versions of the MIPS pipeline.
The loop is the so-called DAXPY loop (discussed extensively in Appendix G)
and the central operation in Gaussian elimination. The loop implements the vec-
tor operation Y = a * X + Y for a vector of length 100. Here is the MIPS code for
the loop:

foo: L.D F2, 0(R1) ; load X(i)
MUL.D F4, F2, F0 ; multiply a*X(i)
L.D F6, 0($2) ; load Y(i)
ADD.D F6, F4, F6 ; add a*X(i) + Y(i)
S.D 0(R2), F6 ; store Y(i)
DADDIU R1, R1, #8 ; increment X index
DADDIU R2, R2, #8 ; increment Y index
SGTIU R3, R1, done ; test if done
BEQZ R3, foo ; loop if not done

Updated Exercises by Diana Franklin ■ C-87

For parts (a) to (c), assume that integer operations issue and complete in 1 clock
cycle (including loads) and that their results are fully bypassed. Ignore the branch
delay. You will use the FP latencies (only) shown in Figure C.34, but assume that
the FP unit is fully pipelined. For scoreboards below, assume that an instruction
waiting for a result from another function unit can pass through read operands at
the same time the result is written. Also assume that an instruction in WR com-
pleting will allow a currently active instruction that is waiting on the same func-
tional unit to issue in the same clock cycle in which the first instruction
completes WR.

a. [20] <C.5> For this problem, use the MIPS pipeline of Section C.5 with the
pipeline latencies from Figure C.34, but a fully pipelined FP unit, so the initi-
ation interval is 1. Draw a timing diagram, similar to Figure C.37, showing
the timing of each instruction’s execution. How many clock cycles does each
loop iteration take, counting from when the first instruction enters the WB
stage to when the last instruction enters the WB stage?

b. [22] <C.6> Using the MIPS code for DAXPY above, show the state of the
scoreboard tables (as in Figure C.56) when the SGTIU instruction reaches
write result. Assume that issue and read operands each take a cycle. Assume
that there is one integer functional unit that takes only a single execution
cycle (the latency to use is 0 cycles, including loads and stores). Assume the
FP unit configuration of Figure C.54 with the FP latencies of Figure C.34.
The branch should not be included in the scoreboard.

c. [22] <C.6> Using the MIPS code for DAXPY above, assume a scoreboard
with the FP functional units described in Figure C.54, plus one integer func-
tional unit (also used for load-store). Assume the latencies shown in Figure
C.59. Show the state of the scoreboard (as in Figure C.56) when the branch
issues for the second time. Assume that the branch was correctly predicted
taken and took 1 cycle. How many clock cycles does each loop iteration take?
You may ignore any register port/bus conflicts.

C.13 [25] <C.8> It is critical that the scoreboard be able to distinguish RAW and WAR
hazards, because a WAR hazard requires stalling the instruction doing the writing
until the instruction reading an operand initiates execution, but a RAW hazard

Instruction producing result Instruction using result
Latency in clock
cycles

FP multiply FP ALU op 6

FP add FP ALU op 4

FP multiply FP store 5

FP add FP store 3

Integer operation (including load) Any 0

Figure C.59 Pipeline latencies where latency is number.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

C-88 ■ Appendix C Pipelining: Basic and Intermediate Concepts

requires delaying the reading instruction until the writing instruction finishes—
just the opposite. For example, consider the sequence:

MUL.D F0,F6,F4
DSUB.D F8,F0,F2
ADD.D F2,F10,F2

The DSUB.D depends on the MUL.D (a RAW hazard), thus the MUL.D must be
allowed to complete before the DSUB.D. If the MUL.D were stalled for the DSUB.D
due to the inability to distinguish between RAW and WAR hazards, the processor
will deadlock. This sequence contains a WAR hazard between the ADD.D and the
DSUB.D, and the ADD.D cannot be allowed to complete until the DSUB.D begins exe-
cution. The difficulty lies in distinguishing the RAW hazard between MUL.D and
DSUB.D, and the WAR hazard between the DSUB.D and ADD.D. To see just why the
three-instruction scenario is important, trace the handling of each instruction stage
by stage through issue, read operands, execute, and write result. Assume that each
scoreboard stage other than execute takes 1 clock cycle. Assume that the MUL.D
instruction requires 3 clock cycles to execute and that the DSUB.D and ADD.D
instructions each take 1 cycle to execute. Finally, assume that the processor has two
multiply function units and two add function units. Present the trace as follows.

1. Make a table with the column headings Instruction, Issue, Read Operands,
Execute, Write Result, and Comment. In the first column, list the instructions
in program order (be generous with space between instructions; larger table
cells will better hold the results of your analysis). Start the table by writing a
1 in the Issue column of the MUL.D instruction row to show that MUL.D com-
pletes the issue stage in clock cycle 1. Now, fill in the stage columns of the
table through the cycle at which the scoreboard first stalls an instruction.

2. For a stalled instruction write the words “waiting at clock cycle X,” where X
is the number of the current clock cycle, in the appropriate table column to
show that the scoreboard is resolving an RAW or WAR hazard by stalling that
stage. In the Comment column, state what type of hazard and what dependent
instruction is causing the wait.

3. Adding the words “completes with clock cycle Y” to a “waiting” table entry,
fill in the rest of the table through the time when all instructions are complete.
For an instruction that stalled, add a description in the Comments column
telling why the wait ended when it did and how deadlock was avoided. (Hint:
Think about how WAW hazards are prevented and what this implies about
active instruction sequences.) Note the completion order of the three instruc-
tions as compared to their program order.

C.14 [10/10/10] <C.5> For this problem, you will create a series of small snippets that
illustrate the issues that arise when using functional units with different latencies.
For each one, draw a timing diagram similar to Figure C.38 that illustrates each
concept, and clearly indicate the problem.

a. [10] <C.5> Demonstrate, using code different from that used in Figure C.38,
the structural hazard of having the hardware for only one MEM and WB stage.

b. [10] <C.5> Demonstrate a WAW hazard requiring a stall.

D.1 Introduction D-2

D.2 Advanced Topics in Disk Storage D-2

D.3 Definition and Examples of Real Faults and Failures D-10

D.4 I/O Performance, Reliability Measures, and Benchmarks D-15

D.5 A Little Queuing Theory D-23

D.6 Crosscutting Issues D-34

D.7 Designing and Evaluating an I/O System—
The Internet Archive Cluster D-36

D.8 Putting It All Together: NetApp FAS6000 Filer D-41

D.9 Fallacies and Pitfalls D-43

D.10 Concluding Remarks D-47

D.11 Historical Perspective and References D-48

 Case Studies with Exercises by Andrea C. Arpaci-Dusseau
and Remzi H. Arpaci-Dusseau D-48

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D
Storage Systems 1

I think Silicon Valley was misnamed. If you look back at the dollars
shipped in products in the last decade, there has been more revenue
from magnetic disks than from silicon. They ought to rename the place
Iron Oxide Valley.

Al Hoagland
A pioneer of magnetic disks

(1982)

Combining bandwidth and storage . . . enables swift and reliable access
to the ever expanding troves of content on the proliferating disks and
. . . repositories of the Internet . . . the capacity of storage arrays of all
kinds is rocketing ahead of the advance of computer performance.

George Gilder
“The End Is Drawing Nigh,”
Forbes ASAP (April 4, 2000)

D-2 ■ Appendix D Storage Systems

The popularity of Internet services such as search engines and auctions has
enhanced the importance of I/O for computers, since no one would want a desk-
top computer that couldn’t access the Internet. This rise in importance of I/O is
reflected by the names of our times. The 1960s to 1980s were called the Comput-
ing Revolution; the period since 1990 has been called the Information Age, with
concerns focused on advances in information technology versus raw computa-
tional power. Internet services depend upon massive storage, which is the focus
of this chapter, and networking, which is the focus of Appendix F.

This shift in focus from computation to communication and storage of infor-
mation emphasizes reliability and scalability as well as cost-performance.
Although it is frustrating when a program crashes, people become hysterical if
they lose their data; hence, storage systems are typically held to a higher standard
of dependability than the rest of the computer. Dependability is the bedrock of
storage, yet it also has its own rich performance theory—queuing theory—that
balances throughput versus response time. The software that determines which
processor features get used is the compiler, but the operating system usurps that
role for storage.

Thus, storage has a different, multifaceted culture from processors, yet it is
still found within the architecture tent. We start our exploration with advances in
magnetic disks, as they are the dominant storage device today in desktop and
server computers. We assume that readers are already familiar with the basics of
storage devices, some of which were covered in Chapter 1.

The disk industry historically has concentrated on improving the capacity of
disks. Improvement in capacity is customarily expressed as improvement in areal
density, measured in bits per square inch:

Through about 1988, the rate of improvement of areal density was 29% per
year, thus doubling density every 3 years. Between then and about 1996, the
rate improved to 60% per year, quadrupling density every 3 years and matching
the traditional rate of DRAMs. From 1997 to about 2003, the rate increased to
100%, doubling every year. After the innovations that allowed this renaissances
had largely played out, the rate has dropped recently to about 30% per year. In
2011, the highest density in commercial products is 400 billion bits per square
inch. Cost per gigabyte has dropped at least as fast as areal density has
increased, with smaller diameter drives playing the larger role in this improve-
ment. Costs per gigabyte improved by almost a factor of 1,000,000 between
1983 and 2011.

 D.1 Introduction

 D.2 Advanced Topics in Disk Storage

Areal density
Tracks
Inch

---------------- on a disk surface
Bits
Inch
---------- on a track×=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.2 Advanced Topics in Disk Storage ■ D-3

Magnetic disks have been challenged many times for supremacy of secondary
storage. Figure D.1 shows one reason: the fabled access time gap between disks
and DRAM. DRAM latency is about 100,000 times less than disk, and that per-
formance advantage costs 30 to 150 times more per gigabyte for DRAM.

The bandwidth gap is more complex. For example, a fast disk in 2011 trans-
fers at 200 MB/sec from the disk media with 600 GB of storage and costs about
$400. A 4 GB DRAM module costing about $200 in 2011 could transfer at
16,000 MB/sec (see Chapter 2), giving the DRAM module about 80 times higher
bandwidth than the disk. However, the bandwidth per GB is 6000 times higher
for DRAM, and the bandwidth per dollar is 160 times higher.

Many have tried to invent a technology cheaper than DRAM but faster than
disk to fill that gap, but thus far all have failed. Challengers have never had a
product to market at the right time. By the time a new product ships, DRAMs and
disks have made advances as predicted earlier, costs have dropped accordingly,
and the challenging product is immediately obsolete.

The closest challenger is Flash memory. This semiconductor memory is non-
volatile like disks, and it has about the same bandwidth as disks, but latency is
100 to 1000 times faster than disk. In 2011, the price per gigabyte of Flash was
15 to 20 times cheaper than DRAM. Flash is popular in cell phones because it
comes in much smaller capacities and it is more power efficient than disks,
despite the cost per gigabyte being 15 to 25 times higher than disks. Unlike disks

Figure D.1 Cost versus access time for DRAM and magnetic disk in 1980, 1985, 1990, 1995, 2000, and 2005. The
two-order-of-magnitude gap in cost and five-order-of-magnitude gap in access times between semiconductor
memory and rotating magnetic disks have inspired a host of competing technologies to try to fill them. So far,
such attempts have been made obsolete before production by improvements in magnetic disks, DRAMs, or both.
Note that between 1990 and 2005 the cost per gigabyte DRAM chips made less improvement, while disk cost
made dramatic improvement.

0.1

1

10

100

1000

10,000

100,000

1,000,000

1 10 100 1000 10,000 100,000 1,000,000 10,000,000 100,000,000

C
os

t (
$/

G
B

)

Access time (ns)

Access time gap

1980

1980

1985

1985
1990

1990

1995

1995

2000

2000

2005

2005

DRAM

Disk

D-4 ■ Appendix D Storage Systems

and DRAM, Flash memory bits wear out—typically limited to 1 million writes—
and so they are not popular in desktop and server computers.

While disks will remain viable for the foreseeable future, the conventional
sector-track-cylinder model did not. The assumptions of the model are that
nearby blocks are on the same track, blocks in the same cylinder take less time to
access since there is no seek time, and some tracks are closer than others.

First, disks started offering higher-level intelligent interfaces, like ATA and
SCSI, when they included a microprocessor inside a disk. To speed up sequential
transfers, these higher-level interfaces organize disks more like tapes than like
random access devices. The logical blocks are ordered in serpentine fashion
across a single surface, trying to capture all the sectors that are recorded at the
same bit density. (Disks vary the recording density since it is hard for the elec-
tronics to keep up with the blocks spinning much faster on the outer tracks, and
lowering linear density simplifies the task.) Hence, sequential blocks may be on
different tracks. We will see later in Figure D.22 on page D-45 an illustration of
the fallacy of assuming the conventional sector-track model when working with
modern disks.

Second, shortly after the microprocessors appeared inside disks, the disks
included buffers to hold the data until the computer was ready to accept it, and
later caches to avoid read accesses. They were joined by a command queue that
allowed the disk to decide in what order to perform the commands to maximize
performance while maintaining correct behavior. Figure D.2 shows how a queue
depth of 50 can double the number of I/Os per second of random I/Os due to bet-
ter scheduling of accesses. Although it’s unlikely that a system would really have
256 commands in a queue, it would triple the number of I/Os per second. Given
buffers, caches, and out-of-order accesses, an accurate performance model of a
real disk is much more complicated than sector-track-cylinder.

Figure D.2 Throughput versus command queue depth using random 512-byte
reads. The disk performs 170 reads per second starting at no command queue and
doubles performance at 50 and triples at 256 [Anderson 2003].

0

300

200

100

400

I/O
 p

er
 s

ec
on

d

500

600

0 300250200150
Queue depth

Random 512-byte reads per second

10050

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.2 Advanced Topics in Disk Storage ■ D-5

Finally, the number of platters shrank from 12 in the past to 4 or even 1 today,
so the cylinder has less importance than before because the percentage of data in
a cylinder is much less.

Disk Power

Power is an increasing concern for disks as well as for processors. A typical ATA
disk in 2011 might use 9 watts when idle, 11 watts when reading or writing, and
13 watts when seeking. Because it is more efficient to spin smaller mass,
smaller-diameter disks can save power. One formula that indicates the impor-
tance of rotation speed and the size of the platters for the power consumed by the
disk motor is the following [Gurumurthi et al. 2005]:

Thus, smaller platters, slower rotation, and fewer platters all help reduce disk
motor power, and most of the power is in the motor.

Figure D.3 shows the specifications of two 3.5-inch disks in 2011. The Serial
ATA (SATA) disks shoot for high capacity and the best cost per gigabyte, so the
2000 GB drives cost less than $0.05 per gigabyte. They use the widest platters
that fit the form factor and use four or five of them, but they spin at 5900 RPM
and seek relatively slowly to allow a higher areal density and to lower power. The
corresponding Serial Attach SCSI (SAS) drive aims at performance, so it spins at
15,000 RPM and seeks much faster. It uses a lower areal density to spin at that
high rate. To reduce power, the platter is much narrower than the form factor.
This combination reduces capacity of the SAS drive to 600 GB.

The cost per gigabyte is about a factor of five better for the SATA drives, and,
conversely, the cost per I/O per second or MB transferred per second is about a
factor of five better for the SAS drives. Despite using smaller platters and many
fewer of them, the SAS disks use twice the power of the SATA drives, due to the
much faster RPM and seeks.

C
ap

ac
it

y
(G

B
)

Pr
ic

e

P
la

tt
er

s

R
PM

D
ia

m
et

er
 (i

n
ch

es
)

A
ve

ra
g

e
se

ek
 (m

s)

Po
w

er
 (w

at
ts

)

I/
O

/s
ec

D
is

k
B

W
 (M

B
/s

ec
)

B
u

ff
er

 B
W

 (M
B

/s
ec

)

B
u

ff
er

 s
iz

e
(M

B
)

M
TT

F
(h

rs
)

SATA 2000 $85 4 5900 3.7 16 12 47 45–95 300 32 0.6M

SAS 600 $400 4 15,000 2.6 3–4 16 285 122–204 750 16 1.6M

Figure D.3 Serial ATA (SATA) versus Serial Attach SCSI (SAS) drives in 3.5-inch form factor in 2011. The I/Os per
second were calculated using the average seek plus the time for one-half rotation plus the time to transfer one
sector of 512 KB.

Power Diameter
4.6

RPM
2.8

Number of platters××≈

D-6 ■ Appendix D Storage Systems

Advanced Topics in Disk Arrays

An innovation that improves both dependability and performance of storage sys-
tems is disk arrays. One argument for arrays is that potential throughput can be
increased by having many disk drives and, hence, many disk arms, rather than fewer
large drives. Simply spreading data over multiple disks, called striping, automati-
cally forces accesses to several disks if the data files are large. (Although arrays
improve throughput, latency is not necessarily improved.) As we saw in Chapter 1,
the drawback is that with more devices, dependability decreases: N devices gener-
ally have 1/N the reliability of a single device.

Although a disk array would have more faults than a smaller number of larger
disks when each disk has the same reliability, dependability is improved by add-
ing redundant disks to the array to tolerate faults. That is, if a single disk fails, the
lost information is reconstructed from redundant information. The only danger is
in having another disk fail during the mean time to repair (MTTR). Since the
mean time to failure (MTTF) of disks is tens of years, and the MTTR is measured
in hours, redundancy can make the measured reliability of many disks much
higher than that of a single disk.

Such redundant disk arrays have become known by the acronym RAID,
which originally stood for redundant array of inexpensive disks, although some
prefer the word independent for I in the acronym. The ability to recover from fail-
ures plus the higher throughput, measured as either megabytes per second or I/Os
per second, make RAID attractive. When combined with the advantages of
smaller size and lower power of small-diameter drives, RAIDs now dominate
large-scale storage systems.

Figure D.4 summarizes the five standard RAID levels, showing how eight
disks of user data must be supplemented by redundant or check disks at each
RAID level, and it lists the pros and cons of each level. The standard RAID levels
are well documented, so we will just do a quick review here and discuss
advanced levels in more depth.

■ RAID 0—It has no redundancy and is sometimes nicknamed JBOD, for just a
bunch of disks, although the data may be striped across the disks in the array.
This level is generally included to act as a measuring stick for the other RAID
levels in terms of cost, performance, and dependability.

■ RAID 1—Also called mirroring or shadowing, there are two copies of every
piece of data. It is the simplest and oldest disk redundancy scheme, but it also
has the highest cost. Some array controllers will optimize read performance
by allowing the mirrored disks to act independently for reads, but this optimi-
zation means it may take longer for the mirrored writes to complete.

■ RAID 2—This organization was inspired by applying memory-style error-
correcting codes (ECCs) to disks. It was included because there was such a
disk array product at the time of the original RAID paper, but none since then
as other RAID organizations are more attractive.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.2 Advanced Topics in Disk Storage ■ D-7

■ RAID 3—Since the higher-level disk interfaces understand the health of a
disk, it’s easy to figure out which disk failed. Designers realized that if one
extra disk contains the parity of the information in the data disks, a single
disk allows recovery from a disk failure. The data are organized in stripes,
with N data blocks and one parity block. When a failure occurs, we just “sub-
tract” the good data from the good blocks, and what remains is the missing
data. (This works whether the failed disk is a data disk or the parity disk.)
RAID 3 assumes that the data are spread across all disks on reads and writes,
which is attractive when reading or writing large amounts of data.

■ RAID 4—Many applications are dominated by small accesses. Since sectors
have their own error checking, you can safely increase the number of reads
per second by allowing each disk to perform independent reads. It would
seem that writes would still be slow, if you have to read every disk to calcu-
late parity. To increase the number of writes per second, an alternative

RAID level

Disk failures
tolerated, check

space overhead for
8 data disks Pros Cons

Company
products

0 Nonredundant
striped

0 failures,
0 check disks

No space overhead No protection Widely used

1 Mirrored 1 failure,
8 check disks

No parity calculation; fast
recovery; small writes

faster than higher RAIDs;
fast reads

Highest check
storage overhead

EMC, HP
(Tandem), IBM

2 Memory-style ECC 1 failure,
4 check disks

Doesn’t rely on failed disk
to self-diagnose

~ Log 2 check
storage overhead

Not used

3 Bit-interleaved
parity

1 failure,
1 check disk

Low check overhead; high
bandwidth for large reads or

writes

No support for
small, random
reads or writes

Storage
Concepts

4 Block-interleaved
parity

1 failure,
1 check disk

Low check overhead; more
bandwidth for small reads

Parity disk is small
write bottleneck

Network
Appliance

5 Block-interleaved
distributed parity

1 failure,
1 check disk

Low check overhead; more
bandwidth for small reads

and writes

Small writes → 4
disk accesses

Widely used

6 Row-diagonal
parity, EVEN-ODD

2 failures,
2 check disks

Protects against 2 disk
failures

Small writes → 6
disk accesses; 2×
check overhead

Network
Appliance

Figure D.4 RAID levels, their fault tolerance, and their overhead in redundant disks. The paper that introduced
the term RAID [Patterson, Gibson, and Katz 1987] used a numerical classification that has become popular. In fact, the
nonredundant disk array is often called RAID 0, indicating that the data are striped across several disks but without
redundancy. Note that mirroring (RAID 1) in this instance can survive up to eight disk failures provided only one disk
of each mirrored pair fails; worst case is both disks in a mirrored pair fail. In 2011, there may be no commercial imple-
mentations of RAID 2; the rest are found in a wide range of products. RAID 0 + 1, 1 + 0, 01, 10, and 6 are discussed in
the text.

D-8 ■ Appendix D Storage Systems

approach involves only two disks. First, the array reads the old data that are
about to be overwritten, and then calculates what bits would change before
it writes the new data. It then reads the old value of the parity on the check
disks, updates parity according to the list of changes, and then writes the
new value of parity to the check disk. Hence, these so-called “small writes”
are still slower than small reads—they involve four disks accesses—but
they are faster than if you had to read all disks on every write. RAID 4 has
the same low check disk overhead as RAID 3, and it can still do large reads
and writes as fast as RAID 3 in addition to small reads and writes, but con-
trol is more complex.

■ RAID 5—Note that a performance flaw for small writes in RAID 4 is that
they all must read and write the same check disk, so it is a performance bot-
tleneck. RAID 5 simply distributes the parity information across all disks in
the array, thereby removing the bottleneck. The parity block in each stripe is
rotated so that parity is spread evenly across all disks. The disk array control-
ler must now calculate which disk has the parity for when it wants to write a
given block, but that can be a simple calculation. RAID 5 has the same low
check disk overhead as RAID 3 and 4, and it can do the large reads and writes
of RAID 3 and the small reads of RAID 4, but it has higher small write band-
width than RAID 4. Nevertheless, RAID 5 requires the most sophisticated
controller of the classic RAID levels.

Having completed our quick review of the classic RAID levels, we can now
look at two levels that have become popular since RAID was introduced.

RAID 10 versus 01 (or 1 + 0 versus RAID 0 + 1)

One topic not always described in the RAID literature involves how mirroring in
RAID 1 interacts with striping. Suppose you had, say, four disks’ worth of data to
store and eight physical disks to use. Would you create four pairs of disks—each
organized as RAID 1—and then stripe data across the four RAID 1 pairs? Alter-
natively, would you create two sets of four disks—each organized as RAID 0—
and then mirror writes to both RAID 0 sets? The RAID terminology has evolved
to call the former RAID 1 + 0 or RAID 10 (“striped mirrors”) and the latter
RAID 0 + 1 or RAID 01 (“mirrored stripes”).

RAID 6: Beyond a Single Disk Failure

The parity-based schemes of the RAID 1 to 5 protect against a single self-
identifying failure; however, if an operator accidentally replaces the wrong disk
during a failure, then the disk array will experience two failures, and data will be
lost. Another concern is that since disk bandwidth is growing more slowly than
disk capacity, the MTTR of a disk in a RAID system is increasing, which in turn
increases the chances of a second failure. For example, a 500 GB SATA disk
could take about 3 hours to read sequentially assuming no interference. Given
that the damaged RAID is likely to continue to serve data, reconstruction could

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.2 Advanced Topics in Disk Storage ■ D-9

be stretched considerably, thereby increasing MTTR. Besides increasing recon-
struction time, another concern is that reading much more data during reconstruc-
tion means increasing the chance of an uncorrectable media failure, which would
result in data loss. Other arguments for concern about simultaneous multiple fail-
ures are the increasing number of disks in arrays and the use of ATA disks, which
are slower and larger than SCSI disks.

Hence, over the years, there has been growing interest in protecting against
more than one failure. Network Appliance (NetApp), for example, started by
building RAID 4 file servers. As double failures were becoming a danger to cus-
tomers, they created a more robust scheme to protect data, called row-diagonal
parity or RAID-DP [Corbett et al. 2004]. Like the standard RAID schemes, row-
diagonal parity uses redundant space based on a parity calculation on a per-stripe
basis. Since it is protecting against a double failure, it adds two check blocks per
stripe of data. Let’s assume there are p + 1 disks total, so p – 1 disks have data.
Figure D.5 shows the case when p is 5.

The row parity disk is just like in RAID 4; it contains the even parity across
the other four data blocks in its stripe. Each block of the diagonal parity disk con-
tains the even parity of the blocks in the same diagonal. Note that each diagonal
does not cover one disk; for example, diagonal 0 does not cover disk 1. Hence,
we need just p – 1 diagonals to protect the p disks, so the disk only has diagonals
0 to 3 in Figure D.5.

Let’s see how row-diagonal parity works by assuming that data disks 1 and 3
fail in Figure D.5. We can’t perform the standard RAID recovery using the first
row using row parity, since it is missing two data blocks from disks 1 and 3.
However, we can perform recovery on diagonal 0, since it is only missing the
data block associated with disk 3. Thus, row-diagonal parity starts by recovering
one of the four blocks on the failed disk in this example using diagonal parity.
Since each diagonal misses one disk, and all diagonals miss a different disk, two
diagonals are only missing one block. They are diagonals 0 and 2 in this example,

Figure D.5 Row diagonal parity for p = 5, which protects four data disks from dou-
ble failures [Corbett et al. 2004]. This figure shows the diagonal groups for which par-
ity is calculated and stored in the diagonal parity disk. Although this shows all the check
data in separate disks for row parity and diagonal parity as in RAID 4, there is a rotated
version of row-diagonal parity that is analogous to RAID 5. Parameter p must be prime
and greater than 2; however, you can make p larger than the number of data disks by
assuming that the missing disks have all zeros and the scheme still works. This trick
makes it easy to add disks to an existing system. NetApp picks p to be 257, which allows
the system to grow to up to 256 data disks.

0

1

2

3

1

2

3

4

2

3

4

0

3

4

0

1

4

0

1

2

0

1

2

3

Data disk 0 Data disk 1 Data disk 2 Data disk 3 Row parity Diagonal parity

D-10 ■ Appendix D Storage Systems

so we next restore the block from diagonal 2 from failed disk 1. When the data
for those blocks have been recovered, then the standard RAID recovery scheme
can be used to recover two more blocks in the standard RAID 4 stripes 0 and 2,
which in turn allows us to recover more diagonals. This process continues until
two failed disks are completely restored.

The EVEN-ODD scheme developed earlier by researchers at IBM is similar
to row diagonal parity, but it has a bit more computation during operation and
recovery [Blaum 1995]. Papers that are more recent show how to expand
EVEN-ODD to protect against three failures [Blaum, Bruck, and Vardy 1996;
Blaum et al. 2001].

Although people may be willing to live with a computer that occasionally crashes
and forces all programs to be restarted, they insist that their information is never
lost. The prime directive for storage is then to remember information, no matter
what happens.

Chapter 1 covered the basics of dependability, and this section expands that
information to give the standard definitions and examples of failures.

The first step is to clarify confusion over terms. The terms fault, error, and
failure are often used interchangeably, but they have different meanings in the
dependability literature. For example, is a programming mistake a fault, error, or
failure? Does it matter whether we are talking about when it was designed or
when the program is run? If the running program doesn’t exercise the mistake, is
it still a fault/error/failure? Try another one. Suppose an alpha particle hits a
DRAM memory cell. Is it a fault/error/failure if it doesn’t change the value? Is it
a fault/error/failure if the memory doesn’t access the changed bit? Did a fault/
error/failure still occur if the memory had error correction and delivered the cor-
rected value to the CPU? You get the drift of the difficulties. Clearly, we need
precise definitions to discuss such events intelligently.

To avoid such imprecision, this subsection is based on the terminology used
by Laprie [1985] and Gray and Siewiorek [1991], endorsed by IFIP Working
Group 10.4 and the IEEE Computer Society Technical Committee on Fault Toler-
ance. We talk about a system as a single module, but the terminology applies to
submodules recursively. Let’s start with a definition of dependability:

Computer system dependability is the quality of delivered service such that reli-
ance can justifiably be placed on this service. The service delivered by a system
is its observed actual behavior as perceived by other system(s) interacting with
this system’s users. Each module also has an ideal specified behavior, where a
service specification is an agreed description of the expected behavior. A system
failure occurs when the actual behavior deviates from the specified behavior.
The failure occurred because of an error, a defect in that module. The cause of
an error is a fault.

When a fault occurs, it creates a latent error, which becomes effective when it is
activated; when the error actually affects the delivered service, a failure occurs.

 D.3 Definition and Examples of Real Faults and Failures

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.3 Definition and Examples of Real Faults and Failures ■ D-11

The time between the occurrence of an error and the resulting failure is the error
latency. Thus, an error is the manifestation in the system of a fault, and a failure is
the manifestation on the service of an error. [p. 3]

Let’s go back to our motivating examples above. A programming mistake is a
fault. The consequence is an error (or latent error) in the software. Upon activa-
tion, the error becomes effective. When this effective error produces erroneous
data that affect the delivered service, a failure occurs.

An alpha particle hitting a DRAM can be considered a fault. If it changes the
memory, it creates an error. The error will remain latent until the affected mem-
ory word is read. If the effective word error affects the delivered service, a failure
occurs. If ECC corrected the error, a failure would not occur.

A mistake by a human operator is a fault. The resulting altered data is an
error. It is latent until activated, and so on as before.

To clarify, the relationship among faults, errors, and failures is as follows:

■ A fault creates one or more latent errors.

■ The properties of errors are (1) a latent error becomes effective once acti-
vated; (2) an error may cycle between its latent and effective states; and (3) an
effective error often propagates from one component to another, thereby cre-
ating new errors. Thus, either an effective error is a formerly latent error in
that component or it has propagated from another error in that component or
from elsewhere.

■ A component failure occurs when the error affects the delivered service.

■ These properties are recursive and apply to any component in the system.

Gray and Siewiorek classified faults into four categories according to their cause:

1. Hardware faults—Devices that fail, such as perhaps due to an alpha particle
hitting a memory cell

2. Design faults—Faults in software (usually) and hardware design (occasionally)

3. Operation faults—Mistakes by operations and maintenance personnel

4. Environmental faults—Fire, flood, earthquake, power failure, and sabotage

Faults are also classified by their duration into transient, intermittent, and perma-
nent [Nelson 1990]. Transient faults exist for a limited time and are not recurring.
Intermittent faults cause a system to oscillate between faulty and fault-free opera-
tion. Permanent faults do not correct themselves with the passing of time.

Now that we have defined the difference between faults, errors, and failures,
we are ready to see some real-world examples. Publications of real error rates are
rare for two reasons. First, academics rarely have access to significant hardware
resources to measure. Second, industrial researchers are rarely allowed to publish
failure information for fear that it would be used against their companies in the
marketplace. A few exceptions follow.

D-12 ■ Appendix D Storage Systems

Berkeley’s Tertiary Disk

The Tertiary Disk project at the University of California created an art image
server for the Fine Arts Museums of San Francisco in 2000. This database con-
sisted of high-quality images of over 70,000 artworks [Talagala et al., 2000]. The
database was stored on a cluster, which consisted of 20 PCs connected by a
switched Ethernet and containing 368 disks. It occupied seven 7-foot-high racks.

Figure D.6 shows the failure rates of the various components of Tertiary Disk.
In advance of building the system, the designers assumed that SCSI data disks
would be the least reliable part of the system, as they are both mechanical and plen-
tiful. Next would be the IDE disks since there were fewer of them, then the power
supplies, followed by integrated circuits. They assumed that passive devices such as
cables would scarcely ever fail.

Figure D.6 shatters some of those assumptions. Since the designers followed
the manufacturer’s advice of making sure the disk enclosures had reduced vibra-
tion and good cooling, the data disks were very reliable. In contrast, the PC chas-
sis containing the IDE/ATA disks did not afford the same environmental controls.
(The IDE/ATA disks did not store data but helped the application and operating
system to boot the PCs.) Figure D.6 shows that the SCSI backplane, cables, and
Ethernet cables were no more reliable than the data disks themselves!

As Tertiary Disk was a large system with many redundant components, it
could survive this wide range of failures. Components were connected and mir-
rored images were placed so that no single failure could make any image unavail-
able. This strategy, which initially appeared to be overkill, proved to be vital.

This experience also demonstrated the difference between transient faults and
hard faults. Virtually all the failures in Figure D.6 appeared first as transient
faults. It was up to the operator to decide if the behavior was so poor that they
needed to be replaced or if they could continue. In fact, the word “failure” was
not used; instead, the group borrowed terms normally used for dealing with prob-
lem employees, with the operator deciding whether a problem component should
or should not be “fired.”

Tandem

The next example comes from industry. Gray [1990] collected data on faults for
Tandem Computers, which was one of the pioneering companies in fault-tolerant
computing and used primarily for databases. Figure D.7 graphs the faults that
caused system failures between 1985 and 1989 in absolute faults per system and
in percentage of faults encountered. The data show a clear improvement in the
reliability of hardware and maintenance. Disks in 1985 required yearly service by
Tandem, but they were replaced by disks that required no scheduled maintenance.
Shrinking numbers of chips and connectors per system plus software’s ability to
tolerate hardware faults reduced hardware’s contribution to only 7% of failures
by 1989. Moreover, when hardware was at fault, software embedded in the hard-
ware device (firmware) was often the culprit. The data indicate that software in

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.3 Definition and Examples of Real Faults and Failures ■ D-13

1989 was the major source of reported outages (62%), followed by system opera-
tions (15%).

The problem with any such statistics is that the data only refer to what is
reported; for example, environmental failures due to power outages were not
reported to Tandem because they were seen as a local problem. Data on operation
faults are very difficult to collect because operators must report personal mis-
takes, which may affect the opinion of their managers, which in turn can affect
job security and pay raises. Gray suggested that both environmental faults and
operator faults are underreported. His study concluded that achieving higher
availability requires improvement in software quality and software fault toler-
ance, simpler operations, and tolerance of operational faults.

Other Studies of the Role of Operators in Dependability

While Tertiary Disk and Tandem are storage-oriented dependability studies, we
need to look outside storage to find better measurements on the role of humans
in failures. Murphy and Gent [1995] tried to improve the accuracy of data on
operator faults by having the system automatically prompt the operator on each

Component Total in system Total failed
Percentage

failed

SCSI controller 44 1 2.3%

SCSI cable 39 1 2.6%

SCSI disk 368 7 1.9%

IDE/ATA disk 24 6 25.0%

Disk enclosure—backplane 46 13 28.3%

Disk enclosure—power supply 92 3 3.3%

Ethernet controller 20 1 5.0%

Ethernet switch 2 1 50.0%

Ethernet cable 42 1 2.3%

CPU/motherboard 20 0 0%

Figure D.6 Failures of components in Tertiary Disk over 18 months of operation.
For each type of component, the table shows the total number in the system, the
number that failed, and the percentage failure rate. Disk enclosures have two entries
in the table because they had two types of problems: backplane integrity failures and
power supply failures. Since each enclosure had two power supplies, a power supply
failure did not affect availability. This cluster of 20 PCs, contained in seven 7-foot-
high, 19-inch-wide racks, hosted 368 8.4 GB, 7200 RPM, 3.5-inch IBM disks. The PCs
were P6-200 MHz with 96 MB of DRAM each. They ran FreeBSD 3.0, and the hosts
were connected via switched 100 Mbit/sec Ethernet. All SCSI disks were connected to
two PCs via double-ended SCSI chains to support RAID 1. The primary application
was called the Zoom Project, which in 1998 was the world’s largest art image data-
base, with 72,000 images. See Talagala et al. [2000b].

D-14 ■ Appendix D Storage Systems

boot for the reason for that reboot. They classified consecutive crashes to the
same fault as operator fault and included operator actions that directly resulted
in crashes, such as giving parameters bad values, bad configurations, and bad
application installation. Although they believed that operator error is under-
reported, they did get more accurate information than did Gray, who relied on a
form that the operator filled out and then sent up the management chain. The

Figure D.7 Faults in Tandem between 1985 and 1989. Gray [1990] collected these
data for fault-tolerant Tandem Computers based on reports of component failures by
customers.

Unknown
Environment (power, network)
Operations (by customer)
Maintenance (by Tandem)
Hardware
Software (applications + OS)

20

40

60
F

au
lts

 p
er

 1
00

0
sy

st
em

s
P

er
ce

nt
ag

e
fa

ul
ts

 p
er

 c
at

eg
or

y

80

100

120

100%

80%

4%

6%

9%

19%

29%

34%

5%

6%

15%

5%

7%

62%

5%

9%

12%

13%

22%

39%

60%

40%

20%

0%

0
1985 1987 1989

1985 1987 1989

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.4 I/O Performance, Reliability Measures, and Benchmarks ■ D-15

hardware/operating system went from causing 70% of the failures in VAX sys-
tems in 1985 to 28% in 1993, and failures due to operators rose from 15% to
52% in that same period. Murphy and Gent expected managing systems to be
the primary dependability challenge in the future.

The final set of data comes from the government. The Federal Communica-
tions Commission (FCC) requires that all telephone companies submit explana-
tions when they experience an outage that affects at least 30,000 people or lasts
30 minutes. These detailed disruption reports do not suffer from the self-
reporting problem of earlier figures, as investigators determine the cause of the
outage rather than operators of the equipment. Kuhn [1997] studied the causes of
outages between 1992 and 1994, and Enriquez [2001] did a follow-up study for
the first half of 2001. Although there was a significant improvement in failures
due to overloading of the network over the years, failures due to humans
increased, from about one-third to two-thirds of the customer-outage minutes.

These four examples and others suggest that the primary cause of failures in
large systems today is faults by human operators. Hardware faults have declined
due to a decreasing number of chips in systems and fewer connectors. Hardware
dependability has improved through fault tolerance techniques such as memory
ECC and RAID. At least some operating systems are considering reliability
implications before adding new features, so in 2011 the failures largely occurred
elsewhere.

Although failures may be initiated due to faults by operators, it is a poor
reflection on the state of the art of systems that the processes of maintenance and
upgrading are so error prone. Most storage vendors claim today that customers
spend much more on managing storage over its lifetime than they do on purchas-
ing the storage. Thus, the challenge for dependable storage systems of the future
is either to tolerate faults by operators or to avoid faults by simplifying the tasks
of system administration. Note that RAID 6 allows the storage system to survive
even if the operator mistakenly replaces a good disk.

We have now covered the bedrock issue of dependability, giving definitions,
case studies, and techniques to improve it. The next step in the storage tour is per-
formance.

I/O performance has measures that have no counterparts in design. One of these
is diversity: Which I/O devices can connect to the computer system? Another is
capacity: How many I/O devices can connect to a computer system?

In addition to these unique measures, the traditional measures of performance
(namely, response time and throughput) also apply to I/O. (I/O throughput is
sometimes called I/O bandwidth and response time is sometimes called latency.)
The next two figures offer insight into how response time and throughput trade
off against each other. Figure D.8 shows the simple producer-server model. The
producer creates tasks to be performed and places them in a buffer; the server
takes tasks from the first in, first out buffer and performs them.

 D.4 I/O Performance, Reliability Measures, and Benchmarks

D-16 ■ Appendix D Storage Systems

Response time is defined as the time a task takes from the moment it is placed
in the buffer until the server finishes the task. Throughput is simply the average
number of tasks completed by the server over a time period. To get the highest
possible throughput, the server should never be idle, thus the buffer should never
be empty. Response time, on the other hand, counts time spent in the buffer, so an
empty buffer shrinks it.

Another measure of I/O performance is the interference of I/O with processor
execution. Transferring data may interfere with the execution of another process.
There is also overhead due to handling I/O interrupts. Our concern here is how
much longer a process will take because of I/O for another process.

Throughput versus Response Time

Figure D.9 shows throughput versus response time (or latency) for a typical I/O
system. The knee of the curve is the area where a little more throughput results in
much longer response time or, conversely, a little shorter response time results in
much lower throughput.

How does the architect balance these conflicting demands? If the computer is
interacting with human beings, Figure D.10 suggests an answer. An interaction,
or transaction, with a computer is divided into three parts:

1. Entry time—The time for the user to enter the command.

2. System response time—The time between when the user enters the command
and the complete response is displayed.

3. Think time—The time from the reception of the response until the user begins
to enter the next command.

The sum of these three parts is called the transaction time. Several studies report that
user productivity is inversely proportional to transaction time. The results in
Figure D.10 show that cutting system response time by 0.7 seconds saves 4.9 sec-
onds (34%) from the conventional transaction and 2.0 seconds (70%) from the
graphics transaction. This implausible result is explained by human nature: People
need less time to think when given a faster response. Although this study is 20 years
old, response times are often still much slower than 1 second, even if processors are

Figure D.8 The traditional producer-server model of response time and through-
put. Response time begins when a task is placed in the buffer and ends when it is com-
pleted by the server. Throughput is the number of tasks completed by the server in unit
time.

Producer Server

Queue

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.4 I/O Performance, Reliability Measures, and Benchmarks ■ D-17

Figure D.9 Throughput versus response time. Latency is normally reported as
response time. Note that the minimum response time achieves only 11% of the
throughput, while the response time for 100% throughput takes seven times the mini-
mum response time. Note also that the independent variable in this curve is implicit; to
trace the curve, you typically vary load (concurrency). Chen et al. [1990] collected these
data for an array of magnetic disks.

Figure D.10 A user transaction with an interactive computer divided into entry
time, system response time, and user think time for a conventional system and
graphics system. The entry times are the same, independent of system response time.
The entry time was 4 seconds for the conventional system and 0.25 seconds for the
graphics system. Reduction in response time actually decreases transaction time by
more than just the response time reduction. (From Brady [1986].)

300

0%

Percentage of maximum throughput (bandwidth)

R
es

po
ns

e
tim

e
(la

te
nc

y)
 (

m
s)

20% 40% 60% 80% 100%

200

100

0

0

Time (sec)

High-function graphics workload
(0.3 sec system response time)

5 10 15

High-function graphics workload
(1.0 sec system response time)

Conventional interactive workload
(0.3 sec system response time)

Conventional interactive workload
(1.0 sec system response time)

Workload

–70% total
(–81% think)

–34% total
(–70% think)

Entry time System response time Think time

D-18 ■ Appendix D Storage Systems

1000 times faster. Examples of long delays include starting an application on a desk-
top PC due to many disk I/Os, or network delays when clicking on Web links.

To reflect the importance of response time to user productivity, I/O bench-
marks also address the response time versus throughput trade-off. Figure D.11
shows the response time bounds for three I/O benchmarks. They report maximum
throughput given either that 90% of response times must be less than a limit or
that the average response time must be less than a limit.

Let’s next look at these benchmarks in more detail.

Transaction-Processing Benchmarks

Transaction processing (TP, or OLTP for online transaction processing) is chiefly
concerned with I/O rate (the number of disk accesses per second), as opposed to
data rate (measured as bytes of data per second). TP generally involves changes
to a large body of shared information from many terminals, with the TP system
guaranteeing proper behavior on a failure. Suppose, for example, that a bank’s
computer fails when a customer tries to withdraw money from an ATM. The TP
system would guarantee that the account is debited if the customer received the
money and that the account is unchanged if the money was not received. Airline
reservations systems as well as banks are traditional customers for TP.

As mentioned in Chapter 1, two dozen members of the TP community con-
spired to form a benchmark for the industry and, to avoid the wrath of their legal
departments, published the report anonymously [Anon. et al. 1985]. This report
led to the Transaction Processing Council, which in turn has led to eight bench-
marks since its founding. Figure D.12 summarizes these benchmarks.

 Let’s describe TPC-C to give a flavor of these benchmarks. TPC-C uses a
database to simulate an order-entry environment of a wholesale supplier,
including entering and delivering orders, recording payments, checking the sta-
tus of orders, and monitoring the level of stock at the warehouses. It runs five
concurrent transactions of varying complexity, and the database includes nine
tables with a scalable range of records and customers. TPC-C is measured in
transactions per minute (tpmC) and in price of system, including hardware,

I/O benchmark Response time restriction Throughput metric

TPC-C: Complex
Query OLTP

≥90% of transaction must meet
response time limit; 5 seconds for
most types of transactions

New order
transactions
per minute

TPC-W: Transactional
Web benchmark

≥90% of Web interactions must meet
response time limit; 3 seconds for
most types of Web interactions

Web interactions
per second

SPECsfs97 Average response time ≤40 ms NFS operations
per second

Figure D.11 Response time restrictions for three I/O benchmarks.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.4 I/O Performance, Reliability Measures, and Benchmarks ■ D-19

software, and three years of maintenance support. Figure 1.16 on page 39 in
Chapter 1 describes the top systems in performance and cost-performance for
TPC-C.

These TPC benchmarks were the first—and in some cases still the only
ones—that have these unusual characteristics:

■ Price is included with the benchmark results. The cost of hardware, software,
and maintenance agreements is included in a submission, which enables evalu-
ations based on price-performance as well as high performance.

■ The dataset generally must scale in size as the throughput increases. The
benchmarks are trying to model real systems, in which the demand on the
system and the size of the data stored in it increase together. It makes no
sense, for example, to have thousands of people per minute access hundreds
of bank accounts.

■ The benchmark results are audited. Before results can be submitted, they
must be approved by a certified TPC auditor, who enforces the TPC rules that
try to make sure that only fair results are submitted. Results can be chal-
lenged and disputes resolved by going before the TPC.

■ Throughput is the performance metric, but response times are limited. For
example, with TPC-C, 90% of the new order transaction response times must
be less than 5 seconds.

■ An independent organization maintains the benchmarks. Dues collected by
TPC pay for an administrative structure including a chief operating office.
This organization settles disputes, conducts mail ballots on approval of
changes to benchmarks, holds board meetings, and so on.

Benchmark Data size (GB) Performance metric Date of first results

A: debit credit (retired) 0.1–10 Transactions per second July 1990

B: batch debit credit (retired) 0.1–10 Transactions per second July 1991

C: complex query OLTP 100–3000
(minimum 0.07 * TPM)

New order transactions
per minute (TPM)

September 1992

D: decision support (retired) 100, 300, 1000 Queries per hour December 1995

H: ad hoc decision support 100, 300, 1000 Queries per hour October 1999

R: business reporting decision
support (retired)

1000 Queries per hour August 1999

W: transactional Web benchmark ≈ 50, 500 Web interactions per second July 2000

App: application server and Web
services benchmark

≈ 2500 Web service interactions
per second (SIPS)

June 2005

Figure D.12 Transaction Processing Council benchmarks. The summary results include both the performance
metric and the price-performance of that metric. TPC-A, TPC-B, TPC-D, and TPC-R were retired.

D-20 ■ Appendix D Storage Systems

SPEC System-Level File Server, Mail, and Web Benchmarks

The SPEC benchmarking effort is best known for its characterization of proces-
sor performance, but it has created benchmarks for file servers, mail servers, and
Web servers.

Seven companies agreed on a synthetic benchmark, called SFS, to evaluate
systems running the Sun Microsystems network file service (NFS). This bench-
mark was upgraded to SFS 3.0 (also called SPEC SFS97_R1) to include support
for NFS version 3, using TCP in addition to UDP as the transport protocol, and
making the mix of operations more realistic. Measurements on NFS systems led
to a synthetic mix of reads, writes, and file operations. SFS supplies default
parameters for comparative performance. For example, half of all writes are done
in 8 KB blocks and half are done in partial blocks of 1, 2, or 4 KB. For reads, the
mix is 85% full blocks and 15% partial blocks.

Like TPC-C, SFS scales the amount of data stored according to the reported
throughput: For every 100 NFS operations per second, the capacity must increase
by 1 GB. It also limits the average response time, in this case to 40 ms. Figure
D.13 shows average response time versus throughput for two NetApp systems.
Unfortunately, unlike the TPC benchmarks, SFS does not normalize for different
price configurations.

SPECMail is a benchmark to help evaluate performance of mail servers at an
Internet service provider. SPECMail2001 is based on the standard Internet proto-
cols SMTP and POP3, and it measures throughput and user response time while
scaling the number of users from 10,000 to 1,000,000.

Figure D.13 SPEC SFS97_R1 performance for the NetApp FAS3050c NFS servers in
two configurations. Two processors reached 34,089 operations per second and four
processors did 47,927. Reported in May 2005, these systems used the Data ONTAP
7.0.1R1 operating system, 2.8 GHz Pentium Xeon microprocessors, 2 GB of DRAM per
processor, 1 GB of nonvolatile memory per system, and 168 15K RPM, 72 GB, Fibre
Channel disks. These disks were connected using two or four QLogic ISP-2322 FC disk
controllers.

0

1

2

3

5

4

6

R
es

po
ns

e
tim

e
(m

s)

7

8

0 150,000125,000

34,089

2 Xeons

FAS3000

FAS6000

4 Xeons

8 Opterons

4 Opterons

47,927

100,295

136,048

100,00075,000
Operations/second

50,00025,000

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.4 I/O Performance, Reliability Measures, and Benchmarks ■ D-21

SPECWeb is a benchmark for evaluating the performance of World Wide Web
servers, measuring number of simultaneous user sessions. The SPECWeb2005
workload simulates accesses to a Web service provider, where the server supports
home pages for several organizations. It has three workloads: Banking (HTTPS),
E-commerce (HTTP and HTTPS), and Support (HTTP).

Examples of Benchmarks of Dependability

The TPC-C benchmark does in fact have a dependability requirement. The bench-
marked system must be able to handle a single disk failure, which means in practice
that all submitters are running some RAID organization in their storage system.

Efforts that are more recent have focused on the effectiveness of fault toler-
ance in systems. Brown and Patterson [2000] proposed that availability be mea-
sured by examining the variations in system quality-of-service metrics over time
as faults are injected into the system. For a Web server, the obvious metrics are
performance (measured as requests satisfied per second) and degree of fault tol-
erance (measured as the number of faults that can be tolerated by the storage sub-
system, network connection topology, and so forth).

The initial experiment injected a single fault––such as a write error in disk
sector––and recorded the system’s behavior as reflected in the quality-of-service
metrics. The example compared software RAID implementations provided by
Linux, Solaris, and Windows 2000 Server. SPECWeb99 was used to provide a
workload and to measure performance. To inject faults, one of the SCSI disks in
the software RAID volume was replaced with an emulated disk. It was a PC run-
ning software using a SCSI controller that appears to other devices on the SCSI
bus as a disk. The disk emulator allowed the injection of faults. The faults
injected included a variety of transient disk faults, such as correctable read errors,
and permanent faults, such as disk media failures on writes.

Figure D.14 shows the behavior of each system under different faults. The
two top graphs show Linux (on the left) and Solaris (on the right). As RAID sys-
tems can lose data if a second disk fails before reconstruction completes, the lon-
ger the reconstruction (MTTR), the lower the availability. Faster reconstruction
implies decreased application performance, however, as reconstruction steals I/O
resources from running applications. Thus, there is a policy choice between tak-
ing a performance hit during reconstruction or lengthening the window of vulner-
ability and thus lowering the predicted MTTF.

Although none of the tested systems documented their reconstruction policies
outside of the source code, even a single fault injection was able to give insight
into those policies. The experiments revealed that both Linux and Solaris initiate
automatic reconstruction of the RAID volume onto a hot spare when an active
disk is taken out of service due to a failure. Although Windows supports RAID
reconstruction, the reconstruction must be initiated manually. Thus, without
human intervention, a Windows system that did not rebuild after a first failure
remains susceptible to a second failure, which increases the window of vulnera-
bility. It does repair quickly once told to do so.

D-22 ■ Appendix D Storage Systems

The fault injection experiments also provided insight into other availability
policies of Linux, Solaris, and Windows 2000 concerning automatic spare utiliza-
tion, reconstruction rates, transient errors, and so on. Again, no system docu-
mented their policies.

In terms of managing transient faults, the fault injection experiments revealed
that Linux’s software RAID implementation takes an opposite approach than do

Figure D.14 Availability benchmark for software RAID systems on the same computer running Red Hat 6.0
Linux, Solaris 7, and Windows 2000 operating systems. Note the difference in philosophy on speed of reconstruc-
tion of Linux versus Windows and Solaris. The y-axis is behavior in hits per second running SPECWeb99. The arrow
indicates time of fault insertion. The lines at the top give the 99% confidence interval of performance before the fault
is inserted. A 99% confidence interval means that if the variable is outside of this range, the probability is only 1%
that this value would appear.

0 10 20 30 40 50 60 70 80 90 100 1100 10 20 30 40

Reconstruction

50 60 70 80 90 100 110

0 5 10 15 20 25 30 35 40 45

Time (minutes)

Reconstruction

H
its

 p
er

 s
ec

on
d

H
its

 p
er

 s
ec

on
d

H
its

 p
er

 s
ec

on
d

Linux Solaris

Windows

Time (minutes)

Time (minutes)

Reconstruction

200

190

180

170

160

150

220

225

215

210

205

200

195

190 80

90

100

110

120

130

140

150

160

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.5 A Little Queuing Theory ■ D-23

the RAID implementations in Solaris and Windows. The Linux implementation
is paranoid––it would rather shut down a disk in a controlled manner at the first
error, rather than wait to see if the error is transient. In contrast, Solaris and Win-
dows are more forgiving––they ignore most transient faults with the expectation
that they will not recur. Thus, these systems are substantially more robust to
transients than the Linux system. Note that both Windows and Solaris do log the
transient faults, ensuring that the errors are reported even if not acted upon. When
faults were permanent, the systems behaved similarly.

In processor design, we have simple back-of-the-envelope calculations of perfor-
mance associated with the CPI formula in Chapter 1, or we can use full-scale sim-
ulation for greater accuracy at greater cost. In I/O systems, we also have a best-
case analysis as a back-of-the-envelope calculation. Full-scale simulation is also
much more accurate and much more work to calculate expected performance.

With I/O systems, however, we also have a mathematical tool to guide I/O
design that is a little more work and much more accurate than best-case analysis,
but much less work than full-scale simulation. Because of the probabilistic nature
of I/O events and because of sharing of I/O resources, we can give a set of simple
theorems that will help calculate response time and throughput of an entire I/O
system. This helpful field is called queuing theory. Since there are many books
and courses on the subject, this section serves only as a first introduction to the
topic. However, even this small amount can lead to better design of I/O systems.

Let’s start with a black-box approach to I/O systems, as shown in Figure D.15.
In our example, the processor is making I/O requests that arrive at the I/O device,
and the requests “depart” when the I/O device fulfills them.

We are usually interested in the long term, or steady state, of a system rather
than in the initial start-up conditions. Suppose we weren’t. Although there is a
mathematics that helps (Markov chains), except for a few cases, the only way to
solve the resulting equations is simulation. Since the purpose of this section is to
show something a little harder than back-of-the-envelope calculations but less

Figure D.15 Treating the I/O system as a black box. This leads to a simple but impor-
tant observation: If the system is in steady state, then the number of tasks entering the
system must equal the number of tasks leaving the system. This flow-balanced state is
necessary but not sufficient for steady state. If the system has been observed or mea-
sured for a sufficiently long time and mean waiting times stabilize, then we say that the
system has reached steady state.

 D.5 A Little Queuing Theory

Arrivals Departures

D-24 ■ Appendix D Storage Systems

than simulation, we won’t cover such analyses here. (See the references in
Appendix L for more details.)

Hence, in this section we make the simplifying assumption that we are evalu-
ating systems with multiple independent requests for I/O service that are in equi-
librium: The input rate must be equal to the output rate. We also assume there is a
steady supply of tasks independent for how long they wait for service. In many
real systems, such as TPC-C, the task consumption rate is determined by other
system characteristics, such as memory capacity.

This leads us to Little’s law, which relates the average number of tasks in the
system, the average arrival rate of new tasks, and the average time to perform a
task:

Little’s law applies to any system in equilibrium, as long as nothing inside the
black box is creating new tasks or destroying them. Note that the arrival rate and
the response time must use the same time unit; inconsistency in time units is a
common cause of errors.

Let’s try to derive Little’s law. Assume we observe a system for Timeobserve
minutes. During that observation, we record how long it took each task to be
serviced, and then sum those times. The number of tasks completed during
Timeobserve is Numbertask, and the sum of the times each task spends in the sys-
tem is Timeaccumulated. Note that the tasks can overlap in time, so Timeaccumulated ≥
Timeobserved. Then,

Algebra lets us split the first formula:

If we substitute the three definitions above into this formula, and swap the result-
ing two terms on the right-hand side, we get Little’s law:

This simple equation is surprisingly powerful, as we shall see.
If we open the black box, we see Figure D.16. The area where the tasks accu-

mulate, waiting to be serviced, is called the queue, or waiting line. The device
performing the requested service is called the server. Until we get to the last two
pages of this section, we assume a single server.

Mean number of tasks in system Arrival rate Mean response time×=

Mean number of tasks in system
Timeaccumulated

Timeobserve
------------------------------------=

Mean response time
Timeaccumulated

Numbertasks
------------------------------------=

Arrival rate
Numbertasks

Timeobserve
-----------------------------=

Timeaccumulated

Timeobserve

Timeaccumulated

Numbertasks
------------------------------------ ∞

Numbertasks

Timeobserve
-----------------------------=

Mean number of tasks in system Arrival rate Mean response time×=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.5 A Little Queuing Theory ■ D-25

Little’s law and a series of definitions lead to several useful equations:

■ Timeserver—Average time to service a task; average service rate is 1/Timeserver,
traditionally represented by the symbol µ in many queuing texts.

■ Timequeue—Average time per task in the queue.

■ Timesystem—Average time/task in the system, or the response time, which is
the sum of Timequeue and Timeserver.

■ Arrival rate—Average number of arriving tasks/second, traditionally repre-
sented by the symbol λ in many queuing texts.

■ Lengthserver—Average number of tasks in service.

■ Lengthqueue—Average length of queue.

■ Lengthsystem—Average number of tasks in system, which is the sum of
Lengthqueue and Lengthserver.

One common misunderstanding can be made clearer by these definitions:
whether the question is how long a task must wait in the queue before service
starts (Timequeue) or how long a task takes until it is completed (Timesystem). The
latter term is what we mean by response time, and the relationship between the
terms is Timesystem = Timequeue + Timeserver.

The mean number of tasks in service (Lengthserver) is simply Arrival rate ×
Timeserver, which is Little’s law. Server utilization is simply the mean number of
tasks being serviced divided by the service rate. For a single server, the service
rate is 1 ⁄ Timeserver. Hence, server utilization (and, in this case, the mean number
of tasks per server) is simply:

Service utilization must be between 0 and 1; otherwise, there would be more
tasks arriving than could be serviced, violating our assumption that the system is
in equilibrium. Note that this formula is just a restatement of Little’s law. Utiliza-
tion is also called traffic intensity and is represented by the symbol ρ in many
queuing theory texts.

Figure D.16 The single-server model for this section. In this situation, an I/O request
“departs” by being completed by the server.

Arrivals

Queue Server

I/O controller
and device

Server utilization Arrival rate Timeserver×=

D-26 ■ Appendix D Storage Systems

Example Suppose an I/O system with a single disk gets on average 50 I/O requests per sec-
ond. Assume the average time for a disk to service an I/O request is 10 ms. What
is the utilization of the I/O system?

Answer Using the equation above, with 10 ms represented as 0.01 seconds, we get:

Therefore, the I/O system utilization is 0.5.

How the queue delivers tasks to the server is called the queue discipline. The
simplest and most common discipline is first in, first out (FIFO). If we assume
FIFO, we can relate time waiting in the queue to the mean number of tasks in the
queue:

Timequeue = Lengthqueue × Timeserver + Mean time to complete service of task when
new task arrives if server is busy

That is, the time in the queue is the number of tasks in the queue times the mean
service time plus the time it takes the server to complete whatever task is being
serviced when a new task arrives. (There is one more restriction about the arrival
of tasks, which we reveal on page D-28.)

The last component of the equation is not as simple as it first appears. A new
task can arrive at any instant, so we have no basis to know how long the existing
task has been in the server. Although such requests are random events, if we
know something about the distribution of events, we can predict performance.

Poisson Distribution of Random Variables

To estimate the last component of the formula we need to know a little about distri-
butions of random variables. A variable is random if it takes one of a specified set
of values with a specified probability; that is, you cannot know exactly what its next
value will be, but you may know the probability of all possible values.

Requests for service from an I/O system can be modeled by a random vari-
able because the operating system is normally switching between several pro-
cesses that generate independent I/O requests. We also model I/O service times
by a random variable given the probabilistic nature of disks in terms of seek and
rotational delays.

One way to characterize the distribution of values of a random variable with
discrete values is a histogram, which divides the range between the minimum and
maximum values into subranges called buckets. Histograms then plot the number
in each bucket as columns.

Histograms work well for distributions that are discrete values—for example,
the number of I/O requests. For distributions that are not discrete values, such as

Server utilization Arrival rate Timeserver× 50
sec
------- 0.01sec× 0.50= = =

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.5 A Little Queuing Theory ■ D-27

time waiting for an I/O request, we have two choices. Either we need a curve to
plot the values over the full range, so that we can estimate accurately the value, or
we need a very fine time unit so that we get a very large number of buckets to
estimate time accurately. For example, a histogram can be built of disk service
times measured in intervals of 10 μs although disk service times are truly contin-
uous.

Hence, to be able to solve the last part of the previous equation we need to
characterize the distribution of this random variable. The mean time and some
measure of the variance are sufficient for that characterization.

For the first term, we use the weighted arithmetic mean time. Let’s first
assume that after measuring the number of occurrences, say, ni, of tasks, you
could compute frequency of occurrence of task i:

Then weighted arithmetic mean is

Weighted arithmetic mean time = f1 × T1 + f2 × T2 + . . . + fn × Tn

where Ti is the time for task i and fi is the frequency of occurrence of task i.
To characterize variability about the mean, many people use the standard

deviation. Let’s use the variance instead, which is simply the square of the stan-
dard deviation, as it will help us with characterizing the probability distribution.
Given the weighted arithmetic mean, the variance can be calculated as

It is important to remember the units when computing variance. Let’s assume the
distribution is of time. If time is about 100 milliseconds, then squaring it yields
10,000 square milliseconds. This unit is certainly unusual. It would be more con-
venient if we had a unitless measure.

To avoid this unit problem, we use the squared coefficient of variance, tradi-
tionally called C2:

We can solve for C, the coefficient of variance, as

We are trying to characterize random events, but to be able to predict perfor-
mance we need a distribution of random events where the mathematics is tracta-
ble. The most popular such distribution is the exponential distribution, which has
a C value of 1.

fi

ni

ni

i 1=

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

Variance f1 T1
2× f2 T2

2× … fn Tn
2×+ + +() Weighted arithmetic mean time

2
–=

C
2 Variance

Weighted arithmetic mean time
2

--=

C
Variance

Weighted arithmetic mean time

Standard deviation
Weighted arithmetic mean time
---= =

D-28 ■ Appendix D Storage Systems

Note that we are using a constant to characterize variability about the mean.
The invariance of C over time reflects the property that the history of events has
no impact on the probability of an event occurring now. This forgetful property is
called memoryless, and this property is an important assumption used to predict
behavior using these models. (Suppose this memoryless property did not exist;
then, we would have to worry about the exact arrival times of requests relative to
each other, which would make the mathematics considerably less tractable!)

One of the most widely used exponential distributions is called a Poisson dis-
tribution, named after the mathematician Siméon Poisson. It is used to character-
ize random events in a given time interval and has several desirable mathematical
properties. The Poisson distribution is described by the following equation
(called the probability mass function):

where a = Rate of events × Elapsed time. If interarrival times are exponentially
distributed and we use the arrival rate from above for rate of events, the number of
arrivals in a time interval t is a Poisson process, which has the Poisson distribution
with a = Arrival rate × t. As mentioned on page D-26, the equation for Timeserver
has another restriction on task arrival: It holds only for Poisson processes.

Finally, we can answer the question about the length of time a new task must
wait for the server to complete a task, called the average residual service time,
which again assumes Poisson arrivals:

Although we won’t derive this formula, we can appeal to intuition. When the dis-
tribution is not random and all possible values are equal to the average, the stan-
dard deviation is 0 and so C is 0. The average residual service time is then just
half the average service time, as we would expect. If the distribution is random
and it is Poisson, then C is 1 and the average residual service time equals the
weighted arithmetic mean time.

Example Using the definitions and formulas above, derive the average time waiting in the
queue (Timequeue) in terms of the average service time (Timeserver) and server
utilization.

Answer All tasks in the queue (Lengthqueue) ahead of the new task must be completed
before the task can be serviced; each takes on average Timeserver. If a task is at
the server, it takes average residual service time to complete. The chance the
server is busy is server utilization; hence, the expected time for service is Server
utilization × Average residual service time. This leads to our initial formula:

Probability k() e
a–

a
k×

k!
-------------------=

Average residual service time 1 2 Arithemtic mean 1 C
2

+()××⁄=

Timequeue Lengthqueue Timeserver×=

+ Server utilization Average residual service time×

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.5 A Little Queuing Theory ■ D-29

Replacing the average residual service time by its definition and Lengthqueue by
Arrival rate × Timequeue yields

Since this section is concerned with exponential distributions, C2 is 1. Thus

Rearranging the last term, let us replace Arrival rate × Timeserver by Server utili-
zation:

Rearranging terms and simplifying gives us the desired equation:

Little’s law can be applied to the components of the black box as well, since
they must also be in equilibrium:

If we substitute for Timequeue from above, we get:

Since Arrival rate × Timeserver = Server utilization, we can simplify further:

This relates number of items in queue to service utilization.

Example For the system in the example on page D-26, which has a server utilization of 0.5,
what is the mean number of I/O requests in the queue?

Answer Using the equation above,

Therefore, there are 0.5 requests on average in the queue.

Timequeue Server utilization 1 2 Timeserver 1 C
2

+()××⁄[]×=

+ Arrival rate Timequeue×() Timeserver×

Timequeue Server utilization Timeserver× Arrival rate Timequeue×() Timeserver×+=

Timequeue Server utilization Timeserver× Arrival rate Timeserver×() Timequeue×+=

Server utilization Timeserver× Server utilization Timequeue×+=

Timequeue Server utilization Timeserver× Server utilization Timequeue×+=

Timequeue Server utilization Timequeue×– Server utilization Timeserver×=

Timequeue 1 Server utilization–()× Server utilization Timeserver×=

Timequeue Timeserver
Server utilization

1 Server utilization–()
---×=

Lengthqueue Arrival rate Timequeue×=

Lengthqueue Arrival rate Timeserver
Server utilization

1 Server utilization–()
---××=

Lengthqueue Server utilization
Server utilization

1 Server utilization–()
---× Server utilization

2

1 Server utilization–()
---= =

Lengthqueue
Server utilization

2

1 Server utilization–()

0.5
2

1 0.5–()

0.25
0.50
---------- 0.5= = = =

D-30 ■ Appendix D Storage Systems

As mentioned earlier, these equations and this section are based on an area of
applied mathematics called queuing theory, which offers equations to predict
behavior of such random variables. Real systems are too complex for queuing
theory to provide exact analysis, hence queuing theory works best when only
approximate answers are needed.

Queuing theory makes a sharp distinction between past events, which can be
characterized by measurements using simple arithmetic, and future events, which
are predictions requiring more sophisticated mathematics. In computer systems,
we commonly predict the future from the past; one example is least recently used
block replacement (see Chapter 2). Hence, the distinction between measurements
and predicted distributions is often blurred; we use measurements to verify the
type of distribution and then rely on the distribution thereafter.

Let’s review the assumptions about the queuing model:

■ The system is in equilibrium.

■ The times between two successive requests arriving, called the interarrival
times, are exponentially distributed, which characterizes the arrival rate men-
tioned earlier.

■ The number of sources of requests is unlimited. (This is called an infinite
population model in queuing theory; finite population models are used when
arrival rates vary with the number of jobs already in the system.)

■ The server can start on the next job immediately after finishing the prior one.

■ There is no limit to the length of the queue, and it follows the first in, first out
order discipline, so all tasks in line must be completed.

■ There is one server.

Such a queue is called M/M/1:

M = exponentially random request arrival (C2 = 1), with M standing for A. A.
Markov, the mathematician who defined and analyzed the memoryless
processes mentioned earlier

M = exponentially random service time (C2 = 1), with M again for Markov

1 = single server

The M/M/1 model is a simple and widely used model.
The assumption of exponential distribution is commonly used in queuing

examples for three reasons—one good, one fair, and one bad. The good reason is
that a superposition of many arbitrary distributions acts as an exponential distri-
bution. Many times in computer systems, a particular behavior is the result of
many components interacting, so an exponential distribution of interarrival times
is the right model. The fair reason is that when variability is unclear, an exponen-
tial distribution with intermediate variability (C = 1) is a safer guess than low
variability (C ≈ 0) or high variability (large C). The bad reason is that the math is
simpler if you assume exponential distributions.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.5 A Little Queuing Theory ■ D-31

Let’s put queuing theory to work in a few examples.

Example Suppose a processor sends 40 disk I/Os per second, these requests are exponen-
tially distributed, and the average service time of an older disk is 20 ms. Answer
the following questions:

1. On average, how utilized is the disk?

2. What is the average time spent in the queue?

3. What is the average response time for a disk request, including the queuing
time and disk service time?

Answer Let’s restate these facts:
Average number of arriving tasks/second is 40.

Average disk time to service a task is 20 ms (0.02 sec).

The server utilization is then

Since the service times are exponentially distributed, we can use the simplified
formula for the average time spent waiting in line:

The average response time is

Thus, on average we spend 80% of our time waiting in the queue!

Example Suppose we get a new, faster disk. Recalculate the answers to the questions
above, assuming the disk service time is 10 ms.

Answer The disk utilization is then

The formula for the average time spent waiting in line:

The average response time is 10 + 6.7 ms or 16.7 ms, 6.0 times faster than the
old response time even though the new service time is only 2.0 times faster.

Server utilization Arrival rate Timeserver× 40 0.02× 0.8= = =

Timequeue Timeserver
Server utilization

1 Server utilization–()
---×=

= 20 ms
0.8

1 0.8–
----------------× 20

0.8
0.2
-------× 20 4× 80 ms= = =

Time system Timequeue= Timeserver 80 20 ms 100 ms=+=+

Server utilization Arrival rate Timeserver× 40 0.01× 0.4= = =

Timequeue Timeserver
Server utilization

1 Server utilization–()
---×=

= 10 ms
0.4

1 0.4–
----------------× 10

0.4
0.6
-------× 10

2
3
---× 6.7 ms= = =

D-32 ■ Appendix D Storage Systems

Thus far, we have been assuming a single server, such as a single disk.
Many real systems have multiple disks and hence could use multiple servers, as
in Figure D.17. Such a system is called an M/M/m model in queuing theory.

Let’s give the same formulas for the M/M/m queue, using Nservers to represent
the number of servers. The first two formulas are easy:

The time waiting in the queue is

This formula is related to the one for M/M/1, except we replace utilization of
a single server with the probability that a task will be queued as opposed to being
immediately serviced, and divide the time in queue by the number of servers.
Alas, calculating the probability of jobs being in the queue is much more compli-
cated when there are Nservers. First, the probability that there are no tasks in the
system is

Then the probability there are as many or more tasks than we have servers is

Figure D.17 The M/M/m multiple-server model.

Arrivals

Queue
Server

I/O controller
and device

Server

I/O controller
and device

Server

I/O controller
and device

Utilization
Arrival rate Timeserver×

Nservers
--=

Lengthqueue Arrival rate Timequeue×=

Timequeue Timeserver

Ptasks Nservers≥

Nservers 1 Utilization–()×
---×=

Prob0 tasks 1
Nservers Utilization×()

Nservers

Nservers! 1 Utilization–()×

Nservers Utilization×()n

n!

n 1=

Nservers 1–

∑+ +

1–

=

Probtasks Nservers≥

Nservers Utilization×
Nservers

Nservers! 1 Utilization–()×
--- Prob0 tasks×=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.5 A Little Queuing Theory ■ D-33

Note that if Nservers is 1, Probtask³Nservers
simplifies back to Utilization, and we get

the same formula as for M/M/1. Let’s try an example.

Example Suppose instead of a new, faster disk, we add a second slow disk and duplicate
the data so that reads can be serviced by either disk. Let’s assume that the
requests are all reads. Recalculate the answers to the earlier questions, this time
using an M/M/m queue.

Answer The average utilization of the two disks is then

We first calculate the probability of no tasks in the queue:

We use this result to calculate the probability of tasks in the queue:

Finally, the time waiting in the queue:

The average response time is 20 + 3.8 ms or 23.8 ms. For this workload, two
disks cut the queue waiting time by a factor of 21 over a single slow disk and a
factor of 1.75 versus a single fast disk. The mean service time of a system with a
single fast disk, however, is still 1.4 times faster than one with two disks since the
disk service time is 2.0 times faster.

Server utilization
Arrival rate Timeserver×

Nservers
--

40 0.02×
2

---------------------- 0.4= = =

Prob0 tasks 1
2 Utilization×()2

2! 1 Utilization–()×
--

2 Utilization×()n

n!
--

n 1=

1

∑+ +

1–

=

1
2 0.4×()2

2 1 0.4–()×
------------------------------ 2 0.4×()+ +

1–

1
0.640

1.2
------------- 0.800+ +

1–
==

1 0.533 0.800+ +[] 1–
2.333

1–
==

Probtasks Nservers≥
2 Utilization× 2

2! 1 Utilization–()×
-- Prob0 tasks×=

2 0.4×()2

2 1 0.4–()×
------------------------------ 2.333

1–× 0.640
1.2

------------- 2.333
1–×==

0.533 2.333⁄ 0.229==

Timequeue Timeserver

Probtasks Nservers≥

Nservers 1 Utilization–()×
---×=

0.020
0.229

2 1 0.4–()×
------------------------------× 0.020

0.229
1.2

-------------×==

0.020 0.190× 0.0038==

D-34 ■ Appendix D Storage Systems

It would be wonderful if we could generalize the M/M/m model to multiple
queues and multiple servers, as this step is much more realistic. Alas, these mod-
els are very hard to solve and to use, and so we won’t cover them here.

Point-to-Point Links and Switches Replacing Buses

Point-to-point links and switches are increasing in popularity as Moore’s law
continues to reduce the cost of components. Combined with the higher I/O band-
width demands from faster processors, faster disks, and faster local area net-
works, the decreasing cost advantage of buses means the days of buses in desktop
and server computers are numbered. This trend started in high-performance com-
puters in the last edition of the book, and by 2011 has spread itself throughout
storage. Figure D.18 shows the old bus-based standards and their replacements.

The number of bits and bandwidth for the new generation is per direction, so
they double for both directions. Since these new designs use many fewer wires, a
common way to increase bandwidth is to offer versions with several times the num-
ber of wires and bandwidth.

Block Servers versus Filers

Thus far, we have largely ignored the role of the operating system in storage. In a
manner analogous to the way compilers use an instruction set, operating systems
determine what I/O techniques implemented by the hardware will actually be
used. The operating system typically provides the file abstraction on top of
blocks stored on the disk. The terms logical units, logical volumes, and physical
volumes are related terms used in Microsoft and UNIX systems to refer to subset
collections of disk blocks.

A logical unit is the element of storage exported from a disk array, usually
constructed from a subset of the array’s disks. A logical unit appears to the server

Standard Width (bits) Length (meters) Clock rate MB/sec
Max I/O
devices

(Parallel) ATA
Serial ATA

8
2

0.5
2

133 MHz
3 GHz

133
300

2
?

SCSI
Serial Attach SCSI

16
1

12
10

80 MHz
(DDR)

320
375

15
16,256

PCI
PCI Express

32/64
2

0.5
0.5

33/66 MHz
3 GHz

533
250

?
?

Figure D.18 Parallel I/O buses and their point-to-point replacements. Note the
bandwidth and wires are per direction, so bandwidth doubles when sending both
directions.

 D.6 Crosscutting Issues

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.6 Crosscutting Issues ■ D-35

as a single virtual “disk.” In a RAID disk array, the logical unit is configured as a
particular RAID layout, such as RAID 5. A physical volume is the device file
used by the file system to access a logical unit. A logical volume provides a level
of virtualization that enables the file system to split the physical volume across
multiple pieces or to stripe data across multiple physical volumes. A logical unit
is an abstraction of a disk array that presents a virtual disk to the operating sys-
tem, while physical and logical volumes are abstractions used by the operating
system to divide these virtual disks into smaller, independent file systems.

Having covered some of the terms for collections of blocks, we must now
ask: Where should the file illusion be maintained: in the server or at the other end
of the storage area network?

The traditional answer is the server. It accesses storage as disk blocks and
maintains the metadata. Most file systems use a file cache, so the server must
maintain consistency of file accesses. The disks may be direct attached—found
inside a server connected to an I/O bus—or attached over a storage area network,
but the server transmits data blocks to the storage subsystem.

The alternative answer is that the disk subsystem itself maintains the file
abstraction, and the server uses a file system protocol to communicate with storage.
Example protocols are Network File System (NFS) for UNIX systems and Com-
mon Internet File System (CIFS) for Windows systems. Such devices are called
network attached storage (NAS) devices since it makes no sense for storage to be
directly attached to the server. The name is something of a misnomer because a
storage area network like FC-AL can also be used to connect to block servers. The
term filer is often used for NAS devices that only provide file service and file stor-
age. Network Appliance was one of the first companies to make filers.

The driving force behind placing storage on the network is to make it easier
for many computers to share information and for operators to maintain the shared
system.

Asynchronous I/O and Operating Systems

Disks typically spend much more time in mechanical delays than in transferring
data. Thus, a natural path to higher I/O performance is parallelism, trying to get
many disks to simultaneously access data for a program.

The straightforward approach to I/O is to request data and then start using it.
The operating system then switches to another process until the desired data
arrive, and then the operating system switches back to the requesting process.
Such a style is called synchronous I/O—the process waits until the data have
been read from disk.

The alternative model is for the process to continue after making a request,
and it is not blocked until it tries to read the requested data. Such asynchronous
I/O allows the process to continue making requests so that many I/O requests
can be operating simultaneously. Asynchronous I/O shares the same philosophy
as caches in out-of-order CPUs, which achieve greater bandwidth by having
multiple outstanding events.

D-36 ■ Appendix D Storage Systems

The art of I/O system design is to find a design that meets goals for cost, depend-
ability, and variety of devices while avoiding bottlenecks in I/O performance and
dependability. Avoiding bottlenecks means that components must be balanced
between main memory and the I/O device, because performance and dependabil-
ity—and hence effective cost-performance or cost-dependability—can only be as
good as the weakest link in the I/O chain. The architect must also plan for expan-
sion so that customers can tailor the I/O to their applications. This expansibility,
both in numbers and types of I/O devices, has its costs in longer I/O buses and
networks, larger power supplies to support I/O devices, and larger cabinets.

In designing an I/O system, we analyze performance, cost, capacity, and
availability using varying I/O connection schemes and different numbers of I/O
devices of each type. Here is one series of steps to follow in designing an I/O sys-
tem. The answers for each step may be dictated by market requirements or sim-
ply by cost, performance, and availability goals.

1. List the different types of I/O devices to be connected to the machine, or list
the standard buses and networks that the machine will support.

2. List the physical requirements for each I/O device. Requirements include size,
power, connectors, bus slots, expansion cabinets, and so on.

3. List the cost of each I/O device, including the portion of cost of any controller
needed for this device.

4. List the reliability of each I/O device.

5. Record the processor resource demands of each I/O device. This list should
include:

■ Clock cycles for instructions used to initiate an I/O, to support operation
of an I/O device (such as handling interrupts), and to complete I/O

■ Processor clock stalls due to waiting for I/O to finish using the memory,
bus, or cache

■ Processor clock cycles to recover from an I/O activity, such as a cache
flush

6. List the memory and I/O bus resource demands of each I/O device. Even when
the processor is not using memory, the bandwidth of main memory and the I/O
connection is limited.

7. The final step is assessing the performance and availability of the different
ways to organize these I/O devices. When you can afford it, try to avoid single
points of failure. Performance can only be properly evaluated with simulation,
although it may be estimated using queuing theory. Reliability can be calcu-
lated assuming I/O devices fail independently and that the times to failure are

 D.7 Designing and Evaluating an I/O System—
The Internet Archive Cluster

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.7 Designing and Evaluating an I/O System—The Internet Archive Cluster ■ D-37

exponentially distributed. Availability can be computed from reliability by esti-
mating MTTF for the devices, taking into account the time from failure to
repair.

Given your cost, performance, and availability goals, you then select the best
organization.

Cost-performance goals affect the selection of the I/O scheme and physical
design. Performance can be measured either as megabytes per second or I/Os per
second, depending on the needs of the application. For high performance, the
only limits should be speed of I/O devices, number of I/O devices, and speed of
memory and processor. For low cost, most of the cost should be the I/O devices
themselves. Availability goals depend in part on the cost of unavailability to an
organization.

Rather than create a paper design, let’s evaluate a real system.

The Internet Archive Cluster

To make these ideas clearer, we’ll estimate the cost, performance, and availability
of a large storage-oriented cluster at the Internet Archive. The Internet Archive
began in 1996 with the goal of making a historical record of the Internet as it
changed over time. You can use the Wayback Machine interface to the Internet
Archive to perform time travel to see what the Web site at a URL looked like
sometime in the past. It contains over a petabyte (1015 bytes) and is growing by
20 terabytes (1012 bytes) of new data per month, so expansible storage is a
requirement. In addition to storing the historical record, the same hardware is
used to crawl the Web every few months to get snapshots of the Internet.

Clusters of computers connected by local area networks have become a very
economical computation engine that works well for some applications. Clusters
also play an important role in Internet services such the Google search engine,
where the focus is more on storage than it is on computation, as is the case here.

Although it has used a variety of hardware over the years, the Internet
Archive is moving to a new cluster to become more efficient in power and in
floor space. The basic building block is a 1U storage node called the PetaBox
GB2000 from Capricorn Technologies. In 2006, it used four 500 GB Parallel
ATA (PATA) disk drives, 512 MB of DDR266 DRAM, one 10/100/1000 Ethernet
interface, and a 1 GHz C3 processor from VIA, which executes the 80x86
instruction set. This node dissipates about 80 watts in typical configurations.

Figure D.19 shows the cluster in a standard VME rack. Forty of the GB2000s
fit in a standard VME rack, which gives the rack 80 TB of raw capacity. The 40
nodes are connected together with a 48-port 10/100 or 10/100/1000 switch, and it
dissipates about 3 KW. The limit is usually 10 KW per rack in computer facili-
ties, so it is well within the guidelines.

A petabyte needs 12 of these racks, connected by a higher-level switch that
connects the Gbit links coming from the switches in each of the racks.

D-38 ■ Appendix D Storage Systems

Estimating Performance, Dependability, and Cost of the
Internet Archive Cluster

To illustrate how to evaluate an I/O system, we’ll make some guesses about the
cost, performance, and reliability of the components of this cluster. We make the
following assumptions about cost and performance:

■ The VIA processor, 512 MB of DDR266 DRAM, ATA disk controller, power
supply, fans, and enclosure cost $500.

■ Each of the four 7200 RPM Parallel ATA drives holds 500 GB, has an aver-
age time seek of 8.5 ms, transfers at 50 MB/sec from the disk, and costs $375.
The PATA link speed is 133 MB/sec.

■ The 48-port 10/100/1000 Ethernet switch and all cables for a rack cost $3000.

■ The performance of the VIA processor is 1000 MIPS.

■ The ATA controller adds 0.1 ms of overhead to perform a disk I/O.

■ The operating system uses 50,000 CPU instructions for a disk I/O.

Figure D.19 The TB-80 VME rack from Capricorn Systems used by the Internet
Archive. All cables, switches, and displays are accessible from the front side, and the
back side is used only for airflow. This allows two racks to be placed back-to-back,
which reduces the floor space demands in machine rooms.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.7 Designing and Evaluating an I/O System—The Internet Archive Cluster ■ D-39

■ The network protocol stacks use 100,000 CPU instructions to transmit a data
block between the cluster and the external world.

■ The average I/O size is 16 KB for accesses to the historical record via the
Wayback interface, and 50 KB when collecting a new snapshot.

Example Evaluate the cost per I/O per second (IOPS) of the 80 TB rack. Assume that every
disk I/O requires an average seek and average rotational delay. Assume that the
workload is evenly divided among all disks and that all devices can be used at
100% of capacity; that is, the system is limited only by the weakest link, and it
can operate that link at 100% utilization. Calculate for both average I/O sizes.

Answer I/O performance is limited by the weakest link in the chain, so we evaluate the
maximum performance of each link in the I/O chain for each organization to
determine the maximum performance of that organization.

 Let’s start by calculating the maximum number of IOPS for the CPU, main
memory, and I/O bus of one GB2000. The CPU I/O performance is determined
by the speed of the CPU and the number of instructions to perform a disk I/O and
to send it over the network:

Maximum IOPS for CPU = = 6667 IOPS

The maximum performance of the memory system is determined by the memory
bandwidth and the size of the I/O transfers:

Maximum IOPS for main memory = ≈ 133,000 IOPS

Maximum IOPS for main memory = ≈ 42,500 IOPS

The Parallel ATA link performance is limited by the bandwidth and the size of
the I/O:

Maximum IOPS for the I/O bus = ≈ 8300 IOPS

Maximum IOPS for the I/O bus = ≈ 2700 IOPS

Since the box has two buses, the I/O bus limits the maximum performance to no
more than 18,600 IOPS for 16 KB blocks and 5400 IOPS for 50 KB blocks.

Now it’s time to look at the performance of the next link in the I/O chain, the
ATA controllers. The time to transfer a block over the PATA channel is

Parallel ATA transfer time = ≈ 0.1 ms

Parallel ATA transfer time = ≈ 0.4 ms

1000 MIPS
50,000 instructions per I/O 100,000 instructions per message+

266 8×
16 KB per I/O

266 8×
50 KB per I/O

133 MB/sec
16 KB per I/O

133 MB/sec
50 KB per I/O

16 KB
133 MB/sec

50 KB
133 MB/sec

D-40 ■ Appendix D Storage Systems

Adding the 0.1 ms ATA controller overhead means 0.2 ms to 0.5 ms per I/O,
making the maximum rate per controller

Maximum IOPS per ATA controller = = 5000 IOPS

Maximum IOPS per ATA controller = = 2000 IOPS

The next link in the chain is the disks themselves. The time for an average
disk I/O is

I/O time = 8.5 ms + = 8.5 + 4.2 + 0.3 = 13.0 ms

I/O time = 8.5 ms + = 8.5 + 4.2 + 1.0 = 13.7 ms

Therefore, disk performance is

Maximum IOPS (using average seeks) per disk = ≈ 77 IOPS

Maximum IOPS (using average seeks) per disk = ≈ 73 IOPS

or 292 to 308 IOPS for the four disks.
The final link in the chain is the network that connects the computers to the

outside world. The link speed determines the limit:

Maximum IOPS per 1000 Mbit Ethernet link = = 7812 IOPS

Maximum IOPS per 1000 Mbit Ethernet link = = 2500 IOPS

Clearly, the performance bottleneck of the GB2000 is the disks. The IOPS for
the whole rack is 40 × 308 or 12,320 IOPS to 40 × 292 or 11,680 IOPS. The net-
work switch would be the bottleneck if it couldn’t support 12,320 × 16K × 8 or
1.6 Gbits/sec for 16 KB blocks and 11,680 × 50K × 8 or 4.7 Gbits/sec for 50 KB
blocks. We assume that the extra 8 Gbit ports of the 48-port switch connects the
rack to the rest of the world, so it could support the full IOPS of the collective
160 disks in the rack.

Using these assumptions, the cost is 40 × ($500 + 4 × $375) + $3000 + $1500
or $84,500 for an 80 TB rack. The disks themselves are almost 60% of the cost.
The cost per terabyte is almost $1000, which is about a factor of 10 to 15 better
than storage cluster from the prior edition in 2001. The cost per IOPS is about $7.

Calculating MTTF of the TB-80 Cluster

Internet services such as Google rely on many copies of the data at the applica-
tion level to provide dependability, often at different geographic sites to protect

1
0.2 ms

1
0.5 ms

0.5
7200 RPM

16 KB
50 MB/sec
--------------------------+

0.5
7200 RPM

50 KB
50 MB/sec
--------------------------+

1
13.0 ms

1
13.7 ms

1000 Mbit
16K 8×

1000 Mbit
50K 8×

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.8 Putting It All Together: NetApp FAS6000 Filer ■ D-41

against environmental faults as well as hardware faults. Hence, the Internet
Archive has two copies of the data in each site and has sites in San Francisco,
Amsterdam, and Alexandria, Egypt. Each site maintains a duplicate copy of the
high-value content—music, books, film, and video—and a single copy of the his-
torical Web crawls. To keep costs low, there is no redundancy in the 80 TB rack.

Example Let’s look at the resulting mean time to fail of the rack. Rather than use the man-
ufacturer’s quoted MTTF of 600,000 hours, we’ll use data from a recent survey
of disk drives [Gray and van Ingen 2005]. As mentioned in Chapter 1, about 3%
to 7% of ATA drives fail per year, for an MTTF of about 125,000 to 300,000
hours. Make the following assumptions, again assuming exponential lifetimes:

■ CPU/memory/enclosure MTTF is 1,000,000 hours.

■ PATA Disk MTTF is 125,000 hours.

■ PATA controller MTTF is 500,000 hours.

■ Ethernet Switch MTTF is 500,000 hours.

■ Power supply MTTF is 200,000 hours.

■ Fan MTTF is 200,000 hours.

■ PATA cable MTTF is 1,000,000 hours.

Answer Collecting these together, we compute these failure rates:

The MTTF for the system is just the inverse of the failure rate:

That is, given these assumptions about the MTTF of components, something in a
rack fails on average every 3 weeks. About 70% of the failures would be the
disks, and about 20% would be fans or power supplies.

Network Appliance entered the storage market in 1992 with a goal of providing
an easy-to-operate file server running NSF using their own log-structured file
system and a RAID 4 disk array. The company later added support for the Win-
dows CIFS file system and a RAID 6 scheme called row-diagonal parity or
RAID-DP (see page D-8). To support applications that want access to raw data

Failure rate
40

1,000,000

160
125,000

40
500,000

1
500,000
-------------------+ + +

40
200,000

40
200,000

80
1,000,000
------------------------+ + +=

40 1280 80 2 200 200 80+ + + + + +
1,000,000 hours

1882

1,000,000 hours
---------------------------------------==

MTTF
1

Failure rate

1,000,000 hours
1882

--------------------------------------- 531 hours===

 D.8 Putting It All Together: NetApp FAS6000 Filer

D-42 ■ Appendix D Storage Systems

blocks without the overhead of a file system, such as database systems, NetApp
filers can serve data blocks over a standard Fibre Channel interface. NetApp also
supports iSCSI, which allows SCSI commands to run over a TCP/IP network,
thereby allowing the use of standard networking gear to connect servers to stor-
age, such as Ethernet, and hence at a greater distance.

The latest hardware product is the FAS6000. It is a multiprocessor based on
the AMD Opteron microprocessor connected using its HyperTransport links. The
microprocessors run the NetApp software stack, including NSF, CIFS, RAID-DP,
SCSI, and so on. The FAS6000 comes as either a dual processor (FAS6030) or a
quad processor (FAS6070). As mentioned in Chapter 5, DRAM is distributed to
each microprocessor in the Opteron. The FAS6000 connects 8 GB of DDR2700
to each Opteron, yielding 16 GB for the FAS6030 and 32 GB for the FAS6070.
As mentioned in Chapter 4, the DRAM bus is 128 bits wide, plus extra bits for
SEC/DED memory. Both models dedicate four HyperTransport links to I/O.

As a filer, the FAS6000 needs a lot of I/O to connect to the disks and to con-
nect to the servers. The integrated I/O consists of:

■ 8 Fibre Channel (FC) controllers and ports

■ 6 Gigabit Ethernet links

■ 6 slots for x8 (2 GB/sec) PCI Express cards

■ 3 slots for PCI-X 133 MHz, 64-bit cards

■ Standard I/O options such as IDE, USB, and 32-bit PCI

The 8 Fibre Channel controllers can each be attached to 6 shelves containing 14
3.5-inch FC disks. Thus, the maximum number of drives for the integrated I/O is
8 × 6 × 14 or 672 disks. Additional FC controllers can be added to the option
slots to connect up to 1008 drives, to reduce the number of drives per FC network
so as to reduce contention, and so on. At 500 GB per FC drive, if we assume the
RAID RDP group is 14 data disks and 2 check disks, the available data capacity
is 294 TB for 672 disks and 441 TB for 1008 disks.

It can also connect to Serial ATA disks via a Fibre Channel to SATA bridge
controller, which, as its name suggests, allows FC and SATA to communicate.

The six 1-gigabit Ethernet links connect to servers to make the FAS6000 look
like a file server if running NTFS or CIFS or like a block server if running iSCSI.

For greater dependability, FAS6000 filers can be paired so that if one fails,
the other can take over. Clustered failover requires that both filers have access to
all disks in the pair of filers using the FC interconnect. This interconnect also
allows each filer to have a copy of the log data in the NVRAM of the other filer
and to keep the clocks of the pair synchronized. The health of the filers is con-
stantly monitored, and failover happens automatically. The healthy filer main-
tains its own network identity and its own primary functions, but it also assumes
the network identity of the failed filer and handles all its data requests via a vir-
tual filer until an administrator restores the data service to the original state.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.9 Fallacies and Pitfalls ■ D-43

Fallacy Components fail fast.

A good deal of the fault-tolerant literature is based on the simplifying assumption
that a component operates perfectly until a latent error becomes effective, and
then a failure occurs that stops the component.

The Tertiary Disk project had the opposite experience. Many components
started acting strangely long before they failed, and it was generally up to the sys-
tem operator to determine whether to declare a component as failed. The compo-
nent would generally be willing to continue to act in violation of the service
agreement until an operator “terminated” that component.

Figure D.20 shows the history of four drives that were terminated, and the
number of hours they started acting strangely before they were replaced.

Fallacy Computers systems achieve 99.999% availability (“five nines”), as advertised.

Marketing departments of companies making servers started bragging about the
availability of their computer hardware; in terms of Figure D.21, they claim avail-
ability of 99.999%, nicknamed five nines. Even the marketing departments of
operating system companies tried to give this impression.

Five minutes of unavailability per year is certainly impressive, but given the
failure data collected in surveys, it’s hard to believe. For example, Hewlett-
Packard claims that the HP-9000 server hardware and HP-UX operating system
can deliver a 99.999% availability guarantee “in certain pre-defined, pre-tested
customer environments” (see Hewlett-Packard [1998]). This guarantee does not
include failures due to operator faults, application faults, or environmental faults,

Messages in system log for failed disk
Number of

log messages
Duration
(hours)

Hardware Failure (Peripheral device write fault
[for] Field Replaceable Unit)

1763 186

Not Ready (Diagnostic failure: ASCQ = Component ID
[of] Field Replaceable Unit)

1460 90

Recovered Error (Failure Prediction Threshold Exceeded
[for] Field Replaceable Unit)

1313 5

Recovered Error (Failure Prediction Threshold Exceeded
[for] Field Replaceable Unit)

431 17

Figure D.20 Record in system log for 4 of the 368 disks in Tertiary Disk that were
replaced over 18 months. See Talagala and Patterson [1999]. These messages, match-
ing the SCSI specification, were placed into the system log by device drivers. Messages
started occurring as much as a week before one drive was replaced by the operator.
The third and fourth messages indicate that the drive’s failure prediction mechanism
detected and predicted imminent failure, yet it was still hours before the drives were
replaced by the operator.

 D.9 Fallacies and Pitfalls

D-44 ■ Appendix D Storage Systems

which are likely the dominant fault categories today. Nor does it include sched-
uled downtime. It is also unclear what the financial penalty is to a company if a
system does not match its guarantee.

Microsoft also promulgated a five nines marketing campaign. In January
2001, www.microsoft.com was unavailable for 22 hours. For its Web site to
achieve 99.999% availability, it will require a clean slate for 250 years.

In contrast to marketing suggestions, well-managed servers typically achieve
99% to 99.9% availability.

Pitfall Where a function is implemented affects its reliability.

In theory, it is fine to move the RAID function into software. In practice, it is very
difficult to make it work reliably.

The software culture is generally based on eventual correctness via a series of
releases and patches. It is also difficult to isolate from other layers of software.
For example, proper software behavior is often based on having the proper ver-
sion and patch release of the operating system. Thus, many customers have lost
data due to software bugs or incompatibilities in environment in software RAID
systems.

Obviously, hardware systems are not immune to bugs, but the hardware cul-
ture tends to place a greater emphasis on testing correctness in the initial release.
In addition, the hardware is more likely to be independent of the version of the
operating system.

Fallacy Operating systems are the best place to schedule disk accesses.

Higher-level interfaces such as ATA and SCSI offer logical block addresses to the
host operating system. Given this high-level abstraction, the best an OS can do is
to try to sort the logical block addresses into increasing order. Since only the disk
knows the mapping of the logical addresses onto the physical geometry of sec-
tors, tracks, and surfaces, it can reduce the rotational and seek latencies.

Unavailability
(minutes per year)

Availability
(percent)

Availability class
(“number of nines”)

50,000 90% 1

5000 99% 2

500 99.9% 3

50 99.99% 4

5 99.999% 5

0.5 99.9999% 6

0.05 99.99999% 7

Figure D.21 Minutes unavailable per year to achieve availability class. (From Gray
and Siewiorek [1991].) Note that five nines mean unavailable five minutes per year.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.9 Fallacies and Pitfalls ■ D-45

For example, suppose the workload is four reads [Anderson 2003]:

The host might reorder the four reads into logical block order:

Depending on the relative location of the data on the disk, reordering could make
it worse, as Figure D.22 shows. The disk-scheduled reads complete in three-quar-
ters of a disk revolution, but the OS-scheduled reads take three revolutions.

Fallacy The time of an average seek of a disk in a computer system is the time for a seek of
one-third the number of cylinders.

This fallacy comes from confusing the way manufacturers market disks with the
expected performance, and from the false assumption that seek times are linear in
distance. The one-third-distance rule of thumb comes from calculating the
distance of a seek from one random location to another random location, not
including the current track and assuming there is a large number of tracks. In the

Operation Starting LBA Length

Read 724 8

Read 100 16

Read 9987 1

Read 26 128

Read 26 128

Read 100 16

Read 724 8

Read 9987 1

Figure D.22 Example showing OS versus disk schedule accesses, labeled host-
ordered versus drive-ordered. The former takes 3 revolutions to complete the 4 reads,
while the latter completes them in just 3/4 of a revolution. (From Anderson [2003].)

724

100

26

9987

Host-ordered queue
Drive-ordered queue

D-46 ■ Appendix D Storage Systems

past, manufacturers listed the seek of this distance to offer a consistent basis for
comparison. (Today, they calculate the “average” by timing all seeks and dividing
by the number.) Assuming (incorrectly) that seek time is linear in distance, and
using the manufacturer’s reported minimum and “average” seek times, a common
technique to predict seek time is

Timeseek = Timeminimum +

The fallacy concerning seek time is twofold. First, seek time is not linear with
distance; the arm must accelerate to overcome inertia, reach its maximum travel-
ing speed, decelerate as it reaches the requested position, and then wait to allow
the arm to stop vibrating (settle time). Moreover, sometimes the arm must pause
to control vibrations. For disks with more than 200 cylinders, Chen and Lee
[1995] modeled the seek distance as:

where a, b, and c are selected for a particular disk so that this formula will match
the quoted times for Distance = 1, Distance = max, and Distance = 1/3 max. Fig-
ure D.23 plots this equation versus the fallacy equation. Unlike the first equation,
the square root of the distance reflects acceleration and deceleration.

The second problem is that the average in the product specification would
only be true if there were no locality to disk activity. Fortunately, there is both

Figure D.23 Seek time versus seek distance for sophisticated model versus naive
model. Chen and Lee [1995] found that the equations shown above for parameters a, b,
and c worked well for several disks.

Distance
Distanceaverage
----------------------------------- Timeaverage Timeminimum–()×

Seek time Distance() a Distance 1–× b Distance 1–()× c+ +=

30

25

20

15

10

5

A
cc

es
s

tim
e

(m
s)

0

Seek distance

0 250 500 750 1000 1250 1500

Naive seek formula

New seek formula

1750 2000 2250 2500

a =
3 × Number of cylinders

– 10 × Time
min

+ 15 × Time
avg

– 5 × Time
max

b =
3 × Number of cylinders

7 × Time
min

– 15 × Time
avg

+ 8 × Time
max

c = Time
min

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

D.10 Concluding Remarks ■ D-47

temporal and spatial locality (see page B-2 in Appendix B). For example,
Figure D.24 shows sample measurements of seek distances for two workloads: a
UNIX time-sharing workload and a business-processing workload. Notice the
high percentage of disk accesses to the same cylinder, labeled distance 0 in the
graphs, in both workloads. Thus, this fallacy couldn’t be more misleading.

Storage is one of those technologies that we tend to take for granted. And yet, if
we look at the true status of things today, storage is king. One can even argue that
servers, which have become commodities, are now becoming peripheral to
storage devices. Driving that point home are some estimates from IBM, which
expects storage sales to surpass server sales in the next two years.

Michael Vizard
Editor-in-chief, Infoworld (August 11, 2001)

Figure D.24 Sample measurements of seek distances for two systems. The measurements on the left were taken
on a UNIX time-sharing system. The measurements on the right were taken from a business-processing application
in which the disk seek activity was scheduled to improve throughput. Seek distance of 0 means the access was made
to the same cylinder. The rest of the numbers show the collective percentage for distances between numbers on the
y-axis. For example, 11% for the bar labeled 16 in the business graph means that the percentage of seeks between 1
and 16 cylinders was 11%. The UNIX measurements stopped at 200 of the 1000 cylinders, but this captured 85% of
the accesses. The business measurements tracked all 816 cylinders of the disks. The only seek distances with 1% or
greater of the seeks that are not in the graph are 224 with 4%, and 304, 336, 512, and 624, each having 1%. This total
is 94%, with the difference being small but nonzero distances in other categories. Measurements courtesy of Dave
Anderson of Seagate.

0% 10%

Percentage of seeks (UNIX time-sharing workload)

23%

8%

4%

20% 40%30% 50% 60% 70%

24%

3%

3%

1%

3%

3%

3%

3%

3%

2%

2%

0% 10%

Percentage of seeks (business workload)

Seek
distance

Seek
distance

11%

20% 40%30% 50% 60% 70%

61%

3%

0%

3%

0%

0%

1%

1%

1%

1%

1%

3%

0%195

180

165

150

135

120

105

90

75

60

45

30

15

0

208

192

176

160

144

128

112

96

80

64

48

32

16

0

 D.10 Concluding Remarks

D-48 ■ Appendix D Storage Systems

As their value is becoming increasingly evident, storage systems have become
the target of innovation and investment.

The challenges for storage systems today are dependability and maintainabil-
ity. Not only do users want to be sure their data are never lost (reliability), appli-
cations today increasingly demand that the data are always available to access
(availability). Despite improvements in hardware and software reliability and
fault tolerance, the awkwardness of maintaining such systems is a problem both
for cost and for availability. A widely mentioned statistic is that customers spend
$6 to $8 operating a storage system for every $1 of purchase price. When depend-
ability is attacked by having many redundant copies at a higher level of the
system—such as for search—then very large systems can be sensitive to the
price-performance of the storage components.

Today, challenges in storage dependability and maintainability dominate the
challenges of I/O.

Section L.9 (available online) covers the development of storage devices and
techniques, including who invented disks, the story behind RAID, and the history
of operating systems and databases. References for further reading are included.

Case Study 1: Deconstructing a Disk

Concepts illustrated by this case study

■ Performance Characteristics

■ Microbenchmarks

The internals of a storage system tend to be hidden behind a simple interface, that
of a linear array of blocks. There are many advantages to having a common inter-
face for all storage systems: An operating system can use any storage system
without modification, and yet the storage system is free to innovate behind this
interface. For example, a single disk can map its internal <sector, track, surface>
geometry to the linear array in whatever way achieves the best performance; sim-
ilarly, a multidisk RAID system can map the blocks on any number of disks to
this same linear array. However, this fixed interface has a number of disadvan-
tages, as well; in particular, the operating system is not able to perform some per-
formance, reliability, and security optimizations without knowing the precise
layout of its blocks inside the underlying storage system.

 D.11 Historical Perspective and References

Case Studies with Exercises by Andrea C. Arpaci-Dusseau
and Remzi H. Arpaci-Dusseau

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-49

In this case study, we will explore how software can be used to uncover the
internal structure of a storage system hidden behind a block-based interface. The
basic idea is to fingerprint the storage system: by running a well-defined work-
load on top of the storage system and measuring the amount of time required for
different requests, one is able to infer a surprising amount of detail about the
underlying system.

The Skippy algorithm, from work by Nisha Talagala and colleagues at the
University of California–Berkeley, uncovers the parameters of a single disk. The
key is to factor out disk rotational effects by making consecutive seeks to individ-
ual sectors with addresses that differ by a linearly increasing amount (increasing
by 1, 2, 3, and so forth). Thus, the basic algorithm skips through the disk, increas-
ing the distance of the seek by one sector before every write, and outputs the dis-
tance and time for each write. The raw device interface is used to avoid file
system optimizations. The SECTOR SIZE is set equal to the minimum amount of
data that can be read at once from the disk (e.g., 512 bytes). (Skippy is described
in more detail in Talagala and Patterson [1999].)

fd = open("raw disk device");
for (i = 0; i < measurements; i++) {

begin_time = gettime();
lseek(fd, i*SECTOR_SIZE, SEEK_CUR);
write(fd, buffer, SECTOR_SIZE);
interval_time = gettime() -begin_time;

printf("Stride: %d Time: %d\n", i, interval_time);
}
close(fd);

By graphing the time required for each write as a function of the seek dis-
tance, one can infer the minimal transfer time (with no seek or rotational latency),
head switch time, cylinder switch time, rotational latency, and the number of
heads in the disk. A typical graph will have four distinct lines, each with the same
slope, but with different offsets. The highest and lowest lines correspond to
requests that incur different amounts of rotational delay, but no cylinder or head
switch costs; the difference between these two lines reveals the rotational latency
of the disk. The second lowest line corresponds to requests that incur a head
switch (in addition to increasing amounts of rotational delay). Finally, the third
line corresponds to requests that incur a cylinder switch (in addition to rotational
delay).

D.1 [10/10/10/10/10] <D.2> The results of running Skippy are shown for a mock disk
(Disk Alpha) in Figure D.25.

a. [10] <D.2> What is the minimal transfer time?

b. [10] <D.2> What is the rotational latency?

c. [10] <D.2> What is the head switch time?

D-50 ■ Appendix D Storage Systems

d. [10] <D.2> What is the cylinder switch time?

e. [10] <D.2> What is the number of disk heads?

D.2 [25] <D.2> Draw an approximation of the graph that would result from running
Skippy on Disk Beta, a disk with the following parameters:

■ Minimal transfer time, 2.0 ms

■ Rotational latency, 6.0 ms

■ Head switch time, 1.0 ms

■ Cylinder switch time, 1.5 ms

■ Number of disk heads, 4

■ Sectors per track, 100

D.3 [10/10/10/10/10/10/10] <D.2> Implement and run the Skippy algorithm on a disk
drive of your choosing.

a. [10] <D.2> Graph the results of running Skippy. Report the manufacturer and
model of your disk.

b. [10] <D.2> What is the minimal transfer time?

c. [10] <D.2> What is the rotational latency?

d. [10] <D.2> What is the head switch time?

e. [10] <D.2> What is the cylinder switch time?

Figure D.25 Results from running Skippy on Disk Alpha.

T
im

e
(m

s)

14

12

10

0

6

4

2

8

0

Distance (sectors)

30025020015010050

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-51

f. [10] <D.2> What is the number of disk heads?

g. [10] <D.2> Do the results of running Skippy on a real disk differ in any qual-
itative way from that of the mock disk?

Case Study 2: Deconstructing a Disk Array

Concepts illustrated by this case study

■ Performance Characteristics

■ Microbenchmarks

The Shear algorithm, from work by Timothy Denehy and colleagues at the Uni-
versity of Wisconsin [Denehy et al. 2004], uncovers the parameters of a RAID
system. The basic idea is to generate a workload of requests to the RAID array
and time those requests; by observing which sets of requests take longer, one can
infer which blocks are allocated to the same disk.

We define RAID properties as follows. Data are allocated to disks in the
RAID at the block level, where a block is the minimal unit of data that the file
system reads or writes from the storage system; thus, block size is known by the
file system and the fingerprinting software. A chunk is a set of blocks that is allo-
cated contiguously within a disk. A stripe is a set of chunks across each of D data
disks. Finally, a pattern is the minimum sequence of data blocks such that block
offset i within the pattern is always located on disk j.

D.4 [20/20] <D.2> One can uncover the pattern size with the following code. The
code accesses the raw device to avoid file system optimizations. The key to all of
the Shear algorithms is to use random requests to avoid triggering any of the
prefetch or caching mechanisms within the RAID or within individual disks. The
basic idea of this code sequence is to access N random blocks at a fixed interval p
within the RAID array and to measure the completion time of each interval.

for (p = BLOCKSIZE; p <= testsize; p += BLOCKSIZE) {
for (i = 0; i < N; i++) {

request[i] = random()*p;
}
begin_time = gettime();

issues all request[N] to raw device in parallel;

wait for all request[N] to complete;
interval_time = gettime() - begin_time;
printf("PatternSize: %d Time: %d\n", p,

interval_time);
}

If you run this code on a RAID array and plot the measured time for the N
requests as a function of p, then you will see that the time is highest when all N

D-52 ■ Appendix D Storage Systems

requests fall on the same disk; thus, the value of p with the highest time corre-
sponds to the pattern size of the RAID.

a. [20] <D.2> Figure D.26 shows the results of running the pattern size algo-
rithm on an unknown RAID system.

■ What is the pattern size of this storage system?

■ What do the measured times of 0.4, 0.8, and 1.6 seconds correspond to in
this storage system?

■ If this is a RAID 0 array, then how many disks are present?

■ If this is a RAID 0 array, then what is the chunk size?

b. [20] <D.2> Draw the graph that would result from running this Shear code on
a storage system with the following characteristics:

■ Number of requests, N = 1000

■ Time for a random read on disk, 5 ms

■ RAID level, RAID 0

■ Number of disks, 4

■ Chunk size, 8 KB

D.5 [20/20] <D.2> One can uncover the chunk size with the following code. The
basic idea is to perform reads from N patterns chosen at random but always at
controlled offsets, c and c – 1, within the pattern.

for (c = 0; c < patternsize; c += BLOCKSIZE) {
for (i = 0; i < N; i++) {

requestA[i] = random()*patternsize + c;
requestB[i] = random()*patternsize +

(c-1)%patternsize;
}

Figure D.26 Results from running the pattern size algorithm of Shear on a mock storage system.

T
im

e
(s

)

1.5

0

1.0

0.5

0.0

Pattern size assumed (KB)

256160 192 224128966432

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-53

begin_time = gettime();

issue all requestA[N] and requestB[N] to raw device
in parallel;

wait for requestA[N] and requestB[N] to complete;

interval_time = gettime() - begin_time;
printf("ChunkSize: %d Time: %d\n", c, interval_time);

}

If you run this code and plot the measured time as a function of c, then you will
see that the measured time is lowest when the requestA and requestB reads fall on
two different disks. Thus, the values of c with low times correspond to the chunk
boundaries between disks of the RAID.

a. [20] <D.2> Figure D.27 shows the results of running the chunk size algorithm
on an unknown RAID system.

■ What is the chunk size of this storage system?

■ What do the measured times of 0.75 and 1.5 seconds correspond to in this
storage system?

b. [20] <D.2> Draw the graph that would result from running this Shear code on
a storage system with the following characteristics:

■ Number of requests, N = 1000

■ Time for a random read on disk, 5 ms

■ RAID level, RAID 0

■ Number of disks, 8

■ Chunk size, 12 KB

D.6 [10/10/10/10] <D.2> Finally, one can determine the layout of chunks to disks
with the following code. The basic idea is to select N random patterns and to
exhaustively read together all pairwise combinations of the chunks within the
pattern.

Figure D.27 Results from running the chunk size algorithm of Shear on a mock stor-
age system.

T
im

e
(s

)

1.5

0

1.0

0.5

0.0

Boundary offset assumed (KB)

64483216

D-54 ■ Appendix D Storage Systems

for (a = 0; a < numchunks; a += chunksize) {

for (b = a; b < numchunks; b += chunksize) {

for (i = 0; i < N; i++) {
requestA[i] = random()*patternsize + a;
requestB[i] = random()*patternsize + b;

}

begin_time = gettime();
issue all requestA[N] and requestB[N] to raw device

in parallel;
wait for all requestA[N] and requestB[N] to

complete;

interval_time = gettime() - begin_time;
printf("A: %d B: %d Time: %d\n", a, b,

interval_time);
}

}

After running this code, you can report the measured time as a function of a and
b. The simplest way to graph this is to create a two-dimensional table with a and
b as the parameters and the time scaled to a shaded value; we use darker shadings
for faster times and lighter shadings for slower times. Thus, a light shading indi-
cates that the two offsets of a and b within the pattern fall on the same disk.

Figure D.28 shows the results of running the layout algorithm on a storage sys-
tem that is known to have a pattern size of 384 KB and a chunk size of 32 KB.

a. [20] <D.2> How many chunks are in a pattern?

b. [20] <D.2> Which chunks of each pattern appear to be allocated on the same
disks?

Figure D.28 Results from running the layout algorithm of Shear on a mock storage
system.

C
hu

nk

10

0

6

4

2

8

0

Chunk
108642

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-55

c. [20] <D.2> How many disks appear to be in this storage system?

d. [20] <D.2> Draw the likely layout of blocks across the disks.

D.7 [20] <D.2> Draw the graph that would result from running the layout algorithm
on the storage system shown in Figure D.29. This storage system has four disks
and a chunk size of four 4 KB blocks (16 KB) and is using a RAID 5 Left-
Asymmetric layout.

Case Study 3: RAID Reconstruction

Concepts illustrated by this case study

■ RAID Systems

■ RAID Reconstruction

■ Mean Time to Failure (MTTF)

■ Mean Time until Data Loss (MTDL)

■ Performability

■ Double Failures

A RAID system ensures that data are not lost when a disk fails. Thus, one of the
key responsibilities of a RAID is to reconstruct the data that were on a disk when
it failed; this process is called reconstruction and is what you will explore in this
case study. You will consider both a RAID system that can tolerate one disk fail-
ure and a RAID-DP, which can tolerate two disk failures.

Reconstruction is commonly performed in two different ways. In offline
reconstruction, the RAID devotes all of its resources to performing reconstruc-
tion and does not service any requests from the workload. In online reconstruc-
tion, the RAID continues to service workload requests while performing the
reconstruction; the reconstruction process is often limited to use some fraction of
the total bandwidth of the RAID system.

Figure D.29 A storage system with four disks, a chunk size of four 4 KB blocks, and
using a RAID 5 Left-Asymmetric layout. Two repetitions of the pattern are shown.

00 01 02 03 04 05 06 07 08 09 10 11 P P P P

12 13 14 15 16 17 18 19 P P P P 20 21 22 23

24 25 26 27 P P P P 28 29 30 31 32 33 34 35

P P P P 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 P P P P

60 61 62 63 64 65 66 67 P P P P 68 69 70 71

72 73 74 75 P P P P 76 77 78 79 80 81 82 83

P P P P 84 85 86 87 88 89 90 91 92 93 94 95

Parity: RAID 5 Left-Asymmetric, stripe = 16, pattern = 48

D-56 ■ Appendix D Storage Systems

How reconstruction is performed impacts both the reliability and the per-
formability of the system. In a RAID 5, data are lost if a second disk fails before
the data from the first disk can be recovered; therefore, the longer the reconstruc-
tion time (MTTR), the lower the reliability or the mean time until data loss
(MTDL). Performability is a metric meant to combine both the performance of a
system and its availability; it is defined as the performance of the system in a
given state multiplied by the probability of that state. For a RAID array, possible
states include normal operation with no disk failures, reconstruction with one
disk failure, and shutdown due to multiple disk failures.

For these exercises, assume that you have built a RAID system with six disks,
plus a sufficient number of hot spares. Assume that each disk is the 37 GB SCSI
disk shown in Figure D.3 and that each disk can sequentially read data at a peak
of 142 MB/sec and sequentially write data at a peak of 85 MB/sec. Assume that
the disks are connected to an Ultra320 SCSI bus that can transfer a total of 320
MB/sec. You can assume that each disk failure is independent and ignore other
potential failures in the system. For the reconstruction process, you can assume
that the overhead for any XOR computation or memory copying is negligible.
During online reconstruction, assume that the reconstruction process is limited to
use a total bandwidth of 10 MB/sec from the RAID system.

D.8 [10] <D.2> Assume that you have a RAID 4 system with six disks. Draw a sim-
ple diagram showing the layout of blocks across disks for this RAID system.

D.9 [10] <D.2, D.4> When a single disk fails, the RAID 4 system will perform recon-
struction. What is the expected time until a reconstruction is needed?

D.10 [10/10/10] <D.2, D.4> Assume that reconstruction of the RAID 4 array begins at
time t.

a. [10] <D.2, D.4> What read and write operations are required to perform the
reconstruction?

b. [10] <D.2, D.4> For offline reconstruction, when will the reconstruction pro-
cess be complete?

c. [10] <D.2, D.4> For online reconstruction, when will the reconstruction pro-
cess be complete?

D.11 [10/10/10/10] <D.2, D.4> In this exercise, we will investigate the mean time until
data loss (MTDL). In RAID 4, data are lost only if a second disk fails before the
first failed disk is repaired.

a. [10] <D.2, D.4> What is the likelihood of having a second failure during
offline reconstruction?

b. [10] <D.2, D.4> Given this likelihood of a second failure during reconstruc-
tion, what is the MTDL for offline reconstruction?

c. [10] <D.2, D.4> What is the likelihood of having a second failure during
online reconstruction?

d. [10] <D.2, D.4> Given this likelihood of a second failure during reconstruc-
tion, what is the MTDL for online reconstruction?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-57

D.12 [10] <D.2, D.4> What is performability for the RAID 4 array for offline recon-
struction? Calculate the performability using IOPS, assuming a random read-
only workload that is evenly distributed across the disks of the RAID 4 array.

D.13 [10] <D.2, D.4> What is the performability for the RAID 4 array for online
reconstruction? During online repair, you can assume that the IOPS drop to 70%
of their peak rate. Does offline or online reconstruction lead to better perform-
ability?

D.14 [10] <D.2, D.4> RAID 6 is used to tolerate up to two simultaneous disk failures.
Assume that you have a RAID 6 system based on row-diagonal parity, or RAID-
DP; your six-disk RAID-DP system is based on RAID 4, with p = 5, as shown in
Figure D.5. If data disk 0 and data disk 3 fail, how can those disks be recon-
structed? Show the sequence of steps that are required to compute the missing
blocks in the first four stripes.

Case Study 4: Performance Prediction for RAIDs

Concepts illustrated by this case study

■ RAID Levels

■ Queuing Theory

■ Impact of Workloads

■ Impact of Disk Layout

In this case study, you will explore how simple queuing theory can be used to
predict the performance of the I/O system. You will investigate how both storage
system configuration and the workload influence service time, disk utilization,
and average response time.

The configuration of the storage system has a large impact on performance.
Different RAID levels can be modeled using queuing theory in different ways.
For example, a RAID 0 array containing N disks can be modeled as N separate
systems of M/M/1 queues, assuming that requests are appropriately distributed
across the N disks. The behavior of a RAID 1 array depends upon the work-
load: A read operation can be sent to either mirror, whereas a write operation
must be sent to both disks. Therefore, for a read-only workload, a two-disk
RAID 1 array can be modeled as an M/M/2 queue, whereas for a write-only
workload, it can be modeled as an M/M/1 queue. The behavior of a RAID 4
array containing N disks also depends upon the workload: A read will be sent to
a particular data disk, whereas writes must all update the parity disk, which
becomes the bottleneck of the system. Therefore, for a read-only workload,
RAID 4 can be modeled as N – 1 separate systems, whereas for a write-only
workload, it can be modeled as one M/M/1 queue.

The layout of blocks within the storage system can have a significant impact
on performance. Consider a single disk with a 40 GB capacity. If the workload
randomly accesses 40 GB of data, then the layout of those blocks to the disk does

D-58 ■ Appendix D Storage Systems

not have much of an impact on performance. However, if the workload randomly
accesses only half of the disk’s capacity (i.e., 20 GB of data on that disk), then
layout does matter: To reduce seek time, the 20 GB of data can be compacted
within 20 GB of consecutive tracks instead of allocated uniformly distributed
over the entire 40 GB capacity.

For this problem, we will use a rather simplistic model to estimate the service
time of a disk. In this basic model, the average positioning and transfer time for a
small random request is a linear function of the seek distance. For the 40 GB disk
in this problem, assume that the service time is 5 ms * space utilization. Thus, if
the entire 40 GB disk is used, then the average positioning and transfer time for a
random request is 5 ms; if only the first 20 GB of the disk is used, then the aver-
age positioning and transfer time is 2.5 ms.

Throughout this case study, you can assume that the processor sends 167
small random disk requests per second and that these requests are exponentially
distributed. You can assume that the size of the requests is equal to the block size
of 8 KB. Each disk in the system has a capacity of 40 GB. Regardless of the stor-
age system configuration, the workload accesses a total of 40 GB of data; you
should allocate the 40 GB of data across the disks in the system in the most effi-
cient manner.

D.15 [10/10/10/10/10] <D.5> Begin by assuming that the storage system consists of a
single 40 GB disk.

a. [10] <D.5> Given this workload and storage system, what is the average ser-
vice time?

b. [10] <D.5> On average, what is the utilization of the disk?

c. [10] <D.5> On average, how much time does each request spend waiting for
the disk?

d. [10] <D.5> What is the mean number of requests in the queue?

e. [10] <D.5> Finally, what is the average response time for the disk requests?

D.16 [10/10/10/10/10/10] <D.2, D.5> Imagine that the storage system is now config-
ured to contain two 40 GB disks in a RAID 0 array; that is, the data are striped in
blocks of 8 KB equally across the two disks with no redundancy.

a. [10] <D.2, D.5> How will the 40 GB of data be allocated across the disks?
Given a random request workload over a total of 40 GB, what is the expected
service time of each request?

b. [10] <D.2, D.5> How can queuing theory be used to model this storage system?

c. [10] <D.2, D.5> What is the average utilization of each disk?

d. [10] <D.2, D.5> On average, how much time does each request spend waiting
for the disk?

e. [10] <D.2, D.5> What is the mean number of requests in each queue?

f. [10] <D.2, D.5> Finally, what is the average response time for the disk
requests?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-59

D.17 [20/20/20/20/20] <D.2, D.5> Instead imagine that the storage system is config-
ured to contain two 40 GB disks in a RAID 1 array; that is, the data are mirrored
across the two disks. Use queuing theory to model this system for a read-only
workload.

a. [20] <D.2, D.5> How will the 40 GB of data be allocated across the disks?
Given a random request workload over a total of 40 GB, what is the expected
service time of each request?

b. [20] <D.2, D.5> How can queuing theory be used to model this storage sys-
tem?

c. [20] <D.2, D.5> What is the average utilization of each disk?

d. [20] <D.2, D.5> On average, how much time does each request spend waiting
for the disk?

e. [20] <D.2, D.5> Finally, what is the average response time for the disk
requests?

D.18 [10/10] <D.2, D.5> Imagine that instead of a read-only workload, you now have
a write-only workload on a RAID 1 array.

a. [10] <D.2, D.5> Describe how you can use queuing theory to model this sys-
tem and workload.

b. [10] <D.2, D.5> Given this system and workload, what are the average utili-
zation, average waiting time, and average response time?

Case Study 5: I/O Subsystem Design

Concepts illustrated by this case study

■ RAID Systems

■ Mean Time to Failure (MTTF)

■ Performance and Reliability Trade-Offs

In this case study, you will design an I/O subsystem, given a monetary budget.
Your system will have a minimum required capacity and you will optimize for
performance, reliability, or both. You are free to use as many disks and control-
lers as fit within your budget.

Here are your building blocks:

■ A 10,000 MIPS CPU costing $1000. Its MTTF is 1,000,000 hours.

■ A 1000 MB/sec I/O bus with room for 20 Ultra320 SCSI buses and control-
lers.

■ Ultra320 SCSI buses that can transfer 320 MB/sec and support up to 15 disks
per bus (these are also called SCSI strings). The SCSI cable MTTF is
1,000,000 hours.

D-60 ■ Appendix D Storage Systems

■ An Ultra320 SCSI controller that is capable of 50,000 IOPS, costs $250, and
has an MTTF of 500,000 hours.

■ A $2000 enclosure supplying power and cooling to up to eight disks. The
enclosure MTTF is 1,000,000 hours, the fan MTTF is 200,000 hours, and the
power supply MTTF is 200,000 hours.

■ The SCSI disks described in Figure D.3.

■ Replacing any failed component requires 24 hours.

You may make the following assumptions about your workload:

■ The operating system requires 70,000 CPU instructions for each disk I/O.

■ The workload consists of many concurrent, random I/Os, with an average size
of 16 KB.

All of your constructed systems must have the following properties:

■ You have a monetary budget of $28,000.

■ You must provide at least 1 TB of capacity.

D.19 [10] <D.2> You will begin by designing an I/O subsystem that is optimized only
for capacity and performance (and not reliability), specifically IOPS. Discuss the
RAID level and block size that will deliver the best performance.

D.20 [20/20/20/20] <D.2, D.4, D.7> What configuration of SCSI disks, controllers,
and enclosures results in the best performance given your monetary and capacity
constraints?

a. [20] <D.2, D.4, D.7> How many IOPS do you expect to deliver with your
system?

b. [20] <D.2, D.4, D.7> How much does your system cost?

c. [20] <D.2, D.4, D.7> What is the capacity of your system?

d. [20] <D.2, D.4, D.7> What is the MTTF of your system?

D.21 [10] <D.2, D.4, D.7> You will now redesign your system to optimize for reliabil-
ity, by creating a RAID 10 or RAID 01 array. Your storage system should be
robust not only to disk failures but also to controller, cable, power supply, and fan
failures as well; specifically, a single component failure should not prohibit
accessing both replicas of a pair. Draw a diagram illustrating how blocks are allo-
cated across disks in the RAID 10 and RAID 01 configurations. Is RAID 10 or
RAID 01 more appropriate in this environment?

D.22 [20/20/20/20/20] <D.2, D.4, D.7> Optimizing your RAID 10 or RAID 01 array
only for reliability (but staying within your capacity and monetary constraints),
what is your RAID configuration?

a. [20] <D.2, D.4, D.7> What is the overall MTTF of the components in your
system?

b. [20] <D.2, D.4, D.7> What is the MTDL of your system?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-61

c. [20] <D.2, D.4, D.7> What is the usable capacity of this system?

d. [20] <D.2, D.4, D.7> How much does your system cost?

e. [20] <D.2, D.4, D.7> Assuming a write-only workload, how many IOPS can
you expect to deliver?

D.23 [10] <D.2, D.4, D.7> Assume that you now have access to a disk that has twice
the capacity, for the same price. If you continue to design only for reliability, how
would you change the configuration of your storage system? Why?

Case Study 6: Dirty Rotten Bits

Concepts illustrated by this case study

■ Partial Disk Failure

■ Failure Analysis

■ Performance Analysis

■ Parity Protection

■ Checksumming

You are put in charge of avoiding the problem of “bit rot”—bits or blocks in a file
going bad over time. This problem is particularly important in archival scenarios,
where data are written once and perhaps accessed many years later; without tak-
ing extra measures to protect the data, the bits or blocks of a file may slowly
change or become unavailable due to media errors or other I/O faults.

Dealing with bit rot requires two specific components: detection and recov-
ery. To detect bit rot efficiently, one can use checksums over each block of the file
in question; a checksum is just a function of some kind that takes a (potentially
long) string of data as input and outputs a fixed-size string (the checksum) of the
data as output. The property you will exploit is that if the data changes then the
computed checksum is very likely to change as well.

Once detected, recovering from bit rot requires some form of redundancy.
Examples include mirroring (keeping multiple copies of each block) and parity
(some extra redundant information, usually more space efficient than mirroring).

In this case study, you will analyze how effective these techniques are given
various scenarios. You will also write code to implement data integrity protection
over a set of files.

D.24 [20/20/20] <D.2> Assume that you will use simple parity protection in Exer-
cises D.24 through D.27. Specifically, assume that you will be computing one
parity block for each file in the file system. Further, assume that you will also
use a 20-byte MD5 checksum per 4 KB block of each file.

D-62 ■ Appendix D Storage Systems

We first tackle the problem of space overhead. According to studies by Douceur
and Bolosky [1999], these file size distributions are what is found in modern PCs:

The study also finds that file systems are usually about half full. Assume that you
have a 37 GB disk volume that is roughly half full and follows that same distribu-
tion, and answer the following questions:

a. [20] <D.2> How much extra information (both in bytes and as a percent of
the volume) must you keep on disk to be able to detect a single error with
checksums?

b. [20] <D.2> How much extra information (both in bytes and as a percent of
the volume) would you need to be able to both detect a single error with
checksums as well as correct it?

c. [20] <D.2> Given this file distribution, is the block size you are using to com-
pute checksums too big, too little, or just right?

D.25 [10/10] <D.2, D.3> One big problem that arises in data protection is error detec-
tion. One approach is to perform error detection lazily—that is, wait until a file is
accessed, and at that point, check it and make sure the correct data are there. The
problem with this approach is that files that are not accessed frequently may
slowly rot away and when finally accessed have too many errors to be corrected.
Hence, an eager approach is to perform what is sometimes called disk scrub-
bing—periodically go through all data and find errors proactively.

a. [10] <D.2, D.3> Assume that bit flips occur independently, at a rate of 1 flip
per GB of data per month. Assuming the same 20 GB volume that is half full,
and assuming that you are using the SCSI disk as specified in Figure D.3
(4 ms seek, roughly 100 MB/sec transfer), how often should you scan
through files to check and repair their integrity?

b. [10] <D.2, D.3> At what bit flip rate does it become impossible to maintain
data integrity? Again assume the 20 GB volume and the SCSI disk.

D.26 [10/10/10/10] <D.2, D.4> Another potential cost of added data protection is
found in performance overhead. We now study the performance overhead of this
data protection approach.

a. [10] <D.2, D.4> Assume we write a 40 MB file to the SCSI disk sequentially,
and then write out the extra information to implement our data protection
scheme to disk once. How much write traffic (both in total volume of bytes
and as a percentage of total traffic) does our scheme generate?

b. [10] <D.2, D.4> Assume we now are updating the file randomly, similar to a
database table. That is, assume we perform a series of 4 KB random writes to
the file, and each time we perform a single write, we must update the on-disk

≤1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB 128 KB 256 KB 512 KB ≥1 MB

26.6% 11.0% 11.2% 10.9% 9.5% 8.5% 7.1% 5.1% 3.7% 2.4% 4.0%

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-63

protection information. Assuming that we perform 10,000 random writes,
how much I/O traffic (both in total volume of bytes and as a percentage of
total traffic) does our scheme generate?

c. [10] <D.2, D.4> Now assume that the data protection information is always
kept in a separate portion of the disk, away from the file it is guarding (that is,
assume for each file A, there is another file Achecksums that holds all the check-
sums for A). Hence, one potential overhead we must incur arises upon
reads—that is, upon each read, we will use the checksum to detect data cor-
ruption.

Assume you read 10,000 blocks of 4 KB each sequentially from disk. Assum-
ing a 4 ms average seek cost and a 100 MB/sec transfer rate (like the SCSI
disk in Figure D.3), how long will it take to read the file (and corresponding
checksums) from disk? What is the time penalty due to adding checksums?

d. [10] <D.2, D.4> Again assuming that the data protection information is kept
separate as in part (c), now assume you have to read 10,000 random blocks of
4 KB each from a very large file (much bigger than 10,000 blocks, that is).
For each read, you must again use the checksum to ensure data integrity. How
long will it take to read the 10,000 blocks from disk, again assuming the same
disk characteristics? What is the time penalty due to adding checksums?

D.27 [40] <D.2, D.3, D.4> Finally, we put theory into practice by developing a user-
level tool to guard against file corruption. Assume you are to write a simple set of
tools to detect and repair data integrity. The first tool is used for checksums and
parity. It should be called build and used like this:

build <filename>

The build program should then store the needed checksum and redundancy
information for the file filename in a file in the same directory called .file
name.cp (so it is easy to find later).

A second program is then used to check and potentially repair damaged files. It
should be called repair and used like this:

repair <filename>

The repair program should consult the .cp file for the filename in question and
verify that all the stored checksums match the computed checksums for the data.
If the checksums don’t match for a single block, repair should use the redun-
dant information to reconstruct the correct data and fix the file. However, if two
or more blocks are bad, repair should simply report that the file has been cor-
rupted beyond repair. To test your system, we will provide a tool to corrupt files
called corrupt. It works as follows:

corrupt <filename> <blocknumber>

All corrupt does is fill the specified block number of the file with random noise.
For checksums you will be using MD5. MD5 takes an input string and gives you
a 128-bit “fingerprint” or checksum as an output. A great and simple implemen-
tation of MD5 is available here:

http://sourceforge.net/project/showfiles.php?group_id=42360

D-64 ■ Appendix D Storage Systems

Parity is computed with the XOR operator. In C code, you can compute the parity
of two blocks, each of size BLOCKSIZE, as follows:

unsigned char block1[BLOCKSIZE];
unsigned char block2[BLOCKSIZE];

unsigned char parity[BLOCKSIZE];

// first, clear parity block
for (int i = 0; i < BLOCKSIZE; i++)

parity[i] = 0;

// then compute parity; carat symbol does XOR in C
for (int i = 0; i < BLOCKSIZE; i++) {

parity[i] = block1[i] ˆ block2[i];
}

Case Study 7: Sorting Things Out

Concepts illustrated by this case study

■ Benchmarking

■ Performance Analysis

■ Cost/Performance Analysis

■ Amortization of Overhead

■ Balanced Systems

The database field has a long history of using benchmarks to compare systems. In
this question, you will explore one of the benchmarks introduced by Anon. et al.
[1985] (see Chapter 1): external, or disk-to-disk, sorting.

Sorting is an exciting benchmark for a number of reasons. First, sorting exer-
cises a computer system across all its components, including disk, memory, and
processors. Second, sorting at the highest possible performance requires a great
deal of expertise about how the CPU caches, operating systems, and I/O subsys-
tems work. Third, it is simple enough to be implemented by a student (see
below!).

Depending on how much data you have, sorting can be done in one or multi-
ple passes. Simply put, if you have enough memory to hold the entire dataset in
memory, you can read the entire dataset into memory, sort it, and then write it
out; this is called a “one-pass” sort.

If you do not have enough memory, you must sort the data in multiple passes.
There are many different approaches possible. One simple approach is to sort each
chunk of the input file and write it to disk; this leaves (input file size)/(memory
size) sorted files on disk. Then, you have to merge each sorted temporary file into
a final sorted output. This is called a “two-pass” sort. More passes are needed in
the unlikely case that you cannot merge all the streams in the second pass.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-65

In this case study, you will analyze various aspects of sorting, determining its
effectiveness and cost-effectiveness in different scenarios. You will also write
your own version of an external sort, measuring its performance on real hard-
ware.

D.28 [20/20/20] <D.4> We will start by configuring a system to complete a sort in the
least possible time, with no limits on how much we can spend. To get peak band-
width from the sort, we have to make sure all the paths through the system have
sufficient bandwidth.

Assume for simplicity that the time to perform the in-memory sort of keys is lin-
early proportional to the CPU rate and memory bandwidth of the given machine
(e.g., sorting 1 MB of records on a machine with 1 MB/sec of memory bandwidth
and a 1 MIPS processor will take 1 second). Assume further that you have care-
fully written the I/O phases of the sort so as to achieve sequential bandwidth.
And, of course, realize that if you don’t have enough memory to hold all of the
data at once that sort will take two passes.

One problem you may encounter in performing I/O is that systems often perform
extra memory copies; for example, when the read() system call is invoked, data
may first be read from disk into a system buffer and then subsequently copied
into the specified user buffer. Hence, memory bandwidth during I/O can be an
issue.

Finally, for simplicity, assume that there is no overlap of reading, sorting, or writ-
ing. That is, when you are reading data from disk, that is all you are doing; when
sorting, you are just using the CPU and memory bandwidth; when writing, you
are just writing data to disk.

Your job in this task is to configure a system to extract peak performance when
sorting 1 GB of data (i.e., roughly 10 million 100-byte records). Use the follow-
ing table to make choices about which machine, memory, I/O interconnect, and
disks to buy.

Note: Assume that you are buying a single-processor system and that you can
have up to two I/O interconnects. However, the amount of memory and number
of disks are up to you (assume there is no limit on disks per I/O interconnect).

CPU I/O interconnect

Slow 1 GIPS $200 Slow 80 MB/sec $50

Standard 2 GIPS $1000 Standard 160 MB/sec $100

Fast 4 GIPS $2000 Fast 320 MB/sec $400

Memory Disks

Slow 512 MB/sec $100/GB Slow 30 MB/sec $70

Standard 1 GB/sec $200/GB Standard 60 MB/sec $120

Fast 2 GB/sec $500/GB Fast 110 MB/sec $300

D-66 ■ Appendix D Storage Systems

a. [20] <D.4> What is the total cost of your machine? (Break this down by part,
including the cost of the CPU, amount of memory, number of disks, and I/O
bus.)

b. [20] <D.4> How much time does it take to complete the sort of 1 GB worth of
records? (Break this down into time spent doing reads from disk, writes to
disk, and time spent sorting.)

c. [20] <D.4> What is the bottleneck in your system?

D.29 [25/25/25] <D.4> We will now examine cost-performance issues in sorting. After
all, it is easy to buy a high-performing machine; it is much harder to buy a cost-
effective one.

One place where this issue arises is with the PennySort competition (research.
microsoft.com/barc/SortBenchmark/). PennySort asks that you sort as many
records as you can for a single penny. To compute this, you should assume that a
system you buy will last for 3 years (94,608,000 seconds), and divide this by the
total cost in pennies of the machine. The result is your time budget per penny.

Our task here will be a little simpler. Assume you have a fixed budget of $2000
(or less). What is the fastest sorting machine you can build? Use the same hard-
ware table as in Exercise D.28 to configure the winning machine.

(Hint: You might want to write a little computer program to generate all the pos-
sible configurations.)

a. [25] <D.4> What is the total cost of your machine? (Break this down by part,
including the cost of the CPU, amount of memory, number of disks, and I/O
bus.)

b. [25] <D.4> How does the reading, writing, and sorting time break down with
this configuration?

c. [25] <D.4> What is the bottleneck in your system?

D.30 [20/20/20] <D.4, D.6> Getting good disk performance often requires amortiza-
tion of overhead. The idea is simple: If you must incur an overhead of some kind,
do as much useful work as possible after paying the cost and hence reduce its
impact. This idea is quite general and can be applied to many areas of computer
systems; with disks, it arises with the seek and rotational costs (overheads) that
you must incur before transferring data. You can amortize an expensive seek and
rotation by transferring a large amount of data.

In this exercise, we focus on how to amortize seek and rotational costs during the
second pass of a two-pass sort. Assume that when the second pass begins, there
are N sorted runs on the disk, each of a size that fits within main memory. Our
task here is to read in a chunk from each sorted run and merge the results into a
final sorted output. Note that a read from one run will incur a seek and rotation,
as it is very likely that the last read was from a different run.

a. [20] <D.4, D.6> Assume that you have a disk that can transfer at 100 MB/sec,
with an average seek cost of 7 ms, and a rotational rate of 10,000 RPM.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-67

Assume further that every time you read from a run, you read 1 MB of data
and that there are 100 runs each of size 1 GB. Also assume that writes (to the
final sorted output) take place in large 1 GB chunks. How long will the merge
phase take, assuming I/O is the dominant (i.e., only) cost?

b. [20] <D.4, D.6> Now assume that you change the read size from 1 MB to 10
MB. How is the total time to perform the second pass of the sort affected?

c. [20] <D.4, D.6> In both cases, assume that what we wish to maximize is disk
efficiency. We compute disk efficiency as the ratio of the time spent transfer-
ring data over the total time spent accessing the disk. What is the disk effi-
ciency in each of the scenarios mentioned above?

D.31 [40] <D.2, D.4, D.6> In this exercise, you will write your own external sort. To
generate the data set, we provide a tool generate that works as follows:

generate <filename> <size (in MB)>

By running generate, you create a file named filename of size size MB. The
file consists of 100 byte keys, with 10-byte records (the part that must be sorted).

We also provide a tool called check that checks whether a given input file is
sorted or not. It is run as follows:

check <filename>

The basic one-pass sort does the following: reads in the data, sorts the data, and
then writes the data out. However, numerous optimizations are available to you:
overlapping reading and sorting, separating keys from the rest of the record for
better cache behavior and hence faster sorting, overlapping sorting and writing,
and so forth.

One important rule is that data must always start on disk (and not in the file
system cache). The easiest way to ensure this is to unmount and remount the file
system.

One goal: Beat the Datamation sort record. Currently, the record for sorting 1
million 100-byte records is 0.44 seconds, which was obtained on a cluster of 32
machines. If you are careful, you might be able to beat this on a single PC config-
ured with a few disks.

E.1 Introduction E-2

E.2 Signal Processing and Embedded Applications: The Digital
Signal Processor E-5

E.3 Embedded Benchmarks E-12

E.4 Embedded Multiprocessors E-14

E.5 Case Study: The Emotion Engine of the Sony PlayStation 2 E-15

E.6 Case Study: Sanyo VPC-SX500 Digital Camera E-19

E.7 Case Study: Inside a Cell Phone E-20

E.8 Concluding Remarks E-25

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

E
Embedded Systems 1

By Thomas M. Conte
North Carolina State University

Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes
and weighs 30 tons, computers in the future may have only
1,000 vacuum tubes and perhaps weigh 1 1/2 tons.

Popular Mechanics
March 1949

E-2 ■ Appendix E Embedded Systems

Embedded computer systems—computers lodged in other devices where the
presence of the computers is not immediately obvious—are the fastest-growing
portion of the computer market. These devices range from everyday machines
(most microwaves, most washing machines, printers, network switches, and auto-
mobiles contain simple to very advanced embedded microprocessors) to hand-
held digital devices (such as PDAs, cell phones, and music players) to video
game consoles and digital set-top boxes. Although in some applications (such as
PDAs) the computers are programmable, in many embedded applications the
only programming occurs in connection with the initial loading of the application
code or a later software upgrade of that application. Thus, the application is care-
fully tuned for the processor and system. This process sometimes includes lim-
ited use of assembly language in key loops, although time-to-market pressures
and good software engineering practice restrict such assembly language coding
to a fraction of the application.

Compared to desktop and server systems, embedded systems have a much
wider range of processing power and cost—from systems containing low-end
8-bit and 16-bit processors that may cost less than a dollar, to those containing
full 32-bit microprocessors capable of operating in the 500 MIPS range that
cost approximately 10 dollars, to those containing high-end embedded proces-
sors that cost hundreds of dollars and can execute several billions of instruc-
tions per second. Although the range of computing power in the embedded
systems market is very large, price is a key factor in the design of computers for
this space. Performance requirements do exist, of course, but the primary goal
is often meeting the performance need at a minimum price, rather than achiev-
ing higher performance at a higher price.

Embedded systems often process information in very different ways from
general-purpose processors. Typically these applications include deadline-driven
constraints—so-called real-time constraints. In these applications, a particular
computation must be completed by a certain time or the system fails (there are
other constraints considered real time, discussed in the next subsection).

Embedded systems applications typically involve processing information as
signals. The lay term “signal” often connotes radio transmission, and that is true
for some embedded systems (e.g., cell phones). But a signal may be an image, a
motion picture composed of a series of images, a control sensor measurement,
and so on. Signal processing requires specific computation that many embedded
processors are optimized for. We discuss this in depth below. A wide range of
benchmark requirements exist, from the ability to run small, limited code seg-
ments to the ability to perform well on applications involving tens to hundreds of
thousands of lines of code.

Two other key characteristics exist in many embedded applications: the need
to minimize memory and the need to minimize power. In many embedded appli-
cations, the memory can be a substantial portion of the system cost, and it is
important to optimize memory size in such cases. Sometimes the application is

 E.1 Introduction

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

E.1 Introduction ■ E-3

expected to fit entirely in the memory on the processor chip; other times the
application needs to fit in its entirety in a small, off-chip memory. In either case,
the importance of memory size translates to an emphasis on code size, since data
size is dictated by the application. Some architectures have special instruction set
capabilities to reduce code size. Larger memories also mean more power, and
optimizing power is often critical in embedded applications. Although the
emphasis on low power is frequently driven by the use of batteries, the need to
use less expensive packaging (plastic versus ceramic) and the absence of a fan for
cooling also limit total power consumption. We examine the issue of power in
more detail later in this appendix.

Another important trend in embedded systems is the use of processor cores
together with application-specific circuitry—so-called “core plus ASIC” or “sys-
tem on a chip” (SOC), which may also be viewed as special-purpose multipro-
cessors (see Section E.4). Often an application’s functional and performance
requirements are met by combining a custom hardware solution together with
software running on a standardized embedded processor core, which is designed
to interface to such special-purpose hardware. In practice, embedded problems
are usually solved by one of three approaches:

1. The designer uses a combined hardware/software solution that includes some
custom hardware and an embedded processor core that is integrated with the
custom hardware, often on the same chip.

2. The designer uses custom software running on an off-the-shelf embedded
processor.

3. The designer uses a digital signal processor and custom software for the pro-
cessor. Digital signal processors are processors specially tailored for signal-
processing applications. We discuss some of the important differences
between digital signal processors and general-purpose embedded processors
below.

Figure E.1 summarizes these three classes of computing environments and
their important characteristics.

Real-Time Processing

Often, the performance requirement in an embedded application is a real-time
requirement. A real-time performance requirement is one where a segment of the
application has an absolute maximum execution time that is allowed. For exam-
ple, in a digital set-top box the time to process each video frame is limited, since
the processor must accept and process the frame before the next frame arrives
(typically called hard real-time systems). In some applications, a more sophisti-
cated requirement exists: The average time for a particular task is constrained as
well as is the number of instances when some maximum time is exceeded. Such
approaches (typically called soft real-time) arise when it is possible to occasion-
ally miss the time constraint on an event, as long as not too many are missed.

E-4 ■ Appendix E Embedded Systems

Real-time performance tends to be highly application dependent. It is usually
measured using kernels either from the application or from a standardized bench-
mark (see Section E.3).

The construction of a hard real-time system involves three key variables. The
first is the rate at which a particular task must occur. Coupled to this are the hard-
ware and software required to achieve that real-time rate. Often, structures that
are very advantageous on the desktop are the enemy of hard real-time analysis.
For example, branch speculation, cache memories, and so on introduce uncer-
tainty into code. A particular sequence of code may execute either very effi-
ciently or very inefficiently, depending on whether the hardware branch
predictors and caches “do their jobs.” Engineers must analyze code assuming the
worst-case execution time (WCET). In the case of traditional microprocessor
hardware, if one assumes that all branches are mispredicted and all caches miss,
the WCET is overly pessimistic. Thus, the system designer may end up overde-
signing a system to achieve a given WCET, when a much less expensive system
would have sufficed.

In order to address the challenges of hard real-time systems, and yet still
exploit such well-known architectural properties as branch behavior and access
locality, it is possible to change how a processor is designed. Consider branch
prediction: Although dynamic branch prediction is known to perform far more
accurately than static “hint bits” added to branch instructions, the behavior of
static hints is much more predictable. Furthermore, although caches perform bet-
ter than software-managed on-chip memories, the latter produces predictable
memory latencies. In some embedded processors, caches can be converted into
software-managed on-chip memories via line locking. In this approach, a cache

Feature Desktop Server Embedded

Price of system $1000–$10,000 $10,000–$10,000,000 $10–$100,000 (including network
routers at the high end)

Price of microprocessor
module

$100–$1000 $200–$2000
(per processor)

$0.20–$200 (per processor)

Microprocessors sold per
year (estimates for 2000)

150,000,000 4,000,000 300,000,000 (32-bit and 64-bit
processors only)

Critical system design
issues

Price-performance,
graphics performance

Throughput, availability,
scalability

Price, power consumption,
application-specific performance

Figure E.1 A summary of the three computing classes and their system characteristics. Note the wide range in
system price for servers and embedded systems. For servers, this range arises from the need for very large-scale mul-
tiprocessor systems for high-end transaction processing and Web server applications. For embedded systems, one
significant high-end application is a network router, which could include multiple processors as well as lots of mem-
ory and other electronics. The total number of embedded processors sold in 2000 is estimated to exceed 1 billion, if
you include 8-bit and 16-bit microprocessors. In fact, the largest-selling microprocessor of all time is an 8-bit micro-
controller sold by Intel! It is difficult to separate the low end of the server market from the desktop market, since low-
end servers—especially those costing less than $5000—are essentially no different from desktop PCs. Hence, up to a
few million of the PC units may be effectively servers.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

E.2 Signal Processing and Embedded Applications: The Digital Signal Processor ■ E-5

line can be locked in the cache so that it cannot be replaced until the line is
unlocked

A digital signal processor (DSP) is a special-purpose processor optimized for
executing digital signal processing algorithms. Most of these algorithms, from
time-domain filtering (e.g., infinite impulse response and finite impulse response
filtering), to convolution, to transforms (e.g., fast Fourier transform, discrete
cosine transform), to even forward error correction (FEC) encodings, all have as
their kernel the same operation: a multiply-accumulate operation. For example,
the discrete Fourier transform has the form:

 where

The discrete cosine transform is often a replacement for this because it does not
require complex number operations. Either transform has as its core the sum of a
product. To accelerate this, DSPs typically feature special-purpose hardware to
perform multiply-accumulate (MAC). A MAC instruction of “MAC A,B,C” has
the semantics of “A = A + B * C.” In some situations, the performance of this
operation is so critical that a DSP is selected for an application based solely upon
its MAC operation throughput.

DSPs often employ fixed-point arithmetic. If you think of integers as having a
binary point to the right of the least-significant bit, fixed point has a binary point
just to the right of the sign bit. Hence, fixed-point data are fractions between –1
and +1.

Example Here are three simple 16-bit patterns:

0100 0000 0000 0000

0000 1000 0000 0000

0100 1000 0000 1000

What values do they represent if they are two’s complement integers? Fixed-
point numbers?

Answer Number representation tells us that the ith digit to the left of the binary point rep-
resents 2i–1 and the ith digit to the right of the binary point represents 2–i. First
assume these three patterns are integers. Then the binary point is to the far right,
so they represent 214, 211, and (214+ 211+ 23), or 16,384, 2048, and 18,440.

Fixed point places the binary point just to the right of the sign bit, so as
fixed point these patterns represent 2–1, 2–4, and (2–1+ 2–4 + 2–12). The fractions

 E.2 Signal Processing and Embedded Applications:
The Digital Signal Processor

X k() x n()WN
kn

n 0=

N 1–

∑= WN
kn

e
j
2πkn

N

2πkn
N
------⎝ ⎠

⎛ ⎞ jsin 2πkn
N
------⎝ ⎠

⎛ ⎞+cos= =

.

E-6 ■ Appendix E Embedded Systems

are 1/2, 1/16, and (2048 + 256 + 1)/4096 or 2305/4096, which represents about
0.50000, 0.06250, and 0.56274. Alternatively, for an n-bit two’s complement,
fixed-point number we could just divide the integer presentation by 2n–1 to
derive the same results:

16,384/32,768 = 1/2, 2048/32,768 = 1/16, and 18,440/32,768 = 2305/4096.

Fixed point can be thought of as a low-cost floating point. It doesn’t include
an exponent in every word and doesn’t have hardware that automatically aligns
and normalizes operands. Instead, fixed point relies on the DSP programmer to
keep the exponent in a separate variable and ensure that each result is shifted left
or right to keep the answer aligned to that variable. Since this exponent variable
is often shared by a set of fixed-point variables, this style of arithmetic is also
called blocked floating point, since a block of variables has a common exponent.

To support such manual calculations, DSPs usually have some registers that
are wider to guard against round-off error, just as floating-point units internally
have extra guard bits. Figure E.2 surveys four generations of DSPs, listing data
sizes and width of the accumulating registers. Note that DSP architects are not
bound by the powers of 2 for word sizes. Figure E.3 shows the size of data oper-
ands for the TI TMS320C55 DSP.

In addition to MAC operations, DSPs often also have operations to accelerate
portions of communications algorithms. An important class of these algorithms
revolve around encoding and decoding forward error correction codes—codes in
which extra information is added to the digital bit stream to guard against errors
in transmission. A code of rate m/n has m information bits for (m + n) check bits.
So, for example, a 1/2 rate code would have 1 information bit per every 2 bits.

Generation Year Example DSP Data width Accumulator width

1 1982 TI TMS32010 16 bits 32 bits

2 1987 Motorola DSP56001 24 bits 56 bits

3 1995 Motorola DSP56301 24 bits 56 bits

4 1998 TI TMS320C6201 16 bits 40 bits

Figure E.2 Four generations of DSPs, their data width, and the width of the registers
that reduces round-off error.

Data size Memory operand in operation Memory operand in data transfer

16 bits 89.3% 89.0%

32 bits 10.7% 11.0%

Figure E.3 Size of data operands for the TMS320C55 DSP. About 90% of operands are
16 bits. This DSP has two 40-bit accumulators. There are no floating-point operations, as
is typical of many DSPs, so these data are all fixed-point integers.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

E.2 Signal Processing and Embedded Applications: The Digital Signal Processor ■ E-7

Such codes are often called trellis codes because one popular graphical flow dia-
gram of their encoding resembles a garden trellis. A common algorithm for
decoding trellis codes is due to Viterbi. This algorithm requires a sequence of
compares and selects in order to recover a transmitted bit’s true value. Thus DSPs
often have compare-select operations to support Viterbi decode for FEC codes.

To explain DSPs better, we will take a detailed look at two DSPs, both pro-
duced by Texas Instruments. The TMS320C55 series is a DSP family targeted
toward battery-powered embedded applications. In stark contrast to this, the TMS
VelociTI 320C6x series is a line of powerful, eight-issue VLIW processors tar-
geted toward a broader range of applications that may be less power sensitive.

The TI 320C55

At one end of the DSP spectrum is the TI 320C55 architecture. The C55 is opti-
mized for low-power, embedded applications. Its overall architecture is shown in
Figure E.4. At the heart of it, the C55 is a seven-staged pipelined CPU. The
stages are outlined below:

■ Fetch stage reads program data from memory into the instruction buffer
queue.

■ Decode stage decodes instructions and dispatches tasks to the other primary
functional units.

■ Address stage computes addresses for data accesses and branch addresses for
program discontinuities.

■ Access 1/Access 2 stages send data read addresses to memory.

■ Read stage transfers operand data on the B bus, C bus, and D bus.

■ Execute stage executes operation in the A unit and D unit and performs writes
on the E bus and F bus.

Figure E.4 Architecture of the TMS320C55 DSP. The C55 is a seven-stage pipelined
processor with some unique instruction execution facilities. (Courtesy Texas Instruments.)

Instruction
buffer
unit
(IU)

Program
flow
unit
(PU)

Address
data flow

unit
(AU)

Data
computation

unit
(DU)

Data read buses BB, CB, DB (3 x 16)

Data read address buses BAB, CAB, DAB (3 x 24)

CPU

Data write address buses EAB, FAB (2 x 24)

Data write buses EB, FB (2 x 16)

Program address bus PAB (24)

Program read bus PB (32)

E-8 ■ Appendix E Embedded Systems

The C55 pipeline performs pipeline hazard detection and will stall on write
after read (WAR) and read after write (RAW) hazards.

The C55 does have a 24 KB instruction cache, but it is configurable to sup-
port various workloads. It may be configured to be two-way set associative,
direct-mapped, or as a “ramset.” This latter mode is a way to support hard real-
time applications. In this mode, blocks in the cache cannot be replaced.

The C55 also has advanced power management. It allows dynamic power
management through software-programmable “idle domains.” Blocks of cir-
cuitry on the device are organized into these idle domains. Each domain can
operate normally or can be placed in a low-power idle state. A programmer-
accessible Idle Control Register (ICR) determines which domains will be placed
in the idle state when the execution of the next IDLE instruction occurs. The six
domains are CPU, direct memory access (DMA), peripherals, clock generator,
instruction cache, and external memory interface. When each domain is in the
idle state, the functions of that particular domain are not available. However, in
the peripheral domain, each peripheral has an Idle Enable bit that controls
whether or not the peripheral will respond to the changes in the idle state. Thus,
peripherals can be individually configured to idle or remain active when the
peripheral domain is idled.

Since the C55 is a DSP, the central feature is its MAC units. The C55 has two
MAC units, each comprised of a 17-bit by 17-bit multiplier coupled to a 40-bit
dedicated adder. Each MAC unit performs its work in a single cycle; thus, the
C55 can execute two MACs per cycle in full pipelined operation. This kind of
capability is critical for efficiently performing signal processing applications.
The C55 also has a compare, select, and store unit (CSSU) for the add/compare
section of the Viterbi decoder.

The TI 320C6x

In stark contrast to the C55 DSP family is the high-end Texas Instruments Veloc-
iTI 320C6x family of processors. The C6x processors are closer to traditional
very long instruction word (VLIW) processors because they seek to exploit the
high levels of instruction-level parallelism (ILP) in many signal processing algo-
rithms. Texas Instruments is not alone in selecting VLIW for exploiting ILP in
the embedded space. Other VLIW DSP vendors include Ceva, StarCore, Philips/
TriMedia, and STMicroelectronics. Why do these vendors favor VLIW over
superscalar? For the embedded space, code compatibility is less of a problem,
and so new applications can be either hand tuned or recompiled for the newest
generation of processor. The other reason superscalar excels on the desktop is
because the compiler cannot predict memory latencies at compile time. In
embedded, however, memory latencies are often much more predictable. In fact,
hard real-time constraints force memory latencies to be statically predictable. Of
course, a superscalar would also perform well in this environment with these con-
straints, but the extra hardware to dynamically schedule instructions is both
wasteful in terms of precious chip area and in terms of power consumption. Thus
VLIW is a natural choice for high-performance embedded.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

E.2 Signal Processing and Embedded Applications: The Digital Signal Processor ■ E-9

The C6x family employs different pipeline depths depending on the family
member. For the C64x, for example, the pipeline has 11 stages. The first four
stages of the pipeline perform instruction fetch, followed by two stages for
instruction decode, and finally four stages for instruction execution. The overall
architecture of the C64x is shown below in Figure E.5.

The C6x family’s execution stage is divided into two parts, the left or “1” side
and the right or “2” side. The L1 and L2 units perform logical and arithmetic
operations. D units in contrast perform a subset of logical and arithmetic opera-
tions but also perform memory accesses (loads and stores). The two M units per-
form multiplication and related operations (e.g., shifts). Finally the S units
perform comparisons, branches, and some SIMD operations (see the next subsec-
tion for a detailed explanation of SIMD operations). Each side has its own 32-
entry, 32-bit register file (the A file for the 1 side, the B file for the 2 side). A side
may access the other side’s registers, but with a 1- cycle penalty. Thus, an instruc-
tion executing on side 1 may access B5, for example, but it will take 1- cycle
extra to execute because of this.

VLIWs are traditionally very bad when it comes to code size, which runs contrary
to the needs of embedded systems. However, the C6x family’s approach “com-
presses” instructions, allowing the VLIW code to achieve the same density as equiva-
lent RISC (reduced instruction set computer) code. To do so, instruction fetch is
carried out on an “instruction packet,” shown in Figure E.6. Each instruction has a p
bit that specifies whether this instruction is a member of the current VLIW word or

Figure E.5 Architecture of the TMS320C64x family of DSPs. The C6x is an eight-issue
traditional VLIW processor. (Courtesy Texas Instruments.)

Program cache/program memory
32-bit address
256-bit data

Data cache/data memory
32-bit address

8-, 16-, 32-, 64-bit data

Program fetch

Instruction dispatch

Instruction decode

Control
registers

C6000 CPU

Control
logic

Test

Emulation

Interrupts

EDMA,
EMIF

Additional
peripherals:

timers,
serial ports,

etc.

Register file A

Data path A

.L1 .S1 .M1 .D1

Power
down

Register file B

Data path B

.D2 .M2 .S2 .L2

E-10 ■ Appendix E Embedded Systems

the next VLIW word (see the figure for a detailed explanation). Thus, there are now
no NOPs that are needed for VLIW encoding.

Software pipelining is an important technique for achieving high perfor-
mance in a VLIW. But software pipelining relies on each iteration of the loop
having an identical schedule to all other iterations. Because conditional branch
instructions disrupt this pattern, the C6x family provides a means to conditionally
execute instructions using predication. In predication, the instruction performs its
work. But when it is done executing, an additional register, for example A1, is
checked. If A1 is zero, the instruction does not write its results. If A1 is nonzero,
the instruction proceeds normally. This allows simple if-then and if-then-else
structures to be collapsed into straight-line code for software pipelining.

Media Extensions

There is a middle ground between DSPs and microcontrollers: media extensions.
These extensions add DSP-like capabilities to microcontroller architectures at
relatively low cost. Because media processing is judged by human perception,
the data for multimedia operations are often much narrower than the 64-bit data
word of modern desktop and server processors. For example, floating-point
operations for graphics are normally in single precision, not double precision,
and often at a precision less than is required by IEEE 754. Rather than waste the
64-bit arithmetic-logical units (ALUs) when operating on 32-bit, 16-bit, or even
8-bit integers, multimedia instructions can operate on several narrower data
items at the same time. Thus, a partitioned add operation on 16-bit data with a
64-bit ALU would perform four 16-bit adds in a single clock cycle. The extra
hardware cost is simply to prevent carries between the four 16-bit partitions of
the ALU. For example, such instructions might be used for graphical operations
on pixels. These operations are commonly called single-instruction multiple-
data (SIMD) or vector instructions.

Most graphics multimedia applications use 32-bit floating-point operations.
Some computers double peak performance of single-precision, floating-point
operations; they allow a single instruction to launch two 32-bit operations on
operands found side by side in a double-precision register. The two partitions
must be insulated to prevent operations on one half from affecting the other. Such

Figure E.6 Instruction packet of the TMS320C6x family of DSPs. The p bits determine
whether an instruction begins a new VLIW word or not. If the p bit of instruction i is 1,
then instruction i + 1 is to be executed in parallel with (in the same cycle as) instruction i.
If the p bit of instruction i is 0, then instruction i + 1 is executed in the cycle after instruc-
tion i. (Courtesy Texas Instruments.)

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0

Instruction
A

p p p p p p p p

Instruction
B

Instruction
C

Instruction
D

Instruction
E

Instruction
F

Instruction
G

Instruction
H

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

E.2 Signal Processing and Embedded Applications: The Digital Signal Processor ■ E-11

floating-point operations are called paired single operations. For example, such
an operation might be used for graphical transformations of vertices. This
doubling in performance is typically accomplished by doubling the number of
floating-point units, making it more expensive than just suppressing carries in
integer adders.

Figure E.7 summarizes the SIMD multimedia instructions found in several
recent computers.

DSPs also provide operations found in the first three rows of Figure E.7, but
they change the semantics a bit. First, because they are often used in real-time
applications, there is not an option of causing an exception on arithmetic over-
flow (otherwise it could miss an event); thus, the result will be used no matter
what the inputs. To support such an unyielding environment, DSP architectures
use saturating arithmetic: If the result is too large to be represented, it is set to the
largest representable number, depending on the sign of the result. In contrast,
two’s complement arithmetic can add a small positive number to a large positive.

Instruction category Alpha MAX
HP PA-RISC
MAX2

Intel Pentium
MMX

PowerPC
AltiVec SPARC VIS

Add/subtract 4H 8B, 4H, 2W 16B, 8H, 4W 4H, 2W

Saturating add/subtract 4H 8B, 4H 16B, 8H, 4W

Multiply 4H 16B, 8H

Compare 8B (>=) 8B, 4H, 2W
(=, >)

16B, 8H, 4W
(=, >, > =, <, <=)

4H, 2W
(=, not =, >, <=)

Shift right/left 4H 4H, 2W 16B, 8H, 4W

Shift right arithmetic 4H 16B, 8H, 4W

Multiply and add 8H

Shift and add (saturating) 4H

AND/OR/XOR 8B, 4H, 2W 8B, 4H, 2W 8B, 4H, 2W 16B, 8H, 4W 8B, 4H, 2W

Absolute difference 8B 16B, 8H, 4W 8B

Maximum/minimum 8B, 4W 16B, 8H, 4W

Pack (2n bits → n bits) 2W → 2B,
4H → 4B

2*4H → 8B 4H → 4B,
2W → 2H

4W → 4B,
8H → 8B

2W → 2H,
2W → 2B,
4H → 4B

 Unpack/merge 2B → 2W,
4B → 4H

 2B → 2W,
4B → 4H

4B → 4W,
8B → 8H

4B → 4H,
2*4B → 8B

 Permute/shuffle 4H 16B, 8H, 4W

Figure E.7 Summary of multimedia support for desktop processors. Note the diversity of support, with little in
common across the five architectures. All are fixed-width operations, performing multiple narrow operations on
either a 64-bit or 128-bit ALU. B stands for byte (8 bits), H for half word (16 bits), and W for word (32 bits). Thus, 8B
means an operation on 8 bytes in a single instruction. Note that AltiVec assumes a 128-bit ALU, and the rest assume
64 bits. Pack and unpack use the notation 2*2W to mean 2 operands each with 2 words. This table is a simplification
of the full multimedia architectures, leaving out many details. For example, HP MAX2 includes an instruction to cal-
culate averages, and SPARC VIS includes instructions to set registers to constants. Also, this table does not include
the memory alignment operation of AltiVec, MAX, and VIS.

E-12 ■ Appendix E Embedded Systems

It used to be the case just a couple of years ago that in the embedded market,
many manufacturers quoted Dhrystone performance, a benchmark that was criti-
cized and given up by desktop systems more than 20 years ago! As mentioned
earlier, the enormous variety in embedded applications, as well as differences in
performance requirements (hard real time, soft real time, and overall cost-
performance), make the use of a single set of benchmarks unrealistic. In practice,
many designers of embedded systems devise benchmarks that reflect their appli-
cation, either as kernels or as stand-alone versions of the entire application.

For those embedded applications that can be characterized well by kernel per-
formance, the best standardized set of benchmarks appears to be a new bench-
mark set: the EDN Embedded Microprocessor Benchmark Consortium (or
EEMBC, pronounced “embassy”). The EEMBC benchmarks fall into six classes
(called “subcommittees” in the parlance of EEMBC): automotive/industrial, con-
sumer, telecommunications, digital entertainment, networking (currently in its
second version), and office automation (also the second version of this subcom-
mittee). Figure E.8 shows the six different application classes, which include 50
benchmarks.

Although many embedded applications are sensitive to the performance of
small kernels, remember that often the overall performance of the entire applica-
tion (which may be thousands of lines) is also critical. Thus, for many embedded
systems, the EMBCC benchmarks can only be used to partially assess perfor-
mance.

Benchmark type
(“subcommittee”)

Number of
kernels Example benchmarks

Automotive/industrial 16 6 microbenchmarks (arithmetic operations, pointer chasing, memory
performance, matrix arithmetic, table lookup, bit manipulation), 5
automobile control benchmarks, and 5 filter or FFT benchmarks

Consumer 5 5 multimedia benchmarks (JPEG compress/decompress, filtering, and
RGB conversions)

Telecommunications 5 Filtering and DSP benchmarks (autocorrelation, FFT, decoder, encoder)

Digital entertainment 12 MP3 decode, MPEG-2 and MPEG-4 encode and decode (each of which
is applied to five different datasets), MPEG Encode Floating Point,
4 benchmark tests for common cryptographic standards and algorithms
(AES, DES, RSA, and Huffman decoding for data decompression), and
enhanced JPEG and color-space conversion tests

Networking version 2 6 IP Packet Check (borrowed from the RFC1812 standard), IP Reassembly,
IP Network Address Translator (NAT), Route Lookup, OSPF, Quality of
Service (QOS), and TCP

Office automation
version 2

6 Ghostscript, text parsing, image rotation, dithering, Bézier

Figure E.8 The EEMBC benchmark suite, consisting of 50 kernels in six different classes. See www.eembc.org for
more information on the benchmarks and for scores.

 E.3 Embedded Benchmarks

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

E.3 Embedded Benchmarks ■ E-13

Power Consumption and Efficiency as the Metric

Cost and power are often at least as important as performance in the embedded
market. In addition to the cost of the processor module (which includes any
required interface chips), memory is often the next most costly part of an embed-
ded system. Unlike a desktop or server system, most embedded systems do not
have secondary storage; instead, the entire application must reside in either
FLASH or DRAM. Because many embedded systems, such as PDAs and cell
phones, are constrained by both cost and physical size, the amount of memory
needed for the application is critical. Likewise, power is often a determining fac-
tor in choosing a processor, especially for battery-powered systems.

EEMBC EnergyBench provides data on the amount of energy a processor
consumes while running EEMBC’s performance benchmarks. An EEMBC-
certified Energymark score is an optional metric that a device manufacturer may
choose to supply in conjunction with certified scores for device performance as a
way of indicating a processor’s efficient use of power and energy. EEMBC has
standardized on the use of National Instruments’ LabVIEW graphical develop-
ment environment and data acquisition hardware to implement EnergyBench.

Figure E.9 shows the relative performance per watt of typical operating
power. Compare this figure to Figure E.10, which plots raw performance, and
notice how different the results are. The NEC VR 4122 has a clear advantage in
performance per watt, but is the second-lowest performing processor! From the
viewpoint of power consumption, the NEC VR 4122, which was designed for
battery-based systems, is the big winner. The IBM PowerPC displays efficient
use of power to achieve its high performance, although at 6 W typical, it is prob-
ably not suitable for most battery-based devices.

Figure E.9 Relative performance per watt for the five embedded processors. The
power is measured as typical operating power for the processor and does not include
any interface chips.

R
el

at
iv

e
pe

rf
or

m
an

ce
 p

er
 w

at
t

0

3.5

4.0

3.0

2.5

2.0

1.5

1.0

0.5

Automotive Office Telecomm

AMD ElanSC520
AMD K6-2E+
IBM PowerPC 750CX
NEC VR 5432
NEC VR 4122

E-14 ■ Appendix E Embedded Systems

Multiprocessors are now common in server environments, and several desktop
multiprocessors are available from vendors, such as Sun, Compaq, and Apple. In
the embedded space, a number of special-purpose designs have used customized
multiprocessors, including the Sony PlayStation 2 (see Section E.5).

Many special-purpose embedded designs consist of a general-purpose pro-
grammable processor or DSP with special-purpose, finite-state machines that are
used for stream-oriented I/O. In applications ranging from computer graphics and
media processing to telecommunications, this style of special-purpose multipro-
cessor is becoming common. Although the interprocessor interactions in such
designs are highly regimented and relatively simple—consisting primarily of a
simple communication channel—because much of the design is committed to sil-
icon, ensuring that the communication protocols among the input/output proces-
sors and the general-purpose processor are correct is a major challenge in such
designs.

More recently, we have seen the first appearance, in the embedded space, of
embedded multiprocessors built from several general-purpose processors. These
multiprocessors have been focused primarily on the high-end telecommunica-
tions and networking market, where scalability is critical. An example of such a
design is the MXP processor designed by empowerTel Networks for use in voice-
over-IP systems. The MXP processor consists of four main components:

■ An interface to serial voice streams, including support for handling jitter

■ Support for fast packet routing and channel lookup

■ A complete Ethernet interface, including the MAC layer

■ Four MIPS32 R4000-class processors, each with its own cache (a total of 48 KB
or 12 KB per processor)

Figure E.10 Raw performance for the five embedded processors. The performance is
presented as relative to the performance of the AMD ElanSC520.

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 A
M

D
E

la
n

S
C

52
0

14.0

12.0

10.0

8.0

6.0

4.0

2.0

0
Automotive Office Telecomm

AMD Elan SC520
AMD K6-2E+
IBM PowerPC 750CX
NEC VR 5432
NEC VR 4122

 E.4 Embedded Multiprocessors

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

E.5 Case Study: The Emotion Engine of the Sony PlayStation 2 ■ E-15

The MIPS processors are used to run the code responsible for maintaining
the voice-over-IP channels, including the assurance of quality of service, echo
cancellation, simple compression, and packet encoding. Since the goal is to run
as many independent voice streams as possible, a multiprocessor is an ideal
solution.

Because of the small size of the MIPS cores, the entire chip takes only 13.5M
transistors. Future generations of the chip are expected to handle more voice
channels, as well as do more sophisticated echo cancellation, voice activity
detection, and more sophisticated compression.

Multiprocessing is becoming widespread in the embedded computing arena
for two primary reasons. First, the issues of binary software compatibility, which
plague desktop and server systems, are less relevant in the embedded space.
Often software in an embedded application is written from scratch for an applica-
tion or significantly modified (note that this is also the reason VLIW is favored
over superscalar in embedded instruction-level parallelism). Second, the applica-
tions often have natural parallelism, especially at the high end of the embedded
space. Examples of this natural parallelism abound in applications such as a set-
top box, a network switch, a cell phone (see Section E.7) or a game system (see
Section E.5). The lower barriers to use of thread-level parallelism together with
the greater sensitivity to die cost (and hence efficient use of silicon) are leading to
widespread adoption of multiprocessing in the embedded space, as the applica-
tion needs grow to demand more performance.

Desktop computers and servers rely on the memory hierarchy to reduce average
access time to relatively static data, but there are embedded applications where
data are often a continuous stream. In such applications there is still spatial local-
ity, but temporal locality is much more limited.

To give another look at memory performance beyond the desktop, this section
examines the microprocessor at the heart of the Sony PlayStation 2. As we will
see, the steady stream of graphics and audio demanded by electronic games leads
to a different approach to memory design. The style is high bandwidth via many
dedicated independent memories.

Figure E.11 shows a block diagram of the Sony PlayStation 2 (PS2). Not sur-
prisingly for a game machine, there are interfaces for video, sound, and a DVD
player. Surprisingly, there are two standard computer I/O buses, USB and IEEE
1394, a PCMCIA slot as found in portable PCs, and a modem. These additions
show that Sony had greater plans for the PS2 beyond traditional games. Although
it appears that the I/O processor (IOP) simply handles the I/O devices and the
game console, it includes a 34 MHz MIPS processor that also acts as the emula-
tion computer to run games for earlier Sony PlayStations. It also connects to a
standard PC audio card to provide the sound for the games.

 E.5 Case Study: The Emotion Engine of the
Sony PlayStation 2

E-16 ■ Appendix E Embedded Systems

Thus, one challenge for the memory system of this embedded application is
to act as source or destination for the extensive number of I/O devices. The PS2
designers met this challenge with two PC800 (400 MHz) DRDRAM chips using
two channels, offering 32 MB of storage and a peak memory bandwidth of
3.2 GB/sec.

What’s left in the figure are basically two big chips: the Graphics Synthesizer
and the Emotion Engine.

Figure E.11 Block diagram of the Sony PlayStation 2. The 10 DMA channels orchestrate the transfers between all
the small memories on the chip, which when completed all head toward the Graphics Interface so as to be rendered
by the Graphics Synthesizer. The Graphics Synthesizer uses DRAM on chip to provide an entire frame buffer plus
graphics processors to perform the rendering desired based on the display commands given from the Emotion
Engine. The embedded DRAM allows 1024-bit transfers between the pixel processors and the display buffer. The
Superscalar CPU is a 64-bit MIPS III with two-instruction issue, and comes with a two-way, set associative, 16 KB
instruction cache; a two-way, set associative, 8 KB data cache; and 16 KB of scratchpad memory. It has been extended
with 128-bit SIMD instructions for multimedia applications (see Section E.2). Vector Unit 0 is primarily a DSP-like
coprocessor for the CPU (see Section E.2), which can operate on 128-bit registers in SIMD manner between 8 bits and
32 bits per word. It has 4 KB of instruction memory and 4 KB of data memory. Vector Unit 1 has similar functions to
VPU0, but it normally operates independently of the CPU and contains 16 KB of instruction memory and 16 KB of
data memory. All three units can communicate over the 128-bit system bus, but there is also a 128-bit dedicated
path between the CPU and VPU0 and a 128-bit dedicated path between VPU1 and the Graphics Interface. Although
VPU0 and VPU1 have identical microarchitectures, the differences in memory size and units to which they have
direct connections affect the roles that they take in a game. At 0.25-micron line widths, the Emotion Engine chip uses
13.5M transistors and is 225 mm2, and the Graphics Synthesizer is 279 mm2. To put this in perspective, the Alpha
21264 microprocessor in 0.25-micron technology is about 160 mm2 and uses 15M transistors. (This figure is based on
Figure 1 in “Sony’s Emotionally Charged Chip,” Microprocessor Report 13:5.)

300 MHz
Superscalar
CPU Core

w/128-bit SIMD

Emotion Engine

I/O processor

Graphics Synthesizer

16 parallel pixel
processors
(150 MHz)

Video memory
(4 MB multiported
embedded DRAM)

Memory
control

10-
channel

DMA

IPU
(MPEG

decoder)

I/O
I/F

Vector
Unit 0
(VPU0)

128-bit/150-MHz bus

Vector
Unit 1
(VPU1)

64-bit

16
-b

it

16
-b

it

150 MHz

400 MHz

G
ra

ph
ic

s
I/F

32
-b

it

10
24

-b
it

N
T

S
C

, P
A

L,
 D

T
V,

 V
E

S
A

10
24

-b
it

51
2

37.5 MHz

Main memory
32 MB DRDRAM

34 MHz
MIPS CPU
(PlayStation
compatible)

48-channel
sound chip

Local bus

USB

DVD-ROM

PCMCIA

Modem

I/O
circuits

IEEE-1394

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

E.5 Case Study: The Emotion Engine of the Sony PlayStation 2 ■ E-17

The Graphics Synthesizer takes rendering commands from the Emotion
Engine in what are commonly called display lists. These are lists of 32-bit com-
mands that tell the renderer what shape to use and where to place them, plus what
colors and textures to fill them.

This chip also has the highest bandwidth portion of the memory system. By
using embedded DRAM on the Graphics Synthesizer, the chip contains the full
video buffer and has a 2048-bit-wide interface so that pixel filling is not a bottle-
neck. This embedded DRAM greatly reduces the bandwidth demands on the
DRDRAM. It illustrates a common technique found in embedded applications:
separate memories dedicated to individual functions to inexpensively achieve
greater memory bandwidth for the entire system.

The remaining large chip is the Emotion Engine, and its job is to accept
inputs from the IOP and create the display lists of a video game to enable 3D
video transformations in real time. A major insight shaped the design of the Emo-
tion Engine: Generally, in a racing car game there are foreground objects that are
constantly changing and background objects that change less in reaction to the
events, although the background can be most of the screen. This observation led
to a split of responsibilities.

The CPU works with VPU0 as a tightly coupled coprocessor, in that every
VPU0 instruction is a standard MIPS coprocessor instruction, and the addresses
are generated by the MIPS CPU. VPU0 is called a vector processor, but it is sim-
ilar to 128-bit SIMD extensions for multimedia found in several desktop proces-
sors (see Section E.2).

VPU1, in contrast, fetches its own instructions and data and acts in parallel
with CPU/VPU0, acting more like a traditional vector unit. With this split, the
more flexible CPU/VPU0 handles the foreground action and the VPU1 handles
the background. Both deposit their resulting display lists into the Graphics Inter-
face to send the lists to the Graphics Synthesizer.

Thus, the programmers of the Emotion Engine have three processor sets to
choose from to implement their programs: the traditional 64-bit MIPS architec-
ture including a floating-point unit, the MIPS architecture extended with multi-
media instructions (VPU0), and an independent vector processor (VPU1). To
accelerate MPEG decoding, there is another coprocessor (Image Processing
Unit) that can act independent of the other two.

With this split of function, the question then is how to connect the units
together, how to make the data flow between units, and how to provide the mem-
ory bandwidth needed by all these units. As mentioned earlier, the Emotion
Engine designers chose many dedicated memories. The CPU has a 16 KB scratch
pad memory (SPRAM) in addition to a 16 KB instruction cache and an 8 KB data
cache. VPU0 has a 4 KB instruction memory and a 4 KB data memory, and
VPU1 has a 16 KB instruction memory and a 16 KB data memory. Note that
these are four memories, not caches of a larger memory elsewhere. In each mem-
ory the latency is just 1 clock cycle. VPU1 has more memory than VPU0 because
it creates the bulk of the display lists and because it largely acts independently.

E-18 ■ Appendix E Embedded Systems

The programmer organizes all memories as two double buffers, one pair for
the incoming DMA data and one pair for the outgoing DMA data. The program-
mer then uses the various processors to transform the data from the input buffer
to the output buffer. To keep the data flowing among the units, the programmer
next sets up the 10 DMA channels, taking care to meet the real-time deadline for
realistic animation of 15 frames per second.

Figure E.12 shows that this organization supports two main operating modes:
serial, where CPU/VPU0 acts as a preprocessor on what to give VPU1 for it to
create for the Graphics Interface using the scratchpad memory as the buffer, and
parallel, where both the CPU/VPU0 and VPU1 create display lists. The display
lists and the Graphics Synthesizer have multiple context identifiers to distinguish
the parallel display lists to produce a coherent final image.

All units in the Emotion Engine are linked by a common 150 MHz, 128-bit-
wide bus. To offer greater bandwidth, there are also two dedicated buses: a 128-
bit path between the CPU and VPU0 and a 128-bit path between VPU1 and the
Graphics Interface. The programmer also chooses which bus to use when setting
up the DMA channels.

Looking at the big picture, if a server-oriented designer had been given the
problem, we might see a single common bus with many local caches and cache-
coherent mechanisms to keep data consistent. In contrast, the PlayStation 2
followed the tradition of embedded designers and has at least nine distinct memory
modules. To keep the data flowing in real time from memory to the display, the PS2
uses dedicated memories, dedicated buses, and DMA channels. Coherency is the
responsibility of the programmer, and, given the continuous flow from main mem-
ory to the graphics interface and the real-time requirements, programmer-con-
trolled coherency works well for this application.

Figure E.12 Two modes of using Emotion Engine organization. The first mode
divides the work between the two units and then allows the Graphics Interface to prop-
erly merge the display lists. The second mode uses CPU/VPU0 as a filter of what to send
to VPU1, which then does all the display lists. It is up to the programmer to choose
between serial and parallel data flow. SPRAM is the scratchpad memory.

VPU0
SPRAM

Parallel connection

VPU1

Rendering
engine

Main
memory

CPU

VPU0
SPRAM

Serial connection

Rendering
engine

CPU
VPU1

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

E.6 Case Study: Sanyo VPC-SX500 Digital Camera ■ E-19

Another very familiar embedded system is a digital camera. Here we consider the
Sanyo VPC-SX500. When powered on, the microprocessor of the camera first
runs diagnostics on all components and writes any error messages to the liquid
crystal display (LCD) on the back of the camera. This camera uses a 1.8-inch
low-temperature polysilicon thin-film transistor (TFT) color LCD. When a pho-
tographer takes a picture, he first holds the shutter halfway so that the micropro-
cessor can take a light reading. The microprocessor then keeps the shutter open to
get the necessary light, which is captured by a charge-coupled device (CCD) as
red, green, and blue pixels. The CCD is a 1/2-inch, 1360 × 1024-pixel, progres-
sive-scan chip. The pixels are scanned out row by row; passed through routines
for white balance, color, and aliasing correction; and then stored in a 4 MB frame
buffer. The next step is to compress the image into a standard format, such as
JPEG, and store it in the removable Flash memory. The photographer picks the
compression, in this camera called either fine or normal, with a compression ratio
of 10 to 20 times. A 512 MB Flash memory can store at least 1200 fine-quality
compressed images or approximately 2000 normal-quality compressed images.
The microprocessor then updates the LCD display to show that there is room for
one less picture.

Although the previous paragraph covers the basics of a digital camera, there
are many more features that are included: showing the recorded images on the
color LCD display, sleep mode to save battery life, monitoring battery energy,
buffering to allow recording a rapid sequence of uncompressed images, and, in
this camera, video recording using MPEG format and audio recording using
WAV format.

The electronic brain of this camera is an embedded computer with several
special functions embedded on the chip [Okada et al. 1999]. Figure E.13 shows
the block diagram of a chip similar to the one in the camera. As mentioned in
Section E.1, such chips have been called systems on a chip (SOCs) because they
essentially integrate into a single chip all the parts that were found on a small
printed circuit board of the past. A SOC generally reduces size and lowers power
compared to less integrated solutions. Sanyo claims their SOC enables the cam-
era to operate on half the number of batteries and to offer a smaller form factor
than competitors’ cameras. For higher performance, it has two buses. The 16-bit
bus is for the many slower I/O devices: SmartMedia interface, program and data
memory, and DMA. The 32-bit bus is for the SDRAM, the signal processor
(which is connected to the CCD), the Motion JPEG encoder, and the NTSC/PAL
encoder (which is connected to the LCD). Unlike desktop microprocessors, note
the large variety of I/O buses that this chip must integrate. The 32-bit RISC MPU
is a proprietary design and runs at 28.8 MHz, the same clock rate as the buses.
This 700 mW chip contains 1.8M transistors in a 10.5 × 10.5 mm die imple-
mented using a 0.35-micron process.

 E.6 Case Study: Sanyo VPC-SX500 Digital Camera

E-20 ■ Appendix E Embedded Systems

Although gaming consoles and digital cameras are familiar embedded systems,
today the most familiar embedded system is the cell phone. In 1999, there were
76 million cellular subscribers in the United States, a 25% growth rate from the
year before. That growth rate is almost 35% per year worldwide, as developing
countries find it much cheaper to install cellular towers than copper-wire-based
infrastructure. Thus, in many countries, the number of cell phones in use exceeds
the number of wired phones in use.

Not surprisingly, the cellular handset market is growing at 35% per year, with
about 280 million cellular phone handsets sold worldwide in 1999. To put that in
perspective, in the same year sales of personal computers were 120 million.
These numbers mean that tremendous engineering resources are available to
improve cell phones, and cell phones are probably leaders in engineering innova-
tion per cubic inch [Grice and Kanellos 2000].

Before unveiling the anatomy of a cell phone, let’s try a short introduction to
wireless technology.

Figure E.13 The system on a chip (SOC) found in Sanyo digital cameras. This block diagram, found in Okada et al.
[1999], is for the predecessor of the SOC in the camera described in the text. The successor SOC, called Super
Advanced IC, uses three buses instead of two, operates at 60 MHz, consumes 800 mW, and fits 3.1M transistors in a
10.2 x 10.2 mm die using a 0.35-micron process. Note that this embedded system has twice as many transistors as
the state-of-the-art, high-performance microprocessor in 1990! The SOC in the figure is limited to processing 1024 x
768 pixels, but its successor supports 1360 x 1024 pixels.

Audio
D/A, A/D

DRAM
controller

DMA
controller

PCMCIA
controller

UART
x 2

SIO
PIO

PWM
IrDA

CCD

SDRAM

DRAM

Signal
processor MJPEG

NTSC/PAL
encoder

2-channel
video D/A LCD/TV

MIC
Speaker

Smart
Media

Flash
(program)

SSFDC
controller

RISC

SDRAM
controller

RS-232

16 bits

16 bits

32 bits

10 bits

16 bits

Signal bus

CPU bus

Bus bridge

IrDA
port

PCMCIA
card

Others

 E.7 Case Study: Inside a Cell Phone

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

E.7 Case Study: Inside a Cell Phone ■ E-21

Background on Wireless Networks

Networks can be created out of thin air as well as out of copper and glass, creat-
ing wireless networks. Much of this section is based on a report from the National
Research Council [1997].

A radio wave is an electromagnetic wave propagated by an antenna. Radio
waves are modulated, which means that the sound signal is superimposed on the
stronger radio wave that carries the sound signal, and hence is called the carrier
signal. Radio waves have a particular wavelength or frequency: They are mea-
sured either as the length of the complete wave or as the number of waves per
second. Long waves have low frequencies, and short waves have high frequen-
cies. FM radio stations transmit on the band of 88 MHz to 108 MHz using fre-
quency modulations (FM) to record the sound signal.

By tuning in to different frequencies, a radio receiver can pick up a specific
signal. In addition to AM and FM radio, other frequencies are reserved for citi-
zens band radio, television, pagers, air traffic control radar, Global Positioning
System, and so on. In the United States, the Federal Communications Commis-
sion decides who gets to use which frequencies and for what purpose.

The bit error rate (BER) of a wireless link is determined by the received sig-
nal power, noise due to interference caused by the receiver hardware, interference
from other sources, and characteristics of the channel. Noise is typically propor-
tional to the radio frequency bandwidth, and a key measure is the signal-to-noise
ratio (SNR) required to achieve a given BER. Figure E.14 lists more challenges
for wireless communication.

Typically, wireless communication is selected because the communicating
devices are mobile or because wiring is inconvenient, which means the wireless
network must rearrange itself dynamically. Such rearrangement makes routing

Challenge Description Impact

Path loss Received power divided by transmitted power; the radio
must overcome signal-to-noise ratio (SNR) of noise
from interference. Path loss is exponential in distance
and depends on interference if it is above 100 meters.

1 W transmit power, 1 GHz transmit
frequency, 1 Mbit/sec data rate at 10–7

BER, distance between radios can be 728
meters in free space vs. 4 meters in a dense
jungle.

Shadow fading Received signal blocked by objects, buildings outdoors,
or walls indoors; increase power to improve received
SNR. It depends on the number of objects and their
dielectric properties.

If transmitter is moving, need to change
transmit power to ensure received SNR in
region.

Multipath fading Interference between multiple versions of signal that
arrive at different times, determined by time between
fastest signal and slowest signal relative to signal
bandwidth.

900 MHz transmit frequency signal power
changes every 30 cm.

Interference Frequency reuse, adjacent channel, narrow band
interference.

Requires filters, spread spectrum.

Figure E.14 Challenges for wireless communication.

E-22 ■ Appendix E Embedded Systems

more challenging. A second challenge is that wireless signals are not protected
and hence are subject to mutual interference, especially as devices move. Power
is another challenge for wireless communication, both because the devices tend
to be battery powered and because antennas radiate power to communicate and
little of it reaches the receiver. As a result, raw bit error rates are typically a thou-
sand to a million times higher than copper wire.

There are two primary architectures for wireless networks: base station archi-
tectures and peer-to-peer architectures. Base stations are connected by landlines
for longer-distance communication, and the mobile units communicate only with
a single local base station. Peer-to-peer architectures allow mobile units to com-
municate with each other, and messages hop from one unit to the next until deliv-
ered to the desired unit. Although peer-to-peer is more reconfigurable, base
stations tend to be more reliable since there is only one hop between the device
and the station. Cellular telephony, the most popular example of wireless net-
works, relies on radio with base stations.

Cellular systems exploit exponential path loss to reuse the same frequency at
spatially separated locations, thereby greatly increasing the number of customers
served. Cellular systems will divide a city into nonoverlapping hexagonal cells
that use different frequencies if nearby, reusing a frequency only when cells are
far enough apart so that mutual interference is acceptable.

At the intersection of three hexagonal cells is a base station with transmitters
and antennas that is connected to a switching office that coordinates handoffs
when a mobile device leaves one cell and goes into another, as well as accepts
and places calls over landlines. Depending on topography, population, and so on,
the radius of a typical cell is 2 to 10 miles.

The Cell Phone

Figure E.15 shows the components of a radio, which is the heart of a cell phone.
Radio signals are first received by the antenna, amplified, passed through a
mixer, then filtered, demodulated, and finally decoded. The antenna acts as the
interface between the medium through which radio waves travel and the electron-
ics of the transmitter or receiver. Antennas can be designed to work best in partic-
ular directions, giving both transmission and reception directional properties.
Modulation encodes information in the amplitude, phase, or frequency of the sig-
nal to increase its robustness under impaired conditions. Radio transmitters go
through the same steps, just in the opposite order.

Originally, all components were analog, but over time most were replaced by
digital components, requiring the radio signal to be converted from analog to dig-
ital. The desire for flexibility in the number of radio bands led to software rou-
tines replacing some of these functions in programmable chips, such as digital
signal processors. Because such processors are typically found in mobile devices,
emphasis is placed on performance per joule to extend battery life, performance
per square millimeter of silicon to reduce size and cost, and bytes per task to
reduce memory size.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

E.7 Case Study: Inside a Cell Phone ■ E-23

Figure E.16 shows the generic block diagram of the electronics of a cell
phone handset, with the DSP performing the signal processing and the microcon-
troller handling the rest of the tasks. Cell phone handsets are basically mobile
computers acting as a radio. They include standard I/O devices—keyboard and
LCD display—plus a microphone, speaker, and antenna for wireless networking.
Battery efficiency affects sales, both for standby power when waiting for a call
and for minutes of speaking.

When a cell phone is turned on, the first task is to find a cell. It scans the full
bandwidth to find the strongest signal, which it keeps doing every seven seconds
or if the signal strength drops, since it is designed to work from moving vehicles.
It then picks an unused radio channel. The local switching office registers the cell
phone and records its phone number and electronic serial number, and assigns it a
voice channel for the phone conversation. To be sure the cell phone got the right
channel, the base station sends a special tone on it, which the cell phone sends
back to acknowledge it. The cell phone times out after 5 seconds if it doesn’t hear
the supervisory tone, and it starts the process all over again. The original base sta-
tion makes a handoff request to the incoming base station as the signal strength
drops offs.

Figure E.15 A radio receiver consists of an antenna, radio frequency amplifier,
mixer, filters, demodulator, and decoder. A mixer accepts two signal inputs and forms
an output signal at the sum and difference frequencies. Filters select a narrower band
of frequencies to pass on to the next stage. Modulation encodes information to make it
more robust. Decoding turns signals into information. Depending on the application,
all electrical components can be either analog or digital. For example, a car radio is all
analog components, but a PC modem is all digital except for the amplifier. Today ana-
log silicon chips are used for the RF amplifier and first mixer in cellular phones.

Figure E.16 Block diagram of a cell phone. The DSP performs the signal processing
steps of Figure E.15, and the microcontroller controls the user interface, battery man-
agement, and call setup. (Based on Figure 1.3 of Groe and Larson [2000].)

RF amp Filter
Antenna

Demodulator DecoderMixer

Speaker

Microphone

DSP

Micro-
controller

Antenna

RF receiver (Rx)

RF transmitter (Tx)

Display

Keyboard

E-24 ■ Appendix E Embedded Systems

To achieve a two-way conversation over radio, frequency bands are set aside
for each direction, forming a frequency pair or channel. The original cellular base
stations transmitted at 869.04 to 893.97 MHz (called the forward path), and cell
phones transmitted at 824.04 to 848.97 MHz (called the reverse path), with the
frequency gap to keep them from interfering with each other. Cells might have
had between 4 and 80 channels. Channels were divided into setup channels for
call setup and voice channels to handle the data or voice traffic.

The communication is done digitally, just like a modem, at 9600 bits/sec.
Since wireless is a lossy medium, especially from a moving vehicle, the handset
sends each message five times. To preserve battery life, the original cell phones
typically transmit at two signal strengths—0.6 W and 3.0 W—depending on the
distance to the cell. This relatively low power not only allows smaller batteries
and thus smaller cell phones, but it also aids frequency reuse, which is the key to
cellular telephony.

Figure E.17 shows a circuit board from a Nokia digital phone, with the com-
ponents identified. Note that the board contains two processors. A Z-80 micro-
controller is responsible for controlling the functions of the board, I/O with the
keyboard and display, and coordinating with the base station. The DSP handles
all signal compression and decompression. In addition there are dedicated chips
for analog-to-digital and digital-to-analog conversion, amplifiers, power manage-
ment, and RF interfaces.

In 2001, a cell phone had about 10 integrated circuits, including parts made in
exotic technologies like gallium arsinide and silicon germanium as well as stan-
dard CMOS. The economics and desire for flexibility have shrunk this to just a
few chips. However, these SOCs still contain a separate microcontroller and DSP,
with code implementing many of the functions just described.

Figure E.17 Circuit board from a Nokia cell phone. (Courtesy HowStuffWorks, Inc.)

RF and
power

Audio D/A
and A/D

Battery

Memory

Microprocessor
and control logic

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

E.8 Concluding Remarks ■ E-25

Cell Phone Standards and Evolution

Improved communication speeds for cell phones were developed with multiple
standards. Code division multiple access (CDMA), as one popular example, uses
a wider radio frequency band for a path than the original cell phones, called
advanced mobile phone service (AMPS), a mostly analog system. The wider fre-
quency makes it more difficult to block and is called spread spectrum. Other
standards are time division multiple access (TDMA) and global system for mobile
communication (GSM). These second-generation standards––CDMA, GSM, and
TDMA––are mostly digital.

The big difference for CDMA is that all callers share the same channel, which
operates at a much higher rate, and it then distinguishes the different calls by
encoding each one uniquely. Each CDMA phone call starts at 9600 bits/sec; it is
then encoded and transmitted as equal-sized messages at 1.25 Mbits/sec. Rather
than send each signal five times as in AMPS, each bit is stretched so that it takes
11 times the minimum frequency, thereby accommodating interference and yet
successful transmission. The base station receives the messages, and it separates
them into the separate 9600 bit/sec streams for each call.

To enhance privacy, CDMA uses pseudorandom sequences from a set of 64
predefined codes. To synchronize the handset and base station so as to pick a
common pseudorandom seed, CDMA relies on a clock from the Global Position-
ing System, which continuously transmits an accurate time signal. By carefully
selecting the codes, the shared traffic sounds like random noise to the listener.
Hence, as more users share a channel there is more noise, and the signal-to-noise
ratio gradually degrades. Thus, the capacity of the CDMA system is a matter of
taste, depending upon the sensitivity of the listener to background noise.

