

THOMAS GAMBORG NØRGAARD

Build an API with Laravel

First published by Wacky Studio 2019

Copyright © 2019 by Thomas Gamborg Nørgaard

All rights reserved. No part of this publication may be reproduced, stored or

transmitted in any form or by any means, electronic, mechanical,

photocopying, recording, scanning, or otherwise without written

permission from the publisher. It is illegal to copy this book, post it to a

website, or distribute it by any other means without permission.

Thomas Gamborg Nørgaard asserts the moral right to be identified as the

author of this work.

Thomas Gamborg Nørgaard has no responsibility for the persistence or

accuracy of URLs for external or third-party Internet Websites referred to

in this publication and does not guarantee that any content on such

Websites is, or will remain, accurate or appropriate.

Designations used by companies to distinguish their products are often

claimed as trademarks. All brand names and product names used in this

book and on its cover are trade names, service marks, trademarks and

registered trademarks of their respective owners. The publishers and the

book are not associated with any product or vendor mentioned in this book.

None of the companies referenced within the book have endorsed the book.

First edition

Proofreading by Sille Justesen Krogh

Editing by Christian Nørrelund

This book was professionally typeset on Reedsy.

Find out more at reedsy.com

https://reedsy.com

Contents

Errata iv

Code samples and conventions v

Why Laravel? viii

Prerequisites ix

The Github Repository x

Introduction 1

The JSON:API specification 13

Planning 74

Build your API 137

Test-drivenWorkflow 217

Books 335

Don’t repeat yourself 476

Finishing up 531

About the Author 746

Errata

Since this is our first book, errors will most certainly have snuck in.

You can help support the book by sending an email with any errors yourmight

have found to hello@wackystudio.com along with the chapter and section

title.

As soon as we are informed about an error, we will fix it and release an update

to the book. If you have feedback, we would love to hear from you as well.

* * *

iv

Code samples and conven ons

In this book, we will reference a bunch of technical things, especially when it

comes to API endpoints and code samples.

The conventions used to show an API endpoint follows the protocol below:

VERB: /api/endpoint?with=possible&query=params

The VERB part references the HTTP verb, we will touch upon this later in the

book, but for now these are: GET, POST, PUT, PATCH andDELETE. Next, you

have the endpoint itself that indicates an intention. Lastly, you have the query

parameters, which are often used for sorting and such.

To give a more precise example, here is an example of a more common

endpoint for querying books from a bookstore backend:

GET:/books?include=author

As youmight also have noticed by now, we use bold text to emphasize certain

technical terms.

In this book, we will also show examples of a response payload in JSON. Let’s

take a look at how that will be shown:

v

{

"data": [{

"type": "books",

"id": 1,

"attributes": {

"title": "Build an API with Laravel",

"body": "Lorem ipsum",

"created": "2019-02-01 00:00:00",

"updated": "2019-02-01 00:00:00"

},

"relationships": {

"author": {

"data": {

"id": 1,

"type": "authors"

}

}

}

}],

"included": [

{

"type": "authors",

"id": 1,

"attributes": {

"name": "Wacky Studio"

}

}

]

}

Let’s cover the code samples you will find in this book first. Since this book

is centered around building an API using Laravel and Laravel is developed in

PHP, most code will be PHP code.

The code provided should not be considered applicable in production— it’s

written with the intention of teaching in mind. We strive to write code

following best practices, as much as possible. You might find areas where this

is not the case, but keep in mind that we also strive to write code, where it is

vi

as easy to get a technical points across as possible.

This book has been written with syntax highlighting enabled. How this is

interpreted is different depending on the platform, e-readers and chosen

theme. The following code is an example to see how your e-reader highlights

the syntax. If you see beautiful colors you are in luck, otherwise we hope you

can still follow along.

<?php

class Object {

private $variable;

public function __construct($parameter)

{

$this->variable = $parameter;

}

public function doSomething()

{

return 'did something';

}

}

?>

* * *

vii

Why Laravel?

There are a lot of reasons why we chose to write this book around Laravel. The

biggest reason is that we use the framework in almost all of our applications

and solutions. At the time of writing, we have been using Laravel for almost

six years and have written over a dozen applications, varying from small to

rather large sizes.

Since our primary income comes from developing applications, we want

the development time to be as short and cheap as possible. We don’t want

to reinvent the wheel every time we start on a new project, we don’t want

something that is extremely hard to deploy to a server, and we also want to

make something that is not a nightmare to maintain later on.

Laravel helpsusdealwithprecisely thoseproblems,whichmakesdevelopment

a joy.

* * *

viii

Prerequisites

This book is written with Laravel developers in mind. You do not have to be a

super advanced and skilled developer to follow along, but bear in mind that

this is not a book about the Laravel framework itself, but instead about how to

write an API using Laravel.

Therefore, you will have to have a basic understanding of Laravel to keep up.

We certainly recommend that you have tried writing an application in the

framework before reading, and that you know what we talk about when we

mention: Client, Server, Request, Response, Routes, Controllers, Eloquent or

Models, Migrations, Factories, Authentication, Authorization, and Validation.

If most of these words are foreign to you, we recommend that you read up on

Laravel before continuing.

We will also be using Laravel Collections heavily, so an understanding of

these – especially themap, filter, each, flatten, flatMap,merge, pluck, sort,

unique and valuesmethods is necessary.

Also, we expect that you know the basics around PHP, especially the basics

around PSR-4 namespacing, how to import classes from other namespaces

and so forth. In many IDE’s and editors, all this functionality can be installed

with a simple plugin or will already built into the IDE or editor.

* * *

ix

The Github Repository

Throughout this book, we will not only be building an API, but also touching

upon various concepts where we will need code examples. All of these can be

found in our Github repository at this address:

https://github.com/WackyStudio/build-an-api-with-laravel

For the code to the API we will be building, we have the entire application as

well as every step of the process separated into small folders in our Github

repository, which you can use if you need help or need to see how we have

implemented a certain feature:

Each step will add onto the next one and only contain the files that have been

added or changed following the structure of our main Laravel application, so

you can easily follow along:

x

You don’t have to clone this repository from the beginning, but if you want to

follow along in your code editor instead of the code examples in the book, you

can do sowith the following commands in your terminal. Youwill have to be in

the desired folder on your local system where the repository should be cloned

down to, before running any of the commands. When you are ready, type

the following command andmake sure you are in the right directory before

cloning it:

git clone git@github.com:WackyStudio/build-an-api-with-laravel.git

If you are not using SSH you can clone through HTTPS like this:

git clone https://github.com/WackyStudio/build-an-api-with-laravel.

git

xi

If you are not familiar with git, you can also download a zip file with the

contents by visiting the repository with the link given previously in this

section.

* * *

xii

1

Introduc on

Welcome to Build an API with Laravel, where we, as the title reveals, will take

a look at how to build an API using Laravel. First, we will be looking at an

API from amore theoretical point of view. Don’t worry, we won’t bore you to

death with small details, but rather give you a fundamental understanding,

which we can build on from there.

We will be looking at why we are using PHP and Laravel, and what makes it a

great candidate for writing APIs.

We will go through the JSON:API Specification and learn about the protocols

and conventions, and how these can help us build a more consistent API that

is easier for us to consume.

We will look at how to plan an API, what to be aware of and what decisions

you’ll have to make, depending on whether your API is public or private.

Next, we will be looking at authentication, where we take a closer look at

Laravel Passport and OAuth 2, which Laravel Passport is built upon. Here, we

will go over the different grant types and what they are used for, to give you a

clearer image of what you should choose for your applications.

1

BUILD AN API WITH LARAVEL

Then, we’ll get to the heart of the matter, where we will be writing the actual

API. We will start out with a rather simple case to give you a better picture of

how to apply the knowledge you’ll get from this book and to have a common

ground to build on.

We will be looking at Test-driven Development, especially the parts that are

relevant to API development, and through this use the great testing tools from

Laravel to test our API and also get an excellentworkflowon top of it. Wewon’t

go into every detail about Test-driven Development, since it’s a huge topic in

itself and that’s notwhat this book is about. Wewill, however, use Test-driven

Development to show you howwe can drive out our implementations, how we

can refactor code to not having to repeat the same code over and over again,

and get code that is easier to reuse.

Lastly, wewill be looking at authorization and how you can authorize different

parts of your API.

We will end the book with a bonus chapter, where we will go over the client

side of things and show you how you can consume your API using client

implementations, which is a huge advantage to using a set of strict protocols

which the JSON:API specification will give us.

We hope you will enjoy reading this book as much as we have enjoyed writing

it. We find that knowing how to build APIs has helped us a lot during our

projects, since you can separate the concerns between frontend and backend,

and thereby adapt to changes or new platforms, whichmight consume your

API much easier. Let’s get to it!

What is an API?

To best describe what an API is, let’s imagine that our application or service

is like a restaurant. The frontend of the application is where you sit at the

table and eat, and the backend is the kitchen, where they prepare food for you.

2

INTRODUCTION

Here, an API plays the role of themenu, where you can pick what you want the

kitchen to cook for you. In programming terms, an API makes it possible for a

frontend developer to request a specific task or resource from the backend.

If you lookat amenu, youmightnotice that it consists of afinitepredetermined

set of dishes: a collection of dishes that the kitchen knows how to cook and

prepare for you. The same goes for an API, but instead of having dishes to

choose from, you instead select between endpoints. Through endpoints, we

can order our backend to prepare and send back some data for us. It could be a

list of books for a bookstore or the latest comments for a blog post, depending

on the service or application that serves a solution to a problem.

Like a menu being divided into starters, main course and desserts, an API is

divided into resources. We’ll be touching upon resources later— right now

you just have to know that they exist.

Much like a menu can have various designs, the same goes for APIs and the

architecture behind. At the time of writing this book, there are many types of

API architectures. Some architectures like SOAP are not used that muchmore,

while others like GraphQL are new and exciting. Then there is the common

technology like REST, which we are going to cover in this book.

What is REST?

REST stands forRepresentational State Transfer and is an architectural style

used for communication between a server and a client. REST uses the HTTP

orHypertext Transfer Protocol, as a base for the communication. We already

use HTTP for transferring HTML and other media from servers to our clients.

This is, for instance, what happens when you visit a website, so by building on

an already familiar technology, REST is easily adaptable.

REST sends data using either XML or JSON. Both of these languages are meant

for transferring data, but also meant to be readable by humans, which also

3

BUILD AN API WITH LARAVEL

makes error tracking in REST a lot easier. REST is platform and language

independent, as long as you adapt to HTTP, you adapt to REST. Already

established features of HTTP, like SSL encryption, make it possible to transfer

encrypted data across from server to client, so there are a lot of advantages

we get for free.

A disadvantage is that REST is not stateful, meaning that the state is not

carried along from one request to the other. Therefore, you always have to

send some kind of context to the server for it to know what to deliver to you.

This limitation stems fromHTTP itself, so this is most likely something you

are already familiar with.

Like HTTP, REST works through requests, where you “pull” data from the

server. There is nowayof“pushing”data throughREST, although it is possible

for the server to do server pushing, using the HTTP 2 standard, but even that

is only initiated by a request.

Since REST relies somuch onHTTP, there are some things we have to examine

to understand REST and the way communication takes place. For instance,

HTTPmethods, also called verbs, play a significant role in the intention for a

REST request, as much as the HTTP Status code plays a significant role in the

answers. These are the HTTP building blocks that make upmost of the base of

REST communication. Let’s take a closer look at HTTP Verbs.

HTTP verbs

As mentioned earlier, HTTP verbs play a significant role in the intention of

a request. The HTTP verb tells the server about how we, on the client side,

intend to handle our data. How to handle data is often looked at from a CRUD

perspective, which stands for: Create, Read, Update, Delete. As an example,

imagine an application for a bookstore. The CRUDpart herewill be responsible

for: Adding, Listing, Updating or Removing books from the bookstore.

4

INTRODUCTION

GET

A request with a GET verb is for reading data. That’s the only thing this verb

tells our server. The API endpoint will determine whether we are reading a

collection of resources or just a single resource. We will go much further into

detail about collections and resources later in this book, but for now, to put

it into context, let’s revisit the bookstore. Here, the resource is a book and a

collection could be a stack of books.

POST

A request with a POST verb is for creating a resource. In other words, we use

POST whenever we want to transfer new data from the client to the server.

PUT and PATCH

Both the PUT and the PATCH request is for updating or modifying data, but

the way they are intended is a bit different.

PUT verbs are used when all data for a resource is completely replaced with

the data given by the client.

PATCH verbs are used for a partial update ormodification, instead of replacing

everything in the resource.

Whether to usePUT orPATCH is all up to you and the needs of your application.

The differencesmight be subtle, but they are there tomake it clear to the client

making the request, what is actually happening.

5

BUILD AN API WITH LARAVEL

DELETE

A request with a DELETE verb is, much as the name implies, for deleting a

resource.

Now that we know a bitmore about howwe tell the server about our intentions

using HTTP verbs, let’s look at how the server tells us about the response

through status codes.

Status Codes

Status codes are used by the server to tell the client whether a request has been

successfully completed. The areas that status codes cover are divided into 5

groups. Let’s take a look at a few from each group that we will be using the

most:

2XX as Success

The 2XX range are statuses that tell the client a request was successful. You

would think that only one status was needed here, but in some cases where,

for example, you create something, it would be nice to know if the resource

has been created.

Let’s take a look at a few of the statuses we’ll be using later.

200 OK

The 200 status code, which tells the client that the entire request was

successful, is the most common. You might think that it’s sufficient to use

this one status and then addmore details about the request in the response

payload, but remember that these statuses were created for HTTP and to solve

a problem. Since REST is built upon HTTP, and HTTP uses its status codes to

communicate how a request has been fulfilled, why reinvent the wheel? Better

6

INTRODUCTION

to use what is already a well-known standard.

Which leads us to the next status.

201 Created

This status code tells the client that one or more resources have been created.

Asmentioned in the 200 status code, this status codemakes it possible to only

look at the 201 status, and we know, without having to look at the response

payload, that the resource was created and we canmove onmuch faster.

204 No Content

This status code tells the client that the request has been fulfilled, but also

that there is no payload in the response. To give an example, this could be

used when updating a resource. Here you don’t really need any data back since

you are telling the backend what to update and therefore know what to expect.

3XX as Redirec on

The 3XX range are all statuses that tell the client about redirections. Most

applications are continually being updated, and it is not uncommon that

endpoints are being updated or removed. Then what do you do if someone out

there is using an old endpoint where a sudden change could break their entire

site or application?

Here, redirects play an important role.

301 Moved Permanently

The 301 status code tells the client that an endpoint has beenmoved and should

give a new location in its payload for the client to save for future reference. A

thing to note here is that the 301 status code makes it possible to change the

7

BUILD AN API WITH LARAVEL

HTTP verb for the request.

This example is a little silly, but let’s imagine we have the following endpoint:

POST: /v1/book

We know you wouldn’t use POST for this, but imagine that this endpoint

returns a collection of books. With the 301 status code, you are allowed to

change theHTTP verbwhen redirecting to the new endpoint, which then could

be like this:

GET: /v2/book

This is not something we recommend doing, unless you are using a wrong

HTTP verb beforehand, where a change makes sense. Let’s take a look at a

status code that allows you to redirect, but does not allow you to change the

HTTP verb. A HTTP verb that can ensure the redirect is more consistent than

in this example.

307 Temporary Redirect

The 307 status code is used for a temporary redirect. Here, the server should

give a new location in its payload, for the client to redirect to. The client will

not save any information about the redirect andwillmerely follow the location

given by the server and gladly hit the old endpoint time after time, since the

redirect is only temporary. A thing to note, as mentioned in the 301 status

code, is that the 307 status code does not let you change the HTTP verb in the

redirect. When redirecting the user, the endpoint to which you are redirected

must match the HTTP verb fromwhich you were redirected.

8

INTRODUCTION

308 Permanent Redirect

The 308 status code is used for a permanent redirect, much like the 301

redirects. The only difference is that, like 307, it does not allow for the HTTP

verb to change from the original endpoint to the endpoint redirected to.

4XX as Client errors

The 4XX range are all statuses that deal with client error, which could be

a request that the client is not authenticated to do or even a request to a

misspelled endpoint, which the server cannot fulfill.

400 Bad Request

The 400, much like the 200, is a broad status code. All it does is tell the client

that the server could not or would not process the request. It does not specify

any reasons, and the client would have to look at the payload for further

information.

401 Unauthorized

The 401 status tells the client that the request could not be fulfilled due to

lacking authentication credentials.

403 Forbidden

The 403 status tells the client that the request could not be fulfilled due to

lacking authorization. For example, this status code could be sent back if

one user tries to access or update another user’s data. The user might be

authenticated to access the endpoint, but not have authorization to access the

data.

9

BUILD AN API WITH LARAVEL

404 Not Found

The 404 status tells the client that the requested resource could not be found.

This is a pretty common status that most people, even non-developers, have

beenmet by.

405 Method Not Allowed

As we have explained earlier, HTTP methods are also called HTTP verbs in

REST. The 405 status tells the client that the request has beenmade with an

HTTP verb that is not allowed. This could, for instance, be a request made

using aGET verb to an endpoint that only supports the POST verb. In this case,

a 405 status should be sent to the client.

422 Unprocessable En ty

The official RFC4918 states that this status is to be used when the server

understands the content of the request and the syntax of the request is

correct, but was unable to process the request. An RFC stands for Request

For Comments, which can be viewed as the rules for standardizing the

internet. The number references the document in which the request has been

documented. In Laravel, the 422 status code is used for validation errors when

using REST and JSON. The JSON:API documentation says that this status is

to be used when creating or updating a resource where an attribute is invalid.

Based on all these examples, we can safely say that the 422 status code tells

the client about invalid data sent in the request.

5XX as Server errors

The 5XX range are all statuses that deal with the server, where it is aware that

an error has occurred or might otherwise be unable to handle the request.

10

INTRODUCTION

500 Internal Server Error

This status is used as a generic error message given when it is not possible to

provide a more specific status code.

501 Not Implemented

This status is used when the server does not know how to fulfill the request,

but implies that it might be available in the future. This could be a new feature

that is under development.

502 Bad Gateway

This status is used when the server is acting as a gateway and has received

an invalid response. If you have ever used nginx, you have probably seen

this status code. Since nginx sits as the man in the middle and intercepts all

incoming requests and then proxies these forwards, if nginx receives an error

from the party it tries to proxy to, it gives you a 502 status code.

503 Service Unavailable

This status code is used if the server is down for maintenance

504 Gateway Timeout

This status is used when the server is acting as a gateway and did not receive a

response within a given period. As with the 502 status code, this is something

you see with nginx, where you configure a timeout limit, in which a request

should be fulfilled or else a timeout will be sent back to the client. This is used

to prevent the server fromworking forever on a job that might not be solvable.

This could, for instance, be an error in PHP, where something loops forever.

We don’t want our users to wait forever and they want their data, so let’s use

a time limit andmove on.

11

BUILD AN API WITH LARAVEL

Summary

We have made a good start already and covered some of the basics for both

this book but also APIs in general.

We have looked at what an API is and how it can be seen as a menu at a

restaurant, where users can see what you can order from the backend.

Wehave taken a look atREST, how it builds on topofHTTPand thereby inherits

all the abilities that HTTP already has. We have looked at HTTP verbs and how

they play a significant role in the intention of a request. We have looked at the

more common status codes and the ones we will cover in this book, how these

are used to respond back to the client about how the request has been fulfilled

or not. With this knowledge inmind, let’s dig a little deeper into APIs and how

to plan your work before you sit down and write your API.

* * *

12

2

The JSON:API specifica on

Let’s have a look at the JSON:API specification— a specification for building

APIs in JSON. A specification like this can help us build our API, following a set

of rules that makes it easier for ourselves, and especially others, who will be

consuming our API in the future.

We will be looking at the specification and how it fits into the features Laravel

offers, and how it can be a great tool to master, andmake it possible for you to

actually plan out your API with more confidence.

Firstly, we will be looking at a case for this book to have something to

work from: a common ground whichmakes it a bit easier to put things into

perspective. This way we can give examples when looking at the JSON:API

specification with context and in later chapters show you how we go from

planning all the way to implementation.

Let’s have a look at the case.

13

BUILD AN API WITH LARAVEL

The case

Asmentioned earlier, we will be using a case to establish a common ground. It

makes it easier for us to give examples in a context you understand, and lets

us reuse this context for planning and later implementation. By having a case

that simulates a real life example, it might be easier for you to understand the

concepts we will present to you and apply them into your own projects in the

future. We all learn differently, but it is our experience that having a case and

a context makes it easier to see the concepts applied and learn how to apply

them yourself.

So without further ado, let’s get into the case:

Anna’s Bookstore has existed since the early 90s where it opened as a

small cornershop in the city. It isn’t a fancy place— thefloor, bookshelves

and furniture make it seem a bit like your grandma’s place, but it’s cosy,

welcoming and the perfect combination of a bookstore and coffee shop,

where you will feel right at home. Customers come back for Anna’s

personality, which is reflected in every little thing in the store, and

especially the selection of books. It’s not the selection of books you’ll find

in every store; these are hand-picked by Anna herself. She’ll often offer

customers a cup of coffee and discuss a book, or the work of an author,

when there isn’t anything to do at the cash register. You can feel that

both literature and people are her passion.

As the years go by, new stores start emerging and Anna gets a lot more

competition, especially frommodern bookstores, where people can find

and buy books faster. This isn’t really Anna’s cup of tea, and to compete,

she would have to change everything about her store. She’s beginning

to think about closing the store, until a day when her nephew visits her.

When they talk about the store, the nephew asks: “Why don’t you go

online, so you can keep your store as it is and sell to people at home or

in a hurry?”. Anna must admit that it is a good idea. Over the years,

14

THE JSON:API SPECIFICATION

she has started to order books online herself and is quite pleased with

the experience. The nephew then continues: “You don’t have to have a

huge selection of the books, why not cater to a niche and sell a curated

selection of books, like you do in your store now? You know people

always praise you for having so many hidden gems.” Anna is convinced.

This is something she can see herself in, she can still use her expertise,

and people can still buy a bit of Anna’s personality in the selection of her

books.

Other than being able to sell books and being able to keep stock of her

books, Anna wants to be able to present these books through authors.

Anna has a bunch of authors that she can vouch for, who always publish

good work, a key part of her having so many hidden gems.

Sometimes, Anna finds books by reading comments that other people

have left on the online bookstores. She loves the helpful tips people give

in the comments and it reminds her of the discussions she has been a

part of in her own bookstore. She would like something like this in her

online bookstore as well.

There are a few things to take note of here. To some, the case might sound

really simple and to others, it might seem daunting. But fear not, we won’t

be building the entire solution for Anna. Instead, we will pick out parts of

the online bookstore that makes sense in terms of an API, and not the entire

purchaseflow etc. Keep inmind thatwe havewritten this case to communicate

the concepts about building an API, as easy as possible, and there is more than

enough in the part about handling books and authors to do that.

Now that we knowmore about the case and what we need to build, we could

go straight to the planning, but let’s hold that thought and take a closer look

at the JSON:API specification, and learn a bit more about the protocols that

will be the foundation of how we communicate with our API.

15

BUILD AN API WITH LARAVEL

JSON:API specifica on

When developing software, there are a lot of decisions to make about how to

design the software in the best way— from how to design your code to the

application architecture, and all the way up to the visual representation of

your application on screen. With APIs this isn’t any different.

Up until 2013, where the first draft of the JSON:API specification was made,

there weren’t any approaches to standardization of JSON API interactions.

Before adhering to the JSON:API, we at Wacky Studio even made our APIs

in our own way, the way we thought was best. We drew inspiration from

APIs of the services we used andmade our decisions based on how they were

implementing their APIs.

That was a very bad idea because:

• They were also in a phase of learning how to write a good API for their

services

• None of themwere following the same conventions

• Most of them had an API design that meant you had to make a lot of

requests for data

The worst of it all was when we had to consume our own API on the frontend.

Because of the lack of conventions, we had to constantly go back and forth to

get the correct endpoints, to see what data each request should contain and to

see what would be returned from the server.

And every time we started a new project, we ended up writing all the code for

communication with the server, again and again, because of inconsistency.

You see, it’s not the development of the API on the backend that takes time and

causes pain. The pain is mostly felt when you have to work with the API on the

16

THE JSON:API SPECIFICATION

frontend, or evenworsewhenotherpeopleor companies areworkingwithyour

API. Without strict conventions, you not only have to write documentation

that shows what your API can do, but you also end up teaching how to use the

API.

This is where following a specification like the JSON:API specification shows

its worth. How to use it is already documented and as long as you follow the

specification, anybody who knows how to work with the JSON:API specifica-

tion, knows how to work with your API. Of course, they won’t know what your

API can do— you will still have to tell them that— but how to communicate

with your server through your API, will never be a problem for them.

Even better, when following the conventions of the JSON:API specification,

you have a strict protocol that never changes from application to application.

This means that you can extract the whole client-server communication part

of your frontend application and reuse it from application to application.

You won’t have to write the same tedious boilerplate code over and over

again, and you can focus on building the functionality of your frontend app

instead. The JSON:API specification even lists available implementations,

which includes implementations made for a lot of languages like Javascript as

well as frameworks like VueJS and React.

The JSON:API specification was drafted in 2013 and had the first final v1.0

ready in 2015, where it has been used ever since. At the time of writing, a

new version is about to be released, but as stated in the specification, the new

version will always be backward compatible, using a “never remove - only

add” strategy. So you won’t end up like us, where your inspiration is suddenly

drastically changed. When implementing the JSON:API specification, you are

ensured that people will always be able to use it, nomatter which version of

the specification they have learned and/or are using.

As we see it, the JSON:API specification is a great approach to standardization

of APIs and throughout this book, we will dive further into it and show you

17

BUILD AN API WITH LARAVEL

how to build an API in Laravel using it. Before we get ahead of ourselves, let’s

commence by looking at the fundamentals of the specification.

Client / Server Responsibili es

When you adopt the JSON:API specification, the first thing you have to look at

are the headers sent in your request and responses. As a client, you have to

send your request with

Accept: application/vnd.api+json

And

Content-Type: application/vnd.api+json

These headers tell the server that what you’re sending lives up to the protocol

given in the JSON:API specification, and also that you expect to receive data in

the response that adhere to that same protocol.

As a server, you have to deliver your response with

Content-Type: application/vnd.api+json

to tell the client that what you’re sending lives up to the protocol given in the

JSON:API specification.

18

THE JSON:API SPECIFICATION

Endpoints

Though the specification provides a strict protocol for how requests and re-

sponses are structured, it onlygives a fewrecommendationsabouthowto form

your endpoints. In this section, we will have a look at the recommendations

from the JSON:API specification and give some of our recommendations as

well.

It isn’t hard to define endpoints, since you are already used to it by the routes

you have defined in your existing Laravel applications. The thing that can be

hard is making sure that you are consistent.

Naming conven ons

In Laravel, we are used to working with models through the Eloquent ORM.

Models define the tables in our database that hold the data for our entire

application.

Our API should give the client the data being requested and these data aremost

likely to be fetched from our database. Therefore, it is also very convenient to

be thinking of our models as resources.

We are used to naming our tables after what they represent in the real world

and often with nouns. As an example, the data for the users of our application

will most likely be stored in a users table with a Usermodel. The books of our

bookstore will be placed in a books table with a Bookmodel. The resource in

this example would be “books”.

The naming conventionmay confuse since you are used toworkingwithmodel

names in a singular naming convention, but the table names are made in a

plural naming convention. When it comes to resource naming, there have

been a lot of discussions whether to use singular or plural names.

19

BUILD AN API WITH LARAVEL

The JSON:API specification doesn’t provide a clear answer here, but gives the

following example of a plural naming when having URL for a collection of

resources.

GET: /photos

Later on, they do give an example where they use singular naming, but here

it seems like it is done when there is a one-to-one relationship between

resources.

We have been down both roads and have felt both the upsides and downsides

to plural and singular naming conventions and especially with a combination

of both. We started out with a singular naming convention because it made a

lot of sense, since it’s so close to how you work with models in Laravel. If we

want to get a book we write:

<?php

$book = Book::first();

// or

$book = Book::find(1);

Here, our endpoint would reflect this as:

GET: /book/1

And it makes sense— if you want a single book, you write it out in singular.

But what about the situation when you want a collection of books?

20

THE JSON:API SPECIFICATION

Because of the conventions in the Laravel framework where model names are

using a singular naming convention, it is not unusual to get a collection of

Books when you write the following:

<?php

$books = Book::all();

For us, when it came to reflecting this in endpoints, we had a little trouble. It

felt wrong getting a collection of books by:

GET: /book

Because of this, we came up with a solution that borrowed a bit more of how

Laravel’s Eloquent ORMwork, with an endpoint like this:

GET: /book/all

It isn’t pretty and it would force our consumers to always remember the all

when wanting to fetch collections of resource, which we also occasionally

forgot, whenever we had been away from the project in some time.

Thenext APIwewrote, wewanted to change that ugly reference to all andwrite

something that mademore sense. We opted to change the resource naming

for requests for collections to plural. In this way, we would write the following

to get a collection of books:

21

BUILD AN API WITH LARAVEL

GET: /books

And we could then write the following to get a single book:

GET: /book/1

We thought this was a great and consistentway, until we stumbled uponwords

with irregular plurals. As a trivial example, let’s look at the word leaf. It has

one spelling in singular, but the plural spelling leaves is different.

Somebody whose first language isn’t English, could end up writing leafs and

get an error. This could lead to confusion since you write the following to get

a single leaf:

GET: /leaf/1

To get a collection of leaves, you write the following:

GET: /leaves

There is suddenly an introduction of inconsistency and that is not what we

want. We want to have predictable behavior and one word only for a resource.

The way we do it now, and the way we would recommend, is to use plural only.

This might sound strange and like we would hit the same obstacles, but that is

not the case. Let’s look back at the conventions by Laravel’s Eloquent ORM.

22

THE JSON:API SPECIFICATION

Model names are in singular, but tables names are in plural. Models are in

singular, because you are only interacting with a single model at a time, since

a single model corresponds to a single row in the database. Here, the singular

naming convention fits perfectly.

If youhavemultiplemodels, these areplaced in collections. It’s not an instance

of a Model you get. No, here you’ll get an instance of a Collection, which

contains an array of manymodels.

A database table will contain one or more rows. It is suddenly a collection of

data for the thing it represents, therefore the plural naming convention of

Laravel makes sense for these. If we want a certain row in that table, we use a

Primary Key, most often with the name id, to access that single row.

We like to take that same approach to our endpoint naming convention. We

use a plural naming convention, like our table names, because we expect

a collection of resources. We won’t be able to avoid irregular plurals, but

by sticking to plural only, our consumers only need to remember one name

and don’t have to care if that name is an irregular plural. They just have to

remember the name leaves and that’s it.

A request to the following will give us a resource collection of all books:

GET: /books

If we want a single book, we fetch it, by giving an id to the books collection,

like this:

GET: /books/1

23

BUILD AN API WITH LARAVEL

This also matches the way the JSON:API specification wants us to treat

collections of resources, namely as arrays keyed by a resource ID.

There is also a naming convention when it comes to relations between

resources. These are a part of theprotocols givenby the JSON:API specification,

which we will look further into in the upcoming sections.

Before we con nue

In the upcoming sections, we will take a deeper look at the JSON:API specifica-

tion. We will touch upon conventions that the JSON:API specification states as

conventions thatMUST be followed and conventions the specification states

as conventions that MAY be followed. However, we recommend that you

follow the conventions we have picked out, whether the specification states

that they MUST or MAY be implemented. We will touch upon most of the

conventions given in the specification, but there are a few that we haven’t had

any use for and feel that they cover more edge cases.

Document structure

Let’s look at the document structure of the data for both JSON:API request and

responses. The document describes how your JSON data should be formed,

howmembers should be named, where these should be placed, and so forth.

Top-level

Here, the JSON:API specification states that there must be a JSON object at the

root of the document, representing the top-level.

In the top-level of the document, there must be at least one of the following

members:

• data - which is the most important member that contains the primary

24

THE JSON:API SPECIFICATION

data of the document.

• errors - which is a member that contains all error objects.

• included - which is a member that contains all resource objects that

are related to the primary data and/or related to each other. We will

touch more on this when we get to the section about resource objects

and relationships.

• jsonapi - which is a member that contains the server’s implementation

of the JSON:API specification

• meta - which is a member that contains all non-standard meta informa-

tion.

Note that it is very important that the data and errors member never coexist

in the same document. The data member should only be used in successful

request and responses,where theerrorsmember shouldonlybeusedwhenever

there is an unsuccessful request or response. By separating these, you have

a clear convention that states where to look for either data or the errors that

might occur.

Now that we know what the top-level structure should be, let’s take a look at

what our primary data will be and also how to structure that.

Primary data and Resource objects

In the section about naming conventions, we talked about how convenient it

is to be thinking of our Laravel models as resources since these represent the

rows of data in our database and data that we most likely will share across our

APIs.

In this section,wewill be looking at how to structure these resources according

to the JSON:API specification. Resources or resources objects, as they are

called in the JSON:API specification, will be placed in the datamember and

therefore serve as the primary data in the JSON:API.

25

BUILD AN API WITH LARAVEL

We know that Laravel Models can be returned in a response, where Laravel

will handle the whole conversion of the Model data into JSON, without you

having to lift a finger. That’s great and a very convenient feature—we have

certainly used it a lot in our earlier API days. But the problem is that the data

returned is not consistent.

There is no strict document layout so you know where to look for the data

you need. Instead, everything is just exposed in the top-level of the returned

document. One endpoint exposes a new resource withmembers different than

the next one and you’ll quickly have to look at the documentation to find out

where to look for the data. Moreover, you actually can’t seewhat type ofmodel

you are receiving, so you’ll have to rely on the naming of the endpoints to tell

that part of the story.

As a solution to the aforementioned problem, the JSON:API specification tells

us to structure our resource object in this way:

{

"id": 1,

"type": "books",

"attributes": {

},

"relationships": {

}

}

In the example, you can see a clear structure. In the root of the resource object

you’ll find:

• id - which is the id of the resource as a string

• type - which is the type of the resource as a string

• attributes - which contains all of the attributes of our resource

• relationships - which contains all of the relationships of our resource

26

THE JSON:API SPECIFICATION

This structure mitigates the problem of not knowing where to look for your

data, not knowing the type of the resource, and it gives us a predictable and

consistent way of accessing the data of a resource.

It is ok for the attributes and relationshipmembers to be empty. In fact, these

can be removed if not used. But, as an absolute minimum, you should always

have the id and typemembers in your resource objects, and the value of both

should always be a string.

Ok, so we know how to structure our resource objects, but as we talked about

in the naming convention section, there is a difference between requesting a

collection of resources versus requesting a single resource.

The difference here is not that big, but it is important to be aware of it.

When requesting a single resource like this:

GET: /books/1

the data member of the returned document should be structured like this:

(note thatweare omitting theattributes and relationships for the sake of simplicity)

{

"data": {

"id": "1",

"type": "books"

}

}

Here, the data member is the resource object itself. When requesting a

collection of resources like this :

27

BUILD AN API WITH LARAVEL

GET: /books

the data member of the returned document should be structured like this:

(note that we are omitting the attributes and relationships once again)

{

"data": [

{

"id": "1",

"type": "books"

}

]

}

Here, the datamember is an array containing the requested resource objects.

As you can see here, it should be an array even if there is only one resource in

the collection. If there weren’t any resources in the collection, an empty array

should be returned.

We got the basics down and it’s time to look at those attributes and relation-

ships we have omitted in the examples. Here, we open up for the ability to

create our ownmember names, therefore it is important to look at the naming

convention for these as well to ensure consistency.

Member names

The JSON:API has a clear naming conventionwhen it comes tomember names,

where all member names must be treated as case sensitive by both client and

servers. Other than that, there are some conditions that the member names

must also follow:

1. Member namesmust contain at least one character

28

THE JSON:API SPECIFICATION

2. Member namesmust contain only allowed characters

3. Member namesmust start and end with globally allowed characters

The globally allowed characters are:

• a-z

• A-Z

• 0-9

The characters that are allowed except for the beginning and end of a member

name are:

• -

• _

As an example, it is ok with a member name like this:

{

"member_name": "content"

}

But it is not ok with a member name like this:

{

"_member_name_": "content"

}

The above example is pretty trivial. Who would do that, right? The important

thing to remember here is to have a letter in the beginning and the end and

29

BUILD AN API WITH LARAVEL

you’re home safe.

We strongly recommend that you keep all your member names in lowercase

and stick to a convention when picking characters like spaces, like these

examples:

Using underscores as space, also known as snake case:

{

"member_name": "content"

}

Using hyphens as space, also known as kebab case:

{

"member-name": "content"

}

Using a capital letter on the next word to indicate a space, also known as camel

case:

{

"memberName": "content"

}

We have adopted the camel case as a naming convention when coding in PHP,

but in our APIs, it’s a bit of a different story. Here, we use snake casing, mostly

because that’s a conventionwehave used from the start, when looking at other

companies’ APIs. At the time of writing, both Google, Dropbox, and Facebook

use snake cases in their APIs. Also, when calling the toJson()method on your

30

THE JSON:API SPECIFICATION

model, Laravel converts your model attributes spaces into snake case.

Our recommendation is to use snake cases, especially because we will be using

these in this book, but also since it comes for free with Laravel. The choice,

however, is entirely yours — just make sure you are consistent and don’t

suddenly change in the middle of working with this book or in your own APIs.

A ributes

Now that we have a naming convention for our member names, we can

continue to attributes. Attributes on a resource object are just like the

attributes on your model in a Laravel Application. These are data like the

title of a book, the name of an author, and so forth.

The JSON:API specification specifies that on a resource object, the attributes

member should be an object. Anymember inside this object can be whatever

data that represents the object, but must never be a relationship. For

relationships, we use a dedicated member in the resource object, which we

will look at shortly.

To make an example, let’s look at a single book again:

{

"data": {

"id": "1",

"type": "books",

"attributes": {

"title": "Build an API with Laravel",

"publication_year": "2019"

}

}

}

31

BUILD AN API WITH LARAVEL

Here, you see the definition of the attributesmember as an object containing

two members, namely title and publication_year. You also see how the

naming convention of snake casing takes effect.

As mentioned earlier, the attributes member can contain any information

about the resource object, but cannot contain relationships or amember called

relationships.

Another rule is that the attributesmember can never contain an id or type

member, since these are reserved on the root of the resource object.

But how do we define relationships then? Let’s take a look at that next.

Rela onships

When it comes to data in an application, these are often related to one another.

When building applications in Laravel, we are used to defining models as

objects in real life and as such, these have different relations to one another:

A car belongs to a brand, a bus can have many passengers, a book can have

many authors, and an author can have written many books.

Do you see how everything connects? Chances are that you have already

written something like the sentences we just presented, since Laravel uses

most of the wording in the relationships you define in models.

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

32

THE JSON:API SPECIFICATION

class Car extends Model

{

/**

* Get the brand of the car

*/

public function brand()

{

return $this->belongsTo('App\Brand');

}

}

By declaring a relationship method on our model, we can fetch the brand of

our car very easily, now that we have told Laravel about the relationship.

But how do you tell about relationships in your APIs and how do you convey

enough information, so that your consumers can easily get the data they

want?Relationships in the JSON:API specification is defined as the relation-

shipsmember.

Like the id, type and attributesmembers, it should be placed at the root of the

resources object and be defined as an object like this:

{

"data": {

"id": "1",

"type": "books",

"attributes": {

"title": "Build an API with Laravel",

"publication_year": "2019"

},

"relationships": {

}

}

}

33

BUILD AN API WITH LARAVEL

Unlike the attributesmember, where you are in charge of the members, the

relationships have a more strict set of rules. A relationshipmember must

contain at least one of the followingmembers:

• links

• - self

• - related

• data

• meta

Let’s take a look at the linksmember. This member contains two types of

links. The link for the selfmember is a link for the relationship itself. With

this link, it is possible to manipulate the relationship between two resources

without having to delete one of them. A good example here would be tagging.

If a book contains one or more tags, this link can be used to remove the tag

from the book without having to delete the tag or the book.

The link for the relatedmember is a link for the relation between resources.

Whenmaking a request to this link, the related resources will be queried and

returned as primary data. This is very much like calling a relationship method

onyour Laravelmodels, where Laravelwillmake a query for the relatedmodels

of that model for you.

The datamember is something we have seen before, yet this one is a little

different. It’s called the resource linkage and instead of holding resource

objects, it holds resource identifier objects. In contrast to resource objects,

which hold id, type, attributes and relationshipsmembers, resource identifier

objects only contain the id and typemembers of the related resource object.

Themetamember is a meta object that can contain non-standard metadata

about the relationship. We haven’t had the need for this yet and thus won’t

include it in the examples. Now that we’re talking about it, let’s take a look at

the relationship between a book and an author:

34

THE JSON:API SPECIFICATION

{

"data": {

"id": "1",

"type": "books",

"attributes": {

"title": "Build an API with Laravel",

"publication_year": "2019"

},

"relationships": {

"authors": {

"links": {

"self": "http://example.com/books/1/relationships/authors

",

"related": "http://example.com/books/1/authors"

},

"data": {

"id": "5",

"type": "authors"

}

}

}

}

}

If you take a look at the JSON example, you can see the authormember inside

the relationships object. In this example, we have the links that make it

possible to easily fetch the related resource, which in this case is the author of

the book.

In the example above,wehave a single author, as in aone-to-one relationship.

In the caseof aone-to-manyormany-to-many relationship, anarray should

be used instead, just like this:

{

"data": {

35

BUILD AN API WITH LARAVEL

"id": "1",

"type": "books",

"attributes": {

"title": "Build an API with Laravel",

"publication_year": "2019"

},

"relationships": {

"comments": {

"links": {

"self": "http://example.com/books/1/relationships/comments

",

"related": "http://example.com/books/1/comments"

},

"data": [

{

"id": "16",

"type": "comments"

},

{

"id": "28",

"type": "comments"

}

]

}

}

}

}

The way the data attribute contains resource identifier objects is just like the

primary data’s datamember, which holds either an object for a single resource

or an array for a collection of resources.

Ok, that was a bunch of rules at once. Let’s recap on how to define a

relationship. Wemake an object as the relationshipsmember. Eachmember

inside relationships defines each related resource.

In the examples given above, the relationship is between books, authors and

comments. All of those combined would look like this:

36

THE JSON:API SPECIFICATION

{

"data": {

"id": "1",

"type": "books",

"attributes": {

"title": "Build an API with Laravel",

"publication_year": "2019"

},

"relationships": {

"author": {

"links": {

"self": "http://example.com/books/1/relationships/authors

",

"related": "http://example.com/books/1/authors"

},

"data": {

"id": "5",

"type": "authors"

}

},

"comments": {

"links": {

"self": "http://example.com/books/1/relationships/comments

",

"related": "http://example.com/books/1/comments"

},

"data": [

{

"id": "16",

"type": "comments"

},

{

"id": "28",

"type": "comments"

}

]

}

}

}

}

37

BUILD AN API WITH LARAVEL

Inside each relationship, we have at least one of the members:

• links

• data

• meta

In our case, we have both links and data, which we recommend that you do as

well.

The linksmembers give us a consistent way of accessing either the relation-

ship between the resources or the related resource object. The datamembers

give us either a resource identifier object or a collection of resources.

We now know how to define relationships, we even know how to provide links

for manipulating relationships and how to fetch related resources. If we want

the comments for the book, we can simply make a request to the link given in

the relatedmember and a response containing all the resource objects will be

returned.

Right now, the datamember of the relationships seems a bit redundant, since

it only contains id and typemember instead of an entire resource object, but

let’s look further into this in the next section and it will make more sense.

Compound Documents

We have just looked at the relationshipsmember and what kind of members

this should contain. We left with some confusion about the data member

inside the relationships object. To understand this part, we need to revisit

the top-level of our document, more specifically the includedmember. We

only touched upon this briefly in the section about Top-level, so let’s have a

better look at this.

When building an API or an application for that matter, you have to make

38

THE JSON:API SPECIFICATION

some thoughts about optimization andmake sure your application performs

as intended. One optimization could be to reduce the number ofHTTP requests

as much as possible.

One way to do this is to use the includedmember. The reason for this is that

it makes it possible for you to include the related resources of the fetched

resource, which will then be the resources defined in the datamember in the

relationships object.

Instead of having to make a new request for the related resources, they can

just be included in the current response.

In this case, the resource objects sent in the includedmember will correspond

to the resource identifier objects given in the relationships’ datamember.

Let’s build upon the previous examples to give a better idea of this:

{

"data": {

"id": "1",

"type": "books",

"attributes": {

"title": "Build an API with Laravel",

"publication_year": "2019"

},

"relationships": {

"author": {

"links": {

"self": "http://example.com/books/1/relationships/authors

",

"related": "http://example.com/books/1/authors"

},

"data": {

"id": "5",

39

BUILD AN API WITH LARAVEL

"type": "authors"

}

},

"comments": {

"links": {

"self": "http://example.com/books/1/relationships/comments

",

"related": "http://example.com/books/1/comments"

},

"data": [

{

"id": "16",

"type": "comments"

},

{

"id": "28",

"type": "comments"

}

]

}

}

},

"included": [

{

"id": "5",

"type": "authors",

"attributes": {

"name": "Wacky Studio"

}

},

{

"id": "16",

"type": "comments",

"attributes": {

"body": "Hello world"

}

},

{

"id": "28",

"type": "comments",

40

THE JSON:API SPECIFICATION

"attributes": {

"body": "Foo bar"

}

}

]

}

In the example, you can see how the included member, includes all of the

resource objects, for the resource identifier objects given in the datamember.

Here, it’s important to note that the includedmember will always be an array

that contains all of the related resource objects mixed together in a flat array.

The included member can be included by default, or by an include query

parameter like this:

GET: /books/1?include=comments

Here, there will not be anything included before the query parameters are in

the URL and if the relationship does not exist, a 400 Bad Request should be

used. If you choose to support using the include query parameter, there are a

fewmore things you should implement.

First, it should be possible to specify which relationships that should be

included in the response using a comma separated list:

GET: /books/1?include=authors,comments

It should be possible to request resources related to other resources using a

41

BUILD AN API WITH LARAVEL

dot-separated path for each relationship name. In our example, a book has

a relationship with authors and comments, but each comment also has an

author, in the formof a userwho created the comment. If wewanted to include

the users for each comment, it should be possible to do this by adding the

related resource like this:

GET: /books/1?include=authors,comments.users

Again, if it isn’t possible to fetch the related resource, you should return with

a 400 Bad Request.

Whether youwant to use the include query param is all up to you, and the same

goes for the includedmember in your response documents, but if you choose

to do so, you must have the data members in the relationships object, for

each of your relationships. If not, you can omit the datamember, but you then

have to have the linksmember, so that the related resources can be requested

through the related link.

Now, let’s take a step back and think about what we have been through.

We now know how to structure the document for our data. We know that

we must have a top-level object and that we must have a data member

representing our primary data, and that the datamember can be either an

object or array, whether it’s a single resource or a collectionwe have requested.

We know that a resource is represented in our document as a resource object

that must contain an id and typemember, both with a string datatype.

We know that we can use an attributesmember to give information about our

resource object, which in this case would be the attributes of your Laravel

models.

We know how to use the proper member name convention in our attributes

42

THE JSON:API SPECIFICATION

object and how it’s important to stick to a naming convention strategy as

snake case to keep consistency.

We know how to represent a relationship between our resources through a

relationship object.

We know how to define a relationship as yet another object, which contains

a linksmember with links to the relationship itself or the related resources

and a datamember holding resource identifier objects for use in the included

top-level member.

We know how to use the included top-level member to save HTTP request by

sending related resources in the response.

That was quite a lot and we are almost done with the JSON:API specification.

Before wemove on though, we just have to look at how wemake requests and

responses using this new document structure and also how we handle errors.

Request and responses

It’s time to look at how we should make our request and responses according

to the JSON:API specification. We know what to send and what we can expect

to receive, but we don’t know how to request it or how these should be sent

with a response yet. Of course, there are conventions and we will adhere to

them. Let’s take a closer look.

Requests

All requests to get data from our API must be done with a GET request.

Remember the previous chapter in the section about REST and HTTP verbs,

the GET request is for reading data and the same goes for the JSON:API

specification. Nothing has changed here.

43

BUILD AN API WITH LARAVEL

Some interesting conventions the JSON:API specification brings along for

requests is the ability for sorting and pagination of collection data. These are

only optional conventions, but we are mentioning them because we have had

great use of these. There are more conventions, but these are outside of the

scope of this book.

Now, let’s first take a closer look at sorting.

Sor ng

Sorting data is a great feature to have in an API. Think about sorting just like

ORDER BY in your database. You get the ability to sort your data based on

member names in a more dynamic way, instead of being limited by the way

the API developer may have thought was the best way to sort the data.

Sorting data is done via a query parameter. If you are unsure what a query

parameter is, it is a convention in HTTP you use to send along parameters for

a request, as a part of the URL like this:

GET: http://example.com/cars?color=blue

Here, the parameter we are sending along is color with a value of blue. The

query parameter used by the sort feature is the sort parameter.

The value of the parameter is the member name of the attribute you want to

sort by. It would look something like this:

GET: /books?sort=title

44

THE JSON:API SPECIFICATION

If you want to support multiple sort fields, these should be separated by a

comma like this:

GET: /books?sort=title, publication_date

When ordering a database query by a column name, we are able to tell if the

ordering should be done in ascending order or descending order. The same

thing goes for sorting a collection, according to the JSON:API specification.

Here, a sorting is always done in ascending order unless you prefix a sort field

with aminus, in which case it will be sorted in descending order. It would look

something like this:

GET: /authors?sort=-age

Here, youwill get theoldest authorsfirst, descendinguntil theyoungest author

in the collection.

Pagina on

Pagination is another feature that can have great benefits, especially if you

have large sets of data that can be quite a strain on the system to query. You

can paginate the results and do the queries in smaller chunks, letting the API

consumer do the work of progressing through the pagination.

The way pagination is done in the JSON:API specification is through a links

object in the root of the response document. The links object must have the

followingmembers used for pagination links:

• first - which is the first page of data

• last - which is the last page of data

• prev - which is the previous page of data

45

BUILD AN API WITH LARAVEL

• next - which is the next page of data

The links object in the document would look something like this:

{

"data": [

{

"id": "4",

"type": "books",

"attributes": {

"title": "Lorem Ipsum"

}

},

{

"id": "5",

"type": "books",

"attributes": {

"title": "Lorem Ipsum"

}

},

{

"id": "6",

"type": "books",

"attributes": {

"title": "Lorem Ipsum"

}

},

],

"links": {

"first": "http://example.com/books?page=1",

"last": "http://example.com/books?page=5",

"prev": "http://example.com/books?page=1",

"next": "http://example.com/books?page=3"

}

}

In the example, you can see a collection of books and in the bottom of the

response document you see the linksmember with the four members of a

46

THE JSON:API SPECIFICATION

pagination link object. Can you guess which page we are on? Correct! We are

on page two! Hadwe been on thefirst page, the JSON:API specification actually

requires us to omit or set a null value for the links that are unavailable, which

in that casewould be the prev link, since there is no previous page, when being

on the first page. Just to demonstrate, here is an example of that scenario:

{

"data": [

{

"id": "1",

"type": "books",

"attributes": {

"title": "Lorem Ipsum"

}

},

{

"id": "2",

"type": "books",

"attributes": {

"title": "Lorem Ipsum"

}

},

{

"id": "3",

"type": "books",

"attributes": {

"title": "Lorem Ipsum"

}

},

],

"links": {

"first": "http://example.com/books?page=1",

"last": "http://example.com/books?page=5",

"prev": null,

"next": "http://example.com/books?page=2"

}

}

47

BUILD AN API WITH LARAVEL

You see how a null value is provided for the prevmember to indicate that it is

unavailable.

The JSON:API specification does not have any conventions when it comes to

query parameters signifying which page in the pagination we are currently on.

However, they state that the page query parameter can be used for this and

we will recommend that as well. The good thing about this is that it’s then

possible to deep link into a page of data using the page query parameter. We

will support this in our API as well.

Now, we know how to make a request for data and even how we can sort or

paginate data provided in collections. It is time to look at responses and the

conventions from the JSON:API specification wemust follow.

Responses

It’s time to look at the server side and which convention it must adhere to

when sending responses to the client. Here, we will revisit HTTP verbs and

status codes as well as look at conventions that must be followed to keep your

API consistent. The first rule we will look at is making GET requests for data

or fetching data, as the JSON:API specification calls it.

Response guarantees

Here, the servermust always support getting resource data and or relationship

data for all URLs that are provided in a response. The URLs we are talking

about are the URLs provided in a relationship for a resource object. It is the

links given in the links object of the relationship object, more specifically the

self and related links. It should always be possible to get data through these

links, otherwise we are breaking the conventions from the specification. Also,

it would notmake a lot of sense if links we provide from the API does not work.

It would lead to a lot of frustration for the consumers of the API and that’s not

what we want.

48

THE JSON:API SPECIFICATION

Resource Responses

Whenwemake requests to a server for a specific resource or collection, itmust

always return a status code 200 OK.

Referring back to the former chapter, we talked about how the 200 status

code is the most common, which tells the client that the entire request was

successful. Whenmaking such a response, the servermust also ensure to send

the requested resource or resources in the response documents primary data.

As covered in the section about Primary data and Resource objects, the server

must ensure that the primary data for a response document is either a single

resource or a collection of resources.

Here’s an example of a response document for a request for a single resource:

{

"data": {

"id": "1",

"type": "books",

"attributes": {

"title": "Lorem ipsum"

}

}

}

Here’s an example of a response document for a request for a collection of

resources:

{

"data": [

{

"id": "1",

49

BUILD AN API WITH LARAVEL

"type": "books",

"attributes": {

"title": "Lorem ipsum"

}

},

{

"id": "2",

"type": "books",

"attributes": {

"title": "Lorem ipsum"

}

}

]

}

If the single resource cannot be found, the primary data would have to be null.

Take a look at this example with a request to the following resource:

GET: /books/1

{

"data": null

}

Here, the resource with an id of the value 1 does not exist. This, however, is

only a response you should use if the request warrants a 200OK response. The

JSON:API specification unfortunately doesn’t give a concrete example of this.

We’re using a 404 Not Found response for this scenario since it gives a clear

message about the resource not being found.

If a collection of resources cannot be found, the primary data would still have

to be an array, but an empty array though like this:

50

THE JSON:API SPECIFICATION

{

"data": []

}

Where a request for a single, not existing resource, should trigger an error

since you are trying to access something that does not exist, a collection will

always exist. A collection is allowed to be empty since this can be filled with

resources later on when they are being created.

Rela onship Responses

Relationship responses follow some of the same conventions as Resource re-

sponses. Remember though that there are two types of links in a relationship:

• self -Which is a link to the relationship itself

• related -Which is a link to the related resource

Here, the link for the related member would give a response document of

a resource, since you are requesting the related resource or collection of

resources, depending on the relationship.

For the self member, it’s a little different. Here, a request to the self link

will respond with a response document, where the primary data would be

the resource identifier object. Here is an example of a book resource with

a relationship to an author. The relationship in this context is one-to-one,

meaning that a book can only have one author.

{

"data": {

"id": "1",

"type": "books",

"attributes": {

51

BUILD AN API WITH LARAVEL

"title": "Lorem ipsum"

},

"relationships": {

"author": {

"links": {

"self": "/books/1/relationships/authors",

"related": "/books/1/authors"

},

"data": {

"id": "1",

"type": "authors"

}

}

}

}

}

The URL for the selfmember is the following, and a request for this endpoint

would return a response document with the primary data being the resource

identifier object.

GET: /books/1/relationships/authors

So a request to the URL would be something like this:

{

"data": {

"id": "1",

"type": "authors"

}

}

52

THE JSON:API SPECIFICATION

Notice how the primary data has the same structure as the data of the

relationship of the previous example? This is because a request to relationship

endpoint returns resource identifier objects instead of resource objects.

For a one-to-many scenario, where a book can have many authors, the

response document would contain the following:

{

"data": [

{

"id": "1",

"type": "authors"

},

{

"id": "2",

"type": "authors"

}

]

}

Even though two resources can have a defined relationship, it’s not always a

guarantee that they have a relation at the moment. In this case, we follow the

same conventions as with resources.

In the case of a one-to-one relation, a request to the self link would give a

response document like this:

{

"data": null

}

In the case of a one-to-many relation, a request to the self link would give a

53

BUILD AN API WITH LARAVEL

response document like this:

{

"data": []

}

And the pattern continues.

We know the conventions for requests and responses to get data for both

resources and relationships. Now, it’s time to look at how to create or modify

data.

Crea ng or modifying data

As an interface for your application, an API can give your consumers the ability

to create or modify data too. APIs for services like Dropbox or Google give the

consumer the ability to add data into their services. This can be data like files,

documents andmuchmore. Unless you are writing an API for a service that

only provides readable data, like a weather service, you most likely would like

a consistent way to add data to your application through your API.

Once more, we will be looking at HTTP verbs covered earlier in this book, as

well as status codes required by the JSON:API specification.

Crea ng

Asmentioned earlier in this book, we use the POST HTTP verb to post data to

our APIs. This is not any different with the JSON:API specification. The thing

that does matter is the request document sent to the server.

In this regard, we should follow the convention we’ve been through earlier

about resource objects and relationships. A request to create a new bookwould

54

THE JSON:API SPECIFICATION

look something like this with a request to the following endpoint

POST: /books

{

"data": {

"type": "books",

"attributes": {

"title": "Build an API with Laravel",

"summary": "Learn how to build an API using the Laravel

Framework",

"publication_year": "2019"

}

}

}

The primary data in this request document is a single resource object that

describes the new book to be created. Note that in contrast to the response

document, we do not include the idmember. The JSON:API specification states

that you can do that, but we recommend you don’t, unless you have a very

specific scenario where it’s needed. It would be better to let the server and

backend take care of this, especially if you are using incremental IDs, but even

with UUIDs, it’s better to let the server take care of the generation of these.

The way we see it, it is a concern that should not be placed on the client side.

When creating a resource, you can also define a relationship. Let’s see how

that looks, using that same example from before with this request:

POST: /books

55

BUILD AN API WITH LARAVEL

{

"data": {

"type": "books",

"attributes": {

"title": "Build an API with Laravel",

"summary": "Learn how to build an API using the Laravel

Framework",

"publication_year": "2019"

}

},

"relationships": {

"authors": {

"data": {

"type": "authors",

"id": "1"

}

}

}

}

Above, you can see how we reuse the convention about relationships. We give

a resource identifier object through the datamember and the server will take

care of the rest.

The example given here is of a one-to-one relationship but of course, you can

also create a relationship in the case of a to-many relationship.

That would look like this, again with this request:

POST: /books

56

THE JSON:API SPECIFICATION

{

"data": {

"type": "books",

"attributes": {

"title": "Build an API with Laravel",

"summary": "Learn how to build an API using the Laravel

Framework",

"publication_year": "2019"

}

},

"relationships": {

"authors": {

"data": [

{

"type": "authors",

"id": "1"

},

{

"type": "authors",

"id": "2"

},

{

"type": "authors",

"id": "3"

}

]

}

}

}

As shown in the example, you give a collection of resource identifier objects in

the data member instead.

Crea ng Rela onships

If you recall the relationship links we covered earlier when talking about

relationships between resource objects, the endpoint for such a relationship

link could look like this:

57

BUILD AN API WITH LARAVEL

GET: /books/1/relationships/authors

You can also create, modify or delete relationships by sending a request to

these endpoints, where the only difference is that the primary data of your

request document becomes the new resource identifier object instead.

As an example, we can create a new relationship between a book and an author

like this with a request to the relationship endpoint:

POST: /books/1/relationships/authors

{

"data": {

"type": "authors",

"id": "1"

}

}

As you can see, it is far less data we need to provide as the request document’s

primary data. In fact, it’s only the resource identifier objectwe need to give.

The rest of the information about which book and so forth is given in the

endpoint.

The same concept works for to-many relationships with a request to the same

endpoint:

POST: /books/1/relationships/authors

58

THE JSON:API SPECIFICATION

{

"data": [

{

"type": "authors",

"id": "4"

},

{

"type": "authors",

"id": "7"

},

{

"type": "authors",

"id": "18"

}

]

}

The endpoint is reused since it’s still a relationship between a book and

authors.

If a request to create a relationship that already exists occurs, the server should

ignore the new request and keep the relationship as it was before.