In addition, CDMA uses speech compression and varies the rate of data trans-
ferred depending upon how much activity is going on in the call. Both these tech-
niques preserve bandwidth, which allows for more calls per cell. CDMA must
regulate power carefully so that signals near the cell tower do not overwhelm
those from far away, with the goal of all signals reaching the tower at about the
same level. The side benefit is that CDMA handsets emit less power, which both
helps battery life and increases capacity when users are close to the tower.

Thus, compared to AMPS, CDMA improves the capacity of a system by up
to an order of magnitude, has better call quality, has better battery life, and
enhances users’ privacy. After considerable commercial turmoil, there is a new
third-generation standard called International Mobile Telephony 2000 (IMT-
2000), based primarily on two competing versions of CDMA and one TDMA.
This standard may lead to cell phones that work anywhere in the world.

Embedded systems are a very broad category of computing devices. This appen-
dix has shown just some aspects of this. For example, the TI 320C55 DSP is a
relatively “RISC-like” processor designed for embedded applications, with very

 E.8 Concluding Remarks

E-26 ■ Appendix E Embedded Systems

fine-tuned capabilities. On the other end of the spectrum, the TI 320C64x is a
very high-performance, eight-issue VLIW processor for very demanding tasks.
Some processors must operate on battery power alone; others have the luxury of
being plugged into line current. Unifying all of these is a need to perform some
level of signal processing for embedded applications. Media extensions attempt
to merge DSPs with some more general-purpose processing abilities to make
these processors usable for signal processing applications. We examined several
case studies, including the Sony PlayStation 2, digital cameras, and cell phones.
The PS2 performs detailed three-dimensional graphics, whereas a cell phone
encodes and decodes signals according to elaborate communication standards.
But both have system architectures that are very different from general-purpose
desktop or server platforms. In general, architectural decisions that seem practi-
cal for general-purpose applications, such as multiple levels of caching or out-of-
order superscalar execution, are much less desirable in embedded applications.
This is due to chip area, cost, power, and real-time constraints. The programming
model that these systems present places more demands on both the programmer
and the compiler for extracting parallelism.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F.1 Introduction F-2

F.2 Interconnecting Two Devices F-5

F.3 Connecting More than Two Devices F-20

F.4 Network Topology F-29

F.5 Network Routing, Arbitration, and Switching F-45

F.6 Switch Microarchitecture F-55

F.7 Practical Issues for Commercial Interconnection Networks F-65

F.8 Examples of Interconnection Networks F-73

F.9 Internetworking F-82

F.10 Crosscutting Issues for Interconnection Networks F-88

F.11 Fallacies and Pitfalls F-91

F.12 Concluding Remarks F-99

F.13 Historical Perspective and References F-100

 Exercises F-110

F
Interconnection Networks 1

Revised by Timothy M. Pinkston, University of Southern California;
and José Duato, Universitat Politècnica de València, and Simula

“The Medium is the Message” because it is the medium that shapes and
controls the search and form of human associations and actions.

Marshall McLuhan
Understanding Media (1964)

The marvels—of film, radio, and television—are marvels of one-way
communication, which is not communication at all.

Milton Mayer
On the Remote Possibility of

Communication (1967)

The interconnection network is the heart of parallel architecture.

Chuan-Lin Wu and Tse-Yun Feng
Interconnection Networks for Parallel

and Distributed Processing (1984)

Indeed, as system complexity and integration continues to increase,
many designers are finding it more efficient to route packets, not wires.

Bill Dally
Principles and Practices of

Interconnection Networks (2004)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-2 ■ Appendix F Interconnection Networks

Previous chapters and appendices cover the components of a single computer but
give little consideration to the interconnection of those components and how mul-
tiple computer systems are interconnected. These aspects of computer architecture
have gained significant importance in recent years. In this appendix we see how to
connect individual devices together into a community of communicating devices,
where the term device is generically used to signify anything from a component or
set of components within a computer to a single computer to a system of comput-
ers. Figure F.1 shows the various elements comprising this community: end nodes
consisting of devices and their associated hardware and software interfaces, links
from end nodes to the interconnection network, and the interconnection network.
Interconnection networks are also called networks, communication subnets, or
communication subsystems. The interconnection of multiple networks is called
internetworking. This relies on communication standards to convert information
from one kind of network to another, such as with the Internet.

There are several reasons why computer architects should devote attention to
interconnection networks. In addition to providing external connectivity, net-
works are commonly used to interconnect the components within a single com-
puter at many levels, including the processor microarchitecture. Networks have
long been used in mainframes, but today such designs can be found in personal
computers as well, given the high demand on communication bandwidth needed
to enable increased computing power and storage capacity. Switched networks
are replacing buses as the normal means of communication between computers,
between I/O devices, between boards, between chips, and even between modules
inside chips. Computer architects must understand interconnect problems and
solutions in order to more effectively design and evaluate computer systems.

Interconnection networks cover a wide range of application domains, very
much like memory hierarchy covers a wide range of speeds and sizes. Networks
implemented within processor chips and systems tend to share characteristics
much in common with processors and memory, relying more on high-speed hard-
ware solutions and less on a flexible software stack. Networks implemented
across systems tend to share much in common with storage and I/O, relying more
on the operating system and software protocols than high-speed hardware—
though we are seeing a convergence these days. Across the domains, perfor-
mance includes latency and effective bandwidth, and queuing theory is a valuable
analytical tool in evaluating performance, along with simulation techniques.

This topic is vast—portions of Figure F.1 are the subject of entire books and
college courses. The goal of this appendix is to provide for the computer architect
an overview of network problems and solutions. This appendix gives introduc-
tory explanations of key concepts and ideas, presents architectural implications
of interconnection network technology and techniques, and provides useful refer-
ences to more detailed descriptions. It also gives a common framework for evalu-
ating all types of interconnection networks, using a single set of terms to describe
the basic alternatives. As we will see, many types of networks have common pre-
ferred alternatives, but for others the best solutions are quite different. These dif-
ferences become very apparent when crossing between the networking domains.

 F.1 Introduction

F.1 Introduction ■ F-3

Interconnection Network Domains

Interconnection networks are designed for use at different levels within and
across computer systems to meet the operational demands of various application
areas—high-performance computing, storage I/O, cluster/workgroup/enterprise
systems, internetworking, and so on. Depending on the number of devices to be
connected and their proximity, we can group interconnection networks into four
major networking domains:

■ On-chip networks (OCNs)—Also referred to as network-on-chip (NoC), this
type of network is used for interconnecting microarchitecture functional units,
register files, caches, compute tiles, and processor and IP cores within chips or
multichip modules. Current and near future OCNs support the connection of a
few tens to a few hundred of such devices with a maximum interconnection
distance on the order of centimeters. Most OCNs used in high-performance
chips are custom designed to mitigate chip-crossing wire delay problems
caused by increased technology scaling and transistor integration, though
some proprietary designs are gaining wider use (e.g., IBM’s CoreConnect,
ARM’s AMBA, and Sonic’s Smart Interconnect). Examples of current OCNs
are those found in the Intel Teraflops processor chip [Hoskote07], connecting
80 simple cores; the Intel Single-Chip Cloud Computer (SCCC) [Howard10],
connecting 48 IA-32 architecture cores; and Tilera’s TILE-Gx line of proces-
sors [TILE-GX], connecting 100 processing cores in 4Q 2011 using TSMC’s
40 nanometer process and 200 cores planned for 2013 (code named “Strat-
ton”) using TSMC’s 28 nanometer process. The networks peak at 256 GBps
for both Intel prototypes and up to 200 Tbps for the TILE-Gx100 processor.
More detailed information for OCNs is provided in Flich [2010].

■ System/storage area networks (SANs)—This type of network is used for
interprocessor and processor-memory interconnections within multiprocessor
and multicomputer systems, and also for the connection of storage and I/O
components within server and data center environments. Typically, several

Figure F.1 A conceptual illustration of an interconnected community of devices.

Device

Link

SW interface

End node

HW interface

Device

Link

SW interface

End node

HW interface

Device

Link

SW interface

End node

HW interface

Device

Link

SW interface

End node

HW interface

Interconnection network

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-4 ■ Appendix F Interconnection Networks

hundreds of such devices can be connected, although some supercomputer
SANs support the interconnection of many thousands of devices, like the
IBM Blue Gene/L supercomputer. The maximum interconnection distance
covers a relatively small area—on the order of a few tens of meters usually—
but some SANs have distances spanning a few hundred meters. For example,
InfiniBand, a popular SAN standard introduced in late 2000, supports system
and storage I/O interconnects at up to 120 Gbps over a distance of 300 m.

■ Local area networks (LANs)—This type of network is used for interconnect-
ing autonomous computer systems distributed across a machine room or
throughout a building or campus environment. Interconnecting PCs in a clus-
ter is a prime example. Originally, LANs connected only up to a hundred
devices, but with bridging LANs can now connect up to a few thousand
devices. The maximum interconnect distance covers an area of a few kilome-
ters usually, but some have distance spans of a few tens of kilometers. For
instance, the most popular and enduring LAN, Ethernet, has a 10 Gbps stan-
dard version that supports maximum performance over a distance of 40 km.

■ Wide area networks (WANs)—Also called long-haul networks, WANs connect
computer systems distributed across the globe, which requires internetworking
support. WANs connect many millions of computers over distance scales of
many thousands of kilometers. Asynchronous Transfer Mode (ATM) is an
example of a WAN.

Figure F.2 roughly shows the relationship of these networking domains in
terms of the number of devices interconnected and their distance scales. Overlap
exists for some of these networks in one or both dimensions, which leads to

Figure F.2 Relationship of the four interconnection network domains in terms of
number of devices connected and their distance scales: on-chip network (OCN), sys-
tem/storage area network (SAN), local area network (LAN), and wide area network
(WAN). Note that there are overlapping ranges where some of these networks com-
pete. Some supercomputer systems use proprietary custom networks to interconnect
several thousands of computers, while other systems, such as multicomputer clusters,
use standard commercial networks.

1 10 100 1000

Number of devices interconnected

SAN

OCN

LAN

WAN

10,000 >100,000

D
is

ta
nc

e
(m

et
er

s)

5 × 106

5 × 103

5 × 100

5 × 10–3

F.2 Interconnecting Two Devices ■ F-5

product competition. Some network solutions have become commercial stan-
dards while others remain proprietary. Although the preferred solutions may sig-
nificantly differ from one interconnection network domain to another depending
on the design requirements, the problems and concepts used to address network
problems remain remarkably similar across the domains. No matter the target
domain, networks should be designed so as not to be the bottleneck to system
performance and cost efficiency. Hence, the ultimate goal of computer architects
is to design interconnection networks of the lowest possible cost that are capable
of transferring the maximum amount of available information in the shortest
possible time.

Approach and Organization of This Appendix

Interconnection networks can be well understood by taking a top-down approach
to unveiling the concepts and complexities involved in designing them. We do
this by viewing the network initially as an opaque “black box” that simply and
ideally performs certain necessary functions. Then we systematically open vari-
ous layers of the black box, allowing more complex concepts and nonideal net-
work behavior to be revealed. We begin this discussion by first considering the
interconnection of just two devices in Section F.2, where the black box network
can be viewed as a simple dedicated link network—that is, wires or collections of
wires running bidirectionally between the devices. We then consider the intercon-
nection of more than two devices in Section F.3, where the black box network can
be viewed as a shared link network or as a switched point-to-point network con-
necting the devices. We continue to peel away various other layers of the black
box by considering in more detail the network topology (Section F.4); routing,
arbitration, and switching (Section F.5); and switch microarchitecture (Section
F.6). Practical issues for commercial networks are considered in Section F.7, fol-
lowed by examples illustrating the trade-offs for each type of network in Section
F.8. Internetworking is briefly discussed in Section F.9, and additional crosscut-
ting issues for interconnection networks are presented in Section F.10. Section
F.11 gives some common fallacies and pitfalls related to interconnection net-
works, and Section F.12 presents some concluding remarks. Finally, we provide a
brief historical perspective and some suggested reading in Section F.13.

This section introduces the basic concepts required to understand how communi-
cation between just two networked devices takes place. This includes concepts
that deal with situations in which the receiver may not be ready to process incom-
ing data from the sender and situations in which transport errors may occur. To
ease understanding, the black box network at this point can be conceptualized as
an ideal network that behaves as simple dedicated links between the two devices.

 F.2 Interconnecting Two Devices

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-6 ■ Appendix F Interconnection Networks

Figure F.3 illustrates this, where unidirectional wires run from device A to device
B and vice versa, and each end node contains a buffer to hold the data. Regardless
of the network complexity, whether dedicated link or not, a connection exists
from each end node device to the network to inject and receive information to/
from the network. We first describe the basic functions that must be performed at
the end nodes to commence and complete communication, and then we discuss
network media and the basic functions that must be performed by the network to
carry out communication. Later, a simple performance model is given, along with
several examples to highlight implications of key network parameters.

Network Interface Functions: Composing and Processing
Messages

Suppose we want two networked devices to read a word from each other’s mem-
ory. The unit of information sent or received is called a message. To acquire the
desired data, the two devices must first compose and send a certain type of mes-
sage in the form of a request containing the address of the data within the other
device. The address (i.e., memory or operand location) allows the receiver to
identify where to find the information being requested. After processing the
request, each device then composes and sends another type of message, a reply,
containing the data. The address and data information is typically referred to as
the message payload.

In addition to payload, every message contains some control bits needed by
the network to deliver the message and process it at the receiver. The most typical
are bits to distinguish between different types of messages (e.g., request, reply,
request acknowledge, reply acknowledge) and bits that allow the network to
transport the information properly to the destination. These additional control
bits are encoded in the header and/or trailer portions of the message, depending
on their location relative to the message payload. As an example, Figure F.4
shows the format of a message for the simple dedicated link network shown in
Figure F.3. This example shows a single-word payload, but messages in some
interconnection networks can include several thousands of words.

Before message transport over the network occurs, messages have to be com-
posed. Likewise, upon receipt from the network, they must be processed. These
and other functions described below are the role of the network interface (also

Figure F.3 A simple dedicated link network bidirectionally interconnecting two
devices.

Machine A Machine B

F.2 Interconnecting Two Devices ■ F-7

referred to as the channel adapter) residing at the end nodes. Together with some
direct memory access (DMA) engine and link drivers to transmit/receive mes-
sages to/from the network, some dedicated memory or register(s) may be used to
buffer outgoing and incoming messages. Depending on the network domain and
design specifications for the network, the network interface hardware may con-
sist of nothing more than the communicating device itself (i.e., for OCNs and
some SANs) or a separate card that integrates several embedded processors and
DMA engines with thousands of megabytes of RAM (i.e., for many SANs and
most LANs and WANs).

In addition to hardware, network interfaces can include software or firmware
to perform the needed operations. Even the simple example shown in Figure F.3
may invoke messaging software to translate requests and replies into messages
with the appropriate headers. This way, user applications need not worry about
composing and processing messages as these tasks can be performed automati-
cally at a lower level. An application program usually cooperates with the operat-
ing or runtime system to send and receive messages. As the network is likely to
be shared by many processes running on each device, the operating system can-
not allow messages intended for one process to be received by another. Thus, the
messaging software must include protection mechanisms that distinguish
between processes. This distinction could be made by expanding the header with
a port number that is known by both the sender and intended receiver processes.

In addition to composing and processing messages, additional functions
need to be performed by the end nodes to establish communication among the
communicating devices. Although hardware support can reduce the amount of
work, some can be done by software. For example, most networks specify a
maximum amount of information that can be transferred (i.e., maximum trans-
fer unit) so that network buffers can be dimensioned appropriately. Messages
longer than the maximum transfer unit are divided into smaller units, called

Figure F.4 An example packet format with header, payload, and checksum in the
trailer.

Destination port

Message ID

Data

Sequence number

Type

00 = Request

01 = Reply

10 = Request acknowledge

11 = Reply acknowledge

Checksum

Header

Payload

Trailer

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-8 ■ Appendix F Interconnection Networks

packets (or datagrams), that are transported over the network. Packets are reas-
sembled into messages at the destination end node before delivery to the appli-
cation. Packets belonging to the same message can be distinguished from
others by including a message ID field in the packet header. If packets arrive
out of order at the destination, they are reordered when reassembled into a mes-
sage. Another field in the packet header containing a sequence number is usu-
ally used for this purpose.

The sequence of steps the end node follows to commence and complete com-
munication over the network is called a communication protocol. It generally has
symmetric but reversed steps between sending and receiving information. Com-
munication protocols are implemented by a combination of software and hard-
ware to accelerate execution. For instance, many network interface cards
implement hardware timers as well as hardware support to split messages into
packets and reassemble them, compute the cyclic redundancy check (CRC)
checksum, handle virtual memory addresses, and so on.

Some network interfaces include extra hardware to offload protocol process-
ing from the host computer, such as TCP offload engines for LANs and WANs.
But, for interconnection networks such as SANs that have low latency require-
ments, this may not be enough even when lighter-weight communication proto-
cols are used such as message passing interface (MPI). Communication
performance can be further improved by bypassing the operating system (OS).
OS bypassing can be implemented by directly allocating message buffers in the
network interface memory so that applications directly write into and read from
those buffers. This avoids extra memory-to-memory copies. The corresponding
protocols are referred to as zero-copy protocols or user-level communication pro-
tocols. Protection can still be maintained by calling the OS to allocate those buf-
fers at initialization and preventing unauthorized memory accesses in hardware.

In general, some or all of the following are the steps needed to send a mes-
sage at end node devices over a network:

1. The application executes a system call, which copies data to be sent into an
operating system or network interface buffer, divides the message into pack-
ets (if needed), and composes the header and trailer for packets.

2. The checksum is calculated and included in the header or trailer of packets.

3. The timer is started, and the network interface hardware sends the packets.

Message reception is in the reverse order:

3. The network interface hardware receives the packets and puts them into its
buffer or the operating system buffer.

2. The checksum is calculated for each packet. If the checksum matches the
sender’s checksum, the receiver sends an acknowledgment back to the packet
sender. If not, it deletes the packet, assuming that the sender will resend the
packet when the associated timer expires.

1. Once all packets pass the test, the system reassembles the message, copies the
data to the user’s address space, and signals the corresponding application.

F.2 Interconnecting Two Devices ■ F-9

The sender must still react to packet acknowledgments:

■ When the sender gets an acknowledgment, it releases the copy of the corre-
sponding packet from the buffer.

■ If the sender reaches the time-out instead of receiving an acknowledgment, it
resends the packet and restarts the timer.

Just as a protocol is implemented at network end nodes to support communi-
cation, protocols are also used across the network structure at the physical, data
link, and network layers responsible primarily for packet transport, flow control,
error handling, and other functions described next.

Basic Network Structure and Functions: Media and Form
Factor, Packet Transport, Flow Control, and Error Handling

Once a packet is ready for transmission at its source, it is injected into the net-
work using some dedicated hardware at the network interface. The hardware
includes some transceiver circuits to drive the physical network media—either
electrical or optical. The type of media and form factor depends largely on the
interconnect distances over which certain signaling rates (e.g., transmission
speed) should be sustainable. For centimeter or less distances on a chip or multi-
chip module, typically the middle to upper copper metal layers can be used for
interconnects at multi-Gbps signaling rates per line. A dozen or more layers of
copper traces or tracks imprinted on circuit boards, midplanes, and backplanes
can be used for Gbps differential-pair signaling rates at distances of about a meter
or so. Category 5E unshielded twisted-pair copper wiring allows 0.25 Gbps trans-
mission speed over distances of 100 meters. Coaxial copper cables can deliver
10 Mbps over kilometer distances. In these conductor lines, distance can usually
be traded off for higher transmission speed, up to a certain point. Optical media
enable faster transmission speeds at distances of kilometers. Multimode fiber
supports 100 Mbps transmission rates over a few kilometers, and more expensive
single-mode fiber supports Gbps transmission speeds over distances of several
kilometers. Wavelength division multiplexing allows several times more band-
width to be achieved in fiber (i.e., by a factor of the number of wavelengths
used).

The hardware used to drive network links may also include some encoders to
encode the signal in a format other than binary that is suitable for the given trans-
port distance. Encoding techniques can use multiple voltage levels, redundancy,
data and control rotation (e.g., 4b5b encoding), and/or a guaranteed minimum
number of signal transitions per unit time to allow for clock recovery at the
receiver. The signal is decoded at the receiver end, and the packet is stored in the
corresponding buffer. All of these operations are performed at the network physi-
cal layer, the details of which are beyond the scope of this appendix. Fortunately,
we do not need to worry about them. From the perspective of the data link and
higher layers, the physical layer can be viewed as a long linear pipeline without
staging in which signals propagate as waves through the network transmission
medium. All of the above functions are generally referred to as packet transport.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-10 ■ Appendix F Interconnection Networks

Besides packet transport, the network hardware and software are jointly
responsible at the data link and network protocol layers for ensuring reliable
delivery of packets. These responsibilities include: (1) preventing the sender from
sending packets at a faster rate than they can be processed by the receiver, and (2)
ensuring that the packet is neither garbled nor lost in transit. The first responsibil-
ity is met by either discarding packets at the receiver when its buffer is full and
later notifying the sender to retransmit them, or by notifying the sender to stop
sending packets when the buffer becomes full and to resume later once it has
room for more packets. The latter strategy is generally known as flow control.

There are several interesting techniques commonly used to implement flow
control beyond simple handshaking between the sender and receiver. The more
popular techniques are Xon/Xoff (also referred to as Stop & Go) and credit-based
flow control. Xon/Xoff consists of the receiver notifying the sender either to stop
or to resume sending packets once high and low buffer occupancy levels are
reached, respectively, with some hysteresis to reduce the number of notifications.
Notifications are sent as “stop” and “go” signals using additional control wires or
encoded in control packets. Credit-based flow control typically uses a credit
counter at the sender that initially contains a number of credits equal to the num-
ber of buffers at the receiver. Every time a packet is transmitted, the sender decre-
ments the credit counter. When the receiver consumes a packet from its buffer, it
returns a credit to the sender in the form of a control packet that notifies the
sender to increment its counter upon receipt of the credit. These techniques
essentially control the flow of packets into the network by throttling packet injec-
tion at the sender when the receiver reaches a low watermark or when the sender
runs out of credits.

Xon/Xoff usually generates much less control traffic than credit-based flow
control because notifications are only sent when the high or low buffer occu-
pancy levels are crossed. On the other hand, credit-based flow control requires
less than half the buffer size required by Xon/Xoff. Buffers for Xon/Xoff must be
large enough to prevent overflow before the “stop” control signal reaches the
sender. Overflow cannot happen when using credit-based flow control because
the sender will run out of credits, thus stopping transmission. For both schemes,
full link bandwidth utilization is possible only if buffers are large enough for the
distance over which communication takes place.

Let’s compare the buffering requirements of the two flow control techniques
in a simple example covering the various interconnection network domains.

Example Suppose we have a dedicated-link network with a raw data bandwidth of 8 Gbps
for each link in each direction interconnecting two devices. Packets of 100 bytes
(including the header) are continuously transmitted from one device to the other
to fully utilize network bandwidth. What is the minimum amount of credits and
buffer space required by credit-based flow control assuming interconnect dis-
tances of 1 cm, 1 m, 100 m, and 10 km if only link propagation delay is taken into
account? How does the minimum buffer space compare against Xon/Xoff?

F.2 Interconnecting Two Devices ■ F-11

Answer At the start, the receiver buffer is initially empty and the sender contains a num-
ber of credits equal to buffer capacity. The sender will consume a credit every
time a packet is transmitted. For the sender to continue transmitting packets at
network speed, the first returned credit must reach the sender before the sender
runs out of credits. After receiving the first credit, the sender will keep receiving
credits at the same rate it transmits packets. As we are considering only propaga-
tion delay over the link and no other sources of delay or overhead, null process-
ing time at the sender and receiver are assumed. The time required for the first
credit to reach the sender since it started transmission of the first packet is equal
to the round-trip propagation delay for the packet transmitted to the receiver and
the return credit transmitted back to the sender. This time must be less than or
equal to the packet transmission time multiplied by the initial credit count:

The speed of light is about 300,000 km/sec. Assume we can achieve 66% of that
in a conductor. Thus, the minimum number of credits for each distance is given by

As each credit represents one packet-sized buffer entry, the minimum amount of
credits (and, likewise, buffer space) needed by each device is one for the 1 cm
and 1 m distances, 10 for the 100 m distance, and 1000 packets for the 10 km dis-
tance. For Xon/Xoff, this minimum buffer size corresponds to the buffer frag-
ment from the high occupancy level to the top of the buffer and from the low
occupancy level to the bottom of the buffer. With the added hysteresis between
both occupancy levels to reduce notifications, the minimum buffer space for Xon/
Xoff turns out to be more than twice that for credit-based flow control.

Networks that implement flow control do not need to drop packets and are
sometimes referred to as lossless networks; networks that drop packets are some-
times referred to as lossy networks. This single difference in the way packets are
handled by the network drastically constrains the kinds of solutions that can be
implemented to address other related network problems, including packet rout-
ing, congestion, deadlock, and reliability, as we will see later in this appendix.
This difference also affects performance significantly as dropped packets need to
be retransmitted, thus consuming more link bandwidth and suffering extra delay.
These behavioral and performance differences ultimately restrict the interconnec-
tion network domains for which certain solutions are applicable. For instance,
most networks delivering packets over relatively short distances (e.g., OCNs and
SANs) tend to implement flow control; on the other hand, networks delivering
packets over relatively long distances (e.g., LANs and WANs) tend to be
designed to drop packets. For the shorter distances, the delay in propagating flow
control information back to the sender can be negligible, but not so for longer dis-
tance scales. The kinds of applications that are usually run also influence the

Packet propagation delay Credit propagation delay+
Packet size
Bandwidth
-------------------------- Credit count×≤

Distance
2 3⁄ 300,000 km/sec×
--⎝ ⎠
⎛ ⎞ 2× 100 bytes

8 Gbits/sec
-------------------------- Credit count×≤

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-12 ■ Appendix F Interconnection Networks

choice of lossless versus lossy networks. For instance, dropping packets sent by
an Internet client like a Web browser affects only the delay observed by the corre-
sponding user. However, dropping a packet sent by a process from a parallel
application may lead to a significant increase in the overall execution time of the
application if that packet’s delay is on the critical path.

The second responsibility of ensuring that packets are neither garbled nor lost
in transit can be met by implementing some mechanisms to detect and recover
from transport errors. Adding a checksum or some other error detection field to
the packet format, as shown in Figure F.4, allows the receiver to detect errors.
This redundant information is calculated when the packet is sent and checked
upon receipt. The receiver then sends an acknowledgment in the form of a control
packet if the packet passes the test. Note that this acknowledgment control packet
may simultaneously contain flow control information (e.g., a credit or stop sig-
nal), thus reducing control packet overhead. As described earlier, the most com-
mon way to recover from errors is to have a timer record the time each packet is
sent and to presume the packet is lost or erroneously transported if the timer
expires before an acknowledgment arrives. The packet is then resent.

The communication protocol across the network and network end nodes
must handle many more issues other than packet transport, flow control, and
reliability. For example, if two devices are from different manufacturers, they
might order bytes differently within a word (Big Endian versus Little Endian
byte ordering). The protocol must reverse the order of bytes in each word as
part of the delivery system. It must also guard against the possibility of dupli-
cate packets if a delayed packet were to become unstuck. Depending on the
system requirements, the protocol may have to implement pipelining among
operations to improve performance. Finally, the protocol may need to handle
network congestion to prevent performance degradation when more than two
devices are connected, as described later in Section F.7.

Characterizing Performance: Latency and Effective Bandwidth

Now that we have covered the basic steps for sending and receiving messages
between two devices, we can discuss performance. We start by discussing the
latency when transporting a single packet. Then we discuss the effective band-
width (also known as throughput) that can be achieved when the transmission of
multiple packets is pipelined over the network at the packet level.

Figure F.5 shows the basic components of latency for a single packet. Note that
some latency components will be broken down further in later sections as the inter-
nals of the “black box” network are revealed. The timing parameters in Figure F.5
apply to many interconnection network domains: inside a chip, between chips on a
board, between boards in a chassis, between chassis within a computer, between
computers in a cluster, between clusters, and so on. The values may change, but the
components of latency remain the same.

The following terms are often used loosely, leading to confusion, so we
define them here more precisely:

F.2 Interconnecting Two Devices ■ F-13

■ Bandwidth—Strictly speaking, the bandwidth of a transmission medium
refers to the range of frequencies for which the attenuation per unit length
introduced by that medium is below a certain threshold. It must be distin-
guished from the transmission speed, which is the amount of information
transmitted over a medium per unit time. For example, modems successfully
increased transmission speed in the late 1990s for a fixed bandwidth (i.e., the
3 KHz bandwidth provided by voice channels over telephone lines) by encod-
ing more voltage levels and, hence, more bits per signal cycle. However, to be
consistent with its more widely understood meaning, we use the term band-
width to refer to the maximum rate at which information can be transferred,
where information includes packet header, payload, and trailer. The units are
traditionally bits per second, although bytes per second is sometimes used.
The term bandwidth is also used to mean the measured speed of the medium
(i.e., network links). Aggregate bandwidth refers to the total data bandwidth
supplied by the network, and effective bandwidth or throughput is the fraction
of aggregate bandwidth delivered by the network to an application.

■ Time of flight—This is the time for the first bit of the packet to arrive at the
receiver, including the propagation delay over the links and delays due to other
hardware in the network such as link repeaters and network switches. The unit
of measure for time of flight can be in milliseconds for WANs, microseconds
for LANs, nanoseconds for SANs, and picoseconds for OCNs.

■ Transmission time—This is the time for the packet to pass through the network,
not including time of flight. One way to measure it is the difference in time
between when the first bit of the packet arrives at the receiver and when the last
bit of that packet arrives at the receiver. By definition, transmission time is
equal to the size of the packet divided by the data bandwidth of network links.

Figure F.5 Components of packet latency. Depending on whether it is an OCN, SAN,
LAN, or WAN, the relative amounts of sending and receiving overhead, time of flight,
and transmission time are usually quite different from those illustrated here.

Sender
overheadSender

Receiver

Transmission
time

(bytes/bandwidth)

Time of
flight

Transmission
time

(bytes/bandwidth)
Receiver
overhead

Transport latency

Total latency

Time

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-14 ■ Appendix F Interconnection Networks

This measure assumes there are no other packets contending for that bandwidth
(i.e., a zero-load or no-load network).

■ Transport latency—This is the sum of time of flight and transmission time.
Transport latency is the time that the packet spends in the interconnection net-
work. Stated alternatively, it is the time between when the first bit of the
packet is injected into the network and when the last bit of that packet arrives
at the receiver. It does not include the overhead of preparing the packet at the
sender or processing it when it arrives at the receiver.

■ Sending overhead—This is the time for the end node to prepare the packet (as
opposed to the message) for injection into the network, including both hard-
ware and software components. Note that the end node is busy for the entire
time, hence the use of the term overhead. Once the end node is free, any subse-
quent delays are considered part of the transport latency. We assume that over-
head consists of a constant term plus a variable term that depends on packet
size. The constant term includes memory allocation, packet header preparation,
setting up DMA devices, and so on. The variable term is mostly due to copies
from buffer to buffer and is usually negligible for very short packets.

■ Receiving overhead—This is the time for the end node to process an incom-
ing packet, including both hardware and software components. We also
assume here that overhead consists of a constant term plus a variable term that
depends on packet size. In general, the receiving overhead is larger than the
sending overhead. For example, the receiver may pay the cost of an interrupt
or may have to reorder and reassemble packets into messages.

The total latency of a packet can be expressed algebraically by the following:

Let’s see how the various components of transport latency and the sending and
receiving overheads change in importance as we go across the interconnection
network domains: from OCNs to SANs to LANs to WANs.

Example Assume that we have a dedicated link network with a data bandwidth of 8 Gbps
for each link in each direction interconnecting two devices within an OCN, SAN,
LAN, or WAN, and we wish to transmit packets of 100 bytes (including the
header) between the devices. The end nodes have a per-packet sending overhead
of x + 0.05 ns/byte and receiving overhead of 4/3(x) + 0.05 ns/byte, where x is
0 μs for the OCN, 0.3 μs for the SAN, 3 μs for the LAN, and 30 μs for the WAN,
which are typical for these network types. Calculate the total latency to send
packets from one device to the other for interconnection distances of 0.5 cm, 5 m,
5000 m, and 5000 km assuming that time of flight consists only of link propaga-
tion delay (i.e., no switching or other sources of delay).

Answer Using the above expression and the calculation for propagation delay through a
conductor given in the previous example, we can plug in the parameters for each
of the networks to find their total packet latency. For the OCN:

Latency Sending overhead Time of flight
Packet size
Bandwidth
-------------------------- Receiving overhead+ + +=

F.2 Interconnecting Two Devices ■ F-15

Converting all terms into nanoseconds (ns) leads to the following for the OCN:

Substituting in the appropriate values for the SAN gives the following latency:

Substituting in the appropriate values for the LAN gives the following latency:

Substituting in the appropriate values for the WAN gives the following latency:

The increased fraction of the latency required by time of flight for the longer
distances along with the greater likelihood of errors over the longer distances are
among the reasons why WANs and LANs use more sophisticated and time-
consuming communication protocols, which increase sending and receiving
overheads. The need for standardization is another reason. Complexity also
increases due to the requirements imposed on the protocol by the typical applica-
tions that run over the various interconnection network domains as we go from
tens to hundreds to thousands to many thousands of devices. We will consider
this in later sections when we discuss connecting more than two devices. The
above example shows that the propagation delay component of time of flight for
WANs and some LANs is so long that other latency components—including the
sending and receiving overheads—can practically be ignored. This is not so for
SANs and OCNs where the propagation delay pales in comparison to the over-
heads and transmission delay. Remember that time-of-flight latency due to
switches and other hardware in the network besides sheer propagation delay
through the links is neglected in the above example. For noncongested networks,

Latency Sending overhead Time of flight
Packet size
Bandwidth
-------------------------- Receiving overhead+ + +=

5ns
0.5 cm

2 3⁄ 300,000 km/sec×
--

100 bytes
8 Gbits/sec
-------------------------- 5 ns+ + +=

Total latency (OCN) 5 ns
0.5 cm

2 3⁄ 300,000 km/sec×
--

100 8×
8

------------------ ns 5 ns+ + +=

5 ns 0.025 ns + 100 ns + 5 ns +=

110.025 ns=

Total latency (SAN) 0.305 µs
 5 m

2 3⁄ 300,000 km/sec×
--

100 bytes
8 Gbits/sec
--------------------------- 0.405 µs+ + +=

0.305 µs + 0.025 µs + 0.1 µs + 0.405 µs=

0.835 µs=

Total latency (LAN) 3.005 µs
 5 km

2 3⁄ 300,000 km/sec×
--

100 bytes
8 Gbits/sec
--------------------------- 4.005 µs+ + +=

3.005 µs + 25 µs + 0.1 µs + 4.005 µs=

32.11 µs=

Total latency (WAN) 30.005 µs
 5000 km

2 3⁄ 300,000 km/sec×
--

100 bytes
8 Gbits/sec
--------------------------- 40.005 µs+ + +=

30.005 µs + 25000 µs + 0.1 µs + 40.005 µs=

25.07 ms=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-16 ■ Appendix F Interconnection Networks

switch latency generally is small compared to the overheads and propagation
delay through the links in WANs and LANs, but this is not necessarily so for
multiprocessor SANs and multicore OCNs, as we will see in later sections.

So far, we have considered the transport of a single packet and computed the
associated end-to-end total packet latency. In order to compute the effective
bandwidth for two networked devices, we have to consider a continuous stream
of packets transported between them. We must keep in mind that, in addition to
minimizing packet latency, the goal of any network optimized for a given cost
and power consumption target is to transfer the maximum amount of available
information in the shortest possible time, as measured by the effective bandwidth
delivered by the network. For applications that do not require a response before
sending the next packet, the sender can overlap the sending overhead of later
packets with the transport latency and receiver overhead of prior packets. This
essentially pipelines the transmission of packets over the network, also known as
link pipelining. Fortunately, as discussed in prior chapters of this book, there are
many application areas where communication from either several applications or
several threads from the same application can run concurrently (e.g., a Web
server concurrently serving thousands of client requests or streaming media),
thus allowing a device to send a stream of packets without having to wait for an
acknowledgment or a reply. Also, as long messages are usually divided into pack-
ets of maximum size before transport, a number of packets are injected into the
network in succession for such cases. If such overlap were not possible, packets
would have to wait for prior packets to be acknowledged before being transmitted
and thus suffer significant performance degradation.

Packets transported in a pipelined fashion can be acknowledged quite
straightforwardly simply by keeping a copy at the source of all unacknowledged
packets that have been sent and keeping track of the correspondence between
returned acknowledgments and packets stored in the buffer. Packets will be
removed from the buffer when the corresponding acknowledgment is received by
the sender. This can be done by including the message ID and packet sequence
number associated with the packet in the packet’s acknowledgment. Furthermore,
a separate timer must be associated with each buffered packet, allowing the
packet to be resent if the associated time-out expires.

Pipelining packet transport over the network has many similarities with pipe-
lining computation within a processor. However, among some differences are that it
does not require any staging latches. Information is simply propagated through net-
work links as a sequence of signal waves. Thus, the network can be considered as a
logical pipeline consisting of as many stages as are required so that the time of
flight does not affect the effective bandwidth that can be achieved. Transmission of
a packet can start immediately after the transmission of the previous one, thus over-
lapping the sending overhead of a packet with the transport and receiver latency of
previous packets. If the sending overhead is smaller than the transmission time,
packets follow each other back-to-back, and the effective bandwidth approaches the
raw link bandwidth when continuously transmitting packets. On the other hand, if
the sending overhead is greater than the transmission time, the effective bandwidth

F.2 Interconnecting Two Devices ■ F-17

at the injection point will remain well below the raw link bandwidth. The resulting
link injection bandwidth, BWLinkInjection, for each link injecting a continuous
stream of packets into a network is calculated with the following expression:

We must also consider what happens if the receiver is unable to consume packets
at the same rate they arrive. This occurs if the receiving overhead is greater than
the sending overhead and the receiver cannot process incoming packets fast
enough. In this case, the link reception bandwidth, BWLinkReception, for each
reception link of the network is less than the link injection bandwidth and is
obtained with this expression:

When communication takes place between two devices interconnected by
dedicated links, all the packets sent by one device will be received by the other. If
the receiver cannot process packets fast enough, the receiver buffer will become
full, and flow control will throttle transmission at the sender. As this situation is
produced by causes external to the network, we will not consider it further here.
Moreover, if the receiving overhead is greater than the sending overhead, the
receiver buffer will fill up and flow control will, likewise, throttle transmission at
the sender. In this case, the effect of flow control is, on average, the same as if we
replace sending overhead with receiving overhead. Assuming an ideal network
that behaves like two dedicated links running in opposite directions at the full
link bandwidth between the two devices—which is consistent with our black box
view of the network to this point—the resulting effective bandwidth is the
smaller of twice the injection bandwidth (to account for the two injection links,
one for each device) or twice the reception bandwidth. This results in the follow-
ing expression for effective bandwidth:

where Overhead = max(Sending overhead, Receiving overhead). Taking into
account the expression for the transmission time, it is obvious that the effective
bandwidth delivered by the network is identical to the aggregate network band-
width when the transmission time is greater than the overhead. Therefore, full
network utilization is achieved regardless of the value for the time of flight and,
thus, regardless of the distance traveled by packets, assuming ideal network
behavior (i.e., enough credits and buffers are provided for credit-based and Xon/
Xoff flow control). This analysis assumes that the sender and receiver network
interfaces can process only one packet at a time. If multiple packets can be pro-
cessed in parallel (e.g., as is done in IBM’s Federation network interfaces), the

BWLinkInjection
Packet size

max Sending overhead Transmission time,()
--=

BWLinkReception
Packet size

max Receiving overhead Transmission time,()
--=

Effective bandwidth min 2 BWLinkInjection× 2 BWLinkReception×,() 2 Packet size×
max Overhead Transmission time,()
---= =

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-18 ■ Appendix F Interconnection Networks

overheads for those packets can be overlapped, which increases effective band-
width by that overlap factor up to the amount bounded by the transmission time.

Let’s use the equation on page F-17 to explore the impact of packet size,
transmission time, and overhead on BWLink Injection, BWLinkReception, and effective
bandwidth for the various network domains: OCNs, SANs, LANs, and WANs.

Example As in the previous example, assume we have a dedicated link network with a data
bandwidth of 8 Gbps for each link in each direction interconnecting the two
devices within an OCN, SAN, LAN, or WAN. Plot effective bandwidth versus
packet size for each type of network for packets ranging in size from 4 bytes (i.e.,
a single 32-bit word) to 1500 bytes (i.e., the maximum transfer unit for Ethernet),
assuming that end nodes have the same per-packet sending and receiving over-
heads as before: x + 0.05 ns/byte and 4/3(x) + 0.05 ns/byte, respectively, where x
is 0 μs for the OCN, 0.3 μs for the SAN, 3 μs for the LAN, and 30 μs for the
WAN. What limits the effective bandwidth, and for what packet sizes is the effec-
tive bandwidth within 10% of the aggregate network bandwidth?

Answer Figure F.6 plots effective bandwidth versus packet size for the four network
domains using the simple equation and parameters given above. For all packet
sizes in the OCN, transmission time is greater than overhead (sending or receiv-
ing), allowing full utilization of the aggregate bandwidth, which is 16 Gbps—that
is, injection link (alternatively, reception link) bandwidth times two to account
for both devices. For the SAN, overhead—specifically, receiving overhead—is
larger than transmission time for packets less than about 800 bytes; consequently,
packets of 655 bytes and larger are needed to utilize 90% or more of the aggre-
gate bandwidth. For LANs and WANs, most of the link bandwidth is not utilized
since overhead in this example is many times larger than transmission time for all
packet sizes.

This example highlights the importance of reducing the sending and receiv-
ing overheads relative to packet transmission time in order to maximize the effec-
tive bandwidth delivered by the network.

The analysis above suggests that it is possible to provide some upper bound
for the effective bandwidth by analyzing the path followed by packets and deter-
mining where the bottleneck occurs. We can extend this idea beyond the network
interfaces by defining a model that considers the entire network from end to end
as a pipe and identifying the narrowest section of that pipe. There are three areas
of interest in that pipe: the aggregate of all network injection links and the corre-
sponding network injection bandwidth (BWNetworkInjection), the aggregate of all
network reception links and the corresponding network reception bandwidth
(BWNetworkReception), and the aggregate of all network links and the corresponding
network bandwidth (BWNetwork). Expressions for these will be given in later sec-
tions as various layers of the black box view of the network are peeled away.

F.2 Interconnecting Two Devices ■ F-19

To this point, we have assumed that for just two interconnected devices the
black box network behaves ideally and the network bandwidth is equal to the
aggregate raw network bandwidth. In reality, it can be much less than the aggre-
gate bandwidth as we will see in the following sections. In general, the effective
bandwidth delivered end-to-end by the network to an application is upper
bounded by the minimum across all three potential bottleneck areas:

We will expand upon this expression further in the following sections as we
reveal more about interconnection networks and consider the more general case
of interconnecting more than two devices.

In some sections of this appendix, we show how the concepts introduced in
the section take shape in example high-end commercial products. Figure F.7 lists
several commercial computers that, at one point in time in their existence, were
among the highest-performing systems in the world within their class. Although
these systems are capable of interconnecting more than two devices, they imple-
ment the basic functions needed for interconnecting only two devices. In addition
to being applicable to the SANs used in those systems, the issues discussed in
this section also apply to other interconnect domains: from OCNs to WANs.

Figure F.6 Effective bandwidth versus packet size plotted in semi-log form for the
four network domains. Overhead can be amortized by increasing the packet size, but
for too large of an overhead (e.g., for WANs and some LANs) scaling the packet size is of
little help. Other considerations come into play that limit the maximum packet size.

E
ffe

ct
iv

e
ba

nd
w

id
th

 (
G

bi
ts

/s
ec

)

100

10

1

4

0.01

0.1

0.001

Packet size (bytes)

140012001000800600400200

OCN
SAN
LAN
WAN

Effective bandwidth min BWNetworkInjection BWNetwork BWNetworkReception, ,()=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-20 ■ Appendix F Interconnection Networks

To this point, we have considered the connection of only two devices communi-
cating over a network viewed as a black box, but what makes interconnection net-
works interesting is the ability to connect hundreds or even many thousands of
devices together. Consequently, what makes them interesting also makes them
more challenging to build. In order to connect more than two devices, a suitable
structure and more functionality must be supported by the network. This section
continues with our black box approach by introducing, at a conceptual level,
additional network structure and functions that must be supported when intercon-
necting more than two devices. More details on these individual subjects are
given in Sections F.4 through F.7. Where applicable, we relate the additional
structure and functions to network media, flow control, and other basics pre-
sented in the previous section. In this section, we also classify networks into two

C
o

m
p

an
y

Sy
st

em
[n

et
w

o
rk

] n
am

e

In
tr

o
 y

ea
r

M
ax

. n
u

m
b

er
 o

f
co

m
p

u
te

 n
o

d
es

[×
 #

 C
P

U
s]

Sy
st

em
 fo

o
tp

ri
n

t
fo

r
m

ax
. c

o
n

fi
g

u
ra

ti
o

n

Pa
ck

et
 [h

ea
d

er
]

m
ax

 s
iz

e
(b

yt
es

)

In
je

ct
io

n
 [r

ec
ep

ti
o

n
]

n
o

d
e

B
W

 in

M
B

/s
ec

M
in

im
u

m
 s

en
d

/
re

ce
iv

e
ov

er
h

ea
d

M
ax

im
u

m
 c

o
p

p
er

lin
k

le
n

g
th

; f
lo

w

co
n

tr
o

l;
er

ro
r

Intel ASCI Red
Paragon

2001 4510 [× 2] 2500 ft2 1984
[4]

400
[400]

Few μs Handshaking;
CRC + parity

IBM ASCI White
SP Power3
[Colony]

2001 512 [× 16] 10,000 ft2 1024
[6]

500
[500]

~3 μs 25 m; credit-
based; CRC

Intel Thunder
Itanium2
Tiger4
[QsNetII]

2004 1024 [× 4] 120 m2 2048
[14]

928
[928]

0.240 μs 13 m; credit-
based; CRC
for link, dest.

Cray XT3
[SeaStar]

2004 30,508 [× 1] 263.8 m2 80
[16]

3200
[3200]

Few μs 7 m; credit-
based; CRC

Cray X1E 2004 1024 [× 1] 27 m2 32
[16]

1600
[1600]

0 (direct LD ST
accesses)

5 m; credit-
based; CRC

IBM ASC Purple
pSeries 575
[Federation]

2005 >1280 [× 8] 6720 ft2 2048
[7]

2000
[2000]

~1 μs with up
to 4 packets
processed in ||

25 m; credit-
based; CRC

IBM Blue Gene/L
eServer Sol.
[Torus Net.]

2005 65,536 [× 2] 2500 ft2
(.9 × .9 ×
1.9 m3/1K
node rack)

256
[8]

612.5
[1050]

~3 μs
(2300 cycles)

8.6 m; credit-
based; CRC
(header/pkt)

Figure F.7 Basic characteristics of interconnection networks in commercial high-performance computer systems.

 F.3 Connecting More than Two Devices

F.3 Connecting More than Two Devices ■ F-21

broad categories based on their connection structure—shared-media versus
switched-media networks—and we compare them. Finally, expanded expressions
for characterizing network performance are given, followed by an example.

Additional Network Structure and Functions:
Topology, Routing, Arbitration, and Switching

Networks interconnecting more than two devices require mechanisms to physi-
cally connect the packet source to its destination in order to transport the packet
and deliver it to the correct destination. These mechanisms can be implemented
in different ways and significantly vary across interconnection network domains.
However, the types of network structure and functions performed by those mech-
anisms are very much the same, regardless of the domain.

When multiple devices are interconnected by a network, the connections
between them oftentimes cannot be permanently established with dedicated
links. This could either be too restrictive as all the packets from a given source
would go to the same one destination (and not to others) or prohibitively expen-
sive as a dedicated link would be needed from every source to every destination
(we will evaluate this further in the next section). Therefore, networks usually
share paths among different pairs of devices, but how those paths are shared is
determined by the network connection structure, commonly referred to as the
network topology. Topology addresses the important issue of “What paths are
possible for packets?” so packets reach their intended destinations.

Every network that interconnects more than two devices also requires some
mechanism to deliver each packet to the correct destination. The associated
function is referred to as routing, which can be defined as the set of operations
that need to be performed to compute a valid path from the packet source to its
destinations. Routing addresses the important issue of “Which of the possible
paths are allowable (valid) for packets?” so packets reach their intended desti-
nations. Depending on the network, this function may be executed at the packet
source to compute the entire path, at some intermediate devices to compute
fragments of the path on the fly, or even at every possible destination device to
verify whether that device is the intended destination for the packet. Usually,
the packet header shown in Figure F.4 is extended to include the necessary
routing information.

In general, as networks usually contain shared paths or parts thereof among
different pairs of devices, packets may request some shared resources. When sev-
eral packets request the same resources at the same time, an arbitration function
is required to resolve the conflict. Arbitration, along with flow control, addresses
the important issue of “When are paths available for packets?” Every time arbi-
tration is performed, there is a winner and possibly several losers. The losers are
not granted access to the requested resources and are typically buffered. As indi-
cated in the previous section, flow control may be implemented to prevent buffer
overflow. The winner proceeds toward its destination once the granted resources
are switched in, providing a path for the packet to advance. This function is

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-22 ■ Appendix F Interconnection Networks

referred to as switching. Switching addresses the important issue of “How are
paths allocated to packets?” To achieve better utilization of existing communica-
tion resources, most networks do not establish an entire end-to-end path at once.
Instead, as explained in Section F.5, paths are usually established one fragment at
a time.

These three network functions—routing, arbitration, and switching—must be
implemented in every network connecting more than two devices, no matter what
form the network topology takes. This is in addition to the basic functions men-
tioned in the previous section. However, the complexity of these functions and
the order in which they are performed depends on the category of network topol-
ogy, as discussed below. In general, routing, arbitration, and switching are
required to establish a valid path from source to destination from among the pos-
sible paths provided by the network topology. Once the path has been estab-
lished, the packet transport functions previously described are used to reliably
transmit packets and receive them at the corresponding destination. Flow control,
if implemented, prevents buffer overflow by throttling the sender. It can be imple-
mented at the end-to-end level, the link level within the network, or both.

Shared-Media Networks

The simplest way to connect multiple devices is to have them share the network
media, as shown for the bus in Figure F.8 (a). This has been the traditional way of
interconnecting devices. The shared media can operate in half-duplex mode,
where data can be carried in either direction over the media but simultaneous
transmission and reception of data by the same device is not allowed, or in full-
duplex, where the data can be carried in both directions and simultaneously trans-
mitted and received by the same device. Until very recently, I/O devices in most

Figure F.8 (a) A shared-media network versus (b) a switched-media network.
Ethernet was originally a shared media network, but switched Ethernet is now avail-
able. All nodes on the shared-media networks must dynamically share the raw band-
width of one link, but switched-media networks can support multiple links, providing
higher raw aggregate bandwidth.

Node Node

Shared-media network

Switched-media network

(b)

Switch fabric

(a)

Node

Node Node

Node Node

F.3 Connecting More than Two Devices ■ F-23

systems typically shared a single I/O bus, and early system-on-chip (SoC)
designs made use of a shared bus to interconnect on-chip components. The most
popular LAN, Ethernet, was originally implemented as a half-duplex bus shared
by up to a hundred computers, although now switched-media versions also exist.

Given that network media are shared, there must be a mechanism to coordi-
nate and arbitrate the use of the shared media so that only one packet is sent at a
time. If the physical distance between network devices is small, it may be possi-
ble to have a central arbiter to grant permission to send packets. In this case, the
network nodes may use dedicated control lines to interface with the arbiter. Cen-
tralized arbitration is impractical, however, for networks with a large number of
nodes spread over large distances, so distributed forms of arbitration are also
used. This is the case for the original Ethernet shared-media LAN.

A first step toward distributed arbitration of shared media is “looking before
you leap.” A node first checks the network to avoid trying to send a packet while
another packet is already in the network. Listening before transmission to avoid
collisions is called carrier sensing. If the interconnection is idle, the node tries to
send. Looking first is not a guarantee of success, of course, as some other node
may also decide to send at the same instant. When two nodes send at the same
time, a collision occurs. Let’s assume that the network interface can detect any
resulting collisions by listening to hear if the data become garbled by other data
appearing on the line. Listening to detect collisions is called collision detection.
This is the second step of distributed arbitration.

The problem is not solved yet. If, after detecting a collision, every node on
the network waited exactly the same amount of time, listened to be sure there was
no traffic, and then tried to send again, we could still have synchronized nodes
that would repeatedly bump heads. To avoid repeated head-on collisions, each
node whose packet gets garbled waits (or backs off) a random amount of time
before resending. Randomization breaks the synchronization. Subsequent colli-
sions result in exponentially increasing time between attempts to retransmit, so as
not to tax the network.

Although this approach controls congestion on the shared media, it is not
guaranteed to be fair—some subsequent node may transmit while those that col-
lided are waiting. If the network does not have high demand from many nodes,
this simple approach works well. Under high utilization, however, performance
degrades since the media are shared and fairness is not ensured. Another distrib-
uted approach to arbitration of shared media that can support fairness is to pass a
token between nodes. The function of the token is to grant the acquiring node the
right to use the network. If the token circulates in a cyclic fashion between the
nodes, a certain amount of fairness is ensured in the arbitration process.

Once arbitration has been performed and a device has been granted access to
the shared media, the function of switching is straightforward. The granted
device simply needs to connect itself to the shared media, thus establishing a path
to every possible destination. Also, routing is very simple to implement. Given
that the media are shared and attached to all the devices, every device will see
every packet. Therefore, each device just needs to check whether or not a given

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-24 ■ Appendix F Interconnection Networks

packet is intended for that device. A beneficial side effect of this strategy is that a
device can send a packet to all the devices attached to the shared media through a
single transmission. This style of communication is called broadcasting, in con-
trast to unicasting, in which each packet is intended for only one device. The
shared media make it easy to broadcast a packet to every device or, alternatively,
to a subset of devices, called multicasting.

Switched-Media Networks

The alternative to sharing the entire network media at once across all attached
nodes is to switch between disjoint portions of it shared by the nodes. Those por-
tions consist of passive point-to-point links between active switch components
that dynamically establish communication between sets of source-destination
pairs. These passive and active components make up what is referred to as the
network switch fabric or network fabric, to which end nodes are connected. This
approach is shown conceptually in Figure F.8(b). The switch fabric is described
in greater detail in Sections F.4 through F.7, where various black box layers for
switched-media networks are further revealed. Nevertheless, the high-level view
shown in Figure F.8(b) illustrates the potential bandwidth improvement of
switched-media networks over shared-media networks: aggregate bandwidth can
be many times higher than that of shared-media networks, allowing the possibil-
ity of greater effective bandwidth to be achieved. At best, only one node at a time
can transmit packets over the shared media, whereas it is possible for all attached
nodes to do so over the switched-media network.

Like their shared-media counterparts, switched-media networks must imple-
ment the three additional functions previously mentioned: routing, arbitration,
and switching. Every time a packet enters the network, it is routed in order to
select a path toward its destination provided by the topology. The path requested
by the packet must be granted by some centralized or distributed arbiter, which
resolves conflicts among concurrent requests for resources along the same path.
Once the requested resources are granted, the network “switches in” the required
connections to establish the path and allows the packet to be forwarded toward its
destination. If the requested resources are not granted, the packet is usually buff-
ered, as mentioned previously. Routing, arbitration, and switching functions are
usually performed within switched networks in this order, whereas in shared-
media networks routing typically is the last function performed.

Comparison of Shared- and Switched-Media Networks

In general, the advantage of shared-media networks is their low cost, but, conse-
quently, their aggregate network bandwidth does not scale at all with the number
of interconnected devices. Also, a global arbitration scheme is required to resolve
conflicting demands, possibly introducing another type of bottleneck and again
limiting scalability. Moreover, every device attached to the shared media
increases the parasitic capacitance of the electrical conductors, thus increasing

F.3 Connecting More than Two Devices ■ F-25

the time of flight propagation delay accordingly and, possibly, clock cycle time.
In addition, it is more difficult to pipeline packet transmission over the network
as the shared media are continuously granted to different requesting devices.

The main advantage of switched-media networks is that the amount of net-
work resources implemented scales with the number of connected devices,
increasing the aggregate network bandwidth. These networks allow multiple
pairs of nodes to communicate simultaneously, allowing much higher effective
network bandwidth than that provided by shared-media networks. Also,
switched-media networks allow the system to scale to very large numbers of
nodes, which is not feasible when using shared media. Consequently, this scaling
advantage can, at the same time, be a disadvantage if network resources grow
superlinearly. Networks of superlinear cost that provide an effective network
bandwidth that grows only sublinearly with the number of interconnected devices
are inefficient designs for many applications and interconnection network
domains.

Characterizing Performance: Latency and Effective Bandwidth

The routing, switching, and arbitration functionality described above introduces
some additional components of packet transport latency that must be taken into
account in the expression for total packet latency. Assuming there is no conten-
tion for network resources—as would be the case in an unloaded network—total
packet latency is given by the following:

Here TR, TA, and TS are the total routing time, arbitration time, and switching
time experienced by the packet, respectively, and are either measured quantities
or calculated quantities derived from more detailed analyses. These components
are added to the total propagation delay through the network links, TTotalProp, to
give the overall time of flight of the packet.

The expression above gives only a lower bound for the total packet latency as
it does not account for additional delays due to contention for resources that may
occur. When the network is heavily loaded, several packets may request the same
network resources concurrently, thus causing contention that degrades perfor-
mance. Packets that lose arbitration have to be buffered, which increases packet
latency by some contention delay amount of waiting time. This additional delay
is not included in the above expression. When the network or part of it
approaches saturation, contention delay may be several orders of magnitude
greater than the total packet latency suffered by a packet under zero load or even
under slightly loaded network conditions. Unfortunately, it is not easy to compute
analytically the total packet latency when the network is more than moderately
loaded. Measurement of these quantities using cycle-accurate simulation of a
detailed network model is a better and more precise way of estimating packet
latency under such circumstances. Nevertheless, the expression given above is
useful in calculating best-case lower bounds for packet latency.

Latency Sending overhead TTotalProp TR TA TS+ + +() Packet size
Bandwidth
-------------------------- Receiving overhead+ + +=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-26 ■ Appendix F Interconnection Networks

For similar reasons, effective bandwidth is not easy to compute exactly, but we
can estimate best-case upper bounds for it by appropriately extending the model
presented at the end of the previous section. What we need to do is to find the nar-
rowest section of the end-to-end network pipe by finding the network injection
bandwidth (BWNetworkInjection), the network reception bandwidth (BWNetworkRecep-

tion), and the network bandwidth (BWNetwork) across the entire network interconnect-
ing the devices.

The BWNetworkInjection can be calculated simply by multiplying the expression
for link injection bandwidth, BWLinkInjection, by the total number of network injec-
tion links. The BWNetworkReception is calculated similarly using BWLinkReception, but
it must also be scaled by a factor that reflects application traffic and other character-
istics. For more than two interconnected devices, it is no longer valid to assume a
one-to-one relationship among sources and destinations when analyzing the effect
of flow control on link reception bandwidth. It could happen, for example, that sev-
eral packets from different injection links arrive concurrently at the same reception
link for applications that have many-to-one traffic characteristics, which causes
contention at the reception links. This effect can be taken into account by an aver-
age reception factor parameter, σ, which is either a measured quantity or a calcu-
lated quantity derived from detailed analysis. It is defined as the average fraction or
percentage of packets arriving at reception links that can be accepted. Only those
packets can be immediately delivered, thus reducing network reception bandwidth
by that factor. This reduction occurs as a result of application behavior regardless of
internal network characteristics. Finally, BWNetwork takes into account the internal
characteristics of the network, including contention. We will progressively derive
expressions in the following sections that will enable us to calculate this as more
details are revealed about the internals of our black box interconnection network.

Overall, the effective bandwidth delivered by the network end-to-end to an
application is determined by the minimum across the three sections, as described
by the following:

Let’s use the above expressions to compare the latency and effective bandwidth
of shared-media networks against switched-media networks for the four intercon-
nection network domains: OCNs, SANs, LANs, and WANs.

Example Plot the total packet latency and effective bandwidth as the number of intercon-
nected nodes, N, scales from 4 to 1024 for shared-media and switched-media
OCNs, SANs, LANs, and WANs. Assume that all network links, including the
injection and reception links at the nodes, each have a data bandwidth of 8 Gbps,
and unicast packets of 100 bytes are transmitted. Shared-media networks share
one link, and switched-media networks have at least as many network links as

Effective bandwidth min BWNetworkInjection BWNetwork σ BWNetworkReception×, ,()=

min N BWLinkInjection× BWNetwork σ N× BWLinkReception×, ,()=

F.3 Connecting More than Two Devices ■ F-27

there are nodes. For both, ignore latency and bandwidth effects due to contention
within the network. End nodes have per-packet sending and receiving overheads
of x + 0.05 ns/byte and 4/3(x) + 0.05 ns/byte, respectively, where x is 0 μs for the
OCN, 0.3 μs for the SAN, 3 μs for the LAN, and 30 μs for the WAN, and inter-
connection distances are 0.5 cm, 5 m, 5000 m, and 5000 km, respectively. Also
assume that the total routing, arbitration, and switching times are constants or
functions of the number of interconnected nodes: TR = 2.5 ns, TA = 2.5(N) ns, and
TS = 2.5 ns for shared-media networks and TR = TA = TS = 2.5(log2 N) ns for
switched-media networks. Finally, taking into account application traffic charac-
teristics for the network structure, the average reception factor, σ, is assumed to
be N–1 for shared media and polylogarithmic (log2 N)–1/4 for switched media.

Answer All components of total packet latency are the same as in the example given in
the previous section except for time of flight, which now has additional routing,
arbitration, and switching delays. For shared-media networks, the additional
delays total 5 + 2.5(N) ns; for switched-media networks, they total 7.5(log2 N) ns.
Latency is plotted only for OCNs and SANs in Figure F.9 as these networks give
the more interesting results. For OCNs, TR, TA, and TS combine to dominate time
of flight and are much greater than each of the other latency components for a
moderate to large number of nodes. This is particularly so for the shared-media

Figure F.9 Latency versus number of interconnected nodes plotted in semi-log
form for OCNs and SANs. Routing, arbitration, and switching have more of an impact
on latency for networks in these two domains, particularly for networks with a large
number of nodes, given the low sending and receiving overheads and low propagation
delay.

La
te

nc
y

(n
s)

10,000

1000

4
100

Number of nodes (N)

512 10242561286432168

SAN— shared
OCN— shared
SAN— switched
OCN— switched

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-28 ■ Appendix F Interconnection Networks

network. The latency increases much more dramatically with the number of
nodes for shared media as compared to switched media given the difference in
arbitration delay between the two. For SANs, TR, TA, and TS dominate time of
flight for most network sizes but are greater than each of the other latency com-
ponents in shared-media networks only for large-sized networks; they are less
than the other latency components for switched-media networks but are not negli-
gible. For LANs and WANs, time of flight is dominated by propagation delay,
which dominates other latency components as calculated in the previous section;
thus, TR, TA, and TS are negligible for both shared and switched media.

Figure F.10 plots effective bandwidth versus number of interconnected nodes
for the four network domains. The effective bandwidth for all shared-media net-
works is constant through network scaling as only one unicast packet can be
received at a time over all the network reception links, and that is further limited
by the receiving overhead of each network for all but the OCN. The effective
bandwidth for all switched-media networks increases with the number of inter-
connected nodes, but it is scaled down by the average reception factor. The
receiving overhead further limits effective bandwidth for all but the OCN.

Figure F.10 Effective bandwidth versus number of interconnected nodes plotted in semi-log form for the four
network domains. The disparity in effective bandwidth between shared- and switched-media networks for all inter-
connect domains widens significantly as the number of nodes in the network increases. Only the switched on-chip
network is able to achieve an effective bandwidth equal to the aggregate bandwidth for the parameters given in this
example.

E
ffe

ct
iv

e
ba

nd
w

id
th

 (
G

bi
ts

/s
ec

)

10,000

1000

100

10

1

1

0.1

0.01

Number of nodes (N)

12001000800600400200

OCN— switched
SAN— switched
LAN— switched
WAN— switched
OCN— shared
SAN— shared
LAN— shared
WAN— shared

F.4 Network Topology ■ F-29

Given the obvious advantages, why weren’t switched networks always used?
Earlier computers were much slower and could share the network media with lit-
tle impact on performance. In addition, the switches for earlier LANs and WANs
took up several large boards and were about as large as an entire computer. As a
consequence of Moore’s law, the size of switches has reduced considerably, and
systems have a much greater need for high-performance communication.
Switched networks allow communication to harvest the same rapid advance-
ments from silicon as processors and main memory. Whereas switches from tele-
communication companies were once the size of mainframe computers, today we
see single-chip switches and even entire switched networks within a chip. Thus,
technology and application trends favor switched networks today. Just as single-
chip processors led to processors replacing logic circuits in a surprising number
of places, single-chip switches and switched on-chip networks are increasingly
replacing shared-media networks (i.e., buses) in several application domains. As
an example, PCI-Express (PCIe)—a switched network—was introduced in 2005
to replace the traditional PCI-X bus on personal computer motherboards.

The previous example also highlights the importance of optimizing the rout-
ing, arbitration, and switching functions in OCNs and SANs. For these network
domains in particular, the interconnect distances and overheads typically are
small enough to make latency and effective bandwidth much more sensitive to
how well these functions are implemented, particularly for larger-sized networks.
This leads mostly to implementations based mainly on the faster hardware solu-
tions for these domains. In LANs and WANs, implementations based on the
slower but more flexible software solutions suffice given that performance is
largely determined by other factors. The design of the topology for switched-
media networks also plays a major role in determining how close to the lower
bound on latency and the upper bound on effective bandwidth the network can
achieve for OCN and SAN domains.

The next three sections touch on these important issues in switched networks,
with the next section focused on topology.

When the number of devices is small enough, a single switch is sufficient to
interconnect them within a switched-media network. However, the number of
switch ports is limited by existing very-large-scale integration (VLSI) technol-
ogy, cost considerations, power consumption, and so on. When the number of
required network ports exceeds the number of ports supported by a single switch,
a fabric of interconnected switches is needed. To embody the necessary property
of full access (i.e., connectedness), the network switch fabric must provide a path
from every end node device to every other device. All the connections to the net-
work fabric and between switches within the fabric use point-to-point links as
opposed to shared links—that is, links with only one switch or end node device
on either end. The interconnection structure across all the components—includ-
ing switches, links, and end node devices—is referred to as the network topology.

 F.4 Network Topology

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-30 ■ Appendix F Interconnection Networks

The number of network topologies described in the literature would be diffi-
cult to count, but the number that have been used commercially is no more than
about a dozen or so. During the 1970s and early 1980s, researchers struggled to
propose new topologies that could reduce the number of switches through which
packets must traverse, referred to as the hop count. In the 1990s, thanks to the
introduction of pipelined transmission and switching techniques, the hop count
became less critical. Nevertheless, today, topology is still important, particularly
for OCNs and SANs, as subtle relationships exist between topology and other
network design parameters that impact performance, especially when the number
of end nodes is very large (e.g., 64 K in the Blue Gene/L supercomputer) or when
the latency is critical (e.g., in multicore processor chips). Topology also greatly
impacts the implementation cost of the network.

Topologies for parallel supercomputer SANs have been the most visible and
imaginative, usually converging on regularly structured ones to simplify routing,
packaging, and scalability. Those for LANs and WANs tend to be more haphaz-
ard or ad hoc, having more to do with the challenges of long distance or connect-
ing across different communication subnets. Switch-based topologies for OCNs
are only recently emerging but are quickly gaining in popularity. This section
describes the more popular topologies used in commercial products. Their advan-
tages, disadvantages, and constraints are also briefly discussed.

Centralized Switched Networks

As mentioned above, a single switch suffices to interconnect a set of devices
when the number of switch ports is equal to or larger than the number of devices.
This simple network is usually referred to as a crossbar or crossbar switch.
Within the crossbar, crosspoint switch complexity increases quadratically with
the number of ports, as illustrated in Figure F.11(a). Thus, a cheaper solution is
desirable when the number of devices to be interconnected scales beyond the
point supportable by implementation technology.

A common way of addressing the crossbar scaling problem consists of split-
ting the large crossbar switch into several stages of smaller switches intercon-
nected in such a way that a single pass through the switch fabric allows any
destination to be reached from any source. Topologies arranged in this way are
usually referred to as multistage interconnection networks or multistage switch
fabrics, and these networks typically have complexity that increases in propor-
tion to N log N. Multistage interconnection networks (MINs) were initially pro-
posed for telephone exchanges in the 1950s and have since been used to build the
communication backbone for parallel supercomputers, symmetric multiproces-
sors, multicomputer clusters, and IP router switch fabrics.

The interconnection pattern or patterns between MIN stages are permuta-
tions that can be represented mathematically by a set of functions, one for each
stage. Figure F.11(b) shows a well-known MIN topology, the Omega, which
uses the perfect-shuffle permutation as its interconnection pattern for each
stage, followed by exchange switches, giving rise to a perfect-shuffle exchange

F.4 Network Topology ■ F-31

for each stage. In this example, eight input-output ports are interconnected with
three stages of 2 × 2 switches. It is easy to see that a single pass through the
three stages allows any input port to reach any output port. In general, when
using k × k switches, a MIN with N input-output ports requires at least logk N
stages, each of which contains N/k switches, for a total of N/k (logk N) switches.

Despite their internal structure, MINs can be seen as centralized switch fab-
rics that have end node devices connected at the network periphery, hence the
name centralized switched network. From another perspective, MINs can be
viewed as interconnecting nodes through a set of switches that may not have any
nodes directly connected to them, which gives rise to another popular name for
centralized switched networks—indirect networks.

Example Compute the cost of interconnecting 4096 nodes using a single crossbar switch
relative to doing so using a MIN built from 2 × 2, 4 × 4, and 16 × 16 switches.
Consider separately the relative cost of the unidirectional links and the relative
cost of the switches. Switch cost is assumed to grow quadratically with the num-
ber of input (alternatively, output) ports, k, for k × k switches.

Answer The switch cost of the network when using a single crossbar is proportional to
40962. The unidirectional link cost is 8192, which accounts for the set of links
from the end nodes to the crossbar and also from the crossbar back to the end
nodes. When using a MIN with k × k switches, the cost of each switch is propor-
tional to k2 but there are 4096/k (logk 4096) total switches. Likewise, there are

Figure F.11 Popular centralized switched networks: (a) the crossbar network requires N2 crosspoint switches,
shown as black dots; (b) the Omega, a MIN, requires N/2 log2 N switches, shown as vertical rectangles. End node
devices are shown as numbered squares (total of eight). Links are unidirectional—data enter at the left and exit out
the top or right.

(b)(a)

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

7

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-32 ■ Appendix F Interconnection Networks

(logk 4096) stages of N unidirectional links per stage from the switches plus N
links to the MIN from the end nodes. Therefore, the relative costs of the crossbar
with respect to each MIN is given by the following:

Relative cost (2 × 2)switches = 40962 / (22 × 4096/2 × log2 4096) = 170

Relative cost (4 × 4)switches = 40962 / (42 × 4096/4 × log4 4096) = 170

Relative cost (16 × 16)switches = 40962 / (162 × 4096/16 × log16 4096) = 85

Relative cost (2 × 2)links = 8192/ (4096 × (log2 4096 + 1)) = 2/13 = 0.1538

Relative cost (4 × 4)links = 8192/ (4096 × (log4 4096 + 1)) = 2/7 = 0.2857

Relative cost (16 × 16)links = 8192/ (4096 × (log16 4096 + 1)) = 2/4 = 0.5

In all cases, the single crossbar has much higher switch cost than the MINs. The
most dramatic reduction in cost comes from the MIN composed from the small-
est sized but largest number of switches, but it is interesting to see that the MINs
with 2 × 2 and 4 × 4 switches yield the same relative switch cost. The relative link
cost of the crossbar is lower than the MINs, but by less than an order of magni-
tude in all cases. We must keep in mind that end node links are different from
switch links in their length and packaging requirements, so they usually have dif-
ferent associated costs. Despite the lower link cost, the crossbar has higher over-
all relative cost.

The reduction in switch cost of MINs comes at the price of performance: con-
tention is more likely to occur on network links, thus degrading performance.
Contention in the form of packets blocking in the network arises due to paths
from different sources to different destinations simultaneously sharing one or
more links. The amount of contention in the network depends on communication
traffic behavior. In the Omega network shown in Figure F.11(b), for example, a
packet from port 0 to port 1 blocks in the first stage of switches while waiting for
a packet from port 4 to port 0. In the crossbar, no such blocking occurs as links
are not shared among paths to unique destinations. The crossbar, therefore, is
nonblocking. Of course, if two nodes try to send packets to the same destination,
there will be blocking at the reception link even for crossbar networks. This is
accounted for by the average reception factor parameter (σ) when analyzing per-
formance, as discussed at the end of the previous section.

To reduce blocking in MINs, extra switches must be added or larger ones
need to be used to provide alternative paths from every source to every destina-
tion. The first commonly used solution is to add a minimum of logk N − 1 extra
switch stages to the MIN in such a way that they mirror the original topology.
The resulting network is rearrangeably nonblocking as it allows nonconflicting
paths among new source-destination pairs to be established, but it also doubles
the hop count and could require the paths of some existing communicating pairs
to be rearranged under some centralized control. The second solution takes a dif-
ferent approach. Instead of using more switch stages, larger switches—which can

F.4 Network Topology ■ F-33

be implemented by multiple stages if desired—are used in the middle of two
other switch stages in such a way that enough alternative paths through the
middle-stage switches allow for nonconflicting paths to be established between
the first and last stages. The best-known example of this is the Clos network,
which is nonblocking. The multipath property of the three-stage Clos topology
can be recursively applied to the middle-stage switches to reduce the size of all
the switches down to 2 × 2, assuming that switches of this size are used in the
first and last stages to begin with. What results is a Beneŝ topology consisting of
2(log2 N) − 1 stages, which is rearrangeably nonblocking. Figure F.12(a) illus-
trates both topologies, where all switches not in the first and last stages comprise
the middle-stage switches (recursively) of the Clos network.

The MINs described so far have unidirectional network links, but bidirec-
tional forms are easily derived from symmetric networks such as the Clos and
Beneŝ simply by folding them. The overlapping unidirectional links run in differ-
ent directions, thus forming bidirectional links, and the overlapping switches
merge into a single switch with twice the ports (i.e., 4 × 4 switch). Figure F.12(b)
shows the resulting folded Beneŝ topology but in this case with the end nodes
connected to the innermost switch stage of the original Beneŝ. Ports remain free
at the other side of the network but can be used for later expansion of the network
to larger sizes. These kind of networks are referred to as bidirectional multistage
interconnection networks. Among many useful properties of these networks are
their modularity and their ability to exploit communication locality, which saves
packets from having to hop across all network stages. Their regularity also

Figure F.12 Two Beneŝ networks. (a) A 16-port Clos topology, where the middle-stage switches shown in the darker
shading are implemented with another Clos network whose middle-stage switches shown in the lighter shading are
implemented with yet another Clos network, and so on, until a Beneŝ network is produced that uses only 2 × 2
switches everywhere. (b) A folded Beneŝ network (bidirectional) in which 4 × 4 switches are used; end nodes attach
to the innermost set of the Beneŝ network (unidirectional) switches. This topology is equivalent to a fat tree, where
tree vertices are shown in shades.

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

0
1

2
3

4
5

6
7

8
9

10
11

12

(a) (b)

13

14
15

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-34 ■ Appendix F Interconnection Networks

reduces routing complexity and their multipath property enables traffic to be
routed more evenly across network resources and to tolerate faults.

Another way of deriving bidirectional MINs with nonblocking (rearrange-
able) properties is to form a balanced tree, where end node devices occupy leaves
of the tree and switches occupy vertices within the tree. Enough links in each tree
level must be provided such that the total link bandwidth remains constant across
all levels. Also, except for the root, switch ports for each vertex typically grow as
ki × ki, where i is the tree level. This can be accomplished by using ki-1 total
switches at each vertex, where each switch has k input and k output ports, or k
bidirectional ports (i.e., k × k input-output ports). Networks having such topolo-
gies are called fat tree networks. As only half of the k bidirectional ports are used
in each direction, 2N/k switches are needed in each stage, totaling 2N/k (logk/2 N)
switches in the fat tree. The number of switches in the root stage can be halved as
no forward links are needed, reducing switch count by N/k. Figure F.12(b) shows
a fat tree for 4 × 4 switches. As can be seen, this is identical to the folded Beneŝ.

The fat tree is the topology of choice across a wide range of network sizes for
most commercial systems that use multistage interconnection networks. Most
SANs used in multicomputer clusters, and many used in the most powerful super-
computers, are based on fat trees. Commercial communication subsystems
offered by Myrinet, Mellanox, and Quadrics are also built from fat trees.

Distributed Switched Networks

Switched-media networks provide a very flexible framework to design communi-
cation subsystems external to the devices that need to communicate, as presented
above. However, there are cases where it is convenient to more tightly integrate
the end node devices with the network resources used to enable them to commu-
nicate. Instead of centralizing the switch fabric in an external subsystem, an alter-
native approach is to distribute the network switches among the end nodes, which
then become network nodes or simply nodes, yielding a distributed switched net-
work. As a consequence, each network switch has one or more end node devices
directly connected to it, thus forming a network node. These nodes are directly
connected to other nodes without indirectly going through some external switch,
giving rise to another popular name for these networks—direct networks.

The topology for distributed switched networks takes on a form much different
from centralized switched networks in that end nodes are connected across the area
of the switch fabric, not just at one or two of the peripheral edges of the fabric. This
causes the number of switches in the system to be equal to the total number of
nodes. A quite obvious way of interconnecting nodes consists of connecting a ded-
icated link between each node and every other node in the network. This fully con-
nected topology provides the best connectivity (full connectivity in fact), but it is
more costly than a crossbar network, as the following example shows.

F.4 Network Topology ■ F-35

Example Compute the cost of interconnecting N nodes using a fully connected topology
relative to doing so using a crossbar topology. Consider separately the relative
cost of the unidirectional links and the relative cost of the switches. Switch cost is
assumed to grow quadratically with the number of unidirectional ports for k × k
switches but to grow only linearly with 1 × k switches.

Answer The crossbar topology requires an N × N switch, so the switch cost is propor-
tional to N2. The link cost is 2N, which accounts for the unidirectional links
from the end nodes to the centralized crossbar, and vice versa. In the fully con-
nected topology, two sets of 1 × (N − 1) switches (possibly merged into one set)
are used in each of the N nodes to connect nodes directly to and from all other
nodes. Thus, the total switch cost for all N nodes is proportional to 2N(N − 1).
Regarding link cost, each of the N nodes requires two unidirectional links in
opposite directions between its end node device and its local switch. In addi-
tion, each of the N nodes has N − 1 unidirectional links from its local switch to
other switches distributed across all the other end nodes. Thus, the total number
of unidirectional links is 2N + N(N − 1), which is equal to N(N + 1) for all N
nodes. The relative costs of the fully connected topology with respect to the
crossbar is, therefore, the following:

Relative costswitches = 2N(N − 1) / N2 = 2(N − 1) / N = 2(1 − 1/N)

Relative costlinks = N(N + 1) / 2N = (N + 1)/2

As the number of interconnected devices increases, the switch cost of the fully
connected topology is nearly double the crossbar, with both being very high (i.e.,
quadratic growth). Moreover, the fully connected topology always has higher rel-
ative link cost, which grows linearly with the number of nodes. Again, keep in
mind that end node links are different from switch links in their length and pack-
aging, particularly for direct networks, so they usually have different associated
costs. Despite its higher cost, the fully connected topology provides no extra per-
formance benefits over the crossbar as both are nonblocking. Thus, crossbar net-
works are usually used in practice instead of fully connected networks.

A lower-cost alternative to fully connecting all nodes in the network is to
directly connect nodes in sequence along a ring topology, as shown in Figure F.13.
For bidirectional rings, each of the N nodes now uses only 3 × 3 switches and just
two bidirectional network links (shared by neighboring nodes), for a total of N
switches and N bidirectional network links. This linear cost excludes the N injec-
tion-reception bidirectional links required within nodes.

Unlike shared-media networks, rings can allow many simultaneous transfers:
the first node can send to the second while the second sends to the third, and so
on. However, as dedicated links do not exist between logically nonadjacent node
pairs, packets must hop across intermediate nodes before arriving at their destina-
tion, increasing their transport latency. For bidirectional rings, packets can be

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-36 ■ Appendix F Interconnection Networks

transported in either direction, with the shortest path to the destination usually
being the one selected. In this case, packets must travel N/4 network switch hops,
on average, with total switch hop count being one more to account for the local
switch at the packet source node. Along the way, packets may block on network
resources due to other packets contending for the same resources simultaneously.

Fully connected and ring-connected networks delimit the two extremes of
distributed switched topologies, but there are many points of interest in between
for a given set of cost-performance requirements. Generally speaking, the ideal
switched-media topology has cost approaching that of a ring but performance
approaching that of a fully connected topology. Figure F.14 illustrates three pop-
ular direct network topologies commonly used in systems spanning the cost-
performance spectrum. All of them consist of sets of nodes arranged along multi-
ple dimensions with a regular interconnection pattern among nodes that can be
expressed mathematically. In the mesh or grid topology, all the nodes in each
dimension form a linear array. In the torus topology, all the nodes in each dimen-
sion form a ring. Both of these topologies provide direct communication to
neighboring nodes with the aim of reducing the number of hops suffered by pack-
ets in the network with respect to the ring. This is achieved by providing greater
connectivity through additional dimensions, typically no more than three in com-
mercial systems. The hypercube or n-cube topology is a particular case of the
mesh in which only two nodes are interconnected along each dimension, leading
to a number of dimensions, n, that must be large enough to interconnect all N
nodes in the system (i.e., n = log2 N). The hypercube provides better connectivity
than meshes and tori at the expense of higher link and switch costs, in terms of
the number of links and number of ports per node.

Example Compute the cost of interconnecting N devices using a torus topology relative to
doing so using a fat tree topology. Consider separately the relative cost of the
bidirectional links and the relative cost of the switches—which is assumed to
grow quadratically with the number of bidirectional ports. Provide an approxi-
mate expression for the case of switches being similar in size.

Answer Using k × k switches, the fat tree requires 2N/k (logk/2 N) switches, assuming the
last stage (the root) has the same number of switches as each of the other stages.

Figure F.13 A ring network topology, folded to reduce the length of the longest
link. Shaded circles represent switches, and black squares represent end node devices.
The gray rectangle signifies a network node consisting of a switch, a device, and its con-
necting link.

F.4 Network Topology ■ F-37

Given that the number of bidirectional ports in each switch is k (i.e., there are k
input ports and k output ports for a k × k switch) and that the switch cost grows
quadratically with this, total network switch cost is proportional to 2kN logk/2 N.
The link cost is N logk/2 N as each of the logk/2 N stages requires N bidirectional
links, including those between the devices and the fat tree. The torus requires as
many switches as nodes, each of them having 2n + 1 bidirectional ports, includ-
ing the port to attach the communicating device, where n is the number of dimen-
sions. Hence, total switch cost for the torus is (2n + 1)2N. Each of the torus nodes
requires 2n + 1 bidirectional links for the n different dimensions and the connec-
tion for its end node device, but as the dimensional links are shared by two nodes,
the total number of links is (2n/2 + 1)N = (n + 1)N bidirectional links for all N
nodes. Thus, the relative costs of the torus topology with respect to the fat tree are

Relative costswitches = (2n + 1)2N / 2kN logk/2 N = (2n + 1)2 / 2k logk/2 N

Relative costlinks = (n + 1)N / N logk/2 N = (n + 1) / logk/2 N

Figure F.14 Direct network topologies that have appeared in commercial systems,
mostly supercomputers. The shaded circles represent switches, and the black squares
represent end node devices. Switches have many bidirectional network links, but at
least one link goes to the end node device. These basic topologies can be supple-
mented with extra links to improve performance and reliability. For example, connect-
ing the switches on the periphery of the 2D mesh, shown in (a), using the unused ports
on each switch forms a 2D torus, shown in (b). The hypercube topology, shown in (c) is
an n-dimensional interconnect for 2n nodes, requiring n + 1 ports per switch: one for
the n nearest neighbor nodes and one for the end node device.

(a) 2D grid or mesh of 16 nodes (b) 2D torus of 16 nodes

(c) Hypercube of 16 nodes (16 = 24 so n = 4)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-38 ■ Appendix F Interconnection Networks

When switch sizes are similar, 2n + 1 ≅ k. In this case, the relative cost is

Relative costswitches = (2n + 1)2 / 2k logk/2 N = (2n + 1) / 2logk/2 N = k / 2logk/2 N

When the number of switch ports (also called switch degree) is small, tori have
lower cost, particularly when the number of dimensions is low. This is an espe-
cially useful property when N is large. On the other hand, when larger switches
and/or a high number of tori dimensions are used, fat trees are less costly and
preferable. For example, when interconnecting 256 nodes, a fat tree is four times
more expensive in terms of switch and link costs when 4 × 4 switches are used.
This higher cost is compensated for by lower network contention, on average.
The fat tree is comparable in cost to the torus when 8 × 8 switches are used (e.g.,
for interconnecting 256 nodes). For larger switch sizes beyond this, the torus
costs more than the fat tree as each node includes a switch. This cost can be
amortized by connecting multiple end node devices per switch, called bristling.

The topologies depicted in Figure F.14 all have in common the interesting
characteristic of having their network links arranged in several orthogonal dimen-
sions in a regular way. In fact, these topologies all happen to be particular
instances of a larger class of direct network topologies known as k-ary n-cubes,
where k signifies the number of nodes interconnected in each of the n dimen-
sions. The symmetry and regularity of these topologies simplify network imple-
mentation (i.e, packaging) and packet routing as the movement of a packet along
a given network dimension does not modify the number of remaining hops in any
other dimension toward its destination. As we will see in the next section, this
topological property can be readily exploited by simple routing algorithms.

Like their indirect counterpart, direct networks can introduce blocking among
packets that concurrently request the same path, or part of it. The only exception
is fully connected networks. The same way that the number of stages and switch
hops in indirect networks can be reduced by using larger switches, the hop count
in direct networks can likewise be reduced by increasing the number of topologi-
cal dimensions via increased switch degree.

It may seem to be a good idea always to maximize the number of dimensions
for a system of a certain size and switch cost. However, this is not necessarily the
case. Most electronic systems are built within our three-dimensional (3D) world
using planar (2D) packaging technology such as integrated circuit chips, printed
circuit boards, and backplanes. Direct networks with up to three dimensions can
be implemented using relatively short links within this 3D space, independent of
system size. Links in higher-dimensioned networks would require increasingly
longer wires or fiber. This increase in link length with system size is also indica-
tive of MINs, including fat trees, which require either long links within all the
stages or increasingly longer links as more stages are added. As we saw in the
first example given in Section F.2, flow-controlled buffers increase in size
proportionally to link length, thus requiring greater silicon area. This is among
the reasons why the supercomputer with the largest number of compute nodes
existing in 2005, the IBM Blue Gene/L, implemented a 3D torus network for

F.4 Network Topology ■ F-39

interprocessor communication. A fat tree would have required much longer links,
rendering a 64K node system less feasible. This highlights the importance of cor-
rectly selecting the proper network topology that meets system requirements.

Besides link length, other constraints derived from implementing the topol-
ogy may also limit the degree to which a topology can scale. These are available
pin-out and achievable bisection bandwidth. Pin count is a local restriction on the
bandwidth of a chip, printed circuit board, and backplane (or chassis) connector.
In a direct network that integrates processor cores and switches on a single chip
or multichip module, pin bandwidth is used both for interfacing with main mem-
ory and for implementing node links. In this case, limited pin count could reduce
the number of switch ports or bit lines per link. In an indirect network, switches
are implemented separately from processor cores, allowing most of the pins to be
dedicated to communication bandwidth. However, as switches are grouped onto
boards, the aggregate of all input-output links of the switch fabric on a board for
a given topology must not exceed the board connector pin-outs.

The bisection bandwidth is a more global restriction that gives the intercon-
nect density and bandwidth that can be achieved by a given implementation
(packaging) technology. Interconnect density and clock frequency are related to
each other: When wires are packed closer together, crosstalk and parasitic capac-
itance increase, which usually impose a lower clock frequency. For example, the
availability and spacing of metal layers limit wire density and frequency of on-
chip networks, and copper track density limits wire density and frequency on a
printed circuit board. To be implementable, the topology of a network must not
exceed the available bisection bandwidth of the implementation technology.
Most networks implemented to date are constrained more so by pin-out limita-
tions rather than bisection bandwidth, particularly with the recent move to blade-
based systems. Nevertheless, bisection bandwidth largely affects performance.

For a given topology, bisection bandwidth, BWBisection, is calculated by divid-
ing the network into two roughly equal parts—each with half the nodes—and
summing the bandwidth of the links crossing the imaginary dividing line. For
nonsymmetric topologies, bisection bandwidth is the smallest of all pairs of
equal-sized divisions of the network. For a fully connected network, the bisection
bandwidth is proportional to N2/ 2 unidirectional links (or N2/ 4 bidirectional
links), where N is the number of nodes. For a bus, bisection bandwidth is the
bandwidth of just the one shared half-duplex link. For other topologies, values lie
in between these two extremes. Network injection and reception bisection band-
width is commonly used as a reference value, which is N/2 for a network with N
injection and reception links, respectively. Any network topology that provides
this bisection bandwidth is said to have full bisection bandwidth.

Figure F.15 summarizes the number of switches and links required, the corre-
sponding switch size, the maximum and average switch hop distances between
nodes, and the bisection bandwidth in terms of links for several topologies dis-
cussed in this section for interconnecting 64 nodes.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-40 ■ Appendix F Interconnection Networks

Effects of Topology on Network Performance

Switched network topologies require packets to take one or more hops to reach
their destination, where each hop represents the transport of a packet through a
switch and one of its corresponding links. Interestingly, each switch and its corre-
sponding links can be modeled as a black box network connecting more than two
devices, as was described in the previous section, where the term “devices” here
refers to end nodes or other switches. The only differences are that the sending
and receiving overheads are null through the switches, and the routing, switching,
and arbitration delays are not cumulative but, instead, are delays associated with
each switch.

As a consequence of the above, if the average packet has to traverse d hops to
its destination, then TR + TA + TS = (Tr + Ta + Ts) × d, where Tr, Ta, and Ts are the
routing, arbitration, and switching delays, respectively, of a switch. With the
assumption that pipelining over the network is staged on each hop at the packet
level (this assumption will be challenged in the next section), the transmission
delay is also increased by a factor of the number of hops. Finally, with the simplify-
ing assumption that all injection links to the first switch or stage of switches and all
links (including reception links) from the switches have approximately the same
length and delay, the total propagation delay through the network TTotalProp is the
propagation delay through a single link, TLinkProp, multiplied by d + 1, which is the
hop count plus one to account for the injection link. Thus, the best-case lower-
bound expression for average packet latency in the network (i.e., the latency in the
absence of contention) is given by the following expression:

Evaluation category Bus Ring 2D mesh 2D torus Hypercube Fat tree Fully connected

Performance

BWBisection in # links
Max (ave.) hop count

1
1 (1)

2
32 (16)

8
14 (7)

16
8 (4)

32
6 (3)

32
11 (9)

1024
1 (1)

Cost

I/O ports per switch
Number of switches

NA
NA

3
64

5
64

5
64

7
64

4
192

 64
64

Number of net. links
Total number of links

1
1

64
128

112
176

128
192

192
256

320
384

2016
2080

Figure F.15 Performance and cost of several network topologies for 64 nodes. The bus is the standard reference
at unit network link cost and bisection bandwidth. Values are given in terms of bidirectional links and ports. Hop
count includes a switch and its output link, but not the injection link at end nodes. Except for the bus, values are
given for the number of network links and total number of links, including injection/reception links between end
node devices and the network.

Latency Sending overhead TLinkProp d 1+()× Tr Ta Ts+ +() d× Packet size
Bandwidth
-------------------------- d 1+() Receiving overhead+×+ + +=

F.4 Network Topology ■ F-41

Again, the expression on page F-40 assumes that switches are able to pipeline
packet transmission at the packet level.

Following the method presented previously, we can estimate the best-case
upper bound for effective bandwidth by finding the narrowest section of the end-
to-end network pipe. Focusing on the internal network portion of that pipe, net-
work bandwidth is determined by the blocking properties of the topology. Non-
blocking behavior can be achieved only by providing many alternative paths
between every source-destination pair, leading to an aggregate network band-
width that is many times higher than the aggregate network injection or reception
bandwidth. This is quite costly. As this solution usually is prohibitively expen-
sive, most networks have different degrees of blocking, which reduces the utiliza-
tion of the aggregate bandwidth provided by the topology. This, too, is costly but
not in terms of performance.

The amount of blocking in a network depends on its topology and the traffic
distribution. Assuming the bisection bandwidth, BWBisection, of a topology is
implementable (as typically is the case), it can be used as a constant measure of
the maximum degree of blocking in a network. In the ideal case, the network
always achieves full bisection bandwidth irrespective of the traffic behavior, thus
transferring the bottlenecking point to the injection or reception links. However,
as packets destined to locations in the other half of the network necessarily must
cross the bisection links, those links pose as potential bottleneck links—poten-
tially reducing the network bandwidth to below full bisection bandwidth. Fortu-
nately, not all of the traffic must cross the network bisection, allowing more of
the aggregate network bandwidth provided by the topology to be utilized. Also,
network topologies with a higher number of bisection links tend to have less
blocking as more alternative paths are possible to reach destinations and, hence, a
higher percentage of the aggregate network bandwidth can be utilized. If only a
fraction of the traffic must cross the network bisection, as captured by a bisection
traffic fraction parameter γ (0 < γ ≤ 1), the network pipe at the bisection is, effec-
tively, widened by the reciprocal of that fraction, assuming a traffic distribution
that loads the bisection links at least as heavily, on average, as other network
links. This defines the upper limit on achievable network bandwidth, BWNetwork:

Accordingly, the expression for effective bandwidth becomes the following when
network topology is taken into consideration:

It is important to note that γ depends heavily on the traffic patterns generated by
applications. It is a measured quantity or calculated from detailed traffic analysis.

Example A common communication pattern in scientific programs is to have nearest
neighbor elements of a two-dimensional array to communicate in a given direc-
tion. This pattern is sometimes called NEWS communication, standing for north,

BWNetwork

BWBi tionsec

γ
------------------------------=

Effective bandwidth min N BWLinkInjection×
BWBi tionsec

γ
------------------------------ σ N× BWLinkReception×, ,⎝ ⎠

⎛ ⎞=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-42 ■ Appendix F Interconnection Networks

east, west, and south—the directions on a compass. Map an 8 × 8 array of ele-
ments one-to-one onto 64 end node devices interconnected in the following
topologies: bus, ring, 2D mesh, 2D torus, hypercube, fully connected, and fat
tree. How long does it take in the best case for each node to send one message to
its northern neighbor and one to its eastern neighbor, assuming packets are
allowed to use any minimal path provided by the topology? What is the corre-
sponding effective bandwidth? Ignore elements that have no northern or eastern
neighbors. To simplify the analysis, assume that all networks experience unit
packet transport time for each network hop—that is, TLinkProp, Tr, Ta, Ts, and
packet transmission time for each hop sum to one. Also assume the delay through
injection links is included in this unit time, and sending/receiving overhead is
null.

Answer This communication pattern requires us to send 2 × (64 – 8) or 112 total pack-
ets—that is, 56 packets in each of the two communication phases: northward and
eastward. The number of hops suffered by packets depends on the topology.
Communication between sources and destinations are one-to-one, so σ is 100%.
The injection and reception bandwidth cap the effective bandwidth to a maxi-
mum of 64 BW units (even though the communication pattern requires only
56 BW units). However, this maximum may get scaled down by the achievable
network bandwidth, which is determined by the bisection bandwidth and the
fraction of traffic crossing it, γ, both of which are topology dependent. Here are
the various cases:

■ Bus—The mapping of the 8 × 8 array elements to nodes makes no difference
for the bus as all nodes are equally distant at one hop away. However, the 112
transfers are done sequentially, taking a total of 112 time units. The bisection
bandwidth is 1, and γ is 100%. Thus, effective bandwidth is only 1 BW unit.

■ Ring—Assume the first row of the array is mapped to nodes 0 to 7, the sec-
ond row to nodes 8 to 15, and so on. It takes just one time unit for all nodes
simultaneously to send to their eastern neighbor (i.e., a transfer from node i to
node i + 1). With this mapping, the northern neighbor for each node is exactly
eight hops away so it takes eight time units, which also is done in parallel for
all nodes. Total communication time is, therefore, 9 time units. The bisection
bandwidth is 2 bidirectional links (assuming a bidirectional ring), which is
less than the full bisection bandwidth of 32 bidirectional links. For eastward
communication, because only 2 of the eastward 56 packets must cross the
bisection in the worst case, the bisection links do not pose as bottlenecks. For
northward communication, 8 of the 56 packets must cross the two bisection
links, yielding a γ of 10/112 = 8.93%. Thus, the network bandwidth is 2/.0893
= 22.4 BW units. This limits the effective bandwidth at 22.4 BW units as
well, which is less than half the bandwidth required by the communication
pattern.

■ 2D mesh—There are eight rows and eight columns in our grid of 64 nodes,
which is a perfect match to the NEWS communication. It takes a total of just
2 time units for all nodes to send simultaneously to their northern neighbors

F.4 Network Topology ■ F-43

followed by simultaneous communication to their eastern neighbors. The
bisection bandwidth is 8 bidirectional links, which is less than full bisection
bandwidth. However, the perfect matching of this nearest neighbor communi-
cation pattern on this topology allows the maximum effective bandwidth to
be achieved regardless. For eastward communication, 8 of the 56 packets
must cross the bisection in the worst case, which does not exceed the bisec-
tion bandwidth. None of the northward communications crosses the same
network bisection, yielding a γ of 8/112 = 7.14% and a network bandwidth of
8/0.0714 = 112 BW units. The effective bandwidth is, therefore, limited by
the communication pattern at 56 BW units as opposed to the mesh network.

■ 2D torus—Wrap-around links of the torus are not used for this communica-
tion pattern, so the torus has the same mapping and performance as the mesh.

■ Hypercube—Assume elements in each row are mapped to the same location
within the eight 3-cubes comprising the hypercube such that consecutive row
elements are mapped to nodes only one hop away. Northern neighbors can be
similarly mapped to nodes only one hop away in an orthogonal dimension.
Thus, the communication pattern takes just 2 time units. The hypercube pro-
vides full bisection bandwidth of 32 links, but at most only 8 of the 112 pack-
ets must cross the bisection. Thus, effective bandwidth is limited only by the
communication pattern to be 56 BW units, not by the hypercube network.

■ Fully connected—Here, nodes are equally distant at one hop away, regard-
less of the mapping. Parallel transfer of packets in both the northern and
eastern directions would take only 1 time unit if the injection and reception
links could source and sink two packets at a time. As this is not the case, 2
time units are required. Effective bandwidth is limited by the communica-
tion pattern at 56 BW units, so the 1024 network bisection links largely go
underutilized.

■ Fat tree—Assume the same mapping of elements to nodes as is done for the
ring and the use of switches with eight bidirectional ports. This allows simul-
taneous communication to eastern neighbors that takes at most three hops
and, therefore, 3 time units through the three bidirectional stages intercon-
necting the eight nodes in each of the eight groups of nodes. The northern
neighbor for each node resides in the adjacent group of eight nodes, which
requires five hops, or 5 time units. Thus, the total time required on the fat tree
is 8 time units. The fat tree provides full bisection bandwidth, so in the worst
case of half the traffic needing to cross the bisection, an effective bandwidth
of 56 BW units (as limited by the communication pattern and not by the fat-
tree network) is achieved when packets are continually injected.

The above example should not lead one to the wrong conclusion that meshes
are just as good as tori, hypercubes, fat trees, and other networks with higher
bisection bandwidth. A number of simplifications that benefit low-bisection net-
works were assumed to ease the analysis. In practice, packets typically are larger
than the link width and occupy links for many more than just one network cycle.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-44 ■ Appendix F Interconnection Networks

Also, many communication patterns do not map so cleanly to the 2D mesh net-
work topology; instead, usually they are more global and irregular in nature.
These and other factors combine to increase the chances of packets blocking in
low-bisection networks, increasing latency and reducing effective bandwidth.

To put this discussion on topologies into further perspective, Figure F.16 lists
various attributes of topologies used in commercial high-performance computers.

Company

System
[network]
name

Max. num-
ber of nodes
[× # CPUs]

Basic
network
topology

Injection
[reception]
node BW in
MB/sec

of data
bits per
link per
direction

Raw net-
work link BW
per direction
in MB/sec

Raw network
bisection BW
(bidirectional)
in GB/sec

Intel ASCI Red
Paragon

4816 [× 2] 2D mesh
64 × 64

400
[400]

16 bits 400 51.2

IBM ASCI White
SP Power3
[Colony]

512 [× 16] Bidirectional
MIN with 8-port
bidirectional
switches
(typically a
fat tree or
Omega)

500
[500]

8 bits
(+1 bit of
control)

500 256

Intel Thunder
Itanium2
Tiger4
[QsNetII]

1024 [× 4] Fat tree
with 8-port
bidirectional
switches

928
[928]

8 bits (+2
of control
for 4b/5b
encoding)

1333 1365

Cray XT3
[SeaStar]

30,508 [× 1] 3D torus
40 × 32 × 24

3200
[3200]

12 bits 3800 5836.8

Cray X1E 1024 [× 1] 4-way bristled
2D torus (~23 ×
11) with express
links

1600
[1600]

16 bits 1600 51.2

IBM ASC Purple
pSeries 575
[Federation]

>1280 [× 8] Bidirectional
MIN with 8-port
bidirectional
switches
(typically a
fat tree or
Omega)

2000
[2000]

8 bits
(+2 bits of
control for
novel
5b/6b
encoding
scheme)

2000 2560

IBM Blue Gene/L
eServer Sol.
[Torus Net.]

65,536 [× 2] 3D torus
32 × 32 × 64

612.5
[1050]

1 bit
(bit serial)

175 358.4

Figure F.16 Topological characteristics of interconnection networks used in commercial high-performance
machines.

F.5 Network Routing, Arbitration, and Switching ■ F-45

Routing, arbitration, and switching are performed at every switch along a
packet’s path in a switched media network, no matter what the network topology.
Numerous interesting techniques for accomplishing these network functions have
been proposed in the literature. In this section, we focus on describing a represen-
tative set of approaches used in commercial systems for the more commonly used
network topologies. Their impact on performance is also highlighted.

Routing

The routing algorithm defines which network path, or paths, are allowed for each
packet. Ideally, the routing algorithm supplies shortest paths to all packets such
that traffic load is evenly distributed across network links to minimize contention.
However, some paths provided by the network topology may not be allowed in
order to guarantee that all packets can be delivered, no matter what the traffic
behavior. Paths that have an unbounded number of allowed nonminimal hops
from packet sources, for instance, may result in packets never reaching their des-
tinations. This situation is referred to as livelock. Likewise, paths that cause a set
of packets to block in the network forever waiting only for network resources
(i.e., links or associated buffers) held by other packets in the set also prevent
packets from reaching their destinations. This situation is referred to as deadlock.
As deadlock arises due to the finiteness of network resources, the probability of
its occurrence increases with increased network traffic and decreased availability
of network resources. For the network to function properly, the routing algorithm
must guard against this anomaly, which can occur in various forms—for exam-
ple, routing deadlock, request-reply (protocol) deadlock, and fault-induced
(reconfiguration) deadlock, etc. At the same time, for the network to provide the
highest possible performance, the routing algorithm must be efficient—allowing
as many routing options to packets as there are paths provided by the topology, in
the best case.

The simplest way of guarding against livelock is to restrict routing such that
only minimal paths from sources to destinations are allowed or, less restrictively,
only a limited number of nonminimal hops. The strictest form has the added ben-
efit of consuming the minimal amount of network bandwidth, but it prevents
packets from being able to use alternative nonminimal paths in case of contention
or faults along the shortest (minimal) paths.

Deadlock is more difficult to guard against. Two common strategies are used
in practice: avoidance and recovery. In deadlock avoidance, the routing algorithm
restricts the paths allowed by packets to only those that keep the global network
state deadlock-free. A common way of doing this consists of establishing an
ordering between a set of resources—the minimal set necessary to support net-
work full access—and granting those resources to packets in some total or partial
order such that cyclic dependency cannot form on those resources. This allows an

 F.5 Network Routing, Arbitration, and Switching

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-46 ■ Appendix F Interconnection Networks

escape path always to be supplied to packets no matter where they are in the net-
work to avoid entering a deadlock state. In deadlock recovery, resources are
granted to packets without regard for avoiding deadlock. Instead, as deadlock is
possible, some mechanism is used to detect the likely existence of deadlock. If
detected, one or more packets are removed from resources in the deadlock set—
possibly by regressively dropping the packets or by progressively redirecting the
packets onto special deadlock recovery resources. The freed network resources
are then granted to other packets needing them to resolve the deadlock.

Let us consider routing algorithms designed for distributed switched net-
works. Figure F.17(a) illustrates one of many possible deadlocked configurations
for packets within a region of a 2D mesh network. The routing algorithm can
avoid all such deadlocks (and livelocks) by allowing only the use of minimal
paths that cross the network dimensions in some total order. That is, links of a
given dimension are not supplied to a packet by the routing algorithm until no
other links are needed by the packet in all of the preceding dimensions for it to
reach its destination. This is illustrated in Figure F.17(b), where dimensions are
crossed in XY dimension order. All the packets must follow the same order when
traversing dimensions, exiting a dimension only when links are no longer
required in that dimension. This well-known algorithm is referred to as dimen-
sion-order routing (DOR) or e-cube routing in hypercubes. It is used in many
commercial systems built from distributed switched networks and on-chip net-
works. As this routing algorithm always supplies the same path for a given
source-destination pair, it is a deterministic routing algorithm.

Figure F.17 A mesh network with packets routing from sources, si, to destinations, di. (a) Deadlock forms from
packets destined to d1 through d4 blocking on others in the same set that fully occupy their requested buffer
resources one hop away from their destinations. This deadlock cycle causes other packets needing those resources
also to block, like packets from s5 destined to d5 that have reached node s3. (b) Deadlock is avoided using dimension-
order routing. In this case, packets exhaust their routes in the X dimension before turning into the Y dimension in
order to complete their routing.

(a) (b)

s1 s2

d3 d4 d5

d2 d1

s4 s5 s3

s1 s2

d3 d4 d5

d2 d1

s4 s5 s3

F.5 Network Routing, Arbitration, and Switching ■ F-47

Crossing dimensions in order on some minimal set of resources required to
support network full access avoids deadlock in meshes and hypercubes. However,
for distributed switched topologies that have wrap-around links (e.g., rings and
tori), a total ordering on a minimal set of resources within each dimension is also
needed if resources are to be used to full capacity. Alternatively, some empty
resources or bubbles along the dimensions would be required to remain below
full capacity and avoid deadlock. To allow full access, either the physical links
must be duplicated or the logical buffers associated with each link must be dupli-
cated, resulting in physical channels or virtual channels, respectively, on which
the ordering is done. Ordering is not necessary on all network resources to avoid
deadlock—it is needed only on some minimal set required to support network
full access (i.e., some escape resource set). Routing algorithms based on this
technique (called Duato’s protocol) can be defined that allow alternative paths
provided by the topology to be used for a given source-destination pair in addi-
tion to the escape resource set. One of those allowed paths must be selected, pref-
erably the most efficient one. Adapting the path in response to prevailing network
traffic conditions enables the aggregate network bandwidth to be better utilized
and contention to be reduced. Such routing capability is referred to as adaptive
routing and is used in many commercial systems.

Example How many of the possible dimensional turns are eliminated by dimension-order
routing on an n-dimensional mesh network? What is the fewest number of turns
that actually need to be eliminated while still maintaining connectedness and
deadlock freedom? Explain using a 2D mesh network.

Answer The dimension-order routing algorithm eliminates exactly half of the possible
dimensional turns as it is easily proven that all turns from any lower-ordered
dimension into any higher-ordered dimension are allowed, but the converse is not
true. For example, of the eight possible turns in the 2D mesh shown in
Figure F.17, the four turns from X+ to Y+, X+ to Y–, X– to Y+, and X– to Y– are
allowed, where the signs (+ or –) refer to the direction of travel within a dimen-
sion. The four turns from Y+ to X+, Y+ to X–, Y– to X+, and Y– to X– are disal-
lowed turns. The elimination of these turns prevents cycles of any kind from
forming—and, thus, avoids deadlock—while keeping the network connected.
However, it does so at the expense of not allowing any routing adaptivity.

The Turn Model routing algorithm proves that the minimum number of elimi-
nated turns to prevent cycles and maintain connectedness is a quarter of the pos-
sible turns, but the right set of turns must be chosen. Only some particular set of
eliminated turns allow both requirements to be satisfied. With the elimination of
the wrong set of a quarter of the turns, it is possible for combinations of allowed
turns to emulate the eliminated ones (and, thus, form cycles and deadlock) or for
the network not to be connected. For the 2D mesh, for example, it is possible to
eliminate only the two turns ending in the westward direction (i.e., Y+ to X– and
Y– to X–) by requiring packets to start their routes in the westward direction (if
needed) to maintain connectedness. Alternatives to this west-first routing for 2D

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-48 ■ Appendix F Interconnection Networks

meshes are negative-first routing and north-last routing. For these, the extra quar-
ter of turns beyond that supplied by DOR allows for partial adaptivity in routing,
making these adaptive routing algorithms.

Routing algorithms for centralized switched networks can similarly be
defined to avoid deadlocks by restricting the use of resources in some total or par-
tial order. For fat trees, resources can be totally ordered along paths starting from
the input leaf stage upward to the root and then back down to the output leaf
stage. The routing algorithm can allow packets to use resources in increasing par-
tial order, first traversing up the tree until they reach some least common ancestor
(LCA) of the source and destination, and then back down the tree until they reach
their destinations. As there are many least common ancestors for a given destina-
tion, multiple alternative paths are allowed while going up the tree, making the
routing algorithm adaptive. However, only a single deterministic path to the des-
tination is provided by the fat tree topology from a least common ancestor. This
self-routing property is common to many MINs and can be readily exploited: The
switch output port at each stage is given simply by shifts of the destination node
address.

More generally, a tree graph can be mapped onto any topology—whether
direct or indirect—and links between nodes at the same tree level can be allowed
by assigning directions to them, where “up” designates paths moving toward the
tree root and “down” designates paths moving away from the root node. This
allows for generic up*/down* routing to be defined on any topology such that
packets follow paths (possibly adaptively) consisting of zero or more up links fol-
lowed by zero or more down links to their destination. Up/down ordering pre-
vents cycles from forming, avoiding deadlock. This routing technique was used
in Autonet—a self-configuring switched LAN—and in early Myrinet SANs.

Routing algorithms are implemented in practice by a combination of the rout-
ing information placed in the packet header by the source node and the routing
control mechanism incorporated in the switches. For source routing, the entire
routing path is precomputed by the source—possibly by table lookup—and
placed in the packet header. This usually consists of the output port or ports sup-
plied for each switch along the predetermined path from the source to the desti-
nation, which can be stripped off by the routing control mechanism at each
switch. An additional bit field can be included in the header to signify whether
adaptive routing is allowed (i.e., that any one of the supplied output ports can be
used). For distributed routing, the routing information usually consists of the des-
tination address. This is used by the routing control mechanism in each switch
along the path to determine the next output port, either by computing it using a
finite-state machine or by looking it up in a local routing table (i.e., forwarding
table). Compared to distributed routing, source routing simplifies the routing
control mechanism within the network switches, but it requires more routing bits
in the header of each packet, thus increasing the header overhead.

F.5 Network Routing, Arbitration, and Switching ■ F-49

Arbitration

The arbitration algorithm determines when requested network paths are avail-
able for packets. Ideally, arbiters maximize the matching of free network
resources and packets requesting those resources. At the switch level, arbiters
maximize the matching of free output ports and packets located in switch input
ports requesting those output ports. When all requests cannot be granted simulta-
neously, switch arbiters resolve conflicts by granting output ports to packets in a
fair way such that starvation of requested resources by packets is prevented. This
could happen to packets in shorter queues if a serve-longest-queue (SLQ) scheme
is used. For packets having the same priority level, simple round-robin (RR) or
age-based schemes are sufficiently fair and straightforward to implement.

Arbitration can be distributed to avoid centralized bottlenecks. A straightfor-
ward technique consists of two phases: a request phase and a grant phase. Let us
assume that each switch input port has an associated queue to hold incoming
packets and that each switch output port has an associated local arbiter imple-
menting a round-robin strategy. Figure F.18(a) shows a possible set of requests
for a four-port switch. In the request phase, packets at the head of each input port
queue send a single request to the arbiters corresponding to the output ports
requested by them. Then, each output port arbiter independently arbitrates among
the requests it receives, selecting only one. In the grant phase, one of the requests
to each arbiter is granted the requested output port. When two packets from dif-
ferent input ports request the same output port, only one receives a grant, as
shown in the figure. As a consequence, some output port bandwidth remains
unused even though all input queues have packets to transmit.

The simple two-phase technique can be improved by allowing several simul-
taneous requests to be made by each input port, possibly coming from different
virtual channels or from multiple adaptive routing options. These requests are

Figure F.18 Two arbitration techniques. (a) Two-phased arbitration in which two of
the four input ports are granted requested output ports. (b) Three-phased arbitration in
which three of the four input ports are successful in gaining the requested output
ports, resulting in higher switch utilization.

(a) (b)

Request Grant AcknowledgmentRequest Grant

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-50 ■ Appendix F Interconnection Networks

sent to different output port arbiters. By submitting more than one request per
input port, the probability of matching increases. Now, arbitration requires three
phases: request, grant, and acknowledgment. Figure F.18(b) shows the case in
which up to two requests can be made by packets at each input port. In the
request phase, requests are submitted to output port arbiters, and these arbiters
select one of the received requests, as is done for the two-phase arbiter. Likewise,
in the grant phase, the selected requests are granted to the corresponding request-
ers. Taking into account that an input port can submit more than one request, it
may receive more than one grant. Thus, it selects among possibly multiple grants
using some arbitration strategy such as round-robin. The selected grants are con-
firmed to the corresponding output port arbiters in the acknowledgment phase.

As can be seen in Figure F.18(b), it could happen that an input port that sub-
mits several requests does not receive any grants, while some of the requested
ports remain free. Because of this, a second arbitration iteration can improve the
probability of matching. In this iteration, only the requests corresponding to non-
matched input and output ports are submitted. Iterative arbiters with multiple
requests per input port are able to increase the utilization of switch output ports
and, thus, the network link bandwidth. However, this comes at the expense of
additional arbiter complexity and increased arbitration delay, which could
increase the router clock cycle time if it is on the critical path.

Switching

The switching technique defines how connections are established in the network.
Ideally, connections between network resources are established or “switched in”
only for as long as they are actually needed and exactly at the point that they are
ready and needed to be used, considering both time and space. This allows effi-
cient use of available network bandwidth by competing traffic flows and minimal
latency. Connections at each hop along the topological path allowed by the rout-
ing algorithm and granted by the arbitration algorithm can be established in three
basic ways: prior to packet arrival using circuit switching, upon receipt of the
entire packet using store-and-forward packet switching, or upon receipt of only
portions of the packet with unit size no smaller than that of the packet header
using cut-through packet switching.

Circuit switching establishes a circuit a priori such that network bandwidth is
allocated for packet transmissions along an entire source-destination path. It is
possible to pipeline packet transmission across the circuit using staging at each
hop along the path, a technique known as pipelined circuit switching. As routing,
arbitration, and switching are performed only once for one or more packets, rout-
ing bits are not needed in the header of packets, thus reducing latency and over-
head. This can be very efficient when information is continuously transmitted
between devices for the same circuit setup. However, as network bandwidth is
removed from the shared pool and preallocated regardless of whether sources are
in need of consuming it or not, circuit switching can be very inefficient and
highly wasteful of bandwidth.

F.5 Network Routing, Arbitration, and Switching ■ F-51

Packet switching enables network bandwidth to be shared and used more effi-
ciently when packets are transmitted intermittently, which is the more common
case. Packet switching comes in two main varieties—store-and-forward and cut-
through switching, both of which allow network link bandwidth to be multi-
plexed on packet-sized or smaller units of information. This better enables band-
width sharing by packets originating from different sources. The finer granularity
of sharing, however, increases the overhead needed to perform switching: Rout-
ing, arbitration, and switching must be performed for every packet, and routing
and flow control bits are required for every packet if flow control is used.

Store-and-forward packet switching establishes connections such that a
packet is forwarded to the next hop in sequence along its source-destination path
only after the entire packet is first stored (staged) at the receiving switch. As
packets are completely stored at every switch before being transmitted, links are
completely decoupled, allowing full link bandwidth utilization even if links have
very different bandwidths. This property is very important in WANs, but the price
to pay is packet latency; the total routing, arbitration, and switching delay is mul-
tiplicative with the number of hops, as we have seen in Section F.4 when analyz-
ing performance under this assumption.

Cut-through packet switching establishes connections such that a packet can
“cut through” switches in a pipelined manner once the header portion of the
packet (or equivalent amount of payload trailing the header) is staged at receiving
switches. That is, the rest of the packet need not arrive before switching in the
granted resources. This allows routing, arbitration, and switching delay to be
additive with the number of hops rather than multiplicative to reduce total packet
latency. Cut-through comes in two varieties, the main differences being the size
of the unit of information on which flow control is applied and, consequently, the
buffer requirements at switches. Virtual cut-through switching implements flow
control at the packet level, whereas wormhole switching implements it on flow
units, or flits, which are smaller than the maximum packet size but usually at least
as large as the packet header. Since wormhole switches need to be capable of
storing only a small portion of a packet, packets that block in the network may
span several switches. This can cause other packets to block on the links they
occupy, leading to premature network saturation and reduced effective bandwidth
unless some centralized buffer is used within the switch to store them—a tech-
nique called buffered wormhole switching. As chips can implement relatively
large buffers in current technology, virtual cut-through is the more commonly
used switching technique. However, wormhole switching may still be preferred
in OCNs designed to minimize silicon resources.

Premature network saturation caused by wormhole switching can be miti-
gated by allowing several packets to share the physical bandwidth of a link simul-
taneously via time-multiplexed switching at the flit level. This requires physical
links to have a set of virtual channels (i.e., the logical buffers mentioned previ-
ously) at each end, into which packets are switched. Before, we saw how virtual
channels can be used to decouple physical link bandwidth from buffered packets
in such a way as to avoid deadlock. Now, virtual channels are multiplexed in such

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-52 ■ Appendix F Interconnection Networks

a way that bandwidth is switched in and used by flits of a packet to advance even
though the packet may share some links in common with a blocked packet ahead.
This, again, allows network bandwidth to be used more efficiently, which, in turn,
reduces the average packet latency.

Impact on Network Performance

Routing, arbitration, and switching can impact the packet latency of a loaded net-
work by reducing the contention delay experienced by packets. For an unloaded
network that has no contention, the algorithms used to perform routing and arbi-
tration have no impact on latency other than to determine the amount of delay
incurred in implementing those functions at switches—typically, the pin-to-pin
latency of a switch chip is several tens of nanoseconds. The only change to the
best-case packet latency expression given in the previous section comes from the
switching technique. Store-and-forward packet switching was assumed before in
which transmission delay for the entire packet is incurred on all d hops plus at the
source node. For cut-through packet switching, transmission delay is pipelined
across the network links comprising the packet’s path at the granularity of the
packet header instead of the entire packet. Thus, this delay component is reduced,
as shown in the following lower-bound expression for packet latency:

The effective bandwidth is impacted by how efficiently routing, arbitration,
and switching allow network bandwidth to be used. The routing algorithm can
distribute traffic more evenly across a loaded network to increase the utilization
of the aggregate bandwidth provided by the topology—particularly, by the bisec-
tion links. The arbitration algorithm can maximize the number of switch output
ports that accept packets, which also increases the utilization of network band-
width. The switching technique can increase the degree of resource sharing by
packets, which further increases bandwidth utilization. These combine to affect
network bandwidth, BWNetwork, by an efficiency factor, ρ, where :

The efficiency factor, ρ, is difficult to calculate or to quantify by means other
than simulation. Nevertheless, with this parameter we can estimate the best-case
upper-bound effective bandwidth by using the following expression that takes
into account the effects of routing, arbitration, and switching:

We note that ρ also depends on how well the network handles the traffic gener-
ated by applications. For instance, ρ could be higher for circuit switching than for
cut-through switching if large streams of packets are continually transmitted
between a source-destination pair, whereas the converse could be true if packets
are transmitted intermittently.

Latency Sending overhead TLinkProp d 1+()× Tr Ta Ts+ +() d× Packet d Header×()+()
Bandwidth

-- Receiving overhead+ + + +=

0 ρ 1≤<

BWNetwork ρ
BWBi tionsec

γ
------------------------------×=

Effective bandwidth min N BWLinkInjection× ρ
BWBi tionsec

γ
------------------------------× σ N× BWLinkReception×, ,⎝ ⎠

⎛ ⎞=

F.5 Network Routing, Arbitration, and Switching ■ F-53

Example Compare the performance of deterministic routing versus adaptive routing for a
3D torus network interconnecting 4096 nodes. Do so by plotting latency versus
applied load and throughput versus applied load. Also compare the efficiency of
the best and worst of these networks. Assume that virtual cut-through switching,
three-phase arbitration, and virtual channels are implemented. Consider sepa-
rately the cases for two and four virtual channels, respectively. Assume that one
of the virtual channels uses bubble flow control in dimension order so as to avoid
deadlock; the other virtual channels are used either in dimension order (for deter-
ministic routing) or minimally along shortest paths (for adaptive routing), as is
done in the IBM Blue Gene/L torus network.

Answer It is very difficult to compute analytically the performance of routing algorithms
given that their behavior depends on several network design parameters with
complex interdependences among them. As a consequence, designers typically
resort to cycle-accurate simulators to evaluate performance. One way to evaluate
the effect of a certain design decision is to run sets of simulations over a range of
network loads, each time modifying one of the design parameters of interest
while keeping the remaining ones fixed. The use of synthetic traffic loads is quite
frequent in these evaluations as it allows the network to stabilize at a certain
working point and for behavior to be analyzed in detail. This is the method we
use here (alternatively, trace-driven or execution-driven simulation can be used).

Figure F.19 shows the typical interconnection network performance plots. On
the left, average packet latency (expressed in network cycles) is plotted as a func-
tion of applied load (traffic generation rate) for the two routing algorithms with
two and four virtual channels each; on the right, throughput (traffic delivery rate)
is similarly plotted. Applied load is normalized by dividing it by the number of
nodes in the network (i.e., bytes per cycle per node). Simulations are run under
the assumption of uniformly distributed traffic consisting of 256-byte packets,
where flits are byte sized. Routing, arbitration, and switching delays are assumed
to sum to 1 network cycle per hop while the time-of-flight delay over each link is
assumed to be 10 cycles. Link bandwidth is 1 byte per cycle, thus providing
results that are independent of network clock frequency.

As can be seen, the plots within each graph have similar characteristic shapes,
but they have different values. For the latency graph, all start at the no-load
latency as predicted by the latency expression given above, then slightly increase
with traffic load as contention for network resources increases. At higher applied
loads, latency increases exponentially, and the network approaches its saturation
point as it is unable to absorb the applied load, = causing packets to queue up at
their source nodes awaiting injection. In these simulations, the queues keep grow-
ing over time, making latency tend toward infinity. However, in practice, queues
reach their capacity and trigger the application to stall further packet generation,
or the application throttles itself waiting for acknowledgments/responses to out-
standing packets. Nevertheless, latency grows at a slower rate for adaptive rout-
ing as alternative paths are provided to packets along congested resources.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-54 ■ Appendix F Interconnection Networks

For this same reason, adaptive routing allows the network to reach a higher
peak throughput for the same number of virtual channels as compared to deter-
ministic routing. At nonsaturation loads, throughput increases fairly linearly with
applied load. When the network reaches its saturation point, however, it is unable
to deliver traffic at the same rate at which traffic is generated. The saturation
point, therefore, indicates the maximum achievable or “peak” throughput, which
would be no more than that predicted by the effective bandwidth expression
given above. Beyond saturation, throughput tends to drop as a consequence of
massive head-of-line blocking across the network (as will be explained further in
Section F.6), very much like cars tend to advance more slowly at rush hour. This
is an important region of the throughput graph as it shows how significant of a
performance drop the routing algorithm can cause if congestion management
techniques (discussed briefly in Section F.7) are not used effectively. In this case,
adaptive routing has more of a performance drop after saturation than determinis-
tic routing, as measured by the postsaturation sustained throughput.

For both routing algorithms, more virtual channels (i.e., four) give packets a
greater ability to pass over blocked packets ahead, allowing for a higher peak
throughput as compared to fewer virtual channels (i.e., two). For adaptive routing

Figure F.19 Deterministic routing is compared against adaptive routing, both with either two or four virtual
channels, assuming uniformly distributed traffic on a 4K node 3D torus network with virtual cut-through switch-
ing and bubble flow control to avoid deadlock. (a) Average latency is plotted versus applied load, and (b) through-
put is plotted versus applied load (the upper grayish plots show peak throughput, and the lower black plots show
sustained throughput). Simulation data were collected by P. Gilabert and J. Flich at the Universidad Politècnica de
València, Spain (2006).

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

10,000

8000

6000

4000

0.01

2000

0

Applied load (bytes/cycle/node)

(a)

0.410.330.250.170.09
T

hr
ou

gh
pu

t (
by

te
s/

cy
cl

e/
no

de
)

0.4

0.3

0.2

0.1

0.01
0

Applied load (bytes/cycle/node)

(b)

0.970.49 0.61 0.73 0.850.25 0.370.13

Deterministic DOR, 2 VC
Deterministic DOR, 4 VC
Adaptive routing, 2 VC
Adaptive routing, 4 VC

Adaptive routing, 4 VC
Deterministic DOR, 4 VC
Adaptive routing, 2 VC
Deterministic DOR, 2 VC

F.6 Switch Microarchitecture ■ F-55

with four virtual channels, the peak throughput of 0.43 bytes/cycle/node is near
the maximum of 0.5 bytes/cycle/node that can be obtained with 100% efficiency
(i.e., ρ = 100%), assuming there is enough injection and reception bandwidth to
make the network bisection the bottlenecking point. In that case, the network
bandwidth is simply 100% times the network bisection bandwidth (BWBisection)
divided by the fraction of traffic crossing the bisection (γ), as given by the expres-
sion above. Taking into account that the bisection splits the torus into two equally
sized halves, γ is equal to 0.5 for uniform traffic as only half the injected traffic is
destined to a node at the other side of the bisection. The BWBisection for a 4096-
node 3D torus network is 16 × 16 × 4 unidirectional links times the link band-
width (i.e., 1 byte/cycle). If we normalize the bisection bandwidth by dividing it
by the number of nodes (as we did with network bandwidth), the BWBisection is
0.25 bytes/cycle/node. Dividing this by γ gives the ideal maximally obtainable
network bandwidth of 0.5 bytes/cycle/node.

We can find the efficiency factor, ρ, of the simulated network simply by
dividing the measured peak throughput by the ideal throughput. The efficiency
factor for the network with fully adaptive routing and four virtual channels is
0.43/(0.25 /0.5) = 86%, whereas for the network with deterministic routing and
two virtual channels it is 0.37/(0.25/0.5) = 74%. Besides the 12% difference in
efficiency between the two, another 14% gain in efficiency might be obtained
with even better routing, arbitration, switching, and virtual channel designs.

To put this discussion on routing, arbitration, and switching in perspective,
Figure F.20 lists the techniques used in SANs designed for commercial high-per-
formance computers. In addition to being applied to the SANs as shown in the
figure, the issues discussed in this section also apply to other interconnect
domains: from OCNs to WANs.

Network switches implement the routing, arbitration, and switching functions of
switched-media networks. Switches also implement buffer management mecha-
nisms and, in the case of lossless networks, the associated flow control. For some
networks, switches also implement part of the network management functions
that explore, configure, and reconfigure the network topology in response to
boot-up and failures. Here, we reveal the internal structure of network switches
by describing a basic switch microarchitecture and various alternatives suitable
for different routing, arbitration, and switching techniques presented previously.

Basic Switch Microarchitecture

The internal data path of a switch provides connectivity among the input and out-
put ports. Although a shared bus or a multiported central memory could be used,
these solutions are insufficient or too expensive, respectively, when the required

 F.6 Switch Microarchitecture

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-56 ■ Appendix F Interconnection Networks

aggregate switch bandwidth is high. Most high-performance switches implement
an internal crossbar to provide nonblocking connectivity within the switch, thus
allowing concurrent connections between multiple input-output port pairs. Buff-
ering of blocked packets can be done using first in, first out (FIFO) or circular
queues, which can be implemented as dynamically allocatable multi-queues
(DAMQs) in static RAM to provide high capacity and flexibility. These queues

Company

System
[network]
name

Max. num-
ber of nodes
[× # CPUs]

Basic
network
topology

Switch
queuing
(buffers)

Network
routing
algorithm

Switch
arbitration
technique

Network
switching
technique

Intel ASCI Red
Paragon

4510 [× 2] 2D mesh
(64 × 64)

Input
buffered
(1 flit)

Distributed
dimension-
order routing

2-phased RR,
distributed
across switch

Wormhole
with no virtual
channels

IBM ASCI White
SP Power3
[Colony]

512 [× 16] Bidirectional
MIN with
8-port
bidirectional
switches
(typically a
fat tree or
Omega)

Input and
central
buffer
with
output
queuing
(8-way
speedup)

Source-based
LCA adaptive,
shortest-path
routing, and
table-based
multicast
routing

2-phased RR,
centralized
and distributed
at outputs for
bypass paths

Buffered
wormhole and
virtual cut-
through for
multicasting,
no virtual
channels

Intel Thunder
Itanium2
Tiger4
[QsNetII]

1024 [× 4] Fat tree
with 8-port
bidirectional
switches

Input
buffered

Source-based
LCA adaptive,
shortest-path
routing

2-phased RR,
priority, aging,
distributed at
output ports

Wormhole
with 2 virtual
channels

Cray XT3
[SeaStar]

30,508 [× 1] 3D torus
(40 × 32 × 24)

Input
with
staging
output

Distributed
table-based
dimension-
order routing

2-phased RR,
distributed at
output ports

Virtual cut-
through with
4 virtual
channels

Cray X1E 1024 [× 1] 4-way bristled
2D torus
(~23 × 11)
with express
links

Input
with
virtual
output
queuing

Distributed
table-based
dimension-
order routing

2-phased
wavefront
(pipelined)
global arbiter

Virtual cut-
through with
4 virtual
channels

IBM ASC Purple
pSeries 575
[Federation]

>1280 [× 8] Bidirectional
MIN with
8-port
bidirectional
switches
(typically a
fat tree or
Omega)

Input and
central
buffer
with
output
queuing
(8-way
speedup)

Source and
distributed
table-based
LCA adaptive,
shortest-path
routing, and
multicast

2-phased RR,
centralized
and distributed
at outputs for
bypass paths

Buffered
wormhole and
virtual cut-
through for
multicasting
with 8 virtual
channels

IBM Blue Gene/L
eServer
Solution
[Torus Net.]

65,536 [× 2] 3D torus
(32 × 32 × 64)

Input-
output
buffered

Distributed,
adaptive with
bubble escape
virtual channel

2-phased SLQ,
distributed at
input and
output

Virtual cut-
through with
4 virtual
channels

Figure F.20 Routing, arbitration, and switching characteristics of interconnections networks in commercial
machines.

F.6 Switch Microarchitecture ■ F-57

can be placed at input ports (i.e., input buffered switch), output ports (i.e., output
buffered switch), centrally within the switch (i.e., centrally buffered switch), or at
both the input and output ports of the switch (i.e., input-output-buffered switch).
Figure F.21 shows a block diagram of an input-output-buffered switch.

Routing can be implemented using a finite-state machine or forwarding table
within the routing control unit of switches. In the former case, the routing infor-
mation given in the packet header is processed by a finite-state machine that deter-
mines the allowed switch output port (or ports if routing is adaptive), according to
the routing algorithm. Portions of the routing information in the header are usually
stripped off or modified by the routing control unit after use to simplify processing
at the next switch along the path. When routing is implemented using forwarding
tables, the routing information given in the packet header is used as an address to
access a forwarding table entry that contains the allowed switch output port(s) pro-
vided by the routing algorithm. Forwarding tables must be preloaded into the
switches at the outset of network operation. Hybrid approaches also exist where
the forwarding table is reduced to a small set of routing bits and combined with a
small logic block. Those routing bits are used by the routing control unit to know
what paths are allowed and decide the output ports the packets need to take. The
goal with those approaches is to build flexible yet compact routing control units,
eliminating the area and power wastage of a large forwarding table and thus being
suitable for OCNs. The routing control unit is usually implemented as a central-
ized resource, although it could be replicated at every input port so as not to
become a bottleneck. Routing is done only once for every packet, and packets typ-
ically are large enough to take several cycles to flow through the switch, so a cen-
tralized routing control unit rarely becomes a bottleneck. Figure F.21 assumes a
centralized routing control unit within the switch.

Figure F.21 Basic microarchitectural components of an input-output-buffered switch.

Link
control

Physical
channel

Input
buffers

D
em

ux

M
ux

C
ro

ss
ba

r

D
em

ux
D

em
uxLink

control

Physical
channel

Link
control

Link
control

Input
buffers

D
em

ux

Routing control and
arbitration unit

M
ux

Physical
channel

Physical
channel

Output
buffers

M
ux

Output
buffers

M
ux

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-58 ■ Appendix F Interconnection Networks

Arbitration is required when two or more packets concurrently request the
same output port, as described in the previous section. Switch arbitration can be
implemented in a centralized or distributed way. In the former case, all of the
requests and status information are transmitted to the central switch arbitration
unit; in the latter case, the arbiter is distributed across the switch, usually among
the input and/or output ports. Arbitration may be performed multiple times on
packets, and there may be multiple queues associated with each input port,
increasing the number of arbitration requests that must be processed. Thus, many
implementations use a hierarchical arbitration approach, where arbitration is first
performed locally at every input port to select just one request among the corre-
sponding packets and queues, and later arbitration is performed globally to pro-
cess the requests made by each of the local input port arbiters. Figure F.21
assumes a centralized arbitration unit within the switch.

The basic switch microarchitecture depicted in Figure F.21 functions in the
following way. When a packet starts to arrive at a switch input port, the link con-
troller decodes the incoming signal and generates a sequence of bits, possibly
deserializing data to adapt them to the width of the internal data path if different
from the external link width. Information is also extracted from the packet header
or link control signals to determine the queue to which the packet should be buff-
ered. As the packet is being received and buffered (or after the entire packet has
been buffered, depending on the switching technique), the header is sent to the
routing unit. This unit supplies a request for one or more output ports to the arbi-
tration unit. Arbitration for the requested output port succeeds if the port is free
and has enough space to buffer the entire packet or flit, depending on the switch-
ing technique. If wormhole switching with virtual channels is implemented, addi-
tional arbitration and allocation steps may be required for the transmission of
each individual flit. Once the resources are allocated, the packet is transferred
across the internal crossbar to the corresponding output buffer and link if no other
packets are ahead of it and the link is free. Link-level flow control implemented
by the link controller prevents input queue overflow at the neighboring switch on
the other end of the link. If virtual channel switching is implemented, several
packets may be time-multiplexed across the link on a flit-by-flit basis. As the var-
ious input and output ports operate independently, several incoming packets may
be processed concurrently in the absence of contention.

Buffer Organizations

As mentioned above, queues can be located at the switch input, output, or both
sides. Output-buffered switches have the advantage of completely eliminating
head-of-line blocking. Head-of-line (HOL) blocking occurs when two or more
packets are buffered in a queue, and a blocked packet at the head of the queue
blocks other packets in the queue that would otherwise be able to advance if they
were at the queue head. This cannot occur in output-buffered switches as all the
packets in a given queue have the same status; they require the same output port.
However, it may be the case that all the switch input ports simultaneously receive
a packet for the same output port. As there are no buffers at the input side, output
buffers must be able to store all those incoming packets at the same time. This

F.6 Switch Microarchitecture ■ F-59

requires implementing output queues with an internal switch speedup of k. That
is, output queues must have a write bandwidth k times the link bandwidth, where
k is the number of switch ports. This oftentimes is too expensive. Hence, this
solution by itself has rarely been implemented in lossless networks. As the prob-
ability of concurrently receiving many packets for the same output port is usually
small, commercial systems that use output-buffered switches typically implement
only moderate switch speedup, dropping packets on rare buffer overflow.

Switches with buffers on the input side are able to receive packets without hav-
ing any switch speedup; however, HOL blocking can occur within input port
queues, as illustrated in Figure F.22(a). This can reduce switch output port utiliza-
tion to less than 60% even when packet destinations are uniformly distributed. As
shown in Figure F.22(b), the use of virtual channels (two in this case) can mitigate
HOL blocking but does not eliminate it. A more effective solution is to organize
the input queues as virtual output queues (VOQs), shown in Figure F.22(c). With

Figure F.22 (a) Head-of-line blocking in an input buffer, (b) the use of two virtual channels to reduce HOL block-
ing, and (c) the use of virtual output queuing to eliminate HOL blocking within a switch. The shaded input buffer
is the one to which the crossbar is currently allocated. This assumes each input port has only one access port to the
switch’s internal crossbar.

Input buffers

Crossbar

(a)

Input port i

Output port X+

D
e

m
uxY– Y+Y+ X– X+

X+

Output port X–

Output port Y+

Output port Y–

Input buffers

Crossbar

(b)

Input port i

Output port X+

X– X+

Y+Y– Y+

X+

Output port X–

Output port Y+

Output port Y–

D
e

m
ux

Input buffers

Crossbar

(c)

Input port i

Output port X+

X+

X–

Y+Y+

Y–

X+

Output port X–

Output port Y+

Output port Y–

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-60 ■ Appendix F Interconnection Networks

this, each input port implements as many queues as there are output ports, thus
providing separate buffers for packets destined to different output ports. This is a
popular technique widely used in ATM switches and IP routers. The main draw-
backs of VOQs, however, are cost and lack of scalability: The number of VOQs
grows quadratically with switch ports. Moreover, although VOQs eliminate HOL
blocking within a switch, HOL blocking occurring at the network level end-to-end
is not solved. Of course, it is possible to design a switch with VOQ support at the
network level also—that is, to implement as many queues per switch input port as
there are output ports across the entire network—but this is extremely expensive.
An alternative is to dynamically assign only a fraction of the queues to store
(cache) separately only those packets headed for congested destinations.

Combined input-output-buffered switches minimize HOL blocking when
there is sufficient buffer space at the output side to buffer packets, and they mini-
mize the switch speedup required due to buffers being at the input side. This solu-
tion has the further benefit of decoupling packet transmission through the internal
crossbar of the switch from transmission through the external links. This is espe-
cially useful for cut-through switching implementations that use virtual channels,
where flit transmissions are time-multiplexed over the links. Many designs used
in commercial systems implement input-output-buffered switches.

Routing Algorithm Implementation

It is important to distinguish between the routing algorithm and its implementa-
tion. While the routing algorithm describes the rules to forward packets across
the network and affects packet latency and network throughput, its implementa-
tion affects the delay suffered by packets when reaching a node, the required sili-
con area, and the power consumption associated with the routing computation.
Several techniques have been proposed to pre-compute the routing algorithm
and/or hide the routing computation delay. However, significantly less effort has
been devoted to reduce silicon area and power consumption without significantly
affecting routing flexibility. Both issues have become very important, particularly
for OCNs. Many existing designs address these issues by implementing relatively
simple routing algorithms, but more sophisticated routing algorithms will likely
be needed in the future to deal with increasing manufacturing defects, process
variability, and other complications arising from continued technology scaling, as
discussed briefly below.

As mentioned in a previous section, depending on where the routing algo-
rithm is computed, two basic forms of routing exist: source and distributed rout-
ing. In source routing, the complexity of implementation is moved to the end
nodes where paths need to be stored in tables, and the path for a given packet is
selected based on the destination end node identifier. In distributed routing, how-
ever, the complexity is moved to the switches where, at each hop along the path
of a packet, a selection of the output port to take is performed. In distributed rout-
ing, two basic implementations exist. The first one consists of using a logic block

F.6 Switch Microarchitecture ■ F-61

that implements a fixed routing algorithm for a particular topology. The most
common example of such an implementation is dimension-order routing, where
dimensions are offset in an established order. Alternatively, distributed routing
can be implemented with forwarding tables, where each entry encodes the output
port to be used for a particular destination. Therefore, in the worst case, as many
entries as destination nodes are required.

Both methods for implementing distributed routing have their benefits and
drawbacks. Logic-based routing features a very short computation delay, usually
requires a small silicon area, and has low power consumption. However, logic-
based routing needs to be designed with a specific topology in mind and, there-
fore, is restricted to that topology. Table-based distributed routing is quite flexible
and supports any topology and routing algorithm. Simply, tables need to be filled
with the proper contents based on the applied routing algorithm (e.g., the up*/
down* routing algorithm can be defined for any irregular topology). However,
the down side of table-based distributed routing is its non-negligible area and
power cost. Also, scalability is problematic in table-based solutions as, in the
worst case, a system with N end nodes (and switches) requires as many as N
tables each with N entries, thus having quadratic cost.

Depending on the network domain, one solution is more suitable than the
other. For instance, in SANs, it is usual to find table-based solutions as is the case
with InfiniBand. In other environments, like OCNs, table-based implementations
are avoided due to the aforementioned costs in power and silicon area. In such
environments, it is more advisable to rely on logic-based implementations.
Herein lies some of the challenges OCN designers face: ever continuing technol-
ogy scaling through device miniaturization leads to increases in the number of
manufacturing defects, higher failure rates (either transient or permanent), signif-
icant process variations (transistors behaving differently from design specs), the
need for different clock frequency and voltage domains, and tight power and
energy budgets. All of these challenges translate to the network needing support
for heterogeneity. Different—possibly irregular—regions of the network will be
created owing to failed components, powered down switches and links, disabled
components (due to unacceptable variations in performance) and so on. Hence,
heterogeneous systems may emerge from a homogeneous design. In this frame-
work, it is important to efficiently implement routing algorithms designed to pro-
vide enough flexibility to address these new challenges.

A well-known solution for providing a certain degree of flexibility while
being much more compact than traditional table-based approaches is interval
routing [Leeuwen 1987], where a range of destinations is defined for each output
port. Although this approach is not flexible enough, it provides a clue on how to
address emerging challenges. A more recent approach provides a plausible
implementation design point that lies between logic-based implementation (effi-
ciency) and table-based implementation (flexibility). Logic-Based Distributed
Routing (LBDR) is a hybrid approach that takes as a reference a regular 2D mesh
but allows an irregular network to be derived from it due to changes in topology
induced by manufacturing defects, failures, and other anomalies. Due to the
faulty, disabled, and powered-down components, regularity is compromised and
the dimension-order routing algorithm can no longer be used. To support such

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-62 ■ Appendix F Interconnection Networks

topologies, LBDR defines a set of configuration bits at each switch. Four connec-
tivity bits are used at each switch to indicate the connectivity of the switch to the
neighbor switches in the topology. Thus, one connectivity bit per port is used.
Those connectivity bits are used, for instance, to disable an output port leading to
a faulty component. Additionally, eight routing bits are used, two per output port,
to define the available routing options. The value of the routing bits is set at
power-on and is computed from the routing algorithm to be implemented in the
network. Basically, when a routing bit is set, it indicates that a packet can leave
the switch through the associated output port and is allowed to perform a certain
turn at the next switch. In this respect, LBDR is similar to interval routing, but it
defines geographical areas instead of ranges of destinations. Figure F.23 shows
an example where a topology-agnostic routing algorithm is implemented with
LBDR on an irregular topology. The figure shows the computed configuration
bits.

The connectivity and routing bits are used to implement the routing algo-
rithm. For that purpose, a small set of logic gates are used in combination with
the configuration bits. Basically, the LBDR approach takes as a reference the ini-
tial topology (a 2D mesh), and makes a decision based on the current coordinates
of the router, the coordinates of the destination router, and the configuration bits.
Figure F.24 shows the required logic, and Figure F.25 shows an example of where
a packet is forwarded from its source to its destination with the use of the config-
uration bits. As can be noticed, routing restrictions are enforced by preventing the
use of the west port at switch 10.

LBDR represents a method for efficient routing implementation in OCNs.
This mechanism has been recently extended to support non-minimal paths, col-
lective communication operations, and traffic isolation. All of these improve-
ments have been made while maintaining a compact and efficient implementation
with the use of a small set of configuration bits. A detailed description of LBDR
and its extensions, and the current research on OCNs can be found in Flich
[2010].

Figure F.23 Shown is an example of an irregular network that uses LBDR to implement the routing algorithm.
For each router, connectivity and routing bits are defined.

0 1 2 3

7654

8 9

13

Bidirectional routing restriction

0
1

1
1
1

1
1
1
1
1
1
- - - -
- - - -

- - - -
- - - -

- -
- -

- -
- -

- -
- -

- -
- -

- -
- -

- -- -
- -- -

- -
- -
- -

1
1

1

1

1
1
1

1
1
1

1
1
1

1

1

1
1

1
1
1
1
1
1 1 1

1 1
1 1
1 1

1 1
1 1
1 1
1 1

1
1
1
11

1 1
11

1 1
1

1 1 1
1
1
1

1
1
1
11

1 1
11

1

1
1

1
1

1
1 1
1 1
1 1
1 1
1 1
1 1
1
1

1
1
1

11
1 1

1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1

2
3
4
5
6
7
8
9

10
11
12
13
14
15

Router Cn Ce Cw Cs Rne Rnw Ren Res Rwn Rws Rse Rsw
0 0

0

0
0

0
0

0

0
0
0

0

0

0
0
0

0
0

0

0

0

0

0

0
0
0

12

F.6 Switch Microarchitecture ■ F-63

Pipelining the Switch Microarchitecture

Performance can be enhanced by pipelining the switch microarchitecture. Pipe-
lined processing of packets in a switch has similarities with pipelined execution
of instructions in a vector processor. In a vector pipeline, a single instruction indi-
cates what operation to apply to all the vector elements executed in a pipelined
way. Similarly, in a switch pipeline, a single packet header indicates how to pro-
cess all of the internal data path physical transfer units (or phits) of a packet,
which are processed in a pipelined fashion. Also, as packets at different input
ports are independent of each other, they can be processed in parallel similar to
the way multiple independent instructions or threads of pipelined instructions can
be executed in parallel.

The switch microarchitecture can be pipelined by analyzing the basic func-
tions performed within the switch and organizing them into several stages.
Figure F.26 shows a block diagram of a five-stage pipelined organization for the

Figure F.24 LBDR logic at each input port of the router.

Figure F.25 Example of routing a message from Router 14 to Router 5 using LBDR at each router.

Comparator

Xdst

Xcurr
Ycurr

Ydst

E = Ce·(E'·!N'·!S' + E'·N'·Ren + E'·S'·Res)
W = Cw·(W'·!N'·!S' + W'·N'·Rwn + W'·S'·Rws)
S = Cs·(S'·!E'·!W' + S'·E'·Rse + S'·W'·Rsw)
L = !N'·!E'·!W'·!S'

W'

W'

E'
N'

E'
N'

N'

Rne

Cn

N

Rnw

1st stage

N'
E'
W'
S'

2nd stage

0 1 2 3

7654

8 9 10 11

15141312

MessageBidirectional routing restriction

0 1 2 3

7654

8 9 10 11

15141312

0 1 2 3

7654

8 9 10 11

15141312

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-64 ■ Appendix F Interconnection Networks

basic switch microarchitecture given in Figure F.21, assuming cut-through switch-
ing and the use of a forwarding table to implement routing. After receiving the
header portion of the packet in the first stage, the routing information (i.e., destina-
tion address) is used in the second stage to look up the allowed routing option(s) in
the forwarding table. Concurrent with this, other portions of the packet are
received and buffered in the input port queue at the first stage. Arbitration is per-
formed in the third stage. The crossbar is configured to allocate the granted output
port for the packet in the fourth stage, and the packet header is buffered in the
switch output port and ready for transmission over the external link in the fifth
stage. Note that the second and third stages are used only by the packet header; the
payload and trailer portions of the packet use only three of the stages—those used
for data flow-thru once the internal data path of the switch is set up.

A virtual channel switch usually requires an additional stage for virtual chan-
nel allocation. Moreover, arbitration is required for every flit before transmission

Figure F.26 Pipelined version of the basic input-output-buffered switch. The notation in the figure is as follows: IB
is the input link control and buffer stage, RC is the route computation stage, SA is the crossbar switch arbitration
stage, ST is the crossbar switch traversal stage, and OB is the output buffer and link control stage. Packet fragments
(flits) coming after the header remain in the IB stage until the header is processed and the crossbar switch resources
are provided.

Link
control

Physical
channel

Input
buffers

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

D
em

ux

M
ux

C
ro

ss
ba

r

D
em

ux

Arbit ration
unit Crossbar

control
Output
port #

Forwarding
table

Header
fill

D
em

uxLink
control

Physical
channel

Packet header

Payload fragment

Payload fragment

Payload fragment

IB

Link
control

Link
control

Input
buffers

D
em

ux

Routing
control unit

M
ux

Physical
channel

Physical
channel

Output
buffers

M
ux

Output
buffers

M
ux

RC SA ST OB

IB IB IB ST OB

IB IB IB ST OB

IB IB IB ST OB

F.7 Practical Issues for Commercial Interconnection Networks ■ F-65

through the crossbar. Finally, depending on the complexity of the routing and
arbitration algorithms, several clock cycles may be required for these operations.

Other Switch Microarchitecture Enhancements

As mentioned earlier, internal switch speedup is sometimes implemented to
increase switch output port utilization. This speedup is usually implemented by
increasing the clock frequency and/or the internal data path width (i.e., phit size)
of the switch. An alternative solution consists of implementing several parallel
data paths from each input port’s set of queues to the output ports. One way of
doing this is by increasing the number of crossbar input ports. When implement-
ing several physical queues per input port, this can be achieved by devoting a sep-
arate crossbar port to each input queue. For example, the IBM Blue Gene/L
implements two crossbar access ports and two read ports per switch input port.

Another way of implementing parallel data paths between input and output
ports is to move the buffers to the crossbar crosspoints. This switch architecture
is usually referred to as a buffered crossbar switch. A buffered crossbar provides
independent data paths from each input port to the different output ports, thus
making it possible to send up to k packets at a time from a given input port to k
different output ports. By implementing independent crosspoint memories for
each input-output port pair, HOL blocking is eliminated at the switch level.
Moreover, arbitration is significantly simpler than in other switch architectures.
Effectively, each output port can receive packets from only a disjoint subset of
the crosspoint memories. Thus, a completely independent arbiter can be imple-
mented at each switch output port, each of those arbiters being very simple.

A buffered crossbar would be the ideal switch architecture if it were not so
expensive. The number of crosspoint memories increases quadratically with the
number of switch ports, dramatically increasing its cost and reducing its scalabil-
ity with respect to the basic switch architecture. In addition, each crosspoint
memory must be large enough to efficiently implement link-level flow control.
To reduce cost, most designers prefer input-buffered or combined input-output-
buffered switches enhanced with some of the mechanisms described previously.

There are practical issues in addition to the technical issues described thus far
that are important considerations for interconnection networks within certain
domains. We mention a few of these below.

Connectivity

The type and number of devices that communicate and their communication
requirements affect the complexity of the interconnection network and its proto-
cols. The protocols must target the largest network size and handle the types of
anomalous systemwide events that might occur. Among some of the issues are

 F.7 Practical Issues for Commercial Interconnection
Networks

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-66 ■ Appendix F Interconnection Networks

the following: How lightweight should the network interface hardware/software
be? Should it attach to the memory network or the I/O network? Should it support
cache coherence? If the operating system must get involved for every network
transaction, the sending and receiving overhead becomes quite large. If the net-
work interface attaches to the I/O network (PCI-Express or HyperTransport inter-
connect), the injection and reception bandwidth will be limited to that of the I/O
network. This is the case for the Cray XT3 SeaStar, Intel Thunder Tiger 4
QsNetII, and many other supercomputer and cluster networks. To support coher-
ence, the sender may have to flush the cache before each send, and the receiver
may have to flush its cache before each receive to prevent the stale-data problem.
Such flushes further increase sending and receiving overhead, often causing the
network interface to be the network bottleneck.

Computer systems typically have a multiplicity of interconnects with differ-
ent functions and cost-performance objectives. For example, processor-memory
interconnects usually provide higher bandwidth and lower latency than I/O inter-
connects and are more likely to support cache coherence, but they are less likely
to follow or become standards. Personal computers typically have a processor-
memory interconnect and an I/O interconnect (e.g., PCI-X 2.0, PCIe or Hyper-
Transport) designed to connect both fast and slow devices (e.g., USB 2.0, Gigabit
Ethernet LAN, Firewire 800). The Blue Gene/L supercomputer uses five inter-
connection networks, only one of which is the 3D torus used for most of the
interprocessor application traffic. The others include a tree-based collective com-
munication network for broadcast and multicast; a tree-based barrier network for
combining results (scatter, gather); a control network for diagnostics, debugging,
and initialization; and a Gigabit Ethernet network for I/O between the nodes and
disk. The University of Texas at Austin’s TRIPS Edge processor has eight spe-
cialized on-chip networks—some with bidirectional channels as wide as 128 bits
and some with 168 bits in each direction—to interconnect the 106 heterogeneous
tiles composing the two processor cores with L2 on-chip cache. It also has a chip-
to-chip switched network to interconnect multiple chips in a multiprocessor con-
figuration. Two of the on-chip networks are switched networks: One is used for
operand transport and the other is used for on-chip memory communication. The
others are essentially fan-out trees or recombination dedicated link networks used
for status and control. The portion of chip area allocated to the interconnect is
substantial, with five of the seven metal layers used for global network wiring.

Standardization: Cross-Company Interoperability

Standards are useful in many places in computer design, including interconnec-
tion networks. Advantages of successful standards include low cost and stability.
The customer has many vendors to choose from, which keeps price close to cost
due to competition. It makes the viability of the interconnection independent of
the stability of a single company. Components designed for a standard intercon-
nection may also have a larger market, and this higher volume can reduce the
vendors’ costs, further benefiting the customer. Finally, a standard allows many
companies to build products with interfaces to the standard, so the customer does

F.7 Practical Issues for Commercial Interconnection Networks ■ F-67

not have to wait for a single company to develop interfaces to all the products of
interest.

One drawback of standards is the time it takes for committees and special-
interest groups to agree on the definition of standards, which is a problem when
technology is changing rapidly. Another problem is when to standardize: On the
one hand, designers would like to have a standard before anything is built; on the
other hand, it would be better if something were built before standardization to
avoid legislating useless features or omitting important ones. When done too
early, it is often done entirely by committee, which is like asking all of the chefs
in France to prepare a single dish of food—masterpieces are rarely served. Stan-
dards can also suppress innovation at that level, since standards fix the inter-
faces—at least until the next version of the standards surface, which can be every
few years or longer. More often, we are seeing consortiums of companies getting
together to define and agree on technology that serve as “de facto” industry stan-
dards. This was the case for InfiniBand.

LANs and WANs use standards and interoperate effectively. WANs involve
many types of companies and must connect to many brands of computers, so it is
difficult to imagine a proprietary WAN ever being successful. The ubiquitous
nature of the Ethernet shows the popularity of standards for LANs as well as
WANs, and it seems unlikely that many customers would tie the viability of their
LAN to the stability of a single company. Some SANs are standardized such as
Fibre Channel, but most are proprietary. OCNs for the most part are proprietary
designs, with a few gaining widespread commercial use in system-on-chip (SoC)
applications, such as IBM’s CoreConnect and ARM’s AMBA.

Congestion Management

Congestion arises when too many packets try to use the same link or set of links.
This leads to a situation in which the bandwidth required exceeds the bandwidth
supplied. Congestion by itself does not degrade network performance: simply,
the congested links are running at their maximum capacity. Performance degra-
dation occurs in the presence of HOL blocking where, as a consequence of pack-
ets going to noncongested destinations getting blocked by packets going to
congested destinations, some link bandwidth is wasted and network throughput
drops, as illustrated in the example given at the end of Section F.4. Congestion
control refers to schemes that reduce traffic when the collective traffic of all
nodes is too large for the network to handle.

One advantage of a circuit-switched network is that, once a circuit is estab-
lished, it ensures that there is sufficient bandwidth to deliver all the information
sent along that circuit. Interconnection bandwidth is reserved as circuits are
established, and if the network is full, no more circuits can be established. Other
switching techniques generally do not reserve interconnect bandwidth in
advance, so the interconnection network can become clogged with too many
packets. Just as with poor rush-hour commuters, a traffic jam of packets increases
packet latency and, in extreme cases, fewer packets per second get delivered by

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-68 ■ Appendix F Interconnection Networks

the interconnect. In order to handle congestion in packet-switched networks,
some form of congestion management must be implemented. The two kinds of
mechanisms used are those that control congestion and those that eliminate the
performance degradation introduced by congestion.

There are three basic schemes used for congestion control in interconnection
networks, each with its own weaknesses: packet discarding, flow control, and
choke packets. The simplest scheme is packet discarding, which we discussed
briefly in Section F.2. If a packet arrives at a switch and there is no room in the
buffer, the packet is discarded. This scheme relies on higher-level software that
handles errors in transmission to resend lost packets. This leads to significant
bandwidth wastage due to (re)transmitted packets that are later discarded and,
therefore, is typically used only in lossy networks like the Internet.

The second scheme relies on flow control, also discussed previously. When
buffers become full, link-level flow control provides feedback that prevents the
transmission of additional packets. This backpressure feedback rapidly propa-
gates backward until it reaches the sender(s) of the packets producing congestion,
forcing a reduction in the injection rate of packets into the network. The main
drawbacks of this scheme are that sources become aware of congestion too late
when the network is already congested, and nothing is done to alleviate conges-
tion. Backpressure flow control is common in lossless networks like SANs used
in supercomputers and enterprise systems.

A more elaborate way of using flow control is by implementing it directly
between the sender and the receiver end nodes, generically called end-to-end flow
control. Windowing is one version of end-to-end credit-based flow control where
the window size should be large enough to efficiently pipeline packets through
the network. The goal of the window is to limit the number of unacknowledged
packets, thus bounding the contribution of each source to congestion, should it
arise. The TCP protocol uses a sliding window. Note that end-to-end flow control
describes the interaction between just two nodes of the interconnection network,
not the entire interconnection network between all end nodes. Hence, flow con-
trol helps congestion control, but it is not a global solution.

 Choke packets are used in the third scheme, which is built upon the premise
that traffic injection should be throttled only when congestion exists across the
network. The idea is for each switch to see how busy it is and to enter into a
warning state when it passes a threshold. Each packet received by a switch in the
warning state is sent back to the source via a choke packet that includes the
intended destination. The source is expected to reduce traffic to that destination
by a fixed percentage. Since it likely will have already sent other packets along
that path, the source node waits for all the packets in transit to be returned before
acting on the choke packets. In this scheme, congestion is controlled by reducing
the packet injection rate until traffic reduces, just as metering lights that guard
on-ramps control the rate of cars entering a freeway. This scheme works effi-
ciently when the feedback delay is short. When congestion notification takes a
long time, usually due to long time of flight, this congestion control scheme may
become unstable—reacting too slowly or producing oscillations in packet injec-
tion rate, both of which lead to poor network bandwidth utilization.

F.7 Practical Issues for Commercial Interconnection Networks ■ F-69

An alternative to congestion control consists of eliminating the negative con-
sequences of congestion. This can be done by eliminating HOL blocking at every
switch in the network as discussed previously. Virtual output queues can be used
for this purpose; however, it would be necessary to implement as many queues at
every switch input port as devices attached to the network. This solution is very
expensive, and not scalable at all. Fortunately, it is possible to achieve good
results by dynamically assigning a few set-aside queues to store only the con-
gested packets that travel through some hot-spot regions of the network, very
much like caches are intended to store only the more frequently accessed mem-
ory locations. This strategy is referred to as regional explicit congestion notifica-
tion (RECN).

Fault Tolerance

The probability of system failures increases as transistor integration density and
the number of devices in the system increases. Consequently, system reliability
and availability have become major concerns and will be even more important in
future systems with the proliferation of interconnected devices. A practical issue
arises, therefore, as to whether or not the interconnection network relies on all the
devices being operational in order for the network to work properly. Since soft-
ware failures are generally much more frequent than hardware failures, another
question surfaces as to whether a software crash on a single device can prevent
the rest of the devices from communicating. Although some hardware designers
try to build fault-free networks, in practice, it is only a question of the rate of fail-
ures, not whether they can be prevented. Thus, the communication subsystem
must have mechanisms for dealing with faults when—not if—they occur.

There are two main kinds of failure in an interconnection network: transient
and permanent. Transient failures are usually produced by electromagnetic inter-
ference and can be detected and corrected using the techniques described in Sec-
tion F.2. Oftentimes, these can be dealt with simply by retransmitting the packet
either at the link level or end-to-end. Permanent failures occur when some com-
ponent stops working within specifications. Typically, these are produced by
overheating, overbiasing, overuse, aging, and so on and cannot be recovered from
simply by retransmitting packets with the help of some higher-layer software pro-
tocol. Either an alternative physical path must exist in the network and be sup-
plied by the routing algorithm to circumvent the fault or the network will be
crippled, unable to deliver packets whose only paths are through faulty resources.

Three major categories of techniques are used to deal with permanent fail-
ures: resource sparing, fault-tolerant routing, and network reconfiguration. In the
first technique, faulty resources are switched off or bypassed, and some spare
resources are switched in to replace the faulty ones. As an example, the
ServerNet interconnection network is designed with two identical switch fabrics,
only one of which is usable at any given time. In case of failure in one fabric, the
other is used. This technique can also be implemented without switching in spare
resources, leading to a degraded mode of operation after a failure. The IBM Blue

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-70 ■ Appendix F Interconnection Networks

Gene/L supercomputer, for instance, has the facility to bypass failed network
resources while retaining its base topological structure and routing algorithm.
The main drawback of this technique is the relatively large number of healthy
resources (e.g., midplane node boards) that may need to be switched off after a
failure in order to retain the base topological structure (e.g., a 3D torus).

Fault-tolerant routing, on the other hand, takes advantage of the multiple
paths already existing in the network topology to route messages in the presence
of failures without requiring spare resources. Alternative paths for each sup-
ported fault combination are identified at design time and incorporated into the
routing algorithm. When a fault is detected, a suitable alternative path is used.
The main difficulty when using this technique is guaranteeing that the routing
algorithm will remain deadlock-free when using the alternative paths, given that
arbitrary fault patterns may occur. This is especially difficult in direct networks
whose regularity can be compromised by the fault pattern. The Cray T3E is an
example system that successfully applies this technique on its 3D torus direct net-
work. There are many examples of this technique in systems using indirect net-
works, such as with the bidirectional multistage networks in the ASCI White and
ASC Purple. Those networks provide multiple minimal paths between end nodes
and, inherently, have no routing deadlock problems (see Section F.5). In these
networks, alternative paths are selected at the source node in case of failure.

Network reconfiguration is yet another, more general technique to handle vol-
untary and involuntary changes in the network topology due either to failures or to
some other cause. In order for the network to be reconfigured, the nonfaulty por-
tions of the topology must first be discovered, followed by computation of the new
routing tables and distribution of the routing tables to the corresponding network
locations (i.e., switches and/or end node devices). Network reconfiguration requires
the use of programmable switches and/or network interfaces, depending on how
routing is performed. It may also make use of generic routing algorithms (e.g., up*/
down* routing) that can be configured for all the possible network topologies that
may result after faults. This strategy relieves the designer from having to supply
alternative paths for each possible fault combination at design time. Programmable
network components provide a high degree of flexibility but at the expense of
higher cost and latency. Most standard and proprietary interconnection networks
for clusters and SANs—including Myrinet, Quadrics, InfiniBand, Advanced
Switching, and Fibre Channel—incorporate software for (re)configuring the net-
work routing in accordance with the prevailing topology.

Another practical issue ties to node failure tolerance. If an interconnection
network can survive a failure, can it also continue operation while a new node is
added to or removed from the network, usually referred to as hot swapping? If
not, each addition or removal of a new node disables the interconnection net-
work, which is impractical for WANs and LANs and is usually intolerable for
most SANs. Online system expansion requires hot swapping, so most networks
allow for it. Hot swapping is usually supported by implementing dynamic net-
work reconfiguration, in which the network is reconfigured without having to
stop user traffic. The main difficulty with this is guaranteeing deadlock-free rout-
ing while routing tables for switches and/or end node devices are dynamically

F.7 Practical Issues for Commercial Interconnection Networks ■ F-71

and asynchronously updated as more than one routing algorithm may be alive
(and, perhaps, clashing) in the network at the same time. Most WANs solve this
problem by dropping packets whenever required, but dynamic network reconfig-
uration is much more complex in lossless networks. Several theories and practi-
cal techniques have recently been developed to address this problem efficiently.

Example Figure F.27 shows the number of failures of 58 desktop computers on a local area
network for a period of just over one year. Suppose that one local area network is
based on a network that requires all machines to be operational for the intercon-
nection network to send data; if a node crashes, it cannot accept messages, so the
interconnection becomes choked with data waiting to be delivered. An alternative
is the traditional local area network, which can operate in the presence of node
failures; the interconnection simply discards messages for a node that decides not
to accept them. Assuming that you need to have both your workstation and the
connecting LAN to get your work done, how much greater are your chances of
being prevented from getting your work done using the failure-intolerant LAN
versus traditional LANs? Assume the downtime for a crash is less than 30 min-
utes. Calculate using the one-hour intervals from this figure.

Answer Assuming the numbers for Figure F.27, the percentage of hours that you can’t get
your work done using the failure-intolerant network is

The percentage of hours that you can’t get your work done using the traditional
network is just the time your workstation has crashed. If these failures are equally
distributed among workstations, the percentage is

Hence, you are more than 30 times more likely to be prevented from getting your
work done with the failure-intolerant LAN than with the traditional LAN,
according to the failure statistics in Figure F.27. Stated alternatively, the person
responsible for maintaining the LAN would receive a 30-fold increase in phone
calls from irate users!

Intervals with failures
Total intervals

--
Total intervals – Intervals with no failures

Total intervals
---=

8974 8605–
8974

369

8974
------------ 4.1%= ==

Failures/Machines
Total intervals

--
654/58
8974

11.28
8974
------------- 0.13%===

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-72 ■ Appendix F Interconnection Networks

Failed machines
per time interval

One-hour intervals
with number of failed

machines in
first column

Total failures per
one-hour interval

One-day intervals
with number of failed

machines in first column
Total failures per
one-day interval

0 8605 0 184 0

1 264 264 105 105

2 50 100 35 70

3 25 75 11 33

4 10 40 6 24

5 7 35 9 45

6 3 18 6 36

7 1 7 4 28

8 1 8 4 32

9 2 18 2 18

10 2 20

11 1 11 2 22

12 1 12

17 1 17

20 1 20

21 1 21 1 21

31 1 31

38 1 38

58 1 58

Total 8974 654 373 573

Figure F.27 Measurement of reboots of 58 DECstation 5000s running Ultrix over a 373-day period. These
reboots are distributed into time intervals of one hour and one day. The first column sorts the intervals according to
the number of machines that failed in that interval. The next two columns concern one-hour intervals, and the last
two columns concern one-day intervals. The second and fourth columns show the number of intervals for each num-
ber of failed machines. The third and fifth columns are just the product of the number of failed machines and the
number of intervals. For example, there were 50 occurrences of one-hour intervals with 2 failed machines, for a total
of 100 failed machines, and there were 35 days with 2 failed machines, for a total of 70 failures. As we would expect,
the number of failures per interval changes with the size of the interval. For example, the day with 31 failures might
include one hour with 11 failures and one hour with 20 failures. The last row shows the total number of each column;
the number of failures doesn’t agree because multiple reboots of the same machine in the same interval do not
result in separate entries. (Randy Wang of the University of California–Berkeley collected these data.)

F.8 Examples of Interconnection Networks ■ F-73

To further provide mass to the concepts described in the previous sections, we
look at five example networks from the four interconnection network domains
considered in this appendix. In addition to one for each of the OCN, LAN, and
WAN areas, we look at two examples from the SAN area: one for system area
networks and one for system/storage area networks. The first two examples are
proprietary networks used in high-performance systems; the latter three examples
are network standards widely used in commercial systems.

On-Chip Network: Intel Single-Chip Cloud Computer

With continued increases in transistor integration as predicted by Moore’s law,
processor designers are under the gun to find ways of combating chip-crossing
wire delay and other problems associated with deep submicron technology scal-
ing. Multicore microarchitectures have gained popularity, given their advantages
of simplicity, modularity, and ability to exploit parallelism beyond that which can
be achieved through aggressive pipelining and multiple instruction/data issuing
on a single core. No matter whether the processor consists of a single core or
multiple cores, higher and higher demands are being placed on intrachip commu-
nication bandwidth to keep pace—not to mention interchip bandwidth. This has
spurred a great amount of interest in OCN designs that efficiently support com-
munication of instructions, register operands, memory, and I/O data within and
between processor cores both on and off the chip. Here we focus on one such on-
chip network: The Intel Single-chip Cloud Computer prototype.

The Single-chip Cloud Computer (SCC) is a prototype chip multiprocessor
with 48 Intel IA-32 architecture cores. Cores are laid out (see Figure F.28) on a
network with a 2D mesh topology (6 × 4). The network connects 24 tiles, 4 on-
die memory controllers, a voltage regulator controller (VRC), and an external
system interface controller (SIF). In each tile two cores are connected to a router.
The four memory controllers are connected at the boundaries of the mesh, two on
each side, while the VRC and SIF controllers are connected at the bottom border
of the mesh.

Each memory controller can address two DDR3 DIMMS, each up to 8 GB of
memory, thus resulting in a maximum of 64 GB of memory. The VRC controller
allows any core or the system interface to adjust the voltage in any of the six pre-
defined regions configuring the network (two 2-tile regions). The clock can also
be adjusted at a finer granularity with each tile having its own operating fre-
quency. These regions can be turned off or scaled down for large power savings.
This method allows full application control of the power state of the cores.
Indeed, applications have an API available to define the voltage and the fre-
quency of each region. The SIF controller is used to communicate the network
from outside the chip.

Each of the tiles includes two processor cores (P54C-based IA) with associ-
ated L1 16 KB data cache and 16 KB instruction cache and a 256 KB L2 cache

 F.8 Examples of Interconnection Networks

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-74 ■ Appendix F Interconnection Networks

(with the associated controller), a 5-port router, traffic generator (for testing pur-
poses only), a mesh interface unit (MIU) handling all message passing requests,
memory look-up tables (with configuration registers to set the mapping of a
core’s physical addresses to the extended memory map of the system), a mes-
sage-passing buffer, and circuitry for the clock generation and synchronization
for crossing asynchronous boundaries.

Focusing on the OCN, the MIU unit is in charge of interfacing the cores to
the network, including the packetization and de-packetization of large mes-
sages; command translation and address decoding/lookup; link-level flow con-
trol and credit management; and arbiter decisions following a round-robin
scheme. A credit-based flow control mechanism is used together with virtual
cut-through switching (thus making it necessary to split long messages into
packets). The routers are connected in a 2D mesh layout, each on its own power
supply and clock source. Links connecting routers have 16B + 2B side bands
running at 2 GHz. Zero-load latency is set to 4 cycles, including link traversal.
Eight virtual channels are used for performance (6 VCs) and protocol-level
deadlock handling (2 VCs). A message-level arbitration is implemented by a
wrapped wave-front arbiter. The dimension-order XY routing algorithm is used
and pre-computation of the output port is performed at every router.

Besides the tiles having regions defined for voltage and frequency, the net-
work (made of routers and links) has its own single region. Thus, all the network
components run at the same speed and use the same power supply. An asynchro-
nous clock transition is required between the router and the tile.

Figure F.28 SCC Top-level architecture. From Howard, J. et al., IEEE International Solid-State Circuits Conference
Digest of Technical Papers, pp. 58–59.

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

R
Tile

MC

(x, y) = (0, 3)

(x, y) = (5, 0)

(x, y) = (5, 3)
D

IM
M

MC

MC

MC

D
IM

M

D
IM

M
D

IM
M

VRC System interface

System
FPGA

PCIe

SCC die

Management console PC

(x,
 y)

= (0, 0
)

(x,
 y)

= (3, 0
)

F.8 Examples of Interconnection Networks ■ F-75

One of the distinctive features of the SCC architecture is the support for a
messaging-based communication protocol rather than hardware cache-coherent
memory for inter-core communication. Message passing buffers are located on
every router and APIs are provided to take full control of MPI structures. Cache
coherency can be implemented by software.

The SCC router represents a significant improvement over the Teraflops pro-
cessor chip in the implementation of a 2D on-chip interconnect. Contrasted with
the 2D mesh implemented in the Teraflops processor, this implementation is

Institution and
processor
[network]
name

Year
built

Number of
network
ports [cores
or tiles +
other ports]

Basic
network
topology

of data
bits per link
per
direction

Link
bandwidth
[link clock
speed]

Routing;
arbitration;
switching

of chip
metal layers;
flow control;
virtual
channels

MIT Raw
[General
Dynamic
Network]

2002 16 ports
[16 tiles]

2D mesh
(4 × 4)

32 bits 0.9 GB/sec
[225 MHz,
clocked at
proc speed]

XY DOR with
request-reply
deadlock
recovery; RR
arbitration;
wormhole

6 layers;
credit-
based;
no virtual
channels

IBM Power5 2004 7 ports
[2 PE cores +
5 other ports]

Crossbar 256 bits Inst
fetch; 64 bits
for stores;
256 bits LDs

[1.9 GHz,
clocked at
proc speed]

Shortest-path;
nonblocking;
circuit switch

7 layers;
handshaking;
no virtual
channels

U.T. Austin
TRIP Edge
[Operand
Network]

2005 25 ports
[25 execution
unit tiles]

2D mesh
(5 × 5)

110 bits 5.86 GB/sec
[533 MHz
clock scaled
by 80%]

YX DOR;
distributed RR
arbitration;
wormhole

7 layers;
on/off flow
control;
no virtual
channels

U.T. Austin
TRIP Edge [On-
Chip Network]

2005 40 ports
[16 L2 tiles +
24 network
interface tile]

2D mesh
(10 × 4)

128 bits 6.8 GB/sec
[533 MHz
clock scaled
by 80%]

YX DOR;
distributed RR
arbitration;
VCT switched

7 layers;
credit-based
flow control;
4 virtual
channels

Sony, IBM,
Toshiba
Cell BE
[Element
Interconnect
Bus]

2005 12 ports
[1 PPE and
8 SPEs + 3
other ports
for memory,
I/O interface]

Ring
(4 total, 2 in
each
direction)

128 bits data
(+ 16 bits
tag)

25.6 GB/sec
[1.6 GHz,
clocked at
half the proc
speed]

Shortest-path;
tree-based RR
arbitration
(centralized);
pipelined
circuit switch

8 layers;
credit-based
flow control;
no virtual
channels

Sun UltraSPARC
T1 processor

2005 Up to 13
ports [8 PE
cores + 4 L2
banks + 1
shared I/O]

Crossbar 128 bits both
for the 8
cores and the
4 L2 banks

19.2 GB/sec
[1.2 GHz,
clocked at
proc speed]

Shortest-path;
age-based
arbitration;
VCT switched

9 layers;
handshaking;
no virtual
channels

Figure F.29 Characteristics of on-chip networks implemented in recent research and commercial processors.
Some processors implement multiple on-chip networks (not all shown)—for example, two in the MIT Raw and eight
in the TRIP Edge.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-76 ■ Appendix F Interconnection Networks

tuned for a wider data path in a multiprocessor interconnect and is more latency,
area, and power optimized for such a width. It targets a lower 2-GHz frequency
of operation compared to the 5 GHz of its predecessor Teraflops processor, yet
with a higher-performance interconnect architecture.

System Area Network: IBM Blue Gene/L 3D Torus Network

The IBM BlueGene/L was the largest-scaled, highest-performing computer sys-
tem in the world in 2005, according to www.top500.org. With 65,536 dual-
processor compute nodes and 1024 I/O nodes, this 360 TFLOPS (peak) super-
computer has a system footprint of approximately 2500 square feet. Both proces-
sors at each node can be used for computation and can handle their own
communication protocol processing in virtual mode or, alternatively, one of the
processors can be used for computation and the other for network interface pro-
cessing. Packets range in size from 32 bytes to a maximum of 256 bytes, and 8
bytes are used for the header. The header includes routing, virtual channel, link-
level flow control, packet size, and other such information, along with 1 byte for
CRC to protect the header. Three bytes are used for CRC at the packet level, and
1 byte serves as a valid indicator.

The main interconnection network is a proprietary 32 × 32 × 64 3D torus SAN
that interconnects all 64K nodes. Each node switch has six 350 MB/sec bidirec-
tional links to neighboring torus nodes, an injection bandwidth of 612.5 MB/sec
from the two node processors, and a reception bandwidth of 1050 MB/sec to the
two node processors. The reception bandwidth from the network equals the
inbound bandwidth across all switch ports, which prevents reception links from
bottlenecking network performance. Multiple packets can be sunk concurrently
at each destination node because of the higher reception link bandwidth.

Two nodes are implemented on a 2 × 1 × 1 compute card, 16 compute cards
and 2 I/O cards are implemented on a 4 × 4 × 2 node board, 16 node boards are
implemented on an 8 × 8 × 8 midplane, and 2 midplanes form a 1024-node rack
with physical dimensions of 0.9 × 0.9 × 1.9 cubic meters. Links have a maximum
physical length of 8.6 meters, thus enabling efficient link-level flow control with
reasonably low buffering requirements. Low latency is achieved by implementing
virtual cut-through switching, distributing arbitration at switch input and output
ports, and precomputing the current routing path at the previous switch using a
finite-state machine so that part of the routing delay is removed from the critical
path in switches. High effective bandwidth is achieved using input-buffered
switches with dual read ports, virtual cut-through switching with four virtual
channels, and fully adaptive deadlock-free routing based on bubble flow control.

A key feature in networks of this size is fault tolerance. Failure rate is reduced
by using a relatively low link clock frequency of 700 MHz (same as processor
clock) on which both edges of the clock are used (i.e., 1.4 Gbps or 175 MB/sec
transfer rate is supported for each bit-serial network link in each direction), but
failures may still occur in the network. In case of failure, the midplane node
boards containing the fault(s) are switched off and bypassed to isolate the fault,
and computation resumes from the last checkpoint. Bypassing is done using sep-
arate bypass switch boards associated with each midplane that are additional to

F.8 Examples of Interconnection Networks ■ F-77

the set of torus node boards. Each bypass switch board can be configured to con-
nect either to the corresponding links in the midplane node boards or to the next
bypass board, effectively removing the corresponding set of midplane node
boards. Although the number of processing nodes is reduced to some degree in
some network dimensions, the machine retains its topological structure and rout-
ing algorithm.

Some collective communication operations such as barrier synchronization,
broadcast/multicast, reduction, and so on are not performed well on the 3D
torus as the network would be flooded with traffic. To remedy this, two sepa-
rate tree networks with higher per-link bandwidth are used to implement col-
lective and combining operations more efficiently. In addition to providing
support for efficient synchronization and broadcast/multicast, hardware is used
to perform some arithmetic reduction operations in an efficient way (e.g., to
compute the sum or the maximum value of a set of values, one from each pro-
cessing node). In addition to the 3D torus and the two tree networks, the Blue
Gene/L implements an I/O Gigabit Ethernet network and a control system Fast
Ethernet network of lower bandwidth to provide for parallel I/O, configuration,
debugging, and maintenance.

System/Storage Area Network: InfiniBand

InfiniBand is an industrywide de facto networking standard developed in October
2000 by a consortium of companies belonging to the InfiniBand Trade Associa-
tion. InfiniBand can be used as a system area network for interprocessor commu-
nication or as a storage area network for server I/O. It is a switch-based
interconnect technology that provides flexibility in the topology, routing algo-
rithm, and arbitration technique implemented by vendors and users. InfiniBand
supports data transmission rates of 2 to 120 Gbp/link per direction across dis-
tances of 300 meters. It uses cut-through switching, 16 virtual channels and ser-
vice levels, credit-based link-level flow control, and weighted round-robin fair
scheduling and implements programmable forwarding tables. It also includes
features useful for increasing reliability and system availability, such as commu-
nication subnet management, end-to-end path establishment, and virtual destina-
tion naming. Figure F.30 shows the packet format for InfiniBand juxtaposed with
two other network standards from the LAN and WAN areas. Figure F.31 com-
pares various characteristics of the InfiniBand standard with two proprietary sys-
tem area networks widely used in research and commercial high-performance
computer systems.

InfiniBand offers two basic mechanisms to support user-level communica-
tion: send/receive and remote DMA (RDMA). With send/receive, the receiver has
to explicitly post a receive buffer (i.e., allocate space in its channel adapter net-
work interface) before the sender can transmit data. With RDMA, the sender can
remotely DMA data directly into the receiver device’s memory. For example, for
a nominal packet size of 4 bytes measured on a Mellanox MHEA28-XT channel
adapter connected to a 3.4 GHz Intel Xeon host device, sending and receiving
overhead is 0.946 and 1.423 μs, respectively, for the send/receive mechanism,
whereas it is 0.910 and 0.323 μs, respectively, for the RDMA mechanism.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-78 ■ Appendix F Interconnection Networks

Figure F.30 Packet format for InfiniBand, Ethernet, and ATM. ATM calls their messages “cells” instead of packets, so
the proper name is ATM cell format. The width of each drawing is 32 bits. All three formats have destination address-
ing fields, encoded differently for each situation. All three also have a checksum field to catch transmission errors,
although the ATM checksum field is calculated only over the header; ATM relies on higher-level protocols to catch
errors in the data. Both InfiniBand and Ethernet have a length field, since the packets hold a variable amount of data,
with the former counted in 32-bit words and the latter in bytes. InfiniBand and ATM headers have a type field (T) that
gives the type of packet. The remaining Ethernet fields are a preamble to allow the receiver to recover the clock from
the self-clocking code used on the Ethernet, the source address, and a pad field to make sure the smallest packet is
64 bytes (including the header). InfiniBand includes a version field for protocol version, a sequence number to allow
in-order delivery, a field to select the destination queue, and a partition key field. Infiniband has many more small
fields not shown and many other packet formats; above is a simplified view. ATM’s short, fixed packet is a good
match to real-time demand of digital voice.

ATM

Data (48)

Destination

Checksum

T

InfiniBand

Sequence number

T

Version

32 bits

Ethernet

Preamble

Preamble

Pad (0–46)

Checksum

Checksum

Checksum

32 bits

Destination

Destination

Source

Destination

Partition key

Destination queue

Type Length

Length

Source

Source

Data (0–1500)

Data (0–4096)

32 bits

F.8 Examples of Interconnection Networks ■ F-79

As discussed in Section F.2, the packet size is important in getting full benefit
of the network bandwidth. One might ask, “What is the natural size of mes-
sages?” Figure F.32(a) shows the size of messages for a commercial fluid dynam-
ics simulation application, called Fluent, collected on an InfiniBand network at
The Ohio State University’s Network-Based Computer Laboratory. One plot is
cumulative in messages sent and the other is cumulative in data bytes sent. Mes-
sages in this graph are message passing interface (MPI) units of information,
which gets divided into InfiniBand maximum transfer units (packets) transferred
over the network. As shown, the maximum message size is over 512 KB, but
approximately 90% of the messages are less than 512 bytes. Messages of 2 KB
represent approximately 50% of the bytes transferred. An Integer Sort applica-
tion kernel in the NAS Parallel Benchmark suite is also measured to have about
75% of its messages below 512 bytes (plots not shown). Many applications send
far more small messages than large ones, particularly since requests and
acknowledgments are more frequent than data responses and block writes.

InfiniBand reduces protocol processing overhead by allowing it to be
offloaded from the host computer to a controller on the InfiniBand network inter-
face card. The benefits of protocol offloading and bypassing the operating system
are shown in Figure F.32(b) for MVAPICH, a widely used implementation of
MPI over InfiniBand. Effective bandwidth is plotted against message size for
MVAPICH configured in two modes and two network speeds. One mode runs
IPoIB, in which InfiniBand communication is handled by the IP layer imple-
mented by the host’s operating system (i.e., no OS bypass). The other mode runs
MVAPICH directly over VAPI, which is the native Mellanox InfiniBand interface

Network
name
[vendors]

Used in top 10
supercom-
puter clusters
(2005)

Number
of nodes

Basic
network
topology

Raw link
bidirec-
tional BW

Routing
algorithm

Arbitration
technique

Switching
technique;
flow control

InfiniBand
[Mellanox,
Voltair]

SGI Altrix and
Dell Poweredge
Thunderbird

>Millions
(2128 GUID
addresses,
like IPv6)

Completely
configurable
(arbitrary)

4–240
Gbps

Arbitrary
(table-driven),
typically
up*/down*

Weighted RR
fair scheduling
(2-level
priority)

Cut-through,
16 virtual
channels
(15 for data);
credit-based

Myrinet-
2000
[Myricom]

Barcelona
Supercomputer
Center in Spain

8192 nodes Bidirectional
MIN with
16-port
bidirectional
switches
(Clos net.)

4 Gbps Source-based
dispersive
(adaptive)
minimal
routing

Round-robin
arbitration

Cut-through
switching
with no
virtual
channels;
Xon/Xoff
flow control

QsNetII

[Quadrics]
Intel Thunder
Itanium2 Tiger4

>Tens of
thousands

Fat tree
with 8-port
bidirectional
switches

21.3 Gbps Source-based
LCA adaptive
shortest-path
routing

2-phased RR,
priority, aging,
distributed at
output ports

Wormhole
with 2 virtual
channels;
credit-based

Figure F.31 Characteristics of system area networks implemented in various top 10 supercomputer clusters in
2005.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-80 ■ Appendix F Interconnection Networks

that offloads transport protocol processing to the channel adapter hardware (i.e.,
OS bypass). Results are shown for 10 Gbps single data rate (SDR) and 20 Gbps
double data rate (DDR) InfiniBand networks. The results clearly show that
offloading the protocol processing and bypassing the OS significantly reduce
sending and receiving overhead to allow near wire-speed effective bandwidth to
be achieved.

Ethernet: The Local Area Network

Ethernet has been extraordinarily successful as a LAN—from the 10 Mbit/sec
standard proposed in 1978 used practically everywhere today to the more recent
10 Gbit/sec standard that will likely be widely used. Many classes of computers
include Ethernet as a standard communication interface. Ethernet, codified as
IEEE standard 802.3, is a packet-switched network that routes packets using the
destination address. It was originally designed for coaxial cable but today uses
primarily Cat5E copper wire, with optical fiber reserved for longer distances and
higher bandwidths. There is even a wireless version (802.11), which is testimony
to its ubiquity.

Over a 20-year span, computers became thousands of times faster than they
were in 1978, but the shared media Ethernet network remained the same. Hence,

Figure F.32 Data collected by D.K. Panda, S. Sur, and L. Chai (2005) in the Network-Based Computing Laboratory
at The Ohio State University. (a) Cumulative percentage of messages and volume of data transferred as message
size varies for the Fluent application (www.fluent.com). Each x-axis entry includes all bytes up to the next one; for
example, 128 represents 1 byte to 128 bytes. About 90% of the messages are less than 512 bytes, which represents
about 40% of the total bytes transferred. (b) Effective bandwidth versus message size measured on SDR and DDR
InfiniBand networks running MVAPICH (http://nowlab.cse.ohio-state.edu/projects/mpi-iba) with OS bypass (native)
and without (IPoIB).

P
er

ce
nt

ag
e

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

64
0%

Message size (bytes)

256K64K16K4K1K256

M
ea

su
re

d
ef

fe
ct

iv
e

ba
nd

w
id

th
 (

M
B

/s
ec

)

1600

1400

1200

1000

800

600

400

200

4
0

Message size (bytes)

(a) (b)

4M256K16K1K64

Number of messages
Data volume

MVAPICH native DDR
MVAPICH native SDR
MVAPICH 1PoIB SDR
MVAPICH 1PoIB DDR

F.8 Examples of Interconnection Networks ■ F-81

engineers had to invent temporary solutions until a faster, higher-bandwidth net-
work became available. One solution was to use multiple Ethernets to intercon-
nect machines and to connect those Ethernets with internetworking devices that
could transfer traffic from one Ethernet to another, as needed. Such devices allow
individual Ethernets to operate in parallel, thereby increasing the aggregate inter-
connection bandwidth of a collection of computers. In effect, these devices pro-
vide similar functionality to the switches described previously for point-to-point
networks.

Figure F.33 shows the potential parallelism that can be gained. Depending on
how they pass traffic and what kinds of interconnections they can join together,
these devices have different names:

■ Bridges—These devices connect LANs together, passing traffic from one
side to another depending on the addresses in the packet. Bridges operate at
the Ethernet protocol level and are usually simpler and cheaper than routers,
discussed next. Using the notation of the OSI model described in the next
section (see Figure F.36 on page F-85), bridges operate at layer 2, the data
link layer.

■ Routers or gateways—These devices connect LANs to WANs, or WANs to
WANs, and resolve incompatible addressing. Generally slower than bridges,
they operate at OSI layer 3, the network layer. WAN routers divide the net-
work into separate smaller subnets, which simplifies manageability and
improves security.

The final internetworking devices are hubs, but they merely extend multiple
segments into a single LAN. Thus, hubs do not help with performance, as only

Figure F.33 The potential increased bandwidth of using many Ethernets and bridges.

Single Ethernet: one packet at a time

Multiple Ethernets: multiple packets at a time

NodeNode

Node Node Node NodeNode

Node NodeNode Node

Bridge Bridge

NodeNode

Node Node Node NodeNode

Node NodeNode Node

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-82 ■ Appendix F Interconnection Networks

one message can transmit at a time. Hubs operate at OSI layer 1, called the phys-
ical layer. Since these devices were not planned as part of the Ethernet standard,
their ad hoc nature has added to the difficulty and cost of maintaining LANs.

As of 2011, Ethernet link speeds are available at 10, 100, 10,000, and 100,000
Mbits/sec. Although 10 and 100 Mbits/sec Ethernets share the media with multi-
ple devices, 1000 Mbits/sec and above Ethernets rely on point-to-point links and
switches. Ethernet switches normally use some form of store-and-forward.

Ethernet has no real flow control, dating back to its first instantiation. It orig-
inally used carrier sensing with exponential back-off (see page F-23) to arbitrate
for the shared media. Some switches try to use that interface to retrofit their ver-
sion of flow control, but flow control is not part of the Ethernet standard.

Wide Area Network: ATM

Asynchronous Transfer Mode (ATM) is a wide area networking standard set by
the telecommunications industry. Although it flirted as competition to Ethernet as
a LAN in the 1990s, ATM has since retreated to its WAN stronghold.

The telecommunications standard has scalable bandwidth built in. It starts at
155 Mbits/sec and scales by factors of 4 to 620 Mbits/sec, 2480 Mbits/sec, and so
on. Since it is a WAN, ATM’s medium is fiber, both single mode and multimode.
Although it is a switched medium, unlike the other examples it relies on virtual
connections for communication. ATM uses virtual channels for routing to multi-
plex different connections on a single network segment, thereby avoiding the
inefficiencies of conventional connection-based networking. The WAN focus
also led to store-and-forward switching. Unlike the other protocols, Figure F.30
shows ATM has a small, fixed-sized packet with 48 bytes of payload. It uses a
credit-based flow control scheme as opposed to IP routers that do not implement
flow control.

The reason for virtual connections and small packets is quality of service.
Since the telecommunications industry is concerned about voice traffic, predict-
ability matters as well as bandwidth. Establishing a virtual connection has less
variability than connectionless networking, and it simplifies store-and-forward
switching. The small, fixed packet also makes it simpler to have fast routers and
switches. Toward that goal, ATM even offers its own protocol stack to compete
with TCP/IP. Surprisingly, even though the switches are simple, the ATM suite of
protocols is large and complex. The dream was a seamless infrastructure from
LAN to WAN, avoiding the hodgepodge of routers common today. That dream
has faded from inspiration to nostalgia.

Undoubtedly one of the most important innovations in the communications
community has been internetworking. It allows computers on independent and
incompatible networks to communicate reliably and efficiently. Figure F.34

 F.9 Internetworking

F.9 Internetworking ■ F-83

illustrates the need to traverse between networks. It shows the networks and
machines involved in transferring a file from Stanford University to the Univer-
sity of California at Berkeley, a distance of about 75 km.

The low cost of internetworking is remarkable. For example, it is vastly less
expensive to send electronic mail than to make a coast-to-coast telephone call and
leave a message on an answering machine. This dramatic cost improvement is
achieved using the same long-haul communication lines as the telephone call,
which makes the improvement even more impressive.

The enabling technologies for internetworking are software standards that
allow reliable communication without demanding reliable networks. The under-
lying principle of these successful standards is that they were composed as a hier-
archy of layers, each layer taking responsibility for a portion of the overall
communication task. Each computer, network, and switch implements its layer of

Figure F.34 The connection established between mojave.stanford.edu and mammoth.berkeley.edu (1995).
FDDI is a 100 Mbit/sec LAN, while a T1 line is a 1.5 Mbit/sec telecommunications line and a T3 is a 45 Mbit/sec tele-
communications line. BARRNet stands for Bay Area Research Network. Note that inr-111-cs2.Berkeley.edu is a router
with two Internet addresses, one for each port.

UCB1.
BARRNet.net
192.31.161.4

mojave.
Stanford.edu
36.22.0.120

CIS-Gateway.
Stanford.edu

36.1.0.22

SU-CM.
BARRNet.net
131.119.5.3

EthernetFDDI

T1 line

T3 line

inr-108-eecs.
Berkeley.edu

128.32.120.108 128.32.120.111

 inr-111-cs2.
Berkeley.edu

128.32.149.13

 mammoth.
Berkeley.edu

128.32.149.78

FDDI

FDDI

Ethernet Ethernet

Internet

fd-0.enss128.t3.
ans.net

192.31.48.244Stanford,
California

Berkeley,
California

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-84 ■ Appendix F Interconnection Networks

the standards, relying on the other components to faithfully fulfill their responsi-
bilities. These layered software standards are called protocol families or protocol
suites. They enable applications to work with any interconnection without extra
work by the application programmer. Figure F.35 suggests the hierarchical model
of communication.

The most popular internetworking standard is TCP/IP (Transmission Control
Protocol/Internet Protocol). This protocol family is the basis of the humbly
named Internet, which connects hundreds of millions of computers around the
world. This popularity means TCP/IP is used even when communicating locally
across compatible networks; for example, the network file system (NFS) uses IP
even though it is very likely to be communicating across a homogenous LAN
such as Ethernet. We use TCP/IP as our protocol family example; other protocol
families follow similar lines. Section F.13 gives the history of TCP/IP.

The goal of a family of protocols is to simplify the standard by dividing
responsibilities hierarchically among layers, with each layer offering services
needed by the layer above. The application program is at the top, and at the bot-
tom is the physical communication medium, which sends the bits. Just as abstract
data types simplify the programmer’s task by shielding the programmer from
details of the implementation of the data type, this layered strategy makes the
standard easier to understand.

There were many efforts at network protocols, which led to confusion in
terms. Hence, Open Systems Interconnect (OSI) developed a model that popular-
ized describing networks as a series of layers. Figure F.36 shows the model.
Although all protocols do not exactly follow this layering, the nomenclature for
the different layers is widely used. Thus, you can hear discussions about a simple
layer 3 switch versus a layer 7 smart switch.

The key to protocol families is that communication occurs logically at the
same level of the protocol in both sender and receiver, but services of the lower
level implement it. This style of communication is called peer-to-peer. As an
analogy, imagine that General A needs to send a message to General B on the

Figure F.35 The role of internetworking. The width indicates the relative number of
items at each level.

Applications

Networks

Internetworking

F.9 Internetworking ■ F-85

battlefield. General A writes the message, puts it in an envelope addressed to
General B, and gives it to a colonel with orders to deliver it. This colonel puts it
in an envelope, and writes the name of the corresponding colonel who reports to
General B, and gives it to a major with instructions for delivery. The major does
the same thing and gives it to a captain, who gives it to a lieutenant, who gives it
to a sergeant. The sergeant takes the envelope from the lieutenant, puts it into an
envelope with the name of a sergeant who is in General B’s division, and finds a
private with orders to take the large envelope. The private borrows a motorcycle
and delivers the envelope to the other sergeant. Once it arrives, it is passed up the
chain of command, with each person removing an outer envelope with his name
on it and passing on the inner envelope to his superior. As far as General B can
tell, the note is from another general. Neither general knows who was involved in
transmitting the envelope, nor how it was transported from one division to the
other.

Protocol families follow this analogy more closely than you might think, as
Figure F.37 shows. The original message includes a header and possibly a trailer
sent by the lower-level protocol. The next-lower protocol in turn adds its own
header to the message, possibly breaking it up into smaller messages if it is too
large for this layer. Reusing our analogy, a long message from the general is
divided and placed in several envelopes if it could not fit in one. This division of
the message and appending of headers and trailers continues until the message
descends to the physical transmission medium. The message is then sent to the
destination. Each level of the protocol family on the receiving end will check the
message at its level and peel off its headers and trailers, passing it on to the next
higher level and putting the pieces back together. This nesting of protocol layers

Layer number Layer name Main function
Example
protocol Network component

7 Application Used for applications specifically
written to run over the network

FTP, DNS,
NFS, http

Gateway, smart switch

6 Presentation Translates from application to network
format, and vice versa

Gateway

5 Session Establishes, maintains, and ends
sessions across the network

Named pipes,
RPC

Gateway

4 Transport Additional connection below the session
layer

TCP Gateway

3 Network Translates logical network address
and names to their physical address
(e.g., computer name to MAC address)

IP Router, ATM switch

2 Data Link Turns packets into raw bits and at the
receiving end turns bits into packets

Ethernet Bridge, network
interface card

1 Physical Transmits raw bit stream over physical
cable

IEEE 802 Hub

Figure F.36 The OSI model layers. Based on www.geocities.com/SiliconValley/Monitor/3131/ne/osimodel.html.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-86 ■ Appendix F Interconnection Networks

for a specific message is called a protocol stack, reflecting the last in, first out
nature of the addition and removal of headers and trailers.