Status Codes

When creating a resource, the server must respond with a 201 Created status

code. Remember from the Status Codes section in the first chapter, how

this status code is used to tell the client that one or more resources have

been created. The JSON:API specification follows that same convention. The

primary data of the response document must also contain the newly created

resource objects as well as a Location header that provides the location of the

new resource.

If a request to create a new resource is unsupported, the server should respond

with a 403 Forbidden status code.

59

BUILD AN API WITH LARAVEL

Now that we know how to create resources according to the JSON:API spec-

ification, how do we then modify these data? We will cover that in the next

section.

Upda ng

As mentioned in the section about HTTP verbs, there are two methods for

updating resources. PUT will replace all data in the resource whereas PATCH

is only used for updating specific attributes.

The JSON:API specification specifies that the PATCH verb should be used to

updating resources, even if all the attributes are updated. Though a request

doesn’t have to include all the attributes of a resource, the server would have

to interpret the missing attributes.

Let’s take a look at how to make a request to the update endpoint:

PATCH: /books/1

{

"data": {

"id": "1",

"type": "books",

"attributes": {

"title": "Hello world",

"summary": "This book is about hello world."

}

}

}

If you take a look at this example and the examples of how to create a book, do

60

THE JSON:API SPECIFICATION

we send the exact same attributes? No, we are missing the publication_year

attribute in the resource object. The server would then have the responsibility

to interpret this resource object, find the existing one, and update only the

attributes given here.

When updating relationships, some of the same concepts repeat.

Just like with creation of resources, updating a relationship can be done

through the relationships member on the root of the request document. Like

with attributes, where the server has to interpret which attributes you wish to

update, the same goes for the relationships given in the relationships object.

Only the relationships mentioned are the ones getting updated. Let’s look at

an example again with a request to the same endpoint:

PATCH: /books/1

{

"data": {

"id": "1",

"type": "books"

},

"relationships": {

"authors": {

"data": {

"type": "authors",

"id": "2"

}

}

}

}

Here, the relationship to authors is being updated. In this case, it’s a one-to-

61

BUILD AN API WITH LARAVEL

one so the relationship to the author before is being changed to a new author

with the id of 2. Just like when creating relationships, you give a resource

identifier object and the server will take care of the rest.

And as with creating a resource, the way to update relationships with a to-

many relation you give a collection of resource identifier objects, like this with

a request to the same endpoint:

PATCH: /books/1

{

"data": {

"id": "1",

"type": "books"

},

"relationships": {

"authors": {

"data": [

{

"type": "authors",

"id": "2"

},

{

"type": "authors",

"id": "4"

},

{

"type": "authors",

"id": "7"

}

]

}

}

62

THE JSON:API SPECIFICATION

}

In the example above, we give an array of resource identifier objects that we

want to update as the new related resource. It is important to note that in this

case the relationship to any earlier resources will be removed and relations to

the given resources will be made instead.

You can think of this kind of update as the syncmethod on Laravel Eloquent’s

many-to-many relationships. Here, you give the syncmethod an array of IDs

that you want to associate, and all the IDs not in that array that may already

be associated, will be removed.

As mentioned in the creation of resources, relationship links can also be used

to create, modify or delete relationship between resources. Here’s an example

with a request to update the author of a book, using the following relationship

endpoint:

PATCH: /books/1/relationships/authors

{

"data": {

"type": "authors",

"id": "1"

}

}

As with relationships defined through resource objects, updating a relation-

ship through relationship links also replaces the relationship before. You

could go and delete a relationship bymaking the following request to the same

endpoint as before:

63

BUILD AN API WITH LARAVEL

PATCH: /books/1/relationships/author

{

"data": null

}

Now, the old relationship will be removed and since an empty relationship

has been given, there is nothing new to save instead.

Again, the examples have been on aone-to-one relationship, but the concepts

are the same for to-many relationships. A request to update authors as a

many-to-many relationship would be like this, with a request to that same

endpoint:

PATCH: /books/1/relationships/authors

{

"data": [

{

"type": "authors",

"id": "2"

},

{

"type": "authors",

"id": "4"

},

{

"type": "authors",

"id": "7"

}

64

THE JSON:API SPECIFICATION

]

}

And just like with the single resource object, where a request document with

the primary data set as null clears a relationship, an empty array clears a

to-many relationship like this:

{

"data": []

}

Status Codes

When updating a resource, the server must send back either a 200 OK status

code or a 204 No Content status code in case of an update where nothing else

than the attributes provided in the request document was updated.

In an attempt to update a resource that does not exist, the server should send

back a responsewith a404Not Found status code to indicate that the resource

is not found.

Dele ng

Things aremoving fast. Wenowknowhow to both create and update resources

and relationships. We only need to know about deletion, so we are almost

done.

Just like requests for creating or modifying a resource, there is a dedicated

HTTP verb for deletion of a resource. If you look back to the section about

HTTP verbs, we discussed the DELETE verb and that it’s used to tell the server

that we want to delete a resource. The JSON:API specification uses the same

65

BUILD AN API WITH LARAVEL

HTTP verb for deletion of resources.

To delete a resource, you don’t need a request document since the HTTP verb

says it all— at least when it comes to deletion of a resource. Here, it is enough

to send a request to an endpoint for a specific resource. For example, imagine

that we want to delete the book of ID 1. This can be done with a request like

this:

DELETE: /books/1

The same goes for relationships. If you make a DELETE request to a relation-

ship endpoint, the server must delete the relationship between the specified

resources. Say, for instance, we want to remove an author from a book. We

can just send a request to the endpoint like this:

DELETE: /books/1/relationships/authors

In case of a to-many relationship, you can specify which resources you no

longer want to have a relation through a request document, where the primary

data is a collection of resource identifier objects. Just like when we want to

create or modify a relationship through relationship links. Say we have a book

with five authors and we want to remove three of them. This can be done so

with a request to the following endpoint:

DELETE: /books/1/relationships/authors

66

THE JSON:API SPECIFICATION

{

"data": [

{

"type": "authors",

"id": "2"

},

{

"type": "authors",

"id": "3"

},

{

"type": "authors",

"id": "5"

}

]

}

Now. the relationship between the book and the three authors mentioned in

the request document will be deleted, while the rest will remain.

This is actually all there is to requesting, creating, modifying and deleting

data, which is enough for us to work with our server with conventions that

ensure a consistent communication and data exchange. There is one thing we

are missing though. What do we do when an error sneaks in and how do we

respond to that?

Errors

It’s time to take a look at errors. Let’s face it, no matter how great of an

application you build, errors will always be a part of it. Some are intentional,

like validation rules that are not met, and some are not. In both cases, it’s

crucial that they are handled in a consistentway, so both you and the consumer

of your API know what went wrong.

To start this section, we will take a look back at the top-level of our response

67

BUILD AN API WITH LARAVEL

document. If you recall, a documentmust contain at least one of the following

members:

• data

• errors

• meta

A rule we covered earlier was that the data and errormembers must never

coexist in the same document. So fromnow on, whenever we talk about errors,

we will never include the data member in our response document.

The errorsmember, however, will be an array containing error objects that

describe errors of the request made to the server like this:

{

"errors": []

}

Wewill take a look at error objects in a moment, but one thing wemust cover

is how the JSON:API specification states which error status codes should be

used.

When an error occurs in your application, you as the developer can decide

whether or not the application should continue to try to fulfill the request or if

it should just fail and stop.

In the case of a fail and stop solution, you should use the appropriate status

code. When we looked at how to get, create, modify or delete resources and

relationships, we talked about the status codes that should be used.

If you choose to let your application continue trying to fulfill the request, there

may be multiple errors that can happen in that single request. In that case, a

68

THE JSON:API SPECIFICATION

more general status code should be used.

• In the case of a 4XX category, error use a 400 Bad Request status code

• In the case of a 5XX category, error use a 500 Internal Server Error status

code

Error Objects

Error objects are used to further specifywhatwentwrongwhen trying to fulfill

the request. The JSON:API specification does not have a strict protocol for how

this object should be constructed, but a couple of optional members you can

include. We have concluded that the following are useful to have in an error

document and would recommend that you use these.

• title - which should contain a short human-readable summary of the

problem.

• detail - which should contain a human-readable explanation of the

problem.

• source - which should contain an object containing references to the

source of the error.

The source member is a bit special here, since the JSON:API specification

recommends that you use an object containing a JSONpointermember. A JSON

pointer is a string syntax that can point to another value in a JSON document.

If you have the following JSON document:

{

"foo": "bar",

"baz": [10,20]

}

69

BUILD AN API WITH LARAVEL

A JSON pointer described like this, /foo would then point to the value bar,

where a JSON pointer like this, /baz/0would point to the value 10 and a JSON

pointer like this, /baz/1would point to 20.

You can think of JSON pointer like the dot notations Laravel provides when

you, for instance, are accessing values in your config. Here, you are able to

write like this:

<?php

// Get the application name from config

$name = config('app.name');

This will give you the application name defined in the app.php config file.

Instead of a dot notation for separating children, a slash notation is used in

JSON pointers.

Now that we know about JSON pointers, let’s look at how an error object could

look like:

{

"errors": [

{

"title": "Validation error",

"source": {

"pointer": "/data/attributes/name"

},

"detail": "The name field is required."

}

]

}

In this example,wearegettingavalidationerror inour application like the title

70

THE JSON:API SPECIFICATION

member describes. The source object contains a JSON pointer to an attribute

in the response document sent to the server. Here, it’s the name attribute that

might be empty, based on the description given in the detailmember.

Howwould it look if we hadmore than one error? Right out of the box, Laravel

won’t continue to process a request, whenever an error occurs. It will just

throw an exception and stop the execution. When handling validation though,

it is possible that more than one field would fail and here you would get

multiple errors returned. That would look something like this:

{

"errors": [

{

"title": "Validation error",

"source": {

"pointer": "/data/attributes/name"

},

"detail": "The name field is required."

},

{

"title": "Validation error",

"source": {

"pointer": "/data/attributes/email"

},

"detail": "The email must be a valid email address."

},

{

"title": "Validation error",

"source": {

"pointer": "/data/attributes/age"

},

"detail": "The :attribute must be a number."

}

]

}

71

BUILD AN API WITH LARAVEL

As you can see, there’s an error for each field that did not pass the validation.

Although the JSON:API specification states that you should give amore general

status code when having multiple errors, in this case, it’s ok to give a 422

Unprocessable Entity status code.

Summary

We’re at the end of this chapter and we have covered quite a lot. Not only did

we introduce the case of Anna’s Bookstore, which we will use as a common

ground to easily put things into perspective in the rest of this book. We also

covered naming conventions for API endpoints, the JSON:API specification,

and especially all of the important rules that are specified.

We looked at how to structure our data or documents for both requests and

responses, how to structure our primary data of a document, both when

handling single resources and collections of resources.

Then we covered resource objects and whichmembers wemust include like

id and type, but also learned how to name our member names for a more

consistent structure when adding attributes to a resources object.

We thenmoved on to relationships and how to define relationship links that

make it possible to access both relationships themselves and related resources

objects. We covered how to define resource identifier objects and how these

could be used together with the includes top-level member, to contain related

resources in a response in order to save HTTP requests.

Afterward, it was time to look at how to use our new knowledge about data

structures to properly communicate between client and servers. We covered

how to get resources, and howwe could use request documents to fetch the

exact resource or collections of resources needed. We looked at how we could

sort and paginate resource collections, through both query parameters and a

links top-level member.

72

THE JSON:API SPECIFICATION

We then looked at how to create resources and how to structure our request

documents, how we could create a relationship through request documents

for resource creation, but also how relationship links could be used to create

relationships, using relationship linkages instead of resource objects.

We covered how to update resources and relationships using the same

principles when creating these, and how an update to a relationship would

always remove the current relationship to a resource and then update with the

newly given resource instead.

We then learned how to delete both resources and relationships.

Finally, we concluded the chapter by looking at errors and how to convey these

through error objects.

We now have a good set of conventions and a knowledge to use when we are

building our APIs. We have rules that give us a more consistent way to not

only structure data, but also how to communicate and what to communicate.

Better yet, when implementing this specification, clients and consumers can

use client implementations that will work right out of the box,

and save them a lot of time when consuming your API, since these client

implementations follow the same conventions and consistency.

It’s now time to look at how to plan out an API. Even though we have a lot of

knowledge about convention and rules to build a consistent API, we still need

to plan out our project and documentation for our API.

Let’s take a look at that in the next chapter.

* * *

73

3

Planning

Now that we have the basics covered and have been through the JSON:API

specification, it’s time to talk about planning.

For us, this is the most important part of a project. Whether it’s a small,

medium or large project, it is always beneficial to do some planning ahead of

time to identify possible problems and roadblocks you can steer around. For

us, time equals money so we need to be as fast and efficient as possible.

The same goes for APIs. The more you can plan out ahead of time, the more it

benefits you later, when you actually have to implement the API.

If you are making a public API, we especially recommend planning ahead and

documenting your API as early as possible. In this way, you know everything

about the data andwhat needs to be developed ahead of time, aswell as getting

a good grasp of where the more complex areas of your application lie.

The planning tools andmethods we will be going through in this chapter are

those that we use when planning out our projects. These are the methods and

tools we have picked out over time, that fit most of our projects.

74

PLANNING

A different way of planning

If you have never written an API before, you need to think of your applications

in a new way.

If you are used to building Laravel Applications in the more “old-fashioned”

way, where Laravel primarily render all the HTML and returns this to the

user’s browsers, thinking in APIs is completely different.

You can stop worrying about user interfaces and how the application should

look and feel. You still have features, but it’s in the form of tasks that the

backend should perform. The actual worries about UI / UX can be handed

over to the frontend developers on the client side and you get to worry about

data instead. That can still seem like a daunting task, but remember that the

difficulty of projects vary, and in some cases, your backend doesn’t even have

to be that smart. In some cases, its only purpose is to ensure that data is stored

and retrieved from databases correctly and that’s it. It is quite a contrast to

what we are used to, with applications that do all the work on the server.

In most of our newer projects, the client does most of the hard work. Through

single page applications, which are Javascript powered web applications, we

can build a muchmore intuitive user experience than ever before. It almost

seems like you’re interacting with a real desktop application and not a web

application. In fact, it is possible to build desktop application this way too, but

it is beyond the scope of this book.

TheHTML responsibilities have been removed from the backend so it can focus

on tasks like saving/retrieving data, whether it’s from a database, external

services or APIs, to sending emails, encoding audio or video and so on.

And of course, this has changed the way we plan our projects. We are still

doing UI / UX but it is now separated from the planning and development

of the backend. When planning our backend, we can focus on data and how

75

BUILD AN API WITH LARAVEL

these data need to be delivered, retrieved and related to each other. Instead of

templates, views and actions, we are thinking in resources and relationships.

This makes it possible for us to plan our backend development with the API

in mind, since this will be the new interface. By defining our resources and

starting to document these, we are forced to think about our applications and

the requirements of the backend. You see by documenting the API, we need to

think about which data that needs to go into our application and also how we

want the application to respond. This isn’t easy if you are doing everything

from scratch, but remember that we have the JSON:API specification to lean

on, so we know exactly how our request and response documents should be

formed. We only need to think about the attributes of our documents.

With the documentation done in the planning phase, we not only have

everything planned, we get the documentation out of the way. An even bigger

plus is that it makes it possible for the frontend developers to mock our API

and that makes it possible for the development to be done almost in parallel.

So let’s start thinking in these new ways and begin to plan out our API.

Requirement Specifica on

The first step in planning a project is to identify all the requirements for

the project and put them in a requirement specification. This is especially

important since it describes all the features that should be implemented and

also how these features are expected to work. It’s a document that gives a

consensus between the customer and the developer.

Through an interview of the customer, you should take notes of what they

tell you about the project they would like you to develop. When interviewing,

it’s important to consider how we as developers know all the terms in the

business, but our customers might not— especially not someone like Anna

from the hypothetical coffee shop of our case example. Because of this, it is

76

PLANNING

our responsibility to take good notes and talk to the customer in a language

they understand, and afterward transform those notes into clear requirement

specifications that both parties can understand and agree on. Of course, it’s

also our responsibility to cover as much as possible, especially if the customer

does not know a lot about software development. In that case, small sketches

can be a huge help, particularly when trying to convey functionality between

you and the customer, but also when you have to write the requirement

specification later on.

It always pays off to be thorough and leave no stone unturned, so take good

notes and be sure to write down all the important parts of the interview. If you

are not that good at note taking, then ask if you can record the interview with

an audio recorder. The customer is just as interested in a good product in the

end as you are, and oftentimes they don’t mind being recorded.

When you have your notes after the interview, it’s time to write the actual

requirement specification.

We recommend that you start out by identifying the main areas of the

application you’re going to build and divide your specification into these areas.

In terms of a bookstore these could be:

• Public store

• User Profile

• Administration

In a case like this, wewould recommend starting out with something easy that

you are familiar with to get the ball rolling. You should be familiar with how

authorization and login work, so start out with that. In the areas above, there

are two that need access restrictions and the authorization methods might

not be the same. Start by making requirements for the authorization for one

of them.

77

BUILD AN API WITH LARAVEL

Write each requirement in bullet form andmake indented bullets if something

needs to be explained further like this:

• The administrator should be able to enter an email address

• - The email should be of the bookstore’s own domain to be allowed as

administrator

• - The email cannot also be used for a regular user profile.

• The administrator should be able to enter a password

• - Passwords should be over 6 characters

• - Passwords should contain at least one capital letter

• - Passwords should contain at least one number

• The administrator should be able to tick a “remember me” checkbox

• - When ticking the remember me checkbox, a cookie should be saved for

easier logins in the future

• - A “remember me” cookie should only be valid for 48 hours

• The administrator should be able to click the login button to proceed

• The administrator should be able to see if he/she has entered the email or

password incorrectly.

The language in each requirement should most often contain “should”,

“must” or “cannot” to clearly signify that it is a requirement for the project.

In the example we gave, some of the requirements relate to the flow of a login,

whereas others are business rules, like “The email cannot also be used for a

regular user profile”. In some cases, there can be more requirements that

describe business rules, rather than the flow. Here, we recommend writing a

little scenario to accompany the requirements of the area you are describing.

This would look something like:

The administrator has arrived to the login screen.

She types in her email in the email section and pushes the tab button

on her keyboard to get down into the password space, where she types

78

PLANNING

in her password as well. Before clicking the login button, she ticks off

the “remember me” checkbox so she doesn’t have to perform the same

procedure, if she comes back within the next 48 hours.

Now both the requirements and the scenario describes the authorization

precisely. We know what should be developed and the customer knows what

to expect.

As you can see, a requirement specification describes the entire project, not

just the API, but there’s a lot we can get from the requirement specification as

well as the other developers working on the project.

Some of the logic described in the requirements can be on either the frontend

or backend and in that case it might be something our API should support.

From a broader perspective, let’s start to focus more on our API. To do this

we first want to introduce you to Postman, which we will be using throughout

the most of this book.

Postman

Postman started out as a small in-browser application for Google Chrome

in 2012. Later, the application expanded to native applications running on

desktopmachines, and now it’s an entire Saas platform.

We have used it for years, first as a tool to test out our own, but also especially,

third-party APIs. Sure, you can do the same with CURL, but often a nice UI

and the ability to remember both requests and responses beat that.

The expansion of the application has also included features like:

• MultipleWorkspaces -which gives a great separation of projectswith the

ability to invite others to share the same workspace as well. A workspace

79

BUILD AN API WITH LARAVEL

embraces the following features mentioned in this list.

• Collections -Which is a grouping of requests, a feature we will be using

while planning and developing our API.

• MockServers-Which is a feature thatmakes youmock out your APIwhen

all endpoints and responses have been planned out. A great feature for

frontend developers, whichmakes it possible to interact with a mocked

server, making it possible to work in parallel with the backend developers.

• Monitoring - Which is a way to schedule automated tests and thereby

monitor how your API performs.

• API Documentation - Which makes it possible to create and publish

documentation for your API using your collections.

It is especially the ability to test our APIs, the collections, and API documen-

tation we are interested in and will be going through in this book. First, we

will be looking at how to plan out our API by setting up a new workspace

and identifying resources to determine our endpoints, the attributes of our

resources, and later identifying relationships and adding these in as well.

Download & Installa on

Todownload theapplication for yourplatform, followthis linkhttps://www.get-

postman.com and click on the “Get Started” button. This will lead you to the

download page, where you can click on the “Download” button to get the

version for your platform. When it’s downloaded, install the application and

when the installation is done, open the application.

80

PLANNING

When opening the application, you should be greeted with an interface that

looks like the image above. It might prompt you to login and if so, create your

account and log in. If you did not get a login, you’ll hit it as soon as we start

working with Postman and you can then create your account.

If you are at the screen you see above, close the window by hitting the X in the

corner.

Crea ng a newWorkspace

81

BUILD AN API WITH LARAVEL

After you have installed Postman, created your account and logged in, you

should be seeing an interface like the one in the image above.

It’s time to create our workspace for the API we will be building. Click the

“MyWorkspace” dropdown at the top of the window. In the dropdown, click

“Create New” and you will see a form that needs to be filled out to create the

Workspace.

Name the workspace “Build an API with Laravel” and leave the summary

blank. Under “Type” choose “Personal” and click “Create this workspace”.

82

PLANNING

You should then be seeing an interface like the image above.

Great! We now have a workspace for our API, so let’s take a closer look at the

Postman interface.

User Interface

83

BUILD AN API WITH LARAVEL

On the image above, you can see the division of the two main areas of the

Postman application.

• Is the side panel where we will create our collection of endpoints for our

API.

• Is the main area where we will do our main work, like create requests,

define the body of our requests, and later create examples for the docu-

mentation of our API.

At first, we will mostly work in the side panel and do someminor work in the

main area. When we get deeper into planning our resources, we will do most

of our work in the main area.

Just to quickly show you the features of the main area, let’s try to make a

request to the following URL:

84

PLANNING

GET: reqres.in/api/users

In the top of the main area, you see a gray input with the placeholder text

“Enter request URL” and then a selector to the left of this, that has all the

HTTP verbs. Directly underneath, there are some tabs and then a small table,

where you can fill out params.

This is the request area of the main area. Set the HTTP verb to GET and input

the regres.in/api/users URL and hit the “Send” button.

Now you can see the response document from the server underneath the

request area formatted nicely, so you can see every bit of data that are sent

from the server. This is the response area. Here you can also look at the cookies

and headers sent from the server.

If you feel like the request and response areas blend too much, you can switch

85

BUILD AN API WITH LARAVEL

to “Two-pane view” by clicking icon down in the bar in the bottom. This will

make the request and response areas sit side-by-side instead, except for the

actual endpoint and HTTP verb of the request. For clarity, we will be using

this mode for the rest of this book, since it makes it easier

to see the difference, in which data that are being sent in a request, and which

data that have been received in the response.

The reqres.in is a fake REST API you can use to test your frontend or programs

like Postman against a live API. If you want to explore Postman’s capabilities

more in depth, we recommend that you spend some time going through the

various requests you canmake to the API using Postman. We will, of course,

return and go throughmore of the features when we start building our own

API.

Before wemove on though, take a look at the side panel. It should be on the

“History” tab where you can see the latest requests you have made. Next, we

will be looking at the “Collections” tab in the side panel.

Collec ons

Click on the “Collections” tab in the side panel. Here, you will be greeted by a

message saying “You don’t have any collections”.

Click on “Create a collection” to create a collection. In the overlay that opens,

name it “Build an API with Laravel - V1”. In a workspace like this, it is

possible to have multiple collections where each collection will produce its

own documentation. If we were to update our API in the future, it would be

possible to produce new documentation to keep the two versions separate.

86

PLANNING

Leave everything else as it is, click the “Create” button, and you should get a

new collection like in the image above.

Click the small arrow to the left of the folder icon and you will see a message

telling you that your collection is empty, and you can add request and create

folders to organize your request.

A request in Postman is a request to a single endpoint. This could, for example,

be a request to the following endpoint to get alle books:

GET: /books

Another request could be for the following endpoint to get the book with an ID

of 1

87

BUILD AN API WITH LARAVEL

GET: /books/1

Another could be to the following to create a book:

POST: /books

Hopefully, you see a pattern here and see that all requests are for the book

resource. Instead of having these in the root of our collection, we canmake

folders and give these the name of a resource. This will group all requests for

that resource and later get a nice separation of requests in our documentation.

Before we do that, let’s revisit how we identify resources.

Iden fying Resources

It might seem strange that we use Postman as much in our planning phase,

but since it’s the platform in which we will create our documentation, you can

get ahead by starting to document your findings in your planning phase right

away. Nothing is written in stone, we can still make changes as we go, but

instead of putting things on paper, why not put it into something useful that

can save us time later on.

In chapter 2 when we covered naming conventions for endpoints, we talked

about the convenience of thinking about our models in a Laravel application

as resources.

If we take another look at the case presented in chapter two, we have been

given the following objects of real life:

• Books

88

PLANNING

• Authors

• Comments on a single book

As Laravel developers, wewould quickly identify that we need amodel for each

of these things and that’s absolutely right. But we are here to plan and here to

think ahead and find roadblocks that we might have to steer around. If you

ask us, that specification up there is only telling half of the story.

In an application like this, there must be someone who creates new books and

updates books, or deletes the books that are no longer on sale and the same

goes for authors. The persons we are referring to here are administrators. In

order to service the bookstore, we need administrators to perform these tasks.

What about comments, who leaves those? The common thing here would be a

registered bookstore user. They can leave comments on books and possibly in

a future implementation, also leave ratings of these.

If we step back a little and actually look at the things we just discovered about

administrators and users, we can see that we have a multi-tenant application

on our hands.

A tenant is a group of users that share the same access levels in an application.

Since we have administrators, who are allowed to administer books and

authors, but also users that are allowed to comment on books, these are two

different tenants and therefore it’s a multi-tenant application.

There is not a standardized way of making multi-tenant applications in

Laravel, but a common pattern is to use a “Role” or “Type” attribute on

the User model to differentiate the users and thereby only using one model

for handling users and administrators. We will be using this strategy in our

API, where we will be using a role attribute to not confuse anything with the

already existing typemember coming from the JSON:API Specification.

89

BUILD AN API WITH LARAVEL

Iden fying A ributes

When identifying attributes, you can rely on the samemethods you use when

thinking about columns in your database or attributes on your models in

Laravel.

If a book is an object we are trying to model into our database, the columns

convey more about the book. That could be things like:

• A title

• A summary

• Number of pages

• Publication year

Laravel can help you send all these data in the response of your API, but also

filter those parts you do not want to give. In the end, you decide howmuch

information you want to give. In terms of planning, we often use the columns

we identify when planning our database.

This gives us the ability to start documenting a lot of our APIs early on and also

provides the ability to start mocking the API so that the frontend development

can begin early on as well.

Iden fying Rela onships

As important as it is to identify resources, it is just as important to identify

relationships. These are not only to be defined in your API, but your models

as well, and the type of the relationship defines the complexity.

It is also the first step where you really have to think about your data and how

you are solving the given problems, as well as whether or not decisions you

make have an impact when the end-users start working with the application.

90

PLANNING

Iden fying the right rela onship

Let’s examine the first and most obvious relationship between Books and

Authors. Here aone-to-many relationshipwould be the easiest to implement.

From a database perspective, the book could have a foreign key pointing to

the author who has written the book, and from a Laravel Eloquent perspective,

a book would belong to an author and so forth.

If you didn’t stop and think about it, a one-to-many relationship might be a

constraint on the applications. Because of that decision, there can only be one

author for each book in the bookstore, or at least only one author would get

the credit.

This is a roadblock we want to identify early, so that we can steer around it.

Here, it would be much better to have amany-to-many relationship since

a book can be written bymany authors, but an author can also have written

many books. By identifying this early and not having to change this later when

the code is already written, we have potentially saved hours.

In terms of an API, the relationship here would be the same. Since we do not

have a one-to-one relationship, we know that the relationship will involve

collections.

Iden fying the remaining rela onships

Let’s move on and identify the remaining relationships. Since we are already

in the vain of books, why don’t we look at the relationship between books and

comments next?

The relationship here is not that complex, a comment will only ever be for one

book and a book can havemany comments, so a one-to-many relationship

is pretty easy to identify here. In terms of our API, it’s not a one-to-one

relationship, which means that we will still work with collections. There’s

91

BUILD AN API WITH LARAVEL

one thing here that we might have to note and that is about the users and

the relationship between a comment and a user. In the case where you

request all comments for a book, it would be nice to also have the users for

those comments. Remembering back to the Compound Documents section of

chapter 2, this is a good candidate for data to be included in a response, since

you would not have to have yet another request just to get the users that the

comments belong to. But we are getting a little ahead of ourselves. Let’s take

a look at the relationship between comments and users then.

Again, it’s not that complex. A comment can only really belong to one user so

this must be a one-to-one relationship, and in terms of our API, we will be

handling a single resource identifier object instead of collections.

Let’s see the relationships we have identified then:

• Books and Authors - Amany-to-many relationship with endpoints:

• - Self

GET: /books/1/relationships/authors

• - Related

GET: /books/1/authors

And the inverse relationship from authors:

• - Self

GET: /authors/1/relationships/books

92

PLANNING

• - Related

GET: /authors/1/books

• Books and Comments - A one-to-many relationship with endpoints:

• - Self

GET: /books/1/relationships/comments

• - Related

GET: /books/1/comments

And the inverse relationship from comments:

• - Self

GET: /comments/1/relationships/books

• - Related

GET: /comments/1/books

• Comments and Users - A one-to-one relationship with endpoints:

• - Self

93

BUILD AN API WITH LARAVEL

GET: /comments/1/relationships/books

• - Related

GET: /comments/1/books

And the inverse relationship from users:

• - Self

GET: /users/1/relationships/comments

• - Related

GET: /users/1/comments

Nowwe have both identified our resources and relationships, and are ready to

begin our documentation. Before we do though, and we promise this is the

last thing, let’s just quickly take a look at IDs and UUIDs, since there’s a bit to

consider here— again to avoid hitting those roadblocks later.

IDs and UUIDs

When planning out an API, you have to think about what kind of information

you are giving away. The things we are talking about here are the IDs of your

resources. Of course, it’s convenient to reuse the IDs given by the database, but

is that really a good idea? It depends on the application behind, especially if

it’s amulti-tenant application. If you take IDs from a database, these aremost

often primary keys in the form of integers that increment chronologically for

94

PLANNING

each row in that database. If you were building a multi-tenant application,

one user could potentially try to access another user’s data, by editing the

ID of the resource being accessed. And given the chronological order of IDs,

there’s a good possibility that the data of the given ID exists in the database.

In this case, it would be a better idea to use a UUID.

A UUID or Universal Unique IDentifier is a 128-bit number we can use to

identify entities in our applications. These entities could be users in your

application: they could be books, they could be virtually any table in your

database, but the key here is that they are used to identify information in

our systems. UUIDs can be generated by anyone and does not require some

kind of central registration authority to keep track of each UUID created. This

does mean that there is a probability that a UUID could be duplicated, but the

chance is very close to zero and would not happen in the same system at least,

which makes UUID eligible to use for primary keys in relational databases,

which we use for Laravel.

The fact that we get a 128-bit unique number has another advantage, namely

that an UUID is near impossible to guess.

There are 5 different versions of the UUID standard where each version

generates a UUID in different ways. As an example, the first version uses a

date-time and theMAC address of the machine in which it is being generated

to generate a unique ID.

The version we use the most is version 4, which does not useMAC addresses

and the like, but generates a random number.

It doesn’t mean that you always have to use UUIDs. Sometimes, you also have

to consider ease of use for your API, especially if it’s public. And if the IDs

don’t present a security risk, you could keep the IDs from the database.

95

BUILD AN API WITH LARAVEL

Beginning our documenta on

We are finally ready to begin our documentation since we now know which

resources and relationship we need in our application. Let’s start by docu-

menting resources and endpoints, and afterward we’ll go more into detail

with attributes and relationships.

Folders for Resources

Firstly, to have a nice segregation of resources in our collection and later our

documentation, we want to create Folders for each resource. By clicking on

the three dots, we get a menu in which you will click on “Add Folder”, as

shown in the image below.

In the overlay, give the folder the name “Books” and click on the “Create”

button.Repeat the same procedure for the rest of the resources which are:

96

PLANNING

• Authors

• Comments

• Users

When you’re done, you should have something that looks like the image above.

Resources Requests

In the next sections, we will be going through the entire documentation

process for the Books resource only. But don’t worry, with the methods used

here, you will be able to document the rest of the resource yourself, plus it will

give you hands-on experience with both Postman and documenting your API.

Tomake a request in a resource folder, you need to click the three dots that

appear when you hover over the folder name.

Select “Add Request” and name the first request: All Books and click “Save

97

BUILD AN API WITH LARAVEL

to Books”.

In the main window set the method to GET, enter the URL /books, and click

the “Save” button next to the “Send” button.

Create another request and name it: Single Book and click “Save to Books”.

Give it the method GET and URL of /books/1 and click the “Save” button next

to the “Send” button.

Create yet another request andname it: Create Book and click “Save toBooks”.

Give it the method POST and URL of /books and click the “Save” button next

to the “Send” button.

Create the last requests for:

• Update Book

• Delete Book

The Update Book needs a PATCHmethod and the Delete Book needs a DELETE

method. Both have the same URL:

/books/1

98

PLANNING

You should have something that looks like the image above.

Now, just for the fun of it, let’s see how our documentation is taking form. If

you look at the status line in the bottom, there are two buttons in the lower

right named “Build”, which is active at the moment, and “Browse”. Click

the “Browse” button and click the name of your workspace. You will now

be presented with a somewhat raw version of our documentation, but this

gives you an idea of what we are slowly building as we give Postman more

information. Look how our folders provide a nice structure to the menu. We

still need all of our attributes and also the responses that can be expected.

Let’s look at the attributes next. Go back to Postman and click on the “Build”

button.

Resource A ributes and Request Document

When thinking in attributes, do you then know when we need to document

these? Right, it’s when creating and updating our resources. Let’s take a look

at the Create Book request in Postman to set up our request document and

99

BUILD AN API WITH LARAVEL

add the attributes.

Remember that we are using Two Pane View in Postman, so the bottom part

of our main area is divided into request on the left side and response on the

right.

On the left side, there’s a menu with the tabs shown in the image above. Here,

we will be working in the Body tab to be able to define our request document,

so you should click on this.

Under the Body tab, you’ll see a bunch of choices for the format of our data.

You should choose Raw, which makes us able to define our request document

in the JSON format so that it adheres to the JSON:API specification. Right

under the choices, there’s a dropdown list that currently is on Text. Fold this

out and choose JSON (application/json). You’ll see a change in the header’s

tabs with a 1 indicating that there’s one header defined in the request. We will

return to that shortly.

100

PLANNING

You should be at the same point as shown in the image above. Now it’s time to

define our request document.

First, we need to define the root of our request document and as the JSON:API

specification states, we need to have a root object with a datamember for our

primary data of the document. Sincewe are documenting how to create a book,

the primary data for our request document will be a resource object for a book.

The important thing here is to define the typemember as a string and then

the attributesmember as an object, whichmakes the entire request document

look like this:

{

"data": {

"type": "books",

"attributes": {

"title": "Example book",

"description": "This is an example of a book",

101

BUILD AN API WITH LARAVEL

"publication_year": "2019"

}

}

}

In Postman it should look like the image above.

We’re almost done defining the Create Book request. We just have to go back

to thatHeaders tab and take a look at the value of the Content-Type header

defined by Postman.

The value here is application/json but sincewewant to adhere to the JSON:API

specification, we need to use the right Content-Type defined in the specifica-

tion. This needs to be changed to application/vnd.api+json.

Before wemove on, wemight as well set the Accept header as well. Like the

Content-Type, this should be application/vnd.api+json to tell the server that

102

PLANNING

we expect to receive the data in the same format.

Click the “Save” button next to the “Send” button again to save your changes.

Just a little caveat. If you go back to the Body tab, the content under Raw has

changed back to the text. This is because Postman does not recognize the

JSON:API specifications Content-Type and does not know that it is indeed

JSON. We hope they will fix this in a future update, but for now we will have

to live with it. If you need to make alterations, you can change it from text

to application/json again, but be aware that the Content-Type in the header

tab will change back to application/json as well, whichmeans that you need

to change this to application/vnd.api/jsonwhen you’re done.

If we look at our documentation now by clicking Browse in the status bar at

the bottom, and clicking Build an API with Laravel afterward, we can see that

our documentation now contains the attributes for our resource together with

the correct request document. It even gives an example of how to implement

this request. But wouldn’t it be great if we could get an example of how the

response document would look as well? Then everybody would knowwhich

data are being returned. Postman has us covered here with the ability to make

request/response examples. Let’s take a look at that next.

Request/Response Examples

As wementioned, the way Postman handles documentation of responses is

through examples. You find the ability to do this, right above the “Save”

button in the top right corner.

Click on “Examples” and afterward click on the “Add Example” button.

103

BUILD AN API WITH LARAVEL

The interface changes a bit as you can see in the image above.

The ability to make a request is now substituted with a name for the example,

but we still have our request to the left and response to the right.

If you take a look at the request body, it is the same as we had before, but on

the response side, we have some work to do.

First, we need to give a status code. Since it’s a request that creates a book, we

need the appropriate status code. If you remember from the chapter about

the JSON:API specification, when a resource is created, we respond with a 201

Created status code.

Next up is the body. As stated in the JSON:API specification, we need to return

the newly created resource as the primary data of our response document.

Easy enough, we already have that in the requested document, so let’s copy

it over. We need to do some editing though. Unless you expressly tell it not

104

PLANNING

to, Laravel includes a created_at and an updated_at attribute to its models.

We love that Laravel does that: it has helped us countless times to have these

timestamps, so let’s include these as well. Since the resource is created now,

we will have to give it an ID as well. This should result in a response document

that looks like this:

{

"data": {

"id": "1",

"type": "books",

"attributes": {

"title": "Example book",

"description": "This is an example of a book",

"publication_year": "2019",

"created_at": "2019-01-01",

"updated_at": "2019-01-01"

}

}

}

In Postman it should look like the image below.

105

BUILD AN API WITH LARAVEL

Now, let’s take a look at the headers. If you click on the “Header”, you should

see an empty list. Here, you should provide the Content-Type as well as the

Location for the newly created resource.

By now youmust knowwhat the Content-Type should be, but the location is a

bit more tricky. Since we don’t have a domain yet, let’s use the example.com

domain to emphasize that this is just an example. The value of the Location

header would then be:

GET: http://example.com/api/v1/books/1

We use the /api to signal that it’s an API you’re making requests to and the /v1

is our way of telling the version of the API.

106

PLANNING

If you have done it correctly, you should have the same as in the image above.

Remember to hit the “Save Example” button.

If you go through “Browse” again to see the result in the documentation, you

can see that the response has also been added.

Great. That was an example for the Create Book request, and now let’s make

examples for the rest of them.

Examples for all endpoints

Back inBuildmode, let’s begin with the Single Book request since we actually

have everything needed for this endpoint.

107

BUILD AN API WITH LARAVEL

Single Book

Before clicking away from the Create Book example, copy the contents of the

body of the response and then go to the Single Book request.

Before making the example, there is one thing we are missing. Can you

guess what that is We need to define one header, namely the Accept header.

Remember that the JSON:API specification states that we should include the

Accept header with a value of application/vnd.api+json to tell the server that

we expect the response to be in this format. Let’s add that to the request.

If done right, you should havewhat is shown in the image above. Remember to

save the request, and now let’smake a new example for this request, using the

dropdown above the “Save” button. We don’t have to do anything about the

request—we can leave that as it is. We actually only have to fill out the status

code, body, and header of the response. Set the status to 200 OK, since we are

reading data this time, paste in the contents in the body, and set a header of

108

PLANNING

Content-Typewith the value application/vnd.api+json.

If done correctly, when looking at the documentation, you should see that the

endpoint is documented like in the image above.

Let’s take a look at All Books next, since we almost have everything for this.

All Books

Here, you should use the same procedure as with Single Book, adding the

Accept header to the request and afterward making an example. In the

example, the request can be left alone and in the response, the exact same

status and header should be used.

Now, you are welcome to come up with the contents of the body yourself, as

long as you remember that we are dealing with a collection of books as the

primary data this time.

If you need some inspiration, here’swhatwe have inserted into our example:

{

"data": [

{

"id": "1",

109

BUILD AN API WITH LARAVEL

"type": "books",

"attributes": {

"title": "Example book",

"description": "This is an example of a book",

"publication_year": "2019",

"created_at": "2019-01-01",

"updated_at": "2019-01-01"

}

},

{

"id": "2",

"type": "books",

"attributes": {

"title": "Example book two",

"description": "This is yet another example of a

book",

"publication_year": "2019",

"created_at": "2019-01-01",

"updated_at": "2019-01-01"

}

}

]

}

Now, take a look at your documentation using “Browse”. It should look like

the image above.

110

PLANNING

Ok, let’s tackle the Update Book request next.

Update Book

Wewill be taking the same approach as when creating a book. To begin, we

will build up the body of the request, then set the correct headers, and save

the request. Thereafter, we will be making the example and building up the

response.

So let’s startwith the request body. Here,weonlyneed to include the attributes

we want to update, so for instance, if we only want to update the title, that’s

all we need. Let’s do that, and the request document will look like this:

{

"data": {

"id": 1,

"type": "books",

"attributes": {

"title": "Update book title"

}

}

}

Remember that we need to include the id and type in the update request and

then the attribute object containing the attributes we want to update.

Next, let’s tackle the header. You have most likely set the content to be JSON

(application/json) so that it is easier to work with the content, but remember

that Postman then sets the Content-Type header as well, so this will have

to be corrected. We also need to add the Accept header as well. By now, you

should be able to remember what the values must be, so let’s move on to the

example, but before you click on example, be sure to copy the contents of the

request body.

111

BUILD AN API WITH LARAVEL

Set the status to 200 OK and paste the contents of the request into the body.

We need to include the last attributes, which you can find in the Single Book

example if you can’t remember them. The reason why we are returning the

resource object is that we are planning ahead. The JSON:API specification

states that you need to return the resource object if it has an updated_at

attribute that will be updated as well. Laravel does that, so we need to return

the resource object. To show that the update of the updated_at attribute is

happening as well, set the date to be the 2nd of January 2019.

Set the Content-Type header as well and we are done with this request.

If you have done it correctly, it will be like in the image above when looking at

your documentation.

We are almost done. We only need the last Delete Book request, so let’s go

through that now.

Delete Book

This one is probably the easiest one. Wedon’t need a request document, andwe

don’t need to do a detailed response example since you don’t have to respond

with any response documents unless you have somemeta-data you want to

112

PLANNING

include. In our planning, we don’t have that, so the only thing we need to do is

to add theAcceptheader to the request andmake an examplewherewe include

the status code 204 No Content. To make it show up in the documentation,

go into the response body andmake a new line.

That is all the request and examples for the Books resource. Now we just have

to repeat the same tasks for the rest of the resources.

The remaining resources

Now it’s time for you to be a little on your own in Postman. For the next

resources, you have to create all the requests and define the attributes,

examples, and so forth. We are not going to force attributes on you — we

want you to think about these yourself. If you still feel a little unsure or just

need inspiration, here is a list of attributes we have defined for each resource

in our planning phase:

• Authors

• - Name

• - Updated At (Comes from Laravel)

• - Created At (Comes from Laravel)

• Comments

• - Message

• - Updated At (Comes from Laravel)

• - Created At (Comes from Laravel)

• Users

• - Username

• - Name

• - Email

• - Updated At (Comes from Laravel)

• - Created At (Comes from Laravel)

We have kept it pretty simple here, and there are probably many more

113

BUILD AN API WITH LARAVEL

attributes that could be a part of each resource. If you have manymore than

us, that’s fine. Just don’t include so many that you introduce unnecessary

complexity into your application.

If you still find yourself a bit lost, we have an export of our finished collec-

tion/documentation in our Github repository— just ignore the relationships

and query parameters for now, as we will get into these next.

Documen ng Query Parameters

In the part about sorting resources and pagination in the chapter about the

JSON:API specification, we learned that this is done through query parameters.

It gives us the ability to sort books by their publication year by writing:

GET: /books?sort=publication_year

We need to document this as well. Since we are in the vein of books why don’t

we, once again, take a look at our Books resource in Postman.

Sor ng

Here, the sorting only really makes sense in the All Books request, since we

get a list of books that may need to be sorted.

Select the All Books request in the side-panel. In themain area, in the request

part to the left, we see that we are already at the “Params” tab. The way we

define query parameters is the same as headers. We have a table where we

define thekey andgive a value. Ifwewant,we cangive adescription aswell. Set

the key to sort, the value to attribute, and in the description you write: “Sort

books by attributes”. Right next to the key, there’s a checkmark. Remove

this, since we don’t want the query parameter to be a part of the endpoint in

114

PLANNING

the documentation, but only inform that it is possible. Save the request and

take a look at the documentation.

Now there’s a Params section, informing about the Sort query parameter. An

example is often the most efficient means of communicating information, so

let’s make a new example that shows how the sort query parameters work.

In the example dropdown, click “Add Example” and name it “All Books

Sorted”. In the Params tab, check the checkbox at the sort key and change

the value to publication_year. Copy the contents in body from the All Books

example and change the publication_year value to 2018 for the first book.

Then add the correct status code and header and save.

Make another example, this time for sorting in descending order and name

it “All Books Sorted Descending”. Perform the exact same steps as before,

but this time the value of the query parameter needs to be -publication_year.

After you have copied the contents of the response body and changed the

publication_year, the two books need to switch places, so the book with id of

value 2 is first in the array.

If you take a look at the documentation now, we have some examples that

show both how to use the sort query parameter but also how it works with

descending order. There is one last example we need, namely an example

showing a comma separated list for sorting by multiple attributes.

115

BUILD AN API WITH LARAVEL

Addanewexample andname it “AllBooksSortedbyMultipleAttributes”and

repeat the steps from the previous example. This time for the query parameter

write: -publication_year,title. And that’s it. Look at the documentation to

see if everything is how it should be.

Pagina on

Documenting pagination for our books takes the same approach as the sort

query parameter. It only really makes sense in the All Books request and

luckily we only need one example.

Before we canmake that example, however, we first need to add pagination

query parameter to our All Books request part so that it will show up in our

documentation.

Under the sort parameter, add a new parameter with the key page, value 1 and

description: “Current pagination page”. Uncheck the checkbox next to page

and save the request.

116

PLANNING

You should see something like in the image above.

Let’s make an example for it. Create a new example and name it “All Books

Paginated”. In this new example, check the checkbox next to page, change

the value from 1 to 2, and add the following into the response body:

{

"data": [

{

"id": "3",

"type": "books",

"attributes": {

"title": "Example book 3",

"description": "This is an example of a book",

"publication_year": "2019"

},

"relationships": {}

},

117

BUILD AN API WITH LARAVEL

{

"id": "4",

"type": "books",

"attributes": {

"title": "Example book 4",

"description": "This is an example of a book",

"publication_year": "2019"

},

"relationships": {}

}

],

"links": {

"first": "/books?page=1",

"last": "/books?page=5",

"prev": "/books?page=1",

"next": "/books?page=3"

}

}

For brevitywehave omitted the relationship, since they don’t have anything to

dowith what we are trying to convey here, namely the new linksmember with

pagination links inside the object. Don’t forget the header and Content-Type

and save the example.

Documen ng Rela onships

By now, we have been working with our resources and which attributes these

should have, as well as sorting and pagination by query parameters. We

have even documented these findings. Now, it’s time to do the same with

relationships. Here, we will edit the existing resources and add the various

resource identifier objects and also, once again, have a look at the included

top-level member of our response documents.

Wealwaysuse the includedmemberbydefault - remember that this is optional

- and have often not supported the feature of the include query parameter. But

we want to teach you all we know, so of course we will support it in this book.

118

PLANNING

Adding Rela onships

When we identified our relationships, wemade a list of these where we also

identified the relationship links based on the conventions from the JSON:API

specification.

These are:

• Books and Authors - Amany-to-many relationship with endpoints:

• - Self

GET: /books/1/relationships/authors

• - Related

GET: /books/1/authors

And the inverse relationship from authors

• - Self

GET: /authors/1/relationships/books

• - Related

GET: /authors/1/books

• Books and Comments - A one-to-many relationship with endpoints:

• - Self

119

BUILD AN API WITH LARAVEL

GET: /books/1/relationships/comments

• - Related

GET: /books/1/comments

And the inverse relationship from comments

• - Self

GET: /comments/1/relationships/books

• - Related

GET: /comments/1/books

• Comments and Users - A one-to-one relationship with endpoints:

• - Self

GET: /comments/1/relationships/books

• - Related

GET: /comments/1/books

And the inverse relationship from users

120

PLANNING

• - Self

GET: /users/1/relationships/comments

• - Related

GET: /users/1/comments

Let’s use the Books resource again. Here, we need to update our requests in

Postman, as well as add new examples, so our documentation reflects what

you can include in the requests.

Why don’t we start with the Single Book request first. Returning to Postman,

open up the example which right now should have the name Single Book as

well. Wewill change that in a bit, but for now you should add the relationships

member to the response body like this:

{

"data": {

"id": "1",

"type": "books",

"attributes": {

"title": "Example book",

"description": "This is an example of a book",

"publication_year": "2019",

"created_at": "2019-01-01",

"updated_at": "2019-01-01"

},

"relationships": {

"authors": {

"links": {

"self": "/books/1/relationships/authors",

121

BUILD AN API WITH LARAVEL

"related": "/books/1/authors"

},

"data": [

{

"id": "1",

"type": "authors"

},

{

"id": "2",

"type": "authors"

}

]

},

"comments": {

"links": {

"self": "/books/1/relationships/comments",

"related": "/books/1/comments"

},

"data": [

{

"id": "1",

"type": "comments"

},

{

"id": "2",

"type": "comments"

}

]

}

}

}

}

Just to give an example for our documentation, we have included two related

resources for both Authors and Comments. Save the example and let’s take a

look at the documentation for ourBooks resource and theSingleBook request.

The example is now too long to be shown in the documentation, but if you click

to expand it, it should reflect the response document given in the example

122

PLANNING

above.

Now that we have the Single Book, we also have the recipe for the changes

to All Books. We’ll let you do this on your own, but remember to change the

relationships, especially for the comments, so two books don’t share the same

comments. If you get stuck, remember that we do have a finished version of

the collection/documentation in our Github repository.

For the Create Book and Update Book requests, we need to make examples

that show how tomake requests that not only creates or updates a resource,

but also creates a relationship to another resource. Let’s start with Create

Book.

We will only create a book with a relationship to authors. It doesn’t make

sense to create a book with a relationship to a comment, since it requires that

the comment on the book already exists. Create a new example and name it

Create Book with Authors.

Now, to create relationships along with a resource, we need to include the

relationship member in the request document. Just like in the response

document, this need to be on level with the attributesmember. We define

the relationship by adding members for the various resources we want to

create a relation to, in this case authors. We add a datamember or resource

linkage inside the authors object where we give resource identifier objects to

the specific resources we want a relationship to.

It would look like this:

{

"data": {

"type": "books",

"attributes": {

123

BUILD AN API WITH LARAVEL

"title": "Example book",

"description": "This is an example of a book",

"publication_year": "2019"

},

"relationship": {

"authors": {

"data": [

{

"id": "1",

"type": "authors"

},

{

"id": "2",

"type": "authors"

}

]

}

}

}

}

If you have the same as above, you can continue on to the response body. Take

a copy of the request body and make the right adjustments, such as adding

an idmember for the book and adding the linksmember to each relationship,

together with an object containing the self and related links.

That would look like this:

{

"data": {

"id": "1",

"type": "books",

"attributes": {

"title": "Example book",

"description": "This is an example of a book",

124

PLANNING

"publication_year": "2019",

"created_at": "2019-01-01",

"updated_at": "2019-01-01"

},

"relationships": {

"authors": {

"links": {

"self": "/books/1/relationships/authors",

"related": "/books/1/authors"

},

"data": [

{

"id": "1",

"type": "authors"

},

{

"id": "2",

"type": "authors"

}

]

}

}

}

}

Remember to add the correct status code and headers.

Next up, is the Update Book request. We can follow the same steps as above,

but you don’t need to include all of the attributes, only the ones that need to

be updated.

Create a new example and name it Update Book with Authors. Copy the

request body from the Update Book example and add the relationship to

authorswith an array of resource identifier objects like this:

125

BUILD AN API WITH LARAVEL

{

"data": {

"id": "1",

"type": "books",

"attributes": {

"title": "Updated title",

},

"relationship": {

"authors": {

"data": [

{

"id": "4",

"type": "authors"

}

]

}

}

}

}

Here, we will remove all existing authors from the book and add the author

with the id of 4. Just like the Create Bookwith Authors example, you can copy

over the request body to the response body and fill out the relationship links.

It would look like this:

{

"data": {

"id": "1",

"type": "books",

"attributes": {

"title": "Updated title",

"description": "This is an example of a book",

"publication_year": "2019",

"created_at": "2019-01-01",

"updated_at": "2019-01-02"

126

PLANNING

},

"relationships": {

"authors": {

"links": {

"self": "/books/1/relationships/authors",

"related": "/books/1/authors"

},

"data": [

{

"id": "4",

"type": "authors"

}

]

}

}

}

}

Again, remember the correct status code and header.

Now that we have updated all of our resources to reflect the relationships, it is

time to look at the includedmember and how it works with the include query

parameter.

The Include Query Parameter

The include query parameter is actually an optional feature, according to the

JSON:API specification. As we mentioned earlier, we usually don’t support

this feature, but make use of the includedmember of our response document

where all the relationship are queried and included in the response especially

since it’s so easy with Laravel. But, of course, this puts a toll on performance

and you could speed up requests by omitting this and letting the consumer

decide for themselves. Also, we want to teach you everything we know —

that’s why we have chosen to go through this as well.

127

BUILD AN API WITH LARAVEL

In terms of documentation, this feature is not that complex since it’s a query

parameter like the sort query parameter. But in contrast to the sort query

parameter, the include parameter can be usedwhen fetching all resources and

a single resource. So let’s document that in Postman now and again, let’s use

the Books resource and start in the Single Book request.

Just like when we created the sort query parameter, we need to make a

parameter in the request, uncheck it, and afterwards copy it over to new

examples where it needs to be checked. Add a new parameter with the key

include, value resource and description: “Related resources to be included

in the request” and save the request.

Create a new example and name it “Single Book including Comments”.

Check the checkbox at the parameter and change the value to comments.

Copy the response body from the first Single Book example and add the

includedmember containing the resource objects of all the comments, which

should look like this:

{

"data": {

"id": "1",

"type": "books",

"attributes": {

"title": "Example book",

"description": "This is an example of a book",

"publication_year": "2019",

"created_at": "2019-01-01",

"updated_at": "2019-01-01"

},

"relationships": {

"authors": {

"links": {

"self": "/books/1/relationships/authors",

128

PLANNING

"related": "/books/1/authors"

},

"data": [

{

"id": "1",

"type": "authors"

},

{

"id": "2",

"type": "authors"

}

]

},

"comments": {

"links": {

"self": "/books/1/relationships/comments",

"related": "/books/1/comments"

},

"data": [

{

"id": "1",

"type": "comments"

},

{

"id": "2",

"type": "comments"

}

]

}

}

},

"included": [

{

"id": "1",

"type": "comments",

"attributes": {

"message": "Hello world"

},

"relationships": {

"users": {

129

BUILD AN API WITH LARAVEL

"data": {

"id": "1",

"type": "users"

}

}

},

"links": {

"self": "/comments/1"

}

},

{

"id": "2",

"type": "comments",

"attributes": {

"message": "Foo bar"

},

"relationships": {

"users": {

"data": {

"id": "2",

"type": "users"

}

}

},

"links": {

"self": "/comments/2"

}

}

]

}

Remember to add the correct header and Content-Type.

Let’s alsomake an example for related resources, which in this case is the user

that creates each of the comments.

Create a new example and name it “Single Book including Comments and

commenting User”. Check the parameter and change the value to com-

130

PLANNING

ments.users. Copy the contents of the response body from the previous

example and add the two users’ resource objects to the included array of

resource objects, like this:

{

"data": {

"id": "1",

"type": "books",

"attributes": {

"title": "Example book",

"description": "This is an example of a book",

"publication_year": "2019",

"created_at": "2019-01-01",

"updated_at": "2019-01-01"

},

"relationships": {

"authors": {

"links": {

"self": "/books/1/relationships/authors",

"related": "/books/1/authors"

},

"data": [

{

"id": "1",

"type": "authors"

},

{

"id": "2",

"type": "authors"

}

]

},

"comments": {

"links": {

"self": "/books/1/relationships/comments",

"related": "/books/1/comments"

},

"data": [

131

BUILD AN API WITH LARAVEL

{

"id": "1",

"type": "comments"

},

{

"id": "2",

"type": "comments"

}

]

}

}

},

"included": [

{

"id": "1",

"type": "comments",

"attributes": {

"message": "Hello world"

},

"relationships": {

"users": {

"data": {

"id": "1",

"type": "users"

}

}

},

"links": {

"self": "/comments/1"

}

},

{

"id": "2",

"type": "comments",

"attributes": {

"message": "Foo bar"

},

"relationships": {

"users": {

"data": {

132

PLANNING

"id": "2",

"type": "users"

}

}

},

"links": {

"self": "/comments/2"

}

},

{

"id": "1",

"type": "users",

"attributes": {

"username": "johndoe",

"name": "John Doe",

"email": "john@example.com",

"created_at": "2019-01-01",

"updated_at": "2019-01-01"

},

"relationships": {

"comments": {

"data": {

"id": "1",

"type": "comments"

}

}

},

"links": {

"self": "/users/1"

}

},

{

"id": "2",

"type": "users",

"attributes": {

"username": "janedoe",

"name": "Jane Doe",

"email": "jane@example.com",

"created_at": "2019-01-01",

"updated_at": "2019-01-01"

133

BUILD AN API WITH LARAVEL

},

"relationships": {

"comments": {

"data": {

"id": "2",

"type": "comments"

}

}

},

"links": {

"self": "/users/2"

}

}

]

}

Phew, that was quite an amount of data for a book like this! Don’t forget the

headers and Content-Type.

We need onemore example though: one showing a comma separated list of

related resources.

Make yet another example and name it “Single Book including Authors and

Comments”. Check the checkmark at the parameter and change the value to

authors,comments.

Copy the contents of the resource body from the last example and change out

the users to authors. This time you should try to edit the data yourself— if you

have forgotten what the author’s resource object looks like, you can copy it

from your Author resources Single Author example. Don’t forget the header

and Content-Type.

134

PLANNING

Summary

In this chapter we have been through a lot. First, we started the planning of

our project. When developing an API, we no longer have to think about UI/UX

and can focus more on our data.

We began our planning phase by identifying our resources and the relation-

ships between these resources. We saw how we can conveniently think of our

resources like a mapping of our models and database table.

We learned about Postman and how we can use it to document our API and

how it can help us think about our resource attributes and relationships. By

documenting our API early, we forced ourselves to work with the JSON:API

specification and our applications data.

Sometimes, it’s tedious work, plotting all of these examples into Postman,

but if you have been taking some notes, you already have a good idea of where

the more complex parts of the implementation lie and where the easiest parts

are.

We learned a bit more about the included top-level member of our response

documents, and how we can leverage the include query parameter to tell our

API which related resources we want included in the response.

We hope that you finished your documentation and explored Postman a little

more. A big win, which we also touched upon in this chapter, is that when the

documentation is done, a mock server can be set up for the frontend people or

other consumers of our API, which can relieve the pressure on our shoulders

as backend developers.

Next up, we will begin building our API. We won’t be leaving Postman yet,

but we will finally start to do some coding, and isn’t that why we are all here

anyway? Great! Let’s get on with it!

135

BUILD AN API WITH LARAVEL

* * *

136

4

Build your API

It’s finally time to get into some coding and, after all that theory and planning,

we bet you are ready for it too.

In this chapter, we will first take a look at the features of Laravel Passport,

and how you can leverage these whether you are consuming your own API or

making a public API.

We will install Laravel Passport and use this to secure our API and go through

the different ways of authentication.

We will then take a look at where to start and how to get the ball rolling while

we build the first resource of our API and implement the first features of the

JSON:API specification.

Afterward, we will test the resource in Postman to see if it works as intended.

Wewill be using Laravel Valet for our local setup. If you are on aMac, we highly

recommend that you use Laravel Valet for your local configuration, since it

is so easy to set up. It proxies all requests to the *.test top-level domain to

point to sites in your development folders, which makes it very convenient to

137

BUILD AN API WITH LARAVEL

work with. It also features ngrok tunnels that makes it possible to share your

site from your local machine to the internet, without you having to deploy to

a server, so you can show off your work to clients or co-workers more easily.