As in our analogy, the danger in this layered approach is the considerable
latency added to message delivery. Clearly, one way to reduce latency is to
reduce the number of layers, but keep in mind that protocol families define a
standard but do not force how to implement the standard. Just as there are many
ways to implement an instruction set architecture, there are many ways to imple-
ment a protocol family.

Our protocol stack example is TCP/IP. Let’s assume that the bottom protocol
layer is Ethernet. The next level up is the Internet Protocol or IP layer; the official
term for an IP packet is a datagram. The IP layer routes the datagram to the desti-
nation machine, which may involve many intermediate machines or switches. IP
makes a best effort to deliver the packets but does not guarantee delivery, content,
or order of datagrams. The TCP layer above IP makes the guarantee of reliable,
in-order delivery and prevents corruption of datagrams.

Following the example in Figure F.37, assume an application program wants
to send a message to a machine via an Ethernet. It starts with TCP. The largest
number of bytes that can be sent at once is 64 KB. Since the data may be much
larger than 64 KB, TCP must divide them into smaller segments and reassemble
them in proper order upon arrival. TCP adds a 20-byte header (Figure F.38) to
every datagram and passes them down to IP. The IP layer above the physical layer
adds a 20-byte header, also shown in Figure F.38. The data sent down from the IP
level to the Ethernet are sent in packets with the format shown in Figure F.30.
Note that the TCP packet appears inside the data portion of the IP datagram, just
as Figure F.37 suggests.

Figure F.37 A generic protocol stack with two layers. Note that communication is
peer-to-peer, with headers and trailers for the peer added at each sending layer and
removed by each receiving layer. Each layer offers services to the one above to shield it
from unnecessary details.

T

Message

H T

HH T T HH T T HH T T HH T T HH T TT

H T H T

Message

H T H T H T

Actual Actual

Actual

Actual

Logical

Logical

Actual

F.9 Internetworking ■ F-87

Figure F.38 The headers for IP and TCP. This drawing is 32 bits wide. The standard headers for both are 20 bytes, but
both allow the headers to optionally lengthen for rarely transmitted information. Both headers have a length of header
field (L) to accommodate the optional fields, as well as source and destination fields. The length field of the whole data-
gram is in a separate length field in IP, while TCP combines the length of the datagram with the sequence number of the
datagram by giving the sequence number in bytes. TCP uses the checksum field to be sure that the datagram is not cor-
rupted, and the sequence number field to be sure the datagrams are assembled into the proper order when they arrive.
IP provides checksum error detection only for the header, since TCP has protected the rest of the packet. One optimiza-
tion is that TCP can send a sequence of datagrams before waiting for permission to send more. The number of data-
grams that can be sent without waiting for approval is called the window, and the window field tells how many bytes
may be sent beyond the byte being acknowledged by this datagram. TCP will adjust the size of the window depending
on the success of the IP layer in sending datagrams; the more reliable and faster it is, the larger TCP makes the window.
Since the window slides forward as the data arrive and are acknowledged, this technique is called a sliding window pro-
tocol. The piggyback acknowledgment field of TCP is another optimization. Since some applications send data back
and forth over the same connection, it seems wasteful to send a datagram containing only an acknowledgment. This
piggyback field allows a datagram carrying data to also carry the acknowledgment for a previous transmission, “piggy-
backing” on top of a data transmission. The urgent pointer field of TCP gives the address within the datagram of an
important byte, such as a break character. This pointer allows the application software to skip over data so that the user
doesn’t have to wait for all prior data to be processed before seeing a character that tells the software to stop. The iden-
tifier field and fragment field of IP allow intermediary machines to break the original datagram into many smaller data-
grams. A unique identifier is associated with the original datagram and placed in every fragment, with the fragment
field saying which piece is which. The time-to-live field allows a datagram to be killed off after going through a maxi-
mum number of intermediate switches no matter where it is in the network. Knowing the maximum number of hops
that it will take for a datagram to arrive—if it ever arrives—simplifies the protocol software. The protocol field identifies
which possible upper layer protocol sent the IP datagram; in our case, it is TCP. The V (for version) and type fields allow
different versions of the IP protocol software for the network. Explicit version numbering is included so that software
can be upgraded gracefully machine by machine, without shutting down the entire network. Nowadays, version six of
the Internet protocol (IPv6) was widely used.

IP header

IP data

TCP data

Identifier Fragment

Header checksum

Source

Source

Sequence number (length)

Destination

Destination

LengthType

Time Protocol

V L

TCP header

Urgent pointer

Window

TCP data

32 bits

Piggyback acknowledgment

Flags

Checksum

L

 (0–65,516 bytes)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-88 ■ Appendix F Interconnection Networks

This section describes five topics discussed in other chapters that are fundamen-
tally impacted by interconnection networks, and vice versa.

Density-Optimized Processors versus SPEC-Optimized
Processors

Given that people all over the world are accessing Web sites, it doesn’t really
matter where servers are located. Hence, many servers are kept at collocation
sites, which charge by network bandwidth reserved and used and by space occu-
pied and power consumed. Desktop microprocessors in the past have been
designed to be as fast as possible at whatever heat could be dissipated, with little
regard for the size of the package and surrounding chips. In fact, some desktop
microprocessors from Intel and AMD as recently as 2006 burned as much as 130
watts! Floor space efficiency was also largely ignored. As a result of these priori-
ties, power is a major cost for collocation sites, and processor density is limited
by the power consumed and dissipated, including within the interconnect!

With the proliferation of portable computers (notebook sales exceeded desk-
top sales for the first time in 2005) and their reduced power consumption and
cooling demands, the opportunity exists for using this technology to create con-
siderably denser computation. For instance, the power consumption for the Intel
Pentium M in 2006 was 25 watts, yet it delivered performance close to that of a
desktop microprocessor for a wide set of applications. It is therefore conceivable
that performance per watt or performance per cubic foot could replace perfor-
mance per microprocessor as the important figure of merit. The key is that many
applications already make use of large clusters, so it is possible that replacing 64
power-hungry processors with, say, 256 power-efficient processors could be
cheaper yet be software compatible. This places greater importance on power-
and performance-efficient interconnection network design.

The Google cluster is a prime example of this migration to many “cooler”
processors versus fewer “hotter” processors. It uses racks of up to 80 Intel Pen-
tium III 1 GHz processors instead of more power-hungry high-end processors.
Other examples include blade servers consisting of 1-inch-wide by 7-inch-high
rack unit blades designed based on mobile processors. The HP ProLiant BL10e
G2 blade server supports up to 20 1-GHz ultra-low-voltage Intel Pentium M pro-
cessors with a 400-MHz front-side bus, 1-MB L2 cache, and up to 1 GB memory.
The Fujitsu Primergy BX300 blade server supports up to 20 1.4- or 1.6-GHz Intel
Pentium M processors, each with 512 MB of memory expandable to 4 GB.

Smart Switches versus Smart Interface Cards

Figure F.39 shows a trade-off as to where intelligence can be located within a
network. Generally, the question is whether to have either smarter network inter-
faces or smarter switches. Making one smarter generally makes the other sim-
pler and less expensive. By having an inexpensive interface, it was possible for

 F.10 Crosscutting Issues for Interconnection Networks

F.10 Crosscutting Issues for Interconnection Networks ■ F-89

Ethernet to become standard as part of most desktop and server computers.
Lower-cost switches were made available for people with small configurations,
not needing sophisticated forwarding tables and spanning-tree protocols of
larger Ethernet switches.

Myrinet followed the opposite approach. Its switches are dumb components
that, other than implementing flow control and arbitration, simply extract the first
byte from the packet header and use it to directly select the output port. No rout-
ing tables are implemented, so the intelligence is in the network interface cards
(NICs). The NICs are responsible for providing support for efficient communica-
tion and for implementing a distributed protocol for network (re)configuration.
InfiniBand takes a hybrid approach by offering lower-cost, less sophisticated
interface cards called target channel adapters (or TCAs) for less demanding
devices such as disks—in the hope that it can be included within some I/O
devices—and by offering more expensive, powerful interface cards for hosts
called host channel adapters (or HCAs). The switches implement routing tables.

Protection and User Access to the Network

A challenge is to ensure safe communication across a network without invoking
the operating system in the common case. The Cray Research T3D supercom-
puter offers an interesting case study. Like the more recent Cray X1E, the T3D
supports a global address space, so loads and stores can access memory across
the network. Protection is ensured because each access is checked by the TLB.
To support transfer of larger objects, a block transfer engine (BLT) was added to

Figure F.39 Intelligence in a network: switch versus network interface card. Note
that Ethernet switches come in two styles, depending on the size of the network, and
that InfiniBand network interfaces come in two styles, depending on whether they are
attached to a computer or to a storage device. Myrinet is a proprietary system area net-
work.

Switch

Interface
card

Small-scale
Ethernet switch

Large-scale
Ethernet switch

Ethernet Myrinet

Myrinet

InfiniBand

InfiniBand target
channel adapter

InfiniBand host
channel adapter

More
intelligence

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-90 ■ Appendix F Interconnection Networks

the hardware. Protection of access requires invoking the operating system before
using the BLT to check the range of accesses to be sure there will be no protec-
tion violations.

Figure F.40 compares the bandwidth delivered as the size of the object varies
for reads and writes. For very large reads (e.g., 512 KB), the BLT achieves the
highest performance: 140 MB/sec. But simple loads get higher performance for
8 KB or less. For the write case, both achieve a peak of 90 MB/sec, presumably
because of the limitations of the memory bus. But, for writes, the BLT can only
match the performance of simple stores for transfers of 2 MB; anything smaller
and it’s faster to send stores. Clearly, a BLT that can avoid invoking the operating
system in the common case would be more useful.

Efficient Interface to the Memory Hierarchy versus the Network

Traditional evaluations of processor performance, such as SPECint and
SPECfp, encourage integration of the memory hierarchy with the processor as
the efficiency of the memory hierarchy translates directly into processor perfor-
mance. Hence, microprocessors have multiple levels of caches on chip along
with buffers for writes. Because benchmarks such as SPECint and SPECfp do
not reward good interfaces to interconnection networks, many machines make
the access time to the network delayed by the full memory hierarchy. Writes
must lumber their way through full write buffers, and reads must go through the
cycles of first-, second-, and often third-level cache misses before reaching the
interconnection network. This hierarchy results in newer systems having higher
latencies to the interconnect than older machines.

Figure F.40 Bandwidth versus transfer size for simple memory access instructions
versus a block transfer device on the Cray Research T3D. (From Arpaci et al. [1995].)

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
,3

84

32
,7

68

65
,5

36

13
1,

07
2

26
2,

14
4

52
4,

28
8

1,
04

8,
57

6

2,
09

7,
15

2

4,
19

4,
30

4

8,
38

8,
60

8

Transfer size (bytes)

0

20

40

60

80

100

120

140

160

CPU write

BLT read

BLT write

CPU read

B
an

dw
id

th
 (

M
B

/s
ec

)

F.11 Fallacies and Pitfalls ■ F-91

Let’s compare three machines from the past: a 40-MHz SPARCstation-2, a
50-MHz SPARCstation-20 without an external cache, and a 50-MHz SPARCsta-
tion-20 with an external cache. According to SPECint95, this list is in order of
increasing performance. The time to access the I/O bus (S-bus), however,
increases in this sequence: 200 ns, 500 ns, and 1000 ns. The SPARCstation-2 is
fastest because it has a single bus for memory and I/O, and there is only one level
to the cache. The SPARCstation-20 memory access must first go over the mem-
ory bus (M-bus) and then to the I/O bus, adding 300 ns. Machines with a second-
level cache pay an extra penalty of 500 ns before accessing the I/O bus.

Compute-Optimized Processors versus Receiver Overhead

The overhead to receive a message likely involves an interrupt, which bears the
cost of flushing and then restarting the processor pipeline, if not offloaded. As
mentioned earlier, reading network status and receiving data from the network
interface likely operate at cache miss speeds. If microprocessors become more
superscalar and go to even faster clock rates, the number of missed instruction
issue opportunities per message reception will likely rise to unacceptable levels.

Myths and hazards are widespread with interconnection networks. This section
mentions several warnings, so proceed carefully.

Fallacy The interconnection network is very fast and does not need to be improved.

The interconnection network provides certain functionality to the system, very
much like the memory and I/O subsystems. It should be designed to allow pro-
cessors to execute instructions at the maximum rate. The interconnection network
subsystem should provide high enough bandwidth to keep from continuously
entering saturation and becoming an overall system bottleneck.

In the 1980s, when wormhole switching was introduced, it became feasible to
design large-diameter topologies with single-chip switches so that the bandwidth
capacity of the network was not the limiting factor. This led to the flawed belief
that interconnection networks need no further improvement. Since the 1980s,
much attention has been placed on improving processor performance, but com-
paratively less has been focused on interconnection networks. As technology
advances, the interconnection network tends to represent an increasing fraction of
system resources, cost, power consumption, and various other attributes that
impact functionality and performance. Scaling the bandwidth simply by over-
dimensioning certain network parameters is no longer a cost-viable option.
Designers must carefully consider the end-to-end interconnection network design
in concert with the processor, memory, and I/O subsystems in order to achieve
the required cost, power, functionality, and performance objectives of the entire
system. An obvious case in point is multicore processors with on-chip networks.

 F.11 Fallacies and Pitfalls

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-92 ■ Appendix F Interconnection Networks

Fallacy Bisection bandwidth is an accurate cost constraint of a network.

Despite being very popular, bisection bandwidth has never been a practical con-
straint on the implementation of an interconnection network, although it may be
one in future designs. It is more useful as a performance measure than as a cost
measure. Chip pin-outs are the more realistic bandwidth constraint.

Pitfall Using bandwidth (in particular, bisection bandwidth) as the only measure of net-
work performance.

It seldom is the case that aggregate network bandwidth (likewise, network bisec-
tion bandwidth) is the end-to-end bottlenecking point across the network. Even if
it were the case, networks are almost never 100% efficient in transporting packets
across the bisection (i.e., ρ < 100%) nor at receiving them at network endpoints
(i.e., σ < 100%). The former is highly dependent upon routing, switching, arbi-
tration, and other such factors while both the former and the latter are highly
dependent upon traffic characteristics. Ignoring these important factors and con-
centrating only on raw bandwidth can give very misleading performance predic-
tions. For example, it is perfectly conceivable that a network could have higher
aggregate bandwidth and/or bisection bandwidth relative to another network but
also have lower measured performance!

Apparently, given sophisticated protocols like TCP/IP that maximize deliv-
ered bandwidth, many network companies believe that there is only one figure of
merit for networks. This may be true for some applications, such as video stream-
ing, where there is little interaction between the sender and the receiver. Many
applications, however, are of a request-response nature, and so for every large
message there must be one or more small messages. One example is NFS.

Figure F.41 compares a shared 10-Mbit/sec Ethernet LAN to a switched 155-
Mbit/sec ATM LAN for NFS traffic. Ethernet drivers were better tuned than the
ATM drivers, such that 10-Mbit/sec Ethernet was faster than 155-Mbit/sec ATM
for payloads of 512 bytes or less. Figure F.41 shows the overhead time, transmis-
sion time, and total time to send all the NFS messages over Ethernet and ATM.
The peak link speed of ATM is 15 times faster, and the measured link speed for
8-KB messages is almost 9 times faster. Yet, the higher overheads offset the ben-
efits so that ATM would transmit NFS traffic only 1.2 times faster.

Pitfall Not providing sufficient reception link bandwidth, which causes the network end
nodes to become even more of a bottleneck to performance.

Unless the traffic pattern is a permutation, several packets will concurrently
arrive at some destinations when most source devices inject traffic, thus produc-
ing contention. If this problem is not addressed, contention may turn into conges-
tion that will spread across the network. This can be dealt with by analyzing
traffic patterns and providing extra reception bandwidth. For example, it is possi-
ble to implement more reception bandwidth than injection bandwidth. The IBM
Blue Gene/L, for example, implements an on-chip switch with 7-bit injection and
12-bit reception links, where the reception BW equals the aggregate switch input
link BW.

F.11 Fallacies and Pitfalls ■ F-93

Pitfall Using high-performance network interface cards but forgetting about the I/O sub-
system that sits between the network interface and the host processor.

This issue is related to the previous one. Messages are usually composed in user
space buffers and later sent by calling a send function from the communications
library. Alternatively, a cache controller implementing a cache coherence proto-
col may compose a message in some SANs and in OCNs. In both cases, mes-
sages have to be copied to the network interface memory before transmission. If
the I/O bandwidth is lower than the link bandwidth or introduces significant over-
head, this is going to affect communication performance significantly. As an

Overhead (sec) Transmission (sec) Total time (sec)

Size
Number of
messages ATM Ethernet

Number of
data bytes ATM Ethernet ATM Ethernet

32 771,060 532 389 33,817,052 4 48 536 436

64 56,923 39 29 4,101,088 0 5 40 34

96 4,082,014 2817 2057 428,346,316 46 475 2863 2532

128 5,574,092 3846 2809 779,600,736 83 822 3929 3631

160 328,439 227 166 54,860,484 6 56 232 222

192 16,313 11 8 3,316,416 0 3 12 12

224 4820 3 2 1,135,380 0 1 3 4

256 24,766 17 12 9,150,720 1 9 18 21

512 32,159 22 16 25,494,920 3 23 25 40

1024 69,834 48 35 70,578,564 8 72 56 108

1536 8842 6 4 15,762,180 2 14 8 19

2048 9170 6 5 20,621,760 2 19 8 23

2560 20,206 14 10 56,319,740 6 51 20 61

3072 13,549 9 7 43,184,992 4 39 14 46

3584 4200 3 2 16,152,228 2 14 5 17

4096 67,808 47 34 285,606,596 29 255 76 290

5120 6143 4 3 35,434,680 4 32 8 35

6144 5858 4 3 37,934,684 4 34 8 37

7168 4140 3 2 31,769,300 3 28 6 30

8192 287,577 198 145 2,390,688,480 245 2132 444 2277

Total 11,387,913 7858 5740 4,352,876,316 452 4132 8310 9872

Figure F.41 Total time on a 10-Mbit Ethernet and a 155-Mbit ATM, calculating the total overhead and transmis-
sion time separately. Note that the size of the headers needs to be added to the data bytes to calculate transmission
time. The higher overhead of the software driver for ATM offsets the higher bandwidth of the network. These mea-
surements were performed in 1994 using SPARCstation 10s, the ForeSystems SBA-200 ATM interface card, and the
Fore Systems ASX-200 switch. (NFS measurements taken by Mike Dahlin of the University of California–Berkeley.)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-94 ■ Appendix F Interconnection Networks

example, the first 10-Gigabit Ethernet cards in the market had a PCI-X bus inter-
face for the system with a significantly lower bandwidth than 10 Gbps.

Fallacy Zero-copy protocols do not require copying messages or fragments from one buf-
fer to another.

Traditional communication protocols for computer networks allow access to
communication devices only through system calls in supervisor mode. As a con-
sequence of this, communication routines need to copy the corresponding mes-
sage from the user buffer to a kernel buffer when sending a message. Note that
the communication protocol may need to keep a copy of the message for retrans-
mission in case of error, and the application may modify the contents of the user
buffer once the system call returns control to the application. This buffer-to-buf-
fer copy is eliminated in zero-copy protocols because the communication rou-
tines are executed in user space and protocols are much simpler.

However, messages still need to be copied from the application buffer to the
memory in the network interface card (NIC) so that the card hardware can trans-
mit it from there through to the network. Although it is feasible to eliminate this
copy by allocating application message buffers directly in the NIC memory (and,
indeed, this is done in some protocols), this may not be convenient in current sys-
tems because access to the NIC memory is usually performed through the I/O
subsystem, which usually is much slower than accessing main memory. Thus, it
is generally more efficient to compose the message in main memory and let
DMA devices take care of the transfer to the NIC memory.

Moreover, what few people count is the copy from where the message frag-
ments are computed (usually the ALU, with results stored in some processor reg-
ister) to main memory. Some systolic-like architectures in the 1980s, like the
iWarp, were able to directly transmit message fragments from the processor to
the network, effectively eliminating all the message copies. This is the approach
taken in the Cray X1E shared-memory multiprocessor supercomputer.

Similar comments can be made regarding the reception side; however, this
does not mean that zero-copy protocols are inefficient. These protocols represent
the most efficient kind of implementation used in current systems.

Pitfall Ignoring software overhead when determining performance.

Low software overhead requires cooperation with the operating system as well as
with the communication libraries, but even with protocol offloading it continues
to dominate the hardware overhead and must not be ignored. Figures F.32 and
F.41 give two examples, one for a SAN standard and the other for a WAN stan-
dard. Other examples come from proprietary SANs for supercomputers. The
Connection Machine CM-5 supercomputer in the early 1990s had a software
overhead of 20 µs to send a message and a hardware overhead of only 0.5 µs. The
first Intel Paragon supercomputer built in the early 1990s had a hardware over-
head of just 0.2 µs, but the initial release of the software had an overhead of
250 µs. Later releases reduced this overhead down to 25 µs and, more recently,
down to only a few microseconds, but this still dominates the hardware overhead.

F.11 Fallacies and Pitfalls ■ F-95

The IBM Blue Gene/L has an MPI sending/receiving overhead of approximately
3 µs, only a third of which (at most) is attributed to the hardware.

This pitfall is simply Amdahl’s law applied to networks: Faster network hard-
ware is superfluous if there is not a corresponding decrease in software overhead.
The software overhead is much reduced these days with OS bypass, lightweight
protocols, and protocol offloading down to a few microseconds or less, typically,
but it remains a significant factor in determining performance.

Fallacy MINs are more cost-effective than direct networks.

A MIN is usually implemented using significantly fewer switches than the num-
ber of devices that need to be connected. On the other hand, direct networks usu-
ally include a switch as an integral part of each node, thus requiring as many
switches as nodes to interconnect. However, nothing prevents the implementation
of nodes with multiple computing devices on it (e.g., a multicore processor with
an on-chip switch) or with several devices attached to each switch (i.e., bristling).
In these cases, a direct network may be as (or even more) cost-effective as a MIN.
Note that, for a MIN, several network interfaces may be required at each node to
match the bandwidth delivered by the multiple links per node provided by the
direct network.

Fallacy Low-dimensional direct networks achieve higher performance than high-dimen-
sional networks such as hypercubes.

This conclusion was drawn by several studies that analyzed the optimal number
of dimensions under the main physical constraint of bisection bandwidth. How-
ever, most of those studies did not consider link pipelining, considered only very
short links, and/or did not consider switch architecture design constraints. The
misplaced assumption that bisection bandwidth serves as the main limit did not
help matters. Nowadays, most researchers and designers believe that high-radix
switches are more cost-effective than low-radix switches, including some who
concluded the opposite before.

Fallacy Wormhole switching achieves better performance than other switching tech-
niques.

Wormhole switching delivers the same no-load latency as other pipelined switch-
ing techniques, like virtual cut-through switching. The introduction of wormhole
switches in the late 1980s coinciding with a dramatic increase in network band-
width led many to believe that wormhole switching was the main reason for the
performance boost. Instead, most of the performance increase came from a dras-
tic increase in link bandwidth, which, in turn, was enabled by the ability of
wormhole switching to buffer packet fragments using on-chip buffers, instead of
using the node’s main memory or some other off-chip source for that task. More
recently, much larger on-chip buffers have become feasible, and virtual cut-
through achieved the same no-load latency as wormhole while delivering much
higher throughput. This did not mean that wormhole switching was dead. It

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-96 ■ Appendix F Interconnection Networks

continues to be the switching technique of choice for applications in which only
small buffers should be used (e.g., perhaps for on-chip networks).

Fallacy Implementing a few virtual channels always increases throughput by allowing
packets to pass through blocked packets ahead.

In general, implementing a few virtual channels in a wormhole switch is a good
idea because packets are likely to pass blocked packets ahead of them, thus
reducing latency and significantly increasing throughput. However, the improve-
ments are not as dramatic for virtual cut-through switches. In virtual cut-through,
buffers should be large enough to store several packets. As a consequence, each
virtual channel may introduce HOL blocking, possibly degrading performance at
high loads. Adding virtual channels increases cost, but it may deliver little addi-
tional performance unless there are as many virtual channels as switch ports and
packets are mapped to virtual channels according to their destination (i.e., virtual
output queueing). It is certainly the case that virtual channels can be useful in vir-
tual cut-through networks to segregate different traffic classes, which can be very
beneficial. However, multiplexing the packets over a physical link on a flit-by-flit
basis causes all the packets from different virtual channels to get delayed. The
average packet delay is significantly shorter if multiplexing takes place on a
packet-by-packet basis, but in this case packet size should be bounded to prevent
any one packet from monopolizing the majority of link bandwidth.

Fallacy Adaptive routing causes out-of-order packet delivery, thus introducing too much
overhead needed to reorder packets at the destination device.

Adaptive routing allows packets to follow alternative paths through the network
depending on network traffic; therefore, adaptive routing usually introduces out-
of-order packet delivery. However, this does not necessarily imply that reordering
packets at the destination device is going to introduce a large overhead, making
adaptive routing not useful. For example, the most efficient adaptive routing
algorithms to date support fully adaptive routing in some virtual channels but
required deterministic routing to be implemented in some other virtual channels
in order to prevent deadlocks (à la the IBM Blue Gene/L). In this case, it is very
easy to select between adaptive and deterministic routing for each individual
packet. A single bit in the packet header can indicate to the switches whether all
the virtual channels can be used or only those implementing deterministic rout-
ing. This hardware support can be used as indicated below to eliminate packet
reordering overhead at the destination.

Most communication protocols for parallel computers and clusters implement
two different protocols depending on message size. For short messages, an eager
protocol is used in which messages are directly transmitted, and the receiving
nodes use some preallocated buffer to temporarily store the incoming message.
On the other hand, for long messages, a rendezvous protocol is used. In this case,
a control message is sent first, requesting the destination node to allocate a buffer
large enough to store the entire message. The destination node confirms buffer

F.11 Fallacies and Pitfalls ■ F-97

allocation by returning an acknowledgment, and the sender can proceed with
fragmenting the message into bounded-size packets, transmitting them to the des-
tination.

If eager messages use only deterministic routing, it is obvious that they do not
introduce any reordering overhead at the destination. On the other hand, packets
belonging to a long message can be transmitted using adaptive routing. As every
packet contains the sequence number within the message (or the offset from the
beginning of the message), the destination node can store every incoming packet
directly in its correct location within the message buffer, thus incurring no over-
head with respect to using deterministic routing. The only thing that differs is the
completion condition. Instead of checking that the last packet in the message has
arrived, it is now necessary to count the arrived packets, notifying the end of
reception when the count equals the message size. Taking into account that long
messages, even if not frequent, usually consume most of the network bandwidth,
it is clear that most packets can benefit from adaptive routing without introducing
reordering overhead when using the protocol described above.

Fallacy Adaptive routing by itself always improves network fault tolerance because it
allows packets to follow alternative paths.

Adaptive routing by itself is not enough to tolerate link and/or switch failures.
Some mechanism is required to detect failures and notify them, so that the rout-
ing logic could exclude faulty paths and use the remaining ones. Moreover, while
a given link or switch failure affects a certain number of paths when using deter-
ministic routing, many more source/destination pairs could be affected by the
same failure when using adaptive routing. As a consequence of this, some
switches implementing adaptive routing transition to deterministic routing in the
presence of failures. In this case, failures are usually tolerated by sending mes-
sages through alternative paths from the source node. As an example, the Cray
T3E implements direction-order routing to tolerate a few failures. This fault-
tolerant routing technique avoids cycles in the use of resources by crossing direc-
tions in order (e.g., X+, Y+, Z+, Z–, Y–, then X–). At the same time, it provides an
easy way to send packets through nonminimal paths, if necessary, to avoid cross-
ing faulty components. For instance, a packet can be initially forwarded a few
hops in the X+ direction even if it has to go in the X– direction at some point later.

Pitfall Trying to provide features only within the network versus end-to-end.

The concern is that of providing at a lower level the features that can only be
accomplished at the highest level, thus only partially satisfying the communica-
tion demand. Saltzer, Reed, and Clark [1984] gave the end-to-end argument as
follows:

The function in question can completely and correctly be specified only with the
knowledge and help of the application standing at the endpoints of the communi-
cation system. Therefore, providing that questioned function as a feature of the
communication system itself is not possible. [page 278]

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-98 ■ Appendix F Interconnection Networks

Their example of the pitfall was a network at MIT that used several gateways,
each of which added a checksum from one gateway to the next. The programmers
of the application assumed that the checksum guaranteed accuracy, incorrectly
believing that the message was protected while stored in the memory of each gate-
way. One gateway developed a transient failure that swapped one pair of bytes per
million bytes transferred. Over time, the source code of one operating system was
repeatedly passed through the gateway, thereby corrupting the code. The only
solution was to correct infected source files by comparing them to paper listings
and repairing code by hand! Had the checksums been calculated and checked by
the application running on the end systems, safety would have been ensured.

There is a useful role for intermediate checks at the link level, however, pro-
vided that end-to-end checking is available. End-to-end checking may show that
something is broken between two nodes, but it doesn’t point to where the prob-
lem is. Intermediate checks can discover the broken component.

A second issue regards performance using intermediate checks. Although it is
sufficient to retransmit the whole in case of failures from the end point, it can be
much faster to retransmit a portion of the message at an intermediate point rather
than wait for a time-out and a full message retransmit at the end point.

Pitfall Relying on TCP/IP for all networks, regardless of latency, bandwidth, or software
requirements.

The network designers on the first workstations decided it would be elegant to
use a single protocol stack no matter where the destination of the message:
Across a room or across an ocean, the TCP/IP overhead must be paid. This might
have been a wise decision back then, especially given the unreliability of early
Ethernet hardware, but it sets a high software overhead barrier for commercial
systems of today. Such an obstacle lowers the enthusiasm for low-latency net-
work interface hardware and low-latency interconnection networks if the soft-
ware is just going to waste hundreds of microseconds when the message must
travel only dozens of meters or less. It also can use significant processor
resources. One rough rule of thumb is that each Mbit/sec of TCP/IP bandwidth
needs about 1 MHz of processor speed, so a 1000-Mbit/sec link could saturate a
processor with an 800- to 1000-MHz clock.

The flip side is that, from a software perspective, TCP/IP is the most desir-
able target since it is the most connected and, hence, provides the largest number
of opportunities. The downside of using software optimized to a particular LAN
or SAN is that it is limited. For example, communication from a Java program
depends on TCP/IP, so optimization for another protocol would require creation
of glue software to interface Java to it.

TCP/IP advocates point out that the protocol itself is theoretically not as bur-
densome as current implementations, but progress has been modest in commer-
cial systems. There are also TCP/IP offloading engines in the market, with the
hope of preserving the universal software model while reducing processor utiliza-
tion and message latency. If processors continue to improve much faster than net-
work speeds, or if multiple processors become ubiquitous, software TCP/IP may
become less significant for processor utilization and message latency.

F.12 Concluding Remarks ■ F-99

Interconnection network design is one of the most exciting areas of computer
architecture development today. With the advent of new multicore processor
paradigms and advances in traditional multiprocessor/cluster systems and the
Internet, many challenges and opportunities exist for interconnect architecture
innovation. These apply to all levels of computer systems: communication
between cores on a chip, between chips on a board, between boards in a system,
and between computers in a machine room, over a local area and across the
globe. Irrespective of their domain of application, interconnection networks
should transfer the maximum amount of information within the least amount of
time for given cost and power constraints so as not to bottleneck the system.
Topology, routing, arbitration, switching, and flow control are among some of
the key concepts in realizing such high-performance designs.

The design of interconnection networks is end-to-end: It includes injection
links, reception links, and the interfaces at network end points as much as it does
the topology, switches, and links within the network fabric. It is often the case
that the bandwidth and overhead at the end node interfaces are the bottleneck, yet
many mistakenly think of the interconnection network to mean only the network
fabric. This is as bad as processor designers thinking of computer architecture to
mean only the instruction set architecture or only the microarchitecture! End-to-
end issues and understanding of the traffic characteristics make the design of
interconnection networks challenging and very much relevant even today. For
instance, the need for low end-to-end latency is driving the development of effi-
cient network interfaces located closer to the processor/memory controller. We
may soon see most multicore processors used in multiprocessor systems imple-
menting network interfaces on-chip, devoting some core(s) to execute communi-
cation tasks. This is already the case for the IBM Blue Gene/L supercomputer,
which uses one of its two cores on each processor chip for this purpose.

Networking has a long way to go from its humble shared-media beginnings.
It is in “catch-up” mode, with switched-media point-to-point networks only
recently displacing traditional bus-based networks in many networking
domains, including on chip, I/O, and the local area. We are not near any perfor-
mance plateaus, so we expect rapid advancement of WANs, LANs, SANs, and
especially OCNs in the near future. Greater interconnection network perfor-
mance is key to the information- and communication-centric vision of the future
of our field, which, so far, has benefited many millions of people around the
world in various ways. As the quotes at the beginning of this appendix suggest,
this revolution in two-way communication is at the heart of changes in the form
of our human associations and actions.

Acknowledgments

We express our sincere thanks to the following persons who, in some way, have
contributed to the contents of the previous edition of the appendix: Lei Chai,

 F.12 Concluding Remarks

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-100 ■ Appendix F Interconnection Networks

Scott Clark, José Flich, Jose Manuel Garcia, Paco Gilabert, Rama Govindaraju,
Manish Gupta, Wai Hong Ho, Siao Jer, Steven Keckler, Dhabaleswar (D.K.)
Panda, Fabrizio Petrini, Steve Scott, Jeonghee Shin, Craig Stunkel, Sayantan Sur,
Michael B. Taylor, and Bilal Zafar. We especially appreciate the new contribu-
tions of Jose Flich to this edition of the appendix.

This appendix has taken the perspective that interconnection networks for very
different domains—from on-chip networks within a processor chip to wide area
networks connecting computers across the globe—share many of the same con-
cerns. With this, interconnection network concepts are presented in a unified way,
irrespective of their application; however, their histories are vastly different, as
evidenced by the different solutions adopted to address similar problems. The
lack of significant interaction between research communities from the different
domains certainly contributed to the diversity of implemented solutions. High-
lighted below are relevant readings on each topic. In addition, good general texts
featuring WAN and LAN networking have been written by Davie, Peterson, and
Clark [1999] and by Kurose and Ross [2001]. Good texts focused on SANs for
multiprocessors and clusters have been written by Duato, Yalamanchili, and Ni
[2003] and by Dally and Towles [2004]. An informative chapter devoted to dead-
lock resolution in interconnection networks was written by Pinkston [2004].
Finally, an edited work by Jantsch and Tenhunen [2003] on OCNs for multicore
processors and system-on-chips is also interesting reading.

Wide Area Networks

Wide area networks are the earliest of the data interconnection networks. The
forerunner of the Internet is the ARPANET, which in 1969 connected computer
science departments across the United States that had research grants funded by
the Advanced Research Project Agency (ARPA), a U.S. government agency. It
was originally envisioned as using reliable communications at lower levels. Prac-
tical experience with failures of the underlying technology led to the failure-tol-
erant TCP/IP, which is the basis for the Internet today. Vint Cerf and Robert Kahn
are credited with developing the TCP/IP protocols in the mid-1970s, winning the
ACM Software Award in recognition of that achievement. Kahn [1972] is an
early reference on the ideas of ARPANET. For those interested in learning more
about TPC/IP, Stevens [1994–1996] has written classic books on the topic.

In 1975, there were roughly 100 networks in the ARPANET; in 1983, only
200. In 1995, the Internet encompassed 50,000 networks worldwide, about half
of which were in the United States. That number is hard to calculate now, but the
number of IP hosts grew by a factor of 15 from 1995 to 2000, reaching 100
million Internet hosts by the end of 2000. It has grown much faster since then.
With most service providers assigning dynamic IP addresses, many local area
networks using private IP addresses, and with most networks allowing wireless

 F.13 Historical Perspective and References

F.13 Historical Perspective and References ■ F-101

connections, the total number of hosts in the Internet is nearly impossible to com-
pute. In July 2005, the Internet Systems Consortium (www.isc.org) estimated
more than 350 million Internet hosts, with an annual increase of about 25% pro-
jected. Although key government networks made the Internet possible (i.e.,
ARPANET and NSFNET), these networks have been taken over by the commer-
cial sector, allowing the Internet to thrive. But major innovations to the Internet
are still likely to come from government-sponsored research projects rather than
from the commercial sector. The National Science Foundation’s Global Environ-
ment for Network Innovation (GENI) initiative is an example of this.

The most exciting application of the Internet is the World Wide Web, devel-
oped in 1989 by Tim Berners-Lee, a programmer at the European Center for Par-
ticle Research (CERN), for information access. In 1992, a young programmer at
the University of Illinois, Marc Andreessen, developed a graphical interface for
the Web called Mosaic. It became immensely popular. He later became a founder
of Netscape, which popularized commercial browsers. In May 1995, at the time
of the second edition of this book, there were over 30,000 Web pages, and the
number was doubling every two months. During the writing of the third edition
of this text, there were more than 1.3 billion Web pages. In December 2005, the
number of Web servers approached 75 million, having increased by 30% during
that same year.

Asynchronous Transfer Mode (ATM) was an attempt to design the definitive
communication standard. It provided good support for data transmission as well
as digital voice transmission (i.e., phone calls). From a technical point of view, it
combined the best from packet switching and circuit switching, also providing
excellent support for providing quality of service (QoS). Alles [1995] offers a
good survey on ATM. In 1995, no one doubted that ATM was going to be the
future for this community. Ten years later, the high equipment and personnel
training costs basically killed ATM, and we returned back to the simplicity of
TCP/IP. Another important blow to ATM was its defeat by the Ethernet family in
the LAN domain, where packet switching achieved significantly lower latencies
than ATM, which required establishing a connection before data transmission.
ATM connectionless servers were later introduced in an attempt to fix this prob-
lem, but they were expensive and represented a central bottleneck in the LAN.

Finally, WANs today rely on optical fiber. Fiber technology has made so
many advances that today WAN fiber bandwidth is often underutilized. The main
reason for this is the commercial introduction of wavelength division multiplex-
ing (WDM), which allows each fiber to transmit many data streams simultane-
ously over different wavelengths, thus allowing three orders of magnitude
bandwidth increase in just one generation, that is, 3 to 5 years (a good text by
Senior [1993] discusses optical fiber communications). However, IP routers may
still become a bottleneck. At 10- to 40-Gbps link rates, and with thousands of
ports in large core IP routers, packets must be processed very quickly—that is,
within a few tens of nanoseconds. The most time-consuming operation is routing.
The way IP addresses have been defined and assigned to Internet hosts makes
routing very complicated, usually requiring a complex search in a tree structure

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-102 ■ Appendix F Interconnection Networks

for every packet. Network processors have become popular as a cost-effective
solution for implementing routing and other packet-filtering operations. They
usually are RISC-like and highly multithreaded and implement local stores
instead of caches.

Local Area Networks

ARPA’s success with wide area networks led directly to the most popular local
area networks. Many researchers at Xerox Palo Alto Research Center had been
funded by ARPA while working at universities, so they all knew the value of net-
working. In 1974, this group invented the Alto, the forerunner of today’s desktop
computers [Thacker et al. 1982], and the Ethernet [Metcalfe and Boggs 1976],
today’s LAN. This group—David Boggs, Butler Lampson, Ed McCreight, Bob
Sprowl, and Chuck Thacker—became luminaries in computer science and engi-
neering, collecting a treasure chest of awards among them.

This first Ethernet provided a 3-Mbit/sec interconnection, which seemed like
an unlimited amount of communication bandwidth with computers of that era. It
relied on the interconnect technology developed for the cable television industry.
Special microcode support gave a round-trip time of 50 µs for the Alto over
Ethernet, which is still a respectable latency. It was Boggs’ experience as a ham
radio operator that led to a design that did not need a central arbiter, but instead
listened before use and then varied back-off times in case of conflicts.

The announcement by Digital Equipment Corporation, Intel, and Xerox of a
standard for 10-Mbit/sec Ethernet was critical to the commercial success of
Ethernet. This announcement short-circuited a lengthy IEEE standards effort,
which eventually did publish IEEE 802.3 as a standard for Ethernet.

There have been several unsuccessful candidates that have tried to replace the
Ethernet. The Fiber Data Distribution Interconnect (FDDI) committee, unfortu-
nately, took a very long time to agree on the standard, and the resulting interfaces
were expensive. It was also a shared medium when switches were becoming
affordable. ATM also missed the opportunity in part because of the long time to
standardize the LAN version of ATM, and in part because of the high latency and
poor behavior of ATM connectionless servers, as mentioned above. InfiniBand
for the reasons discussed below has also faltered. As a result, Ethernet continues
to be the absolute leader in the LAN environment, and it remains a strong oppo-
nent in the high-performance computing market as well, competing against the
SANs by delivering high bandwidth at low cost. The main drawback of Ethernet
for high-end systems is its relatively high latency and lack of support in most
interface cards to implement the necessary protocols.

Because of failures of the past, LAN modernization efforts have been cen-
tered on extending Ethernet to lower-cost media such as unshielded twisted pair
(UTP), switched interconnects, and higher link speeds as well as to new domains
such as wireless communication. Practically all new PC motherboards and
laptops implement a Fast/Gigabit Ethernet port (100/1000 Mbps), and most lap-
tops implement a 54 Mbps Wireless Ethernet connection. Also, home wired or

F.13 Historical Perspective and References ■ F-103

wireless LANs connecting all the home appliances, set-top boxes, desktops, and
laptops to a shared Internet connection are very common. Spurgeon [2006] has
provided a nice online summary of Ethernet technology, including some of its
history.

System Area Networks

One of the first nonblocking multistage interconnection networks was proposed
by Clos [1953] for use in telephone exchange offices. Building on this, many
early inventions for system area networks came from their use in massively paral-
lel processors (MPPs). One of the first MPPs was the Illiac IV, a SIMD array built
in the early 1970s with 64 processing elements (“massive” at that time) intercon-
nected using a topology based on a 2D torus that provided neighbor-to-neighbor
communication. Another representative of early MPP was the Cosmic Cube,
which used Ethernet interface chips to connect 64 processors in a 6-cube. Com-
munication between nonneighboring nodes was made possible by store-and-for-
warding of packets at intermediate nodes toward their final destination. A much
larger and truly “massive” MPP built in the mid-1980s was the Connection
Machine, a SIMD multiprocessor consisting of 64K 1-bit processing elements,
which also used a hypercube with store-and-forwarding. Since these early MPP
machines, interconnection networks have improved considerably.

In the 1970s through the 1990s, considerable research went into trying to
optimize the topology and, later, the routing algorithm, switching, arbitration,
and flow control techniques. Initially, research focused on maximizing perfor-
mance with little attention paid to implementation constraints or crosscutting
issues. Many exotic topologies were proposed having very interesting properties,
but most of them complicated the routing. Rising from the fray was the hyper-
cube, a very popular network in the 1980s that has all but disappeared from MPPs
since the 1990s. What contributed to this shift was a performance model by Dally
[1990] that showed that if the implementation is wire limited, lower-dimensional
topologies achieve better performance than higher-dimensional ones because of
their wider links for a given wire budget. Many designers followed that trend
assuming their designs to be wire limited, even though most implementations
were (and still are) pin limited. Several supercomputers since the 1990s have
implemented low-dimensional topologies, including the Intel Paragon, Cray
T3D, Cray T3E, HP AlphaServer, Intel ASCI Red, and IBM Blue Gene/L.

Meanwhile, other designers followed a very different approach, implement-
ing bidirectional MINs in order to reduce the number of required switches below
the number of network nodes. The most popular bidirectional MIN was the fat
tree topology, originally proposed by Leiserson [1985] and first used in the Con-
nection Machine CM-5 supercomputer and, later, the IBM ASCI White and ASC
Purple supercomputers. This indirect topology was also used in several European
parallel computers based on the Transputer. The Quadrics network has inherited
characteristics from some of those Transputer-based networks. Myrinet has also
evolved significantly from its first version, with Myrinet 2000 incorporating the
fat tree as its principal topology. Indeed, most current implementations of SANs,

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-104 ■ Appendix F Interconnection Networks

including Myrinet, InfiniBand, and Quadrics as well as future implementations
such as PCI-Express Advanced Switching, are based on fat trees.

 Although the topology is the most visible aspect of a network, other features
also have a significant impact on performance. A seminal work that raised aware-
ness of deadlock properties in computer systems was published by Holt [1972].
Early techniques for avoiding deadlock in store-and-forward networks were pro-
posed by Merlin and Schweitzer [1980] and by Gunther [1981]. Pipelined
switching techniques were first introduced by Kermani and Kleinrock [1979]
(virtual cut-through) and improved upon by Dally and Seitz [1986] (wormhole),
which significantly reduced low-load latency and the topology’s impact on mes-
sage latency over previously proposed techniques. Wormhole switching was ini-
tially better than virtual cut-through largely because flow control could be
implemented at a granularity smaller than a packet, allowing high-bandwidth
links that were not as constrained by available switch memory bandwidth. Today,
virtual cut-through is usually preferred over wormhole because it achieves higher
throughput due to less HOL blocking effects and is enabled by current integration
technology that allows the implementation of many packet buffers per link.

Tamir and Frazier [1992] laid the groundwork for virtual output queuing with
the notion of dynamically allocated multiqueues. Around this same time, Dally
[1992] contributed the concept of virtual channels, which was key to the develop-
ment of more efficient deadlock-free routing algorithms and congestion-reducing
flow control techniques for improved network throughput. Another highly rele-
vant contribution to routing was a new theory proposed by Duato [1993] that
allowed the implementation of fully adaptive routing with just one “escape” vir-
tual channel to avoid deadlock. Previous to this, the required number of virtual
channels to avoid deadlock increased exponentially with the number of network
dimensions. Pinkston and Warnakulasuriya [1997] went on to show that deadlock
actually can occur very infrequently, giving credence to deadlock recovery rout-
ing approaches. Scott and Goodman [1994] were among the first to analyze the
usefulness of pipelined channels for making link bandwidth independent of the
time of flight. These and many other innovations have become quite popular,
finding use in most high-performance interconnection networks, both past and
present. The IBM Blue Gene/L, for example, implements virtual cut-through
switching, four virtual channels per link, fully adaptive routing with one escape
channel, and pipelined links.

MPPs represent a very small (and currently shrinking) fraction of the informa-
tion technology market, giving way to bladed servers and clusters. In the United
States, government programs such as the Advanced Simulation and Computing
(ASC) program (formerly known as the Accelerated Strategic Computing Initia-
tive, or ASCI) have promoted the design of those machines, resulting in a series of
increasingly powerful one-of-a-kind MPPs costing $50 million to $100 million.
These days, many are basically lower-cost clusters of symmetric multiprocessors
(SMPs) (see Pfister [1998] and Sterling [2001] for two perspectives on clustering).
In fact, in 2005, nearly 75% of the TOP500 supercomputers were clusters. Never-
theless, the design of each generation of MPPs and even clusters pushes intercon-
nection network research forward to confront new problems arising due to shear

F.13 Historical Perspective and References ■ F-105

size and other scaling factors. For instance, source-based routing—the simplest
form of routing—does not scale well to large systems. Likewise, fat trees require
increasingly longer links as the network size increases, which led IBM Blue Gene/
L designers to adopt a 3D torus network with distributed routing that can be
implemented with bounded-length links.

Storage Area Networks

System area networks were originally designed for a single room or single floor
(thus their distances are tens to hundreds of meters) and were for use in MPPs
and clusters. In the intervening years, the acronym SAN has been co-opted to
also mean storage area networks, whereby networking technology is used to con-
nect storage devices to compute servers. Today, many refer to “storage” when
they say SAN. The most widely used SAN example in 2006 was Fibre Channel
(FC), which comes in many varieties, including various versions of Fibre Chan-
nel Arbitrated Loop (FC-AL) and Fibre Channel Switched (FC-SW). Not only
are disk arrays attached to servers via FC links, but there are even some disks
with FC links attached to switches so that storage area networks can enjoy the
benefits of greater bandwidth and interconnectivity of switching.

 In October 2000, the InfiniBand Trade Association announced the version
1.0 specification of InfiniBand [InfiniBand Trade Association 2001]. Led by
Intel, HP, IBM, Sun, and other companies, it was targeted to the high-perfor-
mance computing market as a successor to the PCI bus by having point-to-point
links and switches with its own set of protocols. Its characteristics are desirable
potentially both for system area networks to connect clusters and for storage area
networks to connect disk arrays to servers. Consequently, it has had strong com-
petition from both fronts. On the storage area networking side, the chief competi-
tion for InfiniBand has been the rapidly improving Ethernet technology widely
used in LANs. The Internet Engineering Task Force proposed a standard called
iSCSI to send SCSI commands over IP networks [Satran et al. 2001]. Given the
cost advantages of the higher-volume Ethernet switches and interface cards,
Gigabit Ethernet dominates the low-end and medium range for this market.
What’s more, the slow introduction of InfiniBand and its small market share
delayed the development of chip sets incorporating native support for InfiniBand.
Therefore, network interface cards had to be plugged into the PCI or PCI-X bus,
thus never delivering on the promise of replacing the PCI bus.

It was another I/O standard, PCI-Express, that finally replaced the PCI bus.
Like InfiniBand, PCI-Express implements a switched network but with point-to-
point serial links. To its credit, it maintains software compatibility with the PCI
bus, drastically simplifying migration to the new I/O interface. Moreover, PCI-
Express benefited significantly from mass market production and has found
application in the desktop market for connecting one or more high-end graphics
cards, making gamers very happy. Every PC motherboard now implements one
or more 16x PCI-Express interfaces. PCI-Express absolutely dominates the I/O
interface, but the current standard does not provide support for interprocessor
communication.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-106 ■ Appendix F Interconnection Networks

Yet another standard, Advanced Switching Interconnect (ASI), may emerge
as a complementary technology to PCI-Express. ASI is compatible with PCI-
Express, thus linking directly to current motherboards, but it also implements
support for interprocessor communication as well as I/O. Its defenders believe
that it will eventually replace both SANs and LANs with a unified network in
the data center market, but ironically this was also said of InfiniBand. The inter-
ested reader is referred to Pinkston et al. [2003] for a detailed discussion on this.
There is also a new disk interface standard called Serial Advanced Technology
Attachment (SATA) that is replacing parallel Integrated Device Electronics
(IDE) with serial signaling technology to allow for increased bandwidth. Most
disks in the market use this new interface, but keep in mind that Fibre Channel is
still alive and well. Indeed, most of the promises made by InfiniBand in the
SAN market were satisfied by Fibre Channel first, thus increasing their share of
the market.

Some believe that Ethernet, PCI-Express, and SATA have the edge in the
LAN, I/O interface, and disk interface areas, respectively. But the fate of the
remaining storage area networking contenders depends on many factors. A won-
derful characteristic of computer architecture is that such issues will not remain
endless academic debates, unresolved as people rehash the same arguments
repeatedly. Instead, the battle is fought in the marketplace, with well-funded and
talented groups giving their best efforts at shaping the future. Moreover, constant
changes to technology reward those who are either astute or lucky. The best com-
bination of technology and follow-through has often determined commercial suc-
cess. Time will tell us who will win and who will lose, at least for the next round!

On-Chip Networks

Relative to the other network domains, on-chip networks are in their infancy. As
recently as the late 1990s, the traditional way of interconnecting devices such as
caches, register files, ALUs, and other functional units within a chip was to use
dedicated links aimed at minimizing latency or shared buses aimed at simplicity.
But with subsequent increases in the volume of interconnected devices on a sin-
gle chip, the length and delay of wires to cross a chip, and chip power consump-
tion, it has become important to share on-chip interconnect bandwidth in a more
structured way, giving rise to the notion of a network on-chip. Among the first to
recognize this were Agarwal [Waingold et al. 1997] and Dally [Dally 1999; Dally
and Towles 2001]. They and others argued that on-chip networks that route pack-
ets allow efficient sharing of burgeoning wire resources between many communi-
cation flows and also facilitate modularity to mitigate chip-crossing wire delay
problems identified by Ho, Mai, and Horowitz [2001]. Switched on-chip net-
works were also viewed as providing better fault isolation and tolerance. Chal-
lenges in designing these networks were later described by Taylor et al. [2005],
who also proposed a 5-tuple model for characterizing the delay of OCNs. A
design process for OCNs that provides a complete synthesis flow was proposed

F.13 Historical Perspective and References ■ F-107

by Bertozzi et al. [2005]. Following these early works, much research and devel-
opment has gone into on-chip network design, making this a very hot area of
microarchitecture activity.

Multicore and tiled designs featuring on-chip networks have become very
popular since the turn of the millennium. Pinkston and Shin [2005] provide a sur-
vey of on-chip networks used in early multicore/tiled systems. Most designs
exploit the reduced wiring complexity of switched OCNs as the paths between
cores/tiles can be precisely defined and optimized early in the design process,
thus enabling improved power and performance characteristics. With typically
tens of thousands of wires attached to the four edges of a core or tile as “pin-
outs,” wire resources can be traded off for improved network performance by
having very wide channels over which data can be sent broadside (and possibly
scaled up or down according to the power management technique), as opposed to
serializing the data over fixed narrow channels.

Rings, meshes, and crossbars are straightforward to implement in planar chip
technology and routing is easily defined on them, so these were popular topolog-
ical choices in early switched OCNs. It will be interesting to see if this trend con-
tinues in the future when several tens to hundreds of heterogeneous cores and
tiles will likely be interconnected within a single chip, possibly using 3D integra-
tion technology. Considering that processor microarchitecture has evolved signif-
icantly from its early beginnings in response to application demands and
technological advancements, we would expect to see vast architectural improve-
ments to on-chip networks as well.

References

Agarwal, A. [1991]. “Limits on interconnection network performance,” IEEE Trans. on
Parallel and Distributed Systems 2:4 (April), 398–412.

Alles, A. [1995]. “ATM internetworking” (May), www.cisco.com/warp/public/614/12.html.
Anderson, T. E., D. E. Culler, and D. Patterson [1995]. “A case for NOW (networks of

workstations),” IEEE Micro 15:1 (February), 54–64.
Anjan, K. V., and T. M. Pinkston [1995]. “An efficient, fully-adaptive deadlock recovery

scheme: Disha,” Proc. 22nd Annual Int’l. Symposium on Computer Architecture, June
22–24, 1995, Santa Margherita Ligure, Italy.

Arpaci, R. H., D. E. Culler, A. Krishnamurthy, S. G. Steinberg, and K. Yelick [1995].
“Empirical evaluation of the Cray-T3D: A compiler perspective,” Proc. 22nd Annual
Int’l. Symposium on Computer Architecture, June 22–24, 1995, Santa Margherita Ligure,
Italy.

Bell, G., and J. Gray [2001]. Crays, Clusters and Centers, MSR-TR-2001-76, Microsoft
Corporation, Redmond, Wash.

Benes, V. E. [1962]. “Rearrangeable three stage connecting networks,” Bell System Tech-
nical Journal 41, 1481–1492.

Bertozzi, D., A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and G. De
Micheli [2005]. “NoC synthesis flow for customized domain specific multiprocessor
systems-on-chip,” IEEE Trans. on Parallel and Distributed Systems 16:2 (February),
113–130.

Bhuyan, L. N., and D. P. Agrawal [1984]. “Generalized hypercube and hyperbus struc-
tures for a computer network,” IEEE Trans. on Computers 32:4 (April), 322–333.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-108 ■ Appendix F Interconnection Networks

Brewer, E. A., and B. C. Kuszmaul [1994]. “How to get good performance from the CM-5
data network.” Proc. Eighth Int’l Parallel Processing Symposium, April 26–29, 1994,
Cancun, Mexico.

Clos, C. [1953]. “A study of non-blocking switching networks,” Bell Systems Technical
Journal 32 (March), 406–424.

Dally, W. J. [1990]. “Performance analysis of k-ary n-cube interconnection networks,”
IEEE Trans. on Computers 39:6 (June), 775–785.

Dally, W. J. [1992]. “Virtual channel flow control,” IEEE Trans. on Parallel and Distrib-
uted Systems 3:2 (March), 194–205.

Dally, W. J. [1999]. “Interconnect limited VLSI architecture,” Proc. of the Int’l. Intercon-
nect Technology Conference, May 24–26, 1999, San Francisco, Calif.

Dally, W. J., and C. I. Seitz [1986]. “The torus routing chip,” Distributed Computing 1:4,
187–196.

Dally, W. J., and B. Towles [2001]. “Route packets, not wires: On-chip interconnection
networks,” Proc. of the 38th Design Automation Conference, June 18–22, 2001, Las
Vegas, Nev.

Dally, W. J., and B. Towles [2004]. Principles and Practices of Interconnection Networks,
Morgan Kaufmann Publishers, San Francisco.

Davie, B. S., L. L. Peterson, and D. Clark [1999]. Computer Networks: A Systems
Approach, 2nd ed., Morgan Kaufmann Publishers, San Francisco.

Duato, J. [1993]. “A new theory of deadlock-free adaptive routing in wormhole networks,”
IEEE Trans. on Parallel and Distributed Systems 4:12 (December) 1320–1331.

Duato, J., I. Johnson, J. Flich, F. Naven, P. Garcia, and T. Nachiondo [2005]. “A new scal-
able and cost-effective congestion management strategy for lossless multistage inter-
connection networks,” Proc. 11th Int’l. Symposium on High Performance Computer
Architecture, February 12–16, 2005, San Francisco.

Duato, J., O. Lysne, R. Pang, and T. M. Pinkston [2005]. “Part I: A theory for deadlock-
free dynamic reconfiguration of interconnection networks,” IEEE Trans. on Parallel
and Distributed Systems 16:5 (May), 412–427.

Duato, J., and T. M. Pinkston [2001]. “A general theory for deadlock-free adaptive routing
using a mixed set of resources,” IEEE Trans. on Parallel and Distributed Systems
12:12 (December), 1219–1235.

Duato, J., S. Yalamanchili, and L. Ni [2003]. Interconnection Networks: An Engineering
Approach, 2nd printing, Morgan Kaufmann Publishers, San Francisco.

Flich, J., and Bertozzi, D. [2010]. Designing Network-on-Chip Architectures in the Nanoscale
Era, CRC Press, Boca Raton, FL.

Glass, C. J., and L. M. Ni [1992]. “The Turn Model for adaptive routing,” Proc. 19th Int’l.
Symposium on Computer Architecture, May, Gold Coast, Australia.

Gunther, K. D. [1981]. “Prevention of deadlocks in packet-switched data transport sys-
tems,” IEEE Trans. on Communications COM–29:4 (April), 512–524.

Ho, R., K. W. Mai, and M. A. Horowitz [2001]. “The future of wires,” Proc. of the IEEE
89:4 (April), 490–504.

Holt, R. C. [1972]. “Some deadlock properties of computer systems,” ACM Computer
Surveys 4:3 (September), 179–196.

Hoskote, Y., S. Vangal, A. Singh, N. Borkar, and S. Borkar S. [2007] “A 5-ghz mesh
interconnect for a teraflops processor,” IEEE Micro 27:5, 51–61.

Howard, J., S. Dighe, Y. Hoskote, S. Vangal, S. Finan, G. Ruhl, D. Jenkins, H. Wilson,
N. Borka, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam,
V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel,
K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart, and

F.13 Historical Perspective and References ■ F-109

T. Mattson [2010]. “A 48-core IA-32 message-passing processor with DVFS in
45nm CMOS,” IEEE International Solid-State Circuits Conference Digest of Techni-
cal Papers, pp. 58–59.

InfiniBand Trade Association [2001]. InfiniBand Architecture Specifications Release
1.0.a, www.infinibandta.org.

Jantsch, A., and H. Tenhunen, eds. [2003]. Networks on Chips, Kluwer Academic Publish-
ers, The Netherlands.

Kahn, R. E. [1972]. “Resource-sharing computer communication networks,” Proc. IEEE
60:11 (November), 1397–1407.

Kermani, P., and L. Kleinrock [1979]. “Virtual cut-through: A new computer communica-
tion switching technique,” Computer Networks 3 (January), 267–286.

Kurose, J. F., and K. W. Ross [2001]. Computer Networking: A Top-Down Approach
Featuring the Internet, Addison-Wesley, Boston.

Leiserson, C. E. [1985]. “Fat trees: Universal networks for hardware-efficient supercom-
puting,” IEEE Trans. on Computers C–34:10 (October), 892–901.

Merlin, P. M., and P. J. Schweitzer [1980]. “Deadlock avoidance in store-and-forward net-
works. I. Store-and-forward deadlock,” IEEE Trans. on Communications COM–28:3
(March), 345–354.

Metcalfe, R. M. [1993]. “Computer/network interface design: Lessons from Arpanet and
Ethernet.” IEEE J. on Selected Areas in Communications 11:2 (February), 173–180.

Metcalfe, R. M., and D. R. Boggs [1976]. “Ethernet: Distributed packet switching for
local computer networks,” Comm. ACM 19:7 (July), 395–404.

Partridge, C. [1994]. Gigabit Networking. Addison-Wesley, Reading, Mass.
Peh, L. S., and W. J. Dally [2001]. “A delay model and speculative architecture for pipe-

lined routers,” Proc. 7th Int’l. Symposium on High Performance Computer Architec-
ture, January 20–24, 2001, Monterrey, Mexico.

Pfister, G. F. [1998]. In Search of Clusters, 2nd ed., Prentice Hall, Upper Saddle River,
N.J.

Pinkston, T. M. [2004]. “Deadlock characterization and resolution in interconnection net-
works,” in Deadlock Resolution in Computer-Integrated Systems, M. C. Zhu and
M. P. Fanti, eds., CRC Press, Boca Raton, Fl., 445–492.

Pinkston, T. M., A. Benner, M. Krause, I. Robinson, and T. Sterling [2003]. “InfiniBand:
The ‘de facto’ future standard for system and local area networks or just a scalable
replacement for PCI buses?” Cluster Computing (Special Issue on Communication
Architecture for Clusters) 6:2 (April), 95–104.

Pinkston, T. M., and J. Shin [2005]. “Trends toward on-chip networked microsystems,”
Int’l. J. of High Performance Computing and Networking 3:1, 3–18.

Pinkston, T. M., and S. Warnakulasuriya [1997]. “On deadlocks in interconnection net-
works,” Proc. 24th Int’l. Symposium on Computer Architecture, June 2–4, 1997, Den-
ver, Colo.

Puente, V., R. Beivide, J. A. Gregorio, J. M. Prellezo, J. Duato, and C. Izu [1999]. “Adap-
tive bubble router: A design to improve performance in torus networks,” Proc. 28th
Int’l. Conference on Parallel Processing, September 21–24, 1999, Aizu-Wakamatsu,
Japan.

Rodrigo, S., J. Flich, J. Duato, and M. Hummel [2008] “Efficient unicast and multicast
support for CMPs,” Proc. 41st Annual IEEE/ACM International Symposium on Micro-
architecture (MICRO-41), November 8–12, 2008, Lake Como, Italy, pp. 364–375.

Saltzer, J. H., D. P. Reed, and D. D. Clark [1984]. “End-to-end arguments in system
design,” ACM Trans. on Computer Systems 2:4 (November), 277–288.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-110 ■ Appendix F Interconnection Networks

Satran, J., D. Smith, K. Meth, C. Sapuntzakis, M. Wakeley, P. Von Stamwitz, R. Haagens,
E. Zeidner, L. Dalle Ore, and Y. Klein [2001]. “iSCSI,” IPS working group of IETF,
Internet draft, www.ietf.org/internet-drafts/draft-ietf-ips-iscsi-07.txt.

Scott, S. L., and J. Goodman [1994]. “The impact of pipelined channels on k-ary n-cube
networks,” IEEE Trans. on Parallel and Distributed Systems 5:1 (January), 1–16.

Senior, J. M. [1993]. Optical Fiber Commmunications: Principles and Practice, 2nd
ed., Prentice Hall, Hertfordshire, U.K.

Spurgeon, C. [2006]. “Charles Spurgeon’s Ethernet Web Site,” www.etherman-
age.com/ethernet/ethernet.html.

Sterling, T. [2001]. Beowulf PC Cluster Computing with Windows and Beowulf PC Clus-
ter Computing with Linux, MIT Press, Cambridge, Mass.

Stevens, W. R. [1994–1996]. TCP/IP Illustrated (three volumes), Addison-Wesley, Reading,
Mass.

Tamir, Y., and G. Frazier [1992]. “Dynamically-allocated multi-queue buffers for VLSI
communication switches,” IEEE Trans. on Computers 41:6 (June), 725–734.

Tanenbaum, A. S. [1988]. Computer Networks, 2nd ed., Prentice Hall, Englewood Cliffs, N.J.
Taylor, M. B., W. Lee, S. P. Amarasinghe, and A. Agarwal [2005]. “Scalar operand net-

works,” IEEE Trans. on Parallel and Distributed Systems 16:2 (February), 145–162.
Thacker, C. P., E. M. McCreight, B. W. Lampson, R. F. Sproull, and D. R. Boggs [1982].

“Alto: A personal computer,” in Computer Structures: Principles and Examples, D. P.
Siewiorek, C. G. Bell, and A. Newell, eds., McGraw-Hill, New York, 549–572.

TILE-GX, http://www.tilera.com/sites/default/files/productbriefs/PB025_TILE-Gx_Processor_
A_v3.pdf.

von Eicken, T., D. E. Culler, S. C. Goldstein, and K. E. Schauser [1992]. “Active messages:
A mechanism for integrated communication and computation,” Proc. 19th Annual
Int’l. Symposium on Computer Architecture, May 19–21, 1992, Gold Coast, Australia.

Vaidya, A. S., A Sivasubramaniam, and C. R. Das [1997]. “Performance benefits of
virtual channels and adaptive routing: An application-driven study,” Proc. 11th ACM
Int’l Conference on Supercomputing, July 7–11, 1997, Vienna, Austria.

Van Leeuwen, J., and R. B. Tan [1987] “Interval Routing,” The Computer Journal 30:4,
298–307.

Waingold, E., M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P.
Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal [1997]. “Baring it all to
software: Raw Machines,” IEEE Computer 30 (September), 86–93.

Yang, Y., and G. Mason [1991]. “Nonblocking broadcast switching networks,” IEEE
Trans. on Computers 40:9 (September), 1005–1015.

Solutions to “starred” exercises are available for instructors who register at
textbooks.elsevier.com.

✪ F.1 [15] <F.2, F.3> Is electronic communication always faster than nonelectronic
means for longer distances? Calculate the time to send 1000 GB using 25 8-mm
tapes and an overnight delivery service versus sending 1000 GB by FTP over the
Internet. Make the following four assumptions:

■ The tapes are picked up at 4 P.M. Pacific time and delivered 4200 km away at
10 A.M. Eastern time (7 A.M. Pacific time).

■ On one route the slowest link is a T3 line, which transfers at 45 Mbits/sec.

Exercises

Exercises ■ F-111

■ On another route the slowest link is a 100-Mbit/sec Ethernet.

■ You can use 50% of the slowest link between the two sites.

Will all the bytes sent by either Internet route arrive before the overnight delivery
person arrives?

✪ F.2 [10] <F.2, F.3> For the same assumptions as Exercise F.1, what is the bandwidth
of overnight delivery for a 1000-GB package?

✪ F.3 [10] <F.2, F.3> For the same assumptions as Exercise F.1, what is the minimum
bandwidth of the slowest link to beat overnight delivery? What standard network
options match that speed?

✪ F.4 [15] <F.2, F.3> The original Ethernet standard was for 10 Mbits/sec and a maxi-
mum distance of 2.5 km. How many bytes could be in flight in the original Ether-
net? Assume you can use 90% of the peak bandwidth.

✪ F.5 [15] <F.2, F.3> Flow control is a problem for WANs due to the long time of
flight, as the example on page F-14 illustrates. Ethernet did not include flow con-
trol when it was first standardized at 10 Mbits/sec. Calculate the number of bytes
in flight for a 10-Gbit/sec Ethernet over a 100 meter link, assuming you can use
90% of peak bandwidth. What does your answer mean for network designers?

✪ F.6 [15] <F.2, F.3> Assume the total overhead to send a zero-length data packet on an
Ethernet is 100 µs and that an unloaded network can transmit at 90% of the peak
1000-Mbit/sec rating. For the purposes of this question, assume that the size of
the Ethernet header and trailer is 56 bytes. Assume a continuous stream of pack-
ets of the same size. Plot the delivered bandwidth of user data in Mbits/sec as the
payload data size varies from 32 bytes to the maximum size of 1500 bytes in
32-byte increments.

✪ F.7 [10] <F.2, F.3> Exercise F.6 suggests that the delivered Ethernet bandwidth to a
single user may be disappointing. Making the same assumptions as in that exer-
cise, by how much would the maximum payload size have to be increased to
deliver half of the peak bandwidth?

✪ F.8 [10] <F.2, F.3> One reason that ATM has a fixed transfer size is that when a short
message is behind a long message, a node may need to wait for an entire transfer
to complete. For applications that are time sensitive, such as when transmitting
voice or video, the large transfer size may result in transmission delays that are
too long for the application. On an unloaded interconnection, what is the worst-
case delay in microseconds if a node must wait for one full-size Ethernet packet
versus an ATM transfer? See Figure F.30 (page F-78) to find the packet sizes. For
this question assume that you can transmit at 100% of the 622-Mbits/sec ATM
network and 100% of the 1000-Mbit/sec Ethernet.

✪ F.9 [10] <F.2, F.3> Exercise F.7 suggests the need for expanding the maximum pay-
load to increase the delivered bandwidth, but Exercise F.8 suggests the impact on
worst-case latency of making it longer. What would be the impact on latency of
increasing the maximum payload size by the answer to Exercise F.7?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-112 ■ Appendix F Interconnection Networks

✪ F.10 [12/12/20] <F.4> The Omega network shown in Figure F.11 on page F-31 con-
sists of three columns of four switches, each with two inputs and two outputs.
Each switch can be set to straight, which connects the upper switch input to the
upper switch output and the lower input to the lower output, and to exchange,
which connects the upper input to the lower output and vice versa for the lower
input. For each column of switches, label the inputs and outputs 0, 1, . . . , 7 from
top to bottom, to correspond with the numbering of the processors.

a. [12] <F.4> When a switch is set to exchange and a message passes through,
what is the relationship between the label values for the switch input and out-
put used by the message? (Hint: Think in terms of operations on the digits of
the binary representation of the label number.)

b. [12] <F.4> Between any two switches in adjacent columns that are connected
by a link, what is the relationship between the label of the output connected to
the input?

c. [20] <F.4> Based on your results in parts (a) and (b), design and describe a
simple routing scheme for distributed control of the Omega network. A mes-
sage will carry a routing tag computed by the sending processor. Describe
how the processor computes the tag and how each switch can set itself by
examining a bit of the routing tag.

✪ F.11 [12/12/12/12/12/12] <F.4> Prove whether or not it is possible to realize the fol-
lowing permutations (i.e., communication patterns) on the eight-node Omega
network shown in Figure F.11 on page F-31:

a. [12] <F.4> Bit-reversal permutation—the node with binary coordinates an–1,
an–2, . . . , a1, a0 communicates with the node a0, a1, . . . , an–2, an–1.

b. [12] <F.4> Perfect shuffle permutation—the node with binary coordinates
an–1, an–2, . . . , a1, a0 communicates with the node an–2, an–3, . . . , a0, an–1
(i.e., rotate left 1 bit).

c. [12] <F.4> Bit-complement permutation—the node with binary coordinates
an–1, an–2, . . . , a1, a0 communicates with the node an–1, an–2, . . . , a1, a0 (i.e.,
complement each bit).

d. [12] <F.4> Butterfly permutation—the node with binary coordinates an–1,
an–2, . . . , a1, a0 communicates with the node a0, an–2, . . . , a1, an–1 (i.e., swap
the most and least significant bits).

e. [12] <F.4> Matrix transpose permutation—the node with binary coordinates
an–1, an–2, . . . , a1, a0 communicates with the node an/2–1, . . . , a0, an–1, . . . ,
an/2 (i.e., transpose the bits in positions approximately halfway around).

f. [12] <F.4> Barrel-shift permutation—node i communicates with node i + 1
modulo N – 1, where N is the total number of nodes and 0 ≤ i.

✪ F.12 [12] <F.4> Design a network topology using 18-port crossbar switches that has
the minimum number of switches to connect 64 nodes. Each switch port supports
communication to and from one device.

Exercises ■ F-113

✪ F.13 [15] <F.4> Design a network topology that has the minimum latency through the
switches for 64 nodes using 18-port crossbar switches. Assume unit delay in the
switches and zero delay for wires.

✪ F.14 [15] <F.4> Design a switch topology that balances the bandwidth required for all
links for 64 nodes using 18-port crossbar switches. Assume a uniform traffic
pattern.

✪ F.15 [15] <F.4> Compare the interconnection latency of a crossbar, Omega network,
and fat tree with eight nodes. Use Figure F.11 on page F-31, Figure F.12 on page
F-33, and Figure F.14 on page F-37. Assume that the fat tree is built entirely from
two-input, two-output switches so that its hardware resources are more compara-
ble to that of the Omega network. Assume that each switch costs a unit time
delay. Assume that the fat tree randomly picks a path, so give the best case and
worst case for each example. How long will it take to send a message from node
0 to node 6? How long will it take node 1 and node 7 to communicate?

✪ F.16 [15] <F.4> Draw the topology of a 6-cube after the same manner of the 4-cube in
Figure F.14 on page F-37. What is the maximum and average number of hops
needed by packets assuming a uniform distribution of packet destinations?

✪ F.17 [15] <F.4> Complete a table similar to Figure F.15 on page F-40 that captures the
performance and cost of various network topologies, but do it for the general case
of N nodes using k × k switches instead of the specific case of 64 nodes.

✪ F.18 [20] <F.4> Repeat the example given on page F-41, but use the bit-complement
communication pattern given in Exercise F.11 instead of NEWS communication.

✪ F.19 [15] <F.5> Give the four specific conditions necessary for deadlock to exist in an
interconnection network. Which of these are removed by dimension-order rout-
ing? Which of these are removed in adaptive routing with the use of “escape”
routing paths? Which of these are removed in adaptive routing with the technique
of deadlock recovery (regressive or progressive)? Explain your answer.

✪ F.20 [12/12/12/12] <F.5> Prove whether or not the following routing algorithms based
on prohibiting dimensional turns are suitable to be used as escape paths for 2D
meshes by analyzing whether they are both connected and deadlock-free. Explain
your answer. (Hint: You may wish to refer to the Turn Model algorithm and/or to
prove your answer by drawing a directed graph for a 4 × 4 mesh that depicts
dependencies between channels and verifying the channel dependency graph is
free of cycles.) The routing algorithms are expressed with the following abbrevi-
ations: W = west, E = east, N = north, and S = south.

a. [12] <F.5> Allowed turns are from W to N, E to N, S to W, and S to E.

b. [12] <F.5> Allowed turns are from W to S, E to S, N to E, and S to E.

c. [12] <F.5> Allowed turns are from W to S, E to S, N to W, S to E, W to N,
and S to W.

d. [12] <F.5> Allowed turns are from S to E, E to S, S to W, N to W, N to E, and
E to N.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-114 ■ Appendix F Interconnection Networks

✪ F.21 [15] <F.5> Compute and compare the upper bound for the efficiency factor, ρ, for
dimension-order routing and up*/down* routing assuming uniformly distributed
traffic on a 64-node 2D mesh network. For up*/down* routing, assume optimal
placement of the root node (i.e., a node near the middle of the mesh). (Hint: You
will have to find the loading of links across the network bisection that carries the
global load as determined by the routing algorithm.)

✪ F.22 [15] <F.5> For the same assumptions as Exercise F.21, find the efficiency factor
for up*/down* routing on a 64-node fat tree network using 4 × 4 switches. Com-
pare this result with the ρ found for up*/down* routing on a 2D mesh. Explain.

✪ F.23 [15] <F.5> Calculate the probability of matching two-phased arbitration requests
from all k input ports of a switch simultaneously to the k output ports assuming a
uniform distribution of requests and grants to/from output ports. How does this
compare to the matching probability for three-phased arbitration in which each of
the k input ports can make two simultaneous requests (again, assuming a uniform
random distribution of requests and grants)?

✪ F.24 [15] <F.5> The equation on page F-52 shows the value of cut-through switching.
Ethernet switches used to build clusters often do not support cut-through switch-
ing. Compare the time to transfer 1500 bytes over a 1000-Mbit/sec Ethernet with
and without cut-through switching for a 64-node cluster. Assume that each Ether-
net switch takes 1.0 µs and that a message goes through seven intermediate
switches.

✪ F.25 [15] <F.5> Making the same assumptions as in Exercise F.24, what is the differ-
ence between cut-through and store-and-forward switching for 32 bytes?

✪ F.26 [15] <F.5> One way to reduce latency is to use larger switches. Unlike Exercise
F.24, let’s assume we need only three intermediate switches to connect any two
nodes in the cluster. Make the same assumptions as in Exercise F.24 for the
remaining parameters. What is the difference between cut-through and store-and-
forward for 1500 bytes? For 32 bytes?

✪ F.27 [20] <F.5> Using FlexSim 1.2 (http://ceng.usc.edu/smart/FlexSim/flexsim.html)
or some other cycle-accurate network simulator, simulate a 256-node 2D torus
network assuming wormhole routing, 32-flit packets, uniform (random) commu-
nication pattern, and four virtual channels. Compare the performance of deter-
ministic routing using DOR, adaptive routing using escape paths (i.e., Duato’s
Protocol), and true fully adaptive routing using progressive deadlock recovery
(i.e., Disha routing). Do so by plotting latency versus applied load and through-
put versus applied load for each, as is done in Figure F.19 for the example on
page F-53. Also run simulations and plot results for two and eight virtual chan-
nels for each. Compare and explain your results by addressing how/why the num-
ber and use of virtual channels by the various routing algorithms affect network
performance. (Hint: Be sure to let the simulation reach steady state by allowing a
warm-up period of a several thousand network cycles before gathering results.)

Exercises ■ F-115

✪ F.28 [20] <F.5> Repeat Exercise F.27 using bit-reversal communication instead of the
uniform random communication pattern. Compare and explain your results by
addressing how/why the communication pattern affects network performance.

✪ F.29 [40] <F.5> Repeat Exercises F.27 and F.28 using 16-flit packets and 128-flit
packets. Compare and explain your results by addressing how/why the packet
size along with the other design parameters affect network performance.

 F.30 [20] <F.2, F.4, F.5, F.8> Figures F.7, F.16, and F.20 show interconnection network
characteristics of several of the top 500 supercomputers by machine type as of
the publication of the fourth edition. Update that figure to the most recent top
500. How have the systems and their networks changed since the data in the orig-
inal figure? Do similar comparisons for OCNs used in microprocessors and
SANs targeted for clusters using Figures F.29 and F.31.

✪ F.31 [12/12/12/15/15/18] <F.8> Use the M/M/1 queuing model to answer this exer-
cise. Measurements of a network bridge show that packets arrive at 200 packets
per second and that the gateway forwards them in about 2 ms.

a. [12] <F.8> What is the utilization of the gateway?

b. [12] <F.8> What is the mean number of packets in the gateway?

c. [12] <F.8> What is the mean time spent in the gateway?

d. [15] <F.8> Plot response time versus utilization as you vary the arrival rate.

e. [15] <F.8> For an M/M/1 queue, the probability of finding n or more tasks in
the system is Utilizationn. What is the chance of an overflow of the FIFO if it
can hold 10 messages?

f. [18] <F.8> How big must the gateway be to have packet loss due to FIFO
overflow less than one packet per million?

✪ F.32 [20] <F.8> The imbalance between the time of sending and receiving can cause
problems in network performance. Sending too fast can cause the network to
back up and increase the latency of messages, since the receivers will not be able
to pull out the message fast enough. A technique called bandwidth matching pro-
poses a simple solution: Slow down the sender so that it matches the performance
of the receiver [Brewer and Kuszmaul 1994]. If two machines exchange an equal
number of messages using a protocol like UDP, one will get ahead of the other,
causing it to send all its messages first. After the receiver puts all these messages
away, it will then send its messages. Estimate the performance for this case ver-
sus a bandwidth-matched case. Assume that the send overhead is 200 µs, the
receive overhead is 300 µs, time of flight is 5 µs, latency is 10 µs, and that the two
machines want to exchange 100 messages.

 F.33 [40] <F.8> Compare the performance of UDP with and without bandwidth
matching by slowing down the UDP send code to match the receive code as
advised by bandwidth matching [Brewer and Kuszmaul 1994]. Devise an experi-
ment to see how much performance changes as a result. How should you change
the send rate when two nodes send to the same destination? What if one sender
sends to two destinations?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

F-116 ■ Appendix F Interconnection Networks

✪ F.34 [40] <F.6, F.8> If you have access to an SMP and a cluster, write a program to
measure latency of communication and bandwidth of communication between
processors, as was plotted in Figure F.32 on page F-80.

 F.35 [20/20/20] <F.9> If you have access to a UNIX system, use ping to explore the
Internet. First read the manual page. Then use ping without option flags to be
sure you can reach the following sites. It should say that X is alive. Depending
on your system, you may be able to see the path by setting the flags to verbose
mode (-v) and trace route mode (-R) to see the path between your machine and
the example machine. Alternatively, you may need to use the program trace
route to see the path. If so, try its manual page. You may want to use the UNIX
command script to make a record of your session.

a. [20] <F.9> Trace the route to another machine on the same local area net-
work. What is the latency?

b. [20] <F.9> Trace the route to another machine on your campus that is not on
the same local area network.What is the latency?

c. [20] <F.9> Trace the route to another machine off campus. For example, if
you have a friend you send email to, try tracing that route. See if you can dis-
cover what types of networks are used along that route.What is the latency?

 F.36 [15] <F.9> Use FTP to transfer a file from a remote site and then between local
sites on the same LAN. What is the difference in bandwidth for each transfer?
Try the transfer at different times of day or days of the week. Is the WAN or LAN
the bottleneck?

✪ F.37 [10/10] <F.9, F.11> Figure F.41 on page F-93 compares latencies for a high-
bandwidth network with high overhead and a low-bandwidth network with low
overhead for different TCP/IP message sizes.

a. [10] <F.9, F.11> For what message sizes is the delivered bandwidth higher for
the high-bandwidth network?

b. [10] <F.9, F.11> For your answer to part (a), what is the delivered bandwidth
for each network?

✪ F.38 [15] <F.9, F.11> Using the statistics in Figure F.41 on page F-93, estimate the
per-message overhead for each network.

✪ F.39 [15] <F.9, F.11> Exercise F.37 calculates which message sizes are faster for two
networks with different overhead and peak bandwidth. Using the statistics in
Figure F.41 on page F-93, what is the percentage of messages that are transmitted
more quickly on the network with low overhead and bandwidth? What is the per-
centage of data transmitted more quickly on the network with high overhead and
bandwidth?

✪ F.40 [15] <F.9, F.11> One interesting measure of the latency and bandwidth of an inter-
connection is to calculate the size of a message needed to achieve one-half of the
peak bandwidth. This halfway point is sometimes referred to as n1/2, taken from
the terminology of vector processing. Using Figure F.41 on page F-93, estimate
n1/2 for TCP/IP message using 155-Mbit/sec ATM and 10-Mbit/sec Ethernet.

Exercises ■ F-117

 F.41 [Discussion] <F.10> The Google cluster used to be constructed from 1 rack unit
(RU) PCs, each with one processor and two disks. Today there are considerably
denser options. How much less floor space would it take if we were to replace the
1 RU PCs with modern alternatives? Go to the Compaq or Dell Web sites to find
the densest alternative. What would be the estimated impact on cost of the equip-
ment? What would be the estimated impact on rental cost of floor space? What
would be the impact on interconnection network design for achieving power/
performance efficiency?

 F.42 [Discussion] <F.13> At the time of the writing of the fourth edition, it was
unclear what would happen with Ethernet versus InfiniBand versus Advanced
Switching in the machine room. What are the technical advantages of each? What
are the economic advantages of each? Why would people maintaining the system
prefer one to the other? How popular is each network today? How do they com-
pare to proprietary commercial networks such as Myrinet and Quadrics?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G.1 Introduction G-2

G.2 Vector Performance in More Depth G-2

G.3 Vector Memory Systems in More Depth G-9

G.4 Enhancing Vector Performance G-11

G.5 Effectiveness of Compiler Vectorization G-14

G.6 Putting It All Together: Performance of Vector Processors G-15

G.7 A Modern Vector Supercomputer: The Cray X1 G-21

G.8 Concluding Remarks G-25

G.9 Historical Perspective and References G-26

 Exercises G-30

G
Vector Processors in More

Depth 2

Revised by Krste Asanovic
Massachusetts Institute of Technology

I’m certainly not inventing vector processors. There are three kinds
that I know of existing today. They are represented by the Illiac-IV, the
(CDC) Star processor, and the TI (ASC) processor. Those three were all
pioneering processors. . . . One of the problems of being a pioneer is
you always make mistakes and I never, never want to be a pioneer. It’s
always best to come second when you can look at the mistakes the
pioneers made.

Seymour Cray
Public lecture at Lawrence Livermore Laboratories

on the introduction of the Cray-1 (1976)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G-2 ■ Appendix G Vector Processors in More Depth

Chapter 4 introduces vector architectures and places Multimedia SIMD exten-
sions and GPUs in proper context to vector architectures.

In this appendix, we go into more detail on vector architectures, including
more accurate performance models and descriptions of previous vector architec-
tures. Figure G.1 shows the characteristics of some typical vector processors,
including the size and count of the registers, the number and types of functional
units, the number of load-store units, and the number of lanes.

The chime approximation is reasonably accurate for long vectors. Another source
of overhead is far more significant than the issue limitation.

The most important source of overhead ignored by the chime model is vector
start-up time. The start-up time comes from the pipelining latency of the vector
operation and is principally determined by how deep the pipeline is for the func-
tional unit used. The start-up time increases the effective time to execute a con-
voy to more than one chime. Because of our assumption that convoys do not
overlap in time, the start-up time delays the execution of subsequent convoys. Of
course, the instructions in successive convoys either have structural conflicts for
some functional unit or are data dependent, so the assumption of no overlap is
reasonable. The actual time to complete a convoy is determined by the sum of the
vector length and the start-up time. If vector lengths were infinite, this start-up
overhead would be amortized, but finite vector lengths expose it, as the following
example shows.

Example Assume that the start-up overhead for functional units is shown in Figure G.2.

Show the time that each convoy can begin and the total number of cycles needed.
How does the time compare to the chime approximation for a vector of length 64?

Answer Figure G.3 provides the answer in convoys, assuming that the vector length is n.
One tricky question is when we assume the vector sequence is done; this deter-
mines whether the start-up time of the SV is visible or not. We assume that the
instructions following cannot fit in the same convoy, and we have already
assumed that convoys do not overlap. Thus, the total time is given by the time
until the last vector instruction in the last convoy completes. This is an approxi-
mation, and the start-up time of the last vector instruction may be seen in some
sequences and not in others. For simplicity, we always include it.

The time per result for a vector of length 64 is 4 + (42/64) = 4.65 clock
cycles, while the chime approximation would be 4. The execution time with start-
up overhead is 1.16 times higher.

 G.1 Introduction

 G.2 Vector Performance in More Depth

G.2 Vector Performance in More Depth ■ G-3

Processor (year)

Vector
clock
rate

(MHz)
Vector

registers

Elements per
register
(64-bit

elements) Vector arithmetic units

Vector
load-store

units Lanes

Cray-1 (1976) 80 8 64 6: FP add, FP multiply, FP reciprocal,
integer add, logical, shift

1 1

Cray X-MP (1983)

Cray Y-MP (1988)

118

166
8 64

8: FP add, FP multiply, FP reciprocal,
integer add, 2 logical, shift, population
count/parity

2 loads
1 store

1

Cray-2 (1985) 244 8 64 5: FP add, FP multiply, FP reciprocal/sqrt,
integer add/shift/population count, logical

1 1

Fujitsu VP100/
VP200 (1982)

133 8–256 32–1024 3: FP or integer add/logical, multiply, divide 2 1 (VP100)
2 (VP200)

Hitachi S810/S820
(1983)

71 32 256 4: FP multiply-add, FP multiply/divide-add
unit, 2 integer add/logical

3 loads
1 store

1 (S810)
2 (S820)

Convex C-1 (1985) 10 8 128 2: FP or integer multiply/divide, add/logical 1 1 (64 bit)
2 (32 bit)

NEC SX/2 (1985) 167 8 + 32 256 4: FP multiply/divide, FP add, integer add/
logical, shift

1 4

Cray C90 (1991)

Cray T90 (1995)

240

460
8 128

8: FP add, FP multiply, FP reciprocal,
integer add, 2 logical, shift, population
count/parity

2 loads
1 store

2

NEC SX/5 (1998) 312 8 + 64 512 4: FP or integer add/shift, multiply, divide,
logical

1 16

Fujitsu VPP5000
(1999)

300 8–256 128–4096 3: FP or integer multiply, add/logical, divide 1 load
1 store

16

Cray SV1 (1998)

SV1ex (2001)

300

500
8 64

(MSP)

8: FP add, FP multiply, FP reciprocal,
integer add, 2 logical, shift, population
count/parity

1 load-store
1 load

2
8 (MSP)

VMIPS (2001) 500 8 64 5: FP multiply, FP divide, FP add, integer
add/shift, logical

1 load-store 1

NEC SX/6 (2001) 500 8 + 64 256 4: FP or integer add/shift, multiply, divide,
logical

1 8

NEC SX/8 (2004) 2000 8 + 64 256 4: FP or integer add/shift, multiply, divide,
logical

1 4

Cray X1 (2002)

Cray XIE (2005)

800

1130
32

64
256 (MSP)

3: FP or integer, add/logical, multiply/shift,
divide/square root/logical

1 load
1 store

2
8 (MSP)

Figure G.1 Characteristics of several vector-register architectures. If the machine is a multiprocessor, the entries correspond to
the characteristics of one processor. Several of the machines have different clock rates in the vector and scalar units; the clock rates
shown are for the vector units. The Fujitsu machines’ vector registers are configurable: The size and count of the 8K 64-bit entries
may be varied inversely to one another (e.g., on the VP200, from eight registers each 1K elements long to 256 registers each 32 ele-
ments long). The NEC machines have eight foreground vector registers connected to the arithmetic units plus 32 to 64 background
vector registers connected between the memory system and the foreground vector registers. Add pipelines perform add and sub-
tract. The multiply/divide-add unit on the Hitachi S810/820 performs an FP multiply or divide followed by an add or subtract (while
the multiply-add unit performs a multiply followed by an add or subtract). Note that most processors use the vector FP multiply
and divide units for vector integer multiply and divide, and several of the processors use the same units for FP scalar and FP vector
operations. Each vector load-store unit represents the ability to do an independent, overlapped transfer to or from the vector regis-
ters. The number of lanes is the number of parallel pipelines in each of the functional units as described in Section G.4. For example,
the NEC SX/5 can complete 16 multiplies per cycle in the multiply functional unit. Several machines can split a 64-bit lane into two
32-bit lanes to increase performance for applications that require only reduced precision. The Cray SV1 and Cray X1 can group four
CPUs with two lanes each to act in unison as a single larger CPU with eight lanes, which Cray calls a Multi-Streaming Processor
(MSP).

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G-4 ■ Appendix G Vector Processors in More Depth

For simplicity, we will use the chime approximation for running time, incor-
porating start-up time effects only when we want performance that is more
detailed or to illustrate the benefits of some enhancement. For long vectors, a typ-
ical situation, the overhead effect is not that large. Later in the appendix, we will
explore ways to reduce start-up overhead.

Start-up time for an instruction comes from the pipeline depth for the func-
tional unit implementing that instruction. If the initiation rate is to be kept at 1
clock cycle per result, then

For example, if an operation takes 10 clock cycles, it must be pipelined 10 deep
to achieve an initiation rate of one per clock cycle. Pipeline depth, then, is deter-
mined by the complexity of the operation and the clock cycle time of the proces-
sor. The pipeline depths of functional units vary widely—2 to 20 stages are
common—although the most heavily used units have pipeline depths of 4 to 8
clock cycles.

For VMIPS, we will use the same pipeline depths as the Cray-1, although
latencies in more modern processors have tended to increase, especially for
loads. All functional units are fully pipelined. From Chapter 4, pipeline depths
are 6 clock cycles for floating-point add and 7 clock cycles for floating-point
multiply. On VMIPS, as on most vector processors, independent vector opera-
tions using different functional units can issue in the same convoy.

In addition to the start-up overhead, we need to account for the overhead of
executing the strip-mined loop. This strip-mining overhead, which arises from

Unit Start-up overhead (cycles)

Load and store unit 12

Multiply unit 7

Add unit 6

Figure G.2 Start-up overhead.

Convoy Starting time First-result time Last-result time

1. LV 0 12 11 + n

2. MULVS.D LV 12 + n 12 + n + 12 23 + 2n

3. ADDV.D 24 + 2n 24 + 2n + 6 29 + 3n

4. SV 30 + 3n 30 + 3n + 12 41 + 4n

Figure G.3 Starting times and first- and last-result times for convoys 1 through 4.
The vector length is n.

Pipeline depth Total functional unit time
Clock cycle time

---=

G.2 Vector Performance in More Depth ■ G-5

the need to reinitiate the vector sequence and set the Vector Length Register
(VLR) effectively adds to the vector start-up time, assuming that a convoy does
not overlap with other instructions. If that overhead for a convoy is 10 cycles,
then the effective overhead per 64 elements increases by 10 cycles, or 0.15 cycles
per element.

Two key factors contribute to the running time of a strip-mined loop consist-
ing of a sequence of convoys:

1. The number of convoys in the loop, which determines the number of chimes.
We use the notation Tchime for the execution time in chimes.

2. The overhead for each strip-mined sequence of convoys. This overhead con-
sists of the cost of executing the scalar code for strip-mining each block,
Tloop, plus the vector start-up cost for each convoy, Tstart.

There may also be a fixed overhead associated with setting up the vector
sequence the first time. In recent vector processors, this overhead has become
quite small, so we ignore it.

The components can be used to state the total running time for a vector
sequence operating on a vector of length n, which we will call Tn:

The values of Tstart, Tloop, and Tchime are compiler and processor dependent. The
register allocation and scheduling of the instructions affect both what goes in a
convoy and the start-up overhead of each convoy.

For simplicity, we will use a constant value for Tloop on VMIPS. Based on a
variety of measurements of Cray-1 vector execution, the value chosen is 15 for
Tloop. At first glance, you might think that this value is too small. The overhead in
each loop requires setting up the vector starting addresses and the strides, incre-
menting counters, and executing a loop branch. In practice, these scalar instruc-
tions can be totally or partially overlapped with the vector instructions,
minimizing the time spent on these overhead functions. The value of Tloop of
course depends on the loop structure, but the dependence is slight compared with
the connection between the vector code and the values of Tchime and Tstart.

Operation Start-up penalty

Vector add 6

Vector multiply 7

Vector divide 20

Vector load 12

Figure G.4 Start-up penalties on VMIPS. These are the start-up penalties in clock
cycles for VMIPS vector operations.

Tn
n

MVL
-------------- Tloop Tstart+

⎝ ⎠
⎛ ⎞× n T× chime+=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G-6 ■ Appendix G Vector Processors in More Depth

Example What is the execution time on VMIPS for the vector operation A = B × s, where s
is a scalar and the length of the vectors A and B is 200?

Answer Assume that the addresses of A and B are initially in Ra and Rb, s is in Fs, and
recall that for MIPS (and VMIPS) R0 always holds 0. Since (200 mod 64) = 8,
the first iteration of the strip-mined loop will execute for a vector length of 8
elements, and the following iterations will execute for a vector length of 64 ele-
ments. The starting byte addresses of the next segment of each vector is eight
times the vector length. Since the vector length is either 8 or 64, we increment the
address registers by 8 × 8 = 64 after the first segment and 8 × 64 = 512 for later
segments. The total number of bytes in the vector is 8 × 200 = 1600, and we test
for completion by comparing the address of the next vector segment to the initial
address plus 1600. Here is the actual code:

DADDUI R2,R0,#1600 ;total # bytes in vector
DADDU R2,R2,Ra ;address of the end of A vector
DADDUI R1,R0,#8 ;loads length of 1st segment
MTC1 VLR,R1 ;load vector length in VLR
DADDUI R1,R0,#64 ;length in bytes of 1st segment
DADDUI R3,R0,#64 ;vector length of other segments

Loop: LV V1,Rb ;load B
MULVS.D V2,V1,Fs ;vector * scalar
SV Ra,V2 ;store A
DADDU Ra,Ra,R1 ;address of next segment of A
DADDU Rb,Rb,R1 ;address of next segment of B
DADDUI R1,R0,#512 ;load byte offset next segment
MTC1 VLR,R3 ;set length to 64 elements
DSUBU R4,R2,Ra ;at the end of A?
BNEZ R4,Loop ;if not, go back

The three vector instructions in the loop are dependent and must go into three
convoys, hence Tchime = 3. Let’s use our basic formula:

The value of Tstart is the sum of:

■ The vector load start-up of 12 clock cycles

■ A 7-clock-cycle start-up for the multiply

■ A 12-clock-cycle start-up for the store

Thus, the value of Tstart is given by:

Tstart = 12 + 7 + 12 = 31

Tn
n

MVL
-------------- Tloop Tstart+

⎝ ⎠
⎛ ⎞× n Tchime×+=

T200 4 15 Tstart+() 200 3×+×=

T200 60 4 Tstart×() 600+ + 660 4 Tstart×()+= =

G.2 Vector Performance in More Depth ■ G-7

So, the overall value becomes:

T200 = 660 + 4 × 31= 784

The execution time per element with all start-up costs is then 784/200 = 3.9,
compared with a chime approximation of three. In Section G.4, we will be more
ambitious—allowing overlapping of separate convoys.

Figure G.5 shows the overhead and effective rates per element for the previ-
ous example (A = B × s) with various vector lengths. A chime-counting model
would lead to 3 clock cycles per element, while the two sources of overhead add
0.9 clock cycles per element in the limit.

Pipelined Instruction Start-Up and Multiple Lanes

Adding multiple lanes increases peak performance but does not change start-up
latency, and so it becomes critical to reduce start-up overhead by allowing the
start of one vector instruction to be overlapped with the completion of preceding
vector instructions. The simplest case to consider is when two vector instructions
access a different set of vector registers. For example, in the code sequence

ADDV.D V1,V2,V3
ADDV.D V4,V5,V6

Figure G.5 The total execution time per element and the total overhead time per
element versus the vector length for the example on page F-6. For short vectors, the
total start-up time is more than one-half of the total time, while for long vectors it
reduces to about one-third of the total time. The sudden jumps occur when the vector
length crosses a multiple of 64, forcing another iteration of the strip-mining code and
execution of a set of vector instructions. These operations increase Tn by Tloop + Tstart.

Total time
per element

Total
overhead
per element

10

Clock
cycles

30 50 70 90 110 130 150 170 190
0

1

2

3

4

5

6

7

8

Vector size

9

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G-8 ■ Appendix G Vector Processors in More Depth

An implementation can allow the first element of the second vector instruction to
follow immediately the last element of the first vector instruction down the FP
adder pipeline. To reduce the complexity of control logic, some vector machines
require some recovery time or dead time in between two vector instructions dis-
patched to the same vector unit. Figure G.6 is a pipeline diagram that shows both
start-up latency and dead time for a single vector pipeline.

The following example illustrates the impact of this dead time on achievable
vector performance.

Example The Cray C90 has two lanes but requires 4 clock cycles of dead time between any
two vector instructions to the same functional unit, even if they have no data
dependences. For the maximum vector length of 128 elements, what is the reduc-
tion in achievable peak performance caused by the dead time? What would be the
reduction if the number of lanes were increased to 16?

Answer A maximum length vector of 128 elements is divided over the two lanes and
occupies a vector functional unit for 64 clock cycles. The dead time adds another
4 cycles of occupancy, reducing the peak performance to 64/(64 + 4) = 94.1% of
the value without dead time. If the number of lanes is increased to 16, maximum
length vector instructions will occupy a functional unit for only 128/16 = 8
cycles, and the dead time will reduce peak performance to 8/(8 + 4) = 66.6% of
the value without dead time. In this second case, the vector units can never be
more than 2/3 busy!

Figure G.6 Start-up latency and dead time for a single vector pipeline. Each element
has a 5-cycle latency: 1 cycle to read the vector-register file, 3 cycles in execution, then
1 cycle to write the vector-register file. Elements from the same vector instruction can
follow each other down the pipeline, but this machine inserts 4 cycles of dead time
between two different vector instructions. The dead time can be eliminated with more
complex control logic. (Reproduced with permission from Asanovic [1998].)

G.3 Vector Memory Systems in More Depth ■ G-9

Pipelining instruction start-up becomes more complicated when multiple
instructions can be reading and writing the same vector register and when some
instructions may stall unpredictably—for example, a vector load encountering
memory bank conflicts. However, as both the number of lanes and pipeline laten-
cies increase, it becomes increasingly important to allow fully pipelined instruc-
tion start-up.

To maintain an initiation rate of one word fetched or stored per clock, the mem-
ory system must be capable of producing or accepting this much data. As we saw
in Chapter 4, this usually done by spreading accesses across multiple indepen-
dent memory banks. Having significant numbers of banks is useful for dealing
with vector loads or stores that access rows or columns of data.

The desired access rate and the bank access time determined how many banks
were needed to access memory without stalls. This example shows how these
timings work out in a vector processor.

Example Suppose we want to fetch a vector of 64 elements starting at byte address 136,
and a memory access takes 6 clocks. How many memory banks must we have to
support one fetch per clock cycle? With what addresses are the banks accessed?
When will the various elements arrive at the CPU?

Answer Six clocks per access require at least 6 banks, but because we want the number of
banks to be a power of 2, we choose to have 8 banks. Figure G.7 shows the tim-
ing for the first few sets of accesses for an 8-bank system with a 6-clock-cycle
access latency.

The timing of real memory banks is usually split into two different compo-
nents, the access latency and the bank cycle time (or bank busy time). The access
latency is the time from when the address arrives at the bank until the bank
returns a data value, while the busy time is the time the bank is occupied with one
request. The access latency adds to the start-up cost of fetching a vector from
memory (the total memory latency also includes time to traverse the pipelined
interconnection networks that transfer addresses and data between the CPU and
memory banks). The bank busy time governs the effective bandwidth of a mem-
ory system because a processor cannot issue a second request to the same bank
until the bank busy time has elapsed.

For simple unpipelined SRAM banks as used in the previous examples, the
access latency and busy time are approximately the same. For a pipelined SRAM
bank, however, the access latency is larger than the busy time because each ele-
ment access only occupies one stage in the memory bank pipeline. For a DRAM
bank, the access latency is usually shorter than the busy time because a DRAM
needs extra time to restore the read value after the destructive read operation. For

 G.3 Vector Memory Systems in More Depth

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G-10 ■ Appendix G Vector Processors in More Depth

memory systems that support multiple simultaneous vector accesses or allow
nonsequential accesses in vector loads or stores, the number of memory banks
should be larger than the minimum; otherwise, memory bank conflicts will exist.

Memory bank conflicts will not occur within a single vector memory instruc-
tion if the stride and number of banks are relatively prime with respect to each
other and there are enough banks to avoid conflicts in the unit stride case. When
there are no bank conflicts, multiword and unit strides run at the same rates.
Increasing the number of memory banks to a number greater than the minimum
to prevent stalls with a stride of length 1 will decrease the stall frequency for
some other strides. For example, with 64 banks, a stride of 32 will stall on every
other access, rather than every access. If we originally had a stride of 8 and 16
banks, every other access would stall; with 64 banks, a stride of 8 will stall on
every eighth access. If we have multiple memory pipelines and/or multiple pro-
cessors sharing the same memory system, we will also need more banks to pre-
vent conflicts. Even machines with a single memory pipeline can experience
memory bank conflicts on unit stride accesses between the last few elements of

Bank

Cycle no. 0 1 2 3 4 5 6 7

0 136

1 Busy 144

2 Busy Busy 152

3 Busy Busy Busy 160

4 Busy Busy Busy Busy 168

5 Busy Busy Busy Busy Busy 176

6 Busy Busy Busy Busy Busy 184

7 192 Busy Busy Busy Busy Busy

8 Busy 200 Busy Busy Busy Busy

9 Busy Busy 208 Busy Busy Busy

10 Busy Busy Busy 216 Busy Busy

11 Busy Busy Busy Busy 224 Busy

12 Busy Busy Busy Busy Busy 232

13 Busy Busy Busy Busy Busy 240

14 Busy Busy Busy Busy Busy 248

15 256 Busy Busy Busy Busy Busy

16 Busy 264 Busy Busy Busy Busy

Figure G.7 Memory addresses (in bytes) by bank number and time slot at which
access begins. Each memory bank latches the element address at the start of an access
and is then busy for 6 clock cycles before returning a value to the CPU. Note that the
CPU cannot keep all 8 banks busy all the time because it is limited to supplying one
new address and receiving one data item each cycle.

G.4 Enhancing Vector Performance ■ G-11

one instruction and the first few elements of the next instruction, and increasing
the number of banks will reduce the probability of these inter-instruction con-
flicts. In 2011, most vector supercomputers spread the accesses from each CPU
across hundreds of memory banks. Because bank conflicts can still occur in non-
unit stride cases, programmers favor unit stride accesses whenever possible.

A modern supercomputer may have dozens of CPUs, each with multiple
memory pipelines connected to thousands of memory banks. It would be imprac-
tical to provide a dedicated path between each memory pipeline and each mem-
ory bank, so, typically, a multistage switching network is used to connect
memory pipelines to memory banks. Congestion can arise in this switching net-
work as different vector accesses contend for the same circuit paths, causing
additional stalls in the memory system.

In this section, we present techniques for improving the performance of a vector
processor in more depth than we did in Chapter 4.

Chaining in More Depth

Early implementations of chaining worked like forwarding, but this restricted the
timing of the source and destination instructions in the chain. Recent implemen-
tations use flexible chaining, which allows a vector instruction to chain to essen-
tially any other active vector instruction, assuming that no structural hazard is
generated. Flexible chaining requires simultaneous access to the same vector reg-
ister by different vector instructions, which can be implemented either by adding
more read and write ports or by organizing the vector-register file storage into
interleaved banks in a similar way to the memory system. We assume this type of
chaining throughout the rest of this appendix.

Even though a pair of operations depends on one another, chaining allows the
operations to proceed in parallel on separate elements of the vector. This permits
the operations to be scheduled in the same convoy and reduces the number of
chimes required. For the previous sequence, a sustained rate (ignoring start-up)
of two floating-point operations per clock cycle, or one chime, can be achieved,
even though the operations are dependent! The total running time for the above
sequence becomes:

Vector length + Start-up timeADDV + Start-up timeMULV

Figure G.8 shows the timing of a chained and an unchained version of the above
pair of vector instructions with a vector length of 64. This convoy requires one
chime; however, because it uses chaining, the start-up overhead will be seen in
the actual timing of the convoy. In Figure G.8, the total time for chained opera-
tion is 77 clock cycles, or 1.2 cycles per result. With 128 floating-point opera-
tions done in that time, 1.7 FLOPS per clock cycle are obtained. For the
unchained version, there are 141 clock cycles, or 0.9 FLOPS per clock cycle.

 G.4 Enhancing Vector Performance

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G-12 ■ Appendix G Vector Processors in More Depth

Although chaining allows us to reduce the chime component of the execution
time by putting two dependent instructions in the same convoy, it does not
eliminate the start-up overhead. If we want an accurate running time estimate, we
must count the start-up time both within and across convoys. With chaining, the
number of chimes for a sequence is determined by the number of different vector
functional units available in the processor and the number required by the appli-
cation. In particular, no convoy can contain a structural hazard. This means, for
example, that a sequence containing two vector memory instructions must take at
least two convoys, and hence two chimes, on a processor like VMIPS with only
one vector load-store unit.

Chaining is so important that every modern vector processor supports flexible
chaining.

Sparse Matrices in More Depth

Chapter 4 shows techniques to allow programs with sparse matrices to execute in
vector mode. Let’s start with a quick review. In a sparse matrix, the elements of a
vector are usually stored in some compacted form and then accessed indirectly.
Assuming a simplified sparse structure, we might see code that looks like this:

do 100 i = 1,n
100 A(K(i)) = A(K(i)) + C(M(i))

This code implements a sparse vector sum on the arrays A and C, using index vec-
tors K and M to designate the nonzero elements of A and C. (A and C must have the
same number of nonzero elements—n of them.) Another common representation
for sparse matrices uses a bit vector to show which elements exist and a dense
vector for the nonzero elements. Often both representations exist in the same pro-
gram. Sparse matrices are found in many codes, and there are many ways to
implement them, depending on the data structure used in the program.

A simple vectorizing compiler could not automatically vectorize the source
code above because the compiler would not know that the elements of K are dis-
tinct values and thus that no dependences exist. Instead, a programmer directive
would tell the compiler that it could run the loop in vector mode.

More sophisticated vectorizing compilers can vectorize the loop automati-
cally without programmer annotations by inserting run time checks for data

Figure G.8 Timings for a sequence of dependent vector operations ADDV and MULV,
both unchained and chained. The 6- and 7-clock-cycle delays are the latency of the
adder and multiplier.

Unchained

Chained

Total = 77

Total = 141
7 64

7 64

MULV

64

ADDV

64

MULV ADDV

6

6

G.4 Enhancing Vector Performance ■ G-13

dependences. These run time checks are implemented with a vectorized software
version of the advanced load address table (ALAT) hardware described in Appen-
dix H for the Itanium processor. The associative ALAT hardware is replaced with
a software hash table that detects if two element accesses within the same strip-
mine iteration are to the same address. If no dependences are detected, the strip-
mine iteration can complete using the maximum vector length. If a dependence is
detected, the vector length is reset to a smaller value that avoids all dependency
violations, leaving the remaining elements to be handled on the next iteration of
the strip-mined loop. Although this scheme adds considerable software overhead
to the loop, the overhead is mostly vectorized for the common case where there
are no dependences; as a result, the loop still runs considerably faster than scalar
code (although much slower than if a programmer directive was provided).

A scatter-gather capability is included on many of the recent supercomputers.
These operations often run more slowly than strided accesses because they are
more complex to implement and are more susceptible to bank conflicts, but they
are still much faster than the alternative, which may be a scalar loop. If the spar-
sity properties of a matrix change, a new index vector must be computed. Many
processors provide support for computing the index vector quickly. The CVI (cre-
ate vector index) instruction in VMIPS creates an index vector given a stride (m),
where the values in the index vector are 0, m, 2 × m, . . . , 63 × m. Some proces-
sors provide an instruction to create a compressed index vector whose entries
correspond to the positions with a one in the mask register. Other vector architec-
tures provide a method to compress a vector. In VMIPS, we define the CVI
instruction to always create a compressed index vector using the vector mask.
When the vector mask is all ones, a standard index vector will be created.

The indexed loads-stores and the CVI instruction provide an alternative
method to support conditional vector execution. Let us first recall code from
Chapter 4:

low = 1
VL = (n mod MVL) /*find the odd-size piece*/
do 1 j = 0,(n/MVL) /*outer loop*/

do 10 i = low, low + VL - 1 /*runs for length VL*/
Y(i) = a * X(i) + Y(i) /*main operation*/

10 continue
low = low + VL /*start of next vector*/
VL = MVL /*reset the length to max*/

1 continue

Here is a vector sequence that implements that loop using CVI:

LV V1,Ra ;load vector A into V1
L.D F0,#0 ;load FP zero into F0
SNEVS.D V1,F0 ;sets the VM to 1 if V1(i)!=F0
CVI V2,#8 ;generates indices in V2
POP R1,VM ;find the number of 1’s in VM
MTC1 VLR,R1 ;load vector-length register
CVM ;clears the mask

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G-14 ■ Appendix G Vector Processors in More Depth

LVI V3,(Ra+V2) ;load the nonzero A elements
LVI V4,(Rb+V2) ;load corresponding B elements
SUBV.D V3,V3,V4 ;do the subtract
SVI (Ra+V2),V3 ;store A back

Whether the implementation using scatter-gather is better than the condition-
ally executed version depends on the frequency with which the condition holds
and the cost of the operations. Ignoring chaining, the running time of the original
version is 5n + c1. The running time of the second version, using indexed loads
and stores with a running time of one element per clock, is 4n + 4fn + c2, where f
is the fraction of elements for which the condition is true (i.e., A(i) ¦ 0). If we
assume that the values of c1 and c2 are comparable, or that they are much smaller
than n, we can find when this second technique is better.

We want Time1 > Time2, so

That is, the second method is faster if less than one-quarter of the elements are
nonzero. In many cases, the frequency of execution is much lower. If the index
vector can be reused, or if the number of vector statements within the if statement
grows, the advantage of the scatter-gather approach will increase sharply.

Two factors affect the success with which a program can be run in vector mode.
The first factor is the structure of the program itself: Do the loops have true data
dependences, or can they be restructured so as not to have such dependences?
This factor is influenced by the algorithms chosen and, to some extent, by how
they are coded. The second factor is the capability of the compiler. While no
compiler can vectorize a loop where no parallelism among the loop iterations
exists, there is tremendous variation in the ability of compilers to determine
whether a loop can be vectorized. The techniques used to vectorize programs are
the same as those discussed in Chapter 3 for uncovering ILP; here, we simply
review how well these techniques work.

There is tremendous variation in how well different compilers do in vectoriz-
ing programs. As a summary of the state of vectorizing compilers, consider the
data in Figure G.9, which shows the extent of vectorization for different proces-
sors using a test suite of 100 handwritten FORTRAN kernels. The kernels were
designed to test vectorization capability and can all be vectorized by hand; we
will see several examples of these loops in the exercises.

Time1 5 n()=

Time2 4n 4fn+=

5n 4n 4fn+>
1
4
--- f>

 G.5 Effectiveness of Compiler Vectorization

G.6 Putting It All Together: Performance of Vector Processors ■ G-15

In this section, we look at performance measures for vector processors and what
they tell us about the processors. To determine the performance of a processor on
a vector problem we must look at the start-up cost and the sustained rate. The
simplest and best way to report the performance of a vector processor on a loop is
to give the execution time of the vector loop. For vector loops, people often give
the MFLOPS (millions of floating-point operations per second) rating rather than
execution time. We use the notation Rn for the MFLOPS rating on a vector of
length n. Using the measurements Tn (time) or Rn (rate) is equivalent if the num-
ber of FLOPS is agreed upon. In any event, either measurement should include
the overhead.

In this section, we examine the performance of VMIPS on a DAXPY loop
(see Chapter 4) by looking at performance from different viewpoints. We will
continue to compute the execution time of a vector loop using the equation devel-
oped in Section G.2. At the same time, we will look at different ways to measure
performance using the computed time. The constant values for Tloop used in this
section introduce some small amount of error, which will be ignored.

Measures of Vector Performance

Because vector length is so important in establishing the performance of a pro-
cessor, length-related measures are often applied in addition to time and

Processor Compiler
Completely
vectorized

Partially
vectorized

Not
vectorized

CDC CYBER 205 VAST-2 V2.21 62 5 33

Convex C-series FC5.0 69 5 26

Cray X-MP CFT77 V3.0 69 3 28

Cray X-MP CFT V1.15 50 1 49

Cray-2 CFT2 V3.1a 27 1 72

ETA-10 FTN 77 V1.0 62 7 31

Hitachi S810/820 FORT77/HAP V20-2B 67 4 29

IBM 3090/VF VS FORTRAN V2.4 52 4 44

NEC SX/2 FORTRAN77 / SX V.040 66 5 29

Figure G.9 Result of applying vectorizing compilers to the 100 FORTRAN test ker-
nels. For each processor we indicate how many loops were completely vectorized, par-
tially vectorized, and unvectorized. These loops were collected by Callahan, Dongarra,
and Levine [1988]. Two different compilers for the Cray X-MP show the large depen-
dence on compiler technology.

 G.6 Putting It All Together: Performance of Vector
Processors

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G-16 ■ Appendix G Vector Processors in More Depth

MFLOPS. These length-related measures tend to vary dramatically across differ-
ent processors and are interesting to compare. (Remember, though, that time is
always the measure of interest when comparing the relative speed of two proces-
sors.) Three of the most important length-related measures are

■ R∞—The MFLOPS rate on an infinite-length vector. Although this measure
may be of interest when estimating peak performance, real problems have
limited vector lengths, and the overhead penalties encountered in real prob-
lems will be larger.

■ N1/2—The vector length needed to reach one-half of R∞. This is a good mea-
sure of the impact of overhead.

■ Nv—The vector length needed to make vector mode faster than scalar mode.
This measures both overhead and the speed of scalars relative to vectors.

Let’s look at these measures for our DAXPY problem running on VMIPS.
When chained, the inner loop of the DAXPY code in convoys looks like Figure
G.10 (assuming that Rx and Ry hold starting addresses).

Recall our performance equation for the execution time of a vector loop with
n elements, Tn:

Chaining allows the loop to run in three chimes (and no less, since there is one
memory pipeline); thus, Tchime = 3. If Tchime were a complete indication of per-
formance, the loop would run at an MFLOPS rate of 2/3 × clock rate (since there
are 2 FLOPS per iteration). Thus, based only on the chime count, a 500 MHz
VMIPS would run this loop at 333 MFLOPS assuming no strip-mining or start-
up overhead. There are several ways to improve the performance: Add additional
vector load-store units, allow convoys to overlap to reduce the impact of start-up
overheads, and decrease the number of loads required by vector-register alloca-
tion. We will examine the first two extensions in this section. The last optimiza-
tion is actually used for the Cray-1, VMIPS’s cousin, to boost the performance by
50%. Reducing the number of loads requires an interprocedural optimization; we
examine this transformation in Exercise G.6. Before we examine the first two
extensions, let’s see what the real performance, including overhead, is.

LV V1,Rx MULVS.D V2,V1,F0 Convoy 1: chained load and multiply

LV V3,Ry ADDV.D V4,V2,V3 Convoy 2: second load and add, chained

SV Ry,V4 Convoy 3: store the result

Figure G.10 The inner loop of the DAXPY code in chained convoys.

Tn
n

MVL
-------------- Tloop Tstart+

⎝ ⎠
⎛ ⎞× n Tchime×+=

G.6 Putting It All Together: Performance of Vector Processors ■ G-17

The Peak Performance of VMIPS on DAXPY

First, we should determine what the peak performance, R∞, really is, since we
know it must differ from the ideal 333 MFLOPS rate. For now, we continue to
use the simplifying assumption that a convoy cannot start until all the instructions
in an earlier convoy have completed; later we will remove this restriction. Using
this simplification, the start-up overhead for the vector sequence is simply the
sum of the start-up times of the instructions:

Using MVL = 64, Tloop = 15, Tstart = 49, and Tchime = 3 in the performance
equation, and assuming that n is not an exact multiple of 64, the time for an n-
element operation is

The sustained rate is actually over 4 clock cycles per iteration, rather than the
theoretical rate of 3 chimes, which ignores overhead. The major part of the differ-
ence is the cost of the start-up overhead for each block of 64 elements (49 cycles
versus 15 for the loop overhead).

We can now compute R∞ for a 500 MHz clock as:

The numerator is independent of n, hence

The performance without the start-up overhead, which is the peak performance
given the vector functional unit structure, is now 1.33 times higher. In actuality, the
gap between peak and sustained performance for this benchmark is even larger!

Sustained Performance of VMIPS on the Linpack Benchmark

The Linpack benchmark is a Gaussian elimination on a 100 × 100 matrix. Thus,
the vector element lengths range from 99 down to 1. A vector of length k is used
k times. Thus, the average vector length is given by:

Tstart 12 7 12 6 12+ + + + 49= =

Tn
n
64
------ 15 49+() 3n+×=

n 64+()≤ 3n+

4n 64+=

R∞
Operations per iteration Clock rate×

Clock cycles per iteration
--⎝ ⎠
⎛ ⎞

n ∞→
lim=

R∞
Operations per iteration Clock rate×

Clock cycles per iteration()
n ∞→
lim

--=

Clock cycles per iteration()
n ∞→
lim

Tn

n
------⎝ ⎠
⎛ ⎞

n ∞→
lim

4n 64+
n

------------------⎝ ⎠
⎛ ⎞

n ∞→
lim 4= = =

R∞
2 500 MHz×

4
-------------------------------- 250 MFLOPS= =

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G-18 ■ Appendix G Vector Processors in More Depth

Now we can obtain an accurate estimate of the performance of DAXPY using a
vector length of 66:

The peak number, ignoring start-up overhead, is 1.64 times higher than this
estimate of sustained performance on the real vector lengths. In actual practice,
the Linpack benchmark contains a nontrivial fraction of code that cannot be vec-
torized. Although this code accounts for less than 20% of the time before vector-
ization, it runs at less than one-tenth of the performance when counted as
FLOPS. Thus, Amdahl’s law tells us that the overall performance will be signifi-
cantly lower than the performance estimated from analyzing the inner loop.

Since vector length has a significant impact on performance, the N1/2 and Nv
measures are often used in comparing vector machines.

Example What is N1/2 for just the inner loop of DAXPY for VMIPS with a 500 MHz clock?

Answer Using R∞ as the peak rate, we want to know the vector length that will achieve
about 125 MFLOPS. We start with the formula for MFLOPS assuming that the
measurement is made for N1/2 elements:

Simplifying this and then assuming N1/2 < 64, so that TN1/2 < 64 = 64 + 3 × n,
yields:

So N1/2 = 13; that is, a vector of length 13 gives approximately one-half the peak
performance for the DAXPY loop on VMIPS.

i
2

i 1=

99

∑

i

i 1=

99

∑

-------------- 66.3=

T66 2 15 49+() 66 3×+× 128 198+ 326= = =

R66
2 66 500××

326
------------------------------ MFLOPS 202 MFLOPS= =

MFLOPS
FLOPS executed in N1 2⁄ iterations

Clock cycles to execute N1 2⁄ iterations
--

Clock cycles
Second

------------------------------ 10
6–××=

125
2 N1 2⁄×

TN1 2⁄

--------------------- 500×=

TN1 2⁄
8 N1 2⁄×=

64 3 N1 2⁄×+ 8 N1 2⁄×=

5 N1 2⁄× 64=

N1 2⁄ 12.8=

G.6 Putting It All Together: Performance of Vector Processors ■ G-19

Example What is the vector length, Nv, such that the vector operation runs faster than the
scalar?

Answer Again, we know that Nv < 64. The time to do one iteration in scalar mode can be
estimated as 10 + 12 + 12 + 7 + 6 +12 = 59 clocks, where 10 is the estimate of the
loop overhead, known to be somewhat less than the strip-mining loop overhead. In
the last problem, we showed that this vector loop runs in vector mode in time
Tn ≤ 64 = 64 + 3 × n clock cycles. Therefore,

For the DAXPY loop, vector mode is faster than scalar as long as the vector has
at least two elements. This number is surprisingly small.

DAXPY Performance on an Enhanced VMIPS

DAXPY, like many vector problems, is memory limited. Consequently, per-
formance could be improved by adding more memory access pipelines. This is
the major architectural difference between the Cray X-MP (and later processors)
and the Cray-1. The Cray X-MP has three memory pipelines, compared with the
Cray-1’s single memory pipeline, and the X-MP has more flexible chaining. How
does this affect performance?

Example What would be the value of T66 for DAXPY on VMIPS if we added two more
memory pipelines?

Answer With three memory pipelines, all the instructions fit in one convoy and take one
chime. The start-up overheads are the same, so

With three memory pipelines, we have reduced the clock cycle count for sus-
tained performance from 326 to 194, a factor of 1.7. Note the effect of Amdahl’s
law: We improved the theoretical peak rate as measured by the number of chimes
by a factor of 3, but only achieved an overall improvement of a factor of 1.7 in
sustained performance.

64 3Nv+ 59Nv=

Nv
64
56
------=

Nv 2=

T66
66
64
------ Tloop Tstart+

⎝ ⎠
⎛ ⎞ 66 Tchime×+×=

T66 2 15 49+() 66 1×+× 194= =

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G-20 ■ Appendix G Vector Processors in More Depth

Another improvement could come from allowing different convoys to overlap
and also allowing the scalar loop overhead to overlap with the vector instructions.
This requires that one vector operation be allowed to begin using a functional
unit before another operation has completed, which complicates the instruction
issue logic. Allowing this overlap eliminates the separate start-up overhead for
every convoy except the first and hides the loop overhead as well.

To achieve the maximum hiding of strip-mining overhead, we need to be able
to overlap strip-mined instances of the loop, allowing two instances of a convoy
as well as possibly two instances of the scalar code to be in execution simultane-
ously. This requires the same techniques we looked at in Chapter 3 to avoid WAR
hazards, although because no overlapped read and write of a single vector ele-
ment is possible, copying can be avoided. This technique, called tailgating, was
used in the Cray-2. Alternatively, we could unroll the outer loop to create several
instances of the vector sequence using different register sets (assuming sufficient
registers), just as we did in Chapter 3. By allowing maximum overlap of the con-
voys and the scalar loop overhead, the start-up and loop overheads will only be
seen once per vector sequence, independent of the number of convoys and the
instructions in each convoy. In this way, a processor with vector registers can
have both low start-up overhead for short vectors and high peak performance for
very long vectors.

Example What would be the values of R∞
and T66 for DAXPY on VMIPS if we added two

more memory pipelines and allowed the strip-mining and start-up overheads to
be fully overlapped?

Answer

Since the overhead is only seen once, Tn = n + 49 + 15 = n + 64. Thus,

Adding the extra memory pipelines and more flexible issue logic yields an
improvement in peak performance of a factor of 4. However, T66 = 130, so for
shorter vectors the sustained performance improvement is about 326/130 = 2.5
times.

R∞
Operations per iteration Clock rate×

Clock cycles per iteration
--⎝ ⎠
⎛ ⎞

n ∞→
lim=

Clock cycles per iteration()
n ∞→
lim

Tn

n
------⎝ ⎠
⎛ ⎞

n ∞→
lim=

Tn

n
------⎝ ⎠
⎛ ⎞

n ∞→
lim

n 64+
n

---------------⎝ ⎠
⎛ ⎞

n ∞→
lim 1= =

R∞
2 500 MHz×

1
-------------------------------- 1000 MFLOPS= =

G.7 A Modern Vector Supercomputer: The Cray X1 ■ G-21

In summary, we have examined several measures of vector performance.
Theoretical peak performance can be calculated based purely on the value of
Tchime as:

By including the loop overhead, we can calculate values for peak performance
for an infinite-length vector (R∞) and also for sustained performance, Rn for a
vector of length n, which is computed as:

Using these measures we also can find N1/2 and Nv, which give us another way of
looking at the start-up overhead for vectors and the ratio of vector to scalar speed.
A wide variety of measures of performance of vector processors is useful in
understanding the range of performance that applications may see on a vector
processor.

The Cray X1 was introduced in 2002, and, together with the NEC SX/8, repre-
sents the state of the art in modern vector supercomputers. The X1 system archi-
tecture supports thousands of powerful vector processors sharing a single global
memory.

The Cray X1 has an unusual processor architecture, shown in Figure G.11. A
large Multi-Streaming Processor (MSP) is formed by ganging together four Sin-
gle-Streaming Processors (SSPs). Each SSP is a complete single-chip vector
microprocessor, containing a scalar unit, scalar caches, and a two-lane vector
unit. The SSP scalar unit is a dual-issue out-of-order superscalar processor with a
16 KB instruction cache and a 16 KB scalar write-through data cache, both two-
way set associative with 32-byte cache lines. The SSP vector unit contains a vec-
tor register file, three vector arithmetic units, and one vector load-store unit. It is
much easier to pipeline deeply a vector functional unit than a superscalar issue
mechanism, so the X1 vector unit runs at twice the clock rate (800 MHz) of the
scalar unit (400 MHz). Each lane can perform a 64-bit floating-point add and a
64-bit floating-point multiply each cycle, leading to a peak performance of 12.8
GFLOPS per MSP.

All previous Cray machines could trace their instruction set architecture
(ISA) lineage back to the original Cray-1 design from 1976, with 8 primary regis-
ters each for addresses, scalar data, and vector data. For the X1, the ISA was
redesigned from scratch to incorporate lessons learned over the last 30 years of
compiler and microarchitecture research. The X1 ISA includes 64 64-bit scalar
address registers and 64 64-bit scalar data registers, with 32 vector data registers
(64 bits per element) and 8 vector mask registers (1 bit per element). The large
increase in the number of registers allows the compiler to map more program

Number of FLOPS per iteration Clock rate×
Tchime

Rn
Number of FLOPS per iteration n× Clock rate×

Tn
--=

 G.7 A Modern Vector Supercomputer: The Cray X1

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G-22 ■ Appendix G Vector Processors in More Depth

variables into registers to reduce memory traffic and also allows better static
scheduling of code to improve run time overlap of instruction execution. Earlier
Crays had a compact variable-length instruction set, but the X1 ISA has fixed-
length instructions to simplify superscalar fetch and decode.

Four SSP chips are packaged on a multichip module together with four cache
chips implementing an external 2 MB cache (Ecache) shared by all the SSPs. The
Ecache is two-way set associative with 32-byte lines and a write-back policy. The
Ecache can be used to cache vectors, reducing memory traffic for codes that
exhibit temporal locality. The ISA also provides vector load and store instruction
variants that do not allocate in cache to avoid polluting the Ecache with data that
is known to have low locality. The Ecache has sufficient bandwidth to supply one
64-bit word per lane per 800 MHz clock cycle, or over 50 GB/sec per MSP.

At the next level of the X1 packaging hierarchy, shown in Figure G.12, four
MSPs are placed on a single printed circuit board together with 16 memory con-
troller chips and DRAM to form an X1 node. Each memory controller chip has
eight separate Rambus DRAM channels, where each channel provides 1.6 GB/
sec of memory bandwidth. Across all 128 memory channels, the node has over
200 GB/sec of main memory bandwidth.

An X1 system can contain up to 1024 nodes (4096 MSPs or 16,384 SSPs),
connected via a very high-bandwidth global network. The network connections
are made via the memory controller chips, and all memory in the system is
directly accessible from any processor using load and store instructions. This
provides much faster global communication than the message-passing protocols
used in cluster-based systems. Maintaining cache coherence across such a large
number of high-bandwidth shared-memory nodes would be challenging. The
approach taken in the X1 is to restrict each Ecache to cache data only from the

Figure G.11 Cray MSP module. (From Dunnigan et al. [2005].)

MSP

SSP

S

S Superscalar unit V Vector unit

V V

SSP

S

V V

SSP

S

V V

SSP

S

V V

0.5 MB
Ecache

0.5 MB
Ecache

0.5 MB
Ecache

0.5 MB
Ecache

G.7 A Modern Vector Supercomputer: The Cray X1 ■ G-23

local node DRAM. The memory controllers implement a directory scheme to
maintain coherency between the four Ecaches on a node. Accesses from remote
nodes will obtain the most recent version of a location, and remote stores will
invalidate local Ecaches before updating memory, but the remote node cannot
cache these local locations.

Vector loads and stores are particularly useful in the presence of long-latency
cache misses and global communications, as relatively simple vector hardware
can generate and track a large number of in-flight memory requests. Contempo-
rary superscalar microprocessors support only 8 to 16 outstanding cache misses,
whereas each MSP processor can have up to 2048 outstanding memory requests
(512 per SSP). To compensate, superscalar microprocessors have been moving to
larger cache line sizes (128 bytes and above) to bring in more data with each
cache miss, but this leads to significant wasted bandwidth on non-unit stride
accesses over large datasets. The X1 design uses short 32-byte lines throughout
to reduce bandwidth waste and instead relies on supporting many independent
cache misses to sustain memory bandwidth. This latency tolerance together with
the huge memory bandwidth for non-unit strides explains why vector machines
can provide large speedups over superscalar microprocessors for certain codes.

Multi-Streaming Processors

The Multi-Streaming concept was first introduced by Cray in the SV1, but has
been considerably enhanced in the X1. The four SSPs within an MSP share
Ecache, and there is hardware support for barrier synchronization across the four
SSPs within an MSP. Each X1 SSP has a two-lane vector unit with 32 vector reg-
isters each holding 64 elements. The compiler has several choices as to how to
use the SSPs within an MSP.

Figure G.12 Cray X1 node. (From Tanqueray [2002].)

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

51 GFLOPS, 200 GB/secIOIO IO

P P P P

S S S S

P P P P

S S S S

P P P P

S S S S

P P P P

S S S S

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G-24 ■ Appendix G Vector Processors in More Depth

The simplest use is to gang together four two-lane SSPs to emulate a single
eight-lane vector processor. The X1 provides efficient barrier synchronization
primitives between SSPs on a node, and the compiler is responsible for generat-
ing the MSP code. For example, for a vectorizable inner loop over 1000 ele-
ments, the compiler will allocate iterations 0–249 to SSP0, iterations 250–499 to
SSP1, iterations 500–749 to SSP2, and iterations 750–999 to SSP3. Each SSP
can process its loop iterations independently but must synchronize back with the
other SSPs before moving to the next loop nest.

If inner loops do not have many iterations, the eight-lane MSP will have low
efficiency, as each SSP will have only a few elements to process and execution
time will be dominated by start-up time and synchronization overheads. Another
way to use an MSP is for the compiler to parallelize across an outer loop, giving
each SSP a different inner loop to process. For example, the following nested
loops scale the upper triangle of a matrix by a constant:

/* Scale upper triangle by constant K. */
for (row = 0; row < MAX_ROWS; row++)

for (col = row; col < MAX_COLS; col++)
A[row][col] = A[row][col] * K;

Consider the case where MAX_ROWS and MAX_COLS are both 100 elements. The
vector length of the inner loop steps down from 100 to 1 over the iterations of the
outer loop. Even for the first inner loop, the loop length would be much less than
the maximum vector length (256) of an eight-lane MSP, and the code would
therefore be inefficient. Alternatively, the compiler can assign entire inner loops
to a single SSP. For example, SSP0 might process rows 0, 4, 8, and so on, while
SSP1 processes rows 1, 5, 9, and so on. Each SSP now sees a longer vector. In
effect, this approach parallelizes the scalar overhead and makes use of the indi-
vidual scalar units within each SSP.

Most application code uses MSPs, but it is also possible to compile code to
use all the SSPs as individual processors where there is limited vector parallelism
but significant thread-level parallelism.

Cray X1E

In 2004, Cray announced an upgrade to the original Cray X1 design. The X1E
uses newer fabrication technology that allows two SSPs to be placed on a single
chip, making the X1E the first multicore vector microprocessor. Each physical
node now contains eight MSPs, but these are organized as two logical nodes of
four MSPs each to retain the same programming model as the X1. In addition,
the clock rates were raised from 400 MHz scalar and 800 MHz vector to
565 MHz scalar and 1130 MHz vector, giving an improved peak performance of
18 GFLOPS.

G.8 Concluding Remarks ■ G-25

During the 1980s and 1990s, rapid performance increases in pipelined scalar
processors led to a dramatic closing of the gap between traditional vector
supercomputers and fast, pipelined, superscalar VLSI microprocessors. In
2011, it is possible to buy a laptop computer for under $1000 that has a higher
CPU clock rate than any available vector supercomputer, even those costing
tens of millions of dollars. Although the vector supercomputers have lower
clock rates, they support greater parallelism using multiple lanes (up to 16 in
the Japanese designs) versus the limited multiple issue of the superscalar
microprocessors. Nevertheless, the peak floating-point performance of the low-
cost microprocessors is within a factor of two of the leading vector supercom-
puter CPUs. Of course, high clock rates and high peak performance do not nec-
essarily translate into sustained application performance. Main memory
bandwidth is the key distinguishing feature between vector supercomputers and
superscalar microprocessor systems.

Providing this large non-unit stride memory bandwidth is one of the major
expenses in a vector supercomputer, and traditionally SRAM was used as main
memory to reduce the number of memory banks needed and to reduce vector
start-up penalties. While SRAM has an access time several times lower than that
of DRAM, it costs roughly 10 times as much per bit! To reduce main memory
costs and to allow larger capacities, all modern vector supercomputers now use
DRAM for main memory, taking advantage of new higher-bandwidth DRAM
interfaces such as synchronous DRAM.

This adoption of DRAM for main memory (pioneered by Seymour Cray in
the Cray-2) is one example of how vector supercomputers have adapted com-
modity technology to improve their price-performance. Another example is that
vector supercomputers are now including vector data caches. Caches are not
effective for all vector codes, however, so these vector caches are designed to
allow high main memory bandwidth even in the presence of many cache misses.
For example, the Cray X1 MSP can have 2048 outstanding memory loads; for
microprocessors, 8 to 16 outstanding cache misses per CPU are more typical
maximum numbers.

Another example is the demise of bipolar ECL or gallium arsenide as tech-
nologies of choice for supercomputer CPU logic. Because of the huge investment
in CMOS technology made possible by the success of the desktop computer,
CMOS now offers competitive transistor performance with much greater transis-
tor density and much reduced power dissipation compared with these more exotic
technologies. As a result, all leading vector supercomputers are now built with
the same CMOS technology as superscalar microprocessors. The primary reason
why vector supercomputers have lower clock rates than commodity microproces-
sors is that they are developed using standard cell ASIC techniques rather than
full custom circuit design to reduce the engineering design cost. While a micro-
processor design may sell tens of millions of copies and can amortize the design

 G.8 Concluding Remarks

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G-26 ■ Appendix G Vector Processors in More Depth

cost over this large number of units, a vector supercomputer is considered a suc-
cess if over a hundred units are sold!

Conversely, via superscalar microprocessor designs have begun to absorb
some of the techniques made popular in earlier vector computer systems, such as
with the Multimedia SIMD extensions. As we showed in Chapter 4, the invest-
ment in hardware for SIMD performance is increasing rapidly, perhaps even
more than for multiprocessors. If the even wider SIMD units of GPUs become
well integrated with the scalar cores, including scatter-gather support, we may
well conclude that vector architectures have won the architecture wars!

This historical perspective adds some details and references that were left out of
the version in Chapter 4.

The CDC STAR processor and its descendant, the CYBER 205, were
memory-memory vector processors. To keep the hardware simple and support the
high bandwidth requirements (up to three memory references per floating-point
operation), these processors did not efficiently handle non-unit stride. While
most loops have unit stride, a non-unit stride loop had poor performance on these
processors because memory-to-memory data movements were required to gather
together (and scatter back) the nonadjacent vector elements; these operations
used special scatter-gather instructions. In addition, there was special support for
sparse vectors that used a bit vector to represent the zeros and nonzeros and a
dense vector of nonzero values. These more complex vector operations were slow
because of the long memory latency, and it was often faster to use scalar mode for
sparse or non-unit stride operations. Schneck [1987] described several of the
early pipelined processors (e.g., Stretch) through the first vector processors,
including the 205 and Cray-1. Dongarra [1986] did another good survey, focus-
ing on more recent processors.

The 1980s also saw the arrival of smaller-scale vector processors, called
mini-supercomputers. Priced at roughly one-tenth the cost of a supercomputer
($0.5 to $1 million versus $5 to $10 million), these processors caught on quickly.
Although many companies joined the market, the two companies that were most
successful were Convex and Alliant. Convex started with the uniprocessor C-1
vector processor and then offered a series of small multiprocessors, ending with
the C-4 announced in 1994. The keys to the success of Convex over this period
were their emphasis on Cray software capability, the effectiveness of their com-
piler (see Figure G.9), and the quality of their UNIX OS implementation. The
C-4 was the last vector machine Convex sold; they switched to making large-
scale multiprocessors using Hewlett-Packard RISC microprocessors and were
bought by HP in 1995. Alliant [1987] concentrated more on the multiprocessor
aspects; they built an eight-processor computer, with each processor offering ve -
tor capability. Alliant ceased operation in the early 1990s.

In the early 1980s, CDC spun out a group, called ETA, to build a new super-
computer, the ETA-10, capable of 10 GFLOPS. The ETA processor was deliv-
ered in the late 1980s (see Fazio [1987]) and used low-temperature CMOS in a

 G.9 Historical Perspective and References

c

G.9 Historical Perspective and References ■ G-27

configuration with up to 10 processors. Each processor retained the memory-
memory architecture based on the CYBER 205. Although the ETA-10 achieved
enormous peak performance, its scalar speed was not comparable. In 1989, CDC,
the first supercomputer vendor, closed ETA and left the supercomputer design
business.

In 1986, IBM introduced the System/370 vector architecture (see Moore et al.
[1987]) and its first implementation in the 3090 Vector Facility. The architecture
extended the System/370 architecture with 171 vector instructions. The 3090/VF
was integrated into the 3090 CPU. Unlike most other vector processors of the
time, the 3090/VF routed its vectors through the cache. The IBM 370 machines
continued to evolve over time and are now called the IBM zSeries. The vector
extensions have been removed from the architecture and some of the opcode
space was reused to implement 64-bit address extensions.

In late 1989, Cray Research was split into two companies, both aimed at
building high-end processors available in the early 1990s. Seymour Cray headed
the spin-off, Cray Computer Corporation, until its demise in 1995. Their initial
processor, the Cray-3, was to be implemented in gallium arsenide, but they were
unable to develop a reliable and cost-effective implementation technology. A sin-
gle Cray-3 prototype was delivered to the National Center for Atmospheric
Research (NCAR) for evaluation purposes in 1993, but no paying customers
were found for the design. The Cray-4 prototype, which was to have been the first
processor to run at 1 GHz, was close to completion when the company filed for
bankruptcy. Shortly before his tragic death in a car accident in 1996, Seymour
Cray started yet another company, SRC Computers, to develop high-performance
systems but this time using commodity components. In 2000, SRC announced
the SRC-6 system, which combined 512 Intel microprocessors, 5 billion gates of
reconfigurable logic, and a high-performance vector-style memory system.

Cray Research focused on the C90, a new high-end processor with up to 16
processors and a clock rate of 240 MHz. This processor was delivered in 1991.
The J90 was a CMOS-based vector machine using DRAM memory starting at
$250,000, but with typical configurations running about $1 million. In mid-1995,
Cray Research was acquired by Silicon Graphics, and in 1998 released the SV1
system, which grafted considerably faster CMOS processors onto the J90 mem-
ory system, and which also added a data cache for vectors to each CPU to help
meet the increased memory bandwidth demands. The SV1 also introduced the
MSP concept, which was developed to provide competitive single-CPU perfor-
mance by ganging together multiple slower CPUs. Silicon Graphics sold Cray
Research to Tera Computer in 2000, and the joint company was renamed Cray
Inc.

The basis for modern vectorizing compiler technology and the notion of data
dependence was developed by Kuck and his colleagues [1974] at the University
of Illinois. Banerjee [1979] developed the test named after him. Padua and Wolfe
[1986] gave a good overview of vectorizing compiler technology.

Benchmark studies of various supercomputers, including attempts to under-
stand the performance differences, have been undertaken by Lubeck, Moore, and
Mendez [1985], Bucher [1983], and Jordan [1987]. There are several benchmark

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G-28 ■ Appendix G Vector Processors in More Depth

suites aimed at scientific usage and often employed for supercomputer bench-
marking, including Linpack and the Lawrence Livermore Laboratories FOR-
TRAN kernels. The University of Illinois coordinated the collection of a set of
benchmarks for supercomputers, called the Perfect Club. In 1993, the Perfect
Club was integrated into SPEC, which released a set of benchmarks,
SPEChpc96, aimed at high-end scientific processing in 1996. The NAS parallel
benchmarks developed at the NASA Ames Research Center [Bailey et al. 1991]
have become a popular set of kernels and applications used for supercomputer
evaluation. A new benchmark suite, HPC Challenge, was introduced consisting
of a few kernels that stress machine memory and interconnect bandwidths in
addition to floating-point performance [Luszczek et al. 2005]. Although standard
supercomputer benchmarks are useful as a rough measure of machine capabili-
ties, large supercomputer purchases are generally preceded by a careful perfor-
mance evaluation on the actual mix of applications required at the customer site.

References

Alliant Computer Systems Corp. [1987]. Alliant FX/Series: Product Summary (June),
Acton, Mass.

Asanovic, K. [1998]. “Vector microprocessors,” Ph.D. thesis, Computer Science Division,
University of California at Berkeley (May).

Bailey, D. H., E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A.
Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V.
Venkatakrishnan, and S. K. Weeratunga [1991]. “The NAS parallel benchmarks,”
Int’l. J. Supercomputing Applications 5, 63–73.

Banerjee, U. [1979]. “Speedup of ordinary programs,” Ph.D. thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign (October).

Baskett, F., and T. W. Keller [1977]. “An Evaluation of the Cray-1 Processor,” in High
Speed Computer and Algorithm Organization, D. J. Kuck, D. H. Lawrie, and A. H.
Sameh, eds., Academic Press, San Diego, 71–84.

Brandt, M., J. Brooks, M. Cahir, T. Hewitt, E. Lopez-Pineda, and D. Sandness [2000]. The
Benchmarker’s Guide for Cray SV1 Systems. Cray Inc., Seattle, Wash.

Bucher, I. Y. [1983]. “The computational speed of supercomputers,” Proc. ACM
SIGMETRICS Conf. on Measurement and Modeling of Computer Systems, August
29–31, 1983, Minneapolis, Minn. 151–165.

Callahan, D., J. Dongarra, and D. Levine [1988]. “Vectorizing compilers: A test suite and
results,” Supercomputing ’88: Proceedings of the 1988 ACM/IEEE Conference on
Supercomputing, November 12–17, Orlando, FL, 98–105.

Chen, S. [1983]. “Large-scale and high-speed multiprocessor system for scientific applica-
tions,” Proc. NATO Advanced Research Workshop on High-Speed Computing, June
20–22, 1983, Julich, Kernforschungsanlage, Federal Republic of Germany; also in K.
Hwang, ed., “Superprocessors: Design and applications,” IEEE (August), 1984.

Dongarra, J. J. [1986]. “A survey of high performance processors,” COMPCON, IEEE
(March), 8–11.

Dunnigan, T. H., J. S. Vetter, J. B. White III, and P. H. Worley [2005]. “Performance eval-
uation of the Cray X1 distributed shared-memory architecture,” IEEE Micro 25:1
(January–February), 30–40.

Fazio, D. [1987]. “It’s really much more fun building a supercomputer than it is simply
inventing one,” COMPCON, IEEE (February), 102–105.

G.9 Historical Perspective and References ■ G-29

Flynn, M. J. [1966]. “Very high-speed computing systems,” Proc. IEEE 54:12 (Decem-
ber), 1901–1909.

Hintz, R. G., and D. P. Tate [1972]. “Control data STAR-100 processor design,” COMP-
CON, IEEE (September), 1–4.

Jordan, K. E. [1987]. “Performance comparison of large-scale scientific processors: Scalar
mainframes, mainframes with vector facilities, and supercomputers,” Computer 20:3
(March), 10–23.

Kitagawa, K., S. Tagaya, Y. Hagihara, and Y. Kanoh [2003]. “A hardware overview of SX-6
and SX-7 supercomputer,” NEC Research & Development J. 44:1 (January), 2–7.

Kuck, D., P. P. Budnik, S.-C. Chen, D. H. Lawrie, R. A. Towle, R. E. Strebendt, E. W.
Davis, Jr., J. Han, P. W. Kraska, and Y. Muraoka [1974]. “Measurements of parallel-
ism in ordinary FORTRAN programs,” Computer 7:1 (January), 37–46.

Lincoln, N. R. [1982]. “Technology and design trade offs in the creation of a modern
supercomputer,” IEEE Trans. on Computers C-31:5 (May), 363–376.

Lubeck, O., J. Moore, and R. Mendez [1985]. “A benchmark comparison of three super-
computers: Fujitsu VP-200, Hitachi S810/20, and Cray X-MP/2,” Computer 18:1
(January), 10–29.

Luszczek, P., J. J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas, J. Kepner, J. McCalpin,
D. Bailey, and D. Takahashi [2005]. “Introduction to the HPC challenge benchmark
suite,” Lawrence Berkeley National Laboratory, Paper LBNL-57493 (April 25), http://
repositories.cdlib.org/lbnl/LBNL-57493.

Miranker, G. S., J. Rubenstein, and J. Sanguinetti [1988]. “Squeezing a Cray-class super-
computer into a single-user package,” COMPCON, IEEE (March), 452–456.

Miura, K., and K. Uchida [1983]. “FACOM vector processing system: VP100/200,” Proc.
NATO Advanced Research Workshop on High-Speed Computing, June 20–22, 1983,
Julich, Kernforschungsanlage, Federal Republic of Germany; also in K. Hwang, ed.,
“Superprocessors: Design and applications,” IEEE (August), 1984, 59–73.

Moore, B., A. Padegs, R. Smith, and W. Bucholz [1987]. “Concepts of the System/370
vector architecture,” Proc. 14th Int'l. Symposium on Computer Architecture, June 3–6,
1987, Pittsburgh, Penn., 282–292.

Padua, D., and M. Wolfe [1986]. “Advanced compiler optimizations for supercomputers,”
Comm. ACM 29:12 (December), 1184–1201.

Russell, R. M. [1978]. “The Cray-1 processor system,” Comm. of the ACM 21:1 (January),
63–72.

Schneck, P. B. [1987]. Superprocessor Architecture, Kluwer Academic Publishers,
Norwell, Mass.

Smith, B. J. [1981]. “Architecture and applications of the HEP multiprocessor system,”
Real-Time Signal Processing IV 298 (August), 241–248.

Sporer, M., F. H. Moss, and C. J. Mathais [1988]. “An introduction to the architecture of
the Stellar Graphics supercomputer,” COMPCON, IEEE (March), 464.

Tanqueray, D. [2002]. “The Cray X1 and supercomputer road map,” Proc. 13th Dares-
bury Machine Evaluation Workshop, December 11–12, Cheshire, England.

Vajapeyam, S. [1991]. “Instruction-level characterization of the Cray Y-MP processor,”
Ph.D. thesis, Computer Sciences Department, University of Wisconsin-Madison.

Watanabe, T. [1987]. “Architecture and performance of the NEC supercomputer SX sys-
tem,” Parallel Computing 5, 247–255.

Watson, W. J. [1972]. “The TI ASC—a highly modular and flexible super processor
architecture,” Proc. AFIPS Fall Joint Computer Conf., 221–228.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G-30 ■ Appendix G Vector Processors in More Depth

In these exercises assume VMIPS has a clock rate of 500 MHz and that Tloop =
15. Use the start-up times from Figure G.2, and assume that the store latency is
always included in the running time.

 G.1 [10] <G.1, G.2> Write a VMIPS vector sequence that achieves the peak
MFLOPS performance of the processor (use the functional unit and instruction
description in Section G.2). Assuming a 500-MHz clock rate, what is the peak
MFLOPS?

 G.2 [20/15/15] <G.1–G.6> Consider the following vector code run on a 500 MHz
version of VMIPS for a fixed vector length of 64:

LV V1,Ra
MULV.D V2,V1,V3
ADDV.D V4,V1,V3
SV Rb,V2
SV Rc,V4

Ignore all strip-mining overhead, but assume that the store latency must be
included in the time to perform the loop. The entire sequence produces 64 results.

a. [20] <G.1–G.4> Assuming no chaining and a single memory pipeline, how
many chimes are required? How many clock cycles per result (including both
stores as one result) does this vector sequence require, including start-up
overhead?

b. [15] <G.1–G.4> If the vector sequence is chained, how many clock cycles per
result does this sequence require, including overhead?

c. [15] <G.1–G.6> Suppose VMIPS had three memory pipelines and chaining.
If there were no bank conflicts in the accesses for the above loop, how many
clock cycles are required per result for this sequence?

 G.3 [20/20/15/15/20/20/20] <G.2–G.6> Consider the following FORTRAN code:

do 10 i=1,n
A(i) = A(i) + B(i)
B(i) = x * B(i)

10 continue

Use the techniques of Section G.6 to estimate performance throughout this exer-
cise, assuming a 500 MHz version of VMIPS.

a. [20] <G.2–G.6> Write the best VMIPS vector code for the inner portion of
the loop. Assume x is in F0 and the addresses of A and B are in Ra and Rb,
respectively.

b. [20] <G.2–G.6> Find the total time for this loop on VMIPS (T100). What is
the MFLOPS rating for the loop (R100)?

c. [15] <G.2–G.6> Find R∞ for this loop.

d. [15] <G.2–G.6> Find N1/2 for this loop.

Exercises

Exercises ■ G-31

e. [20] <G.2–G.6> Find Nv for this loop. Assume the scalar code has been pipe-
line scheduled so that each memory reference takes six cycles and each FP
operation takes three cycles. Assume the scalar overhead is also Tloop.

f. [20] <G.2–G.6> Assume VMIPS has two memory pipelines. Write vector
code that takes advantage of the second memory pipeline. Show the layout in
convoys.

g. [20] <G.2–G.6> Compute T100 and R100 for VMIPS with two memory pipe-
lines.

 G.4 [20/10] <G.2> Suppose we have a version of VMIPS with eight memory banks
(each a double word wide) and a memory access time of eight cycles.

a. [20] <G.2> If a load vector of length 64 is executed with a stride of 20 double
words, how many cycles will the load take to complete?

b. [10] <G.2> What percentage of the memory bandwidth do you achieve on a
64-element load at stride 20 versus stride 1?

 G.5 [12/12] <G.5–G.6> Consider the following loop:

C = 0.0
do 10 i=1,64

A(i) = A(i) + B(i)
C = C + A(i)

10 continue

a. [12] <G.5–G.6> Split the loop into two loops: one with no dependence and
one with a dependence. Write these loops in FORTRAN—as a source-to-
source transformation. This optimization is called loop fission.

b. [12] <G.5–G.6> Write the VMIPS vector code for the loop without a depen-
dence.

 G.6 [20/15/20/20] <G.5–G.6> The compiled Linpack performance of the Cray-1
(designed in 1976) was almost doubled by a better compiler in 1989. Let’s look at
a simple example of how this might occur. Consider the DAXPY-like loop (where
k is a parameter to the procedure containing the loop):

do 10 i=1,64
do 10 j=1,64
Y(k,j) = a*X(i,j) + Y(k,j)

10 continue

a. [20] <G.5–G.6> Write the straightforward code sequence for just the inner
loop in VMIPS vector instructions.

b. [15] <G.5–G.6> Using the techniques of Section G.6, estimate the perfor-
mance of this code on VMIPS by finding T64 in clock cycles. You may
assume that Tloop of overhead is incurred for each iteration of the outer loop.
What limits the performance?

c. [20] <G.5–G.6> Rewrite the VMIPS code to reduce the performance limita-
tion; show the resulting inner loop in VMIPS vector instructions. (Hint:

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G-32 ■ Appendix G Vector Processors in More Depth

Think about what establishes Tchime; can you affect it?) Find the total time for
the resulting sequence.

d. [20] <G.5–G.6> Estimate the performance of your new version, using the
techniques of Section G.6 and finding T64.

 G.7 [15/15/25] <G.4> Consider the following code:

do 10 i=1,64
if (B(i) .ne. 0) then

A(i) = A(i)/B(i)
10 continue

Assume that the addresses of A and B are in Ra and Rb, respectively, and that F0
contains 0.

a. [15] <G.4> Write the VMIPS code for this loop using the vector-mask capa-
bility.

b. [15] <G.4> Write the VMIPS code for this loop using scatter-gather.

c. [25] <G.4> Estimate the performance (T100 in clock cycles) of these two vec-
tor loops, assuming a divide latency of 20 cycles. Assume that all vector
instructions run at one result per clock, independent of the setting of the
vector-mask register. Assume that 50% of the entries of B are 0. Considering
hardware costs, which would you build if the above loop were typical?

 G.8 [15/20/15/15] <G.1–G.6> The difference between peak and sustained perfor-
mance can be large. For one problem, a Hitachi S810 had a peak speed twice as
high as that of the Cray X-MP, while for another more realistic problem, the Cray
X-MP was twice as fast as the Hitachi processor. Let’s examine why this might
occur using two versions of VMIPS and the following code sequences:

C Code sequence 1
do 10 i=1,10000

A(i) = x * A(i) + y * A(i)
10 continue

C Code sequence 2
do 10 i=1,100

A(i) = x * A(i)
10 continue

Assume there is a version of VMIPS (call it VMIPS-II) that has two copies of
every floating-point functional unit with full chaining among them. Assume that
both VMIPS and VMIPS-II have two load-store units. Because of the extra func-
tional units and the increased complexity of assigning operations to units, all the
overheads (T

loop
 and T

start
) are doubled for VMIPS-II.

a. [15] <G.1–G.6> Find the number of clock cycles on code sequence 1 on
VMIPS.

b. [20] <G.1–G.6> Find the number of clock cycles on code sequence 1 for
VMIPS-II. How does this compare to VMIPS?

Exercises ■ G-33

c. [15] <G.1–G.6> Find the number of clock cycles on code sequence 2 for
VMIPS.

d. [15] <G.1–G.6> Find the number of clock cycles on code sequence 2 for
VMIPS-II. How does this compare to VMIPS?

 G.9 [20] <G.5> Here is a tricky piece of code with two-dimensional arrays. Does this
loop have dependences? Can these loops be written so they are parallel? If so,
how? Rewrite the source code so that it is clear that the loop can be vectorized, if
possible.

do 290 j = 2,n
do 290 i = 2,j

aa(i,j) = aa(i-1,j)*aa(i-1,j) + bb(i,j)
290 continue

 G.10 [12/15] <G.5> Consider the following loop:

do 10 i = 2,n
A(i) = B

10 C(i) = A(i - 1)

a. [12] <G.5> Show there is a loop-carried dependence in this code fragment.

b. [15] <G.5> Rewrite the code in FORTRAN so that it can be vectorized as two
separate vector sequences.

 G.11 [15/25/25] <G.5> As we saw in Section G.5, some loop structures are not easily
vectorized. One common structure is a reduction—a loop that reduces an array to
a single value by repeated application of an operation. This is a special case of a
recurrence. A common example occurs in dot product:

dot = 0.0
do 10 i = 1,64

10 dot = dot + A(i) * B(i)

This loop has an obvious loop-carried dependence (on dot) and cannot be vec-
torized in a straightforward fashion. The first thing a good vectorizing compiler
would do is split the loop to separate out the vectorizable portion and the recur-
rence and perhaps rewrite the loop as:

do 10 i = 1,64
10 dot(i) = A(i) * B(i)

do 20 i = 2,64
20 dot(1) = dot(1) + dot(i)

The variable dot has been expanded into a vector; this transformation is called
scalar expansion. We can try to vectorize the second loop either relying strictly
on the compiler (part (a)) or with hardware support as well (part (b)). There is an
important caveat in the use of vector techniques for reduction. To make
reduction work, we are relying on the associativity of the operator being used
for the reduction. Because of rounding and finite range, however, floating-point
arithmetic is not strictly associative. For this reason, most compilers require the
programmer to indicate whether associativity can be used to more efficiently
compile reductions.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

G-34 ■ Appendix G Vector Processors in More Depth

a. [15] <G.5> One simple scheme for compiling the loop with the recurrence is
to add sequences of progressively shorter vectors—two 32-element vectors,
then two 16-element vectors, and so on. This technique has been called recur-
sive doubling. It is faster than doing all the operations in scalar mode. Show
how the FORTRAN code would look for execution of the second loop in the
preceding code fragment using recursive doubling.

b. [25] <G.5> In some vector processors, the vector registers are addressable,
and the operands to a vector operation may be two different parts of the same
vector register. This allows another solution for the reduction, called partial
sums. The key idea in partial sums is to reduce the vector to m sums where m
is the total latency through the vector functional unit, including the operand
read and write times. Assume that the VMIPS vector registers are addressable
(e.g., you can initiate a vector operation with the operand V1(16), indicating
that the input operand began with element 16). Also, assume that the total
latency for adds, including operand read and write, is eight cycles. Write a
VMIPS code sequence that reduces the contents of V1 to eight partial sums.
It can be done with one vector operation.

c. [25] <G.5> Discuss how adding the extension in part (b) would affect a
machine that had multiple lanes.

 G.12 [40] <G.3–G.4> Extend the MIPS simulator to be a VMIPS simulator, including
the ability to count clock cycles. Write some short benchmark programs in MIPS
and VMIPS assembly language. Measure the speedup on VMIPS, the percentage
of vectorization, and usage of the functional units.

 G.13 [50] <G.5> Modify the MIPS compiler to include a dependence checker. Run
some scientific code and loops through it and measure what percentage of the
statements could be vectorized.

 G.14 [Discussion] Some proponents of vector processors might argue that the vector
processors have provided the best path to ever-increasing amounts of processor
power by focusing their attention on boosting peak vector performance. Others
would argue that the emphasis on peak performance is misplaced because an
increasing percentage of the programs are dominated by nonvector performance.
(Remember Amdahl’s law?) The proponents would respond that programmers
should work to make their programs vectorizable. What do you think about this
argument?

H.1 Introduction: Exploiting Instruction-Level Parallelism Statically H-2

H.2 Detecting and Enhancing Loop-Level Parallelism H-2

H.3 Scheduling and Structuring Code for Parallelism H-12

H.4 Hardware Support for Exposing Parallelism: Predicated Instructions H-23

H.5 Hardware Support for Compiler Speculation H-27

H.6 The Intel IA-64 Architecture and Itanium Processor H-32

H.7 Concluding Remarks H-43

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H
Hardware and Software for

VLIW and EPIC 1

The EPIC approach is based on the application of massive resources.
These resources include more load-store, computational, and branch
units, as well as larger, lower-latency caches than would be required for
a superscalar processor. Thus, IA-64 gambles that, in the future, power
will not be the critical limitation, and that massive resources, along with
the machinery to exploit them, will not penalize performance with their
adverse effect on clock speed, path length, or CPI factors.

M. Hopkins
in a commentary on the EPIC

approach and the IA-64 architecture (2000)

H-2 ■ Appendix H Hardware and Software for VLIW and EPIC

In this chapter, we discuss compiler technology for increasing the amount of par-
allelism that we can exploit in a program as well as hardware support for these
compiler techniques. The next section defines when a loop is parallel, how a
dependence can prevent a loop from being parallel, and techniques for eliminat-
ing some types of dependences. The following section discusses the topic of
scheduling code to improve parallelism. These two sections serve as an introduc-
tion to these techniques.

We do not attempt to explain the details of ILP-oriented compiler techniques,
since that would take hundreds of pages, rather than the 20 we have allotted.
Instead, we view this material as providing general background that will enable
the reader to have a basic understanding of the compiler techniques used to
exploit ILP in modern computers.

Hardware support for these compiler techniques can greatly increase their
effectiveness, and Sections H.4 and H.5 explore such support. The IA-64 repre-
sents the culmination of the compiler and hardware ideas for exploiting parallel-
ism statically and includes support for many of the concepts proposed by
researchers during more than a decade of research into the area of compiler-based
instruction-level parallelism. Section H.6 provides a description and performance
analyses of the Intel IA-64 architecture and its second-generation implementa-
tion, Itanium 2.

The core concepts that we exploit in statically based techniques—finding par-
allelism, reducing control and data dependences, and using speculation—are the
same techniques we saw exploited in Chapter 3 using dynamic techniques. The
key difference is that the techniques in this appendix are applied at compile time
by the compiler, rather than at runtime by the hardware. The advantages of com-
pile time techniques are primarily two: They do not burden runtime execution
with any inefficiency, and they can take into account a wider range of the pro-
gram than a runtime approach might be able to incorporate. As an example of the
latter, the next section shows how a compiler might determine that an entire loop
can be executed in parallel; hardware techniques might or might not be able to
find such parallelism. The major disadvantage of static approaches is that they
can use only compile time information. Without runtime information, compile
time techniques must often be conservative and assume the worst case.

Loop-level parallelism is normally analyzed at the source level or close to it,
while most analysis of ILP is done once instructions have been generated by the
compiler. Loop-level analysis involves determining what dependences exist
among the operands in a loop across the iterations of that loop. For now, we will

 H.1 Introduction: Exploiting Instruction-Level
Parallelism Statically

 H.2 Detecting and Enhancing Loop-Level Parallelism

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.2 Detecting and Enhancing Loop-Level Parallelism ■ H-3

consider only data dependences, which arise when an operand is written at some
point and read at a later point. Name dependences also exist and may be removed
by renaming techniques like those we explored in Chapter 3.

The analysis of loop-level parallelism focuses on determining whether data
accesses in later iterations are dependent on data values produced in earlier itera-
tions; such a dependence is called a loop-carried dependence. Most of the exam-
ples we considered in Section 3.2 have no loop-carried dependences and, thus,
are loop-level parallel. To see that a loop is parallel, let us first look at the source
representation:

for (i=1000; i>0; i=i–1)
x[i] = x[i] + s;

In this loop, there is a dependence between the two uses of x[i], but this depen-
dence is within a single iteration and is not loop carried. There is a dependence
between successive uses of i in different iterations, which is loop carried, but this
dependence involves an induction variable and can be easily recognized and
eliminated. We saw examples of how to eliminate dependences involving induc-
tion variables during loop unrolling in Section 3.2, and we will look at additional
examples later in this section.

Because finding loop-level parallelism involves recognizing structures such
as loops, array references, and induction variable computations, the compiler can
do this analysis more easily at or near the source level, as opposed to the
machine-code level. Let’s look at a more complex example.

Example Consider a loop like this one:

for (i=1; i<=100; i=i+1) {
A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2 */

}

Assume that A, B, and C are distinct, nonoverlapping arrays. (In practice, the
arrays may sometimes be the same or may overlap. Because the arrays may be
passed as parameters to a procedure, which includes this loop, determining
whether arrays overlap or are identical often requires sophisticated, interproce-
dural analysis of the program.) What are the data dependences among the state-
ments S1 and S2 in the loop?

Answer There are two different dependences:

1. S1 uses a value computed by S1 in an earlier iteration, since iteration i com-
putes A[i+1], which is read in iteration i+1. The same is true of S2 for B[i]
and B[i+1].

2. S2 uses the value, A[i+1], computed by S1 in the same iteration.

H-4 ■ Appendix H Hardware and Software for VLIW and EPIC

These two dependences are different and have different effects. To see how
they differ, let’s assume that only one of these dependences exists at a time.
Because the dependence of statement S1 is on an earlier iteration of S1, this
dependence is loop carried. This dependence forces successive iterations of this
loop to execute in series.

The second dependence (S2 depending on S1) is within an iteration and is not
loop carried. Thus, if this were the only dependence, multiple iterations of the
loop could execute in parallel, as long as each pair of statements in an iteration
were kept in order. We saw this type of dependence in an example in Section 3.2,
where unrolling was able to expose the parallelism.

It is also possible to have a loop-carried dependence that does not prevent
parallelism, as the next example shows.

Example Consider a loop like this one:

for (i=1; i<=100; i=i+1) {
A[i] = A[i] + B[i]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2 */

}

What are the dependences between S1 and S2? Is this loop parallel? If not, show
how to make it parallel.

Answer Statement S1 uses the value assigned in the previous iteration by statement S2, so
there is a loop-carried dependence between S2 and S1. Despite this loop-carried
dependence, this loop can be made parallel. Unlike the earlier loop, this depen-
dence is not circular: Neither statement depends on itself, and, although S1
depends on S2, S2 does not depend on S1. A loop is parallel if it can be written
without a cycle in the dependences, since the absence of a cycle means that the
dependences give a partial ordering on the statements.

Although there are no circular dependences in the above loop, it must be
transformed to conform to the partial ordering and expose the parallelism. Two
observations are critical to this transformation:

1. There is no dependence from S1 to S2. If there were, then there would be a
cycle in the dependences and the loop would not be parallel. Since this other
dependence is absent, interchanging the two statements will not affect the
execution of S2.

2. On the first iteration of the loop, statement S1 depends on the value of B[1]
computed prior to initiating the loop.

These two observations allow us to replace the loop above with the following
code sequence:

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.2 Detecting and Enhancing Loop-Level Parallelism ■ H-5

A[1] = A[1] + B[1];
for (i=1; i<=99; i=i+1) {

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}
B[101] = C[100] + D[100];

The dependence between the two statements is no longer loop carried, so
iterations of the loop may be overlapped, provided the statements in each itera-
tion are kept in order.

Our analysis needs to begin by finding all loop-carried dependences. This
dependence information is inexact, in the sense that it tells us that such a depen-
dence may exist. Consider the following example:

for (i=1;i<=100;i=i+1) {
A[i] = B[i] + C[i]
D[i] = A[i] * E[i]

}

The second reference to A in this example need not be translated to a load instruc-
tion, since we know that the value is computed and stored by the previous state-
ment; hence, the second reference to A can simply be a reference to the register
into which A was computed. Performing this optimization requires knowing that
the two references are always to the same memory address and that there is no
intervening access to the same location. Normally, data dependence analysis only
tells that one reference may depend on another; a more complex analysis is
required to determine that two references must be to the exact same address. In
the example above, a simple version of this analysis suffices, since the two refer-
ences are in the same basic block.

Often loop-carried dependences are in the form of a recurrence:

for (i=2;i<=100;i=i+1) {
Y[i] = Y[i-1] + Y[i];

}

A recurrence is when a variable is defined based on the value of that variable
in an earlier iteration, often the one immediately preceding, as in the above frag-
ment. Detecting a recurrence can be important for two reasons: Some architec-
tures (especially vector computers) have special support for executing
recurrences, and some recurrences can be the source of a reasonable amount of
parallelism. To see how the latter can be true, consider this loop:

for (i=6;i<=100;i=i+1) {
Y[i] = Y[i-5] + Y[i];

}

H-6 ■ Appendix H Hardware and Software for VLIW and EPIC

On the iteration i, the loop references element i – 5. The loop is said to have a
dependence distance of 5. Many loops with carried dependences have a depen-
dence distance of 1. The larger the distance, the more potential parallelism can be
obtained by unrolling the loop. For example, if we unroll the first loop, with a
dependence distance of 1, successive statements are dependent on one another;
there is still some parallelism among the individual instructions, but not much. If
we unroll the loop that has a dependence distance of 5, there is a sequence of five
statements that have no dependences, and thus much more ILP. Although many
loops with loop-carried dependences have a dependence distance of 1, cases with
larger distances do arise, and the longer distance may well provide enough paral-
lelism to keep a processor busy.

Finding Dependences

Finding the dependences in a program is an important part of three tasks: (1)
good scheduling of code, (2) determining which loops might contain parallelism,
and (3) eliminating name dependences. The complexity of dependence analysis
arises because of the presence of arrays and pointers in languages like C or C++,
or pass-by-reference parameter passing in FORTRAN. Since scalar variable ref-
erences explicitly refer to a name, they can usually be analyzed quite easily, with
aliasing because of pointers and reference parameters causing some complica-
tions and uncertainty in the analysis.

How does the compiler detect dependences in general? Nearly all dependence
analysis algorithms work on the assumption that array indices are affine. In sim-
plest terms, a one-dimensional array index is affine if it can be written in the form
a × i + b, where a and b are constants and i is the loop index variable. The index
of a multidimensional array is affine if the index in each dimension is affine.
Sparse array accesses, which typically have the form x[y[i]], are one of the
major examples of nonaffine accesses.

Determining whether there is a dependence between two references to the
same array in a loop is thus equivalent to determining whether two affine func-
tions can have the same value for different indices between the bounds of the
loop. For example, suppose we have stored to an array element with index value
a × i + b and loaded from the same array with index value c × i + d, where i is the
for-loop index variable that runs from m to n. A dependence exists if two condi-
tions hold:

1. There are two iteration indices, j and k, both within the limits of the for loop.
That is, m ≤ j ≤ n, m ≤ k ≤ n.

2. The loop stores into an array element indexed by a × j + b and later fetches
from that same array element when it is indexed by c × k + d. That is, a × j +
b = c × k + d.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.2 Detecting and Enhancing Loop-Level Parallelism ■ H-7

In general, we cannot determine whether a dependence exists at compile
time. For example, the values of a, b, c, and d may not be known (they could be
values in other arrays), making it impossible to tell if a dependence exists. In
other cases, the dependence testing may be very expensive but decidable at com-
pile time. For example, the accesses may depend on the iteration indices of multi-
ple nested loops. Many programs, however, contain primarily simple indices
where a, b, c, and d are all constants. For these cases, it is possible to devise rea-
sonable compile time tests for dependence.

As an example, a simple and sufficient test for the absence of a dependence is
the greatest common divisor (GCD) test. It is based on the observation that if a
loop-carried dependence exists, then GCD (c,a) must divide (d – b). (Recall that
an integer, x, divides another integer, y, if we get an integer quotient when we do
the division y/x and there is no remainder.)

Example Use the GCD test to determine whether dependences exist in the following loop:

for (i=1; i<=100; i=i+1) {
X[2*i+3] = X[2*i] * 5.0;

}

Answer Given the values a = 2, b = 3, c = 2, and d = 0, then GCD(a,c) = 2, and d – b = –3.
Since 2 does not divide –3, no dependence is possible.

The GCD test is sufficient to guarantee that no dependence exists; however,
there are cases where the GCD test succeeds but no dependence exists. This can
arise, for example, because the GCD test does not take the loop bounds into
account.

In general, determining whether a dependence actually exists is NP complete.
In practice, however, many common cases can be analyzed precisely at low cost.
Recently, approaches using a hierarchy of exact tests increasing in generality and
cost have been shown to be both accurate and efficient. (A test is exact if it
precisely determines whether a dependence exists. Although the general case is
NP complete, there exist exact tests for restricted situations that are much
cheaper.)

In addition to detecting the presence of a dependence, a compiler wants to
classify the type of dependence. This classification allows a compiler to recog-
nize name dependences and eliminate them at compile time by renaming and
copying.

Example The following loop has multiple types of dependences. Find all the true depen-
dences, output dependences, and antidependences, and eliminate the output
dependences and antidependences by renaming.

H-8 ■ Appendix H Hardware and Software for VLIW and EPIC

for (i=1; i<=100; i=i+1) {
Y[i] = X[i] / c; /* S1 */
X[i] = X[i] + c; /* S2 */
Z[i] = Y[i] + c; /* S3 */
Y[i] = c - Y[i]; /* S4 */

}

Answer The following dependences exist among the four statements:

1. There are true dependences from S1 to S3 and from S1 to S4 because of
Y[i]. These are not loop carried, so they do not prevent the loop from being
considered parallel. These dependences will force S3 and S4 to wait for S1 to
complete.

2. There is an antidependence from S1 to S2, based on X[i].

3. There is an antidependence from S3 to S4 for Y[i].

4. There is an output dependence from S1 to S4, based on Y[i].

The following version of the loop eliminates these false (or pseudo) dependences:

for (i=1; i<=100; i=i+1 {
/* Y renamed to T to remove output dependence */
T[i] = X[i] / c;
/* X renamed to X1 to remove antidependence */
X1[i] = X[i] + c;
/* Y renamed to T to remove antidependence */
Z[i] = T[i] + c;
Y[i] = c - T[i];

}

After the loop, the variable X has been renamed X1. In code that follows the loop,
the compiler can simply replace the name X by X1. In this case, renaming does
not require an actual copy operation but can be done by substituting names or by
register allocation. In other cases, however, renaming will require copying.

Dependence analysis is a critical technology for exploiting parallelism. At the
instruction level, it provides information needed to interchange memory refer-
ences when scheduling, as well as to determine the benefits of unrolling a loop.
For detecting loop-level parallelism, dependence analysis is the basic tool. Effec-
tively compiling programs to either vector computers or multiprocessors depends
critically on this analysis. The major drawback of dependence analysis is that it
applies only under a limited set of circumstances—namely, among references
within a single loop nest and using affine index functions. Thus, there is a wide
variety of situations in which array-oriented dependence analysis cannot tell us
what we might want to know, including the following:

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.2 Detecting and Enhancing Loop-Level Parallelism ■ H-9

■ When objects are referenced via pointers rather than array indices (but see
discussion below)

■ When array indexing is indirect through another array, which happens with
many representations of sparse arrays

■ When a dependence may exist for some value of the inputs but does not exist
in actuality when the code is run since the inputs never take on those values

■ When an optimization depends on knowing more than just the possibility of a
dependence but needs to know on which write of a variable does a read of that
variable depend

To deal with the issue of analyzing programs with pointers, another type of
analysis, often called points-to analysis, is required (see Wilson and Lam [1995]).
The key question that we want answered from dependence analysis of pointers is
whether two pointers can designate the same address. In the case of complex
dynamic data structures, this problem is extremely difficult. For example, we
may want to know whether two pointers can reference the same node in a list at a
given point in a program, which in general is undecidable and in practice is
extremely difficult to answer. We may, however, be able to answer a simpler
question: Can two pointers designate nodes in the same list, even if they may be
separate nodes? This more restricted analysis can still be quite useful in schedul-
ing memory accesses performed through pointers.

The basic approach used in points-to analysis relies on information from
three major sources:

1. Type information, which restricts what a pointer can point to.

2. Information derived when an object is allocated or when the address of an
object is taken, which can be used to restrict what a pointer can point to. For
example, if p always points to an object allocated in a given source line and q
never points to that object, then p and q can never point to the same object.

3. Information derived from pointer assignments. For example, if p may be
assigned the value of q, then p may point to anything q points to.

There are several cases where analyzing pointers has been successfully
applied and is extremely useful:

■ When pointers are used to pass the address of an object as a parameter, it is
possible to use points-to analysis to determine the possible set of objects ref-
erenced by a pointer. One important use is to determine if two pointer param-
eters may designate the same object.

■ When a pointer can point to one of several types, it is sometimes possible to
determine the type of the data object that a pointer designates at different
parts of the program.

■ It is often possible to separate out pointers that may only point to a local
object versus a global one.

H-10 ■ Appendix H Hardware and Software for VLIW and EPIC

There are two different types of limitations that affect our ability to do accurate
dependence analysis for large programs. The first type of limitation arises from
restrictions in the analysis algorithms. Often, we are limited by the lack of applica-
bility of the analysis rather than a shortcoming in dependence analysis per se. For
example, dependence analysis for pointers is essentially impossible for programs
that use pointers in arbitrary fashion—such as by doing arithmetic on pointers.

The second limitation is the need to analyze behavior across procedure
boundaries to get accurate information. For example, if a procedure accepts two
parameters that are pointers, determining whether the values could be the same
requires analyzing across procedure boundaries. This type of analysis, called
interprocedural analysis, is much more difficult and complex than analysis
within a single procedure. Unlike the case of analyzing array indices within a sin-
gle loop nest, points-to analysis usually requires an interprocedural analysis. The
reason for this is simple. Suppose we are analyzing a program segment with two
pointers; if the analysis does not know anything about the two pointers at the start
of the program segment, it must be conservative and assume the worst case. The
worst case is that the two pointers may designate the same object, but they are not
guaranteed to designate the same object. This worst case is likely to propagate
through the analysis, producing useless information. In practice, getting fully
accurate interprocedural information is usually too expensive for real programs.
Instead, compilers usually use approximations in interprocedural analysis. The
result is that the information may be too inaccurate to be useful.

Modern programming languages that use strong typing, such as Java, make
the analysis of dependences easier. At the same time the extensive use of proce-
dures to structure programs, as well as abstract data types, makes the analysis
more difficult. Nonetheless, we expect that continued advances in analysis algo-
rithms, combined with the increasing importance of pointer dependency analysis,
will mean that there is continued progress on this important problem.

Eliminating Dependent Computations

Compilers can reduce the impact of dependent computations so as to achieve
more instruction-level parallelism (ILP). The key technique is to eliminate or
reduce a dependent computation by back substitution, which increases the
amount of parallelism and sometimes increases the amount of computation
required. These techniques can be applied both within a basic block and within
loops, and we describe them differently.

Within a basic block, algebraic simplifications of expressions and an optimi-
zation called copy propagation, which eliminates operations that copy values,
can be used to simplify sequences like the following:

DADDUI R1,R2,#4
DADDUI R1,R1,#4

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.2 Detecting and Enhancing Loop-Level Parallelism ■ H-11

to

DADDUI R1,R2,#8

assuming this is the only use of R1. In fact, the techniques we used to reduce mul-
tiple increments of array indices during loop unrolling and to move the incre-
ments across memory addresses in Section 3.2 are examples of this type of
optimization.

In these examples, computations are actually eliminated, but it is also possi-
ble that we may want to increase the parallelism of the code, possibly even
increasing the number of operations. Such optimizations are called tree height
reduction because they reduce the height of the tree structure representing a com-
putation, making it wider but shorter. Consider the following code sequence:

ADD R1,R2,R3
ADD R4,R1,R6
ADD R8,R4,R7

Notice that this sequence requires at least three execution cycles, since all the
instructions depend on the immediate predecessor. By taking advantage of asso-
ciativity, we can transform the code and rewrite it as

ADD R1,R2,R3
ADD R4,R6,R7
ADD R8,R1,R4

This sequence can be computed in two execution cycles. When loop unrolling is
used, opportunities for these types of optimizations occur frequently.

Although arithmetic with unlimited range and precision is associative, com-
puter arithmetic is not associative, for either integer arithmetic, because of lim-
ited range, or floating-point arithmetic, because of both range and precision.
Thus, using these restructuring techniques can sometimes lead to erroneous
behavior, although such occurrences are rare. For this reason, most compilers
require that optimizations that rely on associativity be explicitly enabled.

When loops are unrolled, this sort of algebraic optimization is important to
reduce the impact of dependences arising from recurrences. Recurrences are
expressions whose value on one iteration is given by a function that depends on
the previous iterations. When a loop with a recurrence is unrolled, we may be
able to algebraically optimize the unrolled loop, so that the recurrence need only
be evaluated once per unrolled iteration. One common type of recurrence arises
from an explicit program statement, such as:

sum = sum + x;

H-12 ■ Appendix H Hardware and Software for VLIW and EPIC

Assume we unroll a loop with this recurrence five times. If we let the value of x
on these five iterations be given by x1, x2, x3, x4, and x5, then we can write the
value of sum at the end of each unroll as:

sum = sum + x1 + x2 + x3 + x4 + x5;

If unoptimized, this expression requires five dependent operations, but it can be
rewritten as:

sum = ((sum + x1) + (x2 + x3)) + (x4 + x5);

which can be evaluated in only three dependent operations.
Recurrences also arise from implicit calculations, such as those associated

with array indexing. Each array index translates to an address that is computed
based on the loop index variable. Again, with unrolling and algebraic optimiza-
tion, the dependent computations can be minimized.

We have already seen that one compiler technique, loop unrolling, is useful to
uncover parallelism among instructions by creating longer sequences of straight-
line code. There are two other important techniques that have been developed for
this purpose: software pipelining and trace scheduling.

Software Pipelining: Symbolic Loop Unrolling

Software pipelining is a technique for reorganizing loops such that each itera-
tion in the software-pipelined code is made from instructions chosen from dif-
ferent iterations of the original loop. This approach is most easily understood
by looking at the scheduled code for the unrolled loop, which appeared in the
example on page 78. The scheduler in this example essentially interleaves
instructions from different loop iterations, so as to separate the dependent
instructions that occur within a single loop iteration. By choosing instructions
from different iterations, dependent computations are separated from one
another by an entire loop body, increasing the possibility that the unrolled loop
can be scheduled without stalls.

A software-pipelined loop interleaves instructions from different iterations
without unrolling the loop, as illustrated in Figure H.1. This technique is the soft-
ware counterpart to what Tomasulo’s algorithm does in hardware. The software-
pipelined loop for the earlier example would contain one load, one add, and one
store, each from a different iteration. There is also some start-up code that is
needed before the loop begins as well as code to finish up after the loop is com-
pleted. We will ignore these in this discussion, for simplicity.

 H.3 Scheduling and Structuring Code for Parallelism

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.3 Scheduling and Structuring Code for Parallelism ■ H-13

Example Show a software-pipelined version of this loop, which increments all the ele-
ments of an array whose starting address is in R1 by the contents of F2:

Loop: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)
DADDUI R1,R1,#-8
BNE R1,R2,Loop

You may omit the start-up and clean-up code.

Answer Software pipelining symbolically unrolls the loop and then selects instructions
from each iteration. Since the unrolling is symbolic, the loop overhead instruc-
tions (the DADDUI and BNE) need not be replicated. Here’s the body of the
unrolled loop without overhead instructions, highlighting the instructions taken
from each iteration:

Iteration i: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

Iteration i+1: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

Iteration i+2: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

Figure H.1 A software-pipelined loop chooses instructions from different loop iter-
ations, thus separating the dependent instructions within one iteration of the origi-
nal loop. The start-up and finish-up code will correspond to the portions above and
below the software-pipelined iteration.

Software-
pipelined
iteration

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

H-14 ■ Appendix H Hardware and Software for VLIW and EPIC

The selected instructions from different iterations are then put together in the
loop with the loop control instructions:

Loop: S.D F4,16(R1) ;stores into M[i]
ADD.D F4,F0,F2 ;adds to M[i-1]
L.D F0,0(R1) ;loads M[i-2]
DADDUI R1,R1,#-8
BNE R1,R2,Loop

This loop can be run at a rate of 5 cycles per result, ignoring the start-up and
clean-up portions, and assuming that DADDUI is scheduled before the ADD.D and
that the L.D instruction, with an adjusted offset, is placed in the branch delay slot.
Because the load and store are separated by offsets of 16 (two iterations), the loop
should run for two fewer iterations. Notice that the reuse of registers (e.g., F4, F0,
and R1) requires the hardware to avoid the write after read (WAR) hazards that
would occur in the loop. This hazard should not be a problem in this case, since
no data-dependent stalls should occur.

By looking at the unrolled version we can see what the start-up code and
finish-up code will need to be. For start-up, we will need to execute any instruc-
tions that correspond to iteration 1 and 2 that will not be executed. These
instructions are the L.D for iterations 1 and 2 and the ADD.D for iteration 1. For
the finish-up code, we need to execute any instructions that will not be executed
in the final two iterations. These include the ADD.D for the last iteration and the
S.D for the last two iterations.

Register management in software-pipelined loops can be tricky. The previous
example is not too hard since the registers that are written on one loop iteration
are read on the next. In other cases, we may need to increase the number of itera-
tions between when we issue an instruction and when the result is used. This
increase is required when there are a small number of instructions in the loop
body and the latencies are large. In such cases, a combination of software pipelin-
ing and loop unrolling is needed.

Software pipelining can be thought of as symbolic loop unrolling. Indeed,
some of the algorithms for software pipelining use loop-unrolling algorithms to
figure out how to software-pipeline the loop. The major advantage of software
pipelining over straight loop unrolling is that software pipelining consumes less
code space. Software pipelining and loop unrolling, in addition to yielding a bet-
ter scheduled inner loop, each reduce a different type of overhead. Loop unroll-
ing reduces the overhead of the loop—the branch and counter update code.
Software pipelining reduces the time when the loop is not running at peak speed
to once per loop at the beginning and end. If we unroll a loop that does 100 iter-
ations a constant number of times, say, 4, we pay the overhead 100/4 = 25
times—every time the inner unrolled loop is initiated. Figure H.2 shows this
behavior graphically. Because these techniques attack two different types of
overhead, the best performance can come from doing both. In practice, compila-

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.3 Scheduling and Structuring Code for Parallelism ■ H-15

tion using software pipelining is quite difficult for several reasons: Many loops
require significant transformation before they can be software pipelined, the
trade-offs in terms of overhead versus efficiency of the software-pipelined loop
are complex, and the issue of register management creates additional complexi-
ties. To help deal with the last two of these issues, the IA-64 added extensive
hardware sport for software pipelining. Although this hardware can make it
more efficient to apply software pipelining, it does not eliminate the need for
complex compiler support, or the need to make difficult decisions about the best
way to compile a loop.

Global Code Scheduling

In Section 3.2 we examined the use of loop unrolling and code scheduling to
improve ILP. The techniques in Section 3.2 work well when the loop body is
straight-line code, since the resulting unrolled loop looks like a single basic block.
Similarly, software pipelining works well when the body is a single basic block,
since it is easier to find the repeatable schedule. When the body of an unrolled
loop contains internal control flow, however, scheduling the code is much more
complex. In general, effective scheduling of a loop body with internal control flow
will require moving instructions across branches, which is global code scheduling.
In this section, we first examine the challenge and limitations of global code

Figure H.2 The execution pattern for (a) a software-pipelined loop and (b) an
unrolled loop. The shaded areas are the times when the loop is not running with maxi-
mum overlap or parallelism among instructions. This occurs once at the beginning and
once at the end for the software-pipelined loop. For the unrolled loop it occurs m/n
times if the loop has a total of m iterations and is unrolled n times. Each block repre-
sents an unroll of n iterations. Increasing the number of unrollings will reduce the start-
up and clean-up overhead. The overhead of one iteration overlaps with the overhead of
the next, thereby reducing the impact. The total area under the polygonal region in
each case will be the same, since the total number of operations is just the execution
rate multiplied by the time.

(a) Software pipelining

Proportional
to number of

unrolls

Overlap between
unrolled iterations

Time

Wind-down
code

Start-up
code

(b) Loop unrolling
Time

Number
of

overlapped
operations

Number
of

overlapped
operations

H-16 ■ Appendix H Hardware and Software for VLIW and EPIC

scheduling. In Section H.4 we examine hardware support for eliminating control
flow within an inner loop, then we examine two compiler techniques that can be
used when eliminating the control flow is not a viable approach.

Global code scheduling aims to compact a code fragment with internal control
structure into the shortest possible sequence that preserves the data and control
dependences. The data dependences force a partial order on operations, while the
control dependences dictate instructions across which code cannot be easily
moved. Data dependences are overcome by unrolling and, in the case of memory
operations, using dependence analysis to determine if two references refer to the
same address. Finding the shortest possible sequence for a piece of code means
finding the shortest sequence for the critical path, which is the longest sequence of
dependent instructions.

Control dependences arising from loop branches are reduced by unrolling.
Global code scheduling can reduce the effect of control dependences arising from
conditional nonloop branches by moving code. Since moving code across
branches will often affect the frequency of execution of such code, effectively
using global code motion requires estimates of the relative frequency of different
paths. Although global code motion cannot guarantee faster code, if the fre-
quency information is accurate, the compiler can determine whether such code
movement is likely to lead to faster code.

Global code motion is important since many inner loops contain conditional
statements. Figure H.3 shows a typical code fragment, which may be thought of
as an iteration of an unrolled loop, and highlights the more common control flow.

Figure H.3 A code fragment and the common path shaded with gray. Moving the
assignments to B or C requires a more complex analysis than for straight-line code. In
this section we focus on scheduling this code segment efficiently without hardware
assistance. Predication or conditional instructions, which we discuss in the next section,
provide another way to schedule this code.

A(i) = A(i) + B(i)

T F

XB(i) =

A(i) = 0?

C(i) =

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.3 Scheduling and Structuring Code for Parallelism ■ H-17

Effectively scheduling this code could require that we move the assignments
to B and C to earlier in the execution sequence, before the test of A. Such global
code motion must satisfy a set of constraints to be legal. In addition, the movement
of the code associated with B, unlike that associated with C, is speculative: It will
speed the computation up only when the path containing the code would be taken.

To perform the movement of B, we must ensure that neither the data flow nor
the exception behavior is changed. Compilers avoid changing the exception
behavior by not moving certain classes of instructions, such as memory refer-
ences, that can cause exceptions. In Section H.5, we will see how hardware sup-
port allows for more opportunities for speculative code motion and removes
control dependences. Although such enhanced support for speculation can make
it possible to explore more opportunities, the difficulty of choosing how to best
compile the code remains complex.

How can the compiler ensure that the assignments to B and C can be moved
without affecting the data flow? To see what’s involved, let’s look at a typical code
generation sequence for the flowchart in Figure H.3. Assuming that the addresses
for A, B, C are in R1, R2, and R3, respectively, here is such a sequence:

LD R4,0(R1) ;load A
LD R5,0(R2) ;load B
DADDU R4,R4,R5 ;Add to A
SD R4,0(R1) ;Store A
...
BNEZ R4,elsepart ;Test A
... ;then part
SD ...,0(R2) ;Stores to B
...
J join ;jump over else

elsepart: ... ;else part
X ;code for X
...

join: ... ;after if
SD ...,0(R3) ;store C[i]

Let’s first consider the problem of moving the assignment to B to before the
BNEZ instruction. Call the last instruction to assign to B before the if statement i.
If B is referenced before it is assigned either in code segment X or after the if
statement, call the referencing instruction j. If there is such an instruction j, then
moving the assignment to B will change the data flow of the program. In particu-
lar, moving the assignment to B will cause j to become data dependent on the
moved version of the assignment to B rather than on i, on which j originally
depended. You could imagine more clever schemes to allow B to be moved even
when the value is used: For example, in the first case, we could make a shadow
copy of B before the if statement and use that shadow copy in X. Such schemes
are usually avoided, both because they are complex to implement and because

H-18 ■ Appendix H Hardware and Software for VLIW and EPIC

they will slow down the program if the trace selected is not optimal and the oper-
ations end up requiring additional instructions to execute.

Moving the assignment to C up to before the first branch requires two steps.
First, the assignment is moved over the join point of the else part into the portion
corresponding to the then part. This movement makes the instructions for C con-
trol dependent on the branch and means that they will not execute if the else path,
which is the infrequent path, is chosen. Hence, instructions that were data depen-
dent on the assignment to C, and which execute after this code fragment, will be
affected. To ensure the correct value is computed for such instructions, a copy is
made of the instructions that compute and assign to C on the else path. Second,
we can move C from the then part of the branch across the branch condition, if it
does not affect any data flow into the branch condition. If C is moved to before
the if test, the copy of C in the else branch can usually be eliminated, since it will
be redundant.

We can see from this example that global code scheduling is subject to many
constraints. This observation is what led designers to provide hardware support to
make such code motion easier, and Sections H.4 and H.5 explores such support
in detail.

Global code scheduling also requires complex trade-offs to make code
motion decisions. For example, assuming that the assignment to B can be moved
before the conditional branch (possibly with some compensation code on the
alternative branch), will this movement make the code run faster? The answer is,
possibly! Similarly, moving the copies of C into the if and else branches makes
the code initially bigger! Only if the compiler can successfully move the compu-
tation across the if test will there be a likely benefit.

Consider the factors that the compiler would have to consider in moving the
computation and assignment of B:

■ What are the relative execution frequencies of the then case and the else case
in the branch? If the then case is much more frequent, the code motion may
be beneficial. If not, it is less likely, although not impossible, to consider
moving the code.

■ What is the cost of executing the computation and assignment to B above the
branch? It may be that there are a number of empty instruction issue slots in
the code above the branch and that the instructions for B can be placed into
these slots that would otherwise go empty. This opportunity makes the com-
putation of B “free” at least to first order.

■ How will the movement of B change the execution time for the then case? If
B is at the start of the critical path for the then case, moving it may be highly
beneficial.

■ Is B the best code fragment that can be moved above the branch? How does it
compare with moving C or other statements within the then case?

■ What is the cost of the compensation code that may be necessary for the else
case? How effectively can this code be scheduled, and what is its impact on
execution time?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.3 Scheduling and Structuring Code for Parallelism ■ H-19

As we can see from this partial list, global code scheduling is an extremely
complex problem. The trade-offs depend on many factors, and individual deci-
sions to globally schedule instructions are highly interdependent. Even choosing
which instructions to start considering as candidates for global code motion is
complex!

To try to simplify this process, several different methods for global code
scheduling have been developed. The two methods we briefly explore here rely
on a simple principle: Focus the attention of the compiler on a straight-line code
segment representing what is estimated to be the most frequently executed code
path. Unrolling is used to generate the straight-line code, but, of course, the com-
plexity arises in how conditional branches are handled. In both cases, they are
effectively straightened by choosing and scheduling the most frequent path.

Trace Scheduling: Focusing on the Critical Path

Trace scheduling is useful for processors with a large number of issues per clock,
where conditional or predicated execution (see Section H.4) is inappropriate or
unsupported, and where simple loop unrolling may not be sufficient by itself to
uncover enough ILP to keep the processor busy. Trace scheduling is a way to
organize the global code motion process, so as to simplify the code scheduling by
incurring the costs of possible code motion on the less frequent paths. Because it
can generate significant overheads on the designated infrequent path, it is best
used where profile information indicates significant differences in frequency
between different paths and where the profile information is highly indicative of
program behavior independent of the input. Of course, this limits its effective
applicability to certain classes of programs.

There are two steps to trace scheduling. The first step, called trace selection,
tries to find a likely sequence of basic blocks whose operations will be put
together into a smaller number of instructions; this sequence is called a trace.
Loop unrolling is used to generate long traces, since loop branches are taken with
high probability. Additionally, by using static branch prediction, other conditional
branches are also chosen as taken or not taken, so that the resultant trace is a
straight-line sequence resulting from concatenating many basic blocks. If, for
example, the program fragment shown in Figure H.3 corresponds to an inner loop
with the highlighted path being much more frequent, and the loop were unwound
four times, the primary trace would consist of four copies of the shaded portion of
the program, as shown in Figure H.4.

Once a trace is selected, the second process, called trace compaction, tries to
squeeze the trace into a small number of wide instructions. Trace compaction is
code scheduling; hence, it attempts to move operations as early as it can in a
sequence (trace), packing the operations into as few wide instructions (or issue
packets) as possible.

The advantage of the trace scheduling approach is that it simplifies the deci-
sions concerning global code motion. In particular, branches are viewed as jumps
into or out of the selected trace, which is assumed to be the most probable path.

H-20 ■ Appendix H Hardware and Software for VLIW and EPIC

Figure H.4 This trace is obtained by assuming that the program fragment in Figure H.3 is the inner loop and
unwinding it four times, treating the shaded portion in Figure H.3 as the likely path. The trace exits correspond to
jumps off the frequent path, and the trace entrances correspond to returns to the trace.

A(i) = A(i) + B(i)

T F

B(i) =

A(i) = 0?

C(i) =

Trace entrance

A(i) = A(i) + B(i)

T F

B(i) =

A(i) = 0?

C(i) =

Trace exit

Trace exit

Trace entrance

A(i) = A(i) + B(i)

T F

B(i) =

A(i) = 0?

C(i) =

Trace exit

Trace entrance

A(i) = A(i) + B(i)

T F

B(i) =

C(i) =

A(i) = 0? Trace exit

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.3 Scheduling and Structuring Code for Parallelism ■ H-21

When code is moved across such trace entry and exit points, additional book-
keeping code will often be needed on the entry or exit point. The key assumption
is that the trace is so much more probable than the alternatives that the cost of the
bookkeeping code need not be a deciding factor: If an instruction can be moved
and thereby make the main trace execute faster, it is moved.

Although trace scheduling has been successfully applied to scientific code
with its intensive loops and accurate profile data, it remains unclear whether this
approach is suitable for programs that are less simply characterized and less loop
intensive. In such programs, the significant overheads of compensation code may
make trace scheduling an unattractive approach, or, at best, its effective use will
be extremely complex for the compiler.

Superblocks

One of the major drawbacks of trace scheduling is that the entries and exits into
the middle of the trace cause significant complications, requiring the compiler to
generate and track the compensation code and often making it difficult to assess
the cost of such code. Superblocks are formed by a process similar to that used
for traces, but are a form of extended basic blocks, which are restricted to a single
entry point but allow multiple exits.

Because superblocks have only a single entry point, compacting a super-
block is easier than compacting a trace since only code motion across an exit
need be considered. In our earlier example, we would form superblocks that
contained only one entrance; hence, moving C would be easier. Furthermore, in
loops that have a single loop exit based on a count (for example, a for loop with
no loop exit other than the loop termination condition), the resulting super-
blocks have only one exit as well as one entrance. Such blocks can then be
scheduled more easily.

How can a superblock with only one entrance be constructed? The answer is
to use tail duplication to create a separate block that corresponds to the portion of
the trace after the entry. In our previous example, each unrolling of the loop
would create an exit from the superblock to a residual loop that handles the
remaining iterations. Figure H.5 shows the superblock structure if the code frag-
ment from Figure H.3 is treated as the body of an inner loop and unrolled four
times. The residual loop handles any iterations that occur if the superblock is
exited, which, in turn, occurs when the unpredicted path is selected. If the
expected frequency of the residual loop were still high, a superblock could be
created for that loop as well.

The superblock approach reduces the complexity of bookkeeping and sched-
uling versus the more general trace generation approach but may enlarge code
size more than a trace-based approach. Like trace scheduling, superblock sched-
uling may be most appropriate when other techniques (e.g., if conversion) fail.
Even in such cases, assessing the cost of code duplication may limit the useful-
ness of the approach and will certainly complicate the compilation process.

H-22 ■ Appendix H Hardware and Software for VLIW and EPIC

Loop unrolling, software pipelining, trace scheduling, and superblock
scheduling all aim at trying to increase the amount of ILP that can be exploited
by a processor issuing more than one instruction on every clock cycle. The

Figure H.5 This superblock results from unrolling the code in Figure H.3 four times and creating a superblock.

C(i) =

A(i) = A(i) + B(i)

T F

B(i) =

A(i) = 0?

C(i) =

A(i) = A(i) + B(i)

T F

B(i) =

A(i) = 0?

C(i) =

A(i) = A(i) + B(i)

T F

B(i) =

A(i) = 0?

C(i) =

A(i) = A(i) + B(i)

T F

B(i) =

A(i) = 0?

A(i) = A(i) + B(i)

T F

XB(i) =

A(i) = 0?

C(i) =

Execute
n times

Superblock exit
with n = 4

Superblock exit
with n = 3

Superblock exit
with n = 2

Superblock exit
with n = 1

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.4 Hardware Support for Exposing Parallelism: Predicated Instructions ■ H-23

effectiveness of each of these techniques and their suitability for various archi-
tectural approaches are among the hottest topics being actively pursued by
researchers and designers of high-speed processors.

Techniques such as loop unrolling, software pipelining, and trace scheduling can
be used to increase the amount of parallelism available when the behavior of
branches is fairly predictable at compile time. When the behavior of branches is
not well known, compiler techniques alone may not be able to uncover much ILP.
In such cases, the control dependences may severely limit the amount of parallel-
ism that can be exploited. To overcome these problems, an architect can extend
the instruction set to include conditional or predicated instructions. Such instruc-
tions can be used to eliminate branches, converting a control dependence into a
data dependence and potentially improving performance. Such approaches are
useful with either the hardware-intensive schemes in Chapter 3 or the software-
intensive approaches discussed in this appendix, since in both cases predication
can be used to eliminate branches.

The concept behind conditional instructions is quite simple: An instruction
refers to a condition, which is evaluated as part of the instruction execution. If the
condition is true, the instruction is executed normally; if the condition is false, the
execution continues as if the instruction were a no-op. Many newer architectures
include some form of conditional instructions. The most common example of
such an instruction is conditional move, which moves a value from one register to
another if the condition is true. Such an instruction can be used to completely
eliminate a branch in simple code sequences.

Example Consider the following code:

if (A==0) {S=T;}

Assuming that registers R1, R2, and R3 hold the values of A, S, and T, respectively,
show the code for this statement with the branch and with the conditional move.

Answer The straightforward code using a branch for this statement is (remember that we
are assuming normal rather than delayed branches)

BNEZ R1,L
ADDU R2,R3,R0

L:

Using a conditional move that performs the move only if the third operand is
equal to zero, we can implement this statement in one instruction:

CMOVZ R2,R3,R1

 H.4 Hardware Support for Exposing Parallelism:
Predicated Instructions

H-24 ■ Appendix H Hardware and Software for VLIW and EPIC

The conditional instruction allows us to convert the control dependence present
in the branch-based code sequence to a data dependence. (This transformation is
also used for vector computers, where it is called if conversion.) For a pipelined
processor, this moves the place where the dependence must be resolved from near
the front of the pipeline, where it is resolved for branches, to the end of the pipe-
line, where the register write occurs.

One obvious use for conditional move is to implement the absolute value
function: A = abs (B), which is implemented as if (B<0) {A=-B;} else {A=B;}.
This if statement can be implemented as a pair of conditional moves, or as one
unconditional move (A=B) and one conditional move (A=-B).

In the example above or in the compilation of absolute value, conditional
moves are used to change a control dependence into a data dependence. This
enables us to eliminate the branch and possibly improve the pipeline behavior. As
issue rates increase, designers are faced with one of two choices: execute multi-
ple branches per clock cycle or find a method to eliminate branches to avoid this
requirement. Handling multiple branches per clock is complex, since one branch
must be control dependent on the other. The difficulty of accurately predicting
two branch outcomes, updating the prediction tables, and executing the correct
sequence has so far caused most designers to avoid processors that execute multi-
ple branches per clock. Conditional moves and predicated instructions provide a
way of reducing the branch pressure. In addition, a conditional move can often
eliminate a branch that is hard to predict, increasing the potential gain.

Conditional moves are the simplest form of conditional or predicated
instructions and, although useful for short sequences, have limitations. In particu-
lar, using conditional move to eliminate branches that guard the execution of
large blocks of code can be inefficient, since many conditional moves may need
to be introduced.

To remedy the inefficiency of using conditional moves, some architectures
support full predication, whereby the execution of all instructions is controlled by
a predicate. When the predicate is false, the instruction becomes a no-op. Full
predication allows us to simply convert large blocks of code that are branch
dependent. For example, an if-then-else statement within a loop can be entirely
converted to predicated execution, so that the code in the then case executes only
if the value of the condition is true and the code in the else case executes only if
the value of the condition is false. Predication is particularly valuable with global
code scheduling, since it can eliminate nonloop branches, which significantly
complicate instruction scheduling.

Predicated instructions can also be used to speculatively move an instruction
that is time critical, but may cause an exception if moved before a guarding
branch. Although it is possible to do this with conditional move, it is more costly.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.4 Hardware Support for Exposing Parallelism: Predicated Instructions ■ H-25

Example Here is a code sequence for a two-issue superscalar that can issue a combination
of one memory reference and one ALU operation, or a branch by itself, every
cycle:

This sequence wastes a memory operation slot in the second cycle and will incur
a data dependence stall if the branch is not taken, since the second LW after the
branch depends on the prior load. Show how the code can be improved using a
predicated form of LW.

Answer Call the predicated version load word LWC and assume the load occurs unless the
third operand is 0. The LW immediately following the branch can be converted to
an LWC and moved up to the second issue slot:

This improves the execution time by several cycles since it eliminates one
instruction issue slot and reduces the pipeline stall for the last instruction in the
sequence. Of course, if the compiler mispredicted the branch, the predicated
instruction will have no effect and will not improve the running time. This is why
the transformation is speculative.

If the sequence following the branch were short, the entire block of code
might be converted to predicated execution and the branch eliminated.

When we convert an entire code segment to predicated execution or specula-
tively move an instruction and make it predicted, we remove a control depen-
dence. Correct code generation and the conditional execution of predicated
instructions ensure that we maintain the data flow enforced by the branch. To
ensure that the exception behavior is also maintained, a predicated instruction
must not generate an exception if the predicate is false. The property of not

First instruction slot Second instruction slot

LW R1,40(R2) ADD R3,R4,R5

ADD R6,R3,R7

BEQZ R10,L

LW R8,0(R10)

LW R9,0(R8)

First instruction slot Second instruction slot

LW R1,40(R2) ADD R3,R4,R5

LWC R8,0(R10),R10 ADD R6,R3,R7

BEQZ R10,L

LW R9,0(R8)

H-26 ■ Appendix H Hardware and Software for VLIW and EPIC

causing exceptions is quite critical, as the previous example shows: If register
R10 contains zero, the instruction LW R8,0(R10) executed unconditionally is
likely to cause a protection exception, and this exception should not occur. Of
course, if the condition is satisfied (i.e., R10 is not zero), the LW may still cause a
legal and resumable exception (e.g., a page fault), and the hardware must take
the exception when it knows that the controlling condition is true.

The major complication in implementing predicated instructions is deciding
when to annul an instruction. Predicated instructions may either be annulled during
instruction issue or later in the pipeline before they commit any results or raise an
exception. Each choice has a disadvantage. If predicated instructions are annulled
early in the pipeline, the value of the controlling condition must be known early to
prevent a stall for a data hazard. Since data-dependent branch conditions, which
tend to be less predictable, are candidates for conversion to predicated execution,
this choice can lead to more pipeline stalls. Because of this potential for data hazard
stalls, no design with predicated execution (or conditional move) annuls instruc-
tions early. Instead, all existing processors annul instructions later in the pipeline,
which means that annulled instructions will consume functional unit resources and
potentially have a negative impact on performance. A variety of other pipeline
implementation techniques, such as forwarding, interact with predicated instruc-
tions, further complicating the implementation.

Predicated or conditional instructions are extremely useful for implementing
short alternative control flows, for eliminating some unpredictable branches, and
for reducing the overhead of global code scheduling. Nonetheless, the usefulness
of conditional instructions is limited by several factors:

■ Predicated instructions that are annulled (i.e., whose conditions are false) still
take some processor resources. An annulled predicated instruction requires
fetch resources at a minimum, and in most processors functional unit execu-
tion time. Therefore, moving an instruction across a branch and making it
conditional will slow the program down whenever the moved instruction
would not have been normally executed. Likewise, predicating a control-
dependent portion of code and eliminating a branch may slow down the pro-
cessor if that code would not have been executed. An important exception to
these situations occurs when the cycles used by the moved instruction when it
is not performed would have been idle anyway (as in the earlier superscalar
example). Moving an instruction across a branch or converting a code seg-
ment to predicated execution is essentially speculating on the outcome of the
branch. Conditional instructions make this easier but do not eliminate the
execution time taken by an incorrect guess. In simple cases, where we trade a
conditional move for a branch and a move, using conditional moves or predi-
cation is almost always better. When longer code sequences are made condi-
tional, the benefits are more limited.

■ Predicated instructions are most useful when the predicate can be evaluated
early. If the condition evaluation and predicated instructions cannot be separated
(because of data dependences in determining the condition), then a conditional

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.5 Hardware Support for Compiler Speculation ■ H-27

instruction may result in a stall for a data hazard. With branch prediction and
speculation, such stalls can be avoided, at least when the branches are predicted
accurately.

■ The use of conditional instructions can be limited when the control flow
involves more than a simple alternative sequence. For example, moving an
instruction across multiple branches requires making it conditional on both
branches, which requires two conditions to be specified or requires additional
instructions to compute the controlling predicate. If such capabilities are not
present, the overhead of if conversion will be larger, reducing its advantage.

■ Conditional instructions may have some speed penalty compared with uncon-
ditional instructions. This may show up as a higher cycle count for such
instructions or a slower clock rate overall. If conditional instructions are more
expensive, they will need to be used judiciously.

For these reasons, many architectures have included a few simple conditional
instructions (with conditional move being the most frequent), but only a few
architectures include conditional versions for the majority of the instructions.
The MIPS, Alpha, PowerPC, SPARC, and Intel x86 (as defined in the Pentium
processor) all support conditional move. The IA-64 architecture supports full
predication for all instructions, as we will see in Section H.6.

As we saw in Chapter 3, many programs have branches that can be accurately
predicted at compile time either from the program structure or by using a profile.
In such cases, the compiler may want to speculate either to improve the schedul-
ing or to increase the issue rate. Predicated instructions provide one method to
speculate, but they are really more useful when control dependences can be
completely eliminated by if conversion. In many cases, we would like to move
speculated instructions not only before the branch but also before the condition
evaluation, and predication cannot achieve this.

To speculate ambitiously requires three capabilities:

1. The ability of the compiler to find instructions that, with the possible use of
register renaming, can be speculatively moved and not affect the program
data flow

2. The ability to ignore exceptions in speculated instructions, until we know that
such exceptions should really occur

3. The ability to speculatively interchange loads and stores, or stores and stores,
which may have address conflicts

The first of these is a compiler capability, while the last two require hardware
support, which we explore next.

 H.5 Hardware Support for Compiler Speculation

H-28 ■ Appendix H Hardware and Software for VLIW and EPIC

Hardware Support for Preserving Exception Behavior

To speculate ambitiously, we must be able to move any type of instruction and
still preserve its exception behavior. The key to being able to do this is to observe
that the results of a speculated sequence that is mispredicted will not be used in
the final computation, and such a speculated instruction should not cause an
exception.

There are four methods that have been investigated for supporting more
ambitious speculation without introducing erroneous exception behavior:

1. The hardware and operating system cooperatively ignore exceptions for spec-
ulative instructions. As we will see later, this approach preserves exception
behavior for correct programs, but not for incorrect ones. This approach may
be viewed as unacceptable for some programs, but it has been used, under
program control, as a “fast mode” in several processors.

2. Speculative instructions that never raise exceptions are used, and checks are
introduced to determine when an exception should occur.

3. A set of status bits, called poison bits, are attached to the result registers written
by speculated instructions when the instructions cause exceptions. The poison
bits cause a fault when a normal instruction attempts to use the register.

4. A mechanism is provided to indicate that an instruction is speculative, and the
hardware buffers the instruction result until it is certain that the instruction is
no longer speculative.

To explain these schemes, we need to distinguish between exceptions that
indicate a program error and would normally cause termination, such as a mem-
ory protection violation, and those that are handled and normally resumed, such
as a page fault. Exceptions that can be resumed can be accepted and processed
for speculative instructions just as if they were normal instructions. If the specu-
lative instruction should not have been executed, handling the unneeded excep-
tion may have some negative performance effects, but it cannot cause incorrect
execution. The cost of these exceptions may be high, however, and some proces-
sors use hardware support to avoid taking such exceptions, just as processors
with hardware speculation may take some exceptions in speculative mode, while
avoiding others until an instruction is known not to be speculative.

Exceptions that indicate a program error should not occur in correct pro-
grams, and the result of a program that gets such an exception is not well defined,
except perhaps when the program is running in a debugging mode. If such excep-
tions arise in speculated instructions, we cannot take the exception until we know
that the instruction is no longer speculative.

In the simplest method for preserving exceptions, the hardware and the oper-
ating system simply handle all resumable exceptions when the exception occurs
and simply return an undefined value for any exception that would cause termina-
tion. If the instruction generating the terminating exception was not speculative,

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.5 Hardware Support for Compiler Speculation ■ H-29

then the program is in error. Note that instead of terminating the program, the
program is allowed to continue, although it will almost certainly generate incor-
rect results. If the instruction generating the terminating exception is speculative,
then the program may be correct and the speculative result will simply be unused;
thus, returning an undefined value for the instruction cannot be harmful. This
scheme can never cause a correct program to fail, no matter how much specula-
tion is done. An incorrect program, which formerly might have received a termi-
nating exception, will get an incorrect result. This is acceptable for some
programs, assuming the compiler can also generate a normal version of the pro-
gram, which does not speculate and can receive a terminating exception.

Example Consider that the following code fragment from an if-then-else statement of the
form

if (A==0) A = B; else A = A+4;

where A is at 0(R3) and B is at 0(R2):

LD R1,0(R3) ;load A
BNEZ R1,L1 ;test A
LD R1,0(R2) ;then clause
J L2 ;skip else

L1: DADDI R1,R1,#4 ;else clause
L2: SD R1,0(R3) ;store A

Assume that the then clause is almost always executed. Compile the code using
compiler-based speculation. Assume R14 is unused and available.

Answer Here is the new code:

LD R1,0(R3) ;load A
LD R14,0(R2) ;speculative load B
BEQZ R1,L3 ;other branch of the if
DADDI R14,R1,#4 ;the else clause

L3: SD R14,0(R3) ;nonspeculative store

The then clause is completely speculated. We introduce a temporary register to
avoid destroying R1 when B is loaded; if the load is speculative, R14 will be use-
less. After the entire code segment is executed, A will be in R14. The else clause
could have also been compiled speculatively with a conditional move, but if the
branch is highly predictable and low cost, this might slow the code down, since
two extra instructions would always be executed as opposed to one branch.

In such a scheme, it is not necessary to know that an instruction is specula-
tive. Indeed, it is helpful only when a program is in error and receives a terminat-
ing exception on a normal instruction; in such cases, if the instruction were not
marked as speculative, the program could be terminated.

H-30 ■ Appendix H Hardware and Software for VLIW and EPIC

In this method for handling speculation, as in the next one, renaming will often
be needed to prevent speculative instructions from destroying live values. Renam-
ing is usually restricted to register values. Because of this restriction, the targets of
stores cannot be destroyed and stores cannot be speculative. The small number of
registers and the cost of spilling will act as one constraint on the amount of specula-
tion. Of course, the major constraint remains the cost of executing speculative
instructions when the compiler’s branch prediction is incorrect.

A second approach to preserving exception behavior when speculating intro-
duces speculative versions of instructions that do not generate terminating excep-
tions and instructions to check for such exceptions. This combination preserves
the exception behavior exactly.

Example Show how the previous example can be coded using a speculative load (sLD) and
a speculation check instruction (SPECCK) to completely preserve exception
behavior. Assume R14 is unused and available.

Answer Here is the code that achieves this:

LD R1,0(R3) ;load A
sLD R14,0(R2) ;speculative, no termination
BNEZ R1,L1 ;test A
SPECCK 0(R2) ;perform speculation check
J L2 ;skip else

L1: DADDI R14,R1,#4 ;else clause
L2: SD R14,0(R3) ;store A

Notice that the speculation check requires that we maintain a basic block for the
then case. If we had speculated only a portion of the then case, then a basic block
representing the then case would exist in any event. More importantly, notice that
checking for a possible exception requires extra code.

A third approach for preserving exception behavior tracks exceptions as they
occur but postpones any terminating exception until a value is actually used, pre-
serving the occurrence of the exception, although not in a completely precise
fashion. The scheme is simple: A poison bit is added to every register, and
another bit is added to every instruction to indicate whether the instruction is
speculative. The poison bit of the destination register is set whenever a specula-
tive instruction results in a terminating exception; all other exceptions are han-
dled immediately. If a speculative instruction uses a register with a poison bit
turned on, the destination register of the instruction simply has its poison bit
turned on. If a normal instruction attempts to use a register source with its poison
bit turned on, the instruction causes a fault. In this way, any program that would
have generated an exception still generates one, albeit at the first instance where a
result is used by an instruction that is not speculative. Since poison bits exist only

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.5 Hardware Support for Compiler Speculation ■ H-31

on register values and not memory values, stores are never speculative and thus
trap if either operand is “poison.”

Example Consider the code fragment from page H-29 and show how it would be compiled
with speculative instructions and poison bits. Show where an exception for the
speculative memory reference would be recognized. Assume R14 is unused and
available.

Answer Here is the code (an s preceding the opcode indicates a speculative instruction):

LD R1,0(R3) ;load A
sLD R14,0(R2) ;speculative load B
BEQZ R1,L3 ;
DADDI R14,R1,#4 ;

L3: SD R14,0(R3) ;exception for speculative LW

If the speculative sLD generates a terminating exception, the poison bit of R14
will be turned on. When the nonspeculative SW instruction occurs, it will raise an
exception if the poison bit for R14 is on.

One complication that must be overcome is how the OS saves the user regis-
ters on a context switch if the poison bit is set. A special instruction is needed to
save and reset the state of the poison bits to avoid this problem.

The fourth and final approach listed earlier relies on a hardware mechanism
that operates like a reorder buffer. In such an approach, instructions are marked
by the compiler as speculative and include an indicator of how many branches the
instruction was speculatively moved across and what branch action (taken/not
taken) the compiler assumed. This last piece of information basically tells the
hardware the location of the code block where the speculated instruction origi-
nally was. In practice, most of the benefit of speculation is gained by allowing
movement across a single branch; thus, only 1 bit saying whether the speculated
instruction came from the taken or not taken path is required. Alternatively, the
original location of the speculative instruction is marked by a sentinel, which tells
the hardware that the earlier speculative instruction is no longer speculative and
values may be committed.

All instructions are placed in a reorder buffer when issued and are forced to
commit in order, as in a hardware speculation approach. (Notice, though, that no
actual speculative branch prediction or dynamic scheduling occurs.) The reorder
buffer tracks when instructions are ready to commit and delays the “write-back”
portion of any speculative instruction. Speculative instructions are not allowed to
commit until the branches that have been speculatively moved over are also ready
to commit, or, alternatively, until the corresponding sentinel is reached. At that
point, we know whether the speculated instruction should have been executed or
not. If it should have been executed and it generated a terminating exception, then
we know that the program should be terminated. If the instruction should not

H-32 ■ Appendix H Hardware and Software for VLIW and EPIC

have been executed, then the exception can be ignored. Notice that the compiler,
rather than the hardware, has the job of register renaming to ensure correct usage
of the speculated result, as well as correct program execution.

Hardware Support for Memory Reference Speculation

Moving loads across stores is usually done when the compiler is certain the
addresses do not conflict. As we saw with the examples in Section 3.2, such
transformations are critical to reducing the critical path length of a code segment.
To allow the compiler to undertake such code motion when it cannot be abso-
lutely certain that such a movement is correct, a special instruction to check for
address conflicts can be included in the architecture. The special instruction is
left at the original location of the load instruction (and acts like a guardian), and
the load is moved up across one or more stores.

When a speculated load is executed, the hardware saves the address of the
accessed memory location. If a subsequent store changes the location before the
check instruction, then the speculation has failed. If the location has not been
touched, then the speculation is successful. Speculation failure can be handled in
two ways. If only the load instruction was speculated, then it suffices to redo the
load at the point of the check instruction (which could supply the target register
in addition to the memory address). If additional instructions that depended on
the load were also speculated, then a fix-up sequence that reexecutes all the spec-
ulated instructions starting with the load is needed. In this case, the check instruc-
tion specifies the address where the fix-up code is located.

In this section, we have seen a variety of hardware assist mechanisms. Such
mechanisms are key to achieving good support with the compiler-intensive
approaches of Chapter 3 and this appendix. In addition, several of them can be
easily integrated in the hardware-intensive approaches of Chapter 3 and provide
additional benefits.

This section is an overview of the Intel IA-64 architecture, the most advanced
VLIW-style processor, and its implementation in the Itanium processor.

The Intel IA-64 Instruction Set Architecture

The IA-64 is a RISC-style, register-register instruction set, but with many novel
features designed to support compiler-based exploitation of ILP. Our focus here
is on the unique aspects of the IA-64 ISA. Most of these aspects have been dis-
cussed already in this appendix, including predication, compiler-based parallel-
ism detection, and support for memory reference speculation.

 H.6 The Intel IA-64 Architecture and Itanium Processor

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.6 The Intel IA-64 Architecture and Itanium Processor ■ H-33

When they announced the IA-64 architecture, HP and Intel introduced the
term EPIC (Explicitly Parallel Instruction Computer) to distinguish this new
architectural approach from the earlier VLIW architectures and from other RISC
architectures. Although VLIW and EPIC architectures share many features, the
EPIC approach includes several concepts that extend the earlier VLIW approach.
These extensions fall into two main areas:

1. EPIC has greater flexibility in indicating parallelism among instructions and
in instruction formats. Rather than relying on a fixed instruction format where
all operations in the instruction must be capable of being executed in parallel
and where the format is completely rigid, EPIC uses explicit indicators of
possible instruction dependence as well as a variety of instruction formats.
This EPIC approach can express parallelism more flexibly than the more
rigid VLIW method and can reduce the increases in code size caused by the
typically inflexible VLIW instruction format.

2. EPIC has more extensive support for software speculation than the earlier
VLIW schemes that had only minimal support.

In addition, the IA-64 architecture includes a variety of features to improve perfor-
mance, such as register windows and a rotating floating-point register (FPR) stack.

The IA-64 Register Model

The components of the IA-64 register state are

■ 128 64-bit general-purpose registers, which as we will see shortly are actually
65 bits wide

■ 128 82-bit floating-point registers, which provide two extra exponent bits
over the standard 80-bit IEEE format

■ 64 1-bit predicate registers

■ 8 64-bit branch registers, which are used for indirect branches

■ A variety of registers used for system control, memory mapping, perfor-
mance counters, and communication with the OS

The integer registers are configured to help accelerate procedure calls using a
register stack mechanism similar to that developed in the Berkeley RISC-I proces-
sor and used in the SPARC architecture. Registers 0 to 31 are always accessible and
are addressed as 0 to 31. Registers 32 to 128 are used as a register stack, and each
procedure is allocated a set of registers (from 0 to 96) for its use. The new register
stack frame is created for a called procedure by renaming the registers in hardware;
a special register called the current frame pointer (CFM) points to the set of regis-
ters to be used by a given procedure. The frame consists of two parts: the local area
and the output area. The local area is used for local storage, while the output area is
used to pass values to any called procedure. The alloc instruction specifies the size
of these areas. Only the integer registers have register stack support.

H-34 ■ Appendix H Hardware and Software for VLIW and EPIC

On a procedure call, the CFM pointer is updated so that R32 of the called pro-
cedure points to the first register of the output area of the called procedure. This
update enables the parameters of the caller to be passed into the addressable reg-
isters of the callee. The callee executes an alloc instruction to allocate both the
number of required local registers, which include the output registers of the
caller, and the number of output registers needed for parameter passing to a
called procedure. Special load and store instructions are available for saving and
restoring the register stack, and special hardware (called the register stack
engine) handles overflow of the register stack.

In addition to the integer registers, there are three other sets of registers: the
floating-point registers, the predicate registers, and the branch registers. The
floating-point registers are used for floating-point data, and the branch registers
are used to hold branch destination addresses for indirect branches. The predica-
tion registers hold predicates, which control the execution of predicated instruc-
tions; we describe the predication mechanism later in this section.

Both the integer and floating-point registers support register rotation for
registers 32 to 128. Register rotation is designed to ease the task of allocating
registers in software-pipelined loops, a problem that we discussed in Section
H.3. In addition, when combined with the use of predication, it is possible to
avoid the need for unrolling and for separate prologue and epilogue code for a
software-pipelined loop. This capability reduces the code expansion incurred to
use software pipelining and makes the technique usable for loops with smaller
numbers of iterations, where the overheads would traditionally negate many of
the advantages.

Instruction Format and Support for Explicit Parallelism

The IA-64 architecture is designed to achieve the major benefits of a VLIW
approach—implicit parallelism among operations in an instruction and fixed for-
matting of the operation fields—while maintaining greater flexibility than a
VLIW normally allows. This combination is achieved by relying on the compiler
to detect ILP and schedule instructions into parallel instruction slots, but adding
flexibility in the formatting of instructions and allowing the compiler to indicate
when an instruction cannot be executed in parallel with its successors.

The IA-64 architecture uses two different concepts to achieve the benefits of
implicit parallelism and ease of instruction decode. Implicit parallelism is
achieved by placing instructions into instruction groups, while the fixed format-
ting of multiple instructions is achieved through the introduction of a concept
called a bundle, which contains three instructions. Let’s start by defining an
instruction group.

An instruction group is a sequence of consecutive instructions with no regis-
ter data dependences among them (there are a few minor exceptions). All the
instructions in a group could be executed in parallel, if sufficient hardware
resources existed and if any dependences through memory were preserved. An
instruction group can be arbitrarily long, but the compiler must explicitly indicate

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.6 The Intel IA-64 Architecture and Itanium Processor ■ H-35

the boundary between one instruction group and another. This boundary is indi-
cated by placing a stop between two instructions that belong to different groups.
To understand how stops are indicated, we must first explain how instructions are
placed into bundles.

IA-64 instructions are encoded in bundles, which are 128 bits wide. Each
bundle consists of a 5-bit template field and three instructions, each 41 bits in
length. (Actually, the 41-bit quantities are not truly instructions, since they can
only be interpreted in conjunction with the template field. The name syllable is
sometimes used for these operations. For simplicity, we will continue to use the
term “instruction.”) To simplify the decoding and instruction issue process, the
template field of a bundle specifies what types of execution units each instruction
in the bundle requires. Figure H.6 shows the five different execution unit types
and describes what instruction classes they may hold, together with some exam-
ples.

 The 5-bit template field within each bundle describes both the presence of
any stops associated with the bundle and the execution unit type required by each
instruction within the bundle. Figure H.7 shows the possible formats that the tem-
plate field encodes and the position of any stops it specifies. The bundle formats
can specify only a subset of all possible combinations of instruction types and
stops. To see how the bundle works, let’s consider an example.

Example Unroll the array increment example, x[i] = x[i] + s (introduced on page 305),
seven times (see page 317 for the unrolled code) and place the instructions into
bundles, first ignoring pipeline latencies (to minimize the number of bundles) and
then scheduling the code to minimize stalls. In scheduling the code assume one

Execution
unit slot

Instruction
type

Instruction
description Example instructions

I-unit A Integer ALU Add, subtract, and, or, compare

I Non-ALU integer Integer and multimedia shifts, bit tests,
moves

M-unit A Integer ALU Add, subtract, and, or, compare

M Memory access Loads and stores for integer/FP registers

F-unit F Floating point Floating-point instructions

B-unit B Branches Conditional branches, calls, loop branches

L + X L + X Extended Extended immediates, stops and no-ops

Figure H.6 The five execution unit slots in the IA-64 architecture and what instruc-
tions types they may hold are shown. A-type instructions, which correspond to inte-
ger ALU instructions, may be placed in either an I-unit or M-unit slot. L + X slots are
special, as they occupy two instruction slots; L + X instructions are used to encode 64-
bit immediates and a few special instructions. L + X instructions are executed either by
the I-unit or the B-unit.

H-36 ■ Appendix H Hardware and Software for VLIW and EPIC

bundle executes per clock and that any stalls cause the entire bundle to be stalled.
Use the pipeline latencies from Figure 3.2. Use MIPS instruction mnemonics for
simplicity.

Answer The two different versions are shown in Figure H.8. Although the latencies are
different from those in Itanium, the most common bundle, MMF, must be issued
by itself in Itanium, just as our example assumes.

Template Slot 0 Slot 1 Slot 2

0 M I I

1 M I I

2 M I I

3 M I I

4 M L X

5 M L X

8 M M I

9 M M I

10 M M I

11 M M I

12 M F I

13 M F I

14 M M F

15 M M F

16 M I B

17 M I B

18 M B B

19 M B B

22 B B B

23 B B B

24 M M B

25 M M B

28 M F B

29 M F B

Figure H.7 The 24 possible template values (8 possible values are reserved) and the
instruction slots and stops for each format. Stops are indicated by heavy lines and
may appear within and/or at the end of the bundle. For example, template 9 specifies
that the instruction slots are M, M, and I (in that order) and that the only stop is
between this bundle and the next. Template 11 has the same type of instruction slots
but also includes a stop after the first slot. The L + X format is used when slot 1 is L and
slot 2 is X.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.6 The Intel IA-64 Architecture and Itanium Processor ■ H-37

Bundle template Slot 0 Slot 1 Slot 2
Execute cycle

(1 bundle/cycle)

9: M M I L.D F0,0(R1) L.D F6,-8(R1) 1

14: M M F L.D F10,-16(R1) L.D F14,-24(R1) ADD.D F4,F0,F2 3

15: M M F L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F8,F6,F2 4

15: M M F L.D F26,-48(R1) S.D F4,0(R1) ADD.D F12,F10,F2 6

15: M M F S.D F8,-8(R1) S.D F12,-16(R1) ADD.D F16,F14,F2 9

15: M M F S.D F16,-24(R1) ADD.D F20,F18,F2 12

15: M M F S.D F20,-32(R1) ADD.D F24,F22,F2 15

15: M M F S.D F24,-40(R1) ADD.D F28,F26,F2 18

16: M I B S.D F28,-48(R1) DADDUI R1,R1,#-56 BNE R1,R2,Loop 21

(a) The code scheduled to minimize the number of bundles

Bundle template Slot 0 Slot 1 Slot 2
Execute cycle

(1 bundle/cycle)

8: M M I L.D F0,0(R1) L.D F6,-8(R1) 1

9: M M I L.D F10,-16(R1) L.D F14,-24(R1) 2

14: M M F L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 3

14: M M F L.D F26,-48(R1) ADD.D F8,F6,F2 4

15: M M F ADD.D F12,F10,F2 5

14: M M F S.D F4,0(R1) ADD.D F16,F14,F2 6

14: M M F S.D F8,-8(R1) ADD.D F20,F18,F2 7

15: M M F S.D F12,-16(R1) ADD.D F24,F22,F2 8

14: M M F S.D F16,-24(R1) ADD.D F28,F26,F2 9

9: M M I S.D F20,-32(R1) S.D F24,-40(R1) 11

16: M I B S.D F28,-48(R1) DADDUI R1,R1,#-56 BNE R1,R2,Loop 12

(b) The code scheduled to minimize the number of cycles assuming one bundle executed per cycle

Figure H.8 The IA-64 instructions, including bundle bits and stops, for the unrolled version of x[i] = x[i] + s,
when unrolled seven times and scheduled (a) to minimize the number of instruction bundles and (b) to minimize
the number of cycles (assuming that a hazard stalls an entire bundle). Blank entries indicate unused slots, which
are encoded as no-ops. The absence of stops indicates that some bundles could be executed in parallel. Minimizing
the number of bundles yields 9 bundles versus the 11 needed to minimize the number of cycles. The scheduled ver-
sion executes in just over half the number of cycles. Version (a) fills 85% of the instruction slots, while (b) fills 70%.
The number of empty slots in the scheduled code and the use of bundles may lead to code sizes that are much larger
than other RISC architectures. Note that the branch in the last bundle in both sequences depends on the DADD in the
same bundle. In the IA-64 instruction set, this sequence would be coded as a setting of a predication register and a
branch that would be predicated on that register. Normally, such dependent operations could not occur in the same
bundle, but this case is one of the exceptions mentioned earlier.

H-38 ■ Appendix H Hardware and Software for VLIW and EPIC

Instruction Set Basics

Before turning to the special support for speculation, we briefly discuss the major
instruction encodings and survey the instructions in each of the five primary
instruction classes (A, I, M, F, and B). Each IA-64 instruction is 41 bits in length.
The high-order 4 bits, together with the bundle bits that specify the execution unit
slot, are used as the major opcode. (That is, the 4-bit opcode field is reused across
the execution field slots, and it is appropriate to think of the opcode as being 4
bits plus the M, F, I, B, L + X designation.) The low-order 6 bits of every instruc-
tion are used for specifying the predicate register that guards the instruction (see
the next subsection).

Figure H.9 summarizes most of the major instruction formats, other than
the multimedia instructions, and gives examples of the instructions encoded for
each format.

Predication and Speculation Support

The IA-64 architecture provides comprehensive support for predication: Nearly
every instruction in the IA-64 architecture can be predicated. An instruction is
predicated by specifying a predicate register, whose identity is placed in the
lower 6 bits of each instruction field. Because nearly all instructions can be
predicated, both if conversion and code motion have lower overhead than they
would with only limited support for conditional instructions. One consequence
of full predication is that a conditional branch is simply a branch with a guard-
ing predicate!

Predicate registers are set using compare or test instructions. A compare
instruction specifies one of ten different comparison tests and two predicate reg-
isters as destinations. The two predicate registers are written either with the result
of the comparison (0 or 1) and the complement, or with some logical function
that combines the two tests (such as and) and the complement. This capability
allows multiple comparisons to be done in one instruction.

Speculation support in the IA-64 architecture consists of separate support for
control speculation, which deals with deferring exception for speculated instruc-
tions, and memory reference speculation, which supports speculation of load
instructions.

Deferred exception handling for speculative instructions is supported by pro-
viding the equivalent of poison bits. For the general-purpose registers (GPRs),
these bits are called NaTs (Not a Thing), and this extra bit makes the GPRs effec-
tively 65 bits wide. For the FP registers this capability is obtained using a special
value, NaTVal (Not a Thing Value); this value is encoded using a significand of 0
and an exponent outside of the IEEE range. Only speculative load instructions gen-
erate such values, but all instructions that do not affect memory will cause a NaT or
NaTVal to be propagated to the result register. (There are both speculative and non-
speculative loads; the latter can only raise immediate exceptions and cannot defer

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.6 The Intel IA-64 Architecture and Itanium Processor ■ H-39

Instruction
type

Number
of formats

Representative
instructions

Extra
opcode bits

GPRs/
FPRs

Immediate
bits Other/comment

A 8 Add, subtract, and, or 9 3 0

Shift left and add 7 3 0 2-bit shift count

ALU immediates 9 2 8

Add immediate 3 2 14

Add immediate 0 2 22

Compare 4 2 0 2 predicate register
destinations

Compare immediate 3 1 8 2 predicate register
destinations

I 29 Shift R/L variable 9 3 0 Many multimedia
instructions use
this format.

Test bit 6 3 6-bit field
specifier

2 predicate register
destinations

Move to BR 6 1 9-bit
branch
predict

Branch register
specifier

M 46 Integer/FP load and store,
line prefetch

10 2 0 Speculative/
nonspeculative

Integer/FP load and store,
and line prefetch and post-
increment by immediate

9 2 8 Speculative/
nonspeculative

Integer/FP load prefetch and
register postincrement

10 3 Speculative/
nonspeculative

Integer/FP speculation
check

3 1 21 in two
fields

B 9 PC-relative branch, counted
branch

7 0 21

PC-relative call 4 0 21 1 branch register

F 15 FP arithmetic 2 4

FP compare 2 2 2 6-bit predicate
regs

L + X 4 Move immediate long 2 1 64

Figure H.9 A summary of some of the instruction formats of the IA-64 ISA. The major opcode bits and the guard-
ing predication register specifier add 10 bits to every instruction. The number of formats indicated for each instruc-
tion class in the second column (a total of 111) is a strict interpretation: A different use of a field, even of the same
size, is considered a different format. The number of formats that actually have different field sizes is one-third to one-
half as large. Some instructions have unused bits that are reserved; we have not included those in this table. Immedi-
ate bits include the sign bit. The branch instructions include prediction bits, which are used when the predictor does
not have a valid prediction. Only one of the many formats for the multimedia instructions is shown in this table.

H-40 ■ Appendix H Hardware and Software for VLIW and EPIC

them.) Floating-point exceptions are not handled through this mechanism but
instead use floating-point status registers to record exceptions.

A deferred exception can be resolved in two different ways. First, if a non-
speculative instruction, such as a store, receives a NaT or NaTVal as a source
operand, it generates an immediate and unrecoverable exception. Alternatively, a
chk.s instruction can be used to detect the presence of NaT or NaTVal and
branch to a routine designed by the compiler to recover from the speculative
operation. Such a recovery approach makes more sense for memory reference
speculation.

The inability to store the contents of instructions with a NaT or NaTVal set
would make it impossible for the OS to save the state of the processor. Thus, IA-64
includes special instructions to save and restore registers that do not cause an
exception for a NaT or NaTVal and also save and restore the NaT bits.

Memory reference support in the IA-64 uses a concept called advanced
loads. An advanced load is a load that has been speculatively moved above store
instructions on which it is potentially dependent. To speculatively perform a load,
the ld.a (for advanced load) instruction is used. Executing this instruction cre-
ates an entry in a special table, called the ALAT. The ALAT stores both the regis-
ter destination of the load and the address of the accessed memory location.
When a store is executed, an associative lookup against the active ALAT entries
is performed. If there is an ALAT entry with the same memory address as the
store, the ALAT entry is marked as invalid.

Before any nonspeculative instruction (i.e., a store) uses the value generated
by an advanced load or a value derived from the result of an advanced load, an
explicit check is required. The check specifies the destination register of the
advanced load. If the ALAT for that register is still valid, the speculation was
legal and the only effect of the check is to clear the ALAT entry. If the check
fails, the action taken depends on which of two different types of checks was
employed. The first type of check is an instruction ld.c, which simply causes the
data to be reloaded from memory at that point. An ld.c instruction is used when
only the load is advanced. The alternative form of a check, chk.a, specifies the
address of a fix-up routine that is used to reexecute the load and any other specu-
lated code that depended on the value of the load.

The Itanium 2 Processor

The Itanium 2 processor is the second implementation of the IA-64 architecture.
The first version, Itanium 1, became available in 2001 with an 800 MHz clock.
The Itanium 2, first delivered in 2003, had a maximum clock rate in 2005 of 1.6
GHz. The two processors are very similar, with some differences in the pipeline
structure and greater differences in the memory hierarchies. The Itanium 2 is
about four times faster than the Itanium 1. This performance improvement comes
from a doubling of the clock rate, a more aggressive memory hierarchy, additional
functional units that improve instruction throughput, more complete bypassing, a

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.6 The Intel IA-64 Architecture and Itanium Processor ■ H-41

shorter pipeline that reduces some stalls, and a more mature compiler system.
During roughly the same period that elapsed from the Itanium 1 to Itanium 2, the
Pentium processors improved by slightly more than a factor of three. The greater
improvement for the Itanium is reasonable given the novelty of the architecture
and software system versus the more established IA-32 implementations.

The Itanium 2 can fetch and issue two bundles, or up to six instructions, per
clock. The Itanium 2 uses a three-level memory hierarchy all on-chip. The first
level uses split instruction and data caches, each 16 KB; floating-point data are
not placed in the first-level cache. The second and third levels are unified caches
of 256 KB and of 3 MB to 9 MB, respectively.

Functional Units and Instruction Issue

There are 11 functional units in the Itanium 2 processor: two I-units, four M-units
(two for loads and two for stores), three B-units, and two F-units. All the func-
tional units are pipelined. Figure H.10 gives the pipeline latencies for some typi-
cal instructions. In addition, when a result is bypassed from one unit to another,
there is usually at least one additional cycle of delay.

Itanium 2 can issue up to six instructions per clock from two bundles. In the
worst case, if a bundle is split when it is issued, the hardware could see as few as
four instructions: one from the first bundle to be executed and three from the sec-
ond bundle. Instructions are allocated to functional units based on the bundle bits,
ignoring the presence of no-ops or predicated instructions with untrue predicates.
In addition, when issue to a functional unit is blocked because the next instruc-
tion to be issued needs an already committed unit, the resulting bundle is split. A
split bundle still occupies one of the two bundle slots, even if it has only one
instruction remaining.

Instruction Latency

Integer load 1

Floating-point load 5–9

Correctly predicted taken branch 0–3

Mispredicted branch 6

Integer ALU operations 0

FP arithmetic 4

Figure H.10 The latency of some typical instructions on Itanium 2. The latency is
defined as the smallest number of intervening instructions between two dependent
instructions. Integer load latency assumes a hit in the first-level cache. FP loads always
bypass the primary cache, so the latency is equal to the access time of the second-level
cache. There are some minor restrictions for some of the functional units, but these pri-
marily involve the execution of infrequent instructions.

H-42 ■ Appendix H Hardware and Software for VLIW and EPIC

The Itanium 2 processor uses an eight-stage pipeline divided into four major
parts:

■ Front-end (stages IPG and Rotate)—Prefetches up to 32 bytes per clock (two
bundles) into a prefetch buffer, which can hold up to eight bundles (24
instructions). Branch prediction is done using a multilevel adaptive predictor
like those described in Chapter 3.

■ Instruction delivery (stages EXP and REN)—Distributes up to six instruc-
tions to the 11 functional units. Implements register renaming for both rota-
tion and register stacking.

■ Operand delivery (REG)—Accesses the register file, performs register bypass-
ing, accesses and updates a register scoreboard, and checks predicate depen-
dences. The scoreboard is used to detect when individual instructions can
proceed, so that a stall of one instruction (for example, due to an unpredictable
event like a cache miss) in a bundle need not cause the entire bundle to stall.
(As we saw in Figure H.8, stalling the entire bundle leads to poor performance
unless the instructions are carefully scheduled.)

■ Execution (EXE, DET, and WRB)—Executes instructions through ALUs and
load-store units, detects exceptions and posts NaTs, retires instructions, and
performs write-back.

Both the Itanium 1 and the Itanium 2 have many of the features more
commonly associated with the dynamically scheduled pipelines described in
Chapter 3: dynamic branch prediction, register renaming, scoreboarding, a pipe-
line with a number of stages before execution (to handle instruction alignment,
renaming, etc.), and several stages following execution to handle exception
detection. Although these mechanisms are generally simpler than those in an
advanced dynamically scheduled superscalar, the overall effect is that the Itanium
processors, which rely much more on compiler technology, seem to be as com-
plex as the dynamically scheduled processors we saw in Chapter 3!

One might ask why such features are included in a processor that relies pri-
marily on compile time techniques for finding and exploiting parallelism. There
are two main motivations. First, dynamic techniques are sometimes significantly
better, and omitting them would hurt performance significantly. The inclusion of
dynamic branch prediction is such a case.

Second, caches are absolutely necessary to achieve high performance, and
with caches come cache misses, which are both unpredictable and which in cur-
rent processors take a relatively long time. In the early VLIW processors, the
entire processor would freeze when a cache miss occurred, retaining the lock-
step parallelism initially specified by the compiler. Such an approach is totally
unrealistic in a modern processor where cache misses can cost tens to hundreds
of cycles. Allowing some instructions to continue while others are stalled, how-
ever, requires the introduction of some form of dynamic scheduling, in this case

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

H.7 Concluding Remarks ■ H-43

scoreboarding. In addition, if a stall is likely to be long, then antidependences are
likely to prevent much progress while waiting for the cache miss; hence, the Ita-
nium implementations also introduce register renaming.

Itanium 2 Performance

Figure H.11 shows the performance of a 1.5 GHz Itanium 2 versus a Pentium 4,
an AMD Athlon processor, and an IBM Power5 for five SPECint and five
SPECfp benchmarks. Overall, the Itanium 2 is slightly slower than the Power5
for the full set of SPEC floating-point benchmarks and about 35% faster than
the AMD Athlon or Pentium 4. On SPECint, the Itanium 2 is 15% faster than
the Power5, while both the AMD Athlon and Pentium 4 are about 15% faster
than the Itanium 2. The Itanium 2 and Power5 are much higher power and have
larger die sizes. In fact, the Power5 contains two processors, only one of which
is active during normal SPEC benchmarks, and still it has less than half the
transistor count of the Itanium. If we were to reduce the die size, transistor
count, and power of the Power5 by eliminating one of the processors, the Ita-
nium would be by far the largest and highest-power processor.

When the design of the IA-64 architecture began, it was a joint effort of Hewlett-
Packard and Intel and many of the designers had benefited from experience with
early VLIW processors as well of years of research building on the early con-
cepts. The clear goal for the IA-64 architecture was to achieve levels of ILP as

Figure H.11 The performance of four multiple-issue processors for five SPECfp and SPECint benchmarks. The
clock rates of the four processors are Itanium 2 at 1.5 GHz, Pentium 4 Extreme Edition at 3.8 GHz, AMD Athlon 64 at
2.8 GHz, and the IBM Power5 at 1.9 GHz.

wupwise galgel mesa swim sixtrack gcc gzip crafty gap twolf
0

5000

4000

3000

2000

1000

6000

7000

S
P

E
C

 R
at

io

8000

9000

Itanium 2

Pentium 4

AMD Athlon 64

Power5

 H.7 Concluding Remarks

H-44 ■ Appendix H Hardware and Software for VLIW and EPIC

good or better than what had been achieved with hardware-based approaches,
while also allowing a much simpler hardware implementation. With a simpler
hardware implementation, designers hoped that much higher clock rates could be
achieved. Indeed, when the IA-64 architecture and the first Itanium were
announced, they were announced as the successor to the RISC approaches with
clearly superior advantages.

Unfortunately, the practical reality has been quite different. The IA-64 and
Itanium implementations appear to be at least as complicated as the dynami-
cally based speculative processors, and neither approach has a significant and
consistent performance advantage. The fact that the Itanium designs have also
not been more power efficient has led to a situation where the Itanium design
has been adopted by only a small number of customers primarily interested in
FP performance.

Intel had planned for IA-64 to be its new 64-bit architecture as well. But the
combination of its mediocre integer performance (especially in Itanium 1) and
large die size, together with AMD’s introduction of a 64-bit version of the IA-32
architecture, forced Intel to extend the address space of IA-32. The availability of
a larger address space IA-32 processor with strong integer performance has fur-
ther reduced the interest in IA-64 and Itanium. Most recently, Intel has intro-
duced the name IPF to replace IA-64, since the former name made less sense
once the older x86 architecture was extended to 64 bits.

Reference

Wilson, R. P., and M. S. Lam [1995]. “Efficient context-sensitive pointer analysis for C
programs,” Proc. ACM SIGPLAN’95 Conf. on Programming Language Design and
Implementation, June 18–21, 1995, La Jolla, Calif., 1–12.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I.1 Introduction I-2

I.2 Interprocessor Communication: The Critical Performance Issue I-3

I.3 Characteristics of Scientific Applications I-6

I.4 Synchronization: Scaling Up I-12

I.5 Performance of Scientific Applications on Shared-Memory
Multiprocessors I-21

I.6 Performance Measurement of Parallel Processors
with Scientific Applications I-33

I.7 Implementing Cache Coherence I-34

I.8 The Custom Cluster Approach: Blue Gene/L I-41

I.9 Concluding Remarks I-44

I
Large-Scale Multiprocessors

and Scientific Applications 1

Hennessy and Patterson should move MPPs to Chapter 11.

Jim Gray, Microsoft Research
when asked about the coverage of massively

parallel processors (MPPs) for the
third edition in 2000

Unfortunately for companies in the MPP business,
the third edition had only ten chapters and the

MPP business did not grow as anticipated when
the first and second edition were written.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-2 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

The primary application of large-scale multiprocessors is for true parallel pro-
gramming, as opposed to multiprogramming or transaction-oriented computing
where independent tasks are executed in parallel without much interaction. In
true parallel computing, a set of tasks execute in a collaborative fashion on one
application. The primary target of parallel computing is scientific and technical
applications. In contrast, for loosely coupled commercial applications, such as
Web servers and most transaction-processing applications, there is little commu-
nication among tasks. For such applications, loosely coupled clusters are gener-
ally adequate and most cost-effective, since intertask communication is rare.

Because true parallel computing involves cooperating tasks, the nature of
communication between those tasks and how such communication is supported
in the hardware is of vital importance in determining the performance of the
application. The next section of this appendix examines such issues and the char-
acteristics of different communication models.

In comparison to sequential programs, whose performance is largely dictated
by the cache behavior and issues related to instruction-level parallelism, parallel
programs have several additional characteristics that are important to perfor-
mance, including the amount of parallelism, the size of parallel tasks, the fre-
quency and nature of intertask communication, and the frequency and nature of
synchronization. These aspects are affected both by the underlying nature of the
application as well as by the programming style. Section I.3 reviews the impor-
tant characteristics of several scientific applications to give a flavor of these
issues.

As we saw in Chapter 5, synchronization can be quite important in achieving
good performance. The larger number of parallel tasks that may need to synchro-
nize makes contention involving synchronization a much more serious problem
in large-scale multiprocessors. Section I.4 examines methods of scaling up the
synchronization mechanisms of Chapter 5.

Section I.5 explores the detailed performance of shared-memory parallel
applications executing on a moderate-scale shared-memory multiprocessor. As
we will see, the behavior and performance characteristics are quite a bit more
complicated than those in small-scale shared-memory multiprocessors. Section
I.6 discusses the general issue of how to examine parallel performance for differ-
ent sized multiprocessors. Section I.7 explores the implementation challenges of
distributed shared-memory cache coherence, the key architectural approach used
in moderate-scale multiprocessors. Sections I.7 and I.8 rely on a basic under-
standing of interconnection networks, and the reader should at least quickly
review Appendix F before reading these sections.

Section I.8 explores the design of one of the newest and most exciting large-
scale multiprocessors in recent times, Blue Gene. Blue Gene is a cluster-based mul-
tiprocessor, but it uses a custom, highly dense node designed specifically for this
function, as opposed to the nodes of most earlier cluster multiprocessors that used a
node architecture similar to those in a desktop or smaller-scale multiprocessor node.

 I.1 Introduction

I.2 Interprocessor Communication: The Critical Performance Issue ■ I-3

By using a custom node design, Blue Gene achieves a significant reduction in the
cost, physical size, and power consumption of a node. Blue Gene/L, a 64K-node
version, was the world’s fastest computer in 2006, as measured by the linear algebra
benchmark, Linpack.

In multiprocessors with larger processor counts, interprocessor communication
becomes more expensive, since the distance between processors increases. Fur-
thermore, in truly parallel applications where the threads of the application must
communicate, there is usually more communication than in a loosely coupled set
of distinct processes or independent transactions, which characterize many com-
mercial server applications. These factors combine to make efficient interproces-
sor communication one of the most important determinants of parallel
performance, especially for the scientific market.

Unfortunately, characterizing the communication needs of an application and
the capabilities of an architecture is complex. This section examines the key
hardware characteristics that determine communication performance, while the
next section looks at application behavior and communication needs.

Three performance metrics are critical in any hardware communication
mechanism:

1. Communication bandwidth—Ideally, the communication bandwidth is lim-
ited by processor, memory, and interconnection bandwidths, rather than by
some aspect of the communication mechanism. The interconnection network
determines the maximum communication capacity of the system. The band-
width in or out of a single node, which is often as important as total system
bandwidth, is affected both by the architecture within the node and by the
communication mechanism. How does the communication mechanism affect
the communication bandwidth of a node? When communication occurs,
resources within the nodes involved in the communication are tied up or
occupied, preventing other outgoing or incoming communication. When this
occupancy is incurred for each word of a message, it sets an absolute limit on
the communication bandwidth. This limit is often lower than what the net-
work or memory system can provide. Occupancy may also have a component
that is incurred for each communication event, such as an incoming or outgo-
ing request. In the latter case, the occupancy limits the communication rate,
and the impact of the occupancy on overall communication bandwidth
depends on the size of the messages.

2. Communication latency—Ideally, the latency is as low as possible. As
Appendix F explains:

Communication latency = Sender overhead + Time of flight
+ Transmission time + Receiver overhead

 I.2 Interprocessor Communication:
The Critical Performance Issue

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-4 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

assuming no contention. Time of flight is fixed and transmission time is deter-
mined by the interconnection network. The software and hardware overheads
in sending and receiving messages are largely determined by the communi-
cation mechanism and its implementation. Why is latency crucial? Latency
affects both performance and how easy it is to program a multiprocessor.
Unless latency is hidden, it directly affects performance either by tying up
processor resources or by causing the processor to wait.

Overhead and occupancy are closely related, since many forms of overhead
also tie up some part of the node, incurring an occupancy cost, which in turn
limits bandwidth. Key features of a communication mechanism may
directly affect overhead and occupancy. For example, how is the destination
address for a remote communication named, and how is protection imple-
mented? When naming and protection mechanisms are provided by the pro-
cessor, as in a shared address space, the additional overhead is small.
Alternatively, if these mechanisms must be provided by the operating sys-
tem for each communication, this increases the overhead and occupancy
costs of communication, which in turn reduce bandwidth and increase
latency.

3. Communication latency hiding—How well can the communication mecha-
nism hide latency by overlapping communication with computation or with
other communication? Although measuring this is not as simple as measuring
the first two metrics, it is an important characteristic that can be quantified by
measuring the running time on multiprocessors with the same communication
latency but different support for latency hiding. Although hiding latency is
certainly a good idea, it poses an additional burden on the software system
and ultimately on the programmer. Furthermore, the amount of latency that
can be hidden is application dependent. Thus, it is usually best to reduce
latency wherever possible.

Each of these performance measures is affected by the characteristics of the
communications needed in the application, as we will see in the next section. The
size of the data items being communicated is the most obvious characteristic,
since it affects both latency and bandwidth directly, as well as affecting the effi-
cacy of different latency-hiding approaches. Similarly, the regularity in the com-
munication patterns affects the cost of naming and protection, and hence the
communication overhead. In general, mechanisms that perform well with smaller
as well as larger data communication requests, and irregular as well as regular
communication patterns, are more flexible and efficient for a wider class of appli-
cations. Of course, in considering any communication mechanism, designers
must consider cost as well as performance.

Advantages of Different Communication Mechanisms

The two primary means of communicating data in a large-scale multiprocessor are
message passing and shared memory. Each of these two primary communication

I.2 Interprocessor Communication: The Critical Performance Issue ■ I-5

mechanisms has its advantages. For shared-memory communication, the advan-
tages include

■ Compatibility with the well-understood mechanisms in use in centralized
multiprocessors, which all use shared-memory communication. The OpenMP
consortium (see www.openmp.org for description) has proposed a standard-
ized programming interface for shared-memory multiprocessors. Although
message passing also uses a standard, MPI or Message Passing Interface, this
standard is not used either in shared-memory multiprocessors or in loosely
coupled clusters in use in throughput-oriented environments.

■ Ease of programming when the communication patterns among processors
are complex or vary dynamically during execution. Similar advantages sim-
plify compiler design.

■ The ability to develop applications using the familiar shared-memory model,
focusing attention only on those accesses that are performance critical.

■ Lower overhead for communication and better use of bandwidth when com-
municating small items. This arises from the implicit nature of communica-
tion and the use of memory mapping to implement protection in hardware,
rather than through the I/O system.

■ The ability to use hardware-controlled caching to reduce the frequency of
remote communication by supporting automatic caching of all data, both
shared and private. As we will see, caching reduces both latency and conten-
tion for accessing shared data. This advantage also comes with a disadvan-
tage, which we mention b low.

The major advantages for message-passing communication include the following:

■ The hardware can be simpler, especially by comparison with a scalable shared-
memory implementation that supports coherent caching of remote data.

■ Communication is explicit, which means it is simpler to understand. In
shared-memory models, it can be difficult to know when communication is
occurring and when it is not, as well as how costly the communication is.

■ Explicit communication focuses programmer attention on this costly aspect
of parallel computation, sometimes leading to improved structure in a multi-
processor program.

■ Synchronization is naturally associated with sending messages, reducing the
possibility for errors introduced by incorrect synchronization.

■ It makes it easier to use sender-initiated communication, which may have
some advantages in performance.

■ If the communication is less frequent and more structured, it is easier to
improve fault tolerance by using a transaction-like structure. Furthermore, the

e

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-6 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

less tight coupling of nodes and explicit communication make fault isolation
simpler.

■ The very largest multiprocessors use a cluster structure, which is inherently
based on message passing. Using two different communication models may
introduce more complexity than is warranted.

Of course, the desired communication model can be created in software on
top of a hardware model that supports either of these mechanisms. Supporting
message passing on top of shared memory is considerably easier: Because mes-
sages essentially send data from one memory to another, sending a message can
be implemented by doing a copy from one portion of the address space to
another. The major difficulties arise from dealing with messages that may be mis-
aligned and of arbitrary length in a memory system that is normally oriented
toward transferring aligned blocks of data organized as cache blocks. These diffi-
culties can be overcome either with small performance penalties in software or
with essentially no penalties, using a small amount of hardware support.

Supporting shared memory efficiently on top of hardware for message pass-
ing is much more difficult. Without explicit hardware support for shared memory,
all shared-memory references need to involve the operating system to provide
address translation and memory protection, as well as to translate memory refer-
ences into message sends and receives. Loads and stores usually move small
amounts of data, so the high overhead of handling these communications in soft-
ware severely limits the range of applications for which the performance of
software-based shared memory is acceptable. For these reasons, it has never been
practical to use message passing to implement shared memory for a commercial
system.

The primary use of scalable shared-memory multiprocessors is for true parallel
programming, as opposed to multiprogramming or transaction-oriented comput-
ing. The primary target of parallel computing is scientific and technical applica-
tions. Thus, understanding the design issues requires some insight into the
behavior of such applications. This section provides such an introduction.

Characteristics of Scientific Applications

Our scientific/technical parallel workload consists of two applications and two
computational kernels. The kernels are fast Fourier transformation (FFT) and an
LU decomposition, which were chosen because they represent commonly used
techniques in a wide variety of applications and have performance characteristics
typical of many parallel scientific applications. In addition, the kernels have
small code segments whose behavior we can understand and directly track to spe-
cific architectural characteristics. Like many scientific applications, I/O is essen-
tially nonexistent in this workload.

 I.3 Characteristics of Scientific Applications

I.3 Characteristics of Scientific Applications ■ I-7

The two applications that we use in this appendix are Barnes and Ocean,
which represent two important but very different types of parallel computation.
We briefly describe each of these applications and kernels and characterize their
basic behavior in terms of parallelism and communication. We describe how the
problem is decomposed for a distributed shared-memory multiprocessor; certain
data decompositions that we describe are not necessary on multiprocessors that
have a single, centralized memory.

The FFT Kernel

The FFT is the key kernel in applications that use spectral methods, which arise
in fields ranging from signal processing to fluid flow to climate modeling. The
FFT application we study here is a one-dimensional version of a parallel algo-
rithm for a complex number FFT. It has a sequential execution time for n data
points of n log n. The algorithm uses a high radix (equal to) that minimizes
communication. The measurements shown in this appendix are collected for a
million-point input data set.

There are three primary data structures: the input and output arrays of the data
being transformed and the roots of unity matrix, which is precomputed and only
read during the execution. All arrays are organized as square matrices. The six
steps in the algorithm are as follows:

1. Transpose data matrix.

2. Perform 1D FFT on each row of data matrix.

3. Multiply the roots of unity matrix by the data matrix and write the result in
the data matrix.

4. Transpose data matrix.

5. Perform 1D FFT on each row of data matrix.

6. Transpose data matrix.

The data matrices and the roots of unity matrix are partitioned among proces-
sors in contiguous chunks of rows, so that each processor’s partition falls in its
own local memory. The first row of the roots of unity matrix is accessed heavily
by all processors and is often replicated, as we do, during the first step of the
algorithm just shown. The data transposes ensure good locality during the indi-
vidual FFT steps, which would otherwise access nonlocal data.

The only communication is in the transpose phases, which require all-to-all
communication of large amounts of data. Contiguous subcolumns in the rows
assigned to a processor are grouped into blocks, which are transposed and placed
into the proper location of the destination matrix. Every processor transposes one
block locally and sends one block to each of the other processors in the system.
Although there is no reuse of individual words in the transpose, with long cache
blocks it makes sense to block the transpose to take advantage of the spatial
locality afforded by long blocks in the source matrix.

n

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-8 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

The LU Kernel

LU is an LU factorization of a dense matrix and is representative of many dense
linear algebra computations, such as QR factorization, Cholesky factorization,
and eigenvalue methods. For a matrix of size n × n the running time is n3 and the
parallelism is proportional to n2. Dense LU factorization can be performed effi-
ciently by blocking the algorithm, using the techniques in Chapter 2, which leads
to highly efficient cache behavior and low communication. After blocking the
algorithm, the dominant computation is a dense matrix multiply that occurs in the
innermost loop. The block size is chosen to be small enough to keep the cache
miss rate low and large enough to reduce the time spent in the less parallel parts
of the computation. Relatively small block sizes (8 × 8 or 16 × 16) tend to satisfy
both criteria.

Two details are important for reducing interprocessor communication. First,
the blocks of the matrix are assigned to processors using a 2D tiling: The

(where each block is B × B) matrix of blocks is allocated by laying a grid of size
p × p over the matrix of blocks in a cookie-cutter fashion until all the blocks are
allocated to a processor. Second, the dense matrix multiplication is performed by
the processor that owns the destination block. With this blocking and allocation
scheme, communication during the reduction is both regular and predictable. For
the measurements in this appendix, the input is a 512 × 512 matrix and a block of
16 × 16 is used.

A natural way to code the blocked LU factorization of a 2D matrix in a shared
address space is to use a 2D array to represent the matrix. Because blocks are
allocated in a tiled decomposition, and a block is not contiguous in the address
space in a 2D array, it is very difficult to allocate blocks in the local memories of
the processors that own them. The solution is to ensure that blocks assigned to a
processor are allocated locally and contiguously by using a 4D array (with the
first two dimensions specifying the block number in the 2D grid of blocks, and
the next two specifying the element in the block).

The Barnes Application

Barnes is an implementation of the Barnes-Hut n-body algorithm solving a
problem in galaxy evolution. N-body algorithms simulate the interaction among
a large number of bodies that have forces interacting among them. In this
instance, the bodies represent collections of stars and the force is gravity. To
reduce the computational time required to model completely all the individual
interactions among the bodies, which grow as n2, n-body algorithms take advan-
tage of the fact that the forces drop off with distance. (Gravity, for example,
drops off as 1/d2, where d is the distance between the two bodies.) The Barnes-
Hut algorithm takes advantage of this property by treating a collection of bodies
that are “far away” from another body as a single point at the center of mass of
the collection and with mass equal to the collection. If the body is far enough
from any body in the collection, then the error introduced will be negligible. The

n
B
--- n

B
---×

I.3 Characteristics of Scientific Applications ■ I-9

collections are structured in a hierarchical fashion, which can be represented in a
tree. This algorithm yields an n log n running time with parallelism proportional
to n.

The Barnes-Hut algorithm uses an octree (each node has up to eight children)
to represent the eight cubes in a portion of space. Each node then represents the
collection of bodies in the subtree rooted at that node, which we call a cell.
Because the density of space varies and the leaves represent individual bodies,
the depth of the tree varies. The tree is traversed once per body to compute the net
force acting on that body. The force calculation algorithm for a body starts at the
root of the tree. For every node in the tree it visits, the algorithm determines if the
center of mass of the cell represented by the subtree rooted at the node is “far
enough away” from the body. If so, the entire subtree under that node is approxi-
mated by a single point at the center of mass of the cell, and the force that this
center of mass exerts on the body is computed. On the other hand, if the center of
mass is not far enough away, the cell must be “opened” and each of its subtrees
visited. The distance between the body and the cell, together with the error toler-
ances, determines which cells must be opened. This force calculation phase dom-
inates the execution time. This appendix takes measurements using 16K bodies;
the criterion for determining whether a cell needs to be opened is set to the mid-
dle of the range typically used in practice.

Obtaining effective parallel performance on Barnes-Hut is challenging
because the distribution of bodies is nonuniform and changes over time, making
partitioning the work among the processors and maintenance of good locality of
reference difficult. We are helped by two properties: (1) the system evolves
slowly, and (2) because gravitational forces fall off quickly, with high probability,
each cell requires touching a small number of other cells, most of which were
used on the last time step. The tree can be partitioned by allocating each proces-
sor a subtree. Many of the accesses needed to compute the force on a body in the
subtree will be to other bodies in the subtree. Since the amount of work associ-
ated with a subtree varies (cells in dense portions of space will need to access
more cells), the size of the subtree allocated to a processor is based on some mea-
sure of the work it has to do (e.g., how many other cells it needs to visit), rather
than just on the number of nodes in the subtree. By partitioning the octree repre-
sentation, we can obtain good load balance and good locality of reference, while
keeping the partitioning cost low. Although this partitioning scheme results in
good locality of reference, the resulting data references tend to be for small
amounts of data and are unstructured. Thus, this scheme requires an efficient
implementation of shared-memory communication.

The Ocean Application

Ocean simulates the influence of eddy and boundary currents on large-scale flow
in the ocean. It uses a restricted red-black Gauss-Seidel multigrid technique to
solve a set of elliptical partial differential equations. Red-black Gauss-Seidel is
an iteration technique that colors the points in the grid so as to consistently

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-10 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

update each point based on previous values of the adjacent neighbors. Multigrid
methods solve finite difference equations by iteration using hierarchical grids.
Each grid in the hierarchy has fewer points than the grid below and is an approx-
imation to the lower grid. A finer grid increases accuracy and thus the rate of con-
vergence, while requiring more execution time, since it has more data points.
Whether to move up or down in the hierarchy of grids used for the next iteration
is determined by the rate of change of the data values. The estimate of the error at
every time step is used to decide whether to stay at the same grid, move to a
coarser grid, or move to a finer grid. When the iteration converges at the finest
level, a solution has been reached. Each iteration has n2 work for an n × n grid
and the same amount of parallelism.

The arrays representing each grid are dynamically allocated and sized to the
particular problem. The entire ocean basin is partitioned into square subgrids (as
close as possible) that are allocated in the portion of the address space corre-
sponding to the local memory of the individual processors, which are assigned
responsibility for the subgrid. For the measurements in this appendix we use an
input that has 130 × 130 grid points. There are five steps in a time iteration. Since
data are exchanged between the steps, all the processors present synchronize at
the end of each step before proceeding to the next. Communication occurs when
the boundary points of a subgrid are accessed by the adjacent subgrid in nearest-
neighbor fashion.

Computation/Communication for the Parallel Programs

A key characteristic in determining the performance of parallel programs is the
ratio of computation to communication. If the ratio is high, it means the applica-
tion has lots of computation for each datum communicated. As we saw in Section
I.2, communication is the costly part of parallel computing; therefore, high
computation-to-communication ratios are very beneficial. In a parallel processing
environment, we are concerned with how the ratio of computation to communica-
tion changes as we increase either the number of processors, the size of the prob-
lem, or both. Knowing how the ratio changes as we increase the processor count
sheds light on how well the application can be sped up. Because we are often
interested in running larger problems, it is vital to understand how changing the
data set size affects this ratio.

To understand what happens quantitatively to the computation-to-communication
ratio as we add processors, consider what happens separately to computation and to
communication as we either add processors or increase problem size. Figure I.1
shows that as we add processors, for these applications, the amount of computation
per processor falls proportionately and the amount of communication per processor
falls more slowly. As we increase the problem size, the computation scales as the O()
complexity of the algorithm dictates. Communication scaling is more complex and
depends on details of the algorithm; we describe the basic phenomena for each
application in the caption of Figure I.1.

I.3 Characteristics of Scientific Applications ■ I-11

The overall computation-to-communication ratio is computed from the indi-
vidual growth rate in computation and communication. In general, this ratio rises
slowly with an increase in dataset size and decreases as we add processors. This
reminds us that performing a fixed-size problem with more processors leads to
increasing inefficiencies because the amount of communication among proces-
sors grows. It also tells us how quickly we must scale dataset size as we add pro-
cessors to keep the fraction of time in communication fixed. The following
example illustrates these trade-offs.

Example Suppose we know that for a given multiprocessor the Ocean application spends
20% of its execution time waiting for communication when run on four processors.
Assume that the cost of each communication event is independent of processor
count, which is not true in general, since communication costs rise with processor
count. How much faster might we expect Ocean to run on a 32-processor machine
with the same problem size? What fraction of the execution time is spent on com-
munication in this case? How much larger a problem should we run if we want the
fraction of time spent communicating to be the same?

Answer The computation-to-communication ratio for Ocean is , so if the problem
size is the same, the communication frequency scales by . This means that
communication time increases by . We can use a variation on Amdahl’s law,

Application Scaling of computation Scaling of communication
Scaling of computation-

to-communication

FFT

LU

Barnes
approximately approximately

Ocean

Figure I.1 Scaling of computation, of communication, and of the ratio are critical factors in determining perfor-
mance on parallel multiprocessors. In this table, p is the increased processor count and n is the increased dataset
size. Scaling is on a per-processor basis. The computation scales up with n at the rate given by O() analysis and scales
down linearly as p is increased. Communication scaling is more complex. In FFT, all data points must interact, so com-
munication increases with n and decreases with p. In LU and Ocean, communication is proportional to the boundary
of a block, so it scales with dataset size at a rate proportional to the side of a square with n points, namely, ; for the
same reason communication in these two applications scales inversely to . Barnes has the most complex scaling
properties. Because of the fall-off of interaction between bodies, the basic number of interactions among bodies
that require communication scales as . An additional factor of log n is needed to maintain the relationships
among the bodies. As processor count is increased, communication scales inversely to .

n nlog
p--------------

n
p--- nlog

n
p---

n

p

n

p

n nlog
p-------------- n nlog()

p

n

p

n
p---

n

p

n

p

n
p

n
p

n p⁄
p

8

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-12 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

recognizing that the computation is decreased but the communication time is
increased. If T4 is the total execution time for four processors, then the execution
time for 32 processors is

Hence, the speedup is

and the fraction of time spent in communication goes from 20% to 0.57/0.67 = 85%.
For the fraction of the communication time to remain the same, we must keep

the computation-to-communication ratio the same, so the problem size must
scale at the same rate as the processor count. Notice that, because we have
changed the problem size, we cannot fairly compare the speedup of the original
problem and the scaled problem. We will return to the critical issue of scaling
applications for multiprocessors in Section I.6.

In this section, we focus first on synchronization performance problems in larger
multiprocessors and then on solutions for those problems.

Synchronization Performance Challenges

To understand why the simple spin lock scheme presented in Chapter 5 does not
scale well, imagine a large multiprocessor with all processors contending for the
same lock. The directory or bus acts as a point of serialization for all the proces-
sors, leading to lots of contention, as well as traffic. The following example
shows how bad things can be.

Example Suppose there are 10 processors on a bus and each tries to lock a variable simul-
taneously. Assume that each bus transaction (read miss or write miss) is 100
clock cycles long. You can ignore the time of the actual read or write of a lock
held in the cache, as well as the time the lock is held (they won’t matter much!).
Determine the number of bus transactions required for all 10 processors to
acquire the lock, assuming they are all spinning when the lock is released at time
0. About how long will it take to process the 10 requests? Assume that the bus is

T32 Compute time + Communication time=

0.8 T× 4

8
------------------- 0.2 T× 4() 8×+=

0.1 T× 4 0.57 T× 4+= 0.67 T× 4=

Speedup
T4

T32

T4

0.67 T× 4
---------------------- 1.49= = =

 I.4 Synchronization: Scaling Up

I.4 Synchronization: Scaling Up ■ I-13

totally fair so that every pending request is serviced before a new request and that
the processors are equally fast.

Answer When i processes are contending for the lock, they perform the following
sequence of actions, each of which generates a bus transaction:

i load linked operations to access the lock

i store conditional operations to try to lock the lock

1 store (to release the lock)

Thus, for i processes, there are a total of 2i + 1 bus transactions. Note that this
assumes that the critical section time is negligible, so that the lock is released
before any other processors whose store conditional failed attempt another load
linked.

Thus, for n processes, the total number of bus operations is

For 10 processes there are 120 bus transactions requiring 12,000 clock cycles or
120 clock cycles per lock acquisition!

The difficulty in this example arises from contention for the lock and serial-
ization of lock access, as well as the latency of the bus access. (The fairness prop-
erty of the bus actually makes things worse, since it delays the processor that
claims the lock from releasing it; unfortunately, for any bus arbitration scheme
some worst-case scenario does exist.) The key advantages of spin locks—that
they have low overhead in terms of bus or network cycles and offer good perfor-
mance when locks are reused by the same processor—are both lost in this exam-
ple. We will consider alternative implementations in the next section, but before
we do that, let’s consider the use of spin locks to implement another common
high-level synchronization primitive.

Barrier Synchronization

One additional common synchronization operation in programs with parallel
loops is a barrier. A barrier forces all processes to wait until all the processes
reach the barrier and then releases all of the processes. A typical implementation
of a barrier can be done with two spin locks: one to protect a counter that tallies
the processes arriving at the barrier and one to hold the processes until the last
process arrives at the barrier. To implement a barrier, we usually use the ability to
spin on a variable until it satisfies a test; we use the notation spin(condition)
to indicate this. Figure I.2 is a typical implementation, assuming that lock and
unlock provide basic spin locks and total is the number of processes that must
reach the barrier.

2i 1+()
i 1=

n

∑ n n 1+() n+ n
2

2n+= =

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-14 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

In practice, another complication makes barrier implementation slightly more
complex. Frequently a barrier is used within a loop, so that processes released
from the barrier would do some work and then reach the barrier again. Assume
that one of the processes never actually leaves the barrier (it stays at the spin
operation), which could happen if the OS scheduled another process, for exam-
ple. Now it is possible that one process races ahead and gets to the barrier again
before the last process has left. The “fast” process then traps the remaining
“slow” process in the barrier by resetting the flag release. Now all the processes
will wait infinitely at the next instance of this barrier because one process is
trapped at the last instance, and the number of processes can never reach the
value of total.

The important observation in this example is that the programmer did nothing
wrong. Instead, the implementer of the barrier made some assumptions about for-
ward progress that cannot be assumed. One obvious solution to this is to count
the processes as they exit the barrier (just as we did on entry) and not to allow any
process to reenter and reinitialize the barrier until all processes have left the prior
instance of this barrier. This extra step would significantly increase the latency of
the barrier and the contention, which as we will see shortly are already large. An
alternative solution is a sense-reversing barrier, which makes use of a private
per-process variable, local_sense, which is initialized to 1 for each process.
Figure I.3 shows the code for the sense-reversing barrier. This version of a barrier
is safely usable; as the next example shows, however, its performance can still be
quite poor.

lock (counterlock);/* ensure update atomic */
if (count==0) release=0;/* first=>reset release */
count = count + 1;/* count arrivals */
unlock(counterlock);/* release lock */
if (count==total) {/* all arrived */

count=0;/* reset counter */
release=1;/* release processes */

}
else {/* more to come */

spin (release==1);/* wait for arrivals */
}

Figure I.2 Code for a simple barrier. The lock counterlock protects the counter so
that it can be atomically incremented. The variable count keeps the tally of how many
processes have reached the barrier. The variable release is used to hold the processes
until the last one reaches the barrier. The operation spin (release==1) causes a pro-
cess to wait until all processes reach the barrier.

I.4 Synchronization: Scaling Up ■ I-15

Example Suppose there are 10 processors on a bus and each tries to execute a barrier
simultaneously. Assume that each bus transaction is 100 clock cycles, as before.
You can ignore the time of the actual read or write of a lock held in the cache as
the time to execute other nonsynchronization operations in the barrier implemen-
tation. Determine the number of bus transactions required for all 10 processors to
reach the barrier, be released from the barrier, and exit the barrier. Assume that
the bus is totally fair, so that every pending request is serviced before a new
request and that the processors are equally fast. Don’t worry about counting the
processors out of the barrier. How long will the entire process take?

Answer We assume that load linked and store conditional are used to implement lock and
unlock. Figure I.4 shows the sequence of bus events for a processor to traverse
the barrier, assuming that the first process to grab the bus does not have the lock.
There is a slight difference for the last process to reach the barrier, as described in
the caption.

For the ith process, the number of bus transactions is 3i + 4. The last process
to reach the barrier requires one less. Thus, for n processes, the number of bus
transactions is

For 10 processes, this is 204 bus cycles or 20,400 clock cycles! Our barrier oper-
ation takes almost twice as long as the 10-processor lock-unlock sequence.

local_sense =! local_sense; /* toggle local_sense */
lock (counterlock);/* ensure update atomic */
count=count+1;/* count arrivals */
if (count==total) {/* all arrived */

count=0;/* reset counter */
release=local_sense;/* release processes */

}
unlock (counterlock);/* unlock */
spin (release==local_sense);/* wait for signal */
}

Figure I.3 Code for a sense-reversing barrier. The key to making the barrier reusable
is the use of an alternating pattern of values for the flag release, which controls the
exit from the barrier. If a process races ahead to the next instance of this barrier while
some other processes are still in the barrier, the fast process cannot trap the other pro-
cesses, since it does not reset the value of release as it did in Figure I.2.

3i 4+()
i 1=

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

1–
3n

2
11n+

2
------------------------ 1–=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-16 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

As we can see from these examples, synchronization performance can be a
real bottleneck when there is substantial contention among multiple processes.
When there is little contention and synchronization operations are infrequent, we
are primarily concerned about the latency of a synchronization primitive—that is,
how long it takes an individual process to complete a synchronization operation.
Our basic spin lock operation can do this in two bus cycles: one to initially read
the lock and one to write it. We could improve this to a single bus cycle by a vari-
ety of methods. For example, we could simply spin on the swap operation. If the
lock were almost always free, this could be better, but if the lock were not free, it
would lead to lots of bus traffic, since each attempt to lock the variable would
lead to a bus cycle. In practice, the latency of our spin lock is not quite as bad as
we have seen in this example, since the write miss for a data item present in the
cache is treated as an upgrade and will be cheaper than a true read miss.

The more serious problem in these examples is the serialization of each pro-
cess’s attempt to complete the synchronization. This serialization is a problem
when there is contention because it greatly increases the time to complete the
synchronization operation. For example, if the time to complete all 10 lock and
unlock operations depended only on the latency in the uncontended case, then it
would take 1000 rather than 15,000 cycles to complete the synchronization oper-
ations. The barrier situation is as bad, and in some ways worse, since it is highly
likely to incur contention. The use of a bus interconnect exacerbates these prob-
lems, but serialization could be just as serious in a directory-based multiproces-
sor, where the latency would be large. The next subsection presents some
solutions that are useful when either the contention is high or the processor count
is large.

Event

Number of
times for
process i Corresponding source line Comment

LL counterlock i lock (counterlock); All processes try for lock.

Store conditional i lock (counterlock); All processes try for lock.

LD count 1 count = count + 1; Successful process.

Load linked i – 1 lock (counterlock); Unsuccessful process; try again.

SD count 1 count = count + 1; Miss to get exclusive access.

SD counterlock 1 unlock(counterlock); Miss to get the lock.

LD release 2 spin (release==local_sense);/ Read release: misses initially and when
finally written.

Figure I.4 Here are the actions, which require a bus transaction, taken when the ith process reaches the barrier.
The last process to reach the barrier requires one less bus transaction, since its read of release for the spin will hit in
the cache!

I.4 Synchronization: Scaling Up ■ I-17

Synchronization Mechanisms for Larger-Scale Multiprocessors

What we would like are synchronization mechanisms that have low latency in
uncontended cases and that minimize serialization in the case where contention is
significant. We begin by showing how software implementations can improve the
performance of locks and barriers when contention is high; we then explore two
basic hardware primitives that reduce serialization while keeping latency low.

Software Implementations

The major difficulty with our spin lock implementation is the delay due to con-
tention when many processes are spinning on the lock. One solution is to artifi-
cially delay processes when they fail to acquire the lock. The best performance is
obtained by increasing the delay exponentially whenever the attempt to acquire
the lock fails. Figure I.5 shows how a spin lock with exponential back-off is
implemented. Exponential back-off is a common technique for reducing conten-
tion in shared resources, including access to shared networks and buses (see Sec-
tions F.4 to F.8). This implementation still attempts to preserve low latency when
contention is small by not delaying the initial spin loop. The result is that if many
processes are waiting, the back-off does not affect the processes on their first
attempt to acquire the lock. We could also delay that process, but the result would

DADDUI R3,R0,#1 ;R3 = initial delay
lockit: LL R2,0(R1) ;load linked

BNEZ R2,lockit ;not available-spin
DADDUI R2,R2,#1 ;get locked value
SC R2,0(R1) ;store conditional
BNEZ R2,gotit ;branch if store succeeds
DSLL R3,R3,#1 ;increase delay by factor of 2
PAUSE R3 ;delays by value in R3
J lockit

gotit: use data protected by lock

Figure I.5 A spin lock with exponential back-off. When the store conditional fails, the
process delays itself by the value in R3. The delay can be implemented by decrement-
ing a copy of the value in R3 until it reaches 0. The exact timing of the delay is multipro-
cessor dependent, although it should start with a value that is approximately the time
to perform the critical section and release the lock. The statement pause R3 should
cause a delay of R3 of these time units. The value in R3 is increased by a factor of 2 every
time the store conditional fails, which causes the process to wait twice as long before
trying to acquire the lock again. The small variations in the rate at which competing
processors execute instructions are usually sufficient to ensure that processes will not
continually collide. If the natural perturbation in execution time was insufficient, R3
could be initialized with a small random value, increasing the variance in the successive
delays and reducing the probability of successive collisions.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-18 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

be poorer performance when the lock was in use by only two processes and the
first one happened to find it locked.

Another technique for implementing locks is to use queuing locks. Queuing
locks work by constructing a queue of waiting processors; whenever a processor
frees up the lock, it causes the next processor in the queue to attempt access. This
eliminates contention for a lock when it is freed. We show how queuing locks
operate in the next section using a hardware implementation, but software imple-
mentations using arrays can achieve most of the same benefits. Before we look at
hardware primitives, let’s look at a better mechanism for barriers.

Our barrier implementation suffers from contention both during the gather
stage, when we must atomically update the count, and at the release stage, when
all the processes must read the release flag. The former is more serious because it
requires exclusive access to the synchronization variable and thus creates much
more serialization; in comparison, the latter generates only read contention. We
can reduce the contention by using a combining tree, a structure where multiple
requests are locally combined in tree fashion. The same combining tree can be
used to implement the release process, reducing the contention there.

Our combining tree barrier uses a predetermined n-ary tree structure. We use
the variable k to stand for the fan-in; in practice, k = 4 seems to work well. When
the kth process arrives at a node in the tree, we signal the next level in the tree.
When a process arrives at the root, we release all waiting processes. As in our
earlier example, we use a sense-reversing technique. A tree-based barrier, as
shown in Figure I.6, uses a tree to combine the processes and a single signal to
release the barrier. Some MPPs (e.g., the T3D and CM-5) have also included
hardware support for barriers, but more recent machines have relied on software
libraries for this support.

Hardware Primitives

In this subsection, we look at two hardware synchronization primitives. The first
primitive deals with locks, while the second is useful for barriers and a number of
other user-level operations that require counting or supplying distinct indices. In
both cases, we can creat a hardware primitive where latency is essentially identi-
cal to our earlier version, but with much less serialization, leading to better scal-
ing when there is contention.

The major problem with our original lock implementation is that it introduces
a large amount of unneeded contention. For example, when the lock is released
all processors generate both a read and a write miss, although at most one proces-
sor can successfully get the lock in the unlocked state. This sequence happens on
each of the 10 lock/unlock sequences, as we saw in the example on page I-12.

We can improve this situation by explicitly handing the lock from one waiting
processor to the next. Rather than simply allowing all processors to compete every
time the lock is released, we keep a list of the waiting processors and hand the lock
to one explicitly, when its turn comes. This sort of mechanism has been called a
queuing lock. Queuing locks can be implemented either in hardware, which we

e

I.4 Synchronization: Scaling Up ■ I-19

describe here, or in software using an array to keep track of the waiting processes.
The basic concepts are the same in either case. Our hardware implementation
assumes a directory-based multiprocessor where the individual processor caches
are addressable. In a bus-based multiprocessor, a software implementation would
be more appropriate and would have each processor using a different address for
the lock, permitting the explicit transfer of the lock from one process to another.

How does a queuing lock work? On the first miss to the lock variable, the
miss is sent to a synchronization controller, which may be integrated with the
memory controller (in a bus-based system) or with the directory controller. If
the lock is free, it is simply returned to the processor. If the lock is unavailable,

struct node{/* a node in the combining tree */
int counterlock; /* lock for this node */
int count; /* counter for this node */
int parent; /* parent in the tree = 0..P-1 except for root */

};
struct node tree [0..P–1]; /* the tree of nodes */
int local_sense; /* private per processor */
int release; /* global release flag */

/* function to implement barrier */
barrier (int mynode, int local_sense) {

lock (tree[mynode].counterlock); /* protect count */
tree[mynode].count=tree[mynode].count+1;

/* increment count */
if (tree[mynode].count==k) {/* all arrived at mynode */

if (tree[mynode].parent >=0) {
barrier(tree[mynode].parent);

} else{
release = local_sense;

};
tree[mynode].count = 0; /* reset for the next time */

unlock (tree[mynode].counterlock); /* unlock */
spin (release==local_sense); /* wait */

};
/* code executed by a processor to join barrier */
local_sense =! local_sense;
barrier (mynode);

Figure I.6 An implementation of a tree-based barrier reduces contention consider-
ably. The tree is assumed to be prebuilt statically using the nodes in the array tree.
Each node in the tree combines k processes and provides a separate counter and
lock, so that at most k processes contend at each node. When the kth process reaches
a node in the tree, it goes up to the parent, incrementing the count at the parent.
When the count in the parent node reaches k, the release flag is set. The count in each
node is reset by the last process to arrive. Sense-reversing is used to avoid races as in
the simple barrier. The value of tree[root].parent should be set to –1 when the tree
is initially built.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-20 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

the controller creates a record of the node’s request (such as a bit in a vector)
and sends the processor back a locked value for the variable, which the proces-
sor then spins on. When the lock is freed, the controller selects a processor to
go ahead from the list of waiting processors. It can then either update the lock
variable in the selected processor’s cache or invalidate the copy, causing the
processor to miss and fetch an available copy of the lock.

Example How many bus transactions and how long does it take to have 10 processors lock
and unlock the variable using a queuing lock that updates the lock on a miss?
Make the other assumptions about the system the same as those in the earlier
example on page I-12.

Answer For n processors, each will initially attempt a lock access, generating a bus trans-
action; one will succeed and free up the lock, for a total of n + 1 transactions for
the first processor. Each subsequent processor requires two bus transactions, one
to receive the lock and one to free it up. Thus, the total number of bus transac-
tions is (n + 1) + 2(n – 1) = 3n – 1. Note that the number of bus transactions is
now linear in the number of processors contending for the lock, rather than qua-
dratic, as it was with the spin lock we examined earlier. For 10 processors, this
requires 29 bus cycles or 2900 clock cycles.

There are a couple of key insights in implementing such a queuing lock capa-
bility. First, we need to be able to distinguish the initial access to the lock, so we
can perform the queuing operation, and also the lock release, so we can provide
the lock to another processor. The queue of waiting processes can be imple-
mented by a variety of mechanisms. In a directory-based multiprocessor, this
queue is akin to the sharing set, and similar hardware can be used to implement
the directory and queuing lock operations. One complication is that the hardware
must be prepared to reclaim such locks, since the process that requested the lock
may have been context-switched and may not even be scheduled again on the
same processor.

Queuing locks can be used to improve the performance of our barrier opera-
tion. Alternatively, we can introduce a primitive that reduces the amount of time
needed to increment the barrier count, thus reducing the serialization at this bot-
tleneck, which should yield comparable performance to using queuing locks. One
primitive that has been introduced for this and for building other synchronization
operations is fetch-and-increment, which atomically fetches a variable and incre-
ments its value. The returned value can be either the incremented value or the
fetched value. Using fetch-and-increment we can dramatically improve our bar-
rier implementation, compared to the simple code-sensing barrier.

Example Write the code for the barrier using fetch-and-increment. Making the same
assumptions as in our earlier example and also assuming that a fetch-and-
increment operation, which returns the incremented value, takes 100 clock

I.5 Performance of Scientific Applications on Shared-Memory Multiprocessors ■ I-21

cycles, determine the time for 10 processors to traverse the barrier. How many
bus cycles are required?

Answer Figure I.7 shows the code for the barrier. For n processors, this implementation
requires n fetch-and-increment operations, n cache misses to access the count,
and n cache misses for the release operation, for a total of 3n bus transactions.
For 10 processors, this is 30 bus transactions or 3000 clock cycles. Like the
queueing lock, the time is linear in the number of processors. Of course, fetch-
and-increment can also be used in implementing the combining tree barrier,
reducing the serialization at each node in the tree.

As we have seen, synchronization problems can become quite acute in larger-
scale multiprocessors. When the challenges posed by synchronization are com-
bined with the challenges posed by long memory latency and potential load
imbalance in computations, we can see why getting efficient usage of large-scale
parallel processors is very challenging.

This section covers the performance of the scientific applications from Section
I.3 on both symmetric shared-memory and distributed shared-memory multi-
processors.

Performance of a Scientific Workload on a
Symmetric Shared-Memory Multiprocessor

We evaluate the performance of our four scientific applications on a symmetric
shared-memory multiprocessor using the following problem sizes:

local_sense =! local_sense; /* toggle local_sense */
fetch_and_increment(count);/* atomic update */
if (count==total) {/* all arrived */

count=0;/* reset counter */
release=local_sense;/* release processes */

}
else {/* more to come */

spin (release==local_sense);/* wait for signal */
}

Figure I.7 Code for a sense-reversing barrier using fetch-and-increment to do the
counting.

 I.5 Performance of Scientific Applications on
Shared-Memory Multiprocessors

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-22 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

■ Barnes-Hut—16K bodies run for six time steps (the accuracy control is set to
1.0, a typical, realistic value)

■ FFT—1 million complex data points

■ LU—A 512 × 512 matrix is used with 16 × 16 blocks

■ Ocean—A 130 × 130 grid with a typical error tolerance

In looking at the miss rates as we vary processor count, cache size, and block
size, we decompose the total miss rate into coherence misses and normal unipro-
cessor misses. The normal uniprocessor misses consist of capacity, conflict, and
compulsory misses. We label these misses as capacity misses because that is the
dominant cause for these benchmarks. For these measurements, we include as a
coherence miss any write misses needed to upgrade a block from shared to exclu-
sive, even though no one is sharing the cache block. This measurement reflects a
protocol that does not distinguish between a private and shared cache block.

Figure I.8 shows the data miss rates for our four applications, as we increase
the number of processors from 1 to 16, while keeping the problem size constant.
As we increase the number of processors, the total amount of cache increases,
usually causing the capacity misses to drop. In contrast, increasing the processor
count usually causes the amount of communication to increase, in turn causing
the coherence misses to rise. The magnitude of these two effects differs by
application.

In FFT, the capacity miss rate drops (from nearly 7% to just over 5%) but the
coherence miss rate increases (from about 1% to about 2.7%), leading to a con-
stant overall miss rate. Ocean shows a combination of effects, including some
that relate to the partitioning of the grid and how grid boundaries map to cache
blocks. For a typical 2D grid code the communication-generated misses are pro-
portional to the boundary of each partition of the grid, while the capacity misses
are proportional to the area of the grid. Therefore, increasing the total amount of
cache while keeping the total problem size fixed will have a more significant
effect on the capacity miss rate, at least until each subgrid fits within an individ-
ual processor’s cache. The significant jump in miss rate between one and two
processors occurs because of conflicts that arise from the way in which the multi-
ple grids are mapped to the caches. This conflict is present for direct-mapped and
two-way set associative caches, but fades at higher associativities. Such conflicts
are not unusual in array-based applications, especially when there are multiple
grids in use at once. In Barnes and LU, the increase in processor count has little
effect on the miss rate, sometimes causing a slight increase and sometimes caus-
ing a slight decrease.

Increasing the cache size usually has a beneficial effect on performance, since
it reduces the frequency of costly cache misses. Figure I.9 illustrates the change
in miss rate as cache size is increased for 16 processors, showing the portion of
the miss rate due to coherence misses and to uniprocessor capacity misses. Two
effects can lead to a miss rate that does not decrease—at least not as quickly as
we might expect—as cache size increases: inherent communication and plateaus

I.5 Performance of Scientific Applications on Shared-Memory Multiprocessors ■ I-23

Figure I.8 Data miss rates can vary in nonobvious ways as the processor count is
increased from 1 to 16. The miss rates include both coherence and capacity miss
rates. The compulsory misses in these benchmarks are all very small and are included
in the capacity misses. Most of the misses in these applications are generated by
accesses to data that are potentially shared, although in the applications with larger
miss rates (FFT and Ocean), it is the capacity misses rather than the coherence misses
that comprise the majority of the miss rate. Data are potentially shared if they are
allocated in a portion of the address space used for shared data. In all except Ocean,
the potentially shared data are heavily shared, while in Ocean only the boundaries of
the subgrids are actually shared, although the entire grid is treated as a potentially
shared data object. Of course, since the boundaries change as we increase the pro-
cessor count (for a fixed-size problem), different amounts of the grid become shared.
The anomalous increase in capacity miss rate for Ocean in moving from 1 to 2 proces-
sors arises because of conflict misses in accessing the subgrids. In all cases except
Ocean, the fraction of the cache misses caused by coherence transactions rises when
a fixed-size problem is run on an increasing number of processors. In Ocean, the
coherence misses initially fall as we add processors due to a large number of misses
that are write ownership misses to data that are potentially, but not actually, shared.
As the subgrids begin to fit in the aggregate cache (around 16 processors), this effect
lessens. The single-processor numbers include write upgrade misses, which occur in
this protocol even if the data are not actually shared, since they are in the shared
state. For all these runs, the cache size is 64 KB, two-way set associative, with 32-byte
blocks. Notice that the scale on the y-axis for each benchmark is different, so that the
behavior of the individual benchmarks can be seen clearly.

M
is

s
ra

te

0%

3%

2%

1%

1 2 4

Processor count

FFT

8 16

8%

4%

7%

6%

5%

M
is

s
ra

te

0%

6%

4%

2%

1 2 4

Processor count

Ocean

8 16

16%
18%

20%

8%

14%

12%

10%

M
is

s
ra

te

0%

1%

1 2 4

Processor count

LU

8 16

2%

M
is

s
ra

te

0%
1 2 4

Processor count

Barnes

8 16

1%

Coherence miss rate Capacity miss rate

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-24 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

in the miss rate. Inherent communication leads to a certain frequency of coher-
ence misses that are not significantly affected by increasing cache size. Thus, if
the cache size is increased while maintaining a fixed problem size, the coherence
miss rate eventually limits the decrease in cache miss rate. This effect is most
obvious in Barnes, where the coherence miss rate essentially becomes the entire
miss rate.

A less important effect is a temporary plateau in the capacity miss rate that
arises when the application has some fraction of its data present in cache but
some significant portion of the dataset does not fit in the cache or in caches that
are slightly bigger. In LU, a very small cache (about 4 KB) can capture the pair of
16 × 16 blocks used in the inner loop; beyond that, the next big improvement in
capacity miss rate occurs when both matrices fit in the caches, which occurs
when the total cache size is between 4 MB and 8 MB. This effect, sometimes
called a working set effect, is partly at work between 32 KB and 128 KB for FFT,
where the capacity miss rate drops only 0.3%. Beyond that cache size, a faster
decrease in the capacity miss rate is seen, as a major data structure begins to
reside in the cache. These plateaus are common in programs that deal with large
arrays in a structured fashion.

Figure I.9 The miss rate usually drops as the cache size is increased, although coher-
ence misses dampen the effect. The block size is 32 bytes and the cache is two-way set
associative. The processor count is fixed at 16 processors. Observe that the scale for
each graph is different.

M
is

s
ra

te

0%

4%

2%

32 64 128

Cache size (KB)

FFT

256

10%

6%

8%

M
is

s
ra

te

0%

1.5%

1.0%

32 64 128

Cache size (KB)

LU

256

2.5%

2.0%

M
is

s
ra

te

0%

6%

2%

4%

32 64 128

Cache size (KB)

Ocean

256

14%

10%

8%

12%

M
is

s
ra

te

0%

1.0%

32 64 128

Cache size (KB)

Barnes

256

2.0%

1.5%

Coherence miss rate Capacity miss rate

I.5 Performance of Scientific Applications on Shared-Memory Multiprocessors ■ I-25

Increasing the block size is another way to change the miss rate in a cache. In
uniprocessors, larger block sizes are often optimal with larger caches. In multi-
processors, two new effects come into play: a reduction in spatial locality for
shared data and a potential increase in miss rate due to false sharing. Several
studies have shown that shared data have lower spatial locality than unshared
data. Poorer locality means that, for shared data, fetching larger blocks is less
effective than in a uniprocessor because the probability is higher that the block
will be replaced before all its contents are referenced. Likewise, increasing the
basic size also increases the potential frequency of false sharing, increasing the
miss rate.

Figure I.10 shows the miss rates as the cache block size is increased for a
16-processor run with a 64 KB cache. The most interesting behavior is in Barnes,
where the miss rate initially declines and then rises due to an increase in the num-
ber of coherence misses, which probably occurs because of false sharing. In the
other benchmarks, increasing the block size decreases the overall miss rate. In
Ocean and LU, the block size increase affects both the coherence and capacity
miss rates about equally. In FFT, the coherence miss rate is actually decreased at
a faster rate than the capacity miss rate. This reduction occurs because the com-
munication in FFT is structured to be very efficient. In less optimized programs,

Figure I.10 The data miss rate drops as the cache block size is increased. All these
results are for a 16-processor run with a 64 KB cache and two-way set associativity.
Once again we use different scales for each benchmark.

M
is

s
ra

te

0%

6%

4%

2%

16 32 64

Block size (bytes)

FFT

128

14%

10%

8%

12%

M
is

s
ra

te

0%

2%

1%

16 32 64

Block size (bytes)

LU

128

4%

3%

M
is

s
ra

te

0%

6%

2%

4%

16 32 64

Block size (bytes)

Ocean

128

14%

10%

8%

12%

M
is

s
ra

te

0%
16 32 64

Block size (bytes)

Barnes

128

1%

Coherence miss rate Capacity miss rate

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-26 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

we would expect more false sharing and less spatial locality for shared data,
resulting in more behavior like that of Barnes.

Although the drop in miss rates with longer blocks may lead you to believe
that choosing a longer block size is the best decision, the bottleneck in bus-based
multiprocessors is often the limited memory and bus bandwidth. Larger blocks
mean more bytes on the bus per miss. Figure I.11 shows the growth in bus traffic
as the block size is increased. This growth is most serious in the programs that
have a high miss rate, especially Ocean. The growth in traffic can actually lead to
performance slowdowns due both to longer miss penalties and to increased bus
contention.

Performance of a Scientific Workload
on a Distributed-Memory Multiprocessor

The performance of a directory-based multiprocessor depends on many of the
same factors that influence the performance of bus-based multiprocessors (e.g.,
cache size, processor count, and block size), as well as the distribution of misses
to various locations in the memory hierarchy. The location of a requested data
item depends on both the initial allocation and the sharing patterns. We start by
examining the basic cache performance of our scientific/technical workload and
then look at the effect of different types of misses.

Figure I.11 Bus traffic for data misses climbs steadily as the block size in the data
cache is increased. The factor of 3 increase in traffic for Ocean is the best argument
against larger block sizes. Remember that our protocol treats ownership or upgrade
misses the same as other misses, slightly increasing the penalty for large cache blocks;
in both Ocean and FFT, this simplification accounts for less than 10% of the traffic.

7.0

4.0

5.0

6.0

3.0

2.0

1.0

B
yt

es
 p

er
 d

at
a

re
fe

re
nc

e

0.0

Block size (bytes)

16 32 64 128

FFT
LU
Barnes
Ocean

I.5 Performance of Scientific Applications on Shared-Memory Multiprocessors ■ I-27

Because the multiprocessor is larger and has longer latencies than our
snooping-based multiprocessor, we begin with a slightly larger cache (128 KB)
and a larger block size of 64 bytes.

In distributed-memory architectures, the distribution of memory requests
between local and remote is key to performance because it affects both the con-
sumption of global bandwidth and the latency seen by requests. Therefore, for the
figures in this section, we separate the cache misses into local and remote
requests. In looking at the figures, keep in mind that, for these applications, most
of the remote misses that arise are coherence misses, although some capacity
misses can also be remote, and in some applications with poor data distribution
such misses can be significant.

As Figure I.12 shows, the miss rates with these cache sizes are not affected
much by changes in processor count, with the exception of Ocean, where the
miss rate rises at 64 processors. This rise results from two factors: an increase in
mapping conflicts in the cache that occur when the grid becomes small, which
leads to a rise in local misses, and an increase in the number of the coherence
misses, which are all remote.

Figure I.13 shows how the miss rates change as the cache size is increased,
assuming a 64-processor execution and 64-byte blocks. These miss rates decrease
at rates that we might expect, although the dampening effect caused by little or no
reduction in coherence misses leads to a slower decrease in the remote misses
than in the local misses. By the time we reach the largest cache size shown, 512
KB, the remote miss rate is equal to or greater than the local miss rate. Larger
caches would amplify this trend.

We examine the effect of changing the block size in Figure I.14. Because
these applications have good spatial locality, increases in block size reduce the
miss rate, even for large blocks, although the performance benefits for going to
the largest blocks are small. Furthermore, most of the improvement in miss rate
comes from a reduction in the local misses.

Rather than plot the memory traffic, Figure I.15 plots the number of bytes
required per data reference versus block size, breaking the requirement into local
and global bandwidth. In the case of a bus, we can simply aggregate the demands
of each processor to find the total demand for bus and memory bandwidth. For a
scalable interconnect, we can use the data in Figure I.15 to compute the required
per-node global bandwidth and the estimated bisection bandwidth, as the next
example shows.

Example Assume a 64-processor multiprocessor with 1 GHz processors that sustain one
memory reference per processor clock. For a 64-byte block size, the remote miss
rate is 0.7%. Find the per-node and estimated bisection bandwidth for FFT.
Assume that the processor does not stall for remote memory requests; this might
be true if, for example, all remote data were prefetched. How do these bandwidth
requirements compare to various interconnection technologies?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-28 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

FFT performs all-to-all communication, so the bisection bandwidth is equal
to the number of processors times the per-node bandwidth, or about 64 × 448
MB/sec = 28.7 GB/sec. The SGI Origin 3000 with 64 processors has a bisection
bandwidth of about 50 GB/sec. No standard networking technology comes close.

Answer The per-node bandwidth is simply the number of data bytes per reference times
the reference rate: 0.7% × 1 GB/sec × 64 = 448 MB/sec. This rate is somewhat
higher than the hardware sustainable transfer rate for the CrayT3E (using a block

Figure I.12 The data miss rate is often steady as processors are added for these
benchmarks. Because of its grid structure, Ocean has an initially decreasing miss rate,
which rises when there are 64 processors. For Ocean, the local miss rate drops from 5%
at 8 processors to 2% at 32, before rising to 4% at 64. The remote miss rate in Ocean,
driven primarily by communication, rises monotonically from 1% to 2.5%. Note that, to
show the detailed behavior of each benchmark, different scales are used on the y-axis.
The cache for all these runs is 128 KB, two-way set associative, with 64-byte blocks.
Remote misses include any misses that require communication with another node,
whether to fetch the data or to deliver an invalidate. In particular, in this figure and
other data in this section, the measurement of remote misses includes write upgrade
misses where the data are up to date in the local memory but cached elsewhere and,
therefore, require invalidations to be sent. Such invalidations do indeed generate
remote traffic, but may or may not delay the write, depending on the consistency
model (see Section 5.6).

M
is

s
ra

te

0%

3%

2%

1%

8 16 32

Processor count

FFT

64

6%

4%

5%

M
is

s
ra

te

0.0%

0.5%

8 16 32

Processor count

LU

64

1.0%

M
is

s
ra

te

0%

4%

2%

8 16 32

Processor count

Ocean

64

8%

6%

M
is

s
ra

te

0.0%
8 16 32

Processor count

Barnes

64

0.5%

Local misses Remote misses

I.5 Performance of Scientific Applications on Shared-Memory Multiprocessors ■ I-29

prefetch) and lower than that for an SGI Origin 3000 (1.6 GB/processor pair).
The FFT per-node bandwidth demand exceeds the bandwidth sustainable from
the fastest standard networks by more than a factor of 5.

The previous example looked at the bandwidth demands. The other key issue
for a parallel program is remote memory access time, or latency. To get insight
into this, we use a simple example of a directory-based multiprocessor. Figure
I.16 shows the parameters we assume for our simple multiprocessor model. It
assumes that the time to first word for a local memory access is 85 processor
cycles and that the path to local memory is 16 bytes wide, while the network
interconnect is 4 bytes wide. This model ignores the effects of contention, which
are probably not too serious in the parallel benchmarks we examine, with the
possible exception of FFT, which uses all-to-all communication. Contention
could have a serious performance impact in other workloads.

Figure I.13 Miss rates decrease as cache sizes grow. Steady decreases are seen in the
local miss rate, while the remote miss rate declines to varying degrees, depending on
whether the remote miss rate had a large capacity component or was driven primarily
by communication misses. In all cases, the decrease in the local miss rate is larger than
the decrease in the remote miss rate. The plateau in the miss rate of FFT, which we men-
tioned in the last section, ends once the cache exceeds 128 KB. These runs were done
with 64 processors and 64-byte cache blocks.

M
is

s
ra

te

0%

4%

2%

32 64 128

Cache size (KB)

FFT

256 512

10%

6%

8%

M
is

s
ra

te

0.0%

1.0%

0.5%

32 64 128

Cache size (KB)

LU

Ocean

256 512

2.5%

1.5%

2.0%

M
is

s
ra

te

0.0%

0.5%

32 64 128

Cache size (KB)

Barnes

256 512

1.5%

1.0%

M
is

s
ra

te

0%

10%

5%

32 64 128

Cache size (KB)

256 512

20%

15%

Local misses Remote misses

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-30 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

Figure I.17 shows the cost in cycles for the average memory reference,
assuming the parameters in Figure I.16. Only the latencies for each reference
type are counted. Each bar indicates the contribution from cache hits, local
misses, remote misses, and three-hop remote misses. The cost is influenced by
the total frequency of cache misses and upgrades, as well as by the distribution
of the location where the miss is satisfied. The cost for a remote memory refer-
ence is fairly steady as the processor count is increased, except for Ocean. The
increasing miss rate in Ocean for 64 processors is clear in Figure I.12. As the
miss rate increases, we should expect the time spent on memory references to
increase also.

Although Figure I.17 shows the memory access cost, which is the dominant
multiprocessor cost in these benchmarks, a complete performance model would
need to consider the effect of contention in the memory system, as well as the
losses arising from synchronization delays.

Figure I.14 Data miss rate versus block size assuming a 128 KB cache and 64 proces-
sors in total. Although difficult to see, the coherence miss rate in Barnes actually rises
for the largest block size, just as in the last section.

M
is

s
ra

te

0%

4%

6%

2%

16 32 64

Block size (bytes)

FFT

128

12%

8%

10%

M
is

s
ra

te

0%

2%

1%

16 32 64

Block size (bytes)

LU

128

4%

3%

M
is

s
ra

te

0%

5%

10%

16 32 64

Block size (bytes)

Ocean

128

15%

M
is

s
ra

te

0.0%

0.1%

16 32 64

Block size (bytes)

Barnes

128

0.3%

0.2%

Local misses Remote misses

I.5 Performance of Scientific Applications on Shared-Memory Multiprocessors ■ I-31

Figure I.15 The number of bytes per data reference climbs steadily as block size is
increased. These data can be used to determine the bandwidth required per node both
internally and globally. The data assume a 128 KB cache for each of 64 processors.

Characteristic
Processor clock cycles

≤16 processors
Processor clock cycles

17–64 processors

Cache hit 1 1

Cache miss to local memory 85 85

Cache miss to remote home directory 125 150

Cache miss to remotely cached data
(three-hop miss)

140 170

Figure I.16 Characteristics of the example directory-based multiprocessor. Misses
can be serviced locally (including from the local directory), at a remote home node, or
using the services of both the home node and another remote node that is caching an
exclusive copy. This last case is called a three-hop miss and has a higher cost because it
requires interrogating both the home directory and a remote cache. Note that this sim-
ple model does not account for invalidation time but does include some factor for
increasing interconnect time. These remote access latencies are based on those in an SGI
Origin 3000, the fastest scalable interconnect system in 2001, and assume a 500 MHz
processor.

B
yt

es
 p

er
 d

at
a

re
fe

re
nc

e
B

yt
es

 p
er

 d
at

a
re

fe
re

nc
e

B
yt

es
 p

er
 d

at
a

re
fe

re
nc

e
B

yt
es

 p
er

 d
at

a
re

fe
re

nc
e

0.0

2.0

3.0

1.0

16 32 64

Block size (bytes)

FFT

128

6.0

4.0

5.0

0.0

0.2

0.3

0.1

16 32 64

Block size (bytes)

LU

128

0.6

0.4

0.5

0.0

2.0

4.0

6.0

5.0

3.0

1.0

16 32 64

Block size (bytes)

Ocean

128

7.0

0.0

0.1

16 32 64

Block size (bytes)

Barnes

128

0.4

0.3

0.2

Local Global

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-32 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

Figure I.17 The effective latency of memory references in a DSM multiprocessor depends both on the relative
frequency of cache misses and on the location of the memory where the accesses are served. These plots show
the memory access cost (a metric called average memory access time in Chapter 2) for each of the benchmarks for 8,
16, 32, and 64 processors, assuming a 512 KB data cache that is two-way set associative with 64-byte blocks. The
average memory access cost is composed of four different types of accesses, with the cost of each type given in
Figure I.16. For the Barnes and LU benchmarks, the low miss rates lead to low overall access times. In FFT, the higher
access cost is determined by a higher local miss rate (1–4%) and a significant three-hop miss rate (1%). The improve-
ment in FFT comes from the reduction in local miss rate from 4% to 1%, as the aggregate cache increases. Ocean
shows the biggest change in the cost of memory accesses, and the highest overall cost at 64 processors. The high
cost is driven primarily by a high local miss rate (average 1.6%). The memory access cost drops from 8 to 16 proces-
sors as the grids more easily fit in the individual caches. At 64 processors, the dataset size is too small to map prop-
erly and both local misses and coherence misses rise, as we saw in Figure I.12.

A
ve

ra
ge

 c
yc

le
s

pe
r

re
fe

re
nc

e

0.0
8 16 32

Processor count

FFT

64

5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5 A

ve
ra

ge
 c

yc
le

s
pe

r
re

fe
re

nc
e

0.0
8 16 32

Processor count

LU

64

5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

A
ve

ra
ge

 c
yc

le
s

pe
r

m
em

or
y

re
fe

re
nc

e

0.0
8 16 32

Processor count

Barnes

64

5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5 A

ve
ra

ge
 c

yc
le

s
pe

r
re

fe
re

nc
e

0.0
8 16 32

Processor count

Ocean

64

5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

Cache hit Local miss Remote miss Three-hop miss to remote cache

I.6 Performance Measurement of Parallel Processors with Scientific Applications ■ I-33

One of the most controversial issues in parallel processing has been how to mea-
sure the performance of parallel processors. Of course, the straightforward
answer is to measure a benchmark as supplied and to examine wall-clock time.
Measuring wall-clock time obviously makes sense; in a parallel processor, mea-
suring CPU time can be misleading because the processors may be idle but
unavailable for other uses.

Users and designers are often interested in knowing not just how well a mul-
tiprocessor performs with a certain fixed number of processors, but also how the
performance scales as more processors are added. In many cases, it makes sense
to scale the application or benchmark, since if the benchmark is unscaled, effects
arising from limited parallelism and increases in communication can lead to
results that are pessimistic when the expectation is that more processors will be
used to solve larger problems. Thus, it is often useful to measure the speedup as
processors are added both for a fixed-size problem and for a scaled version of the
problem, providing an unscaled and a scaled version of the speedup curves. The
choice of how to measure the uniprocessor algorithm is also important to avoid
anomalous results, since using the parallel version of the benchmark may under-
state the uniprocessor performance and thus overstate the speedup.

Once we have decided to measure scaled speedup, the question is how to
scale the application. Let’s assume that we have determined that running a
benchmark of size n on p processors makes sense. The question is how to scale
the benchmark to run on m × p processors. There are two obvious ways to scale
the problem: (1) keeping the amount of memory used per processor constant, and
(2) keeping the total execution time, assuming perfect speedup, constant. The
first method, called memory-constrained scaling, specifies running a problem of
size m × n on m × p processors. The second method, called time-constrained
scaling, requires that we know the relationship between the running time and the
problem size, since the former is kept constant. For example, suppose the
running time of the application with data size n on p processors is proportional to
n2/p. Then, with time-constrained scaling, the problem to run is the problem
whose ideal running time on m × p processors is still n2/p. The problem with
this ideal running time has size .

Example Suppose we have a problem whose execution time for a problem of size n is pro-
portional to n3. Suppose the actual running time on a 10-processor multiproces-
sor is 1 hour. Under the time-constrained and memory-constrained scaling
models, find the size of the problem to run and the effective running time for a
100-processor multiprocessor.

 I.6 Performance Measurement of Parallel Processors
with Scientific Applications

m n×

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-34 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

Answer For the time-constrained problem, the ideal running time is the same, 1 hour, so
the problem size is or 2.15 times larger than the original. For memory-
constrained scaling, the size of the problem is 10n and the ideal execution time is
103/10, or 100 hours! Since most users will be reluctant to run a problem on an
order of magnitude more processors for 100 times longer, this size problem is
probably unrealistic.

In addition to the scaling methodology, there are questions as to how the pro-
gram should be scaled when increasing the problem size affects the quality of the
result. Often, we must change other application parameters to deal with this
effect. As a simple example, consider the effect of time to convergence for solv-
ing a differential equation. This time typically increases as the problem size
increases, since, for example, we often require more iterations for the larger prob-
lem. Thus, when we increase the problem size, the total running time may scale
faster than the basic algorithmic scaling would indicate.

For example, suppose that the number of iterations grows as the log of the
problem size. Then, for a problem whose algorithmic running time is linear in the
size of the problem, the effective running time actually grows proportional to n
log n. If we scaled from a problem of size m on 10 processors, purely algorithmic
scaling would allow us to run a problem of size 10 m on 100 processors.
Accounting for the increase in iterations means that a problem of size k × m,
where k log k = 10, will have the same running time on 100 processors. This
problem size yields a scaling of 5.72 m, rather than 10 m.

In practice, scaling to deal with error requires a good understanding of the
application and may involve other factors, such as error tolerances (for example,
it affects the cell-opening criteria in Barnes-Hut). In turn, such effects often sig-
nificantly affect the communication or parallelism properties of the application as
well as the choice of problem size.

Scaled speedup is not the same as unscaled (or true) speedup; confusing the
two has led to erroneous claims (e.g., see the discussion in Section I.6). Scaled
speedup has an important role, but only when the scaling methodology is sound
and the results are clearly reported as using a scaled version of the application.
Singh, Hennessy, and Gupta [1993] described these issues in detail.

In this section, we explore the challenge of implementing cache coherence, start-
ing first by dealing with the challenges in a snooping coherence protocol, which
we simply alluded to in Chapter 5. Implementing a directory protocol adds some
additional complexity to a snooping protocol, primarily arising from the absence
of broadcast, which forces the use of a different mechanism to resolve races. Fur-
thermore, the larger processor count of a directory-based multiprocessor means
that we cannot retain assumptions of unlimited buffering and must find new ways
to avoid deadlock, Let’s start with the snooping protocols.

103 n×

 I.7 Implementing Cache Coherence

I.7 Implementing Cache Coherence ■ I-35

As we mentioned in Chapter 5, the challenge of implementing misses in a
snooping coherence protocol without a bus lies in finding a way to make the mul-
tistep miss process appear atomic. Both an upgrade miss and a write miss require
the same basic processing and generate the same implementation challenges; for
simplicity, we focus on upgrade misses. Here are the steps in handling an upgrade
miss:

1. Detect the miss and compose an invalidate message for transmission to other
caches.

2. When access to the broadcast communication link is available, transmit the
message.

3. When the invalidates have been processed, the processor updates the state of
the cache block and then proceeds with the write that caused the upgrade
miss.

There are two related difficulties that can arise. First, how will two processors, P1
and P2, that attempt to upgrade the same cache block at the same time resolve the
race? Second, when at step 3, how does a processor know when all invalidates
have been processed so that it can complete the step?

The solution to finding a winner in the race lies in the ordering imposed by the
broadcast communication medium. The communication medium must broadcast
any cache miss to all the nodes. If P1 and P2 attempt to broadcast at the same
time, we must ensure that either P1’s message will reach P2 first or P2’s will
reach P1 first. This property will be true if there is a single channel through
which all ingoing and outgoing requests from a node must pass through and if the
communication network does not accept a message unless it can guarantee deliv-
ery (i.e., it is effectively circuit switched, see Appendix F). If both P1 and P2 ini-
tiate their attempts to broadcast an invalidate simultaneously, then the network
can accept only one of these operations and delay the other. This ordering ensures
that either P1 or P2 will complete its communication in step 2 first. The network
can explicitly signal when it accepts a message and can guarantee it will be the
next transmission; alternatively, a processor can simply watch the network for its
own request, knowing that once the request is seen, it will be fully transmitted to
all processors before any subsequent messages.

Now, suppose P1 wins the race to transmit its invalidate; once it knows it has
won the race, it can continue with step 3 and complete the miss handling. There is
a potential problem, however, for P2. When P2 undertook step 1, it believed that
the block was in the shared state, but for P1 to advance at step 3, it must know
that P2 has processed the invalidate, which must change the state of the block at
P2 to invalid! One simple solution is for P2 to notice that it has lost the race, by
observing that P1’s invalidate is broadcast before its own invalidate. P2 can then
invalidate the block and generate a write miss to get the data. P1 will see its inval-
idate before P2’s, so it will change the block to modified and update the data,
which guarantees forward progress and avoids deadlock. When P1 sees the sub-
sequent invalidate to a block in the Modified state (a possibility that cannot arise
in our basic protocol discussed in Chapter 5), it knows that it was the winner of a

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-36 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

race. It can simply ignore the invalidate, knowing that it will be followed by a
write miss, or it can write the block back to memory and make its state invalid.

Another solution is to give precedence to incoming requests over outgoing re-
quests, so that before P2 can transmit its invalidate it must handle any pending in-
validates or write misses. If any of those misses are for blocks with the same
address as a pending outgoing message, the processor must be prepared to restart
the write operation, since the incoming request may cause the state of the block
to change. Notice that P1 knows that the invalidates will be processed once it has
successfully completed the broadcast, since precedence is given to invalidate
messages over outgoing requests. (Because it does not employ broadcast, a pro-
cessor using a directory protocol cannot know when an invalidate is received; in-
stead, explicit acknowledgments are required, as we discuss in the next section.
Indeed, as we will see, it cannot even know it has won the race to become the
owner until its request is acknowledged.)

Reads will also require a multiple-step process, since we need to get the data
back from memory or a remote cache (in a write-back cache system), but reads
do not introduce fundamentally new problems beyond what exists for writes.

There are, however, a few additional tricky edge cases that must be handled
correctly. For example, in a write-back cache, a processor can generate a read
miss that requires a write-back, which it could delay, while giving the read miss
priority. If a snoop request appears for the cache block that is to be written back,
the processor must discover this and send the data back. Failure to do so can cre-
ate a deadlock situation. A similar tricky situation exists when a processor gener-
ates a write miss, which will make a block exclusive, but, before the processor
receives the data and can update the block, other processors generate read misses
for that block. The read misses cannot be processed until the writing processor
receives the data and updates the block.

One of the more difficult problems occurs in a write-back cache where the data
for a read or write miss can come either from memory or from one of the processor
caches, but the requesting processor will not know a priori where the data will
come from. In most bus-based systems, a single global signal is used to indicate
whether any processor has the exclusive (and hence the most up-to-date) copy;
otherwise, the memory responds. These schemes can work with a pipelined inter-
connection by requiring that processors signal whether they have the exclusive
copy within a fixed number of cycles after the miss is broadcast.

In a modern multiprocessor, however, it is essentially impossible to bound the
amount of time required for a snoop request to be processed. Instead, a mecha-
nism is required to determine whether the memory has an up-to-date copy. One
solution is to add coherence bits to the memory, indicating whether the data are
exclusive in a remote cache. This mechanism begins to move toward the directo-
ry approach, whose implementation challenges we consider next.

Implementing Cache Coherence in a DSM Multiprocessor

Implementing a directory-based cache coherence protocol requires overcoming
all the problems related to nonatomic actions for a snooping protocol without the

I.7 Implementing Cache Coherence ■ I-37

use of broadcast (see Chapter 5), which forced a serialization on competing
writes and also ensured the serialization required for the memory consistency
model. Avoiding the need to broadcast is a central goal for a directory-based sys-
tem, so another method for ensuring serialization is necessary.

The serialization of requests for exclusive access to a memory block is easily
enforced since those requests will be serialized when they reach the unique direc-
tory for the specified block. If the directory controller simply ensures that one
request is completely serviced before the next is begun, writes will be serialized.
Because the requesters cannot know ahead of time who will win the race and
because the communication is not a broadcast, the directory must signal to the
winner when it completes the processing of the winner’s request. This is done by
a message that supplies the data on a write miss or by an explicit acknowledg-
ment message that grants ownership in response to an invalidation request.

What about the loser in this race? The simplest solution is for the system to
send a negative acknowledge, or NAK, which requires that the requesting node
regenerate its request. (This is the equivalent of a collision in the broadcast net-
work in a snooping scheme, which requires that one of the transmitting nodes
retry its communication.) We will see in the next section why the NAK approach,
as opposed to buffering the request, is attractive.

Although the acknowledgment that a requesting node has ownership is com-
pleted when the write miss or ownership acknowledgment message is transmit-
ted, we still do not know that the invalidates have been received and processed by
the nodes that were in the sharing set. All memory consistency models eventually
require (either before the next cache miss or at a synchronization point, for exam-
ple) that a processor knows that all the invalidates for a write have been pro-
cessed. In a snooping scheme, the nature of the broadcast network provides this
assurance.

How can we know when the invalidates are complete in a directory scheme?
The only way to know that the invalidates have been completed is to have the
destination nodes of the invalidate messages (the members of the sharing set)
explicitly acknowledge the invalidation messages sent from the directory. Who
should they be acknowledged to? There are two possibilities. In the first the
acknowledgments can be sent to the directory, which can count them, and when
all acknowledgments have been received, confirm this with a single message to
the original requester. Alternatively, when granting ownership, the directory can
tell the register how many acknowledgments to expect. The destinations of the
invalidate messages can then send an acknowledgment directly to the requester,
whose identity is provided by the directory. Most existing implementations use
the latter scheme, since it reduces the possibility of creating a bottleneck at a
directory. Although the requirement for acknowledgments is an additional com-
plexity in directory protocols, this requirement arises from the avoidance of a
serialization mechanism, such as the snooping broadcast operation, which in
itself is the limit to scalability.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-38 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

Avoiding Deadlock from Limited Buffering

A new complication in the implementation is introduced by the potential scale of
a directory-based multiprocessor. In Chapter 5, we assumed that the network
could always accept a coherence message and that the request would be acted
upon at some point. In a much larger multiprocessor, this assumption of unlimit-
ed buffering may be unreasonable. What happens when the network does not
have unlimited buffering? The major implication of this limit is that a cache or di-
rectory controller may be unable to complete a message send. This could lead
to deadlock.

The potential deadlock arises from three properties, which characterize many
deadlock situations:

1. More than one resource is needed to complete a transaction: Message buffers
are needed to generate requests, create replies and acknowledgments, and
accept replies.

2. Resources are held until a nonatomic transaction completes: The buffer used
to create the reply cannot be freed until the reply is accepted, for reasons we
will see shortly.

3. There is no global partial order on the acquisition of resources: Nodes can
generate requests and replies at will.

These characteristics lead to deadlock, and avoiding deadlock requires breaking
one of these properties. Freeing up resources without completing a transaction is
difficult, since the transaction must be completely backed out and cannot be left
half-finished. Hence, our approach will be to try to resolve the need for multiple
resources. We cannot simply eliminate this need, but we can try to ensure that the
resources will always be available.

One way to ensure that a transaction can always complete is to guarantee that
there are always buffers to accept messages. Although this is possible for a small
multiprocessor with processors that block on a cache miss or have a small num-
ber of outstanding misses, it may not be very practical in a directory protocol,
since a single write could generate many invalidate messages. In addition, fea-
tures such as prefetch and multiple outstanding misses increase the amount of
buffering required. There is an alternative strategy, which most systems use and
which ensures that a transaction will not actually be initiated until we can guaran-
tee that it has the resources to complete. The strategy has four parts:

1. A separate network (physical or virtual) is used for requests and replies,
where a reply is any message that a controller waits for in transitioning
between states. This ensures that new requests cannot block replies that will
free up buffers.

2. Every request that expects a reply allocates space to accept the reply when the
request is generated. If no space is available, the request waits. This ensures
that a node can always accept a reply message, which will allow the replying
node to free its buffer.

I.7 Implementing Cache Coherence ■ I-39

3. Any controller can reject with a NAK any request, but it can never NAK a
reply. This prevents a transaction from starting if the controller cannot guar-
antee that it has buffer space for the reply.

4. Any request that receives a NAK in response is simply retried.

To see that there are no deadlocks with the four properties above, we must
ensure that all replies can be accepted and that every request is eventually ser-
viced. Since a cache controller or directory controller always allocates a buffer to
handle the reply before issuing a request, it can always accept the reply when it
returns. To see that every request is eventually serviced, we need only show that
any request could be completed. Since every request starts with a read or write
miss at a cache, it is sufficient to show that any read or write miss is eventually
serviced. Since the write miss case includes the actions for a read miss as a sub-
set, we focus on showing the write misses are serviced. The simplest situation is
when the block is uncached; since that case is subsumed by the case when the
block is shared, we focus on the shared and exclusive cases. Let’s consider the
case where the block is shared:

■ The CPU attempts to do a write and generates a write miss that is sent to the
directory. For simplicity, we can assume that the processor is stalled.
Although it may issue further requests, it should not issue a request for the
same cache block until the first one is completed. Requests for independent
blocks can be handled separately.

■ The write miss is sent to the directory controller for this memory block. Note
that although one cache controller handles all the requests for a given cache
block, regardless of its memory contents, the directory controller handles
requests for different blocks as independent events (assuming sufficient buff-
ering, which is allocated before the directory issues any further messages on
behalf of the request). The only conflict at the directory controller is when
two requests arrive for the same block. The controller must wait for the first
operation to be completed. It can simply NAK the second request or buffer it,
but it should not service the second request for a given memory block until
the first is completed.

■ Now consider what happens at the directory controller: Suppose the write
miss is the next thing to arrive at the directory controller. The controller sends
out the invalidates, which can always be accepted after a limited delay by the
cache controller. Note that one possibility is that the cache controller has an
outstanding miss for the same block. This is the dual case to the snooping
scheme, and we must once again break the tie by forcing the cache controller
to accept and act on the directory request. Depending on the exact timing, this
cache controller will either get the cache line later from the directory or will
receive a NAK and have to restart the process.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-40 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

The case where the block is exclusive is somewhat trickier. Our analysis
begins when the write miss arrives at the directory controller for processing.
There are two cases to consider:

■ The directory controller sends a fetch/invalidate message to the processor
where it arrives to find the block in the exclusive state. The cache controller
sends a data write-back to the home directory and makes its state invalid. This
reply arrives at the home directory controller, which can always accept the
reply, since it preallocated the buffer. The directory controller sends back the
data to the requesting processor, which can always accept the reply; after the
cache is updated, the requesting cache controller notifies the processor.

■ The directory controller sends a fetch/invalidate message to the node indi-
cated as owner. When the message arrives at the owner node, it finds that this
cache controller has taken a read or write miss that caused the block to be
replaced. In this case, the cache controller has already sent the block to the
home directory with a data write-back and made the data unavailable. Since
this is exactly the effect of the fetch/invalidate message, the protocol operates
correctly in this case as well.

We have shown that our coherence mechanism operates correctly when the
cache and directory controller can accept requests for operation on cache blocks
for which they have no outstanding operations in progress, when replies are
always accepted, and when requests can be NAKed and forced to retry. Like the
case of the snooping protocol, the cache controller must be able to break ties, and
it always does so by favoring the instructions from the directory. The ability to
NAK requests is what allows an implementation with finite buffering to avoid
deadlock.

Implementing the Directory Controller

To implement a cache coherence scheme, the cache controller must have the
same abilities it needed in the snooping case, namely, the capability of handling
requests for independent blocks while awaiting a response to a request from the
local processor. The incoming requests are still processed in order, and each one
is completed before beginning the next. Should a cache controller receive too
many requests in a short period of time, it can NAK them, knowing that the direc-
tory will subsequently regenerate the request.

The directory must also be multithreaded and able to handle requests for mul-
tiple blocks independently. This situation is somewhat different than having the
cache controller handle incoming requests for independent blocks, since the
directory controller will need to begin processing one request while an earlier one
is still underway. The directory controller cannot wait for one to complete before
servicing the next request, since this could lead to deadlock. Instead, the direc-
tory controller must be reentrant; that is, it must be capable of suspending its exe-
cution while waiting for a reply and accepting another transaction. The only

I.8 The Custom Cluster Approach: Blue Gene/L ■ I-41

place this must occur is in response to read or write misses, while waiting for a
response from the owner. This leads to three important observations:

1. The state of the controller need only be saved and restored while either a
fetch operation from a remote location or a fetch/invalidate is outstanding.

2. The implementation can bound the number of outstanding transactions being
handled in the directory by simply NAKing read or write miss requests that
could cause the number of outstanding requests to be exceeded.

3. If instead of returning the data through the directory, the owner node forwards
the data directly to the requester (as well as returning it to the directory), we
can eliminate the need for the directory to handle more than one outstanding
request. This motivation, in addition to the reduction of latency, is the reason
for using the forwarding style of protocol. There are other complexities from
forwarding protocols that arise when requests arrive closely spaced in time.

The major remaining implementation difficulty is to handle NAKs. One alter-
native is for each processor to keep track of its outstanding transactions so it
knows, when the NAK is received, what the requested transaction was. The alter-
native is to bundle the original request into the NAK, so that the controller receiv-
ing the NAK can determine what the original request was. Because every request
allocates a slot to receive a reply and a NAK is a reply, NAKs can always be
received. In fact, the buffer holding the return slot for the request can also hold
information about the request, allowing the processor to reissue the request if it is
NAKed.

 In practice, great care is required to implement these protocols correctly and
to avoid deadlock. The key ideas we have seen in this section—dealing with non-
atomicity and finite buffering—are critical to ensuring a correct implementation.
Designers have found that both formal and informal verification techniques are
helpful for ensuring that implementations are correct.

Blue Gene/L (BG/L) is a scalable message-passing supercomputer whose design
offers unprecedented computing density as measured by compute power per watt.
By focusing on power efficiency, BG/L also achieves unmatched throughput per
cubic foot. High computing density, combined with cost-effective nodes and
extensive support for RAS, allows BG/L to efficiently scale to very large proces-
sor counts.

BG/L is a distributed-memory, message-passing computer but one that is quite
different from the cluster-based, often throughput-oriented computers that rely on
commodity technology in the processors, interconnect, and, sometimes, the pack-
aging and system-level organization. BG/L uses a special customized processing
node that contains two processors (derived from low-power, lower-clock-rate
PowerPC 440 chips used in the embedded market), caches, and interconnect logic.

 I.8 The Custom Cluster Approach: Blue Gene/L

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-42 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

A complete computing node is formed by adding SDRAM chips, which are the
only commodity semiconductor parts in the BG/L design.

BG/L consists of up to 64K nodes organized into 32 racks each containing 1K
nodes in about 50 cubic feet. Each rack contains two double-sided boards with
512 nodes each. Due to the high density within a board and rack, 85% of the
interconnect is within a single rack, greatly reducing the complexity and latency
associated with connections between racks. Furthermore, the compact size of a
rack, which is enabled by the low power and high density of each node, greatly
improves efficiency, since the interconnection network for connections within a
single rack are integrated into the single compute chip that comprises each node.

Appendix F discusses the main BL/G interconnect network, which is a three-
dimensional torus. There are four other networks: Gigabit Ethernet, connected at
designated I/O nodes; a JTAG network used for test; a barrier network; and a
global collective network. The barrier network contains four independent chan-
nels and can be used for performing a global or or a global and across all the pro-
cessors with latency of less than 1.5 microseconds. The global collective network
connects all the processors in a tree and is used for global operations. It supports
a variety of integer reductions directly, avoiding the need to involve the proces-
sor, and leading to times for large-scale reductions that are 10 to 100 times faster
than in typical supercomputers. The collective network can also be used to broad-
cast a single value efficiently. Support for the collective network as well as the
torus is included in the chip that forms of the heart of each processing node.

The Blue Gene/L Computing Node

Each BG/L node consists of a single processing chip and several SDRAM chips.
The BG/L processing chip, shown in Figure I.18, contains the following:

1. Two PowerPC 440 CPUs, each a two-issue superscalar with a seven-stage
pipeline and speculative out-order issue capability, clocked at a modest (and
power-saving) 700 MHz. Each CPU has separate 32 KB I and D caches that
are nonbblocking with up to four outstanding misses. Cache coherence must
be enforced in software. Each CPU also contains a pair of floating-point
coprocessors, each with its own FP register set and each capable of issuing a
multiply-add each clock cycle, supporting a special SIMD instruction set
capability that includes complex arithmetic using a pair of registers and 128-
bit operands.

2. Separate fully associative L2 caches, each with 2 KB of data and a 128-byte
block size, that act essentially like prefetch buffers. The L2 cache control-
lers recognize streamed data access and also handle prefetch from L3 or
main memory. They have low latency (11 cycles) and provide high band-
width (5 bytes per clock). The L2 prefetch buffer can supply 5.5 GB/sec to
the L1 caches.

3. A 4 MB L3 cache implemented with embedded DRAM. Each L2 buffer is
connected by a bus supplying 11 GB/sec of bandwidth from the L3 cache.

I.8 The Custom Cluster Approach: Blue Gene/L ■ I-43

4. A memory bus supporting 256 to 512 MB of DDR DRAMS and providing
5.5 GB/sec of memory bandwidth to the L3 cache. This amount of memory
might seem rather modest for each node, given that the node contains two
processors, each with two FP units. Indeed Amdahl’s rule of thumb (1 MB
per 1 MIPS) and an assumption of 25% of peak performance would favor
about 2.7 times the memory per node. For floating-point-intensive applica-
tions where the computational need usually grows faster than linear in the
memory size, the upper limit of 512 MB/node is probably reasonable.

5. Support logic for the five interconnection networks.

By placing all the logic other than DRAMs into a single chip, BG/L achieves
higher density, lower power, and lower cost, making it possible to pack the pro-
cessing nodes extremely densely. The density in terms allows the interconnection
networks to be low latency, high bandwidth, and quite cost effective. The combi-
nation yields a supercomputer that scales very cost-effectively, yielding an order-
of-magnitude improvement in GFLOPs/watt over other approaches as well as
significant improvements in GFLOPS/$ for very large-scale multiprocessors.

Figure I.18 The BG/L processing node. The unfilled boxes are the PowerPC processors
with added floating-point units. The solid gray boxes are network interfaces, and the
shaded lighter gray boxes are part of the memory system, which is supplemented by
DDR RAMS.

32K/32K L1

256
11 GB/sec

256

5.
5

G
B

/s
ec

10
24

22
 G

B
/s

ec14
4

E
C

C

L2
 p

re
fe

tc
h

bu
ffe

r

12
8

PPC 440
CPU

Shared L3
directory for
embedded

DRAM

Includes
error

correction
control
(ECC)

Double-issue
FPU

32K/32K L1

Ethernet
Gbit

Gigabit
Ethernet

Snoop

L2
 p

re
fe

tc
h

bu
ffe

r

12
8

PPC 440
CPU

Double-issue
FPU

JTAG
access

IEEE
1149.1
(JTAG)

Torus

6 out and
6 in, each at
1.4 GB/sec

link

5.5 GB/sec

Collective

3 out and
3 in, each at
2.8 GB/sec

link

Global
interrupt/
lockbox

4 global
barriers or
interrupts

DDR
control

with ECC

144-bit-wide
DDR

256/ 512 MB

256

4 MB
embedded

DRAM

L3 cache
or

memory

256
11 GB/sec

128

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-44 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

For example, BG/L with 64K nodes has a peak performance of 360 TF and
uses about 1.4 megawatts. To achieve 360 TF peak using the Power5+, which is
the most power-efficient, high-end FP processor, would require about 23,500 pro-
cessors (the dual processor can execute up to 8 FLOPs/clock at 1.9 GHz). The
power requirement for just the processors, without external cache, DRAM, or
interconnect, would be about 2.9 megawatts, or about double the power of the
entire BG/L system. Likewise, the smaller die size of the BG/L node and its need
for DRAMs as the only external chip produce significant cost savings versus a
node built using a high-end multiprocessor. Figure I.19 shows a photo of the 64K
node BG/L. The total size occupied by this 128K-processor multiprocessor is
comparable to that occupied by earlier multiprocessors with 16K processors.

The landscape of large-scale multiprocessors has changed dramatically over the
past five to ten years. While some form of clustering is now used for all the
largest-scale multiprocessors, calling them all “clusters” ignores significant dif-
ferences in architecture, implementation style, cost, and performance. Bell and
Gray [2002] discussed this trend, arguing that clusters will dominate. While Don-
garra et al. [2005] agreed that some form of clustering is almost inevitable in the
largest multiprocessors, they developed a more nuanced classification that
attempts to distinguish among a variety of different approaches.

Figure I.19 The 64K-processor Blue Gene/L system.

 I.9 Concluding Remarks

I.9 Concluding Remarks ■ I-45

In Figure I.20 we summarize the range of terminology that has been used for
large-scale multiprocessors and focus on defining the terms from an architectural
and implementation perspective. Figure I.21 shows the hierarchical relationship
of these different architecture approaches. Although there has been some conver-
gence in architectural approaches over the past 15 years, the TOP500 list, which
reports the 500 fastest computers in the world as measured by the Linpack bench-
mark, includes commodity clusters, customized clusters, Symmetric Multipro-
cessors (SMPs), DSMs, and constellations, as well as processors that are both
scalar and vector.

Nonetheless, there are some clearly emerging trends, which we can see by
looking at the distribution of types of multiprocessors in the TOP500 list:

1. Clusters represent a majority of the systems. The lower development effort
for clusters has clearly been a driving force in making them more popular.
The high-end multiprocessor market has not grown sufficiently large to sup-
port full-scale, highly customized designs as the dominant choice.

2. The majority of the clusters are commodity clusters, often put together by
users, rather than a system vendor designing a standard product.

Terminology Characteristics Examples

MPP Originally referred to a class of architectures characterized by large
numbers of small, typically custom processors and usually using an SIMD
style architecture.

Connection Machines
CM-2

SMP (symmetric
multiprocessor)

Shared-memory multiprocessors with a symmetric relationship to
memory; also called UMA (uniform memory access). Scalable versions of
these architectures used multistage interconnection networks, typically
configured with at most 64 to 128 processors.

SUN Sunfire, NEC
Earth Simulator

DSM (distributed
shared memory)

A class of architectures that support scalable shared memory in a
distributed fashion. These architectures are available both with and without
cache coherence and typically can support hundreds to thousands of
processors.

SGI Origin and Altix,
Cray T3E, Cray X1,
IBM p5 590/5

Cluster A class of multiprocessors using message passing. The individual nodes
are either commodities or customized, likewise the interconnect.

See commodity and
custom clusters

Commodity
cluster

A class of clusters where the nodes are truly commodities, typically
headless workstations, motherboards, or blade servers, connected with a
SAN or LAN usually accessible via an I/O bus.

“Beowulf” and other
“homemade” clusters

Custom cluster A cluster architecture where the nodes and the interconnect are customized
and more tightly integrated than in a commodity cluster. Also called
distributed memory or message passing multiprocessors.

IBM Blue Gene, Cray
XT3

Constellation Large-scale multiprocessors that use clustering of smaller-scale
multiprocessors, typically with a DSM or SMP architecture and 32 or more
processors.

Larger SGI Origin/
Altix, ASC Purple

Figure I.20 A classification of large-scale multiprocessors. The term MPP, which had the original meaning
described above, has been used more recently, and less precisely, to refer to all large-scale multiprocessors. None of
the commercial shipping multiprocessors is a true MPP in the original sense of the word, but such an approach may
make sense in the future. Both the SMP and DSM class includes multiprocessors with vector support. The term con-
stellation has been used in different ways; the above usage seems both intuitive and precise [Dongarra et al. 2005].

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-46 ■ Appendix I Large-Scale Multiprocessors and Scientific Applications

3. Although commodity clusters dominate in their representation, the top 25
entries on the list are much more varied and include 9 custom clusters (pri-
marily instances of Blue Gene or Cray XT3 systems), 2 constellations, 8
commodity clusters, 2 SMPs (one of which is the NEC Earth Simulator,
which has nodes with vector processors), and 4 DSM multiprocessors.

4. Vector processors, which once dominated the list, have almost disappeared.

5. The IBM Blue Gene dominates the top 10 systems, showing the advantage of
an approach the uses some commodity processor cores, but customizes many
other functions and balances performance, power, and packaging density.

6. Architectural convergence has been driven more by market effects (lack of
growth, limited suppliers, etc.) than by a clear-cut consensus on the best
architectural approaches.

Software, both applications and programming languages and environments,
remains the big challenge for parallel computing, just as it was 30 years ago,
when multiprocessors such as the Illiac IV were being designed. The combina-
tion of ease of programming with high parallel performance remains elusive.
Until better progress is made on this front, convergence toward a single program-
ming model and underlying architectural approach (remembering that for uni-
processors we essentially have one programming model and one architectural
approach!) will be slow or will be driven by factors other than proven architec-
tural superiority.

Figure I.21 The space of large-scale multiprocessors and the relation of different classes.

Larger
multiprocessors

Shared address
space

Symmetric shared
memory (SMP)

Examples: IBM eServer,
SUN Sunfire

Distributed shared
memory (DSM)

Commodity clusters:
Beowulf and others

Custom
cluster

Uniform cluster:
IBM Blue Gene

Cache coherent:
ccNUMA:

SGI Origin/Altix

Constellation cluster of
DSMs or SMPs

SGI Altix, ASC Purple

Noncache coherent:
Cray T3E, X1

Distributed
address space

J.1 Introduction J-2

J.2 Basic Techniques of Integer Arithmetic J-2

J.3 Floating Point J-13

J.4 Floating-Point Multiplication J-17

J.5 Floating-Point Addition J-21

J.6 Division and Remainder J-27

J.7 More on Floating-Point Arithmetic J-32

J.8 Speeding Up Integer Addition J-37

J.9 Speeding Up Integer Multiplication and Division J-44

J.10 Putting It All Together J-58

J.11 Fallacies and Pitfalls J-62

J.12 Historical Perspective and References J-62

 Exercises J-68

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J
Computer Arithmetic 1

by David Goldberg
Xerox Palo Alto Research Center

The Fast drives out the Slow even if the Fast is wrong.

W. Kahan

J-2 ■ Appendix J Computer Arithmetic

Although computer arithmetic is sometimes viewed as a specialized part of CPU
design, it is a very important part. This was brought home for Intel in 1994 when
their Pentium chip was discovered to have a bug in the divide algorithm. This
floating-point flaw resulted in a flurry of bad publicity for Intel and also cost
them a lot of money. Intel took a $300 million write-off to cover the cost of
replacing the buggy chips.

In this appendix, we will study some basic floating-point algorithms, includ-
ing the division algorithm used on the Pentium. Although a tremendous variety of
algorithms have been proposed for use in floating-point accelerators, actual
implementations are usually based on refinements and variations of the few basic
algorithms presented here. In addition to choosing algorithms for addition, sub-
traction, multiplication, and division, the computer architect must make other
choices. What precisions should be implemented? How should exceptions be
handled? This appendix will give you the background for making these and other
decisions.

Our discussion of floating point will focus almost exclusively on the IEEE
floating-point standard (IEEE 754) because of its rapidly increasing acceptance.
Although floating-point arithmetic involves manipulating exponents and shifting
fractions, the bulk of the time in floating-point operations is spent operating on
fractions using integer algorithms (but not necessarily sharing the hardware that
implements integer instructions). Thus, after our discussion of floating point, we
will take a more detailed look at integer algorithms.

Some good references on computer arithmetic, in order from least to most
detailed, are Chapter 3 of Patterson and Hennessy [2009]; Chapter 7 of Ham-
acher, Vranesic, and Zaky [1984]; Gosling [1980]; and Scott [1985].

Readers who have studied computer arithmetic before will find most of this sec-
tion to be review.

Ripple-Carry Addition

Adders are usually implemented by combining multiple copies of simple com-
ponents. The natural components for addition are half adders and full adders.
The half adder takes two bits a and b as input and produces a sum bit s and a
carry bit cout as output. Mathematically, s = (a + b) mod 2, and cout = ⎣(a + b)/
2⎦, where ⎣ ⎦ is the floor function. As logic equations, s = ab + ab and cout = ab,
where ab means a ∧ b and a + b means a ∨ b. The half adder is also called a
(2,2) adder, since it takes two inputs and produces two outputs. The full adder

J.1 Introduction

J.2 Basic Techniques of Integer Arithmetic

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.2 Basic Techniques of Integer Arithmetic ■ J-3

is a (3,2) adder and is defined by s = (a + b + c) mod 2, cout = ⎣(a + b + c)/2⎦, or
the logic equations

J.2.1 s = ab c + abc + abc + abc

J.2.2 cout = ab + ac + bc

The principal problem in constructing an adder for n-bit numbers out of
smaller pieces is propagating the carries from one piece to the next. The most obvi-
ous way to solve this is with a ripple-carry adder, consisting of n full adders, as
illustrated in Figure J.1. (In the figures in this appendix, the least-significant bit is
always on the right.) The inputs to the adder are an–1an–2 ⋅ ⋅ ⋅ a0 and bn–1bn–2 ⋅ ⋅ ⋅ b0,
where an–1an–2 ⋅ ⋅ ⋅ a0 represents the number an–1 2n–1 + an–2 2n–2 + ⋅ ⋅ ⋅ + a0. The
ci+1 output of the ith adder is fed into the ci+1 input of the next adder (the (i + 1)-th
adder) with the lower-order carry-in c0 set to 0. Since the low-order carry-in is
wired to 0, the low-order adder could be a half adder. Later, however, we will see
that setting the low-order carry-in bit to 1 is useful for performing subtraction.

In general, the time a circuit takes to produce an output is proportional to the
maximum number of logic levels through which a signal travels. However, deter-
mining the exact relationship between logic levels and timings is highly technology
dependent. Therefore, when comparing adders we will simply compare the number
of logic levels in each one. How many levels are there for a ripple-carry adder? It
takes two levels to compute c1 from a0 and b0. Then it takes two more levels to
compute c2 from c1, a1, b1, and so on, up to cn. So, there are a total of 2n levels.
Typical values of n are 32 for integer arithmetic and 53 for double-precision float-
ing point. The ripple-carry adder is the slowest adder, but also the cheapest. It can
be built with only n simple cells, connected in a simple, regular way.

Because the ripple-carry adder is relatively slow compared with the designs
discussed in Section J.8, you might wonder why it is used at all. In technologies
like CMOS, even though ripple adders take time O(n), the constant factor is very
small. In such cases short ripple adders are often used as building blocks in larger
adders.

Figure J.1 Ripple-carry adder, consisting of n full adders. The carry-out of one full
adder is connected to the carry-in of the adder for the next most-significant bit. The
carries ripple from the least-significant bit (on the right) to the most-significant bit
(on the left).

b
n–1

a
n–1

s
n–1

Full
adder

c
n–1

s
n–2

c
n

a
n–2

b
n–2

Full
adder

b
1

a
1

s
1

Full
adder

s
0

a
0

b
0

Full
adder

c
2 c

1

0

J-4 ■ Appendix J Computer Arithmetic

Radix-2 Multiplication and Division

The simplest multiplier computes the product of two unsigned numbers, one bit at
a time, as illustrated in Figure J.2(a). The numbers to be multiplied are an–1an–2
⋅ ⋅ ⋅ a0 and bn–1bn–2 ⋅ ⋅ ⋅ b0, and they are placed in registers A and B, respectively.
Register P is initially 0. Each multiply step has two parts:

Multiply Step (i) If the least-significant bit of A is 1, then register B, containing bn–1bn–2 ⋅ ⋅ ⋅ b0,
is added to P; otherwise, 00 ⋅ ⋅ ⋅ 00 is added to P. The sum is placed back
into P.

(ii) Registers P and A are shifted right, with the carry-out of the sum being
moved into the high-order bit of P, the low-order bit of P being moved into
register A, and the rightmost bit of A, which is not used in the rest of the
algorithm, being shifted out.

Figure J.2 Block diagram of (a) multiplier and (b) divider for n-bit unsigned integers.
Each multiplication step consists of adding the contents of P to either B or 0 (depend-
ing on the low-order bit of A), replacing P with the sum, and then shifting both P and A
one bit right. Each division step involves first shifting P and A one bit left, subtracting B
from P, and, if the difference is nonnegative, putting it into P. If the difference is
nonnegative, the low-order bit of A is set to 1.

Carry-out

P A

n

n

n

Shift

P

B0

A

n + 1

n1

n

Shift

(a)

(b)

1

B

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.2 Basic Techniques of Integer Arithmetic ■ J-5

After n steps, the product appears in registers P and A, with A holding the
lower-order bits.

The simplest divider also operates on unsigned numbers and produces the
quotient bits one at a time. A hardware divider is shown in Figure J.2(b). To com-
pute a/b, put a in the A register, b in the B register, and 0 in the P register and
then perform n divide steps. Each divide step consists of four parts:

Divide Step (i) Shift the register pair (P,A) one bit left.

(ii) Subtract the content of register B (which is bn–1bn–2 ⋅ ⋅ ⋅ b0) from register
P, putting the result back into P.

(iii) If the result of step 2 is negative, set the low-order bit of A to 0, otherwise
to 1.

(iv) If the result of step 2 is negative, restore the old value of P by adding the
contents of register B back into P.

After repeating this process n times, the A register will contain the quotient,
and the P register will contain the remainder. This algorithm is the binary ver-
sion of the paper-and-pencil method; a numerical example is illustrated in
Figure J.3(a).

Notice that the two block diagrams in Figure J.2 are very similar. The main
difference is that the register pair (P,A) shifts right when multiplying and left
when dividing. By allowing these registers to shift bidirectionally, the same hard-
ware can be shared between multiplication and division.

The division algorithm illustrated in Figure J.3(a) is called restoring, because
if subtraction by b yields a negative result, the P register is restored by adding b
back in. The restoring algorithm has a variant that skips the restoring step and
instead works with the resulting negative numbers. Each step of this nonrestoring
algorithm has three parts:

Nonrestoring If P is negative,

Divide Step (i-a) Shift the register pair (P,A) one bit left.

(ii-a) Add the contents of register B to P.

Else,

(i-b) Shift the register pair (P,A) one bit left.

(ii-b) Subtract the contents of register B from P.

(iii) If P is negative, set the low-order bit of A to 0, otherwise set it to 1.

After repeating this n times, the quotient is in A. If P is nonnegative, it is the
remainder. Otherwise, it needs to be restored (i.e., add b), and then it will be the
remainder. A numerical example is given in Figure J.3(b). Since steps (i-a) and
(i-b) are the same, you might be tempted to perform this common step first, and
then test the sign of P. That doesn’t work, since the sign bit can be lost when
shifting.

J-6 ■ Appendix J Computer Arithmetic

The explanation for why the nonrestoring algorithm works is this. Let rk be
the contents of the (P,A) register pair at step k, ignoring the quotient bits (which
are simply sharing the unused bits of register A). In Figure J.3(a), initially A con-
tains 14, so r0 = 14. At the end of the first step, r1 = 28, and so on. In the restoring

Figure J.3 Numerical example of (a) restoring division and (b) nonrestoring
division.

00000

00001

–00011

–00010

00001

00011

–00011

00000

00001

–00011

–00010

00001

00010

–00011

–00001

00010

1110

110

1100

1100

100

1001

001

0010

0010

010

0100

0100

Divide 14 = 1110
2
 by 3 = 11

2
. B always contains 0011

2
.

step 1(i): shift.

step 1(ii): subtract.

step 1(iii): result is negative, set quotient bit to 0.

step 1(iv): restore.

step 2(i): shift.

step 2(ii): subtract.

P A

step 2(iii): result is nonnegative, set quotient bit to 1.

step 3(i): shift.

step 3(ii): subtract.

step 3(iii): result is negative, set quotient bit to 0.

step 3(iv): restore.

step 4(i): shift.

step 4(ii): subtract.

step 4(iii): result is negative, set quotient bit to 0.

step 4(iv): restore. The quotient is 0100
2
 and the remainder is 00010

2
.

00000

00001

+11101

11110

11101

+00011

00000

00001

+11101

11110

11100

+00011

11111

+00011

00010

1110

110

1100

100

1001

001

0010

010

0100

Divide 14 = 1110
2
 by 3 = 11

2
. B always contains 0011

2
.

step 1(i-b): shift.

step 1(ii-b): subtract b (add two’s complement).

step 1(iii): P is negative, so set quotient bit to 0.

step 2(i-a): shift.

step 2(ii-a): add b.

step 2(iii): P is nonnegative, so set quotient bit to 1.

step 3(i-b): shift.

step 3(ii-b): subtract b.

step 3(iii): P is negative, so set quotient bit to 0.

step 4(i-a): shift.

step 4(ii-a): add b.

step 4(iii): P is negative, so set quotient bit to 0.

Remainder is negative, so do final restore step.

The quotient is 0100
2
 and the remainder is 00010

2
.

(b)

(a)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.2 Basic Techniques of Integer Arithmetic ■ J-7

algorithm, part (i) computes 2rk and then part (ii) 2rk − 2nb (2nb since b is sub-
tracted from the left half). If 2rk − 2nb ≥ 0, both algorithms end the step with
identical values in (P,A). If 2rk − 2nb < 0, then the restoring algorithm restores
this to 2rk, and the next step begins by computing rres = 2(2rk) − 2nb. In the non-
restoring algorithm, 2rk − 2nb is kept as a negative number, and in the next step
rnonres = 2(2rk − 2nb) + 2nb = 4rk − 2nb = rres. Thus (P,A) has the same bits in both
algorithms.

If a and b are unsigned n-bit numbers, hence in the range 0 ≤ a,b ≤ 2n − 1,
then the multiplier in Figure J.2 will work if register P is n bits long. However, for
division, P must be extended to n + 1 bits in order to detect the sign of P. Thus the
adder must also have n + 1 bits.

Why would anyone implement restoring division, which uses the same hard-
ware as nonrestoring division (the control is slightly different) but involves an
extra addition? In fact, the usual implementation for restoring division doesn’t
actually perform an add in step (iv). Rather, the sign resulting from the sub-
traction is tested at the output of the adder, and only if the sum is nonnegative is it
loaded back into the P register.

As a final point, before beginning to divide, the hardware must check to see
whether the divisor is 0.

Signed Numbers

There are four methods commonly used to represent signed n-bit numbers: sign
magnitude, two’s complement, one’s complement, and biased. In the sign magni-
tude system, the high-order bit is the sign bit, and the low-order n − 1 bits are the
magnitude of the number. In the two’s complement system, a number and its neg-
ative add up to 2n. In one’s complement, the negative of a number is obtained by
complementing each bit (or, alternatively, the number and its negative add up to
2n − 1). In each of these three systems, nonnegative numbers are represented in
the usual way. In a biased system, nonnegative numbers do not have their usual
representation. Instead, all numbers are represented by first adding them to the
bias and then encoding this sum as an ordinary unsigned number. Thus, a nega-
tive number k can be encoded as long as k + bias ≥ 0. A typical value for the bias
is 2n–1.

Example Using 4-bit numbers (n = 4), if k = 3 (or in binary, k = 00112), how is −k
expressed in each of these formats?

Answer In signed magnitude, the leftmost bit in k = 00112 is the sign bit, so flip it to 1: −k
is represented by 10112. In two’s complement, k + 11012 = 2n = 16. So −k is rep-
resented by 11012. In one’s complement, the bits of k = 00112 are flipped, so −k
is represented by 11002. For a biased system, assuming a bias of 2n−1 = 8, k is
represented by k + bias = 10112, and −k by −k + bias = 01012.

J-8 ■ Appendix J Computer Arithmetic

The most widely used system for representing integers, two’s complement, is
the system we will use here. One reason for the popularity of two’s complement
is that it makes signed addition easy: Simply discard the carry-out from the high-
order bit. To add 5 + −2, for example, add 01012 and 11102 to obtain 00112,
resulting in the correct value of 3. A useful formula for the value of a two’s com-
plement number an–1an–2 ⋅ ⋅ ⋅ a1a0 is

J.2.3 −an–12n–1 + an–22n–2 + ⋅ ⋅ ⋅ + a121 + a0

As an illustration of this formula, the value of 11012 as a 4-bit two’s complement
number is −1⋅23 + 1⋅22 + 0⋅21 + 1⋅20 = −8 + 4 + 1 = −3, confirming the result of
the example above.

Overflow occurs when the result of the operation does not fit in the represen-
tation being used. For example, if unsigned numbers are being represented using
4 bits, then 6 = 01102 and 11 = 10112. Their sum (17) overflows because its
binary equivalent (100012) doesn’t fit into 4 bits. For unsigned numbers, detect-
ing overflow is easy; it occurs exactly when there is a carry-out of the most-
significant bit. For two’s complement, things are trickier: Overflow occurs
exactly when the carry into the high-order bit is different from the (to be dis-
carded) carry-out of the high-order bit. In the example of 5 + −2 above, a 1 is car-
ried both into and out of the leftmost bit, avoiding overflow.

Negating a two’s complement number involves complementing each bit and
then adding 1. For instance, to negate 00112, complement it to get 11002 and then
add 1 to get 11012. Thus, to implement a − b using an adder, simply feed a and b
(where b is the number obtained by complementing each bit of b) into the adder
and set the low-order, carry-in bit to 1. This explains why the rightmost adder in
Figure J.1 is a full adder.

Multiplying two’s complement numbers is not quite as simple as adding
them. The obvious approach is to convert both operands to be nonnegative, do an
unsigned multiplication, and then (if the original operands were of opposite
signs) negate the result. Although this is conceptually simple, it requires extra
time and hardware. Here is a better approach: Suppose that we are multiplying a
times b using the hardware shown in Figure J.2(a). Register A is loaded with the
number a; B is loaded with b. Since the content of register B is always b, we will
use B and b interchangeably. If B is potentially negative but A is nonnegative, the
only change needed to convert the unsigned multiplication algorithm into a two’s
complement one is to ensure that when P is shifted, it is shifted arithmetically;
that is, the bit shifted into the high-order bit of P should be the sign bit of P
(rather than the carry-out from the addition). Note that our n-bit-wide adder will
now be adding n-bit two’s complement numbers between −2n–1 and 2n–1 − 1.

Next, suppose a is negative. The method for handling this case is called Booth
recoding. Booth recoding is a very basic technique in computer arithmetic and
will play a key role in Section J.9. The algorithm on page J-4 computes a × b by
examining the bits of a from least significant to most significant. For example, if
a = 7 = 01112, then step (i) will successively add B, add B, add B, and add 0.
Booth recoding “recodes” the number 7 as 8 − 1 = 10002 − 00012 = 1001, where

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.2 Basic Techniques of Integer Arithmetic ■ J-9

1 represents −1. This gives an alternative way to compute a × b, namely, succes-
sively subtract B, add 0, add 0, and add B. This is more complicated than the
unsigned algorithm on page J-4, since it uses both addition and subtraction. The
advantage shows up for negative values of a. With the proper recoding, we can
treat a as though it were unsigned. For example, take a = −4 = 11002. Think of
11002 as the unsigned number 12, and recode it as 12 = 16 − 4 = 100002 − 01002
= 10100. If the multiplication algorithm is only iterated n times (n = 4 in this
case), the high-order digit is ignored, and we end up subtracting 01002 = 4 times
the multiplier—exactly the right answer. This suggests that multiplying using a
recoded form of a will work equally well for both positive and negative numbers.
And, indeed, to deal with negative values of a, all that is required is to sometimes
subtract b from P, instead of adding either b or 0 to P. Here are the precise rules:
If the initial content of A is an–1 ⋅ ⋅ ⋅ a0, then at the ith multiply step the low-order
bit of register A is ai , and step (i) in the multiplication algorithm becomes:

I. If ai = 0 and ai–1 = 0, then add 0 to P.

II. If ai = 0 and ai–1 = 1, then add B to P.

III. If ai = 1 and ai–1 = 0, then subtract B from P.

IV. If ai = 1 and ai–1 = 1, then add 0 to P.

For the first step, when i = 0, take ai–1 to be 0.

Example When multiplying −6 times −5, what is the sequence of values in the (P,A)
register pair?

Answer See Figure J.4.

Figure J.4 Numerical example of Booth recoding. Multiplication of a = –6 by b = –5 to
get 30.

0000

0000

0000

+ 0101

0101

0010

+ 1011

1101

1110

+ 0101

0011

0001

1010

1010

0101

0101

1010

1010

1101

1101

1110

Put –6 = 1010
2
 into A, –5 = 1011

2
 into B.

step 1(i): a
0
 = a

–1
 = 0, so from rule I add 0.

step 1(ii): shift.

step 2(i): a
1
 = 1, a

0
 = 0. Rule III says subtract b (or add –b = –1011

2
 = 0101

2
).

step 2(ii): shift.

step 3(i): a
2
 = 0, a

1
 = 1. Rule II says add b (1011).

step 3(ii): shift. (Arithmetic shift—load 1 into leftmost bit.)

step 4(i): a
3
 = 1, a

2
 = 0. Rule III says subtract b.

step 4(ii): shift. Final result is 00011110
2
 = 30.

P A

J-10 ■ Appendix J Computer Arithmetic

The four prior cases can be restated as saying that in the ith step you should
add (ai–1 − ai)B to P. With this observation, it is easy to verify that these rules
work, because the result of all the additions is

Using Equation J.2.3 (page J-8) together with a−1 = 0, the right-hand side is seen
to be the value of b × a as a two’s complement number.

The simplest way to implement the rules for Booth recoding is to extend the A
register one bit to the right so that this new bit will contain ai–1. Unlike the naive
method of inverting any negative operands, this technique doesn’t require extra
steps or any special casing for negative operands. It has only slightly more control
logic. If the multiplier is being shared with a divider, there will already be the
capability for subtracting b, rather than adding it. To summarize, a simple method
for handling two’s complement multiplication is to pay attention to the sign of P
when shifting it right, and to save the most recently shifted-out bit of A to use in
deciding whether to add or subtract b from P.

Booth recoding is usually the best method for designing multiplication hard-
ware that operates on signed numbers. For hardware that doesn’t directly imple-
ment it, however, performing Booth recoding in software or microcode is usually
too slow because of the conditional tests and branches. If the hardware supports
arithmetic shifts (so that negative b is handled correctly), then the following
method can be used. Treat the multiplier a as if it were an unsigned number, and
perform the first n − 1 multiply steps using the algorithm on page J-4. If a < 0 (in
which case there will be a 1 in the low-order bit of the A register at this point),
then subtract b from P; otherwise (a ≥ 0), neither add nor subtract. In either case,
do a final shift (for a total of n shifts). This works because it amounts to multiply-
ing b by −an–1 2

n–1 + ⋅ ⋅ ⋅ + a12 + a0, which is the value of an–1 ⋅ ⋅ ⋅ a0 as a two’s
complement number by Equation J.2.3. If the hardware doesn’t support arithme-
tic shift, then converting the operands to be nonnegative is probably the best
approach.

Two final remarks: A good way to test a signed-multiply routine is to try
−2n–1 × −2n–1, since this is the only case that produces a 2n − 1 bit result. Unlike
multiplication, division is usually performed in hardware by converting the oper-
ands to be nonnegative and then doing an unsigned divide. Because division is
substantially slower (and less frequent) than multiplication, the extra time used to
manipulate the signs has less impact than it does on multiplication.

Systems Issues

When designing an instruction set, a number of issues related to integer arithme-
tic need to be resolved. Several of them are discussed here.

First, what should be done about integer overflow? This situation is compli-
cated by the fact that detecting overflow differs depending on whether the operands

b(ai 1– ai–)2i

i 0=

n 1–

∑ b an 1– 2
n 1–

an 2– 2
n 2–

. . . a12 a0+ + + +–() ba 1–+=

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.2 Basic Techniques of Integer Arithmetic ■ J-11

are signed or unsigned integers. Consider signed arithmetic first. There are three
approaches: Set a bit on overflow, trap on overflow, or do nothing on overflow. In
the last case, software has to check whether or not an overflow occurred. The most
convenient solution for the programmer is to have an enable bit. If this bit is turned
on, then overflow causes a trap. If it is turned off, then overflow sets a bit (or, alter-
natively, have two different add instructions). The advantage of this approach is that
both trapping and nontrapping operations require only one instruction. Further-
more, as we will see in Section J.7, this is analogous to how the IEEE floating-point
standard handles floating-point overflow. Figure J.5 shows how some common
machines treat overflow.

What about unsigned addition? Notice that none of the architectures in Figure
J.5 traps on unsigned overflow. The reason for this is that the primary use of
unsigned arithmetic is in manipulating addresses. It is convenient to be able to
subtract from an unsigned address by adding. For example, when n = 4, we can
subtract 2 from the unsigned address 10 = 10102 by adding 14 = 11102. This gen-
erates an overflow, but we would not want a trap to be generated.

A second issue concerns multiplication. Should the result of multiplying two
n-bit numbers be a 2n-bit result, or should multiplication just return the low-order
n bits, signaling overflow if the result doesn’t fit in n bits? An argument in favor
of an n-bit result is that in virtually all high-level languages, multiplication is an
operation in which arguments are integer variables and the result is an integer
variable of the same type. Therefore, compilers won’t generate code that utilizes
a double-precision result. An argument in favor of a 2n-bit result is that it can be
used by an assembly language routine to substantially speed up multiplication of
multiple-precision integers (by about a factor of 3).

A third issue concerns machines that want to execute one instruction every
cycle. It is rarely practical to perform a multiplication or division in the same
amount of time that an addition or register-register move takes. There are three
possible approaches to this problem. The first is to have a single-cycle multiply-
step instruction. This might do one step of the Booth algorithm. The second

Machine Trap on signed overflow?
Trap on unsigned
overflow?

Set bit on signed
overflow?

Set bit on unsigned
overflow?

VAX If enable is on No Yes. Add sets V bit. Yes. Add sets C bit.

IBM 370 If enable is on No Yes. Add sets cond
code.

Yes. Logical add sets
cond code.

Intel 8086 No No Yes. Add sets V bit. Yes. Add sets C bit.

MIPS R3000 Two add instructions; one
always traps, the other
never does.

No No. Software must deduce it from sign of
operands and result.

SPARC No No Addcc sets V bit.
Add does not.

Addcc sets C bit. Add
does not.

Figure J.5 Summary of how various machines handle integer overflow. Both the 8086 and SPARC have an
instruction that traps if the V bit is set, so the cost of trapping on overflow is one extra instruction.

J-12 ■ Appendix J Computer Arithmetic

approach is to do integer multiplication in the floating-point unit and have it be
part of the floating-point instruction set. (This is what DLX does.) The third
approach is to have an autonomous unit in the CPU do the multiplication. In this
case, the result either can be guaranteed to be delivered in a fixed number of
cycles—and the compiler charged with waiting the proper amount of time—or
there can be an interlock. The same comments apply to division as well. As
examples, the original SPARC had a multiply-step instruction but no divide-step
instruction, while the MIPS R3000 has an autonomous unit that does multiplica-
tion and division (newer versions of the SPARC architecture added an integer
multiply instruction). The designers of the HP Precision Architecture did an
especially thorough job of analyzing the frequency of the operands for multi-
plication and division, and they based their multiply and divide steps accordingly.
(See Magenheimer et al. [1988] for details.)

The final issue involves the computation of integer division and remainder for
negative numbers. For example, what is −5 DIV 3 and −5 MOD 3? When comput-
ing x DIV y and x MOD y, negative values of x occur frequently enough to be worth
some careful consideration. (On the other hand, negative values of y are quite
rare.) If there are built-in hardware instructions for these operations, they should
correspond to what high-level languages specify. Unfortunately, there is no
agreement among existing programming languages. See Figure J.6.

One definition for these expressions stands out as clearly superior, namely,
x DIV y = ⎣x/y⎦, so that 5 DIV 3 = 1 and −5 DIV 3 = −2. And MOD should satisfy
x = (x DIV y) × y + x MOD y, so that x MOD y ≥ 0. Thus, 5 MOD 3 = 2, and −5 MOD

3 = 1. Some of the many advantages of this definition are as follows:

1. A calculation to compute an index into a hash table of size N can use MOD N
and be guaranteed to produce a valid index in the range from 0 to N − 1.

2. In graphics, when converting from one coordinate system to another, there is
no “glitch” near 0. For example, to convert from a value x expressed in a sys-
tem that uses 100 dots per inch to a value y on a bitmapped display with 70
dots per inch, the formula y = (70 × x) DIV 100 maps one or two x coordinates
into each y coordinate. But if DIV were defined as in Pascal to be x/y rounded
to 0, then 0 would have three different points (−1, 0, 1) mapped into it.

3. x MOD 2k is the same as performing a bitwise AND with a mask of k bits, and x
DIV 2k is the same as doing a k-bit arithmetic right shift.

Language Division Remainder

FORTRAN −5/3 = −1 MOD(−5, 3) = −2

Pascal −5 DIV 3 = −1 −5 MOD 3 = 1

Ada −5/3 = −1 −5 MOD 3 = 1
−5 REM 3 = −2

C −5/3 undefined −5 % 3 undefined

Modula-3 −5 DIV 3 = −2 −5 MOD 3 = 1

Figure J.6 Examples of integer division and integer remainder in various program-
ming languages.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.3 Floating Point ■ J-13

Finally, a potential pitfall worth mentioning concerns multiple-precision
addition. Many instruction sets offer a variant of the add instruction that adds
three operands: two n-bit numbers together with a third single-bit number. This
third number is the carry from the previous addition. Since the multiple-precision
number will typically be stored in an array, it is important to be able to increment
the array pointer without destroying the carry bit.

Many applications require numbers that aren’t integers. There are a number of
ways that nonintegers can be represented. One is to use fixed point; that is, use
integer arithmetic and simply imagine the binary point somewhere other than just
to the right of the least-significant digit. Adding two such numbers can be done
with an integer add, whereas multiplication requires some extra shifting. Other
representations that have been proposed involve storing the logarithm of a num-
ber and doing multiplication by adding the logarithms, or using a pair of integers
(a,b) to represent the fraction a/b. However, only one noninteger representation
has gained widespread use, and that is floating point. In this system, a computer
word is divided into two parts, an exponent and a significand. As an example, an
exponent of −3 and a significand of 1.5 might represent the number 1.5 × 2–3

= 0.1875. The advantages of standardizing a particular representation are obvi-
ous. Numerical analysts can build up high-quality software libraries, computer
designers can develop techniques for implementing high-performance hardware,
and hardware vendors can build standard accelerators. Given the predominance
of the floating-point representation, it appears unlikely that any other representa-
tion will come into widespread use.

The semantics of floating-point instructions are not as clear-cut as the seman-
tics of the rest of the instruction set, and in the past the behavior of floating-point
operations varied considerably from one computer family to the next. The varia-
tions involved such things as the number of bits allocated to the exponent and sig-
nificand, the range of exponents, how rounding was carried out, and the actions
taken on exceptional conditions like underflow and overflow. Computer architec-
ture books used to dispense advice on how to deal with all these details, but fortu-
nately this is no longer necessary. That’s because the computer industry is rapidly
converging on the format specified by IEEE standard 754-1985 (also an interna-
tional standard, IEC 559). The advantages of using a standard variant of floating
point are similar to those for using floating point over other noninteger represen-
tations.

IEEE arithmetic differs from many previous arithmetics in the following
major ways:

1. When rounding a “halfway” result to the nearest floating-point number, it
picks the one that is even.

2. It includes the special values NaN, ∞, and −∞.

J.3 Floating Point

J-14 ■ Appendix J Computer Arithmetic

3. It uses denormal numbers to represent the result of computations whose value
is less than 1.0 × 2Emin.

4. It rounds to nearest by default, but it also has three other rounding modes.

5. It has sophisticated facilities for handling exceptions.

To elaborate on (1), note that when operating on two floating-point numbers,
the result is usually a number that cannot be exactly represented as another float-
ing-point number. For example, in a floating-point system using base 10 and two
significant digits, 6.1 × 0.5 = 3.05. This needs to be rounded to two digits. Should
it be rounded to 3.0 or 3.1? In the IEEE standard, such halfway cases are rounded
to the number whose low-order digit is even. That is, 3.05 rounds to 3.0, not 3.1.
The standard actually has four rounding modes. The default is round to nearest,
which rounds ties to an even number as just explained. The other modes are
round toward 0, round toward +∞, and round toward –∞.

We will elaborate on the other differences in following sections. For further
reading, see IEEE [1985], Cody et al. [1984], and Goldberg [1991].

Special Values and Denormals

Probably the most notable feature of the standard is that by default a computation
continues in the face of exceptional conditions, such as dividing by 0 or taking
the square root of a negative number. For example, the result of taking the square
root of a negative number is a NaN (Not a Number), a bit pattern that does not
represent an ordinary number. As an example of how NaNs might be useful, con-
sider the code for a zero finder that takes a function F as an argument and evalu-
ates F at various points to determine a zero for it. If the zero finder accidentally
probes outside the valid values for F, then F may well cause an exception. Writ-
ing a zero finder that deals with this case is highly language and operating-system
dependent, because it relies on how the operating system reacts to exceptions and
how this reaction is mapped back into the programming language. In IEEE arith-
metic it is easy to write a zero finder that handles this situation and runs on many
different systems. After each evaluation of F, it simply checks to see whether F
has returned a NaN; if so, it knows it has probed outside the domain of F.

In IEEE arithmetic, if the input to an operation is a NaN, the output is NaN
(e.g., 3 + NaN = NaN). Because of this rule, writing floating-point subroutines
that can accept NaN as an argument rarely requires any special case checks. For
example, suppose that arccos is computed in terms of arctan, using the formula
arccos x = 2 arctan(). If arctan handles an argument of NaN
properly, arccos will automatically do so, too. That’s because if x is a NaN, 1 + x,
1 − x, (1 + x)/(1 − x), and will also be NaNs. No checking for
NaNs is required.

While the result of is a NaN, the result of 1/0 is not a NaN, but +∞, which
is another special value. The standard defines arithmetic on infinities (there are both

1 x–() 1 x+()⁄

1 x–() 1 x+()⁄

1–

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.3 Floating Point ■ J-15

+∞ and –∞) using rules such as 1/∞ = 0. The formula arccos x = 2 arc-
tan() illustrates how infinity arithmetic can be used. Since arctan
x asymptotically approaches π /2 as x approaches ∞, it is natural to define arctan(∞)
= π/2, in which case arccos(−1) will automatically be computed correctly as 2 arc-
tan(∞) = π.

The final kind of special values in the standard are denormal numbers. In
many floating-point systems, if Emin is the smallest exponent, a number less than
1.0 × 2Emin

 cannot be represented, and a floating-point operation that results in a
number less than this is simply flushed to 0. In the IEEE standard, on the other
hand, numbers less than 1.0 × 2Emin are represented using significands less than 1.
This is called gradual underflow. Thus, as numbers decrease in magnitude below
2Emin, they gradually lose their significance and are only represented by 0 when all
their significance has been shifted out. For example, in base 10 with four
significant figures, let x = 1.234 × 10Emin. Then, x/10 will be rounded to 0.123 ×
10Emin, having lost a digit of precision. Similarly x/100 rounds to 0.012 × 10Emin,
and x/1000 to 0.001 × 10Emin, while x/10000 is finally small enough to be rounded
to 0. Denormals make dealing with small numbers more predictable by maintain-
ing familiar properties such as x = y ⇔ x − y = 0. For example, in a flush-to-zero
system (again in base 10 with four significant digits), if x = 1.256 × 10Emin and y =
1.234 × 10Emin, then x − y = 0.022 × 10Emin, which flushes to zero. So even though
x ≠ y, the computed value of x − y = 0. This never happens with gradual underflow.
In this example, x − y = 0.022 × 10Emin is a denormal number, and so the computa-
tion of x − y is exact.

Representation of Floating-Point Numbers

Let us consider how to represent single-precision numbers in IEEE arithmetic.
Single-precision numbers are stored in 32 bits: 1 for the sign, 8 for the exponent,
and 23 for the fraction. The exponent is a signed number represented using the
bias method (see the subsection “Signed Numbers,” page J-7) with a bias of 127.
The term biased exponent refers to the unsigned number contained in bits 1
through 8, and unbiased exponent (or just exponent) means the actual power to
which 2 is to be raised. The fraction represents a number less than 1, but the sig-
nificand of the floating-point number is 1 plus the fraction part. In other words, if
e is the biased exponent (value of the exponent field) and f is the value of the frac-
tion field, the number being represented is 1. f × 2e–127.

Example What single-precision number does the following 32-bit word represent?

1 10000001 01000000000000000000000

Answer Considered as an unsigned number, the exponent field is 129, making the value
of the exponent 129 − 127 = 2. The fraction part is .012 = .25, making the signifi-
cand 1.25. Thus, this bit pattern represents the number −1.25 × 22 = −5.

1 x–() 1 x+()⁄

J-16 ■ Appendix J Computer Arithmetic

The fractional part of a floating-point number (.25 in the example above) must
not be confused with the significand, which is 1 plus the fractional part. The lead-
ing 1 in the significand 1. f does not appear in the representation; that is, the leading
bit is implicit. When performing arithmetic on IEEE format numbers, the fraction
part is usually unpacked, which is to say the implicit 1 is made explicit.

Figure J.7 summarizes the parameters for single (and other) precisions. It
shows the exponents for single precision to range from –126 to 127; accordingly,
the biased exponents range from 1 to 254. The biased exponents of 0 and 255 are
used to represent special values. This is summarized in Figure J.8. When the
biased exponent is 255, a zero fraction field represents infinity, and a nonzero
fraction field represents a NaN. Thus, there is an entire family of NaNs. When the
biased exponent and the fraction field are 0, then the number represented is 0.
Because of the implicit leading 1, ordinary numbers always have a significand
greater than or equal to 1. Thus, a special convention such as this is required to
represent 0. Denormalized numbers are implemented by having a word with a
zero exponent field represent the number 0. f × 2Emin.

The primary reason why the IEEE standard, like most other floating-point
formats, uses biased exponents is that it means nonnegative numbers are ordered
in the same way as integers. That is, the magnitude of floating-point numbers can
be compared using an integer comparator. Another (related) advantage is that 0 is
represented by a word of all 0s. The downside of biased exponents is that adding
them is slightly awkward, because it requires that the bias be subtracted from
their sum.

Single Single extended Double Double extended

p (bits of precision) 24 ≥32 53 ≥64

Emax 127 ≥1023 1023 ≥16383

Emin −126 ≤−1022 −1022 ≤−16382

Exponent bias 127 1023

Figure J.7 Format parameters for the IEEE 754 floating-point standard. The first row
gives the number of bits in the significand. The blanks are unspecified parameters.

Exponent Fraction Represents

e = Emin − 1 f = 0 ±0

e = Emin − 1 f ≠ 0 0.f × 2
Emin

Emin ≤ e ≤ Emax — 1.f × 2e

e = Emax + 1 f = 0 ±∞
e = Emax + 1 f ≠ 0 NaN

Figure J.8 Representation of special values. When the exponent of a number falls
outside the range Emin ≤ e ≤ Emax, then that number has a special interpretation as indi-
cated in the table.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.4 Floating-Point Multiplication ■ J-17

The simplest floating-point operation is multiplication, so we discuss it first. A
binary floating-point number x is represented as a significand and an exponent,
x = s × 2e. The formula

(s1 × 2e1) • (s2 × 2e2) = (s1 • s2) × 2e1+e2

shows that a floating-point multiply algorithm has several parts. The first part
multiplies the significands using ordinary integer multiplication. Because floating-
point numbers are stored in sign magnitude form, the multiplier need only deal
with unsigned numbers (although we have seen that Booth recoding handles
signed two’s complement numbers painlessly). The second part rounds the result.
If the significands are unsigned p-bit numbers (e.g., p = 24 for single precision),
then the product can have as many as 2p bits and must be rounded to a p-bit num-
ber. The third part computes the new exponent. Because exponents are stored
with a bias, this involves subtracting the bias from the sum of the biased
exponents.

Example How does the multiplication of the single-precision numbers

1 10000010 000. . . = –1 × 23

0 10000011 000. . . = 1 × 24

proceed in binary?

Answer When unpacked, the significands are both 1.0, their product is 1.0, and so the
result is of the form:

1 ???????? 000. . .

To compute the exponent, use the formula:

biased exp (e1 + e2) = biased exp(e1) + biased exp(e2) − bias

From Figure J.7, the bias is 127 = 011111112, so in two’s complement
–127 is 100000012. Thus, the biased exponent of the product is

 10000010
 10000011

+ 10000001
 10000110

Since this is 134 decimal, it represents an exponent of 134 − bias = 134 − 127 = 7,
as expected.

The interesting part of floating-point multiplication is rounding. Some of the
different cases that can occur are illustrated in Figure J.9. Since the cases are sim-
ilar in all bases, the figure uses human-friendly base 10, rather than base 2.

J.4 Floating-Point Multiplication

J-18 ■ Appendix J Computer Arithmetic

In the figure, p = 3, so the final result must be rounded to three significant
digits. The three most-significant digits are in boldface. The fourth most-signifi-
cant digit (marked with an arrow) is the round digit, denoted by r.

If the round digit is less than 5, then the bold digits represent the rounded
result. If the round digit is greater than 5 (as in part (a)), then 1 must be added to
the least-significant bold digit. If the round digit is exactly 5 (as in part (b)), then
additional digits must be examined to decide between truncation or incrementing
by 1. It is only necessary to know if any digits past 5 are nonzero. In the algo-
rithm below, this will be recorded in a sticky bit. Comparing parts (a) and (b) in
the figure shows that there are two possible positions for the round digit (relative
to the least-significant digit of the product). Case (c) illustrates that, when adding
1 to the least-significant bold digit, there may be a carry-out. When this happens,
the final significand must be 10.0.

There is a straightforward method of handling rounding using the multiplier
of Figure J.2 (page J-4) together with an extra sticky bit. If p is the number of bits
in the significand, then the A, B, and P registers should be p bits wide. Multiply
the two significands to obtain a 2p-bit product in the (P,A) registers (see Figure
J.10). During the multiplication, the first p − 2 times a bit is shifted into the A
register, OR it into the sticky bit. This will be used in halfway cases. Let s repre-
sent the sticky bit, g (for guard) the most-significant bit of A, and r (for round)
the second most-significant bit of A. There are two cases:

1. The high-order bit of P is 0. Shift P left 1 bit, shifting in the g bit from A.
Shifting the rest of A is not necessary.

2. The high-order bit of P is 1. Set s := s ∨ r and r := g, and add 1 to the expo-
nent.

Now if r = 0, P is the correctly rounded product. If r = 1 and s = 1, then P + 1
is the product (where by P + 1 we mean adding 1 to the least-significant bit of P).

Figure J.9 Examples of rounding a multiplication. Using base 10 and p = 3, parts (a)
and (b) illustrate that the result of a multiplication can have either 2p − 1 or 2p digits;
hence, the position where a 1 is added when rounding up (just left of the arrow) can
vary. Part (c) shows that rounding up can cause a carry-out.

(a)

(b)

(c)

1.23
6.78

8.3394

2.83
4.47

12.6501

1.28
7.81

09.9968

r = 9 > 5 so round up
rounds to 8.34

r = 5 and a following digit = 0 so round up
rounds to 1.27 × 101

r = 6 > 5 so round up
rounds to 1.00 × 101

×

×

×

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.4 Floating-Point Multiplication ■ J-19

If r = 1 and s = 0, we are in a halfway case and round up according to the least-
significant bit of P. As an example, apply the decimal version of these rules to
Figure J.9(b). After the multiplication, P = 126 and A = 501, with g = 5, r = 0
and s = 1. Since the high-order digit of P is nonzero, case (2) applies and r := g,
so that r = 5, as the arrow indicates in Figure J.9. Since r = 5, we could be in a
halfway case, but s = 1 indicates that the result is in fact slightly over 1/2, so
add 1 to P to obtain the correctly rounded product.

The precise rules for rounding depend on the rounding mode and are given in
Figure J.11. Note that P is nonnegative, that is, it contains the magnitude of the
result. A good discussion of more efficient ways to implement rounding is in
Santoro, Bewick, and Horowitz [1989].

Example In binary with p = 4, show how the multiplication algorithm computes the prod-
uct −5 × 10 in each of the four rounding modes.

Answer In binary, −5 is −1.0102 × 22 and 10 = 1.0102 × 23. Applying the integer multipli-
cation algorithm to the significands gives 011001002, so P = 01102, A = 01002,
g = 0, r = 1, and s = 0. The high-order bit of P is 0, so case (1) applies. Thus, P
becomes 11002, and since the result is negative, Figure J.11 gives:

round to −∞ 11012 add 1 since r ∨ s = 1 ⁄ 0 = TRUE

round to +∞ 11002

round to 0 11002

round to nearest 11002 no add since r ∧ p0 = 1 ∧ 0 = FALSE and

r ∧ s = 1 ∧ 0 = FALSE

The exponent is 2 + 3 = 5, so the result is −1.1002 × 25
 = −48, except when round-

ing to −∞, in which case it is −1.1012 × 25 = −52.

Figure J.10 The two cases of the floating-point multiply algorithm. The top line
shows the contents of the P and A registers after multiplying the significands, with
p = 6. In case (1), the leading bit is 0, and so the P register must be shifted. In case (2),
the leading bit is 1, no shift is required, but both the exponent and the round and sticky
bits must be adjusted. The sticky bit is the logical OR of the bits marked s.

Product

Case (1): x
0
 = 0

Shift needed

Case (2): x
0
 = 1

Increment exponent

Adjust binary point,
add 1 to exponent to compensate

rnd sticky

rnd sticky x2 x3 x4 x5x0 . x1

x1 . x2 x3 x4 x5 g

x0 x1 . x2 x3 x4 x5 g r ss s s

P A

J-20 ■ Appendix J Computer Arithmetic

Overflow occurs when the rounded result is too large to be represented. In
single precision, this occurs when the result has an exponent of 128 or higher. If
e1 and e2 are the two biased exponents, then 1 ≤ ei ≤ 254, and the exponent calcu-
lation e1 + e2 − 127 gives numbers between 1 + 1 − 127 and 254 + 254 − 127, or
between −125 and 381. This range of numbers can be represented using 9 bits. So
one way to detect overflow is to perform the exponent calculations in a 9-bit
adder (see Exercise J.12). Remember that you must check for overflow after
rounding—the example in Figure J.9(c) shows that this can make a difference.

Denormals

Checking for underflow is somewhat more complex because of denormals. In sin-
gle precision, if the result has an exponent less than −126, that does not necessar-
ily indicate underflow, because the result might be a denormal number. For
example, the product of (1 × 2–64) with (1 × 2–65) is 1 × 2–129, and −129 is below
the legal exponent limit. But this result is a valid denormal number, namely, 0.125
× 2–126. In general, when the unbiased exponent of a product dips below −126, the
resulting product must be shifted right and the exponent incremented until the
exponent reaches −126. If this process causes the entire significand to be shifted
out, then underflow has occurred. The precise definition of underflow is some-
what subtle—see Section J.7 for details.

When one of the operands of a multiplication is denormal, its significand will
have leading zeros, and so the product of the significands will also have leading
zeros. If the exponent of the product is less than –126, then the result is denormal,
so right-shift and increment the exponent as before. If the exponent is greater
than –126, the result may be a normalized number. In this case, left-shift the
product (while decrementing the exponent) until either it becomes normalized or
the exponent drops to –126.

Denormal numbers present a major stumbling block to implementing floating-
point multiplication, because they require performing a variable shift in the
multiplier, which wouldn’t otherwise be needed. Thus, high-performance, float-
ing-point multipliers often do not handle denormalized numbers, but instead trap,

Rounding mode Sign of result ≥ 0 Sign of result < 0

–∞ +1 if r ∨ s

+∞ +1 if r ∨ s
0

Nearest +1 if r ∧ p0 or r ∧ s +1 if r ∧ p0 or r ∧ s

Figure J.11 Rules for implementing the IEEE rounding modes. Let S be the magni-
tude of the preliminary result. Blanks mean that the p most-significant bits of S are the
actual result bits. If the condition listed is true, add 1 to the pth most-significant bit of S.
The symbols r and s represent the round and sticky bits, while p0 is the pth most-
significant bit of S.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.5 Floating-Point Addition ■ J-21

letting software handle them. A few practical codes frequently underflow, even
when working properly, and these programs will run quite a bit slower on systems
that require denormals to be processed by a trap handler.

So far we haven’t mentioned how to deal with operands of zero. This can be
handled by either testing both operands before beginning the multiplication or
testing the product afterward. If you test afterward, be sure to handle the case
0 × ∞ properly: This results in NaN, not 0. Once you detect that the result is 0, set
the biased exponent to 0. Don’t forget about the sign. The sign of a product is the
XOR of the signs of the operands, even when the result is 0.

Precision of Multiplication

In the discussion of integer multiplication, we mentioned that designers must
decide whether to deliver the low-order word of the product or the entire product.
A similar issue arises in floating-point multiplication, where the exact product
can be rounded to the precision of the operands or to the next higher precision. In
the case of integer multiplication, none of the standard high-level languages con-
tains a construct that would generate a “single times single gets double” instruc-
tion. The situation is different for floating point. Many languages allow assigning
the product of two single-precision variables to a double-precision one, and the
construction can also be exploited by numerical algorithms. The best-known case
is using iterative refinement to solve linear systems of equations.

Typically, a floating-point operation takes two inputs with p bits of precision and
returns a p-bit result. The ideal algorithm would compute this by first performing
the operation exactly, and then rounding the result to p bits (using the current
rounding mode). The multiplication algorithm presented in the previous section
follows this strategy. Even though hardware implementing IEEE arithmetic must
return the same result as the ideal algorithm, it doesn’t need to actually perform
the ideal algorithm. For addition, in fact, there are better ways to proceed. To see
this, consider some examples.

First, the sum of the binary 6-bit numbers 1.100112 and 1.100012 × 2–5:
When the summands are shifted so they have the same exponent, this is

1.10011
+ .0000110001

Using a 6-bit adder (and discarding the low-order bits of the second addend)
gives

 1.10011
 + .00001

 1.10100

J.5 Floating-Point Addition

J-22 ■ Appendix J Computer Arithmetic

The first discarded bit is 1. This isn’t enough to decide whether to round up. The
rest of the discarded bits, 0001, need to be examined. Or, actually, we just need to
record whether any of these bits are nonzero, storing this fact in a sticky bit just
as in the multiplication algorithm. So, for adding two p-bit numbers, a p-bit adder
is sufficient, as long as the first discarded bit (round) and the OR of the rest of the
bits (sticky) are kept. Then Figure J.11 can be used to determine if a roundup is
necessary, just as with multiplication. In the example above, sticky is 1, so a
roundup is necessary. The final sum is 1.101012.

Here’s another example:

 1.11011
+ .0101001

A 6-bit adder gives:

1.11011
+ .01010

 10.00101

Because of the carry-out on the left, the round bit isn’t the first discarded bit;
rather, it is the low-order bit of the sum (1). The discarded bits, 01, are OR’ed
together to make sticky. Because round and sticky are both 1, the high-order 6
bits of the sum, 10.00102, must be rounded up for the final answer of 10.00112.

Next, consider subtraction and the following example:

 1.00000
– .00000101111

The simplest way of computing this is to convert −.000001011112 to its two’s
complement form, so the difference becomes a sum:

 1.00000
 + 1.11111010001

Computing this sum in a 6-bit adder gives:

 1.00000
 + 1.11111

 0.11111

Because the top bits canceled, the first discarded bit (the guard bit) is needed to
fill in the least-significant bit of the sum, which becomes 0.1111102, and the sec-
ond discarded bit becomes the round bit. This is analogous to case (1) in the mul-
tiplication algorithm (see page J-19). The round bit of 1 isn’t enough to decide
whether to round up. Instead, we need to OR all the remaining bits (0001) into a
sticky bit. In this case, sticky is 1, so the final result must be rounded up to
0.111111. This example shows that if subtraction causes the most-significant bit
to cancel, then one guard bit is needed. It is natural to ask whether two guard bits

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.5 Floating-Point Addition ■ J-23

are needed for the case when the two most-significant bits cancel. The answer is
no, because if x and y are so close that the top two bits of x − y cancel, then x − y
will be exact, so guard bits aren’t needed at all.

To summarize, addition is more complex than multiplication because, depend-
ing on the signs of the operands, it may actually be a subtraction. If it is an addition,
there can be carry-out on the left, as in the second example. If it is subtraction, there
can be cancellation, as in the third example. In each case, the position of the round
bit is different. However, we don’t need to compute the exact sum and then round.
We can infer it from the sum of the high-order p bits together with the round and
sticky bits.

The rest of this section is devoted to a detailed discussion of the floating-
point addition algorithm. Let a1 and a2 be the two numbers to be added. The
notations ei and si are used for the exponent and significand of the addends ai.
This means that the floating-point inputs have been unpacked and that si has an
explicit leading bit. To add a1 and a2, perform these eight steps:

1. If e1< e2, swap the operands. This ensures that the difference of the exponents
satisfies d = e1 − e2 ≥ 0. Tentatively set the exponent of the result to e1.

2. If the signs of a1 and a2 differ, replace s2 by its two’s complement.

3. Place s2 in a p-bit register and shift it d = e1 − e2 places to the right (shifting in
1’s if s2 was complemented in the previous step). From the bits shifted out,
set g to the most-significant bit, set r to the next most-significant bit, and set
sticky to the OR of the rest.

4. Compute a preliminary significand S = s1 + s2 by adding s1 to the p-bit regis-
ter containing s2. If the signs of a1 and a2 are different, the most-significant
bit of S is 1, and there was no carry-out, then S is negative. Replace S with its
two’s complement. This can only happen when d = 0.

5. Shift S as follows. If the signs of a1 and a2 are the same and there was a carry-
out in step 4, shift S right by one, filling in the high-order position with 1 (the
carry-out). Otherwise, shift it left until it is normalized. When left-shifting, on
the first shift fill in the low-order position with the g bit. After that, shift in
zeros. Adjust the exponent of the result accordingly.

6. Adjust r and s. If S was shifted right in step 5, set r := low-order bit of S
before shifting and s := g OR r OR s. If there was no shift, set r := g, s := r OR

s. If there was a single left shift, don’t change r and s. If there were two or
more left shifts, r := 0, s := 0. (In the last case, two or more shifts can only
happen when a1 and a2 have opposite signs and the same exponent, in which
case the computation s1 + s2 in step 4 will be exact.)

7. Round S using Figure J.11; namely, if a table entry is nonempty, add 1 to the
low-order bit of S. If rounding causes carry-out, shift S right and adjust the
exponent. This is the significand of the result.