The best thing is that Valet automatically detects what type of PHP application

you are working on, and finds a suitable driver that knows how to serve your

request. It’s not only for Laravel but PHP in general.

If you are on a different platform thanMac, we recommendLaravelHomestead

since it includes everything you need to develop Laravel applications in a

Vagrant box. Vagrant boxes are virtual machines that, in this case, run a Linux

server — just like the servers you will deploy your Laravel applications on

when releasing your applications. We’ve used this before Laravel Valet was

released. It’s a bit heavier and there’s a bit more to set up than with Valet,

but the nice thing is that it maps your folders on your local machine into your

Vagrant box, so if something goes wrong in your Vagrant box, you can just

remove it and spin up a new one. Here, it’s also possible to map your projects

to domains on your local machine.

There’s also the Laradock project, which instead of spinning up an entire

virtual machine, uses Docker to spin up containers for the various servers

you need. It’s a bit less cumbersome than Vagrant but has all the same great

features. It’s not a Laravel first-party solution, but we have heard a lot of good

things about it and have been using Docker for Laravel projects as well, which

worked out very well.

Before wemove on, we will quickly mention the difference between the local

setup solutions and domains. Since we use Laravel Valet, our domain will look

like this:

GET: annas-bookstore.test/api/v1

If you happen to be on another setup than Laravel Valet, youmight be working

138

BUILD YOUR API

on localhost, which will thenmake your domain look like this:

GET: localhost/annas-bookstore/api/v1

That is completelyfine. We justwanted topoint that out to avoid any confusion.

If you are on a Docker setup, you can use dnsmasq to map to a local top

level domain like .test like Laravel Valet provides, in fact Laravel Valet uses

dnsmasq to do just this and it’s not very difficult to set up.

Now that we have the local setup out of the way, let’s get into the authentica-

tion.

Authen ca on with Laravel Passport

Laravel Passport is a first party package for the Laravel framework that

specifically handles API authentication. Laravel Passport is built on top

of OAuth2, which is an industry standard protocol for authorization. By

leveraging the OAuth2 standard, using Laravel Passport makes it possible

for you to provide a standardized way of authenticating your API built with

Laravel.

If you have tried to authenticate services, like letting Laravel Forge access

your Digital Ocean account for server provisioning, the authentication is done

through OAuth. If you have let any application access your Dropbox, Spotify

or Google account, this is also done through OAuth.

OAuth is everywhere, and it’s a good reason for you to have it in your API as

well— especially if you are developing an API open to the world.

If you want a private API that a single page application deployed together

139

BUILD AN API WITH LARAVEL

with your Laravel application should consume, Laravel Passport has got you

covered here aswell. Let’s take amore in-depth look at Laravel Passport. First,

we need to install it.

Installa on

Before we install Laravel Passport, we need a fresh Laravel application. Go

into your favorite terminal application and use the Laravel Installer to make a

new application named annas-bookstore like this:

laravel new annas-bookstore

At the time of writing this book, Laravel 5.8 has just been released and this

will be the version of Laravel we will be building the API up against.

After the installation, Laravel makes sure to create a database for the appli-

cation. You can name it whatever you want, as long as youmake sure to put

the right pieces of information inside your .env file. We will be naming ours

annas_bookstore.

Now we are ready to install Laravel Passport through Composer like this:

composer require laravel/passport

Next, we have to install Laravel Passport into our Laravel application.

Laravel Passport needs some database tables to store clients and access tokens.

Fortunately, these are provided in the migrations that are included in the

composer package. So the only thing we need to do is to run our database

140

BUILD YOUR API

migrations like this:

php artisan migrate

You should be seeing about 5 tables being created and that’s it.

Now we can run the installation of Laravel Passport itself like this:

php artisan passport:install

Laravel Passport has been installed. Next, we want to add a Laravel\Pass-

port\HasApiTokens trait to our Usermodel, so that Laravel Passport canwork

with our User models and we get the ability to inspect which token and scope

belongs to which user:

<?php

namespace App;

use Illuminate\Notifications\Notifiable;

use Illuminate\Contracts\Auth\MustVerifyEmail;

use Illuminate\Foundation\Auth\User as Authenticatable;

use Laravel\Passport\HasApiTokens;

class User extends Authenticatable

{

use Notifiable, HasApiTokens;

protected $fillable = [

'name', 'email', 'password',

141

BUILD AN API WITH LARAVEL

];

protected $hidden = [

'password', 'remember_token',

];

protected $casts = [

'email_verified_at' => 'datetime',

];

}

To be able to issue or revoke access tokens, clients, and personal access

tokens, we need to register the routes for this. We do this by calling the

Passport::routesmethod in the bootmethod of ourAuthServiceProvider like

this:

<?php

namespace App\Providers;

use Illuminate\Support\Facades\Gate;

use Illuminate\Foundation\Support\Providers\AuthServiceProvider as

ServiceProvider;

use Laravel\Passport\Passport;

class AuthServiceProvider extends ServiceProvider

{

protected $policies = [

// 'App\Model' => 'App\Policies\ModelPolicy',

];

public function boot()

{

$this->registerPolicies();

Passport::routes();

}

142

BUILD YOUR API

}

Then we need to tell Laravel that we want to use Laravel Passport as a driver

for API authentication. We do this in the config/auth.php file like this:

<?php

return [

'defaults' => [

'guard' => 'web',

'passwords' => 'users',

],

'guards' => [

'web' => [

'driver' => 'session',

'provider' => 'users',

],

'api' => [

'driver' => 'passport',

'provider' => 'users',

'hash' => false,

],

],

Everything is set up now, and we are ready to use Laravel Passport as our API

authentication. But before we can dive further into the authentication, we

need a user to authenticate.

In a fresh Laravel application, the easiest way of getting a user in our database

is by using the artisan tinker command. So let’s get into the terminal and start

tinkering.

143

BUILD AN API WITH LARAVEL

In the root of the project, go into artisan tinker like this:

php artisan tinker

Here, we will create a test user for now, using the infamous John Doe like this:

User::create(['name'=>'John Doe', 'email'=>'john@example.com', '

password'=>bcrypt('secret')])

When the user has been created you will see something like this:

=> App\User {#2968

name: "John Doe",

email: "john@example.com",

updated_at: "2019-03-07 10:49:36",

created_at: "2019-03-07 10:49:36",

id: 1,

}

Let’s then take a look at authentication and how this is done in Laravel

Passport.

Authen ca on

When you install Laravel, it comes with some routes already defined, so you

canmake sure that it works. If you hit the URL of the application, you will be

greeted by a page like this:

144

BUILD YOUR API

To find the route of this page, go into the routes/web.php file. Here you will

find a single route that returns thewelcome view.

If you take a look at the routes/api.php file, you can see that there’s a route

definedaswell. Youcanalso see that the route isusing theauth:apimiddleware.

This tells us that only authenticated users canmake requests to this route since

it’s protected by our authenticationmiddleware. Let’s test this in Postman.

Here, you should close the request you are working on to get a new untitled

request.

Enter the request URL:

GET: /api/user

Remember to add your domain to the URL. In the case of our setup, the domain

is annas-bookstore.testwhich will result in a URL like this:

http://annas-bookstore.test/api/user

145

BUILD AN API WITH LARAVEL

In the request section, click theHeaders tab, and in theKey field enter Accept.

Next, in the Value field enter application/json and hit the send button.

In the response, youwill get a401Unauthorized statuswith a body containing

the following JSON:

{

"message": "Unauthenticated."

}

Unsurprisingly, we get thismessage. We haven’t done any form of authentica-

tion yet, so this is merely telling us that the authentication works as it should

when it comes to unauthorized requests.

Access tokens

Sincewe are using Laravel Passport, which adheres to the standards of OAuth2,

the only way we canmake an authenticated request is by having a valid bearer

token or access token.

An access token is a unique token that represents a user’s permission for a

client to access their data. When a client possesses an access token, it can use

it tomake subsequent authenticated requests on behalf of that user. A client in

this context is another application, either an application running on a server

or an application running in the browser or mobile phone.

When a client acquires an access token, it is called a grant, since the user is

granting the client access to its data. There are many different types of grants,

so let’s look at them for a moment.

In the list below, you can see the most common grant types and the ones

supported by Laravel

146

BUILD YOUR API

Passport:

• Authorization Code

• Implicit

• Password Credentials

• Client Credentials

• Personal Access Token

Authoriza on Code

The Authorization Code grant type is likely the grant typemost developers are

familiar with. This is the grant type used by Facebook or Google when you sign

into an application using your credentials from one of these services. It is also

the way Laravel Forge authenticates with your Github or Bitbucket accounts.

The actors that are part of this grant type are:

• A user who can grant access to his/her resources

• A server issuing access tokens and hosting the protected resources

• - Just a quick disclaimer - the server isn’t always the one issuing tokens.

This can just as well be done by a dedicated authorization server or service.

• A client that needs to request the protected resources

To show how this grant type works, we will give a little practical example.

However, before we can do so, we have a little setup to do.

We have our server that can issue tokens since we have our annas-bookstore

project and have Laravel Passport installed. We just need one thing for this to

work, namely some kind of authentication we can visit with our browser. Easy

enough, we can do this in Laravel with a simple artisan command like this:

147

BUILD AN API WITH LARAVEL

php artisan make:auth

That’s the server part, but we also need a client application and like any good

TV cooking show, we have prepared this ahead of time.

If you haven’t cloned our repository yet, this is an excellent time to do so, as

we will be using an application called Passport Oauth Client from our GitHub

repository. So start by cloning our repository like this:

git clone https://github.com/WackyStudio/build-an-api-with-laravel

.git

This application is just a regular Laravel application, so let’s run a composer

install to install thePHPdependencies andnpminstall to install the JavaScript

dependencies followed by a npm run dev, so our assets are compiled. If you

are onMac or Linux, you can do it all in one go like this:

composer install && npm install && npm run dev

Thenweneed to configure the application, somake a copy of the .env.example,

rename it to .env and open the file in your editor. First, set the APP_URL

environment variable to the URL of the application on your configuration. On

our Laravel Valet configuration, we will make a Valet link to the application

and call it passport-oauth-client, which will make our APP_URL look like

this:

http://passport-oauth-client.test

The environment variable will be used in the application; this is why it’s

148

BUILD YOUR API

essential.

Just as important is the variable in the bottom of the .env file. The BOOK-

STORE_URL environment variable should point to the URL of the annas-

bookstore application, which in our case is:

http://annas-bookstore.test

Now, for the PASSPORT_CLIENT_ID and PASSPORT_CLIENT_SECRETwe

need to explain a little.

For a user to grant a client access to their data on the server, the server first

needs toknowabout the client. For the server todo so,weneed to create a client

on the server. With Laravel Passport this can be done in two, or technically,

three ways. The first way is to create the client using an artisan command. The

second way is to use a dedicated JSON API, that comes with Laravel Passport.

Don’t worry, this API is not open to the public. In fact, it can only be accessed

by an authenticated user, meaning that it’s only accessible by the users in your

application. The “third” way is to use a set of Vue components that ships with

Laravel Passport. These can be included on any page behind authentication

and will give you everything you need in terms of creating clients in your

application. Behind the scenes, the components use the Laravel Passport API

to issue tokens, which is the reason why, technically, they are the third option.

However, by using these, you can skip a lot of work.

We will be using these later on when we start building our API, but more on

that then. For now, we can just use the artisan commands to create our client.

This can be done like so:

php artisan passport:client

149

BUILD AN API WITH LARAVEL

You will be asked which user ID the client should be assigned to.

Since we already have John Doe created in our system, go ahead and type 1

as the ID.

You will then be asked to name the client. You can call it whatever you want –

we will be calling it passport-client-test.

The last question you will get is where to redirect the request after the

authorization. This depends on your local setup, but since our passport-

oauth-client has the following URL:

http://passport-oauth-client.test

Our callback URL will then become:

http://passport-oauth-client.test/callback

Youwill then see an output containing the Client ID and Client Secret like this:

Client ID: 1

Client secret: GfVhVAgFyRW1DaP9nDYwYMT9wr1SZz4zYMa5rvBg

Copy the ID into the PASSPORT_CLIENT_ID environment variable of the

passport-oauth-client application and copy the Client secret into the PASS-

PORT_CLIENT_SECRET environment variable as well.

Before wemove on, don’t forget about the APP_KEY environment variable,

this can be generated by Laravel through this artisan command:

150

BUILD YOUR API

php artisan key:generate

We are now ready to go through the Authorization Code grant, so let’s open

up the passport-oauth-client in our browser.

Here, you should see something like this: a simple application to demonstrate

the flow of the Authorization Code Grant:

Before you click the link, let’s just go through the flow.

There are 2 parts to this authorization flow.

In the first part, the client application will redirect the user to the server

application they should grant access to. The server application needs to know

which client it’s allowing access to and the client needs to send that with the

redirection of the user. If you open the passport-oauth-client project in your

code editor and go to routes/web.php, take a look at the following route:

<?php

151

BUILD AN API WITH LARAVEL

Route::get('/redirect', function () {

$query = http_build_query([

'client_id' => env('PASSPORT_CLIENT_ID'),

'redirect_uri' => env('APP_URL').'/callback',

'response_type' => 'code',

'scope' => '',

]);

return redirect(env('BOOKSTORE_URL').'/oauth/authorize?'.$query

);

});

In this redirect, we are adding 4 query parameters to give the information to

the server while redirecting the user which is:

• Client ID - The client id we have created before through an artisan

command. This is used by the server to identify which client is being

authorized.

• RedirectURI-TheURL theuser shouldbe redirected toonce thevalidation

and authorization are done.

• Response Type - The type of grant we are using. Since this is the

Authorization Code grant, we use the value code.

• Scope - A list of scopes the client is authorized to. As an example, Github

uses scopes to tell if a client can access the user repositories and if the

client has both read and write access to the repositories.

Let’s click on the link and see what happens. If everything is set up correctly,

you should end up on the login page like below:

152

BUILD YOUR API

If you enter the credentials for John Doe we created earlier, you should end up

at a page like the one below:

When we registered our client earlier, we told the server application the name

of the client. In the screenshot above, you can see that the server application

has acknowledged the Client ID sent from our client application, and that the

user can authorize the client now.

When you click on the authorize button, the server will redirect you to the

URL given in the redirect_uri route query parameter, which we defined in

the /redirect route in our passport-oauth-client project earlier. The server

will add a query parameter to this redirect named code, which will contain the

153

BUILD AN API WITH LARAVEL

authorization code. This will also be the beginning of the second part of the

flow.

Go back to the passport-oauth-client project in your editor, again in the

routes/web.php file. Here, we will take a look at the /callback route since this

is the route the user is being redirected back to.

<?php

Route::get('/callback', function (Request $request) {

$http = new GuzzleHttp\Client;

$response = $http->post(env('BOOKSTORE_URL').'/oauth/token', [

'form_params' => [

'grant_type' => 'authorization_code',

'client_id' => env('PASSPORT_CLIENT_ID'),

'client_secret' => env('PASSPORT_CLIENT_SECRET'),

'redirect_uri' => env('APP_URL').'/callback',

'code' => $request->code,

],

]);

$tokens = json_decode((string) $response->getBody(), true);

$user = fetchUser($tokens['access_token'], $http);

return view('authenticated', array_merge($tokens, $user));

});

function fetchUser($accessToken, $http){

$response = $http->get(env('BOOKSTORE_URL').'/api/user', [

'headers' =>[

'Accept' => 'application/json',

'Authorization' => 'Bearer '.$accessToken,

]

]);

return json_decode((string) $response->getBody(), true);

}

154

BUILD YOUR API

In this route, wemake a POST request to the server application, where we send

along the following parameters:

• Grant type - Which in this case is authorization_code since this is the

grant type we are using.

• Client ID - Our client ID again

• Client Secret - The client secret code we received when we created the

client in the server application.

• Redirect URI -Which is the redirect URL the user was redirected back to.

• Code - The authorization code we just received, when we were redirected

back.

The server application will validate all this information to make sure that the

client making the POST request is indeed the client that has just received the

authorization code and has the proper secret.

The server will then send back a JSON object containing:

• Access token -Which is the token we need tomake an authorized request

to the server.

• Refresh token - Which is a token we can use to get a new access token

when the current one is expired.

• Expires in -Which is an integer that conveys how long the current access

token is valid.

• Token type -Which in this case contains the word “Bearer” to tell that

the token is a bearer token. In the code above, you can see that we use this

in our Authorization header to be able to make authenticated requests.

You can see that we receive this data in our $tokens variable, which we then

utilize to fetch the user from the server application and present these data

along with the token data in a view.

Click the Authorize button if you haven’t done so already and you should see

155

BUILD AN API WITH LARAVEL

the following screen:

We are now authenticated with the server application and can see that the user

information has been requested from the server application.

But just to be sure, let’s go back to Postman and see what we can do with a

token like this. We don’t need to domuch here—we only need to add another

header under the Accept header.

In the Key area type Authorization. In the Value area type Bearer and add a

space. Then copy the contents of the Access token text area from the Passport

Client application into the area.

In our case, it will look like this:

156

BUILD YOUR API

Then try to make the request again, and you should see a status 200 OK along

with a JSON object of the user.

This shows how important the access token is and howmuch you can dowith it

once you get it. This is alsowhy it’s essential to protect this token, so it doesn’t

fall into the wrong hands. A token like this would be stored in an encrypted

database of the client application— the same goes for the refresh token.

In many cases, the access token has a short life so that the refresh token is

needed more often. The benefit of this is that the refresh token is not the only

thing needed to get a new access token.

To get a new access token through a refresh token, you would need to do

something like this:

157

BUILD AN API WITH LARAVEL

<?php

$http = new GuzzleHttp\Client;

$response = $http->post('http://your-app.com/oauth/token', [

'form_params' => [

'grant_type' => 'refresh_token',

'refresh_token' => 'the-refresh-token',

'client_id' => 'client-id',

'client_secret' => 'client-secret',

'scope' => '',

],

]);

return json_decode((string) $response->getBody(), true);

Here, you still need the Client ID and Client Secret along with the refresh

token. That’s a lot of information a potential hacker would need to get.

Laravel Passport lets you decide how long your access tokens will live, but a

good estimate is that they will last for about a year.

Implicit

The Implicit grant is very similar to the Authorization Code grant, in that it

makes use of the first flow of the Authorization code. The client will redirect

the user to the server, where the user will authenticate itself and authorize

the client, but then it differs from the Authorization Code grant by returning

an access token, instead of the second part where a POST request should be

done before the access token, refresh token, and so on are received.

The implicit grant is intended to be used for single page applications and the

like. This is the reason why there is no refresh token, because the browser

does not have any way of keeping refresh tokens private since all code and

data are easily accessible.

158

BUILD YOUR API

Because it is very similar to the Authorization Code grant, we can actually

test it out relatively easily. It only requires a few changes in our annas-

bookstore and passport-oauth-client projects. Let’s start by updating our

annas-bookstore project to tell our server to enable implicit grant.

In the app/Providers/AuthServiceProvider.php add thePassport::enableIm-

plicitGrant()method just under the Passport::routes()method like this:

<?php

namespace App\Providers;

use Illuminate\Support\Facades\Gate;

use Illuminate\Foundation\Support\Providers\AuthServiceProvider as

ServiceProvider;

use Laravel\Passport\Passport;

class AuthServiceProvider extends ServiceProvider

{

/**

* The policy mappings for the application.

*

* @var array

*/

protected $policies = [

// 'App\Model' => 'App\Policies\ModelPolicy',

];

/**

* Register any authentication / authorization services.

*

* @return void

*/

public function boot()

{

$this->registerPolicies();

159

BUILD AN API WITH LARAVEL

Passport::routes();

Passport::enableImplicitGrant();

}

}

That is allweneed todo in thisproject. Nowgo into thepassport-oauth-client

project and let’s open the routes/web.php file and edit a bit in our routes.

In the /redirect route, change the response_type from code to token like this:

<?php

Route::get('/redirect', function () {

$query = http_build_query([

'client_id' => env('PASSPORT_CLIENT_ID'),

'redirect_uri' => env('APP_URL').'/callback',

'response_type' => 'token',

'scope' => '',

]);

return redirect(env('BOOKSTORE_URL').'/oauth/authorize?'.$query)

;

});

Since we are reusing our Authorization Code redirect URL, we need to stop

this from going through the regular process of posting and so forth. Go to the

/callback route and add a call to dd() in the top of the route like this:

<?php

Route::get('/callback', function (Request $request) {

dd();

160

BUILD YOUR API

$http = new GuzzleHttp\Client;

$response = $http->post(env('BOOKSTORE_URL').'/oauth/token', [

'form_params' => [

'grant_type' => 'authorization_code',

'client_id' => env('PASSPORT_CLIENT_ID'),

'client_secret' => env('PASSPORT_CLIENT_SECRET'),

'redirect_uri' => env('APP_URL').'/callback',

'code' => $request->code,

],

]);

$tokens = json_decode((string) $response->getBody(), true);

$user = fetchUser($tokens['access_token'], $http);

return view('authenticated', array_merge($tokens, $user));

});

In the browser, try going through the authorization process again. You should

enduponablankpage, but takea lookat theURL,whichshould looksomething

like this:

http://passport-oauth-client.test/callback#access_token=

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImp0aSI6Ijk4YjQ5Mzk1NGIxMWUxZjQ1ZTY0ZDU3NzIyZGYzMGYwYTM3YWYzOGI1NTg4MzJkMTEwOTY2NjU2MjA4YTE3Y2QzZjA3YTBiN2UyNzRmOTExIn0

.

eyJhdWQiOiIxIiwianRpIjoiOThiNDkzOTU0YjExZTFmNDVlNjRkNTc3MjJkZjMwZjBhMzdhZjM4YjU1ODgzMmQxMTA5NjY2NTYyMDhhMTdjZDNmMDdhMGI3ZTI3NGY5MTEiLCJpYXQiOjE1NTIzOTQxNTEsIm5iZiI6MTU1MjM5NDE1MSwiZXhwIjoxNTg0MDE2NTUxLCJzdWIiOiIxIiwic2NvcGVzIjpbXX0

.lEidViDIZdoWZZ6cNsuzP7T6botfxDhvJxAb7gRLKgs817AsN1fi0J-

VVsQ9vKg9EB6OPaOrwMjAsmr5JKG0IXiqbeY4Hd-

a7Sd2D7ZEshCUZCDFyGUY17FyMeB8Vel-

AO6q5FOzJ3VLTyXBsheLK5iEG1wov03l-mCo97w1sacpMgbP4Gfl-

eexjP3zJtmji2Pi7MBCsiKIS1yD0T38ign9dk3mTLmiPYwp2Z9B9oayauCgAv3P3Lri87b8tWaGnHsZ7nESbIxLCkntUWCaH5_VleLkB7FXoq39yn1v6rrzi_IFEfzBYA4A

-

xWFM8JS0t4sT3i5AXzdbnn9RZq4DEWBby07Ksx1y0p_CkXX68iC_G6KGprC7cLJQPrpyF7qFqLMh7Pv4yofC6g

-Kq8L0GiQtjOjgqVkslxl9EQ71OlYCdEplB0CyxsVBQDmAApfZ5nET_qHibwA-

E1mibehxxtA_tnUCcAZ9zr99NRvlRrHr-

Sgal0bBWg_lho_9tXGshgenD6zmFtqbEhT5gSC98boZjH8kHtd80Bwv2wuKVdDESrk9f7PHQyxV3_Fv3HTLSxPisVzWsEaXgvgfWtfBp5zG2IBfWHHSsoR6XhGNQmH_UjmrUX2KhF3AjJvEeAOnKpGe5HSqzygNBOYJALfKqy7k9XgmFgUQzF6

161

BUILD AN API WITH LARAVEL

-oATfuw&token_type=Bearer&expires_in=31622400

Take a look at the sign after /callback, which is a # sign instead of a ? sign.

This is done in such a way since a ? sign will make a server able to see the

access token, but to avoid that, and ensure that a browser can read the value

through JavaScript, a # is used instead.

Password Creden als

Password Credentials is a grant for first-party clients on theweb, desktop, and

mobile devices. It’smade tomake the best user experience on these platforms,

but it’s worth noting that it’s only intended for trusted first-party clients.

We can test this grant pretty easily through Postman, but before we do this,

we should ensure that we have a client we can use. Since this grant is different

to Authorization code and Implicit grant, we cannot reuse our client. We have

to get into the terminal and rerun the artisan command, and at the same time

tell artisan that we want a password grant client through a flag like this:

php artisan passport:client --password

You will be asked what to name your client— you can name it what you want,

but we will name ours Password Grant Client.

Youwill then see an output containing the Client ID and Client Secret like this:

Client ID: 2

Client secret: jRHlWyN9oPXkH96L3d1Qyap7yVBbUxYkuxV8qxAv

162

BUILD YOUR API

With that taken care of, we can continue in Postman. Here, you should create

a new request. Enter the request URL:

POST: /oauth/token

Remember to add your domain to the URL. In the case of our setup, the domain

is annas-bookstore.testwhich will result in a URL like this:

http://annas-bookstore.test/oauth/token

In the request section, click the Body tab and choose form-data. Since we

have multiple parameters, it would be a little easier for us to use Bulk Edit

mode, so click on that, and you will see an empty text area. For the Password

Credentials grant, we need the following parameters:

• Grant type - To tell which grant type we are using — in this case, it’s

password.

• Client ID -Which is the client ID we created above.

• Client Secret -Which is the client secret we created above.

• Username -Which is the email of the user.

• Password -Which is the password of the user

• Scope -Which, just like before, tells the scope of the client. We will just

leave this empty.

In Postman, these parameters should be typed in like this, in Bulk Editmode:

grant_type:password

client_id:2

163

BUILD AN API WITH LARAVEL

client_secret:jRHlWyN9oPXkH96L3d1Qyap7yVBbUxYkuxV8qxAv

username:john@example.com

password:secret

scope:

Remember to use your own Client ID and Client Secret. Click the Send button

and you should see a response with a token like in the image below:

In this case, you will get both an access token and refresh token.

Client Creden als

This grant type is the simplest of those we have listed, but it can also be the

most dangerous if it’s not used in the correct context. It’s mostly suitable for

machine-to-machine authentication where one machine is doing work on

the other via an API.

164

BUILD YOUR API

In contrast to the other grant types, this one does not require a specific user’s

permission to work, but instead you use amiddleware on the particular routes

that this grant can access.

Let’s test it out. Just like the Password Credentials grant, we need to create a

new specific client for this grant type. We have to get into the terminal again

and rerun the artisan command. This time, we will tell artisan that we want a

password grant client through a flag like this:

php artisan passport:client --client

You will again be asked to name your client, and we will name it Client

Credentials Grant Client. You will then see an output containing the Client ID

and Client Secret like this:

Client ID: 3

Client secret: C9wpwJizRQa0RPFH0KaOVg8Spsd8mIQWNtWPD4kT

Before we test this out, we have to make some changes to our annas-

bookstore project again. First, go into app/Providers/AuthService-

Provider.php and comment out the call to the Passport::enableImplicit-

Grant()method.

Then go into app/Http/Kernel.php file and add the CheckClientCredentials

middleware, with the key client to the $routeMiddleware property like this:

<?php

165

BUILD AN API WITH LARAVEL

use Laravel\Passport\Http\Middleware\CheckClientCredentials;

protected $routeMiddleware = [

'auth' => \App\Http\Middleware\Authenticate::class,

'auth.basic' => \Illuminate\Auth\Middleware\

AuthenticateWithBasicAuth::class,

'bindings' => \Illuminate\Routing\Middleware\SubstituteBindings

::class,

'cache.headers' => \Illuminate\Http\Middleware\SetCacheHeaders::

class,

'can' => \Illuminate\Auth\Middleware\Authorize::class,

'guest' => \App\Http\Middleware\RedirectIfAuthenticated::class,

'signed' => \Illuminate\Routing\Middleware\ValidateSignature::

class,

'throttle' => \Illuminate\Routing\Middleware\ThrottleRequests::

class,

'verified' => \Illuminate\Auth\Middleware\EnsureEmailIsVerified

::class,

'client' => CheckClientCredentials::class,

];

Then go into routes/api.php and add a test route we can use to check the

authentication like this:

<?php

Route::get('/test', function(Request $request){

return 'authenticated';

})->middleware('client');

Go into Postman again andmake a new request. Enter the request URL:

GET: /api/test

Remember to add your domain to the URL. In the case of our setup, the domain

166

BUILD YOUR API

is annas-bookstore.testwhich will result in a URL like this:

http://annas-bookstore.test/api/test

In the request section, click theHeaders tab, and in theKey field enter Accept.

In the Value field enter application/json and hit the send button.

You should see a 401 Unauthorized status code and amessage saying that you

are unauthenticated.

Create a new request. Enter the request URL:

POST: /oauth/token

Remember to add your domain to the URL. In the case of our setup, the domain

is annas-bookstore.testwhich will result in a URL like this:

http://annas-bookstore.test/oauth/token

In the request, section click the Body tab and choose form-data. Since we

have multiple parameters, it would be a little easier for us to use Bulk Edit

mode, so click on that and you will see an empty text area. For the Password

Credentials grant, we need the following parameters:

• Grant type - To tell which grant type we are using — in this case, it’s

client_credentials

• Client ID -Which is the Client IDwe created above

• Client Secret -Which is the client secret we created above

• Scope -Which, just like before, tells the scope of the client, we will just

leave this empty

In Postman, these parameters should be typed in like this, in Bulk Editmode:

167

BUILD AN API WITH LARAVEL

grant_type:client_credentials

client_id:3

client_secret:C9wpwJizRQa0RPFH0KaOVg8Spsd8mIQWNtWPD4kT

scope:

Hit the send button and copy the contents of the access_tokenmember.

Go back to the other request frombefore, add anewheader in theKeyfield type

Authorization, and in the value type Bearer add a space and add the contents

of the access token, before you as the last step hit the Send button. You should

then see an authenticatedmessage and a status code of 200 OK like this:

168

BUILD YOUR API

Personal Access Tokens

This isn’t a grant type but a functionality provided by Laravel Passport. This

makes it possible for a user to login to the server application and issue a

personal access token, which can be used by a client to access the user’s data

on the server.

It removes the entire authentication process and puts the responsibility on the

user. It’s a great way to quickly test out your API or a more straightforward

way to issue tokens.

We won’t be covering this type right now, but we will make use of it when

we start to develop our API. At this point, we will also take a look at the Vue

components that ship with Laravel Passport.

Which to choose?

We have now been through themost common grant types when it comes to

OAuth2. Which one to use depends a lot on your API and how the consumers

are going to work with it.

If you have an API that will be consumed by other web applications, with a

servermaking the requests to the API, the Authorization Code Grant is the one

to use.

If you have an API that will be consumed by a web application thatmainly runs

in the browser or a mobile app, it depends whether the consumer is first party

or third party.

For third-party consumers, you should use the Implicit grant. For first-party

consumers, you can use the Password Credentials Grant.

However, there is one more solution to authenticate first-party applications

169

BUILD AN API WITH LARAVEL

that come right out of the boxwith Laravel Passport. It’s especially convenient

if you plan on hosting your frontend application together with your Laravel

application. Also, in the case where you are using Vue, React or a similar

javascript framework to create a single page application instead of using

Laravel Blade and server-side rendered HTML pages.

For this case, Laravel ships with amiddleware called CreateFreshApiToken

that takes care of the entire tokenflow, so you don’t have to spend time issuing

anything. In fact, Laravel ships with a Vue boilerplate where everything is set

up and ready for you to build something with it.

The way this is kept safe, is by using the middleware on the web group of

middlewares, so that API tokens are only issued when a user is authenticated

and signed in. Your logins would use the old conventional sign-in forms, like

you would do with the artisan commandmake:auth. When your users are

being redirected to the admin page, you would then serve your Vue or React

application, and the API token flow would take place.

The advantage is that you can use all of the robust security features that ships

with Laravel when signing users in. If you plan on hosting your frontend

application together with Laravel, this is an excellent way of making a single

page application, which is a way we would highly recommend over using the

Password Credentials grant, since so much is taken care of right out of the

box.

If you are using the Vue boilerplate that ships with Laravel, you only have to

add the middleware to theweb property of the app/Http/Kernel.php file like

this:

<?php

170

BUILD YOUR API

protected $middleware = [

\App\Http\Middleware\CheckForMaintenanceMode::class,

\Illuminate\Foundation\Http\Middleware\ValidatePostSize::class,

\App\Http\Middleware\TrimStrings::class,

\Illuminate\Foundation\Http\Middleware\ConvertEmptyStringsToNull

::class,

\App\Http\Middleware\TrustProxies::class,

\Laravel\Passport\Http\Middleware\CreateFreshApiToken::class,

];

This middleware will attach a token cookie to your responses, which Vue will

use to consume your API.

This is everything we need to know about Passport, and for now, since it is

installed into our application, our API is secured. Let’s take a look at how we

can get the ball rolling and actually begin to build our API.

Get the ball rolling

Wenowknowhow to secure our API, we have plannedwhat to develop and how

our API should look. It’s time to start writing some code. But since there are

multiple resources and an entire specification we should implement, where

would be the best place to start?

In this case, it’s easy to start thinking of our application from the outside-in,

where you focus on authentication first, since this is also the first thing a user

would be presented to. Thenmoving on to how users are going to work, how

you handle books, and so on and so forth.

In many cases, authentication can be complicated and a steep climb initially,

when you start on a project. Why choose the hardest part and end up

demotivated because younever found theflowand joy in building your project?

Here, we recommend that you find an easier approach. Instead of thinking of

171

BUILD AN API WITH LARAVEL

your application from the outside-in, instead asking yourself the question:

“What is the easiest part I can build first?”. Not because you are trying to cheat,

but because you’ll get the ball rolling, you’ll become motivated, you’ll get

things done and feel the progression.

Take a look at the following resources we have identified in our planning

phase:

• Books

• Authors

• Comments

• Users

Which of these is easiest to implement and which would also make it easy for

us to implement the conventions from the JSON:API specification? Let’s go

through each of them.

Users

If we start by implementing our users, we end upwith the outside-in approach,

and since we are dealing with a multi-tenant application, we would be

implementing roles for administrators as well. If you remember from our

planning phase, these will share the samemodel and therefore also share a lot

of the same code. Also, users can comment on books—we would not be able

to begin this part until books were implemented. From this, we can conclude

that beginning with users will give us a much harder start and that’s not what

we want.

Books

A Book is our central resource— it’s what the entire application will revolve

around. It would make sense to start here since these cover so much ground.

But a book has a relationship to one or more authors whichmakes this a bit

172

BUILD YOUR API

more complicated, since a book can’t exist without an author and you would

have to implement these as well.

Also, books can have comments, which again will require us to work through

the entire user implementation. So maybe books aren’t the best place to start

either.

Authors

If we take a look at an author, the model is actually straightforward. A single

resource, that only provides information about a person, and that’s it. It does

have a relationship to one or more books, but it is not preventing us from

building the author model and most of the API around it. If we take a look

at the relationship to books, whether it’s a one-to-many ormany-to-many

relationship, the direction of the relationship will tell that it’s always either

the book that would have a foreign key, pointing to the author, or amany-to-

many pivot table that has a foreign key that points to the author. This tells

us that authors can stand on their own, they do not need anything to exist in

our application, and therefore makes a good candidate for the first thing to

implement.

Comments

The model for comments is, as authors, pretty simple. A comment has a

message and a timestamp for when it’s been created, and that’s it. The thing

that makes them a bit more complicated is the relationships, since it has

a relation to both the user who has written the comment and the book the

comment has been written for. Because of this, they can’t stand on their own

and wouldn’t make a natural starting point.

173

BUILD AN API WITH LARAVEL

And the winner is…

In this case, we will be starting with Authors. We will have a natural model

to implement, and it would be possible to begin implementing the JSON:API

specification into Laravel as well with this resource. The only hindrance we

will face is when we need to implement a relationship, but then it would be

possible to implement books since authors will exist in our application.

By looking at your application this way, you find an easy approach. We know

where to start, and it would be much easier to decide what to implement next

and just follow the path. Like we have alreadymentioned, it wouldmakemuch

sense to build the books resource next, as authors are related to books. Of

course, there will be obstacles. After all, it is software development. But when

we hit these, we are in a better position, where it’s easier to make a decision

because we are in the flow, we are progressing and heading toward the goal. At

this point, we will have a better grasp on what we need to finish—we’re not

standing in the beginning in front of an overwhelming amount of possibilities.

Now that we know what to do, we will begin by building the Authors resource,

and we finally get to do some actual coding.

Building our first resource

We are ready to start writing some code and implementing our API. We have

planned everything out, we have documented our API, so let’s build it.

For the rest of this chapter, we will build the author resource. We will start by

making sure we have an API key we can use with Postman. To do this, we will

use the Vue components that ship with Laravel Passport, since these make it

really easy to issue personal access tokens.

We will then commence by taking a look at the attributes we have identified

174

BUILD YOUR API

for our resource andmake the model for it.

Then we will make sure that we have some test data to develop up against

and show you how you can create artisan commands yourself for a smoother

development cycle.

After this, we will create our first route for fetching a resource, setting up our

controller and then we will have a look at Laravel’s API Resources and use

these to adhere to the JSON:API specification’s conventions about resource

objects.

Afterward, we will build our next route to fetch a collection of resources. Here,

we will have a look at Laravel’s API Resources collections to again adhere to

the JSON:API specifications conventions about resource collections.

We will build a route for creating a resource by posting a resource object to our

API, which should create a newmodel from this.

Then we will build a route to update a resource, using a PATCH request that

only updates the attributes included.

Wewill then end this chapter by building adelete request for deleting resources

through our API. Throughout building all the requests, we will test these using

Postman.

You might wonder why we won’t be building everything for the authors’

resource to get this out of the way, but we want to begin by building a basis we

can work from to ease you into tests later on and have the authors’ resource

backed by tests that give us muchmore confidence. This is merely a stepping

stone to that point. But don’t worry, there’s plenty of interesting things to

learn here as well, so don’t be discouraged.

Let’s get on with it and start by installing Laravel Passport’s Vue components.

175

BUILD AN API WITH LARAVEL

Authen ca on and Laravel Passport Vue Components

As mentioned earlier, Laravel Passport ships with some Vue components.

These can be included on any page behind authentication and will give you

everything you need in terms of creating clients in your application. Behind

the scenes, the components use the Laravel Passport API to issue tokens, so

by using these, you can skip a lot of work.

We will, of course, leverage this since we need an access token to test our

API from Postman. So go into your terminal and run the following artisan

command:

php artisan vendor:publish --tag=passport-components

This commandwill copy the Vue components from the Laravel Passport folder

inside the vendor directory to your resources directory, so you can actually

compile the assets and use them in your application.

Next, we need to register the components in the resources/js/app.js file that

is created out of the box by the Laravel installer. Here, you should register the

components like this:

Vue.component(

'passport-clients',

require('./components/passport/Clients.vue').default

);

Vue.component(

'passport-authorized-clients',

require('./components/passport/AuthorizedClients.vue').default

);

176

BUILD YOUR API

Vue.component(

'passport-personal-access-tokens',

require('./components/passport/PersonalAccessTokens.vue').

default

);

const app = new Vue({

el: '#app'

});

Then you should go back to the terminal and compile your assets like this:

npm run dev

We are almost there, we just have to make sure to add the components to our

markup, so that they will appear in the right place.

Earlier, we ran the make:auth artisan command to scaffold our entire au-

thentication. If you sign in to our application, you should see something like

this:

177

BUILD AN API WITH LARAVEL

Since our application shouldn’t do anything else — it will be an API only

application—we can cheat a bit and insert the components here.

We find this view by going into resources/views/home.blade.php. Here, you

should remove the “You are logged in!” text and insert the components like

this:

<div class="card-body">

@if (session('status'))

<div class="alert alert-success" role="alert">

{{ session('status') }}

</div>

@endif

<passport-clients></passport-clients>

<passport-authorized-clients></passport-authorized-clients>

<passport-personal-access-tokens></passport-personal-access-

tokens>

</div>

If you refresh the page you should see something like this:

178

BUILD YOUR API

If youmade a lot of authorizations when we were testing the passport-oauth-

client youmight have a lot of registered clients. If so, you can just revoke all

of these.

Just one more thing before we move on. If you take a look at the re-

sources/views/layouts/app.blade.php file and look at the first div inside the

body, you should see that the div has an id=”app” attribute.

Remember this when you go back to the resources/js/app.js file and take a

look at the Vue instance like below:

const app = new Vue({

el: '#app'

});

Here, the el property tells Vue to mount the application on the el-

ement that has the id attribute with a value of app. Since the re-

sources/views/home.blade.phpextends the resources/views/layouts/app.blade.php

file, everything inside resources/views/home.blade.php will be inside the

mounted Vue application, and that is why we could just copy the components

in here, and they worked right away.

Now we have a way to create personal access tokens we can use with Postman,

so let’s move on to making the model for our resource.

The model

Wewill start with the model both to set up our database, and also because the

artisan command for making models can do a lot of other work for us. Go into

your terminal and run the command:

179

BUILD AN API WITH LARAVEL

php artisan make:model -a -r Author

Because we gave it the -a flag, this command will create a model, a database

migration, a factory, and a controller. The -r flag tells the generation of the

controller to create a resource controller. What thismeans is that the controller

will contain methods for each REST verb from the beginning. You can do this

when creating controllers as well, and even give an–api flag that removes the

methods for edit and create, since these are used to show the creation and edit

views in a regular/non-API application.

We will have some renaming to do since we want to keep most of our naming

in a plural form. It’s better to do this now, so we keep consistency. Because

it’s required by Laravel that models keep a singular naming form, this will be

the only class that has a name in singular, the rest of our classes that revolve

around resources will be in plural naming form.

Let’s rename the various classes then, remember to rename both the filename

and the class name inside the class:

• app/Http/Controller/AuthorControllers to app/Http/Controllers/Au-

thorsController

• database/factories/AuthorFactory to database/factories/AuthorsFac-

tory

Let’s edit the generated migration so our database will be set up correctly. If

we take a quick look at the attributes we identified for our authors resource:

• Authors

• - Name

• - Updated At (Comes from Laravel)

• - Created At (Comes from Laravel)

180

BUILD YOUR API

Asmentioned earlier, it’s a quick, simple model, with only one attribute that

holds the name of the author. For this, we just need a string which then will

create a VARCHAR in our database. We will remove any restrictions on the

length so the name can be at least 255 characters long to be sure that it can

hold long names as well.

Go to database/migrations/xxxx_xx_xx_create_authors_table.php and

create a new string column with the column name of name like this:

<?php

public function up()

{

Schema::create('authors', function (Blueprint $table) {

$table->bigIncrements('id');

$table->string('name');

$table->timestamps();

});

}

Go to app/Author.php and let’s set the fillable attributes array and add the

name attribute like this:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Author extends Model

{

protected $fillable = ['name'];

181

BUILD AN API WITH LARAVEL

}

This ensures that we can add the name attribute when using a method like

Author::create() because it’s nowmass assignable.

We have nowmade sure that we can store our data about authors, but we need

some data to both build and test up against. Let’s take care of this next.

Test data

The Laravel framework comes with a method to handle test data, called

factories. Factories make it possible to generate models with test data and

populate your database with test data very fast an easy.

Whenwe generated the various classes for our authors’ resource, we also got a

factory, so let’s take a look at our factory file at database/factories/Authors-

Factory.php. You should be seeing a file that contains the following:

<?php

use Faker\Generator as Faker;

$factory->define(App\Author::class, function (Faker $faker) {

return [

];

});

In the array, we can list the attributeswewant to have populated by our factory.

We only have one attribute, since Laravel takes care of the created_at and

updated_at attributes, we just need to add our name attribute here like this:

182

BUILD YOUR API

<?php

use Faker\Generator as Faker;

$factory->define(App\Author::class, function (Faker $faker) {

return [

'name' => $faker->name(),

];

});

The great thing about factories is that they utilize the Faker package. The Faker

package can create fake test data for a lot of different things like emails, phone

numbers, addresses and in our case generating names. This is especially one

of the reasons why factories make it so easy to create test data.

Nowweneed something that can call our factory andactually create themodels

with test data. For this we need to create a database seeder. Unfortunately,

this wasn’t created whenwe generated ourmodel, but it can be done in a quick

artisan command like this:

php artisan make:seeder AuthorsTableSeeder

Of course, you can name the seeder whatever you want—we have named ours

AuthorsTableSeeder to follow our naming conventions.

To be able to call this database seeder, we need to add it to the database/seed-

s/DatabaseSeeder.php class like this:

<?php

use Illuminate\Database\Seeder;

183

BUILD AN API WITH LARAVEL

class DatabaseSeeder extends Seeder

{

public function run()

{

$this->call(AuthorsTableSeeder::class);

}

}

Nowgo into thedatabase/seeds/AuthorsTableSeeder.phpfile andmake a call

to our factory like this:

<?php

use Illuminate\Database\Seeder;

class AuthorsTableSeeder extends Seeder

{

public function run()

{

factory(\App\Author::class, 5)->create();

}

}

In the call, we can declare which model we want the factory to work with and

howmanymodels to create. In this case we will be making 5 authors.

Now that it’s done, we should migrate and seed our database. We can do both

with a single artisan command like this:

php artisan migrate --seed

184

BUILD YOUR API

If you want to start fresh, you can use the following artisan command, but

remember that you will have to create both user and clients again though:

php artisan migrate:fresh --seed

If you have already run themigrate:fresh command, don’t worry. We’ll just

cover a quick tip that we use a lot when developing our applications that can

help you.

Development Commands

In many projects, we use small development artisan commands to be able to

set up everything for development quickly. Some projects are more elaborate

than others, especially when it comes to data. Sometimes, you need to be

able to do a complete reset of the application, or be able to set up your project

quickly on another machine, and it is in such cases that the commands come

in handy.

We also use some of these commands to fill out an application with test data,

so that when handing it over to customers, they know what kind of data that

is expected and they can see the functionality of the application.

Let’s quickly build a command that will migrate our database from fresh, run

our seeders and also make sure that we have a client we can use to create a

personal access token for the first user in our database. Even though we could

use the super handy routes/console.php file, let’s instead create a dedicated

command, so everything is in it’s own class.

Go into your terminal and run the following artisan command:

185

BUILD AN API WITH LARAVEL

php artisan make:command SetupDevEnvironment --command=dev:setup

In your editor, go into app/Console/Kernel.php and in the $commands

property add the SetupDevEnvironment class to the array like this:

<?php

protected $commands = [

SetupDevEnvironment::class,

];

If you run artisan without any commands you should see our dev:setup

command on the list now. Next, let’s describe the command and code the

things it should do like this:

<?php

namespace App\Console\Commands;

use App\User;

use Illuminate\Console\Command;

use Illuminate\Support\Facades\Artisan;

use Laravel\Passport\PersonalAccessTokenResult;

class SetupDevEnvironment extends Command

{

protected $signature = 'dev:setup';

protected $description = 'Sets up the development environment';

public function __construct()

{

186

BUILD YOUR API

parent::__construct();

}

public function handle()

{

$this->info('Setting up development environment');

$this->MigrateAndSeedDatabase();

$user = $this->CreateJohnDoeUser();

$this->CreatePersonalAccessClient($user);

$this->CreatePersonalAccessToken($user);

$this->info('All done. Bye!');

}

public function MigrateAndSeedDatabase()

{

$this->call('migrate:fresh');

$this->call('db:seed');

}

public function CreateJohnDoeUser()

{

$this->info('Creating John Doe user');

$user = factory(User::class)->create([

'name' => 'John Doe',

'email' => 'john@example.com',

'password' => bcrypt('secret'),

]);

$this->info('John Doe created');

$this->warn('Email: john@example.com');

$this->warn('Password: secret');

return $user;

}

public function CreatePersonalAccessClient($user)

{

187

BUILD AN API WITH LARAVEL

$this->call('passport:client', [

'--personal' => true,

'--name' => 'Personal Access Client',

'--user_id' => $user->id

]);

}

public function CreatePersonalAccessToken($user)

{

$token = $user->createToken('Development Token');

$this->info('Personal access token created successfully.');

$this->warn("Personal access token:");

$this->line($token->accessToken);

}

}

If you take a look at thehandle()method, we go through each step in our setup.

We have a dedicated method for each step, so that we have a nice descriptive

name that explainswhat is happening. If you go into your terminal and run the

artisan command, you will be presented with the migrations, the seeder, the

creation of John Doe, the client creation and in the end we output the access

token so that it can be copied into Postman easily.

We now have an artisan command we can run any time we want to setup the

project for development and we are now able to begin working on our first

route.

The first route

Before we begin developing our first route, we have some cleanup to do. If you

go into the routes/api.php file, we have a method fromwhen we were testing

the Client Credentials Grant. Remove this route, since we are not going to use

it anymore.

188

BUILD YOUR API

Next, we want to create a group for our routes. The advantage here is that

through groups we can make sure that all routes in that group are going

through the auth:apimiddleware and so that we can also prefix our future

routes. Asdiscussed in the chapter about the JSON:API specification, it’s a good

idea to version our API. This can also be done via groups through prefixing,

which will give us URLs that look like this:

GET: /api/v1/authors

All routes in the routes/api.php file are always prefixed with api so we only

need to make a prefix for v1, which we can easily do by changing the existing

user route that looks like this:

<?php

Route::middleware('auth:api')->get('/user', function (Request

$request) {

return $request->user();

});

Into a group like this, with the existing user route transformed into a regular

route:

<?php

Route::middleware('auth:api')->prefix('v1')->group(function(){

Route::get('/user', function (Request $request) {

return $request->user();

});

});

189

BUILD AN API WITH LARAVEL

Any route we defined inside the group closure will automatically be prefixwith

/api/v1.

Now we can make our first route. Again, it’s about picking the easiest path.

Here, we always start out with the route for a single resource. With the routes

for creating or updating a resource, there are far more things you need to

consider and with the route for fetching all resources, you pretty much have

to have done the work for a single resource first.

Right under the /user route, create a new GET route with a URI with a route

parameter like this: /authors/{author} so that we can capture the ID of the

author.

It should look something like this:

Route::middleware('auth:api')->prefix('v1')->group(function(){

Route::get('/user', function (Request $request) {

return $request->user();

});

// Authors

Route::get('/authors/{author}', 'AuthorsController@show');

});

Wemake sure to reference our authors’ controller, more specifically the show

method on the controller. Since wemake a resource controller, Laravel has

already set up the various methods for us to use, where the showmethod is

typically used to show a resource and that fits this route perfectly.

Before we move on, let’s try to hit this route through Postman, so in Postman

you should create a new request with a GETmethod and hit the newly created

route. Again, the domain depends on your local configuration but for us the

URL is:

190

BUILD YOUR API

http://annas-bookstore.test/api/v1/authors/1

Make sure to set a header that tells the server that you will Accept a response

in application/json and a Authorization header with Bearer <your access

token> before testing the route, like this:

If you’ve done it right, you’ll receive a 200 OK response with no content in

the body. We need to have some code in our controller that returns a proper

response, so let’s do that next.

The Controller

Go into app/Http/Controllers/AuthorsController.php and take a look at the

methods Laravel has generated for us. There are some we don’t need, more

specifically the create and edit routes. The reason is that they are dedicated

to showing a creation or edit form in a regular application, but since we are

building an API, we don’t need that. So let’s start by removing these two

methods.

Next, we need to work with the showmethod. If we look at the parameters, we

see that in Laravel’s generation of the controller, it has referenced our Author

model for use with route model binding, so that behind the scene Laravel will

find the model associated with the ID that comes in through the route.

191

BUILD AN API WITH LARAVEL

To be able to get some results, we can be a bit lazy and just return our model

as our response like this:

public function show(Author $author)

{

return $author;

}

This is one of the areas where Laravel shines: it makes it easy for developers

to get results. Go into Postman, hit the send button again, and you should see

a result like this:

This result does not really adhere to the JSON:API specification so we have to

do something about this.

192

BUILD YOUR API

Adhering to the JSON:API Specifica on

If you take a look at the JSON returned by Laravel, we are not even close to

adhering to the JSON:API specification. First, we need to adhere to the top level

document structure having a data member that contains a resource object

which will the representation of our model.

So how do we do this? We could just go into the controller again an build the

response ourselves like this:

public function show(Author $author)

{

return response()->json([

'data' => [

'id' => $author->id,

'type' => 'authors',

'attributes' => [

'name' => $author->name,

'created_at' => $author->created_at,

'updated_at' => $author->updated_at,

]

]

]);

}

Itwould give us the correct structure, butwewouldhave to use this everywhere

we want to transform our model into a response that adheres to the JSON:API

specification. We could extract it and create a transformer class that could

take care of it, and then reuse this. But like in so many other areas, Laravel

actually has something like this already through Eloquent: API Resources.

An API Resource makes it possible for us to define how we want to transform

our models into API resources. It gives us a convention we can leverage again

and again. Better yet, it also handles collections, so it is not only a benefit for

193

BUILD AN API WITH LARAVEL

single resources but for collections of resources as well.

To create a resource, we do it through an artisan command like this:

php artisan make:resource AuthorsResource

This will generate a new APIResource class, which can be found here: ap-

p/Http/Resources/AuthorsResource.php

If we take a look at the file, we can see one method named toArray that takes

a request as a parameter and needs to return an array. We can use this array

to define our structure for our resource. We knowwhat the topmost members

we need to define should be, so let’s define the datamember in our array. Let’s

recreate our structure from before like this:

public function toArray($request)

{

return [

'data' => [

'id' => (string)$this->id,

'type' => 'authors',

'attributes' => [

'name' => $this->name,

'created_at' => $this->created_at,

'updated_at' => $this->updated_at,

]

]

];

}

Youmight wonder how we can reference our model attributes through $this

but as you will see in a moment, the model we are transforming is actually

194

BUILD YOUR API

passed upon instantiation of the resource. The (string) part before $this->id

is a casting, telling PHP that we want to cast the contents of the id property

to a string. Remember that according to the JSON:API specification, the IDs

must be strings.

Let’s do that, go back into the controller at app/Htpp/Controllers/Au-

thorsController.php and replace the contents of the show method with

the following:

public function show(Author $author)

{

return new AuthorsResource($author);

}

This is a far cleaner approach. Everything about our transformation is kept

within its own class andwe can just instantiate this resource, pass it themodel

and we are done for now. Let’s test it out in Postman, where you should see a

response like this:

195

BUILD AN API WITH LARAVEL

There you go. This was actually our first route implemented. Let’s take a look

at how we can return a collection of authors next.

Resource collec ons

As we mentioned earlier, the API Resources functionality built into Laravel

can help us transform both single resources and collection of resources as

well. It’s actually possible to get a collection from the single resource— let’s

try to see what kind of structure that will give us first.

Go into app/Http/Controllers/AuthorsController.phpwhere we will work in

the indexmethod this time. Let’s first make a query for all the Authors in the

database and then try to make a collection of our AuthorsResource, like this:

public function index()

{

196

BUILD YOUR API

$authors = Author::all();

return AuthorsResource::collection($authors);

}

Before we go into Postman to test this, we need to define the route first.

Jump into routes/api.php and just above the existing /authors/{author} route

make a new GET route to /authors pointing to the AuthorsController’s index

method like this:

// Authors

Route::get('/authors', 'AuthorsController@index');

Route::get('/authors/{author}', 'AuthorsController@show');

Nowwe can go into Postman and test the route. By now you should be familiar

with what to do, so we will let you do it on your own. If you did everything

correctly, you should see a result like the one below:

197

BUILD AN API WITH LARAVEL

The structure isn’t right: the top level datamember is being repeated both for

the collection but again for each. How should we fix this.

Let’s try removing the data member from our AuthorResource’s toArray

method, which will result in something like this:

198

BUILD YOUR API

public function toArray($request)

{

return [

'id' => (string)$this->id,

'type' => 'authors',

'attributes' => [

'name' => $this->name,

'created_at' => $this->created_at,

'updated_at' => $this->updated_at,

]

];

}

Let’s send the request again and you should see something like this:

199

BUILD AN API WITH LARAVEL

The structure is correct now, but what about our single resource? If we try to

make a request to it in Postman, you will get a result like this:

200

BUILD YOUR API

By default, API Resources in Laravel actually creates a top level document with

a datamember so we don’t need to do anything for these members. We do,

however, need to do some work for other members like links and includes,

and right now that is not possible. For this, wewill need a dedicated collections

class and of course Laravel has us covered here as well.

This is done through the same artisan command we used to create our

AuthorResource. You can either tell artisan that youwant a collection through

a –collection flag or by simply including the word Collection in your class

name. We will do the latter like this:

php artisan make:resource AuthorsCollection

Like our AuthorsResource class, the collection class has a toArraymethod

that takes a request as a parameter and returns an array. We need to edit the

toArraymethod so that it returns our resource collection in the datamember,

201

BUILD AN API WITH LARAVEL

we do this like this:

public function toArray($request)

{

return [

'data' => $this->collection,

];

}

This does notmake the biggest difference right now, but then it’s a preparation

for future work.

Now that we have implemented how to fetch both a single resource and a

collection of resources, let’s implement how to create a resource next.

Crea ng a resource

It’s time to look at resource creation. If you recall from the chapter about the

JSON:API specification, in order to create a resource we need to send a valid

resource object to the server. The resource object will have to contain the type

member of the resource as well as the attributesmember with the attributes

for the resource to be a valid resource object for creating a resource. You could

add an IDmember for the server to use, but we feel that generating IDs ismore

a concern of the server or database, so we will let these take care of this.

To implement this, let’s start out by defining a route. This timeweneed a POST

route to /authors, pointing to AuthorsController’s storemethod. Before you

begin writing this route, hold on. It’s actually possible to take a shortcut here

— one that also makes thing a bit more descriptive. We can use a single route

that creates all the routes we need for a resource, and coincidently the route

method is named Routes::apiResource. Let’s change our existing routes into

this single route, like this:

202

BUILD YOUR API

Route::apiResource('authors', 'AuthorsController');

You should test your existing routes in Postman, where they should still

work just fine. If you want to see what this route does for you, go into your

terminal and use the route:list command to get a list of the routes in the

application. At the top, you will see all the routes for the authors resource,

even the ones we haven’t implemented yet, so let’s implement these now. Go

back to app/Http/Controllers/AuthorsController.php and let’s focus on the

storemethod first.

Here, it’s our responsibility to take the data from a resource object and create

a new author from these, so let’s take the naive approach and just pretend

that we will get a correct resource object and create the model like this:

public function store(Request $request)

{

$author = Author::create([

'name' => $request->input('data.attributes.name'),

]);

return new AuthorsResource($author);

}

We create a new Authormodel and again we leverage one of the conveniences

of Laravel through the inputmethod on the Request object, whichmakes it

possible to access data sent in the request through dot notation. We know

through the conventions of the JSON:API specification that there will be a top

member called data, we know that it will contain a resource object and we

know that the attributes for this resource object will be placed in a attributes

member. Last, but not least, we know that we only need the name attribute to

create an author.

If you remember from the chapter on the JSON:API specification, we need

203

BUILD AN API WITH LARAVEL

to return the created resource, we can do this easily through our existing

AuthorsResource.

Let’s test this by going into Postman, creating a new request, andmaking a

POST request to the route /api/v1/authors the URL in our configuration will

look like this:

http://annas-bookstore.dev/api/v1/authors

Remember the correct headers which is an Accept header with the value

application/json, an Authorization header with the value Bearer <your

access token> and also a Content-Typewith the value application/json. We

will continue using application/json as our content type— in thenext chapter,

we will take a look at how to adhere to the JSON:API specification here as well.

In the body of the request, you should create the request document with a

resource object like this:

204

BUILD YOUR API

Send the request and in the response area you should see something like this:

You should also take a look at the headers sent from the server, since

there is something missing here. We are not thinking about the Content-

Type: application/vnd.api+json header just yet, but the Location header we

should include when creating resources. Let’s get back to our controller and

implement this. Here, we will need to wrap the instantiation of the

AuthorsResource in brackets to be able to work with the instance right away.

We will use this instance to access the response and add our header like this:

public function store(Request $request)

{

$author = Author::create([

'name' => $request->input('data.attributes.name'),

]);

return (new AuthorsResource($author))

205

BUILD AN API WITH LARAVEL

->response()

->header('Location', route('authors.show', ['author' =>

$author]));

}

We use the route helper function to make the URL for the Location header and

since we are using the Route::apiResource route method, we can leverage the

automatic naming of our routes together with our model to make the URL.