8. Compute the sign of the result. If a1 and a2 have the same sign, this is the sign
of the result. If a1 and a2 have different signs, then the sign of the result depends
on which of a1 or a2 is negative, whether there was a swap in step 1, and
whether S was replaced by its two’s complement in step 4. See Figure J.12.

J-24 ■ Appendix J Computer Arithmetic

Example Use the algorithm to compute the sum (−1.0012 × 2–2) + (−1.1112 × 20).

Answer s1 = 1.001, e1 = −2, s2 = 1.111, e2 = 0

1. e1 < e2, so swap. d = 2. Tentative exp = 0.

2. Signs of both operands negative, don’t negate s2.

3. Shift s2 (1.001 after swap) right by 2, giving s2 = .010, g = 0, r = 1, s = 0.

4. 1.111

 + .010
(1)0.001 S = 0.001, with a carry-out.

5. Carry-out, so shift S right, S = 1.000, exp = exp + 1, so exp = 1.

6. r = low-order bit of sum = 1, s = g ∨ r ∨ s = 0 ∨ 1 ∨ 0 = 1.

7. r AND s = TRUE, so Figure J.11 says round up, S = S + 1 or S = 1.001.

8. Both signs negative, so sign of result is negative. Final answer:
−S × 2exp = 1.0012 × 21.

Example Use the algorithm to compute the sum (−1.0102) + 1.1002.

Answer s1 = 1.010, e1 = 0, s2 = 1.100, e2 = 0

1. No swap, d = 0, tentative exp = 0.

2. Signs differ, replace s2 with 0.100.

3. d = 0, so no shift. r = g = s = 0.

4. 1.010

+ 0.100
 1.110 Signs are different, most-significant bit is 1, no carry-out, so

must two’s complement sum, giving S = 0.010.

swap compl sign(a1) sign(a2) sign(result)

Yes + – –

Yes – + +

No No + – +

No No – + –

No Yes + – –

No Yes – + +

Figure J.12 Rules for computing the sign of a sum when the addends have different
signs. The swap column refers to swapping the operands in step 1, while the compl col-
umn refers to performing a two’s complement in step 4. Blanks are “don’t care.”

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.5 Floating-Point Addition ■ J-25

5. Shift left twice, so S = 1.000, exp = exp − 2, or exp = −2.

6. Two left shifts, so r = g = s = 0.

7. No addition required for rounding.

8. Answer is sign × S × 2exp or sign × 1.000 × 2–2. Get sign from Figure J.12.
Since complement but no swap and sign(a1) is −, the sign of the sum is +.
Thus, the answer = 1.0002 × 2–2.

Speeding Up Addition

Let’s estimate how long it takes to perform the algorithm above. Step 2 may
require an addition, step 4 requires one or two additions, and step 7 may require an
addition. If it takes T time units to perform a p-bit add (where p = 24 for single
precision, 53 for double), then it appears the algorithm will take at least 4T time
units. But that is too pessimistic. If step 4 requires two adds, then a1 and a2
have the same exponent and different signs, but in that case the difference is exact,
so no roundup is required in step 7. Thus, only three additions will ever occur.
Similarly, it appears that a variable shift may be required both in step 3 and step 5.
But if |e1 − e2| ≤ 1, then step 3 requires a right shift of at most one place, so only
step 5 needs a variable shift. And, if |e1 − e2| > 1, then step 3 needs a variable shift,
but step 5 will require a left shift of at most one place. So only a single variable
shift will be performed. Still, the algorithm requires three sequential adds, which,
in the case of a 53-bit double-precision significand, can be rather time consuming.

A number of techniques can speed up addition. One is to use pipelining. The
“Putting It All Together” section gives examples of how some commercial chips
pipeline addition. Another method (used on the Intel 860 [Kohn and Fu 1989]) is
to perform two additions in parallel. We now explain how this reduces the latency
from 3T to T.

There are three cases to consider. First, suppose that both operands have the
same sign. We want to combine the addition operations from steps 4 and 7.
The position of the high-order bit of the sum is not known ahead of time, because
the addition in step 4 may or may not cause a carry-out. Both possibilities are
accounted for by having two adders. The first adder assumes the add in step 4
will not result in a carry-out. Thus, the values of r and s can be computed before
the add is actually done. If r and s indicate that a roundup is necessary, the first
adder will compute S = s1 + s2 + 1, where the notation +1 means adding 1 at the
position of the least-significant bit of s1. This can be done with a regular adder by
setting the low-order carry-in bit to 1. If r and s indicate no roundup, the adder
computes S = s1 + s2 as usual. One extra detail: When r = 1, s = 0, you will also
need to know the low-order bit of the sum, which can also be computed in
advance very quickly. The second adder covers the possibility that there will be
carry-out. The values of r and s and the position where the roundup 1 is added are
different from above, but again they can be quickly computed in advance. It is not
known whether there will be a carry-out until after the add is actually done, but
that doesn’t matter. By doing both adds in parallel, one adder is guaranteed to
reduce the correct answer.

J-26 ■ Appendix J Computer Arithmetic

The next case is when a1 and a2 have opposite signs but the same exponent.
The sum a1 + a2 is exact in this case (no roundup is necessary) but the sign isn’t
known until the add is completed. So don’t compute the two’s complement
(which requires an add) in step 2, but instead compute s1 + s2 + 1 and s1 + s2 + 1
in parallel. The first sum has the result of simultaneously complementing s1 and
computing the sum, resulting in s2 − s1. The second sum computes s1 − s2. One of
these will be nonnegative and hence the correct final answer. Once again, all the
additions are done in one step using two adders operating in parallel.

The last case, when a1 and a2 have opposite signs and different exponents, is
more complex. If |e1 − e2| > 1, the location of the leading bit of the difference is in
one of two locations, so there are two cases just as in addition. When |e1 − e2| = 1,
cancellation is possible and the leading bit could be almost anywhere. However,
only if the leading bit of the difference is in the same position as the leading bit of
s1 could a roundup be necessary. So one adder assumes a roundup, and the other
assumes no roundup. Thus, the addition of step 4 and the rounding of step 7 can
be combined. However, there is still the problem of the addition in step 2!

To eliminate this addition, consider the following diagram of step 4:

|—— p ——|
s1 1.xxxxxxx
s2 – 1yyzzzzz

If the bits marked z are all 0, then the high-order p bits of S = s1 − s2 can be com-
puted as s1 + s2 + 1. If at least one of the z bits is 1, use s1 + s2. So s1 − s2 can be
computed with one addition. However, we still don’t know g and r for the two’s
complement of s2, which are needed for rounding in step 7.

To compute s1 − s2 and get the proper g and r bits, combine steps 2 and 4 as fol-
lows. Don’t complement s2 in step 2. Extend the adder used for computing S two
bits to the right (call the extended sum S′). If the preliminary sticky bit (computed
in step 3) is 1, compute S′ = s′1 + s ′2, where s′1 has two 0 bits tacked onto the right,
and s′2 has preliminary g and r appended. If the sticky bit is 0, compute s′1 + s ′2 + 1.
Now the two low-order bits of S′ have the correct values of g and r (the sticky bit
was already computed properly in step 3). Finally, this modification can be com-
bined with the modification that combines the addition from steps 4 and 7 to pro-
vide the final result in time T, the time for one addition.

A few more details need to be considered, as discussed in Santoro, Bewick,
and Horowitz [1989] and Exercise J.17. Although the Santoro paper is aimed at
multiplication, much of the discussion applies to addition as well. Also relevant
is Exercise J.19, which contains an alternative method for adding signed magni-
tude numbers.

Denormalized Numbers

Unlike multiplication, for addition very little changes in the preceding descrip-
tion if one of the inputs is a denormal number. There must be a test to see if the
exponent field is 0. If it is, then when unpacking the significand there will not be

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.6 Division and Remainder ■ J-27

a leading 1. By setting the biased exponent to 1 when unpacking a denormal, the
algorithm works unchanged.

To deal with denormalized outputs, step 5 must be modified slightly. Shift S
until it is normalized, or until the exponent becomes Emin (that is, the biased
exponent becomes 1). If the exponent is Emin and, after rounding, the high-order
bit of S is 1, then the result is a normalized number and should be packed in the
usual way, by omitting the 1. If, on the other hand, the high-order bit is 0, the
result is denormal. When the result is unpacked, the exponent field must be set to
0. Section J.7 discusses the exact rules for detecting underflow.

Incidentally, detecting overflow is very easy. It can only happen if step 5
involves a shift right and the biased exponent at that point is bumped up to 255 in
single precision (or 2047 for double precision), or if this occurs after rounding.

In this section, we’ll discuss floating-point division and remainder.

Iterative Division

We earlier discussed an algorithm for integer division. Converting it into a float-
ing-point division algorithm is similar to converting the integer multiplication
algorithm into floating point. The formula

(s1 × 2e1) / (s2 × 2e2) = (s1 / s2) × 2e1–e2

shows that if the divider computes s1/s2, then the final answer will be this quo-
tient multiplied by 2e1−e2. Referring to Figure J.2(b) (page J-4), the alignment of
operands is slightly different from integer division. Load s2 into B and s1 into P.
The A register is not needed to hold the operands. Then the integer algorithm for
division (with the one small change of skipping the very first left shift) can be
used, and the result will be of the form q0.q1

.... To round, simply compute two
additional quotient bits (guard and round) and use the remainder as the sticky bit.
The guard digit is necessary because the first quotient bit might be 0. However,
since the numerator and denominator are both normalized, it is not possible for
the two most-significant quotient bits to be 0. This algorithm produces one quo-
tient bit in each step.

A different approach to division converges to the quotient at a quadratic
rather than a linear rate. An actual machine that uses this algorithm will be dis-
cussed in Section J.10. First, we will describe the two main iterative algorithms,
and then we will discuss the pros and cons of iteration when compared with the
direct algorithms. A general technique for constructing iterative algorithms,
called Newton’s iteration, is shown in Figure J.13. First, cast the problem in the
form of finding the zero of a function. Then, starting from a guess for the zero,
approximate the function by its tangent at that guess and form a new guess based

J.6 Division and Remainder

J-28 ■ Appendix J Computer Arithmetic

on where the tangent has a zero. If xi is a guess at a zero, then the tangent line has
the equation:

y − f (xi) = f ′(xi)(x − xi)

This equation has a zero at

J.6.1 x = x
i +1 = x

i −

To recast division as finding the zero of a function, consider f(x) = x–1 – b.
Since the zero of this function is at 1/b, applying Newton’s iteration to it will give
an iterative method of computing 1/b from b. Using f ′(x) = −1/x2, Equation J.6.1
becomes:

J.6.2 xi +1 = xi
 − = xi + xi – xi

2 b = xi(2 − xib)

Thus, we could implement computation of a/b using the following method:

1. Scale b to lie in the range 1 ≤ b < 2 and get an approximate value of 1/b (call
it x0) using a table lookup.

2. Iterate xi+1 = xi(2 − xib) until reaching an xn that is accurate enough.

3. Compute axn and reverse the scaling done in step 1.

Here are some more details. How many times will step 2 have to be iterated?
To say that xi is accurate to p bits means that ⏐(xi − 1/b)/(1/b)⏐ = 2−p, and a simple
algebraic manipulation shows that when this is so, then (xi+1 − 1/b)/(1/b) = 2−2p.
Thus, the number of correct bits doubles at each step. Newton’s iteration is self-
correcting in the sense that making an error in xi doesn’t really matter. That is, it
treats xi as a guess at 1/b and returns xi+1 as an improvement on it (roughly dou-
bling the digits). One thing that would cause xi to be in error is rounding error.

Figure J.13 Newton’s iteration for zero finding. If xi is an estimate for a zero of f, then
xi+1 is a better estimate. To compute xi+1, find the intersection of the x-axis with the
tangent line to f at f (xi).

x
x

i+1
x

i

f(x)

f(x
i
)

f(xi)

f ′(xi)

1 xi⁄ b–

1 xi
2⁄–

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.6 Division and Remainder ■ J-29

More importantly, however, in the early iterations we can take advantage of the
fact that we don’t expect many correct bits by performing the multiplication in
reduced precision, thus gaining speed without sacrificing accuracy. Another
application of Newton’s iteration is discussed in Exercise J.20.

The second iterative division method is sometimes called Goldschmidt’s
algorithm. It is based on the idea that to compute a/b, you should multiply the
numerator and denominator by a number r with rb ≈ 1. In more detail, let x0 = a
and y0þ= b. At each step compute xi+1 = rixi and yi+1 = riyi. Then the quotient
xi+1/yi+1 = xi/yi = a/b is constant. If we pick ri so that yi → 1, then xi → a/b, so
the xi converge to the answer we want. This same idea can be used to compute
other functions. For example, to compute the square root of a, let x0 = a and y0 =
a, and at each step compute xi+1 = ri

2xi , yi+1 = riyi. Then xi+1/yi+1
2 = xi/yi

2 = 1/a,
so if the ri are chosen to drive xi → 1, then yi → . This technique is used to
compute square roots on the TI 8847.

Returning to Goldschmidt’s division algorithm, set x0 = a and y0 = b, and
write b = 1 − δ, where ⏐δ⏐ < 1. If we pick r0 = 1 + δ, then y1 = r0y0 = 1 − δ 2. We
next pick r1 = 1 + δ2, so that y2 = r1y1 = 1 − δ 4, and so on. Since ⏐δ⏐ < 1, yi → 1.
With this choice of ri, the xi will be computed as xi+1 = rixi = (1 + δ 2i)xi =
(1 + (1 − b)2i)xi, or

J.6.3 x
i+1

 = a [1 + (1 − b)] [1 + (1 − b)2] [1 + (1 − b)4] ⋅⋅⋅ [1 + (1 − b)2 i]

There appear to be two problems with this algorithm. First, convergence is
slow when b is not near 1 (that is, δ is not near 0), and, second, the formula isn’t
self-correcting—since the quotient is being computed as a product of independent
terms, an error in one of them won’t get corrected. To deal with slow convergence,
if you want to compute a/b, look up an approximate inverse to b (call it b′), and
run the algorithm on ab′/bb′. This will converge rapidly since bb′ ≈ 1.

To deal with the self-correction problem, the computation should be run with
a few bits of extra precision to compensate for rounding errors. However, Gold-
schmidt’s algorithm does have a weak form of self-correction, in that the precise
value of the ri does not matter. Thus, in the first few iterations, when the full
precision of 1 – δ 2i is not needed you can choose ri to be a truncation of 1 + δ 2i,
which may make these iterations run faster without affecting the speed of conver-
gence. If ri is truncated, then yi is no longer exactly 1 – δ 2i. Thus, Equation J.6.3
can no longer be used, but it is easy to organize the computation so that it does
not depend on the precise value of ri. With these changes, Goldschmidt’s algo-
rithm is as follows (the notes in brackets show the connection with our earlier
formulas).

1. Scale a and b so that 1 ≤ b < 2.

2. Look up an approximation to 1/b (call it b′) in a table.

3. Set x0 = ab′ and y0 = bb′.

a

J-30 ■ Appendix J Computer Arithmetic

4. Iterate until xi is close enough to a/b:

Loop

r ≈ 2 − y [if yi = 1 + δi, then r ≈ 1 − δi]

y = y × r [yi+1 = yi × r ≈ 1 − δi
2]

xi+1 = xi × r [xi+1 = xi × r]

End loop

The two iteration methods are related. Suppose in Newton’s method that we
unroll the iteration and compute each term xi+1 directly in terms of b, instead of
recursively in terms of xi. By carrying out this calculation (see Exercise J.22), we
discover that

xi+1 = x0(2 − x0b) [(1 + (x0b − 1)2] [1 + (x0b − 1)4] … [1 + (x0b − 1)2i
]

This formula is very similar to Equation J.6.3. In fact, they are identical if a and b
in J.6.3 are replaced with ax0, bx0, and a = 1. Thus, if the iterations were done to
infinite precision, the two methods would yield exactly the same sequence xi.

The advantage of iteration is that it doesn’t require special divide hardware.
Instead, it can use the multiplier (which, however, requires extra control). Fur-
ther, on each step, it delivers twice as many digits as in the previous step—unlike
ordinary division, which produces a fixed number of digits at every step.

There are two disadvantages with inverting by iteration. The first is that the
IEEE standard requires division to be correctly rounded, but iteration only deliv-
ers a result that is close to the correctly rounded answer. In the case of Newton’s
iteration, which computes 1/b instead of a/b directly, there is an additional
problem. Even if 1/b were correctly rounded, there is no guarantee that a/b will
be. An example in decimal with p = 2 is a = 13, b = 51. Then a/b = .2549. . . ,
which rounds to .25. But 1/b = .0196. . . , which rounds to .020, and then a × .020
= .26, which is off by 1. The second disadvantage is that iteration does not give a
remainder. This is especially troublesome if the floating-point divide hardware is
being used to perform integer division, since a remainder operation is present in
almost every high-level language.

Traditional folklore has held that the way to get a correctly rounded result
from iteration is to compute 1/b to slightly more than 2p bits, compute a/b to
slightly more than 2p bits, and then round to p bits. However, there is a faster way,
which apparently was first implemented on the TI 8847. In this method, a/b is
computed to about 6 extra bits of precision, giving a preliminary quotient q. By
comparing qb with a (again with only 6 extra bits), it is possible to quickly decide
whether q is correctly rounded or whether it needs to be bumped up or down by 1
in the least-significant place. This algorithm is explored further in Exercise J.21.

One factor to take into account when deciding on division algorithms is the
relative speed of division and multiplication. Since division is more complex
than multiplication, it will run more slowly. A common rule of thumb is that
division algorithms should try to achieve a speed that is about one-third that of

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.6 Division and Remainder ■ J-31

multiplication. One argument in favor of this rule is that there are real pro-
grams (such as some versions of spice) where the ratio of division to multi-
plication is 1:3. Another place where a factor of 3 arises is in the standard
iterative method for computing square root. This method involves one division
per iteration, but it can be replaced by one using three multiplications. This is
discussed in Exercise J.20.

Floating-Point Remainder

For nonnegative integers, integer division and remainder satisfy:

a = (a DIV b)b + a REM b, 0 ≤ a REM b < b

A floating-point remainder x REM y can be similarly defined as x = INT(x/y)y + x
REM y. How should x/y be converted to an integer? The IEEE remainder function
uses the round-to-even rule. That is, pick n = INT (x/y) so that ⏐x/y − n⏐ ≤ 1/2.
If two different n satisfy this relation, pick the even one. Then REM is defined
to be x − yn. Unlike integers where 0 ≤ a REM b < b, for floating-point numbers

⏐x REM y⏐ ≤ y/2. Although this defines REM precisely, it is not a practical opera-
tional definition, because n can be huge. In single precision, n could be as large as
2127/2–126 = 2253 ≈ 1076.

There is a natural way to compute REM if a direct division algorithm is used.
Proceed as if you were computing x/y. If x = s12e1 and y = s22e2 and the divider is
as in Figure J.2(b) (page J-4), then load s1 into P and s2 into B. After e1 − e2
division steps, the P register will hold a number r of the form x − yn satisfying
0 ≤ r < y. Since the IEEE remainder satisfies ⏐REM⏐ ≤ y/2, REM is equal to either
r or r − y. It is only necessary to keep track of the last quotient bit produced,
which is needed to resolve halfway cases. Unfortunately, e1 − e2 can be a lot of
steps, and floating-point units typically have a maximum amount of time they are
allowed to spend on one instruction. Thus, it is usually not possible to implement
REM directly. None of the chips discussed in Section J.10 implements REM, but
they could by providing a remainder-step instruction—this is what is done on the
Intel 8087 family. A remainder step takes as arguments two numbers x and y, and
performs divide steps until either the remainder is in P or n steps have been per-
formed, where n is a small number, such as the number of steps required for divi-
sion in the highest-supported precision. Then REM can be implemented as a
software routine that calls the REM step instruction ⎣(e1 − e2)/n⎦ times, initially
using x as the numerator but then replacing it with the remainder from the previ-
ous REM step.

REM can be used for computing trigonometric functions. To simplify things,
imagine that we are working in base 10 with five significant figures, and consider
computing sin x. Suppose that x = 7. Then we can reduce by π = 3.1416 and com-
pute sin(7) = sin(7 − 2 × 3.1416) = sin(0.7168) instead. But, suppose we want to
compute sin(2.0 × 105). Then 2 × 105/3.1416 = 63661.8, which in our five-place
system comes out to be 63662. Since multiplying 3.1416 times 63662 gives
200000.5392, which rounds to 2.0000 × 105, argument reduction reduces 2 × 105

to 0, which is not even close to being correct. The problem is that our five-place

J-32 ■ Appendix J Computer Arithmetic

system does not have the precision to do correct argument reduction. Suppose we
had the REM operator. Then we could compute 2 × 105 REM 3.1416 and get −.53920.
However, this is still not correct because we used 3.1416, which is an approximation
for π. The value of 2 × 105 REM π is −.071513.

Traditionally, there have been two approaches to computing periodic func-
tions with large arguments. The first is to return an error for their value when x is
large. The second is to store π to a very large number of places and do exact argu-
ment reduction. The REM operator is not much help in either of these situations.
There is a third approach that has been used in some math libraries, such as the
Berkeley UNIX 4.3bsd release. In these libraries, π is computed to the nearest
floating-point number. Let’s call this machine π, and denote it by π′. Then, when
computing sin x, reduce x using x REM π′. As we saw in the above example, x
REM π ′ is quite different from x REM π when x is large, so that computing sin x as
sin(x REM π ′) will not give the exact value of sin x. However, computing trigono-
metric functions in this fashion has the property that all familiar identities (such
as sin2 x + cos2 x = 1) are true to within a few rounding errors. Thus, using REM

together with machine π provides a simple method of computing trigonometric
functions that is accurate for small arguments and still may be useful for large
arguments.

When REM is used for argument reduction, it is very handy if it also returns
the low-order bits of n (where x REM y = x − ny). This is because a practical
implementation of trigonometric functions will reduce by something smaller
than 2π. For example, it might use π/2, exploiting identities such as sin(x − π/2)
= –cos x, sin(x − π) = −sin x. Then the low bits of n are needed to choose the
correct identity.

Before leaving the subject of floating-point arithmetic, we present a few addi-
tional topics.

Fused Multiply-Add

Probably the most common use of floating-point units is performing matrix oper-
ations, and the most frequent matrix operation is multiplying a matrix times a
matrix (or vector), which boils down to computing an inner product, x1⋅y1 + x2⋅y2
+ . . . + xn⋅yn. Computing this requires a series of multiply-add combinations.

Motivated by this, the IBM RS/6000 introduced a single instruction that com-
putes ab + c, the fused multiply-add. Although this requires being able to read
three operands in a single instruction, it has the potential for improving the per-
formance of computing inner products.

The fused multiply-add computes ab + c exactly and then rounds. Although
rounding only once increases the accuracy of inner products somewhat, that is
not its primary motivation. There are two main advantages of rounding once.

J.7 More on Floating-Point Arithmetic

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.7 More on Floating-Point Arithmetic ■ J-33

First, as we saw in the previous sections, rounding is expensive to implement
because it may require an addition. By rounding only once, an addition operation
has been eliminated. Second, the extra accuracy of fused multiply-add can be
used to compute correctly rounded division and square root when these are not
available directly in hardware. Fused multiply-add can also be used to implement
efficient floating-point multiple-precision packages.

The implementation of correctly rounded division using fused multiply-add
has many details, but the main idea is simple. Consider again the example from
Section J.6 (page J-30), which was computing a/b with a = 13, b = 51. Then 1/b
rounds to b′ = .020, and ab′ rounds to q′ = .26, which is not the correctly rounded
quotient. Applying fused multiply-add twice will correctly adjust the result, via
the formulas

r = a − bq′

q′′ = q′ + rb′

Computing to two-digit accuracy, bq′ = 51 × .26 rounds to 13, and so r = a − bq′
would be 0, giving no adjustment. But using fused multiply-add gives r = a − bq′
= 13 − (51 × .26) = −.26, and then q′′ = q′ + rb′ = .26 − .0052 = .2548, which
rounds to the correct quotient, .25. More details can be found in the papers by
Montoye, Hokenek, and Runyon [1990] and Markstein [1990].

Precisions

The standard specifies four precisions: single, single extended, double, and dou-
ble extended. The properties of these precisions are summarized in Figure J.7
(page J-16). Implementations are not required to have all four precisions, but are
encouraged to support either the combination of single and single extended or all
of single, double, and double extended. Because of the widespread use of double
precision in scientific computing, double precision is almost always imple-
mented. Thus, the computer designer usually only has to decide whether to sup-
port double extended and, if so, how many bits it should have.

The Motorola 68882 and Intel 387 coprocessors implement extended preci-
sion using the smallest allowable size of 80 bits (64 bits of significand). However,
many of the more recently designed, high-performance floating-point chips do
not implement 80-bit extended precision. One reason is that the 80-bit width of
extended precision is awkward for 64-bit buses and registers. Some new architec-
tures, such as SPARC V8 and PA-RISC, specify a 128-bit extended (or quad)
precision. They have established a de facto convention for quad that has 15 bits of
exponent and 113 bits of significand.

Although most high-level languages do not provide access to extended pre-
cision, it is very useful to writers of mathematical software. As an example,
consider writing a library routine to compute the length of a vector (x,y) in
the plane, namely, . If x is larger than 2Emax/2, then computing this in
the obvious way will overflow. This means that either the allowable exponent

x2 y2+

J-34 ■ Appendix J Computer Arithmetic

range for this subroutine will be cut in half or a more complex algorithm using
scaling will have to be employed. But, if extended precision is available, then
the simple algorithm will work. Computing the length of a vector is a simple
task, and it is not difficult to come up with an algorithm that doesn’t overflow.
However, there are more complex problems for which extended precision
means the difference between a simple, fast algorithm and a much more com-
plex one. One of the best examples of this is binary-to-decimal conversion. An
efficient algorithm for binary-to-decimal conversion that makes essential use of
extended precision is very readably presented in Coonen [1984]. This algo-
rithm is also briefly sketched in Goldberg [1991]. Computing accurate values
for transcendental functions is another example of a problem that is made much
easier if extended precision is present.

One very important fact about precision concerns double rounding. To illus-
trate in decimals, suppose that we want to compute 1.9 × 0.66 and that single pre-
cision is two digits, while extended precision is three digits. The exact result of
the product is 1.254. Rounded to extended precision, the result is 1.25. When fur-
ther rounded to single precision, we get 1.2. However, the result of 1.9 × 0.66 cor-
rectly rounded to single precision is 1.3. Thus, rounding twice may not produce
the same result as rounding once. Suppose you want to build hardware that only
does double-precision arithmetic. Can you simulate single precision by comput-
ing first in double precision and then rounding to single? The above example sug-
gests that you can’t. However, double rounding is not always dangerous. In fact,
the following rule is true (this is not easy to prove, but see Exercise J.25).

If x and y have p-bit significands, and x + y is computed exactly and then rounded
to q places, a second rounding to p places will not change the answer if q ≥ 2p + 2.
This is true not only for addition, but also for multiplication, division, and square
root.

In our example above, q = 3 and p = 2, so q Š 2p + 2 is not true. On the other
hand, for IEEE arithmetic, double precision has q = 53 and p = 24, so q = 53 Š 2p
+ 2 = 50. Thus, single precision can be implemented by computing in double preci-
sion—that is, computing the answer exactly and then rounding to double—and
then rounding to single precision.

Exceptions

The IEEE standard defines five exceptions: underflow, overflow, divide by zero,
inexact, and invalid. By default, when these exceptions occur, they merely set a
flag and the computation continues. The flags are sticky, meaning that once set
they remain set until explicitly cleared. The standard strongly encourages imple-
mentations to provide a trap-enable bit for each exception. When an exception
with an enabled trap handler occurs, a user trap handler is called, and the value of
the associated exception flag is undefined. In Section J.3 we mentioned that
has the value NaN and 1/0 is ∞. These are examples of operations that raise an
exception. By default, computing sets the invalid flag and returns the value
NaN. Similarly 1/0 sets the divide-by-zero flag and returns ∞.

3–

3–

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.7 More on Floating-Point Arithmetic ■ J-35

The underflow, overflow, and divide-by-zero exceptions are found in most
other systems. The invalid exception is for the result of operations such as ,
0/0, or ∞ − ∞, which don’t have any natural value as a floating-point number or
as ±∞. The inexact exception is peculiar to IEEE arithmetic and occurs either
when the result of an operation must be rounded or when it overflows. In fact,
since 1/0 and an operation that overflows both deliver ∞, the exception flags must
be consulted to distinguish between them. The inexact exception is an unusual
“exception,” in that it is not really an exceptional condition because it occurs so
frequently. Thus, enabling a trap handler for the inexact exception will most
likely have a severe impact on performance. Enabling a trap handler doesn’t
affect whether an operation is exceptional except in the case of underflow. This is
discussed below.

The IEEE standard assumes that when a trap occurs, it is possible to identify
the operation that trapped and its operands. On machines with pipelining or mul-
tiple arithmetic units, when an exception occurs, it may not be enough to simply
have the trap handler examine the program counter. Hardware support may be
necessary to identify exactly which operation trapped.

Another problem is illustrated by the following program fragment.

r1 = r2/r3
r2 = r4 + r5

These two instructions might well be executed in parallel. If the divide traps, its
argument r2 could already have been overwritten by the addition, especially
since addition is almost always faster than division. Computer systems that sup-
port trapping in the IEEE standard must provide some way to save the value of
r2, either in hardware or by having the compiler avoid such a situation in the first
place. This kind of problem is not peculiar to floating point. In the sequence

r1 = 0(r2)
r2 = r3

it would be efficient to execute r2 = r3 while waiting for memory. But, if access-
ing 0(r2) causes a page fault, r2 might no longer be available for restarting the
instruction r1 = 0(r2).

One approach to this problem, used in the MIPS R3010, is to identify
instructions that may cause an exception early in the instruction cycle. For exam-
ple, an addition can overflow only if one of the operands has an exponent of
Emax, and so on. This early check is conservative: It might flag an operation that
doesn’t actually cause an exception. However, if such false positives are rare,
then this technique will have excellent performance. When an instruction is
tagged as being possibly exceptional, special code in a trap handler can compute
it without destroying any state. Remember that all these problems occur only
when trap handlers are enabled. Otherwise, setting the exception flags during
normal processing is straightforward.

1–

J-36 ■ Appendix J Computer Arithmetic

Underflow

We have alluded several times to the fact that detection of underflow is more
complex than for the other exceptions. The IEEE standard specifies that if an
underflow trap handler is enabled, the system must trap if the result is denormal.
On the other hand, if trap handlers are disabled, then the underflow flag is set
only if there is a loss of accuracy—that is, if the result must be rounded. The
rationale is, if no accuracy is lost on an underflow, there is no point in setting a
warning flag. But if a trap handler is enabled, the user might be trying to simulate
flush-to-zero and should therefore be notified whenever a result dips below 1.0 ×
2Emin.

So if there is no trap handler, the underflow exception is signaled only when
the result is denormal and inexact, but the definitions of denormal and inexact are
both subject to multiple interpretations. Normally, inexact means there was a
result that couldn’t be represented exactly and had to be rounded. Consider the
example (in a base 2 floating-point system with 3-bit significands) of (1.112 × 2−2)
× (1.112 × 2Emin) = 0.1100012 × 2Emin, with round to nearest in effect. The deliv-
ered result is 0.112 × 2Emin, which had to be rounded, causing inexact to be sig-
naled. But is it correct to also signal underflow? Gradual underflow loses
significance because the exponent range is bounded. If the exponent range were
unbounded, the delivered result would be 1.102 × 2Emin–1, exactly the same
answer obtained with gradual underflow. The fact that denormalized numbers
have fewer bits in their significand than normalized numbers therefore doesn’t
make any difference in this case. The commentary to the standard [Cody et al.
1984] encourages this as the criterion for setting the underflow flag. That is, it
should be set whenever the delivered result is different from what would be deliv-
ered in a system with the same fraction size, but with a very large exponent range.
However, owing to the difficulty of implementing this scheme, the standard
allows setting the underflow flag whenever the result is denormal and different
from the infinitely precise result.

There are two possible definitions of what it means for a result to be denor-
mal. Consider the example of 1.102 × 2–1 multiplied by 1.012 × 2Emin. The exact
product is 0.1111 × 2Emin. The rounded result is the normal number 1.002 × 2Emin.
Should underflow be signaled? Signaling underflow means that you are using the
before rounding rule, because the result was denormal before rounding. Not sig-
naling underflow means that you are using the after rounding rule, because the
result is normalized after rounding. The IEEE standard provides for choosing
either rule; however, the one chosen must be used consistently for all operations.

To illustrate these rules, consider floating-point addition. When the result of
an addition (or subtraction) is denormal, it is always exact. Thus, the underflow
flag never needs to be set for addition. That’s because if traps are not enabled
then no exception is raised. And if traps are enabled, the value of the underflow
flag is undefined, so again it doesn’t need to be set.

One final subtlety should be mentioned concerning underflow. When there is
no underflow trap handler, the result of an operation on p-bit numbers that causes

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.8 Speeding Up Integer Addition ■ J-37

an underflow is a denormal number with p − 1 or fewer bits of precision. When
traps are enabled, the trap handler is provided with the result of the operation
rounded to p bits and with the exponent wrapped around. Now there is a potential
double-rounding problem. If the trap handler wants to return the denormal result,
it can’t just round its argument, because that might lead to a double-rounding
error. Thus, the trap handler must be passed at least one extra bit of information if
it is to be able to deliver the correctly rounded result.

The previous section showed that many steps go into implementing floating-point
operations; however, each floating-point operation eventually reduces to an inte-
ger operation. Thus, increasing the speed of integer operations will also lead to
faster floating point.

Integer addition is the simplest operation and the most important. Even for
programs that don’t do explicit arithmetic, addition must be performed to incre-
ment the program counter and to calculate addresses. Despite the simplicity of
addition, there isn’t a single best way to perform high-speed addition. We will
discuss three techniques that are in current use: carry-lookahead, carry-skip, and
carry-select.

Carry-Lookahead

An n-bit adder is just a combinational circuit. It can therefore be written by a
logic formula whose form is a sum of products and can be computed by a circuit
with two levels of logic. How do you figure out what this circuit looks like? From
Equation J.2.1 (page J-3) the formula for the ith sum can be written as:

J.8.1 si = ai bi ci + ai bi ci + ai bi ci + ai bi ci

where ci is both the carry-in to the ith adder and the carry-out from the (i−1)-st
adder.

The problem with this formula is that, although we know the values of ai and
bi—they are inputs to the circuit—we don’t know ci. So our goal is to write ci in
terms of ai and bi. To accomplish this, we first rewrite Equation J.2.2 (page J-3)
as:

J.8.2 ci = gi –1+ p i –1c i –1, g i –1 = a i –1b i –1, p i –1 = a i –1 + b i –1

Here is the reason for the symbols p and g: If gi–1 is true, then ci is certainly
true, so a carry is generated. Thus, g is for generate. If pi–1 is true, then if ci–1 is
true, it is propagated to ci. Start with Equation J.8.1 and use Equation J.8.2 to
replace ci with gi–1 + pi–1ci–1. Then, use Equation J.8.2 with i− 1 in place of i to
replace ci–1 with ci–2, and so on. This gives the result:

J.8.3 ci = gi–1 + pi–1 gi–2 + pi–1 pi–2 gi–3 + ⋅ ⋅ ⋅ + pi–1 pi–2 ⋅ ⋅ ⋅ p1 g0 + pi–1 pi–2 ⋅ ⋅ ⋅ p1p0c0

J.8 Speeding Up Integer Addition

J-38 ■ Appendix J Computer Arithmetic

An adder that computes carries using Equation J.8.3 is called a carry-
lookahead adder, or CLA. A CLA requires one logic level to form p and g, two
levels to form the carries, and two for the sum, for a grand total of five logic lev-
els. This is a vast improvement over the 2n levels required for the ripple-carry
adder.

Unfortunately, as is evident from Equation J.8.3 or from Figure J.14, a carry-
lookahead adder on n bits requires a fan-in of n + 1 at the OR gate as well as at the
rightmost AND gate. Also, the pn–1 signal must drive n AND gates. In addition, the
rather irregular structure and many long wires of Figure J.14 make it impractical
to build a full carry-lookahead adder when n is large.

However, we can use the carry-lookahead idea to build an adder that has
about log2n logic levels (substantially fewer than the 2n required by a ripple-
carry adder) and yet has a simple, regular structure. The idea is to build up the p’s
and g’s in steps. We have already seen that

c1 = g0 + c0p0

This says there is a carry-out of the 0th position (c1) either if there is a carry gen-
erated in the 0th position or if there is a carry into the 0th position and the carry
propagates. Similarly,

c2 = G01 + P01c0

G01 means there is a carry generated out of the block consisting of the first two
bits. P01 means that a carry propagates through this block. P and G have the fol-
lowing logic equations:

Figure J.14 Pure carry-lookahead circuit for computing the carry-out cn of an n-bit
adder.

g
n–1 p

n–1

c
n

g
n–2

p
n–2

g
n–3

p
1

g
0

p
0

c
0

c
n
= g

n–1
+ p

n–1
g

n–2
+ . . . + p

n–1
p

n–2
. . . p

1
g

0

+ p

n–1
p

n–2
. . . p

0
c

0

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.8 Speeding Up Integer Addition ■ J-39

 G01 = g1 + p1g0

 P01 = p1p0

More generally, for any j with i < j, j + 1 < k, we have the recursive relations:

J.8.4 ck+1 = Gik + Pikci

J.8.5 Gik = Gj+1,k + Pj+1,kGij

J.8.6 Pik = Pij Pj+1,k

Equation J.8.5 says that a carry is generated out of the block consisting of bits i
through k inclusive if it is generated in the high-order part of the block (j + 1, k)
or if it is generated in the low-order part of the block (i,j) and then propagated
through the high part. These equations will also hold for i ≤ j < k if we set Gii = gi
and Pii = pi.

Example Express P03 and G03 in terms of p’s and g’s.

Answer Using Equation J.8.6, P03 = P01P23 = P00P11P22P33. Since Pii = pi, P03 =
p0p1p2p3. For G03, Equation J.8.5 says G03 = G23 + P23G01 = (G33 + P33G22) +
(P22P33)(G11 + P11G00) = g3 + p3g2 + p3 p2 g1 + p3 p2 p1g0.

With these preliminaries out of the way, we can now show the design of a
practical CLA. The adder consists of two parts. The first part computes various
values of P and G from pi and gi, using Equations J.8.5 and J.8.6; the second part
uses these P and G values to compute all the carries via Equation J.8.4. The first
part of the design is shown in Figure J.15. At the top of the diagram, input num-
bers a7. . . a0 and b7. . . b0 are converted to p’s and g’s using cells of type 1. Then
various P’s and G’s are generated by combining cells of type 2 in a binary tree
structure. The second part of the design is shown in Figure J.16. By feeding c0 in
at the bottom of this tree, all the carry bits come out at the top. Each cell must
know a pair of (P,G) values in order to do the conversion, and the value it needs
is written inside the cells. Now compare Figures J.15 and J.16. There is a one-
to-one correspondence between cells, and the value of (P,G) needed by the
carry-generating cells is exactly the value known by the corresponding (P,G)-
generating cells. The combined cell is shown in Figure J.17. The numbers to be
added flow into the top and downward through the tree, combining with c0 at the
bottom and flowing back up the tree to form the carries. Note that one thing is
missing from Figure J.17: a small piece of extra logic to compute c8 for the
carry-out of the adder.

The bits in a CLA must pass through about log2 n logic levels, compared with
2n for a ripple-carry adder. This is a substantial speed improvement, especially
for a large n. Whereas the ripple-carry adder had n cells, however, the CLA has

J-40 ■ Appendix J Computer Arithmetic

2n cells, although in our layout they will take n log n space. The point is that a
small investment in size pays off in a dramatic improvement in speed.

A number of technology-dependent modifications can improve CLAs. For
example, if each node of the tree has three inputs instead of two, then the height

Figure J.15 First part of carry-lookahead tree. As signals flow from the top to the bot-
tom, various values of P and G are computed.

Figure J.16 Second part of carry-lookahead tree. Signals flow from the bottom to the
top, combining with P and G to form the carries.

1 1 1 1 1 1

1

1 1

2

2

2

2

2

a
7

b
7

a
6

b
6

a
5

b
5

a
4

b
4

a
3

b
3

a
2

b
2

a
1

b
1

a
0

b
0

p
0

g
0

p
1

g
1

g
7

p
7

G
6, 7

P
6, 7

G
4, 5

P
4, 5

G
2, 3

P
2, 3

G
0 ,1

P
0 ,1

G
4, 7

P
4, 7

G
0, 3

P
0, 3

G
0, 7

P
0, 7

g
i
 = a

i
b

i
p

i
 = a

i
 + b

i
G

i, k
 = G

j+1, k
 + P

j+1, k
 G

i, j

P
i, k

 = P
i, j

 P
j+1,k

P
i, j

G
i, j

G
j+1, k

 a
i

b
i

P
j+1, k

2 2

2

c
7

c
6

c
5

c
4

c
3

c
2

c
1

c
0

p
0

g
0

p
2

g
2

P 0, 1

G
0, 1

p
4

g
4

p
6

g
6

c
6

c
4

c
2

c
0

c
0

c
4

c
0

c
j+1

= G
i j

+ P
i j

c
i

c
i

P
i, j

G
i, j

c
i

p
4, 5

G
4, 5

P
0, 3

G
0, 3

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.8 Speeding Up Integer Addition ■ J-41

of the tree will decrease from log2 n to log3 n. Of course, the cells will be more
complex and thus might operate more slowly, negating the advantage of the
decreased height. For technologies where rippling works well, a hybrid design
might be better. This is illustrated in Figure J.19. Carries ripple between adders at
the top level, while the “B” boxes are the same as those in Figure J.17. This
design will be faster if the time to ripple between four adders is faster than the
time it takes to traverse a level of “B” boxes. (To make the pattern more clear,
Figure J.19 shows a 16-bit adder, so the 8-bit adder of Figure J.17 corresponds to
the right half of Figure J.19.)

Carry-Skip Adders

A carry-skip adder sits midway between a ripple-carry adder and a carry-
lookahead adder, both in terms of speed and cost. (A carry-skip adder is not
called a CSA, as that name is reserved for carry-save adders.) The motivation for
this adder comes from examining the equations for P and G. For example,

P03 = p0 p1 p2 p3

G03 = g3 + p3 g2 + p3 p2 g1 + p3 p2 p1 g0

Figure J.17 Complete carry-lookahead tree adder. This is the combination of Figures
J.15 and J.16. The numbers to be added enter at the top, flow to the bottom to combine
with c0, and then flow back up to compute the sum bits.

A A

A

B

B

s
7

a
7

b
7

c
7

A A A A A A

B

B B B

+ +

B

s
1

a
1

b
1

s
0

a
0

b
0

c
6 c

5
c

4
c

3
c

2
c

1
c

0

c
0

c
0

P
0, 3

G
0, 3

c
4

c
0

s
i a

i
b

i

s
i
= a

i
p

i
= a

i
+ b

i
g

i
= a

i
b

i

g
i

p
i

c
i G

i, k
P

i, k
c

i

c
i

P
i j

G
ij

c
j +1

P
j +1,k

G
j +1,k

b
i

c
i

c
2

c
4c

6

B

J-42 ■ Appendix J Computer Arithmetic

Computing P is much simpler than computing G, and a carry-skip adder only
computes the P’s. Such an adder is illustrated in Figure J.18. Carries begin rip-
pling simultaneously through each block. If any block generates a carry, then the
carry-out of a block will be true, even though the carry-in to the block may not be
correct yet. If at the start of each add operation the carry-in to each block is 0,
then no spurious carry-outs will be generated. Thus, the carry-out of each block
can be thought of as if it were the G signal. Once the carry-out from the least-sig-
nificant block is generated, it not only feeds into the next block but is also fed
through the AND gate with the P signal from that next block. If the carry-out and
P signals are both true, then the carry skips the second block and is ready to feed
into the third block, and so on. The carry-skip adder is only practical if the carry-
in signals can be easily cleared at the start of each operation—for example, by
precharging in CMOS.

To analyze the speed of a carry-skip adder, let’s assume that it takes 1 time
unit for a signal to pass through two logic levels. Then it will take k time units for
a carry to ripple across a block of size k, and it will take 1 time unit for a carry to
skip a block. The longest signal path in the carry-skip adder starts with a carry
being generated at the 0th position. If the adder is n bits wide, then it takes k time
units to ripple through the first block, n/k − 2 time units to skip blocks, and k
more to ripple through the last block. To be specific: if we have a 20-bit adder

Figure J.18 Carry-skip adder. This is a 20-bit carry-skip adder (n = 20) with each block 4 bits wide (k = 4).

Figure J.19 Combination of CLA and ripple-carry adder. In the top row, carries ripple
within each group of four boxes.

a
3

b
3

a
2

b
2

a
1

b
1

a
0

b
0

c
4

c
0

P
4, 7

c
8

c
12

P
12, 15 P

8, 11

a
19

a
18

b
19

b
18

c
16

c
20

c
15

c
14

c
13

c
12

P
12, 15

P
8, 15

c
8

c
0

P
0, 7

c
8

c
4

c
0

c
0

G
0, 3

P
0, 3

c
1

c
2

c
3

C

B

B

C C C

B

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.8 Speeding Up Integer Addition ■ J-43

broken into groups of 4 bits, it will take 4 + (20/4 − 2) + 4 = 11 time units to per-
form an add. Some experimentation reveals that there are more efficient ways
to divide 20 bits into blocks. For example, consider five blocks with the least-
significant 2 bits in the first block, the next 5 bits in the second block, followed
by blocks of size 6, 5, and 2. Then the add time is reduced to 9 time units. This
illustrates an important general principle. For a carry-skip adder, making the inte-
rior blocks larger will speed up the adder. In fact, the same idea of varying the
block sizes can sometimes speed up other adder designs as well. Because of the
large amount of rippling, a carry-skip adder is most appropriate for technologies
where rippling is fast.

Carry-Select Adder

A carry-select adder works on the following principle: Two additions are per-
formed in parallel, one assuming the carry-in is 0 and the other assuming the
carry-in is 1. When the carry-in is finally known, the correct sum (which has been
precomputed) is simply selected. An example of such a design is shown in Figure
J.20. An 8-bit adder is divided into two halves, and the carry-out from the lower
half is used to select the sum bits from the upper half. If each block is computing
its sum using rippling (a linear time algorithm), then the design in Figure J.20 is
twice as fast at 50% more cost. However, note that the c4 signal must drive many
muxes, which may be very slow in some technologies. Instead of dividing the
adder into halves, it could be divided into quarters for a still further speedup. This
is illustrated in Figure J.21. If it takes k time units for a block to add k-bit num-
bers, and if it takes 1 time unit to compute the mux input from the two carry-out
signals, then for optimal operation each block should be 1 bit wider than the next,
as shown in Figure J.21. Therefore, as in the carry-skip adder, the best design
involves variable-size blocks.

As a summary of this section, the asymptotic time and space requirements
for the different adders are given in Figure J.22. (The times for carry-skip and

Figure J.20 Simple carry-select adder. At the same time that the sum of the low-order
4 bits is being computed, the high-order bits are being computed twice in parallel:
once assuming that c4 = 0 and once assuming c4 = 1.

c
0

s
0

s
1

s
2

s
3

c
4

s
4

a
4

b
4

s
5

s
6

s
7

1

0
a

3
b

3
a

2
b

2
a

1
b

1
a

0
 b

0

a
7
 b

7
a

4
 b

4

J-44 ■ Appendix J Computer Arithmetic

carry-select come from a careful choice of block size. See Exercise J.26 for the
carry-skip adder.) These different adders shouldn’t be thought of as disjoint
choices, but rather as building blocks to be used in constructing an adder. The
utility of these different building blocks is highly dependent on the technology
used. For example, the carry-select adder works well when a signal can drive
many muxes, and the carry-skip adder is attractive in technologies where signals
can be cleared at the start of each operation. Knowing the asymptotic behavior of
adders is useful in understanding them, but relying too much on that behavior is a
pitfall. The reason is that asymptotic behavior is only important as n grows very
large. But n for an adder is the bits of precision, and double precision today is the
same as it was 20 years ago—about 53 bits. Although it is true that as computers
get faster, computations get longer—and thus have more rounding error, which
in turn requires more precision—this effect grows very slowly with time.

The multiplication and division algorithms presented in Section J.2 are fairly
slow, producing 1 bit per cycle (although that cycle might be a fraction of the
CPU instruction cycle time). In this section, we discuss various techniques for
higher-performance multiplication and division, including the division algorithm
used in the Pentium chip.

Figure J.21 Carry-select adder. As soon as the carry-out of the rightmost block is
known, it is used to select the other sum bits.

Adder Time Space

Ripple 0(n) 0(n)

CLA 0(log n) 0(n log n)

Carry-skip 0() 0(n)

Carry-select 0() 0(n)

Figure J.22 Asymptotic time and space requirements for four different types of
adders.

c
13

c
8

c
4 c

0

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

1

00

1

s
10

s
11

s
12

s
13

c
13

c
8

1

s
14

s
15

s
16

s
17

s
18

0

n

n

J.9 Speeding Up Integer Multiplication and Division

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.9 Speeding Up Integer Multiplication and Division ■ J-45

Shifting over Zeros

Although the technique of shifting over zeros is not currently used much, it is
instructive to consider. It is distinguished by the fact that its execution time is
operand dependent. Its lack of use is primarily attributable to its failure to offer
enough speedup over bit-at-a-time algorithms. In addition, pipelining, synchroni-
zation with the CPU, and good compiler optimization are difficult with algo-
rithms that run in variable time. In multiplication, the idea behind shifting over
zeros is to add logic that detects when the low-order bit of the A register is 0 (see
Figure J.2(a) on page J-4) and, if so, skips the addition step and proceeds directly
to the shift step—hence the term shifting over zeros.

What about shifting for division? In nonrestoring division, an ALU operation
(either an addition or subtraction) is performed at every step. There appears to be
no opportunity for skipping an operation. But think about division this way: To
compute a/b, subtract multiples of b from a, and then report how many subtrac-
tions were done. At each stage of the subtraction process the remainder must fit
into the P register of Figure J.2(b) (page J-4). In the case when the remainder is a
small positive number, you normally subtract b; but suppose instead you only
shifted the remainder and subtracted b the next time. As long as the remainder
was sufficiently small (its high-order bit 0), after shifting it still would fit into the
P register, and no information would be lost. However, this method does require
changing the way we keep track of the number of times b has been subtracted
from a. This idea usually goes under the name of SRT division, for Sweeney,
Robertson, and Tocher, who independently proposed algorithms of this nature.
The main extra complication of SRT division is that the quotient bits cannot be
determined immediately from the sign of P at each step, as they can be in ordi-
nary nonrestoring division.

More precisely, to divide a by b where a and b are n-bit numbers, load a and
b into the A and B registers, respectively, of Figure J.2 (page J-4).

SRT Division 1. If B has k leading zeros when expressed using n bits, shift all the registers left
k bits.

2. For i = 0, n − 1,

(a) If the top three bits of P are equal, set qi = 0 and shift (P,A) one bit left.

(b) If the top three bits of P are not all equal and P is negative, set qi = −1
(also written as 1), shift (P,A) one bit left, and add B.

(c) Otherwise set qi = 1, shift (P,A) one bit left, and subtract B.

End loop

3. If the final remainder is negative, correct the remainder by adding B, and cor-
rect the quotient by subtracting 1 from q0. Finally, the remainder must be
shifted k bits right, where k is the initial shift.

J-46 ■ Appendix J Computer Arithmetic

A numerical example is given in Figure J.23. Although we are discussing
integer division, it helps in explaining the algorithm to imagine the binary point
just left of the most-significant bit. This changes Figure J.23 from 010002/00112
to 0.10002/.00112. Since the binary point is changed in both the numerator and
denominator, the quotient is not affected. The (P,A) register pair holds the
remainder and is a two’s complement number. For example, if P contains
111102 and A = 0, then the remainder is 1.11102 = −1/8. If r is the value of the
remainder, then −1 ≤ r < 1.

Given these preliminaries, we can now analyze the SRT division algorithm. The
first step of the algorithm shifts b so that b ≥ 1/2. The rule for which ALU operation
to perform is this: If −1/4 ≤ r < 1/4 (true whenever the top three bits of P are equal),
then compute 2r by shifting (P,A) left one bit; if r < 0 (and hence r < −1/4, since oth-
erwise it would have been eliminated by the first condition), then compute 2r + b by
shifting and then adding; if r ≥ 1/4 and subtract b from 2r. Using b ≥ 1/2, it is easy to
check that these rules keep −1/2 ≤ r < 1/2. For nonrestoring division, we only have

⏐r⏐ ≤ b, and we need P to be n + 1 bits wide. But, for SRT division, the bound on r is
tighter, namely, −1/2 ≤ r < 1/2. Thus, we can save a bit by eliminating the high-order
bit of P (and b and the adder). In particular, the test for equality of the top three bits
of P becomes a test on just two bits.

The algorithm might change slightly in an implementation of SRT division.
After each ALU operation, the P register can be shifted as many places as neces-
sary to make either r ≥ 1/4 or r < −1/4. By shifting k places, k quotient bits are set
equal to zero all at once. For this reason SRT division is sometimes described as
one that keeps the remainder normalized to ⏐r⏐ ≥ 1/4.

Notice that the value of the quotient bit computed in a given step is based on
which operation is performed in that step (which in turn depends on the result of
the operation from the previous step). This is in contrast to nonrestoring division,

Figure J.23 SRT division of 10002/00112. The quotient bits are shown in bold, using
the notation 1 for −1.

00000
00010

00100

01000
+ 10100

11100
11000

10000
+ 01100

11100
+ 01100

01000

1000
0000

0000

0001

0001
0010

0101

Divide 8 = 1000 by 3 = 0011. B contains 0011.
Step 1: B had two leading 0s, so shift left by 2. B now contains 1100.
Step 2.1: Top three bits are equal. This is case (a), so
 set q

0
 = 0 and shift.

Step 2.2: Top three bits not equal and P > 0 is case (c), so
 set q

1
 = 1 and shift.

 Subtract B.
Step 2.3: Top bits equal is case (a), so
 set q

2
 = 0 and shift.

Step 2.4: Top three bits unequal is case (b), so
 set q

3
 = –1 and shift.

 Add B.
Step 3. Remainder is negative so restore it and subtract 1 from q.

Must undo the shift in step 1, so right-shift by 2 to get true remainder.
 Remainder = 10, quotient = 0101 – 1 = 0010.

P A

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.9 Speeding Up Integer Multiplication and Division ■ J-47

where the quotient bit computed in the ith step depends on the result of the opera-
tion in the same step. This difference is reflected in the fact that when the final
remainder is negative, the last quotient bit must be adjusted in SRT division, but
not in nonrestoring division. However, the key fact about the quotient bits in SRT
division is that they can include 1. Although Figure J.23 shows the quotient bits
being stored in the low-order bits of A, an actual implementation can’t do this
because you can’t fit the three values −1, 0, 1 into one bit. Furthermore, the quo-
tient must be converted to ordinary two’s complement in a full adder. A common
way to do this is to accumulate the positive quotient bits in one register and the
negative quotient bits in another, and then subtract the two registers after all the
bits are known. Because there is more than one way to write a number in terms of
the digits −1, 0, 1, SRT division is said to use a redundant quotient representation.

The differences between SRT division and ordinary nonrestoring division can
be summarized as follows:

1. ALU decision rule—In nonrestoring division, it is determined by the sign of P;
in SRT, it is determined by the two most-significant bits of P.

2. Final quotient—In nonrestoring division, it is immediate from the successive
signs of P; in SRT, there are three quotient digits (1, 0, 1), and the final quo-
tient must be computed in a full n-bit adder.

3. Speed—SRT division will be faster on operands that produce zero quotient
bits.

The simple version of the SRT division algorithm given above does not offer
enough of a speedup to be practical in most cases. However, later on in this sec-
tion we will study variants of SRT division that are quite practical.

Speeding Up Multiplication with a Single Adder

As mentioned before, shifting-over-zero techniques are not used much in current
hardware. We now discuss some methods that are in widespread use. Methods
that increase the speed of multiplication can be divided into two classes: those
that use a single adder and those that use multiple adders. Let’s first discuss tech-
niques that use a single adder.

In the discussion of addition we noted that, because of carry propagation, it is
not practical to perform addition with two levels of logic. Using the cells of Fig-
ure J.17, adding two 64-bit numbers will require a trip through seven cells to
compute the P’s and G’s and seven more to compute the carry bits, which will
require at least 28 logic levels. In the simple multiplier of Figure J.2 on page J-4,
each multiplication step passes through this adder. The amount of computation in
each step can be dramatically reduced by using carry-save adders (CSAs). A
carry-save adder is simply a collection of n independent full adders. A multiplier
using such an adder is illustrated in Figure J.24. Each circle marked “+” is a
single-bit full adder, and each box represents one bit of a register. Each addition
operation results in a pair of bits, stored in the sum and carry parts of P. Since each

J-48 ■ Appendix J Computer Arithmetic

add is independent, only two logic levels are involved in the add—a vast improve-
ment over 28.

To operate the multiplier in Figure J.24, load the sum and carry bits of P with
zero and perform the first ALU operation. (If Booth recoding is used, it might be
a subtraction rather than an addition.) Then shift the low-order sum bit of P into
A, as well as shifting A itself. The n − 1 high-order bits of P don’t need to be
shifted because on the next cycle the sum bits are fed into the next lower-order
adder. Each addition step is substantially increased in speed, since each add cell
is working independently of the others, and no carry is propagated.

There are two drawbacks to carry-save adders. First, they require more hard-
ware because there must be a copy of register P to hold the carry outputs of the
adder. Second, after the last step, the high-order word of the result must be fed
into an ordinary adder to combine the sum and carry parts. One way to
accomplish this is by feeding the output of P into the adder used to perform the
addition operation. Multiplying with a carry-save adder is sometimes called
redundant multiplication because P is represented using two registers. Since
there are many ways to represent P as the sum of two registers, this representation
is redundant. The term carry-propagate adder (CPA) is used to denote an adder
that is not a CSA. A propagate adder may propagate its carries using ripples,
carry-lookahead, or some other method.

Another way to speed up multiplication without using extra adders is to
examine k low-order bits of A at each step, rather than just one bit. This is often
called higher-radix multiplication. As an example, suppose that k = 2. If the pair
of bits is 00, add 0 to P; if it is 01, add B. If it is 10, simply shift b one bit left
before adding it to P. Unfortunately, if the pair is 11, it appears we would have to
compute b + 2b. But this can be avoided by using a higher-radix version of Booth
recoding. Imagine A as a base 4 number: When the digit 3 appears, change it to 1
and add 1 to the next higher digit to compensate. An extra benefit of using this

Figure J.24 Carry-save multiplier. Each circle represents a (3,2) adder working inde-
pendently. At each step, the only bit of P that needs to be shifted is the low-order sum
bit.

B

A

P

Sum bits

Carry bits

c
i

a
i

c
i+1

s
i

b
i

Shift

+ + + + + +

+

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.9 Speeding Up Integer Multiplication and Division ■ J-49

scheme is that just like ordinary Booth recoding, it works for negative as well as
positive integers (Section J.2).

The precise rules for radix-4 Booth recoding are given in Figure J.25. At the
ith multiply step, the two low-order bits of the A register contain a2i and a2i+1.
These two bits, together with the bit just shifted out (a2i–1), are used to select the
multiple of b that must be added to the P register. A numerical example is given
in Figure J.26. Another name for this multiplication technique is overlapping
triplets, since it looks at 3 bits to determine what multiple of b to use, whereas
ordinary Booth recoding looks at 2 bits.

Besides having more complex control logic, overlapping triplets also requires
that the P register be 1 bit wider to accommodate the possibility of 2b or −2b
being added to it. It is possible to use a radix-8 (or even higher) version of Booth
recoding. In that case, however, it would be necessary to use the multiple 3B as a
potential summand. Radix-8 multipliers normally compute 3B once and for all at
the beginning of a multiplication operation.

Low-order bits of A Last bit shifted out

2i + 1 2i 2i − 1 Multiple

0 0 0 0

0 0 1 +b

0 1 0 +b

0 1 1 +2b

1 0 0 −2b

1 0 1 −b

1 1 0 −b

1 1 1 0

Figure J.25 Multiples of b to use for radix-4 Booth recoding. For example, if the two
low-order bits of the A register are both 1, and the last bit to be shifted out of the A reg-
ister is 0, then the correct multiple is −b, obtained from the second-to-last row of the
table.

Figure J.26 Multiplication of –7 times –5 using radix-4 Booth recoding. The column
labeled L contains the last bit shifted out the right end of A.

00000
+ 11011

11011
11110

+ 01010
01000
00010

1001

1001
1110

1110
0011

Multiply –7 = 1001 times –5 = 1011. B contains 1011.
Low-order bits of A are 0, 1; L = 0, so add B.

Shift right by two bits, shifting in 1s on the left.
Low-order bits of A are 1, 0; L = 0, so add –2b.

Shift right by two bits.
Product is 35 = 0100011.

P A

0

0
1

L

J-50 ■ Appendix J Computer Arithmetic

Faster Multiplication with Many Adders

If the space for many adders is available, then multiplication speed can be
improved. Figure J.27 shows a simple array multiplier for multiplying two 5-bit
numbers, using three CSAs and one propagate adder. Part (a) is a block diagram
of the kind we will use throughout this section. Parts (b) and (c) show the adder in
more detail. All the inputs to the adder are shown in (b); the actual adders with

Figure J.27 An array multiplier. The 5-bit number in A is multiplied by b4b3b2b1b0. Part
(a) shows the block diagram, (b) shows the inputs to the array, and (c) expands the array
to show all the adders.

(b)

(c)

b
0

a
1

b
0

a
0

b
0

A

b
1

A

b
2

A

b
3

A

b
4

A

b
4

a
1

b
4

a
0

b
0

a
4 b

0
A

b
1

A

b
2

A

b
1

a
4

p
9

p
8

p
7

p
6

p
5

p
4

p
3

p
2

p
1

p
0

(a)

b
4
A b

3
A

b
2
A b

1
A b

0
A

CSA

CSA

CSA

Propagate adder

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.9 Speeding Up Integer Multiplication and Division ■ J-51

their interconnections are shown in (c). Each row of adders in (c) corresponds to
a box in (a). The picture is “twisted” so that bits of the same significance are in
the same column. In an actual implementation, the array would most likely be
laid out as a square instead.

The array multiplier in Figure J.27 performs the same number of additions as
the design in Figure J.24, so its latency is not dramatically different from that of a
single carry-save adder. However, with the hardware in Figure J.27, multiplica-
tion can be pipelined, increasing the total throughput. On the other hand,
although this level of pipelining is sometimes used in array processors, it is not
used in any of the single-chip, floating-point accelerators discussed in Section
J.10. Pipelining is discussed in general in Appendix C and by Kogge [1981] in
the context of multipliers.

Sometimes the space budgeted on a chip for arithmetic may not hold an array
large enough to multiply two double-precision numbers. In this case, a popular
design is to use a two-pass arrangement such as the one shown in Figure J.28.
The first pass through the array “retires” 5 bits of B. Then the result of this first
pass is fed back into the top to be combined with the next three summands. The
result of this second pass is then fed into a CPA. This design, however, loses the
ability to be pipelined.

If arrays require as many addition steps as the much cheaper arrangements in
Figures J.2 and J.24, why are they so popular? First of all, using an array has a
smaller latency than using a single adder—because the array is a combinational
circuit, the signals flow through it directly without being clocked. Although the
two-pass adder of Figure J.28 would normally still use a clock, the cycle time for
passing through k arrays can be less than k times the clock that would be needed
for designs like the ones in Figures J.2 or J.24. Second, the array is amenable to

Figure J.28 Multipass array multiplier. Multiplies two 8-bit numbers with about half
the hardware that would be used in a one-pass design like that of Figure J.27. At the
end of the second pass, the bits flow into the CPA. The inputs used in the first pass are
marked in bold.

CSA

CPA

b
5
A

b
2
A

b
6
A

b
3
A

b
7
A

b
4
A

b
1
A b

0
A

CSA

CSA

J-52 ■ Appendix J Computer Arithmetic

various schemes for further speedup. One of them is shown in Figure J.29. The
idea of this design is that two adds proceed in parallel or, to put it another way,
each stream passes through only half the adders. Thus, it runs at almost twice the
speed of the multiplier in Figure J.27. This even/odd multiplier is popular in
VLSI because of its regular structure. Arrays can also be speeded up using asyn-
chronous logic. One of the reasons why the multiplier of Figure J.2 (page J-4)
needs a clock is to keep the output of the adder from feeding back into the input
of the adder before the output has fully stabilized. Thus, if the array in Figure
J.28 is long enough so that no signal can propagate from the top through the bot-
tom in the time it takes for the first adder to stabilize, it may be possible to avoid
clocks altogether. Williams et al. [1987] discussed a design using this idea,
although it is for dividers instead of multipliers.

The techniques of the previous paragraph still have a multiply time of 0(n),
but the time can be reduced to log n using a tree. The simplest tree would com-
bine pairs of summands b0A ⋅⋅⋅ bn–1A, cutting the number of summands from n to
n/2. Then these n/2 numbers would be added in pairs again, reducing to n/4, and
so on, and resulting in a single sum after log n steps. However, this simple binary
tree idea doesn’t map into full (3,2) adders, which reduce three inputs to two
rather than reducing two inputs to one. A tree that does use full adders, known as

Figure J.29 Even/odd array. The first two adders work in parallel. Their results are fed
into the third and fourth adders, which also work in parallel, and so on.

b
2
A

b
4
A b

3
Ab

5
A

b
1
A b

0
A

CSA

CSA

b
6
A

b
7
A

CSA

CSA

CSA

CPA

CSA

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.9 Speeding Up Integer Multiplication and Division ■ J-53

a Wallace tree, is shown in Figure J.30. When computer arithmetic units were
built out of MSI parts, a Wallace tree was the design of choice for high-speed
multipliers. There is, however, a problem with implementing it in VLSI. If you
try to fill in all the adders and paths for the Wallace tree of Figure J.30, you will
discover that it does not have the nice, regular structure of Figure J.27. This is
why VLSI designers have often chosen to use other log n designs such as the
binary tree multiplier, which is discussed next.

The problem with adding summands in a binary tree is coming up with a (2,1)
adder that combines two digits and produces a single-sum digit. Because of car-
ries, this isn’t possible using binary notation, but it can be done with some other
representation. We will use the signed-digit representation 1, 1, and 0, which we
used previously to understand Booth’s algorithm. This representation has two
costs. First, it takes 2 bits to represent each signed digit. Second, the algorithm
for adding two signed-digit numbers ai and bi is complex and requires examining
aiai–1ai–2 and bibi–1bi–2. Although this means you must look 2 bits back, in binary
addition you might have to look an arbitrary number of bits back because of carries.

We can describe the algorithm for adding two signed-digit numbers as fol-
lows. First, compute sum and carry bits si and ci+1 using Figure J.31. Then com-
pute the final sum as si + ci. The tables are set up so that this final sum does not
generate a carry.

Example What is the sum of the signed-digit numbers 1102 and 0012?

Answer The two low-order bits sum to 0 + 1 = 11, the next pair sums to 1 + 0 = 01, and
the high-order pair sums to 1 + 0 = 01, so the sum is 11+ 010 + 0100 = 1012.

Figure J.30 Wallace tree multiplier. An example of a multiply tree that computes a
product in 0(log n) steps.

CSA

CSA

CSA

CSA

b
7
A b

6
A b

5
A b

4
A b

3
A b

2
A b

1
A b

0
A

CSA

CSA

Propagate adder

J-54 ■ Appendix J Computer Arithmetic

This, then, defines a (2,1) adder. With this in hand, we can use a straightfor-
ward binary tree to perform multiplication. In the first step it adds b0A + b1A in
parallel with b2A + b3A, . . . , bn–2A + bn–1A. The next step adds the results of
these sums in pairs, and so on. Although the final sum must be run through a
carry-propagate adder to convert it from signed-digit form to two’s complement,
this final add step is necessary in any multiplier using CSAs.

To summarize, both Wallace trees and signed-digit trees are log n multipliers.
The Wallace tree uses fewer gates but is harder to lay out. The signed-digit tree
has a more regular structure, but requires 2 bits to represent each digit and has
more complicated add logic. As with adders, it is possible to combine different
multiply techniques. For example, Booth recoding and arrays can be combined.
In Figure J.27 instead of having each input be biA, we could have it be bibi–1A.
To avoid having to compute the multiple 3b, we can use Booth recoding.

Faster Division with One Adder

The two techniques we discussed for speeding up multiplication with a single
adder were carry-save adders and higher-radix multiplication. However, there is
a difficulty when trying to utilize these approaches to speed up nonrestoring
division. If the adder in Figure J.2(b) on page J-4 is replaced with a carry-save
adder, then P will be replaced with two registers, one for the sum bits and one
for the carry bits (compare with the multiplier in Figure J.24). At the end of
each cycle, the sign of P is uncertain (since P is the unevaluated sum of the two
registers), yet it is the sign of P that is used to compute the quotient digit and
decide the next ALU operation. When a higher radix is used, the problem is
deciding what value to subtract from P. In the paper-and-pencil method, you
have to guess the quotient digit. In binary division, there are only two possibil-
ities. We were able to finesse the problem by initially guessing one and then
adjusting the guess based on the sign of P. This doesn’t work in higher radices
because there are more than two possible quotient digits, rendering quotient
selection potentially quite complicated: You would have to compute all the
multiples of b and compare them to P.

Both the carry-save technique and higher-radix division can be made to work
if we use a redundant quotient representation. Recall from our discussion of SRT
division (page J-45) that by allowing the quotient digits to be −1, 0, or 1, there is
often a choice of which one to pick. The idea in the previous algorithm was to
choose 0 whenever possible, because that meant an ALU operation could be

Figure J.31 Signed-digit addition table. The leftmost sum shows that when comput-
ing 1 + 1, the sum bit is 0 and the carry bit is 1.

1
+ 1
1 0

1
+ 1
0 0

1
+ 1
1 0

0
+ 0
0 0

x

y
1

+ 0
1 1
0 1

x

y
1

+ 0
0 1
1 1

if 0 and 0
otherwise

x ≥ y ≥ if 0 and 0
otherwise

x ≥ y ≥

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.9 Speeding Up Integer Multiplication and Division ■ J-55

skipped. In carry-save division, the idea is that, because the remainder (which is
the value of the (P,A) register pair) is not known exactly (being stored in carry-
save form), the exact quotient digit is also not known. But, thanks to the redun-
dant representation, the remainder doesn’t have to be known precisely in order to
pick a quotient digit. This is illustrated in Figure J.32, where the x-axis represents
ri, the remainder after i steps. The line labeled qi = 1 shows the value that ri+1
would be if we chose qi = 1, and similarly for the lines qi = 0 and qi = −1. We can
choose any value for qi, as long as ri+1 = 2ri – qib satisfies ⏐ri+1⏐ ≤ b. The
allowable ranges are shown in the right half of Figure J.32. This shows that you
don’t need to know the precise value of ri in order to choose a quotient digit qi.
You only need to know that r lies in an interval small enough to fit entirely within
one of the overlapping bars shown in the right half of Figure J.32.

This is the basis for using carry-save adders. Look at the high-order bits of the
carry-save adder and sum them in a propagate adder. Then use this approximation
of r (together with the divisor, b) to compute qi, usually by means of a lookup
table. The same technique works for higher-radix division (whether or not a
carry-save adder is used). The high-order bits P can be used to index a table that
gives one of the allowable quotient digits.

The design challenge when building a high-speed SRT divider is figuring out
how many bits of P and B need to be examined. For example, suppose that we
take a radix of 4, use quotient digits of 2, 1, 0, 1, 2, but have a propagate adder.
How many bits of P and B need to be examined? Deciding this involves two
steps. For ordinary radix-2 nonrestoring division, because at each stage ⏐r⏐ ≤ b,
the P buffer won’t overflow. But, for radix 4, ri+1 = 4ri – qib is computed at each
stage, and if ri is near b, then 4ri will be near 4b, and even the largest quotient
digit will not bring r back to the range ⏐ri+1⏐ ≤ b. In other words, the remainder
might grow without bound. However, restricting ⏐ri⏐ ≤ 2b/3 makes it easy to
check that ri will stay bounded.

After figuring out the bound that ri must satisfy, we can draw the diagram in
Figure J.33, which is analogous to Figure J.32. For example, the diagram shows

Figure J.32 Quotient selection for radix-2 division. The x-axis represents the ith
remainder, which is the quantity in the (P,A) register pair. The y-axis shows the value of
the remainder after one additional divide step. Each bar on the right-hand graph gives
the range of ri values for which it is permissible to select the associated value of qi.

b–b

–b

b–b 0

q
i
= –1

q
i
= 0 q

i
= 1

q
i
= –1

q
i
= 0

q
i
= 1

r
i

r
i

r
i +1

 = 2r
i
– q

i
b

J-56 ■ Appendix J Computer Arithmetic

that if ri is between (1/12)b and (5/12)b, we can pick q = 1, and so on. Or, to put
it another way, if r/b is between 1/12 and 5/12, we can pick q = 1. Suppose the
divider examines 5 bits of P (including the sign bit) and 4 bits of b (ignoring the
sign, since it is always nonnegative). The interesting case is when the high bits of
P are 00011xxx⋅⋅⋅, while the high bits of b are 1001xxx⋅⋅⋅. Imagine the binary
point at the left end of each register. Since we truncated, r (the value of P con-
catenated with A) could have a value from 0.00112 to 0.01002, and b could have a
value from .10012 to .10102. Thus, r/b could be as small as 0.00112/.10102 or as
large as 0.01002/.10012, but 0.00112/.10102 = 3/10 < 1/3 would require a quotient
bit of 1, while 0.01002/.10012 = 4/9 > 5/12 would require a quotient bit of 2. In
other words, 5 bits of P and 4 bits of b aren’t enough to pick a quotient bit. It
turns out that 6 bits of P and 4 bits of b are enough. This can be verified by writ-
ing a simple program that checks all the cases. The output of such a program is
shown in Figure J.34.

Example Using 8-bit registers, compute 149/5 using radix-4 SRT division.

Answer Follow the SRT algorithm on page J-45, but replace the quotient selection rule in
step 2 with one that uses Figure J.34. See Figure J.35.

The Pentium uses a radix-4 SRT division algorithm like the one just pre-
sented, except that it uses a carry-save adder. Exercises J.34(c) and J.35 explore
this in detail. Although these are simple cases, all SRT analyses proceed in the
same way. First compute the range of ri, then plot ri against ri+1 to find the quo-
tient ranges, and finally write a program to compute how many bits are necessary.
(It is sometimes also possible to compute the required number of bits analyti-
cally.) Various details need to be considered in building a practical SRT divider.

Figure J.33 Quotient selection for radix-4 division with quotient digits –2, –1, 0, 1, 2.

2b
3

–2b
3

2b
3

5b
12

b
3

b
6

b
12

0

q
i
 = –2 q

i
 = –1 q

i
 = 1q

i
 = 0 q

i
 = 2

r
i

r
i +1

= 4r
i
– q

i
b

q
i
= 2

q
i
= 1

r
i

q
i
= 0

q
i
= –2

q
i
= –1

–2b
3

r
i +1

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.9 Speeding Up Integer Multiplication and Division ■ J-57

 b Range of P q b Range of P q

8 −12 −7 −2 12 −18 −10 −2

8 −6 −3 −1 12 −10 −4 −1

8 −2 1 0 12 –4 3 0

8 2 5 1 12 3 9 1

8 6 11 2 12 9 17 2

9 −14 −8 −2 13 −19 −11 −2

9 −7 −3 −1 13 −10 −4 −1

9 −3 2 0 13 −4 3 0

9 2 6 1 13 3 9 1

9 7 13 2 13 10 18 2

10 −15 −9 −2 14 −20 −11 −2

10 −8 −3 −1 14 −11 −4 −1

10 −3 2 0 14 −4 3 0

10 2 7 1 14 3 10 1

10 8 14 2 14 10 19 2

11 −16 −9 −2 15 −22 −12 −2

11 −9 −3 −1 15 −12 −4 −1

11 −3 2 0 15 −5 4 0

11 2 8 1 15 3 11 1

11 8 15 2 15 11 21 2

Figure J.34 Quotient digits for radix-4 SRT division with a propagate adder. The top
row says that if the high-order 4 bits of b are 10002 = 8, and if the top 6 bits of P are
between 1101002 = −12 and 1110012 = −7, then −2 is a valid quotient digit.

Figure J.35 Example of radix-4 SRT division. Division of 149 by 5.

000000000
000010010

001001010

100101010
+ 011000000

111101010
110101000

010100000
+ 101000000

111100000
+ 010100000

010000000

A
10010101
10100000

1000000

000002

000002
00020

0202

Divide 149 by 5. B contains 00000101.
Step 1:

Step 2.1:

Step 2.2:

Step 2.3:

Step 2.4:

Step 3:

Answer:

B had 5 leading 0s, so shift left by 5. B now
contains 10100000, so use b = 10 section of table.
Top 6 bits of P are 2, so
shift left by 2. From table, can pick q to be
0 or 1. Choose q

0
 = 0.

Top 6 bits of P are 9, so
shift left 2. q

1
 = 2.

Subtract 2b.
Top bits = –3, so
shift left 2. Can pick 0 or –1 for q, pick q

2
 = 0.

Top bits = –11, so
shift left 2. q

3
 = –2.

Add 2b.
Remainder is negative, so restore
by adding b and subtract 1 from q.
q = 0202 – 1 = 29.
To get remainder, undo shift in step 1 so
remainder = 010000000 >> 5 = 4.

P

J-58 ■ Appendix J Computer Arithmetic

For example, the quotient lookup table has a fairly regular structure, which means
it is usually cheaper to encode it as a PLA rather than in ROM. For more details
about SRT division, see Burgess and Williams [1995].

In this section, we will compare the Weitek 3364, the MIPS R3010, and the Texas
Instruments 8847 (see Figures J.36 and J.37). In many ways, these are ideal chips
to compare. They each implement the IEEE standard for addition, subtraction,
multiplication, and division on a single chip. All were introduced in 1988 and run
with a cycle time of about 40 nanoseconds. However, as we will see, they use
quite different algorithms. The Weitek chip is well described in Birman et al.
[1990], the MIPS chip is described in less detail in Rowen, Johnson, and Ries
[1988], and details of the TI chip can be found in Darley et al. [1989].

These three chips have a number of things in common. They perform addition
and multiplication in parallel, and they implement neither extended precision nor
a remainder step operation. (Recall from Section J.6 that it is easy to implement
the IEEE remainder function in software if a remainder step instruction is avail-
able.) The designers of these chips probably decided not to provide extended pre-
cision because the most influential users are those who run portable codes, which
can’t rely on extended precision. However, as we have seen, extended precision
can make for faster and simpler math libraries.

In the summary of the three chips given in Figure J.36, note that a higher tran-
sistor count generally leads to smaller cycle counts. Comparing the cycles/op
numbers needs to be done carefully, because the figures for the MIPS chip are
those for a complete system (R3000/3010 pair), while the Weitek and TI numbers
are for stand-alone chips and are usually larger when used in a complete system.

Features MIPS R3010 Weitek 3364 TI 8847

Clock cycle time (ns) 40 50 30

Size (mil2) 114,857 147,600 156,180

Transistors 75,000 165,000 180,000

Pins 84 168 207

Power (watts) 3.5 1.5 1.5

Cycles/add 2 2 2

Cycles/mult 5 2 3

Cycles/divide 19 17 11

Cycles/square root – 30 14

Figure J.36 Summary of the three floating-point chips discussed in this section. The
cycle times are for production parts available in June 1989. The cycle counts are for
double-precision operations.

J.10 Putting It All Together

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.10 Putting It All Together ■ J-59

Figure J.37 Chip layout for the TI 8847, MIPS R3010, and Weitek 3364. In the left-hand columns are the
photomicrographs; the right-hand columns show the corresponding floor plans.

TI 8847

MIPS R3010

J-60 ■ Appendix J Computer Arithmetic

The MIPS chip has the fewest transistors of the three. This is reflected in the
fact that it is the only chip of the three that does not have any pipelining or hard-
ware square root. Further, the multiplication and addition operations are not com-
pletely independent because they share the carry-propagate adder that performs
the final rounding (as well as the rounding logic).

Addition on the R3010 uses a mixture of ripple, CLA, and carry-select. A
carry-select adder is used in the fashion of Figure J.20 (page J-43). Within each
half, carries are propagated using a hybrid ripple-CLA scheme of the type indi-
cated in Figure J.19 (page J-42). However, this is further tuned by varying the
size of each block, rather than having each fixed at 4 bits (as they are in Figure
J.19). The multiplier is midway between the designs of Figures J.2 (page J-4) and
J.27 (page J-50). It has an array just large enough so that output can be fed back
into the input without having to be clocked. Also, it uses radix-4 Booth recoding
and the even/odd technique of Figure J.29 (page J-52). The R3010 can do a
divide and multiply in parallel (like the Weitek chip but unlike the TI chip). The
divider is a radix-4 SRT method with quotient digits −2, −1, 0, 1, and 2, and is
similar to that described in Taylor [1985]. Double-precision division is about four
times slower than multiplication. The R3010 shows that for chips using an 0(n)

Figure J.37 (Continued.)

Weitek 3364

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.10 Putting It All Together ■ J-61

multiplier, an SRT divider can operate fast enough to keep a reasonable ratio
between multiply and divide.

The Weitek 3364 has independent add, multiply, and divide units. It also uses
radix-4 SRT division. However, the add and multiply operations on the Weitek
chip are pipelined. The three addition stages are (1) exponent compare, (2) add
followed by shift (or vice versa), and (3) final rounding. Stages (1) and (3) take
only a half-cycle, allowing the whole operation to be done in two cycles, even
though there are three pipeline stages. The multiplier uses an array of the style of
Figure J.28 but uses radix-8 Booth recoding, which means it must compute 3
times the multiplier. The three multiplier pipeline stages are (1) compute 3b, (2)
pass through array, and (3) final carry-propagation add and round. Single preci-
sion passes through the array once, double precision twice. Like addition, the
latency is two cycles.

The Weitek chip uses an interesting addition algorithm. It is a variant on the
carry-skip adder pictured in Figure J.18 (page J-42). However, Pij, which is the
logical AND of many terms, is computed by rippling, performing one AND per
ripple. Thus, while the carries propagate left within a block, the value of Pij is
propagating right within the next block, and the block sizes are chosen so that
both waves complete at the same time. Unlike the MIPS chip, the 3364 has
hardware square root, which shares the divide hardware. The ratio of double-
precision multiply to divide is 2:17. The large disparity between multiply and
divide is due to the fact that multiplication uses radix-8 Booth recoding, while
division uses a radix-4 method. In the MIPS R3010, multiplication and division
use the same radix.

The notable feature of the TI 8847 is that it does division by iteration (using
the Goldschmidt algorithm discussed in Section J.6). This improves the speed of
division (the ratio of multiply to divide is 3:11), but means that multiplication and
division cannot be done in parallel as on the other two chips. Addition has a two-
stage pipeline. Exponent compare, fraction shift, and fraction addition are done
in the first stage, normalization and rounding in the second stage. Multiplication
uses a binary tree of signed-digit adders and has a three-stage pipeline. The first
stage passes through the array, retiring half the bits; the second stage passes
through the array a second time; and the third stage converts from signed-digit
form to two’s complement. Since there is only one array, a new multiply opera-
tion can only be initiated in every other cycle. However, by slowing down the
clock, two passes through the array can be made in a single cycle. In this case, a
new multiplication can be initiated in each cycle. The 8847 adder uses a carry-
select algorithm rather than carry-lookahead. As mentioned in Section J.6, the TI
carries 60 bits of precision in order to do correctly rounded division.

These three chips illustrate the different trade-offs made by designers with
similar constraints. One of the most interesting things about these chips is the
diversity of their algorithms. Each uses a different add algorithm, as well as a dif-
ferent multiply algorithm. In fact, Booth recoding is the only technique that is
universally used by all the chips.

J-62 ■ Appendix J Computer Arithmetic

Fallacy Underflows rarely occur in actual floating-point application code.

Although most codes rarely underflow, there are actual codes that underflow fre-
quently. SDRWAVE [Kahaner 1988], which solves a one-dimensional wave
equation, is one such example. This program underflows quite frequently, even
when functioning properly. Measurements on one machine show that adding
hardware support for gradual underflow would cause SDRWAVE to run about
50% faster.

Fallacy Conversions between integer and floating point are rare.

In fact, in spice they are as frequent as divides. The assumption that conversions
are rare leads to a mistake in the SPARC version 8 instruction set, which does not
provide an instruction to move from integer registers to floating-point registers.

Pitfall Don’t increase the speed of a floating-point unit without increasing its memory
bandwidth.

A typical use of a floating-point unit is to add two vectors to produce a third vec-
tor. If these vectors consist of double-precision numbers, then each floating-point
add will use three operands of 64 bits each, or 24 bytes of memory. The memory
bandwidth requirements are even greater if the floating-point unit can perform
addition and multiplication in parallel (as most do).

Pitfall −x is not the same as 0 − x.

This is a fine point in the IEEE standard that has tripped up some designers.
Because floating-point numbers use the sign magnitude system, there are two
zeros, +0 and −0. The standard says that 0 − 0 = +0, whereas −(0) = −0. Thus, −x
is not the same as 0 − x when x = 0.

The earliest computers used fixed point rather than floating point. In “Prelimi-
nary Discussion of the Logical Design of an Electronic Computing Instrument,”
Burks, Goldstine, and von Neumann [1946] put it like this:

There appear to be two major purposes in a “floating” decimal point system both
of which arise from the fact that the number of digits in a word is a constant fixed
by design considerations for each particular machine. The first of these purposes
is to retain in a sum or product as many significant digits as possible and the sec-
ond of these is to free the human operator from the burden of estimating and
inserting into a problem “scale factors”—multiplicative constants which serve to
keep numbers within the limits of the machine.

J.11 Fallacies and Pitfalls

J.12 Historical Perspective and References

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.12 Historical Perspective and References ■ J-63

There is, of course, no denying the fact that human time is consumed in
arranging for the introduction of suitable scale factors. We only argue that the
time so consumed is a very small percentage of the total time we will spend in
preparing an interesting problem for our machine. The first advantage of the float-
ing point is, we feel, somewhat illusory. In order to have such a floating point, one
must waste memory capacity that could otherwise be used for carrying more dig-
its per word. It would therefore seem to us not at all clear whether the modest
advantages of a floating binary point offset the loss of memory capacity and the
increased complexity of the arithmetic and control circuits.

This enables us to see things from the perspective of early computer design-
ers, who believed that saving computer time and memory were more important
than saving programmer time.

The original papers introducing the Wallace tree, Booth recoding, SRT divi-
sion, overlapped triplets, and so on are reprinted in Swartzlander [1990]. A good
explanation of an early machine (the IBM 360/91) that used a pipelined Wallace
tree, Booth recoding, and iterative division is in Anderson et al. [1967]. A discus-
sion of the average time for single-bit SRT division is in Freiman [1961]; this is
one of the few interesting historical papers that does not appear in Swartzlander.

The standard book of Mead and Conway [1980] discouraged the use of CLAs
as not being cost effective in VLSI. The important paper by Brent and Kung
[1982] helped combat that view. An example of a detailed layout for CLAs can
be found in Ngai and Irwin [1985] or in Weste and Eshraghian [1993], and a
more theoretical treatment is given by Leighton [1992]. Takagi, Yasuura, and
Yajima [1985] provide a detailed description of a signed-digit tree multiplier.

Before the ascendancy of IEEE arithmetic, many different floating-point for-
mats were in use. Three important ones were used by the IBM 370, the DEC
VAX, and the Cray. Here is a brief summary of these older formats. The VAX
format is closest to the IEEE standard. Its single-precision format (F format) is
like IEEE single precision in that it has a hidden bit, 8 bits of exponent, and 23
bits of fraction. However, it does not have a sticky bit, which causes it to round
halfway cases up instead of to even. The VAX has a slightly different exponent
range from IEEE single: Emin is −128 rather than −126 as in IEEE, and Emax is
126 instead of 127. The main differences between VAX and IEEE are the lack of
special values and gradual underflow. The VAX has a reserved operand, but it
works like a signaling NaN: It traps whenever it is referenced. Originally, the
VAX’s double precision (D format) also had 8 bits of exponent. However, as this
is too small for many applications, a G format was added; like the IEEE standard,
this format has 11 bits of exponent. The VAX also has an H format, which is 128
bits long.

The IBM 370 floating-point format uses base 16 rather than base 2. This
means it cannot use a hidden bit. In single precision, it has 7 bits of exponent and
24 bits (6 hex digits) of fraction. Thus, the largest representable number is
1627 = 24 × 27 = 229, compared with 228 for IEEE. However, a number that is nor-
malized in the hexadecimal sense only needs to have a nonzero leading digit.
When interpreted in binary, the three most-significant bits could be zero. Thus,
there are potentially fewer than 24 bits of significance. The reason for using the

J-64 ■ Appendix J Computer Arithmetic

higher base was to minimize the amount of shifting required when adding
floating-point numbers. However, this is less significant in current machines,
where the floating-point add time is usually fixed independently of the operands.
Another difference between 370 arithmetic and IEEE arithmetic is that the 370
has neither a round digit nor a sticky digit, which effectively means that it trun-
cates rather than rounds. Thus, in many computations, the result will systemati-
cally be too small. Unlike the VAX and IEEE arithmetic, every bit pattern is a
valid number. Thus, library routines must establish conventions for what to return
in case of errors. In the IBM FORTRAN library, for example, returns 2!

Arithmetic on Cray computers is interesting because it is driven by a motiva-
tion for the highest possible floating-point performance. It has a 15-bit exponent
field and a 48-bit fraction field. Addition on Cray computers does not have a
guard digit, and multiplication is even less accurate than addition. Thinking of
multiplication as a sum of p numbers, each 2p bits long, Cray computers drop the
low-order bits of each summand. Thus, analyzing the exact error characteristics of
the multiply operation is not easy. Reciprocals are computed using iteration, and
division of a by b is done by multiplying a times 1/b. The errors in multiplication
and reciprocation combine to make the last three bits of a divide operation
unreliable. At least Cray computers serve to keep numerical analysts on their toes!

The IEEE standardization process began in 1977, inspired mainly by
W. Kahan and based partly on Kahan’s work with the IBM 7094 at the University
of Toronto [Kahan 1968]. The standardization process was a lengthy affair, with
gradual underflow causing the most controversy. (According to Cleve Moler, vis-
itors to the United States were advised that the sights not to be missed were Las
Vegas, the Grand Canyon, and the IEEE standards committee meeting.) The stan-
dard was finally approved in 1985. The Intel 8087 was the first major commercial
IEEE implementation and appeared in 1981, before the standard was finalized. It
contains features that were eliminated in the final standard, such as projective
bits. According to Kahan, the length of double-extended precision was based on
what could be implemented in the 8087. Although the IEEE standard was not
based on any existing floating-point system, most of its features were present in
some other system. For example, the CDC 6600 reserved special bit patterns for
INDEFINITE and INFINITY, while the idea of denormal numbers appears in
Goldberg [1967] as well as in Kahan [1968]. Kahan was awarded the 1989 Tur-
ing prize in recognition of his work on floating point.

Although floating point rarely attracts the interest of the general press, news-
papers were filled with stories about floating-point division in November 1994. A
bug in the division algorithm used on all of Intel’s Pentium chips had just come to
light. It was discovered by Thomas Nicely, a math professor at Lynchburg Col-
lege in Virginia. Nicely found the bug when doing calculations involving recipro-
cals of prime numbers. News of Nicely’s discovery first appeared in the press on
the front page of the November 7 issue of Electronic Engineering Times. Intel’s
immediate response was to stonewall, asserting that the bug would only affect
theoretical mathematicians. Intel told the press, “This doesn’t even qualify as an
errata . . . even if you’re an engineer, you’re not going to see this.”

4–

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.12 Historical Perspective and References ■ J-65

Under more pressure, Intel issued a white paper, dated November 30, explain-
ing why they didn’t think the bug was significant. One of their arguments was
based on the fact that if you pick two floating-point numbers at random and
divide one into the other, the chance that the resulting quotient will be in error is
about 1 in 9 billion. However, Intel neglected to explain why they thought that the
typical customer accessed floating-point numbers randomly.

Pressure continued to mount on Intel. One sore point was that Intel had
known about the bug before Nicely discovered it, but had decided not to make it
public. Finally, on December 20, Intel announced that they would uncondition-
ally replace any Pentium chip that used the faulty algorithm and that they would
take an unspecified charge against earnings, which turned out to be $300 million.

The Pentium uses a simple version of SRT division as discussed in Section
J.9. The bug was introduced when they converted the quotient lookup table to a
PLA. Evidently there were a few elements of the table containing the quotient
digit 2 that Intel thought would never be accessed, and they optimized the PLA
design using this assumption. The resulting PLA returned 0 rather than 2 in these
situations. However, those entries were really accessed, and this caused the divi-
sion bug. Even though the effect of the faulty PLA was to cause 5 out of 2048
table entries to be wrong, the Pentium only computes an incorrect quotient 1 out
of 9 billion times on random inputs. This is explored in Exercise J.34.

References

Anderson, S. F., J. G. Earle, R. E. Goldschmidt, and D. M. Powers [1967]. “The IBM
System/360 Model 91: Floating-point execution unit,” IBM J. Research and Develop-
ment 11, 34–53. Reprinted in Swartzlander [1990].
Good description of an early high-performance floating-point unit that used a pipe-
lined Wallace tree multiplier and iterative division.

Bell, C. G., and A. Newell [1971]. Computer Structures: Readings and Examples,
McGraw-Hill, New York.

Birman, M., A. Samuels, G. Chu, T. Chuk, L. Hu, J. McLeod, and J. Barnes [1990].
“Developing the WRL3170/3171 SPARC floating-point coprocessors,” IEEE Micro
10:1, 55–64.
These chips have the same floating-point core as the Weitek 3364, and this paper has
a fairly detailed description of that floating-point design.

Brent, R. P., and H. T. Kung [1982]. “A regular layout for parallel adders,” IEEE Trans.
on Computers C-31, 260–264.
This is the paper that popularized CLAs in VLSI.

Burgess, N., and T. Williams [1995]. “Choices of operand truncation in the SRT division
algorithm,” IEEE Trans. on Computers 44:7.
Analyzes how many bits of divisor and remainder need to be examined in SRT
division.

Burks, A. W., H. H. Goldstine, and J. von Neumann [1946]. “Preliminary discussion of
the logical design of an electronic computing instrument,” Report to the U.S. Army
Ordnance Department, p. 1; also appears in Papers of John von Neumann, W. Aspray
and A. Burks, eds., MIT Press, Cambridge, Mass., and Tomash Publishers, Los
Angeles, 1987, 97–146.

J-66 ■ Appendix J Computer Arithmetic

Cody, W. J., J. T. Coonen, D. M. Gay, K. Hanson, D. Hough, W. Kahan, R. Karpinski,
J. Palmer, F. N. Ris, and D. Stevenson [1984]. “A proposed radix- and word-length-
independent standard for floating-point arithmetic,” IEEE Micro 4:4, 86–100.
Contains a draft of the 854 standard, which is more general than 754. The signifi-
cance of this article is that it contains commentary on the standard, most of which is
equally relevant to 754. However, be aware that there are some differences between
this draft and the final standard.

Coonen, J. [1984]. “Contributions to a proposed standard for binary floating point arith-
metic,” Ph.D. thesis, University of California–Berkeley.
The only detailed discussion of how rounding modes can be used to implement effi-
cient binary decimal conversion.

Darley, H. M. et al. [1989]. “Floating point/integer processor with divide and square root
functions,” U.S. Patent 4,878,190, October 31, 1989.
Pretty readable as patents go. Gives a high-level view of the TI 8847 chip, but doesn’t
have all the details of the division algorithm.

Demmel, J. W., and X. Li [1994]. “Faster numerical algorithms via exception handling,”
IEEE Trans. on Computers 43:8, 983–992.
A good discussion of how the features unique to IEEE floating point can improve the
performance of an important software library.

Freiman, C. V. [1961]. “Statistical analysis of certain binary division algorithms,” Proc.
IRE 49:1, 91–103.
Contains an analysis of the performance of shifting-over-zeros SRT division algo-
rithm.

Goldberg, D. [1991]. “What every computer scientist should know about floating-point
arithmetic,” Computing Surveys 23:1, 5–48.
Contains an in-depth tutorial on the IEEE standard from the software point of view.

Goldberg, I. B. [1967]. “27 bits are not enough for 8-digit accuracy,” Comm. ACM 10:2,
105–106.
This paper proposes using hidden bits and gradual underflow.

Gosling, J. B. [1980]. Design of Arithmetic Units for Digital Computers, Springer-Verlag,
New York.
A concise, well-written book, although it focuses on MSI designs.

Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky [1984]. Computer Organization, 2nd ed.,
McGraw-Hill, New York.
Introductory computer architecture book with a good chapter on computer arithmetic.

Hwang, K. [1979]. Computer Arithmetic: Principles, Architecture, and Design, Wiley,
New York.
This book contains the widest range of topics of the computer arithmetic books.

IEEE [1985]. “IEEE standard for binary floating-point arithmetic,” SIGPLAN Notices
22:2, 9–25.
IEEE 754 is reprinted here.

Kahan, W. [1968]. “7094-II system support for numerical analysis,” SHARE Secretarial
Distribution SSD-159.
This system had many features that were incorporated into the IEEE floating-point
standard.

Kahaner, D. K. [1988]. “Benchmarks for ‘real’ programs,” SIAM News (November).
The benchmark presented in this article turns out to cause many underflows.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

J.12 Historical Perspective and References ■ J-67

Knuth, D. [1981]. The Art of Computer Programming, Vol. II, 2nd ed., Addison-Wesley,
Reading, Mass.
Has a section on the distribution of floating-point numbers.

Kogge, P. [1981]. The Architecture of Pipelined Computers, McGraw-Hill, New York.
Has a brief discussion of pipelined multipliers.

Kohn, L., and S.-W. Fu [1989]. “A 1,000,000 transistor microprocessor,” IEEE Int’l.
Solid-State Circuits Conf. Digest of Technical Papers, 54–55.
There are several articles about the i860, but this one contains the most details about
its floating-point algorithms.

Koren, I. [1989]. Computer Arithmetic Algorithms, Prentice Hall, Englewood Cliffs, N.J.
Leighton, F. T. [1992]. Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes, Morgan Kaufmann, San Francisco.
This is an excellent book, with emphasis on the complexity analysis of algorithms.
Section 1.2.1 has a nice discussion of carry-lookahead addition on a tree.

Magenheimer, D. J., L. Peters, K. W. Pettis, and D. Zuras [1988]. “Integer multiplication
and division on the HP Precision architecture,” IEEE Trans. on Computers 37:8,
980–990.
Gives rationale for the integer- and divide-step instructions in the Precision architecture.

Markstein, P. W. [1990]. “Computation of elementary functions on the IBM RISC
System/6000 processor,” IBM J. of Research and Development 34:1, 111–119.
Explains how to use fused muliply-add to compute correctly rounded division and
square root.

Mead, C., and L. Conway [1980]. Introduction to VLSI Systems, Addison-Wesley, Read-
ing, Mass.

Montoye, R. K., E. Hokenek, and S. L. Runyon [1990]. “Design of the IBM RISC System/
6000 floating-point execution,” IBM J. of Research and Development 34:1, 59–70.
Describes one implementation of fused multiply-add.

Ngai, T.-F., and M. J. Irwin [1985]. “Regular, area-time efficient carry-lookahead adders,”
Proc. Seventh IEEE Symposium on Computer Arithmetic, 9–15.
Describes a CLA like that of Figure J.17, where the bits flow up and then come back
down.

Patterson, D. A., and J. L. Hennessy [2009]. Computer Organization and Design: The
Hardware/Software Interface, 4th Edition, Morgan Kaufmann, San Francisco.
Chapter 3 is a gentler introduction to the first third of this appendix.

Peng, V., S. Samudrala, and M. Gavrielov [1987]. “On the implementation of shifters,
multipliers, and dividers in VLSI floating point units,” Proc. Eighth IEEE Symposium
on Computer Arithmetic, 95–102.
Highly recommended survey of different techniques actually used in VLSI designs.

Rowen, C., M. Johnson, and P. Ries [1988]. “The MIPS R3010 floating-point coproces-
sor,” IEEE Micro, 53–62 (June).

Santoro, M. R., G. Bewick, and M. A. Horowitz [1989]. “Rounding algorithms for IEEE
multipliers,” Proc. Ninth IEEE Symposium on Computer Arithmetic, 176–183.
A very readable discussion of how to efficiently implement rounding for floating-point
multiplication.

Scott, N. R. [1985]. Computer Number Systems and Arithmetic, Prentice Hall, Englewood
Cliffs, N.J.

J-68 ■ Appendix J Computer Arithmetic

Swartzlander, E., ed. [1990]. Computer Arithmetic, IEEE Computer Society Press, Los
Alamitos, Calif.
A collection of historical papers in two volumes.

Takagi, N., H. Yasuura, and S. Yajima [1985].“High-speed VLSI multiplication algorithm
with a redundant binary addition tree,” IEEE Trans. on Computers C-34:9, 789–796.
A discussion of the binary tree signed multiplier that was the basis for the design used
in the TI 8847.

Taylor, G. S. [1981]. “Compatible hardware for division and square root,” Proc. Fifth IEEE
Symposium on Computer Arithmetic, May 18–19, 1981, Ann Arbor, Mich., 127–134.
Good discussion of a radix-4 SRT division algorithm.

Taylor, G. S. [1985]. “Radix 16 SRT dividers with overlapped quotient selection stages,” Proc.
Seventh IEEE Symposium on Computer Arithmetic, June 4–6, 1985, Urbana, Ill., 64–71.
Describes a very sophisticated high-radix division algorithm.

Weste, N., and K. Eshraghian [1993]. Principles of CMOS VLSI Design: A Systems Per-
spective, 2nd ed., Addison-Wesley, Reading, Mass.
This textbook has a section on the layouts of various kinds of adders.

Williams, T. E., M. Horowitz, R. L. Alverson, and T. S. Yang [1987]. “A self-timed chip
for division,” Advanced Research in VLSI, Proc. 1987 Stanford Conf., MIT Press,
Cambridge, Mass.
Describes a divider that tries to get the speed of a combinational design without using
the area that would be required by one.

J.1 [12] <J.2> Using n bits, what is the largest and smallest integer that can be repre-
sented in the two’s complement system?

J.2 [20/25] <J.2> In the subsection “Signed Numbers” (page J-7), it was stated that
two’s complement overflows when the carry into the high-order bit position is
different from the carry-out from that position.

a. [20] <J.2> Give examples of pairs of integers for all four combinations of
carry-in and carry-out. Verify the rule stated above.

b. [25] <J.2> Explain why the rule is always true.

J.3 [12] <J.2> Using 4-bit binary numbers, multiply −8 × −8 using Booth recoding.

J.4 [15] <J.2> Equations J.2.1 and J.2.2 are for adding two n-bit numbers. Derive
similar equations for subtraction, where there will be a borrow instead of a carry.

J.5 [25] <J.2> On a machine that doesn’t detect integer overflow in hardware, show
how you would detect overflow on a signed addition operation in software.

J.6 [15/15/20] <J.3> Represent the following numbers as single-precision and
double-precision IEEE floating-point numbers:

a. [15] <J.3> 10.

b. [15] <J.3> 10.5.

c. [20] <J.3> 0.1.

Exercises

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Exercises ■ J-69

J.7 [12/12/12/12/12] <J.3> Below is a list of floating-point numbers. In single preci-
sion, write down each number in binary, in decimal, and give its representation in
IEEE arithmetic.

a. [12] <J.3> The largest number less than 1.

b. [12] <J.3> The largest number.

c. [12] <J.3> The smallest positive normalized number.

d. [12] <J.3> The largest denormal number.

e. [12] <J.3> The smallest positive number.

J.8 [15] <J.3> Is the ordering of nonnegative floating-point numbers the same as
integers when denormalized numbers are also considered?

J.9 [20] <J.3> Write a program that prints out the bit patterns used to represent
floating-point numbers on your favorite computer. What bit pattern is used for
NaN?

J.10 [15] <J.4> Using p = 4, show how the binary floating-point multiply algorithm
computes the product of 1.875 × 1.875.

J.11 [12/10] <J.4> Concerning the addition of exponents in floating-point multiply:

a. [12] <J.4> What would the hardware that implements the addition of expo-
nents look like?

b. [10] <J.4> If the bias in single precision were 129 instead of 127, would addi-
tion be harder or easier to implement?

J.12 [15/12] <J.4> In the discussion of overflow detection for floating-point multipli-
cation, it was stated that (for single precision) you can detect an overflowed
exponent by performing exponent addition in a 9-bit adder.

a. [15] <J.4> Give the exact rule for detecting overflow.

b. [12] <J.4> Would overflow detection be any easier if you used a 10-bit adder
instead?

J.13 [15/10] <J.4> Floating-point multiplication:

a. [15] <J.4> Construct two single-precision floating-point numbers whose
product doesn’t overflow until the final rounding step.

b. [10] <J.4> Is there any rounding mode where this phenomenon cannot occur?

J.14 [15] <J.4> Give an example of a product with a denormal operand but a normal-
ized output. How large was the final shifting step? What is the maximum possible
shift that can occur when the inputs are double-precision numbers?

J.15 [15] <J.5> Use the floating-point addition algorithm on page J-23 to compute
1.0102 − .10012 (in 4-bit precision).

J.16 [10/15/20/20/20] <J.5> In certain situations, you can be sure that a + b is exactly
representable as a floating-point number, that is, no rounding is necessary.

J-70 ■ Appendix J Computer Arithmetic

a. [10] <J.5> If a, b have the same exponent and different signs, explain why
a + b is exact. This was used in the subsection “Speeding Up Addition” on
page J-25.

b. [15] <J.5> Give an example where the exponents differ by 1, a and b have
different signs, and a + b is not exact.

c. [20] <J.5> If a ≥ b ≥ 0, and the top two bits of a cancel when computing a – b,
explain why the result is exact (this fact is mentioned on page J-22).

d. [20] <J.5> If a ≥ b ≥ 0, and the exponents differ by 1, show that a − b is exact
unless the high order bit of a − b is in the same position as that of a (men-
tioned in “Speeding Up Addition,” page J-25).

e. [20] <J.5> If the result of a − b or a + b is denormal, show that the result is
exact (mentioned in the subsection “Underflow,” on page J-36).

J.17 [15/20] <J.5> Fast floating-point addition (using parallel adders) for p = 5.

a. [15] <J.5> Step through the fast addition algorithm for a + b, where a =
1.01112 and b = .110112.

b. [20] <J.5> Suppose the rounding mode is toward +∞. What complication
arises in the above example for the adder that assumes a carry-out? Suggest a
solution.

J.18 [12] <J.4, J.5> How would you use two parallel adders to avoid the final round-
up addition in floating-point multiplication?

J.19 [30/10] <J.5> This problem presents a way to reduce the number of addition
steps in floating-point addition from three to two using only a single adder.

a. [30] <J.5> Let A and B be integers of opposite signs, with a and b their mag-
nitudes. Show that the following rules for manipulating the unsigned numbers
a and b gives A + B.

1. Complement one of the operands.

2. Use end-around carry to add the complemented operand and the other
(uncomplemented) one.

3. If there was a carry-out, the sign of the result is the sign associated with the
uncomplemented operand.

4. Otherwise, if there was no carry-out, complement the result, and give it the
sign of the complemented operand.

b. [10] <J.5> Use the above to show how steps 2 and 4 in the floating-point addi-
tion algorithm on page J-23 can be performed using only a single addition.

J.20 [20/15/20/15/20/15] <J.6> Iterative square root.

a. [20] <J.6> Use Newton’s method to derive an iterative algorithm for square
root. The formula will involve a division.

b. [15] <J.6> What is the fastest way you can think of to divide a floating-point
number by 2?

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Exercises ■ J-71

c. [20] <J.6> If division is slow, then the iterative square root routine will also
be slow. Use Newton’s method on f(x) = 1/x2 − a to derive a method that
doesn’t use any divisions.

d. [15] <J.6> Assume that the ratio division by 2 : floating-point add : floating-
point multiply is 1:2:4. What ratios of multiplication time to divide time
makes each iteration step in the method of part (c) faster than each iteration in
the method of part (a)?

e. [20] <J.6> When using the method of part (a), how many bits need to be in
the initial guess in order to get double-precision accuracy after three itera-
tions? (You may ignore rounding error.)

f. [15] <J.6> Suppose that when spice runs on the TI 8847, it spends 16.7% of
its time in the square root routine (this percentage has been measured on
other machines). Using the values in Figure J.36 and assuming three itera-
tions, how much slower would spice run if square root were implemented in
software using the method of part(a)?

J.21 [10/20/15/15/15] <J.6> Correctly rounded iterative division. Let a and b be
floating-point numbers with p-bit significands (p = 53 in double precision). Let q
be the exact quotient q = a/b, 1 ≤ q < 2. Suppose that q is the result of an iteration
process, that q has a few extra bits of precision, and that 0 < q − q < 2–p. For the
following, it is important that q < q, even when q can be exactly represented as a
floating-point number.

a. [10] <J.6> If x is a floating-point number, and 1 ≤ x < 2, what is the next rep-
resentable number after x?

b. [20] <J.6> Show how to compute q′ from q, where q′ has p + 1 bits of preci-
sion and ⏐q − q′ ⏐ < 2–p.

c. [15] <J.6> Assuming round to nearest, show that the correctly rounded quo-
tient is either q′, q′ − 2–p, or q′ + 2–p.

d. [15] <J.6> Give rules for computing the correctly rounded quotient from q′
based on the low-order bit of q′ and the sign of a − bq′.

e. [15] <J.6> Solve part (c) for the other three rounding modes.

J.22 [15] <J.6> Verify the formula on page J-30. (Hint: If xn = x0(2 − x0b) × Πi=1, n [1 +
(1 − x0b)2i], then 2 − xnb = 2 − x0b(2 − x0b) Π[1 + (1 − x0b)2i] = 2 − [1 − (1 − x0b)2]

Π[1 + (1 − x0b)2i].)

J.23 [15] <J.7> Our example that showed that double rounding can give a different
answer from rounding once used the round-to-even rule. If halfway cases are
always rounded up, is double rounding still dangerous?

J.24 [10/10/20/20] <J.7> Some of the cases of the italicized statement in the “Preci-
sions” subsection (page J-33) aren’t hard to demonstrate.

a. [10] <J.7> What form must a binary number have if rounding to q bits fol-
lowed by rounding to p bits gives a different answer than rounding directly to
p bits?

J-72 ■ Appendix J Computer Arithmetic

b. [10] <J.7> Show that for multiplication of p-bit numbers, rounding to q bits
followed by rounding to p bits is the same as rounding immediately to p bits
if q ≥ 2p.

c. [20] <J.7> If a and b are p-bit numbers with the same sign, show that round-
ing a + b to q bits followed by rounding to p bits is the same as rounding
immediately to p bits if q ≥ 2p + 1.

d. [20] <J.7> Do part (c) when a and b have opposite signs.

J.25 [Discussion] <J.7> In the MIPS approach to exception handling, you need a test
for determining whether two floating-point operands could cause an exception.
This should be fast and also not have too many false positives. Can you come up
with a practical test? The performance cost of your design will depend on the dis-
tribution of floating-point numbers. This is discussed in Knuth [1981] and the
Hamming paper in Swartzlander [1990].

J.26 [12/12/10] <J.8> Carry-skip adders.

a. [12] <J.8> Assuming that time is proportional to logic levels, how long does
it take an n-bit adder divided into (fixed) blocks of length k bits to perform an
addition?

b. [12] <J.8> What value of k gives the fastest adder?

c. [10] <J.8> Explain why the carry-skip adder takes time .

J.27 [10/15/20] <J.8> Complete the details of the block diagrams for the following
adders.

a. [10] <J.8> In Figure J.15, show how to implement the “1” and “2” boxes in
terms of AND and OR gates.

b. [15] <J.8> In Figure J.19, what signals need to flow from the adder cells in
the top row into the “C” cells? Write the logic equations for the “C” box.

c. [20] <J.8> Show how to extend the block diagram in J.17 so it will produce
the carry-out bit c8.

J.28 [15] <J.9> For ordinary Booth recoding, the multiple of b used in the ith step is
simply ai–1 − ai. Can you find a similar formula for radix-4 Booth recoding (over-
lapped triplets)?

J.29 [20] <J.9> Expand Figure J.29 in the fashion of J.27, showing the individual
adders.

J.30 [25] <J.9> Write out the analog of Figure J.25 for radix-8 Booth recoding.

J.31 [18] <J.9> Suppose that an–1 . . . a1a0 and bn–1 . . . b1b0 are being added in a
signed-digit adder as illustrated in the example on page J-53. Write a formula for
the ith bit of the sum, si, in terms of ai, ai–1, ai–2, bi, bi–1, and bi–2.

J.32 [15] <J.9> The text discussed radix-4 SRT division with quotient digits of −2, −1,
0, 1, 2. Suppose that 3 and −3 are also allowed as quotient digits. What relation
replaces⏐ri⏐ ≤ 2b/3?

0 n()

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Exercises ■ J-73

J.33 [25/20/30] <J.9> Concerning the SRT division table, Figure J.34:

a. [25] <J.9> Write a program to generate the results of Figure J.34.

b. [20] <J.9> Note that Figure J.34 has a certain symmetry with respect to posi-
tive and negative values of P. Can you find a way to exploit the symmetry and
only store the values for positive P?

c. [30] <J.9> Suppose a carry-save adder is used instead of a propagate adder.
The input to the quotient lookup table will be k bits of divisor and l bits of
remainder, where the remainder bits are computed by summing the top l bits
of the sum and carry registers. What are k and l? Write a program to generate
the analog of Figure J.34.

J.34 [12/12/12] <J.9, J.12> The first several million Pentium chips produced had a
flaw that caused division to sometimes return the wrong result. The Pentium uses
a radix-4 SRT algorithm similar to the one illustrated in the example on page J-56
(but with the remainder stored in carry-save format; see Exercise J.33(c)).
According to Intel, the bug was due to five incorrect entries in the quotient
lookup table.

a. [12] <J.9, J.12> The bad entries should have had a quotient of plus or minus
2, but instead had a quotient of 0. Because of redundancy, it’s conceivable
that the algorithm could “recover” from a bad quotient digit on later itera-
tions. Show that this is not possible for the Pentium flaw.

b. [12] <J.9, J.12> Since the operation is a floating-point divide rather than an
integer divide, the SRT division algorithm on page J-45 must be modified in
two ways. First, step 1 is no longer needed, since the divisor is already nor-
malized. Second, the very first remainder may not satisfy the proper bound
(⏐r ⏐≤ 2b/3 for Pentium; see page J-55). Show that skipping the very first left
shift in step 2(a) of the SRT algorithm will solve this problem.

c. [12] <J.9, J.12> If the faulty table entries were indexed by a remainder that
could occur at the very first divide step (when the remainder is the divisor),
random testing would quickly reveal the bug. This didn’t happen. What does
that tell you about the remainder values that index the faulty entries?

J.35 [12] <J.6, J.9> The discussion of the remainder-step instruction assumed that
division was done using a bit-at-a-time algorithm. What would have to change if
division were implemented using a higher-radix method?

J.36 [25] <J.9> In the array of Figure J.28, the fact that an array can be pipelined is not
exploited. Can you come up with a design that feeds the output of the bottom
CSA into the bottom CSAs instead of the top one, and that will run faster than the
arrangement of Figure J.28?

K.1 Introduction K-2

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers K-3

K.3 The Intel 80x86 K-45

K.4 The VAX Architecture K-65

K.5 The IBM 360/370 Architecture for Mainframe Computers K-83

K.6 Historical Perspective and References K-90

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K
Survey of Instruction

Set Architectures 1

RISC: any computer announced after 1985.

Steven Przybylski
A Designer of the Stanford MIPS

K-2 ■ Appendix K Survey of Instruction Set Architectures

This appendix covers 13 instruction set architectures, some of which remain a
vital part of the IT industry and some of which have retired to greener pastures.
We keep them all in part to show the changes in fashion of instruction set archi-
tecture over time.

We start with ten RISC architectures. There are billions of dollars of comput-
ers shipped each year for ARM (including Thumb), MIPS (including MIPS16),
Power, and SPARC. Indeed, ARM dominates embedded computing. However,
the Digital Alpha and HP PA-RISC were both shoved aside by Itanium, and they
remain primarily of historical interest.

The 80x86 remains a dominant ISA, dominating the desktop and the low-end
of the server market. It has been extended more than any other ISA in this book,
and there are no plans to stop it soon. Now that it has made the transition to 64-bit
addressing, we expect this architecture to be around longer than your authors.

The VAX typifies an ISA where the emphasis was on code size and offering a
higher level machine language in the hopes of being a better match to program-
ming languages. The architects clearly expected it to be implemented with large
amounts of microcode, which made single chip and pipelined implementations
more challenging. Its successor was the Alpha, which had a short life.

The vulnerable IBM 360/370 remains a classic that set the standard for many
instruction sets to follow. Among the decisions the architects made in the early
1960s were:

■ 8-bit byte

■ Byte addressing

■ 32-bit words

■ 32-bit single precision floating-point format + 64-bit double precision float-
ing-point format

■ 32-bit general-purpose registers, separate 64-bit floating-point registers

■ Binary compatibility across a family of computers with different cost-
performance

■ Separation of architecture from implementation

As mentioned in Chapter 2, the IBM 370 was extended to be virtualizable, so
it has the lowest overhead for a virtual machine of any ISA. The IBM 360/370
remains the foundation of the IBM mainframe business in a version that has
extended to 64 bits.

 K.1 Introduction

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-3

Introduction

We cover two groups of Reduced Instruction Set Computer (RISC) architectures
in this section. The first group is the desktop and server RISCs:

■ Digital Alpha

■ MIPS, Inc.

■ Hewlett-Packard PA-RISC

■ IBM and Motorola PowerPC

■ Sun Microsystems SPARC

The second group is the embedded RISCs:

■ Advanced RISC Machines ARM

■ Advanced RISC Machines Thumb

■ Hitachi SuperH

■ Mitsubishi M32R

■ MIPS, Inc. MIPS16

Although three of these architectures have faded over time—namely, the
Alpha, PA-RISC, and M32R—there has never been another class of computers so
similar.

There has never been another class of computers so similar. This similarity
allows the presentation of 10 architectures in about 50 pages. Characteristics of
the desktop and server RISCs are found in Figure K.1 and the embedded RISCs
in Figure K.2.

Notice that the embedded RISCs tend to have 8 to 16 general-purpose regis-
ters, while the desktop/server RISCs have 32, and that the length of instructions
is 16 to 32 bits in embedded RISCs but always 32 bits in desktop/server RISCs.

Although shown as separate embedded instruction set architectures, Thumb
and MIPS16 are really optional modes of ARM and MIPS invoked by call
instructions. When in this mode they execute a subset of the native architecture
using 16-bit-long instructions. These 16-bit instruction sets are not intended to be
full architectures, but they are enough to encode most procedures. Both machines
expect procedures to be homogeneous, with all instructions in either 16-bit mode
or 32-bit mode. Programs will consist of procedures in 16-bit mode for density or
in 32-bit mode for performance.

One complication of this description is that some of the older RISCs have
been extended over the years. We decided to describe more recent versions of the
architectures: Alpha version 3, MIPS64, PA-RISC 2.0, and SPARC version 9 for
the desktop/server; ARM version 4, Thumb version 1, Hitachi SuperH SH-3,
M32R version 1, and MIPS16 version 1 for the embedded ones.

 K.2 A Survey of RISC Architectures for Desktop, Server,
and Embedded Computers

K-4 ■ Appendix K Survey of Instruction Set Architectures

The remaining sections proceed as follows. After discussing the addressing
modes and instruction formats of our RISC architectures, we present the survey
of the instructions in five steps:

■ Instructions found in the MIPS core, which is defined in Appendix A of the
main text

■ Multimedia extensions of the desktop/server RISCs

Alpha MIPS I PA-RISC 1.1 PowerPC SPARC v.8

Date announced 1992 1986 1986 1993 1987

Instruction size (bits) 32 32 32 32 32

Address space (size,
model)

64 bits, flat 32 bits, flat 48 bits,
segmented

32 bits, flat 32 bits, flat

Data alignment Aligned Aligned Aligned Unaligned Aligned

Data addressing modes 1 1 5 4 2

Protection Page Page Page Page Page

Minimum page size 8 KB 4 KB 4 KB 4 KB 8 KB

I/O Memory mapped Memory mapped Memory mapped Memory mapped Memory mapped

Integer registers
(number, model, size)

31 GPR
× 64 bits

31 GPR
× 32 bits

31 GPR
× 32 bits

32 GPR
× 32 bits

31 GPR
× 32 bits

Separate floating-point
registers

31 × 32 or
31 × 64 bits

16 × 32 or
16 × 64 bits

56 × 32 or
28 × 64 bits

32 × 32 or
32 × 64 bits

32 × 32 or
32 × 64 bits

Floating-point format IEEE 754 single,
double

IEEE 754 single,
double

IEEE 754 single,
double

IEEE 754 single,
double

IEEE 754 single,
double

Figure K.1 Summary of the first version of five recent architectures for desktops and servers. Except for the num-
ber of data address modes and some instruction set details, the integer instruction sets of these architectures are very
similar. Contrast this with Figure K.34. Later versions of these architectures all support a flat, 64-bit address space.

ARM Thumb SuperH M32R MIPS16

Date announced 1985 1995 1992 1997 1996

Instruction size (bits) 32 16 16 16/32 16/32

Address space (size,
model)

32 bits, flat 32 bits, flat 32 bits, flat 32 bits, flat 32/64 bits, flat

Data alignment Aligned Aligned Aligned Aligned Aligned

Data addressing modes 6 6 4 3 2

Integer registers
(number, model, size)

15 GPR × 32 bits 8 GPR + SP, LR
× 32 bits

16 GPR × 32 bits 16 GPR × 32 bits 8 GPR + SP, RA
× 32/64 bits

I/O Memory mapped Memory mapped Memory mapped Memory mapped Memory mapped

Figure K.2 Summary of five recent architectures for embedded applications. Except for number of data address
modes and some instruction set details, the integer instruction sets of these architectures are similar. Contrast this
with Figure K.34.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-5

■ Digital signal-processing extensions of the embedded RISCs

■ Instructions not found in the MIPS core but found in two or more architec-
tures

■ The unique instructions and characteristics of each of the 10 architectures

We give the evolution of the instruction sets in the final section and conclude with
a speculation about future directions for RISCs.

Addressing Modes and Instruction Formats

Figure K.3 shows the data addressing modes supported by the desktop architec-
tures. Since all have one register that always has the value 0 when used in address
modes, the absolute address mode with limited range can be synthesized using
zero as the base in displacement addressing. (This register can be changed by
arithmetic-logical unit (ALU) operations in PowerPC; it is always 0 in the other
machines.) Similarly, register indirect addressing is synthesized by using dis-
placement addressing with an offset of 0. Simplified addressing modes is one dis-
tinguishing feature of RISC architectures.

Figure K.4 shows the data addressing modes supported by the embedded
architectures. Unlike the desktop RISCs, these embedded machines do not
reserve a register to contain 0. Although most have two to three simple address-
ing modes, ARM and SuperH have several, including fairly complex calcula-
tions. ARM has an addressing mode that can shift one register by any amount,
add it to the other registers to form the address, and then update one register
with this new address.

References to code are normally PC-relative, although jump register indirect
is supported for returning from procedures, for case statements, and for pointer
function calls. One variation is that PC-relative branch addresses are shifted left

Addressing mode Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Register + offset (displacement or based) X X X X X

Register + register (indexed) — X (FP) X (Loads) X X

Register + scaled register (scaled) — — X — —

Register + offset and update register — — X X —

Register + register and update register — — X X —

Figure K.3 Summary of data addressing modes supported by the desktop architectures. PA-RISC also has short
address versions of the offset addressing modes. MIPS64 has indexed addressing for floating-point loads and stores.
(These addressing modes are described in Figure A.6 on page A-9.)

K-6 ■ Appendix K Survey of Instruction Set Architectures

2 bits before being added to the PC for the desktop RISCs, thereby increasing
the branch distance. This works because the length of all instructions for the
desktop RISCs is 32 bits and instructions must be aligned on 32-bit words in
memory. Embedded architectures with 16-bit-long instructions usually shift the
PC-relative address by 1 for similar reasons.

Figure K.5 shows the format of the desktop RISC instructions, which
includes the size of the address in the instructions. Each instruction set architec-
ture uses these four primary instruction formats. Figure K.6 shows the six for-
mats for the embedded RISC machines. The desire to have smaller code size via
16-bit instructions leads to more instruction formats.

Figures K.7 and K.8 show the variations in extending constant fields to the full
width of the registers. In this subtle point, the RISCs are similar but not identical.

Instructions: The MIPS Core Subset

The similarities of each architecture allow simultaneous descriptions, starting
with the operations equivalent to the MIPS core.

MIPS Core Instructions

Almost every instruction found in the MIPS core is found in the other architec-
tures, as Figures K.9 through K.13 show. (For reference, definitions of the MIPS
instructions are found in Section A.9.) Instructions are listed under four catego-
ries: data transfer (Figure K.9); arithmetic, logical (Figure K.10); control (Figure
K.11); and floating point (Figure K.12). A fifth category (Figure K.13) shows con-
ventions for register usage and pseudoinstructions on each architecture. If a MIPS

Addressing mode ARM v.4 Thumb SuperH M32R MIPS16

Register + offset (displacement or based) X X X X X

Register + register (indexed) X X X — —

Register + scaled register (scaled) X — — — —

Register + offset and update register X — — — —

Register + register and update register X — — — —

Register indirect — — X X —

Autoincrement, autodecrement X X X X —

PC-relative data X X (loads) X — X (loads)

Figure K.4 Summary of data addressing modes supported by the embedded architectures. SuperH and M32R
have separate register indirect and register + offset addressing modes rather than just putting 0 in the offset of the
latter mode. This increases the use of 16-bit instructions in the M32R, and it gives a wider set of address modes to dif-
ferent data transfer instructions in SuperH. To get greater addressing range, ARM and Thumb shift the offset left 1 or
2 bits if the data size is half word or word. (These addressing modes are described in Figure A.6 on page A-9.)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-7

Figure K.5 Instruction formats for desktop/server RISC architectures. These four formats are found in all five archi-
tectures. (The superscript notation in this figure means the width of a field in bits.) Although the register fields are
located in similar pieces of the instruction, be aware that the destination and two source fields are scrambled. Op =
the main opcode, Opx = an opcode extension, Rd = the destination register, Rs1 = source register 1, Rs2 = source reg-
ister 2, and Const = a constant (used as an immediate or as an address). Unlike the other RISCs, Alpha has a format for
immediates in arithmetic and logical operations that is different from the data transfer format shown here. It pro-
vides an 8-bit immediate in bits 20 to 13 of the RR format, with bits 12 to 5 remaining as an opcode extension.

Opcode Register Constant

Alpha

MIPS

PowerPC

PA-RISC

SPARC

Alpha

MIPS

PowerPC

PA-RISC

SPARC

Alpha

MIPS

PowerPC

PA-RISC

SPARC

Alpha

MIPS

PowerPC

PA-RISC

SPARC

R
eg

is
te

r-
re

gi
st

er
R

eg
is

te
r-

im
m

ed
ia

te
B

ra
nc

h
Ju

m
p/

ca
ll

Op6

31 25 20 15 10 4 0

31 25 20 15 0

31 25

31 25 20

20 15 0

0

Rs15 Rs25

Rd5 Rs15 Const16

Const5

Rs15 Const21

Rs15 Opx5
/Rs25 Const16

Opx6

Opx3

Opx11

Rs15 Const14 Opx2

O C

Opx2

O1 C1

Rs25 Rs15 Const11

Const19

Const26

Const24

Const21

Const30

Const16

Const16

Rs15 Rd5

Rd5 Rs15

Rs25 Rd5

Rd5

Const16

Opx6 Rs15 1 Const13

Rs15 Rs25 Rd5

Rd5 Rs15

Rs15

Rs25 Opx11

Opx6

Opx11Rs15 Rs25 Rd5

Opx80Rd5 Opx6 Rs25

Op6

Op6

Op6

Op6

Op6

Op6

Op6

Op2

Op2

Op2

Op2

Op6

Op6

Op6

Op6

Op6

Op6

Op6

Op6

31 29 24 18 13 12 4 0

31 29 24 18 13 12 0

31 29 18 12 1 0

31 29 20 15 12 1 0

Rd5Opx11

Const21Rs15

K-8 ■ Appendix K Survey of Instruction Set Architectures

Figure K.6 Instruction formats for embedded RISC architectures. These six formats are found in all five architec-
tures. The notation is the same as Figure K.5. Note the similarities in branch, jump, and call formats and the diversity
in register-register, register-immediate, and data transfer formats. The differences result from whether the architec-
ture has 8 or 16 registers, whether it is a 2- or 3-operand format, and whether the instruction length is 16 or 32 bits.

Const8

Opcode Register Constant

ARM

Thumb

SuperH

M32R

MIPS16R
eg

is
te

r-
re

gi
st

er
Opx4

31 27 19 15 11 3 0

Op8 Rs14 Rd4

Opx4

Rd4

Rd4

Rd3

Op6

Op4

Op4

Op5

15 10 4 17 0

Rs24Opx8

Opx2Rs23Rs13

Rs4Opx4

Opx4Rs4

Rs3 Rd3

ARM

Thumb

SuperH

M32R

MIPS16

D
at

a
tr

an
sf

er

Opx4

31 27 19 15 11 0

Op3 Rs14 Rd4

Rs4

Rd4

Rd3

Op5 Const5

Op4

Op5

15 10 0

Const12

Rs4 Const16Opx4

Rs3 Rd3

Const4

ARM

Thumb

SuperH

M32R

MIPS16R
eg

is
te

r-
im

m
ed

ia
te Opx4

31 27 19 15 11 0

Op3 Rs14 Rd4

Rd3

Rd4

Rd4

Rd3

Op5

Op4

Op4

Op5

15 10 47 0

Const12

Const5Rs3

Rs4 Const16Opx4

Const8

Const8

B
ra

nc
h

ARM

Thumb

SuperH

M32R

MIPS16

Ju
m

p

Opx4

31 27 23 0

Op4

Op5

Op4

Op5

15 10 0

Const24

Const11

Const8

Const11

Const12

ARM

Thumb

SuperH

M32R

MIPS16

C
al

l

Opx4

31 27 23 0

Op4

Op5

Op4

Op8

Op6

15 25

Const24

Const26

Const8

Const11 Const11Opx5

Const12

ARM

Thumb

SuperH

M32R

MIPS16

Opx4

31 27 23 0

Op4

Rd4

Rd3

Op4 Opx4

Op8

Op4

Op5

15 10 7 0

Const24

Const8
Rs4 Const16Opx4

Const8

Const24

Op4 Rd4

Rs3 Const5

7 4

Op4 Opx4

0

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-9

core instruction requires a short sequence of instructions in other architectures,
these instructions are separated by semicolons in Figures K.9 through K.13. (To
avoid confusion, the destination register will always be the leftmost operand in
this appendix, independent of the notation normally used with each architecture.)
Figures K.14 through K.17 show the equivalent listing for embedded RISCs. Note
that floating point is generally not defined for the embedded RISCs.

Every architecture must have a scheme for compare and conditional branch,
but despite all the similarities, each of these architectures has found a different
way to perform the operation.

Compare and Conditional Branch

SPARC uses the traditional four condition code bits stored in the program status
word: negative, zero, carry, and overflow. They can be set on any arithmetic or
logical instruction; unlike earlier architectures, this setting is optional on each
instruction. An explicit option leads to fewer problems in pipelined implementa-
tion. Although condition codes can be set as a side effect of an operation, explicit

Format: instruction category Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Branch: all Sign Sign Sign Sign Sign

Jump/call: all Sign — Sign Sign Sign

Register-immediate: data transfer Sign Sign Sign Sign Sign

Register-immediate: arithmetic Zero Sign Sign Sign Sign

Register-immediate: logical Zero Zero — Zero Sign

Figure K.7 Summary of constant extension for desktop RISCs.The constants in the jump and call instructions of
MIPS are not sign extended since they only replace the lower 28 bits of the PC, leaving the upper 4 bits unchanged.
PA-RISC has no logical immediate instructions.

Format: instruction category ARM v.4 Thumb SuperH M32R MIPS16

Branch: all Sign Sign Sign Sign Sign

Jump/call: all Sign Sign/Zero Sign Sign —

Register-immediate: data transfer Zero Zero Zero Sign Zero

Register-immediate: arithmetic Zero Zero Sign Sign Zero/Sign

Register-immediate: logical Zero — Zero Zero —

Figure K.8 Summary of constant extension for embedded RISCs. The 16-bit-length instructions have much
shorter immediates than those of the desktop RISCs, typically only 5 to 8 bits. Most embedded RISCs, however, have
a way to get a long address for procedure calls from two sequential half words. The constants in the jump and call
instructions of MIPS are not sign extended since they only replace the lower 28 bits of the PC, leaving the upper 4
bits unchanged. The 8-bit immediates in ARM can be rotated right an even number of bits between 2 and 30, yield-
ing a large range of immediate values. For example, all powers of 2 are immediates in ARM.

K-10 ■ Appendix K Survey of Instruction Set Architectures

compares are synthesized with a subtract using r0 as the destination. SPARC
conditional branches test condition codes to determine all possible unsigned and
signed relations. Floating point uses separate condition codes to encode the IEEE
754 conditions, requiring a floating-point compare instruction. Version 9
expanded SPARC branches in four ways: a separate set of condition codes for
64-bit operations; a branch that tests the contents of a register and branches if the
value is =, not=, <, <=, >=, or <= 0 (see MIPS below); three more sets of
floating-point condition codes; and branch instructions that encode static branch
prediction.

PowerPC also uses four condition codes: less than, greater than, equal, and
summary overflow, but it has eight copies of them. This redundancy allows the
PowerPC instructions to use different condition codes without conflict, essen-
tially giving PowerPC eight extra 4-bit registers. Any of these eight condition
codes can be the target of a compare instruction, and any can be the source of a

Data transfer
(instruction formats) R-I R-I R-I, R-R R-I, R-R R-I, R-R

Instruction name Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Load byte signed LDBU; SEXTB LB LDB; EXTRW,S 31,8 LBZ; EXTSB LDSB

Load byte unsigned LDBU LBU LDB, LDBX, LDBS LBZ LDUB

Load half word signed LDWU; SEXTW LH LDH; EXTRW,S 31,16 LHA LDSH

Load half word unsigned LDWU LHU LDH, LDHX, LDHS LHZ LDUH

Load word LDLS LW LDW, LDWX, LDWS LW LD

Load SP float LDS* LWC1 FLDWX, FLDWS LFS LDF

Load DP float LDT LDC1 FLDDX, FLDDS LFD LDDF

Store byte STB SB STB, STBX, STBS STB STB

Store half word STW SH STH, STHX, STHS STH STH

Store word STL SW STW, STWX, STWS STW ST

Store SP float STS SWC1 FSTWX, FSTWS STFS STF

Store DP float STT SDC1 FSTDX, FSTDS STFD STDF

Read, write special registers MF_, MT_ MF, MT_ MFCTL, MTCTL MFSPR, MF_,
MTSPR, MT_

RD, WR, RDPR,
WRPR, LDXFSR,
STXFSR

Move integer to FP register ITOFS MFC1/
DMFC1

STW; FLDWX STW; LDFS ST; LDF

Move FP to integer register FTTOIS MTC1/
DMTC1

FSTWX; LDW STFS; LW STF; LD

Figure K.9 Desktop RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to synthe-
size a MIPS instruction is shown separated by semicolons. If there are several choices of instructions equivalent to
MIPS core, they are separated by commas. For this figure, half word is 16 bits and word is 32 bits. Note that in Alpha,
LDS converts single-precision floating point to double precision and loads the entire 64-bit register.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-11

conditional branch. The integer instructions have an option bit that behaves as if
the integer op is followed by a compare to zero that sets the first condition “regis-
ter.” PowerPC also lets the second “register” be optionally set by floating-point
instructions. PowerPC provides logical operations among these eight 4-bit condi-
tion code registers (CRAND, CROR, CRXOR, CRNAND, CRNOR, CREQV), allowing more
complex conditions to be tested by a single branch.

MIPS uses the contents of registers to evaluate conditional branches. Any two
registers can be compared for equality (BEQ) or inequality (BNE), and then the
branch is taken if the condition holds. The set-on-less-than instructions (SLT,
SLTI, SLTU, SLTIU) compare two operands and then set the destination register to
1 if less and to 0 otherwise. These instructions are enough to synthesize the full

Arithmetic/ logical
(instruction formats) R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I

Instruction name Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Add ADDL ADDU, ADDU ADDL, LD0, ADDI,
UADDCM

ADD, ADDI ADD

Add (trap if overflow) ADDLV ADD, ADDI ADDO, ADDIO ADDO;
MCRXR; BC

ADDcc; TVS

Sub SUBL SUBU SUB, SUBI SUBF SUB

Sub (trap if overflow) SUBLV SUB SUBTO, SUBIO SUBF/oe SUBcc; TVS

Multiply MULL MULT,
MULTU

SHiADD;...;
(i=1,2,3)

MULLW,
MULLI

MULX

Multiply (trap if overflow) MULLV — SHiADDO;...; — —

Divide — DIV, DIVU DS;...; DS DIVW DIVX

Divide (trap if overflow) — — — — —

And AND AND, ANDI AND AND, ANDI AND

Or BIS OR, ORI OR OR, ORI OR

Xor XOR XOR, XORI XOR XOR, XORI XOR

Load high part register LDAH LUI LDIL ADDIS SETHI (B fmt.)

Shift left logical SLL SLLV, SLL DEPW, Z 31-i,32-i RLWINM SLL

Shift right logical SRL SRLV, SRL EXTRW, U 31, 32-i RLWINM 32-i SRL

Shift right arithmetic SRA SRAV, SRA EXTRW, S 31, 32-i SRAW SRA

Compare CMPEQ,
CMPLT, CMPLE

SLT/U, SLTI/U COMB CMP(I)CLR SUBcc r0,...

Figure K.10 Desktop RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation is
not available in that architecture, or not synthesized in a few instructions. Such a sequence of instructions is shown
separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are separated by
commas. Note that in the “Arithmetic/logical” category all machines but SPARC use separate instruction mnemonics
to indicate an immediate operand; SPARC offers immediate versions of these instructions but uses a single mne-
monic. (Of course, these are separate opcodes!)

K-12 ■ Appendix K Survey of Instruction Set Architectures

set of relations. Because of the popularity of comparisons to 0, MIPS includes
special compare-and-branch instructions for all such comparisons: greater than or
equal to zero (BGEZ), greater than zero (BGTZ), less than or equal to zero (BLEZ),
and less than zero (BLTZ). Of course, equal and not equal to zero can be synthe-
sized using r0 with BEQ and BNE. Like SPARC, MIPS I uses a condition code for
floating point with separate floating-point compare and branch instructions; MIPS
IV expanded this to eight floating-point condition codes, with the floating-point
comparisons and branch instructions specifying the condition to set or test.

Alpha compares (CMPEQ, CMPLT, CMPLE, CMPULT, CMPULE) test two registers
and set a third to 1 if the condition is true and to 0 otherwise. Floating-point com-
pares (CMTEQ, CMTLT, CMTLE, CMTUN) set the result to 2.0 if the condition holds and
to 0 otherwise. The branch instructions compare one register to 0 (BEQ, BGE, BGT,
BLE, BLT, BNE) or its least-significant bit to 0 (BLBC, BLBS) and then branch if the
condition holds.

PA-RISC has many branch options, which we’ll see in the section “Instruc-
tions Unique to Alpha” on page K-27. The most straightforward is a compare and
branch instruction (COMB), which compares two registers, branches depending on
the standard relations, and then tests the least-significant bit of the result of the
comparison.

ARM is similar to SPARC, in that it provides four traditional condition
codes that are optionally set. CMP subtracts one operand from the other and the
difference sets the condition codes. Compare negative (CMN) adds one operand to
the other, and the sum sets the condition codes. TST performs logical AND on the
two operands to set all condition codes but overflow, while TEQ uses exclusive

Control
(instruction formats) B, J/C B, J/C B, J/C B, J/C B, J/C

Instruction name Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Branch on integer
compare

B_ (<, >,
<=, >=, =,
not=)

BEQ, BNE,
B_Z (<, >,
<=, >=)

COMB, COMIB BC BR_Z, BPcc (<, >,
<=, >=, =, not=)

Branch on floating-point
compare

FB_(<, >,
<=, >=, =,
not=)

BC1T,
BC1F

FSTWX f0;
LDW t;
BB t

BC FBPfcc (<, >, <=,
>=, =,...)

Jump, jump register BR, JMP J, JR BL r0, BLR r0 B, BCLR, BCCTR BA, JMPL r0,...

Call, call register BSR JAL, JALR BL, BLE BL, BLA,
BCLRL, BCCTRL

CALL, JMPL

Trap CALL_PAL
GENTRAP

BREAK BREAK TW, TWI Ticc, SIR

Return from interrupt CALL_PAL
REI

JR; ERET RFI, RFIR RFI DONE, RETRY,
RETURN

Figure K.11 Desktop RISC control instructions equivalent to MIPS core. If there are several choices of instructions
equivalent to MIPS core, they are separated by commas.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-13

OR to set the first three condition codes. Like SPARC, the conditional version of
the ARM branch instruction tests condition codes to determine all possible
unsigned and signed relations. As we shall see in the section “Instructions
Unique to SPARC v.9” on page K-29, one unusual feature of ARM is that every
instruction has the option of executing conditionally depending on the condition

Floating point (instruction formats) R-R R-R R-R R-R R-R

Instruction name Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Add single, double ADDS, ADDT ADD.S,
ADD.D

FADD
FADD/dbl

FADDS,
FADD

FADDS,
FADDD

Subtract single, double SUBS, SUBT SUB.S, SUB.D FSUB
FSUB/dbl

FSUBS,
FSUB

FSUBS,
FSUBD

Multiply single, double MULS, MULT MUL.S, MUL.D FMPY
FMPY/dbl

FMULS,
FMUL

FMULS,
FMULD

Divide single, double DIVS, DIVT DIV.S, DIV.D FDIV,
FDIV/dbl

FDIVS,
FDIV

FDIVS,
FDIVD

Compare CMPT_
(=, <,
<=, UN)

C_.S, C_.D
(<, >, <=,
>=, =,...)

FCMP, FCMP/dbl
(<, =, >)

FCMP FCMPS,
FCMPD

Move R-R ADDT Fd,
F31, Fs

MOV.S, MOV.D FCPY FMV FMOVS/D/Q

Convert (single, double, integer)
to (single, double, integer)

CVTST,
CVTTS,
CVTTQ,
CVTQS,
CVTQT

CVT.S.D,
CVT.D.S,
CVT.S.W,
CVT.D.W,
CVT.W.S,
CVT.W.D

FCNVFF,s,d
FCNVFF,d,s
FCNVXF,s,s
FCNVXF,d,d
FCNVFX,s,s
FCNVFX,d,s

—,
FRSP,
—,
FCTIW,
—,
—

FSTOD,
FDTOS,
FSTOI,
FDTOI,
FITOS,
FITOD

Figure K.12 Desktop RISC floating-point instructions equivalent to MIPS core. Dashes mean the operation is not
available in that architecture, or not synthesized in a few instructions. If there are several choices of instructions
equivalent to MIPS core, they are separated by commas.

Conventions Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Register with value 0 r31 (source) r0 r0 r0 (addressing) r0

Return address register (any) r31 r2, r31 link (special) r31

No-op LDQ_U r31,... SLL r0, r0,
r0

OR r0, r0, r0 ORI r0, r0, #0 SETHI r0, 0

Move R-R integer BIS..., r31,... ADD...,
r0,...

OR..., r0,... OR rx, ry, ry OR...,
r0,...

Operand order OP Rs1, Rs2,
Rd

OP Rd, Rs1,
Rs2

OP Rs1, Rs2,
Rd

OP Rd, Rs1,
Rs2

OP Rs1, Rs2,
Rd

Figure K.13 Conventions of desktop RISC architectures equivalent to MIPS core.

K-14 ■ Appendix K Survey of Instruction Set Architectures

codes. (This bears similarities to the annulling option of PA-RISC, seen in the
section “Instructions Unique to Alpha” on page K-27.)

Not surprisingly, Thumb follows ARM. Differences are that setting condition
codes are not optional, the TEQ instruction is dropped, and there is no conditional
execution of instructions.

The Hitachi SuperH uses a single T-bit condition that is set by compare instruc-
tions. Two branch instructions decide to branch if either the T bit is 1 (BT) or the T
bit is 0 (BF). The two flavors of branches allow fewer comparison instructions.

Mitsubishi M32R also offers a single condition code bit (C) used for signed
and unsigned comparisons (CMP, CMPI, CMPU, CMPUI) to see if one register is less
than the other or not, similar to the MIPS set-on-less-than instructions. Two
branch instructions test to see if the C bit is 1 or 0: BC and BNC. The M32R also
includes instructions to branch on equality or inequality of registers (BEQ and
BNE) and all relations of a register to 0 (BGEZ, BGTZ, BLEZ, BLTZ, BEQZ, BNEZ).
Unlike BC and BNC, these last instructions are all 32 bits wide.

MIPS16 keeps set-on-less-than instructions (SLT, SLTI, SLTU, SLTIU), but
instead of putting the result in one of the eight registers, it is placed in a special
register named T. MIPS16 is always implemented in machines that also have the
full 32-bit MIPS instructions and registers; hence, register T is really register 24

Instruction name ARM v.4 Thumb SuperH M32R MIPS16

Data transfer (instruction formats) DT DT DT DT DT

Load byte signed LDRSB LDRSB MOV.B LDB LB

Load byte unsigned LDRB LDRB MOV.B; EXTU.B LDUB LBU

Load half word signed LDRSH LDRSH MOV.W LDH LH

Load half word unsigned LDRH LDRH MOV.W; EXTU.W LDUH LHU

Load word LDR LDR MOV.L LD LW

Store byte STRB STRB MOV.B STB SB

Store half word STRH STRH MOV.W STH SH

Store word STR STR MOV.L ST SW

Read, write special registers MRS, MSR —1 LDC, STC MVFC, MVTC MOVE

Figure K.14 Embedded RISC data transfer instructions equivalent to MIPS core. A sequence of instructions to
synthesize a MIPS instruction is shown separated by semicolons. Note that floating point is generally not defined for
the embedded RISCs. Thumb and MIPS16 are just 16-bit instruction subsets of the ARM and MIPS architectures, so
machines can switch modes and execute the full instruction set. We use —1 to show sequences that are available in
32-bit mode but not 16-bit mode in Thumb or MIPS16.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-15

in the full MIPS architecture. The MIPS16 branch instructions test to see if a reg-
ister is or is not equal to zero (BEQZ and BNEZ). There are also instructions that
branch if register T is or is not equal to zero (BTEQZ and BTNEZ). To test if two
registers are equal, MIPS added compare instructions (CMP, CMPI) that compute
the exclusive OR of two registers and place the result in register T. Compare was

Arithmetic/logical
(instruction formats) R-R, R-I R-R, R-I R-R, R-I R-R, R-I R-R, R-I

Instruction name ARM v.4 Thumb SuperH M32R MIPS16

Add ADD ADD ADD ADD, ADDI,
ADD3

ADDU, ADDIU

Add (trap if overflow) ADDS; SWIVS ADD; BVC
.+4; SWI

ADDV ADDV, ADDV3 —1

Subtract SUB SUB SUB SUB SUBU

Subtract (trap if overflow) SUBS; SWIVS SUB; BVC
.+1; SWI

SUBV SUBV —1

Multiply MUL MUL MUL MUL MULT, MULTU

Multiply (trap if overflow) —

Divide — — DIV1, DIVoS,
DIVoU

DIV, DIVU DIV, DIVU

Divide (trap if overflow) — — —

And AND AND AND AND, AND3 AND

Or ORR ORR OR OR, OR3 OR

Xor EOR EOR XOR XOR, XOR3 XOR

Load high part register — — SETH —1

Shift left logical LSL3 LSL2 SHLL, SHLLn SLL, SLLI,
SLL3

SLLV, SLL

Shift right logical LSR3 LSR2 SHRL, SHRLn SRL, SRLI,
SRL3

SRLV, SRL

Shift right arithmetic ASR3 ASR2 SHRA, SHAD SRA, SRAI,
SRA3

SRAV, SRA

Compare CMP,CMN,
TST,TEQ

CMP, CMN,
TST

CMP/cond, TST CMP/I, CMPU/I CMP/I2,
SLT/I,
SLT/IU

Figure K.15 Embedded RISC arithmetic/logical instructions equivalent to MIPS core. Dashes mean the operation
is not available in that architecture or not synthesized in a few instructions. Such a sequence of instructions is shown
separated by semicolons. If there are several choices of instructions equivalent to MIPS core, they are separated by
commas. Thumb and MIPS16 are just 16-bit instruction subsets of the ARM and MIPS architectures, so machines can
switch modes and execute the full instruction set. We use —1 to show sequences that are available in 32-bit mode
but not 16-bit mode in Thumb or MIPS16. The superscript 2 indicates new instructions found only in 16-bit mode of
Thumb or MIPS16, such as CMP/I2. ARM includes shifts as part of every data operation instruction, so the shifts with
superscript 3 are just a variation of a move instruction, such as LSR3.

K-16 ■ Appendix K Survey of Instruction Set Architectures

added since MIPS16 left out instructions to compare and branch if registers are
equal or not (BEQ and BNE).

Figures K.18 and K.19 summarize the schemes used for conditional branches.

Instructions: Multimedia Extensions of the
Desktop/Server RISCs

Since every desktop microprocessor by definition has its own graphical displays,
as transistor budgets increased it was inevitable that support would be added for
graphics operations. Many graphics systems use 8 bits to represent each of the
three primary colors plus 8 bits for a location of a pixel.

The addition of speakers and microphones for teleconferencing and video
games suggested support of sound as well. Audio samples need more than 8 bits
of precision, but 16 bits are sufficient.

Every microprocessor has special support so that bytes and half words take
up less space when stored in memory, but due to the infrequency of arithmetic
operations on these data sizes in typical integer programs, there is little support
beyond data transfers. The architects of the Intel i860, which was justified as a
graphical accelerator within the company, recognized that many graphics and

Control (instruction formats) B, J, C B, J, C B, J, C B, J, C B, J, C

Instruction name ARM v.4 Thumb SuperH M32R MIPS16

Branch on integer compare B/cond B/cond BF, BT BEQ, BNE,
BC,BNC, B__Z

BEQZ2, BNEZ2,
BTEQZ2, BTNEZ2

Jump, jump register MOV pc,ri MOV pc,ri BRA, JMP BRA, JMP B2, JR

Call, call register BL BL BSR, JSR BL, JL JAL, JALR, JALX2

Trap SWI SWI TRAPA TRAP BREAK

Return from interrupt MOVS pc,
r14

—1 RTS RTE —1

Figure K.16 Embedded RISC control instructions equivalent to MIPS core. Thumb and MIPS16 are just 16-bit
instruction subsets of the ARM and MIPS architectures, so machines can switch modes and execute the full instruc-
tion set. We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Thumb or MIPS16.
The superscript 2 indicates new instructions found only in 16-bit mode of Thumb or MIPS16, such as BTEQZ2.

Conventions ARM v.4 Thumb SuperH M32R MIPS16

Return address reg. R14 R14 PR (special) R14 RA (special)

No-op MOV r0,r0 MOV r0,r0 NOP NOP SLL r0, r0

Operands, order OP Rd, Rs1, Rs2 OP Rd, Rs1 OP Rs1, Rd OP Rd, Rs1 OP Rd, Rs1, Rs2

Figure K.17 Conventions of embedded RISC instructions equivalent to MIPS core.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-17

audio applications would perform the same operation on vectors of these data.
Although a vector unit was beyond the transistor budget of the i860 in 1989, by
partitioning the carry chains within a 64-bit ALU (see Section J.8), it could per-
form simultaneous operations on short vectors of eight 8-bit operands, four 16-bit
operands, or two 32-bit operands. The cost of such partitioned ALUs was small.
Applications that lend themselves to such support include MPEG (video), games
like DOOM (3D graphics), Adobe Photoshop (digital photography), and telecon-
ferencing (audio and image processing).

Like a virus, over time such multimedia support has spread to nearly every
desktop microprocessor. HP was the first successful desktop RISC to include such
support. As we shall see, this virus spread unevenly. IBM split multimedia support.
The PowerPC offers the active instructions, but the Power version does not.

These extensions have been called subword parallelism, vector, or single-
instruction, multiple data (SIMD) (see Appendix A). Since Intel marketing used
SIMD to describe the MMX extension of the 80x86, that has become the popular
name. Figure K.20 summarizes the support by architecture.

Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Number of condition code bits
(integer and FP)

0 8 FP 8 FP 8 × 4 both 2 × 4 integer,
4 × 2 FP

Basic compare instructions
(integer and FP)

1 integer,
1 FP

1 integer, 1 FP 4 integer, 2 FP 4 integer, 2 FP 1 FP

Basic branch instructions
(integer and FP)

1 2 integer, 1 FP 7 integer 1 both 3 integer,
1 FP

Compare register with register/
const and branch

— =, not= =, not=, <, <=, >,
>=, even, odd

— —

Compare register to zero and
branch

=, not=, <,
<=, >, >=,
even, odd

=, not=, <, <=,
>, >=

=, not=, <, <=, >,
>=, even, odd

— =, not=, <,
<=, >, >=

Figure K.18 Summary of five desktop RISC approaches to conditional branches. Floating-point branch on
PA-RISC is accomplished by copying the FP status register into an integer register and then using the branch on bit
instruction to test the FP comparison bit. Integer compare on SPARC is synthesized with an arithmetic instruction
that sets the condition codes using r0 as the destination.

ARM v.4 Thumb SuperH M32R MIPS16

Number of condition code bits 4 4 1 1 1

Basic compare instructions 4 3 2 2 2

Basic branch instructions 1 1 2 3 2

Compare register with register/const and
branch

— — =, >, >= =, not= —

Compare register to zero and branch — — =, >, >= =, not=, <, <=, >, >= =, not=

Figure K.19 Summary of five embedded RISC approaches to conditional branches.

K-18 ■ Appendix K Survey of Instruction Set Architectures

From Figure K.20 you can see that in general MIPS MDMX works on 8 bytes
or 4 half words per instruction, HP PA-RISC MAX2 works on 4 half words,
SPARC VIS works on 4 half words or 2 words, and Alpha doesn’t do much. The
Alpha MAX operations are just byte versions of compare, min, max, and abso-
lute difference, leaving it up to software to isolate fields and perform parallel
adds, subtracts, and multiplies on bytes and half words. MIPS also added opera-
tions to work on two 32-bit floating-point operands per cycle, but they are con-
sidered part of MIPS V and not simply multimedia extensions (see the section
“Instructions Unique to MIPS64” on page K-24).

One feature not generally found in general-purpose microprocessors is satu-
rating operations. Saturation means that when a calculation overflows the result is
set to the largest positive number or most negative number, rather than a modulo

Instruction category Alpha MAX MIPS MDMX PA-RISC MAX2
PowerPC
ActiveC SPARC VIS

Add/subtract 8B, 4H 4H 16B, 8H, 4W 4H, 2W

Saturating add/sub 8B, 4H 4H 16B, 8H, 4W

Multiply 8B, 4H 16B, 8H, 4W 4B/H

Compare 8B (>=) 8B, 4H (=,<,<=) 16B, 8H, 4W 4H, 2W
(=, not=, >, <=)

Shift right/left 8B, 4H 4H 16B, 8H, 4W

Shift right arithmetic 4H 4H 16B, 8H, 4W

Multiply and add 8B, 4H 16B, 8H, 4W

Shift and add
(saturating)

4H

AND/OR/XOR 8B, 4H, 2W 8B, 4H, 2W 8B, 4H, 2W 16B, 8H, 4W 8B, 4H, 2W

Absolute difference 8B 8B

Max/min 8B, 4W 8B, 4H 16B, 8H, 4W

Pack (2n bits --> n bits) 2W->2B, 4H->4B 2*2W->4H,
2*4H->8B

2*4H->8B 4W->4H,
8H->8B,
4W->4B

2W->2H,
2W->2B,
4H->4B

Unpack/merge 2B->2W, 4B->4H 2*4B->8B,
2*2H->4H

4H->4W,
8B->8H

4B->4H,
2*4B->8B

Permute/shuffle 8B, 4H 4H 16B, 8H, 4W

Register sets Integer Fl. Pt. + 192b Acc. Integer 32 ×128b Fl. Pt.

Figure K.20 Summary of multimedia support for desktop RISCs. B stands for byte (8 bits), H for half word (16 bits),
and W for word (32 bits). Thus, 8B means an operation on 8 bytes in a single instruction. Pack and unpack use the
notation 2*2W to mean 2 operands each with 2 words. Note that MDMX has vector/scalar operations, where the sca-
lar is specified as an element of one of the vector registers. This table is a simplification of the full multimedia archi-
tectures, leaving out many details. For example, MIPS MDMX includes instructions to multiplex between two
operands, HP MAX2 includes an instruction to calculate averages, and SPARC VIS includes instructions to set registers
to constants. Also, this table does not include the memory alignment operation of MDMX, MAX, and VIS.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-19

calculation as in two’s complement arithmetic. Commonly found in digital signal
processors (see the next subsection), these saturating operations are helpful in
routines for filtering.

These machines largely used existing register sets to hold operands: integer
registers for Alpha and HP PA-RISC and floating-point registers for MIPS and
Sun. Hence, data transfers are accomplished with standard load and store instruc-
tions. PowerPC ActiveC added 32 128-bit registers. MIPS also added a 192-bit
(3*64) wide register to act as an accumulator for some operations. By having 3
times the native data width, it can be partitioned to accumulate either 8 bytes with
24 bits per field or 4 half words with 48 bits per field. This wide accumulator can
be used for add, subtract, and multiply/add instructions. MIPS claims perfor-
mance advantages of 2 to 4 times for the accumulator.

Perhaps the surprising conclusion of this table is the lack of consistency. The
only operations found on all four are the logical operations (AND, OR, XOR), which
do not need a partitioned ALU. If we leave out the frugal Alpha, then the only
other common operations are parallel adds and subtracts on 4 half words.

Each manufacturer states that these are instructions intended to be used in
hand-optimized subroutine libraries, an intention likely to be followed, as a com-
piler that works well with all desktop RISC multimedia extensions would be
challenging.

Instructions: Digital Signal-Processing
Extensions of the Embedded RISCs

One feature found in every digital signal processor (DSP) architecture is support
for integer multiply-accumulate. The multiplies tend to be on shorter words than
regular integers, such as 16 bits, and the accumulator tends to be on longer words,
such as 64 bits. The reason for multiply-accumulate is to efficiently implement
digital filters, common in DSP applications. Since Thumb and MIPS16 are subset
architectures, they do not provide such support. Instead, programmers should use
the DSP or multimedia extensions found in the 32-bit mode instructions of ARM
and MIPS64.

Figure K.21 shows the size of the multiply, the size of the accumulator, and
the operations and instruction names for the embedded RISCs. Machines with
accumulator sizes greater than 32 and less than 64 bits will force the upper bits to
remain as the sign bits, thereby “saturating” the add to set to maximum and mini-
mum fixed-point values if the operations overflow.

Instructions: Common Extensions to MIPS Core

Figures K.22 through K.28 list instructions not found in Figures K.9 through
K.17 in the same four categories. Instructions are put in these lists if they appear
in more than one of the standard architectures. The instructions are defined using
the hardware description language defined in Figure K.29.

K-20 ■ Appendix K Survey of Instruction Set Architectures

Although most of the categories are self-explanatory, a few bear comment:

■ The “atomic swap” row means a primitive that can exchange a register with
memory without interruption. This is useful for operating system sema-
phores in a uniprocessor as well as for multiprocessor synchronization (see
Section 5.5).

■ The 64-bit data transfer and operation rows show how MIPS, PowerPC, and
SPARC define 64-bit addressing and integer operations. SPARC simply
defines all register and addressing operations to be 64 bits, adding only spe-
cial instructions for 64-bit shifts, data transfers, and branches. MIPS includes
the same extensions, plus it adds separate 64-bit signed arithmetic instruc-
tions. PowerPC adds 64-bit right shift, load, store, divide, and compare and
has a separate mode determining whether instructions are interpreted as 32-
or 64-bit operations; 64-bit operations will not work in a machine that only
supports 32-bit mode. PA-RISC is expanded to 64-bit addressing and opera-
tions in version 2.0.

■ The “prefetch” instruction supplies an address and hint to the implementa-
tion about the data. Hints include whether the data are likely to be read or
written soon, likely to be read or written only once, or likely to be read or
written many times. Prefetch does not cause exceptions. MIPS has a version
that adds two registers to get the address for floating-point programs, unlike
non-floating-point MIPS programs. (See Chapter 2 to learn more about
prefetching.)

■ In the “Endian” row, “Big/Little” means there is a bit in the program status
register that allows the processor to act either as Big Endian or Little Endian

ARM v.4 Thumb SuperH M32R MIPS16

Size of multiply 32B × 32B — 32B × 32B, 16B × 16B 32B × 16B, 16B × 16B —

Size of accumulator 32B/64B — 32B/42B, 48B/64B 56B —

Accumulator name Any GPR or pairs
of GPRs

— MACH, MACL ACC —

Operations 32B/64B product +
64B accumulate
signed/unsigned

— 32B product + 42B/32B
accumulate (operands in
memory); 64B product +
64B/48B accumulate
(operands in memory);
clear MAC

32B/48B product + 64B
accumulate, round, move

—

Corresponding
instruction names

MLA, SMLAL, UMLAL — MAC, MACS, MAC.L,
MAC.LS, CLRMAC

MACHI/MACLO,
MACWHI/MACWLO,
RAC, RACH,
MVFACHI/MVFACLO,
MVTACHI/MVTACLO

—

Figure K.21 Summary of five embedded RISC approaches to multiply-accumulate.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-21

(see Section A.3). This can be accomplished by simply complementing some
of the least-significant bits of the address in data transfer instructions.

■ The “shared-memory synchronization” helps with cache-coherent multipro-
cessors: All loads and stores executed before the instruction must complete
before loads and stores after it can start. (See Chapter 5.)

■ The “coprocessor operations” row lists several categories that allow for the
processor to be extended with special-purpose hardware.

One difference that needs a longer explanation is the optimized branches.
Figure K.30 shows the options. The Alpha and PowerPC offer branches that take
effect immediately, like branches on earlier architectures. To accelerate branches,
these machines use branch prediction (see Section 3.3). All the rest of the desk-
top RISCs offer delayed branches (see Appendix C). The embedded RISCs gen-
erally do not support delayed branch, with the exception of SuperH, which has it
as an option.

Name Definition Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Atomic swap R/M
(for locks and
semaphores)

Temp<---Rd;
Rd<---Mem[x];
Mem[x]<---Temp

LDL/Q_L;
STL/Q_C

LL; SC —
(see Fig. K.8)

LWARX;
STWCX

CASA, CASX

Load 64-bit integer Rd<---64 Mem[x] LDQ LD LDD LD LDX

Store 64-bit integer Mem[x]<---64 Rd STQ SD STD STD STX

Load 32-bit integer
unsigned

Rd32..63<---32 Mem[x];
Rd0..31<---32 0

LDL; EXTLL LWU LDW LWZ LDUW

Load 32-bit integer
signed

Rd32..63<---32 Mem[x];
Rd0..31<---32 Mem[x]0

32
LDL LW LDW; EXTRD,S

63, 8
LWA LDSW

Prefetch Cache[x]<---hint FETCH,
FETCH_M*

PREF,
PREFX

LDD, r0
LDW, r0

DCBT,
DCBTST

PRE-FETCH

Load coprocessor Coprocessor<--- Mem[x] — LWCi CLDWX, CLDWS — —

Store coprocessor Mem[x]<--- Coprocessor — SWCi CSTWX, CSTWS — —

Endian (Big/Little Endian?) Either Either Either Either Either

Cache flush (Flush cache block at this
address)

ECB CP0op FDC, FIC DCBF FLUSH

Shared-memory
synchronization

(All prior data transfers
complete before next data
transfer may start)

WMB SYNC SYNC SYNC MEMBAR

Figure K.22 Data transfer instructions not found in MIPS core but found in two or more of the five desktop
architectures. The load linked/store conditional pair of instructions gives Alpha and MIPS atomic operations for
semaphores, allowing data to be read from memory, modified, and stored without fear of interrupts or other
machines accessing the data in a multiprocessor (see Chapter 5). Prefetching in the Alpha to external caches is
accomplished with FETCH and FETCH_M; on-chip cache prefetches use LD_Q A, R31, and LD_Y A. F31 is used in the
Alpha 21164 (see Bhandarkar [1995], p. 190).

K-22 ■ Appendix K Survey of Instruction Set Architectures

The other three desktop RISCs provide a version of delayed branch that
makes it easier to fill the delay slot. The SPARC “annulling” branch executes the
instruction in the delay slot only if the branch is taken; otherwise, the instruction
is annulled. This means the instruction at the target of the branch can safely be
copied into the delay slot since it will only be executed if the branch is taken. The

Name Definition Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

64-bit integer
arithmetic ops

Rd<---64Rs1 op64 Rs2 ADD,
SUB, MUL

DADD, DSUB
DMULT, DDIV

ADD, SUB,
SHLADD, DS

ADD, SUBF,
MULLD,
DIVD

ADD, SUB,
MULX,
S/UDIVX

64-bit integer logical
ops

Rd<---64Rs1 op64 Rs2 AND, OR,
XOR

AND, OR,
XOR

AND, OR,
XOR

AND, OR,
XOR

AND, OR,
XOR

64-bit shifts Rd<---64Rs1 op64 Rs2 SLL,
SRA,
SRL

DSLL/V,
DSRA/V,
DSRL/V

DEPD,Z
EXTRD,S
EXTRD,U

SLD, SRAD,
SRLD

SLLX,
SRAX,
SRLX

Conditional move if (cond) Rd<---Rs CMOV_ MOVN/Z SUBc, n;
ADD

— MOVcc,
MOVr

Support for multiword
integer add

CarryOut, Rd <--- Rs1
+ Rs2 + OldCarryOut

— ADU; SLTU;
ADDU, DADU;
SLTU; DADDU

ADDC ADDC, ADDE ADDcc

Support for multiword
integer sub

CarryOut, Rd <--- Rs1
Rs2 + OldCarryOut

— SUBU; SLTU;
SUBU, DSUBU;
SLTU; DSUBU

SUBB SUBFC,
SUBFE

SUBcc

And not Rd <--- Rs1 & ~(Rs2) BIC — ANDCM ANDC ANDN

Or not Rd <--- Rs1 | ~(Rs2) ORNOT — — ORC ORN

Add high immediate Rd0..15<---Rs10..15 +
(Const<<16);

— — ADDIL
(R-I)

ADDIS
(R-I)

—

Coprocessor
operations

(Defined by
coprocessor)

— COPi COPR,i — IMPDEPi

Figure K.23 Arithmetic/logical instructions not found in MIPS core but found in two or more of the five desktop
architectures.

Name Definition Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Optimized delayed
branches

(Branch not always
delayed)

— BEQL, BNEL, B_ZL
(<, >, <=, >=)

COMBT, n,
COMBF, n

— BPcc, A,
FPBcc, A

Conditional trap if (COND) {R31<---PC;
PC <---0..0#i}

— T_,T_I (=, not=,
<, >, <=, >=)

SUBc, n;
BREAK

TW, TD,
TWI, TDI

Tcc

No. control registers Misc. regs (virtual
memory, interrupts, . . .)

6 equiv. 12 32 33 29

Figure K.24 Control instructions not found in MIPS core but found in two or more of the five desktop
architectures.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-23

restrictions are that the target is not another branch and that the target is known at
compile time. (SPARC also offers a nondelayed jump because an unconditional
branch with the annul bit set does not execute the following instruction.) Later
versions of the MIPS architecture have added a branch likely instruction that also
annuls the following instruction if the branch is not taken. PA-RISC allows
almost any instruction to annul the next instruction, including branches. Its “nul-
lifying” branch option will execute the next instruction depending on the direc-
tion of the branch and whether it is taken (i.e., if a forward branch is not taken or
a backward branch is taken). Presumably this choice was made to optimize loops,
allowing the instructions following the exit branch and the looping branch to exe-
cute in the common case.

Now that we have covered the similarities, we will focus on the unique fea-
tures of each architecture. We first cover the desktop/server RISCs, ordering

Name Definition Alpha MIPS64 PA-RISC 2.0 PowerPC SPARC v.9

Multiply and add Fd <--- (Fs1 × Fs2) + Fs3 — MADD.S/D FMPYFADD
sgl/dbl

FMADD/S

Multiply and sub Fd <--- (Fs1 × Fs2) – Fs3 — MSUB.S/D FMSUB/S

Neg mult and add Fd <--- -((Fs1 × Fs2) + Fs3) — NMADD.S/D FMPYFNEG
sgl/dbl

FNMADD/S

Neg mult and sub Fd <--- -((Fs1 × Fs2) – Fs3) — NMSUB.S/D FNMSUB/S

Square root Fd <--- SQRT(Fs) SQRT_ SQRT.S/D FSQRT sgl/dbl FSQRT/S FSQRTS/D

Conditional move if (cond) Fd<---Fs FCMOV_ MOVF/T,
MOVF/T.S/D

FTESTFCPY — FMOVcc

Negate Fd <--- Fs ^ x80000000 CPYSN NEG.S/D FNEG sgl/dbl FNEG FNEGS/D/Q

Absolute value Fd <--- Fs & x7FFFFFFF — ABS.S/D FABS/dbl FABS FABSS/
D/Q

Figure K.25 Floating-point instructions not found in MIPS core but found in two or more of the five desktop
architectures.

Name Definition ARM v.4 Thumb SuperH M32R MIPS16

Atomic swap R/M
(for semaphores)

Temp<---Rd;
Rd<---Mem[x];
Mem[x]<---Temp

SWP, SWPB —1 (see TAS) LOCK;
UNLOCK

—1

Memory management
unit

Paged address translation Via coprocessor
instructions

—1 LDTLB —1

Endian (Big/Little Endian?) Either Either Either Big Either

Figure K.26 Data transfer instructions not found in MIPS core but found in two or more of the five embedded
architectures. We use —1 to show sequences that are available in 32-bit mode but not 16-bit mode in Thumb or
MIPS16.

K-24 ■ Appendix K Survey of Instruction Set Architectures

them by length of description of the unique features from shortest to longest, and
then the embedded RISCs.

Instructions Unique to MIPS64

MIPS has gone through five generations of instruction sets, and this evolution has
generally added features found in other architectures. Here are the salient unique
features of MIPS, the first several of which were found in the original instruction
set.

Nonaligned Data Transfers

MIPS has special instructions to handle misaligned words in memory. A rare
event in most programs, it is included for supporting 16-bit minicomputer
applications and for doing memcpy and strcpy faster. Although most RISCs
trap if you try to load a word or store a word to a misaligned address, on all
architectures misaligned words can be accessed without traps by using four
load byte instructions and then assembling the result using shifts and logical
ors. The MIPS load and store word left and right instructions (LWL, LWR, SWL,

Name Definition ARM v.4 Thumb SuperH M32R MIPS16

Load immediate Rd<---Imm MOV MOV MOV, MOVA LDI, LD24 LI

Support for multiword
integer add

CarryOut, Rd <--- Rd + Rs1 +
OldCarryOut

ADCS ADC ADDC ADDX —1

Support for multiword
integer sub

CarryOut, Rd <--- Rd – Rs1 +
OldCarryOut

SBCS SBC SUBC SUBX —1

Negate Rd <--- 0 – Rs1 NEG2 NEG NEG NEG

Not Rd <--- ~(Rs1) MVN MVN NOT NOT NOT

Move Rd <--- Rs1 MOV MOV MOV MV MOVE

Rotate right Rd <--- Rs i, >>
Rd0. . . i–1 <--- Rs31–i. . . 31

ROR ROR ROTR

And not Rd <--- Rs1 & ~(Rs2) BIC BIC

Figure K.27 Arithmetic/logical instructions not found in MIPS core but found in two or more of the five embed-
ded architectures. We use —1 to show sequences that are available in 32-bit mode but not in 16-bit mode in Thumb
or MIPS16. The superscript 2 shows new instructions found only in 16-bit mode of Thumb or MIPS16, such as NEG2.

Name Definition ARM v.4 Thumb SuperH M32R MIPS16

No. control registers Misc. registers 21 29 9 5 36

Figure K.28 Control information in the five embedded architectures.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-25

Notation Meaning Example Meaning

<-- Data transfer. Length of transfer is
given by the destination’s length;
the length is specified when not
clear.

Regs[R1]<--Regs[R2]; Transfer contents of R2 to R1. Registers
have a fixed length, so transfers shorter
than the register size must indicate which
bits are used.

M Array of memory accessed in bytes.
The starting address for a transfer is
indicated as the index to the
memory array.

Regs[R1]<--M[x]; Place contents of memory location x into
R1. If a transfer starts at M[i] and
requires 4 bytes, the transferred bytes are
M[i], M[i+1], M[i+2], and M[i+3].

<--n Transfer an n-bit field, used
whenever length of transfer is not
clear.

M[y]<--16M[x]; Transfer 16 bits starting at memory
location x to memory location y. The
length of the two sides should match.

Xn Subscript selects a bit. Regs[R1]0<--0; Change sign bit of R1 to 0. (Bits are
numbered from MSB starting at 0.)

Xm..n Subscript selects a field. Regs[R3]24..31<--
M[x];

Moves contents of memory location x
into low-order byte of R3.

Xn Superscript replicates a bit field. Regs[R3]0..23<--024; Sets high-order 3 bytes of R3 to 0.

Concatenates two fields. Regs[R3]<--024##
M[x]; F2##F3<--
64M[x];

Moves contents of location x into low
byte of R3; clears upper 3 bytes. Moves
64 bits from memory starting at location
x; 1st 32 bits go into F2, 2nd 32 into F3.

*, & Dereference a pointer; get the
address of a variable.

p*<--&x; Assign to object pointed to by p the
address of the variable x.

<<, >> C logical shifts (left, right). Regs[R1] << 5 Shift R1 left 5 bits.

==, !=, >, <,
>=, <=

C relational operators; equal, not
equal, greater, less, greater or equal,
less or equal.

(Regs[R1]== Regs[R2])
&
(Regs[R3]!=Regs[R4])

True if contents of R1 equal the contents
of R2 and contents of R3 do not equal the
contents of R4.

&, |, ^, ! C bitwise logical operations: AND,
OR, XOR, and complement.

(Regs[R1] &
(Regs[R2]| Regs[R3]))

Bitwise AND of R1 and bitwise OR of
R2 and R3.

Figure K.29 Hardware description notation (and some standard C operators).

(Plain) branch Delayed branch
Annulling
delayed branch

Found in
architectures

Alpha, PowerPC, ARM, Thumb,
SuperH, M32R, MIPS16

MIPS64, PA-RISC,
SPARC, SuperH

MIPS64, SPARC PA-RISC

Execute following
instruction

Only if branch not taken Always Only if branch
taken

If forward branch not
taken or backward
branch taken

Figure K.30 When the instruction following the branch is executed for three types of branches.

K-26 ■ Appendix K Survey of Instruction Set Architectures

SWR) allow this to be done in just two instructions: LWL loads the left portion of
the register and LWR loads the right portion of the register. SWL and SWR do the
corresponding stores. Figure K.31 shows how they work. There are also 64-bit
versions of these instructions.

Remaining Instructions

Below is a list of the remaining unique details of the MIPS64 architecture:

■ NOR—This logical instruction calculates ~(Rs1 | Rs2).

■ Constant shift amount—Nonvariable shifts use the 5-bit constant field shown
in the register-register format in Figure K.5.

Figure K.31 MIPS instructions for unaligned word reads. This figure assumes opera-
tion in Big Endian mode. Case 1 first loads the 3 bytes 101, 102, and 103 into the left of
R2, leaving the least-significant byte undisturbed. The following LWR simply loads byte
104 into the least-significant byte of R2, leaving the other bytes of the register
unchanged using LWL. Case 2 first loads byte 203 into the most-significant byte of R4,
and the following LWR loads the other 3 bytes of R4 from memory bytes 204, 205, and
206. LWL reads the word with the first byte from memory, shifts to the left to discard the
unneeded byte(s), and changes only those bytes in Rd. The byte(s) transferred are from
the first byte to the lowest-order byte of the word. The following LWR addresses the last
byte, right-shifts to discard the unneeded byte(s), and finally changes only those bytes
of Rd. The byte(s) transferred are from the last byte up to the highest-order byte of the
word. Store word left (SWL) is simply the inverse of LWL, and store word right (SWR) is the
inverse of LWR. Changing to Little Endian mode flips which bytes are selected and dis-
carded. (If big-little, left-right, and load-store seem confusing, don’t worry; they work!)

100 101 102 103

104 105 106 107

200 201 202 203

204 205 206 207

Case 1
Before

After

After

M(100) D DA V

M(104)

R2

R2

R2

E

J

D

D

O

A

A

H

V

V

N

N

E

LWL R2, 101:

LWR R2, 104:

Case 2
Before

After

After

M(200)

M(204)

R4

R4

R4

A V E

J

D

D

O

O

A

H

H

V

N

N

E

LWL R4, 203:

LWR R4, 206:

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-27

■ SYSCALL—This special trap instruction is used to invoke the operating
system.

■ Move to/from control registers—CTCi and CFCi move between the integer
registers and control registers.

■ Jump/call not PC-relative—The 26-bit address of jumps and calls is not
added to the PC. It is shifted left 2 bits and replaces the lower 28 bits of the
PC. This would only make a difference if the program were located near a
256 MB boundary.

■ TLB instructions—Translation lookaside buffer (TLB) misses were handled in
software in MIPS I, so the instruction set also had instructions for manipulat-
ing the registers of the TLB (see Chapter 2 for more on TLBs). These registers
are considered part of the “system coprocessor.” Since MIPS I the instructions
differ among versions of the architecture; they are more part of the implemen-
tations than part of the instruction set architecture.

■ Reciprocal and reciprocal square root—These instructions, which do not fol-
low IEEE 754 guidelines of proper rounding, are included apparently for
applications that value speed of divide and square root more than they value
accuracy.

■ Conditional procedure call instructions—BGEZAL saves the return address and
branches if the content of Rs1 is greater than or equal to zero, and BLTZAL
does the same for less than zero. The purpose of these instructions is to get a
PC-relative call. (There are “likely” versions of these instructions as well.)

■ Parallel single-precision floating-point operations—As well as extending the
architecture with parallel integer operations in MDMX, MIPS64 also sup-
ports two parallel 32-bit floating-point operations on 64-bit registers in a sin-
gle instruction. “Paired single” operations include add (ADD.PS), subtract
(SUB.PS), compare (C.__.PS), convert (CVT.PS.S, CVT.S.PL, CVT.S.PU),
negate (NEG.PS), absolute value (ABS.PS), move (MOV.PS, MOVF.PS,
MOVT.PS), multiply (MUL.PS), multiply-add (MADD.PS), and multiply-subtract
(MSUB.PS).

There is no specific provision in the MIPS architecture for floating-point exe-
cution to proceed in parallel with integer execution, but the MIPS implementa-
tions of floating point allow this to happen by checking to see if arithmetic
interrupts are possible early in the cycle (see Appendix J). Normally, exception
detection would force serialization of execution of integer and floating-point
operations.

Instructions Unique to Alpha

The Alpha was intended to be an architecture that made it easy to build high-
performance implementations. Toward that goal, the architects originally made

K-28 ■ Appendix K Survey of Instruction Set Architectures

two controversial decisions: imprecise floating-point exceptions and no byte or
half-word data transfers.

To simplify pipelined execution, Alpha does not require that an exception act
as if no instructions past a certain point are executed and that all before that point
have been executed. It supplies the TRAPB instruction, which stalls until all prior
arithmetic instructions are guaranteed to complete without incurring arithmetic
exceptions. In the most conservative mode, placing one TRAPB per excep-
tion-causing instruction slows execution by roughly five times but provides pre-
cise exceptions (see Darcy and Gay [1996]).

Code that does not include TRAPB does not obey the IEEE 754 float-
ing-point standard. The reason is that parts of the standard (NaNs, infinities,
and denormal) are implemented in software on Alpha, as it is on many other
microprocessors. To implement these operations in software, however, pro-
grams must find the offending instruction and operand values, which cannot be
done with imprecise interrupts!

When the architecture was developed, it was believed by the architects that
byte loads and stores would slow down data transfers. Byte loads require an extra
shifter in the data transfer path, and byte stores require that the memory system
perform a read-modify-write for memory systems with error correction codes
since the new ECC value must be recalculated. This omission meant that byte
stores require the sequence load word, replace desired byte, and then store word.
(Inconsistently, floating-point loads go through considerable byte swapping to
convert the obtuse VAX floating-point formats into a canonical form.)

To reduce the number of instructions to get the desired data, Alpha includes
an elaborate set of byte manipulation instructions: extract field and zero rest of a
register (EXTxx), insert field (INSxx), mask rest of a register (MSKxx), zero fields
of a register (ZAP), and compare multiple bytes (CMPGE).

Apparently the implementors were not as bothered by load and store byte as
were the original architects. Beginning with the shrink of the second version of
the Alpha chip (21164A), the architecture does include loads and stores for bytes
and half words.

Remaining Instructions

Below is a list of the remaining unique instructions of the Alpha architecture:

■ PAL code—To provide the operations that the VAX performed in microcode,
Alpha provides a mode that runs with all privileges enabled, interrupts dis-
abled, and virtual memory mapping turned off for instructions. PAL (privi-
leged architecture library) code is used for TLB management, atomic memory
operations, and some operating system primitives. PAL code is called via the
CALL_PAL instruction.

■ No divide—Integer divide is not supported in hardware.

■ “Unaligned” load-store—LDQ_U and STQ_U load and store 64-bit data using
addresses that ignore the least-significant three bits. Extract instructions then

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-29

select the desired unaligned word using the lower address bits. These instruc-
tions are similar to LWL/R,SWL/R in MIPS.

■ Floating-point single precision represented as double precision—Single-
precision data are kept as conventional 32-bit formats in memory but are con-
verted to 64-bit double-precision format in registers.

■ Floating-point register F31 is fixed at zero—To simplify comparisons to zero.

■ VAX floating-point formats—To maintain compatibility with the VAX archi-
tecture, in addition to the IEEE 754 single- and double-precision formats
called S and T, Alpha supports the VAX single- and double-precision formats
called F and G, but not VAX format D. (D had too narrow an exponent field
to be useful for double precision and was replaced by G in VAX code.)

■ Bit count instructions—Version 3 of the architecture added instructions to
count the number of leading zeros (CTLZ), count the number of trailing zeros
(CTTZ), and count the number of ones in a word (CTPOP). Originally found on
Cray computers, these instructions help with decryption.

Instructions Unique to SPARC v.9

Several features are unique to SPARC.

Register Windows

The primary unique feature of SPARC is register windows, an optimization for
reducing register traffic on procedure calls. Several banks of registers are used,
with a new one allocated on each procedure call. Although this could limit the
depth of procedure calls, the limitation is avoided by operating the banks as a cir-
cular buffer, providing unlimited depth. The knee of the cost-performance curve
seems to be six to eight banks.

SPARC can have between 2 and 32 windows, typically using 8 registers each
for the globals, locals, incoming parameters, and outgoing parameters. (Given that
each window has 16 unique registers, an implementation of SPARC can have as
few as 40 physical registers and as many as 520, although most have 128 to 136,
so far.) Rather than tie window changes with call and return instructions, SPARC
has the separate instructions SAVE and RESTORE. SAVE is used to “save” the caller’s
window by pointing to the next window of registers in addition to performing an
add instruction. The trick is that the source registers are from the caller’s window
of the addition operation, while the destination register is in the callee’s window.
SPARC compilers typically use this instruction for changing the stack pointer to
allocate local variables in a new stack frame. RESTORE is the inverse of SAVE,
bringing back the caller’s window while acting as an add instruction, with the
source registers from the callee’s window and the destination register in the
caller’s window. This automatically deallocates the stack frame. Compilers can
also make use of it for generating the callee’s final return value.

K-30 ■ Appendix K Survey of Instruction Set Architectures

The danger of register windows is that the larger number of registers could
slow down the clock rate. This was not the case for early implementations. The
SPARC architecture (with register windows) and the MIPS R2000 architecture
(without) have been built in several technologies since 1987. For several genera-
tions the SPARC clock rate has not been slower than the MIPS clock rate for
implementations in similar technologies, probably because cache access times
dominate register access times in these implementations. The current-generation
machines took different implementation strategies—in order versus out of order—
and it’s unlikely that the number of registers by themselves determined the clock
rate in either machine. Recently, other architectures have included register win-
dows: Tensilica and IA-64.

Another data transfer feature is alternate space option for loads and stores.
This simply allows the memory system to identify memory accesses to
input/output devices, or to control registers for devices such as the cache and
memory management unit.

Fast Traps

Version 9 SPARC includes support to make traps fast. It expands the single level
of traps to at least four levels, allowing the window overflow and underflow trap
handlers to be interrupted. The extra levels mean the handler does not need to
check for page faults or misaligned stack pointers explicitly in the code, thereby
making the handler faster. Two new instructions were added to return from this
multilevel handler: RETRY (which retries the interrupted instruction) and DONE
(which does not). To support user-level traps, the instruction RETURN will return
from the trap in nonprivileged mode.

Support for LISP and Smalltalk

The primary remaining arithmetic feature is tagged addition and subtraction. The
designers of SPARC spent some time thinking about languages like LISP and
Smalltalk, and this influenced some of the features of SPARC already discussed:
register windows, conditional trap instructions, calls with 32-bit instruction
addresses, and multiword arithmetic (see Taylor et al. [1986] and Ungar et al.
[1984]). A small amount of support is offered for tagged data types with opera-
tions for addition, subtraction, and hence comparison. The two least-significant
bits indicate whether the operand is an integer (coded as 00), so TADDcc and
TSUBcc set the overflow bit if either operand is not tagged as an integer or if the
result is too large. A subsequent conditional branch or trap instruction can decide
what to do. (If the operands are not integers, software recovers the operands,
checks the types of the operands, and invokes the correct operation based on
those types.) It turns out that the misaligned memory access trap can also be put
to use for tagged data, since loading from a pointer with the wrong tag can be an
invalid access. Figure K.32 shows both types of tag support.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-31

Overlapped Integer and Floating-Point Operations

SPARC allows floating-point instructions to overlap execution with integer
instructions. To recover from an interrupt during such a situation, SPARC has a
queue of pending floating-point instructions and their addresses. RDPR allows the
processor to empty the queue. The second floating-point feature is the inclusion
of floating-point square root instructions FSQRTS, FSQRTD, and FSQRTQ.

Remaining Instructions

The remaining unique features of SPARC are as follows:

■ JMPL uses Rd to specify the return address register, so specifying r31 makes it
similar to JALR in MIPS and specifying r0 makes it like JR.

■ LDSTUB loads the value of the byte into Rd and then stores FF16 into the
addressed byte. This version 8 instruction can be used to implement a sema-
phore (see Chapter 5).

■ CASA (CASXA) atomically compares a value in a processor register to a
32-bit (64-bit) value in memory; if and only if they are equal, it swaps the
value in memory with the value in a second processor register. This version 9
instruction can be used to construct wait-free synchronization algorithms
that do not require the use of locks.

Figure K.32 SPARC uses the two least-significant bits to encode different data types
for the tagged arithmetic instructions. (a) Integer arithmetic, which takes a single
cycle as long as the operands and the result are integers. (b) The misaligned trap can be
used to catch invalid memory accesses, such as trying to use an integer as a pointer. For
languages with paired data like LISP, an offset of –3 can be used to access the even
word of a pair (CAR) and +1 can be used for the odd word of a pair (CDR).

(a) Add, sub, or
compare integers
(coded as 00)

(b) Loading via
valid pointer
(coded as 11)

00 (R5)

00 (R6)

00 (R7)

11

3

(R4)

00 (Word
address)

TADDcc r7, r5, r6

LD rD, r4, – 3

+
–

–

K-32 ■ Appendix K Survey of Instruction Set Architectures

■ XNOR calculates the exclusive OR with the complement of the second oper-
and.

■ BPcc, BPr, and FBPcc include a branch-prediction bit so that the compiler can
give hints to the machine about whether a branch is likely to be taken or not.

■ ILLTRAP causes an illegal instruction trap. Muchnick [1988] explained how
this is used for proper execution of aggregate returning procedures in C.

■ POPC counts the number of bits set to one in an operand, also found in the
third version of the Alpha architecture.

■ Nonfaulting loads allow compilers to move load instructions ahead of condi-
tional control structures that control their use. Hence, nonfaulting loads will
be executed speculatively.

■ Quadruple-precision floating-point arithmetic and data transfer allow the
floating-point registers to act as eight 128-bit registers for floating-point
operations and data transfers.

■ Multiple-precision floating-point results for multiply mean that two
single-precision operands can result in a double-precision product and two dou-
ble-precision operands can result in a quadruple-precision product. These instruc-
tions can be useful in complex arithmetic and some models of floating-point
calculations.

Instructions Unique to PowerPC

PowerPC is the result of several generations of IBM commercial RISC
machines—IBM RT/PC, IBM Power1, and IBM Power2—plus the Motorola
88x00.

Branch Registers: Link and Counter

Rather than dedicate one of the 32 general-purpose registers to save the return
address on procedure call, PowerPC puts the address into a special register called
the link register. Since many procedures will return without calling another pro-
cedure, link doesn’t always have to be saved away. Making the return address a
special register makes the return jump faster since the hardware need not go
through the register read pipeline stage for return jumps.

In a similar vein, PowerPC has a count register to be used in for loops where
the program iterates for a fixed number of times. By using a special register the
branch hardware can determine quickly whether a branch based on the count reg-
ister is likely to branch, since the value of the register is known early in the exe-
cution cycle. Tests of the value of the count register in a branch instruction will
automatically decrement the count register.

Given that the count register and link register are already located with the
hardware that controls branches, and that one of the problems in branch predic-
tion is getting the target address early in the pipeline (see Appendix C), the

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-33

PowerPC architects decided to make a second use of these registers. Either regis-
ter can hold a target address of a conditional branch. Thus, PowerPC supplements
its basic conditional branch with two instructions that get the target address from
these registers (BCLR, BCCTR).

Remaining Instructions

Unlike most other RISC machines, register 0 is not hardwired to the value 0. It
cannot be used as a base register—that is, it generates a 0 in this case—but in
base + index addressing it can be used as the index. The other unique features of
the PowerPC are as follows:

■ Load multiple and store multiple save or restore up to 32 registers in a single
instruction.

■ LSW and STSW permit fetching and storing of fixed- and variable-length strings
that have arbitrary alignment.

■ Rotate with mask instructions support bit field extraction and insertion. One
version rotates the data and then performs logical AND with a mask of ones,
thereby extracting a field. The other version rotates the data but only places
the bits into the destination register where there is a corresponding 1 bit in the
mask, thereby inserting a field.

■ Algebraic right shift sets the carry bit (CA) if the operand is negative and any 1
bits are shifted out. Thus, a signed divide by any constant power of 2 that
rounds toward 0 can be accomplished with a SRAWI followed by ADDZE,
which adds CA to the register.

■ CBTLZ will count leading zeros.

■ SUBFIC computes (immediate – RA), which can be used to develop a one’s or
two’s complement.

■ Logical shifted immediate instructions shift the 16-bit immediate to the left
16 bits before performing AND, OR, or XOR.

Instructions Unique to PA-RISC 2.0

PA-RISC was expanded slightly in 1990 with version 1.1 and changed signifi-
cantly in 2.0 with 64-bit extensions in 1996. PA-RISC has perhaps the most
unusual features of any desktop RISC machine. For example, it has the most
addressing modes and instruction formats and, as we shall see, several instruc-
tions that are really the combination of two simpler instructions.

Nullification

As shown in Figure K.30, several RISC machines can choose to not execute the
instruction following a delayed branch in order to improve utilization of the

K-34 ■ Appendix K Survey of Instruction Set Architectures

branch slot. This is called nullification in PA-RISC, and it has been generalized
to apply to any arithmetic/logical instruction as well as to all branches. Thus, an
add instruction can add two operands, store the sum, and cause the following
instruction to be skipped if the sum is zero. Like conditional move instructions,
nullification allows PA-RISC to avoid branches in cases where there is just one
instruction in the then part of an if statement.

A Cornucopia of Conditional Branches

Given nullification, PA-RISC did not need to have separate conditional branch
instructions. The inventors could have recommended that nullifying instructions
precede unconditional branches, thereby simplifying the instruction set. Instead,
PA-RISC has the largest number of conditional branches of any RISC machine.
Figure K.33 shows the conditional branches of PA-RISC. As you can see, several
are really combinations of two instructions.

Synthesized Multiply and Divide

PA-RISC provides several primitives so that multiply and divide can be synthe-
sized in software. Instructions that shift one operand 1, 2, or 3 bits and then add,
trapping or not on overflow, are useful in multiplies. (Alpha also includes instruc-
tions that multiply the second operand of adds and subtracts by 4 or by 8: S4ADD,
S8ADD, S4SUB, and S8SUB.) Divide step performs the critical step of nonrestoring

Name Instruction Notation

COMB Compare and branch if (cond(Rs1,Rs2)) {PC <--- PC + offset12}

COMIB Compare imm. and branch if (cond(imm5,Rs2)) {PC <--- PC + offset12}

MOVB Move and branch Rs2 <--- Rs1,
if (cond(Rs1,0))

{PC <--- PC + offset12}

MOVIB Move immediate and branch Rs2 <--- imm5,
if (cond(imm5,0))

{PC <--- PC + offset12}

ADDB Add and branch Rs2 <--- Rs1 + Rs2,
if (cond(Rs1 + Rs2,0))

{PC <--- PC + offset12}

ADDIB Add imm. and branch Rs2 <--- imm5 + Rs2,
if (cond(imm5 + Rs2,0))

{PC <--- PC + offset12}

BB Branch on bit if (cond(Rsp,0)) {PC <--- PC + offset12}

BVB Branch on variable bit if (cond(Rssar,0)) {PC <--- PC + offset12}

Figure K.33 The PA-RISC conditional branch instructions. The 12-bit offset is called offset12 in this table, and the
5-bit immediate is called imm5. The 16 conditions are =, <, <=; odd; signed overflow; unsigned no overflow; zero or
no overflow unsigned; never; and their respective complements. The BB instruction selects one of the 32 bits of the
register and branches depending if its value is 0 or 1. The BVB selects the bit to branch using the shift amount regis-
ter, a special-purpose register. The subscript notation specifies a bit field.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-35

divide, adding, or subtracting depending on the sign of the prior result. Magen-
heimer et al. [1988] measured the size of operands in multiplies and divides to
show how well the multiply step would work. Using these data for C programs,
Muchnick [1988] found that by making special cases the average multiply by a
constant takes 6 clock cycles and multiply of variables takes 24 clock cycles.
PA-RISC has 10 instructions for these operations.

The original SPARC architecture used similar optimizations, but with increas-
ing numbers of transistors the instruction set was expanded to include full multi-
ply and divide operations. PA-RISC gives some support along these lines by
putting a full 32-bit integer multiply in the floating-point unit; however, the integer
data must first be moved to floating-point registers.

Decimal Operations

COBOL programs will compute on decimal values, stored as 4 bits per digit, rather
than converting back and forth between binary and decimal. PA-RISC has instruc-
tions that will convert the sum from a normal 32-bit add into proper decimal digits.
It also provides logical and arithmetic operations that set the condition codes to test
for carries of digits, bytes, or half words. These operations also test whether bytes
or half words are zero. These operations would be useful in arithmetic on 8-bit
ASCII characters. Five PA-RISC instructions provide decimal support.

Remaining Instructions

Here are some remaining PA-RISC instructions:

■ Branch vectored shifts an index register left 3 bits, adds it to a base register,
and then branches to the calculated address. It is used for case statements.

■ Extract and deposit instructions allow arbitrary bit fields to be selected from
or inserted into registers. Variations include whether the extracted field is
sign-extended, whether the bit field is specified directly in the instruction or
indirectly in another register, and whether the rest of the register is set to zero
or left unchanged. PA-RISC has 12 such instructions.

■ To simplify use of 32-bit address constants, PA-RISC includes ADDIL, which
adds a left-adjusted 21-bit constant to a register and places the result in regis-
ter 1. The following data transfer instruction uses offset addressing to add the
lower 11 bits of the address to register 1. This pair of instructions allows
PA-RISC to add a 32-bit constant to a base register, at the cost of changing
register 1.

■ PA-RISC has nine debug instructions that can set breakpoints on instruction
or data addresses and return the trapped addresses.

■ Load and clear instructions provide a semaphore or lock that reads a value
from memory and then writes zero.

K-36 ■ Appendix K Survey of Instruction Set Architectures

■ Store bytes short optimizes unaligned data moves, moving either the leftmost
or the rightmost bytes in a word to the effective address, depending on the
instruction options and condition code bits.

■ Loads and stores work well with caches by having options that give hints
about whether to load data into the cache if it’s not already in the cache. For
example, load with a destination of register 0 is defined to be software-
controlled cache prefetch.

■ PA-RISC 2.0 extended cache hints to stores to indicate block copies, recom-
mending that the processor not load data into the cache if it’s not already in
the cache. It also can suggest that on loads and stores there is spatial locality
to prepare the cache for subsequent sequential accesses.

■ PA-RISC 2.0 also provides an optional branch-target stack to predict indirect
jumps used on subroutine returns. Software can suggest which addresses get
placed on and removed from the branch-target stack, but hardware controls
whether or not these are valid.

■ Multiply/add and multiply/subtract are floating-point operations that can
launch two independent floating-point operations in a single instruction in
addition to the fused multiply/add and fused multiply/negate/add introduced
in version 2.0 of PA-RISC.

Instructions Unique to ARM

It’s hard to pick the most unusual feature of ARM, but perhaps it is conditional
execution of instructions. Every instruction starts with a 4-bit field that determines
whether it will act as a NOP or as a real instruction, depending on the condition
codes. Hence, conditional branches are properly considered as conditionally exe-
cuting the unconditional branch instruction. Conditional execution allows avoid-
ing a branch to jump over a single instruction. It takes less code space and time to
simply conditionally execute one instruction.

The 12-bit immediate field has a novel interpretation. The 8 least-significant
bits are zero-extended to a 32-bit value, then rotated right the number of bits
specified in the first 4 bits of the field multiplied by 2. Whether this split actually
catches more immediates than a simple 12-bit field would be an interesting study.
One advantage is that this scheme can represent all powers of 2 in a 32-bit word.

Operand shifting is not limited to immediates. The second register of all
arithmetic and logical processing operations has the option of being shifted
before being operated on. The shift options are shift left logical, shift right logi-
cal, shift right arithmetic, and rotate right. Once again, it would be interesting to
see how often operations like rotate-and-add, shift-right-and-test, and so on occur
in ARM programs.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-37

Remaining Instructions

Below is a list of the remaining unique instructions of the ARM architecture:

■ Block loads and stores—Under control of a 16-bit mask within the instruc-
tions, any of the 16 registers can be loaded or stored into memory in a single
instruction. These instructions can save and restore registers on procedure
entry and return. These instructions can also be used for block memory
copy—offering up to four times the bandwidth of a single register load-
store—and today block copies are the most important use.

■ Reverse subtract—RSB allows the first register to be subtracted from the
immediate or shifted register. RSC does the same thing but includes the carry
when calculating the difference.

■ Long multiplies—Similar to MIPS, Hi and Lo registers get the 64-bit signed
product (SMULL) or the 64-bit unsigned product (UMULL).

■ No divide—Like the Alpha, integer divide is not supported in hardware.

■ Conditional trap—A common extension to the MIPS core found in desktop
RISCs (Figures K.22 through K.25), it comes for free in the conditional exe-
cution of all ARM instructions, including SWI.

■ Coprocessor interface—Like many of the desktop RISCs, ARM defines a full
set of coprocessor instructions: data transfer, moves between general-purpose
and coprocessor registers, and coprocessor operations.

■ Floating-point architecture—Using the coprocessor interface, a floating-
point architecture has been defined for ARM. It was implemented as the
FPA10 coprocessor.

■ Branch and exchange instruction sets—The BX instruction is the transition
between ARM and Thumb, using the lower 31 bits of the register to set the
PC and the most-significant bit to determine if the mode is ARM (1) or
Thumb (0).

Instructions Unique to Thumb

In the ARM version 4 model, frequently executed procedures will use ARM
instructions to get maximum performance, with the less frequently executed ones
using Thumb to reduce the overall code size of the program. Since typically only
a few procedures dominate execution time, the hope is that this hybrid gets the
best of both worlds.

Although Thumb instructions are translated by the hardware into conventional
ARM instructions for execution, there are several restrictions. First, conditional
execution is dropped from almost all instructions. Second, only the first 8 registers
are easily available in all instructions, with the stack pointer, link register, and pro-
gram counter being used implicitly in some instructions. Third, Thumb uses a
two-operand format to save space. Fourth, the unique shifted immediates and

K-38 ■ Appendix K Survey of Instruction Set Architectures

shifted second operands have disappeared and are replaced by separate shift
instructions. Fifth, the addressing modes are simplified. Finally, putting all
instructions into 16 bits forces many more instruction formats.

In many ways the simplified Thumb architecture is more conventional than
ARM. Here are additional changes made from ARM in going to Thumb:

■ Drop of immediate logical instructions—Logical immediates are gone.

■ Condition codes implicit—Rather than have condition codes set optionally,
they are defined by the opcode. All ALU instructions and none of the data
transfers set the condition codes.

■ Hi/Lo register access—The 16 ARM registers are halved into Lo registers and
Hi registers, with the 8 Hi registers including the stack pointer (SP), link reg-
ister, and PC. The Lo registers are available in all ALU operations. Variations
of ADD, BX, CMP, and MOV also work with all combinations of Lo and Hi regis-
ters. SP and PC registers are also available in variations of data transfers and
add immediates. Any other operations on the Hi registers require one MOV to
put the value into a Lo register, perform the operation there, and then transfer
the data back to the Hi register.

■ Branch/call distance—Since instructions are 16 bits wide, the 8-bit condi-
tional branch address is shifted by 1 instead of by 2. Branch with link is spec-
ified in two instructions, concatenating 11 bits from each instruction and
shifting them left to form a 23-bit address to load into PC.

■ Distance for data transfer offsets—The offset is now 5 bits for the general-
purpose registers and 8 bits for SP and PC.

Instructions Unique to SuperH

Register 0 plays a special role in SuperH address modes. It can be added to
another register to form an address in indirect indexed addressing and PC-relative
addressing. R0 is used to load constants to give a larger addressing range than can
easily be fit into the 16-bit instructions of the SuperH. R0 is also the only register
that can be an operand for immediate versions of AND, CMP, OR, and XOR.

Below is a list of the remaining unique details of the SuperH architecture:

■ Decrement and test—DT decrements a register and sets the T bit to 1 if the
result is 0.

■ Optional delayed branch—Although the other embedded RISC machines
generally do not use delayed branches (see Appendix C), SuperH offers
optional delayed branch execution for BT and BF.

■ Many multiplies—Depending on if the operation is signed or unsigned, if the
operands are 16 bits or 32 bits, or if the product is 32 bits or 64 bits, the
proper multiply instruction is MULS, MULU, DMULS, DMULU, or MUL. The product
is found in the MACL and MACH registers.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-39

■ Zero and sign extension—Bytes or half words are either zero-extended (EXTU)
or sign-extended (EXTS) within a 32-bit register.

■ One-bit shift amounts—Perhaps in an attempt to make them fit within the
16-bit instructions, shift instructions only shift a single bit at a time.

■ Dynamic shift amount—These variable shifts test the sign of the amount in a
register to determine whether they shift left (positive) or shift right (negative).
Both logical (SHLD) and arithmetic (SHAD) instructions are supported. These
instructions help offset the 1-bit constant shift amounts of standard shifts.

■ Rotate—SuperH offers rotations by 1 bit left (ROTL) and right (ROTR), which
set the T bit with the value rotated, and also have variations that include the T
bit in the rotations (ROTCL and ROTCR).

■ SWAP—This instruction swaps either the high and low bytes of a 32-bit word
or the two bytes of the rightmost 16 bits.

■ Extract word (XTRCT)—The middle 32 bits from a pair of 32-bit registers are
placed in another register.

■ Negate with carry—Like SUBC (Figure K.27), except the first operand is 0.

■ Cache prefetch—Like many of the desktop RISCs (Figures K.22 through
K.25), SuperH has an instruction (PREF) to prefetch data into the cache.

■ Test-and-set—SuperH uses the older test-and-set (TAS) instruction to perform
atomic locks or semaphores (see Chapter 5). TAS first loads a byte from
memory. It then sets the T bit to 1 if the byte is 0 or to 0 if the byte is not 0.
Finally, it sets the most-significant bit of the byte to 1 and writes the result
back to memory.

Instructions Unique to M32R

The most unusual feature of the M32R is a slight very long instruction word
(VLIW) approach to the pairs of 16-bit instructions. A bit is reserved in the first
instruction of the pair to say whether this instruction can be executed in parallel
with the next instruction—that is, the two instructions are independent—or if
these two must be executed sequentially. (An earlier machine that offered a simi-
lar option was the Intel i860.) This feature is included for future implementations
of the architecture.

One surprise is that all branch displacements are shifted left 2 bits before
being added to the PC, and the lower 2 bits of the PC are set to 0. Since some
instructions are only 16 bits long, this shift means that a branch cannot go to any
instruction in the program: It can only branch to instructions on word boundaries.
A similar restriction is placed on the return address for the branch-and-link and
jump-and-link instructions: They can only return to a word boundary. Thus, for a
slightly larger branch distance, software must ensure that all branch addresses
and all return addresses are aligned to a word boundary. The M32R code space is
probably slightly larger, and it probably executes more NOP instructions than it
would if the branch address were only shifted left 1 bit.

K-40 ■ Appendix K Survey of Instruction Set Architectures

However, the VLIW feature above means that a NOP can execute in parallel
with another 16-bit instruction, so that the padding doesn’t take more clock
cycles. The code size expansion depends on the ability of the compiler to sched-
ule code and to pair successive 16-bit instructions; Mitsubishi claims that code
size overall is only 7% larger than that for the Motorola 680x0 architecture.

The last remaining novel feature is that the result of the divide operation is
the remainder instead of the quotient.

Instructions Unique to MIPS16

MIPS16 is not really a separate instruction set but a 16-bit extension of the full
32-bit MIPS architecture. It is compatible with any of the 32-bit address MIPS
architectures (MIPS I, MIPS II) or 64-bit architectures (MIPS III, IV, V). The
ISA mode bit determines the width of instructions: 0 means 32-bit-wide instruc-
tions and 1 means 16-bit-wide instructions. The new JALX instruction toggles the
ISA mode bit to switch to the other ISA. JR and JALR have been redefined to set
the ISA mode bit from the most-significant bit of the register containing the
branch address, and this bit is not considered part of the address. All jump and
link instructions save the current mode bit as the most-significant bit of the return
address.

Hence MIPS supports whole procedures containing either 16-bit or 32-bit
instructions, but it does not support mixing the two lengths together in a single
procedure. The one exception is the JAL and JALX: These two instructions need
32 bits even in the 16-bit mode, presumably to get a large enough address to
branch to far procedures.

In picking this subset, MIPS decided to include opcodes for some three-
operand instructions and to keep 16 opcodes for 64-bit operations. The combina-
tion of this many opcodes and operands in 16 bits led the architects to provide
only 8 easy-to-use registers—just like Thumb—whereas the other embedded
RISCs offer about 16 registers. Since the hardware must include the full 32 regis-
ters of the 32-bit ISA mode, MIPS16 includes move instructions to copy values
between the 8 MIPS16 registers and the remaining 24 registers of the full MIPS
architecture. To reduce pressure on the 8 visible registers, the stack pointer is
considered a separate register. MIPS16 includes a variety of separate opcodes to
do data transfers using SP as a base register and to increment SP: LWSP, LDSP,
SWSP, SDSP, ADJSP, DADJSP, ADDIUSPD, and DADDIUSP.

To fit within the 16-bit limit, immediate fields have generally been shortened
to 5 to 8 bits. MIPS16 provides a way to extend its shorter immediates into the
full width of immediates in the 32-bit mode. Borrowing a trick from the Intel
8086, the EXTEND instruction is really a 16-bit prefix that can be prepended to any
MIPS16 instruction with an address or immediate field. The prefix supplies
enough bits to turn the 5-bit fields of data transfers and 5- to 8-bit fields of arith-
metic immediates into 16-bit constants. Alas, there are two exceptions. ADDIU
and DADDIU start with 4-bit immediate fields, but since EXTEND can only supply
11 more bits, the wider immediate is limited to 15 bits. EXTEND also extends the

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-41

3-bit shift fields into 5-bit fields for shifts. (In case you were wondering, the
EXTEND prefix does not need to start on a 32-bit boundary.)

To further address the supply of constants, MIPS16 added a new addressing
mode! PC-relative addressing for load word (LWPC) and load double (LDPC) shifts
an 8-bit immediate field by 2 or 3 bits, respectively, adding it to the PC with the
lower 2 or 3 bits cleared. The constant word or double word is then loaded into a
register. Thus 32-bit or 64-bit constants can be included with MIPS16 code,
despite the loss of LIU to set the upper register bits. Given the new addressing
mode, there is also an instruction (ADDIUPC) to calculate a PC-relative address
and place it in a register.

MIPS16 differs from the other embedded RISCs in that it can subset a 64-bit
address architecture. As a result it has 16-bit instruction-length versions of 64-bit
data operations: data transfer (LD, SD, LWU), arithmetic operations (DADDU/IU,
DSUBU, DMULT/U, DDIV/U), and shifts (DSLL/V, DSRA/V, DSRL/V).

Since MIPS plays such a prominent role in this book, we show all the addi-
tional changes made from the MIPS core instructions in going to MIPS16:

■ Drop of signed arithmetic instructions—Arithmetic instructions that can trap
were dropped to save opcode space: ADD, ADDI, SUB, DADD, DADDI, DSUB.

■ Drop of immediate logical instructions—Logical immediates are gone, too:
ANDI, ORI, XORI.

■ Branch instructions pared down—Comparing two registers and then branch-
ing did not fit, nor did all the other comparisons of a register to zero. Hence,
these instructions didn’t make it either: BEQ, BNE, BGEZ, BGTZ, BLEZ, and
BLTZ. As mentioned in the section “Instructions: The MIPS Core Subset” on
page K-6, to help compensate MIPS16 includes compare instructions to test
if two registers are equal. Since compare and set-on-less-than set the new T
register, branches were added to test the T register.

■ Branch distance—Since instructions are 16 bits wide, the branch address is
shifted by one instead of by two.

■ Delayed branches disappear—The branches take effect before the next
instruction. Jumps still have a one-slot delay.

■ Extension and distance for data transfer offsets—The 5-bit and 8-bit fields
are zero-extended instead of sign-extended in 32-bit mode. To get greater
range, the immediate fields are shifted left 1, 2, or 3 bits depending on
whether the data are half word, word, or double word. If the EXTEND prefix is
prepended to these instructions, they use the conventional signed 16-bit
immediate of the 32-bit mode.

■ Extension of arithmetic immediates—The 5-bit and 8-bit fields are zero-
extended for set-on-less-than and compare instructions, for forming a
PC-relative address, and for adding to SP and placing the result in a register
(ADDIUSP, DADDIUSP). Once again, if the EXTEND prefix is prepended to these
instructions, they use the conventional signed 16-bit immediate of the 32-bit

K-42 ■ Appendix K Survey of Instruction Set Architectures

mode. They are still sign-extended for general adds and for adding to SP and
placing the result back in SP (ADJSP, DADJSP). Alas, code density and orthog-
onality are strange bedfellows in MIPS16!

■ Redefining shift amount of 0—MIPS16 defines the value 0 in the 3-bit shift
field to mean a shift of 8 bits.

■ New instructions added due to loss of register 0 as zero—Load immediate,
negate, and not were added, since these operations could no longer be synthe-
sized from other instructions using r0 as a source.

Concluding Remarks

This survey covers the addressing modes, instruction formats, and all instructions
found in 10 RISC architectures. Although the later sections concentrate on the
differences, it would not be possible to cover 10 architectures in these few pages
if there were not so many similarities. In fact, we would guess that more than
90% of the instructions executed for any of these architectures would be found in
Figures K.9 through K.17. To contrast this homogeneity, Figure K.34 gives a
summary for four architectures from the 1970s in a format similar to that shown
in Figure K.1. (Since it would be impossible to write a single section in this style
for those architectures, the next three sections cover the 80x86, VAX, and IBM
360/370.) In the history of computing, there has never been such widespread
agreement on computer architecture.

IBM 360/370 Intel 8086 Motorola 68000 DEC VAX

Date announced 1964/1970 1978 1980 1977

Instruction size(s) (bits) 16, 32, 48 8, 16, 24, 32, 40, 48 16, 32, 48, 64, 80 8, 16, 24, 32, ... , 432

Addressing (size, model) 24 bits, flat/
31 bits, flat

4 + 16 bits,
segmented

24 bits, flat 32 bits, flat

Data aligned? Yes 360/No 370 No 16-bit aligned No

Data addressing modes 2/3 5 9 =14

Protection Page None Optional Page

Page size 2 KB & 4 KB — 0.25 to 32 KB 0.5 KB

I/O Opcode Opcode Memory mapped Memory mapped

Integer registers (size, model,
number)

16 GPR × 32 bits 8 dedicated
data × 16 bits

8 data and 8 address
× 32 bits

15 GPR × 32 bits

Separate floating-point
registers

4 × 64 bits Optional: 8 × 80 bits Optional: 8 × 80 bits 0

Floating-point format IBM (floating
hexadecimal)

IEEE 754 single,
double, extended

IEEE 754 single,
double, extended

DEC

Figure K.34 Summary of four 1970s architectures. Unlike the architectures in Figure K.1, there is little agreement
between these architectures in any category. (See Section K.3 for more details on the 80x86 and Section K.4 for a
description of the VAX.)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-43

This style of architecture cannot remain static, however. Like people, instruc-
tion sets tend to get bigger as they get older. Figure K.35 shows the genealogy of
these instruction sets, and Figure K.36 shows which features were added to or
deleted from generations of desktop RISCs over time.

As you can see, all the desktop RISC machines have evolved to 64-bit address
architectures, and they have done so fairly painlessly.

Figure K.35 The lineage of RISC instruction sets. Commercial machines are shown in plain text and research
machines in bold. The CDC-6600 and Cray-1 were load-store machines with register 0 fixed at 0, and separate inte-
ger and floating-point registers. Instructions could not cross word boundaries. An early IBM research machine led
to the 801 and America research projects, with the 801 leading to the unsuccessful RT/PC and America leading to
the successful Power architecture. Some people who worked on the 801 later joined Hewlett-Packard to work on
the PA-RISC. The two university projects were the basis of MIPS and SPARC machines. According to Furber [1996],
the Berkeley RISC project was the inspiration of the ARM architecture. While ARM1, ARM2, and ARM3 were names of
both architectures and chips, ARM version 4 is the name of the architecture used in ARM7, ARM8, and StrongARM
chips. (There are no ARM v.4 and ARM5 chips, but ARM6 and early ARM7 chips use the ARM3 architecture.) DEC
built a RISC microprocessor in 1988 but did not introduce it. Instead, DEC shipped workstations using MIPS micro-
processors for three years before they brought out their own RISC instruction set, Alpha 21064, which is very similar
to MIPS III and PRISM. The Alpha architecture has had small extensions, but they have not been formalized with ver-
sion numbers; we used version 3 because that is the version of the reference manual. The Alpha 21164A chip added
byte and half-word loads and stores, and the Alpha 21264 includes the MAX multimedia and bit count instructions.
Internally, Digital names chips after the fabrication technology: EV4 (21064), EV45 (21064A), EV5 (21164), EV56
(21164A), and EV6 (21264). “EV” stands for “extended VAX.”

1960

2000

1995

1990

1985

1980

1975

1970

1965

CDC 6600
1963

IBM ASC 1968

IBM 801
1975

America
 1985

Power1
1990

PowerPC
1993

Power2
1993

RT/PC
1986

PA-RISC
1986

PA-RISC 1.1
1990

Cray 1
1976

Berkeley RISC-1
1981

SPARC v.8
1987

SPARC v.9
1994

Stanford MIPS
1982

MIPS I
1986

ARM1
1985

MIPS II
1989

MIPS III
1992

Alpha
1992

Digital PRISM
1988

MIPS IV
1994

Alpha v.3
1996

PA-RISC 2.0
1996

ARM2
1987

ARM3
1990

ARM v.4
1995

Thumb
1995

SuperH
1992

M32R
1997

MIPS V
1996

MIPS 16
1996

K-44 ■ Appendix K Survey of Instruction Set Architectures

Acknowledgments

We would like to thank the following people for comments on drafts of this survey:
Professor Steven B. Furber, University of Manchester; Dr. Dileep Bhandarkar, Intel
Corporation; Dr. Earl Killian, Silicon Graphics/MIPS; and Dr. Hiokazu Takata,
Mitsubishi Electric Corporation.

PA-RISC SPARC MIPS Power

Feature 1.0 1.1 2.0 v. 8 v. 9 I II III IV V 1 2 PC

Interlocked loads X " " X " + " " X " "

Load-store FP double X " " X " + " " X " "

Semaphore X " " X " + " " X " "

Square root X " " X " + " " + "

Single-precision FP ops X " " X " X " " " +

Memory synchronize X " " X " + " " X " "

Coprocessor X " " X — X " " "

Base + index addressing X " " X " + X " "

Equiv. 32 64-bit FP
registers

" " + + " X " "

Annulling delayed branch X " " X " + " "

Branch register contents X " " + X " " "

Big/Little Endian + " + X " " " +

Branch-prediction bit + + " " X " "

Conditional move + + X " —

Prefetch data into cache + + + X " "

64-bit addressing/int. ops + + + " +

32-bit multiply, divide + " + X " " " X " "

Load-store FP quad + + —

Fused FP mul/add + + X " "

String instructions X " " X " —

Multimedia support X " X X

Figure K.36 Features added to desktop RISC machines. X means in the original machine, + means added later,
" means continued from prior machine, and — means removed from architecture. Alpha is not included, but it added
byte and word loads and stores, and bit count and multimedia extensions, in version 3. MIPS V added the MDMX
instructions and paired single floating-point operations.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.3 The Intel 80x86 ■ K-45

Introduction

MIPS was the vision of a single architect. The pieces of this architecture fit
nicely together and the whole architecture can be described succinctly. Such is
not the case of the 80x86: It is the product of several independent groups who
evolved the architecture over 20 years, adding new features to the original
instruction set as you might add clothing to a packed bag. Here are important
80x86 milestones:

■ 1978—The Intel 8086 architecture was announced as an assembly language–
compatible extension of the then-successful Intel 8080, an 8-bit microproces-
sor. The 8086 is a 16-bit architecture, with all internal registers 16 bits wide.
Whereas the 8080 was a straightforward accumulator machine, the 8086
extended the architecture with additional registers. Because nearly every reg-
ister has a dedicated use, the 8086 falls somewhere between an accumulator
machine and a general-purpose register machine, and can fairly be called an
extended accumulator machine.

■ 1980—The Intel 8087 floating-point coprocessor is announced. This archi-
tecture extends the 8086 with about 60 floating-point instructions. Its archi-
tects rejected extended accumulators to go with a hybrid of stacks and
registers, essentially an extended stack architecture: A complete stack instruc-
tion set is supplemented by a limited set of register-memory instructions.

■ 1982—The 80286 extended the 8086 architecture by increasing the address
space to 24 bits, by creating an elaborate memory mapping and protection
model, and by adding a few instructions to round out the instruction set and to
manipulate the protection model. Because it was important to run 8086 pro-
grams without change, the 80286 offered a real addressing mode to make the
machine look just like an 8086.

■ 1985—The 80386 extended the 80286 architecture to 32 bits. In addition to
a 32-bit architecture with 32-bit registers and a 32-bit address space, the
80386 added new addressing modes and additional operations. The added
instructions make the 80386 nearly a general-purpose register machine. The
80386 also added paging support in addition to segmented addressing (see
Chapter 2). Like the 80286, the 80386 has a mode to execute 8086 programs
without change.

This history illustrates the impact of the “golden handcuffs” of compatibility
on the 80x86, as the existing software base at each step was too important to
jeopardize with significant architectural changes. Fortunately, the subsequent
80486 in 1989, Pentium in 1992, and P6 in 1995 were aimed at higher perfor-
mance, with only four instructions added to the user-visible instruction set: three
to help with multiprocessing plus a conditional move instruction.

 K.3 The Intel 80x86

K-46 ■ Appendix K Survey of Instruction Set Architectures

Since 1997 Intel has added hundreds of instructions to support multimedia by
operating on many narrower data types within a single clock (see Appendix A).
These SIMD or vector instructions are primarily used in handcoded libraries or
drivers and rarely generated by compilers. The first extension, called MMX,
appeared in 1997. It consists of 57 instructions that pack and unpack multiple
bytes, 16-bit words, or 32-bit double words into 64-bit registers and performs
shift, logical, and integer arithmetic on the narrow data items in parallel. It sup-
ports both saturating and nonsaturating arithmetic. MMX uses the registers com-
prising the floating-point stack and hence there is no new state for operating
systems to save.

In 1999 Intel added another 70 instructions, labeled SSE, as part of Pentium
III. The primary changes were to add eight separate registers, double their width
to 128 bits, and add a single-precision floating-point data type. Hence, four 32-bit
floating-point operations can be performed in parallel. To improve memory per-
formance, SSE included cache prefetch instructions plus streaming store instruc-
tions that bypass the caches and write directly to memory.

In 2001, Intel added yet another 144 instructions, this time labeled SSE2. The
new data type is double-precision arithmetic, which allows pairs of 64-bit
floating-point operations in parallel. Almost all of these 144 instructions are ver-
sions of existing MMX and SSE instructions that operate on 64 bits of data in
parallel. Not only does this change enable multimedia operations, but it also
gives the compiler a different target for floating-point operations than the unique
stack architecture. Compilers can choose to use the eight SSE registers as float-
ing-point registers as found in the RISC machines. This change has boosted per-
formance on the Pentium 4, the first microprocessor to include SSE2 instructions.
At the time of announcement, a 1.5 GHz Pentium 4 was 1.24 times faster than a 1
GHz Pentium III for SPECint2000(base), but it was 1.88 times faster for
SPECfp2000(base).

In 2003, a company other than Intel enhanced the IA-32 architecture this
time. AMD announced a set of architectural extensions to increase the address
space for 32 to 64 bits. Similar to the transition from 16- to 32-bit address space
in 1985 with the 80386, AMD64 widens all registers to 64 bits. It also increases
the number of registers to 16 and has 16 128-bit registers to support XMM,
AMD’s answer to SSE2. Rather than expand the instruction set, the primary
change is adding a new mode called long mode that redefines the execution of all
IA-32 instructions with 64-bit addresses. To address the larger number of regis-
ters, it adds a new prefix to instructions. AMD64 still has a 32-bit mode that is
backwards compatible to the standard Intel instruction set, allowing a more
graceful transition to 64-bit addressing than the HP/Intel Itanium. Intel later fol-
lowed AMD’s lead, making almost identical changes so that most software can
run on either 64-bit address version of the 80x86 without change.

Whatever the artistic failures of the 80x86, keep in mind that there are more
instances of this architectural family than of any other server or desktop proces-
sor in the world. Nevertheless, its checkered ancestry has led to an architecture
that is difficult to explain and impossible to love.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.3 The Intel 80x86 ■ K-47

We start our explanation with the registers and addressing modes, move on to
the integer operations, then cover the floating-point operations, and conclude
with an examination of instruction encoding.

80x86 Registers and Data Addressing Modes

The evolution of the instruction set can be seen in the registers of the 80x86
(Figure K.37). Original registers are shown in black type, with the extensions of
the 80386 shown in a lighter shade, a coloring scheme followed in subsequent
figures. The 80386 basically extended all 16-bit registers (except the segment
registers) to 32 bits, prefixing an “E” to their name to indicate the 32-bit version.
The arithmetic, logical, and data transfer instructions are two-operand instruc-
tions that allow the combinations shown in Figure K.38.

To explain the addressing modes, we need to keep in mind whether we are
talking about the 16-bit mode used by both the 8086 and 80286 or the 32-bit
mode available on the 80386 and its successors. The seven data memory address-
ing modes supported are

■ Absolute

■ Register indirect

■ Based

■ Indexed

■ Based indexed with displacement

■ Based with scaled indexed

■ Based with scaled indexed and displacement

Displacements can be 8 or 32 bits in 32-bit mode, and 8 or 16 bits in 16-bit mode.
If we count the size of the address as a separate addressing mode, the total is 11
addressing modes.

Although a memory operand can use any addressing mode, there are restric-
tions on what registers can be used in a mode. The section “80x86 Instruction
Encoding” on page K-55 gives the full set of restrictions on registers, but the fol-
lowing description of addressing modes gives the basic register options:

■ Absolute—With 16-bit or 32-bit displacement, depending on the mode.

■ Register indirect—BX, SI, DI in 16-bit mode and EAX, ECX, EDX, EBX, ESI, and
EDI in 32-bit mode.

■ Based mode with 8-bit or 16-bit/32-bit displacement—BP, BX, SI, and DI in
16-bit mode and EAX, ECX, EDX, EBX, ESI, and EDI in 32-bit mode. The dis-
placement is either 8 bits or the size of the address mode: 16 or 32 bits. (Intel
gives two different names to this single addressing mode, based and indexed,
but they are essentially identical and we combine them. This book uses
indexed addressing to mean something different, explained next.)

K-48 ■ Appendix K Survey of Instruction Set Architectures

Figure K.37 The 80x86 has evolved over time, and so has its register set. The original set is shown in black and the
extended set in gray. The 8086 divided the first four registers in half so that they could be used either as one 16-bit
register or as two 8-bit registers. Starting with the 80386, the top eight registers were extended to 32 bits and could
also be used as general-purpose registers. The floating-point registers on the bottom are 80 bits wide, and although
they look like regular registers they are not. They implement a stack, with the top of stack pointed to by the status
register. One operand must be the top of stack, and the other can be any of the other seven registers below the top
of stack.

FPR 0

FPR 1

FPR 2

FPR 3

FPR 4

FPR 5

FPR 6

FPR 7

079

015

015

8 731

GPR 0 AccumulatorEAX AX AH AL

GPR 3 Base addr. regEBX BX BH BL

GPR 1 Count reg: string, loopECX CX CH CL

GPR 2 Data reg: multiply, divideEDX DX DH DL

GPR 6 ESI Index reg, string source ptr.SI

Code segment ptr.CS

Stack segment ptr. (top of stack)SS

Data segment ptr.DS

Extra data segment ptr. ES

Data segment ptr. 2FS

Data segment ptr. 3GS

GPR 7 EDI Index reg, string dest. ptr.DI

GPR 5 EBP Base ptr. (for base of stack seg.)BP

PC

GPR 4 ESP Stack ptr.SP

EIP Instruction ptr. (PC)IP

EFLAGS Condition codesFLAGS

 Top of FP stack,

 FP condition codes
Status

80x86, 80x28680x386, 80x486, Pentium

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.3 The Intel 80x86 ■ K-49

■ Indexed—The address is the sum of two registers. The allowable combina-
tions are BX+SI, BX+DI, BP+SI, and BP+DI. This mode is called based indexed
on the 8086. (The 32-bit mode uses a different addressing mode to get the
same effect.)

■ Based indexed with 8- or 16-bit displacement—The address is the sum of dis-
placement and contents of two registers. The same restrictions on registers
apply as in indexed mode.

■ Base plus scaled indexed—This addressing mode and the next were added in
the 80386 and are only available in 32-bit mode. The address calculation is

Base register + 2Scale × Index register

where Scale has the value 0, 1, 2, or 3; Index register can be any of the eight
32-bit general registers except ESP; and Base register can be any of the eight
32-bit general registers.

■ Base plus scaled index with 8- or 32-bit displacement—The address is the
sum of the displacement and the address calculated by the scaled mode
immediately above. The same restrictions on registers apply.

The 80x86 uses Little Endian addressing.
Ideally, we would refer discussion of 80x86 logical and physical addresses to

Chapter 2, but the segmented address space prevents us from hiding that informa-
tion. Figure K.39 shows the memory mapping options on the generations of
80x86 machines; Chapter 2 describes the segmented protection scheme in greater
detail.

The assembly language programmer clearly must specify which segment reg-
ister should be used with an address, no matter which address mode is used. To
save space in the instructions, segment registers are selected automatically
depending on which address register is used. The rules are simple: References to
instructions (IP) use the code segment register (CS), references to the stack (BP or
SP) use the stack segment register (SS), and the default segment register for the
other registers is the data segment register (DS). The next section explains how
they can be overridden.

Source/destination operand type Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

Figure K.38 Instruction types for the arithmetic, logical, and data transfer instruc-
tions. The 80x86 allows the combinations shown. The only restriction is the absence of
a memory-memory mode. Immediates may be 8, 16, or 32 bits in length; a register is
any one of the 14 major registers in Figure K.37 (not IP or FLAGS).

K-50 ■ Appendix K Survey of Instruction Set Architectures

80x86 Integer Operations

The 8086 provides support for both 8-bit (byte) and 16-bit (called word) data
types. The data type distinctions apply to register operations as well as memory
accesses. The 80386 adds 32-bit addresses and data, called double words. Almost
every operation works on both 8-bit data and one longer data size. That size is
determined by the mode and is either 16 or 32 bits.

Figure K.39 The original segmented scheme of the 8086 is shown on the left. All 80x86 processors support this
style of addressing, called real mode. It simply takes the contents of a segment register, shifts it left 4 bits, and adds it
to the 16-bit offset, forming a 20-bit physical address. The 80286 (center) used the contents of the segment register
to select a segment descriptor, which includes a 24-bit base address among other items. It is added to the 16-bit off-
set to form the 24-bit physical address. The 80386 and successors (right) expand this base address in the segment
descriptor to 32 bits and also add an optional paging layer below segmentation. A 32-bit linear address is first
formed from the segment and offset, and then this address is divided into two 10-bit fields and a 12-bit page offset.
The first 10-bit field selects the entry in the first-level page table, and then this entry is used in combination with the
second 10-bit field to access the second-level page table to select the upper 20 bits of the physical address. Prepend-
ing this 20-bit address to the final 12-bit field gives the 32-bit physical address. Paging can be turned off, redefining
the 32-bit linear address as the physical address. Note that a “flat” 80x86 address space comes simply by loading the
same value in all the segment registers; that is, it doesn’t matter which segment register is selected.

OffsetSegment

16 32

32

32

32

20 20

20

1010

12

Physical address

Physical address

Linear address

Logical address

Paging

Segmentation

OffsetSegment

16 16

24

24

Logical address

OffsetSegment

16

Physical address

12 4

16

20

Logical address

Segmentation

Real mode Protected mode

(8086) (80286) (80386, 80486, Pentium)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.3 The Intel 80x86 ■ K-51

Clearly some programs want to operate on data of all three sizes, so the
80x86 architects provide a convenient way to specify each version without
expanding code size significantly. They decided that most programs would be
dominated by either 16- or 32-bit data, and so it made sense to be able to set a
default large size. This default size is set by a bit in the code segment register. To
override the default size, an 8-bit prefix is attached to the instruction to tell the
machine to use the other large size for this instruction.

The prefix solution was borrowed from the 8086, which allows multiple pre-
fixes to modify instruction behavior. The three original prefixes override the default
segment register, lock the bus so as to perform a semaphore (see Chapter 5), or
repeat the following instruction until CX counts down to zero. This last prefix was
intended to be paired with a byte move instruction to move a variable number of
bytes. The 80386 also added a prefix to override the default address size.

The 80x86 integer operations can be divided into four major classes:

1. Data movement instructions, including move, push, and pop.

2. Arithmetic and logic instructions, including logical operations, test, shifts,
and integer and decimal arithmetic operations.

3. Control flow, including conditional branches and unconditional jumps, calls,
and returns.

4. String instructions, including string move and string compare.

Figure K.40 shows some typical 80x86 instructions and their functions.
The data transfer, arithmetic, and logic instructions are unremarkable, except

that the arithmetic and logic instruction operations allow the destination to be
either a register or a memory location.

Control flow instructions must be able to address destinations in another seg-
ment. This is handled by having two types of control flow instructions: “near” for
intrasegment (within a segment) and “far” for intersegment (between segments)
transfers. In far jumps, which must be unconditional, two 16-bit quantities follow
the opcode in 16-bit mode. One of these is used as the instruction pointer, while
the other is loaded into CS and becomes the new code segment. In 32-bit mode
the first field is expanded to 32 bits to match the 32-bit program counter (EIP).

Calls and returns work similarly—a far call pushes the return instruction
pointer and return segment on the stack and loads both the instruction pointer and
the code segment. A far return pops both the instruction pointer and the code seg-
ment from the stack. Programmers or compiler writers must be sure to always use
the same type of call and return for a procedure—a near return does not work
with a far call, and vice versa.

String instructions are part of the 8080 ancestry of the 80x86 and are not
commonly executed in most programs.

Figure K.41 lists some of the integer 80x86 instructions. Many of the instruc-
tions are available in both byte and word formats.

K-52 ■ Appendix K Survey of Instruction Set Architectures

80x86 Floating-Point Operations

Intel provided a stack architecture with its floating-point instructions: loads push
numbers onto the stack, operations find operands in the top two elements of the
stacks, and stores can pop elements off the stack, just as the stack example in Fig-
ure A.2 on page A-4 suggests.

Intel supplemented this stack architecture with instructions and addressing
modes that allow the architecture to have some of the benefits of a register-
memory model. In addition to finding operands in the top two elements of the
stack, one operand can be in memory or in one of the seven registers below the
top of the stack.

This hybrid is still a restricted register-memory model, however, in that loads
always move data to the top of the stack while incrementing the top of stack
pointer and stores can only move the top of stack to memory. Intel uses the nota-
tion ST to indicate the top of stack, and ST(i) to represent the ith register below
the top of stack.

One novel feature of this architecture is that the operands are wider in the regis-
ter stack than they are stored in memory, and all operations are performed at this
wide internal precision. Numbers are automatically converted to the internal 80-bit
format on a load and converted back to the appropriate size on a store. Memory
data can be 32-bit (single-precision) or 64-bit (double-precision) floating-point
numbers, called real by Intel. The register-memory version of these instructions
will then convert the memory operand to this Intel 80-bit format before performing

Instruction Function

JE name if equal(CC) {IP←name}; IP–128 ≤ name ≤ IP+128
JMP name IP←name

CALLF name, seg SP←SP–2; M[SS:SP]←IP+5; SP←SP–2;
M[SS:SP]←CS; IP←name; CS←seg;

MOVW BX,[DI+45] BX←16M[DS:DI+45]

PUSH SI SP←SP–2; M[SS:SP]←SI

POP DI DI←M[SS:SP]; SP←SP+2

ADD AX,#6765 AX←AX+6765

SHL BX,1 BX←BX1..15 ## 0

TEST DX,#42 Set CC flags with DX & 42

MOVSB M[ES:DI]←8M[DS:SI]; DI←DI+1; SI←SI+1

Figure K.40 Some typical 80x86 instructions and their functions. A list of frequent
operations appears in Figure K.41. We use the abbreviation SR:X to indicate the forma-
tion of an address with segment register SR and offset X. This effective address corre-
sponding to SR:X is (SR<<4)+X. The CALLF saves the IP of the next instruction and the
current CS on the stack.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.3 The Intel 80x86 ■ K-53

the operation. The data transfer instructions also will automatically convert 16- and
32-bit integers to reals, and vice versa, for integer loads and stores.

The 80x86 floating-point operations can be divided into four major classes:

1. Data movement instructions, including load, load constant, and store.

2. Arithmetic instructions, including add, subtract, multiply, divide, square root,
and absolute value.

Instruction Meaning

Control Conditional and unconditional branches

JNZ, JZ Jump if condition to IP + 8-bit offset; JNE (for JNZ) and JE (for JZ) are alternative names

JMP, JMPF Unconditional jump—8- or 16-bit offset intrasegment (near) and intersegment (far) versions

CALL, CALLF Subroutine call—16-bit offset; return address pushed; near and far versions

RET, RETF Pops return address from stack and jumps to it; near and far versions

LOOP Loop branch—decrement CX; jump to IP + 8-bit displacement if CX ¦ 0

Data transfer Move data between registers or between register and memory

MOV Move between two registers or between register and memory

PUSH Push source operand on stack

POP Pop operand from stack top to a register

LES Load ES and one of the GPRs from memory

Arithmetic/logical Arithmetic and logical operations using the data registers and memory

ADD Add source to destination; register-memory format

SUB Subtract source from destination; register-memory format

CMP Compare source and destination; register-memory format

SHL Shift left

SHR Shift logical right

RCR Rotate right with carry as fill

CBW Convert byte in AL to word in AX

TEST Logical AND of source and destination sets flags

INC Increment destination; register-memory format

DEC Decrement destination; register-memory format

OR Logical OR; register-memory format

XOR Exclusive OR; register-memory format

String instructions Move between string operands; length given by a repeat prefix

MOVS Copies from string source to destination; may be repeated

LODS Loads a byte or word of a string into the A register

Figure K.41 Some typical operations on the 80x86. Many operations use register-memory format, where either
the source or the destination may be memory and the other may be a register or immediate operand.

K-54 ■ Appendix K Survey of Instruction Set Architectures

3. Comparison, including instructions to send the result to the integer CPU so
that it can branch.

4. Transcendental instructions, including sine, cosine, log, and exponentiation.

Figure K.42 shows some of the 60 floating-point operations. We use the curly
brackets {} to show optional variations of the basic operations: {I} means there
is an integer version of the instruction, {P} means this variation will pop one
operand off the stack after the operation, and {R} means reverse the sense of the
operands in this operation.

Not all combinations are provided. Hence,

F{I}SUB{R}{P}

represents these instructions found in the 80x86:

FSUB
FISUB
FSUBR
FISUBR
FSUBP
FSUBRP

There are no pop or reverse pop versions of the integer subtract instructions.

Data transfer Arithmetic Compare Transcendental

F{I}LD mem/ST(i) F{I}ADD{P} mem/ST(i) F{I}COM{P}{P} FPATAN

F{I}ST{P} mem/ST(i) F{I}SUB{R}{P} mem/ST(i) F{I}UCOM{P}{P} F2XM1

FLDPI F{I}MUL{P} mem/ST(i) FSTSW AX/mem FCOS

FLD1 F{I}DIV{R}{P} mem/ST(i) FPTAN

FLDZ FSQRT FPREM

FABS FSIN

FRNDINT FYL2X

Figure K.42 The floating-point instructions of the 80x86. The first column shows the data transfer instructions,
which move data to memory or to one of the registers below the top of the stack. The last three operations push con-
stants on the stack: pi, 1.0, and 0.0. The second column contains the arithmetic operations described above. Note
that the last three operate only on the top of stack. The third column is the compare instructions. Since there are no
special floating-point branch instructions, the result of the compare must be transferred to the integer CPU via the
FSTSW instruction, either into the AX register or into memory, followed by an SAHF instruction to set the condition
codes. The floating-point comparison can then be tested using integer branch instructions. The final column gives
the higher-level floating-point operations.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.3 The Intel 80x86 ■ K-55

Note that we get even more combinations when including the operand modes
for these operations. The floating-point add has these options, ignoring the inte-
ger and pop versions of the instruction:

FADD Both operands are in the in stack, and the result replaces the
top of stack.

FADD ST(i) One source operand is ith register below the top of stack,
and the result replaces the top of stack.

FADD ST(i),ST One source operand is the top of stack, and the result
replaces ith register below the top of stack.

FADD mem32 One source operand is a 32-bit location in memory, and the
result replaces the top of stack.

FADD mem64 One source operand is a 64-bit location in memory, and the
result replaces the top of stack.

As mentioned earlier SSE2 presents a model of IEEE floating-point registers.

80x86 Instruction Encoding

Saving the worst for last, the encoding of instructions in the 8086 is complex,
with many different instruction formats. Instructions may vary from 1 byte, when
there are no operands, to up to 6 bytes, when the instruction contains a 16-bit
immediate and uses 16-bit displacement addressing. Prefix instructions increase
8086 instruction length beyond the obvious sizes.

The 80386 additions expand the instruction size even further, as Figure K.43
shows. Both the displacement and immediate fields can be 32 bits long, two more
prefixes are possible, the opcode can be 16 bits long, and the scaled index mode
specifier adds another 8 bits. The maximum possible 80386 instruction is 17
bytes long.

Figure K.44 shows the instruction format for several of the example instruc-
tions in Figure K.40. The opcode byte usually contains a bit saying whether the
operand is a byte wide or the larger size, 16 bits or 32 bits depending on the
mode. For some instructions, the opcode may include the addressing mode and
the register; this is true in many instructions that have the form register
←register op immediate. Other instructions use a “postbyte” or extra opcode
byte, labeled “mod, reg, r/m” in Figure K.43, which contains the addressing
mode information. This postbyte is used for many of the instructions that address
memory. The based with scaled index uses a second postbyte, labeled “sc, index,
base” in Figure K.43.

The floating-point instructions are encoded in the escape opcode of the 8086
and the postbyte address specifier. The memory operations reserve 2 bits to decide
whether the operand is a 32- or 64-bit real or a 16- or 32-bit integer. Those same
2 bits are used in versions that do not access memory to decide whether the stack
should be popped after the operation and whether the top of stack or a lower regis-
ter should get the result.

Alas, you cannot separate the restrictions on registers from the encoding of
the addressing modes in the 80x86. Hence, Figures K.45 and K.46 show the
encoding of the two postbyte address specifiers for both 16- and 32-bit mode.

K-56 ■ Appendix K Survey of Instruction Set Architectures

Putting It All Together: Measurements of Instruction Set Usage

In this section, we present detailed measurements for the 80x86 and then com-
pare the measurements to MIPS for the same programs. To facilitate comparisons
among dynamic instruction set measurements, we use a subset of the SPEC92
programs. The 80x86 results were taken in 1994 using the Sun Solaris FOR-
TRAN and C compilers V2.0 and executed in 32-bit mode. These compilers were
comparable in quality to the compilers used for MIPS.

Remember that these measurements depend on the benchmarks chosen and
the compiler technology used. Although we feel that the measurements in this
section are reasonably indicative of the usage of these architectures, other pro-
grams may behave differently from any of the benchmarks here, and different
compilers may yield different results. In doing a real instruction set study, the
architect would want to have a much larger set of benchmarks, spanning as wide
an application range as possible, and consider the operating system and its usage

Figure K.43 The instruction format of the 8086 (black type) and the extensions for
the 80386 (shaded type). Every field is optional except the opcode.

Seg. override

Opcode

mod, reg, r/m

Disp8

Disp16

Disp24

Imm8

Imm16

Disp32

Imm24

Imm32

Opcode ext.

sc, index, base

Addr. override

Size override

Prefixes

Address
specifiers

Displacement

Immediate

Opcode

Repeat

Lock

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.3 The Intel 80x86 ■ K-57

of the instruction set. Single-user benchmarks like those measured here do not
necessarily behave in the same fashion as the operating system.

We start with an evaluation of the features of the 80x86 in isolation, and later
compare instruction counts with those of DLX.

Figure K.44 Typical 8086 instruction formats. The encoding of the postbyte is shown
in Figure K.45. Many instructions contain the 1-bit field w, which says whether the oper-
ation is a byte or a word. Fields of the form v/w or d/w are a d-field or v-field followed by
the w-field. The d-field in MOV is used in instructions that may move to or from memory
and shows the direction of the move. The field v in the SHL instruction indicates a
variable-length shift; variable-length shifts use a register to hold the shift count. The
ADD instruction shows a typical optimized short encoding usable only when the first
operand is AX. Overall instructions may vary from 1 to 6 bytes in length.

JE

a. JE PC + displacement

CALLF Segment numberOffset

b. CALLF

c. MOV BX, [DI + 45]

PUSH

d. PUSH SI

ADD w

e. ADD AX, #6765

SHL
r-r

postbytev/w

f. SHL BX, 1

g. TEST DX, #42

Reg

4 4 8

6 8 8

8 16 16

2

5 3

4 13 16

Constant

6 2 8

7 1 8 8

Condition Displacement

MOV d/w Displacement
r-m

postbyte

TEST Postbyte Immediatew

Reg

K-58 ■ Appendix K Survey of Instruction Set Architectures

w = 1 mod = 0 mod = 1 mod = 2

reg w = 0 16b 32b r/m 16b 32b 16b 32b 16b 32b mod = 3

0 AL AX EAX 0 addr=BX+SI =EAX same same same same same

1 CL CX ECX 1 addr=BX+DI =ECX addr as addr as addr as addr as as

2 DL DX EDX 2 addr=BP+SI =EDX mod=0 mod=0 mod=0 mod=0 reg

3 BL BX EBX 3 addr=BP+SI =EBX + disp8 + disp8 + disp16 + disp32 field

4 AH SP ESP 4 addr=SI =(sib) SI+disp16 (sib)+disp8 SI+disp8 (sib)+disp32 "

5 CH BP EBP 5 addr=DI =disp32 DI+disp8 EBP+disp8 DI+disp16 EBP+disp32 "

6 DH SI ESI 6 addr=disp16 =ESI BP+disp8 ESI+disp8 BP+disp16 ESI+disp32 "

7 BH DI EDI 7 addr=BX =EDI BX+disp8 EDI+disp8 BX+disp16 EDI+disp32 "

Figure K.45 The encoding of the first address specifier of the 80x86, mod, reg, r/m. The first four columns show
the encoding of the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16-
or 32-bit mode. The remaining columns explain the mod and r/m fields. The meaning of the 3-bit r/m field depends
on the value in the 2-bit mod field and the address size. Basically, the registers used in the address calculation are
listed in the sixth and seventh columns, under mod = 0, with mod = 1 adding an 8-bit displacement and mod = 2
adding a 16- or 32-bit displacement, depending on the address mode. The exceptions are r/m = 6 when mod = 1 or
mod = 2 in 16-bit mode selects BP plus the displacement; r/m = 5 when mod = 1 or mod = 2 in 32-bit mode selects
EBP plus displacement; and r/m = 4 in 32-bit mode when mod ¦3 (sib) means use the scaled index mode shown in
Figure K.46. When mod = 3, the r/m field indicates a register, using the same encoding as the reg field combined with
the w bit.

Index Base

0 EAX EAX

1 ECX ECX

2 EDX EDX

3 EBX EBX

4 No index ESP

5 EBP If mod = 0, disp32
If mod ¦ 0, EBP

6 ESI ESI

7 EDI EDI

Figure K.46 Based plus scaled index mode address specifier found in the 80386.
This mode is indicated by the (sib) notation in Figure K.45. Note that this mode expands
the list of registers to be used in other modes: Register indirect using ESP comes from
Scale = 0, Index = 4, and Base = 4, and base displacement with EBP comes from Scale =
0, Index = 5, and mod = 0. The two-bit scale field is used in this formula of the effective
address: Base register + 2Scale × Index register.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.3 The Intel 80x86 ■ K-59

Measurements of 80x86 Operand Addressing

We start with addressing modes. Figure K.47 shows the distribution of the oper-
and types in the 80x86. These measurements cover the “second” operand of the
operation; for example,

mov EAX, [45]

counts as a single memory operand. If the types of the first operand were
counted, the percentage of register usage would increase by about a factor of 1.5.

The 80x86 memory operands are divided into their respective addressing
modes in Figure K.48. Probably the biggest surprise is the popularity of the
addressing modes added by the 80386, the last four rows of the figure. They
account for about half of all the memory accesses. Another surprise is the popu-
larity of direct addressing. On most other machines, the equivalent of the direct

Integer average FP average

Register 45% 22%

Immediate 16% 6%

Memory 39% 72%

Figure K.47 Operand type distribution for the average of five SPECint92 programs
(compress, eqntott, espresso, gcc, li) and the average of five SPECfp92 programs
(doduc, ear, hydro2d, mdljdp2, su2cor).

Addressing mode Integer average FP average

Register indirect 13% 3%

Base + 8-bit disp. 31% 15%

Base + 32-bit disp. 9% 25%

Indexed 0% 0%

Based indexed + 8-bit disp. 0% 0%

Based indexed + 32-bit disp. 0% 1%

Base + scaled indexed 22% 7%

Base + scaled indexed + 8-bit disp. 0% 8%

Base + scaled indexed + 32-bit disp. 4% 4%

32-bit direct 20% 37%

Figure K.48 Operand addressing mode distribution by program. This chart does not
include addressing modes used by branches or control instructions.

K-60 ■ Appendix K Survey of Instruction Set Architectures

addressing mode is rare. Perhaps the segmented address space of the 80x86
makes direct addressing more useful, since the address is relative to a base
address from the segment register.

These addressing modes largely determine the size of the Intel instructions.
Figure K.49 shows the distribution of instruction sizes. The average number of
bytes per instruction for integer programs is 2.8, with a standard deviation of 1.5,
and 4.1 with a standard deviation of 1.9 for floating-point programs. The differ-
ence in length arises partly from the differences in the addressing modes: Integer
programs rely more on the shorter register indirect and 8-bit displacement
addressing modes, while floating-point programs more frequently use the 80386
addressing modes with the longer 32-bit displacements.

Given that the floating-point instructions have aspects of both stacks and reg-
isters, how are they used? Figure K.50 shows that, at least for the compilers used
in this measurement, the stack model of execution is rarely followed. (See Sec-
tion L.3 for a historical explanation of this observation.)

Finally, Figures K.51 and K.52 show the instruction mixes for 10 SPEC92
programs.

Figure K.49 Averages of the histograms of 80x86 instruction lengths for five
SPECint92 programs and for five SPECfp92 programs, all running in 32-bit mode.

Percentage of instructions at each length

In
st

ru
ct

io
n

le
ng

th
s

11

10

9

8

7

6

5

4

3

2

1

0%

1%

0%

0%

0%

0%

0%

0%

4%
2%

Floating-point
average

Integer average

8%
39%

4%
6%

7%
5%

18%
25%

19%
40%

10%
14%

0% 20% 40% 60%

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.3 The Intel 80x86 ■ K-61

Option doduc ear hydro2d mdljdp2 su2cor FP average

Stack (2nd operand ST (1)) 1.1% 0.0% 0.0% 0.2% 0.6% 0.4%

Register (2nd operand ST(i), i > 1) 17.3% 63.4% 14.2% 7.1% 30.7% 26.5%

Memory 81.6% 36.6% 85.8% 92.7% 68.7% 73.1%

Figure K.50 The percentage of instructions for the floating-point operations (add, sub, mul, div) that use each of
the three options for specifying a floating-point operand on the 80x86. The three options are (1) the strict stack
model of implicit operands on the stack, (2) register version naming an explicit operand that is not one of the top
two elements of the stack, and (3) memory operand.

Instruction doduc ear hydro2d mdljdp2 su2cor FP average

Load 8.9% 6.5% 18.0% 27.6% 27.6% 20%

Store 12.4% 3.1% 11.5% 7.8% 7.8% 8%

Add 5.4% 6.6% 14.6% 8.8% 8.8% 10%

Sub 1.0% 2.4% 3.3% 2.4% 2.4% 3%

Mul 0%

Div 0%

Compare 1.8% 5.1% 0.8% 1.0% 1.0% 2%

Mov reg-reg 3.2% 0.1% 1.8% 2.3% 2.3% 2%

Load imm 0.4% 1.5% 0%

Cond. branch 5.4% 8.2% 5.1% 2.7% 2.7% 5%

Uncond branch 0.8% 0.4% 1.3% 0.3% 0.3% 1%

Call 0.5% 1.6% 0.1% 0.1% 0%

Return, jmp indirect 0.5% 1.6% 0.1% 0.1% 0%

Shift 1.1% 4.5% 2.5% 2.5% 2%

AND 0.8% 0.8% 0.7% 1.3% 1.3% 1%

OR 0.1% 0.1% 0.1% 0%

Other (XOR, not, . . .) 0%

Load FP 14.1% 22.5% 9.1% 12.6% 12.6% 14%

Store FP 8.6% 11.4% 4.1% 6.6% 6.6% 7%

Add FP 5.8% 6.1% 1.4% 6.6% 6.6% 5%

Sub FP 2.2% 2.7% 3.1% 2.9% 2.9% 3%

Mul FP 8.9% 8.0% 4.1% 12.0% 12.0% 9%

Div FP 2.1% 0.8% 0.2% 0.2% 0%

Compare FP 9.4% 6.9% 10.8% 0.5% 0.5% 5%

Mov reg-reg FP 2.5% 0.8% 0.3% 0.8% 0.8% 1%

Other (abs, sqrt, . . .) 3.9% 3.8% 4.1% 0.8% 0.8% 2%

Figure K.51 80x86 instruction mix for five SPECfp92 programs.

K-62 ■ Appendix K Survey of Instruction Set Architectures

Comparative Operation Measurements

Figures K.53 and K.54 show the number of instructions executed for each of the
10 programs on the 80x86 and the ratio of instruction execution compared with
that for DLX: Numbers less than 1.0 mean that the 80x86 executes fewer instruc-
tions than DLX. The instruction count is surprisingly close to DLX for many inte-
ger programs, as you would expect a load-store instruction set architecture like
DLX to execute more instructions than a register-memory architecture like the
80x86. The floating-point programs always have higher counts for the 80x86,
presumably due to the lack of floating-point registers and the use of a stack
architecture.

Instruction compress eqntott espresso gcc (cc1) li Int. average

Load 20.8% 18.5% 21.9% 24.9% 23.3% 22%

Store 13.8% 3.2% 8.3% 16.6% 18.7% 12%

Add 10.3% 8.8% 8.15% 7.6% 6.1% 8%

Sub 7.0% 10.6% 3.5% 2.9% 3.6% 5%

Mul 0.1% 0%

Div 0%

Compare 8.2% 27.7% 15.3% 13.5% 7.7% 16%

Mov reg-reg 7.9% 0.6% 5.0% 4.2% 7.8% 4%

Load imm 0.5% 0.2% 0.6% 0.4% 0%

Cond. branch 15.5% 28.6% 18.9% 17.4% 15.4% 20%

Uncond. branch 1.2% 0.2% 0.9% 2.2% 2.2% 1%

Call 0.5% 0.4% 0.7% 1.5% 3.2% 1%

Return, jmp indirect 0.5% 0.4% 0.7% 1.5% 3.2% 1%

Shift 3.8% 2.5% 1.7% 1%

AND 8.4% 1.0% 8.7% 4.5% 8.4% 6%

OR 0.6% 2.7% 0.4% 0.4% 1%

Other (XOR, not, . . .) 0.9% 2.2% 0.1% 1%

Load FP 0%

Store FP 0%

Add FP 0%

Sub FP 0%

Mul FP 0%

Div FP 0%

Compare FP 0%

Mov reg-reg FP 0%

Other (abs, sqrt, . . .) 0%

Figure K.52 80x86 instruction mix for five SPECint92 programs.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.3 The Intel 80x86 ■ K-63

Another question is the total amount of data traffic for the 80x86 versus DLX,
since the 80x86 can specify memory operands as part of operations while DLX
can only access via loads and stores. Figures K.53 and K.54 also show the data
reads, data writes, and data read-modify-writes for these 10 programs. The total
accesses ratio to DLX of each memory access type is shown in the bottom rows,
with the read-modify-write counting as one read and one write. The 80x86

compress eqntott espresso gcc (cc1) li Int. avg.

Instructions executed on 80x86 (millions) 2226 1203 2216 3770 5020

Instructions executed ratio to DLX 0.61 1.74 0.85 0.96 0.98 1.03

Data reads on 80x86 (millions) 589 229 622 1079 1459

Data writes on 80x86 (millions) 311 39 191 661 981

Data read-modify-writes on 80x86 (millions) 26 1 129 48 48

Total data reads on 80x86 (millions) 615 230 751 1127 1507

Data read ratio to DLX 0.85 1.09 1.38 1.25 0.94 1.10

Total data writes on 80x86 (millions) 338 40 319 709 1029

Data write ratio to DLX 1.67 9.26 2.39 1.25 1.20 3.15

Total data accesses on 80x86 (millions) 953 269 1070 1836 2536

Data access ratio to DLX 1.03 1.25 1.58 1.25 1.03 1.23

Figure K.53 Instructions executed and data accesses on 80x86 and ratios compared to DLX for five SPECint92
programs.

doduc ear hydro2d mdljdp2 su2cor FP average

Instructions executed on 80x86 (millions) 1223 15,220 13,342 6197 6197

Instructions executed ratio to DLX 1.19 1.19 2.53 2.09 1.62 1.73

Data reads on 80x86 (millions) 515 6007 5501 3696 3643

Data writes on 80x86 (millions) 260 2205 2085 892 892

Data read-modify-writes on 80x86 (millions) 1 0 189 124 124

Total data reads on 80x86 (millions) 517 6007 5690 3820 3767

Data read ratio to DLX 2.04 2.36 4.48 4.77 3.91 3.51

Total data writes on 80x86 (millions) 261 2205 2274 1015 1015

Data write ratio to DLX 3.68 33.25 38.74 16.74 9.35 20.35

Total data accesses on 80x86 (millions) 778 8212 7965 4835 4782

Data access ratio to DLX 2.40 3.14 5.99 5.73 4.47 4.35

Figure K.54 Instructions executed and data accesses for five SPECfp92 programs on 80x86 and ratio to DLX.

K-64 ■ Appendix K Survey of Instruction Set Architectures

performs about two to four times as many data accesses as DLX for floating-point
programs, and 1.25 times as many for integer programs. Finally, Figure K.55
shows the percentage of instructions in each category for 80x86 and DLX.

Concluding Remarks

Beauty is in the eye of the beholder.

Old Adage

As we have seen, “orthogonal” is not a term found in the Intel architectural dic-
tionary. To fully understand which registers and which addressing modes are
available, you need to see the encoding of all addressing modes and sometimes
the encoding of the instructions.

Some argue that the inelegance of the 80x86 instruction set is unavoidable,
the price that must be paid for rampant success by any architecture. We reject that
notion. Obviously, no successful architecture can jettison features that were
added in previous implementations, and over time some features may be seen as
undesirable. The awkwardness of the 80x86 began at its core with the 8086
instruction set and was exacerbated by the architecturally inconsistent expansions
of the 8087, 80286, and 80386.

A counterexample is the IBM 360/370 architecture, which is much older than
the 80x86. It dominates the mainframe market just as the 80x86 dominates the
PC market. Due undoubtedly to a better base and more compatible enhance-
ments, this instruction set makes much more sense than the 80x86 more than 30
years after its first implementation.

For better or worse, Intel had a 16-bit microprocessor years before its com-
petitors’ more elegant architectures, and this head start led to the selection of the
8086 as the CPU for the IBM PC. What it lacks in style is made up in quantity,
making the 80x86 beautiful from the right perspective.

Integer average FP average

Category x86 DLX x86 DLX

Total data transfer 34% 36% 28% 2%

Total integer arithmetic 34% 31% 16% 12%

Total control 24% 20% 6% 10%

Total logical 8% 13% 3% 2%

Total FP data transfer 0% 0% 22% 33%

Total FP arithmetic 0% 0% 25% 41%

Figure K.55 Percentage of instructions executed by category for 80x86 and DLX for
the averages of five SPECint92 and SPECfp92 programs of Figures K.53 and K.54.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.4 The VAX Architecture ■ K-65

The saving grace of the 80x86 is that its architectural components are not too
difficult to implement, as Intel has demonstrated by rapidly improving perfor-
mance of integer programs since 1978. High floating-point performance is a
larger challenge in this architecture.

VAX: the most successful minicomputer design in industry history . . . the VAX was
probably the hacker’s favorite machine Especially noted for its large, assem-
bler-programmer-friendly instruction set—an asset that became a liability after
the RISC revolution.

Eric Raymond
The New Hacker’s Dictionary (1991)

Introduction

To enhance your understanding of instruction set architectures, we chose the
VAX as the representative Complex Instruction Set Computer (CISC) because it
is so different from MIPS and yet still easy to understand. By seeing two such
divergent styles, we are confident that you will be able to learn other instruction
sets on your own.

At the time the VAX was designed, the prevailing philosophy was to create
instruction sets that were close to programming languages in order to simplify
compilers. For example, because programming languages had loops, instruction
sets should have loop instructions. As VAX architect William Strecker said
(“VAX-11/780—A Virtual Address Extension to the PDP-11 Family,” AFIPS
Proc., National Computer Conference, 1978):

A major goal of the VAX-11 instruction set was to provide for effective compiler
generated code. Four decisions helped to realize this goal: . . . 1) A very regular
and consistent treatment of operators 2) An avoidance of instructions
unlikely to be generated by a compiler 3) Inclusions of several forms of com-
mon operators 4) Replacement of common instruction sequences with single
instructions. Examples include procedure calling, multiway branching, loop con-
trol, and array subscript calculation.

Recall that DRAMs of the mid-1970s contained less than 1/1000th the capac-
ity of today’s DRAMs, so code space was also critical. Hence, another prevailing
philosophy was to minimize code size, which is de-emphasized in fixed-length
instruction sets like MIPS. For example, MIPS address fields always use 16 bits,
even when the address is very small. In contrast, the VAX allows instructions to
be a variable number of bytes, so there is little wasted space in address fields.

Whole books have been written just about the VAX, so this VAX extension
cannot be exhaustive. Hence, the following sections describe only a few of its
addressing modes and instructions. To show the VAX instructions in action, later

 K.4 The VAX Architecture

K-66 ■ Appendix K Survey of Instruction Set Architectures

sections show VAX assembly code for two C procedures. The general style will
be to contrast these instructions with the MIPS code that you are already familiar
with.

The differing goals for VAX and MIPS have led to very different architec-
tures. The VAX goals, simple compilers and code density, led to the powerful
addressing modes, powerful instructions, and efficient instruction encoding. The
MIPS goals were high performance via pipelining, ease of hardware implementa-
tion, and compatibility with highly optimizing compilers. The MIPS goals led to
simple instructions, simple addressing modes, fixed-length instruction formats,
and a large number of registers.

VAX Operands and Addressing Modes

The VAX is a 32-bit architecture, with 32-bit-wide addresses and 32-bit-wide
registers. Yet, the VAX supports many other data sizes and types, as Figure K.56
shows. Unfortunately, VAX uses the name “word” to refer to 16-bit quantities; in
this text, a word means 32 bits. Figure K.56 shows the conversion between the
MIPS data type names and the VAX names. Be careful when reading about VAX
instructions, as they refer to the names of the VAX data types.

The VAX provides 16 32-bit registers. The VAX assembler uses the notation
r0, r1, . . . , r15 to refer to these registers, and we will stick to that notation. Alas,
4 of these 16 registers are effectively claimed by the instruction set architecture.
For example, r14 is the stack pointer (sp) and r15 is the program counter (pc).
Hence, r15 cannot be used as a general-purpose register, and using r14 is very
difficult because it interferes with instructions that manipulate the stack. The
other dedicated registers are r12, used as the argument pointer (ap), and r13,
used as the frame pointer (fp); their purpose will become clear later. (Like MIPS,
the VAX assembler accepts either the register number or the register name.)

Bits Data type MIPS name VAX name

08 Integer Byte Byte

16 Integer Half word Word

32 Integer Word Long word

32 Floating point Single precision F_floating

64 Integer Double word Quad word

64 Floating point Double precision D_floating or G_floating

8n Character string Character Character

Figure K.56 VAX data types, their lengths, and names. The first letter of the VAX type
(b, w, l, f, q, d, g, c) is often used to complete an instruction name. Examples of move
instructions include movb, movw, movl, movf, movq, movd, movg, and movc3. Each move
instruction transfers an operand of the data type indicated by the letter following mov.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.4 The VAX Architecture ■ K-67

VAX addressing modes include those discussed in Appendix A, which has all
the MIPS addressing modes: register, displacement, immediate, and PC-relative.
Moreover, all these modes can be used for jump addresses or for data addresses.

But that’s not all the addressing modes. To reduce code size, the VAX has
three lengths of addresses for displacement addressing: 8-bit, 16-bit, and 32-bit
addresses called, respectively, byte displacement, word displacement, and long
displacement addressing. Thus, an address can be not only as small as possible
but also as large as necessary; large addresses need not be split, so there is no
equivalent to the MIPS lui instruction (see Figure A.24 on page A-37).

Those are still not all the VAX addressing modes. Several have a deferred
option, meaning that the object addressed is only the address of the real object,
requiring another memory access to get the operand. This addressing mode is
called indirect addressing in other machines. Thus, register deferred, autoincre-
ment deferred, and byte/word/long displacement deferred are other addressing
modes to choose from. For example, using the notation of the VAX assembler, r1
means the operand is register 1 and (r1) means the operand is the location in
memory pointed to by r1.

There is yet another addressing mode. Indexed addressing automatically con-
verts the value in an index operand to the proper byte address to add to the rest of
the address. For a 32-bit word, we needed to multiply the index of a 4-byte quan-
tity by 4 before adding it to a base address. Indexed addressing, called scaled
addressing on some computers, automatically multiplies the index of a 4-byte
quantity by 4 as part of the address calculation.

To cope with such a plethora of addressing options, the VAX architecture sep-
arates the specification of the addressing mode from the specification of the oper-
ation. Hence, the opcode supplies the operation and the number of operands, and
each operand has its own addressing mode specifier. Figure K.57 shows the
name, assembler notation, example, meaning, and length of the address specifier.

The VAX style of addressing means that an operation doesn’t know where its
operands come from; a VAX add instruction can have three operands in registers,
three operands in memory, or any combination of registers and memory operands.

Example How long is the following instruction?

addl3 r1,737(r2),(r3)[r4]

The name addl3 means a 32-bit add instruction with three operands. Assume the
length of the VAX opcode is 1 byte.

Answer The first operand specifier—r1—indicates register addressing and is 1 byte long.
The second operand specifier—737(r2)—indicates displacement addressing and
has two parts: The first part is a byte that specifies the word displacement
addressing mode and base register (r2); the second part is the 2-byte-long dis-
placement (737). The third operand specifier—(r3)[r4]—also has two parts:
The first byte specifies register deferred addressing mode ((r3)), and the second
byte specifies the Index register and the use of indexed addressing ([r4]). Thus,
the total length of the instruction is 1 + (1) + (1 + 2) + (1 + 1) = 7 bytes.

K-68 ■ Appendix K Survey of Instruction Set Architectures

In this example instruction, we show the VAX destination operand on the left
and the source operands on the right, just as we show MIPS code. The VAX
assembler actually expects operands in the opposite order, but we felt it would be
less confusing to keep the destination on the left for both machines. Obviously,
left or right orientation is arbitrary; the only requirement is consistency.

Elaboration Because the PC is one of the 16 registers that can be selected in a VAX address-
ing mode, 4 of the 22 VAX addressing modes are synthesized from other address-
ing modes. Using the PC as the chosen register in each case, immediate
addressing is really autoincrement, PC-relative is displacement, absolute is auto-
increment deferred, and relative deferred is displacement deferred.

Encoding VAX Instructions

Given the independence of the operations and addressing modes, the encoding of
instructions is quite different from MIPS.

VAX instructions begin with a single byte opcode containing the operation
and the number of operands. The operands follow the opcode. Each operand
begins with a single byte, called the address specifier, that describes the address-
ing mode for that operand. For a simple addressing mode, such as register

Addressing mode name Syntax Example Meaning
Length of address
specifier in bytes

Literal #value #–1 –1 1 (6-bit signed value)

Immediate #value #100 100 1 + length of the
immediate

Register rn r3 r3 1

Register deferred (rn) (r3) Memory[r3] 1

Byte/word/long
displacement

Displacement (rn) 100(r3) Memory[r3 + 100] 1 + length of the
displacement

Byte/word/long
displacement deferred

@displacement (rn) @100(r3) Memory[Memory [r3 + 100]] 1 + length of the
displacement

Indexed (scaled) Base mode [rx] (r3)[r4] Memory[r3 + r4 × d]
(where d is data size in bytes)

1 + length of base
addressing mode

Autoincrement (rn)+ (r3)+ Memory[r3]; r3 = r3 + d 1

Autodecrement – (rn) –(r3) r3 = r3 – d; Memory[r3] 1

Autoincrement deferred @(rn)+ @(r3)+ Memory[Memory[r3]]; r3 = r3 + d 1

Figure K.57 Definition and length of the VAX operand specifiers. The length of each addressing mode is 1 byte
plus the length of any displacement or immediate field needed by the mode. Literal mode uses a special 2-bit tag
and the remaining 6 bits encode the constant value. If the constant is too big, it must use the immediate addressing
mode. Note that the length of an immediate operand is dictated by the length of the data type indicated in the
opcode, not the value of the immediate. The symbol d in the last four modes represents the length of the data in
bytes; d is 4 for 32-bit add.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.4 The VAX Architecture ■ K-69

addressing, this byte specifies the register number as well as the mode (see the
rightmost column in Figure K.57). In other cases, this initial byte can be followed
by many more bytes to specify the rest of the address information.

As a specific example, let’s show the encoding of the add instruction from the
example on page K-67:

addl3 r1,737(r2),(r3)[r4]

Assume that this instruction starts at location 201.
Figure K.58 shows the encoding. Note that the operands are stored in mem-

ory in opposite order to the assembly code above. The execution of VAX instruc-
tions begins with fetching the source operands, so it makes sense for them to
come first. Order is not important in fixed-length instructions like MIPS, since
the source and destination operands are easily found within a 32-bit word.

The first byte, at location 201, is the opcode. The next byte, at location 202, is
a specifier for the index mode using register r4. Like many of the other specifi-
ers, the left 4 bits of the specifier give the mode and the right 4 bits give the regis-
ter used in that mode. Since addl3 is a 4-byte operation, r4 will be multiplied by
4 and added to whatever address is specified next. In this case it is register
deferred addressing using register r3. Thus, bytes 202 and 203 combined define
the third operand in the assembly code.

The following byte, at address 204, is a specifier for word displacement
addressing using register r2 as the base register. This specifier tells the VAX that
the following two bytes, locations 205 and 206, contain a 16-bit address to be
added to r2.

The final byte of the instruction gives the destination operand, and this speci-
fier selects register addressing using register r1.

Such variability in addressing means that a single VAX operation can have
many different lengths; for example, an integer add varies from 3 bytes to 19
bytes. VAX implementations must decode the first operand before they can find
the second, and so implementors are strongly tempted to take 1 clock cycle to

Byte address Contents at each byte Machine code

201 Opcode containing addl3 c1hex

202 Index mode specifier for [r4] 44hex

203 Register indirect mode specifier for (r3) 63hex

204 Word displacement mode specifier using r2 as base c2hex

205 The 16-bit constant 737 e1hex

206 02hex

207 Register mode specifier for r1 51hex

Figure K.58 The encoding of the VAX instruction addl3 r1,737(r2),(r3)[r4],
assuming it starts at address 201. To satisfy your curiosity, the right column shows the
actual VAX encoding in hexadecimal notation. Note that the 16-bit constant 737ten
takes 2 bytes.

K-70 ■ Appendix K Survey of Instruction Set Architectures

decode each operand; thus, this sophisticated instruction set architecture can
result in higher clock cycles per instruction, even when using simple addresses.

VAX Operations

In keeping with its philosophy, the VAX has a large number of operations as well
as a large number of addressing modes. We review a few here to give the flavor of
the machine.

Given the power of the addressing modes, the VAX move instruction per-
forms several operations found in other machines. It transfers data between any
two addressable locations and subsumes load, store, register-register moves, and
memory-memory moves as special cases. The first letter of the VAX data type (b,
w, l, f, q, d, g, c in Figure K.56) is appended to the acronym mov to determine the
size of the data. One special move, called move address, moves the 32-bit address
of the operand rather than the data. It uses the acronym mova.

The arithmetic operations of MIPS are also found in the VAX, with two major
differences. First, the type of the data is attached to the name. Thus, addb, addw,
and addl operate on 8-bit, 16-bit, and 32-bit data in memory or registers, respec-
tively; MIPS has a single add instruction that operates only on the full 32-bit reg-
ister. The second difference is that to reduce code size the add instruction
specifies the number of unique operands; MIPS always specifies three even if one
operand is redundant. For example, the MIPS instruction

add $1, $1, $2

takes 32 bits like all MIPS instructions, but the VAX instruction

addl2 r1, r2

uses r1 for both the destination and a source, taking just 24 bits: 8 bits for the
opcode and 8 bits each for the two register specifiers.

Number of Operations

Now we can show how VAX instruction names are formed:

The operation add works with data types byte, word, long, float, and double and
comes in versions for either 2 or 3 unique operands, so the following instructions
are all found in the VAX:

addb2 addw2 addl2 addf2 addd2
addb3 addw3 addl3 addf3 addd3

(operation)(datatype) 2
3⎝ ⎠
⎛ ⎞

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.4 The VAX Architecture ■ K-71

Accounting for all addressing modes (but ignoring register numbers and immedi-
ate values) and limiting to just byte, word, and long, there are more than 30,000
versions of integer add in the VAX; MIPS has just 4!

Another reason for the large number of VAX instructions is the instructions
that either replace sequences of instructions or take fewer bytes to represent a sin-
gle instruction. Here are four such examples (* means the data type):

The push instruction in the last row is exactly the same as using the move instruc-
tion with autodecrement addressing on the stack pointer:

movl – (sp), r3

Brevity is the advantage of pushl: It is 1 byte shorter since sp is implied.

Branches, Jumps, and Procedure Calls

The VAX branch instructions are related to the arithmetic instructions because
the branch instructions rely on condition codes. Condition codes are set as a side
effect of an operation, and they indicate whether the result is positive, negative, or
zero or if an overflow occurred. Most instructions set the VAX condition codes
according to their result; instructions without results, such as branches, do not.
The VAX condition codes are N (Negative), Z (Zero), V (oVerflow), and C
(Carry). There is also a compare instruction cmp* just to set the condition codes
for a subsequent branch.

The VAX branch instructions include all conditions. Popular branch instruc-
tions include beql(=), bneq(≠), blss(<), bleq(≤), bgtr(>), and bgeq(≥), which
do just what you would expect. There are also unconditional branches whose
name is determined by the size of the PC-relative offset. Thus, brb (branch byte)
has an 8-bit displacement, and brw (branch word) has a 16-bit displacement.

The final major category we cover here is the procedure call and return
instructions. Unlike the MIPS architecture, these elaborate instructions can take
dozens of clock cycles to execute. The next two sections show how they work,
but we need to explain the purpose of the pointers associated with the stack
manipulated by calls and ret. The stack pointer, sp, is just like the stack
pointer in MIPS; it points to the top of the stack. The argument pointer, ap, points
to the base of the list of arguments or parameters in memory that are passed to the
procedure. The frame pointer, fp, points to the base of the local variables of the
procedure that are kept in memory (the stack frame). The VAX call and return
instructions manipulate these pointers to maintain the stack in proper condition

VAX operation Example Meaning

clr* clrl r3 r3 = 0

inc* incl r3 r3 = r3 + 1

dec* decl r3 r3 = r3 – 1

push* pushl r3 sp = sp – 4; Memory[sp] = r3;

K-72 ■ Appendix K Survey of Instruction Set Architectures

across procedure calls and to provide convenient base registers to use when
accessing memory operands. As we shall see, call and return also save and
restore the general-purpose registers as well as the program counter. Figure K.59
gives a further sampling of the VAX instruction set.

An Example to Put It All Together: swap

To see programming in VAX assembly language, we translate two C procedures,
swap and sort. The C code for swap is reproduced in Figure K.60. The next sec-
tion covers sort.

We describe the swap procedure in three general steps of assembly language
programming:

1. Allocate registers to program variables.

2. Produce code for the body of the procedure.

3. Preserve registers across the procedure invocation.

The VAX code for these procedures is based on code produced by the VMS C
compiler using optimization.

Register Allocation for swap

In contrast to MIPS, VAX parameters are normally allocated to memory, so this
step of assembly language programming is more properly called “variable alloca-
tion.” The standard VAX convention on parameter passing is to use the stack. The
two parameters, v[] and k, can be accessed using register ap, the argument pointer:
The address 4(ap) corresponds to v[] and 8(ap) corresponds to k. Remember that
with byte addressing the address of sequential 4-byte words differs by 4. The only
other variable is temp, which we associate with register r3.

Code for the Body of the Procedure swap

The remaining lines of C code in swap are

temp = v[k];
v[k] = v[k + 1];
v[k + 1] = temp;

Since this program uses v[] and k several times, to make the programs run faster
the VAX compiler first moves both parameters into registers:

movl r2, 4(ap) ;r2 = v[]
movl r1, 8(ap) ;r1 = k

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.4 The VAX Architecture ■ K-73

Instruction type Example Instruction meaning

Data transfers Move data between byte, half-word, word, or double-word operands; * is data type

mov* Move between two operands

movzb* Move a byte to a half word or word, extending it with zeros

mova* Move the 32-bit address of an operand; data type is last

push* Push operand onto stack

Arithmetic/logical Operations on integer or logical bytes, half words (16 bits), words (32 bits); * is data
type

add*_ Add with 2 or 3 operands

cmp* Compare and set condition codes

tst* Compare to zero and set condition codes

ash* Arithmetic shift

clr* Clear

cvtb* Sign-extend byte to size of data type

Control Conditional and unconditional branches

beql, bneq Branch equal, branch not equal

bleq, bgeq Branch less than or equal, branch greater than or equal

brb, brw Unconditional branch with an 8-bit or 16-bit address

jmp Jump using any addressing mode to specify target

aobleq Add one to operand; branch if result ≤ second operand

case_ Jump based on case selector

Procedure Call/return from procedure

calls Call procedure with arguments on stack (see “A Longer
Example: sort” on page K-76)

callg Call procedure with FORTRAN-style parameter list

jsb Jump to subroutine, saving return address (like MIPS jal)

ret Return from procedure call

Floating point Floating-point operations on D, F, G, and H formats

addd_ Add double-precision D-format floating numbers

subd_ Subtract double-precision D-format floating numbers

mulf_ Multiply single-precision F-format floating point

polyf Evaluate a polynomial using table of coefficients in F format

Other Special operations

crc Calculate cyclic redundancy check

insque Insert a queue entry into a queue

Figure K.59 Classes of VAX instructions with examples. The asterisk stands for multiple data types: b, w, l, d, f, g, h,
and q. The underline, as in addd_, means there are 2-operand (addd2) and 3-operand (addd3) forms of this instruction.

K-74 ■ Appendix K Survey of Instruction Set Architectures

Note that we follow the VAX convention of using a semicolon to start a com-
ment; the MIPS comment symbol # represents a constant operand in VAX assem-
bly language.

The VAX has indexed addressing, so we can use index k without converting it
to a byte address. The VAX code is then straightforward:

movl r3, (r2)[r1] ;r3 (temp) = v[k]
addl3 r0, #1,8(ap) ;r0 = k + 1
movl (r2)[r1],(r2)[r0] ;v[k] = v[r0] (v[k + 1])
movl (r2)[r0],r3 ;v[k + 1] = r3 (temp)

Unlike the MIPS code, which is basically two loads and two stores, the key VAX
code is one memory-to-register move, one memory-to-memory move, and one
register-to-memory move. Note that the addl3 instruction shows the flexibility of
the VAX addressing modes: It adds the constant 1 to a memory operand and
places the result in a register.

Now we have allocated storage and written the code to perform the operations
of the procedure. The only missing item is the code that preserves registers across
the routine that calls swap.

Preserving Registers across Procedure Invocation of swap

The VAX has a pair of instructions that preserve registers, calls and ret. This
example shows how they work.

The VAX C compiler uses a form of callee convention. Examining the code
above, we see that the values in registers r0, r1, r2, and r3 must be saved so that
they can later be restored. The calls instruction expects a 16-bit mask at the
beginning of the procedure to determine which registers are saved: if bit i is set in
the mask, then register i is saved on the stack by the calls instruction. In addi-
tion, calls saves this mask on the stack to allow the return instruction (ret) to
restore the proper registers. Thus, the calls executed by the caller does the sav-
ing, but the callee sets the call mask to indicate what should be saved.

One of the operands for calls gives the number of parameters being passed,
so that calls can adjust the pointers associated with the stack: the argument

swap(int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k + 1];
 v[k + 1] = temp;
}

Figure K.60 A C procedure that swaps two locations in memory. This procedure will
be used in the sorting example in the next section.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.4 The VAX Architecture ■ K-75

pointer (ap), frame pointer (fp), and stack pointer (sp). Of course, calls also
saves the program counter so that the procedure can return!

Thus, to preserve these four registers for swap, we just add the mask at the
beginning of the procedure, letting the calls instruction in the caller do all the
work:

.word ^m<r0,r1,r2,r3> ;set bits in mask for 0,1,2,3

This directive tells the assembler to place a 16-bit constant with the proper bits
set to save registers r0 through r3.

The return instruction undoes the work of calls. When finished, ret sets the
stack pointer from the current frame pointer to pop everything calls placed on
the stack. Along the way, it restores the register values saved by calls, including
those marked by the mask and old values of the fp, ap, and pc.

To complete the procedure swap, we just add one instruction:

ret ;restore registers and return

The Full Procedure swap

We are now ready for the whole routine. Figure K.61 identifies each block of
code with its purpose in the procedure, with the MIPS code on the left and the
VAX code on the right. This example shows the advantage of the scaled indexed

MIPS versus VAX

Saving register

swap: addi $29,$29, –12
sw $2, 0($29)
sw $15, 4($29)
sw $16, 8($29)

swap: .word ^m<r0,r1,r2,r3>

Procedure body

muli $2, $5,4
add $2, $4,$2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

movl r2, 4(a)
movl r1, 8(a)
movl r3, (r2)[r1]
addl3 r0, #1,8(ap)
movl (r2)[r1],(r2)[r0]
movl (r2)[r0],r3

Restoring registers

lw $2, 0($29)
lw $15, 4($29)
lw $16, 8($29)
addi $29,$29, 12

Procedure return

jr $31 ret

Figure K.61 MIPS versus VAX assembly code of the procedure swap in Figure K.60
on page K-74.

K-76 ■ Appendix K Survey of Instruction Set Architectures

addressing and the sophisticated call and return instructions of the VAX in reduc-
ing the number of lines of code. The 17 lines of MIPS assembly code became 8
lines of VAX assembly code. It also shows that passing parameters in memory
results in extra memory accesses.

Keep in mind that the number of instructions executed is not the same as per-
formance; the fallacy on page K-81 makes this point.

Note that VAX software follows a convention of treating registers r0 and r1
as temporaries that are not saved across a procedure call, so the VMS C compiler
does include registers r0 and r1 in the register saving mask. Also, the C compiler
should have used r1 instead of 8(ap) in the addl3 instruction; such examples
inspire computer architects to try to write compilers!

A Longer Example: sort

We show the longer example of the sort procedure. Figure K.62 shows the C
version of the program. Once again we present this procedure in several steps,
concluding with a side-by-side comparison to MIPS code.

Register Allocation for sort

The two parameters of the procedure sort, v and n, are found in the stack in loca-
tions 4(ap) and 8(ap), respectively. The two local variables are assigned to reg-
isters: i to r6 and j to r4. Because the two parameters are referenced frequently
in the code, the VMS C compiler copies the address of these parameters into reg-
isters upon entering the procedure:

moval r7,8(ap) ;move address of n into r7
moval r5,4(ap) ;move address of v into r5

It would seem that moving the value of the operand to a register would be more
useful than its address, but once again we bow to the decision of the VMS C
compiler. Apparently the compiler cannot be sure that v and n don’t overlap in
memory.

Figure K.62 A C procedure that performs a bubble sort on the array v.

sort (int v[], int n)
{

int i, j;
for (i = 0; i < n; i = i + 1) {
for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j = j – 1)

{ swap(v,j);
}

}
}

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.4 The VAX Architecture ■ K-77

Code for the Body of the sort Procedure

The procedure body consists of two nested for loops and a call to swap, which
includes parameters. Let’s unwrap the code from the outside to the middle.

The Outer Loop

The first translation step is the first for loop:

for (i = 0; i < n; i = i + 1) {

Recall that the C for statement has three parts: initialization, loop test, and itera-
tion increment. It takes just one instruction to initialize i to 0, the first part of the
for statement:

clrl r6 ;i = 0

It also takes just one instruction to increment i, the last part of the for:

incl r6 ;i = i + 1

The loop should be exited if i < n is false, or said another way, exit the loop if
i ≥ n. This test takes two instructions:

for1tst: cmpl r6,(r7);compare r6 and memory[r7] (i:n)
bgeq exit1 ;go to exit1 if r6 ≥ mem[r7] (i ≥ n)

Note that cmpl sets the condition codes for use by the conditional branch
instruction bgeq.

The bottom of the loop just jumps back to the loop test:

brb for1tst ;branch to test of outer loop
exit1:

The skeleton code of the first for loop is then

clrl r6 ;i = 0
for1tst: cmpl r6,(r7) ;compare r6 and memory[r7] (i:n)

bgeq exit1 ;go to exit1 if r6 ≥ mem[r7] (i ≥ n)
...
(body of first for loop)
...

incl r6 ;i = i + 1
brb for1tst ;branch to test of outer loop

exit1:

The Inner Loop

The second for loop is

 for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j = j – 1) {

K-78 ■ Appendix K Survey of Instruction Set Architectures

The initialization portion of this loop is again one instruction:

subl3 r4,r6,#1 ;j = i – 1

The decrement of j is also one instruction:

decl r4 ;j = j – 1

The loop test has two parts. We exit the loop if either condition fails, so the first
test must exit the loop if it fails (j < 0):

for2tst:blss exit2 ;go to exit2 if r4 < 0 (j < 0)

Notice that there is no explicit comparison. The lack of comparison is a benefit of
condition codes, with the conditions being set as a side effect of the prior instruc-
tion. This branch skips over the second condition test.

The second test exits if v[j] > v[j + 1] is false, or exits if v[j] ≤ v[j + 1].
First we load v and put j + 1 into registers:

movl r3,(r5) ;r3 = Memory[r5] (r3 = v)
addl3 r2,r4,#1 ;r2 = r4 + 1 (r2 = j + 1)

Register indirect addressing is used to get the operand pointed to by r5.
Once again the index addressing mode means we can use indices without

converting to the byte address, so the two instructions for v[j] ≤ v[j + 1] are

cmpl (r3)[r4],(r3)[r2] ;v[r4] : v[r2] (v[j]:v[j + 1])
bleq exit2 ;go to exit2 if v[j] ≤ v[j + 1]

The bottom of the loop jumps back to the full loop test:

brb for2tst # jump to test of inner loop

Combining the pieces, the second for loop looks like this:

subl3 r4,r6, #1 ;j = i – 1
for2tst: blss exit2 ;go to exit2 if r4 < 0 (j < 0)

movl r3,(r5) ;r3 = Memory[r5] (r3 = v)
addl3 r2,r4,#1 ;r2 = r4 + 1 (r2 = j + 1)
cmpl (r3)[r4],(r3)[r2];v[r4] : v[r2]
bleq exit2 ;go to exit2 if v[j] ð [j+1]

...
(body of second for loop)
...

decl r4 ;j = j – 1
brb for2tst ;jump to test of inner loop

exit2:

Notice that the instruction blss (at the top of the loop) is testing the condition
codes based on the new value of r4 (j), set either by the subl3 before entering
the loop or by the decl at the bottom of the loop.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.4 The VAX Architecture ■ K-79

The Procedure Call

The next step is the body of the second for loop:

swap(v,j);

Calling swap is easy enough:

calls #2,swap

The constant 2 indicates the number of parameters pushed on the stack.

Passing Parameters

The C compiler passes variables on the stack, so we pass the parameters to swap
with these two instructions:

pushl (r5) ;first swap parameter is v
pushl r4 ;second swap parameter is j

Register indirect addressing is used to get the operand of the first instruction.

Preserving Registers across Procedure Invocation of sort

The only remaining code is the saving and restoring of registers using the callee
save convention. This procedure uses registers r2 through r7, so we add a mask
with those bits set:

.word ^m<r2,r3,r4,r5,r6,r7>; set mask for registers 2-7

Since ret will undo all the operations, we just tack it on the end of the procedure.

The Full Procedure sort

Now we put all the pieces together in Figure K.63. To make the code easier to
follow, once again we identify each block of code with its purpose in the proce-
dure and list the MIPS and VAX code side by side. In this example, 11 lines of
the sort procedure in C become the 44 lines in the MIPS assembly language and
20 lines in VAX assembly language. The biggest VAX advantages are in register
saving and restoring and indexed addressing.

Fallacies and Pitfalls

The ability to simplify means to eliminate the unnecessary so that the necessary
may speak.

Hans Hoffman
Search for the Real (1967)

K-80 ■ Appendix K Survey of Instruction Set Architectures

MIPS versus VAX

Saving registers

sort: addi $29,$29, –36
sw $15, 0($29)
sw $16, 4($29)
sw $17, 8($29)
sw $18,12($29)
sw $19,16($29)
sw $20,20($29)
sw $24,24($29)
sw $25,28($29)
sw $31,32($29)

sort: .word ^m<r2,r3,r4,r5,r6,r7>

Procedure body

Move parameters move $18, $4
move $20, $5

moval r7,8(ap)
moval r5,4(ap)

Outer loop add $19, $0, $0
for1tst: slt $8, $19, $20

beq $8, $0, exit1

clrl r6
for1tst: cmpl r6,(r7)

bgeq exit1

Inner loop addi $17, $19, –1
for2tst: slti $8, $17, 0

bne $8, $0, exit2
muli $15, $17, 4
add $16, $18, $15
lw $24, 0($16)
lw $25, 4($16)
slt $8, $25, $24
beq $8, $0, exit2

subl3 r4,r6,#1
for2tst:

blss exit2
movl r3,(r5)

addl3 r2,r4,#1
cmpl (r3)[r4],(r3)[r2]
bleq exit2

Pass parameters
and call

move $4, $18
move $5, $17
jal swap

pushl (r5)
pushl r4
calls #2,swap

Inner loop addi $17, $17, –1
j for2tst

decl r4
brb for2tst

Outer loop exit2: addi $19, $19, 1
j for1tst

exit2: incl r6
brb for1tst

Restoring registers

exit1: lw $15, 0($29)
lw $16, 4($29)
lw $17, 8($29)
lw $18,12($29)
lw $19,16($29)
lw $20,20($29)
lw $24,24($29)
lw $25,28($29)
lw $31,32($29)
addi $29,$29, 36

Procedure return

jr $31 exit1: ret

Figure K.63 MIPS32 versus VAX assembly version of procedure sort in Figure K.62 on page K-76.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.4 The VAX Architecture ■ K-81

Fallacy It is possible to design a flawless architecture.

All architecture design involves trade-offs made in the context of a set of hard-
ware and software technologies. Over time those technologies are likely to
change, and decisions that may have been correct at one time later look like mis-
takes. For example, in 1975 the VAX designers overemphasized the importance
of code size efficiency and underestimated how important ease of decoding and
pipelining would be 10 years later. And, almost all architectures eventually suc-
cumb to the lack of sufficient address space. Avoiding these problems in the long
run, however, would probably mean compromising the efficiency of the architec-
ture in the short run.

Fallacy An architecture with flaws cannot be successful.

The IBM 360 is often criticized in the literature—the branches are not PC-
relative, and the address is too small in displacement addressing. Yet, the
machine has been an enormous success because it correctly handled several new
problems. First, the architecture has a large amount of address space. Second, it is
byte addressed and handles bytes well. Third, it is a general-purpose register
machine. Finally, it is simple enough to be efficiently implemented across a wide
performance and cost range.

The Intel 8086 provides an even more dramatic example. The 8086 architec-
ture is the only widespread architecture in existence today that is not truly a
general-purpose register machine. Furthermore, the segmented address space of
the 8086 causes major problems for both programmers and compiler writers.
Nevertheless, the 8086 architecture—because of its selection as the microproces-
sor in the IBM PC—has been enormously successful.

Fallacy The architecture that executes fewer instructions is faster.

Designers of VAX machines performed a quantitative comparison of VAX and
MIPS for implementations with comparable organizations, the VAX 8700 and the
MIPS M2000. Figure K.64 shows the ratio of the number of instructions exe-
cuted and the ratio of performance measured in clock cycles. MIPS executes
about twice as many instructions as the VAX while the MIPS M2000 has almost
three times the performance of the VAX 8700.

Concluding Remarks

The Virtual Address eXtension of the PDP-11 architecture . . . provides a virtual
address of about 4.3 gigabytes which, even given the rapid improvement of mem-
ory technology, should be adequate far into the future.

William Strecker
“VAX-11/780—A Virtual Address Extension to the PDP-11

Family,” AFIPS Proc., National Computer Conference (1978)

K-82 ■ Appendix K Survey of Instruction Set Architectures

We have seen that instruction sets can vary quite dramatically, both in how they
access operands and in the operations that can be performed by a single instruc-
tion. Figure K.65 compares instruction usage for both architectures for two pro-
grams; even very different architectures behave similarly in their use of instruction
classes.

A product of its time, the VAX emphasis on code density and complex opera-
tions and addressing modes conflicts with the current emphasis on easy decod-
ing, simple operations and addressing modes, and pipelined performance.

Figure K.64 Ratio of MIPS M2000 to VAX 8700 in instructions executed and performance in clock cycles using
SPEC89 programs. On average, MIPS executes a little over twice as many instructions as the VAX, but the CPI for the
VAX is almost six times the MIPS CPI, yielding almost a threefold performance advantage. (Based on data from “Per-
formance from Architecture: Comparing a RISC and CISC with Similar Hardware Organization,” by D. Bhandarkar and
D. Clark, in Proc. Symp. Architectural Support for Programming Languages and Operating Systems IV, 1991.)

Program Machine Branch
Arithmetic/

 logical
Data

transfer
Floating

point Totals

gcc VAX 30% 40% 19% 89%

MIPS 24% 35% 27% 86%

spice VAX 18% 23% 15% 23% 79%

MIPS 04% 29% 35% 15% 83%

Figure K.65 The frequency of instruction distribution for two programs on VAX and
MIPS.

3

3.5

4

2.5

2

1.5

1

0.5

0
spice matrix nasa7 fpppp

Instructions executed Performance

tomcatv doduc espresso eqntott li

M
IP

S
/V

A
X

Number of bits of displacement

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.5 The IBM 360/370 Architecture for Mainframe Computers ■ K-83

With more than 600,000 sold, the VAX architecture has had a very successful
run. In 1991, DEC made the transition from VAX to Alpha.

Orthogonality is key to the VAX architecture; the opcode is independent of
the addressing modes, which are independent of the data types and even the num-
ber of unique operands. Thus, a few hundred operations expand to hundreds of
thousands of instructions when accounting for the data types, operand counts,
and addressing modes.

Exercises

K.1 [3] <K.4> The following VAX instruction decrements the location pointed to be
register r5:

decl (r5)

What is the single MIPS instruction, or if it cannot be represented in a single
instruction, the shortest sequence of MIPS instructions, that performs the same
operation? What are the lengths of the instructions on each machine?

K.2 [5] <K.4> This exercise is the same as Exercise K.1, except this VAX instruction
clears a location using autoincrement deferred addressing:

clrl @(r5)+

K.3 [5] <K.4> This exercise is the same as Exercise K.1, except this VAX instruction
adds 1 to register r5, placing the sum back in register r5, compares the sum to
register r6, and then branches to L1 if r5 < r6:

aoblss r6, r5, L1 # r5 = r5 + 1; if (r5 < r6) goto L1.

K.4 [5] <K.4> Show the single VAX instruction, or minimal sequence of instructions,
for this C statement:

a = b + 100;

Assume a corresponds to register r3 and b corresponds to register r4.

K.5 [10] <K.4> Show the single VAX instruction, or minimal sequence of instruc-
tions, for this C statement:

x[i + 1] = x[i] + c;

Assume c corresponds to register r3, i to register r4, and x is an array of 32-bit
words beginning at memory location 4,000,000ten.

Introduction

The term “computer architecture” was coined by IBM in 1964 for use with the
IBM 360. Amdahl, Blaauw, and Brooks [1964] used the term to refer to the

 K.5 The IBM 360/370 Architecture for
Mainframe Computers

K-84 ■ Appendix K Survey of Instruction Set Architectures

programmer-visible portion of the instruction set. They believed that a family of
machines of the same architecture should be able to run the same software.
Although this idea may seem obvious to us today, it was quite novel at the time.
IBM, even though it was the leading company in the industry, had five different
architectures before the 360. Thus, the notion of a company standardizing on a
single architecture was a radical one. The 360 designers hoped that six different
divisions of IBM could be brought together by defining a common architecture.
Their definition of architecture was

. . . the structure of a computer that a machine language programmer must
understand to write a correct (timing independent) program for that machine.

The term “machine language programmer” meant that compatibility would hold,
even in assembly language, while “timing independent” allowed different imple-
mentations.

The IBM 360 was introduced in 1964 with six models and a 25:1 perfor-
mance ratio. Amdahl, Blaauw, and Brooks [1964] discussed the architecture of
the IBM 360 and the concept of permitting multiple object-code-compatible
implementations. The notion of an instruction set architecture as we understand it
today was the most important aspect of the 360. The architecture also introduced
several important innovations, now in wide use:

1. 32-bit architecture

2. Byte-addressable memory with 8-bit bytes

3. 8-, 16-, 32-, and 64-bit data sizes

4. 32-bit single-precision and 64-bit double-precision floating-point data

In 1971, IBM shipped the first System/370 (models 155 and 165), which
included a number of significant extensions of the 360, as discussed by Case and
Padegs [1978], who also discussed the early history of System/360. The most
important addition was virtual memory, though virtual memory 370s did not ship
until 1972, when a virtual memory operating system was ready. By 1978, the
high-end 370 was several hundred times faster than the low-end 360s shipped 10
years earlier. In 1984, the 24-bit addressing model built into the IBM 360 needed
to be abandoned, and the 370-XA (eXtended Architecture) was introduced.
While old 24-bit programs could be supported without change, several instruc-
tions could not function in the same manner when extended to a 32-bit addressing
model (31-bit addresses supported) because they would not produce 31-bit
addresses. Converting the operating system, which was written mostly in assem-
bly language, was no doubt the biggest task.

Several studies of the IBM 360 and instruction measurement have been made.
Shustek’s thesis [1978] is the best known and most complete study of the
360/370 architecture. He made several observations about instruction set com-
plexity that were not fully appreciated until some years later. Another important
study of the 360 is the Toronto study by Alexander and Wortman [1975] done on
an IBM 360 using 19 XPL programs.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.5 The IBM 360/370 Architecture for Mainframe Computers ■ K-85

System/360 Instruction Set

The 360 instruction set is shown in the following tables, organized by instruction
type and format. System/370 contains 15 additional user instructions.

Integer/Logical and Floating-Point R-R Instructions

The * indicates the instruction is floating point, and may be either D (double pre-
cision) or E (single precision).

Instruction Description

ALR Add logical register

AR Add register

A*R FP addition

CLR Compare logical register

CR Compare register

C*R FP compare

DR Divide register

D*R FP divide

H*R FP halve

LCR Load complement register

LC*R Load complement

LNR Load negative register

LN*R Load negative

LPR Load positive register

LP*R Load positive

LR Load register

L*R Load FP register

LTR Load and test register

LT*R Load and test FP register

MR Multiply register

M*R FP multiply

NR And register

OR Or register

SLR Subtract logical register

SR Subtract register

S*R FP subtraction

XR Exclusive or register

K-86 ■ Appendix K Survey of Instruction Set Architectures

Branches and Status Setting R-R Instructions

These are R-R format instructions that either branch or set some system status;
several of them are privileged and legal only in supervisor mode.

Branches/Logical and Floating-Point Instructions—RX Format

These are all RX format instructions. The symbol “+” means either a word oper-
ation (and then stands for nothing) or H (meaning half word); for example, A+
stands for the two opcodes A and AH. The “*” represents D or E, standing for
double- or single-precision floating point.

Instruction Description

BALR Branch and link

BCTR Branch on count

BCR Branch/condition

ISK Insert key

SPM Set program mask

SSK Set storage key

SVC Supervisor call

Instruction Description

A+ Add

A* FP add

AL Add logical

C+ Compare

C* FP compare

CL Compare logical

D Divide

D* FP divide

L+ Load

L* Load FP register

M+ Multiply

M* FP multiply

N And

O Or

S+ Subtract

S* FP subtract

SL Subtract logical

ST+ Store

ST* Store FP register

X Exclusive or

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.5 The IBM 360/370 Architecture for Mainframe Computers ■ K-87

Branches and Special Loads and Stores—RX Format

RS and SI Format Instructions

These are the RS and SI format instructions. The symbol “*” may be A (arithme-
tic) or L (logical).

Instruction Description

BAL Branch and link

BC Branch condition

BCT Branch on count

CVB Convert-binary

CVD Convert-decimal

EX Execute

IC Insert character

LA Load address

STC Store character

Instruction Description

BXH Branch/high

BXLE Branch/low-equal

CLI Compare logical immediate

HIO Halt I/O

LPSW Load PSW

LM Load multiple

MVI Move immediate

NI And immediate

OI Or immediate

RDD Read direct

SIO Start I/O

SL* Shift left A/L

SLD* Shift left double A/L

SR* Shift right A/L

SRD* Shift right double A/L

SSM Set system mask

STM Store multiple

TCH Test channel

TIO Test I/O

TM Test under mask

TS Test-and-set

WRD Write direct

XI Exclusive or immediate

K-88 ■ Appendix K Survey of Instruction Set Architectures

SS Format Instructions

These are add decimal or string instructions.

360 Detailed Measurements

Figure K.66 shows the frequency of instruction usage for four IBM 360 programs.

Instruction Description

AP Add packed

CLC Compare logical chars

CP Compare packed

DP Divide packed

ED Edit

EDMK Edit and mark

MP Multiply packed

MVC Move character

MVN Move numeric

MVO Move with offset

MVZ Move zone

NC And characters

OC Or characters

PACK Pack (Character → decimal)

SP Subtract packed

TR Translate

TRT Translate and test

UNPK Unpack

XC Exclusive or characters

ZAP Zero and add packed

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

K.5 The IBM 360/370 Architecture for Mainframe Computers ■ K-89

Instruction PLIC FORTGO PLIGO COBOLGO Average

Control 32% 13% 5% 16% 16%
BC, BCR 28% 13% 5% 14% 15%

BAL, BALR 3% 2% 1%

Arithmetic/logical 29% 35% 29% 9% 26%
A, AR 3% 17% 21% 10%

SR 3% 7% 3%

SLL 6% 3% 2%

LA 8% 1% 1% 2%

CLI 7% 2%

NI 7% 2%

C 5% 4% 4% 0% 3%

TM 3% 1% 3% 2%

MH 2% 1%

Data transfer 17% 40% 56% 20% 33%
L, LR 7% 23% 28% 19% 19%

MVI 2% 16% 1% 5%

ST 3% 7% 3%

LD 7% 2% 2%

STD 7% 2% 2%

LPDR 3% 1%

LH 3% 1%

IC 2% 1%

LTR 1% 0%

Floating point 7% 2%

AD 3% 1%

MDR 3% 1%

Decimal, string 4% 40% 11%

MVC 4% 7% 3%

AP 11% 3%

ZAP 9% 2%

CVD 5% 1%

MP 3% 1%

CLC 3% 1%

CP 2% 1%

ED 1% 0%

Total 82% 95% 90% 85% 88%

Figure K.66 Distribution of instruction execution frequencies for the four 360 programs. All instructions with a
frequency of execution greater than 1.5% are included. Immediate instructions, which operate on only a single byte,
are included in the section that characterized their operation, rather than with the long character-string versions of
the same operation. By comparison, the average frequencies for the major instruction classes of the VAX are 23%
(control), 28% (arithmetic), 29% (data transfer), 7% (floating point), and 9% (decimal). Once again, a 1% entry in the
average column can occur because of entries in the constituent columns. These programs are a compiler for the pro-
gramming language PL-I and runtime systems for the programming languages FORTRAN, PL/I, and Cobol.

K-90 ■ Appendix K Survey of Instruction Set Architectures

Section L.4 (available online) features a discussion on the evolution of instruction
sets and includes references for further reading and exploration of related topics.

 K.6 Historical Perspective and References

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

R-1

Adve, S. V., and K. Gharachorloo [1996]. “Shared memory consistency models: A tutorial,”
IEEE Computer 29:12 (December), 66–76.

Adve, S. V., and M. D. Hill [1990]. “Weak ordering—a new definition,” Proc. 17th Annual
Int’l. Symposium on Computer Architecture (ISCA), May 28–31, 1990, Seattle, Wash.,
2–14.

Agarwal, A. [1987]. “Analysis of Cache Performance for Operating Systems and Multi-
programming,” Ph.D. thesis, Tech. Rep. No. CSL-TR-87-332, Stanford University,
Palo Alto, Calif.

Agarwal, A. [1991]. “Limits on interconnection network performance,” IEEE Trans. on
Parallel and Distributed Systems 2:4 (April), 398–412.

Agarwal, A., and S. D. Pudar [1993]. “Column-associative caches: A technique for reduc-
ing the miss rate of direct-mapped caches,” 20th Annual Int’l. Symposium on Com-
puter Architecture (ISCA), May 16–19, 1993, San Diego, Calif. Also appears in
Computer Architecture News 21:2 (May), 179–190, 1993.

Agarwal, A., R. Bianchini, D. Chaiken, K. Johnson, and D. Kranz [1995]. “The MIT
Alewife machine: Architecture and performance,” Int’l. Symposium on Computer
Architecture (Denver, Colo.), June, 2–13.

Agarwal, A., J. L. Hennessy, R. Simoni, and M. A. Horowitz [1988]. “An evaluation of
directory schemes for cache coherence,” Proc. 15th Int’l. Symposium on Computer
Architecture (June), 280–289.

Agarwal, A., J. Kubiatowicz, D. Kranz, B.-H. Lim, D. Yeung, G. D’Souza, and M. Parkin
[1993]. “Sparcle: An evolutionary processor design for large-scale multiprocessors,”
IEEE Micro 13 (June), 48–61.

Agerwala, T., and J. Cocke [1987]. High Performance Reduced Instruction Set Proces-
sors, IBM Tech. Rep. RC12434, IBM, Armonk, N.Y.

Akeley, K. and T. Jermoluk [1988]. “High-Performance Polygon Rendering,” Proc. 15th
Annual Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH 1988),
August 1–5, 1988, Atlanta, Ga., 239–246.

Alexander, W. G., and D. B. Wortman [1975]. “Static and dynamic characteristics of XPL
programs,” IEEE Computer 8:11 (November), 41–46.

Alles, A. [1995]. “ATM Internetworking,” White Paper (May), Cisco Systems, Inc.,
San Jose, Calif. (www.cisco.com/warp/public/614/12.html).

Alliant. [1987]. Alliant FX/Series: Product Summary, Alliant Computer Systems Corp.,
Acton, Mass.

Almasi, G. S., and A. Gottlieb [1989]. Highly Parallel Computing, Benjamin/Cummings,
Redwood City, Calif.

Alverson, G., R. Alverson, D. Callahan, B. Koblenz, A. Porterfield, and B. Smith [1992].
“Exploiting heterogeneous parallelism on a multithreaded multiprocessor,” Proc.
ACM/IEEE Conf. on Supercomputing, November 16–20, 1992, Minneapolis, Minn.,
188–197.

References 1

http://www.cisco.com/warp/public/614/12.html

R-2 ■ References

Amdahl, G. M. [1967]. “Validity of the single processor approach to achieving large scale
computing capabilities,” Proc. AFIPS Spring Joint Computer Conf., April 18–20,
1967, Atlantic City, N.J., 483–485.

Amdahl, G. M., G. A. Blaauw, and F. P. Brooks, Jr. [1964]. “Architecture of the IBM
System 360,” IBM J. Research and Development 8:2 (April), 87–101.

Amza, C., A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and
W. Zwaenepoel [1996]. “Treadmarks: Shared memory computing on networks of
workstations,” IEEE Computer 29:2 (February), 18–28.

Anderson, D. [2003]. “You don’t know jack about disks,” Queue, 1:4 (June), 20–30.
Anderson, D., J. Dykes, and E. Riedel [2003]. “SCSI vs. ATA—More than an interface,”

Proc. 2nd USENIX Conf. on File and Storage Technology (FAST ’03), March 31–
April 2, 2003, San Francisco.

Anderson, D. W., F. J. Sparacio, and R. M. Tomasulo [1967]. “The IBM 360 Model 91:
Processor philosophy and instruction handling,” IBM J. Research and Development
11:1 (January), 8–24.

Anderson, M. H. [1990]. “Strength (and safety) in numbers (RAID, disk storage technol-
ogy),” Byte 15:13 (December), 337–339.

Anderson, T. E., D. E. Culler, and D. Patterson [1995]. “A case for NOW (networks of
workstations),” IEEE Micro 15:1 (February), 54–64.

Ang, B., D. Chiou, D. Rosenband, M. Ehrlich, L. Rudolph, and Arvind [1998]. “StarT-
Voyager: A flexible platform for exploring scalable SMP issues,” Proc. ACM/IEEE
Conf. on Supercomputing, November 7–13, 1998, Orlando, FL.

Anjan, K. V., and T. M. Pinkston [1995]. “An efficient, fully-adaptive deadlock recovery
scheme: Disha,” Proc. 22nd Annual Int’l. Symposium on Computer Architecture
(ISCA), June 22–24, 1995, Santa Margherita, Italy.

Anon. et al. [1985]. A Measure of Transaction Processing Power, Tandem Tech. Rep.
TR85.2. Also appears in Datamation 31:7 (April), 112–118, 1985.

Apache Hadoop. [2011]. http://hadoop.apache.org.
Archibald, J., and J.-L. Baer [1986]. “Cache coherence protocols: Evaluation using a

multiprocessor simulation model,” ACM Trans. on Computer Systems 4:4 (November),
273–298.

Armbrust, M., A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patter-
son, A. Rabkin, I. Stoica, and M. Zaharia [2009]. Above the Clouds: A Berkeley View
of Cloud Computing, Tech. Rep. UCB/EECS-2009-28, University of California,
Berkeley (http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html).

Arpaci, R. H., D. E. Culler, A. Krishnamurthy, S. G. Steinberg, and K. Yelick [1995].
“Empirical evaluation of the CRAY-T3D: A compiler perspective,” 22nd Annual
Int’l. Symposium on Computer Architecture (ISCA), June 22–24, 1995, Santa
Margherita, Italy.

Asanovic, K. [1998]. “Vector Microprocessors,” Ph.D. thesis, Computer Science Division,
University of California, Berkeley.

Associated Press. [2005]. “Gap Inc. shuts down two Internet stores for major overhaul,”
USATODAY.com, August 8, 2005.

Atanasoff, J. V. [1940]. Computing Machine for the Solution of Large Systems of Linear
Equations, Internal Report, Iowa State University, Ames.

Atkins, M. [1991]. Performance and the i860 Microprocessor, IEEE Micro, 11:5
(September), 24–27, 72–78.

Austin, T. M., and G. Sohi [1992]. “Dynamic dependency analysis of ordinary programs,”
Proc. 19th Annual Int’l. Symposium on Computer Architecture (ISCA), May 19–21,
1992, Gold Coast, Australia, 342–351.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.hadoop.apache.org
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

References ■ R-3

Babbay, F., and A. Mendelson [1998]. “Using value prediction to increase the power of
speculative execution hardware,” ACM Trans. on Computer Systems 16:3 (August),
234–270.

Baer, J.-L., and W.-H. Wang [1988]. “On the inclusion property for multi-level cache
hierarchies,” Proc. 15th Annual Int’l. Symposium on Computer Architecture, May
30–June 2, 1988, Honolulu, Hawaii, 73–80.

Bailey, D. H., E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga [1991]. “The NAS parallel benchmarks,”
Int’l. J. Supercomputing Applications 5, 63–73.

Bakoglu, H. B., G. F. Grohoski, L. E. Thatcher, J. A. Kaeli, C. R. Moore, D. P. Tattle,
W. E. Male, W. R. Hardell, D. A. Hicks, M. Nguyen Phu, R. K. Montoye, W. T. Glover,
and S. Dhawan [1989]. “IBM second-generation RISC processor organization,”
Proc. IEEE Int’l. Conf. on Computer Design, September 30–October 4, 1989, Rye, N.Y.,
138–142.

Balakrishnan, H., V. N. Padmanabhan, S. Seshan, and R. H. Katz [1997]. “A comparison
of mechanisms for improving TCP performance over wireless links,” IEEE/ACM
Trans. on Networking 5:6 (December), 756–769.

Ball, T., and J. Larus [1993]. “Branch prediction for free,” Proc. ACM SIGPLAN’93 Con-
ference on Programming Language Design and Implementation (PLDI), June 23–25,
1993, Albuquerque, N.M., 300–313.

Banerjee, U. [1979]. “Speedup of Ordinary Programs,” Ph.D. thesis, Dept. of Computer
Science, University of Illinois at Urbana-Champaign.

Barham, P., B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, and R. Neugebauer [2003].
“Xen and the art of virtualization,” Proc. of the 19th ACM Symposium on Operating
Systems Principles, October 19–22, 2003, Bolton Landing, N.Y.

Barroso, L. A. [2010]. “Warehouse Scale Computing [keynote address],” Proc. ACM
SIGMOD, June 8–10, 2010, Indianapolis, Ind.

Barroso, L. A., and U. Hölzle [2007], “The case for energy-proportional computing,”
IEEE Computer, 40:12 (December), 33–37.

Barroso, L. A., and U. Hölzle [2009]. The Datacenter as a Computer: An Introduction to
the Design of Warehouse-Scale Machines, Morgan & Claypool, San Rafael, Calif.

Barroso, L. A., K. Gharachorloo, and E. Bugnion [1998]. “Memory system characteriza-
tion of commercial workloads,” Proc. 25th Annual Int’l. Symposium on Computer
Architecture (ISCA), July 3–14, 1998, Barcelona, Spain, 3–14.

Barton, R. S. [1961]. “A new approach to the functional design of a computer,” Proc.
Western Joint Computer Conf., May 9–11, 1961, Los Angeles, Calif., 393–396.

Bashe, C. J., W. Buchholz, G. V. Hawkins, J. L. Ingram, and N. Rochester [1981]. “The
architecture of IBM’s early computers,” IBM J. Research and Development 25:5
(September), 363–375.

Bashe, C. J., L. R. Johnson, J. H. Palmer, and E. W. Pugh [1986]. IBM’s Early Computers,
MIT Press, Cambridge, Mass.

Baskett, F., and T. W. Keller [1977]. “An evaluation of the Cray-1 processor,” in High
Speed Computer and Algorithm Organization, D. J. Kuck, D. H. Lawrie, and A. H.
Sameh, eds., Academic Press, San Diego, 71–84.

Baskett, F., T. Jermoluk, and D. Solomon [1988]. “The 4D-MP graphics superworkstation:
Computing + graphics = 40 MIPS + 40 MFLOPS and 10,000 lighted polygons per sec-
ond,” Proc. IEEE COMPCON, February 29–March 4, 1988, San Francisco, 468–471.

BBN Laboratories. [1986]. Butterfly Parallel Processor Overview, Tech. Rep. 6148, BBN
Laboratories, Cambridge, Mass.

Bell, C. G. [1984]. “The mini and micro industries,” IEEE Computer 17:10 (October),
14–30.

R-4 ■ References

Bell, C. G. [1985]. “Multis: A new class of multiprocessor computers,” Science 228
(April 26), 462–467.

Bell, C. G. [1989]. “The future of high performance computers in science and engineer-
ing,” Communications of the ACM 32:9 (September), 1091–1101.

Bell, G., and J. Gray [2001]. Crays, Clusters and Centers, Tech. Rep. MSR-TR-2001-76,
Microsoft Research, Redmond, Wash.

Bell, C. G., and J. Gray [2002]. “What’s next in high performance computing?” CACM
45:2 (February), 91–95.

Bell, C. G., and A. Newell [1971]. Computer Structures: Readings and Examples,
McGraw-Hill, New York.

Bell, C. G., and W. D. Strecker [1976]. “Computer structures: What have we learned from
the PDP-11?,” Third Annual Int’l. Symposium on Computer Architecture (ISCA),
January 19–21, 1976, Tampa, Fla., 1–14.

Bell, C. G., and W. D. Strecker [1998]. “Computer structures: What have we learned from
the PDP-11?” 25 Years of the International Symposia on Computer Architecture
(Selected Papers), ACM, New York, 138–151.

Bell, C. G., J. C. Mudge, and J. E. McNamara [1978]. A DEC View of Computer Engineer-
ing, Digital Press, Bedford, Mass.

Bell, C. G., R. Cady, H. McFarland, B. DeLagi, J. O’Laughlin, R. Noonan, and W. Wulf
[1970]. “A new architecture for mini-computers: The DEC PDP-11,” Proc. AFIPS
Spring Joint Computer Conf., May 5–May 7, 1970, Atlantic City, N.J., 657–675.

Benes, V. E. [1962]. “Rearrangeable three stage connecting networks,” Bell System Tech-
nical Journal 41, 1481–1492.

Bertozzi, D., A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and G. De
Micheli [2005]. “NoC synthesis flow for customized domain specific multiprocessor
systems-on-chip,” IEEE Trans. on Parallel and Distributed Systems 16:2 (February),
113–130.

Bhandarkar, D. P. [1995]. Alpha Architecture and Implementations, Digital Press, Newton,
Mass.

Bhandarkar, D. P., and D. W. Clark [1991]. “Performance from architecture: Comparing a
RISC and a CISC with similar hardware organizations,” Proc. Fourth Int’l. Conf. on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), April 8–11, 1991, Palo Alto, Calif., 310–319.

Bhandarkar, D. P., and J. Ding [1997]. “Performance characterization of the Pentium Pro
processor,” Proc. Third Int’l. Symposium on High-Performance Computer Architec-
ture, February 1–February 5, 1997, San Antonio, Tex., 288–297.

Bhuyan, L. N., and D. P. Agrawal [1984]. “Generalized hypercube and hyperbus struc-
tures for a computer network,” IEEE Trans. on Computers 32:4 (April), 322–333.

Bienia, C., S. Kumar, P. S. Jaswinder, and K. Li [2008]. The Parsec Benchmark Suite:
Characterization and Architectural Implications, Tech. Rep. TR-811-08, Princeton
University, Princeton, N.J.

Bier, J. [1997]. “The Evolution of DSP Processors,” presentation at Univesity of California,
Berkeley, November 14.

Bird, S., A. Phansalkar, L. K. John, A. Mericas, and R. Indukuru [2007]. “Characterization
of performance of SPEC CPU benchmarks on Intel’s Core Microarchitecture based
processor,” Proc. 2007 SPEC Benchmark Workshop, January 21, 2007, Austin, Tex.

Birman, M., A. Samuels, G. Chu, T. Chuk, L. Hu, J. McLeod, and J. Barnes [1990].
“Developing the WRL3170/3171 SPARC floating-point coprocessors,” IEEE Micro
10:1, 55–64.

Blackburn, M., R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von Dincklage,

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

References ■ R-5

and B. Wiedermann [2006]. “The DaCapo benchmarks: Java benchmarking develop-
ment and analysis,” ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), October 22–26, 2006, 169–190.

Blaum, M., J. Bruck, and A. Vardy [1996]. “MDS array codes with independent parity
symbols,” IEEE Trans. on Information Theory, IT-42 (March), 529–42.

Blaum, M., J. Brady, J. Bruck, and J. Menon [1994]. “EVENODD: An optimal scheme for
tolerating double disk failures in RAID architectures,” Proc. 21st Annual Int’l. Sym-
posium on Computer Architecture (ISCA), April 18–21, 1994, Chicago, 245–254.

Blaum, M., J. Brady, J. Bruck, and J. Menon [1995]. “EVENODD: An optimal scheme for
tolerating double disk failures in RAID architectures,” IEEE Trans. on Computers
44:2 (February), 192–202.

Blaum, M., J. Brady, J., Bruck, J. Menon, and A. Vardy [2001]. “The EVENODD code
and its generalization,” in H. Jin, T. Cortes, and R. Buyya, eds., High Performance
Mass Storage and Parallel I/O: Technologies and Applications, Wiley–IEEE, New
York, 187–208.

Bloch, E. [1959]. “The engineering design of the Stretch computer,” 1959 Proceedings of
the Eastern Joint Computer Conf., December 1–3, 1959, Boston, Mass., 48–59.

Boddie, J. R. [2000]. “History of DSPs,” www.lucent.com/micro/dsp/dsphist.html.
Bolt, K. M. [2005]. “Amazon sees sales rise, profit fall,” Seattle Post-Intelligencer,

October 25 (http://seattlepi.nwsource.com/business/245943_techearns26.html).
Bordawekar, R., U. Bondhugula, R. Rao [2010]. “Believe It or Not!: Multi-core CPUs can

Match GPU Performance for a FLOP-Intensive Application!” 19th International Con-
ference on Parallel Architecture and Compilation Techniques (PACT 2010). Vienna,
Austria, September 11–15, 2010, 537–538.

Borg, A., R. E. Kessler, and D. W. Wall [1990]. “Generation and analysis of very long
address traces,” 19th Annual Int’l. Symposium on Computer Architecture (ISCA), May
19–21, 1992, Gold Coast, Australia, 270–279.

Bouknight, W. J., S. A. Deneberg, D. E. McIntyre, J. M. Randall, A. H. Sameh, and D. L.
Slotnick [1972]. “The Illiac IV system,” Proc. IEEE 60:4, 369–379. Also appears in
D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and
Examples, McGraw-Hill, New York, 1982, 306–316.

Brady, J. T. [1986]. “A theory of productivity in the creative process,” IEEE CG&A
(May), 25–34.

Brain, M. [2000]. “Inside a Digital Cell Phone,” www.howstuffworks.com/inside-
cellphone.htm.

Brandt, M., J. Brooks, M. Cahir, T. Hewitt, E. Lopez-Pineda, and D. Sandness [2000]. The
Benchmarker’s Guide for Cray SV1 Systems. Cray Inc., Seattle, Wash.

Brent, R. P., and H. T. Kung [1982]. “A regular layout for parallel adders,” IEEE Trans.
on Computers C-31, 260–264.

Brewer, E. A., and B. C. Kuszmaul [1994]. “How to get good performance from the CM-5
data network,” Proc. Eighth Int’l. Parallel Processing Symposium, April 26–27, 1994,
Cancun, Mexico.

Brin, S., and L. Page [1998]. “The anatomy of a large-scale hypertextual Web search
engine,” Proc. 7th Int’l. World Wide Web Conf., April 14–18, 1998, Brisbane,
Queensland, Australia, 107–117.

Brown, A., and D. A. Patterson [2000]. “Towards maintainability, availability, and growth
benchmarks: A case study of software RAID systems.” Proc. 2000 USENIX Annual
Technical Conf., June 18–23, 2000, San Diego, Calif.

Bucher, I. V., and A. H. Hayes [1980]. “I/O performance measurement on Cray-1 and
CDC 7000 computers,” Proc. Computer Performance Evaluation Users Group, 16th
Meeting, NBS 500-65, 245–254.

http://www.lucent.com/micro/dsp/dsphist.html
http://www.howstuffworks.com/insidecellphone.htm
http://www.howstuffworks.com/insidecellphone.htm
http://seattlepi.nwsource.com/business/245943_techearns26.html

R-6 ■ References

Bucher, I. Y. [1983]. “The computational speed of supercomputers,” Proc. Int’l. Conf. on
Measuring and Modeling of Computer Systems (SIGMETRICS 1983), August 29–31,
1983, Minneapolis, Minn., 151–165.

Bucholtz, W. [1962]. Planning a Computer System: Project Stretch, McGraw-Hill, New
York.

Burgess, N., and T. Williams [1995]. “Choices of operand truncation in the SRT division
algorithm,” IEEE Trans. on Computers 44:7, 933–938.

Burkhardt III, H., S. Frank, B. Knobe, and J. Rothnie [1992]. Overview of the KSR1 Com-
puter System, Tech. Rep. KSR-TR-9202001, Kendall Square Research, Boston, Mass.

Burks, A. W., H. H. Goldstine, and J. von Neumann [1946]. “Preliminary discussion of
the logical design of an electronic computing instrument,” Report to the U.S. Army
Ordnance Department, p. 1; also appears in Papers of John von Neumann, W. Aspray
and A. Burks, eds., MIT Press, Cambridge, Mass., and Tomash Publishers, Los
Angeles, Calif., 1987, 97–146.

Calder, B., G. Reinman, and D. M. Tullsen [1999]. “Selective value prediction,” Proc.
26th Annual Int’l. Symposium on Computer Architecture (ISCA), May 2–4, 1999,
Atlanta, Ga.

Calder, B., D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer, and B. Zorn [1997].
“Evidence-based static branch prediction using machine learning,” ACM Trans. Pro-
gram. Lang. Syst. 19:1, 188–222.

Callahan, D., J. Dongarra, and D. Levine [1988]. “Vectorizing compilers: A test suite and
results,” Proc. ACM/IEEE Conf. on Supercomputing, November 12–17, 1988, Orland,
Fla., 98–105.

Cantin, J. F., and M. D. Hill [2001]. “Cache Performance for Selected SPEC CPU2000
Benchmarks,” www.jfred.org/cache-data.html (June).

Cantin, J. F., and M. D. Hill [2003]. “Cache Performance for SPEC CPU2000 Benchmarks,
Version 3.0,” www.cs.wisc.edu/multifacet/misc/spec2000cache-data/index.html.

Carles, S. [2005]. “Amazon reports record Xmas season, top game picks,” Gamasutra,
December 27 (http://www.gamasutra.com/php-bin/news_index.php?story=7630.)

Carter, J., and K. Rajamani [2010]. “Designing energy-efficient servers and data centers,”
IEEE Computer 43:7 (July), 76–78.

Case, R. P., and A. Padegs [1978]. “The architecture of the IBM System/370,”
Communications of the ACM 21:1, 73–96. Also appears in D. P. Siewiorek, C. G. Bell,
and A. Newell, Computer Structures: Principles and Examples, McGraw-Hill, New
York, 1982, 830–855.

Censier, L., and P. Feautrier [1978]. “A new solution to coherence problems in multicache
systems,” IEEE Trans. on Computers C-27:12 (December), 1112–1118.

Chandra, R., S. Devine, B. Verghese, A. Gupta, and M. Rosenblum [1994]. “Scheduling
and page migration for multiprocessor compute servers,” Sixth Int’l. Conf. on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
October 4–7, 1994, San Jose, Calif., 12–24.

Chang, F., J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber [2006]. “Bigtable: A distributed storage system for struc-
tured data,” Proc. 7th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI ’06), November 6–8, 2006, Seattle, Wash.

Chang, J., J. Meza, P. Ranganathan, C. Bash, and A. Shah [2010]. “Green server design:
Beyond operational energy to sustainability,” Proc. Workshop on Power Aware Com-
puting and Systems (HotPower ’10), October 3, 2010, Vancouver, British Columbia.

Chang, P. P., S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu [1991].
“IMPACT: An architectural framework for multiple-instruction-issue processors,”
18th Annual Int’l. Symposium on Computer Architecture (ISCA), May 27–30, 1991,
Toronto, Canada, 266–275.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.jfred.org/cache-data.html
http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/index.html
http://www.gamasutra.com/php-bin/news_index.php?story=7630
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

References ■ R-7

Charlesworth, A. E. [1981]. “An approach to scientific array processing: The architecture
design of the AP-120B/FPS-164 family,” Computer 14:9 (September), 18–27.

Charlesworth, A. [1998]. “Starfire: Extending the SMP envelope,” IEEE Micro 18:1
(January/February), 39–49.

Chen, P. M., and E. K. Lee [1995]. “Striping in a RAID level 5 disk array,” Proc. ACM
SIGMETRICS Conf. on Measurement and Modeling of Computer Systems, May 15–19,
1995, Ottawa, Canada, 136–145.

Chen, P. M., G. A. Gibson, R. H. Katz, and D. A. Patterson [1990]. “An evaluation of
redundant arrays of inexpensive disks using an Amdahl 5890,” Proc.ACM SIGMET-
RICS Conf. on Measurement and Modeling of Computer Systems, May 22–25, 1990,
Boulder, Colo.

Chen, P. M., E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson [1994]. “RAID:
High-performance, reliable secondary storage,” ACM Computing Surveys 26:2 (June),
145–188.

Chen, S. [1983]. “Large-scale and high-speed multiprocessor system for scientific
applications,” Proc. NATO Advanced Research Workshop on High-Speed Computing,
June 20–22, 1983, Jülich, West Germany. Also appears in K. Hwang, ed.,
“Superprocessors: Design and applications,” IEEE (August), 602–609, 1984.

Chen, T. C. [1980]. “Overlap and parallel processing,” in H. Stone, ed., Introduction to
Computer Architecture, Science Research Associates, Chicago, 427–486.

Chow, F. C. [1983]. “A Portable Machine-Independent Global Optimizer—Design and
Measurements,” Ph.D. thesis, Stanford University, Palo Alto, Calif.

Chrysos, G. Z., and J. S. Emer [1998]. “Memory dependence prediction using store sets,”
Proc. 25th Annual Int’l. Symposium on Computer Architecture (ISCA), July 3–14,
1998, Barcelona, Spain, 142–153.

Clark, B., T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. Herne, and J. Neefe
Matthews [2004]. “Xen and the art of repeated research,” Proc. USENIX Annual
Technical Conf., June 27–July 2, 2004, 135–144.

Clark, D. W. [1983]. “Cache performance of the VAX-11/780,” ACM Trans. on Computer
Systems 1:1, 24–37.

Clark, D. W. [1987]. “Pipelining and performance in the VAX 8800 processor,” Proc.
Second Int’l. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), October 5–8, 1987, Palo Alto, Calif., 173–177.

Clark, D. W., and J. S. Emer [1985]. “Performance of the VAX-11/780 translation buffer:
Simulation and measurement,” ACM Trans. on Computer Systems 3:1 (February),
31–62.

Clark, D., and H. Levy [1982]. “Measurement and analysis of instruction set use in the
VAX-11/780,” Proc. Ninth Annual Int’l. Symposium on Computer Architecture
(ISCA), April 26–29, 1982, Austin, Tex., 9–17.

Clark, D., and W. D. Strecker [1980]. “Comments on ‘the case for the reduced instruction
set computer,’” Computer Architecture News 8:6 (October), 34–38.

Clark, W. A. [1957]. “The Lincoln TX-2 computer development,” Proc. Western Joint
Computer Conference, February 26–28, 1957, Los Angeles, 143–145.

Clidaras, J., C. Johnson, and B. Felderman [2010]. Private communication.
Climate Savers Computing Initiative. [2007]. “Efficiency Specs,” http://www.

climatesaverscomputing.org/.
Clos, C. [1953]. “A study of non-blocking switching networks,” Bell Systems Technical

Journal 32 (March), 406–424.
Cody, W. J., J. T. Coonen, D. M. Gay, K. Hanson, D. Hough, W. Kahan, R. Karpinski,

J. Palmer, F. N. Ris, and D. Stevenson [1984]. “A proposed radix- and word-
lengthindependent standard for floating-point arithmetic,” IEEE Micro 4:4, 86–100.

http://www.climateaverscomputing.org/
http://www.climatesaverscomputing.org/

R-8 ■ References

Colwell, R. P., and R. Steck [1995]. “A 0.6 μm BiCMOS processor with dynamic exe-
cution.” Proc. of IEEE Int’l. Symposium on Solid State Circuits (ISSCC), February
15–17, 1995, San Francisco, 176–177.

Colwell, R. P., R. P. Nix, J. J. O’Donnell, D. B. Papworth, and P. K. Rodman [1987]. “A
VLIW architecture for a trace scheduling compiler,” Proc. Second Int’l. Conf. on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), October 5–8, 1987, Palo Alto, Calif., 180–192.

Comer, D. [1993]. Internetworking with TCP/IP, 2nd ed., Prentice Hall, Englewood
Cliffs, N.J.

Compaq Computer Corporation. [1999]. Compiler Writer’s Guide for the Alpha 21264,
Order Number EC-RJ66A-TE, June, www1.support.compaq.com/alpha-tools/
documentation/current/21264_EV67/ec-rj66a-te_comp_writ_gde_for_alpha21264.pdf.

Conti, C., D. H. Gibson, and S. H. Pitkowsky [1968]. “Structural aspects of the System/
360 Model 85. Part I. General organization,” IBM Systems J. 7:1, 2–14.

Coonen, J. [1984]. “Contributions to a Proposed Standard for Binary Floating-Point
Arithmetic,” Ph.D. thesis, University of California, Berkeley.

Corbett, P., B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar [2004].
“Row-diagonal parity for double disk failure correction,” Proc. 3rd USENIX Conf. on
File and Storage Technology (FAST ’04), March 31–April 2, 2004, San Francisco.

Crawford, J., and P. Gelsinger [1988]. Programming the 80386, Sybex Books, Alameda,
Calif.

Culler, D. E., J. P. Singh, and A. Gupta [1999]. Parallel Computer Architecture: A
Hardware/Software Approach, Morgan Kaufmann, San Francisco.

Curnow, H. J., and B. A. Wichmann [1976]. “A synthetic benchmark,” The Computer J.
19:1, 43–49.

Cvetanovic, Z., and R. E. Kessler [2000]. “Performance analysis of the Alpha 21264-
based Compaq ES40 system,” Proc. 27th Annual Int’l. Symposium on Computer
Architecture (ISCA), June 10–14, 2000, Vancouver, Canada, 192–202.

Dally, W. J. [1990]. “Performance analysis of k-ary n-cube interconnection networks,”
IEEE Trans. on Computers 39:6 (June), 775–785.

Dally, W. J. [1992]. “Virtual channel flow control,” IEEE Trans. on Parallel and Distrib-
uted Systems 3:2 (March), 194–205.

Dally, W. J. [1999]. “Interconnect limited VLSI architecture,” Proc. of the International
Interconnect Technology Conference, May 24–26, 1999, San Francisco.

Dally, W. J., and C. I. Seitz [1986]. “The torus routing chip,” Distributed Computing 1:4,
187–196.

Dally, W. J., and B. Towles [2001]. “Route packets, not wires: On-chip interconnection
networks,” Proc. 38th Design Automation Conference, June 18–22, 2001, Las Vegas.

Dally, W. J., and B. Towles [2003]. Principles and Practices of Interconnection Networks,
Morgan Kaufmann, San Francisco.

Darcy, J. D., and D. Gay [1996]. “FLECKmarks: Measuring floating point performance
using a full IEEE compliant arithmetic benchmark,” CS 252 class project, University
of California, Berkeley (see HTTP.CS.Berkeley.EDU/~darcy/Projects/cs252/).

Darley, H. M. et al. [1989]. “Floating Point/Integer Processor with Divide and Square
Root Functions,” U.S. Patent 4,878,190, October 31.

Davidson, E. S. [1971]. “The design and control of pipelined function generators,” Proc.
IEEE Conf. on Systems, Networks, and Computers, January 19–21, 1971, Oaxtepec,
Mexico, 19–21.

Davidson, E. S., A. T. Thomas, L. E. Shar, and J. H. Patel [1975]. “Effective control for
pipelined processors,” Proc. IEEE COMPCON, February 25–27, 1975, San
Francisco, 181–184.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www/.support.compaq.com/alpha-tools/documentation/current/21264_EV67/ec-rj66a-te_comp_writ_gde_for_alpha21264.pdf
http://www/.support.compaq.com/alpha-tools/documentation/current/21264_EV67/ec-rj66a-te_comp_writ_gde_for_alpha21264.pdf
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

References ■ R-9

Davie, B. S., L. L. Peterson, and D. Clark [1999]. Computer Networks: A Systems
Approach, 2nd ed., Morgan Kaufmann, San Francisco.

Dean, J. [2009]. “Designs, lessons and advice from building large distributed systems
[keynote address],” Proc. 3rd ACM SIGOPS Int’l. Workshop on Large-Scale
Distributed Systems and Middleware, Co-located with the 22nd ACM Symposium on
Operating Systems Principles, October 11–14, 2009, Big Sky, Mont.

Dean, J., and S. Ghemawat [2004]. “MapReduce: Simplified data processing on large
clusters.” In Proc. Operating Systems Design and Implementation (OSDI), December
6–8, 2004, San Francisco, Calif., 137–150.

Dean, J., and S. Ghemawat [2008]. “MapReduce: Simplified data processing on large
clusters,” Communications of the ACM, 51:1, 107–113.

DeCandia, G., D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels [2007]. “Dynamo: Amazon’s highly
available key-value store,” Proc. 21st ACM Symposium on Operating Systems
Principles, October 14–17, 2007, Stevenson, Wash.

Dehnert, J. C., P. Y.-T. Hsu, and J. P. Bratt [1989]. “Overlapped loop support on the
Cydra 5,” Proc. Third Int’l. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), April 3–6, 1989, Boston, Mass., 26–39.

Demmel, J. W., and X. Li [1994]. “Faster numerical algorithms via exception handling,”
IEEE Trans. on Computers 43:8, 983–992.

Denehy, T. E., J. Bent, F. I. Popovici, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau
[2004]. “Deconstructing storage arrays,” Proc. 11th Int’l. Conf. on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), October 7–13,
2004, Boston, Mass., 59–71.

Desurvire, E. [1992]. “Lightwave communications: The fifth generation,” Scientific
American (International Edition) 266:1 (January), 96–103.

Diep, T. A., C. Nelson, and J. P. Shen [1995]. “Performance evaluation of the PowerPC
620 microarchitecture,” Proc. 22nd Annual Int’l. Symposium on Computer Architec-
ture (ISCA), June 22–24, 1995, Santa Margherita, Italy.

Digital Semiconductor. [1996]. Alpha Architecture Handbook, Version 3, Digital Press,
Maynard, Mass.

Ditzel, D. R., and H. R. McLellan [1987]. “Branch folding in the CRISP microprocessor:
Reducing the branch delay to zero,” Proc. 14th Annual Int’l. Symposium on Computer
Architecture (ISCA), June 2–5, 1987, Pittsburgh, Penn., 2–7.

Ditzel, D. R., and D. A. Patterson [1980]. “Retrospective on high-level language computer
architecture,” Proc. Seventh Annual Int’l. Symposium on Computer Architecture
(ISCA), May 6–8, 1980, La Baule, France, 97–104.

Doherty, W. J., and R. P. Kelisky [1979]. “Managing VM/CMS systems for user effec-
tiveness,” IBM Systems J. 18:1, 143–166.

Dongarra, J. J. [1986]. “A survey of high performance processors,” Proc. IEEE
COMPCON, March 3–6, 1986, San Francisco, 8–11.

Dongarra, J., T. Sterling, H. Simon, and E. Strohmaier [2005]. “High-performance
computing: Clusters, constellations, MPPs, and future directions,” Computing in
Science & Engineering, 7:2 (March/April), 51–59.

Douceur, J. R., and W. J. Bolosky [1999]. “A large scale study of file-system contents,”
Proc. ACM SIGMETRICS Conf. on Measurement and Modeling of Computer
Systems, May 1–9, 1999, Atlanta, Ga., 59–69.

Douglas, J. [2005]. “Intel 8xx series and Paxville Xeon-MP microprocessors,” paper pre-
sented at Hot Chips 17, August 14–16, 2005, Stanford University, Palo Alto, Calif.

Duato, J. [1993]. “A new theory of deadlock-free adaptive routing in wormhole
networks,” IEEE Trans. on Parallel and Distributed Systems 4:12 (December)
1320–1331.

R-10 ■ References

Duato, J., and T. M. Pinkston [2001]. “A general theory for deadlock-free adaptive routing
using a mixed set of resources,” IEEE Trans. on Parallel and Distributed Systems
12:12 (December), 1219–1235.

Duato, J., S. Yalamanchili, and L. Ni [2003]. Interconnection Networks: An Engineering
Approach, 2nd printing, Morgan Kaufmann, San Francisco.

Duato, J., I. Johnson, J. Flich, F. Naven, P. Garcia, and T. Nachiondo [2005a]. “A new
scalable and cost-effective congestion management strategy for lossless multistage
interconnection networks,” Proc. 11th Int’l. Symposium on High-Performance
Computer Architecture, February 12–16, 2005, San Francisco.

Duato, J., O. Lysne, R. Pang, and T. M. Pinkston [2005b]. “Part I: A theory for deadlock-
free dynamic reconfiguration of interconnection networks,” IEEE Trans. on Parallel
and Distributed Systems 16:5 (May), 412–427.

Dubois, M., C. Scheurich, and F. Briggs [1988]. “Synchronization, coherence, and event
ordering,” IEEE Computer 21:2 (February), 9–21.

Dunigan, W., K. Vetter, K. White, and P. Worley [2005]. “Performance evaluation of the
Cray X1 distributed shared memory architecture,” IEEE Micro January/February,
30–40.

Eden, A., and T. Mudge [1998]. “The YAGS branch prediction scheme,” Proc. of the 31st
Annual ACM/IEEE Int’l. Symposium on Microarchitecture, November 30–December
2, 1998, Dallas, Tex., 69–80.

Edmondson, J. H., P. I. Rubinfield, R. Preston, and V. Rajagopalan [1995]. “Superscalar
instruction execution in the 21164 Alpha microprocessor,” IEEE Micro 15:2, 33–43.

Eggers, S. [1989]. “Simulation Analysis of Data Sharing in Shared Memory Multiproces-
sors,” Ph.D. thesis, University of California, Berkeley.

Elder, J., A. Gottlieb, C. K. Kruskal, K. P. McAuliffe, L. Randolph, M. Snir, P. Teller, and
J. Wilson [1985]. “Issues related to MIMD shared-memory computers: The NYU
Ultracomputer approach,” Proc. 12th Annual Int’l. Symposium on Computer Architec-
ture (ISCA), June 17–19, 1985, Boston, Mass., 126–135.

Ellis, J. R. [1986]. Bulldog: A Compiler for VLIW Architectures, MIT Press, Cambridge,
Mass.

Emer, J. S., and D. W. Clark [1984]. “A characterization of processor performance in the
VAX-11/780,” Proc. 11th Annual Int’l. Symposium on Computer Architecture
(ISCA), June 5–7, 1984, Ann Arbor, Mich., 301–310.

Enriquez, P. [2001]. “What happened to my dial tone? A study of FCC service disruption
reports,” poster, Richard Tapia Symposium on the Celebration of Diversity in Com-
puting, October 18–20, Houston, Tex.

Erlichson, A., N. Nuckolls, G. Chesson, and J. L. Hennessy [1996]. “SoftFLASH: Analyz-
ing the performance of clustered distributed virtual shared memory,” Proc. Seventh
Int’l. Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), October 1–5, 1996, Cambridge, Mass., 210–220.

Esmaeilzadeh, H., T. Cao, Y. Xi, S. M. Blackburn, and K. S. McKinley [2011]. “Looking
Back on the Language and Hardware Revolution: Measured Power, Performance, and
Scaling,” Proc. 16th Int’l. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), March 5–11, 2011, Newport Beach, Calif.

Evers, M., S. J. Patel, R. S. Chappell, and Y. N. Patt [1998]. “An analysis of correlation
and predictability: What makes two-level branch predictors work,” Proc. 25th Annual
Int’l. Symposium on Computer Architecture (ISCA), July 3–14, 1998, Barcelona,
Spain, 52–61.

Fabry, R. S. [1974]. “Capability based addressing,” Communications of the ACM 17:7
(July), 403–412.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

References ■ R-11

Falsafi, B., and D. A. Wood [1997]. “Reactive NUMA: A design for unifying S-COMA
and CC-NUMA,” Proc. 24th Annual Int’l. Symposium on Computer Architecture
(ISCA), June 2–4, 1997, Denver, Colo., 229–240.

Fan, X., W. Weber, and L. A. Barroso [2007]. “Power provisioning for a warehouse-sized
computer,” Proc. 34th Annual Int’l. Symposium on Computer Architecture (ISCA),
June 9–13, 2007, San Diego, Calif.

Farkas, K. I., and N. P. Jouppi [1994]. “Complexity/performance trade-offs with non-
blocking loads,” Proc. 21st Annual Int’l. Symposium on Computer Architecture
(ISCA), April 18–21, 1994, Chicago.

Farkas, K. I., N. P. Jouppi, and P. Chow [1995]. “How useful are non-blocking loads,
stream buffers and speculative execution in multiple issue processors?,” Proc. First
IEEE Symposium on High-Performance Computer Architecture, January 22–25,
1995, Raleigh, N.C., 78–89.

Farkas, K. I., P. Chow, N. P. Jouppi, and Z. Vranesic [1997]. “Memory-system design
considerations for dynamically-scheduled processors,” Proc. 24th Annual Int’l. Sympo-
sium on Computer Architecture (ISCA), June 2–4, 1997, Denver, Colo., 133–143.

Fazio, D. [1987]. “It’s really much more fun building a supercomputer than it is simply
inventing one,” Proc. IEEE COMPCON, February 23–27, 1987, San Francisco,
102–105.

Fisher, J. A. [1981]. “Trace scheduling: A technique for global microcode compaction,”
IEEE Trans. on Computers 30:7 (July), 478–490.

Fisher, J. A. [1983]. “Very long instruction word architectures and ELI-512,” 10th Annual
Int’l. Symposium on Computer Architecture (ISCA), June 5–7, 1982, Stockholm,
Sweden, 140–150.

Fisher, J. A., and S. M. Freudenberger [1992]. “Predicting conditional branches from pre-
vious runs of a program,” Proc. Fifth Int’l. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), October 12–15, 1992,
Boston, Mass., 85–95.

Fisher, J. A., and B. R. Rau [1993]. Journal of Supercomputing, January (special issue).
Fisher, J. A., J. R. Ellis, J. C. Ruttenberg, and A. Nicolau [1984]. “Parallel processing: A

smart compiler and a dumb processor,” Proc. SIGPLAN Conf. on Compiler Construc-
tion, June 17–22, 1984, Montreal, Canada, 11–16.

Flemming, P. J., and J. J. Wallace [1986]. “How not to lie with statistics: The correct
way to summarize benchmarks results,” Communications of the ACM 29:3 (March),
218–221.

Flynn, M. J. [1966]. “Very high-speed computing systems,” Proc. IEEE 54:12 (Decem-
ber), 1901–1909.

Forgie, J. W. [1957]. “The Lincoln TX-2 input-output system,” Proc. Western Joint Com-
puter Conference (February), Institute of Radio Engineers, Los Angeles, 156–160.

Foster, C. C., and E. M. Riseman [1972]. “Percolation of code to enhance parallel dispatch-
ing and execution,” IEEE Trans. on Computers C-21:12 (December), 1411– 1415.

Frank, S. J. [1984]. “Tightly coupled multiprocessor systems speed memory access time,”
Electronics 57:1 (January), 164–169.

Freiman, C. V. [1961]. “Statistical analysis of certain binary division algorithms,” Proc.
IRE 49:1, 91–103.

Friesenborg, S. E., and R. J. Wicks [1985]. DASD Expectations: The 3380, 3380-23, and
MVS/XA, Tech. Bulletin GG22-9363-02, IBM Washington Systems Center, Gaithers-
burg, Md.

Fuller, S. H., and W. E. Burr [1977]. “Measurement and evaluation of alternative com-
puter architectures,” Computer 10:10 (October), 24–35.

Furber, S. B. [1996]. ARM System Architecture, Addison-Wesley, Harlow, England (see
www.cs.man.ac.uk/amulet/publications/books/ARMsysArch).

http://www.cs.man.ac.uk/amulet/publications/books/ARMsysArch

R-12 ■ References

Gagliardi, U. O. [1973]. “Report of workshop 4—software-related advances in computer
hardware,” Proc. Symposium on the High Cost of Software, September 17–19, 1973,
Monterey, Calif., 99–120.

Gajski, D., D. Kuck, D. Lawrie, and A. Sameh [1983]. “CEDAR—a large scale multipro-
cessor,” Proc. Int’l. Conf. on Parallel Processing (ICPP), August, Columbus, Ohio,
524–529.

Gallagher, D. M., W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W. W. Hwu [1994].
“Dynamic memory disambiguation using the memory conflict buffer,” Proc. Sixth
Int’l. Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), October 4–7, Santa Jose, Calif., 183–193.

Galles, M. [1996]. “Scalable pipelined interconnect for distributed endpoint routing: The
SGI SPIDER chip,” Proc. IEEE HOT Interconnects ’96, August 15–17, 1996,
Stanford University, Palo Alto, Calif.

Game, M., and A. Booker [1999]. “CodePack code compression for PowerPC proces-
sors,” MicroNews, 5:1, www.chips.ibm.com/micronews/vol5_no1/codepack.html.

Gao, Q. S. [1993]. “The Chinese remainder theorem and the prime memory system,” 20th
Annual Int’l. Symposium on Computer Architecture (ISCA), May 16–19, 1993, San
Diego, Calif. (Computer Architecture News 21:2 (May), 337–340).

Gap. [2005]. “Gap Inc. Reports Third Quarter Earnings,” http://gapinc.com/public/
documents/PR_Q405EarningsFeb2306.pdf.

Gap. [2006]. “Gap Inc. Reports Fourth Quarter and Full Year Earnings,” http://
gapinc.com/public/documents/Q32005PressRelease_Final22.pdff.

Garner, R., A. Agarwal, F. Briggs, E. Brown, D. Hough, B. Joy, S. Kleiman, S. Muchnick,
M. Namjoo, D. Patterson, J. Pendleton, and R. Tuck [1988]. “Scalable processor
architecture (SPARC),” Proc. IEEE COMPCON, February 29–March 4, 1988, San
Francisco, 278–283.

Gebis, J., and D. Patterson [2007]. “Embracing and extending 20th-century instruction set
architectures,” IEEE Computer 40:4 (April), 68–75.

Gee, J. D., M. D. Hill, D. N. Pnevmatikatos, and A. J. Smith [1993]. “Cache performance
of the SPEC92 benchmark suite,” IEEE Micro 13:4 (August), 17–27.

Gehringer, E. F., D. P. Siewiorek, and Z. Segall [1987]. Parallel Processing: The Cm*
Experience, Digital Press, Bedford, Mass.

Gharachorloo, K., A. Gupta, and J. L. Hennessy [1992]. “Hiding memory latency using
dynamic scheduling in shared-memory multiprocessors,” Proc. 19th Annual Int’l. Sym-
posium on Computer Architecture (ISCA), May 19–21, 1992, Gold Coast, Australia.

Gharachorloo, K., D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. L. Hennessy
[1990]. “Memory consistency and event ordering in scalable shared-memory multi-
processors,” Proc. 17th Annual Int’l. Symposium on Computer Architecture (ISCA),
May 28–31, 1990, Seattle, Wash., 15–26.

Ghemawat, S., H. Gobioff, and S.-T. Leung [2003]. “The Google file system,” Proc. 19th
ACM Symposium on Operating Systems Principles, October 19–22, 2003, Bolton
Landing, N.Y.

Gibson, D. H. [1967]. “Considerations in block-oriented systems design,” AFIPS Conf.
Proc. 30, 75–80.

Gibson, G. A. [1992]. Redundant Disk Arrays: Reliable, Parallel Secondary Storage,
ACM Distinguished Dissertation Series, MIT Press, Cambridge, Mass.

Gibson, J. C. [1970]. “The Gibson mix,” Rep. TR. 00.2043, IBM Systems Development
Division, Poughkeepsie, N.Y. (research done in 1959).

Gibson, J., R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and M. Heinrich [2000].
“FLASH vs. (simulated) FLASH: Closing the simulation loop,” Proc. Ninth Int’l.
Conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), November 12–15, Cambridge, Mass., 49–58.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.chips.ibm.com/micronews/vol5_no1/codepack.html
http://www.gapinc.com/public/documents/PR_Q405EarningsFeb2306.pdf
http://www.gapinc.com/public/documents/PR_Q405EarningsFeb2306.pdf
http://www.gapinc.com/public/documents/Q32005PressRelease_Final22.pdff
http://www.gapinc.com/public/documents/Q32005PressRelease_Final22.pdff
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

References ■ R-13

Glass, C. J., and L. M. Ni [1992]. “The Turn Model for adaptive routing,” 19th Annual
Int’l. Symposium on Computer Architecture (ISCA), May 19–21, 1992, Gold Coast,
Australia.

Goldberg, D. [1991]. “What every computer scientist should know about floating-point
arithmetic,” Computing Surveys 23:1, 5–48.

Goldberg, I. B. [1967]. “27 bits are not enough for 8-digit accuracy,” Communications of
the ACM 10:2, 105–106.

Goldstein, S. [1987]. Storage Performance—An Eight Year Outlook, Tech. Rep. TR
03.308-1, Santa Teresa Laboratory, IBM Santa Teresa Laboratory, San Jose, Calif.

Goldstine, H. H. [1972]. The Computer: From Pascal to von Neumann, Princeton Univer-
sity Press, Princeton, N.J.

González, J., and A. González [1998]. “Limits of instruction level parallelism with data
speculation,” Proc. Vector and Parallel Processing (VECPAR) Conf., June 21–23,
1998, Porto, Portugal, 585–598.

Goodman, J. R. [1983]. “Using cache memory to reduce processor memory traffic,” Proc.
10th Annual Int’l. Symposium on Computer Architecture (ISCA), June 5–7, 1982,
Stockholm, Sweden, 124–131.

Goralski, W. [1997]. SONET: A Guide to Synchronous Optical Network, McGraw-Hill,
New York.

Gosling, J. B. [1980]. Design of Arithmetic Units for Digital Computers, Springer-Verlag,
New York.

Gray, J. [1990]. “A census of Tandem system availability between 1985 and 1990,” IEEE
Trans. on Reliability, 39:4 (October), 409–418.

Gray, J. (ed.) [1993]. The Benchmark Handbook for Database and Transaction Process-
ing Systems, 2nd ed., Morgan Kaufmann, San Francisco.

Gray, J. [2006]. Sort benchmark home page, http://sortbenchmark.org/.
Gray, J., and A. Reuter [1993]. Transaction Processing: Concepts and Techniques,

Morgan Kaufmann, San Francisco.
Gray, J., and D. P. Siewiorek [1991]. “High-availability computer systems,” Computer

24:9 (September), 39–48.
Gray, J., and C. van Ingen [2005]. Empirical Measurements of Disk Failure Rates and

Error Rates, MSR-TR-2005-166, Microsoft Research, Redmond, Wash.
Greenberg, A., N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz, P. Patel, and S. Sengupta

[2009]. “VL2: A Scalable and Flexible Data Center Network,” in Proc. ACM
SIGCOMM, August 17–21, 2009, Barcelona, Spain.

Grice, C., and M. Kanellos [2000]. “Cell phone industry at crossroads: Go high or low?,”
CNET News, August 31, technews.netscape.com/news/0-1004-201-2518386-
0.html?tag=st.ne.1002.tgif.sf.

Groe, J. B., and L. E. Larson [2000]. CDMA Mobile Radio Design, Artech House, Boston.
Gunther, K. D. [1981]. “Prevention of deadlocks in packet-switched data transport sys-

tems,” IEEE Trans. on Communications COM–29:4 (April), 512–524.
Hagersten, E., and M. Koster [1998]. “WildFire: A scalable path for SMPs,” Proc. Fifth

Int’l. Symposium on High-Performance Computer Architecture, January 9–12, 1999,
Orlando, Fla.

Hagersten, E., A. Landin, and S. Haridi [1992]. “DDM—a cache-only memory architec-
ture,” IEEE Computer 25:9 (September), 44–54.

Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky [1984]. Computer Organization, 2nd ed.,
McGraw-Hill, New York.

Hamilton, J. [2009]. “Data center networks are in my way,” paper presented at the
Stanford Clean Slate CTO Summit, October 23, 2009 (http://mvdirona.com/jrh/
TalksAndPapers/JamesHamilton_CleanSlateCTO2009.pdf).

http://www.mvdirona.com/jrh/TalksAndPapers/JamesHamilton_CleanSlateCTO2009.pdf
http://www.mvdirona.com/jrh/TalksAndPapers/JamesHamilton_CleanSlateCTO2009.pdf
http://www.sortbenchmark.org/

R-14 ■ References

Hamilton, J. [2010]. “Cloud computing economies of scale,” paper presented at the AWS
Workshop on Genomics and Cloud Computing, June 8, 2010, Seattle, Wash. (http://
mvdirona.com/jrh/TalksAndPapers/JamesHamilton_GenomicsCloud20100608.pdf).

Handy, J. [1993]. The Cache Memory Book, Academic Press, Boston.
Hauck, E. A., and B. A. Dent [1968]. “Burroughs’ B6500/B7500 stack mechanism,”

Proc. AFIPS Spring Joint Computer Conf., April 30–May 2, 1968, Atlantic City,
N.J., 245–251.

Heald, R., K. Aingaran, C. Amir, M. Ang, M. Boland, A. Das, P. Dixit, G. Gouldsberry,
J. Hart, T. Horel, W.-J. Hsu, J. Kaku, C. Kim, S. Kim, F. Klass, H. Kwan, R. Lo,
H. McIntyre, A. Mehta, D. Murata, S. Nguyen, Y.-P. Pai, S. Patel, K. Shin, K. Tam,
S. Vishwanthaiah, J. Wu, G. Yee, and H. You [2000]. “Implementation of third-
generation SPARC V9 64-b microprocessor,” ISSCC Digest of Technical Papers,
412–413 and slide supplement.

Heinrich, J. [1993]. MIPS R4000 User’s Manual, Prentice Hall, Englewood Cliffs, N.J.
Henly, M., and B. McNutt [1989]. DASD I/O Characteristics: A Comparison of MVS to

VM,” Tech. Rep. TR 02.1550 (May), IBM General Products Division, San Jose, Calif.
Hennessy, J. [1984]. “VLSI processor architecture,” IEEE Trans. on Computers C-33:11

(December), 1221–1246.
Hennessy, J. [1985]. “VLSI RISC processors,” VLSI Systems Design 6:10 (October),

22–32.
Hennessy, J., N. Jouppi, F. Baskett, and J. Gill [1981]. “MIPS: A VLSI processor architec-

ture,” in CMU Conference on VLSI Systems and Computations, Computer Science
Press, Rockville, Md.

Hewlett-Packard. [1994]. PA-RISC 2.0 Architecture Reference Manual, 3rd ed., Hewlett-
Packard, Palo Alto, Calif.

Hewlett-Packard. [1998]. “HP’s ‘5NINES:5MINUTES’ Vision Extends Leadership and
Redefines High Availability in Mission-Critical Environments,” February 10,
www.future.enterprisecomputing.hp.com/ia64/news/5nines_vision_pr.html.

Hill, M. D. [1987]. “Aspects of Cache Memory and Instruction Buffer Performance,”
Ph.D. thesis, Tech. Rep. UCB/CSD 87/381, Computer Science Division, University of
California, Berkeley.

Hill, M. D. [1988]. “A case for direct mapped caches,” Computer 21:12 (December),
25–40.

Hill, M. D. [1998]. “Multiprocessors should support simple memory consistency models,”
IEEE Computer 31:8 (August), 28–34.

Hillis, W. D. [1985]. The Connection Multiprocessor, MIT Press, Cambridge, Mass.
Hillis, W. D. and G. L. Steele [1986]. “Data parallel algorithms,” Communications of the

ACM 29:12 (December), 1170–1183. (http://doi.acm.org/10.1145/7902.7903).
Hinton, G., D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel [2001].

“The microarchitecture of the Pentium 4 processor,” Intel Technology Journal,
February.

Hintz, R. G., and D. P. Tate [1972]. “Control data STAR-100 processor design,” Proc.
IEEE COMPCON, September 12–14, 1972, San Francisco, 1–4.

Hirata, H., K. Kimura, S. Nagamine, Y. Mochizuki, A. Nishimura, Y. Nakase, and
T. Nishizawa [1992]. “An elementary processor architecture with simultaneous instruc-
tion issuing from multiple threads,” Proc. 19th Annual Int’l. Symposium on Computer
Architecture (ISCA), May 19–21, 1992, Gold Coast, Australia, 136–145.

Hitachi. [1997]. SuperH RISC Engine SH7700 Series Programming Manual, Hitachi,
Santa Clara, Calif. (see www.halsp.hitachi.com/tech_prod/ and search for title).

Ho, R., K. W. Mai, and M. A. Horowitz [2001]. “The future of wires,” Proc. of the IEEE
89:4 (April), 490–504.

Hoagland, A. S. [1963]. Digital Magnetic Recording, Wiley, New York.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.future.enterprisecomputing.hp.com/ia64/news/5nines_vision_pr.html
http://www.halsp.hitachi.com/tech_prod/
http://www.mvdirona.com/jrh/TalksAndPapers/JamesHamilton_GenomicsCloud20100608.pdf
http://www.mvdirona.com/jrh/TalksAndPapers/JamesHamilton_GenomicsCloud20100608.pdf
http://www.doi.acm.org/10.1145/7902.7903
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

References ■ R-15

Hockney, R. W., and C. R. Jesshope [1988]. Parallel Computers 2: Architectures, Pro-
gramming and Algorithms, Adam Hilger, Ltd., Bristol, England.

Holland, J. H. [1959]. “A universal computer capable of executing an arbitrary number of
subprograms simultaneously,” Proc. East Joint Computer Conf. 16, 108–113.

Holt, R. C. [1972]. “Some deadlock properties of computer systems,” ACM Computer
Surveys 4:3 (September), 179–196.

Hopkins, M. [2000]. “A critical look at IA-64: Massive resources, massive ILP, but can it
deliver?” Microprocessor Report, February.

Hord, R. M. [1982]. The Illiac-IV, The First Supercomputer, Computer Science Press,
Rockville, Md.

Horel, T., and G. Lauterbach [1999]. “UltraSPARC-III: Designing third-generation 64-bit
performance,” IEEE Micro 19:3 (May–June), 73–85.

Hospodor, A. D., and A. S. Hoagland [1993]. “The changing nature of disk controllers.”
Proc. IEEE 81:4 (April), 586–594.

Hölzle, U. [2010]. “Brawny cores still beat wimpy cores, most of the time,” IEEE Micro
30:4 (July/August).

Hristea, C., D. Lenoski, and J. Keen [1997]. “Measuring memory hierarchy performance
of cache-coherent multiprocessors using micro benchmarks,” Proc. ACM/IEEE Conf.
on Supercomputing, November 16–21, 1997, San Jose, Calif.

Hsu, P. [1994]. “Designing the TFP microprocessor,” IEEE Micro 18:2 (April), 2333.
Huck, J. et al. [2000]. “Introducing the IA-64 Architecture” IEEE Micro, 20:5

(September–October), 12–23.
Hughes, C. J., P. Kaul, S. V. Adve, R. Jain, C. Park, and J. Srinivasan [2001]. “Variability

in the execution of multimedia applications and implications for architecture,” Proc.
28th Annual Int’l. Symposium on Computer Architecture (ISCA), June 30–July 4,
2001, Goteborg, Sweden, 254–265.

Hwang, K. [1979]. Computer Arithmetic: Principles, Architecture, and Design, Wiley,
New York.

Hwang, K. [1993]. Advanced Computer Architecture and Parallel Programming,
McGraw-Hill, New York.

Hwu, W.-M., and Y. Patt [1986]. “HPSm, a high performance restricted data flow archi-
tecture having minimum functionality,” Proc. 13th Annual Int’l. Symposium on Com-
puter Architecture (ISCA), June 2–5, 1986, Tokyo, 297–307.

Hwu, W. W., S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,
R. O. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery
[1993]. “The superblock: An effective technique for VLIW and superscalar compila-
tion,” J. Supercomputing 7:1, 2 (March), 229–248.

IBM. [1982]. The Economic Value of Rapid Response Time, GE20-0752-0, IBM, White
Plains, N.Y., 11–82.

IBM. [1990]. “The IBM RISC System/6000 processor” (collection of papers), IBM J.
Research and Development 34:1 (January).

IBM. [1994]. The PowerPC Architecture, Morgan Kaufmann, San Francisco.
IBM. [2005]. “Blue Gene,” IBM J. Research and Development, 49:2/3 (special issue).
IEEE. [1985]. “IEEE standard for binary floating-point arithmetic,” SIGPLAN Notices

22:2, 9–25.
IEEE. [2005]. “Intel virtualization technology, computer,” IEEE Computer Society 38:5

(May), 48–56.
IEEE. 754-2008 Working Group. [2006]. “DRAFT Standard for Floating-Point Arithme-

tic 754-2008,” http://dx.doi.org/10.1109/IEEESTD.2008.4610935.
Imprimis Product Specification, 97209 Sabre Disk Drive IPI-2 Interface 1.2 GB, Docu-

ment No. 64402302, Imprimis, Dallas, Tex.

http://dx.doi.org/10.1109/IEEESTD.2008.4610935

R-16 ■ References

InfiniBand Trade Association. [2001]. InfiniBand Architecture Specifications Release
1.0.a, www.infinibandta.org.

Intel. [2001]. “Using MMX Instructions to Convert RGB to YUV Color Conversion,”
cedar.intel.com/cgi-bin/ids.dll/content/content.jsp?cntKey=Legacy::irtm_AP548_9996&
cntType=IDS_ EDITORIAL.

Internet Retailer. [2005]. “The Gap launches a new site—after two weeks of downtime,”
Internet® Retailer, September 28, http://www.internetretailer.com/2005/09/28/the-
gap-launches-a-new-site-after-two-weeks-of-downtime.

Jain, R. [1991]. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling, Wiley, New York.

Jantsch, A., and H. Tenhunen (eds.) [2003]. Networks on Chips, Kluwer Academic Pub-
lishers, The Netherlands.

Jimenez, D. A., and C. Lin [2002]. “Neural methods for dynamic branch prediction,”
ACM Trans. on Computer Systems 20:4 (November), 369–397.

Johnson, M. [1990]. Superscalar Microprocessor Design, Prentice Hall, Englewood
Cliffs, N.J.

Jordan, H. F. [1983]. “Performance measurements on HEP—a pipelined MIMD com-
puter,” Proc. 10th Annual Int’l. Symposium on Computer Architecture (ISCA), June
5–7, 1982, Stockholm, Sweden, 207–212.

Jordan, K. E. [1987]. “Performance comparison of large-scale scientific processors: Scalar
mainframes, mainframes with vector facilities, and supercomputers,” Computer 20:3
(March), 10–23.

Jouppi, N. P. [1990]. “Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers,” Proc. 17th Annual Int’l. Sympo-
sium on Computer Architecture (ISCA), May 28–31, 1990, Seattle, Wash., 364–373.

Jouppi, N. P. [1998]. “Retrospective: Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” 25 Years of the Inter-
national Symposia on Computer Architecture (Selected Papers), ACM, New York,
71–73.

Jouppi, N. P., and D. W. Wall [1989]. “Available instruction-level parallelism for super-
scalar and superpipelined processors,” Proc. Third Int’l. Conf. on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), April 3–6,
1989, Boston, 272–282.

Jouppi, N. P., and S. J. E. Wilton [1994]. “Trade-offs in two-level on-chip caching,” Proc.
21st Annual Int’l. Symposium on Computer Architecture (ISCA), April 18–21, 1994,
Chicago, 34–45.

Kaeli, D. R., and P. G. Emma [1991]. “Branch history table prediction of moving target
branches due to subroutine returns,” Proc. 18th Annual Int’l. Symposium on Computer
Architecture (ISCA), May 27–30, 1991, Toronto, Canada, 34–42.

Kahan, J. [1990]. “On the advantage of the 8087’s stack,” unpublished course notes, Com-
puter Science Division, University of California, Berkeley.

Kahan, W. [1968]. “7094-II system support for numerical analysis,” SHARE Secretarial
Distribution SSD-159, Department of Computer Science, University of Toronto.

Kahaner, D. K. [1988]. “Benchmarks for ‘real’ programs,” SIAM News, November.
Kahn, R. E. [1972]. “Resource-sharing computer communication networks,” Proc. IEEE

60:11 (November), 1397–1407.
Kane, G. [1986]. MIPS R2000 RISC Architecture, Prentice Hall, Englewood Cliffs, N.J.
Kane, G. [1996]. PA-RISC 2.0 Architecture, Prentice Hall, Upper Saddle River, N.J.
Kane, G., and J. Heinrich [1992]. MIPS RISC Architecture, Prentice Hall, Englewood

Cliffs, N.J.
Katz, R. H., D. A. Patterson, and G. A. Gibson [1989]. “Disk system architectures for high

performance computing,” Proc. IEEE 77:12 (December), 1842–1858.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.infinibandta.org
http://www.internetretailer.com/2005/09/28/the-gap-launches-a-new-site-after-two-weeks-of-downtime
http://www.internetretailer.com/2005/09/28/the-gap-launches-a-new-site-after-two-weeks-of-downtime
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

References ■ R-17

Keckler, S. W., and W. J. Dally [1992]. “Processor coupling: Integrating compile time and
runtime scheduling for parallelism,” Proc. 19th Annual Int’l. Symposium on Com-
puter Architecture (ISCA), May 19–21, 1992, Gold Coast, Australia, 202–213.

Keller, R. M. [1975]. “Look-ahead processors,” ACM Computing Surveys 7:4 (December),
177–195.

Keltcher, C. N., K. J. McGrath, A. Ahmed, and P. Conway [2003]. “The AMD Opteron
processor for multiprocessor servers,” IEEE Micro 23:2 (March–April), 66–76
(dx.doi.org/10.1109.MM.2003.119116).

Kembel, R. [2000]. “Fibre Channel: A comprehensive introduction,” Internet Week, April.
Kermani, P., and L. Kleinrock [1979]. “Virtual Cut-Through: A New Computer Commu-

nication Switching Technique,” Computer Networks 3 (January), 267–286.
Kessler, R. [1999]. “The Alpha 21264 microprocessor,” IEEE Micro 19:2 (March/April)

24–36.
Kilburn, T., D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner [1962]. “One-level stor-

age system,” IRE Trans. on Electronic Computers EC-11 (April) 223–235. Also
appears in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Princi-
ples and Examples, McGraw-Hill, New York, 1982, 135–148.

Killian, E. [1991]. “MIPS R4000 technical overview–64 bits/100 MHz or bust,” Hot
Chips III Symposium Record, August 26–27, 1991, Stanford University, Palo Alto,
Calif., 1.6–1.19.

Kim, M. Y. [1986]. “Synchronized disk interleaving,” IEEE Trans. on Computers C-35:11
(November), 978–988.

Kissell, K. D. [1997]. “MIPS16: High-density for the embedded market,” Proc. Real Time
Systems ’97, June 15, 1997, Las Vegas, Nev. (see www.sgi.com/MIPS/arch/MIPS16/
MIPS16.whitepaper.pdf).

Kitagawa, K., S. Tagaya, Y. Hagihara, and Y. Kanoh [2003]. “A hardware overview of SX-
6 and SX-7 supercomputer,” NEC Research & Development J. 44:1 (January), 2–7.

Knuth, D. [1981]. The Art of Computer Programming, Vol. II, 2nd ed., Addison-Wesley,
Reading, Mass.

Kogge, P. M. [1981]. The Architecture of Pipelined Computers, McGraw-Hill, New York.
Kohn, L., and S.-W. Fu [1989]. “A 1,000,000 transistor microprocessor,” Proc. of IEEE

Int’l. Symposium on Solid State Circuits (ISSCC), February 15–17, 1989, New York,
54–55.

Kohn, L., and N. Margulis [1989]. “Introducing the Intel i860 64-Bit Microprocessor,”
IEEE Micro, 9:4 (July), 15–30.

Kontothanassis, L., G. Hunt, R. Stets, N. Hardavellas, M. Cierniak, S. Parthasarathy,
W. Meira, S. Dwarkadas, and M. Scott [1997]. “VM-based shared memory on low-
latency, remote-memory-access networks,” Proc. 24th Annual Int’l. Symposium on
Computer Architecture (ISCA), June 2–4, 1997, Denver, Colo.

Koren, I. [1989]. Computer Arithmetic Algorithms, Prentice Hall, Englewood Cliffs, N.J.
Kozyrakis, C. [2000]. “Vector IRAM: A media-oriented vector processor with embed-

ded DRAM,” paper presented at Hot Chips 12, August 13–15, 2000, Palo Alto,
Calif, 13–15.

Kozyrakis, C., and D. Patterson, [2002]. “Vector vs. superscalar and VLIW architectures
for embedded multimedia benchmarks,” Proc. 35th Annual Int’l. Symposium on
Microarchitecture (MICRO-35), November 18–22, 2002, Istanbul, Turkey.

Kroft, D. [1981]. “Lockup-free instruction fetch/prefetch cache organization,” Proc.
Eighth Annual Int’l. Symposium on Computer Architecture (ISCA), May 12–14, 1981,
Minneapolis, Minn., 81–87.

Kroft, D. [1998]. “Retrospective: Lockup-free instruction fetch/prefetch cache organiza-
tion,” 25 Years of the International Symposia on Computer Architecture (Selected
Papers), ACM, New York, 20–21.

http://www.sgi.com/MIPS/arch/MIPS16/MIPS16.whitepaper.pdf
http://www.sgi.com/MIPS/arch/MIPS16/MIPS16.whitepaper.pdf

R-18 ■ References

Kuck, D., P. P. Budnik, S.-C. Chen, D. H. Lawrie, R. A. Towle, R. E. Strebendt, E. W.
Davis, Jr., J. Han, P. W. Kraska, and Y. Muraoka [1974]. “Measurements of parallel-
ism in ordinary FORTRAN programs,” Computer 7:1 (January), 37–46.

Kuhn, D. R. [1997]. “Sources of failure in the public switched telephone network,” IEEE
Computer 30:4 (April), 31–36.

Kumar, A. [1997]. “The HP PA-8000 RISC CPU,” IEEE Micro 17:2 (March/April), 27–32.
Kunimatsu, A., N. Ide, T. Sato, Y. Endo, H. Murakami, T. Kamei, M. Hirano, F. Ishihara,

H. Tago, M. Oka, A. Ohba, T. Yutaka, T. Okada, and M. Suzuoki [2000]. “Vector unit
architecture for emotion synthesis,” IEEE Micro 20:2 (March–April), 40–47.

Kunkel, S. R., and J. E. Smith [1986]. “Optimal pipelining in supercomputers,” Proc. 13th
Annual Int’l. Symposium on Computer Architecture (ISCA), June 2–5, 1986, Tokyo,
404–414.

Kurose, J. F., and K. W. Ross [2001]. Computer Networking: A Top-Down Approach
Featuring the Internet, Addison-Wesley, Boston.

Kuskin, J., D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin,
D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. L. Hennessy
[1994]. “The Stanford FLASH multiprocessor,” Proc. 21st Annual Int’l. Symposium
on Computer Architecture (ISCA), April 18–21, 1994, Chicago.

Lam, M. [1988]. “Software pipelining: An effective scheduling technique for VLIW pro-
cessors,” SIGPLAN Conf. on Programming Language Design and Implementation,
June 22–24, 1988, Atlanta, Ga., 318–328.

Lam, M. S., and R. P. Wilson [1992]. “Limits of control flow on parallelism,” Proc. 19th
Annual Int’l. Symposium on Computer Architecture (ISCA), May 19–21, 1992, Gold
Coast, Australia, 46–57.

Lam, M. S., E. E. Rothberg, and M. E. Wolf [1991]. “The cache performance and optimi-
zations of blocked algorithms,” Proc. Fourth Int’l. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), April 8–11, 1991, Santa
Clara, Calif. (SIGPLAN Notices 26:4 (April), 63–74).

Lambright, D. [2000]. “Experiences in measuring the reliability of a cache-based storage
system,” Proc. of First Workshop on Industrial Experiences with Systems Software
(WIESS 2000), Co-Located with the 4th Symposium on Operating Systems Design and
Implementation (OSDI), October 22, 2000, San Diego, Calif.

Lamport, L. [1979]. “How to make a multiprocessor computer that correctly executes
multiprocess programs,” IEEE Trans. on Computers C-28:9 (September), 241–248.

Lang, W., J. M. Patel, and S. Shankar [2010]. “Wimpy node clusters: What about non-
wimpy workloads?” Proc. Sixth International Workshop on Data Management on
New Hardware (DaMoN), June 7, Indianapolis, Ind.

Laprie, J.-C. [1985]. “Dependable computing and fault tolerance: Concepts and terminol-
ogy,” Proc. 15th Annual Int’l. Symposium on Fault-Tolerant Computing, June 19–21,
1985, Ann Arbor, Mich., 2–11.

Larson, E. R. [1973]. “Findings of fact, conclusions of law, and order for judgment,” File
No. 4-67, Civ. 138, Honeywell v. Sperry-Rand and Illinois Scientific Development,
U.S. District Court for the State of Minnesota, Fourth Division (October 19).

Laudon, J., and D. Lenoski [1997]. “The SGI Origin: A ccNUMA highly scalable server,”
Proc. 24th Annual Int’l. Symposium on Computer Architecture (ISCA), June 2–4,
1997, Denver, Colo., 241–251.

Laudon, J., A. Gupta, and M. Horowitz [1994]. “Interleaving: A multithreading technique
targeting multiprocessors and workstations,” Proc. Sixth Int’l. Conf. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), October 4–7,
San Jose, Calif., 308–318.

Lauterbach, G., and T. Horel [1999]. “UltraSPARC-III: Designing third generation 64-bit
performance,” IEEE Micro 19:3 (May/June).

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

References ■ R-19

Lazowska, E. D., J. Zahorjan, G. S. Graham, and K. C. Sevcik [1984]. Quantitative Sys-
tem Performance: Computer System Analysis Using Queueing Network Models,
Prentice Hall, Englewood Cliffs, N.J. (Although out of print, it is available online at
www.cs.washington.edu/homes/lazowska/qsp/.)

Lebeck, A. R., and D. A. Wood [1994]. “Cache profiling and the SPEC benchmarks:
A case study,” Computer 27:10 (October), 15–26.

Lee, R. [1989]. “Precision architecture,” Computer 22:1 (January), 78–91.
Lee, W. V. et al. [2010]. “Debunking the 100X GPU vs. CPU myth: An evaluation of

throughput computing on CPU and GPU,” Proc. 37th Annual Int’l. Symposium on
Computer Architecture (ISCA), June 19–23, 2010, Saint-Malo, France.

Leighton, F. T. [1992]. Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes, Morgan Kaufmann, San Francisco.

Leiner, A. L. [1954]. “System specifications for the DYSEAC,” J. ACM 1:2 (April), 57–81.
Leiner, A. L., and S. N. Alexander [1954]. “System organization of the DYSEAC,” IRE

Trans. of Electronic Computers EC-3:1 (March), 1–10.
Leiserson, C. E. [1985]. “Fat trees: Universal networks for hardware-efficient supercom-

puting,” IEEE Trans. on Computers C-34:10 (October), 892–901.
Lenoski, D., J. Laudon, K. Gharachorloo, A. Gupta, and J. L. Hennessy [1990]. “The Stan-

ford DASH multiprocessor,” Proc. 17th Annual Int’l. Symposium on Computer Archi-
tecture (ISCA), May 28–31, 1990, Seattle, Wash., 148–159.

Lenoski, D., J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. L. Hennessy, M. A.
Horowitz, and M. Lam [1992]. “The Stanford DASH multiprocessor,” IEEE Com-
puter 25:3 (March), 63–79.

Levy, H., and R. Eckhouse [1989]. Computer Programming and Architecture: The VAX,
Digital Press, Boston.

Li, K. [1988]. “IVY: A shared virtual memory system for parallel computing,” Proc. 1988
Int’l. Conf. on Parallel Processing, Pennsylvania State University Press, University
Park, Penn.

Li, S., K. Chen, J. B. Brockman, and N. Jouppi [2011]. “Performance Impacts of Non-
blocking Caches in Out-of-order Processors,” HP Labs Tech Report HPL-2011-65
(full text available at http://Library.hp.com/techpubs/2011/Hpl-2011-65.html).

Lim, K., P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt [2008]. “Under-
standing and designing new system architectures for emerging warehouse-computing
environments,” Proc. 35th Annual Int’l. Symposium on Computer Architecture
(ISCA), June 21–25, 2008, Beijing, China.

Lincoln, N. R. [1982]. “Technology and design trade offs in the creation of a modern
supercomputer,” IEEE Trans. on Computers C-31:5 (May), 363–376.

Lindholm, T., and F. Yellin [1999]. The Java Virtual Machine Specification, 2nd ed.,
Addison-Wesley, Reading, Mass. (also available online at java.sun.com/docs/ books/
vmspec/).

Lipasti, M. H., and J. P. Shen [1996]. “Exceeding the dataflow limit via value prediction,”
Proc. 29th Int’l. Symposium on Microarchitecture, December 2–4, 1996, Paris,
France.

Lipasti, M. H., C. B. Wilkerson, and J. P. Shen [1996]. “Value locality and load value pre-
diction,” Proc. Seventh Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), October 1–5, 1996, Cambridge, Mass., 138–147.

Liptay, J. S. [1968]. “Structural aspects of the System/360 Model 85, Part II: The cache,”
IBM Systems J. 7:1, 15–21.

Lo, J., L. Barroso, S. Eggers, K. Gharachorloo, H. Levy, and S. Parekh [1998]. “An analy-
sis of database workload performance on simultaneous multithreaded processors,”
Proc. 25th Annual Int’l. Symposium on Computer Architecture (ISCA), July 3–14,
1998, Barcelona, Spain, 39–50.

http://www.cs.washington.edu/homes/lazowska/qsp/
http://www.Library.hp.com/techpubs/2011/Hpl-2011-65.html

R-20 ■ References

Lo, J., S. Eggers, J. Emer, H. Levy, R. Stamm, and D. Tullsen [1997]. “Converting thread-
level parallelism into instruction-level parallelism via simultaneous multithreading,”
ACM Trans. on Computer Systems 15:2 (August), 322–354.

Lovett, T., and S. Thakkar [1988]. “The Symmetry multiprocessor system,” Proc. 1988
Int’l. Conf. of Parallel Processing, University Park, Penn., 303–310.

Lubeck, O., J. Moore, and R. Mendez [1985]. “A benchmark comparison of three super-
computers: Fujitsu VP-200, Hitachi S810/20, and Cray X-MP/2,” Computer 18:12
(December), 10–24.

Luk, C.-K., and T. C Mowry [1999]. “Automatic compiler-inserted prefetching for
pointer-based applications,” IEEE Trans. on Computers 48:2 (February), 134–141.

Lunde, A. [1977]. “Empirical evaluation of some features of instruction set processor
architecture,” Communications of the ACM 20:3 (March), 143–152.

Luszczek, P., J. J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas, J. Kepner, J. McCal-
pin, D. Bailey, and D. Takahashi [2005]. “Introduction to the HPC challenge bench-
mark suite,” Lawrence Berkeley National Laboratory, Paper LBNL-57493 (April 25),
repositories.cdlib.org/lbnl/LBNL-57493.

Maberly, N. C. [1966]. Mastering Speed Reading, New American Library, New York.
Magenheimer, D. J., L. Peters, K. W. Pettis, and D. Zuras [1988]. “Integer multiplication

and division on the HP precision architecture,” IEEE Trans. on Computers 37:8,
980–990.

Mahlke, S. A., W. Y. Chen, W.-M. Hwu, B. R. Rau, and M. S. Schlansker [1992]. “Sentinel
scheduling for VLIW and superscalar processors,” Proc. Fifth Int’l. Conf. on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS), October
12–15, 1992, Boston, 238–247.

Mahlke, S. A., R. E. Hank, J. E. McCormick, D. I. August, and W. W. Hwu [1995]. “A
comparison of full and partial predicated execution support for ILP processors,” Proc.
22nd Annual Int’l. Symposium on Computer Architecture (ISCA), June 22–24, 1995,
Santa Margherita, Italy, 138–149.

Major, J. B. [1989]. “Are queuing models within the grasp of the unwashed?,” Proc. Int’l.
Conf. on Management and Performance Evaluation of Computer Systems, December
11–15, 1989, Reno, Nev., 831–839.

Markstein, P. W. [1990]. “Computation of elementary functions on the IBM RISC Sys-
tem/6000 processor,” IBM J. Research and Development 34:1, 111–119.

Mathis, H. M., A. E. Mercias, J. D. McCalpin, R. J. Eickemeyer, and S. R. Kunkel [2005].
“Characterization of the multithreading (SMT) efficiency in Power5,” IBM J.
Research and Development, 49:4/5 (July/September), 555–564.

McCalpin, J. [2005]. “STREAM: Sustainable Memory Bandwidth in High Performance
Computers,” www.cs.virginia.edu/stream/.

McCalpin, J., D. Bailey, and D. Takahashi [2005]. Introduction to the HPC Challenge
Benchmark Suite, Paper LBNL-57493 Lawrence Berkeley National Laboratory,
University of California, Berkeley, repositories.cdlib.org/lbnl/LBNL-57493.

McCormick, J., and A. Knies [2002]. “A brief analysis of the SPEC CPU2000 benchmarks
on the Intel Itanium 2 processor,” paper presented at Hot Chips 14, August 18–20,
2002, Stanford University, Palo Alto, Calif.

McFarling, S. [1989]. “Program optimization for instruction caches,” Proc. Third Int’l.
Conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), April 3–6, 1989, Boston, 183–191.

McFarling, S. [1993]. Combining Branch Predictors, WRL Technical Note TN-36, Digital
Western Research Laboratory, Palo Alto, Calif.

McFarling, S., and J. Hennessy [1986]. “Reducing the cost of branches,” Proc. 13th
Annual Int’l. Symposium on Computer Architecture (ISCA), June 2–5, 1986, Tokyo,
396–403.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.cs.virginia.edu/stream/
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

References ■ R-21

McGhan, H., and M. O’Connor [1998]. “PicoJava: A direct execution engine for Java
bytecode,” Computer 31:10 (October), 22–30.

McKeeman, W. M. [1967]. “Language directed computer design,” Proc. AFIPS Fall Joint
Computer Conf., November 14–16, 1967, Washington, D.C., 413–417.

McMahon, F. M. [1986]. “The Livermore FORTRAN Kernels: A Computer Test of Numer-
ical Performance Range,” Tech. Rep. UCRL-55745, Lawrence Livermore National
Laboratory, University of California, Livermore.

McNairy, C., and D. Soltis [2003]. “Itanium 2 processor microarchitecture,” IEEE Micro
23:2 (March–April), 44–55.

Mead, C., and L. Conway [1980]. Introduction to VLSI Systems, Addison-Wesley, Reading,
Mass.

Mellor-Crummey, J. M., and M. L. Scott [1991]. “Algorithms for scalable synchronization
on shared-memory multiprocessors,” ACM Trans. on Computer Systems 9:1 (February),
21–65.

Menabrea, L. F. [1842]. “Sketch of the analytical engine invented by Charles Babbage,”
Bibliothèque Universelle de Genève, 82 (October).

Menon, A., J. Renato Santos, Y. Turner, G. Janakiraman, and W. Zwaenepoel [2005].
“Diagnosing performance overheads in the xen virtual machine environment,” Proc.
First ACM/USENIX Int’l. Conf. on Virtual Execution Environments, June 11–12,
2005, Chicago, 13–23.

Merlin, P. M., and P. J. Schweitzer [1980]. “Deadlock avoidance in store-and-forward net-
works. Part I. Store-and-forward deadlock,” IEEE Trans. on Communications COM-28:3
(March), 345–354.

Metcalfe, R. M. [1993]. “Computer/network interface design: Lessons from Arpanet and
Ethernet,” IEEE J. on Selected Areas in Communications 11:2 (February), 173–180.

Metcalfe, R. M., and D. R. Boggs [1976]. “Ethernet: Distributed packet switching for
local computer networks,” Communications of the ACM 19:7 (July), 395–404.

Metropolis, N., J. Howlett, and G. C. Rota (eds.) [1980]. A History of Computing in the
Twentieth Century, Academic Press, New York.

Meyer, R. A., and L. H. Seawright [1970]. A virtual machine time sharing system, IBM
Systems J. 9:3, 199–218.

Meyers, G. J. [1978]. “The evaluation of expressions in a storage-to-storage architecture,”
Computer Architecture News 7:3 (October), 20–23.

Meyers, G. J. [1982]. Advances in Computer Architecture, 2nd ed., Wiley, New York.
Micron. [2004]. “Calculating Memory System Power for DDR2,” http://download.

micron.com/pdf/pubs/designline/dl1Q04.pdf.
Micron. [2006]. “The Micron® System-Power Calculator,” http://www.micron.com/

systemcalc.
MIPS. [1997]. “MIPS16 Application Specific Extension Product Description,”

www.sgi.com/MIPS/arch/MIPS16/mips16.pdf.
Miranker, G. S., J. Rubenstein, and J. Sanguinetti [1988]. “Squeezing a Cray-class super-

computer into a single-user package,” Proc. IEEE COMPCON, February 29–March 4,
1988, San Francisco, 452–456.

Mitchell, D. [1989]. “The Transputer: The time is now,” Computer Design (RISC suppl.),
40–41.

Mitsubishi. [1996]. Mitsubishi 32-Bit Single Chip Microcomputer M32R Family Software
Manual, Mitsubishi, Cypress, Calif.

Miura, K., and K. Uchida [1983]. “FACOM vector processing system: VP100/200,” Proc.
NATO Advanced Research Workshop on High-Speed Computing, June 20–22, 1983,
Jülich, West Germany. Also appears in K. Hwang, ed., “Superprocessors: Design and
applications,” IEEE (August 1984), 59–73.

http://www.micron.com/systemcalc
http://www.micron.com/systemcalc
http://www.sgi.com/MIPS/arch/MIPS16/mips16.pdf
http://www.download.micron.com/pdf/pubs/designline/dl1Q04.pdf
http://www.download.micron.com/pdf/pubs/designline/dl1Q04.pdf

R-22 ■ References

Miya, E. N. [1985]. “Multiprocessor/distributed processing bibliography,” Computer
Architecture News 13:1, 27–29.

Montoye, R. K., E. Hokenek, and S. L. Runyon [1990]. “Design of the IBM RISC System/
6000 floating-point execution,” IBM J. Research and Development 34:1, 59–70.

Moore, B., A. Padegs, R. Smith, and W. Bucholz [1987]. “Concepts of the System/370
vector architecture,” 14th Annual Int’l. Symposium on Computer Architecture (ISCA),
June 2–5, 1987, Pittsburgh, Penn., 282–292.

Moore, G. E. [1965]. “Cramming more components onto integrated circuits,” Electronics,
38:8 (April 19), 114–117.

Morse, S., B. Ravenal, S. Mazor, and W. Pohlman [1980]. “Intel microprocessors—8080
to 8086,” Computer 13:10 (October).

Moshovos, A., and G. S. Sohi [1997]. “Streamlining inter-operation memory communica-
tion via data dependence prediction,” Proc. 30th Annual Int’l. Symposium on Micro-
architecture, December 1–3, Research Triangle Park, N.C., 235–245.

Moshovos, A., S. Breach, T. N. Vijaykumar, and G. S. Sohi [1997]. “Dynamic speculation
and synchronization of data dependences,” 24th Annual Int’l. Symposium on Com-
puter Architecture (ISCA), June 2–4, 1997, Denver, Colo.

Moussouris, J., L. Crudele, D. Freitas, C. Hansen, E. Hudson, S. Przybylski, T. Riordan,
and C. Rowen [1986]. “A CMOS RISC processor with integrated system functions,”
Proc. IEEE COMPCON, March 3–6, 1986, San Francisco, 191.

Mowry, T. C., S. Lam, and A. Gupta [1992]. “Design and evaluation of a compiler algo-
rithm for prefetching,” Proc. Fifth Int’l. Conf. on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), October 12–15, 1992, Boston
(SIGPLAN Notices 27:9 (September), 62–73).

MSN Money. [2005]. “Amazon Shares Tumble after Rally Fizzles,” http://moneycentral
.msn.com/content/CNBCTV/Articles/Dispatches/P133695.asp.

Muchnick, S. S. [1988]. “Optimizing compilers for SPARC,” Sun Technology 1:3
(Summer), 64–77.

Mueller, M., L. C. Alves, W. Fischer, M. L. Fair, and I. Modi [1999]. “RAS strategy for
IBM S/390 G5 and G6,” IBM J. Research and Development 43:5–6 (September–
November), 875–888.

Mukherjee, S. S., C. Weaver, J. S. Emer, S. K. Reinhardt, and T. M. Austin [2003]. “Mea-
suring architectural vulnerability factors,” IEEE Micro 23:6, 70–75.

Murphy, B., and T. Gent [1995]. “Measuring system and software reliability using an
automated data collection process,” Quality and Reliability Engineering International
11:5 (September–October), 341–353.

Myer, T. H., and I. E. Sutherland [1968]. “On the design of display processors,” Commu-
nications of the ACM 11:6 (June), 410–414.

Narayanan, D., E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron [2009]. “Migrat-
ing server storage to SSDs: Analysis of trade-offs,” Proc. 4th ACM European Conf.
on Computer Systems, April 1–3, 2009, Nuremberg, Germany.

National Research Council. [1997]. The Evolution of Untethered Communications,
Computer Science and Telecommunications Board, National Academy Press,
Washington, D.C.

National Storage Industry Consortium. [1998]. “Tape Roadmap,” www.nsic.org.
Nelson, V. P. [1990]. “Fault-tolerant computing: Fundamental concepts,” Computer 23:7

(July), 19–25.
Ngai, T.-F., and M. J. Irwin [1985]. “Regular, area-time efficient carry-lookahead adders,”

Proc. Seventh IEEE Symposium on Computer Arithmetic, June 4–6, 1985, University
of Illinois, Urbana, 9–15.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.nsic.org
http://www.moneycentral.msn.com/content/CNBCTV/Articles/Dispatches/P133695.asp
http://www.moneycentral.msn.com/content/CNBCTV/Articles/Dispatches/P133695.asp
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

References ■ R-23

Nicolau, A., and J. A. Fisher [1984]. “Measuring the parallelism available for very long
instruction word architectures,” IEEE Trans. on Computers C-33:11 (November),
968–976.

Nikhil, R. S., G. M. Papadopoulos, and Arvind [1992]. “*T: A multithreaded massively
parallel architecture,” Proc. 19th Annual Int’l. Symposium on Computer Architecture
(ISCA), May 19–21, 1992, Gold Coast, Australia, 156–167.

Noordergraaf, L., and R. van der Pas [1999]. “Performance experiences on Sun’s WildFire
prototype,” Proc. ACM/IEEE Conf. on Supercomputing, November 13–19, 1999,
Portland, Ore.

Nyberg, C. R., T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet [1994]. “AlphaSort:
A RISC machine sort,” Proc. ACM SIGMOD, May 24–27, 1994, Minneapolis, Minn.

Oka, M., and M. Suzuoki [1999]. “Designing and programming the emotion engine,”
IEEE Micro 19:6 (November–December), 20–28.

Okada, S., S. Okada, Y. Matsuda, T. Yamada, and A. Kobayashi [1999]. “System on a
chip for digital still camera,” IEEE Trans. on Consumer Electronics 45:3 (August),
584–590.

Oliker, L., A. Canning, J. Carter, J. Shalf, and S. Ethier [2004]. “Scientific computations
on modern parallel vector systems,” Proc. ACM/IEEE Conf. on Supercomputing,
November 6–12, 2004, Pittsburgh, Penn., 10.

Pabst, T. [2000]. “Performance Showdown at 133 MHz FSB—The Best Platform for
Coppermine,” www6.tomshardware.com/mainboard/00q1/000302/.

Padua, D., and M. Wolfe [1986]. “Advanced compiler optimizations for supercomputers,”
Communications of the ACM 29:12 (December), 1184–1201.

Palacharla, S., and R. E. Kessler [1994]. “Evaluating stream buffers as a secondary cache
replacement,” Proc. 21st Annual Int’l. Symposium on Computer Architecture (ISCA),
April 18–21, 1994, Chicago, 24–33.

Palmer, J., and S. Morse [1984]. The 8087 Primer, John Wiley & Sons, New York, 93.
Pan, S.-T., K. So, and J. T. Rameh [1992]. “Improving the accuracy of dynamic branch

prediction using branch correlation,” Proc. Fifth Int’l. Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), October 12–15,
1992, Boston, 76–84.