If you go back and test the route in Postman and take a look at the headers of

the response, you should see a Location header like this:

Great, the creation of resources is implemented. Of course, this is an extremely

naive implementation, where we don’t validate on anything. This is not good,

you should always validate any user input, but for now we will continue on to

updating our resources and then return to validation in a bit.

Upda ng a resource

When updating a resource, we need to send a resource object again. This

time, the resource object should contain both the type and idmembers. In the

attributes, all or some can be included and it will be the server’s responsibility

to only update the attributes mentioned.

Let’s head into the app/Http/Controllers/AuthorsController.php again and

this time focus on the updatemethod. Just like the showmethod for fetching

a single author resource, we get a routemodel binding to the requestedAuthor

model. So our job here is to take this model and update it according to the

206

BUILD YOUR API

attributes in the resource object. This can be easily done like this:

public function update(Request $request, Author $author)

{

$author->update($request->input('data.attributes'));

return new AuthorsResource($author);

}

Laravel makes this super easy for us — we don’t even have to worry about

only updating the attributes given. All of that is taken care of by simply giving

the array of attributes to the updatemethod on our Authormodel.

By default, Laravel will update our model with a new updated_at timestamp

and according to the JSON:API specification, whenever the server changes

a resource other than what is being specified in the request, the server

must respond with the updated resource, which we will do by leveraging the

AuthorsResource yet again.

Let’s test this out in Postman. Remember that you need to provide a URL with

the ID of the resource, just like when we were fetching a single resource, and

also provide that same ID in the resource object of the request document and

don’t forget the headers, these are the same as the create request. If you have

done it correctly you should see something like this:

207

BUILD AN API WITH LARAVEL

Notice how the updated_at member has a different timestamp than the

created_at member now- This is because Laravel updates this behind the

scenes, even though we have only updated the name.

Dele ng a resource

It’s time to take a look at how to delete resources. This might be the simplest

request we canmake at all. Since it does not require any resource objects to

be sent, it doesn’t even need any data to be returned from the server. Let’s

jump into our AuthorsController and direct our focus to the destroymethod.

This time, we are once again being spoiled by Laravel and getting the model

through route-model binding. This makes it very easy for us to delete the

model since we only need to call the deletemethod on it to delete it from the

database. Because we don’t need to return any data, we can respond with a

204 No Content status code and leave the body of the response empty, like

this:

208

BUILD YOUR API

public function destroy(Author $author)

{

$author->delete();

return response(null, 204);

}

Let’s test it out in Postman. Make a new delete request to /api/v1/authors/1

and for this request we still need the Accept and the Authorization headers.

If you have done everything right, you should see a response like this:

Wasn’t that easy? It doesn’t get simpler and it is all thanks to Laravel.

We have built the entire resource now, but we do have one thing we need to

take care of, namely validation. We are being a bit too naive at the moment.

Valida on

It’s time to protect ourselves a little more against user inputs. The way we do

this is through validation, where we ensure that the user gives us the required

data in the required data types we need. We ensure that the user delivers a

request document that adheres to our conventions, so that we can get more

predictable inputs we know will work.

In Laravel, validation can be done inmanyways, whichwewill not be covering

209

BUILD AN API WITH LARAVEL

in this book. The way we will be covering is validation through Form Requests.

This makes it possible for us to have our validation logic in separate classes

with a nice descriptive name. And the only thing we need to do to use them,

is to change the reference from the Request object in our store and update

methods to the new form request classes.

Let’s start with a form request class for the storemethod. We can create this

with an artisan command as well, so let’s jump into the terminal and call the

following command:

php artisan make:request CreateAuthorRequest

Next, jump into the newly created class in app/Http/Requests/CreateAuthor-

Request.php and take a look at the authorizemethod first. This method is

used to determine if the user is authorized tomake the request. As of right now,

we have no way of implementing this, so just set this to return true instead

of false. In the rulesmethod, we should return an array of validation rules.

Here, we should provide the rules for both the structure of a request document,

but also the data we expect. For this, we will need the following rules that

requires:

• A top level datamember

• That the datamember contains a resource object

• That the resource object contains a typemember

• That the typemember has the value authors

• The the resource object contains a attributesmember

• That the attributesmember contains a namemember

• That the namemember is not empty

We can do it like this:

210

BUILD YOUR API

public function rules()

{

return [

'data' => 'required|array',

'data.type' => 'required|in:authors',

'data.attributes' => 'required|array',

'data.attributes.name' => 'required|string',

];

}

Wemake sure the datamember is required andmake sure the data type is an

array. This is not meant as an array in the JSON document, but a PHP array,

because Laravel will decode JSON objects to associative arrays. We ensure that

the typemember is required and that it has the value of authors. We make

sure that the attributesmember is required and as with the datamember we

get an arraymeaning that it is an object on the JSON side. We ensure that

name is required and that it is a string.

To actually use this form request andmake the validation work, we need to

change out theRequest object in ourAuthorsController’s createmethod, like

this:

public function store(CreateAuthorRequest $request)

{

//...

}

Let’s test it out in Postman. We will make a request to create a new author but

misspell the value of the typemember like this:

211

BUILD AN API WITH LARAVEL

When sending the request you should get a response like this:

Our validation works now, but it’s not quite the error message that we want.

We will be tackling this in the next chapter though, so let’s continue to the

next form request, the one for validating our update request.

Go back into the terminal and call the following command:

php artisan make:request UpdateAuthorRequest

212

BUILD YOUR API

This will create yet another form request class, this time it’s: app/Http/Re-

quests/UpdateAuthorRequest.php so let’s go into this.

Like before we make the authorize method return true and for the rules

method, you can copy everything from the CreateAuthorRequest’s rules

method and paste it in here. Right above the rule for the typemember, add

a rule for the idmember. This should be required and needs a data type of

string. Add the sometimes rule in front of the attributes and namemembers,

which should make the entire method look like this:

public function rules()

{

return [

'data' => 'required|array',

'data.id' => 'required|string',

'data.type' => 'required|in:authors',

'data.attributes' => 'sometimes|required|array',

'data.attributes.name' => 'sometimes|required|string',

];

}

Remember when updating a resource only the id and type is actually required-

The attributesmember and its contents are optional.

Let’s change the Request object for the updatemethod in the AuthorsCon-

troller now, like this:

public function update(UpdateAuthorRequest $request, Author $author

)

{

$author->update($request->input('data.attributes'));

213

BUILD AN API WITH LARAVEL

return new AuthorsResource($author);

}

If we test it out in Postman and againmake a typo for the typemember and

maybe forget the id member like this:

When you send this request, it should give you a response like this:

214

BUILD YOUR API

Awesome. Our validation for the update request works as well.

Summary

In this chapter, we went through authentication with Laravel Passport, where

we showed how to install it into a fresh Laravel application.

We went through how OAuth 2 authentication works and went through each

of the most common grant types and gave an example of how they worked—

both through a client application and in Postman as well.

We talked about which grant type to use, especially when thinking of a

consumer application that is first or third party.

Then we shifted gears and actually commenced the development of our API.

We looked at how to get the ball rolling and which parts to implement first,

from amodel and outwards perspective.

We ended the chapter by implementing our authors resource andmost of the

conventions of the JSON:API specification.

In the next chapter, we will get much more deeper into developing our API,

but before that we will take a look at Test Driven development and the tools

around Laravel to help us with Test Driven development, which will give

us an awesome workflow as well. Then we will set off into this new way

of development by revisiting our author resource and later on continue to

our books resource and implement this together with relationships between

authors and books.

See you in the next chapter!

215

BUILD AN API WITH LARAVEL

* * *

216

5

Test-driven Workflow

It’s time to take a look at test-driven development— a development flow we

have learned to love and we are sure you will too. Whether you are new to

test-driven development or have done it for years, we’re sure you will be able

to learn something here.

Test-driven development is a big field in itself and of course we won’t be able

to cover everything about it in this book. We will instead cover how to use

test-driven development to drive out the features of our API and ensure we

implement the JSON:API specification correctly.

To some people, test-driven development can seem tedious, boring, and

repetitive. These people have obviously not tried looking for bugs while the

phone is ringing off the hook with calls from angry customers.

To us, the repetitive and boring work and the extra lines of code is worth it.

If you think about it, the hours spent on writing tests are hours well spent,

in contrast to when things go wrong and you spend evenmore hours trying

to fix a bug. The extra work is also worth the confidence you get when you

ship your product. You don’t have to worry about anything breaking in one

place if you change something in another place, and you have tests that prove

your application works— or at least tell you where things break, before you

217

BUILD AN API WITH LARAVEL

push this bug out into production. If a bug should show up— and they most

certainly will— you write a test for fixing that bug and now you know it won’t

show up again.

If you go to Github and take a look at one of your favorite projects as well as the

tests for that package, you can actually see that the tests can be used as a kind

of documentation, since they show how to work with the project. They have

to, to be able to prove that the project works and that is also a huge benefit.

It isn’t always fun writing tests, but it’s a necessity and when you get into the

habit of writing tests, especially for API development, you get a workflow that

is actually quite good, especially in contrast to testing everything manually in

Postman. Let’s just face it: this is what you will be doing if you are not writing

tests, and you have to ensure somehow that things work correctly.

When you see howmuch ground you can cover by testing your APIs through

PHPUnit instead of Postman, youwon’t be going back. This is one of the things

we hope you will take away from this book, and we will do our best to show

you how to get into a flow of writing tests and implementing the source code

for those tests to pass until everything is implemented and you’re done.

In this chapter, we will focus on getting started with test-driven development

in Laravel and for API development in general

We will first take a look at Laravel’s test tools and introduce you to the various

tests types that Laravel supports out of the box.

Then, we will go through setting up your test environment, so you are ready to

start your journey into test-driven development. Here, we will also introduce

you to a Laravel package we have developed for a smoother testing workflow.

Then we will get right back to coding as well as implementing tests for our

existing author resource, so you can see the difference from our manual

218

TEST-DRIVENWORKFLOW

Postman tests to the test-driven approach.

We will conclude this chapter by implementing our book resource, which is

the resource the entire application is centered around and the resource that

touches uponmany different concepts and relationships.

One thing we want you to remember before moving on, is that it does seem

a bit more repetitive when you are reading about tests and are instructed to

write your test in a certainway, which youwill be in the rest of this book. When

you have learned to write tests and know what you want to write in each test,

it becomes much easier and faster. Just keep in mind that we want to teach

you asmuch as possible, so we will try to go through asmany tests as possible.

Let’s begin.

Laravel Test tools

We’ll start by taking a look at our composer.json file at the root of our annas-

bookstore application.

Here, we want to specifically look at the require-devmember to see which

dependencies are being installed, when youmake a new Laravel installation.

At the time of writing this, Laravel 5.8 includes these development dependen-

cies:

"require-dev": {

"beyondcode/laravel-dump-server": "^1.0",

"filp/whoops": "^2.0",

"fzaninotto/faker": "^1.4",

"mockery/mockery": "^1.0",

"nunomaduro/collision": "^3.0",

"phpunit/phpunit": "^7.5"

219

BUILD AN API WITH LARAVEL

}

Development dependencies mean that these are only needed when you are

developing your application and shouldn’t be required when your application

is actually going into production.

Here, you should especially note phpunitwhich is the packagewewill be using

a lot in this chapter. PHPUnit is a testing framework for PHP applications and

is not only used in Laravel, but in many PHP applications around the world.

It’s not the only testing framework for PHP out there, but it’s certainly one of

the most widely known.

Unit and integra on tests

Laravel uses PHPUnit at the core of all of its test tools, providing a special

class that makes sure that the Laravel framework is bootstrapped and ready

for each test you run.

This makes it possible to leverage PHPUnit for isolated unit tests, where you

test that a single object works as it should. Tests like these are called unit tests.

It also makes it possible to leverage the integration with Laravel to test that a

set objects work together as they should. These tests are called integration

tests.

To present a clearer image of the two test types and how they differ, let’s

imagine that we have a bike and we want to test that the bike works as it

should.

We use unit tests to check that each part works as it should in isolation. The

bell can make a sound, the wheels are round and can turn, the pedals can

rotate, and so on.

220

TEST-DRIVENWORKFLOW

In our integration tests, we check that a set of parts work together as they

should. For instance, we would test if the pedals and the chainmake the wheel

turn. Should this test fail, it is not the wheels that are failing — we have

already tested them in isolation and proven that they work— but the parts

put together are failing. It’s the interaction between each part that needs to

be done differently.

So a unit test is used to test a single unit and integration tests are used to test

that multiple units work together as intended.

End-to-end or Feature tests

Feature tests are, much like the name implies, made to ensure that a certain

feature works as it should.

These tests will encompass the entire application from one end to the other,

from a request to a response. To be able to do this, you approach the test from

the user’s perspective in a browser. This could be a test that makes certain

that when a form is submitted, the data is saved to the database and thereby

ensures that the application works from one end to the other.

If youwant to do end-to-end browser testing, Laravel has a tool called Laravel

Dusk that fits this job perfectly. Laravel Dusk makes you able to write tests

through browser automation. This means that you write the tests as if you

were a user visiting your application in the browser. You use language like:

“Visit this url and click that button”, which makes these tests very easy to

understand. A downside though is that the tests are very slow, since you are

testing in an actual browser and doing each task sequentially, waiting for page

loads and so on.

Wewill be using feature tests to test ourAPI endpoints, sincewewant to ensure

that the application works as it should when an API endpoint is requested by

the user, and that the correct data is returned in the response.

221

BUILD AN API WITH LARAVEL

Luckily, when testing APIs, we don’t need to use a browser or any other tools,

as we can use what is already included by Laravel out of the box.

Ge ng up and running

To set everything up and get started with test-driven development in Laravel,

youdon’t have to do a lot. When installing the Laravel framework, the PHPUnit

test framework is installed as well, besides that Laravel includes a PHPUnit

configuration file and also a couple of example test files so you know that

everything works and know what to do to write a test. If you want to see what

the config file contains, you should take a look at the phpunit.xml file in the

root of our annas-bookstore project. This config file ensures that PHPUnit

will run with the desired settings and instruct it to look after tests in the tests

directory, more specifically tests in tests/Unit and tests/Feature. It will also

set some environmental variables, but we will look into this in a bit.

If you go into your terminal and into the root of our annas-bookstore project,

try and run the following command:

./vendor/bin/phpunit

And you should see a result like this:

This tells us that there are two tests and in those two tests there are two

222

TEST-DRIVENWORKFLOW

successful assertions, which means that PHPUnit is set up and is running the

two example tests. Let’s take a look at the tests/Unit/ExampleTest.php file:

<?php

namespace Tests\Unit;

use Tests\TestCase;

use Illuminate\Foundation\Testing\RefreshDatabase;

class ExampleTest extends TestCase

{

/**

* A basic test example.

*

* @return void

*/

public function testBasicTest()

{

$this->assertTrue(true);

}

}

Besides being a PHP file in the two folders defined in the PHPUnit config file,

there are actually a couple of things that define this as a test file and that the

test method testBasicTest is being tested by PHPUnit.

The first thing to notice is that the class extend TestCase. To make PHPUnit

able to test a class, the class needs to extend a TestCase. Whenever you are

using PHPUnit outside of Laravel, PHPUnit provides the TestCase class to

extend, but in this case, Laravel ships with its own TestCase class, which

extends the original class from PHPUnit and ensures that the framework is

bootstrapped when PHPUnit is testing each test method. So whenever you

need a new test class, youmust extend Laravel’s TestCase class.

223

BUILD AN API WITH LARAVEL

Another thing to notice is the name of the only testmethod in this class. Right

now, the word test is used twice, but the first testword is actually a necessity

since it tells PHPUnit that it should test this test method.

If you go ahead and remove the first test from testBasicTest so it becomes

BasicTest and then go into the terminal and run PHPUnit again, you should

see something like this:

Now, we’re getting a warning telling us that there are no tests in our test

class, which shows us why we need that test prefix in our test method names.

This naming convention has always annoyed us a bit, but luckily there is

another way to tell PHPUnit that it should test a method. You do this by using

annotations, like you do when you write docblocks for your regular methods

in your classes. So to tell that a method in a test class actually is a test, you do

it with a@test annotation, like this:

<?php

namespace Tests\Unit;

use Tests\TestCase;

224

TEST-DRIVENWORKFLOW

use Illuminate\Foundation\Testing\RefreshDatabase;

class ExampleTest extends TestCase

{

/**

* A basic test example.

*

* @test

*/

public function BasicTest()

{

$this->assertTrue(true);

}

}

Go into the terminal, run PHPUnit again, and you should see the green bar

in the bottom again, telling you that there are two tests with two successful

assertions.

This is all youhave to remember to be able towrite tests inPHPUnit andLaravel

as well. But before you go ahead and start to write tests, there are somemore

things we would like to cover, especially environment variables.

Environment Variables

When you install Laravel through the Laravel installer, an .env file will be

created for you, in which you can define the environment variables to use in

your application. Laravel provides some variables right out of the box that

are being used to populate your config files with the correct information to

connect to the various services your application needs to connect to.

The different environments that Laravel supports are the following:

• Local - the environment you use when developing on your local machine.

• Production - the environment on your server, when your application is

225

BUILD AN API WITH LARAVEL

live and accessible to the public.

• Testing - the environment your application will run under, when running

tests.

The cool thing about the .env file, is that you can swap this file for each

environment you are in, and the settings can change without having to edit

your config files.

This means that you can have a .env file for each of your local development

machines, which tells Laravel how to connect to the database on that specific

machine, which is almost always different.

This also means that you can have a .env file for each server your application

is running on, telling Laravel how to connect to the various services from that

server.

Last, but not least, it also means that you can have a .env file for testing, that

can tell Laravel which services to connect to while running tests. One thing

we especially want to change is the database Laravel is connecting to. We

certainly don’t want to fill our database with test data — we much rather

want a dedicated or in-memory database for this part. The .env file for testing

enables us to make a dedicated environment only for testing, where we do

not always hit the actual services used by the application when in local or

production state.

An .env file for testing doesn’t have the same name though. Here, you should

use a .testing suffix so that the .env file for the local environment doesn’t get

overridden. This will result in an .env.testing filename instead.

An important thing to note is that the .env file is not a file that you share with

others. You keep it to yourself or themachine you areworking on, or the server

that the application is running on. You do this because the file might contain

sensitive information, such as information to connect to your account on a

226

TEST-DRIVENWORKFLOW

service.

The .env.testing file can be shared if you like, since this most often doesn’t

contain any sensitive information, but if it does, don’t share it.

Let’s start making our environment file for testing by copying the existing

.envfile and naming the newfile .env.testing and then opening the file in your

editor.

The first thing we should do is to edit the APP_ENV variable and set this to

testing.

Then, we should figure out what we want to do with our database. We

would recommend creating a separate database dedicated for testing and

give that database a name close to the existing database, something like

annas_bookstore_testing. Go back into the .env.testing file and change the

database settings to the testing database.

Then we always set our MAIL_DRIVER variable to log, so that we can see

the output of the mails if we need to without having to wait for a service like

Mailtrap or an actual email to receive anything. Most often, we are using test

helpers that catch our emails, but if we forget it, it’s nice that nothing is sent

to any actual people.

That’s it for our environment variables. We now have a dedicated file for our

testing environment so that we ensure that all changes happen to our testing

database.

Running tests automa cally

When you go into the terminal and run PHPUnit, you can see that all of our

tests in our testsuite are being tested. You have to run PHPUnit every time

you want to run your tests and this can get annoying fast, especially if you

227

BUILD AN API WITH LARAVEL

have many tests which will force you to wait until PHPUnit is done. Of course,

it’s nice to know that all your tests succeed, but when you are working on a

specific feature, it’s good to focus on the tests for this feature only and get a

faster feedback.

Some editors and IDEs can run PHPUnit for you and also tell PHPUnit to run

specific tests, but if you don’t have any setup like this or are new to testing, we

havedevelopedapackage forLaravel that canhelp runyour tests automatically.

In fact, we will be using this in the rest of this book, so that we are sure that

everyone can follow along, nomatter which editor or IDE you are using.

The package is called Laravel Test Watcher and it can be installed with

composer. So let’s install this package into our annas-bookstore project.

Go into your terminal in the root of our project and type the following:

composer require wackystudio/laravel-test-watcher

If everything went well, you should be able to see that Laravel has auto

discovered the package through this message:

Discovered Package: wackystudio/laravel-test-watcher

If you then call artisan without any commands, you should see that a new

command has been added to the list under the tests category:

228

TEST-DRIVENWORKFLOW

This means that the package is installed correctly and we can now begin to

use it. Let’s run the artisan command to start watching for changes in our

application, and then we will take a look at how we can specify which tests to

run whenever there’s a change.

In the terminal in the root of our project, run the following artisan command:

php artisan tests:watch

You should then see the screen above, telling you there are no test cases to

watch.

Let’s jump into the tests/Unit/ExampleTest.php again. To make Laravel

Test Watcher run this file whenever there’s a change, we give it a@watch

annotation just like we did with the@test annotation like this:

229

BUILD AN API WITH LARAVEL

<?php

namespace Tests\Unit;

use Tests\TestCase;

use Illuminate\Foundation\Testing\RefreshDatabase;

class ExampleTest extends TestCase

{

/**

* @test

* @watch

*/

public function BasicTest()

{

$this->assertTrue(true);

}

}

This should make the screen change in your terminal, where you should now

see something like this:

Here, Laravel Test Watcher tells us that it’s watching a test inside the

ExampleTest file and when the filename is green, it means that the test is

successful. This gives us a nice overview of our tests and which file these are

in, so we can always see where somethingmight fail.

230

TEST-DRIVENWORKFLOW

Speaking of which, let’s see what happens if our test fails. Go back to

tests/Unit/ExampleTest.php and change the value inside the assertion from

true to false like this:

/**

*

* @test

* @watch

*/

public function BasicTest()

{

$this->assertTrue(false);

}

As soon as you save this file, Laravel Test Watcher will see the change and test

the file, giving you the following output on the screen:

Our test is now red and the error output is listed below, giving us a nice way to

see what has happened and in which test it occurred. You see, by using Laravel

231

BUILD AN API WITH LARAVEL

Test Watcher, we don’t have to run PHPUnit manually again, and we can keep

working in our editor.

On that note, go back to tests/Unit/ExampleTest.php and change the value

from false back to true and save the file so that the test passes. Then try to

remove the@watch annotation. Laravel Test Watch will automatically stop

watching the file and remove it from the list and give you the “No test cases to

watch”message again.

By using the@watch annotation, we are able to pick out the tests we want to

test and we get the quick feedback we want, so that we can stay focused and

build our applications, making sure all of our tests are successful.

We now know what to do to write a test class and test methods that can be

tested. We also know howwe can use Laravel Test Watcher to automatically

run our tests, so let’s get back to coding.

Revisi ng the Authors resource

It’s time to get right back into it and continue working on our API. At the

moment, we have something that works—we know that from our tests in

Postman.

Even though Postman is a great program that makes testing your APIs very

easy, it’s still a manual process you have to do over and over again. PHPUnit

and tests in general can help us automate this process, and the best thing is

that whenever the tests are written, they can run over and over again without

much effort on our part.

So let’s get back to our authors resource and start writing some tests for it.

232

TEST-DRIVENWORKFLOW

The first test

For our first test, we will be testing how to fetch a single author. One of the

first things you will learn about test-driven development, is that you should

write the test first and then do the implementation until the test is passing.

Those are rules that are often broken and here we can’t really do that, since we

already have everything implemented, so we will do it a bit backwards right

now. That’s not a bad thing though— it will make us able to teach you a bit

better. But just to make it clear, you don’t have to write tests first, but it is a

good idea. We will show you this later in the book.

Let’s take a look at our controller to see what it is actually doing when

we request a single author. Go into the app/Http/Controllers/AuthorsCon-

troller.php file and take a look at the showmethod:

public function show(Author $author)

{

return new AuthorsResource($author);

}

Thismethod takes an Authormodel as an argument, but we don’t have to care

about this. Laravel will inject this for us using route-model bindings. Through

route-model bindings, Laravel will find the corresponding model to the ID

we give, whenmaking a request to the single author route. The method then

returns an AuthorsResourcewhich takes the Authormodel.

Just from this information, it seems like we can write a test where wemake a

request to the route, using an ID of an author and then assert that we get that

author back as a correct JSON:API specification resource object.

As wementioned earlier, we will be writing feature tests for our API, since we

will be going throughmultiple layers in our application in order to work with

233

BUILD AN API WITH LARAVEL

the received requests and send back a proper response. In that case, a feature

test is appropriate for what we’re doing.

Let’s go into the tests/Feature folder and create a new class. Let’s name it

AuthorsTest, since it will become the test class for all requests involving our

authors resource. The class should look like this:

<?php

namespace Tests\Feature;

class AuthorsTest

{

}

Here, we need to communicate that this is a test class and we do this by

extending the TestCase class Laravel provides like this:

<?php

namespace Tests\Feature;

Use Tests\TestCase;

class AuthorsTest extends TestCase

{

}

Next, we need to define our first test. But before we do that, we have to talk a

bit about naming of tests.

234

TEST-DRIVENWORKFLOW

Test names are not named like a typical method. Instead, you want to describe

the intention of what you are testing. The great thing about this is that you

will know what the test is testing from the name only, and it provides a better

context, especially when your tests are failing.

There are different conventions for writing the test name— some uses camel

casing, others use snake casing. We have always used snake casing, since it

makes tests names read more like sentences, which is a bit harder to grasp

with camel casing. We will be using this convention in the rest of this book.

Whether you follow this advice is completely up to you, but to make it a bit

easier for yourself, we recommend that you follow along.

Make a new method and name it: it_returns_an_author_as_a_re-

source_object like this:

<?php

namespace Tests\Feature;

use Tests\TestCase;

class AuthorsTest extends TestCase

{

/**

* @test

* @watch

*/

public function it_returns_an_author_as_a_resource_object()

{

}

}

Don’t forget to annotate the test so PHPUnit can test it, and while we are at it,

235

BUILD AN API WITH LARAVEL

let’s watch this method and start Laravel Test Watcher from our terminal like

this:

php artisan tests:watch

Right now, we don’t have any assertions so our test will be marked green as

passing.

Let’s quickly change this by writing the contents of our test.

First, we want to make a request to the route for a single author, with an

ID of an author. But how do we get the ID of an author? In the last chapter,

we actually touched upon factories, when we created our model. Here, we

defined which attributes that should be populated with fake data in our

database/factories/AuthorsFactory.php file. Great, let’s use that like this:

/**

* @test

* @watch

*/

public function it_returns_an_author_as_a_resource_object()

{

$author = factory(Author::class)->create();

}

The first thing that will happen after you save the test is that it will fail and

complain about a missing table or view. This is because we haven’t migrated

the database and it is completely empty of tables.

Don’t worry, Laravel provides us with a DatabaseMigration trait we can use

to migrate our database for each test in our test class and it’s as easy as just

adding the trait to our test class like this:

236

TEST-DRIVENWORKFLOW

<?php

namespace Tests\Feature;

use App\Author;

use Illuminate\Foundation\Testing\DatabaseMigrations;

use Tests\TestCase;

class AuthorsTest extends TestCase

{

use DatabaseMigrations;

/**

* @test

* @watch

*/

public function it_returns_an_author_as_a_resource_object()

{

$author = factory(Author::class)->create();

}

}

You should now see a green test even though it doesn’t really test anything.

Let’s change this by making a request to our show author route, giving it the

ID of our newly created author.

We do this by leveraging the TestCase that Laravel provides and our test class

extends. This comes with a lot of convenient methods for testing against our

application and one of these methods is for doing requests to our application.

Let’s make a request to our application like this:

/**

* @test

237

BUILD AN API WITH LARAVEL

* @watch

*/

public function it_returns_an_author_as_a_resource_object()

{

$author = factory(Author::class)->create();

$this->getJson('/api/v1/authors/1');

}

You see that on our class, we have access to a getJsonmethod that canmake

requests for us. There are a lot of other convenient methods, but we won’t

touch on all of them. If you want to learnmore about them, you can find the

details in the documentation for Laravel.

Our test is still green and passing, but even though we have made a request to

our application we are still not testing anything. We need to make assertions

about some kind of state to be able to actually test if we get the desired results.

But what do we want to make an assertion about here?

We want to know if the request was a success and we can do that bymaking an

assertion about the status code, so let’s try that out first.

In this case, Laravel makes it very easy for us: we can simply chain assertions

onto our existing request, so let’s make an assertion about the status of the

request like this:

/**

* @test

* @watch

*/

public function it_returns_an_author_as_a_resource_object()

{

$author = factory(Author::class)->create();

238

TEST-DRIVENWORKFLOW

$this->getJson('/api/v1/authors/1')->assertStatus(200);

}

Now, we are making an assertion and we will also see that our test failed

immediately in the terminal. Here, we are getting a 401 Unauthorized status

because we are not authenticated.

No worries, Laravel Passport also has a convenient method we can call to

authenticate our requests from our tests, but it does require that we have

a user we want to authenticate. We already know how to create an author

through a model factory, and conveniently Laravel ships with a default model

factory for users, which we can leverage to create a user and then use Laravel

Passport to authenticate this user like this:

/**

* @test

* @watch

*/

public function it_returns_an_author_as_a_resource_object()

{

$author = factory(Author::class)->create();

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->getJson('/api/v1/authors/1')->assertStatus(200);

}

And now our test is back to green again.

We need onemore assertion, though. We want to test that the API is returning

the correct resource object for our author.

To make an assertion about this, we can add another call to the request chain,

239

BUILD AN API WITH LARAVEL

asserting that we get the right JSON back like this:

/**

* @test

* @watch

*/

public function it_returns_an_author_as_a_resource_object()

{

$author = Author::create([

'name' => 'John Doe',

]);

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->getJson('/api/v1/authors/1')

->assertStatus(200)

->assertJson([

"data" => [

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => $author->name,

'created_at' => $author->created_at->toJSON(),

'updated_at' => $author->updated_at->toJSON(),

]

]

]);

}

To test that we get the right JSON back, we define a PHP array, nesting all the

details about the resource object as an associative array. The root is our data

member, then we have the id, type and attributesmembers as children which

each contains the right data. Notice how we are making a call to toJSON() on

the created_at and updated_at attributes. We do this to be able to compare

the result from the API with a Carbon instance, which Laravel is casting our

models created_at and updated_at attributes to.

240

TEST-DRIVENWORKFLOW

Our test is green and passing, and everything is looking good. To be able to

confirm that the test is testing the result correctly, try to change the type

attributes value from authors to author and see if the test fails. If it does, we

canmove on and be confident about our test working. Don’t forget to change

the value back to authors again.

Great! We have written our first test and we can be a bit more confident about

the API performing as it should.

Let’s take a close look at what we just wrote, since there’s a pattern here we

would like for you to notice from the beginning.

The way we see it, a test is divided into 3 parts.

1. In the first part, we set up our world.

2. In the second part, we run the code to be tested.

3. In the last part, we make all of our assertions.

public function it_returns_an_author_as_a_resource_object()

{

// 1. Setup of our world

$author = Author::create([

'name' => 'John Doe',

]);

$user = factory(User::class)->create();

Passport::actingAs($user);

// 2. Run the code

$this->getJson('/api/v1/authors/1')

// 3. Make assertions

->assertStatus(200)

->assertJson([

241

BUILD AN API WITH LARAVEL

"data" => [

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => $author->name,

'created_at' => $author->created_at->toJSON(),

'updated_at' => $author->updated_at->toJSON(),

]

]

]);

}

Wewant you to remember this pattern, especially because we will use it when

we start to move a bit faster with our tests. Don’t worry, we won’t be doing

this just yet. Right now, we will continue with the basics.

Let’s move on to some of the other requests we need to write tests for. We

will stay in the same lane as now, and implement a test for the route for all

authors next.

Tes ng the all authors route

For this test, we don’t have as much setup to do. We have our test class

already and we have the model factories we need. All we need to do is

to define another test method. But before we do so, let’s take a look at

our controller again to see what we’re actually testing. Let’s head into

the app/Http/Controllers/AuthorsController.phpfile and focus on the index

method:

public function index()

{

$authors = Author::all();

return new AuthorsCollection($authors);

242

TEST-DRIVENWORKFLOW

}

Here, we don’t need to provide any parameters. We just make a query for all

authors and pass those into an AuthorsCollection instance.

Looking at this, the thing to test here is that the API endpoint does return

a collection of authors and that the collection of authors is a collection of

resource objects.

Going back to our tests/Feature/AuthorsTest.php file, let’s define a new test

and name it: It_returns_all_authors_as_a_collection_of_resource_ob-

jects like this:

/**

* @test

* @watch

*/

public function

it_returns_all_authors_as_a_collection_of_resource_objects()

{

}

From our last test, we know that we need tomake an authenticated request

in order to test our API, so here we can just copy the code for authentication

from our last test like this:

/**

* @test

* @watch

*/

243

BUILD AN API WITH LARAVEL

public function

it_returns_all_authors_as_a_collection_of_resource_objects()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

}

Besides this, we also know that we need data to exist in our database in order

for our API to return them. So we will also need to create some authors in our

database. Since we need a collection of authors, it would be nice to have at

least 3 authors we canmake assertions against.

No problem, we can just leverage our model factory for this like so:

/**

* @test

* @watch

*/

public function

it_returns_all_authors_as_a_collection_of_resource_objects()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$authors = factory(Author::class, 3)->create();

}

The global factory function can take two arguments: the first is which model

we want the factory to create, which is a required argument, and the next is

the amount of models we want the factory to create, which is optional. If no

number is given, it will just create a single model.

One thing to note is also that the returned object changes, whether you are

requesting one or more models to be created. If you request a single model to

244

TEST-DRIVENWORKFLOW

be created, you get that model back. If you request multiple models, then you

will get a collection of those models back.

Next, we need to make the actual request. We already know how to do that

and while we are at it, let’s also make an assertion that we get a status code of

200 back:

/**

* @test

* @watch

*/

public function

it_returns_all_authors_as_a_collection_of_resource_objects()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$authors = factory(Author::class, 3)->create();

$this->get('/api/v1/authors')->assertStatus(200);

}

You should see all green and passing tests in the terminal.

But this is not enough for us to be confident about the API endpoint being well

tested, so let’s make some assertions about what data we expect to get back.

We know what to expect from both our last test, but also from the chapter

about the JSON:API specification, which is a collection of resource objects,

instead of a single resource object. We can copy most of what we have already

written in the previous test, and thenmake sure we are referencing both the

right ID and the right object in our authors collection that we got from the

factory:

245

BUILD AN API WITH LARAVEL

/**

* @test

* @watch

*/

public function

it_returns_all_authors_as_a_collection_of_resource_objects()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$authors = factory(Author::class, 3)->create();

$this->get('/api/v1/authors')->assertStatus(200)->assertJson([

"data" => [

[

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => $authors[0]->name,

'created_at' => $authors[0]->created_at->toJSON

(),

'updated_at' => $authors[0]->updated_at->toJSON

(),

]

],

[

"id" => '2',

"type" => "authors",

"attributes" => [

'name' => $authors[1]->name,

'created_at' => $authors[1]->created_at->toJSON

(),

'updated_at' => $authors[1]->updated_at->toJSON

(),

]

],

[

"id" => '3',

"type" => "authors",

"attributes" => [

'name' => $authors[2]->name,

246

TEST-DRIVENWORKFLOW

'created_at' => $authors[2]->created_at->toJSON

(),

'updated_at' => $authors[2]->updated_at->toJSON

(),

]

],

]

]);

}

We assert that the structure is correct and that we get the right data for each

author. You should still see a green and passing test in the terminal. Try

changing the ID on the third resource object to the value 4 and the test should

fail, confirming that everything is being tested correctly.

Now that we know how to test when we want to fetch data, let’s look at how

we can store data andmake a test for the Create Author route.

Before we move on, don’t forget to remove the@watch annotation from your

test, since we don’t need to test this test case any longer.

Tes ng the create author route

For this test, we have to do things a bit differently. We don’t need that much

setup, since we are providing the data to the API. Like we did in the other

tests, let’s first visit our app/Http/Controllers/AuthorsController.php file

and focus on the storemethod:

public function store(CreateAuthorRequest $request)

{

$author = Author::create([

'name' => $request->input('data.attributes.name'),

]);

247

BUILD AN API WITH LARAVEL

return (new AuthorsResource($author))

->response()

->header('Location', route('authors.show', [

'author' => $author,

]));

}

This method takes an argument, which is our own CreateAuthorRequest that

we use to validate the request. Then we create a new author, using the name

attribute from the resource being sent to the server and afterward return a new

instance of an AuthorsResourcewith the author model. We add the location

header to adhere to the JSON:API specification, giving it a value of the new

author’s link.

To test this, we actually need two tests: one that tests that the validationworks

as intended, and one that tests that the actual create functionality works as

intended. We will be looking at validation later, so let’s just make sure that

the create functionality works as intended.

In our test, we will make a request with a proper resource object and then

assert that we get the correct status code and resource object back. We will

also assert that the location header is a part of the response as well. The

most important part and the thing that actually makes us able to verify if

the create functionality works, is the assertion we can make against the

database, to see if a new author has been created. Let’s create a new test

in our tests/Feature/AuthorsTest.php and name it: it_can_create_an_au-

thor_from_a_resource_object like this:

/**

* @test

* @watch

*/

248

TEST-DRIVENWORKFLOW

public function it_can_create_an_author_from_a_resource_object()

{

}

This time, we don’t have to setup like in the previous tests, but we do need to

have a user to make authenticated requests. Let’s copy that from one of our

previous tests to this test like this:

/**

* @test

* @watch

*/

public function it_can_create_an_author_from_a_resource_object()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

}

Next, we need to make a POST request to our API with the necessary data to

create an author. From the chapter about the JSON:API specification, we know

that we must send a resource object and we know exactly how that should

look. We need a datamember in the top level with the value of our resource

object. We want the backend to create the ID, so we won’t have to add that.

We only need to provide the type and the attributes, which in this case is only

the name of the author. Since we are making a request to create an author, we

need to make sure our status code is a 201 Created, so we might as well add

this right away so that we can see if our test fails or not:

/**

* @test

249

BUILD AN API WITH LARAVEL

* @watch

*/

public function it_can_create_an_author_from_a_resource_object()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/authors', [

'data' => [

'type' => 'authors',

'attributes' => [

'name' => 'John Doe',

]

]

])->assertStatus(201);

}

Right now, our test should pass and be green, but to be sure, let’s change the

status code from 201 to 200 and see if it fails. You should immediately see a

failing test with the reason “Expected status code 200 but received 201” in the

terminal. This means that it works, so let’s change the status code back to 201

again and add the last assertions. We need to assert that we get the created

resource back as a resource object. We have already written this assertion

before when creating the tests for a single resource, so let’s steal the assertion

from there and copy it into this test. Change the value of the name to JohnDoe

and for created_at and updated_atwe can use the now() helper function to

get a fresh Carbon instance. We can convert this to JSON using the toJSON()

method, just like on the Carbon instances you get from the date attributes

of a model. This will make the test fail, since our manually created Carbon

instanceswill includemilliseconds, which Carbon instances created by Laravel

Eloquent will not. To fix this issue, we will need to set the milliseconds on the

Carbon instances to 0 and the assertion will work:

250

TEST-DRIVENWORKFLOW

/**

* @test

* @watch

*/

public function it_can_create_an_author_from_a_resource_object()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/authors', [

'data' => [

'type' => 'authors',

'attributes' => [

'name' => 'John Doe',

]

]

])

->assertStatus(201)

->assertJson([

"data" => [

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => 'John Doe',

'created_at' => now()->setMilliseconds(0)->

toJSON(),

'updated_at' => now()->setMilliseconds(0)->

toJSON(),

]

]

]);

}

Our test should still be green, but we are missing one thing to be sure that

we have tested everything, namely the Location header. To test this, we can

use the assertHeader()method, which can also be chained onto our existing

chain like this:

251

BUILD AN API WITH LARAVEL

/**

* @test

* @watch

*/

public function it_can_create_an_author_from_a_resource_object()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/authors', [

'data' => [

'type' => 'authors',

'attributes' => [

'name' => 'John Doe',

]

]

])

->assertStatus(201)

->assertJson([

"data" => [

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => 'John Doe',

'created_at' => now()->setMilliseconds(0)->

toJSON(),

'updated_at' => now() ->setMilliseconds(0)->

toJSON(),

]

]

])->assertHeader('Location', url('/api/v1/authors/1'));

}

Lastly, we need to ensure that the data has been saved to the database, so we

know that the create functionality is actually working. For this, we will use the

assertDatabaseHas()method. This, unfortunately, cannot be added to our

chain, so we will have to end the chain here and make a new call to $this to

call the assertDatabaseHas()method. This method takes two arguments, the

database and an array with the columns and values you want to assert a row

252

TEST-DRIVENWORKFLOW

in the database has like this:

/**

* @test

* @watch

*/

public function it_can_create_an_author_from_a_resource_object()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/authors', [

'data' => [

'type' => 'authors',

'attributes' => [

'name' => 'John Doe',

]

]

])

->assertStatus(201)

->assertJson([

"data" => [

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => 'John Doe',

'created_at' => now()->setMilliseconds(0)->

toJSON(),

'updated_at' => now() ->setMilliseconds(0)->

toJSON(),

]

]

])->assertHeader('Location', url('/api/v1/authors/1'));

$this->assertDatabaseHas('authors', [

'id' => 1,

'name' => 'John Doe'

]);

}

253

BUILD AN API WITH LARAVEL

Notice that we are referencing the ID as an integer andwe no longer follow the

conventions of the JSON:API specification, since we are referencing columns

of our database.

We have now implemented the test for creating an author, and if you have

done everything right, you should see a green and passing test in the terminal.

Before we move on, don’t forget to remove the@watch annotation from your

test, since we don’t need to test this test case any longer.

Let’s move on to the test for updating an author.

Tes ng the update author route

By now, you should be a bit more familiar with the drill. Let’s go to the

app/Http/Controllers/AuthorsController.php file and look at the update

method:

public function update(UpdateAuthorRequest $request, Author $author

)

{

$author->update($request->input('data.attributes'));

return new AuthorsResource($author);

}

Thismethod takes an argument, which is our ownUpdateAuthorRequest that

we use to validate the request. Then, it takes an Authormodel as an argument.

Again, we don’t have to care about this. Laravel will inject this for us, using

route-model bindings. The author model is then updated using the resource

object sent in the request and then returns the updated model as a resource.

Remember that we need to return a resource if anything has been changed by

the server upon an update. Laravel will change the updated_at attribute and

therefore we have to return the resource.

254

TEST-DRIVENWORKFLOW

Now, in this test we have to do a bit more. We first need to set up our

world, where we, besides making sure we can make authenticated request,

need to make sure an author already exists in the system. Before we

can do that, we need to create our test, so make a new test method in

the tests/Feature/AuthorsTest.php file, name it: it_can_update_an_au-

thor_from_a_resource_object andmake sure we canmake authenticated

request and that an author exists like this:

/**

* @test

* @watch

*/

public function it_can_update_an_author_from_a_resource_object()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$author = factory(Author::class)->create();

}

Thenwe shouldmake a request to the API with the data we want to update. We

know from the JSON:API specification that we need to make a PATCH request,

and that we need to send the data as a resource object like this:

/**

* @test

* @watch

*/

public function it_can_update_an_author_from_a_resource_object()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$author = factory(Author::class)->create();

255

BUILD AN API WITH LARAVEL

$this->patchJson('/api/v1/authors/1', [

'data' => [

'id' => '1',

'type' => 'authors',

'attributes' => [

'name' => 'Jane Doe',

]

]

])->assertStatus(200);

}

The test should be green and passing at themoment, but we are far from done.

Just like the test for creating an author, we need tomake an assertion about the

resource sent back in the response, as well as making an assertion about the

changed data in the database, so that we know that the update functionality

works as it should:

/**

* @test

* @watch

*/

public function it_can_update_an_author_from_a_resource_object()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$author = factory(Author::class)->create();

$this->patchJson('/api/v1/authors/1', [

'data' => [

'id' => '1',

'type' => 'authors',

'attributes' => [

'name' => 'Jane Doe',

]

]

])->assertStatus(200)->assertJson([

256

TEST-DRIVENWORKFLOW

'data' => [

'id' => '1',

'type' => 'authors',

'attributes' => [

'name' => 'Jane Doe',

'created_at' => now()->setMilliseconds(0)->toJSON(),

'updated_at' => now() ->setMilliseconds(0)->toJSON()

,

],

]

]);

$this->assertDatabaseHas('authors', [

'id' => 1,

'name' => 'Jane Doe',

]);

}

The test should still be green and passing. There is something here that is a

bit misleading, namely the assertions about the created_at and updated_at

timestamps. We are creating a model and updating it afterward, so the

timestamps should not be alike. In theory, the updated_at timestamp should

be completely different from the created_at because we have modified the

model since its creation. But since tests happen so fast and we don’t measure

in milliseconds, this scenario can happen. If you want to ensure that there

is a difference, we can add a call to the global sleep() function right after we

have created the author. Tomake sure that we have the timestamp fromwhen

the author was created, we should save a Carbon instance from that moment

just before sleeping, and then use this variable when asserting against the

created_at timestamp like this:

/**

* @test

257

BUILD AN API WITH LARAVEL

* @watch

*/

public function it_can_update_an_author_from_a_resource_object()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$author = factory(Author::class)->create();

$creationTimestamp = now();

sleep(1);

$this->patchJson('/api/v1/authors/1', [

'data' => [

'id' => '1',

'type' => 'authors',

'attributes' => [

'name' => 'Jane Doe',

]

]

])->assertStatus(200)->assertJson([

'data' => [

'id' => '1',

'type' => 'authors',

'attributes' => [

'name' => 'Jane Doe',

'created_at' => $creationTimestamp->setMilliseconds

(0)->toJSON(),

'updated_at' => now()->setMilliseconds(0)->toJSON(),

],

]

]);

$this->assertDatabaseHas('authors', [

'id' => 1,

'name' => 'Jane Doe',

]);

}

This will achieve the difference between created_at and updated_at so you

know that this part works. However, it is not really testing our code, it’s

258

TEST-DRIVENWORKFLOW

more a test of the intentions of Laravel’s models and that it will update a

models updated_at timestamp whenever you save changes to the database.

This shouldn’t be something we should test, but something Laravel covers

in the tests for the framework and be something that we can rely on if it’s

been documented. If you like the test to be explicit about the difference in

timestamps, you can keep it in your code. We will revert back to using the

same timestamp.

Before we move on, don’t forget to remove the@watch annotation from your

test, since we don’t need to test this test case any longer.

Tes ng the delete author route

We are almost there: we almost have a test for each of our routes. The next

one is an easy one—we only need an author we can delete. Taking a look at

the app/Http/Controllers/AuthorsController.php file and destroy method,

we can see that it takes an Author model as the only argument. Once more,

Laravelwill help usherewith route-model bindings. Next, wedelete themodel

and return an empty response with the 204 No Content status code.

For this test, we can copy the entire setup from the test for the single author

route. Then, we need to make a delete request to the API and assert that

we get the 204 No Content status code back. We should also make an

assertion to the database to make sure the deletion functionality works as

it should. Create a new test method and name it: it_can_delete_an_au-

thor_through_a_delete_request and add this code:

/**

* @test

* @watch

*/

public function it_can_delete_an_author_through_a_delete_request()

259

BUILD AN API WITH LARAVEL

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$author = factory(Author::class)->create();

$this->delete('/api/v1/authors/1', [], [

'Accept' => 'application/vnd.api+json',

'Content-Type' => 'application/vnd.api+json',

])->assertStatus(204);

$this->assertDatabaseMissing('authors', [

'id' => 1,

'name' => $author->name,

]);

}

The test should be green and passing, so to test that it works, try changing

the status code from 204 to 200 and the test should fail. Change it back and

remove the@watch annotation.

Tes ng valida on

So far, we have tested the individual routes in a very naive way, assuming that

our consumers will get everything right each time. In the real world, this is

far from the truth and we should be able to handle that. Again, we are in a

scenario where it is actually implemented so we don’t need to cover why we

validate, but focus more on how to test that our validation actually works as it

should. We don’t need to test validation for each route since it is only when

creating and updating resources we will receive input from our consumers

and therefore need to ensure that we validate these data.

Let’s take care of the create author route first. To be able to do that, let’s first

open the app/Http/Requests/CreateAuthorRequest.php file and look at the

rulesmethod:

260

TEST-DRIVENWORKFLOW

public function rules()

{

return [

'data' => 'required|array',

'data.type' => 'required|in:authors',

'data.attributes' => 'required|array',

'data.attributes.name' => 'required|string',

];

}

Here, we validate for multiple things, and first we validate that we receive an

object in the datamember.

We then validate the type of the resource object, both that it is actually

a part of the resource object, but also that the value is authors. Let’s

test this first. Make a new test method directly beneath the it_can_cre-

ate_an_author_from_a_resource_object test and name it: it_vali-

dates_that_the_type_member_is_given_when_creating_an_author

and copy the content from it_can_create_an_author_from_a_re-

source_object test into the newly created test. Remove the authors value

from the type member, change the asserted status to be 422 instead of

201, and remove both the assertJson, assertHeader assertions. Rename the

assertDatabaseHasmethod to assertDatabaseMissing and the whole thing

should result in something like this:

/**

* @test

* @watch

*/

public function

it_validates_that_the_type_member_is_given_when_creating_an_author

()

{

$user = factory(User::class)->create();

261

BUILD AN API WITH LARAVEL

Passport::actingAs($user);

$this->postJson('/api/v1/authors', [

'data' => [

'type' => '',

'attributes' => [

'name' => 'John Doe',

]

]

])->assertStatus(422);

$this->assertDatabaseMissing('authors', [

'id' => 1,

'name' => 'John Doe'

]);

}

The test should be passing and green, butwe are not done yet. Wehaven’t done

any assertion against what is being returned from our API. Here, we would

like a correct error form that adheres to the conventions of the JSON:API

specification, so let’s tackle that next.

Handling valida on errors

Handling validation errors can be done in multiple ways. We can choose

to return the JSON response from our CreateAuthorRequest class and have

everything contained, so we know where to find both the validation rules and

what is return when a validation is failing. The downside to this is that we

then would need to copy the error handling for each new request class we will

make. We could mitigate this by extracting the error handling to its own class

and let that class extend FormRequest like our CreateAuthorRequest is doing

now, and then let CreateAuthorRequest our new error handling class. Then it

would be easy to reuse the error handling functionality again and again.

There’s a third way that we think is a little better. Laravel comes with an

262

TEST-DRIVENWORKFLOW

error and exception handler right out of the box. It makes sure that your

exceptions are reported to the right sources, which could be your log file, an

error notification service, and so on. It is also the handler thatmakes sure that

your errors or exceptions are rendered in an HTTP response to give feedback

to the user. This rendering is happening whether we are requesting JSON or

HTML.

The handler has already a dedicated method for handling validation errors,

so let’s override this method so our new error response will fit right into

the existing flow and work throughout the application. This will also make it

possible for us to show thebenefits of test drivendevelopmentwhereno source

code has been written yet, meaning that we will finish our tests assertions of

what we will receive and then build the validation error response till the test

pass.

Let’s jump into tests/Feature/AuthorsTest.php and add a assertJson to the

endof the existingpostJson chain after our assertStatus assertion. Remember

from the chapter about the JSON:API specification, that we need a errors top

level member for a collection of error objects. We then recommended that

your error objects would consist of a title member with a title of the error,

which in this case would be Validation Error, a detailsmember describing the

error. Here, we will use the existing error messaging from Laravel, since it’s

quite good. Lastly, we need a source object with a JSON pointer, pointing to

which attribute the error is about. Laravel’s validator object is actually doing

this work for us already, but it uses dot notation instead of slashes, so we will

need to replace the dots with slashes. With all this knowledge, we can write

our assertion. Laravel actually has some assertions in terms of JSON validation

errors, but now that we have changed the response document from Laravel

usually works with, we need to make regular JSON assertions like this:

263

BUILD AN API WITH LARAVEL

/**

* @test

* @watch

*/

public function

it_validates_that_the_type_member_is_given_when_creating_an_author

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/authors', [

'data' => [

'type' => '',

'attributes' => [

'name' => 'John Doe',

]

]

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.type field is required

.',

'source' => [

'pointer' => '/data/type',

]

]

]

]);

$this->assertDatabaseMissing('authors', [

'id' => 1,

'name' => 'John Doe'

]);

}

For the first time, our test is failing telling us it is unable to find the JSON in

264

TEST-DRIVENWORKFLOW

the response. Let’s go to the source code and write the code that will make our

test pass.

Go into the app/Exceptions/Handler.php file and let’s override the invalid-

Json method, which is actually on the parent ExceptionHandler class like

this:

protected function invalidJson($request, ValidationException

$exception)

{

}

Now, the feedback from our failing test has changed from being unable to

find the right JSON to receiving a 500 response. Let’s make sure that we are

actually returning a JSON response like this:

protected function invalidJson($request, ValidationException

$exception)

{

return response()->json([

], $exception->status);

}

And we are back to our test failing, since it can’t find the right JSON. From

the JSON:API specification, we know that we want a collection of errors and

the ValidationException actually contains an error array we could use, but

unfortunately this array only contains the message we need for our detail

member. We need to loop through each validation error and get both the

attribute that failed as well as the message. Luckily, the ValidationException

also contains the validation object that made the validation and from this

265

BUILD AN API WITH LARAVEL

we can get an array of errors with both the failing attributes as well as the

messages. We then need to transform this array into an array of errors. There

aremanyways this can be done, but let’s use one of the best features of Laravel,

namely the Collections. Laravel’s Collections is like an array on steroids and

makes it possible for us to easily map the existing array into an array of error

objects that adhere to the JSON:API specification like this:

protected function invalidJson($request, ValidationException

$exception)

{

$errors = (new Collection($exception->validator->errors()))

->map(function ($error, $key) {

return [

'title' => 'Validation Error',

'details' => $error[0],

'source' => [

'pointer' => '/' . str_replace('.', '/', $key),

]

];

})

->values();

return response()->json([

'errors' => $errors,

], $exception->status);

}

Here, we instantiate a new Collection and give it the validator’s array of errors.

Through themapmethod, we go through each entry in the array andmap it

into the desired error object that adheres to the JSON:API specification.

Lastly, we call the valuesmethod on the collection, which will reset the keys

to consecutive integers. The main reason for this is that the error array from

the validator is an associative array and whenmapping this, we will keep the

associative keys, which will make PHP’s JSON encoder encode this array as a

266

TEST-DRIVENWORKFLOW

JSON object to keep the keys. Since we need to have an array, calling the values

method will remove the associative keys andmake the items in the array have

keys of consecutive integers.

We then return this in our JSON response and our test will pass.

This means that we have an implementation of validation errors that adheres

to the JSON:API specification. To be sure that it covers everything we need

and to be sure that our validation works as intended. Let’s continue with our

testing of our validation.

Con nuing valida on tes ng

Right now, we have tested that the validation rule, which requires a type

member of our request object being present, works as intended. If we go back

into the app/Http/Requests/CreateAuthorRequest.php file, we can see that

there are more rules to test.

public function rules()

{

return [

'data' => 'required|array',

'data.type' => 'required|in:authors',

'data.attributes' => 'required|array',

'data.attributes.name' => 'required|string',

];

}

Looking at the type member again, we can see that we also need to test

that the validation should validate if the value authors is given for the type

member. We can do this pretty easily— let’s start by creating a new test right

under the previous test and name it: it_validates_that_the_type_mem-

ber_has_the_value_of_authors_when_creating_an_author. Be sure to

267

BUILD AN API WITH LARAVEL

annotate test with both the@test and@watch annotations and be sure to

remove the@watch annotation from the previous test. Copy the contents

from the previous test, and change the test to the following:

/**

* @test

* @watch

*/

public function

it_validates_that_the_type_member_has_the_value_of_authors_when_creating_an_author

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/authors', [

'data' => [

'type' => 'author',

'attributes' => [

'name' => 'John Doe',

]

]

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The selected data.type is invalid

.',

'source' => [

'pointer' => '/data/type',

]

]

]

]);

$this->assertDatabaseMissing('authors', [

268

TEST-DRIVENWORKFLOW

'id' => 1,

'name' => 'John Doe'

]);

}

Wewill send a request with the type author instead of authorswhich should

make the validation fail, then assert we get the validation error in the response

with the correct detail message. This should give you a green test, because of

our previous implementation in the exception handler class.

Moving on to the attributes member, we can reuse a lot of what we have

already. Copy the previous test and rename it to: it_validates_that_the_at-

tributes_member_has_been_given_when_creating_an_author and

change the following:

/**

* @test

* @watch

*/

public function

it_validates_that_the_attributes_member_has_been_given_when_creating_an_author

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/authors', [

'data' => [

'type' => 'authors',

]

])->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

269

BUILD AN API WITH LARAVEL

'details' => 'The data.attributes field is

required.',

'source' => [

'pointer' => '/data/attributes',

]

]

]

]);

$this->assertDatabaseMissing('authors', [

'id' => 1,

'name' => 'John Doe'

]);

}

In the request, we leave out the attributesmember and afterward we assert

that the validation is catching this, telling us that the attributesmember is

required. You should see a green and passing test.

Because the attributesmember will contain the attributes of our resources,

this must be an object, so let’s test that the validation will catch this in a new

test right beneath the previous one:

/**

* @test

* @watch

*/

public function

it_validates_that_the_attributes_member_is_an_object_given_when_creating_an_author

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/authors', [

270

TEST-DRIVENWORKFLOW

'data' => [

'type' => 'authors',

'attributes' => 'not an object',

]

])->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes must be an

array.',

'source' => [

'pointer' => '/data/attributes',

]

]

]

]);

$this->assertDatabaseMissing('authors', [

'id' => 1,

'name' => 'John Doe'

]);

}

Before you get confused about the validationmessage, remember that JSON

objects will be decoded as either objects or associative arrays in PHP. Laravel

will decode these as associative arrays.

We are almost done. The last things we need to test is if the validation will

catch that a name attribute is required, and that it must be a string. Again, we

can reuse what we have in the previous test, so create a new test beneath the

previous one for testing that a name attribute is given with this code:

/**

* @test

271

BUILD AN API WITH LARAVEL

* @watch

*/

public function

it_validates_that_a_name_attribute_is_given_when_creating_an_author

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/authors', [

'data' => [

'type' => 'authors',

'attributes' => [

'name' => '',

],

]

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes.name field is

required.',

'source' => [

'pointer' => '/data/attributes/name',

]

]

]

]);

$this->assertDatabaseMissing('authors', [

'id' => 1,

'name' => 'John Doe'

]);

}

We leave the value of the namemember in the attributes object empty and

assert that the validation catches this and responds with a validation error.

272

TEST-DRIVENWORKFLOW

You should be seeing a green test by now, telling you that it’s implemented

correctly.

Moving on to the last test, let’s copy the previous test again and create a new

one beneath for testing that a name attribute is a string like this:

/**

* @test

* @watch

*/

public function

it_validates_that_a_name_attribute_is_a_string_when_creating_an_author

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/authors', [

'data' => [

'type' => 'authors',

'attributes' => [

'name' => 47,

],

]

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes.name must be

a string.',

'source' => [

'pointer' => '/data/attributes/name',

]

]

]

273

BUILD AN API WITH LARAVEL

]);

$this->assertDatabaseMissing('authors', [

'id' => 1,

'name' => 'John Doe'

]);

}

In this test, we give an integer value in the namemember instead of a string

and assert that the validation catches this. If you have done it correctly, you

should see a green test telling us that the validation rule has been implemented

correctly.

This concludes testing all the rules on the app/Http/Requests/CreateAuthor-

Request.php file, we then have to implement the test for the app/Http/Re-

quests/UpdateAuthorRequest.php.

Tes ng UpdateAuthorRequest

If we take a look at the app/Http/Requests/UpdateAuthorRequest.php files

rule method, we see that it’s not that different from our app/Http/Request-

s/CreateAuthorRequest.php file, which actually means we can reuse a lot of

our test code again:

/**

* Get the validation rules that apply to the request.

*

* @return array

*/

public function rules()

{

return [

'data' => 'required|array',

274

TEST-DRIVENWORKFLOW

'data.id' => 'required|string',

'data.type' => 'required|in:authors',

'data.attributes' => 'required|array',

];

}

Let’s begin by testing the validation for the ID member and, just like

before when we implemented the tests for app/Http/Requests/CreateAu-

thorRequest.php, let’s start out by copying the it_can_update_an_au-

thor_from_a_resource_object test and paste it in right beneath. Next, re-

namethe test to: it_validates_that_an_id_member_is_given_when_up-

dating_an_author and replace the code with this:

/**

* @test

* @watch

*/

public function

it_validates_that_an_id_member_is_given_when_updating_an_author

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$author = factory(Author::class)->create();

$this->patchJson('/api/v1/authors/1', [

'data' => [

'type' => 'authors',

'attributes' => [

'name' => 'Jane Doe',

]

]

])

->assertStatus(422)

->assertJson([

275

BUILD AN API WITH LARAVEL

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.id field is required.',

'source' => [

'pointer' => '/data/id',

]

]

]

]);

$this->assertDatabaseHas('authors', [

'id' => 1,

'name' => $author->name,

]);

}

We have removed the ID member in the request and then we assert that

the validation will catch this and respond with a validation error, telling us

that the IDmember is required. There is nothing new here: the assertions

follow the patterns from the previous tests. The difference is that we are

doing PATCH request instead of a POST request, which means we will hit

the app/Http/Requests/UpdateAuthorRequest.php rules instead, making it

possible to test these rules. We will be using the same approach to testing

these rules, which by now you should be familiar with it. So for the rest of the

rules in app/Http/Requests/UpdateAuthorRequest.php, we will let you work

on your own without explaining everything. We will give you the code for the

rest of the tests, but we highly recommend that you start out by trying to work

on your own. Take a look at the existing tests if you get stuck and only as a

last resort look at the following code:

/**

* @test

276

TEST-DRIVENWORKFLOW

*/

public function

it_validates_that_an_id_member_is_a_string_when_updating_an_author

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$author = factory(Author::class)->create();

$this->patchJson('/api/v1/authors/1', [

'data' => [

'id' => 1,

'type' => 'authors',

'attributes' => [

'name' => 'Jane Doe',

]

]

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.id must be a string.',

'source' => [

'pointer' => '/data/id',

]

]

]

]);

$this->assertDatabaseHas('authors', [

'id' => 1,

'name' => $author->name,

]);

}

/**

* @test

*/

277

BUILD AN API WITH LARAVEL

public function

it_validates_that_the_type_member_is_given_when_updating_an_author

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$author = factory(Author::class)->create();

$this->patchJson('/api/v1/authors/1', [

'data' => [

'id' => '1',

'type' => '',

'attributes' => [

'name' => 'Jane Doe',

]

]

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.type field is required

.',

'source' => [

'pointer' => '/data/type',

]

]

]

]);

$this->assertDatabaseHas('authors', [

'id' => 1,

'name' => $author->name,

]);

}

/**

* @test

*/

278

TEST-DRIVENWORKFLOW

public function

it_validates_that_the_type_member_has_the_value_of_authors_when_updating_an_author

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$author = factory(Author::class)->create();

$this->patchJson('/api/v1/authors/1', [

'data' => [

'id' => '1',

'type' => 'author',

'attributes' => [

'name' => 'Jane Doe',

]

]

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The selected data.type is invalid

.',

'source' => [

'pointer' => '/data/type',

]

]

]

]);

$this->assertDatabaseHas('authors', [

'id' => 1,

'name' => $author->name,

]);

}

/**

* @test

*/

279

BUILD AN API WITH LARAVEL

public function

it_validates_that_the_attributes_member_has_been_given_when_updating_an_author

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$author = factory(Author::class)->create();

$this->patchJson('/api/v1/authors/1', [

'data' => [

'id' => '1',

'type' => 'authors',

]

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes field is

required.',

'source' => [

'pointer' => '/data/attributes',

]

]

]

]);

$this->assertDatabaseHas('authors', [

'id' => 1,

'name' => $author->name,

]);

}

/**

* @test

*/

public function

it_validates_that_the_attributes_member_is_an_object_given_when_updating_an_author

280

TEST-DRIVENWORKFLOW

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$author = factory(Author::class)->create();

$this->patchJson('/api/v1/authors/1', [

'data' => [

'id' => '1',

'type' => 'authors',

'attributes' => 'not an object',

]

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes must be an

array.',

'source' => [

'pointer' => '/data/attributes',

]

]

]

]);

$this->assertDatabaseHas('authors', [

'id' => 1,

'name' => $author->name,

]);

}

/**

* @test

* @watch

*/

public function

it_validates_that_a_name_attribute_is_a_string_when_updating_an_author

()

281

BUILD AN API WITH LARAVEL

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$author = factory(Author::class)->create();

$this->patchJson('/api/v1/authors/1', [

'data' => [

'id' => '1',

'type' => 'authors',

'attributes' => [

'name' => 47,

],

]

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes.name must be

a string.',

'source' => [

'pointer' => '/data/attributes/name',

]

]

]

]);

$this->assertDatabaseHas('authors', [

'id' => 1,

'name' => $author->name,

]);

}

Note that attributes are optionalwhenupdating a resource—that is the reason

why we’re not testing that the name is given when updating an author.

By now, you should be more familiar with testing, test naming and the

structure of tests.

282

TEST-DRIVENWORKFLOW

Up until this point, our tests have followed the same patterns which we hope

you are noticing. We have both written tests for source code that was already

implemented and written tests for source code that had not been written yet.

From here on out, we will write our tests first and then do the implementation

until these tests pass.

Adhering to the JSON:API specifica on

So far, we have implemented our resource and validation error in line with

the conventions of the JSON:API specification, but there are some things we

haven’t implemented yet. Firstly, we haven’t done anything to ensure the

correct content negotiation. This ought to be the primary thing to do, since it’s

the first convention mentioned in the specification, but we have been holding

off to get the ball rolling. Now that we have started implementing our API

and we have even started on test-driven development, we can also tackle the

implementation of the content negotiation fairly easily.

We haven’t implemented the features for fetching our resource, and by

features wemean the ability to sort and paginate when fetching our resources.

Last, but not least, we haven’t implemented error handling for general

exceptions thrown by the application, which we should also be tackling. Let’s

start out with content negotiation.

The correct content nego a on

If you remember back to the chapter about the JSON:API specification, we

talked about how the client must send requests with the following header:

Accept: application/vnd.api+json

283

BUILD AN API WITH LARAVEL

The clientmust also use the following header when sending data to the server:

Content-Type: application/vnd.api+json

And how the server should deliver its responses with the following header

to tell the client that the data send lives up to the protocols of the JSON:API

specification:

Content-Type: application/vnd.api+json

We can’t control what the client is sending us, but we can reject the request

with a response 406 Not Acceptable status code, if the Accept header is not

correct, as stated in the JSON:API specification. We will also ensure that we

respond with a 415 UnsupportedMedia Type if we don’t receive the correct

Content-Type header and lastly ensure that we send all our responses from

the server with the correct Content-Type header.

In this case, it’s best to use a middleware, so we can intercept requests to our

API and check if they live up to our conventions, but also so we can assure that

any responses leaving our application live up to the server’s responsibilities.

Let’s start by creating a test for our middleware. This time we will create a

unit test—we don’t need to test this out on our API through a feature test yet,

but we will get back to this.

Create a new tests/Unit/Middleware/EnsureCorrectAPIHeadersTest.php

file andmake sure to both put it in the right namespace and also extend the

Laravel TestCase class like this:

284

TEST-DRIVENWORKFLOW

<?php

namespace Tests\Unit\Middleware;

use Tests\TestCase;

class EnsureCorrectAPIHeadersTest extends TestCase

{

}

Let’s begin by tackling the first convention and checking for the Accept

header, so create a new test method and name it: it_aborts_request_if_ac-

cept_header_does_not_adhere_to_json_api_spec like this:

/**

* @test

* @watch

*/

public function

it_aborts_request_if_accept_header_does_not_adhere_to_json_api_spec

(){

}

To setup the world of our test, we need an instance of our middleware to be

able to test against it. Let’s create the middleware through artisan, so get into

your terminal and run the following command:

php artisan make:middleware EnsureCorrectAPIHeaders

Let’s open the newly created app/Http/Middleware/EnsureCorrectAPIHead-

285

BUILD AN API WITH LARAVEL

ers.phpmiddleware class to see what it contains:

<?php

namespace App\Http\Middleware;

use Closure;

class EnsureCorrectAPIHeaders

{

/**

* Handle an incoming request.

*

* @param \Illuminate\Http\Request $request

* @param \Closure $next

* @return mixed

*/

public function handle($request, Closure $next)

{

return $next($request);

}

}

It’s a class with a single method that takes two arguments: a Request and a

closure that actually takes a request as an argument as well.

Calling the next closure will let Laravel continue to the next middleware with

the request and so on. You can actually think of middlewares like layers of an

onion. When a request to a Laravel application is made, the request travels

through each layer into the core, where your code will be executed and you

return a response, which will travel all the way out through each layer again.

Calling the closure makes the request travel into the next layer beneath and

returning from your middleware makes the response travel out to the layer

above.

This also means that we can stop a request from travelling further into the

286

TEST-DRIVENWORKFLOW

application and rejecting it, if it doesn’t meet certain criteria, which in our

case are the correct headers.

So to test our middleware, we will need a request we can send to it and then

we can assert that we get a certain response from that middleware back. Let’s

write that test. Go back into tests/Unit/Middleware/EnsureCorrectAPIHead-

ersTest.php and add the following:

/**

* @test

* @watch

*/

public function

it_aborts_request_if_accept_header_does_not_adhere_to_json_api_spec

(){

$request = Request::create('/test', 'GET');

$middleware = new EnsureCorrectAPIHeaders;

/** @var Response $response */

$response = $middleware->handle($request, function($request){

$this->fail('Did not abort request because of invalid Accept

header');

});

$this->assertEquals(406, $response->status());

}

When setting up our world, we create a new request and create an instance

of our middleware. For the first argument of our middleware, we give the

request and for the Closure argument we give an anonymous function. The

anonymous function is actually really great since we can use it to test that the

middleware is not forwarding the request to the next middleware, and if it

does, we will force the test to fail.

We then save the response to be able to make an assertion that we get a 406

287

BUILD AN API WITH LARAVEL

Not Acceptable status code back.

The test should be red and failing right now, so let’s create the implementation

and make the test pass by jumping right back into the app/Http/Middle-

ware/EnsureCorrectAPIHeaders.phpmiddleware.

Here, we will use a simple conditional to check if the Accept header is present

and that it has the value:

Content-Type: application/vnd.api+json

If it doesn’t, we will return a new response with a 406 Not Acceptable status

code like this:

public function handle($request, Closure $next)

{

if($request->headers->get('accept') !== 'application/vnd.api+

json'){

return new Response('', 406);

}

return $next($request);

}

The test should pass now and we have a middleware that can reject requests

that do not contain the header:

Accept: application/vnd.api+json

Tomake sure we are not rejecting everyone that makes requests to our API,

let’s also test that requests, which do contain the header above, get through

288

TEST-DRIVENWORKFLOW

the middleware. To ensure this, we can copy the previous test and alter it

slightly like this:

/**

* @test

* @watch

*/

public function

it_accepts_request_if_accept_header_adheres_to_json_api_spec(){

$request = Request::create('/test', 'GET');

$request->headers->set('accept', 'application/vnd.api+json');

$middleware = new EnsureCorrectAPIHeaders;

/** @var Response $response */

$response = $middleware->handle($request, function($request){

return new Response();

});

$this->assertEquals(200, $response->status());

}

This time, we need the Accept header to exist and have the correct value, and

to do this we set the header on the request.

Thenwechange the contentsof the closure. This time,wewant themiddleware

to forward the request to the closure and in order to simulate what would

happen in a real Laravel application, we instantiate a new response and return

it. We thenmake an assertion against the response, asserting that it gives us a

200 OK status back.

The test should be green and passing now and this is actually it for the Accept

header, so let’s create a test for the Content-Type next.

The Content-Type is a little different since it’s not required on every request,

289

BUILD AN API WITH LARAVEL

but only the request where data is actually sent to the server — more

specifically, the POST and PATCH requests.

In our tests/Unit/Middleware/EnsureCorrectAPIHeadersTest.php let’s cre-

ateanewtest andname it: it_aborts_post_request_if_content_type_header_does_not_ad-

here_to_json_api_spec. Here, we can steal most of the contents from the

first test in the file and then make sure to set the method to POST. We also

need to add the correct Accept header, since we don’t want to test that part.

Then we need to change the status code from 406 to 415 so that we adhere to

the JSON:API specification like this:

/**

* @test

* @watch

*/

public function

it_aborts_post_request_if_content_type_header_does_not_adhere_to_json_api_spec

(){

$request = Request::create('/test', 'POST');

$request->headers->set('accept', 'application/vnd.api+json');

$middleware = new EnsureCorrectAPIHeaders;

/** @var Response $response */

$response = $middleware->handle($request, function($request){

$this->fail('Did not abort request because of invalid

Content-Type header');

});

$this->assertEquals(415, $response->status());

}

Before we begin implementing this part in our source code, you should make

sure that you are watching all the test methods in this test class. We do

this because we want to see how our implementation can affect the other

290

TEST-DRIVENWORKFLOW

tests. Right now, you should see two passing tests and one failing for

our EnsureCorrectAPIHeadersTest file. If you do so, let’s move on to the

implementation.

In the app/Http/Middleware/EnsureCorrectAPIHeaders.php file, let’s copy

the existing conditional and change the checks from accept to content-type

like this:

public function handle($request, Closure $next)

{

if($request->header('accept') !== 'application/vnd.api+json'){

return new Response('', 406);

}

if($request->header('content-type') !== 'application/vnd.api+

json'){

return new Response('', 415);

}

return $next($request);

}

If you look at the terminal, our test for this implementation has passed but

the test before it is now failing. We need to be a bit more specific when it

comes to our Content-Type header. Right now, we are checking that the

Content-Type header is included on every request. However, we only want

to check if the Content-Type header is included when we are doing a POST

or PATCH request.Let’s wrap it into another conditional checking for exactly

these conditions like this:

public function handle($request, Closure $next)

{

291

BUILD AN API WITH LARAVEL

if($request->header('accept') !== 'application/vnd.api+json'){

return new Response('', 406);

}

if($request->isMethod('POST') || $request->isMethod('PATCH')){

if($request->header('content-type') !== 'application/vnd.api

+json'){

return new Response('', 415);

}

}

return $next($request);

}

Now, all our tests should be green and passing again. Let’s do a test for a

PATCH request like this:

/**

* @test

* @watch

*/

public function

it_aborts_patch_request_if_content_type_header_does_not_adhere_to_json_api_spec

(){

$request = Request::create('/test', 'PATCH');

$request->headers->set('accept', 'application/vnd.api+json');

$middleware = new EnsureCorrectAPIHeaders;

/** @var Response $response */

$response = $middleware->handle($request, function($request){

$this->fail('Did not abort request because of invalid

Content-Type header');

});

$this->assertEquals(415, $response->status());

}

292

TEST-DRIVENWORKFLOW

This should also be green and passing— so far, so good. Let’s then test that

we can actually get through the middleware sending a correct request. From

our first two tests, we know it’s possible with a GET request, but we have to

test it to see if it is the same for a POST or PATCH request. Again, we can reuse

fromwhat we have already, more specifically from the second test of the test

class like this:

/**

* @test

* @watch

*/

public function

it_accepts_post_request_if_content_type_header_adheres_to_json_api_spec

(){

$request = Request::create('/test', 'POST');

$request->headers->set('accept', 'application/vnd.api+json');

$request->headers->set('content-type', 'application/vnd.api+json

');

$middleware = new EnsureCorrectAPIHeaders;

/** @var Response $response */

$response = $middleware->handle($request, function($request){

return new Response();

});

$this->assertEquals(200, $response->status());

}

This test should be green a passing already. To make sure we have everything

covered, let’s also make a test for a PATCH request like this:

/**

* @test

293

BUILD AN API WITH LARAVEL

* @watch

*/

public function

it_accepts_patch_request_if_content_type_header_adheres_to_json_api_spec

(){

$request = Request::create('/test', 'PATCH');

$request->headers->set('accept', 'application/vnd.api+json');

$request->headers->set('content-type', 'application/vnd.api+json

');

$middleware = new EnsureCorrectAPIHeaders;

/** @var Response $response */

$response = $middleware->handle($request, function($request){

return new Response();

});

$this->assertEquals(200, $response->status());

}

This test should be green and passing, as well, and it’s the last test we need

for our unit test of our middleware right now. Before wemove on, let’s first

remove all the@watch annotations from our tests in this test class.

Next, we should register our middleware as a route middleware and add

it to our api middleware group. Go into app/Http/Kernel.php and add the

middleware to the end of the $routeMiddleware array like this:

protected $routeMiddleware = [

'auth' => \App\Http\Middleware\Authenticate::class,

'auth.basic' => \Illuminate\Auth\Middleware\

AuthenticateWithBasicAuth::class,

'bindings' => \Illuminate\Routing\Middleware\SubstituteBindings

::class,

'cache.headers' => \Illuminate\Http\Middleware\SetCacheHeaders::

294

TEST-DRIVENWORKFLOW

class,

'can' => \Illuminate\Auth\Middleware\Authorize::class,

'guest' => \App\Http\Middleware\RedirectIfAuthenticated::class,

'signed' => \Illuminate\Routing\Middleware\ValidateSignature::

class,

'throttle' => \Illuminate\Routing\Middleware\ThrottleRequests::

class,

'verified' => \Illuminate\Auth\Middleware\EnsureEmailIsVerified

::class,

'json.api.headers' => EnsureCorrectAPIHeaders::class

];

Afterward, add the middleware to the api middleware group like this:

protected $middlewareGroups = [

'web' => [

\App\Http\Middleware\EncryptCookies::class,

\Illuminate\Cookie\Middleware\AddQueuedCookiesToResponse::

class,

\Illuminate\Session\Middleware\StartSession::class,

// \Illuminate\Session\Middleware\AuthenticateSession::class

,

\Illuminate\View\Middleware\ShareErrorsFromSession::class,

\App\Http\Middleware\VerifyCsrfToken::class,

\Illuminate\Routing\Middleware\SubstituteBindings::class,

],

'api' => [

'throttle:60,1',

'bindings',

'json.api.headers'

],

];

Go out into the terminal and stop Laravel Test Watcher. We now have to use

295

BUILD AN API WITH LARAVEL

PHPUnit manually to see if all our tests are still passing. Let’s go out into the

terminal and type the following command:

./vendor/bin/phpunit

Here, you should see that all of our tests in the tests/FeatureAuthorTest.php

file are failing. This is because these tests are not following the correct content

negotiation any longer. Let’s fix that.

Back in the tests/FeatureAuthorTest.php, let’s start with the first test, where

we can add the headers to the request like this:

/**

* @test

*/

public function it_returns_an_author_as_a_resource_object()

{

$author = factory(Author::class)->create();

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->getJson('/api/v1/authors/1', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200)

->assertJson([

"data" => [

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => $author->name,

'created_at' => $author->created_at->toJSON(),

296

TEST-DRIVENWORKFLOW

'updated_at' => $author->updated_at->toJSON(),

]

]

]);

}

The second argument in the getJsonmethod lets us supply the headers for the

request in an array. Here, we add both the Accept and Content-Type header,

because Laravel will add a

Content-Type: application/json

header by default when using the getJson method and we don’t want that

since it will abort the request. Run PHPUnit again and you should see one less

test failing.

We can use the exact same array in the next test like this:

/**

* @test

*/

public function

it_returns_all_authors_as_a_collection_of_resource_objects()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$authors = factory(Author::class, 3)->create();

$this->get('/api/v1/authors', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(200)->assertJson([

"data" => [

[

297

BUILD AN API WITH LARAVEL

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => $authors[0]->name,

'created_at' => $authors[0]->created_at->toJSON

(),

'updated_at' => $authors[0]->updated_at->toJSON

(),

]

],

[

"id" => '2',

"type" => "authors",

"attributes" => [

'name' => $authors[1]->name,

'created_at' => $authors[1]->created_at->toJSON

(),

'updated_at' => $authors[1]->updated_at->toJSON

(),

]

],

[

"id" => '3',

"type" => "authors",

"attributes" => [

'name' => $authors[2]->name,

'created_at' => $authors[2]->created_at->toJSON

(),

'updated_at' => $authors[2]->updated_at->toJSON

(),

]

],

]

]);

}

It is as easy as that to adhere to our content negotiation through our tests.

When doing postJson requests, you add the array of headers after the array of

data like this:

298

TEST-DRIVENWORKFLOW

/**

* @test

*/

public function it_can_create_an_author_from_a_resource_object()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/authors', [

'data' => [

'type' => 'authors',

'attributes' => [

'name' => 'John Doe',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(201)

->assertJson([

"data" => [

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => 'John Doe',

'created_at' => now()->setMilliseconds(0)->

toJSON(),

'updated_at' => now() ->setMilliseconds(0)->

toJSON(),

]

]

])->assertHeader('Location', url('/api/v1/authors/1'));

$this->assertDatabaseHas('authors', [

'id' => 1,

'name' => 'John Doe'

]);

}

299

BUILD AN API WITH LARAVEL

And the exact same goes for patchJson requests:

/**

* @test

*/

public function

it_validates_that_the_attributes_member_is_an_object_given_when_updating_an_author

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$author = factory(Author::class)->create();

$this->patchJson('/api/v1/authors/1', [

'data' => [

'id' => '1',

'type' => 'authors',

'attributes' => 'not an object',

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes must be an

array.',

'source' => [

'pointer' => '/data/attributes',

]

]

]

]);

$this->assertDatabaseHas('authors', [

300

TEST-DRIVENWORKFLOW

'id' => 1,

'name' => $author->name,

]);

}

Go through all the rest of the tests in the tests/Feature/AuthorsTest.php file

and add the correct headers, run PHPUnit again, and you should see that all

tests are passing.

The last thing we need to ensure, so that our content negotiation is imple-

mented correctly, are the correct headers on our responses from the server.

Here, we need the

Content-Type: application/vnd.api+json

header on all of our API responses.

Of course, we are going to write a test for it, but this time we will let you work

on your own. Howwould youwrite a test that asserts that the correct Content-

Type header has been added to the response? Try on your own before looking

at our test. As a hint, you can use the previous test in the file as a starting

point, since it also asserts against the response and has the correct headers

for the request already.

/**

* @test

*/

public function

it_ensures_that_a_content_type_header_adhering_to_json_api_spec_is_on_responses

()

301

BUILD AN API WITH LARAVEL

{

$request = Request::create('/test', 'GET');

$request->headers->set('accept', 'application/vnd.api+json');

$request->headers->set('content-type', 'application/vnd.api+json

');

$middleware = new EnsureCorrectAPIHeaders;

/** @var Response $response */

$response = $middleware->handle($request, function($request){

return new Response();

});

$this->assertEquals(200, $response->status());

$this->assertEquals('application/vnd.api+json', $response->

headers->get('content-type'));

}

Wehavemade very few changes from the previous test. We added the assertion

for the right Content-Type header and changed the method to GET. Let’s

write the implementation, which is quite simple in that we just need to add

the header to the response that comes into the middleware like this:

<?php

namespace App\Http\Middleware;

use Closure;

use Illuminate\Http\Response;

use Symfony\Component\HttpFoundation\Response as BaseResponse;

class EnsureCorrectAPIHeaders

{

/**

* Handle an incoming request.

302

TEST-DRIVENWORKFLOW

*

* @param \Illuminate\Http\Request $request

* @param \Closure $next

* @return mixed

*/

public function handle($request, Closure $next)

{

if($request->header('accept') !== 'application/vnd.api+json

'){

return new Response('', 406);

}

if($request->headers->has('content-type') || $request->

isMethod('POST') || $request->isMethod('PATCH')){

if($request->header('content-type') !== 'application/vnd

.api+json'){

return new Response('', 415);

}

}

return $this->addCorrectContentType($next($request));

}

private function addCorrectContentType(BaseResponse $response)

{

$response->headers->set('content-type', 'application/vnd.api

+json');

return $response;

}

}

We have added a addCorrectContentType method that takes one argument,

which is a BaseResponse. The BaseResponse is worth noting here, since

it is an alias of the Symfony\Component\HttpFoundation\Response class.

We need this alias since we are already importing Laravel’s own Response.

The reason that we are referencing Symfony’s Response class is that Lar-

avel is based on components from the Symfony framework, especially the

components that handle requests and responses, which means that the

303

BUILD AN API WITH LARAVEL

Symfony\Component\HttpFoundation\Response is actually the parent of

theLaravelResponse class. By referencing theparent class in theargument,we

are able to pass in any class that inherits from theSymfony\Component\Http-

Foundation\Response class. Thismeans that a Illuminate\Foundation\Test-

ing\TestResponse we use when we are testing our API, as well as regular

Illuminate\Http\Response, can be passed in since both of these are inheriting

from Symfony\Component\HttpFoundation\Response.

If you run PHPUnit in the terminal again, you should see all green and passing

tests.

We have done this in a separate method so that we can reuse it, since we also

need to send the correct headers, even when we abort a request. So we will

need to add this method around the responses sent in the conditionals testing

for missing Accept and Content-Type headers.

But before we do that, we need to write some tests for it. We will let you work

on these on your own, as well as the implementation and just give you our

implementation below. Again, try to work on your own before you look at our

implementations. If you want to go back to using Laravel Test Watcher, feel

free to do so. It’s a bit easier than having to run PHPUnit all of the time.

tests/Unit/Middleware/EnsureCorrectAPIHeadersTest.php:

/**

* @test

* @watch

*/

public function

when_aborting_for_a_missing_accept_header_the_correct_content_type_header_is_added_to_the_response

()

{

$request = Request::create('/test', 'GET');

304

TEST-DRIVENWORKFLOW

$middleware = new EnsureCorrectAPIHeaders;

/** @var Response $response */

$response = $middleware->handle($request, function($request){

return new Response();

});

$this->assertEquals($response->status(), 406);

$this->assertEquals('application/vnd.api+json', $response->

headers->get('content-type'));

}

/**

* @test

* @watch

*/

public function

when_aborting_for_a_missing_content_type_header_the_correct_content_type_header_is_added_to_the_response

()

{

$request = Request::create('/test', 'POST');

$request->headers->set('accept', 'application/vnd.api+json');

$middleware = new EnsureCorrectAPIHeaders;

/** @var Response $response */

$response = $middleware->handle($request, function($request){

return new Response();

});

$this->assertEquals(415, $response->status());

$this->assertEquals('application/vnd.api+json', $response->

headers->get('content-type'));

}

app/Http/Middleware/EnsureCorrectAPIHeaders.php:

305

BUILD AN API WITH LARAVEL

public function handle($request, Closure $next)

{

if($request->header('accept') !== 'application/vnd.api+json'){

return $this->addCorrectContentType(new Response('', 406));

}

if($request->headers->has('content-type') || $request->isMethod

('POST') || $request->isMethod('PATCH')){

if($request->header('content-type') !== 'application/vnd.api

+json'){

return $this->addCorrectContentType(new Response('',

415));

}

}

return $this->addCorrectContentType($next($request));

}

We hope you got through that on your own without looking toomuch at our

implementations. Right now, all our tests should pass, and we are ready

to move on. As of right now, our API is almost adhering to the JSON:API

specification— the only thing we are missing is actually exception handling.

We will take a look at this next and build on top of what we have already done

with error handling of our validation. After this, we will be looking at the

more optional features, which the JSON:API specification doesn’t force us to

implement, namely sorting and pagination.

Excep on handling

It’s time to look at exception handling and build onto what we have already

startedwhen building the validation error handling. While the validation error

handlingworks as it should anddoes adhere to the conventionsof the JSON:API

specification, the rest of our exception responses do not. Here, we are mostly

concerned with the exceptions that our consumers could meet whenmaking

requests to our API. This could be anAuthenticationException, which Laravel

306

TEST-DRIVENWORKFLOW

will convert into a JSON response with a singlemessagemember telling that

you are unauthenticated. We want to change this so it adheres to the JSON:API

specifications error responses.

To do this, we will work in the app/Exceptions/Handler.php file again, so

let’s open that up. Right now, it contains the report, render and invalidJson

methods. When an exception or error happens in our application, Laravel will

call the report and rendermethods in this class.

The reportmethod is for tracking and logging exceptions so you can get a

better understanding of what went wrong.

The rendermethod is for presenting the exception to the user. Here, it depends

on the debug state of your application as well as the Accept header of the

request. If your application has debugging enabled, you will get a nice error

page where you can dig down into the stack trace of the exception. If your

Accept header is set to application/json or alike, you will receive a detailed

error response with the entire stack trace in JSON. If your application has

debugging disabled, you will see an error page or a short JSON object with a

short message.

In our case, we want to change the response for the JSON part only. So let’s

take a closer look at what actually happens in the rendermethod to determine

what to do. Open up the vendor/laravel/framework/src/Illuminate/Founda-

tion/Exceptions/Handler.php file and look at the rendermethod:

public function render($request, Exception $e)

{

if (method_exists($e, 'render') && $response = $e->render(

$request)) {

return Router::toResponse($request, $response);

} elseif ($e instanceof Responsable) {

307

BUILD AN API WITH LARAVEL

return $e->toResponse($request);

}

$e = $this->prepareException($e);

if ($e instanceof HttpResponseException) {

return $e->getResponse();

} elseif ($e instanceof AuthenticationException) {

return $this->unauthenticated($request, $e);

} elseif ($e instanceof ValidationException) {

return $this->convertValidationExceptionToResponse($e,

$request);

}

return $request->expectsJson()

? $this->prepareJsonResponse($request, $e)

: $this->prepareResponse($request, $e);

}

When the render method is called, Laravel will check to see what kind of

exception it is. If the exception contains a rendermethod, Laravelwill delegate

the rest of the process to this method.

If it is aHTTPResponseException it will just return this.

If it’s a ValidationException it will delegate the exception the necessary

methods for handling validation errors, which we have already covered.

It also checks if an AuthenticationException has been thrown and again

delegates to the necessary methods for handling this kind of exception. This

is something our consumers could get, so we will have to take care of this.

If the exception being thrown does not contain a rendermethod on it’s own

class, Laravel will handle the rest of the rendering of the exception. Here,

Laravel will call a prepareJsonResponsemethod for handling JSON responses.

If the client expects JSON, we will need to override this method to be able to

308

TEST-DRIVENWORKFLOW

build the response we want.

As with anything else from here on out, we will start by making a test

and then doing the implementation. To be able to test the various types

of exceptions and that we will be getting the right result, the easiest way

to test this class is through a unit test. So let’s create a new class at

tests/Unit/Exceptions/HandlerTest.php like this:

<?php

namespace Tests\Unit\Exceptions;

class HandlerTest extends TestCase

{

}

For our first test, let’s make sure that a general exception is being handled the

way we want, which will be a response with a single error object. To be able

to test this, we need to have an instance of ourHandler class so that we can

call the rendermethod on this. Let’s go back to the codeblock showing the

the rendermethod. Here, we can see that it takes a request and an exception

as arguments and will return a response. This is perfect, since we can then

send in the various exceptions we want to test against, making sure we get

the correct response back. Let’s create the first test like this, and afterward,

we will go through it and explain further:

/**

* @test

* @watch

*/

public function

it_converts_an_exception_into_a_json_api_spec_error_response()

309

BUILD AN API WITH LARAVEL

{

$handler = app(Handler::class);

$request = Request::create('/test', 'GET');

$request->headers->set('accept', 'application/vnd.api+json');

$exception = new \Exception('Test exception');

$response = $handler->render($request, $exception);

TestResponse::fromBaseResponse($response)->assertJson([

'errors' => [

[

'title' => 'Exception',

'details' => 'Test exception',

]

]

]);

}

We start out by instantiating our Handler class by using the built in app

function. This is a helper function that makes it possible to tell Laravel to

create a new instance of a class. If the class has any dependencies, Laravel will

do its best to fetch these and inject themwhere they are needed. TheHandler

class’ parent actually has a dependency to the Laravel Container, so instead

of us having to do the hard work, we can just let Laravel do what it does best,

injecting the container into theHandler.

Next up, we instantiate a Request like we have done before and set the correct

Accept header so that theHandler knows that we expect JSON.

Then, we instantiate an Exception and here we are using the good old global

PHP Exception class.

We call the render method, passing in both the request and exception.

We then capture the response, which we will use with the TestResponse’s

310

TEST-DRIVENWORKFLOW

fromBaseResponse static method. This method makes it possible for us to

assert against the JSON structure, just like responses of our feature tests. We

actually use this to assert that we get the right JSON back.

If you haven’t started Laravel Test Watcher, let’s do that now with the

following command:

php artisan tests:watch

Our test is failing because we are not getting the right response back, so

let’s change that by going into app/Exceptions/Handler.php and override

the prepareJsonResponse like this:

<?php

namespace App\Exceptions;

use Exception;

use Illuminate\Foundation\Exceptions\Handler as ExceptionHandler;

use Illuminate\Support\Collection;

use Illuminate\Support\Str;

use Illuminate\Validation\ValidationException;

class Handler extends ExceptionHandler

{

protected $dontReport = [

//

];

protected $dontFlash = [

'password',

'password_confirmation',

];

311

BUILD AN API WITH LARAVEL

public function report(Exception $exception)

{

parent::report($exception);

}

public function render($request, Exception $exception)

{

return parent::render($request, $exception);

}

protected function prepareJsonResponse($request, Exception $e)

{

return response()->json([

'errors' => [

[

'title' => Str::title(Str::snake(class_basename(

$e), ' ')),

'details' => $e->getMessage(),

]

]

], $this->isHttpException($e) ? $e->getStatusCode() : 500);

}

protected function invalidJson($request, ValidationException

$exception)

{

$errors = (new Collection($exception->validator->errors())

)

->map(function ($error, $key) {

return [

'title' => 'Validation Error',

'details' => $error[0],

'source' => [

'pointer' => '/' . str_replace('.', '/',

$key),

]

];

})

->values();

312

TEST-DRIVENWORKFLOW

return response()->json([

'errors' => $errors

], $exception->status);

}

}

We place the method right between the rendermethod and the invalidJson

method.

Let’s take a closer look at what happens inside the method:

protected function prepareJsonResponse($request, Exception $e)

{

return response()->json([

'errors' => [

[

'title' => Str::title(Str::snake(class_basename($e),

' ')),

'details' => $e->getMessage(),

]

]

], $this->isHttpException($e) ? $e->getStatusCode() : 500);

}

We return a JSON response just like before and in the response we have the

error member as our top level member. The error member is a collection

of errors where, in this case, we will only have one. In this error object, we

cannot use the sourcemember, since we don’t have another JSONmember

to reference to, so we will omit this here, keeping only the title and details

members.

For the titlemember, we use the class name of the exception to get the title.

Unfortunately, class names are written using camel casing, but we want to

313

BUILD AN API WITH LARAVEL

have a nicely formatted title with spaces in between words. To do this, we

use two helper methods Laravel provides out of the box to manipulate strings.

The first is Str::snake, which takes two arguments, a string to convert, and a

delimiter. The great thing about this method is that it can take camel cased

strings and convert these to snake casing as well. If you remember when we

covered snake casing, the delimiter is the _ character in between words. The

Str::snakemethod actually lets us choose the delimiter ourselves, which we

can use to swap the _with a space, which will make our camel case string in to

a string with spaces instead. Then we use Str::title to upper case all the words

in the string, which will give us the final title of the exception.

For the detailmember, we take themessage from the exception, which will

tell the details of the exception.

After the data for our response, we give the status code. Since this could be

an HTTPException, depending on the exception type, a status code can be

included and if it is, we will just return that or else we will just return 500 for

a 500 Internal Server Error.

Our test should now be green and passing. But let’s also ensure that we test

everything. Right now we don’t assert against the returned status code, so

let’s do that:

/**

* @test

* @watch

*/

public function

it_converts_an_exception_into_a_json_api_spec_error_response()

{

/** @var Handler $handler */

$handler = app(Handler::class);

314

TEST-DRIVENWORKFLOW

$request = Request::create('/test', 'GET');

$request->headers->set('accept', 'application/vnd.api+json');

$exception = new \Exception('Test exception');

$response = $handler->render($request, $exception);

TestResponse::fromBaseResponse($response)->assertJson([

'errors' => [

[

'title' => 'Exception',

'details' => 'Test exception',

]

]

])->assertStatus(500);

}

Great, the test is still passing and it works as it should. Let’s move on to an

HTTP Exception then.

This test is not very different from the one we just wrote. The only thing we

have to change is the exception and what we expect to get back in the error

objects title and detailsmembers.

So let’s swap out the exception and change the error object to make the

following test:

/**

* @test

* @watch

*/

public function

it_converts_an_http_exception_into_a_json_api_spec_error_response

()

{

/** @var Handler $handler */

315

BUILD AN API WITH LARAVEL

$handler = app(Handler::class);

$request = Request::create('/test', 'GET');

$request->headers->set('accept', 'application/vnd.api+json');

$exception = new HttpException(404, 'Not found');

$response = $handler->render($request, $exception);

TestResponse::fromBaseResponse($response)->assertJson([

'errors' => [

[

'title' => 'Http Exception',

'details' => 'Not found',

]

]

])->assertStatus(404);

}

This test should also be passing already, since it relies on the implementation

we just made.

But what about an AuthenticationException—will it hit the samemethod?

The only way to find out is to create a test and see if it passes. Again, we just

need to change the exception and the title and details values of the error object

like this:

/**

* @test

* @watch

*/

public function

it_converts_an_unauthenticated_exception_into_a_json_api_spec_error_response

()

{

/** @var Handler $handler */

316

TEST-DRIVENWORKFLOW

$handler = app(Handler::class);

$request = Request::create('/test', 'GET');

$request->headers->set('accept', 'application/vnd.api+json');

$exception = new AuthenticationException();

$response = $handler->render($request, $exception);

TestResponse::fromBaseResponse($response)->assertJson([

'errors' => [

[

'title' => 'Unauthenticated',

'details' => 'You are not authenticated',

]

]

]);

}

This test fails and complains about the response, which shows us that we are

not using the samemethod to handle the response.

If we go back and take a look at the vendor/laravel/framework/src/Illu-

minate/Foundation/Exceptions/Handler.php file and the render method

again, we can see that when a AuthenticationException is thrown, the

unauthenticatedmethod is taking care of the response:

public function render($request, Exception $e)

{

if (method_exists($e, 'render') && $response = $e->render(

$request)) {

return Router::toResponse($request, $response);

} elseif ($e instanceof Responsable) {

return $e->toResponse($request);

}

317

BUILD AN API WITH LARAVEL

$e = $this->prepareException($e);

if ($e instanceof HttpResponseException) {

return $e->getResponse();

} elseif ($e instanceof AuthenticationException) {

return $this->unauthenticated($request, $e);

} elseif ($e instanceof ValidationException) {

return $this->convertValidationExceptionToResponse($e,

$request);

}

return $request->expectsJson()

? $this->prepareJsonResponse($request, $e)

: $this->prepareResponse($request, $e);

}

So to take care of the response when a AuthenticationException is being

thrown, we just have to override the unauthenticatedmethod in our app/Ex-

ceptions/Handler.php class. Let’s add thismethod right after the invalidJson

method and add the following code:

protected function unauthenticated($request,

AuthenticationException $exception)

{

if($request->expectsJson()){

return response()->json([

'errors' => [

[

'title' => 'Unauthenticated',

'details' => 'You are not authenticated',

]

]

], 403);

}

return redirect()->guest($exception->redirectTo() ?? route('

login'));

318

TEST-DRIVENWORKFLOW

}

Since this method is responsible for what happens to requests that expect

JSON and requests that expect HTML, we need to handle this case. So if

JSON is expected, we handle this with an error response that adheres to the

JSON:API specification, just like the ones before. If we expect HTML, we will

use the existing code fromtheparents implementationof theunauthenticated

method for redirecting the user to the login page.

This is it for our exception handling — this part now also adheres to the

JSON:API specification, so let’s move on to the more optional things to

implement.

Sor ng

Let’s look at sorting as one of the first optional implementations of the

JSON:API specification we canmake. We have already described what sorting

does, so we won’t bother you with the details again. The thing to worry about

here is how we are going to implement this functionality. It will require some

kind of conversion of the sort query parameter to the “ORDER BY” part of our

SQL sentence, when querying the database for authors. We could go and build

thismanually, but for this part wewill use a third party package called Laravel

Query Builder that will do the heavy lifting for us.

The Laravel Query Builder package is built by the Belgian company Spatie and

it gives us the ability to sort on our Eloquent queries. The best thing is that it

does this according to the JSON:API specification. So let’s install this package

and start implementing it into our author resource.

The installation is easily done through Composer like this:

319

https://github.com/spatie/laravel-query-builder

BUILD AN API WITH LARAVEL

composer require spatie/laravel-query-builder

And for now that is it: Laravel will auto discover the package so we are

ready to implement its functionality into our authors resource. Before we

do so, let’s go back to the tests/Feature/AuthorsTest.php file and create

a new test. For this test, we can start out by copying the contents of the

it_returns_all_authors_as_a_collection_of_resource_objects and then

make the following changes:

/**

* @test

* @watch

*/

public function

it_can_sort_authors_by_name_through_a_sort_query_parameter()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$authors = collect([

'Bertram',

'Claus',

'Anna',

])->map(function($name){

return factory(Author::class)->create([

'name' => $name

]);

});

$this->get('/api/v1/authors?sort=name', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(200)->assertJson([

"data" => [

[

"id" => '3',

320

TEST-DRIVENWORKFLOW

"type" => "authors",

"attributes" => [

'name' => 'Anna',

'created_at' => $authors[2]->created_at->toJSON

(),

'updated_at' => $authors[2]->updated_at->toJSON

(),

]

],

[

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => 'Bertram',

'created_at' => $authors[0]->created_at->toJSON

(),

'updated_at' => $authors[0]->updated_at->toJSON

(),

]

],

[

"id" => '2',

"type" => "authors",

"attributes" => [

'name' => 'Claus',

'created_at' => $authors[1]->created_at->toJSON

(),

'updated_at' => $authors[1]->updated_at->toJSON

(),

]

],

]

]);

}

The thing to notice here is firstly the way we set up our world by creating the

authors, which is a nice little trick to use. Here, we instantiate a newCollection

with an array of names. We then use themapmethod to map each name into

a new Author model, which both forms a new collection of Author models,

321

BUILD AN API WITH LARAVEL

but also creates them in the database. We then have a collection of authors,

just like if we have told our factory function to create three authors, but with

specific names instead and we have created the authors in the database at the

same time.

There is a purpose with the name order, since we want to know that they are

sorted correctly. If we had entered them alphabetically, we would not be sure

about the sort functionality working, but we can with amixed order and we

also know which IDwill be attached to which name.

In the getJson method, we then add the sort query parameter to the URL,

giving it the name attribute as the attribute we want to sort on. In the

assertJsonmethod,weorder the authors in alphabetical order, sinceweexpect

the sort functionality to work this way.

Right now, the test is failing because we haven’t implemented the Laravel

Query Builder, but let’s do that now. Open the app/Http/Controllers/Au-

thorsController.php file and let’s focus on the indexmethod:

public function index()

{

$authors = QueryBuilder::for(Author::class)->allowedSorts([

'name'

])->get();

return new AuthorsCollection($authors);

}

Here, we exchange the existing Eloquent query with the QueryBuilder and

tell it to work with our Authormodel. We tell it which attributes it is allowed

to sort, which is name. The main reason for us to give a list of attributes to

the allowedSortsmethod, is that we get a white list of attributes that can be

sorted. This is not to limit our consumers, but to protect ourselves a bit more

against SQL injections. Then, just like you would with an Eloquent query after

322

TEST-DRIVENWORKFLOW

you have chained various methods onto the query, we call the getmethod.

Like before, we will get a collection of authors which we can pass to our

AuthorsCollection class. Our test should now be passing and green.

Next up, let’s create a test for sorting in descending order:

/**

* @test

* @watch

*/

public function

it_can_sort_authors_by_name_in_descending_order_through_a_sort_query_parameter

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$authors = collect([

'Bertram',

'Claus',

'Anna',

])->map(function($name){

return factory(Author::class)->create([

'name' => $name

]);

});

$this->get('/api/v1/authors?sort=-name', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(200)->assertJson([

"data" => [

[

"id" => '2',

"type" => "authors",

"attributes" => [

323

BUILD AN API WITH LARAVEL

'name' => 'Claus',

'created_at' => $authors[1]->created_at->toJSON

(),

'updated_at' => $authors[1]->updated_at->toJSON

(),

]

],

[

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => 'Bertram',

'created_at' => $authors[0]->created_at->toJSON

(),

'updated_at' => $authors[0]->updated_at->toJSON

(),

]

],

[

"id" => '3',

"type" => "authors",

"attributes" => [

'name' => 'Anna',

'created_at' => $authors[2]->created_at->toJSON

(),

'updated_at' => $authors[2]->updated_at->toJSON

(),

]

],

]

]);

}

Here, we add a minus in front of our name value in the query parameter to

convey that we want to sort in descending order. Then we reorder the authors

in the assertJsonmethod so that they match the expected sort order.

This test should already be green and passing, since Laravel Query Builder

is adhering to the convention of the JSON:API specification. To cement this

324

TEST-DRIVENWORKFLOW

further, let’s create tests for sorting onmultiple attributes, but before we do

so, we have to update our controller and set another attribute on which we

can be sorting. In this case, we might as well add both our created_at and

updated_at attributes like this:

public function index()

{

$authors = QueryBuilder::for(Author::class)->allowedSorts([

'name',

'created_at',

'updated_at',

])->get();

return new AuthorsCollection($authors);

}

Then we can write our test to see if the sorting functionality works as it should

like this:

/**

* @test

* @watch

*/

public function

it_can_sort_authors_by_multiple_attributes_through_a_sort_query_parameter

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$authors = collect([

'Bertram',

'Claus',

'Anna',

])->map(function($name){

325

BUILD AN API WITH LARAVEL

if($name === 'Bertram'){

return factory(Author::class)->create([

'name' => $name,

'created_at' => now()->addSeconds(3),

]);

}

return factory(Author::class)->create([

'name' => $name,

]);

});

$this->get('/api/v1/authors?sort=created_at,name', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(200)->assertJson([

"data" => [

[

"id" => '3',

"type" => "authors",

"attributes" => [

'name' => 'Anna',

'created_at' => $authors[2]->created_at->toJSON

(),

'updated_at' => $authors[2]->updated_at->toJSON

(),

]

],

[

"id" => '2',

"type" => "authors",

"attributes" => [

'name' => 'Claus',

'created_at' => $authors[1]->created_at->toJSON

(),

'updated_at' => $authors[1]->updated_at->toJSON

(),

]

],

326

TEST-DRIVENWORKFLOW

[

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => 'Bertram',

'created_at' => $authors[0]->created_at->toJSON

(),

'updated_at' => $authors[0]->updated_at->toJSON

(),

]

],

]

]);

}

In this test, we sort the created_at attribute first and then the name attribute.

Theway the sortingworks here is that itwill sort the authors by the created_at

date first, and if any authors should be created on the same date, it will sort

these by the name attribute. To be able to test this, we will need one of our

authors to have a different created_at date than the rest, so that we can test

that the sorting functionalityworks. For this purpose,wehave createda simple

conditional when creating our authors, where Bertram will be created later

than the others. We then change the order of the authors in the assertJson

method so that they match our expected outcome.

This test should be green and passing, which means that the sorting works

exactly as it should. But what about the descending order? Let’s test that now:

/**

* @test

* @watch

*/

public function

it_can_sort_authors_by_multiple_attributes_in_descending_order_through_a_sort_query_parameter

327

BUILD AN API WITH LARAVEL

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$authors = collect([

'Bertram',

'Claus',

'Anna',

])->map(function($name){

if($name === 'Bertram'){

return factory(Author::class)->create([

'name' => $name,

'created_at' => now()->addSeconds(3),

]);

}

return factory(Author::class)->create([

'name' => $name,

]);

});

$this->get('/api/v1/authors?sort=-created_at,name', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(200)->assertJson([

"data" => [

[

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => 'Bertram',

'created_at' => $authors[0]->created_at->toJSON

(),

'updated_at' => $authors[0]->updated_at->toJSON

(),

]

],

[

"id" => '3',

"type" => "authors",

"attributes" => [

'name' => 'Anna',

328

TEST-DRIVENWORKFLOW

'created_at' => $authors[2]->created_at->toJSON

(),

'updated_at' => $authors[2]->updated_at->toJSON

(),

]

],

[

"id" => '2',

"type" => "authors",

"attributes" => [

'name' => 'Claus',

'created_at' => $authors[1]->created_at->toJSON

(),

'updated_at' => $authors[1]->updated_at->toJSON

(),

]

],

]

]);

}

In this test, we add a minus in front of the created_at value of our sort query

parameter which indicated that we want to sort our created_at attribute in

descending order. We then reorder the authors in the assertJsonmethod so

that they match the expected order.

This is it for the sorting functionality. Everything is implemented as it should

and we canmove on to pagination.

Pagina on

It’s time for the last part of adhering to the JSON:API specification, namely

pagination.

Youmight already know this feature from Laravel itself, which already has a

pagination featurewith the ability to split a large set of rows from the database

into chunks of 10 rows per page, so you can both save that database fromgoing

329

BUILD AN API WITH LARAVEL

through all rows but also save the user from scrolling on a long list. The

pagination feature built into Laravel works very well, but unfortunately it

doesn’t adhere to the JSON:API specification. Just like with sorting, we can

use a third party package and that is just what we will do. It is also a package

from Belgian Spatie called Laravel JSON API Paginate.

Again, it’s easily installed through composer like this:

composer require spatie/laravel-json-api-paginate

Just like with the sorting part, we need to first write a test in our tests/Fea-

ture/AuthorsTest.php file. Just like before, we will copy from the it_re-

turns_all_authors_as_a_collection_of_resource_objects test, since it

gives us a nice starting point to work from. To set up our world, we will

needmore than three authors for this test though, so let’s bump it up to ten

and work from there. We will, of course, also need to be authenticated. Let’s

just present the test to you and go through it afterward:

/**

* @test

* @watch

*/

public function

it_can_paginate_authors_through_a_page_query_parameter()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$authors = factory(Author::class, 10)->create();

$this->get('/api/v1/authors?page[size]=5&page[number]=1', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

330

TEST-DRIVENWORKFLOW

])->assertStatus(200)->assertJson([

"data" => [

[

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => $authors[0]->name,

'created_at' => $authors[0]->created_at->toJSON

(),

'updated_at' => $authors[0]->updated_at->toJSON

(),

]

],

[

"id" => '2',

"type" => "authors",

"attributes" => [

'name' => $authors[1]->name,

'created_at' => $authors[1]->created_at->toJSON

(),

'updated_at' => $authors[1]->updated_at->toJSON

(),

]

],

[

"id" => '3',

"type" => "authors",

"attributes" => [

'name' => $authors[2]->name,

'created_at' => $authors[2]->created_at->toJSON

(),

'updated_at' => $authors[2]->updated_at->toJSON

(),

]

],

[

"id" => '4',

"type" => "authors",

"attributes" => [

'name' => $authors[3]->name,

331

BUILD AN API WITH LARAVEL

'created_at' => $authors[3]->created_at->toJSON

(),

'updated_at' => $authors[3]->updated_at->toJSON

(),

]

],

[

"id" => '5',

"type" => "authors",

"attributes" => [

'name' => $authors[4]->name,

'created_at' => $authors[4]->created_at->toJSON

(),

'updated_at' => $authors[4]->updated_at->toJSON

(),

]

],

],

'links' => [

'first' => route('authors.index', ['page[size]' => 5, '

page[number]' => 1]),

'last' => route('authors.index', ['page[size]' => 5, '

page[number]' => 2]),

'prev' => null,

'next' => route('authors.index', ['page[size]' => 5, '

page[number]' => 2]),

]

]);

}

We set the page[size] and page[number] query parameters to our URL.We set

the size to 5 so that we know that we will get two pages with five authors on

each. We then set the expected amount of authors in the assertJsonmethod

and also set the linksmember, which is a required member for pagination

according to the JSON:API specification.

Whenstarting, this test is failingbut it is easy tomake this onepass. Oncemore,

we need to go into app/Http/Controllers/AuthorsController.php and again

332

TEST-DRIVENWORKFLOW

we are working in the indexmethod. To use the Laravel JSON API paginate

package, all we have to do is to call the jsonPaginatemethod instead of get

when we want to make the query to the database, so let’s replace the call like

this:

public function index()

{

$authors = QueryBuilder::for(Author::class)->allowedSorts([

'name',

'created_at',

'updated_at',

])->jsonPaginate();

return new AuthorsCollection($authors);

}

Now our test is green and passing, it is as easy as that. Behind the scenes the

jsonPaginatemethod will look for the page[size] and page[number] query

parameters and do the entire pagination for us, and also add the linksmember

needed for pagination as well.

This is all we have to do to implement pagination in our API, and it also

concludes the parts we need to do to adhere to the JSON:API specification.

Summary

We hope you are still with us! We know this chapter was a long one, but it

made it possible for us to build a lot of the fundamentals for both testing and

implementing the basic features of the JSON:API specification.

And we did do a lot in this chapter: we started by looking at the test tools

Laravel provides out of the box and how we can use these together with

PHPUnit to test our application from small unit test all the way to end-to-end

tests.

333

BUILD AN API WITH LARAVEL

We went through our own package for test-driven development and used this

throughout this chapter to automate our tests further by only adding a@watch

annotation to our tests. We revisited the author resource andmade sure that

we had a test for each endpoint so that we can be sure that these work as they

should.

We then tested validation and began implementing how to handle errors

according to the JSON:API specification.

Lastly, we ended this chapter by implementing the last parts we needed to

adhere to the JSON:API specification, which included the content negotiation

we had left out until now, then exception handling and lastly the optional

sorting and pagination features.

We have now implemented what we can of our authors resource. To get any

further, we need a relationship to books, but we cannot implement this until

books has been implemented, so let’s do that in the next chapter.

* * *

334

6

Books

It’s time for us to look at the main part of both our API and also this book.

Looking at Anna’s Bookstore, the books are the main thing. They are what

everything revolves around and since we are reflecting what Anna’s Bookstore

is all about, naturally our application and API will also be revolving around

books.

So in this chapter we will be building our book resource first, which will also

be a good repetition of the concepts of the last chapter.

Then,wewill be looking a relationships, especially howLaravel’s relationships

can bemapped to the conventions of the JSON:API specification and how to

implement these.

We will conclude this chapter by looking at the include query parameter

and the included top-level for including related resource objects of the

relationships to a single or collection of resources.

Before we move into this chapter and start working, we just want to cover

how we will be explaining tests for the rest of this book, because it’s a little

different than we have done so far.

335

BUILD AN API WITH LARAVEL

Earlier in this book, we talked about structuring tests into three parts and we

want to emphasize this further, because it can help you to more easily know

what you should type when writing your own test.

The structure we are talking about is the following structure to a test:

1. In the first part, we set up our world

2. In the second part, we run the code that should be tested

3. In the last part, we make all of our assertions

We will be breaking tests into this structure, so you knowwhat we are about

to write. Then, we will be showing the code for our tests, which you can use as

help when writing the test on your own. Lastly, we will, of course, be going

through how to implement what we are trying to test. The reason for doing it

this way, is that you should begin writing more tests on your own. From these

breakdowns, you should write as many tests as you can and use our test code

as help if you get stuck, but also compare what you have done in your own

tests to ours. In this way, you are learning by doing, instead of us telling you

what to do throughout the entire book, which will get boring and tedious fast.

Next up, we will essentially be writing the same tests for books as we have

done for authors, so it’s a great way to revise what we have just been through,

which will make it easier for you to know what to write in your tests.

We reallywant you to learn this formof testing—even though it gets repetitive

from time to time—because it’s a greatworkflowonce you get into it. Wehave

written entire APIs for applications without leaving our IDE, without having

to go back and forth to the browser or Postman. We have even written most of

an API on a train without having an internet connection. With Laravel’s test

tools and your IDE or editor, you can drive out the implementation of your

APIs much easier and when you really get into the flow, you can also go faster.

Remember that it is all right to deviate from what we have written. You might

even be familiar with assertions or tricks that we are not and that’s fine—you

336

BOOKS

should use them in that case. But do yourself the favor and don’t deviate in

the way that you are removing assertions to move faster. You should make

assertions until you are confident in your tests.

The Books resource

First, we will be building the books resource. Here, we will do some revision

from the last chapter again, to further cement the knowledge on both how to

implement our API using the JSON:API specification and also how to do this in

a test-driven way.

Preparing our tests

Just like the last chapter, we need to write tests for our books resource and

before we can do that, we need a test file. Again, we are doing our tests from

an API point so we will need a feature test. Let’s create our new test file as this:

tests/Feature/BooksTest.php.

By now, you should be a bit more familiar with the concepts of extending the

TestCase class and while we are at it, let’s add the DatabaseMigrations trait

as well like this:

<?php

namespace Tests\Feature;

use Illuminate\Foundation\Testing\DatabaseMigrations;

use Tests\TestCase;

class BooksTest extends TestCase

{

use DatabaseMigrations;

}

337

BUILD AN API WITH LARAVEL

We want to get the ball rolling a bit faster with this test, and we know that

what we want to implement essentially are the same features as we have

implemented for authors. After all, we are implementing a specification to

give usmore consistency. So to give ourselves a better start, why don’twe copy

all the test method names from the tests/Feature/AuthorsTest.php file into

our new file. At the same time, we will also change all the test method names

that have either authors or author in them to books and book. Remember

that the attributes won’t be the same for this resource, so the tests that test

validation for the namemember should be deleted, and we need to make new

validation tests for the: title, description and publication_yearmembers.

All the test methods with the changes should then be like this:

<?php

namespace Tests\Feature;

use Illuminate\Foundation\Testing\DatabaseMigrations;

use Tests\TestCase;

class BooksTest extends TestCase

{

use DatabaseMigrations;

/**

* @test

*/

public function it_returns_an_book_as_a_resource_object()

{

}

/**

* @test

*/

338

BOOKS

public function

it_returns_all_books_as_a_collection_of_resource_objects()

{

}

/**

* @test

*/

public function it_can_create_an_book_from_a_resource_object()

{

}

/**

* @test

*/

public function

it_validates_that_the_type_member_is_given_when_creating_an_book

()

{

}

/**

* @test

*/

public function

it_validates_that_the_type_member_has_the_value_of_books_when_creating_an_book

()

{

}

/**

* @test

*/

public function

it_validates_that_the_attributes_member_has_been_given_when_creating_an_book

()

339

BUILD AN API WITH LARAVEL

{

}

/**

* @test

*/

public function

it_validates_that_the_attributes_member_is_an_object_given_when_creating_an_book

()

{

}

/**

* @test

*/

public function

it_validates_that_a_title_attribute_is_given_when_creating_an_book

()

{

}

/**

* @test

*/

public function

it_validates_that_a_title_attribute_is_a_string_when_creating_an_book

()

{

}

/**

* @test

*/

public function

it_validates_that_a_description_attribute_is_given_when_creating_an_book

()

340

BOOKS

{

}

/**

* @test

*/

public function

it_validates_that_a_description_attribute_is_a_string_when_creating_an_book

()

{

}

/**

* @test

*/

public function

it_validates_that_a_publication_year_attribute_is_given_when_creating_an_book

()

{

}

/**

* @test

*/

public function

it_validates_that_a_publication_year_attribute_is_a_string_when_creating_an_book

()

{

}

/**

* @test

*/

public function it_can_update_an_book_from_a_resource_object()

{

341

BUILD AN API WITH LARAVEL

}

/**

* @test

*/

public function

it_validates_that_an_id_member_is_given_when_updating_an_book

()

{

}

/**

* @test

*/

public function

it_validates_that_an_id_member_is_a_string_when_updating_an_book

()

{

}

/**

* @test

*/

public function

it_validates_that_the_type_member_is_given_when_updating_an_book

()

{

}

/**

* @test

*/

public function

it_validates_that_the_type_member_has_the_value_of_books_when_updating_an_book

()

{

342

BOOKS

}

/**

* @test

*/

public function

it_validates_that_the_attributes_member_has_been_given_when_updating_an_book

()

{

}

/**

* @test

*/

public function

it_validates_that_the_attributes_member_is_an_object_given_when_updating_an_book

()

{

}

/**

* @test

*/

public function

it_validates_that_a_title_attribute_is_a_string_when_updating_an_book

()

{

}

/**

* @test

*/

public function

it_validates_that_a_description_attribute_is_a_string_when_updating_an_book

()

{

343

BUILD AN API WITH LARAVEL

}

/**

* @test

*/

public function

it_validates_that_a_publication_year_attribute_is_a_string_when_updating_an_book

()

{

}

/**

* @test

*/

public function it_can_delete_an_book_through_a_delete_request()

{

}

/**

* @test

*/

public function

it_can_sort_books_by_title_through_a_sort_query_parameter()

{

}

/**

* @test

*/

public function

it_can_sort_books_by_title_in_descending_order_through_a_sort_query_parameter

()

{

}

/**

344

BOOKS

* @test

*/

public function

it_can_sort_books_by_multiple_attributes_through_a_sort_query_parameter

()

{

}

/**

* @test

*/

public function

it_can_sort_books_by_multiple_attributes_in_descending_order_through_a_sort_query_parameter

()

{

}

/**

* @test

*/

public function

it_can_paginate_books_through_a_page_query_parameter()

{

}

/**

* @test

*/

public function

it_can_paginate_books_through_a_page_query_parameter_and_show_different_pages

()

{

}

}

That’s quite a number of tests, but don’t get discouraged and remember that

345

BUILD AN API WITH LARAVEL

they are here to help us. The time spent writing all the tests will, in many

cases, be much less time spent than trying to find a bug in production. Also,

we can steal muchmore from our AuthorsTest than we have done already. We

just want to do it test by test, so it’s easier to manage.