Partridge, C. [1994]. Gigabit Networking, Addison-Wesley, Reading, Mass.
Patterson, D. [1985]. “Reduced instruction set computers,” Communications of the ACM

28:1 (January), 8–21.
Patterson, D. [2004]. “Latency lags bandwidth,” Communications of the ACM 47:10

(October), 71–75.
Patterson, D. A., and D. R. Ditzel [1980]. “The case for the reduced instruction set com-

puter,” Computer Architecture News 8:6 (October), 25–33.
Patterson, D. A., and J. L. Hennessy [2004]. Computer Organization and Design: The

Hardware/Software Interface, 3rd ed., Morgan Kaufmann, San Francisco.
Patterson, D. A., G. A. Gibson, and R. H. Katz [1987]. A Case for Redundant Arrays of

Inexpensive Disks (RAID), Tech. Rep. UCB/CSD 87/391, University of California,
Berkeley. Also appeared in Proc. ACM SIGMOD, June 1–3, 1988, Chicago, 109–116.

Patterson, D. A., P. Garrison, M. Hill, D. Lioupis, C. Nyberg, T. Sippel, and K. Van Dyke
[1983]. “Architecture of a VLSI instruction cache for a RISC,” 10th Annual Int’l.
Conf. on Computer Architecture Conf. Proc., June 13–16, 1983, Stockholm, Sweden,
108–116.

Pavan, P., R. Bez, P. Olivo, and E. Zanoni [1997]. “Flash memory cells—an overview.”
Proc. IEEE 85:8 (August), 1248–1271.

Peh, L. S., and W. J. Dally [2001]. “A delay model and speculative architecture for pipe-
lined routers,” Proc. 7th Int’l. Symposium on High-Performance Computer Architec-
ture, January 22–24, 2001, Monterrey, Mexico.

http://www6.tomshardware.com/mainboard/00q1/000302/

R-24 ■ References

Peng, V., S. Samudrala, and M. Gavrielov [1987]. “On the implementation of shifters,
multipliers, and dividers in VLSI floating point units,” Proc. 8th IEEE Symposium on
Computer Arithmetic, May 19–21, 1987, Como, Italy, 95–102.

Pfister, G. F. [1998]. In Search of Clusters, 2nd ed., Prentice Hall, Upper Saddle River,
N.J.

Pfister, G. F., W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfekder, K. P.
McAuliffe, E. A. Melton, V. A. Norton, and J. Weiss [1985]. “The IBM research
parallel processor prototype (RP3): Introduction and architecture,” Proc. 12th Annual
Int’l. Symposium on Computer Architecture (ISCA), June 17–19, 1985, Boston, Mass.,
764–771.

Pinheiro, E., W. D. Weber, and L. A. Barroso [2007]. “Failure trends in a large disk drive
population,” Proc. 5th USENIX Conference on File and Storage Technologies (FAST
’07), February 13–16, 2007, San Jose, Calif.

Pinkston, T. M. [2004]. “Deadlock characterization and resolution in interconnection
networks,” in M. C. Zhu and M. P. Fanti, eds., Deadlock Resolution in Computer-
Integrated Systems, CRC Press, Boca Raton, FL, 445–492.

Pinkston, T. M., and J. Shin [2005]. “Trends toward on-chip networked microsystems,”
Int’l. J. of High Performance Computing and Networking 3:1, 3–18.

Pinkston, T. M., and S. Warnakulasuriya [1997]. “On deadlocks in interconnection net-
works,” 24th Annual Int’l. Symposium on Computer Architecture (ISCA), June 2–4,
1997, Denver, Colo.

Pinkston, T. M., A. Benner, M. Krause, I. Robinson, and T. Sterling [2003]. “InfiniBand:
The ‘de facto’ future standard for system and local area networks or just a scalable
replacement for PCI buses?” Cluster Computing (special issue on communication
architecture for clusters) 6:2 (April), 95–104.

Postiff, M. A., D. A. Greene, G. S. Tyson, and T. N. Mudge [1999]. “The limits of instruc-
tion level parallelism in SPEC95 applications,” Computer Architecture News 27:1
(March), 31–40.

Przybylski, S. A. [1990]. Cache Design: A Performance-Directed Approach, Morgan
Kaufmann, San Francisco.

Przybylski, S. A., M. Horowitz, and J. L. Hennessy [1988]. “Performance trade-offs in cache
design,” 15th Annual Int’l. Symposium on Computer Architecture, May 30–June 2,
1988, Honolulu, Hawaii, 290–298.

Puente, V., R. Beivide, J. A. Gregorio, J. M. Prellezo, J. Duato, and C. Izu [1999]. “Adap-
tive bubble router: A design to improve performance in torus networks,” Proc. 28th
Int’l. Conference on Parallel Processing, September 21–24, 1999, Aizu-Wakamatsu,
Fukushima, Japan.

Radin, G. [1982]. “The 801 minicomputer,” Proc. Symposium Architectural Support for
Programming Languages and Operating Systems (ASPLOS), March 1–3, 1982, Palo
Alto, Calif., 39–47.

Rajesh Bordawekar, Uday Bondhugula, Ravi Rao: Believe it or not!: mult-core CPUs can
match GPU performance for a FLOP-intensive application! 19th International Confer-
ence on Parallel Architecture and Compilation Techniques (PACT 2010), Vienna,
Austria, September 11-15, 2010: 537-538.

Ramamoorthy, C. V., and H. F. Li [1977]. “Pipeline architecture,” ACM Computing
Surveys 9:1 (March), 61–102.

Ranganathan, P., P. Leech, D. Irwin, and J. Chase [2006]. “Ensemble-Level Power
Management for Dense Blade Servers,” Proc. 33rd Annual Int’l. Symposium on
Computer Architecture (ISCA), June 17–21, 2006, Boston, Mass., 66–77.

Rau, B. R. [1994]. “Iterative modulo scheduling: An algorithm for software pipelining loops,”
Proc. 27th Annual Int’l. Symposium on Microarchitecture, November 30–December 2,
1994, San Jose, Calif., 63–74.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

References ■ R-25

Rau, B. R., C. D. Glaeser, and R. L. Picard [1982]. “Efficient code generation for horizon-
tal architectures: Compiler techniques and architectural support,” Proc. Ninth Annual
Int’l. Symposium on Computer Architecture (ISCA), April 26–29, 1982, Austin, Tex.,
131–139.

Rau, B. R., D. W. L. Yen, W. Yen, and R. A. Towle [1989]. “The Cydra 5 departmental
supercomputer: Design philosophies, decisions, and trade-offs,” IEEE Computers
22:1 (January), 12–34.

Reddi, V. J. , B. C. Lee, T. Chilimbi, and K. Vaid [2010]. “Web search using mobile
cores: Quantifying and mitigating the price of efficiency,” Proc. 37th Annual Int’l.
Symposium on Computer Architecture (ISCA), June 19–23, 2010, Saint-Malo, France.

Redmond, K. C., and T. M. Smith [1980]. Project Whirlwind—The History of a Pioneer
Computer, Digital Press, Boston.

Reinhardt, S. K., J. R. Larus, and D. A. Wood [1994]. “Tempest and Typhoon: User-level
shared memory,” 21st Annual Int’l. Symposium on Computer Architecture (ISCA),
April 18–21, 1994, Chicago, 325–336.

Reinman, G., and N. P. Jouppi. [1999]. “Extensions to CACTI,” research.compaq.com/
wrl/people/jouppi/CACTI.html.

Rettberg, R. D., W. R. Crowther, P. P. Carvey, and R. S. Towlinson [1990]. “The Mon-
arch parallel processor hardware design,” IEEE Computer 23:4 (April), 18–30.

Riemens, A., K. A. Vissers, R. J. Schutten, F. W. Sijstermans, G. J. Hekstra, and G. D. La
Hei [1999].“Trimedia CPU64 application domain and benchmark suite,” Proc. IEEE
Int’l. Conf. on Computer Design: VLSI in Computers and Processors (ICCD’99),
October 10–13, 1999, Austin, Tex., 580–585.

Riseman, E. M., and C. C. Foster [1972]. “Percolation of code to enhance paralled dis-
patching and execution,” IEEE Trans. on Computers C-21:12 (December), 1411–1415.

Robin, J., and C. Irvine [2000]. “Analysis of the Intel Pentium’s ability to support a secure
virtual machine monitor.” Proc. USENIX Security Symposium, August 14–17, 2000,
Denver, Colo.

Robinson, B., and L. Blount [1986]. The VM/HPO 3880-23 Performance Results, IBM
Tech. Bulletin GG66-0247-00, IBM Washington Systems Center, Gaithersburg, Md.

Ropers, A., H. W. Lollman, and J. Wellhausen [1999]. DSPstone: Texas Instruments
TMS320C54x, Tech. Rep. IB 315 1999/9-ISS-Version 0.9, Aachen University of
Technology, Aaachen, Germany (www.ert.rwth-aachen.de/Projekte/Tools/coal/
dspstone_c54x/index.html).

Rosenblum, M., S. A. Herrod, E. Witchel, and A. Gupta [1995]. “Complete computer sim-
ulation: The SimOS approach,” in IEEE Parallel and Distributed Technology (now
called Concurrency) 4:3, 34–43.

Rowen, C., M. Johnson, and P. Ries [1988]. “The MIPS R3010 floating-point coproces-
sor,” IEEE Micro 8:3 (June), 53–62.

Russell, R. M. [1978]. “The Cray-1 processor system,” Communications of the ACM 21:1
(January), 63–72.

Rymarczyk, J. [1982]. “Coding guidelines for pipelined processors,” Proc. Symposium
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
March 1–3, 1982, Palo Alto, Calif., 12–19.

Saavedra-Barrera, R. H. [1992]. “CPU Performance Evaluation and Execution Time Pre-
diction Using Narrow Spectrum Benchmarking,” Ph.D. dissertation, University of
California, Berkeley.

Salem, K., and H. Garcia-Molina [1986]. “Disk striping,” Proc. 2nd Int’l. IEEE Conf. on
Data Engineering, February 5–7, 1986, Washington, D.C., 249–259.

http://www.ert.rwth-aachen.de/Projekte/Tools/coal/dspstone_c54x/index.html
http://www.ert.rwth-aachen.de/Projekte/Tools/coal/dspstone_c54x/index.html

R-26 ■ References

Saltzer, J. H., D. P. Reed, and D. D. Clark [1984]. “End-to-end arguments in system
design,” ACM Trans. on Computer Systems 2:4 (November), 277–288.

Samples, A. D., and P. N. Hilfinger [1988]. Code Reorganization for Instruction Caches,
Tech. Rep. UCB/CSD 88/447, University of California, Berkeley.

Santoro, M. R., G. Bewick, and M. A. Horowitz [1989]. “Rounding algorithms for IEEE
multipliers,” Proc. Ninth IEEE Symposium on Computer Arithmetic, September 6–8,
Santa Monica, Calif., 176–183.

Satran, J., D. Smith, K. Meth, C. Sapuntzakis, M. Wakeley, P. Von Stamwitz, R. Haagens,
E. Zeidner, L. Dalle Ore, and Y. Klein [2001]. “iSCSI,” IPS Working Group of IETF,
Internet draft www.ietf.org/internet-drafts/draft-ietf-ips-iscsi-07.txt.

Saulsbury, A., T. Wilkinson, J. Carter, and A. Landin [1995]. “An argument for Simple
COMA,” Proc. First IEEE Symposium on High-Performance Computer Architec-
tures, January 22–25, 1995, Raleigh, N.C., 276–285.

Schneck, P. B. [1987]. Superprocessor Architecture, Kluwer Academic Publishers, Norwell,
Mass.

Schroeder, B., and G. A. Gibson [2007]. “Understanding failures in petascale computers,”
J. of Physics Conf. Series 78(1), 188–198.

Schroeder, B., E. Pinheiro, and W.-D. Weber [2009]. “DRAM errors in the wild: a large-
scale field study,” Proc. Eleventh Int’l. Joint Conf. on Measurement and Modeling of
Computer Systems (SIGMETRICS), June 15–19, 2009, Seattle, Wash.

Schurman, E., and J. Brutlag [2009]. “The user and business impact of server delays,”
Proc. Velocity: Web Performance and Operations Conf., June 22–24, 2009, San Jose,
Calif.

Schwartz, J. T. [1980]. “Ultracomputers,” ACM Trans. on Programming Languages and
Systems 4:2, 484–521.

Scott, N. R. [1985]. Computer Number Systems and Arithmetic, Prentice Hall, Englewood
Cliffs, N.J.

Scott, S. L. [1996]. “Synchronization and communication in the T3E multiprocessor,”
Seventh Int’l. Conf. on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS), October 1–5, 1996, Cambridge, Mass.

Scott, S. L., and J. Goodman [1994]. “The impact of pipelined channels on k-ary n-cube
networks,” IEEE Trans. on Parallel and Distributed Systems 5:1 (January), 1–16.

Scott, S. L., and G. M. Thorson [1996]. “The Cray T3E network: Adaptive routing in a
high performance 3D torus,” Proc. IEEE HOT Interconnects ’96, August 15–17,
1996, Stanford University, Palo Alto, Calif., 14–156.

Scranton, R. A., D. A. Thompson, and D. W. Hunter [1983]. The Access Time Myth,”
Tech. Rep. RC 10197 (45223), IBM, Yorktown Heights, N.Y.

Seagate. [2000]. Seagate Cheetah 73 Family: ST173404LW/LWV/LC/LCV Product Man-
ual, Vol. 1, Seagate, Scotts Valley, Calif. (www.seagate.com/support/disc/manuals/
scsi/29478b.pdf).

Seitz, C. L. [1985]. “The Cosmic Cube (concurrent computing),” Communications of the
ACM 28:1 (January), 22–33.

Senior, J. M. [1993]. Optical Fiber Commmunications: Principles and Practice, 2nd ed.,
Prentice Hall, Hertfordshire, U.K.

Sharangpani, H., and K. Arora [2000]. “Itanium Processor Microarchitecture,” IEEE
Micro 20:5 (September–October), 24–43.

Shurkin, J. [1984]. Engines of the Mind: A History of the Computer, W. W. Norton,
New York.

Shustek, L. J. [1978]. “Analysis and Performance of Computer Instruction Sets,” Ph.D.
dissertation, Stanford University, Palo Alto, Calif.

Silicon Graphics. [1996]. MIPS V Instruction Set (see http://www.sgi.com/MIPS/arch/
ISA5/#MIPSV_indx).

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.ietf.org/internet-drafts/draft-ietf-ips-iscsi-07.txt
http://www.seagate.com/support/disc/manuals/scsi/29478b.pdf
http://www.seagate.com/support/disc/manuals/scsi/29478b.pdf
http://www.sgi.com/MIPS/arch/ISA5/#MIPSV_indx
http://www.sgi.com/MIPS/arch/ISA5/#MIPSV_indx
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

References ■ R-27

Singh, J. P., J. L. Hennessy, and A. Gupta [1993]. “Scaling parallel programs for multipro-
cessors: Methodology and examples,” Computer 26:7 (July), 22–33.

Sinharoy, B., R. N. Koala, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner [2005].
“POWER5 system microarchitecture,” IBM J. Research and Development, 49:4–5,
505–521.

Sites, R. [1979]. Instruction Ordering for the CRAY-1 Computer, Tech. Rep. 78-CS-023,
Dept. of Computer Science, University of California, San Diego.

Sites, R. L. (ed.) [1992]. Alpha Architecture Reference Manual, Digital Press, Burlington,
Mass.

Sites, R. L., and R. Witek, (eds.) [1995]. Alpha Architecture Reference Manual, 2nd ed.,
Digital Press, Newton, Mass.

Skadron, K., and D. W. Clark [1997]. “Design issues and tradeoffs for write buffers,”
Proc. Third Int’l. Symposium on High-Performance Computer Architecture, February
1–5, 1997, San Antonio, Tex., 144–155.

Skadron, K., P. S. Ahuja, M. Martonosi, and D. W. Clark [1999]. “Branch prediction,
instruction-window size, and cache size: Performance tradeoffs and simulation tech-
niques,” IEEE Trans. on Computers 48:11 (November).

Slater, R. [1987]. Portraits in Silicon, MIT Press, Cambridge, Mass.
Slotnick, D. L., W. C. Borck, and R. C. McReynolds [1962]. “The Solomon computer,”

Proc. AFIPS Fall Joint Computer Conf., December 4–6, 1962, Philadelphia, Penn.,
97–107.

Smith, A. J. [1982]. “Cache memories,” Computing Surveys 14:3 (September), 473–530.
Smith, A., and J. Lee [1984]. “Branch prediction strategies and branch-target buffer

design,” Computer 17:1 (January), 6–22.
Smith, B. J. [1978]. “A pipelined, shared resource MIMD computer,” Proc. Int’l. Conf. on

Parallel Processing (ICPP), August, Bellaire, Mich., 6–8.
Smith, B. J. [1981]. “Architecture and applications of the HEP multiprocessor system,”

Real-Time Signal Processing IV 298 (August), 241–248.
Smith, J. E. [1981]. “A study of branch prediction strategies,” Proc. Eighth Annual Int’l.

Symposium on Computer Architecture (ISCA), May 12–14, 1981, Minneapolis, Minn.,
135–148.

Smith, J. E. [1984]. “Decoupled access/execute computer architectures,” ACM Trans. on
Computer Systems 2:4 (November), 289–308.

Smith, J. E. [1988]. “Characterizing computer performance with a single number,”
Communications of the ACM 31:10 (October), 1202–1206.

Smith, J. E. [1989]. “Dynamic instruction scheduling and the Astronautics ZS-1,”
Computer 22:7 (July), 21–35.

Smith, J. E., and J. R. Goodman [1983]. “A study of instruction cache organizations and
replacement policies,” Proc. 10th Annual Int’l. Symposium on Computer Architecture
(ISCA), June 5–7, 1982, Stockholm, Sweden, 132–137.

Smith, J. E., and A. R. Pleszkun [1988]. “Implementing precise interrupts in pipelined
processors,” IEEE Trans. on Computers 37:5 (May), 562–573. (This paper is based on
an earlier paper that appeared in Proc. 12th Annual Int’l. Symposium on Computer
Architecture (ISCA), June 17–19, 1985, Boston, Mass.)

Smith, J. E., G. E. Dermer, B. D. Vanderwarn, S. D. Klinger, C. M. Rozewski, D. L.
Fowler, K. R. Scidmore, and J. P. Laudon [1987]. “The ZS-1 central processor,” Proc.
Second Int’l. Conf. on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS), October 5–8, 1987, Palo Alto, Calif., 199–204.

Smith, M. D., M. Horowitz, and M. S. Lam [1992]. “Efficient superscalar performance
through boosting,” Proc. Fifth Int’l. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), October 12–15, 1992, Boston, 248–259.

R-28 ■ References

Smith, M. D., M. Johnson, and M. A. Horowitz [1989]. “Limits on multiple instruction
issue,” Proc. Third Int’l. Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), April 3–6, 1989, Boston, 290–302.

Smotherman, M. [1989]. “A sequencing-based taxonomy of I/O systems and review of
historical machines,” Computer Architecture News 17:5 (September), 5–15. Reprinted
in Computer Architecture Readings, M. D. Hill, N. P. Jouppi, and G. S. Sohi, eds.,
Morgan Kaufmann, San Francisco, 1999, 451–461.

Sodani, A., and G. Sohi [1997]. “Dynamic instruction reuse,” Proc. 24th Annual Int’l.
Symposium on Computer Architecture (ISCA), June 2–4, 1997, Denver, Colo.

Sohi, G. S. [1990]. “Instruction issue logic for high-performance, interruptible, multiple
functional unit, pipelined computers,” IEEE Trans. on Computers 39:3 (March),
349–359.

Sohi, G. S., and S. Vajapeyam [1989]. “Tradeoffs in instruction format design for horizon-
tal architectures,” Proc. Third Int’l. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), April 3–6, 1989, Boston, 15–25.

Soundararajan, V., M. Heinrich, B. Verghese, K. Gharachorloo, A. Gupta, and J. L.
Hennessy [1998]. “Flexible use of memory for replication/migration in cache-
coherent DSM multiprocessors,” Proc. 25th Annual Int’l. Symposium on Computer
Architecture (ISCA), July 3–14, 1998, Barcelona, Spain, 342–355.

SPEC. [1989]. SPEC Benchmark Suite Release 1.0 (October 2).
SPEC. [1994]. SPEC Newsletter (June).
Sporer, M., F. H. Moss, and C. J. Mathais [1988]. “An introduction to the architecture of

the Stellar Graphics supercomputer,” Proc. IEEE COMPCON, February 29–March 4,
1988, San Francisco, 464.

Spurgeon, C. [2001]. “Charles Spurgeon’s Ethernet Web Site,” wwwhost.ots.utexas.edu/
ethernet/ethernet-home.html.

Spurgeon, C. [2006]. “Charles Spurgeon’s Ethernet Web SITE,” www.ethermanage.com/
ethernet/ethernet.html.

Stenström, P., T. Joe, and A. Gupta [1992]. “Comparative performance evaluation of
cache-coherent NUMA and COMA architectures,” Proc. 19th Annual Int’l. Symposium
on Computer Architecture (ISCA), May 19–21, 1992, Gold Coast, Australia, 80–91.

Sterling, T. [2001]. Beowulf PC Cluster Computing with Windows and Beowulf PC Clus-
ter Computing with Linux, MIT Press, Cambridge, Mass.

Stern, N. [1980]. “Who invented the first electronic digital computer?” Annals of the His-
tory of Computing 2:4 (October), 375–376.

Stevens, W. R. [1994–1996]. TCP/IP Illustrated (three volumes), Addison-Wesley, Read-
ing, Mass.

Stokes, J. [2000]. “Sound and Vision: A Technical Overview of the Emotion Engine,”
arstechnica.com/reviews/1q00/playstation2/ee-1.html.

Stone, H. [1991]. High Performance Computers, Addison-Wesley, New York.
Strauss, W. [1998]. “DSP Strategies 2002,” www.usadata.com/ market_research/spr_05/

spr_r127-005.htm.
Strecker, W. D. [1976]. “Cache memories for the PDP-11?,” Proc. Third Annual Int’l.

Symposium on Computer Architecture (ISCA), January 19–21, 1976, Tampa, Fla.,
155–158.

Strecker, W. D. [1978]. “VAX-11/780: A virtual address extension of the PDP-11 fam-
ily,” Proc. AFIPS National Computer Conf., June 5–8, 1978, Anaheim, Calif., 47,
967–980.

Sugumar, R. A., and S. G. Abraham [1993]. “Efficient simulation of caches under optimal
replacement with applications to miss characterization,” Proc. ACM SIGMETRICS
Conf. on Measurement and Modeling of Computer Systems, May 17–21, 1993, Santa
Clara, Calif., 24–35.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.host.ots.utexas.edu/ethernet/ethernet-home.html
http://www.host.ots.utexas.edu/ethernet/ethernet-home.html
http://www.ethermanage.com/ethernet/ethernet.html
http://www.ethermanage.com/ethernet/ethernet.html
http://www.usadata.com/ market_research/spr_05/spr_r127-005.htm
http://www.usadata.com/ market_research/spr_05/spr_r127-005.htm
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

References ■ R-29

Sun Microsystems. [1989]. The SPARC Architectural Manual, Version 8, Part No.
8001399-09, Sun Microsystems, Santa Clara, Calif.

Sussenguth, E. [1999]. “IBM’s ACS-1 Machine,” IEEE Computer 22:11 (November).
Swan, R. J., S. H. Fuller, and D. P. Siewiorek [1977]. “Cm*—a modular, multi-

microprocessor,” Proc. AFIPS National Computing Conf., June 13–16, 1977, Dallas,
Tex., 637–644.

Swan, R. J., A. Bechtolsheim, K. W. Lai, and J. K. Ousterhout [1977]. “The implementation
of the Cm* multi-microprocessor,” Proc. AFIPS National Computing Conf., June 13–16,
1977, Dallas, Tex., 645–654.

Swartzlander, E. (ed.) [1990]. Computer Arithmetic, IEEE Computer Society Press, Los
Alamitos, Calif.

Takagi, N., H. Yasuura, and S. Yajima [1985].“High-speed VLSI multiplication algorithm
with a redundant binary addition tree,” IEEE Trans. on Computers C-34:9, 789–796.

Talagala, N. [2000]. “Characterizing Large Storage Systems: Error Behavior and Perfor-
mance Benchmarks,” Ph.D. dissertation, Computer Science Division, University of
California, Berkeley.

Talagala, N., and D. Patterson [1999]. An Analysis of Error Behavior in a Large Storage
System, Tech. Report UCB//CSD-99-1042, Computer Science Division, University of
California, Berkeley.

Talagala, N., R. Arpaci-Dusseau, and D. Patterson [2000]. Micro-Benchmark Based
Extraction of Local and Global Disk Characteristics, CSD-99-1063, Computer
Science Division, University of California, Berkeley.

Talagala, N., S. Asami, D. Patterson, R. Futernick, and D. Hart [2000]. “The art of mas-
sive storage: A case study of a Web image archive,” Computer (November).

Tamir, Y., and G. Frazier [1992]. “Dynamically-allocated multi-queue buffers for VLSI
communication switches,” IEEE Trans. on Computers 41:6 (June), 725–734.

Tanenbaum, A. S. [1978]. “Implications of structured programming for machine architec-
ture,” Communications of the ACM 21:3 (March), 237–246.

Tanenbaum, A. S. [1988]. Computer Networks, 2nd ed., Prentice Hall, Englewood Cliffs,
N.J.

Tang, C. K. [1976]. “Cache design in the tightly coupled multiprocessor system,” Proc.
AFIPS National Computer Conf., June 7–10, 1976, New York, 749–753.

Tanqueray, D. [2002]. “The Cray X1 and supercomputer road map,” Proc. 13th Dares-
bury Machine Evaluation Workshop, December 11–12, 2002, Daresbury Laborato-
ries, Daresbury, Cheshire, U.K.

Tarjan, D., S. Thoziyoor, and N. Jouppi [2005]. “HPL Technical Report on CACTI 4.0,”
www.hpl.hp.com/techeports/2006/HPL=2006+86.html.

Taylor, G. S. [1981]. “Compatible hardware for division and square root,” Proc. 5th IEEE
Symposium on Computer Arithmetic, May 18–19, 1981, University of Michigan, Ann
Arbor, Mich., 127–134.

Taylor, G. S. [1985]. “Radix 16 SRT dividers with overlapped quotient selection stages,”
Proc. Seventh IEEE Symposium on Computer Arithmetic, June 4–6, 1985, University
of Illinois, Urbana, Ill., 64–71.

Taylor, G., P. Hilfinger, J. Larus, D. Patterson, and B. Zorn [1986]. “Evaluation of the
SPUR LISP architecture,” Proc. 13th Annual Int’l. Symposium on Computer Architec-
ture (ISCA), June 2–5, 1986, Tokyo.

Taylor, M. B., W. Lee, S. P. Amarasinghe, and A. Agarwal [2005]. “Scalar operand net-
works,” IEEE Trans. on Parallel and Distributed Systems 16:2 (February), 145–162.

Tendler, J. M., J. S. Dodson, J. S. Fields, Jr., H. Le, and B. Sinharoy [2002]. “Power4
system microarchitecture,” IBM J. Research and Development 46:1, 5–26.

Texas Instruments. [2000]. “History of Innovation: 1980s,” www.ti.com/corp/docs/
company/ history/1980s.shtml.

http://www.hpl.hp.com/techeports/2006/HPL=2006+86.html
http://www.ti.com/corp/docs/company/ history/1980s.shtml
http://www.ti.com/corp/docs/company/ history/1980s.shtml

R-30 ■ References

Tezzaron Semiconductor. [2004]. Soft Errors in Electronic Memory, White Paper,
Tezzaron Semiconductor, Naperville, Ill. (http://www.tezzaron.com/about/papers/
soft_errors_1_1_secure.pdf).

Thacker, C. P., E. M. McCreight, B. W. Lampson, R. F. Sproull, and D. R. Boggs [1982].
“Alto: A personal computer,” in D. P. Siewiorek, C. G. Bell, and A. Newell, eds.,
Computer Structures: Principles and Examples, McGraw-Hill, New York, 549–572.

Thadhani, A. J. [1981]. “Interactive user productivity,” IBM Systems J. 20:4, 407–423.
Thekkath, R., A. P. Singh, J. P. Singh, S. John, and J. L. Hennessy [1997]. “An evaluation of

a commercial CC-NUMA architecture—the CONVEX Exemplar SPP1200,” Proc. 11th
Int’l. Parallel Processing Symposium (IPPS), April 1–7, 1997, Geneva, Switzerland.

Thorlin, J. F. [1967]. “Code generation for PIE (parallel instruction execution) comput-
ers,” Proc. Spring Joint Computer Conf., April 18–20, 1967, Atlantic City, N.J., 27.

Thornton, J. E. [1964]. “Parallel operation in the Control Data 6600,” Proc. AFIPS Fall
Joint Computer Conf., Part II, October 27–29, 1964, San Francisco, 26, 33–40.

Thornton, J. E. [1970]. Design of a Computer, the Control Data 6600, Scott, Foresman,
Glenview, Ill.

Tjaden, G. S., and M. J. Flynn [1970]. “Detection and parallel execution of independent
instructions,” IEEE Trans. on Computers C-19:10 (October), 889–895.

Tomasulo, R. M. [1967]. “An efficient algorithm for exploiting multiple arithmetic units,”
IBM J. Research and Development 11:1 (January), 25–33.

Torrellas, J., A. Gupta, and J. Hennessy [1992]. “Characterizing the caching and synchroni-
zation performance of a multiprocessor operating system,” Proc. Fifth Int’l. Conf. on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
October 12–15, 1992, Boston (SIGPLAN Notices 27:9 (September), 162–174).

Touma, W. R. [1993]. The Dynamics of the Computer Industry: Modeling the Supply of
Workstations and Their Components, Kluwer Academic, Boston.

Tuck, N., and D. Tullsen [2003]. “Initial observations of the simultaneous multithreading
Pentium 4 processor,” Proc. 12th Int. Conf. on Parallel Architectures and Compilation
Techniques (PACT’03), September 27–October 1, 2003, New Orleans, La., 26–34.

Tullsen, D. M., S. J. Eggers, and H. M. Levy [1995]. “Simultaneous multithreading:
Maximizing on-chip parallelism,” Proc. 22nd Annual Int’l. Symposium on Computer
Architecture (ISCA), June 22–24, 1995, Santa Margherita, Italy, 392–403.

Tullsen, D. M., S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L. Stamm [1996].
“Exploiting choice: Instruction fetch and issue on an implementable simultaneous
multithreading processor,” Proc. 23rd Annual Int’l. Symposium on Computer Archi-
tecture (ISCA), May 22–24, 1996, Philadelphia, Penn., 191–202.

Ungar, D., R. Blau, P. Foley, D. Samples, and D. Patterson [1984]. “Architecture of
SOAR: Smalltalk on a RISC,” Proc. 11th Annual Int’l. Symposium on Computer
Architecture (ISCA), June 5–7, 1984, Ann Arbor, Mich., 188–197.

Unger, S. H. [1958]. “A computer oriented towards spatial problems,” Proc. Institute of
Radio Engineers 46:10 (October), 1744–1750.

Vahdat, A., M. Al-Fares, N. Farrington, R. Niranjan Mysore, G. Porter, and
S. Radhakrishnan [2010]. “Scale-Out Networking in the Data Center,” IEEE Micro
30:4 (July/August), 29–41.

Vaidya, A. S., A Sivasubramaniam, and C. R. Das [1997]. “Performance benefits of vir-
tual channels and adaptive routing: An application-driven study,” Proc. ACM/IEEE
Conf. on Supercomputing, November 16–21, 1997, San Jose, Calif.

Vajapeyam, S. [1991]. “Instruction-Level Characterization of the Cray Y-MP Processor,”
Ph.D. thesis, Computer Sciences Department, University of Wisconsin-Madison.

van Eijndhoven, J. T. J., F. W. Sijstermans, K. A. Vissers, E. J. D. Pol, M. I. A. Tromp,
P. Struik, R. H. J. Bloks, P. van der Wolf, A. D. Pimentel, and H. P. E. Vranken [1999].
“Trimedia CPU64 architecture,” Proc. IEEE Int’l. Conf. on Computer Design: VLSI in
Computers and Processors (ICCD’99), October 10–13, 1999, Austin, Tex., 586–592.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

http://www.tezzaron.com/about/papers/soft_errors_1_1_secure.pdf
http://www.tezzaron.com/about/papers/soft_errors_1_1_secure.pdf
https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

References ■ R-31

Van Vleck, T. [2005]. “The IBM 360/67 and CP/CMS,” http://www.multicians.org/thvv/
360-67.html.

von Eicken, T., D. E. Culler, S. C. Goldstein, and K. E. Schauser [1992]. “Active
Messages: A mechanism for integrated communication and computation,” Proc. 19th
Annual Int’l. Symposium on Computer Architecture (ISCA), May 19–21, 1992, Gold
Coast, Australia.

Waingold, E., M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P.
Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal [1997]. “Baring it all to
software: Raw Machines,” IEEE Computer 30 (September), 86–93.

Wakerly, J. [1989]. Microcomputer Architecture and Programming, Wiley, New York.
Wall, D. W. [1991]. “Limits of instruction-level parallelism,” Proc. Fourth Int’l. Conf. on

Architectural Support for Programming Languages and Operating Systems
(ASPLOS), April 8–11, 1991, Palo Alto, Calif., 248–259.

Wall, D. W. [1993]. Limits of Instruction-Level Parallelism, Research Rep. 93/6, Western
Research Laboratory, Digital Equipment Corp., Palo Alto, Calif.

Walrand, J. [1991]. Communication Networks: A First Course, Aksen Associates/Irwin,
Homewood, Ill.

Wang, W.-H., J.-L. Baer, and H. M. Levy [1989]. “Organization and performance of a
two-level virtual-real cache hierarchy,” Proc. 16th Annual Int’l. Symposium on Com-
puter Architecture (ISCA), May 28–June 1, 1989, Jerusalem, 140–148.

Watanabe, T. [1987]. “Architecture and performance of the NEC supercomputer SX sys-
tem,” Parallel Computing 5, 247–255.

Waters, F. (ed.) [1986]. IBM RT Personal Computer Technology, SA 23-1057, IBM, Aus-
tin, Tex.

Watson, W. J. [1972]. “The TI ASC—a highly modular and flexible super processor archi-
tecture,” Proc. AFIPS Fall Joint Computer Conf., December 5–7, 1972, Anaheim,
Calif., 221–228.

Weaver, D. L., and T. Germond [1994]. The SPARC Architectural Manual, Version 9,
Prentice Hall, Englewood Cliffs, N.J.

Weicker, R. P. [1984]. “Dhrystone: A synthetic systems programming benchmark,” Com-
munications of the ACM 27:10 (October), 1013–1030.

Weiss, S., and J. E. Smith [1984]. “Instruction issue logic for pipelined supercomputers,”
Proc. 11th Annual Int’l. Symposium on Computer Architecture (ISCA), June 5–7,
1984, Ann Arbor, Mich., 110–118.

Weiss, S., and J. E. Smith [1987]. “A study of scalar compilation techniques for pipelined
supercomputers,” Proc. Second Int’l. Conf. on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), October 5–8, 1987, Palo Alto,
Calif., 105–109.

Weiss, S., and J. E. Smith [1994]. Power and PowerPC, Morgan Kaufmann, San
Francisco.

Wendel, D., R. Kalla, J. Friedrich, J. Kahle, J. Leenstra, C. Lichtenau, B. Sinharoy,
W. Starke, and V. Zyuban [2010]. “The Power7 processor SoC,” Proc. Int’l. Conf. on
IC Design and Technology, June 2–4, 2010, Grenoble, France, 71–73.

Weste, N., and K. Eshraghian [1993]. Principles of CMOS VLSI Design: A Systems Per-
spective, 2nd ed., Addison-Wesley, Reading, Mass.

Wiecek, C. [1982]. “A case study of the VAX 11 instruction set usage for compiler execu-
tion,” Proc. Symposium on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), March 1–3, 1982, Palo Alto, Calif., 177–184.

Wilkes, M. [1965]. “Slave memories and dynamic storage allocation,” IEEE Trans. Elec-
tronic Computers EC-14:2 (April), 270–271.

http://www.multicians.org/thvv/360-67.html
http://www.multicians.org/thvv/360-67.html

R-32 ■ References

Wilkes, M. V. [1982]. “Hardware support for memory protection: Capability implementa-
tions,” Proc. Symposium on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), March 1–3, 1982, Palo Alto, Calif., 107–116.

Wilkes, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press, Cambridge, Mass.
Wilkes, M. V. [1995]. Computing Perspectives, Morgan Kaufmann, San Francisco.
Wilkes, M. V., D. J. Wheeler, and S. Gill [1951]. The Preparation of Programs for an

Electronic Digital Computer, Addison-Wesley, Cambridge, Mass.
Williams, S., A. Waterman, and D. Patterson [2009]. “Roofline: An insightful visual per-

formance model for multicore architectures,” Communications of the ACM, 52:4
(April), 65–76.

Williams, T. E., M. Horowitz, R. L. Alverson, and T. S. Yang [1987]. “A self-timed chip
for division,” in P. Losleben, ed., 1987 Stanford Conference on Advanced Research in
VLSI, MIT Press, Cambridge, Mass.

Wilson, A. W., Jr. [1987]. “Hierarchical cache/bus architecture for shared-memory multi-
processors,” Proc. 14th Annual Int’l. Symposium on Computer Architecture (ISCA),
June 2–5, 1987, Pittsburgh, Penn., 244–252.

Wilson, R. P., and M. S. Lam [1995]. “Efficient context-sensitive pointer analysis for C
programs,” Proc. ACM SIGPLAN’95 Conf. on Programming Language Design and
Implementation, June 18–21, 1995, La Jolla, Calif., 1–12.

Wolfe, A., and J. P. Shen [1991]. “A variable instruction stream extension to the VLIW
architecture,” Proc. Fourth Int’l. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), April 8–11, 1991, Palo Alto, Calif., 2–14.

Wood, D. A., and M. D. Hill [1995]. “Cost-effective parallel computing,” IEEE Computer
28:2 (February), 69–72.

Wulf, W. [1981]. “Compilers and computer architecture,” Computer 14:7 (July), 41–47.
Wulf, W., and C. G. Bell [1972]. “C.mmp—A multi-mini-processor,” Proc. AFIPS Fall

Joint Computer Conf., December 5–7, 1972, Anaheim, Calif., 765–777.
Wulf, W., and S. P. Harbison [1978]. “Reflections in a pool of processors—an experience

report on C.mmp/Hydra,” Proc. AFIPS National Computing Conf. June 5–8, 1978,
Anaheim, Calif., 939–951.

Wulf, W. A., and S. A. McKee [1995]. “Hitting the memory wall: Implications of the
obvious,” ACM SIGARCH Computer Architecture News, 23:1 (March), 20–24.

Wulf, W. A., R. Levin, and S. P. Harbison [1981]. Hydra/C.mmp: An Experimental Com-
puter System, McGraw-Hill, New York.

Yamamoto, W., M. J. Serrano, A. R. Talcott, R. C. Wood, and M. Nemirosky [1994].
“Performance estimation of multistreamed, superscalar processors,” Proc. 27th
Annual Hawaii Int’l. Conf. on System Sciences, January 4–7, 1994, Maui, 195–204.

Yang, Y., and G. Mason [1991]. “Nonblocking broadcast switching networks,” IEEE
Trans. on Computers 40:9 (September), 1005–1015.

Yeager, K. [1996]. “The MIPS R10000 superscalar microprocessor,” IEEE Micro 16:2
(April), 28–40.

Yeh, T., and Y. N. Patt [1993a]. “Alternative implementations of two-level adaptive
branch prediction,” Proc. 19th Annual Int’l. Symposium on Computer Architecture
(ISCA), May 19–21, 1992, Gold Coast, Australia, 124–134.

Yeh, T., and Y. N. Patt [1993b]. “A comparison of dynamic branch predictors that use two
levels of branch history,” Proc. 20th Annual Int’l. Symposium on Computer Architec-
ture (ISCA), May 16–19, 1993, San Diego, Calif., 257–266.

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

I-1

Page references in bold represent
figures and tables.

Numbers
2:1 cache rule of thumb, definition,

B-29
80x86, see Intel 80x86 processors

A
ABC (Atanasoff Berry Computer),

L-5
ABI, see Application binary interface

(ABI)
Absolute addressing mode, Intel

80x86, K-47
Accelerated Strategic Computing

Initiative (ASCI)
ASCI Red, F-100
ASCI White, F-67, F-100
system area network history, F-101

Access 1/Access 2 stages, TI 320C55
DSP, E-7

Access bit,
IA-32 descriptor table, B-52

Access time, see also Average
Memory Access Time
(AMAT)

vs. block size, B-28
distributed-memory

multiprocessor, 348
DRAM/magnetic disk, D-3
memory hierarchy basics, 77
miss penalties, 218, B-42
NUMA, 348
paging, B-43
shared-memory multiprocessor,

347, 363
slowdown causes, B-3
TLP workloads, 369–370

during write, B-45
WSC memory hierarchy, 444

Access time gap, disk storage, D-3
ACID, see Atomicity-consistency-

isolation-durability
(ACID)

Acknowledgment, packets, F-16
ACM, see Association of Computing

Machinery (ACM)
ACS project, L-28 to L-29
Active low power modes, WSCs,

472
Ada language, integer division/

remainder, J-12
Adaptive routing

definition, F-47
vs. deterministic routing, F-52 to

F-55, F-54
network fault tolerance, F-94
and overhead, F-93 to F-94

Adders
carry-lookahead, J-37 to J-41
chip comparison, J-60
full, J-2, J-3
half, J-2
integer division speedup, J-54 to

J-58
integer multiplication speedup

even/odd array, J-52
many adders, J-50, J-50 to J-54
multipass array multiplier, J-51
signed-digit addition table,

J-54
single adder, J-47 to J-49, J-48

to J-49
Wallace tree, J-53

radix-2 division, J-55
radix-4 division, J-56
radix-4 SRT division, J-57
ripple-carry, J-3, J-3

time/space requirements, J-44
Addition operations

chip comparison, J-61
floating point

denormals, J-26 to J-27
overview, J-21 to J-25
rules, J-24
speedup, J-25 to J-26

integer, speedup
carry-lookahead, J-37 to J-41
carry-lookahead circuit, J-38
carry-lookahead tree, J-40
carry-lookahead tree adder,

J-41
carry-select adder, J-43, J-43 to

J-44, J-44
carry-skip adder, J-41 to J43,

J-42
overview, J-37

ripply-carry addition, J-3
Address aliasing prediction

definition, 213
ideal processor, 214
ILP for realizable processors, 216

Address Coalescing Unit
function, 310
gather-scatter, 329
GPUs, 300
Multithreaded SIMD Processor

block diagram, 294
vector processor, 310

Address fault, virtual memory
definition, B-42

Addressing modes
comparison, A-11
compiler writing-architecture

relationship, A-30
control flow instructions, A-17 to

A-18
desktop architectures, K-5

Index 1

I-2 ■ Index

Addressing modes (continued)
displacement mode, A-10
embedded architectures, K-6
instruction set encoding, A-21
Intel 80x86, K-47 to K-49, K-58 to

K-59, K-59 to K-60
Intel 80x86 operands, K-59
ISA, 11–12, A-9 to A-10
MIPS data transfers, A-34
RISC architectures, K-5 to K-6
selection, A-9
VAX, K-66 to K-68, K-71
VAX instruction encoding, K-68 to

K-69
Address offset, virtual memory,

B-56
Address space

Fermi GPU architecture, 306–307
memory hierarchy, B-48 to B-49,

B-57 to B-58
Multimedia SIMD vs. GPUs, 312
SMP/DSM shared memory, 348
virtual memory, B-40 to B-41

Address specifier
instruction set encoding, A-21
VAX instruction encoding, K-68 to

K-69
Address stage, TI 320C55 DSP, E-7
Address trace, cache performance, B-4
Address translation

AMD64 paged virtual memory,
B-55 to B-56

during indexing, B-36 to B-40
memory hierarchy basics, 77–78
Opteron data TLB, B-47
virtual memory, B-46
virtual memory definition, B-42
virtual memory protection, 106

Administrative costs, WSC vs.
datacenters, 455

Adobe Photoshop, multimedia
support, K-17

Advanced directory protocol
basic function, 283
case studies, 420–426

Advanced load address table (ALAT)
IA-64 ISA, H-40
vector sparse matrices, G-13

Advanced loads, IA-64 ISA, H-40
Advanced mobile phone service

(AMPS), cell phones,
E-25

Advanced Research Project Agency,
see ARPA (Advanced
Research Project
Agency)

Advanced RISC Machine, see ARM
(Advanced RISC
Machine)

Advanced Simulation and Computing
(ASC) program, system
area network history,
F-101

Advanced Switching Interconnect
(ASI), storage area
network history, F-103

Advanced Switching SAN, F-67
Advanced Technology Attachment

disks, see ATA
(Advanced Technology
Attachment) disks

Advanced Vector Extensions (AVX)
double-precision FP programs, 284
vs. vector architectures, 282

Affine, loop-level parallelism
dependences, 318–320,
H-6

After rounding rule, J-36
Aggregate bandwidth

definition, F-13
effective bandwidth calculations,

F-18 to F-19
interconnection networks, F-89
routing, F-47
shared- vs. switched-media

networks, F-22, F-24 to
F-25

switched-media networks, F-24
switch microarchitecture, F-56

Aiken, Howard, L-3 to L-4
Airflow

containers, 466
Google WSC server, 467

Airside econimization, WSC cooling
systems, 449

Akamai, as Content Delivery
Network, 460

ALAT, see Advanced load address
table (ALAT)

Alewife machine, L-61
ALGOL, L-16
Aliased variables, and compiler

technology, A-27 to A-28
Aliases, address translation, B-38

Alignment, memory address
interpretation, A-7 to
A-8, A-8

Allen, Fran, L-28
Alliant processors, vector processor

history, G-26
AltaVista search

cluster history, L-62, L-73
shared-memory workloads, 369,

370
ALUs, see Arithmetic-logical units

(ALUs)
AMAT, see Average Memory Access

Time (AMAT)
Amazon

cloud computing, 455
Dynamo, 438, 452

Amazon Elastic Computer Cloud
(EC2), 456–457

MapReduce cost calculations,
458–459

price and characteristics, 458
utility computing, L-74

Amazon Simple Storage Service (S3),
456–457

Amazon Web Services (AWS)
cloud computing providers, 471–472
MapReduce cost calculations,

458–460, 459
as utility computing, 456–461
WSC cost-performance, 474
Xen VM, 111

Amdahl, Gene, L-28
Amdahl’s law

computer design principles, 46–48
computer system power

consumption case study,
63–64

DRAM, 99
and parallel computers, 406–407
parallel processing calculations,

349–350
pitfalls, 55–56
vs. processor performance

equation, 51
scalar performance, 331
software overhead, F-91
VMIPS on Linpack, G-18
WSC processor cost-performance,

472–473
AMD Athlon 64, Itanium 2

comparison, H-43

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-3

AMD Barcelona microprocessor,
Google WSC server, 467

AMD Fusion, L-52
AMD K-5, L-30
AMD Opteron

address translation, B-38
Amazon Web Services, 457
architecture, 15
cache coherence, 361
data cache example, B-12 to B-15,

B-13
Google WSC servers, 468–469
inclusion, 398
manufacturing cost, 62
misses per instruction, B-15
MOESI protocol, 362
multicore processor performance,

400–401
multilevel exclusion, B-35
NetApp FAS6000 filer, D-42
paged virtual memory example,

B-54 to B-57
vs. Pentium protection, B-57
real-world server considerations,

52–55
server energy savings, 25
snooping limitations, 363–364
SPEC benchmarks, 43
TLB during address translation,

B-47
AMD processors

architecture flaws vs. success, A-45
GPU computing history, L-52
power consumption, F-85
recent advances, L-33
RISC history, L-22
shared-memory multiprogramming

workload, 378
terminology, 313–315
tournament predictors, 164
Virtual Machines, 110
VMMs, 129

Amortization of overhead, sorting case
study, D-64 to D-67

AMPS, see Advanced mobile phone
service (AMPS)

Andreessen, Marc, F-98
Android OS, 324
Annulling delayed branch,

instructions, K-25
Antenna, radio receiver, E-23

Antialiasing, address translation, B-38
Antidependences

compiler history, L-30 to L-31
definition, 152
finding, H-7 to H-8
loop-level parallelism calculations,

320
MIPS scoreboarding, C-72, C-79

Apogee Software, A-44
Apollo DN 10000, L-30
Apple iPad

ARM Cortex-A8, 114
memory hierarchy basics, 78

Application binary interface (ABI),
control flow
instructions, A-20

Application layer, definition, F-82
Applied Minds, L-74
Arbitration algorithm

collision detection, F-23
commercial interconnection

networks, F-56
examples, F-49
Intel SCCC, F-70
interconnection networks, F-21 to

F-22, F-27, F-49 to F-50
network impact, F-52 to F-55
SAN characteristics, F-76
switched-media networks, F-24
switch microarchitecture, F-57 to

F-58
switch microarchitecture

pipelining, F-60
system area network history, F-100

Architect-compiler writer relationship,
A-29 to A-30

Architecturally visible registers,
register renaming vs.
ROB, 208–209

Architectural Support for Compilers
and Operating Systems
(ASPLOS), L-11

Architecture, see also Computer
architecture; CUDA
(Compute Unified
Device Architecture);
Instruction set
architecture (ISA);
Vector architectures

compiler writer-architect
relationship, A-29 to A-30

definition, 15
heterogeneous, 262
microarchitecture, 15–16, 247–254
stack, A-3, A-27, A-44 to A-45

Areal density, disk storage, D-2
Argument pointer, VAX, K-71
Arithmetic intensity

as FP operation, 286, 286–288
Roofline model, 326, 326–327

Arithmetic/logical instructions
desktop RISCs, K-11, K-22
embedded RISCs, K-15, K-24
Intel 80x86, K-49, K-53
SPARC, K-31
VAX, B-73

Arithmetic-logical units (ALUs)
ARM Cortex-A8, 234, 236
basic MIPS pipeline, C-36
branch condition evaluation, A-19
data forwarding, C-40 to C-41
data hazards requiring stalls, C-19

to C-20
data hazard stall minimization,

C-17 to C-19
DSP media extensions, E-10
effective address cycle, C-6
hardware-based execution, 185
hardware-based speculation,

200–201, 201
IA-64 instructions, H-35
immediate operands, A-12
integer division, J-54
integer multiplication, J-48
integer shifting over zeros, J-45 to

J-46
Intel Core i7, 238
ISA operands, A-4 to A-5
ISA performance and efficiency

prediction, 241
load interlocks, C-39
microarchitectural techniques case

study, 253
MIPS operations, A-35, A-37
MIPS pipeline control, C-38 to C-39
MIPS pipeline FP operations, C-52

to C-53
MIPS R4000, C-65
operand forwarding, C-19
operands per instruction example,

A-6
parallelism, 45

I-4 ■ Index

Arithmetic-logical units (continued)
pipeline branch issues, C-39 to

C-41
pipeline execution rate, C-10 to

C-11
power/DLP issues, 322
RISC architectures, K-5
RISC classic pipeline, C-7
RISC instruction set, C-4
simple MIPS implementation,

C-31 to C-33
TX-2, L-49

ARM (Advanced RISC Machine)
addressing modes, K-5, K-6
arithmetic/logical instructions,

K-15, K-24
characteristics, K-4
condition codes, K-12 to K-13
constant extension, K-9
control flow instructions, 14
data transfer instructions, K-23
embedded instruction format, K-8
GPU computing history, L-52
ISA class, 11
memory addressing, 11
multiply-accumulate, K-20
operands, 12
RISC instruction set lineage, K-43
unique instructions, K-36 to K-37

ARM AMBA, OCNs, F-3
ARM Cortex-A8

dynamic scheduling, 170
ILP concepts, 148
instruction decode, 234
ISA performance and efficiency

prediction, 241–243
memory access penalty, 117
memory hierarchy design, 78,

114–117, 115
memory performance, 115–117
multibanked caches, 86
overview, 233
pipeline performance, 233–236,

235
pipeline structure, 232
processor comparison, 242
way prediction, 81

ARM Cortex-A9
vs. A8 performance, 236
Tegra 2, mobile vs. server GPUs,

323–324, 324

ARM Thumb
addressing modes, K-6
arithmetic/logical instructions,

K-24
characteristics, K-4
condition codes, K-14
constant extension, K-9
data transfer instructions, K-23
embedded instruction format, K-8
ISAs, 14
multiply-accumulate, K-20
RISC code size, A-23
unique instructions, K-37 to K-38

ARPA (Advanced Research Project
Agency)

LAN history, F-99 to F-100
WAN history, F-97

ARPANET, WAN history, F-97 to
F-98

Array multiplier
example, J-50
integers, J-50
multipass system, J-51

Arrays
access age, 91
blocking, 89–90
bubble sort procedure, K-76
cluster server outage/anomaly

statistics, 435
examples, 90
FFT kernel, I-7
Google WSC servers, 469
Layer 3 network linkage, 445
loop interchange, 88–89
loop-level parallelism

dependences, 318–319
ocean application, I-9 to I-10
recurrences, H-12
WSC memory hierarchy, 445
WSCs, 443

Array switch, WSCs, 443–444
ASC, see Advanced Simulation and

Computing (ASC)
program

ASCI, see Accelerated Strategic
Computing Initiative
(ASCI)

ASCII character format, 12, A-14
ASC Purple, F-67, F-100
ASI, see Advanced Switching

Interconnect (ASI)

ASPLOS, see Architectural Support
for Compilers and
Operating Systems
(ASPLOS)

Assembly language, 2
Association of Computing Machinery

(ACM), L-3
Associativity, see also Set

associativity
cache block, B-9 to B-10, B-10
cache optimization, B-22 to B-24,

B-26, B-28 to B-30
cloud computing, 460–461
loop-level parallelism, 322
multilevel inclusion, 398
Opteron data cache, B-14
shared-memory multiprocessors,

368
Astronautics ZS-1, L-29
Asynchronous events, exception

requirements, C-44 to
C-45

Asynchronous I/O, storage systems,
D-35

Asynchronous Transfer Mode (ATM)
interconnection networks, F-89
LAN history, F-99
packet format, F-75
total time statistics, F-90
VOQs, F-60
as WAN, F-79
WAN history, F-98
WANs, F-4

ATA (Advanced Technology
Attachment) disks

Berkeley’s Tertiary Disk project,
D-12

disk storage, D-4
historical background, L-81
power, D-5
RAID 6, D-9
server energy savings, 25

Atanasoff, John, L-5
Atanasoff Berry Computer (ABC), L-5
ATI Radeon 9700, L-51
Atlas computer, L-9
ATM, see Asynchronous Transfer

Mode (ATM)
ATM systems

server benchmarks, 41
TP benchmarks, D-18

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-5

Atomic exchange
lock implementation, 389–390
synchronization, 387–388

Atomic instructions
barrier synchronization, I-14
Core i7, 329
Fermi GPU, 308
T1 multithreading unicore

performance, 229
Atomicity-consistency-isolation-durab

ility (ACID), vs. WSC
storage, 439

Atomic operations
cache coherence, 360–361
snooping cache coherence

implementation, 365
“Atomic swap,” definition, K-20
Attributes field, IA-32 descriptor

table, B-52
Autoincrement deferred addressing,

VAX, K-67
Autonet, F-48
Availability

commercial interconnection
networks, F-66

computer architecture, 11, 15
computer systems, D-43 to D-44,

D-44
data on Internet, 344
fault detection, 57–58
I/O system design/evaluation,

D-36
loop-level parallelism, 217–218
mainstream computing classes, 5
modules, 34
open-source software, 457
RAID systems, 60
as server characteristic, 7
servers, 16
source operands, C-74
WSCs, 8, 433–435, 438–439

Average instruction execution time,
L-6

Average Memory Access Time
(AMAT)

block size calculations, B-26 to
B-28

cache optimizations, B-22, B-26 to
B-32, B-36

cache performance, B-16 to B-21
calculation, B-16 to B-17

centralized shared-memory
architectures, 351–352

definition, B-30 to B-31
memory hierarchy basics, 75–76
miss penalty reduction, B-32
via miss rates, B-29, B-29 to B-30
as processor performance

predictor, B-17 to B-20
Average reception factor

centralized switched networks,
F-32

multi-device interconnection
networks, F-26

AVX, see Advanced Vector
Extensions (AVX)

AWS, see Amazon Web Services
(AWS)

B
Back-off time, shared-media

networks, F-23
Backpressure, congestion

management, F-65
Backside bus, centralized

shared-memory
multiprocessors, 351

Balanced systems, sorting case study,
D-64 to D-67

Balanced tree, MINs with nonblicking,
F-34

Bandwidth, see also Throughput
arbitration, F-49
and cache miss, B-2 to B-3
centralized shared-memory

multiprocessors,
351–352

communication mechanism, I-3
congestion management, F-64 to

F-65
Cray Research T3D, F-87
DDR DRAMS and DIMMS, 101
definition, F-13
DSM architecture, 379
Ethernet and bridges, F-78
FP arithmetic, J-62
GDRAM, 322–323
GPU computation, 327–328
GPU Memory, 327
ILP instruction fetch

basic considerations, 202–203
branch-target buffers, 203–206

integrated units, 207–208
return address predictors,

206–207
interconnection networks, F-28

multi-device networks, F-25 to
F-29

performance considerations,
F-89

two-device networks, F-12 to
F-20

vs. latency, 18–19, 19
memory, and vector performance,

332
memory hierarchy, 126
network performance and

topology, F-41
OCN history, F-103
performance milestones, 20
point-to-point links and switches,

D-34
routing, F-50 to F-52
routing/arbitration/switching

impact, F-52
shared- vs. switched-media

networks, F-22
SMP limitations, 363
switched-media networks, F-24
system area network history, F-101
vs. TCP/IP reliance, F-95
and topology, F-39
vector load/store units, 276–277
WSC memory hierarchy, 443–444,

444
Bandwidth gap, disk storage, D-3
Banerjee, Uptal, L-30 to L-31
Bank busy time, vector memory

systems, G-9
Banked memory, see also Memory

banks
and graphics memory, 322–323
vector architectures, G-10

Banks, Fermi GPUs, 297
Barcelona Supercomputer Center,

F-76
Barnes

characteristics, I-8 to I-9
distributed-memory

multiprocessor, I-32
symmetric shared-memory

multiprocessors, I-22,
I-23, I-25

I-6 ■ Index

Barnes-Hut n-body algorithm, basic
concept, I-8 to I-9

Barriers
commercial workloads, 370
Cray X1, G-23
fetch-and-increment, I-20 to I-21
hardware primitives, 387
large-scale multiprocessor

synchronization, I-13 to
I-16, I-14, I-16, I-19,
I-20

synchronization, 298, 313, 329
BARRNet, see Bay Area Research

Network (BARRNet)
Based indexed addressing mode, Intel

80x86, K-49, K-58
Base field, IA-32 descriptor table,

B-52 to B-53
Base station

cell phones, E-23
wireless networks, E-22

Basic block, ILP, 149
Batch processing workloads

WSC goals/requirements, 433
WSC MapReduce and Hadoop,

437–438
Bay Area Research Network

(BARRNet), F-80
BBN Butterfly, L-60
BBN Monarch, L-60
Before rounding rule, J-36
Benchmarking, see also specific

benchmark suites
desktop, 38–40
EEMBC, E-12
embedded applications

basic considerations, E-12
power consumption and

efficiency, E-13
fallacies, 56
instruction set operations, A-15
as performance measurement,

37–41
real-world server considerations,

52–55
response time restrictions, D-18
server performance, 40–41
sorting case study, D-64 to D-67

Beneŝ topology
centralized switched networks,

F-33

example, F-33
BER, see Bit error rate (BER)
Berkeley’s Tertiary Disk project

failure statistics, D-13
overview, D-12
system log, D-43

Berners-Lee, Tim, F-98
Bertram, Jack, L-28
Best-case lower bounds, multi-device

interconnection
networks, F-25

Best-case upper bounds
multi-device interconnection

networks, F-26
network performance and

topology, F-41
Between instruction exceptions,

definition, C-45
Biased exponent, J-15
Bidirectional multistage

interconnection
networks

 Beneŝ topology, F-33
characteristics, F-33 to F-34
SAN characteristics, F-76

Bidirectional rings, topology, F-35 to
F-36

Big Endian
interconnection networks, F-12
memory address interpretation,

A-7
MIPS core extensions, K-20 to

K-21
MIPS data transfers, A-34

Bigtable (Google), 438, 441
BINAC, L-5
Binary code compatibility

embedded systems, E-15
VLIW processors, 196

Binary-coded decimal, definition, A-14
Binary-to-decimal conversion, FP

precisions, J-34
Bing search

delays and user behavior, 451
latency effects, 450–452
WSC processor cost-performance,

473
Bisection bandwidth

as network cost constraint, F-89
network performance and

topology, F-41

NEWS communication, F-42
topology, F-39

Bisection bandwidth, WSC array
switch, 443

Bisection traffic fraction, network
performance and
topology, F-41

Bit error rate (BER), wireless
networks, E-21

Bit rot, case study, D-61 to D-64
Bit selection, block placement, B-7
Black box network

basic concept, F-5 to F-6
effective bandwidth, F-17
performance, F-12
switched-media networks, F-24
switched network topologies, F-40

Block addressing
block identification, B-7 to B-8
interleaved cache banks, 86
memory hierarchy basics, 74

Blocked floating point arithmetic,
DSP, E-6

Block identification
memory hierarchy considerations,

B-7 to B-9
virtual memory, B-44 to B-45

Blocking
benchmark fallacies, 56
centralized switched networks,

F-32
direct networks, F-38
HOL, see Head-of-line (HOL)

blocking
network performance and

topology, F-41
Blocking calls, shared-memory

multiprocessor
workload, 369

Blocking factor, definition, 90
Block multithreading, definition,

L-34
Block offset

block identification, B-7 to B-8
cache optimization, B-38
definition, B-7 to B-8
direct-mapped cache, B-9
example, B-9
main memory, B-44
Opteron data cache, B-13, B-13 to

B-14

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-7

Block placement
memory hierarchy considerations,

B-7
virtual memory, B-44

Block replacement
memory hierarchy considerations,

B-9 to B-10
virtual memory, B-45

Blocks, see also Cache block; Thread
Block

ARM Cortex-A8, 115
vs. bytes per reference, 378
compiler optimizations, 89–90
definition, B-2
disk array deconstruction, D-51,

D-55
disk deconstruction case study,

D-48 to D-51
global code scheduling, H-15 to

H-16
L3 cache size, misses per

instruction, 371
LU kernel, I-8
memory hierarchy basics, 74
memory in cache, B-61
placement in main memory,

B-44
RAID performance prediction,

D-57 to D-58
TI TMS320C55 DSP, E-8
uncached state, 384

Block servers, vs. filers, D-34 to D-35
Block size

vs. access time, B-28
memory hierarchy basics, 76
vs. miss rate, B-27

Block transfer engine (BLT)
Cray Research T3D, F-87
interconnection network

protection, F-87
BLT, see Block transfer engine (BLT)
Body of Vectorized Loop

definition, 292, 313
GPU hardware, 295–296, 311
GPU Memory structure, 304
NVIDIA GPU, 296
SIMD Lane Registers, 314
Thread Block Scheduler, 314

Boggs, David, F-99
BOMB, L-4
Booth recoding, J-8 to J-9, J-9, J-10 to

J-11

chip comparison, J-60 to J-61
integer multiplication, J-49

Bose-Einstein formula, definition, 30
Bounds checking, segmented virtual

memory, B-52
Branch byte, VAX, K-71
Branch delay slot

characteristics, C-23 to C-25
control hazards, C-41
MIPS R4000, C-64
scheduling, C-24

Branches
canceling, C-24 to C-25
conditional branches, 300–303,

A-17, A-19 to A-20,
A-21

control flow instructions, A-16,
A-18

delayed, C-23
delay slot, C-65
IBM 360, K-86 to K-87
instructions, K-25
MIPS control flow instructions,

A-38
MIPS operations, A-35
nullifying, C-24 to C-25
RISC instruction set, C-5
VAX, K-71 to K-72
WCET, E-4

Branch folding, definition, 206
Branch hazards

basic considerations, C-21
penalty reduction, C-22 to C-25
pipeline issues, C-39 to C-42
scheme performance, C-25 to C-26
stall reduction, C-42

Branch history table, basic scheme,
C-27 to C-30

Branch offsets, control flow
instructions, A-18

Branch penalty
examples, 205
instruction fetch bandwidth,

203–206
reduction, C-22 to C-25
simple scheme examples, C-25

Branch prediction
accuracy, C-30
branch cost reduction, 162–167
correlation, 162–164
cost reduction, C-26
dynamic, C-27 to C-30

early schemes, L-27 to L-28
ideal processor, 214
ILP exploitation, 201
instruction fetch bandwidth, 205
integrated instruction fetch units,

207
Intel Core i7, 166–167, 239–241
misprediction rates on SPEC89, 166
static, C-26 to C-27
trace scheduling, H-19
two-bit predictor comparison, 165

Branch-prediction buffers, basic
considerations, C-27 to
C-30, C-29

Branch registers
IA-64, H-34
PowerPC instructions, K-32 to K-33

Branch stalls, MIPS R4000 pipeline,
C-67

Branch-target address
branch hazards, C-42
MIPS control flow instructions,

A-38
MIPS pipeline, C-36, C-37
MIPS R4000, C-25
pipeline branches, C-39
RISC instruction set, C-5

Branch-target buffers
ARM Cortex-A8, 233
branch hazard stalls, C-42
example, 203
instruction fetch bandwidth,

203–206
instruction handling, 204
MIPS control flow instructions,

A-38
Branch-target cache, see Branch-target

buffers
Brewer, Eric, L-73
Bridges

and bandwidth, F-78
definition, F-78

Bubbles
and deadlock, F-47
routing comparison, F-54
stall as, C-13

Bubble sort, code example, K-76
Buckets, D-26
Buffered crossbar switch, switch

microarchitecture, F-62
Buffered wormhole switching,

F-51

I-8 ■ Index

Buffers
branch-prediction, C-27 to C-30,

C-29
branch-target, 203–206, 204, 233,

A-38, C-42
DSM multiprocessor cache

coherence, I-38 to I-40
Intel SCCC, F-70

interconnection networks, F-10 to
F-11

memory, 208
MIPS scoreboarding, C-74
network interface functions, F-7
ROB, 184–192, 188–189, 199,

208–210, 238
switch microarchitecture, F-58 to

F-60
TLB, see Translation lookaside

buffer (TLB)
translation buffer, B-45 to B-46
write buffer, B-11, B-14, B-32,

B-35 to B-36
Bundles

IA-64, H-34 to H-35, H-37
Itanium 2, H-41

Burks, Arthur, L-3
Burroughs B5000, L-16
Bus-based coherent multiprocessors,

L-59 to L-60
Buses

barrier synchronization, I-16
cache coherence, 391
centralized shared-memory

multiprocessors, 351
definition, 351
dynamic scheduling with

Tomasulo’s algorithm,
172, 175

Google WSC servers, 469
I/O bus replacements, D-34, D-34
large-scale multiprocessor

synchronization, I-12 to
I-13

NEWS communication, F-42
scientific workloads on symmetric

shared-memory
multiprocessors, I-25

Sony PlayStation 2 Emotion
Engine, E-18

vs. switched networks, F-2
switch microarchitecture, F-55 to

F-56

Tomasulo’s algorithm, 180, 182
Bypassing, see also Forwarding

data hazards requiring stalls, C-19
to C-20

dynamically scheduled pipelines,
C-70 to C-71

MIPS R4000, C-65
SAN example, F-74

Byte displacement addressing, VAX,
K-67

Byte offset
misaligned addresses, A-8
PTX instructions, 300

Bytes
aligned/misaligned addresses, A-8
arithmetic intensity example, 286
Intel 80x86 integer operations, K-51
memory address interpretation,

A-7 to A-8
MIPS data transfers, A-34
MIPS data types, A-34
operand types/sizes, A-14
per reference, vs. block size, 378

Byte/word/long displacement
deferred addressing,
VAX, K-67

C
CAC, see Computer aided design

(CAD) tools
Cache bandwidth

caches, 78
multibanked caches, 85–86
nonblocking caches, 83–85
pipelined cache access, 82

Cache block
AMD Opteron data cache, B-13,

B-13 to B-14
cache coherence protocol, 357–358
compiler optimizations, 89–90
critical word first, 86–87
definition, B-2
directory-based cache coherence

protocol, 382–386, 383
false sharing, 366
GPU comparisons, 329
inclusion, 397–398
memory block, B-61
miss categories, B-26
miss rate reduction, B-26 to B-28
scientific workloads on symmetric

shared-memory

multiprocessors, I-22,
I-25, I-25

shared-memory multiprogramming
workload, 375–377, 376

way prediction, 81
write invalidate protocol

implementation,
356–357

write strategy, B-10
Cache coherence

advanced directory protocol case
study, 420–426

basic considerations, 112–113
Cray X1, G-22
directory-based, see

Directory-based cache
coherence

enforcement, 354–355
extensions, 362–363
hardware primitives, 388
Intel SCCC, F-70
large-scale multiprocessor history,

L-61
large-scale multiprocessors

deadlock and buffering, I-38 to
I-40

directory controller, I-40 to
I-41

DSM implementation, I-36 to
I-37

overview, I-34 to I-36
latency hiding with speculation,

396
lock implementation, 389–391
mechanism, 358
memory hierarchy basics, 75
multiprocessor-optimized

software, 409
multiprocessors, 352–353
protocol definitions, 354–355
single-chip multicore processor

case study, 412–418
single memory location example,

352
snooping, see Snooping cache

coherence
state diagram, 361
steps and bus traffic examples, 391
write-back cache, 360

Cache definition, B-2
Cache hit

AMD Opteron example, B-14

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-9

definition, B-2
example calculation, B-5

Cache latency, nonblocking cache,
83–84

Cache miss
and average memory access time,

B-17 to B-20
block replacement, B-10
definition, B-2
distributed-memory

multiprocessors, I-32
example calculations, 83–84
Intel Core i7, 122
interconnection network, F-87
large-scale multiprocessors, I-34 to

I-35
nonblocking cache, 84
single vs. multiple thread

executions, 228
WCET, E-4

Cache-only memory architecture
(COMA), L-61

Cache optimizations
basic categories, B-22
basic optimizations, B-40
case studies, 131–133
compiler-controlled prefetching,

92–95
compiler optimizations, 87–90
critical word first, 86–87
energy consumption, 81
hardware instruction prefetching,

91–92, 92
hit time reduction, B-36 to B-40
miss categories, B-23 to B-26
miss penalty reduction

via multilevel caches, B-30 to
B-35

read misses vs. writes, B-35 to
B-36

miss rate reduction
via associativity, B-28 to B-30
via block size, B-26 to B-28
via cache size, B-28

multibanked caches, 85–86, 86
nonblocking caches, 83–85, 84
overview, 78–79
pipelined cache access, 82
simple first-level caches, 79–80
techniques overview, 96
way prediction, 81–82
write buffer merging, 87, 88

Cache organization
blocks, B-7, B-8
Opteron data cache, B-12 to B-13,

B-13
optimization, B-19
performance impact, B-19

Cache performance
average memory access time, B-16

to B-20
basic considerations, B-3 to B-6,

B-16
basic equations, B-22
basic optimizations, B-40
cache optimization, 96
case study, 131–133
example calculation, B-16 to B-17
out-of-order processors, B-20 to

B-22
prediction, 125–126

Cache prefetch, cache optimization, 92
Caches, see also Memory hierarchy

access time vs. block size, B-28
AMD Opteron example, B-12 to

B-15, B-13, B-15
basic considerations, B-48 to B-49
coining of term, L-11
definition, B-2
early work, L-10
embedded systems, E-4 to E-5
Fermi GPU architecture, 306
ideal processor, 214
ILP for realizable processors,

216–218
Itanium 2, H-42
multichip multicore

multiprocessor, 419
parameter ranges, B-42
Sony PlayStation 2 Emotion

Engine, E-18
vector processors, G-25
vs. virtual memory, B-42 to B-43

Cache size
and access time, 77
AMD Opteron example, B-13 to

B-14
energy consumption, 81
highly parallel memory systems,

133
memory hierarchy basics, 76
misses per instruction, 126, 371
miss rate, B-24 to B-25
vs. miss rate, B-27

miss rate reduction, B-28
multilevel caches, B-33
and relative execution time, B-34
scientific workloads

distributed-memory
multiprocessors, I-29 to
I-31

symmetric shared-memory
multiprocessors, I-22 to
I-23, I-24

shared-memory multiprogramming
workload, 376

virtually addressed, B-37
CACTI

cache optimization, 79–80, 81
memory access times, 77

Caller saving, control flow
instructions, A-19 to
A-20

Call gate
IA-32 segment descriptors, B-53
segmented virtual memory, B-54

Calls
compiler structure, A-25 to A-26
control flow instructions, A-17,

A-19 to A-21
CUDA Thread, 297
dependence analysis, 321
high-level instruction set, A-42 to

A-43
Intel 80x86 integer operations,

K-51
invocation options, A-19
ISAs, 14
MIPS control flow instructions,

A-38
MIPS registers, 12
multiprogrammed workload,

378
NVIDIA GPU Memory structures,

304–305
return address predictors, 206
shared-memory multiprocessor

workload, 369
user-to-OS gates, B-54
VAX, K-71 to K-72

Canceling branch, branch delay slots,
C-24 to C-25

Canonical form, AMD64 paged virtual
memory, B-55

Capabilities, protection schemes, L-9
to L-10

I-10 ■ Index

Capacity misses
blocking, 89–90
and cache size, B-24
definition, B-23
memory hierarchy basics, 75
scientific workloads on symmetric

shared-memory
multiprocessors, I-22,
I-23, I-24

shared-memory workload, 373
CAPEX, see Capital expenditures

(CAPEX)
Capital expenditures (CAPEX)

WSC costs, 452–455, 453
WSC Flash memory, 475
WSC TCO case study, 476–478

Carrier sensing, shared-media
networks, F-23

Carrier signal, wireless networks,
E-21

Carry condition code, MIPS core, K-9
to K-16

Carry-in, carry-skip adder, J-42
Carry-lookahead adder (CLA)

chip comparison, J-60
early computer arithmetic, J-63
example, J-38
integer addition speedup, J-37 to

J-41
with ripple-carry adder, J-42
tree, J-40 to J-41

Carry-out
carry-lookahead circuit, J-38
floating-point addition speedup,

J-25
Carry-propagate adder (CPA)

integer multiplication, J-48, J-51
multipass array multiplier, J-51

Carry-save adder (CSA)
integer division, J-54 to J-55
integer multiplication, J-47 to J-48,

J-48
Carry-select adder

characteristics, J-43 to J-44
chip comparison, J-60
example, J-43

Carry-skip adder (CSA)
characteristics, J-41 to J43
example, J-42, J-44

CAS, see Column access strobe (CAS)
Case statements

control flow instruction addressing
modes, A-18

return address predictors, 206
Case studies

advanced directory protocol,
420–426

cache optimization, 131–133
cell phones

block diagram, E-23
Nokia circuit board, E-24
overview, E-20
radio receiver, E-23
standards and evolution, E-25
wireless communication

challenges, E-21
wireless networks, E-21 to

E-22
chip fabrication cost, 61–62
computer system power

consumption, 63–64
directory-based coherence,

418–420
dirty bits, D-61 to D-64
disk array deconstruction, D-51 to

D-55, D-52 to D-55
disk deconstruction, D-48 to D-51,

D-50
highly parallel memory systems,

133–136
instruction set principles, A-47 to

A-54
I/O subsystem design, D-59 to D-61
memory hierarchy, B-60 to B-67
microarchitectural techniques,

247–254
pipelining example, C-82 to C-88
RAID performance prediction,

D-57 to D-59
RAID reconstruction, D-55 to

D-57
Sanyo VPC-SX500 digital camera,

E-19
single-chip multicore processor,

412–418
Sony PlayStation 2 Emotion

Engine, E-15 to E-18
sorting, D-64 to D-67
vector kernel on vector processor

and GPU, 334–336
WSC resource allocation, 478–479
WSC TCO, 476–478

CCD, see Charge-coupled device
(CCD)

C/C++ language
dependence analysis, H-6
GPU computing history, L-52
hardware impact on software

development, 4
integer division/remainder, J-12
loop-level parallelism

dependences, 318,
320–321

NVIDIA GPU programming, 289
return address predictors, 206

CDB, see Common data bus (CDB)
CDC, see Control Data Corporation

(CDC)
CDF, datacenter, 487
CDMA, see Code division multiple

access (CDMA)
Cedar project, L-60
Cell, Barnes-Hut n-body algorithm,

I-9
Cell phones

block diagram, E-23
embedded system case study

characteristics, E-22 to E-24
overview, E-20
radio receiver, E-23
standards and evolution, E-25
wireless network overview,

E-21 to E-22
Flash memory, D-3
GPU features, 324
Nokia circuit board, E-24
wireless communication

challenges, E-21
wireless networks, E-22

Centralized shared-memory
multiprocessors

basic considerations, 351–352
basic structure, 346–347, 347
cache coherence, 352–353
cache coherence enforcement,

354–355
cache coherence example,

357–362
cache coherence extensions,

362–363
invalidate protocol

implementation,
356–357

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-11

SMP and snooping limitations,
363–364

snooping coherence
implementation,
365–366

snooping coherence protocols,
355–356

Centralized switched networks
example, F-31
routing algorithms, F-48
topology, F-30 to F-34, F-31

Centrally buffered switch,
microarchitecture, F-57

Central processing unit (CPU)
Amdahl’s law, 48
average memory access time, B-17
cache performance, B-4
coarse-grained multithreading, 224
early pipelined versions, L-26 to

L-27
exception stopping/restarting, C-47
extensive pipelining, C-81
Google server usage, 440
GPU computing history, L-52
vs. GPUs, 288
instruction set complications, C-50
MIPS implementation, C-33 to

C-34
MIPS precise exceptions, C-59 to

C-60
MIPS scoreboarding, C-77
performance measurement history,

L-6
pipeline branch issues, C-41
pipelining exceptions, C-43 to

C-46
pipelining performance, C-10
Sony PlayStation 2 Emotion

Engine, E-17
SPEC server benchmarks, 40
TI TMS320C55 DSP, E-8
vector memory systems, G-10

Central processing unit (CPU) time
execution time, 36
modeling, B-18
processor performance

calculations, B-19 to
B-21

processor performance equation,
49–51

processor performance time, 49
Cerf, Vint, F-97

CERN, see European Center for
Particle Research
(CERN)

CFM, see Current frame pointer
(CFM)

Chaining
convoys, DAXPY code, G-16
vector processor performance,

G-11 to G-12, G-12
VMIPS, 268–269

Channel adapter, see Network
interface

Channels, cell phones, E-24
Character

floating-point performance, A-2
as operand type, A-13 to A-14
operand types/sizes, 12

Charge-coupled device (CCD), Sanyo
VPC-SX500 digital
camera, E-19

Checksum
dirty bits, D-61 to D-64
packet format, F-7

Chillers
Google WSC, 466, 468
WSC containers, 464
WSC cooling systems, 448–449

Chime
definition, 309
GPUs vs. vector architectures, 308
multiple lanes, 272
NVIDIA GPU computational

structures, 296
vector chaining, G-12
vector execution time, 269, G-4
vector performance, G-2
vector sequence calculations, 270

Chip-crossing wire delay, F-70
OCN history, F-103

Chipkill
memory dependability, 104–105
WSCs, 473

Choke packets, congestion
management, F-65

Chunk
disk array deconstruction, D-51
Shear algorithm, D-53

CIFS, see Common Internet File
System (CIFS)

Circuit switching
congestion management, F-64 to

F-65

interconnected networks, F-50
Circulating water system (CWS)

cooling system design, 448
WSCs, 448

CISC, see Complex Instruction Set
Computer (CISC)

CLA, see Carry-lookahead adder
(CLA)

Clean block, definition, B-11
Climate Savers Computing Initiative,

power supply
efficiencies, 462

Clock cycles
basic MIPS pipeline, C-34 to C-35
and branch penalties, 205
cache performance, B-4
FP pipeline, C-66
and full associativity, B-23
GPU conditional branching, 303
ILP exploitation, 197, 200
ILP exposure, 157
instruction fetch bandwidth,

202–203
instruction steps, 173–175
Intel Core i7 branch predictor, 166
MIPS exceptions, C-48
MIPS pipeline, C-52
MIPS pipeline FP operations, C-52

to C-53
MIPS scoreboarding, C-77
miss rate calculations, B-31 to B-32
multithreading approaches,

225–226
pipelining performance, C-10
processor performance equation, 49
RISC classic pipeline, C-7
Sun T1 multithreading, 226–227
switch microarchitecture

pipelining, F-61
vector architectures, G-4
vector execution time, 269
vector multiple lanes, 271–273
VLIW processors, 195

Clock cycles per instruction (CPI)
addressing modes, A-10
ARM Cortex-A8, 235
branch schemes, C-25 to C-26,

C-26
cache behavior impact, B-18 to

B-19
cache hit calculation, B-5
data hazards requiring stalls, C-20

I-12 ■ Index

Clock cycles per instruction (continued)
extensive pipelining, C-81
floating-point calculations, 50–52
ILP concepts, 148–149, 149
ILP exploitation, 192
Intel Core i7, 124, 240, 240–241
microprocessor advances, L-33
MIPS R4000 performance, C-69
miss penalty reduction, B-32
multiprocessing/

multithreading-based
performance, 398–400

multiprocessor communication
calculations, 350

pipeline branch issues, C-41
pipeline with stalls, C-12 to C-13
pipeline structural hazards, C-15 to

C-16
pipelining concept, C-3
processor performance

calculations, 218–219
processor performance time, 49–51
and processor speed, 244
RISC history, L-21
shared-memory workloads,

369–370
simple MIPS implementation,

C-33 to C-34
structural hazards, C-13
Sun T1 multithreading unicore

performance, 229
Sun T1 processor, 399
Tomasulo’s algorithm, 181
VAX 8700 vs. MIPS M2000, K-82

Clock cycle time
and associativity, B-29
average memory access time, B-21

to B-22
cache optimization, B-19 to B-20,

B-30
cache performance, B-4
CPU time equation, 49–50, B-18
MIPS implementation, C-34
miss penalties, 219
pipeline performance, C-12, C-14

to C-15
pipelining, C-3
shared- vs. switched-media

networks, F-25
Clock periods, processor performance

equation, 48–49
Clock rate

DDR DRAMS and DIMMS, 101
ILP for realizable processors, 218
Intel Core i7, 236–237
microprocessor advances, L-33
microprocessors, 24
MIPS pipeline FP operations, C-53
multicore processor performance,

400
and processor speed, 244

Clocks, processor performance
equation, 48–49

Clock skew, pipelining performance,
C-10

Clock ticks
cache coherence, 391
processor performance equation,

48–49
Clos network

 Beneŝ topology, F-33
as nonblocking, F-33

Cloud computing
basic considerations, 455–461
clusters, 345
provider issues, 471–472
utility computing history, L-73 to

L-74
Clusters

characteristics, 8, I-45
cloud computing, 345
as computer class, 5
containers, L-74 to L-75
Cray X1, G-22
Google WSC servers, 469
historical background, L-62 to

L-64
IBM Blue Gene/L, I-41 to I-44,

I-43 to I-44
interconnection network domains,

F-3 to F-4
Internet Archive Cluster, see

Internet Archive Cluster
large-scale multiprocessors, I-6
large-scale multiprocessor trends,

L-62 to L-63
outage/anomaly statistics, 435
power consumption, F-85
utility computing, L-73 to L-74
as WSC forerunners, 435–436,

L-72 to L-73
WSC storage, 442–443

Cm*, L-56
C.mmp, L-56

CMOS
DRAM, 99
first vector computers, L-46, L-48
ripple-carry adder, J-3
vector processors, G-25 to G-27

Coarse-grained multithreading,
definition, 224–226

Cocke, John, L-19, L-28
Code division multiple access (CDMA),

cell phones, E-25
Code generation

compiler structure, A-25 to A-26,
A-30

dependences, 220
general-purpose register

computers, A-6
ILP limitation studies, 220
loop unrolling/scheduling, 162

Code scheduling
example, H-16
parallelism, H-15 to H-23
superblock scheduling, H-21 to

H-23, H-22
trace scheduling, H-19 to H-21, H-20

Code size
architect-compiler considerations,

A-30
benchmark information, A-2
comparisons, A-44
flawless architecture design, A-45
instruciton set encoding, A-22 to A-23
ISA and compiler technology,

A-43 to A-44
loop unrolling, 160–161
multiprogramming, 375–376
PMDs, 6
RISCs, A-23 to A-24
VAX design, A-45
VLIW model, 195–196

Coefficient of variance, D-27
Coerced exceptions

definition, C-45
exception types, C-46

Coherence, see Cache coherence
Coherence misses

definition, 366
multiprogramming, 376–377
role, 367
scientific workloads on symmetric

shared-memory
multiprocessors, I-22

snooping protocols, 355–356

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-13

Cold-start misses, definition, B-23
Collision, shared-media networks, F-23
Collision detection, shared-media

networks, F-23
Collision misses, definition, B-23
Collocation sites, interconnection

networks, F-85
COLOSSUS, L-4
Column access strobe (CAS), DRAM,

98–99
Column major order

blocking, 89
stride, 278

COMA, see Cache-only memory
architecture (COMA)

Combining tree, large-scale
multiprocessor
synchronization, I-18

Command queue depth, vs. disk
throughput, D-4

Commercial interconnection networks
congestion management, F-64 to

F-66
connectivity, F-62 to F-63
cross-company interoperability,

F-63 to F-64
DECstation 5000 reboots, F-69
fault tolerance, F-66 to F-69

Commercial workloads
execution time distribution, 369
symmetric shared-memory

multiprocessors,
367–374

Commit stage, ROB instruction,
186–187, 188

Commodities
Amazon Web Services, 456–457
array switch, 443
cloud computing, 455
cost vs. price, 32–33
cost trends, 27–28, 32
Ethernet rack switch, 442
HPC hardware, 436
shared-memory multiprocessor,

441
WSCs, 441

Commodity cluster, characteristics,
I-45

Common data bus (CDB)
dynamic scheduling with

Tomasulo’s algorithm,
172, 175

FP unit with Tomasulo’s
algorithm, 185

reservation stations/register tags,
177

Tomasulo’s algorithm, 180, 182
Common Internet File System (CIFS),

D-35
NetApp FAS6000 filer, D-41 to

D-42
Communication bandwidth, basic

considerations, I-3
Communication latency, basic

considerations, I-3 to I-4
Communication latency hiding, basic

considerations, I-4
Communication mechanism

adaptive routing, F-93 to F-94
internetworking, F-81 to F-82
large-scale multiprocessors

advantages, I-4 to I-6
metrics, I-3 to I-4

multiprocessor communication
calculations, 350

network interfaces, F-7 to F-8
NEWS communication, F-42 to

F-43
SMP limitations, 363

Communication protocol, definition,
F-8

Communication subnets, see
Interconnection
networks

Communication subsystems, see
Interconnection
networks

Compare instruction, VAX, K-71
Compares, MIPS core, K-9 to K-16
Compare-select-store unit (CSSU), TI

TMS320C55 DSP, E-8
Compiler-controlled prefetching, miss

penalty/rate reduction,
92–95

Compiler optimizations
blocking, 89–90
cache optimization, 131–133
compiler assumptions, A-25 to

A-26
and consistency model, 396
loop interchange, 88–89
miss rate reduction, 87–90
passes, A-25
performance impact, A-27

types and classes, A-28
Compiler scheduling

data dependences, 151
definition, C-71
hardware support, L-30 to L-31
IBM 360 architecture, 171

Compiler speculation, hardware support
memory references, H-32
overview, H-27
preserving exception behavior,

H-28 to H-32
Compiler techniques

dependence analysis, H-7
global code scheduling, H-17 to

H-18
ILP exposure, 156–162
vectorization, G-14
vector sparse matrices, G-12

Compiler technology
and architecture decisions, A-27 to

A-29
Cray X1, G-21 to G-22
ISA and code size, A-43 to A-44
multimedia instruction support,

A-31 to A-32
register allocation, A-26 to A-27
structure, A-24 to A-26, A-25

Compiler writer-architect relationship,
A-29 to A-30

Complex Instruction Set Computer
(CISC)

RISC history, L-22
VAX as, K-65

Compulsory misses
and cache size, B-24
definition, B-23
memory hierarchy basics, 75
shared-memory workload, 373

Computation-to-communication ratios
parallel programs, I-10 to I-12
scaling, I-11

Compute-optimized processors,
interconnection
networks, F-88

Computer aided design (CAD) tools,
cache optimization,
79–80

Computer architecture, see also
Architecture

coining of term, K-83 to K-84
computer design innovations, 4
defining, 11

I-14 ■ Index

Computer architecture (continued)
definition, L-17 to L-18
exceptions, C-44
factors in improvement, 2
flawless design, K-81
flaws and success, K-81
floating-point addition, rules, J-24
goals/functions requirements, 15,

15–16, 16
high-level language, L-18 to L-19
instruction execution issues, K-81
ISA, 11–15
multiprocessor software

development, 407–409
parallel, 9–10
WSC basics, 432, 441–442

array switch, 443
memory hierarchy, 443–446
storage, 442–443

Computer arithmetic
chip comparison, J-58, J-58 to

J-61, J-59 to J-60
floating point

exceptions, J-34 to J-35
fused multiply-add, J-32 to J-33
IEEE 754, J-16
iterative division, J-27 to J-31
and memory bandwidth, J-62
overview, J-13 to J-14
precisions, J-33 to J-34
remainder, J-31 to J-32
special values, J-16
special values and denormals,

J-14 to J-15
underflow, J-36 to J-37, J-62

floating-point addition
denormals, J-26 to J-27
overview, J-21 to J-25
speedup, J-25 to J-26

floating-point multiplication
denormals, J-20 to J-21
examples, J-19
overview, J-17 to J-20
rounding, J-18

integer addition speedup
carry-lookahead, J-37 to J-41
carry-lookahead circuit, J-38
carry-lookahead tree, J-40
carry-lookahead tree adder,

J-41
carry-select adder, J-43, J-43 to

J-44, J-44

carry-skip adder, J-41 to J43,
J-42

overview, J-37
integer arithmetic

language comparison, J-12
overflow, J-11
Radix-2 multiplication/

division, J-4, J-4 to
J-7

restoring/nonrestoring division,
J-6

ripply-carry addition, J-2 to J-3,
J-3

signed numbers, J-7 to J-10
systems issues, J-10 to J-13

integer division
radix-2 division, J-55
radix-4 division, J-56
radix-4 SRT division, J-57
with single adder, J-54 to J-58
SRT division, J-45 to J-47, J-46

integer-FP conversions, J-62
integer multiplication

array multiplier, J-50
Booth recoding, J-49
even/odd array, J-52
with many adders, J-50 to J-54
multipass array multiplier, J-51
signed-digit addition table,

J-54
with single adder, J-47 to J-49,

J-48
Wallace tree, J-53

integer multiplication/division,
shifting over zeros, J-45
to J-47

overview, J-2
rounding modes, J-20

Computer chip fabrication
cost case study, 61–62
Cray X1E, G-24

Computer classes
desktops, 6
embedded computers, 8–9
example, 5
overview, 5
parallelism and parallel

architectures, 9–10
PMDs, 6
servers, 7
and system characteristics, E-4
warehouse-scale computers, 8

Computer design principles
Amdahl’s law, 46–48
common case, 45–46
parallelism, 44–45
principle of locality, 45
processor performance equation,

48–52
Computer history, technology and

architecture, 2–5
Computer room air-conditioning

(CRAC), WSC
infrastructure, 448–449

Compute tiles, OCNs, F-3
Compute Unified Device Architecture,

see CUDA (Compute
Unified Device
Architecture)

Conditional branches
branch folding, 206
compare frequencies, A-20
compiler performance, C-24 to

C-25
control flow instructions, 14, A-16,

A-17, A-19, A-21
desktop RISCs, K-17
embedded RISCs, K-17
evaluation, A-19
global code scheduling, H-16, H-16
GPUs, 300–303
ideal processor, 214
ISAs, A-46
MIPS control flow instructions,

A-38, A-40
MIPS core, K-9 to K-16
PA-RISC instructions, K-34, K-34
predictor misprediction rates, 166
PTX instruction set, 298–299
static branch prediction, C-26
types, A-20
vector-GPU comparison, 311

Conditional instructions
exposing parallelism, H-23 to H-27
limitations, H-26 to H-27

Condition codes
branch conditions, A-19
control flow instructions, 14
definition, C-5
high-level instruction set, A-43
instruction set complications, C-50
MIPS core, K-9 to K-16
pipeline branch penalties, C-23
VAX, K-71

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-15

Conflict misses
and block size, B-28
cache coherence mechanism, 358
and cache size, B-24, B-26
definition, B-23
as kernel miss, 376
L3 caches, 371
memory hierarchy basics, 75
OLTP workload, 370
PIDs, B-37
shared-memory workload, 373

Congestion control
commercial interconnection

networks, F-64
system area network history, F-101

Congestion management, commercial
interconnection
networks, F-64 to F-66

Connectedness
dimension-order routing, F-47 to

F-48
interconnection network topology,

F-29
Connection delay, multi-device

interconnection
networks, F-25

Connection Machine CM-5, F-91,
F-100

Connection Multiprocessor 2, L-44,
L-57

Consistency, see Memory consistency
Constant extension

desktop RISCs, K-9
embedded RISCs, K-9

Constellation, characteristics, I-45
Containers

airflow, 466
cluster history, L-74 to L-75
Google WSCs, 464–465, 465

Context Switching
definition, 106, B-49
Fermi GPU, 307

Control bits, messages, F-6
Control Data Corporation (CDC), first

vector computers, L-44
to L-45

Control Data Corporation (CDC) 6600
computer architecture definition,

L-18
dynamically scheduling with

scoreboard, C-71 to
C-72

early computer arithmetic, J-64
first dynamic scheduling, L-27
MIPS scoreboarding, C-75, C-77
multiple-issue processor

development, L-28
multithreading history, L-34
RISC history, L-19

Control Data Corporation (CDC)
STAR-100

first vector computers, L-44
peak performance vs. start-up

overhead, 331
Control Data Corporation (CDC)

STAR processor, G-26
Control dependences

conditional instructions, H-24
as data dependence, 150
global code scheduling, H-16
hardware-based speculation,

183
ILP, 154–156
ILP hardware model, 214
and Tomasulo’s algorithm, 170
vector mask registers, 275–276

Control flow instructions
addressing modes, A-17 to A-18
basic considerations, A-16 to

A-17, A-20 to A-21
classes, A-17
conditional branch options, A-19
conditional instructions, H-27
hardware vs. software speculation,

221
Intel 80x86 integer operations, K-51
ISAs, 14
MIPS, A-37 to A-38, A-38
procedure invocation options,

A-19 to A-20
Control hazards

ARM Cortex-A8, 235
definition, C-11

Control instructions
Intel 80x86, K-53
RISCs

desktop systems, K-12, K-22
embedded systems, K-16

VAX, B-73
Controllers, historical background,

L-80 to L-81
Controller transitions

directory-based, 422
snooping cache, 421

Control Processor
definition, 309
GPUs, 333
SIMD, 10
Thread Block Scheduler, 294
vector processor, 310, 310–311
vector unit structure, 273

Conventional datacenters, vs. WSCs,
436

Convex Exemplar, L-61
Convex processors, vector processor

history, G-26
Convolution, DSP, E-5
Convoy

chained, DAXPY code, G-16
DAXPY on VMIPS, G-20
strip-mined loop, G-5
vector execution time, 269–270
vector starting times, G-4

Conway, Lynn, L-28
Cooling systems

Google WSC, 465–468
mechanical design, 448
WSC infrastructure, 448–449

Copper wiring
Ethernet, F-78
interconnection networks, F-9

“Coprocessor operations,” MIPS core
extensions, K-21

Copy propagation, definition, H-10 to
H-11

Core definition, 15
Core plus ASIC, embedded systems,

E-3
Correlating branch predictors, branch

costs, 162–163
Cosmic Cube, F-100, L-60
Cost

Amazon EC2, 458
Amazon Web Services, 457
bisection bandwidth, F-89
branch predictors, 162–167, C-26
chip fabrication case study, 61–62
cloud computing providers,

471–472
disk storage, D-2
DRAM/magnetic disk, D-3
interconnecting node calculations,

F-31 to F-32, F-35
Internet Archive Cluster, D-38 to

D-40
internetworking, F-80

I-16 ■ Index

Cost (continued)
I/O system design/evaluation,

D-36
magnetic storage history, L-78
MapReduce calculations, 458–459,

459
memory hierarchy design, 72
MINs vs. direct networks, F-92
multiprocessor cost relationship,

409
multiprocessor linear speedup, 407
network topology, F-40
PMDs, 6
server calculations, 454, 454–455
server usage, 7
SIMD supercomputer

development, L-43
speculation, 210
torus topology interconnections,

F-36 to F-38
tournament predictors, 164–166
WSC array switch, 443
WSC vs. datacenters, 455–456
WSC efficiency, 450–452
WSC facilities, 472
WSC network bottleneck, 461
WSCs, 446–450, 452–455, 453
WSCs vs. servers, 434
WSC TCO case study, 476–478

Cost associativity, cloud computing,
460–461

Cost-performance
commercial interconnection

networks, F-63
computer trends, 3
extensive pipelining, C-80 to C-81
IBM eServer p5 processor, 409
sorting case study, D-64 to D-67
WSC Flash memory, 474–475
WSC goals/requirements, 433
WSC hardware inactivity, 474
WSC processors, 472–473

Cost trends
integrated circuits, 28–32
manufacturing vs. operation, 33
overview, 27
vs. price, 32–33
time, volume, commoditization,

27–28
Count register, PowerPC instructions,

K-32 to K-33
CP-67 program, L-10

CPA, see Carry-propagate adder
(CPA)

CPI, see Clock cycles per instruction
(CPI)

CPU, see Central processing unit
(CPU)

CRAC, see Computer room
air-conditioning
(CRAC)

Cray, Seymour, G-25, G-27, L-44,
L-47

Cray-1
first vector computers, L-44 to L-45
peak performance vs. start-up

overhead, 331
pipeline depths, G-4
RISC history, L-19
vector performance, 332
vector performance measures, G-16
as VMIPS basis, 264, 270–271,

276–277
Cray-2

DRAM, G-25
first vector computers, L-47
tailgating, G-20

Cray-3, G-27
Cray-4, G-27
Cray C90

first vector computers, L-46, L-48
vector performance calculations,

G-8
Cray J90, L-48
Cray Research T3D, F-86 to F-87,

F-87
Cray supercomputers, early computer

arithmetic, J-63 to J-64
Cray T3D, F-100, L-60
Cray T3E, F-67, F-94, F-100, L-48,

L-60
Cray T90, memory bank calculations,

276
Cray X1

cluster history, L-63
first vector computers, L-46, L-48
MSP module, G-22, G-23 to G-24
overview, G-21 to G-23
peak performance, 58

Cray X1E, F-86, F-91
characteristics, G-24

Cray X2, L-46 to L-47
first vector computers, L-48 to

L-49

Cray X-MP, L-45
first vector computers, L-47

Cray XT3, L-58, L-63
Cray XT3 SeaStar, F-63
Cray Y-MP

first vector computers, L-45 to
L-47

parallel processing debates, L-57
vector architecture programming,

281, 281–282
CRC, see Cyclic redundancy check

(CRC)
Create vector index instruction (CVI),

sparse matrices, G-13
Credit-based control flow

InfiniBand, F-74
interconnection networks, F-10,

F-17
CRISP, L-27
Critical path

global code scheduling, H-16
trace scheduling, H-19 to H-21, H-20

Critical word first, cache optimization,
86–87

Crossbars
centralized switched networks,

F-30, F-31
characteristics, F-73
Convex Exemplar, L-61
HOL blocking, F-59
OCN history, F-104
switch microarchitecture, F-62
switch microarchitecture

pipelining, F-60 to F-61,
F-61

VMIPS, 265
Crossbar switch

centralized switched networks, F-30
interconnecting node calculations,

F-31 to F-32
Cross-company interoperability,

commercial
interconnection
networks, F-63 to F-64

Crusoe, L-31
Cryptanalysis, L-4
CSA, see Carry-save adder (CSA);

Carry-skip adder (CSA)
C# language, hardware impact on

software development, 4
CSSU, see Compare-select-store unit

(CSSU)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-17

CUDA (Compute Unified Device
Architecture)

GPU computing history, L-52
GPU conditional branching, 303
GPUs vs. vector architectures,

310
NVIDIA GPU programming,

289
PTX, 298, 300
sample program, 289–290
SIMD instructions, 297
terminology, 313–315

CUDA Thread
CUDA programming model, 300,

315
definition, 292, 313
definitions and terms, 314
GPU data addresses, 310
GPU Memory structures, 304
NVIDIA parallelism, 289–290
vs. POSIX Threads, 297
PTX Instructions, 298
SIMD Instructions, 303
Thread Block, 313

Current frame pointer (CFM), IA-64
register model, H-33 to
H-34

Custom cluster
characteristics, I-45
IBM Blue Gene/L, I-41 to I-44,

I-43 to I-44
Cut-through packet switching, F-51

routing comparison, F-54
CVI, see Create vector index

instruction (CVI)
CWS, see Circulating water system

(CWS)
CYBER 180/990, precise exceptions,

C-59
CYBER 205

peak performance vs. start-up
overhead, 331

vector processor history, G-26 to
G-27

CYBER 250, L-45
Cycles, processor performance

equation, 49
Cycle time, see also Clock cycle time

CPI calculations, 350
pipelining, C-81
scoreboarding, C-79
vector processors, 277

Cyclic redundancy check (CRC)
IBM Blue Gene/L 3D torus

network, F-73
network interface, F-8

Cydrome Cydra 6, L-30, L-32

D
DaCapo benchmarks

ISA, 242
SMT, 230–231, 231

DAMQs, see Dynamically allocatable
multi-queues (DAMQs)

DASH multiprocessor, L-61
Database program speculation, via

multiple branches, 211
Data cache

ARM Cortex-A8, 236
cache optimization, B-33, B-38
cache performance, B-16
GPU Memory, 306
ISA, 241
locality principle, B-60
MIPS R4000 pipeline, C-62 to

C-63
multiprogramming, 374
page level write-through, B-56
RISC processor, C-7
structural hazards, C-15
TLB, B-46

Data cache miss
applications vs. OS, B-59
cache optimization, B-25
Intel Core i7, 240
Opteron, B-12 to B-15
sizes and associativities, B-10
writes, B-10

Data cache size, multiprogramming,
376–377

Datacenters
CDF, 487
containers, L-74
cooling systems, 449
layer 3 network example, 445
PUE statistics, 451
tier classifications, 491
vs. WSC costs, 455–456
WSC efficiency measurement,

450–452
vs. WSCs, 436

Data dependences
conditional instructions, H-24
data hazards, 167–168

dynamically scheduling with
scoreboard, C-71

example calculations, H-3 to H-4
hazards, 153–154
ILP, 150–152
ILP hardware model, 214–215
ILP limitation studies, 220
vector execution time, 269

Data fetching
ARM Cortex-A8, 234
directory-based cache coherence

protocol example,
382–383

dynamically scheduled pipelines,
C-70 to C-71

ILP, instruction bandwidth
basic considerations, 202–203
branch-target buffers, 203–206
return address predictors,

206–207
MIPS R4000, C-63
snooping coherence protocols,

355–356
Data flow

control dependence, 154–156
dynamic scheduling, 168
global code scheduling, H-17
ILP limitation studies, 220
limit, L-33

Data flow execution, hardware-based
speculation, 184

Datagrams, see Packets
Data hazards

ARM Cortex-A8, 235
basic considerations, C-16
definition, C-11
dependences, 152–154
dynamic scheduling, 167–176

basic concept, 168–170
examples, 176–178
Tomasulo’s algorithm,

170–176, 178–179
Tomasulo’s algorithm

loop-based example,
179–181

ILP limitation studies, 220
instruction set complications, C-50

to C-51
microarchitectural techniques case

study, 247–254
MIPS pipeline, C-71
RAW, C-57 to C-58

I-18 ■ Index

Data hazards
stall minimization by forwarding,

C-16 to C-19, C-18
stall requirements, C-19 to C-21
VMIPS, 264

Data-level parallelism (DLP)
definition, 9
GPUs

basic considerations, 288
basic PTX thread instructions,

299
conditional branching, 300–303
coprocessor relationship,

330–331
Fermi GPU architecture

innovations, 305–308
Fermi GTX 480 floorplan, 295
mapping examples, 293
Multimedia SIMD comparison,

312
multithreaded SIMD Processor

block diagram, 294
NVIDIA computational

structures, 291–297
NVIDIA/CUDA and AMD

terminology, 313–315
NVIDIA GPU ISA, 298–300
NVIDIA GPU Memory

structures, 304, 304–305
programming, 288–291
SIMD thread scheduling, 297
terminology, 292
vs. vector architectures,

308–312, 310
from ILP, 4–5
Multimedia SIMD Extensions

basic considerations, 282–285
programming, 285
roofline visual performance

model, 285–288, 287
and power, 322
vector architecture

basic considerations, 264
gather/scatter operations,

279–280
multidimensional arrays,

278–279
multiple lanes, 271–273
peak performance vs. start-up

overhead, 331
programming, 280–282

vector execution time, 268–271
vector-length registers,

274–275
vector load-store unit

bandwidth, 276–277
vector-mask registers, 275–276
vector processor example,

267–268
VMIPS, 264–267

vector kernel implementation,
334–336

vector performance and memory
bandwidth, 332

vector vs. scalar performance,
331–332

WSCs vs. servers, 433–434
Data link layer

definition, F-82
interconnection networks, F-10

Data parallelism, SIMD computer
history, L-55

Data-race-free, synchronized
programs, 394

Data races, synchronized programs, 394
Data transfers

cache miss rate calculations, B-16
computer architecture, 15
desktop RISC instructions, K-10,

K-21
embedded RISCs, K-14, K-23
gather-scatter, 281, 291
instruction operators, A-15
Intel 80x86, K-49, K-53 to K-54
ISA, 12–13
MIPS, addressing modes, A-34
MIPS64, K-24 to K-26
MIPS64 instruction subset, A-40
MIPS64 ISA formats, 14
MIPS core extensions, K-20
MIPS operations, A-36 to A-37
MMX, 283
multimedia instruction compiler

support, A-31
operands, A-12
PTX, 305
SIMD extensions, 284
“typical” programs, A-43
VAX, B-73
vector vs. GPU, 300

Data trunks, MIPS scoreboarding,
C-75

Data types
architect-compiler writer

relationship, A-30
dependence analysis, H-10
desktop computing, A-2
Intel 80x86, K-50
MIPS, A-34, A-36
MIPS64 architecture, A-34
multimedia compiler support, A-31
operand types/sizes, A-14 to A-15
SIMD Multimedia Extensions,

282–283
SPARC, K-31
VAX, K-66, K-70

Dauber, Phil, L-28
DAXPY loop

chained convoys, G-16
on enhanced VMIPS, G-19 to G-21
memory bandwidth, 332
MIPS/VMIPS calculations,

267–268
peak performance vs. start-up

overhead, 331
vector performance measures,

G-16
VLRs, 274–275
on VMIPS, G-19 to G-20
VMIPS calculations, G-18
VMIPS on Linpack, G-18
VMIPS peak performance, G-17

D-caches
case study examples, B-63
way prediction, 81–82

DDR, see Double data rate (DDR)
Deadlock

cache coherence, 361
dimension-order routing, F-47 to

F-48
directory protocols, 386
Intel SCCC, F-70
large-scale multiprocessor cache

coherence, I-34 to I-35,
I-38 to I-40

mesh network routing, F-46
network routing, F-44
routing comparison, F-54
synchronization, 388
system area network history, F-101

Deadlock avoidance
meshes and hypercubes, F-47
routing, F-44 to F-45

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-19

Deadlock recovery, routing, F-45
Dead time

vector pipeline, G-8
vector processor, G-8

Decimal operands, formats, A-14
Decimal operations, PA-RISC

instructions, K-35
Decision support system (DSS),

shared-memory
workloads, 368–369,
369, 369–370

Decoder, radio receiver, E-23
Decode stage, TI 320C55 DSP, E-7
DEC PDP-11, address space, B-57 to

B-58
DECstation 5000, reboot

measurements, F-69
DEC VAX

addressing modes, A-10 to A-11,
A-11, K-66 to K-68

address space, B-58
architect-compiler writer

relationship, A-30
branch conditions, A-19
branches, A-18

jumps, procedure calls, K-71 to
K-72

bubble sort, K-76
characteristics, K-42
cluster history, L-62, L-72
compiler writing-architecture

relationship, A-30
control flow instruction branches,

A-18
data types, K-66
early computer arithmetic, J-63 to

J-64
early pipelined CPUs, L-26
exceptions, C-44
extensive pipelining, C-81
failures, D-15
flawless architecture design, A-45,

K-81
high-level instruction set, A-41 to

A-43
high-level language computer

architecture, L-18 to L-19
history, 2–3
immediate value distribution, A-13
instruction classes, B-73
instruction encoding, K-68 to

K-70, K-69

instruction execution issues, K-81
instruction operator categories,

A-15
instruction set complications, C-49

to C-50
integer overflow, J-11
vs. MIPS, K-82
vs. MIPS32 sort, K-80
vs. MIPS code, K-75
miss rate vs. virtual addressing,

B-37
operands, K-66 to K-68
operand specifiers, K-68
operands per ALU, A-6, A-8
operand types/sizes, A-14
operation count, K-70 to K-71
operations, K-70 to K-72
operators, A-15
overview, K-65 to K-66
precise exceptions, C-59
replacement by RISC, 2
RISC history, L-20 to L-21
RISC instruction set lineage, K-43
sort, K-76 to K-79
sort code, K-77 to K-79
sort register allocation, K-76
swap, K-72 to K-76
swap code, B-74, K-72, K-74
swap full procedure, K-75 to K-76
swap and register preservation,

B-74 to B-75
unique instructions, K-28

DEC VAX-11/780, L-6 to L-7, L-11,
L-18

DEC VAX 8700
vs. MIPS M2000, K-82, L-21
RISC history, L-21

Dedicated link network
black box network, F-5 to F-6
effective bandwidth, F-17
example, F-6

Defect tolerance, chip fabrication cost
case study, 61–62

Deferred addressing, VAX, K-67
Delayed branch

basic scheme, C-23
compiler history, L-31
instructions, K-25
stalls, C-65

Dell Poweredge servers, prices, 53
Dell Poweredge Thunderbird, SAN

characteristics, F-76

Dell servers
economies of scale, 456
real-world considerations, 52–55
WSC services, 441

Demodulator, radio receiver, E-23
Denormals, J-14 to J-16, J-20 to

J-21
floating-point additions, J-26 to

J-27
floating-point underflow, J-36

Dense matrix multiplication, LU
kernel, I-8

Density-optimized processors, vs.
SPEC-optimized, F-85

Dependability
benchmark examples, D-21 to

D-23, D-22
definition, D-10 to D-11
disk operators, D-13 to D-15
integrated circuits, 33–36
Internet Archive Cluster, D-38 to

D-40
memory systems, 104–105
WSC goals/requirements, 433
WSC memory, 473–474
WSC storage, 442–443

Dependence analysis
basic approach, H-5
example calculations, H-7
limitations, H-8 to H-9

Dependence distance, loop-carried
dependences, H-6

Dependences
antidependences, 152, 320, C-72,

C-79
CUDA, 290
as data dependence, 150
data hazards, 167–168
definition, 152–153, 315–316
dynamically scheduled pipelines,

C-70 to C-71
dynamically scheduling with

scoreboard, C-71
dynamic scheduling with

Tomasulo’s algorithm,
172

hardware-based speculation,
183

hazards, 153–154
ILP, 150–156
ILP hardware model, 214–215
ILP limitation studies, 220

I-20 ■ Index

Dependences (continued)
loop-level parallelism, 318–322,

H-3
dependence analysis, H-6 to H-10

MIPS scoreboarding, C-79
as program properties, 152
sparse matrices, G-13
and Tomasulo’s algorithm, 170
types, 150
vector execution time, 269
vector mask registers, 275–276
VMIPS, 268

Dependent computations, elimination,
H-10 to H-12

Descriptor privilege level (DPL),
segmented virtual
memory, B-53

Descriptor table, IA-32, B-52
Design faults, storage systems, D-11
Desktop computers

characteristics, 6
compiler structure, A-24
as computer class, 5
interconnection networks, F-85
memory hierarchy basics, 78
multimedia support, E-11
multiprocessor importance, 344
performance benchmarks, 38–40
processor comparison, 242
RAID history, L-80
RISC systems

addressing modes, K-5
addressing modes and

instruction formats, K-5
to K-6

arithmetic/logical instructions,
K-22

conditional branches, K-17
constant extension, K-9
control instructions, K-12
conventions, K-13
data transfer instructions, K-10,

K-21
examples, K-3, K-4
features, K-44
FP instructions, K-13, K-23
instruction formats, K-7
multimedia extensions, K-16 to

K-19, K-18
system characteristics, E-4

Destination offset, IA-32 segment,
B-53

Deterministic routing algorithm
vs. adaptive routing, F-52 to F-55,

F-54
DOR, F-46

Dies
embedded systems, E-15
integrated circuits, 28–30, 29
Nehalem floorplan, 30
wafer example, 31, 31–32

Die yield, basic equation, 30–31
Digital Alpha

branches, A-18
conditional instructions, H-27
early pipelined CPUs, L-27
RISC history, L-21
RISC instruction set lineage, K-43
synchronization history, L-64

Digital Alpha 21064, L-48
Digital Alpha 21264

cache hierarchy, 368
floorplan, 143

Digital Alpha MAX
characteristics, K-18
multimedia support, K-18

Digital Alpha processors
addressing modes, K-5
arithmetic/logical instructions, K-11
branches, K-21
conditional branches, K-12, K-17
constant extension, K-9
control flow instruction branches,

A-18
conventions, K-13
data transfer instructions, K-10
displacement addressing mode,

A-12
exception stopping/restarting, C-47
FP instructions, K-23
immediate value distribution, A-13
MAX, multimedia support, E-11
MIPS precise exceptions, C-59
multimedia support, K-19
recent advances, L-33
as RISC systems, K-4
shared-memory workload,

367–369
unique instructions, K-27 to K-29

Digital Linear Tape, L-77
Digital signal processor (DSP)

cell phones, E-23, E-23, E-23 to
E-24

definition, E-3

desktop multimedia support, E-11
embedded RISC extensions, K-19
examples and characteristics, E-6
media extensions, E-10 to E-11
overview, E-5 to E-7
saturating operations, K-18 to

K-19
TI TMS320C6x, E-8 to E-10
TI TMS320C6x instruction packet,

E-10
TI TMS320C55, E-6 to E-7, E-7 to

E-8
TI TMS320C64x, E-9

Dimension-order routing (DOR),
definition, F-46

DIMMs, see Dual inline memory
modules (DIMMs)

Direct attached disks, definition, D-35
Direct-mapped cache

address parts, B-9
address translation, B-38
block placement, B-7
early work, L-10
memory hierarchy basics, 74
memory hierarchy, B-48
optimization, 79–80

Direct memory access (DMA)
historical background, L-81
InfiniBand, F-76
network interface functions,

F-7
Sanyo VPC-SX500 digital camera,

E-19
Sony PlayStation 2 Emotion

Engine, E-18
TI TMS320C55 DSP, E-8
zero-copy protocols, F-91

Direct networks
commercial system topologies,

F-37
vs. high-dimensional networks,

F-92
vs. MIN costs, F-92
topology, F-34 to F-40

Directory-based cache coherence
advanced directory protocol case

study, 420–426
basic considerations, 378–380
case study, 418–420
definition, 354
distributed-memory

multiprocessor, 380

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-21

large-scale multiprocessor history,
L-61

latencies, 425
protocol basics, 380–382
protocol example, 382–386
state transition diagram, 383

Directory-based multiprocessor
characteristics, I-31
performance, I-26
scientific workloads, I-29
synchronization, I-16, I-19 to I-20

Directory controller, cache coherence,
I-40 to I-41

Dirty bit
case study, D-61 to D-64
definition, B-11
virtual memory fast address

translation, B-46
Dirty block

definition, B-11
read misses, B-36

Discrete cosine transform, DSP, E-5
Disk arrays

deconstruction case study, D-51 to
D-55, D-52 to D-55

RAID 6, D-8 to D-9
RAID 10, D-8
RAID levels, D-6 to D-8, D-7

Disk layout, RAID performance
prediction, D-57 to D-59

Disk power, basic considerations, D-5
Disk storage

access time gap, D-3
areal density, D-2 to D-5
cylinders, D-5
deconstruction case study, D-48 to

D-51, D-50
DRAM/magnetic disk cost vs.

access time, D-3
intelligent interfaces, D-4
internal microprocessors, D-4
real faults and failures, D-10 to

D-11
throughput vs. command queue

depth, D-4
Disk technology

failure rate calculation, 48
Google WSC servers, 469
performance trends, 19–20, 20
WSC Flash memory, 474–475

Dispatch stage
instruction steps, 174

microarchitectural techniques case
study, 247–254

Displacement addressing mode
basic considerations, A-10
MIPS, 12
MIPS data transfers, A-34
MIPS instruction format, A-35
value distributions, A-12
VAX, K-67

Display lists, Sony PlayStation 2
Emotion Engine, E-17

Distributed routing, basic concept,
F-48

Distributed shared memory (DSM)
basic considerations, 378–380
basic structure, 347–348, 348
characteristics, I-45
directory-based cache coherence,

354, 380, 418–420
multichip multicore

multiprocessor, 419
snooping coherence protocols,

355
Distributed shared-memory

multiprocessors
cache coherence implementation,

I-36 to I-37
scientific application performance,

I-26 to I-32, I-28 to I-32
Distributed switched networks,

topology, F-34 to F-40
Divide operations

chip comparison, J-60 to J-61
floating-point, stall, C-68
floating-point iterative, J-27 to

J-31
integers, speedup

radix-2 division, J-55
radix-4 division, J-56
radix-4 SRT division, J-57
with single adder, J-54 to J-58

integer shifting over zeros, J-45 to
J-47

language comparison, J-12
n-bit unsigned integers, J-4
PA-RISC instructions, K-34 to

K-35
Radix-2, J-4 to J-7
restoring/nonrestoring, J-6
SRT division, J-45 to J-47, J-46
unfinished instructions, 179

DLP, see Data-level parallelism (DLP)

DLX
integer arithmetic, J-12
vs. Intel 80x86 operations, K-62,

K-63 to K-64
DMA, see Direct memory access

(DMA)
DOR, see Dimension-order routing

(DOR)
Double data rate (DDR)

ARM Cortex-A8, 117
DRAM performance, 100
DRAMs and DIMMS, 101
Google WSC servers, 468–469
IBM Blue Gene/L, I-43
InfiniBand, F-77
Intel Core i7, 121
SDRAMs, 101

Double data rate 2 (DDR2), SDRAM
timing diagram, 139

Double data rate 3 (DDR3)
DRAM internal organization, 98
GDRAM, 102
Intel Core i7, 118
SDRAM power consumption, 102,

103
Double data rate 4 (DDR4), DRAM,

99
Double data rate 5 (DDR5), GDRAM,

102
Double-extended floating-point

arithmetic, J-33 to J-34
Double failures, RAID reconstruction,

D-55 to D-57
Double-precision floating point

add-divide, C-68
AVX for x86, 284
chip comparison, J-58
data access benchmarks, A-15
DSP media extensions, E-10 to

E-11
Fermi GPU architecture, 306
floating-point pipeline, C-65
GTX 280, 325, 328–330
IBM 360, 171
MIPS, 285, A-38 to A-39
MIPS data transfers, A-34
MIPS registers, 12, A-34
Multimedia SIMD vs. GPUs, 312
operand sizes/types, 12
as operand type, A-13 to A-14
operand usage, 297
pipeline timing, C-54

I-22 ■ Index

Double-precision (continued)
Roofline model, 287, 326
SIMD Extensions, 283
VMIPS, 266, 266–267

Double rounding
FP precisions, J-34
FP underflow, J-37

Double words
aligned/misaligned addresses, A-8
data access benchmarks, A-15
Intel 80x86, K-50
memory address interpretation,

A-7 to A-8
MIPS data types, A-34
operand types/sizes, 12, A-14
stride, 278

DPL, see Descriptor privilege level
(DPL)

DRAM, see Dynamic random-access
memory (DRAM)

DRDRAM, Sony PlayStation 2, E-16
to E-17

Driver domains, Xen VM, 111
DSM, see Distributed shared memory

(DSM)
DSP, see Digital signal processor

(DSP)
DSS, see Decision support system

(DSS)
Dual inline memory modules (DIMMs)

clock rates, bandwidth, names, 101
DRAM basics, 99
Google WSC server, 467
Google WSC servers, 468–469
graphics memory, 322–323
Intel Core i7, 118, 121
Intel SCCC, F-70
SDRAMs, 101
WSC memory, 473–474

Dual SIMD Thread Scheduler,
example, 305–306

DVFS, see Dynamic
voltage-frequency
scaling (DVFS)

Dynamically allocatable multi-queues
(DAMQs), switch
microarchitecture, F-56
to F-57

Dynamically scheduled pipelines
basic considerations, C-70 to C-71
with scoreboard, C-71 to C-80

Dynamically shared libraries, control
flow instruction
addressing modes, A-18

Dynamic energy, definition, 23
Dynamic network reconfiguration,

fault tolerance, F-67 to
F-68

Dynamic power
energy efficiency, 211
microprocessors, 23
vs. static power, 26

Dynamic random-access memory
(DRAM)

bandwidth issues, 322–323
characteristics, 98–100
clock rates, bandwidth, names, 101
cost vs. access time, D-3
cost trends, 27
Cray X1, G-22
CUDA, 290
dependability, 104
disk storage, D-3 to D-4
embedded benchmarks, E-13
errors and faults, D-11
first vector computers, L-45, L-47
Flash memory, 103–104
Google WSC servers, 468–469
GPU SIMD instructions, 296
IBM Blue Gene/L, I-43 to I-44
improvement over time, 17
integrated circuit costs, 28
Intel Core i7, 121
internal organization, 98
magnetic storage history, L-78
memory hierarchy design, 73, 73
memory performance, 100–102
multibanked caches, 86
NVIDIA GPU Memory structures,

305
performance milestones, 20
power consumption, 63
real-world server considerations,

52–55
Roofline model, 286
server energy savings, 25
Sony PlayStation 2, E-16, E-17
speed trends, 99
technology trends, 17
vector memory systems, G-9
vector processor, G-25
WSC efficiency measurement, 450

WSC memory costs, 473–474
WSC memory hierarchy, 444–445
WSC power modes, 472
yield, 32

Dynamic scheduling
first use, L-27
ILP

basic concept, 168–169
definition, 168
example and algorithms,

176–178
with multiple issue and

speculation, 197–202
overcoming data hazards,

167–176
Tomasulo’s algorithm, 170–176,

178–179, 181–183
MIPS scoreboarding, C-79
SMT on superscalar processors, 230
and unoptimized code, C-81

Dynamic voltage-frequency scaling
(DVFS)

energy efficiency, 25
Google WSC, 467
processor performance equation,

52
Dynamo (Amazon), 438, 452

E
Early restart, miss penalty reduction,

86
Earth Simulator, L-46, L-48, L-63
EBS, see Elastic Block Storage (EBS)
EC2, see Amazon Elastic Computer

Cloud (EC2)
ECC, see Error-Correcting Code

(ECC)
Eckert, J. Presper, L-2 to L-3, L-5, L-19
Eckert-Mauchly Computer

Corporation, L-4 to L-5,
L-56

ECL minicomputer, L-19
Economies of scale

WSC vs. datacenter costs, 455–456
WSCs, 434

EDSAC (Electronic Delay Storage
Automatic Calculator),
L-3

EDVAC (Electronic Discrete Variable
Automatic Computer),
L-2 to L-3

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-23

EEMBC, see Electronic Design News
Embedded
Microprocessor
Benchmark Consortium
(EEMBC)

EEPROM (Electronically Erasable
Programmable
Read-Only Memory)

compiler-code size considerations,
A-44

Flash Memory, 102–104
memory hierarchy design, 72

Effective address
ALU, C-7, C-33
data dependences, 152
definition, A-9
execution/effective address cycle,

C-6, C-31 to C-32,
C-63

hardware-based speculation, 186,
190, 192

load interlocks, C-39
load-store, 174, 176, C-4
RISC instruction set, C-4 to C-5
simple MIPS implementation,

C-31 to C-32
simple RISC implementation,

C-6
TLB, B-49
Tomasulo’s algorithm, 173, 178,

182
Effective bandwidth

definition, F-13
example calculations, F-18
vs. interconnected nodes, F-28
interconnection networks

multi-device networks, F-25 to
F-29

two-device networks, F-12 to
F-20

vs. packet size, F-19
Efficiency factor, F-52
Eight-way set associativity

ARM Cortex-A8, 114
cache optimization, B-29
conflict misses, B-23
data cache misses, B-10

Elapsed time, execution time, 36
Elastic Block Storage (EBS),

MapReduce cost
calculations, 458–460,
459

Electronically Erasable Programmable
Read-Only Memory, see
EEPROM
(Electronically Erasable
Programmable
Read-Only Memory)

Electronic Delay Storage Automatic
Calculator (EDSAC), L-3

Electronic Design News Embedded
Microprocessor
Benchmark Consortium
(EEMBC)

benchmark classes, E-12
ISA code size, A-44
kernel suites, E-12
performance benchmarks, 38
power consumption and efficiency

metrics, E-13
Electronic Discrete Variable

Automatic Computer
(EDVAC), L-2 to L-3

Electronic Numerical Integrator and
Calculator (ENIAC),
L-2 to L-3, L-5 to L-6,
L-77

Element group, definition, 272
Embedded multiprocessors,

characteristics, E-14 to
E-15

Embedded systems
benchmarks

basic considerations, E-12
power consumption and

efficiency, E-13
cell phone case study

Nokia circuit board, E-24
overview, E-20
phone block diagram, E-23
phone characteristics, E-22 to

E-24
radio receiver, E-23
standards and evolution, E-25
wireless networks, E-21 to

E-22
characteristics, 8–9, E-4
as computer class, 5
digital signal processors

definition, E-3
desktop multimedia support,

E-11
examples and characteristics,

E-6

media extensions, E-10 to E-11
overview, E-5 to E-7
TI TMS320C6x, E-8 to E-10
TI TMS320C6x instruction

packet, E-10
TI TMS320C55, E-6 to E-7,

E-7 to E-8
TI TMS320C64x, E-9

EEMBC benchmark suite, E-12
overview, E-2
performance, E-13 to E-14
real-time processing, E-3 to E-5
RISC systems

addressing modes, K-6
addressing modes and

instruction formats, K-5
to K-6

arithmetic/logical instructions,
K-24

conditional branches, K-17
constant extension, K-9
control instructions, K-16
conventions, K-16
data transfer instructions, K-14,

K-23
DSP extensions, K-19
examples, K-3, K-4
instruction formats, K-8
multiply-accumulate, K-20

Sanyo digital camera SOC, E-20
Sanyo VPC-SX500 digital camera

case study, E-19
Sony PlayStation 2 block diagram,

E-16
Sony PlayStation 2 Emotion

Engine case study, E-15
to E-18

Sony PlayStation 2 Emotion
Engine organization,
E-18

EMC, L-80
Emotion Engine

organization modes, E-18
Sony PlayStation 2 case study,

E-15 to E-18
empowerTel Networks, MXP

processor, E-14
Encoding

control flow instructions, A-18
erasure encoding, 439
instruction set, A-21 to A-24, A-22
Intel 80x86 instructions, K-55, K-58

I-24 ■ Index

Encoding (continued)
ISAs, 14, A-5 to A-6
MIPS ISA, A-33
MIPS pipeline, C-36
opcode, A-13
VAX instructions, K-68 to K-70,

K-69
VLIW model, 195–196

Encore Multimax, L-59
End-to-end flow control

congestion management, F-65
vs. network-only features, F-94 to

F-95
Energy efficiency, see also Power

consumption
Climate Savers Computing

Initiative, 462
embedded benchmarks, E-13
hardward fallacies, 56
ILP exploitation, 201
Intel Core i7, 401–405
ISA, 241–243
microprocessor, 23–26
PMDs, 6
processor performance equation, 52
servers, 25
and speculation, 211–212
system trends, 21–23
WSC, measurement, 450–452
WSC goals/requirements, 433
WSC infrastructure, 447–449
WSC servers, 462–464

Energy proportionality, WSC servers,
462

Engineering Research Associates
(ERA), L-4 to L-5

ENIAC (Electronic Numerical
Integrator and
Calculator), L-2 to L-3,
L-5 to L-6, L-77

Enigma coding machine, L-4
Entry time, transactions, D-16, D-17
Environmental faults, storage systems,

D-11
EPIC approach

historical background, L-32
IA-64, H-33
VLIW processors, 194, 196

Equal condition code, PowerPC, K-10
to K-11

ERA, see Engineering Research
Associates (ERA)

Erasure encoding, WSCs, 439
Error-Correcting Code (ECC)

disk storage, D-11
fault detection pitfalls, 58
Fermi GPU architecture, 307
hardware dependability, D-15
memory dependability, 104
RAID 2, D-6
and WSCs, 473–474

Error handling, interconnection
networks, F-12

Errors, definition, D-10 to D-11
Escape resource set, F-47
ETA processor, vector processor

history, G-26 to G-27
Ethernet

and bandwidth, F-78
commercial interconnection

networks, F-63
cross-company interoperability, F-64
interconnection networks, F-89
as LAN, F-77 to F-79
LAN history, F-99
LANs, F-4
packet format, F-75
shared-media networks, F-23
shared- vs. switched-media

networks, F-22
storage area network history,

F-102
switch vs. NIC, F-86
system area networks, F-100
total time statistics, F-90
WAN history, F-98

Ethernet switches
architecture considerations, 16
Dell servers, 53
Google WSC, 464–465, 469
historical performance milestones,

20
WSCs, 441–444

European Center for Particle Research
(CERN), F-98

Even/odd array
example, J-52
integer multiplication, J-52

EVEN-ODD scheme, development,
D-10

EX, see Execution address cycle (EX)
Example calculations

average memory access time, B-16
to B-17

barrier synchronization, I-15
block size and average memory

access time, B-26 to B-28
branch predictors, 164
branch schemes, C-25 to C-26
branch-target buffer branch

penalty, 205–206
bundles, H-35 to H-36
cache behavior impact, B-18, B-21
cache hits, B-5
cache misses, 83–84, 93–95
cache organization impact, B-19 to

B-20
carry-lookahead adder, J-39
chime approximation, G-2
compiler-based speculation, H-29

to H-31
conditional instructions, H-23 to

H-24
CPI and FP, 50–51
credit-based control flow, F-10 to

F-11
crossbar switch interconnections,

F-31 to F-32
data dependences, H-3 to H-4
DAXPY on VMIPS, G-18 to G-20
dependence analysis, H-7 to H-8
deterministic vs. adaptive routing,

F-52 to F-55
dies, 29
die yield, 31
dimension-order routing, F-47 to

F-48
disk subsystem failure rates, 48
fault tolerance, F-68
fetch-and-increment barrier, I-20

to I-21
FFT, I-27 to I-29
fixed-point arithmetic, E-5 to E-6
floating-point addition, J-24 to J-25
floating-point square root, 47–48
GCD test, 319, H-7
geometric means, 43–44
hardware-based speculation,

200–201
inclusion, 397
information tables, 176–177
integer multiplication, J-9
interconnecting node costs, F-35
interconnection network latency

and effective bandwidth,
F-26 to F-28

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-25

I/O system utilization, D-26
L1 cache speed, 80
large-scale multiprocessor locks,

I-20
large-scale multiprocessor

synchronization, I-12 to
I-13

loop-carried dependences, 316,
H-4 to H-5

loop-level parallelism, 317
loop-level parallelism

dependences, 320
loop unrolling, 158–160
MapReduce cost on EC2, 458–460
memory banks, 276
microprocessor dynamic energy/

power, 23
MIPS/VMIPS for DAXPY loop,

267–268
miss penalty, B-33 to B-34
miss rates, B-6, B-31 to B-32
miss rates and cache sizes, B-29 to

B-30
miss support, 85
M/M/1 model, D-33
MTTF, 34–35
multimedia instruction compiler

support, A-31 to A-32
multiplication algorithm, J-19
network effective bandwidth, F-18
network topologies, F-41 to F-43
Ocean application, I-11 to I-12
packet latency, F-14 to F-15
parallel processing, 349–350, I-33

to I-34
pipeline execution rate, C-10 to

C-11
pipeline structural hazards, C-14 to

C-15
power-performance benchmarks,

439–440
predicated instructions, H-25
processor performance

comparison, 218–219
queue I/O requests, D-29
queue waiting time, D-28 to D-29
queuing, D-31
radix-4 SRT division, J-56
redundant power supply reliability,

35
ROB commit, 187
ROB instructions, 189

scoreboarding, C-77
sequential consistency, 393
server costs, 454–455
server power, 463
signed-digit numbers, J-53
signed numbers, J-7
SIMD multimedia instructions,

284–285
single-precision numbers, J-15,

J-17
software pipelining, H-13 to H-14
speedup, 47
status tables, 178
strides, 279
TB-80 cluster MTTF, D-41
TB-80 IOPS, D-39 to D-40
torus topology interconnections,

F-36 to F-38
true sharing misses and false

sharing, 366–367
VAX instructions, K-67
vector memory systems, G-9
vector performance, G-8
vector vs. scalar operation, G-19
vector sequence chimes, 270
VLIW processors, 195
VMIPS vector operation, G-6 to

G-7
way selection, 82
write buffer and read misses, B-35

to B-36
write vs. no-write allocate, B-12
WSC memory latency, 445
WSC running service availability,

434–435
WSC server data transfer, 446

Exceptions
ALU instructions, C-4
architecture-specific examples,

C-44
categories, C-46
control dependence, 154–155
floating-point arithmetic, J-34 to

J-35
hardware-based speculation, 190
imprecise, 169–170, 188
long latency pipelines, C-55
MIPS, C-48, C-48 to C-49
out-of-order completion, 169–170
precise, C-47, C-58 to C-60
preservation via hardward support,

H-28 to H-32

return address buffer, 207
ROB instructions, 190
speculative execution, 222
stopping/restarting, C-46 to C-47
types and requirements, C-43 to

C-46
Execute step

instruction steps, 174
Itanium 2, H-42
ROB instruction, 186
TI 320C55 DSP, E-7

Execution address cycle (EX)
basic MIPS pipeline, C-36
data hazards requiring stalls, C-21
data hazard stall minimization,

C-17
exception stopping/restarting, C-46

to C-47
hazards and forwarding, C-56 to

C-57
MIPS FP operations, basic

considerations, C-51 to
C-53

MIPS pipeline, C-52
MIPS pipeline control, C-36 to

C-39
MIPS R4000, C-63 to C-64, C-64
MIPS scoreboarding, C-72, C-74,

C-77
out-of-order execution, C-71
pipeline branch issues, C-40, C-42
RISC classic pipeline, C-10
simple MIPS implementation,

C-31 to C-32
simple RISC implementation, C-6

Execution time
Amdahl’s law, 46–47, 406
application/OS misses, B-59
cache performance, B-3 to B-4,

B-16
calculation, 36
commercial workloads, 369–370,

370
energy efficiency, 211
integrated circuits, 22
loop unrolling, 160
multilevel caches, B-32 to B-34
multiprocessor performance,

405–406
multiprogrammed parallel “make”

workload, 375
multithreading, 232

I-26 ■ Index

Execution time (continued)
performance equations, B-22
pipelining performance, C-3, C-10

to C-11
PMDs, 6
principle of locality, 45
processor comparisons, 243
processor performance equation,

49, 51
reduction, B-19
second-level cache size, B-34
SPEC benchmarks, 42–44, 43, 56
and stall time, B-21
vector length, G-7
vector mask registers, 276
vector operations, 268–271

Expand-down field, B-53
Explicit operands, ISA classifications,

A-3 to A-4
Explicit parallelism, IA-64, H-34 to

H-35
Explicit unit stride, GPUs vs. vector

architectures, 310
Exponential back-off

large-scale multiprocessor
synchronization, I-17

spin lock, I-17
Exponential distribution, definition,

D-27
Extended accumulator

flawed architectures, A-44
ISA classification, A-3

F
Facebook, 460
Failures, see also Mean time between

failures (MTBF); Mean
time to failure (MTTF)

Amdahl’s law, 56
Berkeley’s Tertiary Disk project,

D-12
cloud computing, 455
definition, D-10
dependability, 33–35
dirty bits, D-61 to D-64
DRAM, 473
example calculation, 48
Google WSC networking, 469–470
power failure, C-43 to C-44, C-46
power utilities, 435
RAID reconstruction, D-55 to

D-57

RAID row-diagonal parity, D-9
rate calculations, 48
servers, 7, 434
SLA states, 34
storage system components, D-43
storage systems, D-6 to D-10
TDP, 22
Tertiary Disk, D-13
WSC running service, 434–435
WSCs, 8, 438–439
WSC storage, 442–443

False sharing
definition, 366–367
shared-memory workload, 373

FarmVille, 460
Fast Fourier transformation (FFT)

characteristics, I-7
distributed-memory

multiprocessor, I-32
example calculations, I-27 to I-29
symmetric shared-memory

multiprocessors, I-22,
I-23, I-25

Fast traps, SPARC instructions, K-30
Fat trees

definition, F-34
NEWS communication, F-43
routing algorithms, F-48
SAN characteristics, F-76
topology, F-38 to F-39
torus topology interconnections,

F-36 to F-38
Fault detection, pitfalls, 57–58
Fault-induced deadlock, routing, F-44
Faulting prefetches, cache

optimization, 92
Faults, see also Exceptions; Page

faults
address fault, B-42
definition, D-10
and dependability, 33
dependability benchmarks, D-21
programming mistakes, D-11
storage systems, D-6 to D-10
Tandem Computers, D-12 to D-13
VAX systems, C-44

Fault tolerance
and adaptive routing, F-94
commercial interconnection

networks, F-66 to F-69
DECstation 5000 reboots, F-69
dependability benchmarks, D-21

RAID, D-7
SAN example, F-74
WSC memory, 473–474
WSC network, 461

Fault-tolerant routing, commercial
interconnection
networks, F-66 to F-67

FC, see Fibre Channel (FC)
FC-AL, see Fibre Channel Arbitrated

Loop (FC-AL)
FC-SW, see Fibre Channel Switched

(FC-SW)
Feature size

dependability, 33
integrated circuits, 19–21

FEC, see Forward error correction
(FEC)

Federal Communications Commission
(FCC), telephone
company outages, D-15

Fermi GPU
architectural innovations, 305–308
future features, 333
Grid mapping, 293
multithreaded SIMD Processor,

307
NVIDIA, 291, 305
SIMD, 296–297
SIMD Thread Scheduler, 306

Fermi Tesla, GPU computing history,
L-52

Fermi Tesla GTX 280
GPU comparison, 324–325, 325
memory bandwidth, 328
raw/relative GPU performance,

328
synchronization, 329
weaknesses, 330

Fermi Tesla GTX 480
floorplan, 295
GPU comparisons, 323–330, 325

Fetch-and-increment
large-scale multiprocessor

synchronization, I-20 to
I-21

sense-reversing barrier, I-21
synchronization, 388

Fetching, see Data fetching
Fetch stage, TI 320C55 DSP, E-7
FFT, see Fast Fourier transformation

(FFT)
Fibre Channel (FC), F-64, F-67, F-102

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-27

file system benchmarking, D-20
NetApp FAS6000 filer, D-42

Fibre Channel Arbitrated Loop
(FC-AL), F-102

block servers vs. filers, D-35
SCSI history, L-81

Fibre Channel Switched (FC-SW),
F-102

Field-programmable gate arrays
(FPGAs), WSC array
switch, 443

FIFO, see First-in first-out (FIFO)
Filers

vs. block servers, D-34 to D-35
NetApp FAS6000 filer, D-41 to

D-42
Filer servers, SPEC benchmarking,

D-20 to D-21
Filters, radio receiver, E-23
Fine-grained multithreading

definition, 224–226
Sun T1 effectiveness, 226–229

Fingerprint, storage system, D-49
Finite-state machine, routing

implementation, F-57
Firmware, network interfaces, F-7
First-in first-out (FIFO)

block replacement, B-9
cache misses, B-10
definition, D-26
Tomasulo’s algorithm, 173

First-level caches, see also L1 caches
ARM Cortex-A8, 114
cache optimization, B-30 to B-32
hit time/power reduction, 79–80
inclusion, B-35
interconnection network, F-87
Itanium 2, H-41
memory hierarchy, B-48 to B-49
miss rate calculations, B-31 to

B-35
parameter ranges, B-42
technology trends, 18
virtual memory, B-42

First-reference misses, definition,
B-23

FIT rates, WSC memory, 473–474
Fixed-field decoding, simple RISC

implementation, C-6
Fixed-length encoding

general-purpose registers, A-6
instruction sets, A-22

ISAs, 14
Fixed-length vector

SIMD, 284
vector registers, 264

Fixed-point arithmetic, DSP, E-5 to
E-6

Flags
performance benchmarks, 37
performance reporting, 41
scoreboarding, C-75

Flash memory
characteristics, 102–104
dependability, 104
disk storage, D-3 to D-4
embedded benchmarks, E-13
memory hierarchy design, 72
technology trends, 18
WSC cost-performance, 474–475

FLASH multiprocessor, L-61
Flexible chaining

vector execution time, 269
vector processor, G-11

Floating-point (FP) operations
addition

denormals, J-26 to J-27
overview, J-21 to J-25
rules, J-24
speedup, J-25 to J-26

arithmetic intensity, 285–288, 286
branch condition evaluation, A-19
branches, A-20
cache misses, 83–84
chip comparison, J-58
control flow instructions, A-21
CPI calculations, 50–51
data access benchmarks, A-15
data dependences, 151
data hazards, 169
denormal multiplication, J-20 to

J-21
denormals, J-14 to J-15
desktop RISCs, K-13, K-17, K-23
DSP media extensions, E-10 to E-11
dynamic scheduling with

Tomasulo’s algorithm,
171–172, 173

early computer arithmetic, J-64 to
J-65

exceptions, J-34 to J-35
exception stopping/restarting, C-47
fused multiply-add, J-32 to J-33
IBM 360, K-85

IEEE 754 FP standard, J-16
ILP exploitation, 197–199
ILP exposure, 157–158
ILP in perfect processor, 215
ILP for realizable processors,

216–218
independent, C-54
instruction operator categories,

A-15
integer conversions, J-62
Intel Core i7, 240, 241
Intel 80x86, K-52 to K-55, K-54,

K-61
Intel 80x86 registers, K-48
ISA performance and efficiency

prediction, 241
Itanium 2, H-41
iterative division, J-27 to J-31
latencies, 157
and memory bandwidth, J-62
MIPS, A-38 to A-39

Tomasulo’s algorithm, 173
MIPS exceptions, C-49
MIPS operations, A-35
MIPS pipeline, C-52

basic considerations, C-51 to
C-54

execution, C-71
performance, C-60 to C-61,

C-61
scoreboarding, C-72
stalls, C-62

MIPS precise exceptions, C-58 to
C-60

MIPS R4000, C-65 to C-67, C-66
to C-67

MIPS scoreboarding, C-77
MIPS with scoreboard, C-73
misspeculation instructions, 212
Multimedia SIMD Extensions, 285
multimedia support, K-19
multiple lane vector unit, 273
multiple outstanding, C-54
multiplication

examples, J-19
overview, J-17 to J-20

multiplication precision, J-21
number representation, J-15 to J-16
operand sizes/types, 12
overflow, J-11
overview, J-13 to J-14
parallelism vs. window size, 217

I-28 ■ Index

Floating-point operations (continued)
pipeline hazards and forwarding,

C-55 to C-57
pipeline structural hazards, C-16
precisions, J-33 to J-34
remainder, J-31 to J-32
ROB commit, 187
SMT, 398–400
SPARC, K-31
SPEC benchmarks, 39
special values, J-14 to J-15
stalls from RAW hazards, C-55
static branch prediction, C-26 to

C-27
Tomasulo’s algorithm, 185
underflow, J-36 to J-37, J-62
VAX, B-73
vector chaining, G-11
vector sequence chimes, 270
VLIW processors, 195
VMIPS, 264

Floating-point registers (FPRs)
IA-64, H-34
IBM Blue Gene/L, I-42
MIPS data transfers, A-34
MIPS operations, A-36
MIPS64 architecture, A-34
write-back, C-56

Floating-point square root (FPSQR)
calculation, 47–48
CPI calculations, 50–51

Floating Point Systems AP-120B,
L-28

Floppy disks, L-78
Flow-balanced state, D-23
Flow control

and arbitration, F-21
congestion management, F-65
direct networks, F-38 to F-39
format, F-58
interconnection networks, F-10 to

F-11
system area network history, F-100

to F-101
Fluent, F-76, F-77
Flush, branch penalty reduction, C-22
FM, see Frequency modulation (FM)
Form factor, interconnection

networks, F-9 to F-12
FORTRAN

compiler types and classes, A-28
compiler vectorization, G-14, G-15

dependence analysis, H-6
integer division/remainder, J-12
loop-level parallelism

dependences, 320–321
MIPS scoreboarding, C-77
performance measurement history,

L-6
return address predictors, 206

Forward error correction (FEC), DSP,
E-5 to E-7

Forwarding, see also Bypassing
ALUs, C-40 to C-41
data hazard stall minimization,

C-16 to C-19, C-18
dynamically scheduled pipelines,

C-70 to C-71
load instruction, C-20
longer latency pipelines, C-54 to

C-58
operand, C-19

Forwarding table
routing implementation, F-57
switch microarchitecture

pipelining, F-60
Forward path, cell phones, E-24
Fourier-Motzkin algorithm, L-31
Fourier transform, DSP, E-5
Four-way conflict misses, definition,

B-23
FP, see Floating-point (FP) operations
FPGAs, see Field-programmable gate

arrays (FPGAs)
FPRs, see Floating-point registers

(FPRs)
FPSQR, see Floating-point square root

(FPSQR)
Frame pointer, VAX, K-71
Freeze, branch penalty reduction,

C-22
Frequency modulation (FM), wireless

neworks, E-21
Front-end stage, Itanium 2, H-42
FU, see Functional unit (FU)
Fujitsu Primergy BX3000 blade

server, F-85
Fujitsu VP100, L-45, L-47
Fujitsu VP200, L-45, L-47
Full access

dimension-order routing, F-47 to
F-48

interconnection network topology,
F-29

Full adders, J-2, J-3
Fully associative cache

block placement, B-7
conflict misses, B-23
direct-mapped cache, B-9
memory hierarchy basics, 74

Fully connected topology
distributed switched networks,

F-34
NEWS communication, F-43

Functional hazards
ARM Cortex-A8, 233
microarchitectural techniques case

study, 247–254
Functional unit (FU)

FP operations, C-66
instruction execution example,

C-80
Intel Core i7, 237
Itanium 2, H-41 to H-43
latencies, C-53
MIPS pipeline, C-52
MIPS scoreboarding, C-75 to C-80
OCNs, F-3
vector add instruction, 272,

272–273
VMIPS, 264

Function calls
GPU programming, 289
NVIDIA GPU Memory structures,

304–305
PTX assembler, 301

Function pointers, control flow
instruction addressing
modes, A-18

Fused multiply-add, floating point,
J-32 to J-33

Future file, precise exceptions, C-59

G
Gateways, Ethernet, F-79
Gather-Scatter

definition, 309
GPU comparisons, 329
multimedia instruction compiler

support, A-31
sparse matrices, G-13 to G-14
vector architectures, 279–280

GCD, see Greatest common divisor
(GCD) test

GDDR, see Graphics double data rate
(GDDR)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-29

GDRAM, see Graphics dynamic
random-access memory
(GDRAM)

GE 645, L-9
General-Purpose Computing on GPUs

(GPGPU), L-51 to L-52
General-purpose electronic computers,

historical background,
L-2 to L-4

General-purpose registers (GPRs)
advantages/disadvantages, A-6
IA-64, H-38
Intel 80x86, K-48
ISA classification, A-3 to A-5
MIPS data transfers, A-34
MIPS operations, A-36
MIPS64, A-34
VMIPS, 265

GENI, see Global Environment for
Network Innovation
(GENI)

Geometric means, example
calculations, 43–44

GFS, see Google File System (GFS)
Gibson mix, L-6
Giga Thread Engine, definition, 292,

314
Global address space, segmented

virtual memory, B-52
Global code scheduling

example, H-16
parallelism, H-15 to H-23
superblock scheduling, H-21 to

H-23, H-22
trace scheduling, H-19 to H-21,

H-20
Global common subexpression

elimination, compiler
structure, A-26

Global data area, and compiler
technology, A-27

Global Environment for Network
Innovation (GENI),
F-98

Global load/store, definition, 309
Global Memory

definition, 292, 314
GPU programming, 290
locks via coherence, 390

Global miss rate
definition, B-31
multilevel caches, B-33

Global optimizations
compilers, A-26, A-29
optimization types, A-28

Global Positioning System, CDMA, E-25
Global predictors

Intel Core i7, 166
tournament predictors, 164–166

Global scheduling, ILP, VLIW
processor, 194

Global system for mobile
communication (GSM),
cell phones, E-25

Goldschmidt’s division algorithm,
J-29, J-61

Goldstine, Herman, L-2 to L-3
Google

Bigtable, 438, 441
cloud computing, 455
cluster history, L-62
containers, L-74
MapReduce, 437, 458–459, 459
server CPUs, 440
server power-performance

benchmarks, 439–441
WSCs, 432, 449

containers, 464–465, 465
cooling and power, 465–468
monitoring and repairing,

469–470
PUE, 468
servers, 467, 468–469

Google App Engine, L-74
Google Clusters

memory dependability, 104
power consumption, F-85

Google File System (GFS)
MapReduce, 438
WSC storage, 442–443

Google Goggles
PMDs, 6
user experience, 4

Google search
shared-memory workloads, 369
workload demands, 439

Gordon Bell Prize, L-57
GPGPU (General-Purpose Computing

on GPUs), L-51 to L-52
GPRs, see General-purpose registers

(GPRs)
GPU (Graphics Processing Unit)

banked and graphics memory,
322–323

computing history, L-52
definition, 9
DLP

basic considerations, 288
basic PTX thread instructions,

299
conditional branching, 300–303
coprocessor relationship,

330–331
definitions, 309
Fermi GPU architecture

innovations, 305–308
Fermi GTX 480 floorplan, 295
GPUs vs. vector architectures,

308–312, 310
mapping examples, 293
Multimedia SIMD comparison,

312
multithreaded SIMD Processor

block diagram, 294
NVIDIA computational

structures, 291–297
NVIDIA/CUDA and AMD

terminology, 313–315
NVIDIA GPU ISA, 298–300
NVIDIA GPU Memory

structures, 304, 304–305
programming, 288–291
SIMD thread scheduling, 297
terminology, 292

fine-grained multithreading, 224
future features, 332
gather/scatter operations, 280
historical background, L-50
loop-level parallelism, 150
vs. MIMD with Multimedia SIMD,

324–330
mobile client/server features, 324,

324
power/DLP issues, 322
raw/relative performance, 328
Roofline model, 326
scalable, L-50 to L-51
strided access-TLB interactions,

323
thread count and memory

performance, 332
TLP, 346
vector kernel implementation,

334–336
vs. vector processor operation,

276

I-30 ■ Index

GPU Memory
caches, 306
CUDA program, 289
definition, 292, 309, 314
future architectures, 333
GPU programming, 288
NVIDIA, 304, 304–305
splitting from main memory, 330

Gradual underflow, J-15, J-36
Grain size

MIMD, 10
TLP, 346

Grant phase, arbitration, F-49
Graph coloring, register allocation,

A-26 to A-27
Graphics double data rate (GDDR)

characteristics, 102
Fermi GTX 480 GPU, 295, 324

Graphics dynamic random-access
memory (GDRAM)

bandwidth issues, 322–323
characteristics, 102

Graphics-intensive benchmarks,
desktop performance, 38

Graphics pipelines, historical
background, L-51

Graphics Processing Unit, see GPU
(Graphics Processing
Unit)

Graphics synchronous dynamic
random-access memory
(GSDRAM),
characteristics, 102

Graphics Synthesizer, Sony
PlayStation 2, E-16,
E-16 to E-17

Greater than condition code,
PowerPC, K-10 to K-11

Greatest common divisor (GCD) test,
loop-level parallelism
dependences, 319, H-7

Grid
arithmetic intensity, 286
CUDA parallelism, 290
definition, 292, 309, 313
and GPU, 291
GPU Memory structures, 304
GPU terms, 308
mapping example, 293
NVIDIA GPU computational

structures, 291

SIMD Processors, 295
Thread Blocks, 295

Grid computing, L-73 to L-74
Grid topology

characteristics, F-36
direct networks, F-37

GSDRAM, see Graphics synchronous
dynamic random-access
memory (GSDRAM)

GSM, see Global system for mobile
communication (GSM)

Guest definition, 108
Guest domains, Xen VM, 111

H
Hadoop, WSC batch processing, 437
Half adders, J-2
Half words

aligned/misaligned addresses, A-8
memory address interpretation,

A-7 to A-8
MIPS data types, A-34
operand sizes/types, 12
as operand type, A-13 to A-14

Handshaking, interconnection
networks, F-10

Hard drive, power consumption, 63
Hard real-time systems, definition, E-3

to E-4
Hardware

as architecture component, 15
cache optimization, 96
compiler scheduling support, L-30

to L-31
compiler speculation support

memory references, H-32
overview, H-27
preserving exception behavior,

H-28 to H-32
description notation, K-25
energy/performance fallacies, 56
for exposing parallelism, H-23 to

H-27
ILP approaches, 148, 214–215
interconnection networks, F-9
pipeline hazard detection, C-38
Virtual Machines protection, 108
WSC cost-performance, 474
WSC running service, 434–435

Hardware-based speculation
basic algorithm, 191

data flow execution, 184
FP unit using Tomasulo’s

algorithm, 185
ILP

data flow execution, 184
with dynamic scheduling and

multiple issue, 197–202
FP unit using Tomasulo’s

algorithm, 185
key ideas, 183–184
multiple-issue processors, 198
reorder buffer, 184–192
vs. software speculation,

221–222
key ideas, 183–184

Hardware faults, storage systems,
D-11

Hardware prefetching
cache optimization, 131–133
miss penalty/rate reduction, 91–92
NVIDIA GPU Memory structures,

305
SPEC benchmarks, 92

Hardware primitivies
basic types, 387–389
large-scale multiprocessor

synchronization, I-18 to
I-21

synchronization mechanisms,
387–389

Harvard architecture, L-4
Hazards, see also Data hazards

branch hazards, C-21 to C-26,
C-39 to C-42, C-42

control hazards, 235, C-11
detection, hardware, C-38
dynamically scheduled pipelines,

C-70 to C-71
execution sequences, C-80
functional hazards, 233, 247–254
instruction set complications, C-50
longer latency pipelines, C-54 to

C-58
structural hazards, 268–269, C-11,

C-13 to C-16, C-71,
C-78 to C-79

HCAs, see Host channel adapters
(HCAs)

Header
messages, F-6
packet format, F-7

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-31

switch microarchitecture
pipelining, F-60

TCP/IP, F-84
Head-of-line (HOL) blocking

congestion management, F-64
switch microarchitecture, F-58 to

F-59, F-59, F-60, F-62
system area network history, F-101
virtual channels and throughput,

F-93
Heap, and compiler technology, A-27

to A-28
HEP processor, L-34
Heterogeneous architecture,

definition, 262
Hewlett-Packard AlphaServer,

F-100
Hewlett-Packard PA-RISC

addressing modes, K-5
arithmetic/logical instructions,

K-11
characteristics, K-4
conditional branches, K-12, K-17,

K-34
constant extension, K-9
conventions, K-13
data transfer instructions, K-10
EPIC, L-32
features, K-44
floating-point precisions, J-33
FP instructions, K-23
MIPS core extensions, K-23
multimedia support, K-18, K-18,

K-19
unique instructions, K-33 to K-36

Hewlett-Packard PA-RISC MAX2,
multimedia support,
E-11

Hewlett-Packard Precision
Architecture, integer
arithmetic, J-12

Hewlett-Packard ProLiant BL10e G2
Blade server, F-85

Hewlett-Packard ProLiant SL2x170z
G6, SPECPower
benchmarks, 463

Hewlett-Packard RISC
microprocessors, vector
processor history, G-26

Higher-radix division, J-54 to J-55
Higher-radix multiplication, integer,

J-48

High-level language computer
architecture (HLLCA),
L-18 to L-19

High-level optimizations, compilers,
A-26

Highly parallel memory systems, case
studies, 133–136

High-order functions, control flow
instruction addressing
modes, A-18

High-performance computing (HPC)
InfiniBand, F-74
interconnection network

characteristics, F-20
interconnection network topology,

F-44
storage area network history, F-102
switch microarchitecture, F-56
vector processor history, G-27
write strategy, B-10
vs. WSCs, 432, 435–436

Hillis, Danny, L-58, L-74
Histogram, D-26 to D-27
History file, precise exceptions, C-59
Hitachi S810, L-45, L-47
Hitachi SuperH

addressing modes, K-5, K-6
arithmetic/logical instructions,

K-24
branches, K-21
characteristics, K-4
condition codes, K-14
data transfer instructions, K-23
embedded instruction format, K-8
multiply-accumulate, K-20
unique instructions, K-38 to K-39

Hit time
average memory access time, B-16

to B-17
first-level caches, 79–80
memory hierarchy basics, 77–78
reduction, 78, B-36 to B-40
way prediction, 81–82

HLLCA, see High-level language
computer architecture
(HLLCA)

HOL, see Head-of-line blocking
(HOL)

Home node, directory-based cache
coherence protocol
basics, 382

Hop count, definition, F-30

Hops
direct network topologies, F-38
routing, F-44
switched network topologies, F-40
switching, F-50

Host channel adapters (HCAs)
historical background, L-81
switch vs. NIC, F-86

Host definition, 108, 305
Hot swapping, fault tolerance, F-67
HPC, see High-performance

computing (HPC)
HPC Challenge, vector processor

history, G-28
HP-Compaq servers

price-performance differences, 441
SMT, 230

HPSm, L-29
Hypercube networks

characteristics, F-36
deadlock, F-47
direct networks, F-37
vs. direct networks, F-92
NEWS communication, F-43

HyperTransport, F-63
NetApp FAS6000 filer, D-42

Hypertransport, AMD Opteron cache
coherence, 361

Hypervisor, characteristics, 108

I
IAS machine, L-3, L-5 to L-6
IBM

Chipkill, 104
cluster history, L-62, L-72
computer history, L-5 to L-6
early VM work, L-10
magnetic storage, L-77 to L-78
multiple-issue processor

development, L-28
RAID history, L-79 to L-80

IBM 360
address space, B-58
architecture, K-83 to K-84
architecture flaws and success,

K-81
branch instructions, K-86
characteristics, K-42
computer architecture definition,

L-17 to L-18
instruction execution frequencies,

K-89

I-32 ■ Index

IBM 360 (continued)
instruction operator categories,

A-15
instruction set, K-85 to K-88
instruction set complications, C-49

to C-50
integer/FP R-R operations, K-85
I/O bus history, L-81
memory hierarchy development,

L-9 to L-10
parallel processing debates, L-57
protection and ISA, 112
R-R instructions, K-86
RS and SI format instructions,

K-87
RX format instructions, K-86 to

K-87
SS format instructions, K-85 to

K-88
IBM 360/85, L-10 to L-11, L-27
IBM 360/91

dynamic scheduling with
Tomasulo’s algorithm,
170–171

early computer arithmetic, J-63
history, L-27
speculation concept origins, L-29

IBM 370
architecture, K-83 to K-84
characteristics, K-42
early computer arithmetic, J-63
integer overflow, J-11
protection and ISA, 112
vector processor history, G-27
Virtual Machines, 110

IBM 370/158, L-7
IBM 650, L-6
IBM 701, L-5 to L-6
IBM 702, L-5 to L-6
IBM 704, L-6, L-26
IBM 705, L-6
IBM 801, L-19
IBM 3081, L-61
IBM 3090 Vector Facility, vector

processor history, G-27
IBM 3840 cartridge, L-77
IBM 7030, L-26
IBM 9840 cartridge, L-77
IBM AS/400, L-79
IBM Blue Gene/L, F-4

adaptive routing, F-93
cluster history, L-63

commercial interconnection
networks, F-63

computing node, I-42 to I-44, I-43
as custom cluster, I-41 to I-42
deterministic vs. adaptive routing,

F-52 to F-55
fault tolerance, F-66 to F-67
link bandwidth, F-89
low-dimensional topologies, F-100
parallel processing debates, L-58
software overhead, F-91
switch microarchitecture, F-62
system, I-44
system area network history, F-101

to F-102
3D torus network, F-72 to F-74
topology, F-30, F-39

IBM CodePack, RISC code size, A-23
IBM CoreConnect

cross-company interoperability,
F-64

OCNs, F-3
IBM eServer p5 processor

performance/cost benchmarks, 409
SMT and ST performance, 399
speedup benchmarks, 408,

408–409
IBM Federation network interfaces,

F-17 to F-18
IBM J9 JVM

real-world server considerations,
52–55

WSC performance, 463
IBM PCs, architecture flaws vs.

success, A-45
IBM Power processors

branch-prediction buffers, C-29
characteristics, 247
exception stopping/restarting, C-47
MIPS precise exceptions, C-59
shared-memory multiprogramming

workload, 378
IBM Power 1, L-29
IBM Power 2, L-29
IBM Power 4

multithreading history, L-35
peak performance, 58
recent advances, L-33 to L-34

IBM Power 5
characteristics, F-73
Itanium 2 comparison, H-43
manufacturing cost, 62

multiprocessing/
multithreading-based
performance, 398–400

multithreading history, L-35
IBM Power 7

vs. Google WSC, 436
ideal processors, 214–215
multicore processor performance,

400–401
multithreading, 225

IBM Pulsar processor, L-34
IBM RP3, L-60
IBM RS/6000, L-57
IBM RT-PC, L-20
IBM SAGE, L-81
IBM servers, economies of scale, 456
IBM Stretch, L-6
IBM zSeries, vector processor history,

G-27
IC, see Instruction count (IC)
I-caches

case study examples, B-63
way prediction, 81–82

ICR, see Idle Control Register (ICR)
ID, see Instruction decode (ID)
Ideal pipeline cycles per instruction,

ILP concepts, 149
Ideal processors, ILP hardware model,

214–215, 219–220
IDE disks, Berkeley’s Tertiary Disk

project, D-12
Idle Control Register (ICR), TI

TMS320C55 DSP, E-8
Idle domains, TI TMS320C55 DSP,

E-8
IEEE 754 floating-point standard, J-16
IEEE 1394, Sony PlayStation 2

Emotion Engine case
study, E-15

IEEE arithmetic
floating point, J-13 to J-14

addition, J-21 to J-25
exceptions, J-34 to J-35
remainder, J-31 to J-32
underflow, J-36

historical background, J-63 to J-64
iterative division, J-30
–x vs. 0 –x, J-62
NaN, J-14
rounding modes, J-20
single-precision numbers, J-15 to

J-16

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-33

IEEE standard 802.3 (Ethernet), F-77
to F-79

LAN history, F-99
IF, see Instruction fetch (IF) cycle
IF statement handling

control dependences, 154
GPU conditional branching, 300,

302–303
memory consistency, 392
vectorization in code, 271
vector-mask registers, 267, 275–276

Illiac IV, F-100, L-43, L-55
ILP, see Instruction-level parallelism

(ILP)
Immediate addressing mode

ALU operations, A-12
basic considerations, A-10 to A-11
MIPS, 12
MIPS instruction format, A-35
MIPS operations, A-37
value distribution, A-13

IMPACT, L-31
Implicit operands, ISA classifications,

A-3
Implicit unit stride, GPUs vs. vector

architectures, 310
Imprecise exceptions

data hazards, 169–170
floating-point, 188

IMT-2000, see International Mobile
Telephony 2000
(IMT-2000)

Inactive power modes, WSCs, 472
Inclusion

cache hierarchy, 397–398
implementation, 397–398
invalidate protocols, 357
memory hierarchy history, L-11

Indexed addressing
Intel 80x86, K-49, K-58
VAX, K-67

Indexes
address translation during, B-36 to

B-40
AMD Opteron data cache, B-13 to

B-14
ARM Cortex-A8, 115
recurrences, H-12
size equations, B-22

Index field, block identification, B-8
Index vector, gather/scatter operations,

279–280

Indirect addressing, VAX, K-67
Indirect networks, definition, F-31
Inexact exception

floating-point arithmetic, J-35
floating-point underflow, J-36

InfiniBand, F-64, F-67, F-74 to F-77
cluster history, L-63
packet format, F-75
storage area network history,

F-102
switch vs. NIC, F-86
system area network history, F-101

Infinite population model, queuing
model, D-30

In flight instructions, ILP hardware
model, 214

Information tables, examples,
176–177

Infrastructure costs
WSC, 446–450, 452–455, 453
WSC efficiency, 450–452

Initiation interval, MIPS pipeline FP
operations, C-52 to C-53

Initiation rate
floating-point pipeline, C-65 to

C-66
memory banks, 276–277
vector execution time, 269

Inktomi, L-62, L-73
In-order commit

hardware-based speculation,
188–189

speculation concept origins, L-29
In-order execution

average memory access time, B-17
to B-18

cache behavior calculations, B-18
cache miss, B-2 to B-3
dynamic scheduling, 168–169
IBM Power processors, 247
ILP exploitation, 193–194
multiple-issue processors, 194
superscalar processors, 193

In-order floating-point pipeline,
dynamic scheduling,
169

In-order issue
ARM Cortex-A8, 233
dynamic scheduling, 168–170,

C-71
ISA, 241

In-order scalar processors, VMIPS, 267

Input buffered switch
HOL blocking, F-59, F-60
microarchitecture, F-57, F-57
pipelined version, F-61

Input-output buffered switch,
microarchitecture, F-57

Instruction cache
AMD Opteron example, B-15
antialiasing, B-38
application/OS misses, B-59
branch prediction, C-28
commercial workload, 373
GPU Memory, 306
instruction fetch, 202–203, 237
ISA, 241
MIPS R4000 pipeline, C-63
miss rates, 161
multiprogramming workload,

374–375
prefetch, 236
RISCs, A-23
TI TMS320C55 DSP, E-8

Instruction commit
hardware-based speculation,

184–185, 187–188, 188,
190

instruction set complications, C-49
Intel Core i7, 237
speculation support, 208–209

Instruction count (IC)
addressing modes, A-10
cache performance, B-4, B-16
compiler optimization, A-29, A-29

to A-30
processor performance time, 49–51
RISC history, L-22

Instruction decode (ID)
basic MIPS pipeline, C-36
branch hazards, C-21
data hazards, 169
hazards and forwarding, C-55 to

C-57
MIPS pipeline, C-71
MIPS pipeline control, C-36 to

C-39
MIPS pipeline FP operations, C-53
MIPS scoreboarding, C-72 to C-74
out-of-order execution, 170
pipeline branch issues, C-39 to

C-41, C-42
RISC classic pipeline, C-7 to C-8,

C-10

I-34 ■ Index

Instruction decode (continued)
simple MIPS implementation, C-31
simple RISC implementation, C-5

to C-6
Instruction delivery stage, Itanium 2,

H-42
Instruction fetch (IF) cycle

basic MIPS pipeline, C-35 to C-36
branch hazards, C-21
branch-prediction buffers, C-28
exception stopping/restarting, C-46

to C-47
MIPS exceptions, C-48
MIPS R4000, C-63
pipeline branch issues, C-42
RISC classic pipeline, C-7, C-10
simple MIPS implementation,

C-31
simple RISC implementation, C-5

Instruction fetch units
integrated, 207–208
Intel Core i7, 237

Instruction formats
ARM-unique, K-36 to K-37
high-level language computer

architecture, L-18
IA-64 ISA, H-34 to H-35, H-38,

H-39
IBM 360, K-85 to K-88
Intel 80x86, K-49, K-52, K-56 to

K-57
M32R-unique, K-39 to K-40
MIPS16-unique, K-40 to K-42
PA-RISC unique, K-33 to K-36
PowerPC-unique, K-32 to K-33
RISCs, K-43

Alpha-unique, K-27 to K-29
arithmetic/logical, K-11, K-15
branches, K-25
control instructions, K-12,

K-16
data transfers, K-10, K-14,

K-21
desktop/server, K-7
desktop/server systems, K-7
embedded DSP extensions,

K-19
embedded systems, K-8
FP instructions, K-13
hardware description notation,

K-25
MIPS64-unique, K-24 to K-27

MIPS core, K-6 to K-9
MIPS core extensions, K-19 to

K-24
MIPS unaligned word reads,

K-26
multimedia extensions, K-16 to

K-19
overview, K-5 to K-6

SPARC-unique, K-29 to K-32
SuperH-unique, K-38 to K-39
Thumb-unique, K-37 to K-38

Instruction groups, IA-64, H-34
Instruction issue

definition, C-36
DLP, 322
dynamic scheduling, 168–169,

C-71 to C-72
ILP, 197, 216–217
instruction-level parallelism, 2
Intel Core i7, 238
Itanium 2, H-41 to H-43
MIPS pipeline, C-52
multiple issue processor, 198
multithreading, 223, 226
parallelism measurement, 215
precise exceptions, C-58, C-60
processor comparison, 323
ROB, 186
speculation support, 208, 210
Tomasulo’s scheme, 175, 182

Instruction-level parallelism (ILP)
ARM Cortex-A8, 233–236,

235–236
basic concepts/challenges,

148–149, 149
“big and dumb” processors, 245
branch-prediction buffers, C-29,

C-29 to C-30
compiler scheduling, L-31
compiler techniques for exposure,

156–162
control dependence, 154–156
data dependences, 150–152
data flow limit, L-33
definition, 9, 149–150
dynamic scheduling

basic concept, 168–169
definition, 168
example and algorithms,

176–178
multiple issue, speculation,

197–202

overcoming data hazards,
167–176

Tomasulo’s algorithm,
170–176, 178–179,
181–183

early studies, L-32 to L-33
exploitation methods, H-22 to

H-23
exploitation statically, H-2
exposing with hardware support,

H-23
GPU programming, 289
hardware-based speculation,

183–192
hardware vs. software speculation,

221–222
IA-64, H-32
instruction fetch bandwidth

basic considerations, 202–203
branch-target buffers, 203–206,

204
integrated units, 207–208
return address predictors,

206–207
Intel Core i7, 236–241
limitation studies, 213–221
microarchitectural techniques case

study, 247–254
MIPS scoreboarding, C-77 to C-79
multicore performance/energy

efficiency, 404
multicore processor performance,

400
multiple-issue processors, L-30
multiple issue/static scheduling,

192–196
multiprocessor importance, 344
multithreading, basic

considerations, 223–226
multithreading history, L-34 to L-35
name dependences, 152–153
perfect processor, 215
pipeline scheduling/loop unrolling,

157–162
processor clock rates, 244
realizable processor limitations,

216–218
RISC development, 2
SMT on superscalar processors,

230–232
speculation advantages/

disadvantages, 210–211

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-35

speculation and energy efficiency,
211–212

speculation support, 208–210
speculation through multiple

branches, 211
speculative execution, 222–223
Sun T1 fine-grained multithreading

effectiveness, 226–229
switch to DLP/TLP/RLP, 4–5
TI 320C6x DSP, E-8
value prediction, 212–213

Instruction path length, processor
performance time, 49

Instruction prefetch
integrated instruction fetch units,

208
miss penalty/rate reduction, 91–92
SPEC benchmarks, 92

Instruction register (IR)
basic MIPS pipeline, C-35
dynamic scheduling, 170
MIPS implementation, C-31

Instruction set architecture (ISA), see
also Intel 80x86
processors; Reduced
Instruction Set
Computer (RISC)

addressing modes, A-9 to A-10
architect-compiler writer

relationship, A-29 to
A-30

ARM Cortex-A8, 114
case studies, A-47 to A-54
class code sequence example, A-4
classification, A-3 to A-7
code size-compiler considerations,

A-43 to A-44
compiler optimization and

performance, A-27
compiler register allocation, A-26

to A-27
compiler structure, A-24 to A-26
compiler technology and

architecture decisions,
A-27 to A-29

compiler types and classes, A-28
complications, C-49 to C-51
computer architecture definition,

L-17 to L-18
control flow instructions

addressing modes, A-17 to
A-18

basic considerations, A-16 to
A-17, A-20 to A-21

conditional branch options,
A-19

procedure invocation options,
A-19 to A-20

Cray X1, G-21 to G-22
data access distribution example,

A-15
definition and types, 11–15
displacement addressing mode,

A-10
encoding considerations, A-21 to

A-24, A-22, A-24
first vector computers, L-48
flawless design, A-45
flaws vs. success, A-44 to A-45
GPR advantages/disadvantages,

A-6
high-level considerations, A-39,

A-41 to A-43
high-level language computer

architecture, L-18 to
L-19

IA-64
instruction formats, H-39
instructions, H-35 to H-37
instruction set basics, H-38
overview, H-32 to H-33
predication and speculation,

H-38 to H-40
IBM 360, K-85 to K-88
immediate addressing mode, A-10

to A-11
literal addressing mode, A-10 to

A-11
memory addressing, A-11 to A-13
memory address interpretation,

A-7 to A-8
MIPS

addressing modes for data
transfer, A-34

basic considerations, A-32 to
A-33

control flow instructions, A-37
to A-38

data types, A-34
dynamic instruction mix, A-41

to A-42, A-42
FP operations, A-38 to A-39
instruction format, A-35
MIPS operations, A-35 to A-37

registers, A-34
usage, A-39

MIPS64, 14, A-40
multimedia instruction compiler

support, A-31 to A-32
NVIDIA GPU, 298–300
operand locations, A-4
operands per ALU instruction, A-6
operand type and size, A-13 to

A-14
operations, A-14 to A-16
operator categories, A-15
overview, K-2
performance and efficiency

prediction, 241–243
and protection, 112
RISC code size, A-23 to A-24
RISC history, L-19 to L-22, L-21
stack architectures, L-16 to L-17
top 80x86 instructions, A-16
“typical” program fallacy, A-43
Virtual Machines protection,

107–108
Virtual Machines support,

109–110
VMIPS, 264–265
VMM implementation, 128–129

Instructions per clock (IPC)
ARM Cortex-A8, 236
flawless architecture design, A-45
ILP for realizable processors,

216–218
MIPS scoreboarding, C-72
multiprocessing/

multithreading-based
performance, 398–400

processor performance time, 49
Sun T1 multithreading unicore

performance, 229
Sun T1 processor, 399

Instruction status
dynamic scheduling, 177
MIPS scoreboarding, C-75

Integer arithmetic
addition speedup

carry-lookahead, J-37 to J-41
carry-lookahead circuit, J-38
carry-lookahead tree, J-40
carry-lookahead tree adder,

J-41
carry-select adder, J-43, J-43 to

J-44, J-44

I-36 ■ Index

Integer arithmetic (continued)
carry-skip adder, J-41 to J43,

J-42
overview, J-37

division
radix-2 division, J-55
radix-4 division, J-56
radix-4 SRT division, J-57
with single adder, J-54 to J-58

FP conversions, J-62
language comparison, J-12
multiplication

array multiplier, J-50
Booth recoding, J-49
even/odd array, J-52
with many adders, J-50 to J-54
multipass array multiplier, J-51
signed-digit addition table,

J-54
with single adder, J-47 to J-49,

J-48
Wallace tree, J-53

multiplication/division, shifting
over zeros, J-45 to J-47

overflow, J-11
Radix-2 multiplication/division,

J-4, J-4 to J-7
restoring/nonrestoring division,

J-6
ripply-carry addition, J-2 to J-3,

J-3
signed numbers, J-7 to J-10
SRT division, J-45 to J-47, J-46
systems issues, J-10 to J-13

Integer operand
flawed architecture, A-44
GCD, 319
graph coloring, A-27
instruction set encoding, A-23
MIPS data types, A-34
as operand type, 12, A-13 to A-14

Integer operations
addressing modes, A-11
ALUs, A-12, C-54
ARM Cortex-A8, 116, 232, 235,

236
benchmarks, 167, C-69
branches, A-18 to A-20, A-20
cache misses, 83–84
data access distribution, A-15
data dependences, 151
dependences, 322

desktop benchmarks, 38–39
displacement values, A-12
exceptions, C-43, C-45
hardware ILP model, 215
hardware vs. software speculation,

221
hazards, C-57
IBM 360, K-85
ILP, 197–200
instruction set operations, A-16
Intel Core i7, 238, 240
Intel 80x86, K-50 to K-51
ISA, 242, A-2
Itanium 2, H-41
longer latency pipelines, C-55
MIPS, C-31 to C-32, C-36, C-49,

C-51 to C-53
MIPS64 ISA, 14
MIPS FP pipeline, C-60
MIPS R4000 pipeline, C-61, C-63,

C-70
misspeculation, 212
MVL, 274
pipeline scheduling, 157
precise exceptions, C-47, C-58,

C-60
processor clock rate, 244
R4000 pipeline, C-63
realizable processor ILP, 216–218
RISC, C-5, C-11
scoreboarding, C-72 to C-73, C-76
SIMD processor, 307
SPARC, K-31
SPEC benchmarks, 39
speculation through multiple

branches, 211
static branch prediction, C-26 to

C-27
T1 multithreading unicore

performance, 227–229
Tomasulo’s algorithm, 181
tournament predictors, 164
VMIPS, 265

Integer registers
hardware-based speculation, 192
IA-64, H-33 to H-34
MIPS dynamic instructions, A-41

to A-42
MIPS floating-point operations,

A-39
MIPS64 architecture, A-34
VLIW, 194

Integrated circuit basics
cell phones, E-24, E-24
cost trends, 28–32
dependability, 33–36
logic technology, 17
microprocessor developments, 2
power and energy, 21–23
scaling, 19–21

Intel 80286, L-9
Intel Atom 230

processor comparison, 242
single-threaded benchmarks, 243

Intel Atom processors
ISA performance and efficiency

prediction, 241–243
performance measurement,

405–406
SMT, 231
WSC memory, 474
WSC processor cost-performance,

473
Intel Core i7

vs. Alpha processors, 368
architecture, 15
basic function, 236–238
“big and dumb” processors, 245
branch predictor, 166–167
clock rate, 244
dynamic scheduling, 170
GPU comparisons, 324–330, 325
hardware prefetching, 91
ISA performance and efficiency

prediction, 241–243
L2/L3 miss rates, 125
memory hierarchy basics, 78,

117–124, 119
memory hierarchy design, 73
memory performance, 122–124
MESIF protocol, 362
microprocessor die example, 29
miss rate benchmarks, 123
multibanked caches, 86
multithreading, 225
nonblocking cache, 83
performance, 239, 239–241, 240
performance/energy efficiency,

401–405
pipelined cache access, 82
pipeline structure, 237
processor comparison, 242
raw/relative GPU performance, 328
Roofline model, 286–288, 287

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-37

Intel Core i7 (continued)
single-threaded benchmarks, 243
SMP limitations, 363
SMT, 230–231
snooping cache coherence

implementation, 365
three-level cache hierarchy, 118
TLB structure, 118
write invalid protocol, 356

Intel 80x86 processors
address encoding, K-58
addressing modes, K-58
address space, B-58
architecture flaws and success, K-81
architecture flaws vs. success,

A-44 to A-45
Atom, 231
cache performance, B-6
characteristics, K-42
common exceptions, C-44
comparative operation

measurements, K-62 to
K-64

floating-point operations, K-52 to
K-55, K-54, K-61

instruction formats, K-56 to K-57
instruction lengths, K-60
instruction mix, K-61 to K-62
instructions vs. DLX, K-63 to

K-64
instruction set encoding, A-23,

K-55
instruction set usage

measurements, K-56 to
K-64

instructions and functions, K-52
instruction types, K-49
integer operations, K-50 to K-51
integer overflow, J-11
Intel Core i7, 117
ISA, 11–12, 14–15, A-2
memory accesses, B-6
memory addressing, A-8
memory hierarchy development,

L-9
multimedia support, K-17
operand addressing mode, K-59,

K-59 to K-60
operand type distribution, K-59
overview, K-45 to K-47
process protection, B-50

vs. RISC, 2, A-3
segmented scheme, K-50
system evolution, K-48
top instructions, A-16
typical operations, K-53
variable encoding, A-22 to A-23
virtualization issues, 128
Virtual Machines ISA support, 109
Virtual Machines and virtual

memory and I/O, 110
Intel 8087, floating point remainder,

J-31
Intel i860, K-16 to K-17, L-49, L-60
Intel IA-32 architecture

call gate, B-54
descriptor table, B-52
instruction set complications, C-49

to C-51
OCNs, F-3, F-70
segment descriptors, B-53
segmented virtual memory, B-51

to B-54
Intel IA-64 architecture

compiler scheduling history, L-31
conditional instructions, H-27
explicit parallelism, H-34 to H-35
historical background, L-32
ISA

instruction formats, H-39
instructions, H-35 to H-37
instruction set basics, H-38
overview, H-32 to H-33
predication and speculation,

H-38 to H-40
Itanium 2 processor

instruction latency, H-41
overview, H-40 to H-41
performance, H-43, H-43

multiple issue processor
approaches, 194

parallelism exploitation statically,
H-2

register model, H-33 to H-34
RISC history, L-22
software pipelining, H-15
synchronization history, L-64

Intel iPSC 860, L-60
Intel Itanium, sparse matrices, G-13
Intel Itanium 2

“big and dumb” processors, 245
clock rate, 244

IA-64
functional units and instruction

issue, H-41 to H-43
instruction latency, H-41
overview, H-40 to H-41
performance, H-43

peak performance, 58
SPEC benchmarks, 43

Intelligent devices, historical
background, L-80

Intel MMX, multimedia instruction
compiler support, A-31
to A-32

Intel Nehalem
characteristics, 411
floorplan, 30
WSC processor cost-performance,

473
Intel Paragon, F-100, L-60
Intel Pentium 4

hardware prefetching, 92
Itanium 2 comparison, H-43
multithreading history, L-35

Intel Pentium 4 Extreme, L-33 to L-34
Intel Pentium II, L-33
Intel Pentium III

pipelined cache access, 82
power consumption, F-85

Intel Pentium M, power consumption,
F-85

Intel Pentium MMX, multimedia
support, E-11

Intel Pentium Pro, 82, L-33
Intel Pentium processors

“big and dumb” processors, 245
clock rate, 244
early computer arithmetic, J-64 to

J-65
vs. Opteron memory protection, B-57
pipelining performance, C-10
segmented virtual memory

example, B-51 to B-54
SMT, 230

Intel processors
early RISC designs, 2
power consumption, F-85

Intel Single-Chip Cloud Computing
(SCCC)

as interconnection example, F-70
to F-72

OCNs, F-3

I-38 ■ Index

Intel Streaming SIMD Extension
(SSE)

basic function, 283
Multimedia SIMD Extensions,

A-31
vs. vector architectures, 282

Intel Teraflops processors, OCNs, F-3
Intel Thunder Tiger 4 QsNetII, F-63,

F-76
Intel VT-x, 129
Intel x86

Amazon Web Services, 456
AVX instructions, 284
clock rates, 244
computer architecture, 15
conditional instructions, H-27
GPUs as coprocessors, 330–331
Intel Core i7, 237–238
Multimedia SIMD Extensions,

282–283
NVIDIA GPU ISA, 298
parallelism, 262–263
performance and energy

efficiency, 241
vs. PTX, 298
RISC, 2
speedup via parallelism, 263

Intel Xeon
Amazon Web Services, 457
cache coherence, 361
file system benchmarking, D-20
InfiniBand, F-76
multicore processor performance,

400–401
performance, 400
performance measurement,

405–406
SMP limitations, 363
SPECPower benchmarks, 463
WSC processor cost-performance,

473
Interactive workloads, WSC goals/

requirements, 433
Interarrival times, queuing model,

D-30
Interconnection networks

adaptive routing, F-93 to F-94
adaptive routing and fault

tolerance, F-94
arbitration, F-49, F-49 to F-50
basic characteristics, F-2, F-20
bisection bandwidth, F-89

commercial
congestion management, F-64

to F-66
connectivity, F-62 to F-63
cross-company interoperability,

F-63 to F-64
DECstation 5000 reboots, F-69
fault tolerance, F-66 to F-69

commercial routing/arbitration/
switching, F-56

communication bandwidth, I-3
compute-optimized processors vs.

receiver overhead, F-88
density- vs. SPEC-optimized

processors, F-85
device example, F-3
direct vs. high-dimensional, F-92
domains, F-3 to F5, F-4
Ethernet, F-77 to F-79, F-78
Ethernet/ATM total time statistics,

F-90
examples, F-70
HOL blocking, F-59
IBM Blue Gene/L, I-43
InfiniBand, F-75
LAN history, F-99 to F-100
link bandwidth, F-89
memory hierarchy interface, F-87

to F-88
mesh network routing, F-46
MIN vs. direct network costs, F-92
multicore single-chip

multiprocessor, 364
multi-device connections

basic considerations, F-20 to
F-21

effective bandwidth vs. nodes,
F-28

latency vs. nodes, F-27
performance characterization,

F-25 to F-29
shared-media networks, F-22 to

F-24
shared- vs. switched-media

networks, F-22
switched-media networks, F-24
topology, routing, arbitration,

switching, F-21 to F-22
multi-device interconnections,

shared- vs.
switched-media
networks, F-24 to F-25

network-only features, F-94 to
F-95

NIC vs. I/O subsystems, F-90 to
F-91

OCN characteristics, F-73
OCN example, F-70 to F-72
OCN history, F-103 to F-104
protection, F-86 to F-87
routing, F-44 to F-48, F-54
routing/arbitration/switching

impact, F-52 to F-55
SAN characteristics, F-76
software overhead, F-91 to F-92
speed considerations, F-88
storage area networks, F-102 to

F-103
switching, F-50 to F-52
switch microarchitecture, F-57

basic microarchitecture, F-55 to
F-58

buffer organizations, F-58 to
F-60

pipelining, F-60 to F-61, F-61
switch vs. NIC, F-85 to F-86, F-86
system area networks, F-72 to

F-74, F-100 to F-102
system/storage area network, F-74

to F-77
TCP/IP reliance, F-95
top-level architecture, F-71
topology, F-44

basic considerations, F-29 to
F-30

Beneŝ networks, F-33
centralized switched networks,

F-30 to F-34, F-31
direct networks, F-37
distributed switched networks,

F-34 to F-40
performance and costs, F-40
performance effects, F-40 to

F-44
ring network, F-36

two-device interconnections
basic considerations, F-5 to F-6
effective bandwidth vs. packet

size, F-19
example, F-6
interface functions, F-6 to F-9
performance, F-12 to F-20
structure and functions, F-9 to

F-12

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-39

virtual channels and throughput,
F-93

WAN example, F-79
WANs, F-97 to F-99
wormhole switching performance,

F-92 to F-93
zero-copy protocols, F-91

Intermittent faults, storage systems,
D-11

Internal fragmentation, virtual
memory page size
selection, B-47

Internal Mask Registers, definition,
309

International Computer Architecture
Symposium (ISCA),
L-11 to L-12

International Mobile Telephony 2000
(IMT-2000), cell phone
standards, E-25

Internet
Amazon Web Services, 457
array switch, 443
cloud computing, 455–456, 461
data-intensive applications, 344
dependability, 33
Google WSC, 464
Layer 3 network linkage, 445
Netflix traffic, 460
SaaS, 4
WSC efficiency, 452
WSC memory hierarchy, 445
WSCs, 432–433, 435, 437, 439,

446, 453–455
Internet Archive Cluster

container history, L-74 to L-75
overview, D-37
performance, dependability, cost,

D-38 to D-40
TB-80 cluster MTTF, D-40 to

D-41
TB-80 VME rack, D-38

Internet Protocol (IP)
internetworking, F-83
storage area network history,

F-102
WAN history, F-98

Internet Protocol (IP) cores, OCNs, F-3
Internet Protocol (IP) routers, VOQs,

F-60
Internetworking

connection example, F-80

cost, F-80
definition, F-2
enabling technologies, F-80 to

F-81
OSI model layers, F-81, F-82
protocol-level communication,

F-81 to F-82
protocol stack, F-83, F-83
role, F-81
TCP/IP, F-81, F-83 to F-84
TCP/IP headers, F-84

Interprocedural analysis, basic
approach, H-10

Interprocessor communication,
large-scale
multiprocessors, I-3 to
I-6

Interrupt, see Exceptions
Invalidate protocol

directory-based cache coherence
protocol example,
382–383

example, 359, 360
implementation, 356–357
snooping coherence, 355, 355–356

Invalid exception, floating-point
arithmetic, J-35

Inverted page table, virtual memory
block identification,
B-44 to B-45

I/O bandwidth, definition, D-15
I/O benchmarks, response time

restrictions, D-18
I/O bound workload, Virtual Machines

protection, 108
I/O bus

historical background, L-80 to L-81
interconnection networks, F-88
point-to-point replacement, D-34
Sony PlayStation 2 Emotion

Engine case study, E-15
I/O cache coherency, basic

considerations, 113
I/O devices

address translation, B-38
average memory access time, B-17
cache coherence enforcement, 354
centralized shared-memory

multiprocessors, 351
future GPU features, 332
historical background, L-80 to

L-81

inclusion, B-34
Multimedia SIMD vs. GPUs, 312
multiprocessor cost effectiveness,

407
performance, D-15 to D-16
SANs, F-3 to F-4
shared-media networks, F-23
switched networks, F-2
switch vs. NIC, F-86
Virtual Machines impact, 110–111
write strategy, B-11
Xen VM, 111

I/O interfaces
disk storage, D-4
storage area network history,

F-102
I/O latency, shared-memory

workloads, 368–369,
371

I/O network, commercial
interconnection network
connectivity, F-63

IOP, see I/O processor (IOP)
I/O processor (IOP)

first dynamic scheduling, L-27
Sony PlayStation 2 Emotion

Engine case study, E-15
I/O registers, write buffer merging, 87
I/O subsystems

design, D-59 to D-61
interconnection network speed,

F-88
vs. NIC, F-90 to F-91
zero-copy protocols, F-91

I/O systems
asynchronous, D-35
as black box, D-23
dirty bits, D-61 to D-64
Internet Archive Cluster, see

Internet Archive Cluster
multithreading history, L-34
queing theory, D-23
queue calculations, D-29
random variable distribution, D-26
utilization calculations, D-26

IP, see Intellectual Property (IP) cores;
Internet Protocol (IP)

IPC, see Instructions per clock (IPC)
IPoIB, F-77
IR, see Instruction register (IR)
ISA, see Instruction set architecture

(ISA)

I-40 ■ Index

ISCA, see International Computer
Architecture
Symposium (ISCA)

iSCSI
NetApp FAS6000 filer, D-42
storage area network history, F-102

Issue logic
ARM Cortex-A8, 233
ILP, 197
longer latency pipelines, C-57
multiple issue processor, 198
register renaming vs. ROB, 210
speculation support, 210

Issue stage
ID pipe stage, 170
instruction steps, 174
MIPS with scoreboard, C-73 to C-74
out-of-order execution, C-71
ROB instruction, 186

Iterative division, floating point, J-27
to J-31

J
Java benchmarks

Intel Core i7, 401–405
SMT on superscalar processors,

230–232
without SMT, 403–404

Java language
dependence analysis, H-10
hardware impact on software

development, 4
return address predictors, 206
SMT, 230–232, 402–405
SPECjbb, 40
SPECpower, 52
virtual functions/methods, A-18

Java Virtual Machine (JVM)
early stack architectures, L-17
IBM, 463
multicore processor performance,

400
multithreading-based speedup, 232
SPECjbb, 53

JBOD, see RAID 0
Johnson, Reynold B., L-77
Jump prediction

hardware model, 214
ideal processor, 214

Jumps
control flow instructions, 14, A-16,

A-17, A-21

GPU conditional branching,
301–302

MIPS control flow instructions,
A-37 to A-38

MIPS operations, A-35
return address predictors, 206
RISC instruction set, C-5
VAX, K-71 to K-72

Just-in-time (JIT), L-17
JVM, see Java Virtual Machine (JVM)

K
Kahle, Brewster, L-74
Kahn, Robert, F-97
k-ary n-cubes, definition, F-38
Kendall Square Research KSR-1, L-61
Kernels

arithmetic intensity, 286, 286–287,
327

benchmarks, 56
bytes per reference, vs. block size,

378
caches, 329
commercial workload, 369–370
compilers, A-24
compute bandwidth, 328
via computing, 327
EEMBC benchmarks, 38, E-12
FFT, I-7
FORTRAN, compiler

vectorization, G-15
FP benchmarks, C-29
Livermore Fortran kernels, 331
LU, I-8
multimedia instructions, A-31
multiprocessor architecture, 408
multiprogramming workload,

375–378, 377
performance benchmarks, 37, 331
primitives, A-30
protecting processes, B-50
segmented virtual memory, B-51
SIMD exploitation, 330
vector, on vector processor and

GPU, 334–336
virtual memory protection, 106
WSCs, 438

L
L1 caches, see also First-level caches

address translation, B-46
Alpha 21164 hierarchy, 368

ARM Cortex-A8, 116, 116, 235
ARM Cortex-A8 vs. A9, 236
ARM Cortex-A8 example, 117
cache optimization, B-31 to B-33
case study examples, B-60, B-63 to

B-64
directory-based coherence, 418
Fermi GPU, 306
hardware prefetching, 91
hit time/power reduction, 79–80
inclusion, 397–398, B-34 to B-35
Intel Core i7, 118–119, 121–122,

123, 124, 124, 239, 241
invalidate protocol, 355, 356–357
memory consistency, 392
memory hierarchy, B-39
miss rates, 376–377
multiprocessor cache coherence,

352
multiprogramming workload, 374
nonblocking cache, 85
NVIDIA GPU Memory, 304
Opteron memory, B-57
processor comparison, 242
speculative execution, 223
T1 multithreading unicore

performance, 228
virtual memory, B-48 to B-49

L2 caches, see also Second-level
caches

ARM Cortex-A8, 114, 115–116,
235–236

ARM Cortex-A8 example, 117
cache optimization, B-31 to B-33,

B-34
case study example, B-63 to B-64
coherency, 352
commercial workloads, 373
directory-based coherence, 379,

418–420, 422, 424
fault detection, 58
Fermi GPU, 296, 306, 308
hardware prefetching, 91
IBM Blue Gene/L, I-42
inclusion, 397–398, B-35
Intel Core i7, 118, 120–122, 124,

124–125, 239, 241
invalidation protocol, 355, 356–357
and ISA, 241
memory consistency, 392
memory hierarchy, B-39, B-48,

B-57

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-41

L2 caches (continued)
multithreading, 225, 228
nonblocking cache, 85
NVIDIA GPU Memory, 304
processor comparison, 242
snooping coherence, 359–361
speculation, 223

L3 caches, see also Third-level caches
Alpha 21164 hierarchy, 368
coherence, 352
commercial workloads, 370, 371,

374
directory-based coherence, 379, 384
IBM Blue Gene/L, I-42
IBM Power processors, 247
inclusion, 398
Intel Core i7, 118, 121, 124,

124–125, 239, 241,
403–404

invalidation protocol, 355,
356–357, 360

memory access cycle shift, 372
miss rates, 373
multicore processors, 400–401
multithreading, 225
nonblocking cache, 83
performance/price/power

considerations, 52
snooping coherence, 359, 361, 363

LabVIEW, embedded benchmarks,
E-13

Lampson, Butler, F-99
Lanes

GPUs vs. vector architectures, 310
Sequence of SIMD Lane

Operations, 292, 313
SIMD Lane Registers, 309, 314
SIMD Lanes, 296–297, 297,

302–303, 308, 309,
311–312, 314

vector execution time, 269
vector instruction set, 271–273
Vector Lane Registers, 292
Vector Lanes, 292, 296–297, 309,

311
LANs, see Local area networks

(LANs)
Large-scale multiprocessors

cache coherence implementation
deadlock and buffering, I-38 to

I-40
directory controller, I-40 to I-41

DSM multiprocessor, I-36 to I-37
overview, I-34 to I-36

classification, I-45
cluster history, L-62 to L-63
historical background, L-60 to

L-61
IBM Blue Gene/L, I-41 to I-44,

I-43 to I-44
interprocessor communication, I-3

to I-6
for parallel programming, I-2
scientific application performance

distributed-memory
multiprocessors, I-26 to
I-32, I-28 to I-32

parallel processors, I-33 to I-34
symmetric shared-memory

multiprocessor, I-21 to
I-26, I-23 to I-25

scientific applications, I-6 to I-12
space and relation of classes, I-46
synchronization mechanisms, I-17

to I-21
synchronization performance, I-12

to I-16
Latency, see also Response time

advanced directory protocol case
study, 425

vs. bandwidth, 18–19, 19
barrier synchronization, I-16
and cache miss, B-2 to B-3
cluster history, L-73
communication mechanism, I-3 to

I-4
definition, D-15
deterministic vs. adaptive routing,

F-52 to F-55
directory coherence, 425
distributed-memory

multiprocessors, I-30,
I-32

dynamically scheduled pipelines,
C-70 to C-71

Flash memory, D-3
FP operations, 157
FP pipeline, C-66
functional units, C-53
GPU SIMD instructions, 296
GPUs vs. vector architectures, 311
hazards and forwarding, C-54 to

C-58
hiding with speculation, 396–397

ILP exposure, 157
ILP without multithreading, 225
ILP for realizable processors,

216–218
Intel SCCC, F-70
interconnection networks, F-12 to

F-20
multi-device networks, F-25 to

F-29
Itanium 2 instructions, H-41
microarchitectural techniques case

study, 247–254
MIPS pipeline FP operations, C-52

to C-53
misses, single vs. multiple thread

executions, 228
multimedia instruction compiler

support, A-31
NVIDIA GPU Memory structures,

305
OCNs vs. SANs, F-27
out-of-order processors, B-20 to

B-21
packets, F-13, F-14
parallel processing, 350
performance milestones, 20
pipeline, C-87
ROB commit, 187
routing, F-50
routing/arbitration/switching

impact, F-52
routing comparison, F-54
SAN example, F-73
shared-memory workloads, 368
snooping coherence, 414
Sony PlayStation 2 Emotion

Engine, E-17
Sun T1 multithreading, 226–229
switched network topology, F-40

to F-41
system area network history, F-101
vs. TCP/IP reliance, F-95
throughput vs. response time, D-17
utility computing, L-74
vector memory systems, G-9
vector start-up, G-8
WSC efficiency, 450–452
WSC memory hierarchy, 443,