The first test and resource setup

Let’s write the first test then. Don’t forget to add the@watch annotation so

we can run our test automatically, and if you haven’t already, also to start

the test watcher. Here, the concept is exactly the same as the first test in

our AuthorsTest: we are testing that we can fetch a single book and that it is

returned as a resource object. As mentioned, we will be breaking down our

tests now and we have broken this test down to the following structure:

• 1. We set up our world

• a. We need a book to exist to be able to fetch it

• b. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a GET request to the right API endpoint

• b. We add the right Accept and Content-Type headers

• 3. We assert against the result that

• a. We get a status code 200 OK back

• b. We get the correct response object back

If you feel lost, remember that we will be showing you our implementation,

but also remember that you can look at the tests for authors. We have written

our test like this— remember that it’s ok if you are deviating in assertions,

just as long as you are confident in your test:

/**

* @test

346

BOOKS

* @watch

*/

public function it_returns_an_book_as_a_resource_object()

{

$book = factory(Book::class)->create();

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->getJson('/api/v1/books/1', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200)

->assertJson([

"data" => [

"id" => '1',

"type" => "books",

"attributes" => [

'title' => $book->title,

'description' => $book->description,

'publication_year' => $book->publication_year,

'created_at' => $book->created_at->toJSON(),

'updated_at' => $book->updated_at->toJSON(),

]

]

]);

}

Right now, our test is failing since we do not have a Bookmodel just yet, so

let’s make it. Here, we take the same approach as in chapter 4, where we used

an artisan command tomake themodel and also the controller, factory and

migrations through a simple -a flag, like this:

php artisan make:model Book -a

Just like we did in chapter 4, don’t forget to rename all the files and classes

347

BUILD AN API WITH LARAVEL

from Book to Books except for the model so that we will end up with files

named like this:

• app/Book.php

• app/Http/Controllers/BooksController.php

• database/factories/BooksFactory.php

• database/migrations/xxxx_xx_xx_xxxxxx_create_books_table.php

Then we need to setup our migrations. We already know which columns

we want in our database so this will be quite straightforward. Open up the

database/migrations/xxxx_xx_xx_xxxxx_create_books_table.php file

and add the following:

<?php

use Illuminate\Support\Facades\Schema;

use Illuminate\Database\Schema\Blueprint;

use Illuminate\Database\Migrations\Migration;

class CreateBooksTable extends Migration

{

public function up()

{

Schema::create('books', function (Blueprint $table) {

$table->bigIncrements('id');

$table->string('title');

$table->text('description');

$table->string('publication_year');

$table->timestamps();

});

}

public function down()

{

Schema::dropIfExists('books');

348

BOOKS

}

}

Then we can set up our database/factories/BooksFactory.php like this:

$factory->define(App\Book::class, function (Faker $faker) {

return [

'title' => $faker->name,

'description' => $faker->sentence,

'publication_year' => (string)$faker->year

];

});

Next, we need to import the Bookmodel in our test like this (note that we are

only showing a portion of the class to save space):

<?php

namespace Tests\Feature;

use App\Book;

use App\User;

use Illuminate\Foundation\Testing\DatabaseMigrations;

use Laravel\Passport\Passport;

use Tests\TestCase;

class BooksTest extends TestCase

{

...

And our failing test should change from the missing Bookmodel being the

issue to the wrong status code being the issue. Let’s do the implementation so

349

BUILD AN API WITH LARAVEL

the testwill pass, and in our new app/Http/Controllers/BooksController.php

let’s focus on the showmethod, which is currently looking like this:

public function show(Book $book)

{

//

}

If you remember from chapter 4, we created a AuthorsResource class for

transforming our Eloquent model to a resource object adhering to the con-

ventions of the JSON:API specification. We need to do this again for our books

resource, so get back into the terminal and run the following artisan command

to create the resource:

php artisan make:resource BooksResource

This should create a new app/Http/Resources/BooksResource.php file. Let’s

jump into it andmap the correct structure to our response object based on our

model like this:

<?php

namespace App\Http\Resources;

use Illuminate\Http\Resources\Json\JsonResource;

class BooksResource extends JsonResource

{

/**

* Transform the resource into an array.

*

* @param \Illuminate\Http\Request $request

350

BOOKS

* @return array

*/

public function toArray($request)

{

return [

'id' => (string)$this->id,

'type' => 'books',

'attributes' => [

'title' => $this->title,

'description' => $this->description,

'publication_year' => $this->publication_year,

'created_at' => $this->created_at,

'updated_at' => $this->updated_at,

]

];

}

}

Then, we can go right back into our controller and return our new resource in

the showmethod like this:

public function show(Book $book)

{

return new BooksResource($book);

}

Our test is still not passing becausewe aremissing the routes that points to our

controller, so let’s go into the routes/api.php file and use the Route::apiRe-

sourcemethod once again like this:

Route::middleware('auth:api')->prefix('v1')->group(function(){

Route::get('/user', function (Request $request) {

351

BUILD AN API WITH LARAVEL

return $request->user();

});

// Authors

Route::apiResource('authors', 'AuthorsController');

// Books

Route::apiResource('books', 'BooksController');

});

And our test should be green and passing. We now have most of the classes

for our resource, except for a ResourceCollection, but we will create and

implement this through the next test.

Implemen ng the Resource Collec on

Our next test is currently looking like this:

/**

* @test

*/

public function

it_returns_all_books_as_a_collection_of_resource_objects()

{

}

If we break down the structure again:

• 1. We set up our world

• a. We needmultiple books to exist to be able to fetch them

• b. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a GET request to the right API endpoint

352

BOOKS

• b. We add the right Accept and Content-Type headers

• 3. We assert against the result that

• a. We get a status code 200 OK back

• b. We get the correct response object back

Note that for this test you can reuse some of the code from the previous test,

especially the resource object structure in the assertJsonmethod. Don’t forget

that we are testing for a collection, whichmeans that we will needmultiple

resource objects in an array instead.

We have written this test like so:

/**

* @test

* @watch

*/

public function

it_returns_all_books_as_a_collection_of_resource_objects()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$books = factory(Book::class, 3)->create();

$this->get('/api/v1/books', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(200)->assertJson([

"data" => [

[

"id" => '1',

"type" => "books",

"attributes" => [

'title' => $books[0]->title,

'description' => $books[0]->description,

'publication_year' => $books[0]->

publication_year,

353

BUILD AN API WITH LARAVEL

'created_at' => $books[0]->created_at->toJSON(),

'updated_at' => $books[0]->updated_at->toJSON(),

]

],

[

"id" => '2',

"type" => "books",

"attributes" => [

'title' => $books[1]->title,

'description' => $books[1]->description,

'publication_year' => $books[1]->

publication_year,

'created_at' => $books[1]->created_at->toJSON(),

'updated_at' => $books[1]->updated_at->toJSON(),

]

],

[

"id" => '3',

"type" => "books",

"attributes" => [

'title' => $books[2]->title,

'description' => $books[2]->description,

'publication_year' => $books[2]->

publication_year,

'created_at' => $books[2]->created_at->toJSON(),

'updated_at' => $books[2]->updated_at->toJSON(),

]

],

]

]);

}

Our test is failing, telling us that invalid JSON was returned from the route.

We should fix that, but before we do, and since we know we will need it, let’s

create a ResourceCollection for our books resource in our terminal, through

the artisan command we used earlier to make a BooksResource like this:

354

BOOKS

php artisan make:resource BooksCollection -c

Notice that we are using the -c flag this time, instead of relying on the name,

which is a bit more consistent.

Let’s open up the newly created app/Http/Resources/BooksCollection.php

file and add the following:

<?php

namespace App\Http\Resources;

use Illuminate\Http\Resources\Json\ResourceCollection;

class BooksCollection extends ResourceCollection

{

public $collects = BooksResource::class;

public function toArray($request)

{

return [

'data' => $this->collection,

];

}

}

Like before, we add the data top-level member and we do this as a prepara-

tion for what needs to be implemented later on.With our BooksCollection

ResourceCollection created, we can continue to the implementation in the

app/Http/Controllers/BooksController.php’s indexmethod.

From the implementation of our authors resource, we know that we will be

working with the indexmethod a few times, especially when implementing

355

BUILD AN API WITH LARAVEL

the sort and pagination features. So to do this the easiest way, we will handle

thesenext. Right now, to just get the test to passwewill do the implementation

like this:

public function index()

{

$books = Book::all();

return new BooksCollection($books);

}

The test passes so for now the implementation works as it should. Let’s move

on to the test for sorting next.

Sor ng and pagina on

At the moment, our first sort test looks like this:

/**

* @test

*/

public function

it_can_sort_books_by_title_through_a_sort_query_parameter()

{

}

If we break it down:

• 1. We set up our world

• a.We need multiple books, with specific titles to exist to be able to sort by

a title

• b. We need to be authenticated

356

BOOKS

• 2. We run the code we are testing here

• a. Wemake a GET request to the right API endpoint with the sort query

parameter

• b. We add the right Accept and Content-Type headers

• 3. We assert against the result that

• a. We get a status code 200 OK back

• b. We get the correct response object back

To get a bit ahead here, you can copy most of the previous test, since we need

a collection for sorting.

We have written this test like so:

/**

* @test

* @watch

*/

public function

it_can_sort_books_by_title_through_a_sort_query_parameter()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$books = collect([

'Building an API with Laravel',

'Classes are our blueprints',

'Adhering to the JSON:API Specification',

])->map(function($title){

return factory(Book::class)->create([

'title' => $title

]);

});

$this->get('/api/v1/books?sort=title', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

357

BUILD AN API WITH LARAVEL

])->assertStatus(200)->assertJson([

"data" => [

[

"id" => '3',

"type" => "books",

"attributes" => [

'title' => 'Adhering to the JSON:API

Specification',

'description' => $books[2]->description,

'publication_year' => $books[2]->

publication_year,

'created_at' => $books[2]->created_at->toJSON(),

'updated_at' => $books[2]->updated_at->toJSON(),

]

],

[

"id" => '1',

"type" => "books",

"attributes" => [

'title' => 'Building an API with Laravel',

'description' => $books[0]->description,

'publication_year' => $books[0]->

publication_year,

'created_at' => $books[0]->created_at->toJSON(),

'updated_at' => $books[0]->updated_at->toJSON(),

]

],

[

"id" => '2',

"type" => "books",

"attributes" => [

'title' => 'Classes are our blueprints',

'description' => $books[1]->description,

'publication_year' => $books[1]->

publication_year,

'created_at' => $books[1]->created_at->toJSON(),

'updated_at' => $books[1]->updated_at->toJSON(),

]

],

]

358

BOOKS

]);

}

Like we did with authors, we are using a collection to create the various book

titles, so that we can sort these. Then, we are arranging the response in the

assertJsonmethod so that it reflects the expected outcome of the sorting.

The test is failing right now, which is expected. Before we go and write the

implementation, why don’t we write the test for our pagination, so that we

can implement both simultaneously and save some time.

Right now, our first pagination test looks like this:

/**

* @test

*/

public function

it_can_paginate_books_through_a_page_query_parameter()

{

}

If we break it down:

• 1. We set up our world

• a. We needmultiple books to be able to paginate

• b. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a GET request to the right API endpoint

• b. We add a page[size] query parameter to tell howmany books per page

• c. We add a page[number] query parameter to tell which page we are on

• d. We add the right Accept and Content-Type headers

359

BUILD AN API WITH LARAVEL

• 3. We assert against the result that

• a. We get a status code 200 OK back

• b. We get the correct response object back

• c. We get the correct links top-level member back

• d. We get the correct link structure back

Again, youcan reusea lotof the contentsof the it_returns_all_books_as_a_col-

lection_of_resource_objects test to not having to write as much code. This

is also one of the benefits of following a specification: the reuse of test code is

actually quite a lot, which can also make you work faster once you get into the

flow.

Our implementation of this test is the following:

/**

* @test

* @watch

*/

public function

it_can_paginate_books_through_a_page_query_parameter()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$books = factory(Book::class, 10)->create();

$this->get('/api/v1/books?page[size]=5&page[number]=1', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(200)->assertJson([

"data" => [

[

"id" => '1',

"type" => "books",

"attributes" => [

'title' => $books[0]->title,

360

BOOKS

'description' => $books[0]->description,

'publication_year' => $books[0]->

publication_year,

'created_at' => $books[0]->created_at->toJSON(),

'updated_at' => $books[0]->updated_at->toJSON(),

]

],

[

"id" => '2',

"type" => "books",

"attributes" => [

'title' => $books[1]->title,

'description' => $books[1]->description,

'publication_year' => $books[1]->

publication_year,

'created_at' => $books[1]->created_at->toJSON(),

'updated_at' => $books[1]->updated_at->toJSON(),

]

],

[

"id" => '3',

"type" => "books",

"attributes" => [

'title' => $books[2]->title,

'description' => $books[2]->description,

'publication_year' => $books[2]->

publication_year,

'created_at' => $books[2]->created_at->toJSON(),

'updated_at' => $books[2]->updated_at->toJSON(),

]

],

[

"id" => '4',

"type" => "books",

"attributes" => [

'title' => $books[3]->title,

'description' => $books[3]->description,

'publication_year' => $books[3]->

publication_year,

'created_at' => $books[3]->created_at->toJSON(),

361

BUILD AN API WITH LARAVEL

'updated_at' => $books[3]->updated_at->toJSON(),

]

],

[

"id" => '5',

"type" => "books",

"attributes" => [

'title' => $books[4]->title,

'description' => $books[4]->description,

'publication_year' => $books[4]->

publication_year,

'created_at' => $books[4]->created_at->toJSON(),

'updated_at' => $books[4]->updated_at->toJSON(),

]

],

],

'links' => [

'first' => route('books.index', ['page[size]' => 5, '

page[number]' => 1]),

'last' => route('books.index', ['page[size]' => 5, 'page

[number]' => 2]),

'prev' => null,

'next' => route('books.index', ['page[size]' => 5, 'page

[number]' => 2]),

]

]);

}

Both tests are failing now, so let’s do the implementation of both sorting and

pagination so theywill pass. Go back to the controller and add this in the index

method:

public function index()

{

$books = QueryBuilder::for(Book::class)->allowedSorts([

'title',

'publication_year',

362

BOOKS

'created_at',

'updated_at',

])->jsonPaginate();

return new BooksCollection($books);

}

Again, we leverage Spaties Laravel Query Builder and JSON API Paginate to

do the hard work for us.

Now, let’s implement the rest of both the sorting and pagination tests. We

won’t be breaking these down, since they all use the same concepts.

The tests for sorting are the following:

/**

* @test

* @watch

*/

public function

it_can_sort_books_by_title_in_descending_order_through_a_sort_query_parameter

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$books = collect([

'Building an API with Laravel',

'Classes are our blueprints',

'Adhering to the JSON:API Specification',

])->map(function($title){

return factory(Book::class)->create([

'title' => $title

]);

});

363

BUILD AN API WITH LARAVEL

$this->get('/api/v1/books?sort=-title', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(200)->assertJson([

"data" => [

[

"id" => '2',

"type" => "books",

"attributes" => [

'title' => 'Classes are our blueprints',

'description' => $books[1]->description,

'publication_year' => $books[1]->

publication_year,

'created_at' => $books[1]->created_at->toJSON(),

'updated_at' => $books[1]->updated_at->toJSON(),

]

],

[

"id" => '1',

"type" => "books",

"attributes" => [

'title' => 'Building an API with Laravel',

'description' => $books[0]->description,

'publication_year' => $books[0]->

publication_year,

'created_at' => $books[0]->created_at->toJSON(),

'updated_at' => $books[0]->updated_at->toJSON(),

]

],

[

"id" => '3',

"type" => "books",

"attributes" => [

'title' => 'Adhering to the JSON:API

Specification',

'description' => $books[2]->description,

'publication_year' => $books[2]->

publication_year,

'created_at' => $books[2]->created_at->toJSON(),

'updated_at' => $books[2]->updated_at->toJSON(),

364

BOOKS

]

],

]

]);

}

/**

* @test

* @watch

*/

public function

it_can_sort_books_by_multiple_attributes_through_a_sort_query_parameter

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$books = collect([

'Building an API with Laravel',

'Classes are our blueprints',

'Adhering to the JSON:API Specification',

])->map(function($title){

if($title === 'Building an API with Laravel'){

return factory(Book::class)->create([

'title' => $title,

'publication_year' => '2019',

]);

}

return factory(Book::class)->create([

'title' => $title,

'publication_year' => '2018',

]);

});

$this->get('/api/v1/books?sort=publication_year,title', [

'accept' => 'application/vnd.api+json',

365

BUILD AN API WITH LARAVEL

'content-type' => 'application/vnd.api+json',

])->assertStatus(200)->assertJson([

"data" => [

[

"id" => '3',

"type" => "books",

"attributes" => [

'title' => 'Adhering to the JSON:API

Specification',

'description' => $books[2]->description,

'publication_year' => $books[2]->

publication_year,

'created_at' => $books[2]->created_at->toJSON(),

'updated_at' => $books[2]->updated_at->toJSON(),

]

],

[

"id" => '2',

"type" => "books",

"attributes" => [

'title' => 'Classes are our blueprints',

'description' => $books[1]->description,

'publication_year' => $books[1]->

publication_year,

'created_at' => $books[1]->created_at->toJSON(),

'updated_at' => $books[1]->updated_at->toJSON(),

]

],

[

"id" => '1',

"type" => "books",

"attributes" => [

'title' => 'Building an API with Laravel',

'description' => $books[0]->description,

'publication_year' => $books[0]->

publication_year,

'created_at' => $books[0]->created_at->toJSON(),

'updated_at' => $books[0]->updated_at->toJSON(),

]

],

366

BOOKS

]

]);

}

/**

* @test

* @watch

*/

public function

it_can_sort_books_by_multiple_attributes_in_descending_order_through_a_sort_query_parameter

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$books = collect([

'Building an API with Laravel',

'Classes are our blueprints',

'Adhering to the JSON:API Specification',

])->map(function($title){

if($title === 'Building an API with Laravel'){

return factory(Book::class)->create([

'title' => $title,

'publication_year' => '2019',

]);

}

return factory(Book::class)->create([

'title' => $title,

'publication_year' => '2018',

]);

});

$this->get('/api/v1/books?sort=-publication_year,title', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(200)->assertJson([

"data" => [

367

BUILD AN API WITH LARAVEL

[

"id" => '1',

"type" => "books",

"attributes" => [

'title' => 'Building an API with Laravel',

'description' => $books[0]->description,

'publication_year' => $books[0]->

publication_year,

'created_at' => $books[0]->created_at->toJSON(),

'updated_at' => $books[0]->updated_at->toJSON(),

]

],

[

"id" => '3',

"type" => "books",

"attributes" => [

'title' => 'Adhering to the JSON:API

Specification',

'description' => $books[2]->description,

'publication_year' => $books[2]->

publication_year,

'created_at' => $books[2]->created_at->toJSON(),

'updated_at' => $books[2]->updated_at->toJSON(),

]

],

[

"id" => '2',

"type" => "books",

"attributes" => [

'title' => 'Classes are our blueprints',

'description' => $books[1]->description,

'publication_year' => $books[1]->

publication_year,

'created_at' => $books[1]->created_at->toJSON(),

'updated_at' => $books[1]->updated_at->toJSON(),

]

],

]

]);

}

368

BOOKS

The tests for pagination are the following:

/**

* @test

* @watch

*/

public function

it_can_paginate_books_through_a_page_query_parameter_and_show_different_pages

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$books = factory(Book::class, 10)->create();

$this->get('/api/v1/books?page[size]=5&page[number]=2', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(200)->assertJson([

"data" => [

[

"id" => '6',

"type" => "books",

"attributes" => [

'title' => $books[5]->title,

'description' => $books[5]->description,

'publication_year' => $books[5]->

publication_year,

'created_at' => $books[5]->created_at->toJSON(),

'updated_at' => $books[5]->updated_at->toJSON(),

]

],

[

"id" => '7',

"type" => "books",

"attributes" => [

'title' => $books[6]->title,

'description' => $books[6]->description,

'publication_year' => $books[6]->

369

BUILD AN API WITH LARAVEL

publication_year,

'created_at' => $books[6]->created_at->toJSON(),

'updated_at' => $books[6]->updated_at->toJSON(),

]

],

[

"id" => '8',

"type" => "books",

"attributes" => [

'title' => $books[7]->title,

'description' => $books[7]->description,

'publication_year' => $books[7]->

publication_year,

'created_at' => $books[7]->created_at->toJSON(),

'updated_at' => $books[7]->updated_at->toJSON(),

]

],

[

"id" => '9',

"type" => "books",

"attributes" => [

'title' => $books[8]->title,

'description' => $books[8]->description,

'publication_year' => $books[8]->

publication_year,

'created_at' => $books[8]->created_at->toJSON(),

'updated_at' => $books[8]->updated_at->toJSON(),

]

],

[

"id" => '10',

"type" => "books",

"attributes" => [

'title' => $books[9]->title,

'description' => $books[9]->description,

'publication_year' => $books[9]->

publication_year,

'created_at' => $books[9]->created_at->toJSON(),

'updated_at' => $books[9]->updated_at->toJSON(),

]

370

BOOKS

],

],

'links' => [

'first' => route('books.index', ['page[size]' => 5, '

page[number]' => 1]),

'last' => route('books.index', ['page[size]' => 5, 'page

[number]' => 2]),

'prev' => route('books.index', ['page[size]' => 5, 'page

[number]' => 1]),

'next' => null,

]

]);

}

This is it for both our BooksCollection ResourceCollection, the sorting

functionality, and pagination functionality. Now, we can move on to the

implementation of creating books.

Crea ng and valida ng books

Taking a look at our test for creating books, it currently looks like this:

/**

* @test

*/

public function it_can_create_an_book_from_a_resource_object()

{

}

To break this down:

• 1. We set up our world

• a. We need to be authenticated

371

BUILD AN API WITH LARAVEL

• 2. We run the code we are testing here

• a. Wemake a POST request to the right API endpoint

• b. We add the right Accept and Content-Type headers

• c. We add a valid request object for the creation of our book

• 3. We assert against the result that

• a. We get a status code 201 Created back

• b. We get the correct response object back

For creationof resources, it is a good idea touse assertions against thedatabase

to see that the creation has taken effect and we can see the new resource

reflected in a row in the database. From now on, we will add this as the fourth

part of our structure like this:

• 4. We assert against the database that

• a. The data has been saved

We have written this test like so:

/**

* @test

* @watch

*/

public function it_can_create_an_book_from_a_resource_object()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/books', [

'data' => [

'type' => 'books',

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

372

BOOKS

'publication_year' => '2019',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(201)

->assertJson([

"data" => [

"id" => '1',

"type" => "books",

"attributes" => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

'created_at' => now()->setMilliseconds(0)->

toJSON(),

'updated_at' => now() ->setMilliseconds(0)->

toJSON(),

]

]

])->assertHeader('Location', url('/api/v1/books/1'));

$this->assertDatabaseHas('books', [

'id' => 1,

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

]);

}

Right now, our test is failing so let’s implement the creation of our book in

the app/Http/Controller/BooksController.php store method:

373

BUILD AN API WITH LARAVEL

public function store(Request $request)

{

$book = Book::create([

'title' => $request->input('data.attributes.title'),

'description' => $request->input('data.attributes.

description'),

'publication_year' => $request->input('data.attributes.

publication_year'),

]);

return (new BooksResource($book))

->response()

->header('Location', route('books.show', [

'book' => $book,

]));

}

The concept here should be familiar, since it’s the exact same as in the

AuthorsController. We get the data from the request using the inputmethod,

andwe leverage the create staticmethod onourmodel to do the entire creation

of our book. We then use our BooksResource to return the book as a resource

object adhering to the JSON:API specification.

Our test should be passing and green. Of course, this is again a very naive

approach, so let’s implement validation so we know that we have something

that catches mistakes.

Right now, our first test for validating the creation of a book looks like this:

/**

* @test

*/

public function

it_validates_that_the_type_member_is_given_when_creating_an_book

()

374

BOOKS

{

}

Let’s break down the structure:

• 1. We set up our world

• a. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a POST request to the right API endpoint

• b. We add the right Accept and Content-Type headers

• c. We need an invalid request object for the creation of our book by either

leaving out a member or setting it with the wrong datatype.

• 3. We assert against the result that

• a. We get a status code 422 back

• b. We get the correct error object back

We have written the test this way:

/**

* @test

* @watch

*/

public function

it_validates_that_the_type_member_is_given_when_creating_an_book

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/books', [

'data' => [

'type' => '',

'attributes' => [

375

BUILD AN API WITH LARAVEL

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.type field is required.',

'source' => [

'pointer' => '/data/type',

]

]

]

]);

$this->assertDatabaseMissing('books', [

'id' => 1,

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

]);

}

At the moment, our test is failing, which is because we don’t have anything to

validate against. Let’s create a new Request class, which can be done easily

through an artisan command like this:

php artisan make:request CreateBookRequest

376

BOOKS

Next, we need to define the rules of Request so let’s open app/Http/Request-

s/CreateBookRequest.php and first return true in the authorizemethod and

next focus on the rules of the rulesmethod.

Here, we define the following rules for both validating our request document

but also the attributes:

public function rules()

{

return [

'data' => 'required|array',

'data.type' => 'required|in:books',

'data.attributes' => 'required|array',

'data.attributes.title' => 'required|string',

'data.attributes.description' => 'required|string',

'data.attributes.publication_year' => 'required|string',

];

}

The concepts here are very similar to what we have been throughwith authors,

just with a fewmore attributes.

Next, we need to add the CreateBookRequest to our storemethod in our ap-

p/Http/Controllers/BooksController.php so that we are actually validating

against the rules like this:

public function store(CreateBookRequest $request)

{

$book = Book::create([

'title' => $request->input('data.attributes.title'),

'description' => $request->input('data.attributes.

description'),

'publication_year' => $request->input('data.attributes.

377

BUILD AN API WITH LARAVEL

publication_year'),

]);

return (new BooksResource($book))

->response()

->header('Location', route('books.show', [

'book' => $book,

]));

}

This will make our test green and passing.

For the next validation tests, the structure is the same and you can reuse a lot

of your test code:

• 1. We set up our world

• a. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a POST request to the right API endpoint

• b. We add the right Accept and Content-Type headers

• c. We need an invalid request object for the creation of our book by either

leaving out a member or setting it with the wrong datatype.

• 3. We assert against the result that

• a. We get a status code 422 back

• b. We get the correct error object back

We will let you work through these on your own, and the code will be below if

you need guidance:

/**

* @test

* @watch

*/

public function

378

BOOKS

it_validates_that_the_type_member_has_the_value_of_books_when_creating_an_book

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/books', [

'data' => [

'type' => 'booo',

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The selected data.type is invalid

.',

'source' => [

'pointer' => '/data/type',

]

]

]

]);

$this->assertDatabaseMissing('books', [

'id' => 1,

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

]);

}

379

BUILD AN API WITH LARAVEL

/**

* @test

* @watch

*/

public function

it_validates_that_the_attributes_member_has_been_given_when_creating_an_book

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/books', [

'data' => [

'type' => 'books',

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes field is

required.',

'source' => [

'pointer' => '/data/attributes',

]

]

]

]);

}

/**

* @test

* @watch

*/

public function

it_validates_that_the_attributes_member_is_an_object_given_when_creating_an_book

380

BOOKS

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/books', [

'data' => [

'type' => 'books',

'attributes' => 'this is not an object'

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes must be an

array.',

'source' => [

'pointer' => '/data/attributes',

]

]

]

]);

}

/**

* @test

* @watch

*/

public function

it_validates_that_a_title_attribute_is_given_when_creating_an_book

()

{

$user = factory(User::class)->create();

381

BUILD AN API WITH LARAVEL

Passport::actingAs($user);

$this->postJson('/api/v1/books', [

'data' => [

'type' => 'books',

'attributes' => [

'description' => 'A book about API development',

'publication_year' => '2019',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes.title field is

required.',

'source' => [

'pointer' => '/data/attributes/title',

]

]

]

]);

}

/**

* @test

* @watch

*/

public function

it_validates_that_a_title_attribute_is_a_string_when_creating_an_book

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

382

BOOKS

$this->postJson('/api/v1/books', [

'data' => [

'type' => 'books',

'attributes' => [

'title' => 42,

'description' => 'A book about API development',

'publication_year' => '2019',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes.title must be

a string.',

'source' => [

'pointer' => '/data/attributes/title',

]

]

]

]);

}

/**

* @test

* @watch

*/

public function

it_validates_that_a_description_attribute_is_given_when_creating_an_book

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

383

BUILD AN API WITH LARAVEL

$this->postJson('/api/v1/books', [

'data' => [

'type' => 'books',

'attributes' => [

'title' => 'Building an API with Laravel',

'publication_year' => '2019',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes.description

field is required.',

'source' => [

'pointer' => '/data/attributes/description',

]

]

]

]);

}

/**

* @test

* @watch

*/

public function

it_validates_that_a_description_attribute_is_a_string_when_creating_an_book

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/books', [

'data' => [

384

BOOKS

'type' => 'books',

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 42,

'publication_year' => '2019',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes.description

must be a string.',

'source' => [

'pointer' => '/data/attributes/description',

]

]

]

]);

}

/**

* @test

* @watch

*/

public function

it_validates_that_a_publication_year_attribute_is_given_when_creating_an_book

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/books', [

'data' => [

'type' => 'books',

385

BUILD AN API WITH LARAVEL

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes.publication

year field is required.',

'source' => [

'pointer' => '/data/attributes/

publication_year',

]

]

]

]);

}

/**

* @test

* @watch

*/

public function

it_validates_that_a_publication_year_attribute_is_a_string_when_creating_an_book

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->postJson('/api/v1/books', [

'data' => [

'type' => 'books',

'attributes' => [

386

BOOKS

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => 2019,

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes.publication

year must be a string.',

'source' => [

'pointer' => '/data/attributes/

publication_year',

]

]

]

]);

}

All of our tests should be green and passing now, so let’s move on to updating

books.

Upda ng and valida ng books

Take a look at our test for updating a book resource in our tests/Feature/Book-

sTest.php which currently looks like this:

/**

* @test

387

BUILD AN API WITH LARAVEL

*/

public function it_can_update_an_book_from_a_resource_object()

{

}

This has a bit more to the setup of our world, so let’s break it down:

• 1. We set up our world

• a. We need our book to be created so we can update it with new data

• b. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a PATCH request to the right API endpoint

• b. We add the right Accept and Content-Type headers

• c. We need a valid request object for the update of our book

• 3. We assert against the result that

• a. We get a status code 200 OK back

• b. We get the correct resource object back

• 4. We assert against the database that

• a. The data has been updated

The test we have written looks like this:

/**

* @test

* @watch

*/

public function it_can_update_an_book_from_a_resource_object()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$book = factory(Book::class)->create();

388

BOOKS

$this->patchJson('/api/v1/books/1', [

'data' => [

'id' => '1',

'type' => 'books',

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200)

->assertJson([

"data" => [

"id" => '1',

"type" => "books",

"attributes" => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

'created_at' => now()->setMilliseconds(0)->

toJSON(),

'updated_at' => now() ->setMilliseconds(0)->

toJSON(),

]

]

]);

$this->assertDatabaseHas('books', [

'id' => 1,

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

]);

}

Our test is failing because we haven’t implemented anything in the controller

389

BUILD AN API WITH LARAVEL

yet, so jump over to the app/Http/Requests/UpdateBookRequest.php file and

add the following:

public function update(Request $request, Book $book)

{

$book->update($request->input('data.attributes'));

return new BooksResource($book);

}

This will make our test green and passing.

If we take a look at our first test for validation update request, it looks like

this:

/**

* @test

*/

public function

it_validates_that_an_id_member_is_given_when_updating_an_book()

{

}

When breaking this test down:

• 1. We set up our world

• a. We need our book to be created so we can update it with new data

• b. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a PATCH request to the right API endpoint

• b. We add the right Accept and Content-Type headers

• c. We need an invalid request object for the creation of our book by either

390

BOOKS

leaving out a member or setting it with the wrong datatype.

• 3. We assert against the result that

• a. We get a status code 422 back

• b. We get the correct error object back

This can be written like so:

/**

* @test

* @watch

*/

public function

it_validates_that_an_id_member_is_given_when_updating_an_book()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$book = factory(Book::class)->create();

$this->patchJson('/api/v1/books/1', [

'data' => [

'type' => 'books',

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

391

BUILD AN API WITH LARAVEL

'details' => 'The data.id field is required.',

'source' => [

'pointer' => '/data/id',

]

]

]

]);

$this->assertDatabaseHas('books', [

'id' => 1,

'title' => $book->title,

]);

}

This test is failing at the moment, so we need to go through the same steps as

with creation of books andmake a Request we can use for validation. So get

into our terminal and run the following artisan command:

php artisan make:request UpdateBookRequest

Like before, we will jump into the newly created app/Http/Requests/Update-

BookRequest.php file and return true in the authorizemethod and return an

array with the following rules in the rules method:

public function rules()

{

return [

'data' => 'required|array',

'data.id' => 'required|string',

'data.type' => 'required|in:books',

'data.attributes' => 'required|array',

'data.attributes.title' => 'sometimes|required|string',

'data.attributes.description' => 'sometimes|required|string

392

BOOKS

',

'data.attributes.publication_year' => 'sometimes|required|

string',

];

}

Like with authors, we add the sometimes rule infront of our attributes, since

it is optional if these should be updated. The nice thing about the sometimes

rule, is that it will validate the attribute if it is present in the request.

Next, we should add the UpdateBookRequest to our update method in our

app/Http/Controllers/BooksController.php like this:

public function update(UpdateBookRequest $request, Book $book)

{

$book->update($request->input('data.attributes'));

return new BooksResource($book);

}

This will make our test green and passing.

Likewith the creation of books, the concept of the validation tests are basically

the same, so we will let you work on your own with the rest. We will post the

code here, but try to work on your own first.

/**

* @test

* @watch

*/

public function

it_validates_that_an_id_member_is_a_string_when_updating_an_book

393

BUILD AN API WITH LARAVEL

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$book = factory(Book::class)->create();

$this->patchJson('/api/v1/books/1', [

'data' => [

'id' => 1,

'type' => 'books',

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.id must be a string.',

'source' => [

'pointer' => '/data/id',

]

]

]

]);

$this->assertDatabaseHas('books', [

'id' => 1,

'title' => $book->title,

]);

}

/**

394

BOOKS

* @test

* @watch

*/

public function

it_validates_that_the_type_member_is_given_when_updating_an_book

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$book = factory(Book::class)->create();

$this->patchJson('/api/v1/books/1', [

'data' => [

'id' => '1',

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.type field is required.',

'source' => [

'pointer' => '/data/type',

]

]

]

]);

$this->assertDatabaseHas('books', [

'id' => 1,

'title' => $book->title,

395

BUILD AN API WITH LARAVEL

]);

}

/**

* @test

* @watch

*/

public function

it_validates_that_the_type_member_has_the_value_of_books_when_updating_an_book

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$book = factory(Book::class)->create();

$this->patchJson('/api/v1/books/1', [

'data' => [

'id' => '1',

'type' => 'booo',

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The selected data.type is invalid

.',

'source' => [

'pointer' => '/data/type',

]

]

396

BOOKS

]

]);

$this->assertDatabaseHas('books', [

'id' => 1,

'title' => $book->title,

]);

}

/**

* @test

* @watch

*/

public function

it_validates_that_the_attributes_member_has_been_given_when_updating_an_book

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$book = factory(Book::class)->create();

$this->patchJson('/api/v1/books/1', [

'data' => [

'id' => '1',

'type' => 'books',

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes field is

required.',

'source' => [

'pointer' => '/data/attributes',

]

397

BUILD AN API WITH LARAVEL

]

]

]);

$this->assertDatabaseHas('books', [

'id' => 1,

'title' => $book->title,

]);

}

/**

* @test

* @watch

*/

public function

it_validates_that_the_attributes_member_is_an_object_given_when_updating_an_book

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$book = factory(Book::class)->create();

$this->patchJson('/api/v1/books/1', [

'data' => [

'id' => '1',

'type' => 'books',

'attributes' => 'this is not an object'

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes must be an

array.',

'source' => [

398

BOOKS

'pointer' => '/data/attributes',

]

]

]

]);

$this->assertDatabaseHas('books', [

'id' => 1,

'title' => $book->title,

]);

}

/**

* @test

* @watch

*/

public function

it_validates_that_a_title_attribute_is_a_string_when_updating_an_book

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$book = factory(Book::class)->create();

$this->patchJson('/api/v1/books/1', [

'data' => [

'id' => '1',

'type' => 'books',

'attributes' => [

'title' => 42,

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)

->assertJson([

'errors' => [

[

399

BUILD AN API WITH LARAVEL

'title' => 'Validation Error',

'details' => 'The data.attributes.title must be

a string.',

'source' => [

'pointer' => '/data/attributes/title',

]

]

]

]);

$this->assertDatabaseHas('books', [

'id' => 1,

'title' => $book->title,

]);

}

/**

* @test

* @watch

*/

public function

it_validates_that_a_description_attribute_is_a_string_when_updating_an_book

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$book = factory(Book::class)->create();

$this->patchJson('/api/v1/books/1', [

'data' => [

'id' => '1',

'type' => 'books',

'attributes' => [

'description' => 42,

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

400

BOOKS

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes.description

must be a string.',

'source' => [

'pointer' => '/data/attributes/description',

]

]

]

]);

$this->assertDatabaseHas('books', [

'id' => 1,

'title' => $book->title,

]);

}

/**

* @test

* @watch

*/

public function

it_validates_that_a_publication_year_attribute_is_a_string_when_updating_an_book

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$book = factory(Book::class)->create();

$this->patchJson('/api/v1/books/1', [

'data' => [

'id' => '1',

'type' => 'books',

'attributes' => [

'publication_year' => 2019,

]

401

BUILD AN API WITH LARAVEL

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)

->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.attributes.publication

year must be a string.',

'source' => [

'pointer' => '/data/attributes/

publication_year',

]

]

]

]);

$this->assertDatabaseHas('books', [

'id' => 1,

'title' => $book->title,

]);

}

All the tests should be passing now. This is it for the update of our books

resource, so let’s move on to deletion, which fortunately is a very easy one.

Dele ng books

In our test class, the last test we need is our test for deleting books, which

looks like this:

402

BOOKS

/**

* @test

*/

public function it_can_delete_an_book_through_a_delete_request()

{

}

Breaking this down:

• 1. We set up our world

• a. We need our book to be created so we can delete it

• b. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a DELETE request to the right API endpoint

• b. We add the right Accept and Content-Type headers

• 3. We assert against the result that

• a. We get a status code 204 No Content back

This can be written like this:

/**

* @test

* @watch

*/

public function it_can_delete_an_book_through_a_delete_request()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$book = factory(Book::class)->create();

$this->delete('/api/v1/books/1',[], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

403

BUILD AN API WITH LARAVEL

])->assertStatus(204);

$this->assertDatabaseMissing('books', [

'id' => 1,

'title' => $book->title,

]);

}

And to make this test pass, we implement the following in our controllers

destroymethod:

public function destroy(Book $book)

{

$book->delete();

return response(null, 204);

}

All of our tests are now passing and this is actually it for the basic API

implementation of the books resource. Now, we are at the same point as

with our authors resource. We need to implement the relationship part and

also make our relationship adhere to the JSON:API specification.

Rela onships

It is finally time to look at relationships — a very essential part of our

journey into adopting the JSON:API specification. After this, we have enough

knowledge to build the rest of our API adhering to the conventions of the

specification and we can focus a little bit more on our application and code.

404

BOOKS

Se ng up the first test

Like anything else, we start with our test and in this case we want to create a

new test file. We could have kept everything inside our tests/Feature/Book-

sTest.php, but let’s create a new tests/Feature/BooksRelationshipsTest.php

file sowe have a nice separation of the concepts. Thismeans that our test/Fea-

ture/BooksTest.php will contain tests for the basic API implementations

and our new test/FeatureBooksRelationshipsTest.phpwill contain our API

relationships implementations for our books resource. This will also keep our

test/Freature/BooksTest.php file from getting any longer.

After you have created the file, don’t forget to extend the TestCase class that

shipswith Laravel, aswell as use theDatabaseMigration trait. Also remember

to import all of the classes.

Then you should add the first test and name it: it_returns_a_relation-

ship_to_authors_adhering_to_json_api_spec like this:

<?php

namespace Tests\Feature;

use App\Author;

use App\Book;

use Illuminate\Foundation\Testing\DatabaseMigrations;

use Tests\TestCase;

class BooksRelationshipsTest extends TestCase

{

use DatabaseMigrations;

/**

* @test

*/

405

BUILD AN API WITH LARAVEL

public function

it_returns_a_relationship_to_authors_adhering_to_json_api_spec

()

{

}

}

Before wemove on, let’s break down what we actually want to test:

• 1. We set up our world

• a. We need a book to be able to get it through our API

• b. We need a couple of authors to exist to be able to add them as author

for our book

• c. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a GET request to the right API endpoint

• b. We add the right Accept and Content-Type headers

• 3. We assert against the result that

• a. We get a status code 200 OK back

• b. We see the relationships member

• c. We see the authors relationship

• d. We see the links member inside the relationship

• e. We see the resource linkage inside the relationship

• f. We see the resource identifier objects for the authors

This will be a test that covers almost all the implementations we need to

make, all the way from the general relationship methods in our models, to

the migration of the pivot table, and to the changes in our resource objects

we might have to make. If you feel comfortable enough to write the test on

your own, we encourage you to do so. If you feel a little lost, remember that

we are actually just building on what we have already, so this test will pretty

much reflect the first test of our tests/Feature/BooksTest.php. Again, we

406

BOOKS

could have built the relationship part onto our tests in that test file, but later

on there will be some specific implementations for relationships only, which

is why we want to keep them separated in a file for each.

If it’s too overwhelming, we totally understand. It is a lot of information at

once, so let’s just take a look at what we have written here:

/**

* @test

* @watch

*/

public function

it_returns_a_relationship_to_authors_adhering_to_json_api_spec

()

{

$book = factory(Book::class)->create();

$authors = factory(Author::class, 3)->create();

$book->authors()->sync($authors->only('id'));

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->getJson('/api/v1/books/1', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200)

->assertJson([

'data' => [

'id' => '1',

'type' => 'books',

'relationships' => [

'authors' => [

'links' => [

'self' => route(

'books.relationships.authors',

['id' => $book->id]

407

BUILD AN API WITH LARAVEL

),

'related' => route(

'books.authors',

['id' => $book->id]

),

],

'data' => [

[

'id' => $authors->get(0)->id,

'type' => 'authors'

],

[

'id' => $authors->get(1)->id,

'type' => 'authors'

]

]

]

]

]

]);

}

There are quite a bit of assertions here, but we wanted to add the most

important parts of a relationship to start with, so that we can let our test

drive our implementation. You might be wondering why we aren’t making

any assertions for the attributesmember, but remember that we have already

done those assertions on the exact same route in the tests/Feature/Book-

sTest.php, so there is no reason to do them again and vice versa, once we have

implemented our relationships.

At the moment, our test is failing with: LogicException: App\Book::authors must

return a relationship instance.

We can fix that very easily by implementing the authorsmethod on our Book

model. In fact, why don’t we implement the relationship on both the Author

and Bookmodels right away? Since we have amany-to-many relationship,

408

BOOKS

meaning that an author can have written many books, but a book can also

have been written by many authors, we need to define our relationships on

our models with the following: app/Book.php:

public function authors()

{

return $this->belongsToMany(Author::class);

}

app/Author.php:

public function books()

{

return $this->belongsToMany(Book::class);

}

Now our test is failing with a new error: Illuminate\Database\QueryException:

SQLSTATE[42S02]: Base table or view not found: 1146 Table ‘annas_book-

store_testing.author_book’ doesn’t exist...

The great thing about this error is that it’s actually telling us what to do

next, we have made the relationships on our models but we haven’t made the

migration for a pivot table, which is needed for amany-to-many relationship.

What’s even better is that the error tells us exactly what we need to call the

table, so that we can easily use this to create our migration through an artisan

command like this:

409

BUILD AN API WITH LARAVEL

php artisan make:migration create_author_book_table --create=

author_book

Let’sopen thenewly createddatabase/migrations/xxxx_xx_xx_xxxxx_cre-

ate_author_book_table.php file and start filling in the needed columns:

<?php

use Illuminate\Support\Facades\Schema;

use Illuminate\Database\Schema\Blueprint;

use Illuminate\Database\Migrations\Migration;

class CreateAuthorBookTable extends Migration

{

public function up()

{

Schema::create('author_book', function (Blueprint $table) {

$table->unsignedBigInteger('author_id');

$table->foreign('author_id')

->references('id')

->on('authors')

->onDelete('cascade');

$table->unsignedBigInteger('book_id');

$table->foreign('book_id')

->references('id')

->on('books')

->onDelete('cascade');

});

}

public function down()

{

Schema::dropIfExists('author_book');

}

}

410

BOOKS

We create the two needed ID’s and add a foreign constraint on them, making

sure that when either a book or an author is deleted, if one of these have a

relationship, the relationship will be deleted automatically. This is more of

a MySQL feature than a Laravel feature, but Laravel makes it easy to set up

through a couple of chained methods, rather than having to write it out in

SQL.

Now, our failing test has changed once again into the following error: Invali-

dArgumentException: Route [books.relationships.authors] not defined.

This means that we are actually starting on the assertions, which is a great

thing. Let’s create some temporary routes like this in our routes/api.php file,

right under our Books::apiResource:

Route::get('books/{book}/relationships/authors', function(){

return true;

})->name('books.relationships.authors');

Route::get('books/{book}/authors', function(){

return true;

})->name('books.authors');

Now, our test is failing with new output again — this time it is the JSON

response, where we can see that it cannot find anything about the relationship

in the returned JSON. The reason for this is that we haven’t implemented it in

our resource yet, so let’s do that now—with a bit of a naive implementation

just to get our test to pass. In our app/Http/Resources/BooksResource.php,

we add the following to the toArraymethod:

public function toArray($request)

{

411

BUILD AN API WITH LARAVEL

return [

'id' => (string)$this->id,

'type' => 'books',

'attributes' => [

'title' => $this->title,

'description' => $this->description,

'publication_year' => $this->publication_year,

'created_at' => $this->created_at,

'updated_at' => $this->updated_at,

],

'relationships' => [

'authors' => [

'links' => [

'self' => route(

'books.relationships.authors',

['id' => $this->id]

),

'related' => route(

'books.authors',

['id' => $this->id]

),

],

'data' => $this->authors->map(function($author){

return [

'id' => $author->id,

'type' => 'authors',

];

})

],

]

];

}

We add the relationships member and add the authors relationship to the

object. Within this relationship, we add the linkage following the relationship

linkage from the JSON:API specification. We add our resource linkage through

the datamember and create a quick implementation through a Collectionmap

method, returning the id of each model and a hardcoded type. Our test is now

green and passing.

412

BOOKS

Refactoring Resource Iden fier Objects

As of right now, the implementation of our resource identifier objects is pretty

ugly. Even thoughwe love Laravel’s Collections, this code isn’t actually telling

us what happens. It would be much better with a dedicated object that could

give a bit more explanation.

So let’s make a new resource and call it AuthorsIdentifierResource, which

will be the blueprint for our resource identifier object for authors:

php artisan make:resource AuthorsIdentifierResource

In our newly created app/Http/Resources/AuthorsIdentifierResource.php

file, let’s add the following to the toArraymethod:

public function toArray($request)

{

return [

'id' => (string)$this->id,

'type' => 'authors',

];

}

By using this resource object, we will only return the attributes needed for a

resource identifierobject. SinceLaravel canmakecollectionsof single resource

files, we can make use of this to create a collection of AuthorIdentifierRe-

sources. Let’s go back to our app/Http/Resources/BooksResource.php file

and change the relationship linkage data member to this:

413

BUILD AN API WITH LARAVEL

public function toArray($request)

{

return [

'id' => (string)$this->id,

'type' => 'books',

'attributes' => [

'title' => $this->title,

'description' => $this->description,

'publication_year' => $this->publication_year,

'created_at' => $this->created_at,

'updated_at' => $this->updated_at,

],

'relationships' => [

'authors' => [

'links' => [

'self' => route(

'books.relationships.authors',

['id' => $this->id]

),

'related' => route(

'books.authors',

['id' => $this->id]

),

],

'data' => AuthorsIdentifierResource::collection(

$this->authors),

],

]

];

}

Now it’s muchmore readable: we can clearly read that we get a collection of

AuthorIdentifierResources back.

Whatwedidhere is called a refactoring: we rewrite existing code so it becomes

simpler and easier to understand without changing the functionality. This is

also one of the benefits of having tests to back us up: we can begin refactoring

our code while ensuring that we aren’t breaking anything while doing so.

414

BOOKS

Now that we have implemented a resource for resource identifier objects for

authors, we should move on to our relationship link, since we will be able to

implement this now.

Rela onship links

If you recall the chapter about the JSON:API specification, we talked about

relationship links which we can use to modify the relationship itself. This

means that we can add and remove authors to our books however we like,

without deleting any books or authors. We already have a test class for this,

our tests/Feature/BooksRelationshipsTest.php file, but before we go in and

write the test, let’s break down what we need to do:

• 1. We set up our world

• a. We need a book to be able to fetch it through our API

• b. We need a couple of authors to exist to be able to fetch them as author

for our book

• c. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a GET request to the right API endpoint

• b. We add the right Accept and Content-Type headers

• 3. We assert against the result that

• a. We get a status code 200 OK back

• b. We get to see the authors as proper resource identifier objects

A tip when writing this test is to use the withoutExceptionHandling helper

method in the beginning, so that you see the exact exception being thrown.

Later on, you will need to remove the call to this method, so that your test will

pass. You use this method like this:

415

BUILD AN API WITH LARAVEL

/**

* @test

* @watch

*/

public function test_case()

{

$this->withoutExceptionHandling();

}

Based on the breakdown of our test, we have written the following:

/**

* @test

* @watch

*/

public function

a_relationship_link_to_authors_returns_all_related_authors_as_resource_id_objects

()

{

$book = factory(Book::class)->create();

$authors = factory(Author::class, 3)->create();

$book->authors()->sync($authors->pluck('id'));

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->getJson('/api/v1/books/1/relationships/authors', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200)

->assertJson([

'data' => [

[

'id' => '1',

'type' => 'authors',

],

416

BOOKS

[

'id' => '2',

'type' => 'authors',

],

[

'id' => '3',

'type' => 'authors',

],

]

]);

}

This test is failing at themoment because we are returning a boolean from our

routes/api.phpfile for the route, so let’s create a new controller first and then

change the route. Let’s create the controller through the artisan command

like this:

php artisan make:controller BooksAuthorsRelationshipsController

Then back in the routes/api.php file we change the route to this:

Route::get('books/{book}/relationships/authors', '

BooksAuthorsRelationshipsController@index')->name('books.

relationships.authors');

Let’s then jump into our newly created app/Http/Controllers/Book-

sAuthorsRelationshipsController.php file and create a new index method

like this:

417

BUILD AN API WITH LARAVEL

public function index(Book $book)

{

return AuthorsIdentifierResource::collection($book->authors);

}

We add our Bookmodel as an argument to the indexmethod, since we need

to knowwhich book we are accessing the relationship to authors on. Then like

before, we return a collection of AuthorsIdentifierResource. Our test should

be green and passing now.

Modifying rela onships

Next, we need to be able to modify our relationships through our relationship

link. If you look back at the chapter about the JSON:API specification, wemade

a comparison between updating a one-to-many ormany-to-many relation-

ship and the syncmethod on an Eloquent relationship, where everything is

first removed and then the given IDs are being added as new relationships.

Since we have amany-to-many relationship, we can actually leverage the

syncmethod for the next part, we are about to implement.

Before we do that, we should break down what we want to happen:

• 1. We set up our world

• a. We need a book to be able to fetch it through our API

• b. We need a 10 authors to exist to be able to add some as author for our

book

• c. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a PATCH request to the right API endpoint

• b. We give the resource identifier objects for the authors we want to add

• c. We add the right Accept and Content-Type headers

• 3. We assert against the result that

• a. We get a status code 204 No Content back

418

BOOKS

• 4. We assert against the database that

• a. We see each author has a relationship to the book

Beforewemove on towriting the tests, wewant to explain the 204NoContent

status codehere. In this case, we are onlymaking changes to our author_book

pivot table and since it does not have any timestamps, we are not modifying

anything besideswhat is given in the PATCH request and therefore it is enough

with an empty response containing a 204 No Content status code.

Based on that, our test looks like this:

/**

* @test

* @watch

*/

public function

it_can_modify_relationships_to_authors_and_add_new_relationships

()

{

$book = factory(Book::class)->create();

$authors = factory(Author::class, 10)->create();

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->patchJson('/api/v1/books/1/relationships/authors',[

'data' => [

[

'id' => '5',

'type' => 'authors',

],

[

'id' => '6',

'type' => 'authors',

]

]

419

BUILD AN API WITH LARAVEL

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(204);

$this->assertDatabaseHas('author_book', [

'author_id' => 5,

'book_id' => 1,

])->assertDatabaseHas('author_book', [

'author_id' => 6,

'book_id' => 1,

]);

}

Our test is failing at the moment. First, we need to add the updatemethod to

our api/Http/Controllers/BooksAuthorsRelationshipsController.php like

this:

public function update(Request $request, Book $book)

{

}

Like before, we leverage route-model bindings through the Book model

argument, and we use the Request argument to be able to access the data

from the request.

Before we do the implementation, we need to add the route to our

routes/api.php file like this:

Route::patch('books/{book}/relationships/authors', '

BooksAuthorsRelationshipsController@update')

420

BOOKS

->name('books.relationships.authors');

Then we can begin to implement the updatemethod in the controller like this:

public function update(Request $request, Book $book)

{

$ids = $request->input('data.*.id');

$book->authors()->sync($ids);

return response(null, 204);

}

As wementioned before, we want to use the syncmethod, which we can call

on our relationship method on our model. The syncmethod takes an array

of IDs of the authors we want a relation to, so we need to extract the ID. We

do that by leveraging the inputmethod on the request again. Here, we get an

array of only the IDs by telling the path to the IDs using dot notation. The *

wildcard here makes us able to tell the input that we are looking in an array

and therefore don’t have a specific key we can reference, but that we want the

key id on the children. It’s a great feature that you can also leverage when

writing validation rules, but more on that later.

After we have synced the relations, we can return our empty response with

the 204 No Content status code and our test should be green and passing.

While we are at it, let’s also make a test for removing relationships, even

though we know it should work by now.

Breaking this down:

• 1. We set up our world

• a. We need a book to be able to fetch it through our API

421

BUILD AN API WITH LARAVEL

• b. We need a couple of authors to exist and they need to be with our book,

for us to test that some has been removed

• c. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a PATCH request to the right API endpoint

• b. We give the resource identifier objects for the authors we want to add,

which should remove the ones not given

• c. We add the right Accept and Content-Type headers

• 3. We assert against the result that

• a. We get a status code 204 No Content back

• 4. We assert against the database that

• a. We see each author given has a relationship to the book

• b. We don’t see a relationship to the authors that was not given

We have written the following test for this:

/**

* @test

* @watch

*/

public function

it_can_modify_relationships_to_authors_and_remove_relationships

()

{

$book = factory(Book::class)->create();

$authors = factory(Author::class, 5)->create();

$book->authors()->sync($authors->pluck('id'));

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->patchJson('/api/v1/books/1/relationships/authors',[

'data' => [

[

'id' => '1',

422

BOOKS

'type' => 'authors',

],

[

'id' => '2',

'type' => 'authors',

],

[

'id' => '5',

'type' => 'authors',

],

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(204);

$this->assertDatabaseHas('author_book', [

'author_id' => 1,

'book_id' => 1,

])->assertDatabaseHas('author_book', [

'author_id' => 2,

'book_id' => 1,

])->assertDatabaseHas('author_book', [

'author_id' => 5,

'book_id' => 1,

])->assertDatabaseMissing('author_book', [

'author_id' => 3,

'book_id' => 1,

])->assertDatabaseMissing('author_book', [

'author_id' => 4,

'book_id' => 1,

]);

}

This test should pass already since we are leveraging the syncmethod on our

relationship.

To make sure we follow the JSON:API specification on removing all relation-

ships, let’s write a test that shows that giving an empty collection of resource

423

BUILD AN API WITH LARAVEL

identifier objects will remove all relationships. Let’s break it down:

• 1. We set up our world

• a. We need a book to be able to fetch it through our API

• b. We need a couple of authors to exist and they need to be with our book,

for us to test that they are removed

• c. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a PATCH request to the right API endpoint

• b. We give an empty collection as data

• c. We add the right Accept and Content-Type headers

• 3. We assert against the result that

• a. We get a status code 204 No Content back

• 4. We assert against the database that

• a. We see that no relationships exist

We have written this test like so:

/**

* @test

* @watch

*/

public function

it_can_remove_all_relationships_to_authors_with_an_empty_collection

()

{

$book = factory(Book::class)->create();

$authors = factory(Author::class, 3)->create();

$book->authors()->sync($authors->pluck('id'));

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->patchJson('/api/v1/books/1/relationships/authors',[

424

BOOKS

'data' => []

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(204);

$this->assertDatabaseMissing('author_book', [

'author_id' => 1,

'book_id' => 1,

])->assertDatabaseMissing('author_book', [

'author_id' => 2,

'book_id' => 1,

])->assertDatabaseMissing('author_book', [

'author_id' => 3,

'book_id' => 1,

]);

}

This test should also pass right away. Up until now, we have taken a pretty

naive route again: we haven’t implemented any validation and what happens

if you give an ID of a resource that does not exist. In this case we would get a

QueryException back, which tells a bit toomuch about our database, somaybe

we need to do some exception handling ourselves. According to the JSON:API

specification, we should return a 404 Not Found if a resource referenced

cannot be found, so let’s implement that.

First, we write a test, so let’s break it down:

• 1. We set up our world

• a. We need a book to be able to fetch it through our API

• b. We only need a few authors

• c. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a PATCH request to the right API endpoint

• b. We give a collection where at least one resource identifier object points

425

BUILD AN API WITH LARAVEL

to and ID of a non-existing author.

• c. We add the right Accept and Content-Type headers

• 3. We assert against the result that

• a. We get a status code 404 Not Found back

• b. We get the right error document back

Our test looks like this:

/**

* @test

* @watch

*/

public function

it_returns_a_404_not_found_when_trying_to_add_relationship_to_a_non_existing_author

()

{

$book = factory(Book::class)->create();

$authors = factory(Author::class, 5)->create();

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->patchJson('/api/v1/books/1/relationships/authors',[

'data' => [

[

'id' => '5',

'type' => 'authors',

],

[

'id' => '6',

'type' => 'authors',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(404)->assertJson([

426

BOOKS

'errors' => [

[

'title' => 'Not Found Http Exception',

'details' => 'Resource not found',

]

]

]);

}

Our test is failing right now, telling us that we get a 500 status code back. We

haven’t implemented anything to handle QueryExceptions yet, but before we

do, maybe we should think about where to implement it. If we do it in the

controller, we would need to repeat that implementation for all resources

and we won’t catch all QueryExceptions, which could leak a bit too much

information about our database. Our app/Exceptions/Handler.php is a better

place, since it works on amore global level, so let’s implement it there.

Now, we can use the test we already have, but since we already have a unit test

for this class, let’s continue there so we have both a unit and a feature test

backing us on this part.

To break this test down:

• 1. We set up our world

• a. We need an instance of our Handler

• b. We need a request

• c. We need the exception we want to test against

• 2. We run the code we are testing here

• a. We call the render on our handler to trigger the exception handling

• 3. We assert against the result that

• a. We get the right error document back

The test looks like this:

427

BUILD AN API WITH LARAVEL

/**

* @test

* @watch

*/

public function

it_converts_a_query_exception_into_a_not_found_exception()

{

/** @var Handler $handler */

$handler = app(Handler::class);

$request = Request::create('/test', 'GET');

$request->headers->set('accept', 'application/vnd.api+json');

$exception = new QueryException('select ? from ?', ['name', '

nothing'], new \Exception(''));

$response = $handler->render($request, $exception);

TestResponse::fromBaseResponse($response)->assertJson([

'errors' => [

[

'title' => 'Not Found Http Exception',

'details' => 'Resource not found',

]

]

]);

}

This test will also fail since we have no implementation, so let’s go into the

app/Exceptions/Handler.php file and this time focus on the rendermethod.

We implement this conversion of our exception in the rendermethod, since

it’s both recommended by Laravel’s documentation, and they are actually also

doing it in the parents rendermethod.

Here, we should add this:

428

BOOKS

public function render($request, Exception $exception)

{

if($exception instanceof QueryException){

$exception = new NotFoundHttpException('Resource not found')

;

}

return parent::render($request, $exception);

}

Now, both our unit tests and feature tests pass. Again, we are taking a bit of

a naive approach — we don’t know if our consumers will send the correct

resource identifier objects, so let’s do some validation to ensure that we only

update relationships if the correct request document is sent to our server.

Valida ng update of rela onship links

We have been through validation a couple of times, so this time we will go a

bit quicker. Essentially, we want to test if the correct resource identifier object

has been given, so to break down the concept of the tests:

• 1. We set up our world

• a. We need a book to do the request

• b. We need some authors to do the request

• c. We need to be authenticated

• 2. We run the code we are testing here

• a. We send a PATCH request to the right API endpoint

• b. We send an invalid request object to trigger the validation

• 3. We assert against the result that

• a. We get the status code 422 back

• b. We get the right error document back

This is the concept for all the tests. The only thing we are changing is the

wrong data given for the ID attribute and type attribute. In the tests/Feature/-

429

BUILD AN API WITH LARAVEL

BooksRelationshipsTest.php, we have written the following tests:

/**

* @test

* @watch

*/

public function

it_validates_that_the_id_member_is_given_when_updating_a_relationship

()

{

$book = factory(Book::class)->create();

$authors = factory(Author::class, 5)->create();

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->patchJson('/api/v1/books/1/relationships/authors',[

'data' => [

[

'type' => 'authors',

],

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(422)->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.0.id field is required.',

'source' => [

'pointer' => '/data/0/id',

]

]

]

]);

}

430

BOOKS

/**

* @test

* @watch

*/

public function

it_validates_that_the_id_member_is_a_string_when_updating_a_relationship

()

{

$book = factory(Book::class)->create();

$authors = factory(Author::class, 5)->create();

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->patchJson('/api/v1/books/1/relationships/authors',[

'data' => [

[

'id' => 5,

'type' => 'authors',

],

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(422)->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.0.id must be a string.',

'source' => [

'pointer' => '/data/0/id',

]

]

]

]);

}

/**

* @test

431

BUILD AN API WITH LARAVEL

* @watch

*/

public function

it_validates_that_the_type_member_is_given_when_updating_a_relationship

()

{

$book = factory(Book::class)->create();

$authors = factory(Author::class, 5)->create();

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->patchJson('/api/v1/books/1/relationships/authors',[

'data' => [

[

'id' => '5',

],

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(422)->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.0.type field is required.',

'source' => [

'pointer' => '/data/0/type',

]

]

]

]);

}

/**

* @test

* @watch

*/

public function

432

BOOKS

it_validates_that_the_type_member_has_a_value_of_authors_when_updating_a_relationship

()

{

$book = factory(Book::class)->create();

$authors = factory(Author::class, 5)->create();

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->patchJson('/api/v1/books/1/relationships/authors',[

'data' => [

[

'id' => '5',

'type' => 'books',

],

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(422)->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The selected data.0.type is invalid.',

'source' => [

'pointer' => '/data/0/type',

]

]

]

]);

}

All these tests will fail at themoment, since we haven’t implemented a request

and added it to our controller. Let’s start by making the request through

artisan, so go to your terminal and run the following command:

433

BUILD AN API WITH LARAVEL

php artisan make:request BooksAuthorsRelationshipsRequest

Let’s jump into the new file at app/Http/Requests/BooksAuthorsRelation-

shipRequest.php and add the following:

<?php

namespace App\Http\Requests;

use Illuminate\Foundation\Http\FormRequest;

class UpdateBooksAuthorsRelationshipsRequest extends FormRequest

{

/**

* Determine if the user is authorized to make this request.

*

* @return bool

*/

public function authorize()

{

return true;

}

/**

* Get the validation rules that apply to the request.

*

* @return array

*/

public function rules()

{

return [

'data' => 'present|array',

'data.*.id' => 'required|string',

'data.*.type' => 'required|in:authors',

];

}

434

BOOKS

}

We are not quite there yet. We still have to add the request to our controller

app/Http/Controllers/BooksAuthorsRelationshipsController.php like this:

public function update(BooksAuthorsRelationshipsRequest $request,

Book $book)

{

$ids = $request->input('data.*.id');

$book->authors()->sync($ids);

return response(null, 204);

}

Our tests should be green and passing now,meaning that our validation works

as intended.

Related link

The last thing we need to implement is the related link and, if you recall from

our chapter about the JSON:API specification, we need to return a collection of

the related authors as resource objects. Let’s write a test for it first.

To break this test down:

• 1. We set up our world

• a. We need a book to do the request

• b. We need some authors to do the request

• c. We need to be authenticated

• 2. We run the code we are testing here

• a. We send a GET request to the right API endpoint

• 3. We assert against the result that

• a. We get the status code 200 OK back

435

BUILD AN API WITH LARAVEL

• b. We get the right response document back

We have written our test like this:

/**

* @test

* @watch

*/

public function

it_can_get_all_related_authors_as_resource_objects_from_related_link

()

{

$book = factory(Book::class)->create();

$authors = factory(Author::class, 3)->create();

$book->authors()->sync($authors->pluck('id'));

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->getJson('/api/v1/books/1/authors')

->assertStatus(200)

->assertJson([

'data' => [

[

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => $authors[0]->name,

'created_at' => $authors[0]->created_at->

toJSON(),

'updated_at' => $authors[0]->updated_at->

toJSON(),

]

],

[

"id" => '2',

"type" => "authors",

436

BOOKS

"attributes" => [

'name' => $authors[1]->name,

'created_at' => $authors[1]->created_at->

toJSON(),

'updated_at' => $authors[1]->updated_at->

toJSON(),

]

],

[

"id" => '3',

"type" => "authors",

"attributes" => [

'name' => $authors[2]->name,

'created_at' => $authors[2]->created_at->

toJSON(),

'updated_at' => $authors[2]->updated_at->

toJSON(),

]

],

]

]);

}

At the moment this test is failing, since we have no implementation, so let’s

make thatnow. For this,weneedanewcontroller so jumpout into the terminal

again and run the following artisan command:

php artisan make:controller BooksAuthorsRelatedController

Next, jump into the routes/api.php file and let’s update the route for the

related link like this:

437

BUILD AN API WITH LARAVEL

Route::get('books/{book}/authors', '

BooksAuthorsRelatedController@index')->name('books.authors');

Now, we are ready to work on our implementation, so let’s go into app/Http/-

Controllers/BookAuthorsRelatedController.php. Here, we only need one

method: we could have just used the __invokemagic method, which you

can use for single method controllers, but we like to be a bit more explicit so

let’s just create the indexmethod, which also corresponds with the method

given in our route.

This implementation is an easy one. We already have a collection for our

authors, so we can just reuse this and send in a collection of the authors that

are related to our book and return this:

public function index(Book $book)

{

return new AuthorsCollection($book->authors);

}

And our test turns green and passes now. This was an easy one and we are

essentially finished implemented this relationship. There is onemore concept

we are missing, which is the includemember, so let’s tackle that next.

Include and included

The included top-levelmembermakes it possible for you to include the related

resourcesdefined in the relationship linkagedatamember in the relationships

object. Instead of having tomake a new request for the related resources, they

can just be sent together with the current response, making it possible for

your consumer to save the hassle.

438

BOOKS

You can choose to always use the includemember whenever there’s a relation-

ship on a resource ,or you can choose to leverage the include query parameter

as well.

The include query parameter makes it possible for your consumers to tell

whether they want to include the related resource objects in the response or

not, making it possible to save time on requests that could take a long time.

We will implement both the include top-level member and the include query

parameter now and, luckily for us, we don’t have to implement the include

query parameter, since this feature is also included in Spatie’s Laravel Query

Builder package.

Up until now, we have leveraged Laravel or third party packages to help us

implement the conventions of the JSON:API specification, but for the included

top-level member, we have to implement a bit more for this to work.

Let’s start out by figuring out how to add an included top-levelmember, when

fetching a single resource. Like before, we want to start by writing a test so

we know when our implementation works. Here, we can write a unit test that

tests our resource in isolation or we can continue with our feature tests.

If we gowith a unit test to test a resource in isolation, wewould have to provide

the model and a request in order to test the resource. This can be done using

mocks, which is an object that simulates the behavior of a real object. We use

mocks because the thing we are testing has dependencies to other objects. To

mock our Laravel models is quite a task, and one could argue that it would

be easier to just hit the database and avoid mocking this part. This leaves us

with a unit test that is not really being tested completely in isolation. We are

actually using parts of our application and it all starts to bleed out from the

original intention of a unit test. In our opinion, there’s nothing wrong with

hitting the database in a unit test, every once in a while. Remember, you test

to ensure everything works as it should, not to follow some completely strict

439

BUILD AN API WITH LARAVEL

rule set that will force you to spend hours trying to mock everything out.

Because we are so close to a real request/response flow, it would be much

easier to just continue using a feature test and test that we get the correct

resource in the included top-level member.

Let’s break down what we want to test:

• 1. We set up our world

• a. We need a book to do the request

• b. We need some authors that will be related to the book

• c. We need to be authenticated

• 2. We run the code we are testing here

• a. We send a GET request to the right API endpoint

• b. We need to add an include query parameter with the value of authors

• 3. We assert against the result that

• a. We get the status code 200 OK back

• b. We get the right response document back in which

• i. We see the relationshipmember

• ii. We see the author relationship

• iii. We see the relationship links

• iv. We see the resource identifier objects for the related authors

• c. We get the included top-level member back

• d. The included top-level member contains a collection resource objects

for authors

It is quite a number of things we test for here, but remember that most of the

assertions are done through the assertJson method, asserting that we get the

expected JSON back.

We have written this test like so:

440

BOOKS

/**

* @test

* @watch

*/

public function

it_includes_related_resource_objects_when_an_include_query_param_is_given

()

{

$book = factory(Book::class)->create();

$authors = factory(Author::class, 3)->create();

$book->authors()->sync($authors->pluck('id'));

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->getJson('/api/v1/books/1?include=authors', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200)

->assertJson([

'data' => [

'id' => '1',

'type' => 'books',

'relationships' => [

'authors' => [

'links' => [

'self' => route(

'books.relationships.authors',

['id' => $book->id]

),

'related' => route(

'books.authors',

['id' => $book->id]

),

],

'data' => [

[

'id' => (string)$authors->get(0)->

id,

441

BUILD AN API WITH LARAVEL

'type' => 'authors'

],

[

'id' => (string)$authors->get(1)->

id,

'type' => 'authors'

]

]

]

]

],

'included' => [

[

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => $authors[0]->name,

'created_at' => $authors[0]->created_at->

toJSON(),

'updated_at' => $authors[0]->updated_at->

toJSON(),

]

],

[

"id" => '2',

"type" => "authors",

"attributes" => [

'name' => $authors[1]->name,

'created_at' => $authors[1]->created_at->

toJSON(),

'updated_at' => $authors[1]->updated_at->

toJSON(),

]

],

[

"id" => '3',

"type" => "authors",

"attributes" => [

'name' => $authors[2]->name,

'created_at' => $authors[2]->created_at->

442

BOOKS

toJSON(),

'updated_at' => $authors[2]->updated_at->

toJSON(),

]

],

]

]);

}

Our test is, of course, failing at the moment, but we are ready to start

implementing the included top-level member into our resource.

Let’s go into the app/Http/Controllers/BooksController.php and take a look

at the showmethod, which is used to fetch a single book.

public function show(Book $book)

{

return new BooksResource($book);

}

As we mentioned earlier, we want to use the QueryBuilder from Spatie to

handle the work with the include query parameter, so we will need to make

some changes here. At the moment, we are leveraging Laravel’s route-model

bindings, but unfortunately we have to give this up and let the QueryBuilder

do the query from now on. We still need the ID of the book to make the query,

so let’s implement it like this:

public function show($book)

{

$query = QueryBuilder::for(Book::where('id', $book))

->allowedIncludes('authors')

->firstOrFail();

443

BUILD AN API WITH LARAVEL

return new BooksResource($query);

}

Notice that by removing the reference to the Book model, we just get the

ID back instead. The QueryBuilder’s role here is first and foremost to fetch

our Book, but also to fetch the related models according to what is given in

the include query parameter. Next, we continue like before by returning a

BookResource. The QueryBuilder is only fetching our related models, and

doesn’t do anything else or return a response. We will have to make the

response ourselves.

So how do we know when a consumer wants the related resource objects for a

certain relationship included in the response?

The strategy recommended by Spatie is to use the whenLoadedmethod on

our Laravel resources to check if a relation has been loaded and then add the

relations to our response document.

Let’s take a look at our app/Http/Resources/BooksResource.php file to see

what we do now:

public function toArray($request)

{

return [

'id' => (string)$this->id,

'type' => 'books',

'attributes' => [

'title' => $this->title,

'description' => $this->description,

'publication_year' => $this->publication_year,

'created_at' => $this->created_at,

'updated_at' => $this->updated_at,

444

BOOKS

],

'relationships' => [

'authors' => [

'links' => [

'self' => route(

'books.relationships.authors',

['id' => $this->id]

),

'related' => route(

'books.authors',

['id' => $this->id]

),

],

'data' => AuthorsIdentifierResource::collection(

$this->authors),

],

]

];

}

What we want to focus on here is the relationship linkage or datamember of

our authors relationship. Here, we leverage the AuthorsIdentifierResource to

create a collection of resource identifier objects for the related authors of the

book. Whatwewant you to notice is that we always send all the related authors

in the response, even though we also have the links member. According to the

JSON:API specification, we only need one of them and the datamember is only

required if we include relations in the response document.

Now that we are using the QueryBuilder from Spatie and we are letting it

decide which relationships that should be fetched according to the include,

our authors will only be loaded whenever they are set to be included through

the include query parameter. So to avoid any errors, let’s change the

implementation to this:

445

BUILD AN API WITH LARAVEL

public function toArray($request)

{

return [

'id' => (string)$this->id,

'type' => 'books',

'attributes' => [

'title' => $this->title,

'description' => $this->description,

'publication_year' => $this->publication_year,

'created_at' => $this->created_at,

'updated_at' => $this->updated_at,

],

'relationships' => [

'authors' => [

'links' => [

'self' => route(

'books.relationships.authors',

['id' => $this->id]

),

'related' => route(

'books.authors',

['id' => $this->id]

),

],

'data' => AuthorsIdentifierResource::collection(

$this->whenLoaded('authors')),

],

]

];

}

Here, we leverage thewhenLoadedmethod instead, which makes sure that

we only add the datamember and its contents if the relation to authors has

been loaded. Methods like these are what makes it a joy to work with Laravel.

Before we continue our implementation, we just want to touch upon Laravel’s

Eloquent API resources once more, because it is important you grasp this part,

in order to understand the implementation we are about to make.

446

BOOKS

A resource is basically a transformer that converts the data of your Eloquent

model into the desired JSON object you want for your API. The transformation

happens through the toArraymethod, where you define both the structure

and values for your members according to the attributes on your Eloquent

model.

When using this resource, Laravel takes the structure from your toArray

method and creates our response document. It’s actually Laravel that makes

sure that our single resource gets a data top-level member.

It is possible to deactivate this behavior and control the top-levelmembers for

yourself, but you will face an issue when creating collections of this resource,

since these top-level members will be included in the collection. If we let

Laravel handle this, it will automatically remove the top-level members of

each resource whenmaking a collection of them.

We can add to the top-level members by using awithmethod in our resources.

We will use this to add the included top-level member to our single resource,

but before we do so, we also have to think about how to implement the way we

want to add content to our includedmember.

The includedmember has to be a single flat array with resource objects for all

related resources listed one after the other. To make it clearer, let’s take this

example from the JSON:API specification:

"included": [{

"type": "people",

"id": "9",

"attributes": {

"first-name": "Dan",

"last-name": "Gebhardt",

"twitter": "dgeb"

447

BUILD AN API WITH LARAVEL

},

"links": {

"self": "http://example.com/people/9"

}

}, {

"type": "comments",

"id": "5",

"attributes": {

"body": "First!"

},

"relationships": {

"author": {

"data": { "type": "people", "id": "2" }

}

},

"links": {

"self": "http://example.com/comments/5"

}

}, {

"type": "comments",

"id": "12",

"attributes": {

"body": "I like XML better"

},

"relationships": {

"author": {

"data": { "type": "people", "id": "9" }

}

},

"links": {

"self": "http://example.com/comments/12"

}

}]

In this example,wecansee that resourceobjects forbothpeople andcomments

are in the same flat array— there is no nesting according to type or anything.

Sowe knowweneed a single array to contain all of our resource objects, andwe

also know that we only need to include the resource objects of related resource

448

BOOKS

identifier objects given in the datamember of each relationship. So let’s break

the implementation down andwrite it out aswewant it to be in a perfect world:

• We want to collect the related resources

• We only want to collect the related resources needed, which are the ones

given in the include query parameter

• We want everything to end up in a single flat array

First, we want a way to collect the related resources, so let’s create a method

for this where we collect these using an array:

private function relations()

{

return [

];

}

That looks good, but how do we only collect the related resources given in the

include query parameter? We can reuse what we did in the toArraymethod

when conveying that we only want to add the datamember when a relation is

loaded like this:

private function relations()

{

return [

AuthorsResource::collection($this->whenLoaded('authors')),

];

}

Through this, we either get a collection of resource objects for authors or an

empty collection.

449

BUILD AN API WITH LARAVEL

Let’s see how far we are from having everything implemented, and add the

withmethod and the includedmember through that:

public function with($request)

{

return [

'included' => $this->relations(),

];

}

The output for the failing tests changes and if we take a look at what we get

back in the includedmember, we are not far from being done:

"included": [

[

{

"id": "1",

"type": "authors",

"attributes": {

"name": "Lizeth Renner",

"created_at": "2019-05-02T11:59:42.000000Z",

"updated_at": "2019-05-02T11:59:42.000000Z"

}

},

{

"id": "2",

"type": "authors",

"attributes": {

"name": "Euna Bosco",

"created_at": "2019-05-02T11:59:42.000000Z",

"updated_at": "2019-05-02T11:59:42.000000Z"

}

},

{

450

BOOKS

"id": "3",

"type": "authors",

"attributes": {

"name": "Dr. Fannie Orn MD",

"created_at": "2019-05-02T11:59:42.000000Z",

"updated_at": "2019-05-02T11:59:42.000000Z"

}

}

]

]

It’s not a flat array yet, but we can do something about that. The first thing

that might come to mind is to flatten the array, so let’s try to do that. The

easiest way to do this is to use a collection like this:

public function with($request)

{

return [

'included' => collect($this->relations())->flatten(),

];

}

Looking at our test, it’s still failing and looking at the included member

of the result, it’s still the same problem. The reason is that we use the

AuthorsResource class, which also has a toArray method being called but

it happens after we have flattened the array or collection. So the best thing

to do here might be to call the toArraymethod ourselves and then flatten the

collection like this:

public function with($request)

{

451

BUILD AN API WITH LARAVEL

return [

'included' => collect($this->relations())

->flatMap(function ($resource) use($request) {

return $resource->toArray($request);

})

];

}

And our test is green and passing. But what about the scenario where we don’t

want to include anything— does the included top-level member then show

up? Let’s write a test for it.

Let’s break down what we want to test:

• 1. We set up our world

• a. We need a book to do the request

• b. We need to be authenticated

• 2. We run the code we are testing here

• a. We send a GET request to the right API endpoint

• 3. We assert against the result that

• a. We get the status code 200 OK back

• b. We don’t get the included top-level member back

We have written the test like this:

/**

* @test

* @watch

*/

public function

it_does_not_include_related_resource_objects_when_an_include_query_param_is_not_given

452

BOOKS

()

{

$this->withoutExceptionHandling();

$book = factory(Book::class)->create();

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->getJson('/api/v1/books/1', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200)

->assertJsonMissing([

'included' => [],

]);

}

This test actually fails with a 500 status code immediately, so we chose to

include the withoutExceptionHandling method in the test to give us a bit

more information. Right now, we get an error telling us that we are trying

to get property of ‘map’ of non-object. The reason for this is that we have

no relations loaded, which results in our relations method and returns an

array with empty AuthorResource collections. Whenever we call toArray

on an empty AuthorResource collection, it returns an empty array and an

empty cannot be mapped. It would be nice if we could filter away those empty

AuthorsResource collections before we try to map them, so let’s try to do that,

leveraging our Laravel collection to filter these away like this:

public function with($request)

{

return [

'included' => collect($this->relations())

->filter(function($resource){

453

BUILD AN API WITH LARAVEL

return $resource->collection !== null;

})

->flatMap(function ($resource) use($request) {

return $resource->toArray($request);

})

];

}

Our test now changes and tells us that it actually found the included top-level

member.

A simple conditional can fix this for us, but before we add this, let’s move the

included implementation of thewithmethod to its own includedmethod to

make it a bit more readable.

Then we canmore easily add the conditional in ourwithmethod, making the

code a bit more descriptive:

private function relations()

{

return [

AuthorsResource::collection($this->whenLoaded('authors')),

];

}

public function included($request)

{

return collect($this->relations())

->filter(function ($resource) {

return $resource->collection !== null;

})

->flatMap(function ($resource) use ($request) {

return $resource->toArray($request);

});

454

BOOKS

}

public function with($request)

{

$with = [];

if ($this->included($request)->isNotEmpty()) {

$with['included'] = $this->included($request);

}

return $with;

}

Our test is green and passing now and we have successfully implemented

included top-level member for single resources. However, what about when

we need to include related resource objects for many resources in a collection?

Let’s tackle that next.

Collec ons

For collections, we use dedicated Resource collection classes and the reason

we do this is actually because of the included top-level member we are about

to implement now. The problemwe are facing is that we need to collect all the

related resources objects from all of the resources in our resource collection

and put them into an included top-level member in a flat structure. As always,

let’s break down what we want to test and then write the test:

• 1. We set up our world

• a. We need some books to do the request

• b. We need some authors related to one book

• c. We need to be authenticated

• 2. We run the code we are testing here

• a. We send a GET request to the right API endpoint

• b. We add the included query parameter

455

BUILD AN API WITH LARAVEL

• 3. We assert against the result that

• a. We get the status code 200 OK back

• b. We get the right relationships for each resource

• c. We see the included top-level member

• d. The included top-level member contains the correct resource objects

We have written this quite long test like this:

/**

* @test

* @watch

*/

public function

it_includes_related_resource_objects_for_a_collection_when_an_include_query_param_is_given

()

{

$books = factory(Book::class, 3)->create();

$authors = factory(Author::class, 3)->create();

$books->each(function($book, $key) use($authors){

if($key === 0){

$book->authors()->sync($authors->pluck('id'));

}

});

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->get('/api/v1/books?include=authors', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(200)->assertJson([

"data" => [

[

"id" => '1',

"type" => "books",

"attributes" => [

'title' => $books[0]->title,

456

BOOKS

'description' => $books[0]->description,

'publication_year' => $books[0]->

publication_year,

'created_at' => $books[0]->created_at->toJSON(),

'updated_at' => $books[0]->updated_at->toJSON(),

],

'relationships' => [

'authors' => [

'links' => [

'self' => route(

'books.relationships.authors',

['id' => $books[0]->id]

),

'related' => route(

'books.authors',

['id' => $books[0]->id]

),

],

'data' => [

[

'id' => $authors->get(0)->id,

'type' => 'authors'

],

[

'id' => $authors->get(1)->id,

'type' => 'authors'

],

[

'id' => $authors->get(2)->id,

'type' => 'authors'

]

]

]

]

],

[

"id" => '2',

"type" => "books",

"attributes" => [

'title' => $books[1]->title,

457

BUILD AN API WITH LARAVEL

'description' => $books[1]->description,

'publication_year' => $books[1]->

publication_year,

'created_at' => $books[1]->created_at->toJSON(),

'updated_at' => $books[1]->updated_at->toJSON(),

],

'relationships' => [

'authors' => [

'links' => [

'self' => route(

'books.relationships.authors',

['id' => $books[1]->id]

),

'related' => route(

'books.authors',

['id' => $books[1]->id]

),

],

]

]

],

[

"id" => '3',

"type" => "books",

"attributes" => [

'title' => $books[2]->title,

'description' => $books[2]->description,

'publication_year' => $books[2]->

publication_year,

'created_at' => $books[2]->created_at->toJSON(),

'updated_at' => $books[2]->updated_at->toJSON(),

],

'relationships' => [

'authors' => [

'links' => [

'self' => route(

'books.relationships.authors',

['id' => $books[2]->id]

),

'related' => route(

458

BOOKS

'books.authors',

['id' => $books[2]->id]

),

],

]

]

],

],

'included' => [

[

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => $authors[0]->name,

'created_at' => $authors[0]->created_at->toJSON

(),

'updated_at' => $authors[0]->updated_at->toJSON

(),

]

],

[

"id" => '2',

"type" => "authors",

"attributes" => [

'name' => $authors[1]->name,

'created_at' => $authors[1]->created_at->toJSON

(),

'updated_at' => $authors[1]->updated_at->toJSON

(),

]

],

[

"id" => '3',

"type" => "authors",

"attributes" => [

'name' => $authors[2]->name,

'created_at' => $authors[2]->created_at->toJSON

(),

'updated_at' => $authors[2]->updated_at->toJSON

(),

459

BUILD AN API WITH LARAVEL

]

],

]

]);

}

We’ll start out with relations on one book at first. The test is, of course, failing

at the moment but before we jump into our app/Http/Resources/BooksCol-

lection.php file, let’s think about what we want to implement:

1. We want an included top-level member next to the data top-level

member

2. We want the includedmember to contain all the related resource objects

for each resource in the collection

3. We want the all the resource objects to be in a flat structured array.

To add the included top-levelmember, we simply add another key to the array

with that name, so that’s easy enough.. We then need amethod that can collect

all the related resource objects from each resource in the collection, and then

return it as a flattened array. As it turns out, we have already done all of this

hard work through the includedmethod in our BooksResource class, so we

can just call this for each resource. This can be done like this:

public function toArray($request)

{

return [

'data' => $this->collection,

'included' => $this->mergeIncludedRelations($request),

];

}

private function mergeIncludedRelations($request)

{

460

BOOKS

$includes = $this->collection->flatMap(function ($resource) use(

$request){

return $resource->included($request);

});

return $includes;

}

With this method our test is already passing. This is great, but maybe we

should do like before and ensure that the included top-level member is not

shown when the include query parameter is not given. Again, we will write a

test for it where:

• 1. We set up our world

• a. We need some books to do the request

• b. We need to be authenticated

• 2. We run the code we are testing here

• a. We send a GET request to the right API endpoint

• 3. We assert against the result that

• a. We get the status code 200 OK back

• b. We don’t see the included top-level member

We have written the test like this:

/**

* @test

* @watch

*/

public function

it_does_not_include_related_resource_objects_for_a_collection_when_an_include_query_param_is_not_given

()

{

$books = factory(Book::class, 3)->create();

461

BUILD AN API WITH LARAVEL

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->get('/api/v1/books', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(200)

->assertJsonMissing([

'included' => [],

]);

}

This test fails right away, so let’s implement a way to avoid adding the

included top-level member to the response document when there are no

related resource objects to be included. If you recall from our BooksResource

class, we used thewhenLoadedmethod like this:

'data' => AuthorsIdentifierResource::collection($this->whenLoaded

('authors')),

Thismethods either gets the related resources if they are loaded or it returns a

MissingValue object. Laravel then knows that it should not include amember

in the JSON response, when its value is this object. You might be thinking

that we should have used this in ourwithmethod, but this only works in the

toArraymethod.

With this knowledge, we can easily implement the solution using a ternary

operator like this:

462

BOOKS

private function mergeIncludedRelations($request)

{

$includes = $this->collection->flatMap(function ($resource) use(

$request){

return $resource->included($request);

});

return $includes->isNotEmpty() ? $includes : new MissingValue();

}

This makes our test green and passing.

Now, imagine a scenario where we have a collection of books and the same

authors have written those books. In that case, it wouldn’t make a lot of sense

to have all of these authors repeat for each book they have written. We would

like to see each author once in our included member. But does our current

implementation handle this? Let’s break down how to test this:

• 1. We set up our world

• a. We need some books to do the request

• b. We need some authors related to all books

• c. We need to be authenticated

• 2. We run the code we are testing, here

• a. We send a GET request to the right API endpoint

• b. We add the included query parameter

• 3. We assert against the result that

• a. We get the status code 200 OK back

• b. We get the right relationships for each resource

• c. We see the included top-level member

• d. The included top-level member contains the correct resource objects

• e. We see that a resource object is only included once

We have written the test like this:

463

BUILD AN API WITH LARAVEL

/**

* @test

* @watch

*/

public function

it_only_includes_a_related_resource_object_once_for_a_collection

()

{

$books = factory(Book::class, 3)->create();

$authors = factory(Author::class, 3)->create();

$books->each(function($book, $key) use($authors){

$book->authors()->sync($authors->pluck('id'));

});

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->get('/api/v1/books?include=authors', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(200)->assertJson([

"data" => [

[

"id" => '1',

"type" => "books",

"attributes" => [

'title' => $books[0]->title,

'description' => $books[0]->description,

'publication_year' => $books[0]->

publication_year,

'created_at' => $books[0]->created_at->toJSON(),

'updated_at' => $books[0]->updated_at->toJSON(),

],

'relationships' => [

'authors' => [

'links' => [

'self' => route(

'books.relationships.authors',

['id' => $books[0]->id]

),

464

BOOKS

'related' => route(

'books.authors',

['id' => $books[0]->id]

),

],

'data' => [

[

'id' => $authors->get(0)->id,

'type' => 'authors'

],

[

'id' => $authors->get(1)->id,

'type' => 'authors'

],

[

'id' => $authors->get(2)->id,

'type' => 'authors'

]

]

]

]

],

[

"id" => '2',

"type" => "books",

"attributes" => [

'title' => $books[1]->title,

'description' => $books[1]->description,

'publication_year' => $books[1]->

publication_year,

'created_at' => $books[1]->created_at->toJSON(),

'updated_at' => $books[1]->updated_at->toJSON(),

],

'relationships' => [

'authors' => [

'links' => [

'self' => route(

'books.relationships.authors',

['id' => $books[1]->id]

),

465

BUILD AN API WITH LARAVEL

'related' => route(

'books.authors',

['id' => $books[1]->id]

),

],

'data' => [

[

'id' => $authors->get(0)->id,

'type' => 'authors'

],

[

'id' => $authors->get(1)->id,

'type' => 'authors'

],

[

'id' => $authors->get(2)->id,

'type' => 'authors'

]

]

]

]

],

[

"id" => '3',

"type" => "books",

"attributes" => [

'title' => $books[2]->title,

'description' => $books[2]->description,

'publication_year' => $books[2]->

publication_year,

'created_at' => $books[2]->created_at->toJSON(),

'updated_at' => $books[2]->updated_at->toJSON(),

],

'relationships' => [

'authors' => [

'links' => [

'self' => route(

'books.relationships.authors',

['id' => $books[2]->id]

),

466

BOOKS

'related' => route(

'books.authors',

['id' => $books[2]->id]

),

],

'data' => [

[

'id' => $authors->get(0)->id,

'type' => 'authors'

],

[

'id' => $authors->get(1)->id,

'type' => 'authors'

],

[

'id' => $authors->get(2)->id,

'type' => 'authors'

]

]

]

]

],

],

'included' => [

[

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => $authors[0]->name,

'created_at' => $authors[0]->created_at->toJSON

(),

'updated_at' => $authors[0]->updated_at->toJSON

(),

]

],

[

"id" => '2',

"type" => "authors",

"attributes" => [

'name' => $authors[1]->name,

467

BUILD AN API WITH LARAVEL

'created_at' => $authors[1]->created_at->toJSON

(),

'updated_at' => $authors[1]->updated_at->toJSON

(),

]

],

[

"id" => '3',

"type" => "authors",

"attributes" => [

'name' => $authors[2]->name,

'created_at' => $authors[2]->created_at->toJSON

(),

'updated_at' => $authors[2]->updated_at->toJSON

(),

]

],

]

])->assertJsonMissing([

'included' => [

[

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => $authors[0]->name,

'created_at' => $authors[0]->created_at->toJSON

(),

'updated_at' => $authors[0]->updated_at->toJSON

(),

]

],

[

"id" => '2',

"type" => "authors",

"attributes" => [

'name' => $authors[1]->name,

'created_at' => $authors[1]->created_at->toJSON

(),

'updated_at' => $authors[1]->updated_at->toJSON

(),

468

BOOKS

]

],

[

"id" => '3',

"type" => "authors",

"attributes" => [

'name' => $authors[2]->name,

'created_at' => $authors[2]->created_at->toJSON

(),

'updated_at' => $authors[2]->updated_at->toJSON

(),

]

],

[

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => $authors[0]->name,

'created_at' => $authors[0]->created_at->toJSON

(),

'updated_at' => $authors[0]->updated_at->toJSON

(),

]

],

[

"id" => '2',

"type" => "authors",

"attributes" => [

'name' => $authors[1]->name,

'created_at' => $authors[1]->created_at->toJSON

(),

'updated_at' => $authors[1]->updated_at->toJSON

(),

]

],

[

"id" => '3',

"type" => "authors",

"attributes" => [

'name' => $authors[2]->name,

469

BUILD AN API WITH LARAVEL

'created_at' => $authors[2]->created_at->toJSON

(),

'updated_at' => $authors[2]->updated_at->toJSON

(),

]

],

[

"id" => '1',

"type" => "authors",

"attributes" => [

'name' => $authors[0]->name,

'created_at' => $authors[0]->created_at->toJSON

(),

'updated_at' => $authors[0]->updated_at->toJSON

(),

]

],

[

"id" => '2',

"type" => "authors",

"attributes" => [

'name' => $authors[1]->name,

'created_at' => $authors[1]->created_at->toJSON

(),

'updated_at' => $authors[1]->updated_at->toJSON

(),

]

],

[

"id" => '3',

"type" => "authors",

"attributes" => [

'name' => $authors[2]->name,

'created_at' => $authors[2]->created_at->toJSON

(),

'updated_at' => $authors[2]->updated_at->toJSON

(),

]

],

]

470

BOOKS

]);

}

There’s a lot of assertion in this one, but most of it is copied from our earlier

test. The thing to notice is how every resource in the response document has

a relationship, and that all of these related resources have been included. We

also assert that we don’t repeat these related resource objects, which does

make everything a bit longer.

This test is failing because we, as anticipated, do not take care of repeating

resource objects. Luckily, this is very easy to fix, leveraging the features of

Laravel’s collections like this:

private function mergeIncludedRelations($request)

{

$includes = $this->collection->flatMap(function ($resource) use(

$request){

return $resource->included($request);

})->unique()->values();

return $includes->isNotEmpty() ? $includes : new MissingValue();

}

By using the uniquemethod, we can remove duplicates from the collection.

Now, these duplicates can be on various positions in the collection and

to convert this collection to a JSON array later, we need the keys to be in

chronological order, otherwise it will be converted as a JSON object. To solve

this problem, we use the valuesmethod which will reset the key positions on

the collection.

Our test is now passing and we are actually done implementing the include

query parameter and the included top-level member for our books resource.

471

BUILD AN API WITH LARAVEL

There are some things we can do to clean our code a bit more, so let’s just

go through this quickly. In both our BooksCollection and BooksResource

classes, we use a flatMapmethod calling a method on our instances.

In BooksCollectionwe do it here:

private function mergeIncludedRelations($request)

{

$includes = $this->collection->flatMap(function ($resource) use

($request){

return $resource->included($request);

})->unique()->values();

return $includes->isNotEmpty() ? $includes : new MissingValue()

;

}

And in BooksResourcewe do it here:

public function included($request)

{

return collect($this->relations())

->filter(function ($resource) {

return $resource->collection !== null;

})->flatMap(function ($resource) use ($request) {

return $resource->toArray($request);

});

}

In both cases, we are calling a method on each item in the collection and

then wemap the result of that method to our collection and finally flatten it.

Calling methods on the items in collections is actually very common— so

common that Laravel collections has a feature called “higher ordermessages”,

472

BOOKS

which is a short-cut to do these calls on items in our collections. Let’s use the

BooksCollection as example:

private function mergeIncludedRelations($request)

{

$includes = $this->collection->flatMap->included($request)->

unique()->values();

return $includes->isNotEmpty() ? $includes : new MissingValue();

}

Instead of using the flatMapmethod, we can add a dynamic property which

is also conveniently called flatMap, but the cool thing is that it allows us to

skip the closure where we make the call on an item and chain that call into

the existing chain of the collection. It makes our code much shorter andmore

readable.

Let’s do the same for our BooksResource:

public function included($request)

{

return collect($this->relations())

->filter(function ($resource) {

return $resource->collection !== null;

})->flatMap->toArray($request);

}

A little shorter and a little nicer. Before wemove on, you should go into the

terminal and run PHPUnit like this:

./vendor/bin/phpunit

473

BUILD AN API WITH LARAVEL

Some of our earlier tests are failing because we have added thewhenLoaded

method inourBooksResource class. In these tests, you should add the include

query parameter to the URL because of the new implementation and the tests

will pass again.

Summary

We’ve been through a lot in this chapter, so let’s just summarize it a bit.

We started out by creating the books resource as a repetition of the last chapter

and as a way to reinforce what you have learned about testing.

We then began our journey into relationships, starting out by implementing

relationships into our BooksResource class.

We then implemented relationship links so that consumers can both access

our relationship andmodify these without deleting resources themselves. We

created dedicated controllers for these parts and also implemented validation,

so we secure ourselves fromwrong requests from our users that could damage

our application.

Lastly, we implemented the include query parameter using Spaties Query-

Builder once again, and then we implemented the included top-level member

into both our BooksResource and BooksCollection classes.

We have implemented almost all the features from the JSON:API specification

at this point, and we know how to implement each part from now on, so we

can focus a bit more on our application.

The only part we are missing is the ability to add or update relationships

when creating or updating resources. We will implement these features when

implementing our comments resources.

474

BOOKS

You might also think that we have forgotten about authors’ relationship to

books, but as you might also have noticed, we have written a lot of code twice.

In fact, following conventions like the ones in the JSON:API specification

requires you towrite a lot of the samecode. Butwhy shouldwe repeat ourselves

all the time? Isn’t there a better solution? We will take a look at this in the

next chapter.

* * *

475

7

Don’t repeat yourself

In this chapter, wewill be looking at theDon’t repeat yourself principle to see

if we can clean up our code a bit, since the concept for resources are the same

whether it’s an author, a book, a user and so on. This is just what we deal with

while implementing a specification with strict protocols, but remember that

they are there for a reason. Let’s see if we can avoid having to make the same

implementation on and on, andmake future implementations a bit faster.

The Don’t Repeat Yourself principle is stated as such: “Every piece of knowl-

edge must have a single, unambiguous, authoritative representation within

a system” (Andy Hunt & Dave Thomas: The Pragmatic Programmer, 1999.),

meaning that we should aim at reducing repetition in our software to avoid

redundancy.

To put this more clearly, let’s say that there’s a change in how a resource

object is structured. We would then have to change this in several places in

order to meet this new requirement.

If we instead follow the Don’t Repeat Yourself principle or DRY, which we will

call it from now on, we could abstract our code a bit more and have a single

resource object class we could reuse. Then we would only have one place to

make a change if need be.

476

DON’T REPEAT YOURSELF

This might not seem as obvious right now, but don’t worry, we will show you

how, and remember that we are backed by our tests which will immediately

tell us if anything is breaking.

We will do our refactoring in these steps

1. We will refactor our resources and collections into fewer classes

2. We will refactor our controllers to use a single service than can be used

in future controllers

3. We will refactor our validation request classes

Some of these things will overlap a bit. For instance, we will have to make

changes to our controllers almost all the way through this, since these contain

most of the code for our API at the moment.

We do not refactor our tests, even though some of them could be reduced. We

want these to be repetitive and not too abstracted so that they can function as

documentation as well.

Refactoring resources and collec ons

Let’s start with our resources and collections by taking a look at the classes

we already have in app/Http/Resources:

• AuthorsCollection.php

• AuthorsIdentifierResource.php

• AuthorsResource.php

• BooksCollection.php

• BooksResource.php

We have a bunch of classes that are actually doing the same stuff, namely

transforming models into JSON responses. If we take a look at both Book-

sResource.php and AuthorsResource.php and for the moment ignore the

477

BUILD AN API WITH LARAVEL

relationship part of books, which would be almost the same for authors as

well, they are nearly the same. The thing that makes them different from each

other is the typemember and the attributes.

The resource objects actually work as an extension of our models, which

makes it possible for us to use the $this keyword to access the attributes

and relationships on our model. On our models, we can get an array of all

attributes for the model, so that part is easily solved. If we want a general

resource we can reuse, we can no longer write the type on the resource, but

we canmove this to our model instead.

Let’s implement this part and remember, we don’t need any tests since we

already have tests that cover how our resources should work. We can work

with the implementations only now. To run our tests, however, we won’t use

the Laravel Test Watcher, but rather just run PHPUnit since it is a bit easier

when refactoring.

The first thing we should do is to run PHPUnit to see if everything is passing:

./vendor/bin/phpunit

Great! Everything is passing and we now have a good starting point.

Authors

Let’s start by creating our resource like this:

php artisan make:resource JSONAPIResource

478

DON’T REPEAT YOURSELF

Again, we want to take the easiest route and since authors doesn’t have any

relationships yet, it is far easier to handle this resource first.

Jump into app/Http/Controllers/AuthorsController.php and let’s begin by

swapping out the AuthorsResource in the showmethod with our new JSON-

APIResource like this:

public function show(Author $author)

{

return new JSONAPIResource($author);

}

Then let’s run PHPUnit right away to see what happens:

./vendor/bin/phpunit

Wehaveone failing test, tellingus that the responsedoesn’t contain the correct

response document. Go into app/Http/Resources/JSONAPIResource.php and

let’s begin by adding the correct structure, which we can just copy from the

AuthorsResource.php file like this:

public function toArray($request)

{

return [

'id' => (string)$this->id,

'type' => 'authors',

'attributes' => [

'name' => $this->name,

'created_at' => $this->created_at,

'updated_at' => $this->updated_at,

479

BUILD AN API WITH LARAVEL

]

];

}

This is far too specific for authors: wewant to get away from this, andwewant

to get the attributes from our model and the type as well. We could just call

the getAttributesmethod on the model, but this will return all the attributes

— even those that are hidden. Themost ideal thing would be to only get the

attributes that are allowed to be shown to the public, so let’s create a new

method on our app/Author.phpmodel that can return the allowed attributes

like this:

public function allowedAttributes(){

return collect($this->attributes)->filter(function($item, $key){

return !collect($this->hidden)->contains($key) && $key !== '

id';

})->merge([

'created_at' => $this->created_at,

'updated_at' => $this->updated_at,

]);

}

We use Laravel’s collection once again, because it makes it very easy to filter

arrays. We filter away the attributes that are added to the array in the hidden

property on the model, and then wemerge in our created_at and updated_at

attributes since we are also interested in these.

While we are in the model class, let’s create another method for our type

attribute like this:

480

DON’T REPEAT YOURSELF

public function type()

{

return 'authors';

}

Now, we have the necessary methods we can call from our resource, so let’s

jump back to our app/Http/Resources/JSONAPIResource.phpfile and change

the array in the toArraymethod to the following:

public function toArray($request)

{

return [

'id' => (string)$this->id,

'type' => $this->type(),

'attributes' => $this->allowedAttributes(),

];

}

Run PHPUnit again and let’s see what happens. All the tests should pass again,

whichmeans our refactoringwas successful. We are not done though: we need

a way to do this for the rest of our resources as well, so how do we do that?

One thing we could do is to abstract our allowedAttributesmethod from our

model into a trait, and add this to all the models that should be able to return

allowed attributes for the attributes member. For the typemember, we just

need to remember towrite the typemethod on ourmodels and then everything

would be fine.

In this case, a better solution might be to create an abstract class that extends

Laravel’s model class, which our models could extend. This class could

then contain an abstract type method we need to implement before PHP

would be happy with the implementation. In this class, we can then add

the allowedAttributesmethod, which will let all the models that extend this

481

BUILD AN API WITH LARAVEL

abstract class, inherit the method automatically. We think it’s much better

that PHP fails so that nothing works, which will guarantee that you notice a

missing implementation, instead of relying on you running your tests to catch

it.

Let’s create an abstract class and call it AbstractAPIModel.php and place it in

our app folder. Then, let’s move the allowedAttributes to this class and add

the abstract typemethod like this:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

abstract class AbstractAPIModel extends Model

{

/**

* @return string

*/

abstract public function type();

public function allowedAttributes(){

return collect($this->attributes)->filter(function($item,

$key){

return !collect($this->hidden)->contains($key) && $key

!== 'id';

})->merge([

'created_at' => $this->created_at,

'updated_at' => $this->updated_at,

]);

}

}

In our app/Author.php model, let’s remove the allowedAttributes method

482

DON’T REPEAT YOURSELF

and extend our AbstractAPIModel instead ofModel like this:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Author extends AbstractAPIModel

{

protected $fillable = ['name'];

public function books()

{

return $this->belongsToMany(Book::class);

}

public function type()

{

return 'authors';

}

}

Here, we implement the typemethod and return the type as a string. Let’s

run PHPUnit again where everything should still pass.

Great! We now have a convenient way of making our models prepared for our

JSONAPIResource. T6hey all simply need to extend our AbstractAPIModel

and implement the typemethod and they will work. We won’t jump over to

books to implement this just yet.Instead, let’s continue with authors.

Back in the app/Http/Controllers/AuthorsController.php let’s replace the

usage of AuthorsResource to our new JSONAPIResource in the rest of the

methods like this:

483

BUILD AN API WITH LARAVEL

<?php

namespace App\Http\Controllers;

use App\Author;

use App\Http\Requests\CreateAuthorRequest;

use App\Http\Requests\UpdateAuthorRequest;

use App\Http\Resources\AuthorsCollection;

use App\Http\Resources\AuthorsResource;

use App\Http\Resources\JSONAPIResource;

use Illuminate\Http\Request;

use Spatie\QueryBuilder\QueryBuilder;

class AuthorsController extends Controller

{

public function index()

{

$authors = QueryBuilder::for(Author::class)->allowedSorts([

'name',

'created_at',

'updated_at',

])->jsonPaginate();

return new AuthorsCollection($authors);

}

public function store(CreateAuthorRequest $request)

{

$author = Author::create([

'name' => $request->input('data.attributes.name'),

]);

return (new JSONAPIResource($author))

->response()

->header('Location', route('authors.show', [

'author' => $author,

]));

}

public function show(Author $author)

{

return new JSONAPIResource($author);

484

DON’T REPEAT YOURSELF

}

public function update(UpdateAuthorRequest $request, Author

$author)

{

$author->update($request->input('data.attributes'));

return new JSONAPIResource($author);

}

public function destroy(Author $author)

{

$author->delete();

return response(null, 204);

}

}

Let’s run PHPUnit again: Here, all the tests should still be passing.

Then it’s time to look at collections for authors— let’s see if we canmake this

a bit more general as well. Go out into the terminal and create a new resource

with a collections flag, making sure that Laravel Artisan creates a resource

collection for us:

php artisan make:resource JSONAPICollection --collection

Let’s jump into the newly created app/Http/Resources/JSONAPICollec-

tion.php file and make sure that it lives up to our existing collection for

authors. In contrast to our AuthorsCollection, we set the collects property to

JSONAPIResource but we can keep the toArray as it is, since it’s just adding

the data top-level member, which we need:

485

BUILD AN API WITH LARAVEL

<?php

namespace App\Http\Resources;

use Illuminate\Http\Resources\Json\ResourceCollection;

class JSONAPICollection extends ResourceCollection

{

public $collects = JSONAPIResource::class;

public function toArray($request)

{

return [

'data' => $this->collection,

];

}

}

Let’s go into our app/Http/Controllers/AuthorsController.php and replace

the AuthorsCollection to JSONAPICollection in the indexmethod like this:

public function index()

{

$authors = QueryBuilder::for(Author::class)->allowedSorts([

'name',

'created_at',

'updated_at',

])->jsonPaginate();

return new JSONAPICollection($authors);

}

Let’s run PHPUnit again and everything should still be passing, making our

refactoring successful.

Right now, it doesn’t seem like we have gained as much: we just took two

486

DON’T REPEAT YOURSELF

classes and made two new. Let’s see if this changes when we begin to refactor

books next.

Books

Previously, we created a new convention, which is that all models that need to

be used with our JSONAPIResource must extend AbstractAPIModel, so let’s

start bymakingourapp/Book.phpmodel extend this class andalso implement

the typemethod. Depending on your IDE or editor, this might show an error

until you implement the method. This is also one of the conveniences of

having an abstract method. The extension of the AbstractAPIModel class and

implementation of the typemethod should look like this:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Book extends AbstractAPIModel

{

protected $fillable = [

'title',

'description',

'publication_year',

];

public function authors()

{

return $this->belongsToMany(Author::class);

}

/**

* @return string

*/

487

BUILD AN API WITH LARAVEL

public function type()

{

return 'books';

}

}

Running PHPUnit, our tests should still be passing.

Go into app/Http/Controllers/BooksController.php and let’s replace Book-

sResourcewith JSONAPIResource in the showmethod:

public function show($book)

{

$query = QueryBuilder::for(Book::where('id', $book))

->allowedIncludes('authors')

->firstOrFail();

return new JSONAPIResource($query);

}

Running PHPUnit, a couple of tests will fail, complaining about the missing

relationshipmember and the includedmember. Let’s do some refactoring

so that these tests will pass, but first let’s just take a look at our BooksRe-

source.php, especially the relationshipmember in the toArraymethod:

'relationships' => [

'authors' => [

'links' => [

'self' => route(

'books.relationships.authors',

['id' => $this->id]

),

'related' => route(

'books.authors',

488

DON’T REPEAT YOURSELF

['id' => $this->id]

),

],

'data' => AuthorsIdentifierResource::collection($this->

whenLoaded('authors')),

],

]

This is very specific for our books resource, especially the authors relationship.

If we are to make this a bit more general, we would still need a place to define

that the relationship to authors exists and any other relationship for that

matter, since these will increase. If we cannot do it in the resource class, then

where could we do it?

To think a little ahead, let’s take a look at our app/Http/Controllers/-

BooksController.php controller again. In both the index and showmethods,

we are using allowedSorts and allowedIncludes to convey which attributes

are sortable and which models can be included. This seems like something

that belongs to a config file, so that it can easily be fetched when a request

comes into the system. Placing this on the model would require us to have

an instance of the model when trying to find out which sorts or includes are

allowed, and in some cases that is not possible. So let’s create a config file

where we can give all the details per resource, such as relationships, allowed

sorts and includes, and so on. We do this by creating a config/jsonapi.phpfile.

However, this time we are not interested in a class, but rather a completely

empty PHP file.

This file should return an array, and inside that array, we can define our

configuration. It could be that we need to configure more things for our API,

so let’s make sure that we set a root key that conveys that we are working with

resources, and then list out resources as children under this key:

489

BUILD AN API WITH LARAVEL

<?php

return [

'resources' => [

'authors' => [],

'books' => [],

]

];

Under each resource, we can then define the relationships and allowed sorts

and so on, when we get there.

Let’s go back to our app/Http/Resources/BooksResource.php file and take a

look at relationships again. Looking at the authors relationship, we actually

only need to know two things in order to create this from a config file. We

need to know the type of the related resource, and then we need to know the

name of the relationshipmethod on themodel. The rest of the information

can be fetched from the resources’ own type.

Go back into the config/jsonapi.php and add the following:

<?php

return [

'resources' => [

'authors' => [],

'books' => [

'relationships' => [

[

'type' => 'authors',

'method' => 'authors',

]

]

]

]

];

490

DON’T REPEAT YOURSELF

Here, we have added a relationships array to contain all relationships for the

books resource. We have added an array as child, which contains the type of

the related resource and themethod to be called on the app/Book.phpmodel.

Back in our app/Http/Resources/JSONAPIResource.php file, we can then use

this to map out the relationship details for each relationship listed in our

config file like this:

private function prepareRelationships(){

return collect(config("jsonapi.resources.{$this->type()}.

relationships"))

->flatMap(function($related){

$relatedType = $related['type'];

$relationship = $related['method'];

return [

$relatedType => [

'links' => [

'self' => route(

"{$this->type()}.relationships.{$relatedType

}",

['id' => $this->id]

),

'related' => route(

"{$this->type()}.{$relatedType}",

['id' => $this->id]

),

],

'data' => '',

],

];

});

We use a Laravel collection to collect the relationship array from our config

file. Then we use the flatMapmethod to map the details from the config file

into a relationship that adheres to the JSON:API specification, like we had

before. We want each relationship to have a correctly named key e.g. authors.

491

BUILD AN API WITH LARAVEL

Therefore, we return an array with the correct key, which will be flattened

afterward so that the key and value will be merged correctly with any other

relationship that might be:

return [

$relatedType => [

...

],

];

We are missing the datamember, so let’s do something about this. Looking

at our app/Http/Resources/BooksResource.php, we return a collection of

AuthorsIdentifierResource. We must create a more general class of this as

well. Go into your terminal and create the resource like this:

php artisan make:resource JSONAPIIdentifierResource

Let’s open this resource and implement it by copying everything in the toAr-

raymethod of app/Http/Resources/AuthorsIdentifierResource.php into the

toArray of app/Http/Resources/JSONAPIIdentifierResource.php like this:

public function toArray($request)

{

return [

'id' => (string)$this->id,

'type' => 'authors',

];

}

Then we just need to change the value of type to the call to the typemethod

492

DON’T REPEAT YOURSELF

on our model like this:

public function toArray($request)

{

return [

'id' => (string)$this->id,

'type' => $this->type(),

];

}

Andwe are donewith our general resource to return resource identifier objects.

We can then jump back into app/Http/Resources/JSONAPIResource.php and

implement the datamember like this:

private function prepareRelationships(){

return collect(config("jsonapi.resources.{$this->type()}.

relationships"))->flatMap(function($related){

$relatedType = $related['type'];

$relationship = $related['method'];

return [

$relatedType => [

'links' => [

'self' => route(

"{$this->type()}.relationships.{$relatedType

}",

['id' => $this->id]

),

'related' => route(

"{$this->type()}.{$relatedType}",

['id' => $this->id]

),

],

'data' => !$this->whenLoaded($relationship)

instanceof MissingValue ?

JSONAPIIdentifierResource::collection($this->{

493

BUILD AN API WITH LARAVEL

$relationship}) : new MissingValue(),

],

];

});

}

The implementation of thedatamembermight seemabit longhere, butwe are

actually just using a ternary operator check if the relationship has been loaded.

If not, wewant to return aMissingValue object, since itmakes Laravel remove

the datamember entirely if there aren’t included any related resources or else

we just return a collection of JSONAPIIdentifierResourcewe just created.

If we run PHPUnit, our tests are still failing, but this is because we haven’t

done anything about the includedmember, so let’s do that now.

Most of the code for our included member, we can copy over from our

BooksResource class, so let’s copy over the relations, included and with

methods from BooksResource to JSONAPIResource. We can reuse almost

everything. We just need to adjust the relations so that these are being fetched

from our collection instead and mapped to the correct collection class like

this:

private function relations()

{

return collect(config("jsonapi.resources.{$this->type()}.

relationships"))

->map(function($relation){

return JSONAPIResource::collection($this->whenLoaded(

$relation['method']));

});

}

Here, we collect the relationships again andmap these out into a collection of

494

DON’T REPEAT YOURSELF

JSONAPIResource to reuse this class for each resource object, which we need

to return in our data member.

If we run PHPUnit now, our tests should pass again.

Let’s go into our app/Http/Controllers/BooksContoller.php and change the

returned resource fromBooksResource to JSONAPIResource in our store and

updatemethods like this:

<?php

namespace App\Http\Controllers;

use App\Book;

use App\Http\Requests\CreateBookRequest;

use App\Http\Requests\UpdateBookRequest;

use App\Http\Resources\BooksCollection;

use App\Http\Resources\BooksResource;

use App\Http\Resources\JSONAPIResource;

use Illuminate\Http\Request;

use Spatie\QueryBuilder\QueryBuilder;

class BooksController extends Controller

{

public function index()

{

$books = QueryBuilder::for(Book::class)->allowedSorts([

'title',

'publication_year',

'created_at',

'updated_at',

])->allowedIncludes('authors')->jsonPaginate();

return new BooksCollection($books);

}

public function store(CreateBookRequest $request)

{

495

BUILD AN API WITH LARAVEL

$book = Book::create([

'title' => $request->input('data.attributes.title'),

'description' => $request->input('data.attributes.

description'),

'publication_year' => $request->input('data.attributes.

publication_year'),

]);

return (new JSONAPIResource($book))

->response()

->header('Location', route('books.show', [

'book' => $book,

]));

}

public function show($book)

{

$query = QueryBuilder::for(Book::where('id', $book))

->allowedIncludes('authors')

->firstOrFail();

return new JSONAPIResource($query);

}

public function update(UpdateBookRequest $request, Book $book)

{

$book->update($request->input('data.attributes'));

return new JSONAPIResource($book);

}

public function destroy(Book $book)

{

$book->delete();

return response(null, 204);

}

}

If we run PHPUnit again, all of our tests should still be passing.

We only need to implement the collection part of our books resource, and we

are done refactoring resources, so let’s jump into our app/Http/Resources/-

496

DON’T REPEAT YOURSELF

BooksCollection.php file and take a look at what happens here:

<?php

namespace App\Http\Resources;

use Illuminate\Http\Resources\Json\ResourceCollection;

use Illuminate\Http\Resources\MissingValue;

class BooksCollection extends ResourceCollection

{

public $collects = BooksResource::class;

public function toArray($request)

{

return [

'data' => $this->collection,

'included' => $this->mergeIncludedRelations($request),

];

}

private function mergeIncludedRelations($request)

{

$includes = $this->collection->flatMap->included($request)->

unique()->values();

return $includes->isNotEmpty() ? $includes : new

MissingValue();

}

}

The thing tonotehere is, of course, our ownmergeIncludedRelationsmethod,

but since it relies on the includedmethod we just ported over to our JSON-

APIResource class, we can actually just copy our mergeIncludedRelations

method to our JSONAPICollection class and add the key to the array as well:

497

BUILD AN API WITH LARAVEL

<?php

namespace App\Http\Resources;

use Illuminate\Http\Resources\Json\ResourceCollection;

use Illuminate\Http\Resources\MissingValue;

class JSONAPICollection extends ResourceCollection

{

public $collects = JSONAPIResource::class;

public function toArray($request)

{

return [

'data' => $this->collection,

'included' => $this->mergeIncludedRelations($request),

];

}

private function mergeIncludedRelations($request)

{

$includes = $this->collection->flatMap->included($request)->

unique()->values();

return $includes->isNotEmpty() ? $includes : new

MissingValue();

}

}

Let’s go back into our app/Http/Controllers/BooksController.php file and

change the returned collection in index to our JSONAPICollection like this:

public function index()

{

$books = QueryBuilder::for(Book::class)->allowedSorts([

'title',

'publication_year',

'created_at',

498

DON’T REPEAT YOURSELF

'updated_at',

])->allowedIncludes('authors')->jsonPaginate();

return new JSONAPICollection($books);

}

When we then run PHPUnit, our tests should pass.