443–444, 444, 445
WSC processor cost-performance,

472–473
WSCs vs. datacenters, 456

I-42 ■ Index

Layer 3 network, array and Internet
linkage, 445

Layer 3 network, WSC memory
hierarchy, 445

LCA, see Least common ancestor
(LCA)

LCD, see Liquid crystal display
(LCD)

Learning curve, cost trends, 27
Least common ancestor (LCA),

routing algorithms, F-48
Least recently used (LRU)

AMD Opteron data cache, B-12,
B-14

block replacement, B-9
memory hierarchy history, L-11
virtual memory block replacement,

B-45
Less than condition code, PowerPC,

K-10 to K-11
Level 3, as Content Delivery Network,

460
Limit field, IA-32 descriptor table,

B-52
Line, memory hierarchy basics, 74
Linear speedup

cost effectiveness, 407
IBM eServer p5 multiprocessor,

408
multicore processors, 400, 402
performance, 405–406

Line locking, embedded systems, E-4
to E-5

Link injection bandwidth
calculation, F-17
interconnection networks, F-89

Link pipelining, definition, F-16
Link reception bandwidth, calculation,

F-17
Link register

MIPS control flow instructions,
A-37 to A-38

PowerPC instructions, K-32 to
K-33

procedure invocation options,
A-19

synchronization, 389
Linpack benchmark

cluster history, L-63
parallel processing debates, L-58
vector processor example,

267–268

VMIPS performance, G-17 to
G-19

Linux operating systems
Amazon Web Services, 456–457
architecture costs, 2
protection and ISA, 112
RAID benchmarks, D-22, D-22 to

D-23
WSC services, 441

Liquid crystal display (LCD), Sanyo
VPC-SX500 digital
camera, E-19

LISP
RISC history, L-20
SPARC instructions, K-30

Lisp
ILP, 215
as MapReduce inspiration, 437

Literal addressing mode, basic
considerations, A-10 to
A-11

Little Endian
Intel 80x86, K-49
interconnection networks, F-12
memory address interpretation,

A-7
MIPS core extensions, K-20 to K-21
MIPS data transfers, A-34

Little’s law
definition, D-24 to D-25
server utilization calculation, D-29

Livelock, network routing, F-44
Liveness, control dependence, 156
Livermore Fortran kernels,

performance, 331, L-6
LMD, see Load memory data (LMD)
Load instructions

control dependences, 155
data hazards requiring stalls, C-20
dynamic scheduling, 177
ILP, 199, 201
loop-level parallelism, 318
memory port conflict, C-14
pipelined cache access, 82
RISC instruction set, C-4 to C-5
Tomasulo’s algorithm, 182
VLIW sample code, 252

Load interlocks
definition, C-37 to C-39
detection logic, C-39

Load linked
locks via coherence, 391

synchronization, 388–389
Load locked, synchronization,

388–389
Load memory data (LMD), simple

MIPS implementation,
C-32 to C-33

Load stalls, MIPS R4000 pipeline,
C-67

Load-store instruction set architecture
basic concept, C-4 to C-5
IBM 360, K-87
Intel Core i7, 124
Intel 80x86 operations, K-62
as ISA, 11
ISA classification, A-5
MIPS nonaligned data transfers,

K-24, K-26
MIPS operations, A-35 to A-36,

A-36
PowerPC, K-33
RISC history, L-19
simple MIPS implementation, C-32
VMIPS, 265

Load/store unit
Fermi GPU, 305
ILP hardware model, 215
multiple lanes, 273
Tomasulo’s algorithm, 171–173,

182, 197
vector units, 265, 276–277

Load upper immediate (LUI), MIPS
operations, A-37

Local address space, segmented
virtual memory, B-52

Local area networks (LANs)
characteristics, F-4
cross-company interoperability, F-64
effective bandwidth, F-18
Ethernet as, F-77 to F-79
fault tolerance calculations, F-68
historical overview, F-99 to F-100
InfiniBand, F-74
interconnection network domain

relationship, F-4
latency and effective bandwidth,

F-26 to F-28
offload engines, F-8
packet latency, F-13, F-14 to F-16
routers/gateways, F-79
shared-media networks, F-23
storage area network history,

F-102 to F-103

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-43

switches, F-29
TCP/IP reliance, F-95
time of flight, F-13
topology, F-30

Locality, see Principle of locality
Local Memory

centralized shared-memory
architectures, 351

definition, 292, 314
distributed shared-memory, 379
Fermi GPU, 306
Grid mapping, 293
multiprocessor architecture, 348
NVIDIA GPU Memory structures,

304, 304–305
SIMD, 315
symmetric shared-memory

multiprocessors,
363–364

Local miss rate, definition, B-31
Local node, directory-based cache

coherence protocol
basics, 382

Local optimizations, compilers, A-26
Local predictors, tournament

predictors, 164–166
Local scheduling, ILP, VLIW

processor, 194–195
Locks

via coherence, 389–391
hardware primitives, 387
large-scale multiprocessor

synchronization, I-18 to
I-21

multiprocessor software
development, 409

Lock-up free cache, 83
Logical units, D-34

storage systems, D-34 to D-35
Logical volumes, D-34
Long displacement addressing, VAX,

K-67
Long-haul networks, see Wide area

networks (WANs)
Long Instruction Word (LIW)

EPIC, L-32
multiple-issue processors, L-28,

L-30
Long integer

operand sizes/types, 12
SPEC benchmarks, A-14

Loop-carried dependences

CUDA, 290
definition, 315–316
dependence distance, H-6
dependent computation

elimination, 321
example calculations, H-4 to H-5
GCD, 319
loop-level parallelism, H-3
as recurrence, 318
recurrence form, H-5
VMIPS, 268

Loop exit predictor, Intel Core i7, 166
Loop interchange, compiler

optimizations, 88–89
Loop-level parallelism

definition, 149–150
detection and enhancement

basic approach, 315–318
dependence analysis, H-6 to

H-10
dependence computation

elimination, 321–322
dependences, locating,

318–321
dependent computation

elimination, H-10 to
H-12

overview, H-2 to H-6
history, L-30 to L-31
ILP in perfect processor, 215
ILP for realizable processors,

217–218
Loop stream detection, Intel Core i7

micro-op buffer, 238
Loop unrolling

basic considerations, 161–162
ILP exposure, 157–161
ILP limitation studies, 220
recurrences, H-12
software pipelining, H-12 to H-15,

H-13, H-15
Tomasulo’s algorithm, 179,

181–183
VLIW processors, 195

Lossless networks
definition, F-11 to F-12
switch buffer organizations, F-59

Lossy networks, definition, F-11 to
F-12

LRU, see Least recently used (LRU)
Lucas

compiler optimizations, A-29

data cache misses, B-10
LUI, see Load upper immediate (LUI)
LU kernel

characteristics, I-8
distributed-memory

multiprocessor, I-32
symmetric shared-memory

multiprocessors, I-22,
I-23, I-25

M
MAC, see Multiply-accumulate

(MAC)
Machine language programmer, L-17

to L-18
Machine memory, Virtual Machines,

110
Macro-op fusion, Intel Core i7,

237–238
Magnetic storage

access time, D-3
cost vs. access time, D-3
historical background, L-77 to

L-79
Mail servers, benchmarking, D-20
Main Memory

addressing modes, A-10
address translation, B-46
arithmetic intensity example, 286,

286–288
block placement, B-44
cache function, B-2
cache optimization, B-30, B-36
coherence protocol, 362
definition, 292, 309
DRAM, 17
gather-scatter, 329
GPU vs. MIMD, 327
GPUs and coprocessors, 330
GPU threads, 332
ILP considerations, 245
interlane wiring, 273
linear speedups, 407
memory hierarchy basics, 76
memory hierarchy design, 72
memory mapping, B-42
MIPS operations, A-36
Multimedia SIMD vs. GPUs, 312
multiprocessor cache coherence,

352
paging vs. segmentation, B-43
partitioning, B-50

I-44 ■ Index

Main Memory (continued)
processor performance

calculations, 218–219
RISC code size, A-23
server energy efficiency, 462
symmetric shared-memory

multiprocessors, 363
vector processor, G-25
vs. virtual memory, B-3, B-41
virtual memory block

identification, B-44 to
B-45

virtual memory writes, B-45 to
B-46

VLIW, 196
write-back, B-11
write process, B-45

Manufacturing cost
chip fabrication case study, 61–62
cost trends, 27
modern processors, 62
vs. operation cost, 33

MapReduce
cloud computing, 455
cost calculations, 458–460, 459
Google usage, 437
reductions, 321
WSC batch processing, 437–438
WSC cost-performance, 474

Mark-I, L-3 to L-4, L-6
Mark-II, L-4
Mark-III, L-4
Mark-IV, L-4
Mask Registers

basic operation, 275–276
definition, 309
Multimedia SIMD, 283
NVIDIA GPU computational

structures, 291
vector compilers, 303
vector vs. GPU, 311
VMIPS, 267

MasPar, L-44
Massively parallel processors (MPPs)

characteristics, I-45
cluster history, L-62, L-72 to

L-73
system area network history, F-100

to F-101
Matrix300 kernel

definition, 56
prediction buffer, C-29

Matrix multiplication
benchmarks, 56
LU kernel, I-8
multidimensional arrays in vector

architectures, 278
Mauchly, John, L-2 to L-3, L-5, L-19
Maximum transfer unit, network

interfaces, F-7 to F-8
Maximum vector length (MVL)

Multimedia SIMD extensions, 282
vector vs. GPU, 311
VLRs, 274–275

M-bus, see Memory bus (M-bus)
McCreight, Ed, F-99
MCF

compiler optimizations, A-29
data cache misses, B-10
Intel Core i7, 240–241

MCP operating system, L-16
Mean time between failures (MTBF)

fallacies, 56–57
RAID, L-79
SLA states, 34

Mean time to failure (MTTF)
computer system power

consumption case study,
63–64

dependability benchmarks, D-21
disk arrays, D-6
example calculations, 34–35
I/O subsystem design, D-59 to

D-61
RAID reconstruction, D-55 to

D-57
SLA states, 34
TB-80 cluster, D-40 to D-41
WSCs vs. servers, 434

Mean time to repair (MTTR)
dependability benchmarks, D-21
disk arrays, D-6
RAID 6, D-8 to D-9
RAID reconstruction, D-56

Mean time until data loss (MTDL),
RAID reconstruction,
D-55 to D-57

Media, interconnection networks, F-9
to F-12

Media extensions, DSPs, E-10 to E-11
Mellanox MHEA28-XT, F-76
Memory access

ARM Cortex-A8 example, 117
basic MIPS pipeline, C-36

vs. block size, B-28
cache hit calculation, B-5 to B-6
Cray Research T3D, F-87
data hazards requiring stalls, C-19

to C-21
data hazard stall minimization,

C-17, C-19
distributed-memory

multiprocessor, I-32
exception stopping/restarting, C-46
hazards and forwarding, C-56 to

C-57
instruction set complications, C-49
integrated instruction fetch units,

208
MIPS data transfers, A-34
MIPS exceptions, C-48 to C-49
MIPS pipeline control, C-37 to

C-39
MIPS R4000, C-65
multimedia instruction compiler

support, A-31
pipeline branch issues, C-40, C-42
RISC classic pipeline, C-7, C-10
shared-memory workloads, 372
simple MIPS implementation,

C-32 to C-33
simple RISC implementation, C-6
structural hazards, C-13 to C-14
vector architectures, G-10

Memory addressing
ALU immediate operands, A-12
basic considerations, A-11 to A-13
compiler-based speculation, H-32
displacement values, A-12
immediate value distribution, A-13
interpretation, A-7 to A-8
ISA, 11
vector architectures, G-10

Memory banks, see also Banked
memory

gather-scatter, 280
multiprocessor architecture, 347
parallelism, 45
shared-memory multiprocessors,

363
strides, 279
vector load/store unit bandwidth,

276–277
vector systems, G-9 to G-11

Memory bus (M-bus)
definition, 351

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-45

Google WSC servers, 469
interconnection networks, F-88

Memory consistency
basic considerations, 392–393
cache coherence, 352
compiler optimization, 396
development of models, L-64
directory-based cache coherence

protocol basics, 382
multiprocessor cache coherency,

353
relaxed consistency models,

394–395
single-chip multicore processor

case study, 412–418
speculation to hide latency, 396–397

Memory-constrained scaling,
scientific applications
on parallel processors,
I-33

Memory hierarchy
address space, B-57 to B-58
basic questions, B-6 to B-12
block identification, B-7 to B-9
block placement issues, B-7
block replacement, B-9 to B-10
cache optimization

basic categories, B-22
basic optimizations, B-40
hit time reduction, B-36 to

B-40
miss categories, B-23 to B-26
miss penalty reduction

via multilevel caches, B-30
to B-35

read misses vs. writes, B-35
to B-36

miss rate reduction
via associativity, B-28 to

B-30
via block size, B-26 to B-28
via cache size, B-28

pipelined cache access, 82
cache performance, B-3 to B-6

average memory access time,
B-17 to B-20

basic considerations, B-16
basic equations, B-22
example calculation, B-16
out-of-order processors, B-20

to B-22
case studies, B-60 to B-67

development, L-9 to L-12
inclusion, 397–398
interconnection network

protection, F-87 to F-88
levels in slow down, B-3
Opteron data cache example, B-12

to B-15, B-13
Opteron L1/L2, B-57
OS and page size, B-58
overview, B-39
Pentium vs. Opteron protection,

B-57
processor examples, B-3
process protection, B-50
terminology, B-2 to B-3
virtual memory

basic considerations, B-40 to
B-44, B-48 to B-49

basic questions, B-44 to B-46
fast address translation, B-46
overview, B-48
paged example, B-54 to B-57
page size selection, B-46 to

B-47
segmented example, B-51 to

B-54
write strategy, B-10 to B-12
WSCs, 443, 443–446, 444

Memory hierarchy design
access times, 77
Alpha 21264 floorplan, 143
ARM Cortex-A8 example,

114–117, 115–117
cache coherency, 112–113
cache optimization

case study, 131–133
compiler-controlled

prefetching, 92–95
compiler optimizations, 87–90
critical word first, 86–87
energy consumption, 81
hardware instruction

prefetching, 91–92, 92
multibanked caches, 85–86, 86
nonblocking caches, 83–85, 84
overview, 78–79
pipelined cache access, 82
techniques overview, 96
way prediction, 81–82
write buffer merging, 87, 88

cache performance prediction,
125–126

cache size and misses per
instruction, 126

DDR2 SDRAM timing diagram,
139

highly parallel memory systems,
133–136

high memory bandwidth, 126
instruction miss benchmarks, 127
instruction simulation, 126
Intel Core i7, 117–124, 119,

123–125
Intel Core i7 three-level cache

hierarchy, 118
Intel Core i7 TLB structure, 118
Intel 80x86 virtualization issues,

128
memory basics, 74–78
overview, 72–74
protection and ISA, 112
server vs. PMD, 72
system call virtualization/

paravirtualization
performance, 141

virtual machine monitor, 108–109
Virtual Machines ISA support,

109–110
Virtual Machines protection,

107–108
Virtual Machines and virtual

memory and I/O,
110–111

virtual memory protection,
105–107

VMM on nonvirtualizable ISA,
128–129

Xen VM example, 111
Memory Interface Unit

NVIDIA GPU ISA, 300
vector processor example, 310

Memoryless, definition, D-28
Memory mapping

memory hierarchy, B-48 to B-49
segmented virtual memory, B-52
TLBs, 323
virtual memory definition, B-42

Memory-memory instruction set
architecture, ISA
classification, A-3, A-5

Memory protection
control dependence, 155
Pentium vs. Opteron, B-57
processes, B-50

I-46 ■ Index

Memory protection (continued)
safe calls, B-54
segmented virtual memory

example, B-51 to B-54
virtual memory, B-41

Memory stall cycles
average memory access time, B-17
definition, B-4 to B-5
miss rate calculation, B-6
out-of-order processors, B-20 to

B-21
performance equations, B-22

Memory system
cache optimization, B-36
coherency, 352–353
commercial workloads, 367,

369–371
computer architecture, 15
C program evaluation, 134–135
dependability enhancement,

104–105
distributed shared-memory, 379, 418
gather-scatter, 280
GDRAMs, 323
GPUs, 332
ILP, 245

hardware vs. software
speculation, 221–222

speculative execution, 222–223
Intel Core i7, 237, 242
latency, B-21
MIPS, C-33
multiprocessor architecture, 347
multiprocessor cache coherence,

352
multiprogramming workload,

377–378
page size changes, B-58
price/performance/power

considerations, 53
RISC, C-7
Roofline model, 286
shared-memory multiprocessors,

363
SMT, 399–400
stride handling, 279
T1 multithreading unicore

performance, 227
vector architectures, G-9 to G-11
vector chaining, G-11
vector processors, 271, 277
virtual, B-43, B-46

Memory technology basics
DRAM, 98, 98–100, 99
DRAM and DIMM characteristics,

101
DRAM performance, 100–102
Flash memory, 102–104
overview, 96–97
performance trends, 20
SDRAM power consumption, 102,

103
SRAM, 97–98

Mesh interface unit (MIU), Intel
SCCC, F-70

Mesh network
characteristics, F-73
deadlock, F-47
dimension-order routing, F-47 to

F-48
OCN history, F-104
routing example, F-46

Mesh topology
characteristics, F-36
direct networks, F-37
NEWS communication, F-42 to

F-43
MESI, see Modified-Exclusive-

Shared-Invalid (MESI)
protocol

Message ID, packet header, F-8, F-16
Message-passing communication

historical background, L-60 to
L-61

large-scale multiprocessors, I-5 to
I-6

Message Passing Interface (MPI)
function, F-8
InfiniBand, F-77
lack in shared-memory

multiprocessors, I-5
Messages

adaptive routing, F-93 to F-94
coherence maintenance, 381
InfiniBand, F-76
interconnection networks, F-6 to

F-9
zero-copy protocols, F-91

MFLOPS, see Millions of
floating-point
operations per second
(MFLOPS)

Microarchitecture
as architecture component, 15–16

ARM Cortex-A8, 241
Cray X1, G-21 to G-22
data hazards, 168
ILP exploitation, 197
Intel Core i7, 236–237
Nehalem, 411
OCNs, F-3
out-of-order example, 253
PTX vs. x86, 298
switches, see Switch

microarchitecture
techniques case study, 247–254

Microbenchmarks
disk array deconstruction, D-51 to

D-55
disk deconstruction, D-48 to D-51

Microfusion, Intel Core i7 micro-op
buffer, 238

Microinstructions
complications, C-50 to C-51
x86, 298

Micro-ops
Intel Core i7, 237, 238–240, 239
processor clock rates, 244

Microprocessor overview
clock rate trends, 24
cost trends, 27–28
desktop computers, 6
embedded computers, 8–9
energy and power, 23–26
inside disks, D-4
integrated circuit improvements, 2
and Moore’s law, 3–4
performance trends, 19–20, 20
power and energy system trends,

21–23
recent advances, L-33 to L-34
technology trends, 18

Microprocessor without Interlocked
Pipeline Stages, see
MIPS (Microprocessor
without Interlocked
Pipeline Stages)

Microsoft
cloud computing, 455
containers, L-74
Intel support, 245
WSCs, 464–465

Microsoft Azure, 456, L-74
Microsoft DirectX, L-51 to L-52
Microsoft Windows

benchmarks, 38

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-47

multithreading, 223
RAID benchmarks, D-22, D-22 to

D-23
time/volume/commoditization

impact, 28
WSC workloads, 441

Microsoft Windows 2008 Server
real-world considerations, 52–55
SPECpower benchmark, 463

Microsoft XBox, L-51
Migration, cache coherent

multiprocessors, 354
Millions of floating-point operations

per second (MFLOPS)
early performance measures, L-7
parallel processing debates, L-57

to L-58
SIMD computer history, L-55
SIMD supercomputer

development, L-43
vector performance measures,

G-15 to G-16
MIMD (Multiple Instruction Streams,

Multiple Data Streams)
and Amdahl’s law, 406–407
definition, 10
early computers, L-56
first vector computers, L-46, L-48
GPU programming, 289
GPUs vs. vector architectures, 310
with Multimedia SIMD, vs. GPU,

324–330
multiprocessor architecture,

346–348
speedup via parallelism, 263
TLP, basic considerations, 344–345

Minicomputers, replacement by
microprocessors, 3–4

Minniespec benchmarks
ARM Cortex-A8, 116, 235
ARM Cortex-A8 memory,

115–116
MINs, see Multistage interconnection

networks (MINs)
MIPS (Microprocessor without

Interlocked Pipeline
Stages)

addressing modes, 11–12
basic pipeline, C-34 to C-36
branch predictor correlation, 163
cache performance, B-6
conditional branches, K-11

conditional instructions, H-27
control flow instructions, 14
data dependences, 151
data hazards, 169
dynamic scheduling with

Tomasulo’s algorithm,
171, 173

early pipelined CPUs, L-26
embedded systems, E-15
encoding, 14
exceptions, C-48, C-48 to C-49
exception stopping/restarting, C-46

to C-47
features, K-44
FP pipeline performance, C-60 to

C-61, C-62
FP unit with Tomasulo’s

algorithm, 173
hazard checks, C-71
ILP, 149
ILP exposure, 157–158
ILP hardware model, 215
instruction execution issues, K-81
instruction formats, core

instructions, K-6
instruction set complications, C-49

to C-51
ISA class, 11
ISA example

addressing modes for data
transfer, A-34

arithmetic/logical instructions,
A-37

basic considerations, A-32 to
A-33

control flow instructions, A-37
to A-38, A-38

data types, A-34
dynamic instruction mix, A-41,

A-41 to A-42, A-42
FP operations, A-38 to A-39
instruction format, A-35
load-store instructions, A-36
MIPS operations, A-35 to A-37
registers, A-34
usage, A-39

Livermore Fortran kernel
performance, 331

memory addressing, 11
multicycle operations

basic considerations, C-51 to
C-54

hazards and forwarding, C-54
to C-58

precise exceptions, C-58 to
C-60

multimedia support, K-19
multiple-issue processor history,

L-29
operands, 12
performance measurement history,

L-6 to L-7
pipeline branch issues, C-39 to

C-42
pipeline control, C-36 to C-39
pipe stage, C-37
processor performance

calculations, 218–219
registers and usage conventions, 12
RISC code size, A-23
RISC history, L-19
RISC instruction set lineage, K-43
as RISC systems, K-4
scoreboard components, C-76
scoreboarding, C-72
scoreboarding steps, C-73, C-73 to

C-74
simple implementation, C-31 to

C-34, C-34
Sony PlayStation 2 Emotion

Engine, E-17
unaligned word read instructions,

K-26
unpipelined functional units, C-52
vs. VAX, K-65 to K-66, K-75,

K-82
write strategy, B-10

MIPS16
addressing modes, K-6
arithmetic/logical instructions,

K-24
characteristics, K-4
constant extension, K-9
data transfer instructions, K-23
embedded instruction format, K-8
instructions, K-14 to K-16
multiply-accumulate, K-20
RISC code size, A-23
unique instructions, K-40 to K-42

MIPS32, vs. VAX sort, K-80
MIPS64

addressing modes, K-5
arithmetic/logical instructions,

K-11

I-48 ■ Index

MIPS64 (continued)
conditional branches, K-17
constant extension, K-9
conventions, K-13
data transfer instructions, K-10
FP instructions, K-23
instruction list, K-26 to K-27
instruction set architecture formats,

14
instruction subset, 13, A-40
in MIPS R4000, C-61
nonaligned data transfers, K-24 to

K-26
RISC instruction set, C-4

MIPS2000, instruction benchmarks,
K-82

MIPS 3010, chip layout, J-59
MIPS core

compare and conditional branch,
K-9 to K-16

equivalent RISC instructions
arithmetic/logical, K-11
arithmetic/logical instructions,

K-15
common extensions, K-19 to

K-24
control instructions, K-12, K-16
conventions, K-16
data transfers, K-10
embedded RISC data transfers,

K-14
FP instructions, K-13

instruction formats, K-9
MIPS M2000, L-21, L-21
MIPS MDMX

characteristics, K-18
multimedia support, K-18

MIPS R2000, L-20
MIPS R3000

integer arithmetic, J-12
integer overflow, J-11

MIPS R3010
arithmetic functions, J-58 to J-61
chip comparison, J-58
floating-point exceptions, J-35

MIPS R4000
early pipelined CPUs, L-27
FP pipeline, C-65 to C-67, C-66
integer pipeline, C-63
pipeline overview, C-61 to C-65
pipeline performance, C-67 to

C-70

pipeline structure, C-62 to C-63
MIPS R8000, precise exceptions, C-59
MIPS R10000, 81

latency hiding, 397
precise exceptions, C-59

Misalignment, memory address
interpretation, A-7 to
A-8, A-8

MISD, see Multiple Instruction
Streams, Single Data
Stream

Misprediction rate
branch-prediction buffers, C-29
predictors on SPEC89, 166
profile-based predictor, C-27
SPECCPU2006 benchmarks, 167

Mispredictions
ARM Cortex-A8, 232, 235
branch predictors, 164–167, 240,

C-28
branch-target buffers, 205
hardware-based speculation, 190
hardware vs. software speculation,

221
integer vs. FP programs, 212
Intel Core i7, 237
prediction buffers, C-29
static branch prediction, C-26 to

C-27
Misses per instruction

application/OS statistics, B-59
cache performance, B-5 to B-6
cache protocols, 359
cache size effect, 126
L3 cache block size, 371
memory hierarchy basics, 75
performance impact calculations,

B-18
shared-memory workloads, 372
SPEC benchmarks, 127
strided access-TLB interactions,

323
Miss penalty

average memory access time, B-16
to B-17

cache optimization, 79, B-35 to
B-36

cache performance, B-4, B-21
compiler-controlled prefetching,

92–95
critical word first, 86–87
hardware prefetching, 91–92

ILP speculative execution, 223
memory hierarchy basics, 75–76
nonblocking cache, 83
out-of-order processors, B-20 to

B-22
processor performance

calculations, 218–219
reduction via multilevel caches,

B-30 to B-35
write buffer merging, 87

Miss rate
AMD Opteron data cache, B-15
ARM Cortex-A8, 116
average memory access time, B-16

to B-17, B-29
basic categories, B-23
vs. block size, B-27
cache optimization, 79

and associativity, B-28 to B-30
and block size, B-26 to B-28
and cache size, B-28

cache performance, B-4
and cache size, B-24 to B-25
compiler-controlled prefetching,

92–95
compiler optimizations, 87–90
early IBM computers, L-10 to L-11
example calculations, B-6, B-31 to

B-32
hardware prefetching, 91–92
Intel Core i7, 123, 125, 241
memory hierarchy basics, 75–76
multilevel caches, B-33
processor performance

calculations, 218–219
scientific workloads

distributed-memory
multiprocessors, I-28 to
I-30

symmetric shared-memory
multiprocessors, I-22,
I-23 to I-25

shared-memory multiprogramming
workload, 376, 376–377

shared-memory workload,
370–373

single vs. multiple thread
executions, 228

Sun T1 multithreading unicore
performance, 228

vs. virtual addressed cache size,
B-37

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-49

MIT Raw, characteristics, F-73
Mitsubishi M32R

addressing modes, K-6
arithmetic/logical instructions,

K-24
characteristics, K-4
condition codes, K-14
constant extension, K-9
data transfer instructions, K-23
embedded instruction format, K-8
multiply-accumulate, K-20
unique instructions, K-39 to K-40

MIU, see Mesh interface unit (MIU)
Mixed cache

AMD Opteron example, B-15
commercial workload, 373

Mixer, radio receiver, E-23
Miya, Eugene, L-65
M/M/1 model

example, D-32, D-32 to D-33
overview, D-30
RAID performance prediction, D-57
sample calculations, D-33

M/M/2 model, RAID performance
prediction, D-57

MMX, see Multimedia Extensions
(MMX)

Mobile clients
data usage, 3
GPU features, 324
vs. server GPUs, 323–330

Modified-Exclusive-Shared-Invalid
(MESI) protocol,
characteristics, 362

Modified-Owned-Exclusive-Shared-In
valid (MOESI) protocol,
characteristics, 362

Modified state
coherence protocol, 362
directory-based cache coherence

protocol basics, 380
large-scale multiprocessor cache

coherence, I-35
snooping coherence protocol,

358–359
Modula-3, integer division/remainder,

J-12
Module availability, definition, 34
Module reliability, definition, 34
MOESI, see Modified-Owned-

Exclusive-Shared-Invali
d (MOESI) protocol

Moore’s law
DRAM, 100
flawed architectures, A-45
interconnection networks, F-70
and microprocessor dominance,

3–4
point-to-point links and switches,

D-34
RISC, A-3
RISC history, L-22
software importance, 55
switch size, F-29
technology trends, 17

Mortar shot graphs, multiprocessor
performance
measurement, 405–406

Motion JPEG encoder, Sanyo
VPC-SX500 digital
camera, E-19

Motorola 68000
characteristics, K-42
memory protection, L-10

Motorola 68882, floating-point
precisions, J-33

Move address, VAX, K-70
MPEG

Multimedia SIMD Extensions
history, L-49

multimedia support, K-17
Sanyo VPC-SX500 digital camera,

E-19
Sony PlayStation 2 Emotion

Engine, E-17
MPI, see Message Passing Interface

(MPI)
MPPs, see Massively parallel

processors (MPPs)
MSP, see Multi-Streaming Processor

(MSP)
MTBF, see Mean time between

failures (MTBF)
MTDL, see Mean time until data loss

(MTDL)
MTTF, see Mean time to failure (MTTF)
MTTR, see Mean time to repair (MTTR)
Multibanked caches

cache optimization, 85–86
example, 86

Multichip modules, OCNs, F-3
Multicomputers

cluster history, L-63
definition, 345, L-59

historical background, L-64 to
L-65

Multicore processors
architecture goals/requirements, 15
cache coherence, 361–362
centralized shared-memory

multiprocessor
structure, 347

Cray X1E, G-24
directory-based cache coherence,

380
directory-based coherence, 381,

419
DSM architecture, 348, 379
multichip

cache and memory states, 419
with DSM, 419

multiprocessors, 345
OCN history, F-104
performance, 400–401, 401
performance gains, 398–400
performance milestones, 20
single-chip case study, 412–418
and SMT, 404–405
snooping cache coherence

implementation, 365
SPEC benchmarks, 402
uniform memory access, 364
write invalidate protocol

implementation,
356–357

Multics protection software, L-9
Multicycle operations, MIPS pipeline

basic considerations, C-51 to C-54
hazards and forwarding, C-54 to

C-58
precise exceptions, C-58 to C-60

Multidimensional arrays
dependences, 318
in vector architectures, 278–279

Multiflow processor, L-30, L-32
Multigrid methods, Ocean application,

I-9 to I-10
Multilevel caches

cache optimizations, B-22
centralized shared-memory

architectures, 351
memory hierarchy basics, 76
memory hierarchy history, L-11
miss penalty reduction, B-30 to

B-35
miss rate vs. cache size, B-33

I-50 ■ Index

Multilevel caches (continued)
Multimedia SIMD vs. GPU, 312
performance equations, B-22
purpose, 397
write process, B-11

Multilevel exclusion, definition, B-35
Multilevel inclusion

definition, 397, B-34
implementation, 397
memory hierarchy history, L-11

Multimedia applications
desktop processor support,

E-11
GPUs, 288
ISA support, A-46
MIPS FP operations, A-39
vector architectures, 267

Multimedia Extensions (MMX)
compiler support, A-31
desktop RISCs, K-18
desktop/server RISCs, K-16 to

K-19
SIMD history, 262, L-50
vs. vector architectures, 282–283

Multimedia instructions
ARM Cortex-A8, 236
compiler support, A-31 to A-32

Multimedia SIMD Extensions
basic considerations, 262, 282–284
compiler support, A-31
DLP, 322
DSPs, E-11
vs. GPUs, 312
historical background, L-49 to

L-50
MIMD, vs. GPU, 324–330
parallelism classes, 10
programming, 285
Roofline visual performance

model, 285–288, 287
256-bit-wide operations, 282
vs. vector, 263–264

Multimedia user interfaces, PMDs, 6
Multimode fiber, interconnection

networks, F-9
Multipass array multiplier, example,

J-51
Multiple Instruction Streams, Multiple

Data Streams, see
MIMD (Multiple
Instruction Streams,
Multiple Data Streams)

Multiple Instruction Streams, Single
Data Stream (MISD),
definition, 10

Multiple-issue processors
basic VLIW approach, 193–196
with dynamic scheduling and

speculation, 197–202
early development, L-28 to L-30
instruction fetch bandwidth,

202–203
integrated instruction fetch units,

207
loop unrolling, 162
microarchitectural techniques case

study, 247–254
primary approaches, 194
SMT, 224, 226
with speculation, 198
Tomasulo’s algorithm, 183

Multiple lanes technique
vector instruction set, 271–273
vector performance, G-7 to G-9
vector performance calculations,

G-8
Multiple paths, ILP limitation studies,

220
Multiple-precision addition, J-13
Multiply-accumulate (MAC)

DSP, E-5
embedded RISCs, K-20
TI TMS320C55 DSP, E-8

Multiply operations
chip comparison, J-61
floating point

denormals, J-20 to J-21
examples, J-19
multiplication, J-17 to J-20
precision, J-21
rounding, J-18, J-19

integer arithmetic
array multiplier, J-50
Booth recoding, J-49
even/odd array, J-52
issues, J-11
with many adders, J-50 to J-54
multipass array multiplier, J-51
n-bit unsigned integers, J-4
Radix-2, J-4 to J-7
signed-digit addition table,

J-54
with single adder, J-47 to J-49,

J-48

Wallace tree, J-53
integer shifting over zeros, J-45 to

J-47
PA-RISC instructions, K-34 to

K-35
unfinished instructions, 179

Multiprocessor basics
architectural issues and

approaches, 346–348
architecture goals/requirements, 15
architecture and software

development, 407–409
basic hardware primitives,

387–389
cache coherence, 352–353
coining of term, L-59
communication calculations, 350
computer categories, 10
consistency models, 395
definition, 345
early machines, L-56
embedded systems, E-14 to E-15
fallacies, 55
locks via coherence, 389–391
low-to-high-end roles, 344–345
parallel processing challenges,

349–351
for performance gains, 398–400
performance trends, 21
point-to-point example, 413
shared-memory, see

Shared-memory
multiprocessors

SMP, 345, 350, 354–355, 363–364
streaming Multiprocessor, 292,

307, 313–314
Multiprocessor history

bus-based coherent
multiprocessors, L-59 to
L-60

clusters, L-62 to L-64
early computers, L-56
large-scale multiprocessors, L-60

to L-61
parallel processing debates, L-56

to L-58
recent advances and developments,

L-58 to L-60
SIMD computers, L-55 to L-56
synchronization and consistency

models, L-64
virtual memory, L-64

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-51

Multiprogramming
definition, 345
multithreading, 224
performance, 36
shared-memory workload

performance, 375–378,
377

shared-memory workloads,
374–375

software optimization, 408
virtual memory-based protection,

105–106, B-49
workload execution time, 375

Multistage interconnection networks
(MINs)

bidirectional, F-33 to F-34
crossbar switch calculations, F-31

to F-32
vs. direct network costs, F-92
example, F-31
self-routing, F-48
system area network history, F-100

to F-101
topology, F-30 to F-31, F-38 to

F-39
Multistage switch fabrics, topology,

F-30
Multi-Streaming Processor (MSP)

Cray X1, G-21 to G-23, G-22,
G-23 to G-24

Cray X1E, G-24
first vector computers, L-46

Multithreaded SIMD Processor
block diagram, 294
definition, 292, 309, 313–314
Fermi GPU architectural

innovations, 305–308
Fermi GPU block diagram, 307
Fermi GTX 480 GPU floorplan,

295, 295–296
GPU programming, 289–290
GPUs vs. vector architectures, 310,

310–311
Grid mapping, 293
NVIDIA GPU computational

structures, 291
NVIDIA GPU Memory structures,

304, 304–305
Roofline model, 326

Multithreaded vector processor
definition, 292
Fermi GPU comparison, 305

Multithreading
coarse-grained, 224–226
definition and types, 223–225
fine-grained, 224–226
GPU programming, 289
historical background, L-34 to

L-35
ILP, 223–232
memory hierarchy basics, 75–76
parallel benchmarks, 231, 231–232
for performance gains, 398–400
SMT, see Simultaneous

multithreading (SMT)
Sun T1 effectiveness, 226–229

MVAPICH, F-77
MVL, see Maximum vector length

(MVL)
MXP processor, components, E-14
Myrinet SAN, F-67

characteristics, F-76
cluster history, L-62 to L-63, L-73
routing algorithms, F-48
switch vs. NIC, F-86
system area network history, F-100

N
NAK, see Negative acknowledge

(NAK)
Name dependences

ILP, 152–153
locating dependences, 318–319
loop-level parallelism, 315
scoreboarding, C-79
Tomasulo’s algorithm, 171–172

Nameplate power rating, WSCs, 449
NaN (Not a Number), J-14, J-16, J-21,

J-34
NAND Flash, definition, 103
NAS, see Network attached storage

(NAS)
NAS Parallel Benchmarks

InfiniBand, F-76
vector processor history, G-28

National Science Foundation, WAN
history, F-98

Natural parallelism
embedded systems, E-15
multiprocessor importance, 344
multithreading, 223

n-bit adder, carry-lookahead, J-38
n-bit number representation, J-7 to

J-10

n-bit unsigned integer division, J-4
N-body algorithms, Barnes

application, I-8 to I-9
NBS DYSEAC, L-81
N-cube topology, characteristics, F-36
NEC Earth Simulator, peak

performance, 58
NEC SX/2, L-45, L-47
NEC SX/5, L-46, L-48
NEC SX/6, L-46, L-48
NEC SX-8, L-46, L-48
NEC SX-9

first vector computers, L-49
Roofline model, 286–288, 287

NEC VR 4122, embedded
benchmarks, E-13

Negative acknowledge (NAK)
cache coherence, I-38 to I-39
directory controller, I-40 to I-41
DSM multiprocessor cache

coherence, I-37
Negative condition code, MIPS core,

K-9 to K-16
Negative-first routing, F-48
Nested page tables, 129
NetApp, see Network Appliance

(NetApp)
Netflix, AWS, 460
Netscape, F-98
Network Appliance (NetApp)

FAS6000 filer, D-41 to D-42
NFS benchmarking, D-20
RAID, D-9
RAID row-diagonal parity, D-9

Network attached storage (NAS)
block servers vs. filers, D-35
WSCs, 442

Network bandwidth, interconnection
network, F-18

Network-Based Computer Laboratory
(Ohio State), F-76,
F-77

Network buffers, network interfaces,
F-7 to F-8

Network fabric, switched-media
networks, F-24

Network File System (NFS)
benchmarking, D-20, D-20
block servers vs. filers, D-35
interconnection networks, F-89
server benchmarks, 40
TCP/IP, F-81

I-52 ■ Index

Networking costs, WSC vs.
datacenters, 455

Network injection bandwidth
interconnection network, F-18
multi-device interconnection

networks, F-26
Network interface

fault tolerance, F-67
functions, F-6 to F-7
message composition/processing,

F-6 to F-9
Network interface card (NIC)

functions, F-8
Google WSC servers, 469
vs. I/O subsystem, F-90 to F-91
storage area network history,

F-102
vs. switches, F-85 to F-86, F-86
zero-copy protocols, F-91

Network layer, definition, F-82
Network nodes

direct network topology, F-37
distributed switched networks,

F-34 to F-36
Network on chip (NoC),

characteristics, F-3
Network ports, interconnection

network topology, F-29
Network protocol layer,

interconnection
networks, F-10

Network reception bandwidth,
interconnection
network, F-18

Network reconfiguration
commercial interconnection

networks, F-66
fault tolerance, F-67
switch vs. NIC, F-86

Network technology, see also
Interconnection
networks

Google WSC, 469
performance trends, 19–20
personal computers, F-2
trends, 18
WSC bottleneck, 461
WSC goals/requirements, 433

Network of Workstations, L-62, L-73
NEWS communication, see

North-East-West-South
communication

Newton’s iteration, J-27 to J-30
NFS, see Network File System (NFS)
NIC, see Network interface card (NIC)
Nicely, Thomas, J-64
NMOS, DRAM, 99
NoC, see Network on chip (NoC)
Nodes

coherence maintenance, 381
communication bandwidth, I-3
direct network topology, F-37
directory-based cache coherence,

380
distributed switched networks,

F-34 to F-36
IBM Blue Gene/L, I-42 to I-44
IBM Blue Gene/L 3D torus

network, F-73
network topology performance and

costs, F-40
in parallel, 336
points-to analysis, H-9

Nokia cell phone, circuit board, E-24
Nonaligned data transfers, MIPS64,

K-24 to K-26
Nonatomic operations

cache coherence, 361
directory protocol, 386

Nonbinding prefetch, cache
optimization, 93

Nonblocking caches
cache optimization, 83–85,

131–133
effectiveness, 84
ILP speculative execution,

222–223
Intel Core i7, 118
memory hierarchy history, L-11

Nonblocking crossbar, centralized
switched networks, F-32
to F-33

Nonfaulting prefetches, cache
optimization, 92

Nonrestoring division, J-5, J-6
Nonuniform memory access

(NUMA)
DSM as, 348
large-scale multiprocessor history,

L-61
snooping limitations, 363–364

Non-unit strides
multidimensional arrays in vector

architectures, 278–279

vector processor, 310, 310–311,
G-25

North-East-West-South
communication,
network topology
calculations, F-41 to
F-43

North-last routing, F-48
Not a Number (NaN), J-14, J-16, J-21,

J-34
Notifications, interconnection

networks, F-10
NOW project, L-73
No-write allocate

definition, B-11
example calculation, B-12

NSFNET, F-98
NTSC/PAL encoder, Sanyo

VPC-SX500 digital
camera, E-19

Nullification, PA-RISC instructions,
K-33 to K-34

Nullifying branch, branch delay slots,
C-24 to C-25

NUMA, see Nonuniform memory
access (NUMA)

NVIDIA GeForce, L-51
NVIDIA systems

fine-grained multithreading, 224
GPU comparisons, 323–330,

325
GPU computational structures,

291–297
GPU computing history, L-52
GPU ISA, 298–300
GPU Memory structures, 304,

304–305
GPU programming, 289
graphics pipeline history, L-51
scalable GPUs, L-51
terminology, 313–315

N-way set associative
block placement, B-7
conflict misses, B-23
memory hierarchy basics, 74
TLBs, B-49

NYU Ultracomputer, L-60

O
Observed performance, fallacies, 57
Occupancy, communication

bandwidth, I-3

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-53

Ocean application
characteristics, I-9 to I-10
distributed-memory

multiprocessor, I-32
distributed-memory

multiprocessors, I-30
example calculations, I-11 to I-12
miss rates, I-28
symmetric shared-memory

multiprocessors, I-23
OCNs, see On-chip networks (OCNs)
Offline reconstruction, RAID, D-55
Offload engines

network interfaces, F-8
TCP/IP reliance, F-95

Offset
addressing modes, 12
AMD64 paged virtual memory,

B-55
block identification, B-7 to B-8
cache optimization, B-38
call gates, B-54
control flow instructions, A-18
directory-based cache coherence

protocols, 381–382
example, B-9
gather-scatter, 280
IA-32 segment, B-53
instruction decode, C-5 to C-6
main memory, B-44
memory mapping, B-52
MIPS, C-32
MIPS control flow instructions,

A-37 to A-38
misaligned addresses, A-8
Opteron data cache, B-13 to B-14
pipelining, C-42
PTX instructions, 300
RISC, C-4 to C-6
RISC instruction set, C-4
TLB, B-46
Tomasulo’s approach, 176
virtual memory, B-43 to B-44,

B-49, B-55 to B-56
OLTP, see On-Line Transaction

Processing (OLTP)
Omega

example, F-31
packet blocking, F-32
topology, F-30

OMNETPP, Intel Core i7, 240–241
On-chip cache

optimization, 79
SRAM, 98–99

On-chip memory, embedded systems,
E-4 to E-5

On-chip networks (OCNs)
basic considerations, F-3
commercial implementations, F-73
commercial interconnection

networks, F-63
cross-company interoperability,

F-64
DOR, F-46
effective bandwidth, F-18,

F-28
example system, F-70 to F-72
historical overview, F-103 to

F-104
interconnection network domain

relationship, F-4
interconnection network speed,

F-88
latency and effective bandwidth,

F-26 to F-28
latency vs. nodes, F-27
link bandwidth, F-89
packet latency, F-13, F-14 to F-16
switch microarchitecture, F-57
time of flight, F-13
topology, F-30
wormhole switching, F-51

One’s complement, J-7
One-way conflict misses, definition,

B-23
Online reconstruction, RAID, D-55
On-Line Transaction Processing

(OLTP)
commercial workload, 369, 371
server benchmarks, 41
shared-memory workloads,

368–370, 373–374
storage system benchmarks, D-18

OpenCL
GPU programming, 289
GPU terminology, 292, 313–315
NVIDIA terminology, 291
processor comparisons, 323

OpenGL, L-51
Open source software

Amazon Web Services, 457
WSCs, 437
Xen VMM, see Xen virtual

machine

Open Systems Interconnect (OSI)
Ethernet, F-78 to F-79
layer definitions, F-82

Operand addressing mode, Intel
80x86, K-59, K-59 to
K-60

Operand delivery stage, Itanium 2,
H-42

Operands
DSP, E-6
forwarding, C-19
instruction set encoding, A-21 to

A-22
Intel 80x86, K-59
ISA, 12
ISA classification, A-3 to A-4
MIPS data types, A-34
MIPS pipeline, C-71
MIPS pipeline FP operations, C-52

to C-53
NVIDIA GPU ISA, 298
per ALU instruction example, A-6
TMS320C55 DSP, E-6
type and size, A-13 to A-14
VAX, K-66 to K-68, K-68
vector execution time, 268–269

Operating systems (general)
address translation, B-38
and architecture development, 2
communication performance, F-8
disk access scheduling, D-44 to

D-45, D-45
memory protection performance,

B-58
miss statistics, B-59
multiprocessor software

development, 408
and page size, B-58
segmented virtual memory, B-54
server benchmarks, 40
shared-memory workloads,

374–378
storage systems, D-35

Operational costs
basic considerations, 33
WSCs, 434, 438, 452, 456, 472

Operational expenditures (OPEX)
WSC costs, 452–455, 454
WSC TCO case study, 476–478

Operation faults, storage systems, D-11
Operator dependability, disks, D-13 to

D-15

I-54 ■ Index

OPEX, see Operational expenditures
(OPEX)

Optical media, interconnection
networks, F-9

Oracle database
commercial workload, 368
miss statistics, B-59
multithreading benchmarks, 232
single-threaded benchmarks, 243
WSC services, 441

Ordering, and deadlock, F-47
Organization

buffer, switch microarchitecture,
F-58 to F-60

cache, performance impact,
B-19

cache blocks, B-7 to B-8
cache optimization, B-19
coherence extensions, 362
computer architecture, 11, 15–16
DRAM, 98
MIPS pipeline, C-37
multiple-issue processor, 197, 198
Opteron data cache, B-12 to B-13,

B-13
pipelines, 152
processor history, 2–3
processor performance equation,

49
shared-memory multiprocessors,

346
Sony PlayStation Emotion Engine,

E-18
TLB, B-46

Orthogonality, compiler
writing-architecture
relationship, A-30

OSI, see Open Systems Interconnect
(OSI)

Out-of-order completion
data hazards, 169
MIPS pipeline, C-71
MIPS R100000 sequential

consistency, 397
precise exceptions, C-58

Out-of-order execution
and cache miss, B-2 to B-3
cache performance, B-21
data hazards, 169–170
hardware-based execution, 184
ILP, 245
memory hierarchy, B-2 to B-3

microarchitectural techniques case
study, 247–254

MIPS pipeline, C-71
miss penalty, B-20 to B-22
performance milestones, 20
power/DLP issues, 322
processor comparisons, 323
R10000, 397
SMT, 246
Tomasulo’s algorithm, 183

Out-of-order processors
DLP, 322
Intel Core i7, 236
memory hierarchy history, L-11
multithreading, 226
vector architecture, 267

Out-of-order write, dynamic
scheduling, 171

Output buffered switch
HOL blocking, F-60
microarchitecture, F-57, F-57
organizations, F-58 to F-59
pipelined version, F-61

Output dependence
compiler history, L-30 to L-31
definition, 152–153
dynamic scheduling, 169–171, C-72
finding, H-7 to H-8
loop-level parallelism calculations,

320
MIPS scoreboarding, C-79

Overclocking
microprocessors, 26
processor performance equation,

52
Overflow, integer arithmetic, J-8, J-10

to J-11, J-11
Overflow condition code, MIPS core,

K-9 to K-16
Overhead

adaptive routing, F-93 to F-94
Amdahl’s law, F-91
communication latency, I-4
interconnection networks, F-88,

F-91 to F-92
OCNs vs. SANs, F-27
vs. peak performance, 331
shared-memory communication,

I-5
sorting case study, D-64 to D-67
time of flight, F-14
vector processor, G-4

Overlapping triplets
historical background, J-63
integer multiplication, J-49

Oversubscription
array switch, 443
Google WSC, 469
WSC architecture, 441, 461

P
Packed decimal, definition, A-14
Packet discarding, congestion

management, F-65
Packets

ATM, F-79
bidirectional rings, F-35 to F-36
centralized switched networks,

F-32
effective bandwidth vs. packet size,

F-19
format example, F-7
IBM Blue Gene/L 3D torus

network, F-73
InfiniBand, F-75, F-76
interconnection networks,

multi-device networks,
F-25

latency issues, F-12, F-13
lossless vs. lossy networks, F-11 to

F-12
network interfaces, F-8 to F-9
network routing, F-44
routing/arbitration/switching

impact, F-52
switched network topology, F-40
switching, F-51
switch microarchitecture, F-57 to

F-58
switch microarchitecture

pipelining, F-60 to F-61
TI TMS320C6x DSP, E-10
topology, F-21
virtual channels and throughput,

F-93
Packet transport, interconnection

networks, F-9 to F-12
Page coloring, definition, B-38
Paged segments, characteristics, B-43

to B-44
Paged virtual memory

Opteron example, B-54 to B-57
protection, 106
vs. segmented, B-43

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-55

Page faults
cache optimization, A-46
exceptions, C-43 to C-44
hardware-based speculation, 188
and memory hierarchy, B-3
MIPS exceptions, C-48
Multimedia SIMD Extensions, 284
stopping/restarting execution, C-46
virtual memory definition, B-42
virtual memory miss, B-45

Page offset
cache optimization, B-38
main memory, B-44
TLB, B-46
virtual memory, B-43, B-49, B-55

to B-56
Pages

definition, B-3
vs. segments, B-43
size selection, B-46 to B-47
virtual memory definition, B-42 to

B-43
virtual memory fast address

translation, B-46
Page size

cache optimization, B-38
definition, B-56
memory hierarchy example, B-39,

B-48
and OS, B-58
OS determination, B-58
paged virtual memory, B-55
selection, B-46 to B-47
virtual memory, B-44

Page Table Entry (PTE)
AMD64 paged virtual memory,

B-56
IA-32 equivalent, B-52
Intel Core i7, 120
main memory block, B-44 to B-45
paged virtual memory, B-56
TLB, B-47

Page tables
address translation, B-46 to B-47
AMD64 paged virtual memory,

B-55 to B-56
descriptor tables as, B-52
IA-32 segment descriptors, B-53
main memory block, B-44 to B-45
multiprocessor software

development, 407–409
multithreading, 224

protection process, B-50
segmented virtual memory, B-51
virtual memory block

identification, B-44
virtual-to-physical address

mapping, B-45
Paired single operations, DSP media

extensions, E-11
Palt, definition, B-3
Papadopolous, Greg, L-74
Parallelism

cache optimization, 79
challenges, 349–351
classes, 9–10
computer design principles, 44–45
dependence analysis, H-8
DLP, see Data-level parallelism

(DLP)
Ethernet, F-78
exploitation statically, H-2
exposing with hardware support,

H-23 to H-27
global code scheduling, H-15 to

H-23, H-16
IA-64 instruction format, H-34 to

H-35
ILP, see Instruction-level

parallelism (ILP)
loop-level, 149–150, 215,

217–218, 315–322
MIPS scoreboarding, C-77 to C-78
multiprocessors, 345
natural, 223, 344
request-level, 4–5, 9, 345, 434
RISC development, 2
software pipelining, H-12 to H-15
for speedup, 263
superblock scheduling, H-21 to

H-23, H-22
task-level, 9
TLP, see Thread-level parallelism

(TLP)
trace scheduling, H-19 to H-21,

H-20
vs. window size, 217
WSCs vs. servers, 433–434

Parallel processors
areas of debate, L-56 to L-58
bus-based coherent multiprocessor

history, L-59 to L-60
cluster history, L-62 to L-64
early computers, L-56

large-scale multiprocessor history,
L-60 to L-61

recent advances and developments,
L-58 to L-60

scientific applications, I-33 to I-34
SIMD computer history, L-55 to

L-56
synchronization and consistency

models, L-64
virtual memory history, L-64

Parallel programming
computation communication, I-10

to I-12
with large-scale multiprocessors, I-2

Parallel Thread Execution (PTX)
basic GPU thread instructions, 299
GPU conditional branching,

300–303
GPUs vs. vector architectures, 308
NVIDIA GPU ISA, 298–300
NVIDIA GPU Memory structures,

305
Parallel Thread Execution (PTX)

Instruction
CUDA Thread, 300
definition, 292, 309, 313
GPU conditional branching, 302–303
GPU terms, 308
NVIDIA GPU ISA, 298, 300

Paravirtualization
system call performance, 141
Xen VM, 111

Parity
dirty bits, D-61 to D-64
fault detection, 58
memory dependability, 104–105
WSC memory, 473–474

PARSEC benchmarks
Intel Core i7, 401–405
SMT on superscalar processors,

230–232, 231
speedup without SMT, 403–404

Partial disk failure, dirty bits, D-61 to
D-64

Partial store order, relaxed consistency
models, 395

Partitioned add operation, DSP media
extensions, E-10

Partitioning
Multimedia SIMD Extensions, 282
virtual memory protection, B-50
WSC memory hierarchy, 445

I-56 ■ Index

Pascal programs
compiler types and classes, A-28
integer division/remainder, J-12

Pattern, disk array deconstruction, D-51
Payload

messages, F-6
packet format, F-7

p bits, J-21 to J-23, J-25, J-36 to J-37
PC, see Program counter (PC)
PCI bus, historical background, L-81
PCIe, see PCI-Express (PCIe)
PCI-Express (PCIe), F-29, F-63

storage area network history,
F-102 to F-103

PCI-X, F-29
storage area network history,

F-102
PCI-X 2.0, F-63
PCMCIA slot, Sony PlayStation 2

Emotion Engine case
study, E-15

PC-relative addressing mode, VAX,
K-67

PDP-11, L-10, L-17 to L-19, L-56
PDU, see Power distribution unit

(PDU)
Peak performance

Cray X1E, G-24
DAXPY on VMIPS, G-21
DLP, 322
fallacies, 57–58
multiple lanes, 273
multiprocessor scaled programs,

58
Roofline model, 287
vector architectures, 331
VMIPS on DAXPY, G-17
WSC operational costs, 434

Peer-to-peer
internetworking, F-81 to F-82
wireless networks, E-22

Pegasus, L-16
PennySort competition, D-66
Perfect Club benchmarks

vector architecture programming,
281, 281–282

vector processor history, G-28
Perfect processor, ILP hardware

model, 214–215, 215
Perfect-shuffle exchange,

interconnection network
topology, F-30 to F-31

Performability, RAID reconstruction,
D-55 to D-57

Performance, see also Peak
performance

advanced directory protocol case
study, 420–426

ARM Cortex-A8, 233–236, 234
ARM Cortex-A8 memory,

115–117
bandwidth vs. latency, 18–19
benchmarks, 37–41
branch penalty reduction, C-22
branch schemes, C-25 to C-26
cache basics, B-3 to B-6
cache performance

average memory access time,
B-16 to B-20

basic considerations, B-3 to
B-6, B-16

basic equations, B-22
basic optimizations, B-40
example calculation, B-16 to

B-17
out-of-order processors, B-20

to B-22
compiler optimization impact,

A-27
cost-performance

extensive pipelining, C-80 to
C-81

WSC Flash memory, 474–475
WSC goals/requirements, 433
WSC hardware inactivity, 474
WSC processors, 472–473

CUDA, 290–291
desktop benchmarks, 38–40
directory-based coherence case

study, 418–420
dirty bits, D-61 to D-64
disk array deconstruction, D-51 to

D-55
disk deconstruction, D-48 to D-51
DRAM, 100–102
embedded computers, 9, E-13 to

E-14
Google server benchmarks,

439–441
hardward fallacies, 56
high-performance computing, 432,

435–436, B-10
historical milestones, 20
ILP exploitation, 201

ILP for realizable processors,
216–218

Intel Core i7, 239–241, 240,
401–405

Intel Core i7 memory, 122–124
interconnection networks

bandwidth considerations, F-89
multi-device networks, F-25 to

F-29
routing/arbitration/switching

impact, F-52 to F-55
two-device networks, F-12 to

F-20
Internet Archive Cluster, D-38 to

D-40
interprocessor communication, I-3

to I-6
I/O devices, D-15 to D-16
I/O subsystem design, D-59 to

D-61
I/O system design/evaluation,

D-36
ISA, 241–243
Itanium 2, H-43
large-scale multiprocessors

scientific applications
distributed-memory

multiprocessors, I-26 to
I-32, I-28 to I-30, I-32

parallel processors, I-33 to
I-34

symmetric shared-memory
multiprocessor, I-21 to
I-26, I-23 to I-25

synchronization, I-12 to I-16
MapReduce, 438
measurement, reporting,

summarization, 36–37
memory consistency models, 393
memory hierarchy design, 73
memory hierarchy and OS, B-58
memory threads, GPUs, 332
MIPS FP pipeline, C-60 to C-61
MIPS M2000 vs. VAX 8700, K-82
MIPS R4000 pipeline, C-67 to

C-70, C-68
multicore processors, 400–401,

401
multiprocessing/multithreading,

398–400
multiprocessors, measurement

issues, 405–406

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-57

multiprocessor software
development, 408–409

network topologies, F-40, F-40 to
F-44

observed, 57
peak

DLP, 322
fallacies, 57–58
multiple lanes, 273
Roofline model, 287
vector architectures, 331
WSC operational costs, 434

pipelines with stalls, C-12 to C-13
pipelining basics, C-10 to C-11
processors, historical growth, 2–3,

3
quantitative measures, L-6 to L-7
real-time, PMDs, 6
real-world server considerations,

52–55
results reporting, 41
results summarization, 41–43, 43
RISC classic pipeline, C-7
server benchmarks, 40–41
as server characteristic, 7
single-chip multicore processor

case study, 412–418
single-thread, 399

processor benchmarks, 243
software development, 4
software overhead issues, F-91 to

F-92
sorting case study, D-64 to D-67
speculation cost, 211
Sun T1 multithreading unicore,

227–229
superlinear, 406
switch microarchitecture

pipelining, F-60 to F-61
symmetric shared-memory

multiprocessors,
366–378

scientific workloads, I-21 to
I-26, I-23

system call virtualization/
paravirtualization, 141

transistors, scaling, 19–21
vector, and memory bandwidth,

332
vector add instruction, 272
vector kernel implementation,

334–336

vector processor, G-2 to G-7
DAXPY on VMIPS, G-19 to

G-21
sparse matrices, G-12 to G-14
start-up and multiple lanes, G-7

to G-9
vector processors

chaining, G-11 to G-12
chaining/unchaining, G-12

vector vs. scalar, 331–332
VMIPS on Linpack, G-17 to G-19
wormhole switching, F-92 to F-93

Permanent failure, commercial
interconnection
networks, F-66

Permanent faults, storage systems,
D-11

Personal computers
LANs, F-4
networks, F-2
PCIe, F-29

Personal mobile device (PMD)
characteristics, 6
as computer class, 5
embedded computers, 8–9
Flash memory, 18
integrated circuit cost trends, 28
ISA performance and efficiency

prediction, 241–243
memory hierarchy basics, 78
memory hierarchy design, 72
power and energy, 25
processor comparison, 242

PetaBox GB2000, Internet Archive
Cluster, D-37

Phase-ordering problem, compiler
structure, A-26

Phits, see Physical transfer units
(phits)

Physical addresses
address translation, B-46
AMD Opteron data cache, B-12 to

B-13
ARM Cortex-A8, 115
directory-based cache coherence

protocol basics, 382
main memory block, B-44
memory hierarchy, B-48 to B-49
memory hierarchy basics, 77–78
memory mapping, B-52
paged virtual memory, B-55 to

B-56

page table-based mapping, B-45
safe calls, B-54
segmented virtual memory, B-51
sharing/protection, B-52
translation, B-36 to B-39
virtual memory definition, B-42

Physical cache, definition, B-36 to B-37
Physical channels, F-47
Physical layer, definition, F-82
Physical memory

centralized shared-memory
multiprocessors, 347

directory-based cache coherence,
354

future GPU features, 332
GPU conditional branching, 303
main memory block, B-44
memory hierarchy basics, B-41 to

B-42
multiprocessors, 345
paged virtual memory, B-56
processor comparison, 323
segmented virtual memory, B-51
unified, 333
Virtual Machines, 110

Physical transfer units (phits), F-60
Physical volumes, D-34
PID, see Process-identifier (PID) tags
Pin-out bandwidth, topology, F-39
Pipeline bubble, stall as, C-13
Pipeline cycles per instruction

basic equation, 148
ILP, 149
processor performance

calculations, 218–219
R4000 performance, C-68 to C-69

Pipelined circuit switching, F-50
Pipelined CPUs, early versions, L-26

to L-27
Pipeline delays

ARM Cortex-A8, 235
definition, 228
fine-grained multithreading, 227
instruction set complications, C-50
multiple branch speculation, 211
Sun T1 multithreading unicore

performance, 227–228
Pipeline interlock

data dependences, 151
data hazards requiring stalls, C-20
MIPS R4000, C-65
MIPS vs. VMIPS, 268

I-58 ■ Index

Pipeline latches
ALU, C-40
definition, C-35
R4000, C-60
stopping/restarting execution, C-47

Pipeline organization
dependences, 152
MIPS, C-37

Pipeline registers
branch hazard stall, C-42
data hazards, C-57
data hazard stalls, C-17 to C-20
definition, C-35
example, C-9
MIPS, C-36 to C-39
MIPS extension, C-53
PC as, C-35
pipelining performance issues,

C-10
RISC processor, C-8, C-10

Pipeline scheduling
basic considerations, 161–162
vs. dynamic scheduling, 168–169
ILP exploitation, 197
ILP exposure, 157–161
microarchitectural techniques case

study, 247–254
MIPS R4000, C-64

Pipeline stall cycles
branch scheme performance, C-25
pipeline performance, C-12 to C-13

Pipelining
branch cost reduction, C-26
branch hazards, C-21 to C-26
branch issues, C-39 to C-42
branch penalty reduction, C-22 to

C-25
branch-prediction buffers, C-27 to

C-30, C-29
branch scheme performance, C-25

to C-26
cache access, 82
case studies, C-82 to C-88
classic stages for RISC, C-6 to

C-10
compiler scheduling, L-31
concept, C-2 to C-3
cost-performance, C-80 to C-81
data hazards, C-16 to C-21
definition, C-2
dynamically scheduled pipelines,

C-70 to C-80

example, C-8
exception stopping/restarting, C-46

to C-47
exception types and requirements,

C-43 to C-46
execution sequences, C-80
floating-point addition speedup,

J-25
graphics pipeline history, L-51
hazard classes, C-11
hazard detection, C-38
implementation difficulties, C-43

to C-49
independent FP operations, C-54
instruction set complications, C-49

to C-51
interconnection networks, F-12
latencies, C-87
MIPS, C-34 to C-36
MIPS control, C-36 to C-39
MIPS exceptions, C-48, C-48 to

C-49
MIPS FP performance, C-60 to

C-61
MIPS multicycle operations

basic considerations, C-51 to
C-54

hazards and forwarding, C-54
to C-58

precise exceptions, C-58 to C-60
MIPS R4000

FP pipeline, C-65 to C-67,
C-67

overview, C-61 to C-65
pipeline performance, C-67 to

C-70
pipeline structure, C-62 to C-63

multiple outstanding FP
operations, C-54

performance issues, C-10 to C-11
performance with stalls, C-12 to

C-13
predicted-not-taken scheme, C-22
RISC instruction set, C-4 to C-5,

C-70
simple implementation, C-30 to

C-43, C-34
simple RISC, C-5 to C-6, C-7
static branch prediction, C-26 to

C-27
structural hazards, C-13 to C-16,

C-15

switch microarchitecture, F-60 to
F-61

unoptimized code, C-81
Pipe segment, definition, C-3
Pipe stage

branch prediction, C-28
data hazards, C-16
definition, C-3
dynamic scheduling, C-71
FP pipeline, C-66
integrated instruction fetch units,

207
MIPS, C-34 to C-35, C-37, C-49
MIPS extension, C-53
MIPS R4000, C-62
out-of-order execution, 170
pipeline stalls, C-13
pipeling performance issues, C-10
register additions, C-35
RISC processor, C-7
stopping/restarting execution, C-46
WAW, 153

pjbb2005 benchmark
Intel Core i7, 402
SMT on superscalar processors,

230–232, 231
PLA, early computer arithmetic, J-65
PMD, see Personal mobile device

(PMD)
Points-to analysis, basic approach, H-9
Point-to-point links

bus replacement, D-34
Ethernet, F-79
storage systems, D-34
switched-media networks, F-24

Point-to-point multiprocessor,
example, 413

Point-to-point networks
directory-based coherence, 418
directory protocol, 421–422
SMP limitations, 363–364

Poison bits, compiler-based
speculation, H-28, H-30

Poisson, Siméon, D-28
Poisson distribution

basic equation, D-28
random variables, D-26 to D-34

Polycyclic scheduling, L-30
Portable computers

interconnection networks, F-85
processor comparison, 242

Port number, network interfaces, F-7

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-59

Position independence, control flow
instruction addressing
modes, A-17

Power
distribution for servers, 490
distribution overview, 447
and DLP, 322
first-level caches, 79–80
Google server benchmarks,

439–441
Google WSC, 465–468
PMDs, 6
real-world server considerations,

52–55
WSC infrastructure, 447
WSC power modes, 472
WSC resource allocation case

study, 478–479
WSC TCO case study, 476–478

Power consumption, see also Energy
efficiency

cache optimization, 96
cache size and associativity, 81
case study, 63–64
computer components, 63
DDR3 SDRAM, 103
disks, D-5
embedded benchmarks, E-13
GPUs vs. vector architectures, 311
interconnection networks, F-85
ISA performance and efficiency

prediction, 242–243
microprocessor, 23–26
SDRAMs, 102
SMT on superscalar processors,

230–231
speculation, 210–211
system trends, 21–23
TI TMS320C55 DSP, E-8
WSCs, 450

Power distribution unit (PDU), WSC
infrastructure, 447

Power failure
exceptions, C-43 to C-44, C-46
utilities, 435
WSC storage, 442

Power gating, transistors, 26
Power modes, WSCs, 472
PowerPC

addressing modes, K-5
AltiVec multimedia instruction

compiler support, A-31

ALU, K-5
arithmetic/logical instructions,

K-11
branches, K-21
cluster history, L-63
conditional branches, K-17
conditional instructions, H-27
condition codes, K-10 to K-11
consistency model, 395
constant extension, K-9
conventions, K-13
data transfer instructions, K-10
features, K-44
FP instructions, K-23
IBM Blue Gene/L, I-41 to I-42
multimedia compiler support,

A-31, K-17
precise exceptions, C-59
RISC architecture, A-2
RISC code size, A-23
as RISC systems, K-4
unique instructions, K-32 to K-33

PowerPC ActiveC
characteristics, K-18
multimedia support, K-19

PowerPC AltiVec, multimedia
support, E-11

Power-performance
low-power servers, 477
servers, 54

Power Supply Units (PSUs),
efficiency ratings, 462

Power utilization effectiveness (PUE)
datacenter comparison, 451
Google WSC, 468
Google WSC containers, 464–465
WSC, 450–452
WSCs vs. datacenters, 456
WSC server energy efficiency, 462

Precise exceptions
definition, C-47
dynamic scheduling, 170
hardware-based speculation,

187–188, 221
instruction set complications, C-49
maintaining, C-58 to C-60
MIPS exceptions, C-48

Precisions, floating-point arithmetic,
J-33 to J-34

Predicated instructions
exposing parallelism, H-23 to H-27
IA-64, H-38 to H-40

Predicate Registers
definition, 309
GPU conditional branching, 300–301
IA-64, H-34
NVIDIA GPU ISA, 298
vectors vs. GPUs, 311

Predication, TI TMS320C6x DSP, E-10
Predicted-not-taken scheme

branch penalty reduction, C-22,
C-22 to C-23

MIPS R4000 pipeline, C-64
Predictions, see also Mispredictions

address aliasing, 213–214, 216
branch

correlation, 162–164
cost reduction, 162–167, C-26
dynamic, C-27 to C-30
ideal processor, 214
ILP exploitation, 201
instruction fetch bandwidth, 205
integrated instruction fetch

units, 207
Intel Core i7, 166–167, 239–241
static, C-26 to C-27

branch-prediction buffers, C-27 to
C-30, C-29

jump prediction, 214
PMDs, 6
return address buffer, 207
2-bit scheme, C-28
value prediction, 202, 212–213

Prefetching
integrated instruction fetch units,

208
Intel Core i7, 122, 123–124
Itanium 2, H-42
MIPS core extensions, K-20
NVIDIA GPU Memory structures,

305
parallel processing challenges, 351

Prefix, Intel 80x86 integer operations,
K-51

Presentation layer, definition, F-82
Present bit, IA-32 descriptor table,

B-52
Price vs. cost, 32–33
Price-performance ratio

cost trends, 28
Dell PowerEdge servers, 53
desktop comptuers, 6
processor comparisons, 55
WSCs, 8, 441

I-60 ■ Index

Primitives
architect-compiler writer

relationship, A-30
basic hardware types, 387–389
compiler writing-architecture

relationship, A-30
CUDA Thread, 289
dependent computation

elimination, 321
GPU vs. MIMD, 329
locks via coherence, 391
operand types and sizes, A-14 to

A-15
PA-RISC instructions, K-34 to

K-35
synchronization, 394, L-64

Principle of locality
bidirectional MINs, F-33 to F-34
cache optimization, B-26
cache performance, B-3 to B-4
coining of term, L-11
commercial workload, 373
computer design principles, 45
definition, 45, B-2
lock accesses, 390
LRU, B-9
memory accesses, 332, B-46
memory hierarchy design, 72
multilevel application, B-2
multiprogramming workload, 375
scientific workloads on symmetric

shared-memory
multiprocessors, I-25

stride, 278
WSC bottleneck, 461
WSC efficiency, 450

Private data
cache protocols, 359
centralized shared-memory

multiprocessors,
351–352

Private Memory
definition, 292, 314
NVIDIA GPU Memory structures,

304
Private variables, NVIDIA GPU

Memory, 304
Procedure calls

compiler structure, A-25 to A-26
control flow instructions, A-17,

A-19 to A-21
dependence analysis, 321

high-level instruction set, A-42 to
A-43

IA-64 register model, H-33
invocation options, A-19
ISAs, 14
MIPS control flow instructions, A-38
return address predictors, 206
VAX, B-73 to B-74, K-71 to K-72
VAX vs. MIPS, K-75
VAX swap, B-74 to B-75

Process concept
definition, 106, B-49
protection schemes, B-50

Process-identifier (PID) tags, cache
addressing, B-37 to
B-38

Process IDs, Virtual Machines, 110
Processor consistency

latency hiding with speculation,
396–397

relaxed consistency models, 395
Processor cycles

cache performance, B-4
definition, C-3
memory banks, 277
multithreading, 224

Processor-dependent optimizations
compilers, A-26
performance impact, A-27
types, A-28

Processor-intensive benchmarks,
desktop performance, 38

Processor performance
and average memory access time,

B-17 to B-20
vs. cache performance, B-16
clock rate trends, 24
desktop benchmarks, 38, 40
historical trends, 3, 3–4
multiprocessors, 347
uniprocessors, 344

Processor performance equation,
computer design
principles, 48–52

Processor speed
and clock rate, 244
and CPI, 244
snooping cache coherence, 364

Process switch
definition, 106, B-49
miss rate vs. virtual addressing,

B-37

multithreading, 224
PID, B-37
virtual memory-based protection,

B-49 to B-50
Producer-server model, response time

and throughput, D-16
Productivity

CUDA, 290–291
NVIDIA programmers, 289
software development, 4
virtual memory and programming,

B-41
WSC, 450

Profile-based predictor, misprediction
rate, C-27

Program counter (PC)
addressing modes, A-10
ARM Cortex-A8, 234
branch hazards, C-21
branch-target buffers, 203,

203–204, 206
control flow instruction addressing

modes, A-17
dynamic branch prediction, C-27

to C-28
exception stopping/restarting, C-46

to C-47
GPU conditional branching, 303
Intel Core i7, 120
M32R instructions, K-39
MIPS control flow instructions,

A-38
multithreading, 223–224
pipeline branch issues, C-39 to

C-41
pipe stages, C-35
precise exceptions, C-59 to C-60
RISC classic pipeline, C-8
RISC instruction set, C-5
simple MIPS implementation,

C-31 to C-33
TLP, 344
virtual memory protection, 106

Program counter-relative addressing
control flow instructions, A-17 to

A-18, A-21
definition, A-10
MIPS instruction format, A-35

Programming models
CUDA, 300, 310, 315
GPUs, 288–291
latency in consistency models, 397

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-61

memory consistency, 393
Multimedia SIMD architectures,

285
vector architectures, 280–282
WSCs, 436–441

Programming primitive, CUDA
Thread, 289

Program order
cache coherence, 353
control dependences, 154–155
data hazards, 153
dynamic scheduling, 168–169, 174
hardware-based speculation, 192
ILP exploitation, 200
name dependences, 152–153
Tomasulo’s approach, 182

Protection schemes
control dependence, 155
development, L-9 to L-12
and ISA, 112
network interfaces, F-7
network user access, F-86 to F-87
Pentium vs. Opteron, B-57
processes, B-50
safe calls, B-54
segmented virtual memory

example, B-51 to B-54
Virtual Machines, 107–108
virtual memory, 105–107, B-41

Protocol deadlock, routing, F-44
Protocol stack

example, F-83
internetworking, F-83

Pseudo-least recently used (LRU)
block replacement, B-9 to B-10
Intel Core i7, 118

PSUs, see Power Supply Units (PSUs)
PTE, see Page Table Entry (PTE)
PTX, see Parallel Thread Execution

(PTX)
PUE, see Power utilization

effectiveness (PUE)
Python language, hardware impact on

software development, 4

Q
QCDOD, L-64
QoS, see Quality of service (QoS)
QsNetII, F-63, F-76
Quadrics SAN, F-67, F-100 to F-101
Quality of service (QoS)

dependability benchmarks, D-21

WAN history, F-98
Quantitative performance measures,

development, L-6 to L-7
Queue

definition, D-24
waiting time calculations, D-28 to

D-29
Queue discipline, definition, D-26
Queuing locks, large-scale

multiprocessor
synchronization, I-18 to
I-21

Queuing theory
basic assumptions, D-30
Little’s law, D-24 to D-25
M/M/1 model, D-31 to D-33, D-32
overview, D-23 to D-26
RAID performance prediction,

D-57 to D-59
single-server model, D-25

Quickpath (Intel Xeon), cache
coherence, 361

R
Race-to-halt, definition, 26
Rack units (U), WSC architecture, 441
Radio frequency amplifier, radio

receiver, E-23
Radio receiver, components, E-23
Radio waves, wireless networks, E-21
Radix-2 multiplication/division, J-4 to

J-7, J-6, J-55
Radix-4 multiplication/division, J-48

to J-49, J-49, J-56 to
J-57, J-60 to J-61

Radix-8 multiplication, J-49
RAID (Redundant array of

inexpensive disks)
data replication, 439
dependability benchmarks, D-21,

D-22
disk array deconstruction case

study, D-51, D-55
disk deconstruction case study,

D-48
hardware dependability, D-15
historical background, L-79 to

L-80
I/O subsystem design, D-59 to

D-61
logical units, D-35
memory dependability, 104

NetApp FAS6000 filer, D-41 to
D-42

overview, D-6 to D-8, D-7
performance prediction, D-57 to

D-59
reconstruction case study, D-55 to

D-57
row-diagonal parity, D-9
WSC storage, 442

RAID 0, definition, D-6
RAID 1

definition, D-6
historical background, L-79

RAID 2
definition, D-6
historical background, L-79

RAID 3
definition, D-7
historical background, L-79 to

L-80
RAID 4

definition, D-7
historical background, L-79 to

L-80
RAID 5

definition, D-8
historical background, L-79 to

L-80
RAID 6

characteristics, D-8 to D-9
hardware dependability, D-15

RAID 10, D-8
RAM (random access memory), switch

microarchitecture, F-57
RAMAC-350 (Random Access

Method of Accounting
Control), L-77 to L-78,
L-80 to L-81

Random Access Method of
Accounting Control,
L-77 to L-78

Random replacement
cache misses, B-10
definition, B-9

Random variables, distribution, D-26
to D-34

RAR, see Read after read (RAR)
RAS, see Row access strobe (RAS)
RAW, see Read after write (RAW)
Ray casting (RC)

GPU comparisons, 329
throughput computing kernel, 327

I-62 ■ Index

RDMA, see Remote direct memory
access (RDMA)

Read after read (RAR), absence of
data hazard, 154

Read after write (RAW)
data hazards, 153
dynamic scheduling with

Tomasulo’s algorithm,
170–171

first vector computers, L-45
hazards, stalls, C-55
hazards and forwarding, C-55 to

C-57
instruction set complications, C-50
microarchitectural techniques case

study, 253
MIPS FP pipeline performance,

C-60 to C-61
MIPS pipeline control, C-37 to C-38
MIPS pipeline FP operations, C-53
MIPS scoreboarding, C-74
ROB, 192
TI TMS320C55 DSP, E-8
Tomasulo’s algorithm, 182
unoptimized code, C-81

Read miss
AMD Opteron data cache, B-14
cache coherence, 357, 358,

359–361
coherence extensions, 362
directory-based cache coherence

protocol example, 380,
382–386

memory hierarchy basics, 76–77
memory stall clock cycles, B-4
miss penalty reduction, B-35 to

B-36
Opteron data cache, B-14
vs. write-through, B-11

Read operands stage
ID pipe stage, 170
MIPS scoreboarding, C-74 to C-75
out-of-order execution, C-71

Realizable processors, ILP limitations,
216–220

Real memory, Virtual Machines, 110
Real-time constraints, definition, E-2
Real-time performance, PMDs, 6
Real-time performance requirement,

definition, E-3
Real-time processing, embedded

systems, E-3 to E-5

Rearrangeably nonblocking,
centralized switched
networks, F-32 to F-33

Receiving overhead
communication latency, I-3 to I-4
interconnection networks, F-88
OCNs vs. SANs, F-27
time of flight, F-14

RECN, see Regional explicit
congestion notification
(RECN)

Reconfiguration deadlock, routing,
F-44

Reconstruction, RAID, D-55 to D-57
Recovery time, vector processor, G-8
Recurrences

basic approach, H-11
loop-carried dependences, H-5

Red-black Gauss-Seidel, Ocean
application, I-9 to I-10

Reduced Instruction Set Computer,
see RISC (Reduced
Instruction Set
Computer)

Reductions
commercial workloads, 371
cost trends, 28
loop-level parallelism

dependences, 321
multiprogramming workloads, 377
T1 multithreading unicore

performance, 227
WSCs, 438

Redundancy
Amdahl’s law, 48
chip fabrication cost case study,

61–62
computer system power

consumption case study,
63–64

index checks, B-8
integrated circuit cost, 32
integrated circuit failure, 35
simple MIPS implementation,

C-33
WSC, 433, 435, 439
WSC bottleneck, 461
WSC storage, 442

Redundant array of inexpensive disks,
see RAID (Redundant
array of inexpensive
disks)

Redundant multiplication, integers,
J-48

Redundant power supplies, example
calculations, 35

Reference bit
memory hierarchy, B-52
virtual memory block replacement,

B-45
Regional explicit congestion

notification (RECN),
congestion
management, F-66

Register addressing mode
MIPS, 12
VAX, K-67

Register allocation
compilers, 396, A-26 to A-29
VAX sort, K-76
VAX swap, K-72

Register deferred addressing, VAX,
K-67

Register definition, 314
Register fetch (RF)

MIPS data path, C-34
MIPS R4000, C-63
pipeline branches, C-41
simple MIPS implementation,

C-31
simple RISC implementation, C-5

to C-6
Register file

data hazards, C-16, C-18, C-20
dynamic scheduling, 172, 173,

175, 177–178
Fermi GPU, 306
field, 176
hardware-based speculation, 184
longer latency pipelines, C-55 to

C-57
MIPS exceptions, C-49
MIPS implementation, C-31, C-33
MIPS R4000, C-64
MIPS scoreboarding, C-75
Multimedia SIMD Extensions,

282, 285
multiple lanes, 272, 273
multithreading, 224
OCNs, F-3
precise exceptions, C-59
RISC classic pipeline, C-7 to C-8
RISC instruction set, C-5 to C-6
scoreboarding, C-73, C-75

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-63

speculation support, 208
structural hazards, C-13
Tomasulo’s algorithm, 180, 182
vector architecture, 264
VMIPS, 265, 308

Register indirect addressing mode,
Intel 80x86, K-47

Register management,
software-pipelined
loops, H-14

Register-memory instruction set
architecture

architect-compiler writer
relationship, A-30

dynamic scheduling, 171
Intel 80x86, K-52
ISA classification, 11, A-3 to A-6

Register prefetch, cache optimization,
92

Register renaming
dynamic scheduling, 169–172
hardware vs. software speculation,

222
ideal processor, 214
ILP hardware model, 214
ILP limitations, 213, 216–217
ILP for realizable processors, 216
instruction delivery and

speculation, 202
microarchitectural techniques case

study, 247–254
name dependences, 153
vs. ROB, 208–210
ROB instruction, 186
sample code, 250
SMT, 225
speculation, 208–210
superscalar code, 251
Tomasulo’s algorithm, 183
WAW/WAR hazards, 220

Register result status, MIPS
scoreboard, C-76

Registers
DSP examples, E-6
IA-64, H-33 to H-34
instructions and hazards, C-17
Intel 80x86, K-47 to K-49, K-48
network interface functions, F-7
pipe stages, C-35
PowerPC, K-10 to K-11
VAX swap, B-74 to B-75

Register stack engine, IA-64, H-34

Register tag example, 177
Register windows, SPARC

instructions, K-29 to
K-30

Regularity
bidirectional MINs, F-33 to F-34
compiler writing-architecture

relationship, A-30
Relative speedup, multiprocessor

performance, 406
Relaxed consistency models

basic considerations, 394–395
compiler optimization, 396
WSC storage software, 439

Release consistency, relaxed
consistency models, 395

Reliability
Amdahl’s law calculations, 56
commercial interconnection

networks, F-66
example calculations, 48
I/O subsystem design, D-59 to

D-61
modules, SLAs, 34
MTTF, 57
redundant power supplies, 34–35
storage systems, D-44
transistor scaling, 21

Relocation, virtual memory, B-42
Remainder, floating point, J-31 to

J-32
Remington-Rand, L-5
Remote direct memory access

(RDMA), InfiniBand,
F-76

Remote node, directory-based cache
coherence protocol
basics, 381–382

Reorder buffer (ROB)
compiler-based speculation, H-31
dependent instructions, 199
dynamic scheduling, 175
FP unit with Tomasulo’s

algorithm, 185
hardware-based speculation,

184–192
ILP exploitation, 199–200
ILP limitations, 216
Intel Core i7, 238
vs. register renaming, 208–210

Repeat interval, MIPS pipeline FP
operations, C-52 to C-53

Replication
cache coherent multiprocessors, 354
centralized shared-memory

architectures, 351–352
coherence enforcement, 354
R4000 performance, C-70
RAID storage servers, 439
TLP, 344
virtual memory, B-48 to B-49
WSCs, 438

Reply, messages, F-6
Reproducibility, performance results

reporting, 41
Request

messages, F-6
switch microarchitecture, F-58

Requested protection level, segmented
virtual memory, B-54

Request-level parallelism (RLP)
basic characteristics, 345
definition, 9
from ILP, 4–5
MIMD, 10
multicore processors, 400
multiprocessors, 345
parallelism advantages, 44
server benchmarks, 40
WSCs, 434, 436

Request phase, arbitration, F-49
Request-reply deadlock, routing, F-44
Reservation stations

dependent instructions, 199–200
dynamic scheduling, 178
example, 177
fields, 176
hardware-based speculation, 184,

186, 189–191
ILP exploitation, 197, 199–200
Intel Core i7, 238–240
loop iteration example, 181
microarchitectural techniques case

study, 253–254
speculation, 208–209
Tomasulo’s algorithm, 172, 173,

174–176, 179, 180,
180–182

Resource allocation
computer design principles, 45
WSC case study, 478–479

Resource sparing, commercial
interconnection
networks, F-66

I-64 ■ Index

Response time, see also Latency
I/O benchmarks, D-18
performance considerations, 36
performance trends, 18–19
producer-server model, D-16
server benchmarks, 40–41
storage systems, D-16 to D-18
vs. throughput, D-17
user experience, 4
WSCs, 450

Responsiveness
PMDs, 6
as server characteristic, 7

Restartable pipeline
definition, C-45
exceptions, C-46 to C-47

Restorations, SLA states, 34
Restoring division, J-5, J-6
Resume events

control dependences, 156
exceptions, C-45 to C-46
hardware-based speculation, 188

Return address predictors
instruction fetch bandwidth,

206–207
prediction accuracy, 207

Returns
Amdahl’s law, 47
cache coherence, 352–353
compiler technology and

architectural decisions,
A-28

control flow instructions, 14, A-17,
A-21

hardware primitives, 388
Intel 80x86 integer operations,

K-51
invocation options, A-19
procedure invocation options,

A-19
return address predictors, 206

Reverse path, cell phones, E-24
RF, see Register fetch (RF)
Rings

characteristics, F-73
NEWS communication, F-42
OCN history, F-104
process protection, B-50
topology, F-35 to F-36, F-36

Ripple-carry adder, J-3, J-3, J-42
chip comparison, J-60

Ripple-carry addition, J-2 to J-3

RISC (Reduced Instruction Set
Computer)

addressing modes, K-5 to K-6
Alpha-unique instructions, K-27 to

K-29
architecture flaws vs. success,

A-45
ARM-unique instructions, K-36 to

K-37
basic concept, C-4 to C-5
basic systems, K-3 to K-5
cache performance, B-6
classic pipeline stages, C-6 to C-10
code size, A-23 to A-24
compiler history, L-31
desktop/server systems, K-4

instruction formats, K-7
multimedia extensions, K-16 to

K-19
desktop systems

addressing modes, K-5
arithmetic/logical instructions,

K-11, K-22
conditional branches, K-17
constant extension, K-9
control instructions, K-12
conventions, K-13
data transfer instructions, K-10,

K-21
features, K-44
FP instructions, K-13, K-23
multimedia extensions, K-18

development, 2
early pipelined CPUs, L-26
embedded systems, K-4

addressing modes, K-6
arithmetic/logical instructions,

K-15, K-24
conditional branches, K-17
constant extension, K-9
control instructions, K-16
conventions, K-16
data transfers, K-14, K-23
DSP extensions, K-19
instruction formats, K-8
multiply-accumulate, K-20

historical background, L-19 to
L-21

instruction formats, K-5 to K-6
instruction set lineage, K-43
ISA performance and efficiency

prediction, 241

M32R-unique instructions, K-39 to
K-40

MIPS16-unique instructions, K-40
to K-42

MIPS64-unique instructions, K-24
to K-27

MIPS core common extensions,
K-19 to K-24

MIPS M2000 vs. VAX 8700, L-21
Multimedia SIMD Extensions

history, L-49 to L-50
operations, 12
PA-RISC-unique, K-33 to K-35
pipelining efficiency, C-70
PowerPC-unique instructions,

K-32 to K-33
Sanyo VPC-SX500 digital camera,

E-19
simple implementation, C-5 to C-6
simple pipeline, C-7
SPARC-unique instructions, K-29

to K-32
Sun T1 multithreading, 226–227
SuperH-unique instructions, K-38

to K-39
Thumb-unique instructions, K-37

to K-38
vector processor history, G-26
Virtual Machines ISA support, 109
Virtual Machines and virtual

memory and I/O, 110
RISC-I, L-19 to L-20
RISC-II, L-19 to L-20
RLP, see Request-level parallelism

(RLP)
ROB, see Reorder buffer (ROB)
Roofline model

GPU performance, 326
memory bandwidth, 332
Multimedia SIMD Extensions,

285–288, 287
Round digit, J-18
Rounding modes, J-14, J-17 to J-19,

J-18, J-20
FP precisions, J-34
fused multiply-add, J-33

Round-robin (RR)
arbitration, F-49
IBM 360, K-85 to K-86
InfiniBand, F-74

Routers
BARRNet, F-80

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-65

Ethernet, F-79
Routing algorithm

commercial interconnection
networks, F-56

fault tolerance, F-67
implementation, F-57
Intel SCCC, F-70
interconnection networks, F-21 to

F-22, F-27, F-44 to F-48
mesh network, F-46
network impact, F-52 to F-55
OCN history, F-104
and overhead, F-93 to F-94
SAN characteristics, F-76
switched-media networks, F-24
switch microarchitecture

pipelining, F-61
system area network history, F-100

Row access strobe (RAS), DRAM, 98
Row-diagonal parity

example, D-9
RAID, D-9

Row major order, blocking, 89
RR, see Round-robin (RR)
RS format instructions, IBM 360,

K-87
Ruby on Rails, hardware impact on

software development, 4
RX format instructions, IBM 360,

K-86 to K-87

S
S3, see Amazon Simple Storage

Service (S3)
SaaS, see Software as a Service (SaaS)
Sandy Bridge dies, wafter example, 31
SANs, see System/storage area

networks (SANs)
Sanyo digital cameras, SOC, E-20
Sanyo VPC-SX500 digital camera,

embedded system case
study, E-19

SAS, see Serial Attach SCSI (SAS)
drive

SASI, L-81
SATA (Serial Advanced Technology

Attachment) disks
Google WSC servers, 469
NetApp FAS6000 filer, D-42
power consumption, D-5
RAID 6, D-8
vs. SAS drives, D-5

storage area network history, F-103
Saturating arithmetic, DSP media

extensions, E-11
Saturating operations, definition, K-18

to K-19
SAXPY, GPU raw/relative

performance, 328
Scalability

cloud computing, 460
coherence issues, 378–379
Fermi GPU, 295
Java benchmarks, 402
multicore processors, 400
multiprocessing, 344, 395
parallelism, 44
as server characteristic, 7
transistor performance and wires,

19–21
WSCs, 8, 438
WSCs vs. servers, 434

Scalable GPUs, historical background,
L-50 to L-51

Scalar expansion, loop-level parallelism
dependences, 321

Scalar Processors, see also
Superscalar processors

definition, 292, 309
early pipelined CPUs, L-26 to L-27
lane considerations, 273
Multimedia SIMD/GPU

comparisons, 312
NVIDIA GPU, 291
prefetch units, 277
vs. vector, 311, G-19
vector performance, 331–332

Scalar registers
Cray X1, G-21 to G-22
GPUs vs. vector architectures, 311
loop-level parallelism

dependences, 321–322
Multimedia SIMD vs. GPUs, 312
sample renaming code, 251
vector vs. GPU, 311
vs. vector performance, 331–332
VMIPS, 265–266

Scaled addressing, VAX, K-67
Scaled speedup, Amdahl’s law and

parallel computers,
406–407

Scaling
Amdahl’s law and parallel

computers, 406–407

cloud computing, 456
computation-to-communication

ratios, I-11
DVFS, 25, 52, 467
dynamic voltage-frequency, 25,

52, 467
Intel Core i7, 404
interconnection network speed, F-88
multicore vs. single-core, 402
processor performance trends, 3
scientific applications on parallel

processing, I-34
shared- vs. switched-media

networks, F-25
transistor performance and wires,

19–21
VMIPS, 267

Scan Line Interleave (SLI), scalable
GPUs, L-51

SCCC, see Intel Single-Chip Cloud
Computing (SCCC)

Schorr, Herb, L-28
Scientific applications

Barnes, I-8 to I-9
basic characteristics, I-6 to I-7
cluster history, L-62
distributed-memory

multiprocessors, I-26 to
I-32, I-28 to I-32

FFT kernel, I-7
LU kernel, I-8
Ocean, I-9 to I-10
parallel processors, I-33 to I-34
parallel program computation/

communication, I-10 to
I-12, I-11

parallel programming, I-2
symmetric shared-memory

multiprocessors, I-21 to
I-26, I-23 to I-25

Scoreboarding
ARM Cortex-A8, 233, 234
components, C-76
definition, 170
dynamic scheduling, 171, 175
and dynamic scheduling, C-71 to

C-80
example calculations, C-77
MIPS structure, C-73
NVIDIA GPU, 296
results tables, C-78 to C-79
SIMD thread scheduler, 296

I-66 ■ Index

Scripting languages, software
development impact, 4

SCSI (Small Computer System
Interface)

Berkeley’s Tertiary Disk project,
D-12

dependability benchmarks, D-21
disk storage, D-4
historical background, L-80 to L-81
I/O subsystem design, D-59
RAID reconstruction, D-56
storage area network history,

F-102
SDRAM, see Synchronous dynamic

random-access memory
(SDRAM)

SDRWAVE, J-62
Second-level caches, see also L2

caches
ARM Cortex-A8, 114
ILP, 245
Intel Core i7, 121
interconnection network, F-87
Itanium 2, H-41
memory hierarchy, B-48 to B-49
miss penalty calculations, B-33 to

B-34
miss penalty reduction, B-30 to

B-35
miss rate calculations, B-31 to

B-35
and relative execution time, B-34
speculation, 210
SRAM, 99

Secure Virtual Machine (SVM), 129
Seek distance

storage disks, D-46
system comparison, D-47

Seek time, storage disks, D-46
Segment basics

Intel 80x86, K-50
vs. page, B-43
virtual memory definition, B-42 to

B-43
Segment descriptor, IA-32 processor,

B-52, B-53
Segmented virtual memory

bounds checking, B-52
Intel Pentium protection, B-51 to

B-54
memory mapping, B-52
vs. paged, B-43

safe calls, B-54
sharing and protection, B-52 to

B-53
Self-correction, Newton’s algorithm,

J-28 to J-29
Self-draining pipelines, L-29
Self-routing, MINs, F-48
Semantic clash, high-level instruction

set, A-41
Semantic gap, high-level instruction

set, A-39
Semiconductors

DRAM technology, 17
Flash memory, 18
GPU vs. MIMD, 325
manufacturing, 3–4

Sending overhead
communication latency, I-3 to I-4
OCNs vs. SANs, F-27
time of flight, F-14

Sense-reversing barrier
code example, I-15, I-21
large-scale multiprocessor

synchronization, I-14
Sequence of SIMD Lane Operations,

definition, 292, 313
Sequency number, packet header, F-8
Sequential consistency

latency hiding with speculation,
396–397

programmer’s viewpoint, 394
relaxed consistency models,

394–395
requirements and implementation,

392–393
Sequential interleaving, multibanked

caches, 86, 86
Sequent Symmetry, L-59
Serial Advanced Technology

Attachment disks, see
SATA (Serial Advanced
Technology
Attachment) disks

Serial Attach SCSI (SAS) drive
historical background, L-81
power consumption, D-5
vs. SATA drives, D-5

Serialization
barrier synchronization, I-16
coherence enforcement, 354
directory-based cache coherence,

382

DSM multiprocessor cache
coherence, I-37

hardware primitives, 387
multiprocessor cache coherency,

353
page tables, 408
snooping coherence protocols, 356
write invalidate protocol

implementation, 356
Serpentine recording, L-77
Serve-longest-queue (SLQ) scheme,

arbitration, F-49
ServerNet interconnection network,

fault tolerance, F-66 to
F-67

Servers, see also Warehouse-scale
computers (WSCs)

as computer class, 5
cost calculations, 454, 454–455
definition, D-24
energy savings, 25
Google WSC, 440, 467, 468–469
GPU features, 324
memory hierarchy design, 72
vs. mobile GPUs, 323–330
multiprocessor importance, 344
outage/anomaly statistics, 435
performance benchmarks, 40–41
power calculations, 463
power distribution example, 490
power-performance benchmarks,

54, 439–441
power-performance modes, 477
real-world examples, 52–55
RISC systems

addressing modes and
instruction formats, K-5
to K-6

examples, K-3, K-4
instruction formats, K-7
multimedia extensions, K-16

to K-19
single-server model, D-25
system characteristics, E-4
workload demands, 439
WSC vs. datacenters, 455–456
WSC data transfer, 446
WSC energy efficiency, 462–464
vs. WSC facility costs, 472
WSC memory hierarchy, 444
WSC resource allocation case

study, 478–479

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-67

vs. WSCs, 432–434
WSC TCO case study, 476–478

Server side Java operations per second
(ssj_ops)

example calculations, 439
power-performance, 54
real-world considerations, 52–55

Server utilization
calculation, D-28 to D-29
queuing theory, D-25

Service accomplishment, SLAs, 34
Service Health Dashboard, AWS, 457
Service interruption, SLAs, 34
Service level agreements (SLAs)

Amazon Web Services, 457
and dependability, 33
WSC efficiency, 452

Service level objectives (SLOs)
and dependability, 33
WSC efficiency, 452

Session layer, definition, F-82
Set associativity

and access time, 77
address parts, B-9
AMD Opteron data cache, B-12 to

B-14
ARM Cortex-A8, 114
block placement, B-7 to B-8
cache block, B-7
cache misses, 83–84, B-10
cache optimization, 79–80, B-33 to

B-35, B-38 to B-40
commercial workload, 371
energy consumption, 81
memory access times, 77
memory hierarchy basics, 74, 76
nonblocking cache, 84
performance equations, B-22
pipelined cache access, 82
way prediction, 81

Set basics
block replacement, B-9 to B-10
definition, B-7

Set-on-less-than instructions (SLT)
MIPS16, K-14 to K-15
MIPS conditional branches, K-11

to K-12
Settle time, D-46
SFF, see Small form factor (SFF) disk
SFS benchmark, NFS, D-20
SGI, see Silicon Graphics systems

(SGI)

Shadow page table, Virtual Machines,
110

Sharding, WSC memory hierarchy,
445

Shared-media networks
effective bandwidth vs. nodes,

F-28
exampl, F-22
latency and effective bandwidth,

F-26 to F-28
multiple device connections, F-22

to F-24
vs. switched-media networks, F-24

to F-25
Shared Memory

definition, 292, 314
directory-based cache coherence,

418–420
DSM, 347–348, 348, 354–355,

378–380
invalidate protocols, 356–357
SMP/DSM definition, 348
terminology comparison, 315

Shared-memory communication,
large-scale
multiprocessors, I-5

Shared-memory multiprocessors
basic considerations, 351–352
basic structure, 346–347
cache coherence, 352–353
cache coherence enforcement,

354–355
cache coherence example,

357–362
cache coherence extensions,

362–363
data caching, 351–352
definition, L-63
historical background, L-60 to

L-61
invalidate protocol

implementation,
356–357

limitations, 363–364
performance, 366–378
single-chip multicore case study,

412–418
SMP and snooping limitations,

363–364
snooping coherence

implementation,
365–366

snooping coherence protocols,
355–356

WSCs, 435, 441
Shared-memory synchronization,

MIPS core extensions,
K-21

Shared state
cache block, 357, 359
cache coherence, 360
cache miss calculations, 366–367
coherence extensions, 362
directory-based cache coherence

protocol basics, 380,
385

private cache, 358
Sharing addition, segmented virtual

memory, B-52 to B-53
Shear algorithms, disk array

deconstruction, D-51 to
D-52, D-52 to D-54

Shifting over zeros, integer
multiplication/division,
J-45 to J-47

Short-circuiting, see Forwarding
SI format instructions, IBM 360, K-87
Signals, definition, E-2
Signal-to-noise ratio (SNR), wireless

networks, E-21
Signed-digit representation

example, J-54
integer multiplication, J-53

Signed number arithmetic, J-7 to J-10
Sign-extended offset, RISC, C-4 to

C-5
Significand, J-15
Sign magnitude, J-7
Silicon Graphics 4D/240, L-59
Silicon Graphics Altix, F-76, L-63
Silicon Graphics Challenge, L-60
Silicon Graphics Origin, L-61, L-63
Silicon Graphics systems (SGI)

economies of scale, 456
miss statistics, B-59
multiprocessor software

development, 407–409
vector processor history, G-27

SIMD (Single Instruction Stream,
Multiple Data Stream)

definition, 10
Fermi GPU architectural

innovations, 305–308
GPU conditional branching, 301

I-68 ■ Index

SIMD (continued)
GPU examples, 325
GPU programming, 289–290
GPUs vs. vector architectures,

308–309
historical overview, L-55 to L-56
loop-level parallelism, 150
MapReduce, 438
memory bandwidth, 332
multimedia extensions, see

Multimedia SIMD
Extensions

multiprocessor architecture, 346
multithreaded, see Multithreaded

SIMD Processor
NVIDIA GPU computational

structures, 291
NVIDIA GPU ISA, 300
power/DLP issues, 322
speedup via parallelism, 263
supercomputer development, L-43

to L-44
system area network history, F-100
Thread Block mapping, 293
TI 320C6x DSP, E-9

SIMD Instruction
CUDA Thread, 303
definition, 292, 313
DSP media extensions, E-10
function, 150, 291
GPU Memory structures, 304
GPUs, 300, 305
Grid mapping, 293
IBM Blue Gene/L, I-42
Intel AVX, 438
multimedia architecture

programming, 285
multimedia extensions, 282–285,

312
multimedia instruction compilers,

A-31 to A-32
Multithreaded SIMD Processor

block diagram, 294
PTX, 301
Sony PlayStation 2, E-16
Thread of SIMD Instructions,

295–296
thread scheduling, 296–297, 297,

305
vector architectures as superset,

263–264
vector/GPU comparison, 308

Vector Registers, 309
SIMD Lane Registers, definition, 309,

314
SIMD Lanes

definition, 292, 296, 309
DLP, 322
Fermi GPU, 305, 307
GPU, 296–297, 300, 324
GPU conditional branching,

302–303
GPUs vs. vector architectures, 308,

310, 311
instruction scheduling, 297
multimedia extensions, 285
Multimedia SIMD vs. GPUs, 312,

315
multithreaded processor, 294
NVIDIA GPU Memory, 304
synchronization marker, 301
vector vs. GPU, 308, 311

SIMD Processors, see also
Multithreaded SIMD
Processor

block diagram, 294
definition, 292, 309, 313–314
dependent computation

elimination, 321
design, 333
Fermi GPU, 296, 305–308
Fermi GTX 480 GPU floorplan,

295, 295–296
GPU conditional branching, 302
GPU vs. MIMD, 329
GPU programming, 289–290
GPUs vs. vector architectures, 310,

310–311
Grid mapping, 293
Multimedia SIMD vs. GPU, 312
multiprocessor architecture, 346
NVIDIA GPU computational

structures, 291
NVIDIA GPU Memory structures,

304–305
processor comparisons, 324
Roofline model, 287, 326
system area network history, F-100

SIMD Thread
GPU conditional branching,

301–302
Grid mapping, 293
Multithreaded SIMD processor,

294

NVIDIA GPU, 296
NVIDIA GPU ISA, 298
NVIDIA GPU Memory structures,

305
scheduling example, 297
vector vs. GPU, 308
vector processor, 310

SIMD Thread Scheduler
definition, 292, 314
example, 297
Fermi GPU, 295, 305–307, 306
GPU, 296

SIMT (Single Instruction, Multiple
Thread)

GPU programming, 289
vs. SIMD, 314
Warp, 313

Simultaneous multithreading
(SMT)

characteristics, 226
definition, 224–225
historical background, L-34 to

L-35
IBM eServer p5 575, 399
ideal processors, 215
Intel Core i7, 117–118, 239–241
Java and PARSEC workloads,

403–404
multicore performance/energy

efficiency, 402–405
multiprocessing/

multithreading-based
performance, 398–400

multithreading history, L-35
superscalar processors, 230–232

Single-extended precision
floating-point
arithmetic, J-33 to J-34

Single Instruction, Multiple Thread,
see SIMT (Single
Instruction, Multiple
Thread)

Single Instruction Stream, Multiple
Data Stream, see SIMD
(Single Instruction
Stream, Multiple Data
Stream)

Single Instruction Stream, Single Data
Stream, see SISD
(Single Instruction
Stream, Single Data
Stream)

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-69

Single-level cache hierarchy, miss
rates vs. cache size,
B-33

Single-precision floating point
arithmetic, J-33 to J-34
GPU examples, 325
GPU vs. MIMD, 328
MIPS data types, A-34
MIPS operations, A-36
Multimedia SIMD Extensions, 283
operand sizes/types, 12, A-13
as operand type, A-13 to A-14
representation, J-15 to J-16

Single-Streaming Processor (SSP)
Cray X1, G-21 to G-24
Cray X1E, G-24

Single-thread (ST) performance
IBM eServer p5 575, 399, 399
Intel Core i7, 239
ISA, 242
processor comparison, 243

SISD (Single Instruction Stream,
Single Data Stream), 10

SIMD computer history, L-55
Skippy algorithm

disk deconstruction, D-49
sample results, D-50

SLAs, see Service level agreements
(SLAs)

SLI, see Scan Line Interleave (SLI)
SLOs, see Service level objectives

(SLOs)
SLQ, see Serve-longest-queue (SLQ)

scheme
SLT, see Set-on-less-than instructions

(SLT)
SM, see Distributed shared memory

(DSM)
Small Computer System Interface, see

SCSI (Small Computer
System Interface)

Small form factor (SFF) disk, L-79
Smalltalk, SPARC instructions, K-30
Smart interface cards, vs. smart

switches, F-85 to F-86
Smartphones

ARM Cortex-A8, 114
mobile vs. server GPUs, 323–324

Smart switches, vs. smart interface
cards, F-85 to F-86

SMP, see Symmetric multiprocessors
(SMP)

SMT, see Simultaneous
multithreading (SMT)

Snooping cache coherence
basic considerations, 355–356
controller transitions, 421
definition, 354–355
directory-based, 381, 386,

420–421
example, 357–362
implementation, 365–366
large-scale multiprocessor history,

L-61
large-scale multiprocessors, I-34 to

I-35
latencies, 414
limitations, 363–364
sample types, L-59
single-chip multicore processor

case study, 412–418
symmetric shared-memory

machines, 366
SNR, see Signal-to-noise ratio

(SNR)
SoC, see System-on-chip (SoC)
Soft errors, definition, 104
Soft real-time

definition, E-3
PMDs, 6

Software as a Service (SaaS)
clusters/WSCs, 8
software development, 4
WSCs, 438
WSCs vs. servers, 433–434

Software development
multiprocessor architecture issues,

407–409
performance vs. productivity, 4
WSC efficiency, 450–452

Software pipelining
example calculations, H-13 to

H-14
loops, execution pattern, H-15
technique, H-12 to H-15, H-13

Software prefetching, cache
optimization, 131–133

Software speculation
definition, 156
vs. hardware speculation, 221–222
VLIW, 196

Software technology
ILP approaches, 148
large-scale multiprocessors, I-6

large-scale multiprocessor
synchronization, I-17 to
I-18

network interfaces, F-7
vs. TCP/IP reliance, F-95
Virtual Machines protection, 108
WSC running service, 434–435

Solaris, RAID benchmarks, D-22,
D-22 to D-23

Solid-state disks (SSDs)
processor performance/price/

power, 52
server energy efficiency, 462
WSC cost-performance, 474–475

Sonic Smart Interconnect, OCNs, F-3
Sony PlayStation 2

block diagram, E-16
embedded multiprocessors, E-14
Emotion Engine case study, E-15

to E-18
Emotion Engine organization,

E-18
Sorting, case study, D-64 to D-67
Sort primitive, GPU vs. MIMD, 329
Sort procedure, VAX

bubble sort, K-76
example code, K-77 to K-79
vs. MIPS32, K-80
register allocation, K-76

Source routing, basic concept, F-48
SPARCLE processor, L-34
Sparse matrices

loop-level parallelism
dependences, 318–319

vector architectures, 279–280,
G-12 to G-14

vector execution time, 271
vector mask registers, 275

Spatial locality
coining of term, L-11
definition, 45, B-2
memory hierarchy design, 72

SPEC benchmarks
branch predictor correlation,

162–164
desktop performance, 38–40
early performance measures, L-7
evolution, 39
fallacies, 56
operands, A-14
performance, 38
performance results reporting, 41

I-70 ■ Index

SPEC benchmarks (continued)
processor performance growth, 3
static branch prediction, C-26 to

C-27
storage systems, D-20 to D-21
tournament predictors, 164
two-bit predictors, 165
vector processor history, G-28

SPEC89 benchmarks
branch-prediction buffers, C-28 to

C-30, C-30
MIPS FP pipeline performance,

C-61 to C-62
misprediction rates, 166
tournament predictors, 165–166
VAX 8700 vs. MIPS M2000, K-82

SPEC92 benchmarks
hardware vs. software speculation,

221
ILP hardware model, 215
MIPS R4000 performance, C-68 to

C-69, C-69
misprediction rate, C-27

SPEC95 benchmarks
return address predictors, 206–207,

207
way prediction, 82

SPEC2000 benchmarks
ARM Cortex-A8 memory,

115–116
cache performance prediction,

125–126
cache size and misses per

instruction, 126
compiler optimizations, A-29
compulsory miss rate, B-23
data reference sizes, A-44
hardware prefetching, 91
instruction misses, 127

SPEC2006 benchmarks, evolution, 39
SPECCPU2000 benchmarks

displacement addressing mode,
A-12

Intel Core i7, 122
server benchmarks, 40

SPECCPU2006 benchmarks
branch predictors, 167
Intel Core i7, 123–124, 240,

240–241
ISA performance and efficiency

prediction, 241
Virtual Machines protection, 108

SPECfp benchmarks
hardware prefetching, 91
interconnection network, F-87
ISA performance and efficiency

prediction, 241–242
Itanium 2, H-43
MIPS FP pipeline performance,

C-60 to C-61
nonblocking caches, 84
tournament predictors, 164

SPECfp92 benchmarks
Intel 80x86 vs. DLX, K-63
Intel 80x86 instruction lengths,

K-60
Intel 80x86 instruction mix, K-61
Intel 80x86 operand type

distribution, K-59
nonblocking cache, 83

SPECfp2000 benchmarks
hardware prefetching, 92
MIPS dynamic instruction mix,

A-42
Sun Ultra 5 execution times, 43

SPECfp2006 benchmarks
Intel processor clock rates, 244
nonblocking cache, 83

SPECfpRate benchmarks
multicore processor performance,

400
multiprocessor cost effectiveness,

407
SMT, 398–400
SMT on superscalar processors,

230
SPEChpc96 benchmark, vector

processor history, G-28
Special-purpose machines

historical background, L-4 to L-5
SIMD computer history, L-56

Special-purpose register
compiler writing-architecture

relationship, A-30
ISA classification, A-3
VMIPS, 267

Special values
floating point, J-14 to J-15
representation, J-16

SPECINT benchmarks
hardware prefetching, 92
interconnection network, F-87
ISA performance and efficiency

prediction, 241–242

Itanium 2, H-43
nonblocking caches, 84

SPECInt92 benchmarks
Intel 80x86 vs. DLX, K-63
Intel 80x86 instruction lengths,

K-60
Intel 80x86 instruction mix, K-62
Intel 80x86 operand type

distribution, K-59
nonblocking cache, 83

SPECint95 benchmarks,
interconnection
networks, F-88

SPECINT2000 benchmarks, MIPS
dynamic instruction
mix, A-41

SPECINT2006 benchmarks
Intel processor clock rates, 244
nonblocking cache, 83

SPECintRate benchmark
multicore processor performance,

400
multiprocessor cost effectiveness,

407
SMT, 398–400
SMT on superscalar processors,

230
SPEC Java Business Benchmark

(JBB)
multicore processor performance,

400
multicore processors, 402
multiprocessing/

multithreading-based
performance, 398

server, 40
Sun T1 multithreading unicore

performance, 227–229,
229

SPECJVM98 benchmarks, ISA
performance and
efficiency prediction,
241

SPECMail benchmark, characteristics,
D-20

SPEC-optimized processors, vs.
density-optimized, F-85

SPECPower benchmarks
Google server benchmarks,

439–440, 440
multicore processor performance,

400

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-71

real-world server considerations,
52–55

WSCs, 463
WSC server energy efficiency,

462–463
SPECRate benchmarks

Intel Core i7, 402
multicore processor performance,

400
multiprocessor cost effectiveness,

407
server benchmarks, 40

SPECRate2000 benchmarks, SMT,
398–400

SPECRatios
execution time examples, 43
geometric means calculations,

43–44
SPECSFS benchmarks

example, D-20
servers, 40

Speculation, see also Hardware-based
speculation; Software
speculation

advantages/disadvantages,
210–211

compilers, see Compiler
speculation

concept origins, L-29 to L-30
and energy efficiency, 211–212
FP unit with Tomasulo’s

algorithm, 185
hardware vs. software, 221–222
IA-64, H-38 to H-40
ILP studies, L-32 to L-33
Intel Core i7, 123–124
latency hiding in consistency

models, 396–397
memory reference, hardware

support, H-32
and memory system, 222–223
microarchitectural techniques case

study, 247–254
multiple branches, 211
register renaming vs. ROB,

208–210
SPECvirt_Sc2010 benchmarks, server,

40
SPECWeb benchmarks

characteristics, D-20
dependability, D-21
parallelism, 44
server benchmarks, 40

SPECWeb99 benchmarks
multiprocessing/

multithreading-based
performance, 398

Sun T1 multithreading unicore
performance, 227, 229

Speedup
Amdahl’s law, 46–47
floating-point addition, J-25 to

J-26
integer addition

carry-lookahead, J-37 to J-41
carry-lookahead circuit, J-38
carry-lookahead tree, J-40 to

J-41
carry-lookahead tree adder,

J-41
carry-select adder, J-43, J-43 to

J-44, J-44
carry-skip adder, J-41 to J43,

J-42
overview, J-37

integer division
radix-2 division, J-55
radix-4 division, J-56
radix-4 SRT division, J-57
with single adder, J-54 to J-58

integer multiplication
array multiplier, J-50
Booth recoding, J-49
even/odd array, J-52
with many adders, J-50 to J-54
multipass array multiplier,

J-51
signed-digit addition table,

J-54
with single adder, J-47 to J-49,

J-48
Wallace tree, J-53

integer multiplication/division,
shifting over zeros, J-45
to J-47

integer SRT division, J-45 to J-46,
J-46

linear, 405–407
via parallelism, 263
pipeline with stalls, C-12 to C-13
relative, 406
scaled, 406–407
switch buffer organizations, F-58

to F-59
true, 406

Sperry-Rand, L-4 to L-5

Spin locks
via coherence, 389–390
large-scale multiprocessor

synchronization
barrier synchronization, I-16
exponential back-off, I-17

SPLASH parallel benchmarks, SMT
on superscalar
processors, 230

Split, GPU vs. MIMD, 329
SPRAM, Sony PlayStation 2 Emotion

Engine organization,
E-18

Sprowl, Bob, F-99
Squared coefficient of variance, D-27
SRAM, see Static random-access

memory (SRAM)
SRT division

chip comparison, J-60 to J-61
complications, J-45 to J-46
early computer arithmetic, J-65
example, J-46
historical background, J-63
integers, with adder, J-55 to J-57
radix-4, J-56, J-57

SSDs, see Solid-state disks (SSDs)
SSE, see Intel Streaming SIMD

Extension (SSE)
SS format instructions, IBM 360, K-85

to K-88
ssj_ops, see Server side Java

operations per second
(ssj_ops)

SSP, see Single-Streaming Processor
(SSP)

Stack architecture
and compiler technology, A-27
flaws vs. success, A-44 to A-45
historical background, L-16 to

L-17
Intel 80x86, K-48, K-52, K-54
operands, A-3 to A-4

Stack frame, VAX, K-71
Stack pointer, VAX, K-71
Stack or Thread Local Storage,

definition, 292
Stale copy, cache coherency, 112
Stall cycles

advanced directory protocol case
study, 424

average memory access time, B-17
branch hazards, C-21
branch scheme performance, C-25

I-72 ■ Index

Stall cycles (continued)
definition, B-4 to B-5
example calculation, B-31
loop unrolling, 161
MIPS FP pipeline performance,

C-60
miss rate calculation, B-6
out-of-order processors, B-20 to

B-21
performance equations, B-22
pipeline performance, C-12 to

C-13
single-chip multicore

multiprocessor case
study, 414–418

structural hazards, C-15
Stalls

AMD Opteron data cache, B-15
ARM Cortex-A8, 235, 235–236
branch hazards, C-42
data hazard minimization, C-16 to

C-19, C-18
data hazards requiring, C-19 to

C-21
delayed branch, C-65
Intel Core i7, 239–241
microarchitectural techniques case

study, 252
MIPS FP pipeline performance,

C-60 to C-61, C-61 to
C-62

MIPS pipeline multicycle
operations, C-51

MIPS R4000, C-64, C-67, C-67 to
C-69, C-69

miss rate calculations, B-31 to
B-32

necessity, C-21
nonblocking cache, 84
pipeline performance, C-12 to

C-13
from RAW hazards, FP code, C-55
structural hazard, C-15
VLIW sample code, 252
VMIPS, 268

Standardization, commercial
interconnection
networks, F-63 to F-64

Stardent-1500, Livermore Fortran
kernels, 331

Start-up overhead, vs. peak
performance, 331

Start-up time
DAXPY on VMIPS, G-20
memory banks, 276
page size selection, B-47
peak performance, 331
vector architectures, 331, G-4,

G-4, G-8
vector convoys, G-4
vector execution time, 270–271
vector performance, G-2
vector performance measures, G-16
vector processor, G-7 to G-9, G-25
VMIPS, G-5

State transition diagram
director vs. cache, 385
directory-based cache coherence,

383
Statically based exploitation, ILP, H-2
Static power

basic equation, 26
SMT, 231

Static random-access memory
(SRAM)

characteristics, 97–98
dependability, 104
fault detection pitfalls, 58
power, 26
vector memory systems, G-9
vector processor, G-25
yield, 32

Static scheduling
definition, C-71
ILP, 192–196
and unoptimized code, C-81

Sticky bit, J-18
Stop & Go, see Xon/Xoff
Storage area networks

dependability benchmarks, D-21 to
D-23, D-22

historical overview, F-102 to
F-103

I/O system as black blox, D-23
Storage systems

asynchronous I/O and OSes, D-35
Berkeley’s Tertiary Disk project,

D-12
block servers vs. filers, D-34 to

D-35
bus replacement, D-34
component failure, D-43
computer system availability, D-43

to D-44, D-44

dependability benchmarks, D-21 to
D-23

dirty bits, D-61 to D-64
disk array deconstruction case

study, D-51 to D-55,
D-52 to D-55

disk arrays, D-6 to D-10
disk deconstruction case study,

D-48 to D-51, D-50
disk power, D-5
disk seeks, D-45 to D-47
disk storage, D-2 to D-5
file system benchmarking, D-20,

D-20 to D-21
Internet Archive Cluster, see

Internet Archive Cluster
I/O performance, D-15 to D-16
I/O subsystem design, D-59 to

D-61
I/O system design/evaluation,

D-36 to D-37
mail server benchmarking, D-20 to

D-21
NetApp FAS6000 filer, D-41 to

D-42
operator dependability, D-13 to

D-15
OS-scheduled disk access, D-44 to

D-45, D-45
point-to-point links, D-34, D-34
queue I/O request calculations,

D-29
queuing theory, D-23 to D-34
RAID performance prediction,

D-57 to D-59
RAID reconstruction case study,

D-55 to D-57
real faults and failures, D-6 to

D-10
reliability, D-44
response time restrictions for

benchmarks, D-18
seek distance comparison, D-47
seek time vs. distance, D-46
server utilization calculation, D-28

to D-29
sorting case study, D-64 to D-67
Tandem Computers, D-12 to D-13
throughput vs. response time,

D-16, D-16 to D-18,
D-17

TP benchmarks, D-18 to D-19

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-73

transactions components, D-17
web server benchmarking, D-20 to

D-21
WSC vs. datacenter costs, 455
WSCs, 442–443

Store conditional
locks via coherence, 391
synchronization, 388–389

Store-and-forward packet switching,
F-51

Store instructions, see also Load-store
instruction set
architecture

definition, C-4
instruction execution, 186
ISA, 11, A-3
MIPS, A-33, A-36
NVIDIA GPU ISA, 298
Opteron data cache, B-15
RISC instruction set, C-4 to C-6,

C-10
vector architectures, 310

Streaming Multiprocessor
definition, 292, 313–314
Fermi GPU, 307

Strecker, William, K-65
Strided accesses

Multimedia SIMD Extensions, 283
Roofline model, 287
TLB interaction, 323

Strided addressing, see also Unit stride
addressing

multimedia instruction compiler
support, A-31 to A-32

Strides
gather-scatter, 280
highly parallel memory systems,

133
multidimensional arrays in vector

architectures, 278–279
NVIDIA GPU ISA, 300
vector memory systems, G-10 to

G-11
VMIPS, 266

String operations, Intel 80x86, K-51,
K-53

Stripe, disk array deconstruction, D-51
Striping

disk arrays, D-6
RAID, D-9

Strip-Mined Vector Loop
convoys, G-5

DAXPY on VMIPS, G-20
definition, 292
multidimensional arrays, 278
Thread Block comparison, 294
vector-length registers, 274

Strip mining
DAXPY on VMIPS, G-20
GPU conditional branching, 303
GPUs vs. vector architectures, 311
NVIDIA GPU, 291
vector, 275
VLRs, 274–275

Strong scaling, Amdahl’s law and
parallel computers, 407

Structural hazards
basic considerations, C-13 to C-16
definition, C-11
MIPS pipeline, C-71
MIPS scoreboarding, C-78 to C-79
pipeline stall, C-15
vector execution time, 268–269

Structural stalls, MIPS R4000
pipeline, C-68 to C-69

Subset property, and inclusion, 397
Summary overflow condition code,

PowerPC, K-10 to K-11
Sun Microsystems

cache optimization, B-38
fault detection pitfalls, 58
memory dependability, 104

Sun Microsystems Enterprise, L-60
Sun Microsystems Niagara (T1/T2)

processors
characteristics, 227
CPI and IPC, 399
fine-grained multithreading, 224,

225, 226–229
manufacturing cost, 62
multicore processor performance,

400–401
multiprocessing/

multithreading-based
performance, 398–400

multithreading history, L-34
T1 multithreading unicore

performance, 227–229
Sun Microsystems SPARC

addressing modes, K-5
ALU operands, A-6
arithmetic/logical instructions,

K-11, K-31
branch conditions, A-19

conditional branches, K-10,
K-17

conditional instructions, H-27
constant extension, K-9
conventions, K-13
data transfer instructions, K-10
fast traps, K-30
features, K-44
FP instructions, K-23
instruction list, K-31 to K-32
integer arithmetic, J-12
integer overflow, J-11
ISA, A-2
LISP, K-30
MIPS core extensions, K-22 to K-23
overlapped integer/FP operations,

K-31
precise exceptions, C-60
register windows, K-29 to K-30
RISC history, L-20
as RISC system, K-4
Smalltalk, K-30
synchronization history, L-64
unique instructions, K-29 to K-32

Sun Microsystems SPARCCenter, L-60
Sun Microsystems SPARCstation-2,

F-88
Sun Microsystems SPARCstation-20,

F-88
Sun Microsystems SPARC V8,

floating-point
precisions, J-33

Sun Microsystems SPARC VIS
characteristics, K-18
multimedia support, E-11, K-18

Sun Microsystems Ultra 5,
SPECfp2000 execution
times, 43

Sun Microsystems UltraSPARC, L-62,
L-73

Sun Microsystems UltraSPARC T1
processor,
characteristics, F-73

Sun Modular Datacenter, L-74 to L-75
Superblock scheduling

basic process, H-21 to H-23
compiler history, L-31
example, H-22

Supercomputers
commercial interconnection

networks, F-63
direct network topology, F-37

I-74 ■ Index

Supercomputers (continued)
low-dimensional topologies, F-100
SAN characteristics, F-76
SIMD, development, L-43 to L-44
vs. WSCs, 8

Superlinear performance,
multiprocessors, 406

Superpipelining
definition, C-61
performance histories, 20

Superscalar processors
coining of term, L-29
ideal processors, 214–215
ILP, 192–197, 246

studies, L-32
microarchitectural techniques case

study, 250–251
multithreading support, 225
recent advances, L-33 to L-34
register renaming code, 251
rename table and register

substitution logic, 251
SMT, 230–232
VMIPS, 267

Superscalar registers, sample
renaming code, 251

Supervisor process, virtual memory
protection, 106

Sussenguth, Ed, L-28
Sutherland, Ivan, L-34
SVM, see Secure Virtual Machine

(SVM)
Swap procedure, VAX

code example, K-72, K-74
full procedure, K-75 to K-76
overview, K-72 to K-76
register allocation, K-72
register preservation, B-74 to B-75

Swim, data cache misses, B-10
Switched-media networks

basic characteristics, F-24
vs. buses, F-2
effective bandwidth vs. nodes,

F-28
example, F-22
latency and effective bandwidth,

F-26 to F-28
vs. shared-media networks, F-24 to

F-25
Switched networks

centralized, F-30 to F-34
DOR, F-46

OCN history, F-104
topology, F-40

Switches
array, WSCs, 443–444
Beneŝ networks, F-33
context, 307, B-49
early LANs and WANs, F-29
Ethernet switches, 16, 20, 53,

441–444, 464–465, 469
interconnecting node calculations,

F-35
vs. NIC, F-85 to F-86, F-86
process switch, 224, B-37, B-49 to

B-50
storage systems, D-34
switched-media networks, F-24
WSC hierarchy, 441–442, 442
WSC infrastructure, 446
WSC network bottleneck, 461

Switch fabric, switched-media
networks, F-24

Switching
commercial interconnection

networks, F-56
interconnection networks, F-22,

F-27, F-50 to F-52
network impact, F-52 to F-55
performance considerations, F-92

to F-93
SAN characteristics, F-76
switched-media networks, F-24
system area network history, F-100

Switch microarchitecture
basic microarchitecture, F-55 to

F-58
buffer organizations, F-58 to F-60
enhancements, F-62
HOL blocking, F-59
input-output-buffered switch, F-57
pipelining, F-60 to F-61, F-61

Switch ports
centralized switched networks, F-30
interconnection network topology,

F-29
Switch statements

control flow instruction addressing
modes, A-18

GPU, 301
Syllable, IA-64, H-35
Symbolic loop unrolling, software

pipelining, H-12 to
H-15, H-13

Symmetric multiprocessors (SMP)
characteristics, I-45
communication calculations, 350
directory-based cache coherence,

354
first vector computers, L-47, L-49
limitations, 363–364
snooping coherence protocols,

354–355
system area network history, F-101
TLP, 345

Symmetric shared-memory
multiprocessors, see
also Centralized
shared-memory
multiprocessors

data caching, 351–352
limitations, 363–364
performance

commercial workload, 367–369
commercial workload

measurement, 369–374
multiprogramming and OS

workload, 374–378
overview, 366–367

scientific workloads, I-21 to I-26,
I-23 to I-25

Synapse N + 1, L-59
Synchronization

AltaVista search, 369
basic considerations, 386–387
basic hardware primitives,

387–389
consistency models, 395–396
cost, 403
Cray X1, G-23
definition, 375
GPU comparisons, 329
GPU conditional branching,

300–303
historical background, L-64
large-scale multiprocessors

barrier synchronization, I-13 to
I-16, I-14, I-16

challenges, I-12 to I-16
hardware primitives, I-18 to

I-21
sense-reversing barrier, I-21
software implementations, I-17

to I-18
tree-based barriers, I-19

locks via coherence, 389–391

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-75

message-passing communication,
I-5

MIMD, 10
MIPS core extensions, K-21
programmer’s viewpoint, 393–394
PTX instruction set, 298–299
relaxed consistency models,

394–395
single-chip multicore processor

case study, 412–418
vector vs. GPU, 311
VLIW, 196
WSCs, 434

Synchronous dynamic random-access
memory (SDRAM)

ARM Cortex-A8, 117
DRAM, 99
vs. Flash memory, 103
IBM Blue Gene/L, I-42
Intel Core i7, 121
performance, 100
power consumption, 102, 103
SDRAM timing diagram, 139

Synchronous event, exception
requirements, C-44 to
C-45

Synchronous I/O, definition, D-35
Synonyms

address translation, B-38
dependability, 34

Synthetic benchmarks
definition, 37
typical program fallacy, A-43

System area networks, historical
overview, F-100 to
F-102

System calls
CUDA Thread, 297
multiprogrammed workload, 378
virtualization/paravirtualization

performance, 141
virtual memory protection, 106

System interface controller (SIF), Intel
SCCC, F-70

System-on-chip (SoC)
cell phone, E-24
cross-company interoperability,

F-64
embedded systems, E-3
Sanyo digital cameras, E-20
Sanyo VPC-SX500 digital camera,

E-19

shared-media networks, F-23
System Performance and Evaluation

Cooperative (SPEC),
see SPEC benchmarks

System Processor
definition, 309
DLP, 262, 322
Fermi GPU, 306
GPU issues, 330
GPU programming, 288–289
NVIDIA GPU ISA, 298
NVIDIA GPU Memory, 305
processor comparisons, 323–324
synchronization, 329
vector vs. GPU, 311–312

System response time, transactions,
D-16, D-17

Systems on a chip (SOC), cost trends,
28

System/storage area networks (SANs)
characteristics, F-3 to F-4
communication protocols, F-8
congestion management, F-65
cross-company interoperability, F-64
effective bandwidth, F-18
example system, F-72 to F-74
fat trees, F-34
fault tolerance, F-67
InfiniBand example, F-74 to F-77
interconnection network domain

relationship, F-4
LAN history, F-99
latency and effective bandwidth,

F-26 to F-28
latency vs. nodes, F-27
packet latency, F-13, F-14 to F-16
routing algorithms, F-48
software overhead, F-91
TCP/IP reliance, F-95
time of flight, F-13
topology, F-30

System Virtual Machines, definition,
107

T
Tag

AMD Opteron data cache, B-12 to
B-14

ARM Cortex-A8, 115
cache optimization, 79–80
dynamic scheduling, 177
invalidate protocols, 357

memory hierarchy basics, 74
memory hierarchy basics, 77–78
virtual memory fast address

translation, B-46
write strategy, B-10

Tag check (TC)
MIPS R4000, C-63
R4000 pipeline, B-62 to B-63
R4000 pipeline structure, C-63
write process, B-10

Tag fields
block identification, B-8
dynamic scheduling, 173, 175

Tail duplication, superblock
scheduling, H-21

Tailgating, definition, G-20
Tandem Computers

cluster history, L-62, L-72
faults, D-14
overview, D-12 to D-13

Target address
branch hazards, C-21, C-42
branch penalty reduction, C-22 to

C-23
branch-target buffer, 206
control flow instructions, A-17 to

A-18
GPU conditional branching, 301
Intel Core i7 branch predictor, 166
MIPS control flow instructions,

A-38
MIPS implementation, C-32
MIPS pipeline, C-36, C-37
MIPS R4000, C-25
pipeline branches, C-39
RISC instruction set, C-5

Target channel adapters (TCAs),
switch vs. NIC, F-86

Target instructions
branch delay slot scheduling, C-24
as branch-target buffer variation,

206
GPU conditional branching, 301

Task-level parallelism (TLP),
definition, 9

TB, see Translation buffer (TB)
TB-80 VME rack

example, D-38
MTTF calculation, D-40 to D-41

TC, see Tag check (TC)
TCAs, see Target channel adapters

(TCAs)

I-76 ■ Index

TCO, see Total Cost of Ownership
(TCO)

TCP, see Transmission Control
Protocol (TCP)

TCP/IP, see Transmission Control
Protocol/Internet
Protocol (TCP/IP)

TDMA, see Time division multiple
access (TDMA)

TDP, see Thermal design power
(TDP)

Technology trends
basic considerations, 17–18
performance, 18–19

Teleconferencing, multimedia support,
K-17

Temporal locality
blocking, 89–90
cache optimization, B-26
coining of term, L-11
definition, 45, B-2
memory hierarchy design, 72

TERA processor, L-34
Terminate events

exceptions, C-45 to C-46
hardware-based speculation, 188
loop unrolling, 161

Tertiary Disk project
failure statistics, D-13
overview, D-12
system log, D-43

Test-and-set operation,
synchronization, 388

Texas Instruments 8847
arithmetic functions, J-58 to J-61
chip comparison, J-58
chip layout, J-59

Texas Instruments ASC
first vector computers, L-44
peak performance vs. start-up

overhead, 331
TFLOPS, parallel processing debates,

L-57 to L-58
TFT, see Thin-film transistor (TFT)
Thacker, Chuck, F-99
Thermal design power (TDP), power

trends, 22
Thin-film transistor (TFT), Sanyo

VPC-SX500 digital
camera, E-19

Thinking Machines, L-44, L-56
Thinking Multiprocessors CM-5, L-60

Think time, transactions, D-16, D-17
Third-level caches, see also L3 caches

ILP, 245
interconnection network, F-87
SRAM, 98–99

Thrash, memory hierarchy, B-25
Thread Block

CUDA Threads, 297, 300, 303
definition, 292, 313
Fermi GTX 480 GPU flooplan,

295
function, 294
GPU hardware levels, 296
GPU Memory performance, 332
GPU programming, 289–290
Grid mapping, 293
mapping example, 293
multithreaded SIMD Processor, 294
NVIDIA GPU computational

structures, 291
NVIDIA GPU Memory structures,

304
PTX Instructions, 298

Thread Block Scheduler
definition, 292, 309, 313–314
Fermi GTX 480 GPU flooplan, 295
function, 294, 311
GPU, 296
Grid mapping, 293
multithreaded SIMD Processor, 294

Thread-level parallelism (TLP)
advanced directory protocol case

study, 420–426
Amdahl’s law and parallel

computers, 406–407
centralized shared-memory

multiprocessors
basic considerations, 351–352
cache coherence, 352–353
cache coherence enforcement,

354–355
cache coherence example,

357–362
cache coherence extensions,

362–363
invalidate protocol

implementation,
356–357

SMP and snooping limitations,
363–364

snooping coherence
implementation, 365–366

snooping coherence protocols,
355–356

definition, 9
directory-based cache coherence

case study, 418–420
protocol basics, 380–382
protocol example, 382–386

DSM and directory-based
coherence, 378–380

embedded systems, E-15
IBM Power7, 215
from ILP, 4–5
inclusion, 397–398
Intel Core i7 performance/energy

efficiency, 401–405
memory consistency models

basic considerations, 392–393
compiler optimization, 396
programming viewpoint,

393–394
relaxed consistency models,

394–395
speculation to hide latency,

396–397
MIMDs, 344–345
multicore processor performance,

400–401
multicore processors and SMT,

404–405
multiprocessing/

multithreading-based
performance, 398–400

multiprocessor architecture,
346–348

multiprocessor cost effectiveness, 407
multiprocessor performance,

405–406
multiprocessor software

development, 407–409
vs. multithreading, 223–224
multithreading history, L-34 to L-35
parallel processing challenges,

349–351
single-chip multicore processor

case study, 412–418
Sun T1 multithreading, 226–229
symmetric shared-memory

multiprocessor
performance

commercial workload, 367–369
commercial workload

measurement, 369–374

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-77

multiprogramming and OS
workload, 374–378

overview, 366–367
synchronization

basic considerations, 386–387
basic hardware primitives,

387–389
locks via coherence, 389–391

Thread Processor
definition, 292, 314
GPU, 315

Thread Processor Registers, definition,
292

Thread Scheduler in a Multithreaded
CPU, definition, 292

Thread of SIMD Instructions
characteristics, 295–296
CUDA Thread, 303
definition, 292, 313
Grid mapping, 293
lane recognition, 300
scheduling example, 297
terminology comparison, 314
vector/GPU comparison, 308–309

Thread of Vector Instructions,
definition, 292

Three-dimensional space, direct
networks, F-38

Three-level cache hierarchy
commercial workloads, 368
ILP, 245
Intel Core i7, 118, 118

Throttling, packets, F-10
Throughput, see also Bandwidth

definition, C-3, F-13
disk storage, D-4
Google WSC, 470
ILP, 245
instruction fetch bandwidth, 202
Intel Core i7, 236–237
kernel characteristics, 327
memory banks, 276
multiple lanes, 271
parallelism, 44
performance considerations, 36
performance trends, 18–19
pipelining basics, C-10
precise exceptions, C-60
producer-server model, D-16
vs. response time, D-17
routing comparison, F-54
server benchmarks, 40–41

servers, 7
storage systems, D-16 to D-18
uniprocessors, TLP

basic considerations, 223–226
fine-grained multithreading on

Sun T1, 226–229
superscalar SMT, 230–232

and virtual channels, F-93
WSCs, 434

Ticks
cache coherence, 391
processor performance equation,

48–49
Tilera TILE-Gx processors, OCNs,

F-3
Time-cost relationship, components,

27–28
Time division multiple access

(TDMA), cell phones,
E-25

Time of flight
communication latency, I-3 to I-4
interconnection networks, F-13

Timing independent, L-17 to L-18
TI TMS320C6x DSP

architecture, E-9
characteristics, E-8 to E-10
instruction packet, E-10

TI TMS320C55 DSP
architecture, E-7
characteristics, E-7 to E-8
data operands, E-6

TLB, see Translation lookaside buffer
(TLB)

TLP, see Task-level parallelism
(TLP); Thread-level
parallelism (TLP)

Tomasulo’s algorithm
advantages, 177–178
dynamic scheduling, 170–176
FP unit, 185
loop-based example, 179, 181–183
MIP FP unit, 173
register renaming vs. ROB, 209
step details, 178, 180

TOP500, L-58
Top Of Stack (TOS) register, ISA

operands, A-4
Topology

Benŝ networks, F-33
centralized switched networks,

F-30 to F-34, F-31

definition, F-29
direct networks, F-37
distributed switched networks,

F-34 to F-40
interconnection networks, F-21 to

F-22, F-44
basic considerations, F-29 to

F-30
fault tolerance, F-67

network performance and cost,
F-40

network performance effects, F-40
to F-44

rings, F-36
routing/arbitration/switching

impact, F-52
system area network history, F-100

to F-101
Torus networks

characteristics, F-36
commercial interconnection

networks, F-63
direct networks, F-37
fault tolerance, F-67
IBM Blue Gene/L, F-72 to F-74
NEWS communication, F-43
routing comparison, F-54
system area network history, F-102

TOS, see Top Of Stack (TOS) register
Total Cost of Ownership (TCO), WSC

case study, 476–479
Total store ordering, relaxed

consistency models, 395
Tournament predictors

early schemes, L-27 to L-28
ILP for realizable processors, 216
local/global predictor

combinations, 164–166
Toy programs, performance

benchmarks, 37
TP, see Transaction-processing (TP)
TPC, see Transaction Processing

Council (TPC)
Trace compaction, basic process, H-19
Trace scheduling

basic approach, H-19 to H-21
overview, H-20

Trace selection, definition, H-19
Tradebeans benchmark, SMT on

superscalar processors,
230

Traffic intensity, queuing theory, D-25

I-78 ■ Index

Trailer
messages, F-6
packet format, F-7

Transaction components, D-16, D-17,
I-38 to I-39

Transaction-processing (TP)
server benchmarks, 41
storage system benchmarks, D-18

to D-19
Transaction Processing Council (TPC)

benchmarks overview, D-18 to
D-19, D-19

parallelism, 44
performance results reporting, 41
server benchmarks, 41
TPC-B, shared-memory

workloads, 368
TPC-C

file system benchmarking,
D-20

IBM eServer p5 processor, 409
multiprocessing/

multithreading-based
performance, 398

multiprocessor cost
effectiveness, 407

single vs. multiple thread
executions, 228

Sun T1 multithreading unicore
performance, 227–229,
229

WSC services, 441
TPC-D, shared-memory

workloads, 368–369
TPC-E, shared-memory

workloads, 368–369
Transfers, see also Data transfers

as early control flow instruction
definition, A-16

Transforms, DSP, E-5
Transient failure, commercial

interconnection
networks, F-66

Transient faults, storage systems, D-11
Transistors

clock rate considerations, 244
dependability, 33–36
energy and power, 23–26
ILP, 245
performance scaling, 19–21
processor comparisons, 324
processor trends, 2

RISC instructions, A-3
shrinking, 55
static power, 26
technology trends, 17–18

Translation buffer (TB)
virtual memory block

identification, B-45
virtual memory fast address

translation, B-46
Translation lookaside buffer (TLB)

address translation, B-39
AMD64 paged virtual memory,

B-56 to B-57
ARM Cortex-A8, 114–115
cache optimization, 80, B-37
coining of term, L-9
Intel Core i7, 118, 120–121
interconnection network

protection, F-86
memory hierarchy, B-48 to B-49
memory hierarchy basics, 78
MIPS64 instructions, K-27
Opteron, B-47
Opteron memory hierarchy, B-57
RISC code size, A-23
shared-memory workloads,

369–370
speculation advantages/

disadvantages, 210–211
strided access interactions,

323
Virtual Machines, 110
virtual memory block

identification, B-45
virtual memory fast address

translation, B-46
virtual memory page size selection,

B-47
virtual memory protection,

106–107
Transmission Control Protocol (TCP),

congestion
management, F-65

Transmission Control Protocol/
Internet Protocol (TCP/
IP)

ATM, F-79
headers, F-84
internetworking, F-81, F-83 to

F-84, F-89
reliance on, F-95
WAN history, F-98

Transmission speed, interconnection
network performance,
F-13

Transmission time
communication latency, I-3 to I-4
time of flight, F-13 to F-14

Transport latency
time of flight, F-14
topology, F-35 to F-36

Transport layer, definition, F-82
Transputer, F-100
Tree-based barrier, large-scale

multiprocessor
synchronization, I-19

Tree height reduction, definition, H-11
Trees, MINs with nonblocking, F-34
Trellis codes, definition, E-7
TRIPS Edge processor, F-63

characteristics, F-73
Trojan horses

definition, B-51
segmented virtual memory, B-53

True dependence
finding, H-7 to H-8
loop-level parallelism calculations,

320
vs. name dependence, 153

True sharing misses
commercial workloads, 371, 373
definition, 366–367
multiprogramming workloads, 377

True speedup, multiprocessor
performance, 406

TSMC, Stratton, F-3
TSS operating system, L-9
Turbo mode

hardware enhancements, 56
microprocessors, 26

Turing, Alan, L-4, L-19
Turn Model routing algorithm,

example calculations,
F-47 to F-48

Two-level branch predictors
branch costs, 163
Intel Core i7, 166
tournament predictors, 165

Two-level cache hierarchy
cache optimization, B-31
ILP, 245

Two’s complement, J-7 to J-8
Two-way conflict misses, definition,

B-23

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-79

Two-way set associativity
ARM Cortex-A8, 233
cache block placement, B-7, B-8
cache miss rates, B-24
cache miss rates vs. size, B-33
cache optimization, B-38
cache organization calculations,

B-19 to B-20
commercial workload, 370–373,

371
multiprogramming workload,

374–375
nonblocking cache, 84
Opteron data cache, B-13 to B-14
2:1 cache rule of thumb, B-29
virtual to cache access scenario,

B-39
TX-2, L-34, L-49
“Typical” program, instruction set

considerations, A-43

U
U, see Rack units (U)
Ultrix, DECstation 5000 reboots, F-69
UMA, see Uniform memory access

(UMA)
Unbiased exponent, J-15
Uncached state, directory-based cache

coherence protocol
basics, 380, 384–386

Unconditional branches
branch folding, 206
branch-prediction schemes, C-25

to C-26
VAX, K-71

Underflow
floating-point arithmetic, J-36 to

J-37, J-62
gradual, J-15

Unicasting, shared-media networks,
F-24

Unicode character
MIPS data types, A-34
operand sizes/types, 12
popularity, A-14

Unified cache
AMD Opteron example, B-15
performance, B-16 to B-17

Uniform memory access (UMA)
multicore single-chip

multiprocessor, 364
SMP, 346–348

Uninterruptible instruction
hardware primitives, 388
synchronization, 386

Uninterruptible power supply (UPS)
Google WSC, 467
WSC calculations, 435
WSC infrastructure, 447

Uniprocessors
cache protocols, 359
development views, 344
linear speedups, 407
memory hierarchy design, 73
memory system coherency, 353,

358
misses, 371, 373
multiprogramming workload,

376–377
multithreading

basic considerations, 223–226
fine-grained on T1, 226–229
simultaneous, on superscalars,

230–232
parallel vs. sequential programs,

405–406
processor performance trends, 3–4,

344
SISD, 10
software development, 407–408

Unit stride addressing
gather-scatter, 280
GPU vs. MIMD with Multimedia

SIMD, 327
GPUs vs. vector architectures, 310
multimedia instruction compiler

support, A-31
NVIDIA GPU ISA, 300
Roofline model, 287

UNIVAC I, L-5
UNIX systems

architecture costs, 2
block servers vs. filers, D-35
cache optimization, B-38
floating point remainder, J-32
miss statistics, B-59
multiprocessor software

development, 408
multiprogramming workload, 374
seek distance comparison, D-47
vector processor history, G-26

Unpacked decimal, A-14, J-16
Unshielded twisted pair (UTP), LAN

history, F-99

Up*/down* routing
definition, F-48
fault tolerance, F-67

UPS, see Uninterruptible power
supply (UPS)

USB, Sony PlayStation 2 Emotion
Engine case study, E-15

Use bit
address translation, B-46
segmented virtual memory, B-52
virtual memory block replacement,

B-45
User-level communication, definition,

F-8
User maskable events, definition, C-45

to C-46
User nonmaskable events, definition,

C-45
User-requested events, exception

requirements, C-45
Utility computing, 455–461, L-73 to

L-74
Utilization

I/O system calculations, D-26
queuing theory, D-25

UTP, see Unshielded twisted pair
(UTP)

V
Valid bit

address translation, B-46
block identification, B-7
Opteron data cache, B-14
paged virtual memory, B-56
segmented virtual memory, B-52
snooping, 357
symmetric shared-memory

multiprocessors, 366
Value prediction

definition, 202
hardware-based speculation, 192
ILP, 212–213, 220
speculation, 208

VAPI, InfiniBand, F-77
Variable length encoding

control flow instruction branches,
A-18

instruction sets, A-22
ISAs, 14

Variables
and compiler technology, A-27 to

A-29

I-80 ■ Index

Variables (continued)
CUDA, 289
Fermi GPU, 306
ISA, A-5, A-12
locks via coherence, 389
loop-level parallelism, 316
memory consistency, 392
NVIDIA GPU Memory, 304–305
procedure invocation options,

A-19
random, distribution, D-26 to D-34
register allocation, A-26 to A-27
in registers, A-5
synchronization, 375
TLP programmer’s viewpoint, 394

VCs, see Virtual channels (VCs)
Vector architectures

computer development, L-44 to L-49
definition, 9
DLP

basic considerations, 264
definition terms, 309
gather/scatter operations,

279–280
multidimensional arrays,

278–279
multiple lanes, 271–273
programming, 280–282
vector execution time, 268–271
vector-length registers,

274–275
vector load/store unit

bandwidth, 276–277
vector-mask registers, 275–276
vector processor example,

267–268
VMIPS, 264–267

GPU conditional branching, 303
vs. GPUs, 308–312
mapping examples, 293
memory systems, G-9 to G-11
multimedia instruction compiler

support, A-31
vs. Multimedia SIMD Extensions,

282
peak performance vs. start-up

overhead, 331
power/DLP issues, 322
vs. scalar performance, 331–332
start-up latency and dead time, G-8
strided access-TLB interactions,

323

vector-register characteristics, G-3
Vector Functional Unit

vector add instruction, 272–273
vector execution time, 269
vector sequence chimes, 270
VMIPS, 264

Vector Instruction
definition, 292, 309
DLP, 322
Fermi GPU, 305
gather-scatter, 280
instruction-level parallelism, 150
mask registers, 275–276
Multimedia SIMD Extensions, 282
multiple lanes, 271–273
Thread of Vector Instructions, 292
vector execution time, 269
vector vs. GPU, 308, 311
vector processor example, 268
VMIPS, 265–267, 266

Vectorizable Loop
characteristics, 268
definition, 268, 292, 313
Grid mapping, 293
Livermore Fortran kernel

performance, 331
mapping example, 293
NVIDIA GPU computational

structures, 291
Vectorized code

multimedia compiler support, A-31
vector architecture programming,

280–282
vector execution time, 271
VMIPS, 268

Vectorized Loop, see also Body of
Vectorized Loop

definition, 309
GPU Memory structure, 304
vs. Grid, 291, 308
mask registers, 275
NVIDIA GPU, 295
vector vs. GPU, 308

Vectorizing compilers
effectiveness, G-14 to G-15
FORTRAN test kernels, G-15
sparse matrices, G-12 to G-13

Vector Lane Registers, definition, 292
Vector Lanes

control processor, 311
definition, 292, 309
SIMD Processor, 296–297, 297

Vector-length register (VLR)
basic operation, 274–275
performance, G-5
VMIPS, 267

Vector load/store unit
memory banks, 276–277
VMIPS, 265

Vector loops
NVIDIA GPU, 294
processor example, 267
strip-mining, 303
vector vs. GPU, 311
vector-length registers, 274–275
vector-mask registers, 275–276

Vector-mask control, characteristics,
275–276

Vector-mask registers
basic operation, 275–276
Cray X1, G-21 to G-22
VMIPS, 267

Vector Processor
caches, 305
compiler vectorization, 281
Cray X1

MSP modules, G-22
overview, G-21 to G-23

Cray X1E, G-24
definition, 292, 309
DLP processors, 322
DSP media extensions, E-10
example, 267–268
execution time, G-7
functional units, 272
gather-scatter, 280
vs. GPUs, 276
historical background, G-26
loop-level parallelism, 150
loop unrolling, 196
measures, G-15 to G-16
memory banks, 277
and multiple lanes, 273, 310
multiprocessor architecture, 346
NVIDIA GPU computational

structures, 291
overview, G-25 to G-26
peak performance focus, 331
performance, G-2 to G-7

start-up and multiple lanes, G-7
to G-9

performance comparison, 58
performance enhancement

chaining, G-11 to G-12

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-81

DAXPY on VMIPS, G-19 to
G-21

sparse matrices, G-12 to G-14
PTX, 301
Roofline model, 286–287, 287
vs. scalar processor, 311, 331, 333,

G-19
vs. SIMD Processor, 294–296
Sony PlayStation 2 Emotion

Engine, E-17 to E-18
start-up overhead, G-4
stride, 278
strip mining, 275
vector execution time, 269–271
vector/GPU comparison, 308
vector kernel implementation,

334–336
VMIPS, 264–265
VMIPS on DAXPY, G-17
VMIPS on Linpack, G-17 to G-19

Vector Registers
definition, 309
execution time, 269, 271
gather-scatter, 280
multimedia compiler support, A-31
Multimedia SIMD Extensions, 282
multiple lanes, 271–273
NVIDIA GPU, 297
NVIDIA GPU ISA, 298
performance/bandwidth trade-offs,

332
processor example, 267
strides, 278–279
vector vs. GPU, 308, 311
VMIPS, 264–267, 266

Very-large-scale integration (VLSI)
early computer arithmetic, J-63
interconnection network topology,

F-29
RISC history, L-20
Wallace tree, J-53

Very Long Instruction Word (VLIW)
clock rates, 244
compiler scheduling, L-31
EPIC, L-32
IA-64, H-33 to H-34
ILP, 193–196
loop-level parallelism, 315
M32R, K-39 to K-40
multiple-issue processors, 194,

L-28 to L-30
multithreading history, L-34

sample code, 252
TI 320C6x DSP, E-8 to E-10

VGA controller, L-51
Video

Amazon Web Services, 460
application trends, 4
PMDs, 6
WSCs, 8, 432, 437, 439

Video games, multimedia support,
K-17

VI interface, L-73
Virtual address

address translation, B-46
AMD64 paged virtual memory, B-55
AMD Opteron data cache, B-12 to

B-13
ARM Cortex-A8, 115
cache optimization, B-36 to B-39
GPU conditional branching, 303
Intel Core i7, 120
mapping to physical, B-45
memory hierarchy, B-39, B-48,

B-48 to B-49
memory hierarchy basics, 77–78
miss rate vs. cache size, B-37
Opteron mapping, B-55
Opteron memory management,

B-55 to B-56
and page size, B-58
page table-based mapping, B-45
translation, B-36 to B-39
virtual memory, B-42, B-49

Virtual address space
example, B-41
main memory block, B-44

Virtual caches
definition, B-36 to B-37
issues with, B-38

Virtual channels (VCs), F-47
HOL blocking, F-59
Intel SCCC, F-70
routing comparison, F-54
switching, F-51 to F-52
switch microarchitecture

pipelining, F-61
system area network history, F-101
and throughput, F-93

Virtual cut-through switching, F-51
Virtual functions, control flow

instructions, A-18
Virtualizable architecture

Intel 80x86 issues, 128

system call performance, 141
Virtual Machines support, 109
VMM implementation, 128–129

Virtualizable GPUs, future
technology, 333

Virtual machine monitor (VMM)
characteristics, 108
nonvirtualizable ISA, 126,

128–129
requirements, 108–109
Virtual Machines ISA support,

109–110
Xen VM, 111

Virtual Machines (VMs)
Amazon Web Services, 456–457
cloud computing costs, 471
early IBM work, L-10
ISA support, 109–110
protection, 107–108
protection and ISA, 112
server benchmarks, 40
and virtual memory and I/O,

110–111
WSCs, 436
Xen VM, 111

Virtual memory
basic considerations, B-40 to B-44,

B-48 to B-49
basic questions, B-44 to B-46
block identification, B-44 to B-45
block placement, B-44
block replacement, B-45
vs. caches, B-42 to B-43
classes, B-43
definition, B-3
fast address translation, B-46
Multimedia SIMD Extensions, 284
multithreading, 224
paged example, B-54 to B-57
page size selection, B-46 to B-47
parameter ranges, B-42
Pentium vs. Opteron protection,

B-57
protection, 105–107
segmented example, B-51 to B-54
strided access-TLB interactions,

323
terminology, B-42
Virtual Machines impact, 110–111
writes, B-45 to B-46

Virtual methods, control flow
instructions, A-18

I-82 ■ Index

Virtual output queues (VOQs), switch
microarchitecture, F-60

VLIW, see Very Long Instruction
Word (VLIW)

VLR, see Vector-length register
(VLR)

VLSI, see Very-large-scale integration
(VLSI)

VMCS, see Virtual Machine Control
State (VMCS)

VME rack
example, D-38
Internet Archive Cluster, D-37

VMIPS
basic structure, 265
DAXPY, G-18 to G-20
DLP, 265–267
double-precision FP operations,

266
enhanced, DAXPY performance,

G-19 to G-21
gather/scatter operations, 280
ISA components, 264–265
multidimensional arrays, 278–279
Multimedia SIMD Extensions, 282
multiple lanes, 271–272
peak performance on DAXPY,

G-17
performance, G-4
performance on Linpack, G-17 to

G-19
sparse matrices, G-13
start-up penalties, G-5
vector execution time, 269–270,

G-6 to G-7
vector vs. GPU, 308
vector-length registers, 274
vector load/store unit bandwidth,

276
vector performance measures,

G-16
vector processor example,

267–268
VLR, 274

VMM, see Virtual machine monitor
(VMM)

VMs, see Virtual Machines (VMs)
Voltage regulator controller (VRC),

Intel SCCC, F-70
Voltage regulator modules (VRMs),

WSC server energy
efficiency, 462

Volume-cost relationship,
components, 27–28

Von Neumann, John, L-2 to L-6
Von Neumann computer, L-3
Voodoo2, L-51
VOQs, see Virtual output queues

(VOQs)
VRC, see Voltage regulator controller

(VRC)
VRMs, see Voltage regulator modules

(VRMs)

W
Wafers

example, 31
integrated circuit cost trends,

28–32
Wafer yield

chip costs, 32
definition, 30

Waiting line, definition, D-24
Wait time, shared-media networks,

F-23
Wallace tree

example, J-53, J-53
historical background, J-63

Wall-clock time
execution time, 36
scientific applications on parallel

processors, I-33
WANs, see Wide area networks

(WANs)
WAR, see Write after read (WAR)
Warehouse-scale computers (WSCs)

Amazon Web Services, 456–461
basic concept, 432
characteristics, 8
cloud computing, 455–461
cloud computing providers,

471–472
cluster history, L-72 to L-73
computer architecture

array switch, 443
basic considerations, 441–442
memory hierarchy, 443,

443–446, 444
storage, 442–443

as computer class, 5
computer cluster forerunners,

435–436
cost-performance, 472–473
costs, 452–455, 453–454

definition, 345
and ECC memory, 473–474
efficiency measurement, 450–452
facility capital costs, 472
Flash memory, 474–475
Google

containers, 464–465
cooling and power, 465–468
monitoring and repairing,

469–470
PUE, 468
server, 467
servers, 468–469

MapReduce, 437–438
network as bottleneck, 461
physical infrastructure and costs,

446–450
power modes, 472
programming models and

workloads, 436–441
query response-time curve, 482
relaxed consistency, 439
resource allocation, 478–479
server energy efficiency, 462–464
vs. servers, 432–434
SPECPower benchmarks, 463
switch hierarchy, 441–442, 442
TCO case study, 476–478

Warp, L-31
definition, 292, 313
terminology comparison, 314

Warp Scheduler
definition, 292, 314
Multithreaded SIMD Processor,

294
Wavelength division multiplexing

(WDM), WAN history,
F-98

WAW, see Write after write (WAW)
Way prediction, cache optimization,

81–82
Way selection, 82
WB, see Write-back cycle (WB)
WCET, see Worst-case execution time

(WCET)
WDM, see Wavelength division

multiplexing (WDM)
Weak ordering, relaxed consistency

models, 395
Weak scaling, Amdahl’s law and

parallel computers,
406–407

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Index ■ I-83

Web index search, shared-memory
workloads, 369

Web servers
benchmarking, D-20 to D-21
dependability benchmarks, D-21
ILP for realizable processors, 218
performance benchmarks, 40
WAN history, F-98

Weighted arithmetic mean time, D-27
Weitek 3364

arithmetic functions, J-58 to J-61
chip comparison, J-58
chip layout, J-60

West-first routing, F-47 to F-48
Wet-bulb temperature

Google WSC, 466
WSC cooling systems, 449

Whirlwind project, L-4
Wide area networks (WANs)

ATM, F-79
characteristics, F-4
cross-company interoperability, F-64
effective bandwidth, F-18
fault tolerance, F-68
historical overview, F-97 to F-99
InfiniBand, F-74
interconnection network domain

relationship, F-4
latency and effective bandwidth,

F-26 to F-28
offload engines, F-8
packet latency, F-13, F-14 to F-16
routers/gateways, F-79
switches, F-29
switching, F-51
time of flight, F-13
topology, F-30

Wilkes, Maurice, L-3
Winchester, L-78
Window

latency, B-21
processor performance

calculations, 218
scoreboarding definition, C-78
TCP/IP headers, F-84

Windowing, congestion management,
F-65

Window size
ILP limitations, 221
ILP for realizable processors,

216–217
vs. parallelism, 217

Windows operating systems, see
Microsoft Windows

Wireless networks
basic challenges, E-21
and cell phones, E-21 to E-22

Wires
energy and power, 23
scaling, 19–21

Within instruction exceptions
definition, C-45
instruction set complications, C-50
stopping/restarting execution, C-46

Word count, definition, B-53
Word displacement addressing, VAX,

K-67
Word offset, MIPS, C-32
Words

aligned/misaligned addresses, A-8
AMD Opteron data cache, B-15
DSP, E-6
Intel 80x86, K-50
memory address interpretation,

A-7 to A-8
MIPS data transfers, A-34
MIPS data types, A-34
MIPS unaligned reads, K-26
operand sizes/types, 12
as operand type, A-13 to A-14
VAX, K-70

Working set effect, definition, I-24
Workloads

execution time, 37
Google search, 439
Java and PARSEC without SMT,

403–404
RAID performance prediction,

D-57 to D-59
symmetric shared-memory

multiprocessor
performance, 367–374,
I-21 to I-26

WSC goals/requirements, 433
WSC resource allocation case

study, 478–479
WSCs, 436–441

Wormhole switching, F-51, F-88
performance issues, F-92 to F-93
system area network history, F-101

Worst-case execution time (WCET),
definition, E-4

Write after read (WAR)
data hazards, 153–154, 169

dynamic scheduling with
Tomasulo’s algorithm,
170–171

hazards and forwarding, C-55
ILP limitation studies, 220
MIPS scoreboarding, C-72, C-74

to C-75, C-79
multiple-issue processors, L-28
register renaming vs. ROB, 208
ROB, 192
TI TMS320C55 DSP, E-8
Tomasulo’s advantages, 177–178
Tomasulo’s algorithm, 182–183

Write after write (WAW)
data hazards, 153, 169
dynamic scheduling with

Tomasulo’s algorithm,
170–171

execution sequences, C-80
hazards and forwarding, C-55 to

C-58
ILP limitation studies, 220
microarchitectural techniques case

study, 253
MIPS FP pipeline performance,

C-60 to C-61
MIPS scoreboarding, C-74, C-79
multiple-issue processors, L-28
register renaming vs. ROB, 208
ROB, 192
Tomasulo’s advantages, 177–178

Write allocate
AMD Opteron data cache, B-12
definition, B-11
example calculation, B-12

Write-back cache
AMD Opteron example, B-12, B-14
coherence maintenance, 381
coherency, 359
definition, B-11
directory-based cache coherence,

383, 386
Flash memory, 474
FP register file, C-56
invalidate protocols, 355–357, 360
memory hierarchy basics, 75
snooping coherence, 355,

356–357, 359
Write-back cycle (WB)

basic MIPS pipeline, C-36
data hazard stall minimization,

C-17

I-84 ■ Index

Write-back cycle (continued)
execution sequences, C-80
hazards and forwarding, C-55 to

C-56
MIPS exceptions, C-49
MIPS pipeline, C-52
MIPS pipeline control, C-39
MIPS R4000, C-63, C-65
MIPS scoreboarding, C-74
pipeline branch issues, C-40
RISC classic pipeline, C-7 to C-8,

C-10
simple MIPS implementation,

C-33
simple RISC implementation, C-6

Write broadcast protocol, definition,
356

Write buffer
AMD Opteron data cache, B-14
Intel Core i7, 118, 121
invalidate protocol, 356
memory consistency, 393
memory hierarchy basics, 75
miss penalty reduction, 87, B-32,

B-35 to B-36
write merging example, 88
write strategy, B-11

Write hit
cache coherence, 358
directory-based coherence, 424
single-chip multicore

multiprocessor, 414
snooping coherence, 359
write process, B-11

Write invalidate protocol
directory-based cache coherence

protocol example,
382–383

example, 359, 360
implementation, 356–357
snooping coherence, 355–356

Write merging
example, 88
miss penalty reduction, 87

Write miss
AMD Opteron data cache, B-12,

B-14
cache coherence, 358, 359, 360, 361
definition, 385
directory-based cache coherence,

380–383, 385–386
example calculation, B-12
locks via coherence, 390
memory hierarchy basics, 76–77
memory stall clock cycles, B-4
Opteron data cache, B-12, B-14
snooping cache coherence, 365
write process, B-11 to B-12
write speed calculations, 393

Write result stage
data hazards, 154
dynamic scheduling, 174–175
hardware-based speculation, 192
instruction steps, 175
ROB instruction, 186
scoreboarding, C-74 to C-75, C-78

to C-80
status table examples, C-77
Tomasulo’s algorithm, 178, 180,

190
Write serialization

hardware primitives, 387
multiprocessor cache coherency,

353
snooping coherence, 356

Write stall, definition, B-11
Write strategy

memory hierarchy considerations,
B-6, B-10 to B-12

virtual memory, B-45 to B-46
Write-through cache

average memory access time, B-16

coherency, 352
invalidate protocol, 356
memory hierarchy basics, 74–75
miss penalties, B-32
optimization, B-35
snooping coherence, 359
write process, B-11 to B-12

Write update protocol, definition, 356
WSCs, see Warehouse-scale

computers (WSCs)

X
XBox, L-51
Xen Virtual Machine

Amazon Web Services, 456–457
characteristics, 111

Xerox Palo Alto Research Center,
LAN history, F-99

XIMD architecture, L-34
Xon/Xoff, interconnection networks,

F-10, F-17

Y
Yahoo!, WSCs, 465
Yield

chip fabrication, 61–62
cost trends, 27–32
Fermi GTX 480, 324

Z
Z-80 microcontroller, cell phones,

E-24
Zero condition code, MIPS core, K-9

to K-16
Zero-copy protocols

definition, F-8
message copying issues, F-91

Zero-load latency, Intel SCCC,
F-70

Zuse, Konrad, L-4 to L-5
Zynga, FarmVille, 460

Telegram Channel: @konkurcomputer [www.konkurcomputer.ir]

https://t.me/joinchat/AAAAADvhn2dSsqXOsEV3rQ
https://www.konkurcomputer.ir/

Translation between GPU terms in book and official NVIDIA and OpenCL terms.

Type

More Descriptive

Name used in this

Book

Official CUDA/

NVIDIA Term

Book Definition

and OpenCL Terms

Official CUDA/NVIDIA

Definition

P
ro

g
ra

m
 A

b
st

ra
ct

io
n

s

Vectorizable Loop Grid A vectorizable loop, executed on the GPU, made
up of 1 or more “Thread Blocks” (or bodies of
vectorized loop) that can execute in parallel.
OpenCL name is “index range.”

A Grid is an array of Thread Blocks that can
execute concurrently, sequentially, or a mixture.

Body of

Vectorized Loop

Thread Block A vectorized loop executed on a “Streaming
Multiprocessor” (multithreaded SIMD
processor), made up of 1 or more “Warps” (or
threads of SIMD instructions). These “Warps”
(SIMD Threads) can communicate via “Shared
Memory” (Local Memory). OpenCL calls a
thread block a “work group.”

A Thread Block is an array of CUDA threads that
execute concurrently together and can cooperate
and communicate via Shared Memory and
barrier synchronization. A Thread Block has a
Thread Block ID within its Grid.

Sequence of

SIMD Lane Opera-

tions

CUDA Thread A vertical cut of a “Warp” (or thread of SIMD
instructions) corresponding to one element
executed by one “Thread Processor” (or SIMD
lane). Result is stored depending on mask.
OpenCL calls a CUDA thread a “work item.”

A CUDA Thread is a lightweight thread that
executes a sequential program and can cooperate
with other CUDA threads executing in the same
Thread Block. A CUDA thread has a thread ID
within its Thread Block.

M
a

ch
in

e
 O

b
je

ct

A Thread of

SIMD

Instructions

Warp A traditional thread, but it contains just SIMD
instructions that are executed on a “Streaming
Multiprocessor” (multithreaded SIMD
processor). Results stored depending on a per
element mask.

A Warp is a set of parallel CUDA Threads
(e.g., 32) that execute the same instruction
together in a multithreaded SIMT/SIMD
processor.

SIMD

Instruction

PTX

Instruction

A single SIMD instruction executed across the
“Thread Processors” (SIMD lanes).

A PTX instruction specifies an instruction
executed by a CUDA Thread.

P
ro

ce
ss

in
g

 H
a

rd
w

a
re

Multithreaded SIMD

Processor

Streaming

Multiprocessor

Multithreaded SIMD processor that executes
“Warps” (thread of SIMD instructions),
independent of other SIMD processors. OpenCL
calls it a “Compute Unit.” However, CUDA
programmer writes program for one lane rather
than for a “vector” of multiple SIMD lanes.

A Streaming Multiprocessor (SM) is a
multithreaded SIMT/SIMD processor that
executes Warps of CUDA Threads. A SIMT
program specifies the execution of one CUDA
thread, rather than a vector of multiple SIMD
lanes.

Thread Block

Scheduler

Giga Thread

Engine

Assigns multiple “Thread Blocks” (or body of
vectorized loop) to “Streaming Multiprocessors”
(multithreaded SIMD processors).

Distributes and schedules Thread Blocks of a
Grid to Streaming Multiprocessors as resources
become available.

SIMD Thread

Scheduler

Warp

Scheduler

Hardware unit that schedules and issues “Warps”
(threads of SIMD instructions) when they are
ready to execute; includes a scoreboard to track
“Warp” (SIMD thread) execution.

A Warp Scheduler in a Streaming
Multiprocessor schedules Warps for execution
when their next instruction is ready to execute.

SIMD

Lane

Thread

Processor

Hardware SIMD Lane that executes the
operations in a “Warp” (thread of SIMD
instructions) on a single element. Results stored
depending on mask. OpenCL calls it a
“Processing Element.”

A Thread Processor is a datapath and register file
portion of a Streaming Multiprocessor that
executes operations for one or more lanes of a
Warp.

M
e

m
o

ry
 H

a
rd

w
a

re

GPU

Memory

Global

Memory

DRAM memory accessible by all “Streaming
Multiprocessors” (or multithreaded SIMD
processors) in a GPU. OpenCL calls it “Global
Memory.”

Global Memory is accessible by all CUDA
Threads in any Thread Block in any Grid.
Implemented as a region of DRAM, and may be
cached.

 Private

Memory

Local

Memory

Portion of DRAM memory private to each
“Thread Processor” (SIMD lane). OpenCL calls
it “Private Memory.”

Private “thread-local” memory for a CUDA
Thread. Implemented as a cached region of
DRAM.

Local

Memory

Shared

Memory

Fast local SRAM for one “Streaming
Multiprocessor” (multithreaded SIMD
processor), unavailable to other Streaming
Multiprocessors. OpenCL calls it “Local
Memory.”

Fast SRAM memory shared by the CUDA
Threads composing a Thread Block, and private
to that Thread Block. Used for communication
among CUDA Threads in a Thread Block at
barrier synchronization points.

SIMD Lane

Registers

Registers Registers in a single “Thread Processor” (SIMD
lane) allocated across full “Thread Block” (or
body of vectorized loop).

Private registers for a CUDA Thread.
Implemented as multithreaded register file for
certain lanes of several warps for each thread
processor.

	Computer Architecture A Quantitative Approach
	Front Cover
	In Praise of Computer Architecture: A Quantitative Approach Fifth Edition
	Title page
	Copyright
	Dedication
	Foreword
	Table of Contents
	Preface
	Why We Wrote This Book
	This Edition
	Topic Selection and Organization
	An Overview of the Content
	Navigating the Text
	Chapter Structure
	Case Studies with Exercises
	Supplemental Materials
	Helping Improve This Book
	Concluding Remarks

	Acknowledgments
	Contributors to the Fifth Edition
	Reviewers
	Advisory Panel
	Appendices
	Case Studies with Exercises
	Additional Material

	Contributors to Previous Editions
	Reviewers
	Appendices
	Exercises
	Case Studies with Exercises
	Special Thanks

	1 Fundamentals of Quantitative Design and Analysis
	1.1 Introduction
	1.2 Classes of Computers
	Personal Mobile Device (PMD)
	Desktop Computing
	Servers
	Clusters/Warehouse-Scale Computers
	Embedded Computers
	Classes of Parallelism and Parallel Architectures

	1.3 Defining Computer Architecture
	Instruction Set Architecture: The Myopic View of Computer Architecture
	Genuine Computer Architecture: Designing the Organization and Hardware to Meet Goals and Functional Requirements

	1.4 Trends in Technology
	Performance Trends: Bandwidth over Latency
	Scaling of Transistor Performance and Wires

	1.5 Trends in Power and Energy in Integrated Circuits
	Power and Energy: A Systems Perspective
	Energy and Power within a Microprocessor

	1.6 Trends in Cost
	The Impact of Time, Volume, and Commoditization
	Cost of an Integrated Circuit
	Cost versus Price
	Cost of Manufacturing versus Cost of Operation

	1.7 Dependability
	1.8 Measuring, Reporting, and Summarizing Performance
	Benchmarks
	Desktop Benchmarks
	Server Benchmarks

	Reporting Performance Results
	Summarizing Performance Results

	1.9 Quantitative Principles of Computer Design
	Take Advantage of Parallelism
	Principle of Locality
	Focus on the Common Case
	Amdahl’s Law
	The Processor Performance Equation

	1.10 Putting It All Together: Performance, Price, and Power
	1.11 Fallacies and Pitfalls
	1.12 Concluding Remarks
	1.13 Historical Perspectives and References
	Case Studies and Exercises by Diana Franklin
	Case Study 1: Chip Fabrication Cost
	Concepts illustrated by this case study

	Case Study 2: Power Consumption in Computer Systems
	Concepts illustrated by this case study

	Exercises

	2 Memory Hierarchy Design
	2.1 Introduction
	Basics of Memory Hierarchies: A Quick Review

	2.2 Ten Advanced Optimizations of Cache Performance
	First Optimization: Small and Simple First-Level Caches to Reduce Hit Time and Power
	Second Optimization: Way Prediction to Reduce Hit Time
	Third Optimization: Pipelined Cache Access to Increase Cache Bandwidth
	Fourth Optimization: Nonblocking Caches to Increase Cache Bandwidth
	Fifth Optimization: Multibanked Caches to Increase Cache Bandwidth
	Sixth Optimization: Critical Word First and Early Restart to Reduce Miss Penalty
	Seventh Optimization: Merging Write Buffer to Reduce Miss Penalty
	Eighth Optimization: Compiler Optimizations to Reduce Miss Rate
	Loop Interchange
	Blocking

	Ninth Optimization: Hardware Prefetching of Instructions and Data to Reduce Miss Penalty or Miss Rate
	Tenth Optimization: Compiler-Controlled Prefetching to Reduce Miss Penalty or Miss Rate
	Cache Optimization Summary

	2.3 Memory Technology and Optimizations
	SRAM Technology
	DRAM Technology
	Improving Memory Performance Inside a DRAM Chip
	Graphics Data RAMs

	Reducing Power Consumption in SDRAMs
	Flash Memory
	Enhancing Dependability in Memory Systems

	2.4 Protection: Virtual Memory and Virtual Machines
	Protection via Virtual Memory
	Protection via Virtual Machines
	Requirements of a Virtual Machine Monitor
	(Lack of) Instruction Set Architecture Support for Virtual Machines
	Impact of Virtual Machines on Virtual Memory and I/O
	An Example VMM: The Xen Virtual Machine

	2.5 Crosscutting Issues: The Design of Memory Hierarchies
	Protection and Instruction Set Architecture
	Coherency of Cached Data

	2.6 Putting It All Together: Memory Hierachies in the ARM Cortex-A8 and Intel Core i7
	The ARM Cortex-A8
	Performance of the Cortex-A8 Memory Hierarchy

	The Intel Core i7
	Performance of the i7 Memory System

	2.7 Fallacies and Pitfalls
	2.8 Concluding Remarks: Looking Ahead
	2.9 Historical Perspective and References
	Case Studies and Exercises by Norman P. Jouppi, Naveen Muralimanohar, and Sheng Li
	Case Study 1: Optimizing Cache Performance via AdvancedTechniques
	Concepts illustrated by this case study

	Case Study 2: Putting It All Together: Highly Parallel Memory Systems
	Concept illustrated by this case study

	Exercises

	3 Instruction-Level Parallelism and Its Exploitation
	3.1 Instruction-Level Parallelism: Concepts and Challenges
	What Is Instruction-Level Parallelism?
	Data Dependences and Hazards
	Data Dependences
	Name Dependences
	Data Hazards

	Control Dependences

	3.2 Basic Compiler Techniques for Exposing ILP
	Basic Pipeline Scheduling and Loop Unrolling
	Summary of the Loop Unrolling and Scheduling

	3.3 Reducing Branch Costs with Advanced Branch Prediction
	Correlating Branch Predictors
	Tournament Predictors: Adaptively Combining Local and Global Predictors
	The Intel Core i7 Branch Predictor

	3.4 Overcoming Data Hazards with Dynamic Scheduling
	Dynamic Scheduling: The Idea
	Dynamic Scheduling Using Tomasulo’s Approach

	3.5 Dynamic Scheduling: Examples and the Algorithm
	Tomasulo’s Algorithm: The Details
	Tomasulo’s Algorithm: A Loop-Based Example

	3.6 Hardware-Based Speculation
	3.7 Exploiting ILP Using Multiple Issue and Static Scheduling
	The Basic VLIW Approach

	3.8 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation
	3.9 Advanced Techniques for Instruction Delivery and Speculation
	Increasing Instruction Fetch Bandwidth
	Branch-Target Buffers
	Return Address Predictors
	Integrated Instruction Fetch Units

	Speculation: Implementation Issues and Extensions
	Speculation Support: Register Renaming versus Reorder Buffers
	How Much to Speculate
	Speculating through Multiple Branches
	Speculation and the Challenge of Energy Efficiency
	Value Prediction

	3.10 Studies of the Limitations of ILP
	The Hardware Model
	Limitations on ILP for Realizable Processors
	Beyond the Limits of This Study

	3.11 Cross-Cutting Issues: ILP Approaches and the Memory System
	Hardware versus Software Speculation
	Speculative Execution and the Memory System

	3.12 Multithreading: Exploiting Thread-Level Parallelism to Improve Uniprocessor Throughput
	Effectiveness of Fine-Grained Multithreading on the Sun T1
	T1 Multithreading Unicore Performance

	Effectiveness of Simultaneous Multithreading on Superscalar Processors

	3.13 Putting It All Together: The Intel Core i7 and ARM Cortex-A8
	The ARM Cortex-A8
	Performance of the A8 Pipeline

	The Intel Core i7
	Performance of the i7

	3.14 Fallacies and Pitfalls
	3.15 Concluding Remarks: What’s Ahead?
	3.16 Historical Perspective and References
	Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell
	Case Study: Exploring the Impact of MicroarchitecturalTechniques
	Concepts illustrated by this case study

	Exercises

	4 Data-Level Parallelism in Vector, SIMD, and GPU Architectures
	4.1 Introduction
	4.2 Vector Architecture
	VMIPS
	How Vector Processors Work: An Example
	Vector Execution Time
	Multiple Lanes: Beyond One Element per Clock Cycle
	Vector-Length Registers: Handling Loops Not Equal to 64
	Vector Mask Registers: Handling IF Statements in Vector Loops
	Memory Banks: Supplying Bandwidth for Vector Load/Store Units
	Stride: Handling Multidimensional Arrays in Vector Architectures
	Gather-Scatter: Handling Sparse Matrices in Vector Architectures
	Programming Vector Architectures

	4.3 SIMD Instruction Set Extensions for Multimedia
	Programming Multimedia SIMD Architectures
	The Roofline Visual Performance Model

	4.4 Graphics Processing Units
	Programming the GPU
	NVIDIA GPU Computational Structures
	NVIDA GPU Instruction Set Architecture
	Conditional Branching in GPUs
	NVIDIA GPU Memory Structures
	Innovations in the Fermi GPU Architecture
	Similarities and Differences between Vector Architectures and GPUs
	Similarities and Differences between Multimedia SIMD Computers and GPUs
	Summary

	4.5 Detecting and Enhancing Loop-Level Parallelism
	Finding Dependences
	Eliminating Dependent Computations

	4.6 Crosscutting Issues
	Energy and DLP: Slow and Wide versus Fast and Narro
	Banked Memory and Graphics Memory
	Strided Accesses and TLB Misses

	4.7 Putting It All Together: Mobile versus Server GPUs and Tesla versus Core i7
	4.8 Fallacies and Pitfalls
	4.9 Concluding Remarks
	4.10 Historical Perspective and References
	Case Study and Exercises by Jason D. Bakos
	Case Study: Implementing a Vector Kernel on a Vector Processor and GPU
	Concepts illustrated by this case study

	Exercises

	5 Thread-Level Parallelism
	5.1 Introduction
	Multiprocessor Architecture: Issues and Approach
	Challenges of Parallel Processing

	5.2 Centralized Shared-Memory Architectures
	What Is Multiprocessor Cache Coherence?
	Basic Schemes for Enforcing Coherence
	Snooping Coherence Protocols
	Basic Implementation Techniques
	An Example Protocol
	Extensions to the Basic Coherence Protocol
	Limitations in Symmetric Shared-Memory Multiprocessors and Snooping Protocols
	Implementing Snooping Cache Coherence

	5.3 Performance of Symmetric Shared-Memory Multiprocessors
	A Commercial Workload
	Performance Measurements of the Commercial Workload
	A Multiprogramming and OS Workload
	Performance of the Multiprogramming and OS Workload

	5.4 Distributed Shared-Memory and Directory-Based Coherence
	Directory-Based Cache Coherence Protocols: The Basics
	An Example Directory Protocol

	5.5 Synchronization: The Basics
	Basic Hardware Primitives
	Implementing Locks Using Coherence

	5.6 Models of Memory Consistency: An Introduction
	The Programmer’s View
	Relaxed Consistency Models: The Basics
	Final Remarks on Consistency Models

	5.7 Crosscutting Issues
	Compiler Optimization and the Consistency Model
	Using Speculation to Hide Latency in Strict Consistency Models
	Inclusion and Its Implementation
	Performance Gains from Using Multiprocessing and Multithreading

	5.8 Putting It All Together: Multicore Processors and Their Performance
	Performance and Energy Efficiency of the Intel Core i7 Multicore
	Putting Multicore and SMT Together

	5.9 Fallacies and Pitfalls
	5.10 Concluding Remarks
	5.11 Historical Perspectives and References
	Case Studies and Exercises by Amr Zaky and David A. Wood
	Case Study 1: Single-Chip Multicore Multiprocessor
	Concepts illustrated by this case study

	Case Study 2: Simple Directory-Based Coherence
	Concepts illustrated by this case study

	Case Study 3: Advanced Directory Protocol
	Concepts illustrated by this case study

	Exercises

	6 Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism
	6.1 Introduction
	6.2 Programming Models and Workloads for Warehouse-Scale Computers
	6.3 Computer Architecture of Warehouse-Scale Computers
	Storage
	Array Switch
	WSC Memory Hierarchy

	6.4 Physical Infrastructure and Costs of Warehouse-Scale Computers
	Measuring Efficiency of a WSC
	Cost of a WSC

	6.5 Cloud Computing: The Return of Utility Computing
	Amazon Web Services

	6.6 Crosscutting Issues
	WSC Network as a Bottleneck
	Using Energy Efficiently Inside the Server

	6.7 Putting It All Together: A Google Warehouse-Scale Computer
	Containers
	Cooling and Power in the Google WSC
	Servers in a Google WSC
	Networking in a Google WSC
	Monitoring and Repair in a Google WSC
	Summary

	6.8 Fallacies and Pitfalls
	6.9 Concluding Remarks
	6.10 Historical Perspectives and References
	Case Studies and Exercises by Parthasarathy Ranganathan
	Case Study 1: Total Cost of Ownership Influencing Warehouse-Scale Computer Design Decisions
	Concepts illustrated by this case study

	Case Study 2: Resource Allocation in WSCs and TCO
	Concepts illustrated by this case study

	Exercises

	Appendix A. Instruction Set Principles
	A.1 Introduction
	A.2 Classifying Instruction Set Architectures
	Summary: Classifying Instruction Set Architectures

	A.3 Memory Addressing
	Interpreting Memory Addresses
	Addressing Modes
	Displacement Addressing Mode
	Immediate or Literal Addressing Mode
	Summary: Memory Addressing

	A.4 Type and Size of Operands
	A.5 Operations in the Instruction Set
	A.6 Instructions for Control Flow
	Addressing Modes for Control Flow Instructions
	Conditional Branch Options
	Procedure Invocation Options
	Summary: Instructions for Control Flow

	A.7 Encoding an Instruction Set
	Reduced Code Size in RISCs
	Summary: Encoding an Instruction Set

	A.8 Crosscutting Issues: The Role of Compilers
	The Structure of Recent Compilers
	Register Allocation
	Impact of Optimizations on Performance
	The Impact of Compiler Technology on the Architect’s Decisions
	How the Architect Can Help the Compiler Writer
	Compiler Support (or Lack Thereof) for Multimedia Instructions
	Summary: The Role of Compilers

	A.9 Putting It All Together: The MIPS Architecture
	Registers for MIPS
	Data Types for MIPS
	Addressing Modes for MIPS Data Transfers
	MIPS Instruction Format
	MIPS Operations
	MIPS Control Flow Instructions
	MIPS Floating-Point Operations
	MIPS Instruction Set Usage

	A.10 Fallacies and Pitfalls
	A.11 Concluding Remarks
	A.12 Historical Perspective and References
	Exercises by Gregory D. Peterson

	Appendix B. Review of Memory Hierarchy
	B.1 Introduction
	Cache Performance Review
	Four Memory Hierarchy Questions
	An Example: The Opteron Data Cache

	B.2 Cache Performance
	Average Memory Access Time and Processor Performance
	Miss Penalty and Out-of-Order Execution Processors

	B.3 Six Basic Cache Optimizations
	First Optimization: Larger Block Size to Reduce Miss Rate
	Second Optimization: Larger Caches to Reduce Miss Rate
	Third Optimization: Higher Associativity to Reduce Miss Rate
	Fourth Optimization: Multilevel Caches to Reduce Miss Penalty
	Fifth Optimization: Giving Priority to Read Misses over Writes to Reduce Miss Penalty
	Sixth Optimization: Avoiding Address Translation during Indexing of the Cache to Reduce Hit Time
	Summary of Basic Cache Optimization

	B.4 Virtual Memory
	Four Memory Hierarchy Questions Revisited
	Techniques for Fast Address Translation
	Selecting a Page Size
	Summary of Virtual Memory and Caches

	B.5 Protection and Examples of Virtual Memory
	Protecting Processes
	A Segmented Virtual Memory Example: Protection in the Intel Pentium
	Adding Bounds Checking and Memory Mapping
	Adding Sharing and Protection
	Adding Safe Calls from User to OS Gates and Inheriting Protection Level for Parameters

	A Paged Virtual Memory Example: The 64-Bit Opteron Memory Management
	Summary: Protection on the 32-Bit Intel Pentium vs. the 64-Bit AMD Opteron

	B.6 Fallacies and Pitfalls
	B.7 Concluding Remarks
	B.8 Historical Perspective and References
	Exercises by Amr Zaky

	Appendix C. Pipelining: Basic and Intermediate Concepts
	C.1 Introduction
	What Is Pipelining?
	The Basics of a RISC Instruction Set
	A Simple Implementation of a RISC Instruction Set
	The Classic Five-Stage Pipeline for a RISC Processor
	Basic Performance Issues in Pipelining

	C.2 The Major Hurdle of Pipelining—Pipeline Hazards
	Performance of Pipelines with Stalls
	Structural Hazards
	Data Hazards
	Minimizing Data Hazard Stalls by Forwarding
	Data Hazards Requiring Stalls

	Branch Hazards
	Reducing Pipeline Branch Penalties
	Performance of Branch Schemes

	Reducing the Cost of Branches through Prediction
	Static Branch Prediction
	Dynamic Branch Prediction and Branch-Prediction Buffers

	C.3 How Is Pipelining Implemented?
	A Simple Implementation of MIPS
	A Basic Pipeline for MIPS
	Implementing the Control for the MIPS Pipeline
	Dealing with Branches in the Pipeline

	C.4 What Makes Pipelining Hard to Implement?
	Dealing with Exceptions
	Types of Exceptions and Requirements
	Stopping and Restarting Execution
	Exceptions in MIPS

	Instruction Set Complications

	C.5 Extending the MIPS Pipeline to Handle Multicycle Operations
	Hazards and Forwarding in Longer Latency Pipelines
	Maintaining Precise Exceptions
	Performance of a MIPS FP Pipeline

	C.6 Putting It All Together: The MIPS R4000 Pipeline
	The Floating-Point Pipeline
	Performance of the R4000 Pipeline

	C.7 Crosscutting Issues
	RISC Instruction Sets and Efficiency of Pipelining
	Dynamically Scheduled Pipelines
	Dynamic Scheduling with a Scoreboard

	C.8 Fallacies and Pitfalls
	C.9 Concluding Remarks
	C.10 Historical Perspective and References
	Updated Exercises by Diana Franklin

	Appendix D. Storage Systems
	D.1 Introduction
	D.2 Advanced Topics in Disk Storage
	Disk Power
	Advanced Topics in Disk Arrays

	D.3 Definition and Examples of Real Faults and Failures
	Berkeley’s Tertiary Disk
	Tandem
	Other Studies of the Role of Operators in Dependability

	D.4 I/O Performance, Reliability Measures, and Benchmarks
	Throughput versus Response Time
	Transaction-Processing Benchmarks
	SPEC System-Level File Server, Mail, and Web Benchmarks
	Examples of Benchmarks of Dependability

	D.5 A Little Queuing Theory
	Poisson Distribution of Random Variables

	D.6 Crosscutting Issues
	Point-to-Point Links and Switches Replacing Buses
	Block Servers versus Filers
	Asynchronous I/O and Operating Systems

	D.7 Designing and Evaluating an I/O System—The Internet Archive Cluster
	The Internet Archive Cluster
	Estimating Performance, Dependability, and Cost of the Internet Archive Cluster
	Calculating MTTF of the TB-80 Cluster

	D.8 Putting It All Together: NetApp FAS6000 Filer
	D.9 Fallacies and Pitfalls
	D.10 Concluding Remarks
	D.11 Historical Perspective and References
	Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau
	Case Study 1: Deconstructing a Disk
	Case Study 2: Deconstructing a Disk Array
	Case Study 3: RAID Reconstruction
	Case Study 4: Performance Prediction for RAIDs
	Case Study 5: I/O Subsystem Design
	Case Study 6: Dirty Rotten Bits
	Case Study 7: Sorting Things Out

	Appendix E. Embedded Systems
	E.1 Introduction
	Real-Time Processing

	E.2 Signal Processing and Embedded Applications: The Digital Signal Processor
	The TI 320C55
	The TI 320C6x
	Media Extensions

	E.3 Embedded Benchmarks
	Power Consumption and Efficiency as the Metric

	E.4 Embedded Multiprocessors
	E.5 Case Study: The Emotion Engine of the Sony PlayStation 2
	E.6 Case Study: Sanyo VPC-SX500 Digital Camera
	E.7 Case Study: Inside a Cell Phone
	Background on Wireless Networks
	The Cell Phone
	Cell Phone Standards and Evolution

	E.8 Concluding Remarks

	Appendix F. Interconnection Networks
	F.1 Introduction
	Interconnection Network Domains
	Approach and Organization of This Appendix

	F.2 Interconnecting Two Devices
	Network Interface Functions: Composing and Processing Messages
	Basic Network Structure and Functions: Media and Form Factor, Packet Transport, Flow Control, and Error Handling
	Characterizing Performance: Latency and Effective Bandwidth

	F.3 Connecting More than Two Devices
	Additional Network Structure and Functions: Topology, Routing, Arbitration, and Switching
	Shared-Media Networks
	Switched-Media Networks
	Comparison of Shared- and Switched-Media Networks
	Characterizing Performance: Latency and Effective Bandwidth

	F.4 Network Topology
	Centralized Switched Networks
	Distributed Switched Networks
	Effects of Topology on Network Performance

	F.5 Network Routing, Arbitration, and Switching
	Routing
	Arbitration
	Switching
	Impact on Network Performance

	F.6 Switch Microarchitecture
	Basic Switch Microarchitecture
	Buffer Organizations
	Routing Algorithm Implementation
	Pipelining the Switch Microarchitecture
	Other Switch Microarchitecture Enhancements

	F.7 Practical Issues for Commercial Interconnection Networks
	Connectivity
	Standardization: Cross-Company Interoperability
	Congestion Management
	Fault Tolerance

	F.8 Examples of Interconnection Networks
	On-Chip Network: Intel Single-Chip Cloud Computer
	System Area Network: IBM Blue Gene/L 3D Torus Network
	System/Storage Area Network: InfiniBand
	Ethernet: The Local Area Network
	Wide Area Network: ATM

	F.9 Internetworking
	F.10 Crosscutting Issues for Interconnection Networks
	Density-Optimized Processors versus SPEC-Optimized Processors
	Smart Switches versus Smart Interface Cards
	Protection and User Access to the Network
	Efficient Interface to the Memory Hierarchy versus the Network
	Compute-Optimized Processors versus Receiver Overhead

	F.11 Fallacies and Pitfalls
	F.12 Concluding Remarks
	Acknowledgments

	F.13 Historical Perspective and References
	Wide Area Networks
	Local Area Networks
	System Area Networks
	Storage Area Networks
	On-Chip Networks
	References

	Exercises

	Appendix G. Vector Processors in More Depth
	G.1 Introduction
	G.2 Vector Performance in More Depth
	Pipelined Instruction Start-Up and Multiple Lanes

	G.3 Vector Memory Systems in More Depth
	G.4 Enhancing Vector Performance
	Chaining in More Depth
	Sparse Matrices in More Depth

	G.5 Effectiveness of Compiler Vectorization
	G.6 Putting It All Together: Performance of Vector Processors
	Measures of Vector Performance
	The Peak Performance of VMIPS on DAXPY
	Sustained Performance of VMIPS on the Linpack Benchmark
	DAXPY Performance on an Enhanced VMIPS

	G.7 A Modern Vector Supercomputer: The Cray X1
	Multi-Streaming Processors
	Cray X1E

	G.8 Concluding Remarks
	G.9 Historical Perspective and References
	References

	Exercises

	Appendix H. Hardware and Software for VLIW and EPIC 1
	H.1 Introduction: Exploiting Instruction-Level Parallelism Statically
	H.2 Detecting and Enhancing Loop-Level Parallelism
	Finding Dependences
	Eliminating Dependent Computations

	H.3 Scheduling and Structuring Code for Parallelism
	Software Pipelining: Symbolic Loop Unrolling
	Global Code Scheduling
	Trace Scheduling: Focusing on the Critical Path
	Superblocks

	H.4 Hardware Support for Exposing Parallelism: Predicated Instructions
	H.5 Hardware Support for Compiler Speculation
	Hardware Support for Preserving Exception Behavior
	Hardware Support for Memory Reference Speculation

	H.6 The Intel IA-64 Architecture and Itanium Processor
	The Intel IA-64 Instruction Set Architecture
	The Itanium 2 Processor

	H.7 Concluding Remarks
	Reference

	Appendix I. Large-Scale Multiprocessors and Scientific Applications
	I.1 Introduction
	I.2 Interprocessor Communication: The Critical Performance Issue
	I.3 Characteristics of Scientific Applications
	I.4 Synchronization: Scaling Up
	Synchronization Performance Challenges
	Synchronization Mechanisms for Larger-Scale Multiprocessors

	I.5 Performance of Scientific Applications on
Shared-Memory Multiprocessors
	Performance of a Scientific Workload on a Symmetric Shared-Memory Multiprocessor
	Performance of a Scientific Workload on a Distributed-Memory Multiprocessor

	I.6 Performance Measurement of Parallel Processors with Scientific Applications
	I.7 Implementing Cache Coherence
	Implementing Cache Coherence in a DSM Multiprocessor
	Avoiding Deadlock from Limited Buffering
	Implementing the Directory Controller

	I.8 The Custom Cluster Approach: Blue Gene/L
	I.9 Concluding Remarks

	Appendix J. Computer Arithmetic
	J.1 Introduction
	J.2 Basic Techniques of Integer Arithmetic
	Ripple-Carry Addition
	Radix-2 Multiplication and Division
	Signed Numbers
	Systems Issues

	J.3 Floating Point
	Special Values and Denormals
	Representation of Floating-Point Numbers

	J.4 Floating-Point Multiplication
	Denormals
	Precision of Multiplication

	J.5 Floating-Point Addition
	Speeding Up Addition
	Denormalized Numbers

	J.6 Division and Remainder
	Iterative Division
	Floating-Point Remainder

	J.7 More on Floating-Point Arithmetic
	Fused Multiply-Add
	Precisions
	Exceptions
	Underflow

	J.8 Speeding Up Integer Addition
	Carry-Lookahead
	Carry-Skip Adders
	Carry-Select Adder

	J.9 Speeding Up Integer Multiplication and Division
	Shifting over Zeros
	Speeding Up Multiplication with a Single Adder
	Faster Multiplication with Many Adders
	Faster Division with One Adder

	J.10 Putting It All Together
	J.11 Fallacies and Pitfalls
	J.12 Historical Perspective and References
	References

	Exercises

	Appendix K. Survey of Instruction Set Architectures
	K.1 Introduction
	K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers
	Introduction
	Addressing Modes and Instruction Formats
	Instructions: The MIPS Core Subset
	Instructions: Multimedia Extensions of the Desktop/Server RISCs
	Instructions: Digital Signal-Processing Extensions of the Embedded RISCs
	Instructions: Common Extensions to MIPS Core
	Instructions Unique to MIPS64
	Instructions Unique to Alpha
	Instructions Unique to SPARC v.9
	Instructions Unique to PowerPC
	Instructions Unique to PA-RISC 2.0
	Instructions Unique to ARM
	Instructions Unique to Thumb
	Instructions Unique to SuperH
	Instructions Unique to M32R
	Instructions Unique to MIPS16
	Concluding Remarks
	Acknowledgments

	K.3 The Intel 80x86
	Introduction
	80x86 Registers and Data Addressing Modes
	80x86 Integer Operations
	80x86 Floating-Point Operations
	80x86 Instruction Encoding
	Putting It All Together: Measurements of Instruction Set Usage
	Concluding Remarks

	K.4 The VAX Architecture
	Introduction
	VAX Operands and Addressing Modes
	Encoding VAX Instructions
	VAX Operations
	An Example to Put It All Together: swap
	A Longer Example: sort
	Fallacies and Pitfalls
	Concluding Remarks
	Exercises

	K.5 The IBM 360/370 Architecture for Mainframe Computers
	Introduction
	System/360 Instruction Set
	360 Detailed Measurements

	K.6 Historical Perspective and References

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Translation between GPU terms in book and official NVIDIA and OpenCL terms