We now have a couple of controllers which is: app/Http/Controller-

s/BooksAuthorsRelatedController.php and app/Http/Controllers/Book-

sAuthorsRelationshipsController.php. In the app/Http/Controllers/Book-

sAuthorsRelatedController.php file, change the indexmethod to this:

public function index(Book $book)

{

return new JSONAPICollection($book->authors);

}

In the app/Http/Controllers/BooksAuthorsRelationshipsController.php,

change the index method to this:

public function index(Book $book)

{

return JSONAPIIdentifierResource::collection($book->authors);

}

Let’s delete the following files:

• app/Http/Resources/AuthorsCollection.php

• app/Http/Resources/AuthorsIdentifierResource.php

• app/Http/Resources/AuthorsResource.php

• app/Http/Resources/BooksCollection.php

499

BUILD AN API WITH LARAVEL

• app/Http/Resources/BooksResource.php

And run PHPUnit to see if anything breaks. All tests should be passing which

means that we have successfully refactored the resources and collections

above down into a JSONAPIResource for all resources, JSONAPICollection for

all resource objects collection and JSONAPIIdentifierResource for all resource

identifier objects.

Awesome! We can nowmove on to refactoring our controllers.

Refactoring controllers

If we look at our controllers, we are repeating a lot of the same code in almost

all of them. Repeating code in controllers cannot be avoided completely, but it

would be nice to refactor the parts that involve the conventions of the JSON:API

specification so that these could be in a service class that then could be called

from our controllers. Then, we will only have the implementation in one place

andwhenweneed to implement new resources, thework is done for us, andwe

can just reuse the service class. Let’s do this now, and just like with resources,

we will begin with authors to get a nice and easy start.

Before we do that, let’s create our new app/Services/JSONAPIService.php

class, so that it’s ready for us to create methods in it:

<?php

namespace App\Services;

class JSONAPIService

{

}

500

DON’T REPEAT YOURSELF

Let’s then go into our app/Http/Controllers/AuthorsController.php and add

a constructor to the top of the file, where we inject our services file and

initialize it to a service property like this:

<?php

namespace App\Http\Controllers;

...

class AuthorsController extends Controller

{

private $service;

public function __construct(JSONAPIService $service)

{

$this->service = $service;

}

...

}

The cool thing about this is that Laravel will take care of injecting the service

into our controller whenever a request comes in, without us having to lift a

finger. We can just begin to use the service class in our methods from now on.

The Show method

Let’s start by refactoring the showmethod first:

501

BUILD AN API WITH LARAVEL

public function show(Author $author)

{

return new JSONAPIResource($author);

}

You could argue that this is so simple that it does not need any refactoring, and

you would be right, but it is only this simple because the relationship hasn’t

been implemented and we will do that soon, so let’s just do the refactoring.

In our app/Services/JSONAPIService.php, let’s create a newmethod and copy

over the contents from our showmethod like this:

public function fetchResource($model)

{

return new JSONAPIResource($model);

}

Back in our controller, let’s call this method like this:

public function show(Author $author)

{

return $this->service->fetchResource($author);

}

Run PHPUnit and all the tests are passing still.

The Index method

Let’s move on to the indexmethod then:

502

DON’T REPEAT YOURSELF

public function index()

{

$authors = QueryBuilder::for(Author::class)->allowedSorts([

'name',

'created_at',

'updated_at',

])->jsonPaginate();

return new JSONAPICollection($authors);

}

For now, let’s just copy the contents and go over to our service class and create

a method for it like this:

public function fetchResources(string $modelClass)

{

$authors = QueryBuilder::for(Author::class)->allowedSorts([

'name',

'created_at',

'updated_at',

])->jsonPaginate();

return new JSONAPICollection($authors);

}

We need another way of getting the array for the allowedSortsmethod, since

this is specific for the resource itself. Since we have already made a config

file for this, why don’t we add a key to our authors associated array for our

allowed sorts like this:

<?php

return [

'resources' => [

'authors' => [

'allowedSorts' => [

503

BUILD AN API WITH LARAVEL

'name',

'created_at',

'updated_at',

],

],

'books' => [

'relationships' => [

[

'type' => 'authors',

'method' => 'authors',

]

]

]

]

];

Thenweneed to reference this fromour service class. This canbedone through

the config helper function, using a string like this:

public function fetchResources(string $modelClass, string $type)

{

$models = QueryBuilder::for($modelClass)

->allowedSorts(config("jsonapi.resources.{$type}.

allowedSorts"))

->jsonPaginate();

return new JSONAPICollection($models);

}

We need to add another argument to the method, so we get the right type. Our

controllers are specific for each resource, so we can just give the type through

these.

Back in our controller, we will then call this method on our service class like

this:

504

DON’T REPEAT YOURSELF

public function index()

{

return $this->service->fetchResources(Author::class, 'authors');

}

Running PHPUnit our tests should be passing.

The Store method

Moving on to the storemethod, let’s first copy the contents to our service

class in a newmethod like this:

public function createResource(string $modelClass, array

$attributes)

{

$author = Author::create([

'name' => $request->input('data.attributes.name'),

]);

return (new JSONAPIResource($author))

->response()

->header('Location', route('authors.show', [

'author' => $author,

]));

}

Then, we need to change the parts that are too specific. Instead of Author,

we have added amodelClass argument and an attributes argument as well.

These can be used to dynamically create the newmodel and add the attributes

of the newmodel. The newly createdmodel can then be used for returning the

correct response like this:

505

BUILD AN API WITH LARAVEL

public function createResource(string $modelClass, array

$attributes)

{

$model = $modelClass::create($attributes);

return (new JSONAPIResource($model))

->response()

->header('Location', route("{$model->type()}.show", [

Str::singular($model->type()) => $model,

]));

}

The use of the Str::singularmethod is a bit special —we use this to be able to

add the right route parameter, which is singular.

Back in our controller, we can call the method of the service class like this:

public function store(CreateAuthorRequest $request)

{

return $this->service->createResource(Author::class, $request->

input('data.attributes'));

}

We give the class name and then fetch the attributes of the request.

Run PHPUnit and the tests should be passing.

The Update method

The update method is also fairly simple: it can be moved to our service class

like this:

506

DON’T REPEAT YOURSELF

public function updateResource($model, $attributes)

{

$model->update($attributes);

return new JSONAPIResource($model);

}

Again, we leverage our arguments to pass in the needed data. This time, we get

a model because of route-model binding, but we reuse the concept of passing

attributes.

In our controller, we can call this method on our service class like this:

public function update(UpdateAuthorRequest $request, Author $author

)

{

return $this->service->updateResource($author, $request->input('

data.attributes'));

}

If we run PHPUnit again our tests are still passing.

The Destroy method

Our destroymethod is also fairly simple. We don’t have to change anything

about it either: we can just copy it to our service class and use the model from

route-model binding to delete the model like this:

public function deleteResource($model)

{

$model->delete();

return response(null, 204);

507

BUILD AN API WITH LARAVEL

}

In our controller, we can call the method on our service like this:

public function destroy(Author $author)

{

return $this->service->deleteResource($author);

}

Running PHPUnit will show us that our tests are still passing. We have

then successfully refactored our AuthorsController, so let’s move on to our

BooksController, which will add a bit more to our service methods.

Books Controller

Looking at the indexmethod of our app/Http/Controllers/BooksController,

we see some other allowed sorts. Let’s copy these into our config file first like

this:

<?php

return [

'resources' => [

'authors' => [

'allowedSorts' => [

'name',

'created_at',

'updated_at',

],

],

'books' => [

'allowedSorts'=> [

'title',

508

DON’T REPEAT YOURSELF

'publication_year',

'created_at',

'updated_at',

],

'relationships' => [

[

'type' => 'authors',

'method' => 'authors',

]

]

]

]

];

Here, we are also calling the allowedIncludes with relations to be included,

and we should transfer this to our config file as well:

<?php

return [

'resources' => [

'authors' => [

'allowedSorts' => [

'name',

'created_at',

'updated_at',

],

],

'books' => [

'allowedSorts'=> [

'title',

'publication_year',

'created_at',

'updated_at',

],

'allowedIncludes' => [

'authors'

],

509

BUILD AN API WITH LARAVEL

'relationships' => [

[

'type' => 'authors',

'method' => 'authors',

]

]

]

]

];

Then, we should go to our app/Services/JSONAPIService.php file an add the

allowIncludesmethod to our QueryBuilder chain like this:

public function fetchResources(string $modelClass, string $type)

{

$models = QueryBuilder::for($modelClass)

->allowedSorts(config("jsonapi.resources.{$type}.

allowedSorts"))

->allowedIncludes(config("jsonapi.resources.{$type}.

allowedIncludes"))

->jsonPaginate();

return new JSONAPICollection($models);

}

Back in the controller, we need to add the constructor to the top of the class

like we did in the AuthorsController like this:

<?php

namespace App\Http\Controllers;

...

510

DON’T REPEAT YOURSELF

class BooksController extends Controller

{

private $service;

public function __construct(JSONAPIService $service)

{

$this->service = $service;

}

...

}

Then, in the indexmethod, we call the fetchResourcesmethod on our service

like this:

public function index()

{

return $this->service->fetchResources(Book::class, 'books');

}

For the storemethod, we don’t need to do anything besides replacing the con-

tentswith the call to our service class, just likewe do in ourAuthorsController

like this:

public function store(CreateBookRequest $request)

{

return $this->service->createResource(Book::class, $request->

input('data.attributes'));

}

Running PHPUnit, our tests should still pass.

511

BUILD AN API WITH LARAVEL

For the showmethod, we have a bit more complex implementation, which

we will have to move over to our service class. We also have to make some

changes to our arguments in order to support both an instance of a model or a

model class. We do this like this:

public function fetchResource($model, $id = 0, $type = '')

{

if($model instanceof Model){

return new JSONAPIResource($model);

}

$query = QueryBuilder::for($model::where('id', $id))

->allowedIncludes(config("jsonapi.resources.{$type}.

allowedIncludes"))

->firstOrFail();

return new JSONAPIResource($query);

}

Then, in our controller, we can call the method on our service class like this:

public function show($book)

{

return $this->service->fetchResource(Book::class, $book, 'books

');

}

Let’s run PHPUnit which should show us that everything passes.

For both the update and destroymethods, we can call our service class, so we

don’t need to make any changes here:

512

DON’T REPEAT YOURSELF

public function update(UpdateBookRequest $request, Book $book)

{

return $this->service->updateResource($book, $request->input('

data.attributes'));

}

public function destroy(Book $book)

{

return $this->service->deleteResource($book);

}

Running PHPUnit should show that all the tests are passing.

BooksAuthorsRela onshipsController

It’s time to look at relationships, so let’s open up our app/Http/Controller-

s/BooksAuthorsRelationshipsController.php file to see how we can refactor

this:

<?php

namespace App\Http\Controllers;

use App\Book;

use App\Http\Requests\UpdateBooksAuthorsRelationshipsRequest;

use App\Http\Resources\AuthorsIdentifierResource;

use App\Http\Resources\JSONAPIIdentifierResource;

use Illuminate\Database\QueryException;

use Illuminate\Http\Request;

class BooksAuthorsRelationshipsController extends Controller

{

public function index(Book $book)

{

513

BUILD AN API WITH LARAVEL

return JSONAPIIdentifierResource::collection($book->authors)

;

}

public function update(UpdateBooksAuthorsRelationshipsRequest

$request, Book $book)

{

$ids = $request->input('data.*.id');

$book->authors()->sync($ids);

return response(null, 204);

}

}

If we take a look at the indexmethod, it does not do a lot and it’s actually pretty

concise with what it is doing. We will still move it, because our service class

already contains all the JSON:API specific code so this is where this belongs as

well.

We will move this over to our service class like this:

public function fetchRelationship($model, string $relationship)

{

return JSONAPIIdentifierResource::collection($model->

$relationship);

}

We leverage PHP’s dynamic abilities to take a string in an argument and then

call the method on the model with the method name that matches that string.

Back in our controller, we need to inject our JSONAPIService class through

the constructor like this:

514

DON’T REPEAT YOURSELF

<?php

namespace App\Http\Controllers;

...

class BooksAuthorsRelationshipsController extends Controller

{

private $service;

public function __construct(JSONAPIService $service)

{

$this->service = $service;

}

...

}

Then in the index method, we call the fetchRelationship method on our

service class like this:

public function index(Book $book)

{

return $this->service->fetchRelationship($book, 'authors');

}

Let’s then run PHPUnit again and see what happens. The tests are passing like

before, so we canmove on to the next method.

Theupdatemethod is a bit special and the reason is that the code is very specific

for the type of relationship, which in this case is amany tomany. Somaybe we

should move this code to a updateManyToManyRelationshipsmethod like

this:

515

BUILD AN API WITH LARAVEL

public function updateManyToManyRelationships($model, $relationship

, $ids)

{

$model->$relationship()->sync($ids);

return response(null, 204);

}

Here, we leverage the dynamic nature of PHP again with the relationship

argument. This time, we are calling a method on the model with a method

name corresponding to the incoming string and afterward we are calling sync

on this with the given IDs.

In our controller, we can then call this method on our service class like this:

public function update(UpdateBooksAuthorsRelationshipsRequest

$request, Book $book)

{

return $this->service

->updateManyToManyRelationships($book, 'authors', $request->

input('data.*.id'));

}

Our controller will take care of getting the data of the request, and then our

service class will take care of the rest. If we run PHPUnit again, the tests will

still pass.

BooksAuthorsRelatedController

Let’s take care of the last controller now. Fortunately, this is an easy one. Open

up app/Http/Controllers/BooksAuthorsRelatedController.php and take a

look at the indexmethod:

516

DON’T REPEAT YOURSELF

public function index(Book $book)

{

return new JSONAPICollection($book->authors);

}

Again, it’s very concise but aswementioned earlier, let’smove it to our service

class since it fits better into that class’ concerns. So in our service class, we

can create the method like this:

public function fetchRelated($model, $relationship)

{

return new JSONAPICollection($model->$relationship);

}

Like before, we use a relationship string to call the right relationship on our

model and return this in a collection. Back in our controller, we have to inject

our JSONAPIService class into a constructor and afterward we can call the

method on our service class like this:

public function index(Book $book)

{

return $this->service->fetchRelated($book, 'authors');

}

If we run PHPUnit, our tests are still passing, nothing is breaking, andwe have

now successfully refactored our JSON:API specific implementations into a

dedicated service class, which we can use from now on. Youmight be thinking

why we still keep asmany controllers and controllers specific to each resource.

We still want these because they give us the ability to do application specific

tasks. These can vary from resource to resource and request to request.

517

BUILD AN API WITH LARAVEL

Our requests, that we use for validation on the other, do contain some

repeating elements that could benefit from some refactoring, so let’s take care

of these next.

Refactoring requests

If we take a look at our requests, we can see that we do a lot of repetitions

— especially when it comes to the members that are required of the request

document, such as the data top level member, the need for the typemember,

and sometimes also the ID member. It would be nice, if we didn’t have to

include these everytime we write our validation request. In the last sections,

we have created and built onto a config file for all the specific things about

our resources, such as relationships and which attributes can be sorted and so

forth. The thing that is specific from resource to resource is the attributes, so

maybe we could also place our specific validation rules in the config file and

leverage this to create fewer request classes. Let’s work on that now.

First, let’s jump into the terminal and create a new request like this:

php artisan make:request JSONAPIRequest

Go into the newly created app/Http/Requests/JSONAPIRequest.php file and

let’s change the authorize method to return true. Then let’s jump into

app/Http/Requests/UpdateBookRequest.php and copy the first four rules of

the rules method over to the rulesmethod of our JSONAPIRequest class like

this:

public function rules()

{

518

DON’T REPEAT YOURSELF

return [

'data' => 'required|array',

'data.id' => 'required|string',

'data.type' => 'required|in:books',

'data.attributes' => 'required|array',

];

}

To be able to test whether this request works or not, we should add it to

one of our controllers. Let’s start by adding it to our store method in our

app/Http/Controllers/AuthorsController.php file like this:

public function store(JSONAPIRequest $request)

{

return $this->service

->createResource(Author::class, $request->input('data.attributes

'));

}

Then, run PHPUnit and you will see that a bunch of tests are failing. This is

because we are not validating the attributes yet. But before we do so, let’s take

a look at the rules we have just added first.

Wehave added the request to a storemethod,which receives aPOST andwhere

the ID is not needed, since we will let the server decide this. So we need a way

to convey that the ID should not be validated for a POST request, but a patch

request only.

This can be done through a simple ternary operator like this:

519

BUILD AN API WITH LARAVEL

public function rules()

{

return [

'data' => 'required|array',

'data.id' => ($this->method() === 'PATCH') ? 'required|

string' : 'string',

'data.type' => 'required|in:books',

'data.attributes' => 'required|array',

];

}

In a request we have access to method, which we can use to determine which

rules the ID has in the given request.

Next, let’s look at the type member. Here, we are too specific and only

validating for the books type. We want to validate that the right type comes in

and that the type is an allowed one. In our config file, we have listed all of our

resources, which coincidentally match our types as well.

We could use these keys as a lookup table and only allow the types that are

given as resources like this:

public function rules()

{

return [

'data' => 'required|array',

'data.id' => ($this->method() === 'PATCH') ? 'required|

string' : 'string',

'data.type' => ['required',Rule::in(array_keys(config('

jsonapi.resources')))],

'data.attributes' => 'required|array',

];

}

520

DON’T REPEAT YOURSELF

Here, it’s necessary to give an array instead of strings, which we have used

so far. The reason is that we now have an array of types and, to be able to use

the in rule again, we need to use Laravel’s Rule class to call it with an array.

Here, we take the keys of our resources to validate against. This means that

the consumer can only use the types we have defined in our config file.

We are not done yet—we still need a way to validate the attributes of each

resource. Like wementioned earlier, we canmove our specific validation rules

to our config file instead. But before we do this, we need to figure out what we

do in the case of a POST request and a PATCH request, since the attributes are

required when a POST request comes in, but they are optional when a PATCH

request comes in. In this case, we could simply divide our rule array into two

separate arrays: one for creating and one for updating.

Following this thought, our config file will become this:

<?php

return [

'resources' => [

'authors' => [

'allowedSorts' => [

'name',

'created_at',

'updated_at',

],

'validationRules'=> [

'create' => [

'data.attributes.name' => 'required|string',

],

'update' => [

'data.attributes.name' => 'sometimes|required|

string',

]

],

],

521

BUILD AN API WITH LARAVEL

'books' => [

'allowedSorts'=> [

'title',

'publication_year',

'created_at',

'updated_at',

],

'allowedIncludes' => [

'authors'

],

'validationRules'=> [

'create' => [

'data.attributes.title' => 'required|string',

'data.attributes.description' => 'required|

string',

'data.attributes.publication_year' => 'required|

string',

],

'update' => [

'data.attributes.title' => 'sometimes|required|

string',

'data.attributes.description' => 'sometimes|

required|string',

'data.attributes.publication_year' => 'sometimes

|required|string',

]

],

'relationships' => [

[

'type' => 'authors',

'method' => 'authors',

]

]

]

]

];

We add the validationRules associative array to both resources, and on these

arrays, we add the create and update associative arrays that will contain our

522

DON’T REPEAT YOURSELF

validation rules for each scenario.

Let’s implement this into our JSONAPIRequest class. To do this, we would

need to merge the correct array from our config file with the existing array

with the existing rules. We also need to make sure that we select the correct

array, according to which method is being used. We need to select the create

array when there’s a POST request and the update when there’s a PATCH

request.

We have written this implementation like this:

public function rules()

{

$rules = [

'data' => 'required|array',

'data.id' => ($this->method() === 'PATCH') ? 'required|

string' : 'string',

'data.type' => ['required',Rule::in(array_keys(config('

jsonapi.resources')))],

'data.attributes' => 'required|array',

];

return $this->mergeConfigRules($rules);

}

public function mergeConfigRules(array $rules): array

{

$type = $this->input('data.type');

if ($type && config("jsonapi.resources.{$type}")) {

switch ($this->method) {

case 'PATCH':

$rules = array_merge($rules, config("jsonapi.

resources.{$type}.validationRules.update"));

523

BUILD AN API WITH LARAVEL

break;

case 'POST':

default:

$rules = array_merge($rules, config("jsonapi.

resources.{$type}.validationRules.create"));

break;

}

}

return $rules;

}

We save the existing rules in a variable and send that to our newly created

mergeConfigRulesmethod. Here, we get the type from the request and checks

that it is given. Then we use a switch to merge the rules according to which

method that has been chosen and lastly we always default to the POST rules,

since these require every attribute to be given.

If you run PHPUnit, our tests should all pass again.

Now, we can replace all request classes in our controllers store and update

methods with our new JSONAPIRequest, except for the controllers that handle

relationships. We will return to those in a minute. Let’s run PHPUnit again to

see if anything has broken.

Great! Everything is passing, so let’s look at relationships.

Rela onship requests

The reason we have not taken relationships into account just yet is that they

require a different request document. Here, we don’t send resource objects

but resource identifier objects instead. Wemight be able to have it all in the

JSONAPIRequest class, but it would not be pretty. Besides, we think it’s ok to

524

DON’T REPEAT YOURSELF

have this request for relationships only to separate the concerns a bit.

Let’s get out into the terminal once again and run the following artisan

command:

php artisan make:request JSONAPIRelationshipRequest

While we are at it, why don’t we open the newly created app/Http/Requests/J-

SONAPIRelationshipRequest.php file, make the authorizedmethod return

true, and then copy the contents of the rulesmethod of the app/Http/Request-

s/UpdateBooksAuthorsRelationshipsRequest.phpfile into our rulesmethod

like this:

<?php

namespace App\Http\Requests;

use Illuminate\Foundation\Http\FormRequest;

class JSONAPIRelationshipRequest extends FormRequest

{

public function authorize()

{

return true;

}

public function rules()

{

return [

'data' => 'present|array',

'data.*.id' => 'required|string',

'data.*.type' => 'required|in:authors',

];

525

BUILD AN API WITH LARAVEL

}

}

Just like our JSONAPIRequest, we need to change the typemember from being

too specific. Here, we can just copy the rule from our JSONAPIRequest class

like this:

public function rules()

{

return [

'data' => 'present|array',

'data.*.id' => 'required|string',

'data.*.type' => ['required',Rule::in(array_keys(config('

jsonapi.resources')))],

];

}

This is actually it. We don’t have to do anything else besides go into our ap-

p/Http/Controllers/BooksAuthorsRelationshipsController.php and change

the request fromUpdateBooksAuthorsRelationshipsRequest to JSONAPIRe-

lationshipRequest and then run PHPUnit.

We have one test that fails, namely the it_validates_that_the_type_mem-

ber_has_a_value_of_authors_when_updating_a_relationship of our

tests/Features/BooksRelationshipTest.php file. Let’s just take a look at this

for a second:

public function

it_validates_that_the_type_member_has_a_value_of_authors_when_updating_a_relationship

()

{

526

DON’T REPEAT YOURSELF

$book = factory(Book::class)->create();

$authors = factory(Author::class, 5)->create();

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->patchJson('/api/v1/books/1/relationships/authors',[

'data' => [

[

'id' => '5',

'type' => 'books',

],

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(422)->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The selected data.0.type is invalid.',

'source' => [

'pointer' => '/data/0/type',

]

]

]

]);

}

Can you spot what is wrong?

We are testing that when updating an author’s relationship to a book, wemust

give the authors value in the typemember of our request document. In this

case, we give books in order to make the validation fail which will make the

test pass. Because our old request implementation had authors hardcoded

in and therefore bookswasn’t an option, the validation would fail, but now

that we have our config file as a lookup table and books actually exist, the

validation will not fail anymore. So to fix this test, we just have to give another

527

BUILD AN API WITH LARAVEL

value instead of books. In our case, we have just replaced it with the word

random like this:

...

$this->patchJson('/api/v1/books/1/relationships/authors',[

'data' => [

[

'id' => '5',

'type' => 'random',

],

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(422)

...

Running PHPUnit again, all of our tests should be passing.

We have now refactored all of our requests into two request classes. Let’s

delete all request files except for our JSONAPIRequest.php and JSONAPIRela-

tionshipRequest.php files and run PHPUnit again.

Awesome! Everything is still passing.

We have now successfully refactored our resources into a couple of classes,

refactored all of the JSON:API specific implementations from our controllers

into a services class, refactored our requests into a couple of request classes

we can reuse, and created a config file we can use for the specifics about our

resources. We did this without breaking anything, because of our tests that

always made sure to tell us when we broke something.

528

DON’T REPEAT YOURSELF

Summary

Wewent through a lot in this chapter and a lot of new concepts when learning

about the Don’t repeat yourself principle. We hope you see the benefits of

doing this together with tests.

We started out by refactoring our resources and collections and going from a

bunch of resources and collection to only three classes: a JSONAPIResource

class, which became our main resource class, a JSONAPICollection class for

collecting our JSONAPIResources, and lastly, a JSONAPIIdentifierResource

class for returning resource identifier objects.

We refactored these classes in a way that can be used for any resource in an

API adhering to the JSON:API specification.

From there, we moved on and refactored our code in our controllers and

extracted this into a JSONAPIService class we could reuse in all of our

controllers, so we didn’t repeat the same code in our controllers for every

resource we have.

We refactored our requests classes from two request classes for each resource

down to two resource classes in total: one for requests to resources and one

for requests to relationships.

Lastly, we moved on and implemented the relationship between books and

authors, leveraging our newly created classes after our refactor, whichmade

this implementation smooth as butter.

Next, let’s finish up the last part of our API and application. Here, we will also

build the inverse relationship between books and authors, so that relationship

is completely done.

529

BUILD AN API WITH LARAVEL

* * *

530

8

Finishing up

In this chapter, much as the title indicates, we will be finishing up the last

missing parts of the implementation of our API and application.

Now that we have implemented the relationship between books and authors,

it’s time to implement the inverse relationship. Here, we will revise some of

the concepts we have just been through in the last chapter and show you how

fast we can do the inverse implementation by using what is already written.

We will then begin the implementation of users and first implement the basic

parts, such as UUID and the JSON:API parts.

Then, we will look at comments and how to implement these, leveraging all

the previous concepts in the book. Next, we will implement one-to-many

relationships aswell as finish up the last parts from the JSON:API specification,

creating and updating relationships through a resource’s endpoints instead

of relationship endpoints.

We will finish the last relationship parts to books and users.

Finally, we will take a look at Cross-Origin Resource Sharing, making sure

that we can access our API from other domains.

531

BUILD AN API WITH LARAVEL

There’s a lot to go through, so let’s get started!

Authors Books Rela onship

It’s time for us to finish the relationship between books and authors. At the

moment, it’s only possible to fetch the relationship from the books side of

things, so let’s implement the inverse to enable, for instance, fetching all the

books for an author. To do this, wewill go a bit faster thanwehave done before.

This is because almost everything has been implemented, especially after we

have refactored everything. Also in terms of the tests, we can take everything

from the tests/Feature/BooksRelationshipsTest.php and just rewrite it so

that we are fetching authors instead of books. Essentially, we can just flip

everything we are doing. We will be going through a couple of tests just so

that we know that everything is implemented correctly, and then you will be

working on your own. All of the concepts should be familiar to you since it’s

what we have already been through with books. It’s just from the authors’

side of things now.

Let’s start by creating a new tests/Feature/AuthorsRealtionshipTest.php

feature test. Make sure to extend the TestCase class and add the use the

DatabaseMigrations trait in the top of the class. Then, we should copy the

first test from our tests/Feature/BooksRelaitonshipsTest.php and flip the

relationship between books and authors, so we now have one author that has

written three books, and wemake the get request to our author’s endpoint,

including books instead of authors this time. Then, we need to change the

contents of the assertJsonmethod so that we are returning the resource of an

authorwith a relationship tobookswith the right links and resource identifier

objects in the datamember. We have written this test like so:

/**

* @test

532

FINISHING UP

* @watch

*/

public function

it_returns_a_relationship_to_books_adhering_to_json_api_spec()

{

$author = factory(Author::class)->create();

$books = factory(Book::class, 3)->create();

$author->books()->sync($books->pluck('id'));

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->getJson('/api/v1/authors/1?include=books', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200)

->assertJson([

'data' => [

'id' => '1',

'type' => 'authors',

'relationships' => [

'books' => [

'links' => [

'self' => route(

'authors.relationships.books',

['id' => $author->id]

),

'related' => route(

'authors.books',

['id' => $author->id]

),

],

'data' => [

[

'id' => $books->get(0)->id,

'type' => 'books'

],

[

'id' => $books->get(1)->id,

533

BUILD AN API WITH LARAVEL

'type' => 'books'

]

]

]

]

]

]);

}

You can choose to use the Laravel Test Watcher here— it will certainly make

things a bit easier, since we want to stay in the code. Immediately, this test

will fail since we haven’t created any routes for our authors books side of the

relationships, but we are referencing these through our linksmember in our

test, so let’s add these first.

Go into the routes/api.php file and create the following routes right under-

neath our existing routes for authors like this:

Route::middleware('auth:api')->prefix('v1')->group(function(){

Route::get('/user', function (Request $request) {

return $request->user();

});

// Authors

Route::apiResource('authors', 'AuthorsController');

Route::get('authors/{author}/relationships/books', '

AuthorsBooksRelationshipsController@index')

->name('authors.relationships.books');

Route::patch('authors/{author}/relationships/books', '

AuthorsBooksRelationshipsController@update')

->name('authors.relationships.books');

Route::get('authors/{author}/books', '

AuthorsBooksRelatedController@index')

534

FINISHING UP

->name('authors.books');

// Books

Route::apiResource('books', 'BooksController');

Route::get('books/{book}/relationships/authors', '

BooksAuthorsRelationshipsController@index')->name('books.

relationships.authors');

Route::patch('books/{book}/relationships/authors', '

BooksAuthorsRelationshipsController@update')->name('books.

relationships.authors');

Route::get('books/{book}/authors', '

BooksAuthorsRelatedController@index')->name('books.authors')

;

});

Again, we can copy themost fromour books routes, since the concept is exactly

the same:

1. We want to be able to make a GET request to the relationship and get the

resource identifier objects of books related to the author

2. Wewant to be able tomake a PATCH request to the relationship to update

it without adding or deleting resources themselves

3. We want to be able to get the related resource objects

By copying routes, we also get the names for our new controllers, so let’s just

create these right away. Go to your terminal and run the following artisan

commands:

php artisan make:controller AuthorsBooksRelationshipsController

535

BUILD AN API WITH LARAVEL

php artisan make:controller AuthorsBooksRelatedController

Our test still fails because of our implementation of the showmethod in our

app/Http/Controllers/AuthorsController.phpfile. Here, we are using the old

implementation before any relationship has been set up, where we just return

the model given from the route-model binding.

If we go into our service class, the implementation is this:

public function fetchResource($model, $id = 0, $type = '')

{

if($model instanceof Model){

return new JSONAPIResource($model);

}

$query = QueryBuilder::for($model::where('id', $id))

->allowedIncludes(config("jsonapi.resources.{$type}.

allowedIncludes"))

->firstOrFail();

return new JSONAPIResource($query);

}

Our controller is hitting thefirst conditional, whichdoesnot take relationships

into consideration. In order to skip this and use the QueryBuilder to fetch

relationships, we need to give amodel class and id and a type instead.

Let’s edit our controller to do this:

public function show($author)

{

return $this->service->fetchResource(Author::class, $author, '

authors');

536

FINISHING UP

}

Now our failing test is changing, where we are now getting a 400 status code

back. This is because we are using the include query parameter to include our

books. At the moment, it is not allowed to be included because we haven’t

added it to our config file yet. Let’s do this and let’s also add the relationships.

Go to your config/jsonapi.php file an add the following to your authors array:

'authors' => [

'allowedSorts' => [

'name',

'created_at',

'updated_at',

],

'allowedIncludes' => [

'books'

],

'validationRules'=> [

'create' => [

'data.attributes.name' => 'required|string',

],

'update' => [

'data.attributes.name' => 'sometimes|required|string',

]

],

'relationships' => [

[

'type' => 'books',

'method' => 'books',

]

]

],

Our test is now green and passing and we didn’t even have to do that much

537

BUILD AN API WITH LARAVEL

coding—merely following our own conventions of information in the config

file and then calling the right methods in our controller.

Let’s move on to the next test. Again, we follow the same concept of flipping

books and authors, and we have written this test like this:

/**

* @test

* @watch

*/

public function

a_relationship_link_to_books_returns_all_related_books_as_resource_id_objects

()

{

$author = factory(Author::class)->create();

$books = factory(Book::class, 3)->create();

$author->books()->sync($books->pluck('id'));

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->getJson('/api/v1/authors/1/relationships/books', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200)

->assertJson([

'data' => [

[

'id' => '1',

'type' => 'books',

],

[

'id' => '2',

'type' => 'books',

],

[

538

FINISHING UP

'id' => '3',

'type' => 'books',

],

]

]);

}

The test is failing, receiving a 500 status code instead of a 200 status code.

Our test is hitting the route for the first controller, but it has not been

implemented yet so let’s go into app/Http/Controllers/AuthorsBooksRela-

tionshipsController.php and start by adding a constructor where we inject

our JSONAPIService class like this:

<?php

namespace App\Http\Controllers;

...

class AuthorsBooksRelationshipsController extends Controller

{

/**

* @var JSONAPIService

*/

private $service;

public function __construct(JSONAPIService $service)

{

$this->service = $service;

}

...

}

539

BUILD AN API WITH LARAVEL

Next, we need to add the indexmethod. Here, we can repeat the concepts from

our BooksAuthorsRelationshipsControllerwhere we call the fetchRelation-

shipmethod on our service class passing in the author model we get from

route-model binding.

Then, we pass a string indicating whichmethod to call on themodel for the

relationship, which is books in this case:

public function index(Author $author)

{

return $this->service->fetchRelationship($author, 'books');

}

This will make our test green and passing.

Let’s move on to the next test, which is the one for modifying relationships.

Again, we use the same concepts, copying from BooksRelationshipsTest and

rewriting the test for authors instead of books. We have written this test like

this:

/**

* @test

* @watch

*/

public function

it_can_modify_relationships_to_authors_and_add_new_relationships

()

{

$authors = factory(Author::class)->create();

$books = factory(Book::class, 10)->create();

$user = factory(User::class)->create();

Passport::actingAs($user);

540

FINISHING UP

$this->patchJson('/api/v1/authors/1/relationships/books',[

'data' => [

[

'id' => '5',

'type' => 'books',

],

[

'id' => '6',

'type' => 'books',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(204);

$this->assertDatabaseHas('author_book', [

'author_id' => 1,

'book_id' => 5,

])->assertDatabaseHas('author_book', [

'author_id' => 1,

'book_id' => 6,

]);

}

The test is failing at themoment, becausewehaven’t implemented themethod

in our controller yet, so let’s do that. Right underneath the indexmethod, let’s

create the followingmethod, calling the updateManyToManyRelationships

method on our service class. Here, we will give our author a string for the

relationship, which is books in this case and then the data received in the

request:

public function update(JSONAPIRelationshipRequest $request, Author

$author)

541

BUILD AN API WITH LARAVEL

{

return $this->service

->updateManyToManyRelationships($author, 'books', $request->

input('data.*.id'));

}

Our test is now green and passing.

By now, you should understand the concept of changing our tests from books

to the inverse relationship, so we won’t go very much into the details of the

rest of the tests here in the book, but rather let you work through these on

your own. If you get lost, you can always find help in our Github repository.

To be able to implement the last route and controller, we will jump ahead to

the test that tests the related link. We have written it like this:

/**

* @test

* @watch

*/

public function

it_can_get_all_related_books_as_resource_objects_from_related_link

()

{

$author = factory(Author::class)->create();

$books = factory(Book::class, 3)->create();

$author->books()->sync($books->pluck('id'));

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->getJson('/api/v1/authors/1/books',[

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

542

FINISHING UP

->assertStatus(200)

->assertJson([

'data' => [

[

"id" => '1',

"type" => "books",

"attributes" => [

'title' => $books[0]->title,

'description' => $books[0]->description,

'publication_year' => $books[0]->

publication_year,

'created_at' => $books[0]->created_at->

toJSON(),

'updated_at' => $books[0]->updated_at->

toJSON(),

]

],

[

"id" => '2',

"type" => "books",

"attributes" => [

'title' => $books[1]->title,

'description' => $books[1]->description,

'publication_year' => $books[1]->

publication_year,

'created_at' => $books[1]->created_at->

toJSON(),

'updated_at' => $books[1]->updated_at->

toJSON(),

]

],

[

"id" => '3',

"type" => "books",

"attributes" => [

'title' => $books[2]->title,

'description' => $books[2]->description,

'publication_year' => $books[2]->

publication_year,

'created_at' => $books[2]->created_at->

543

BUILD AN API WITH LARAVEL

toJSON(),

'updated_at' => $books[2]->updated_at->

toJSON(),

]

],

]

]);

}

This test is failing because we did not implement the method in the controller,

so let’s do that now. Herewe can reuse the concept fromourBooksAuthorsRe-

latedController where we make a call to the fetchRelated method on our

service class, giving the Author model we get through route-model binding

and then a string conveying which method to call on the model to get the

relationship, which is books in this case:

public function index(Author $author)

{

return $this->service->fetchRelated($author, 'books');

}

And our test passes. Great! Wehave now implemented the inverse relationship

of books and authors and we are done with this relationship and authors all

together.

Now, we need to implement the final resources. Users is maybe the most

complex resource, because of the multitenant part of this, but it is necessary

for us to be able to implement comments that have a relationship to books,

which in turn will conclude the entire implementation for both our API and

application. So let’s move on to the users resource now.

544

FINISHING UP

Users

It’s time to take a look at users. This resource is a bit special, not only because

it’s used to gain access to our application, but because we will make some

changes to this resource that we didn’t need for the other ones.

In this section, we will implement UUIDs so that users with malicious intents

cannot guess other users’ IDs easily. Then, we will add roles so that we can

handle both general users and administrators later on.

Lastly, we will implement the CRUD functionality of users and make this

adhere to the JSON:API specification, using the service class we have already

implemented.

Uuids

We have already described what UUID is, so you should be familiar with the

concept. Let’s just get right into implementing UUID for our User model, and

the best way to do this is to create a test first. For this purpose, we will be

using a unit test to test the model. This way, we can focus on the UUID alone

and not have to implement anything else first. We will be hitting the database

to make things a bit easier for ourselves, which goes against the testing code

in isolation part of unit tests, but we’re ok with this.

Let’s create a new tests/Unit/Models/UsersTest.phpfile and open it up in our

editor. Then, we need to make sure that the class extends Laravel’s TestCase

class and also make sure to use the DatabaseMigrations trait like this:

<?php

namespace Tests\Unit\Models;

545

BUILD AN API WITH LARAVEL

use Tests\TestCase;

class UsersTest extends TestCase

{

use DatabaseMigrations;

}

Let’s break down what we want to test:

• 1. We set up our world

• a. We need a user to be able to assert against the id

• 2. We run the code we are testing here

• a. We don’t have anything to run so we skip this step

• 3. We assert against the result that

• a. The ID is not an integer

• b. The ID is 36 characters long, since UUIDs have this length

We have written the test like this:

/**

* @test

* @watch

*/

public function a_users_ID_is_a_UUID_instead_of_an_integer()

{

$user = factory(User::class)->create();

$this->assertFalse(is_integer($user->id));

$this->assertEquals(36, strlen($user->id));

}

This test fails at the moment, but let’s change that. Let’s start in the

database/migrations/xxxx_xx_xx_xxxxxx_create_users_table.php and

546

FINISHING UP

change our primary key in the upmethod like this:

public function up()

{

Schema::create('users', function (Blueprint $table) {

$table->uuid('id')->primary();

$table->string('name');

$table->string('email')->unique();

$table->timestamp('email_verified_at')->nullable();

$table->string('password');

$table->rememberToken();

$table->timestamps();

});

}

We exchange the bigIncrementsmethod to the uuidmethod and chain the

primarymethod on to this, to tell that the ID is still the table’s primary key.

This is not enough to get our test to pass, so let’s go into the app/User.php

file andmake the necessary changes.

Here, we need to tell Laravel that we are no longer using auto incrementing

keys in our database.

We do this through the incrementing property, which takes a boolean. We

also need to tell Laravel which datatype our primary key is, and now that we

have changed this to a UUID, it will be a string instead of an integer. We can

tell Laravel this through a keyType property like this:

<?php

namespace App;

547

BUILD AN API WITH LARAVEL

use Illuminate\Notifications\Notifiable;

use Illuminate\Contracts\Auth\MustVerifyEmail;

use Illuminate\Foundation\Auth\User as Authenticatable;

use Laravel\Passport\HasApiTokens;

class User extends Authenticatable

{

use HasApiTokens, Notifiable;

protected $fillable = [

'name', 'email', 'password',

];

protected $hidden = [

'password', 'remember_token',

];

protected $casts = [

'email_verified_at' => 'datetime',

];

public $incrementing = false;

protected $keyType = 'string';

}

Our test is still failing, but this is because we are not providing any keys for the

ID. Now, that we have told Laravel that it should no longer make the database

handle the generation or auto incrementation of keys, we need to provide

these. Models in Laravel go through various stages based on what we are

telling them to do. We have events for when amodel is being created, has been

created, is being updated, has been updated, and so forth. We can use these to

hook into the creation process and set the UUID string to the id of the model.

We can hook into this using the bootmethod of the model like this:

548

FINISHING UP

<?php

namespace App;

use Illuminate\Notifications\Notifiable;

use Illuminate\Contracts\Auth\MustVerifyEmail;

use Illuminate\Foundation\Auth\User as Authenticatable;

use Illuminate\Support\Str;

use Laravel\Passport\HasApiTokens;

class User extends Authenticatable

{

use HasApiTokens, Notifiable;

protected $fillable = [

'name', 'email', 'password',

];

protected $hidden = [

'password', 'remember_token',

];

protected $casts = [

'email_verified_at' => 'datetime',

];

public $incrementing = false;

protected $keyType = 'string';

protected static function boot()

{

parent::boot();

static::creating(function ($model) {

$model->id = (string) Str::uuid();

});

}

}

549

BUILD AN API WITH LARAVEL

Now, our test passes and we have successfully implemented UUIDs for our

Users.

Fixing Laravel Passport

Before we can use our UUID in our application, we also have to tell Laravel

Passport about our changes to our primary key for our users. By default,

Laravel Passport expects an integer for user ids, so we will have to tell Laravel

Passport that this has been changed to a UUID.

Fortunately, this is pretty easy, since we only have to change the migrations

for Laravel Passport. We canmake Laravel publish these migrations for us to

change by the following artisan command:

php artisan vendor:publish --tag=passport-migrations

This will publish the following files into our database/migrations folder:

• 2016_06_01_000001_create_oauth_auth_codes_table.php

• 2016_06_01_000002_create_oauth_access_tokens_table.php

• 2016_06_01_000003_create_oauth_refresh_tokens_table.php

• 2016_06_01_000004_create_oauth_clients_table.php

• 2016_06_01_000005_create_oauth_personal_access_clients_ta-

ble.php

We need to change the datatype of the migrations that contain a reference to

our user_idwhich is the following files :

• 2016_06_01_000001_create_oauth_auth_codes_table.php

• 2016_06_01_000002_create_oauth_access_tokens_table.php

• 2016_06_01_000004_create_oauth_clients_table.php

550

FINISHING UP

Here, we should change the datatype from:

$table->integer('user_id')->index()->nullable();

To:

$table->uuid('user_id')->index()->nullable();

For all the files. Please note that the oauth_auth_codes table does not need

the call to the index and nullablemethods.

This is it: Laravel Passport now knows that it should work with UUIDs instead

of integers.

Now, that we are working with ourmigrations andmodel, let’s implement the

ability for different roles right away.

Roles

There are many ways to implement user roles in Laravel, but most often it

depends on your scenario. There’s a lot to consider here, especially if you

are building an application where each user can have multiple roles. In those

complex situations, you might be better suited with a dedicated table for

roles and then add roles as a relationship to your user. There’s even third

party packages that can handle roles for you. In our case, we want to keep

things simple, also because this is a book about how to build an API— not a

book dedicated to authorization and roles, so a column for roles in our users

table will suffice. The column could then contain the string userwhen we are

dealing with a general user and contain adminwhen we are dealing with an

administrator.

551

BUILD AN API WITH LARAVEL

Just to have a strategy for how our User models behave when they are created,

wewant aUsermodel todefault to theuser role. Laterwe can create adedicated

method that creates a User model with the admin role.

Since we already have a tests for our User model, we can just build onto this,

but let’s break down what we want to test first. In this case, we want to test

for the user role:

• 1. We set up our world

• a. We need a user to be able to assert against the role

• 2 . We run the code we are testing here

• a. We don’t have anything to run so we skip this step

• 3. We assert against the result that

• a. The role attribute is on the model

• b. The role attribute contains a user value.

Let’s jumpback into tests/Unit/Models/UsersTest.phpfile andwrite this test.

We have written ours like this:

/**

* @test

* @watch

*/

public function it_has_a_role_of_user_by_default()

{

$user = factory(User::class)->create();

$this->assertEquals('user', $user->role);

}

Right now, this test is failing because we haven’t implemented the role into

neither our migration or User model so let’s do that now. In our database/mi-

grations/xxxx_xx_xx_xxxxxx_create_users_table.php, let’s add the role

column like this:

552

FINISHING UP

public function up()

{

Schema::create('users', function (Blueprint $table) {

$table->uuid('id')->primary();

$table->string('name');

$table->string('email')->unique();

$table->string('role');

$table->timestamp('email_verified_at')->nullable();

$table->string('password');

$table->rememberToken();

$table->timestamps();

});

}

Now we know that it’s possible to add a default value to columns in the

migration, but this does not work for strings, at least not in the version of the

framework and at the time of writing this book.

Fortunately, we can use the attributes property on our model to mitigate this

issue, so let’s go to app/User.php and add both the attributes property, but

also make sure that our new attribute is part of the fillable array:

<?php

namespace App;

use Illuminate\Notifications\Notifiable;

use Illuminate\Contracts\Auth\MustVerifyEmail;

use Illuminate\Foundation\Auth\User as Authenticatable;

use Illuminate\Support\Str;

use Laravel\Passport\HasApiTokens;

class User extends Authenticatable

{

use HasApiTokens, Notifiable;

553

BUILD AN API WITH LARAVEL

protected $fillable = [

'name', 'email', 'password', 'role',

];

protected $hidden = [

'password', 'remember_token',

];

protected $casts = [

'email_verified_at' => 'datetime',

];

protected $attributes = [

'role' => 'user',

];

public $incrementing = false;

protected $keyType = 'string';

protected static function boot()

{

parent::boot();

static::creating(function ($model) {

$model->id = (string) Str::uuid();

});

}

}

Now, our test is passing and the role attribute a part of our model. Let’s move

on to implementing the parts specific to the JSON:API specification

554

FINISHING UP

Your assignment

It’s time to implement our User model as a resource adhering to the JSON:API

specification, exactly like we have done with books and authors earlier. And

just like we didwith books and authors, we should take a test-driven approach.

We won’t be going through each and every test like we have done for the other

resources in this book. Thiswill be our assignment for you. By now, you should

be familiar with the tests needed and if you feel lost, you can look at the tests

for the other resources or find the code in our Github repository.

Since there are parts that are a little different with users, we will be going

through the tests that are enough for us to have everything configured so that

our user resources take advantage of our JSONAPIService. The rest of the tests

you get to write on your own.

Fetching a single user

Let’s get going! Thefirst testwewillwrite is for fetching a single user resource:

/**

* @test

* @watch

*/

public function it_returns_a_user_as_a_resource_object()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->getJson("/api/v1/users/{$user->id}", [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

]) ->assertStatus(200)

->assertJson([

555

BUILD AN API WITH LARAVEL

"data" => [

"id" => $user->id,

"type" => "users",

"attributes" => [

'name' => $user->name,

'email' => $user->email,

'created_at' => $user->created_at->toJSON(),

'updated_at' => $user->updated_at->toJSON(),

]

]

]);

}

Here, we can leverage that we are working with users and reuse the user

we use for authentication to also be the user we want to fetch. We call the

endpoint and assert against the result. The test is failing at the moment, we

need to define the routes and make the controller first, so let’s do that. In

our routes/api.php, let’s add the following right above the current user route

that points to a closure and let’s also edit this route so it corresponds with our

conventions for resource naming:

// Users

Route::apiResource('users', 'UsersController');

Route::get('/users/current', function (Request $request) {

return $request->user();

});

Then, we jump into the terminal to create the controller like this:

php artisan make:controller UsersController -r --api

556

FINISHING UP

In our newly created app/Http/Controllers/UsersController.php file, let’s

add a constructor that injects the JSONAPIService class into our controller

before any of the other methods on the class:

private $service;

public function __construct(JSONAPIService $service)

{

$this->service = $service;

}

Let’s implement the showmethod then, since it is the route we are testing at

the moment. Here, we can leverage our service class like this:

public function show($user)

{

return $this->service->fetchResource(User::class, $user, 'users

');

}

Before we continue, we should add our resource to our config file so that

we don’t get any errors because of missing configs. Here, we can just copy

everything from our books resource and then edit it so it corresponds with our

users resource:

'users' => [

'allowedSorts'=> [],

'allowedIncludes' => [],

'validationRules'=> [

'create' => [],

557

BUILD AN API WITH LARAVEL

'update' => []

],

'relationships' => [

]

]

There’s not a lot here, but you should add to the config as youmove alongwith

your tests. If you already know what you want in the config, you can just add

it now.

We should also add the methods from our AbstractAPIModel, since our User

model doesn’t extend Laravel’s Model class directly:

<?php

namespace App;

use Illuminate\Notifications\Notifiable;

use Illuminate\Contracts\Auth\MustVerifyEmail;

use Illuminate\Foundation\Auth\User as Authenticatable;

use Illuminate\Support\Str;

use Laravel\Passport\HasApiTokens;

class User extends Authenticatable

{

use HasApiTokens, Notifiable;

protected $fillable = [

'name', 'email', 'password', 'role',

];

protected $hidden = [

'password', 'remember_token', 'email_verified_at'

];

558

FINISHING UP

protected $casts = [

'email_verified_at' => 'datetime',

];

protected $attributes = [

'role' => 'user',

];

public $incrementing = false;

protected $keyType = 'string';

protected static function boot()

{

parent::boot();

static::creating(function ($model) {

$model->id = (string) Str::uuid();

});

}

public function type()

{

return 'users';

}

public function allowedAttributes(){

return collect($this->attributes)->filter(function($item,

$key){

return !collect($this->hidden)->contains($key) && $key

!== 'id';

})->merge([

'created_at' => $this->created_at,

'updated_at' => $this->updated_at,

]);

}

}

Our test is now passing and we canmove on to the next test.

559

BUILD AN API WITH LARAVEL

Fetching a collec on of users

For this next test, we want to test that we can fetch a collection of users as a

collection of resource objects. We have been through this a bunch of times,

but the reason why we’re including it is to show you that sometimes you will

run into tests failing, not because the content itself is incorrect, but because

of the order of the items. This often occurs when you are dealing with UUIDs

since these will be sorted alphabetically when returned by Laravel, but when

using factories they are just in the order they were created. Let’s first show

you the test and go through the code:

/**

* @test

* @watch

*/

public function

it_returns_all_users_as_a_collection_of_resource_objects()

{

$users = factory(User::class, 3)->create();

$users = $users->sortBy(function ($item) {

return $item->id;

})->values();

Passport::actingAs($users->first());

$this->getJson("/api/v1/users", [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

]) ->assertStatus(200)

->assertJson([

"data" => [

[

"id" => $users[0]->id,

"type" => "users",

"attributes" => [

'name' => $users[0]->name,

560

FINISHING UP

'email' => $users[0]->email,

'role' => 'user',

'created_at' => $users[0]->created_at->

toJSON(),

'updated_at' => $users[0]->updated_at->

toJSON(),

]

],

[

"id" => $users[1]->id,

"type" => "users",

"attributes" => [

'name' => $users[1]->name,

'email' => $users[1]->email,

'role' => 'user',

'created_at' => $users[1]->created_at->

toJSON(),

'updated_at' => $users[1]->updated_at->

toJSON(),

]

],

[

"id" => $users[2]->id,

"type" => "users",

"attributes" => [

'name' => $users[2]->name,

'email' => $users[2]->email,

'role' => 'user',

'created_at' => $users[2]->created_at->

toJSON(),

'updated_at' => $users[2]->updated_at->

toJSON(),

]

],

]

]);

}

In the beginning of the test, we are creating the users, then sorting them so

they will match what we get back. The call to the valuesmethod is so that we

561

BUILD AN API WITH LARAVEL

reset the keys or otherwise we won’t gain anything from our sorting, since we

are referencing the keys in our assertJsonmethod.

This test is failing at the moment, but it is because we haven’t implemented

the index method in our controller so let’s do that, leveraging our service

class:

public function index()

{

return $this->service->fetchResources(User::class, 'users');

}

Our test is still failing, but we can see that it is because we are getting the

relationshipmember backwith an empty array. Wewill, of course, implement

relationships later — especially the relationship to comments. For now,

however, we can use this to fix a bug in our app/Http/Resources/JSONAPIRe-

source.php file, since we don’t need to return the relationshipmember, if

there are no relationships. Let’s go into the file andmake the following change

to the prepareRelationshipsmethod:

private function prepareRelationships(){

$collection = collect(config("jsonapi.resources.{$this->type()}.

relationships"))->flatMap(function($related){

$relatedType = $related['type'];

$relationship = $related['method'];

return [

$relatedType => [

'links' => [

'self' => route(

"{$this->type()}.relationships.{$relatedType

}",

['id' => $this->id]

562

FINISHING UP

),

'related' => route(

"{$this->type()}.{$relatedType}",

['id' => $this->id]

),

],

'data' => !$this->whenLoaded($relationship)

instanceof MissingValue ?

JSONAPIIdentifierResource::collection($this->{

$relationship}) : new MissingValue(),

],

];

});

return $collection->count() > 0 ? $collection : new MissingValue

();

}

Instead of just returning the collection, we save it in a variable and then later

down in the end of the method, we use a ternary operator to either return the

collection of relationships or aMissingValue object, which Laravel can use to

exclude the relationshipsmember from the response document. Our test is

passing now, so that’s great.

Let’s go back to the sorting part of the test, just to show you the issue so you

are prepared. If you comment out the sorting part, which is this specific part

of the test:

$users = $users->sortBy(function ($item) {

return $item->id;

})->values();

If you are lucky the stars will align and the generated models will have UUIDs

that are in correct alphabetical order. Chances are, sadly, that you won’t and

563

BUILD AN API WITH LARAVEL

this gives us a flaky test that will sometimes pass and sometimes don’t. To

mitigate this, we do the sorting of our array of generated models.

Crea ng users

The last test we want to cover here is the test for creating users. This test

is a bit more special because, as you might be aware of, when creating and

updating users, passwords come into the mix and we should, of course, be

hashing these. So in our controllers, we need to hash the password we get in

the request and in our test, we also need to ensure that the password is being

hashed. We have written the test like this:

/**

* @test

*/

public function it_can_create_an_user_from_a_resource_object()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$response = $this->postJson('/api/v1/users', [

'data' => [

'type' => 'users',

'attributes' => [

'name' => 'John Doe',

'email' => 'john@example.com',

'password' => 'secret',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(201)

->assertJson([

"data" => [

"type" => "users",

564

FINISHING UP

"attributes" => [

'name' => 'John Doe',

'email' => 'john@example.com',

'role' => 'user',

'created_at' => now()->setMilliseconds(0)->

toJSON(),

'updated_at' => now() ->setMilliseconds(0)->

toJSON(),

]

]

]);

$this->assertDatabaseHas('users', [

'name' => 'John Doe',

'email' => 'john@example.com',

'role' => 'user',

]);

$this->assertTrue(Hash::check('secret', User::whereName('John

Doe')->first()->password));

}

You should especially pay attention to the last line of this test, since we are

testing the password hash here with the Hash::checkmethod that Laravel

provides.

In our controller, we need to hash the password before we pass it on to our

service class like this:

public function store(JSONAPIRequest $request)

{

return $this->service->createResource(User::class, [

'name' => $request->input('data.attributes.name'),

'email' => $request->input('data.attributes.email'),

'password' => Hash::make(($request->input('data.attributes.

565

BUILD AN API WITH LARAVEL

password'))),

]);

}

Unfortunately, we cannot use the input only anymore, but through an array

like this, we can use theHash::makemethod to hash the password correctly

You should use the same approach when updating users.

Before we let you work on your own, we also want to make you aware of a

problem youwill face when you start to work, especially with the requests that

create a resource. Since we are using UUIDs, you won’t be able to predict what

the IDs will become. In these cases, you should remove the assertions for the

IDs both in assertJson, assertDatabaseHas and assertHeader. We are using

our service class and we have other tests that make sure these things work, so

don’t worry.

We will let you work on your own from here, and remember that you can just

look in the test files for the other resources if you need to know which test to

write next. If you feel lost, you can also always look in our Github repository

where all the code is posted.

You don’t have to implement relationships since we haven’t created the

comments resource yet.

Comments

The next thing we will implement is comments. This resource is actually

the one that will tie everything together, especially because it contains the

relationship to our users, but also because it contains the last relationship to

books. After this resource, we will be entirely done with relationships and can

focus on the last bits like authorization.

566

FINISHING UP

Through most of this resource, we will let you work on your own again,

especially when adhering to the JSON:API specification, like you have just

done with the users resource.

We will implement a one-to-many relationship to both users and books

together, and we will finish the last part of relationship, implementing the

possibility to create and update relationships through a resource’s endpoints,

instead of the relationship endpoints for a resource.

Your assignment

First, the basics of the resource should be implemented. We have done this a

bunch of times now, so you should be familiar with this. Therefore, we will let

you work through this on your own. Like we have mentioned before, we have

multiple resources where you can look if you need a helping hand and, if you

are entirely lost, you can look at our code in our Github repository.

Don’tworry though, as youmight remember fromour planning phase, besides

the relationships, the comments resource is a fairly easy one, containing only

three attributes where the two of them are handled automatically by Laravel,

leaving only one for us to worry about. Just to break down the assignment for

you, you should now:

• 1. Create a feature test for our comments resource

• 2. Implement the first test, fetching a single comment

• 3. Use this test to drive your implementation

• a. Making the model

• b. Making the routes

• c. Making the controller

• d. Adding our service class to the controller

• e. Calling the right method of our service controller

• 4. Implement the rest of the tests, driving out the rest of the implementa-

tions

567

BUILD AN API WITH LARAVEL

You should implement comments all the way up to the state where our users

resource are at now, so we can work together on the relationship between

books, comments, and users. When you get to the sorting tests, you only have

to sort by created_at and will, of course, not be able to implement sorting by

multiple attributes.

Users - Comments Rela onships

Now that we have both users and comments on the same level in terms of

implementation, let’s take a look at their relationships. We already have a

relationship implemented in our JSONAPIService class, which covers many-

to-many relationships. The relationship between users and comments,

however, is a one-to-many relationship. This means that the relationship

between users and comments and vice versawill actually get us around the full

circle of implementing relationships, since we will implement the to-many

and to-one part of relationships through this part. If this all seems daunting

to you, don’t worry. We will go through it all together.

First test

Like before, we start with a test first, so let’s create a tests/Feature/UsersRe-

lationshipsTest.php file for us to write our relationships tests like this:

<?php

namespace Tests\Feature;

use Illuminate\Foundation\Testing\DatabaseMigrations;

use Tests\TestCase;

class UsersRelationshipsTest extends TestCase

{

use DatabaseMigrations;

568

FINISHING UP

}

Let’s write our first test. Here, we can take some inspiration from the tests we

have already written, and which tests that the relationship is adhering to the

JSON:API specification. If we break down this test, we

• 1. We set up our world

• a. We need a user to be able to fetch the user’s comments

• b. We need some comments in order to fetch these

• c. We need the comments to have a relationship to our user

• 2. We run the code we are testing here

• a. Wemake a request to the right endpoint

• b. We add the include query parameter with the value of comments

• 3. We assert against the result that

• a. We get the correct user back

• b. We get a relationship to comments back

• c. We get the correct links

• d. We get the correct resource identifier objects

• e. We get the included top-level member back

• f. The included array contains the related comments

We have written this test like so:

/**

* @test

* @watch

*/

public function

it_returns_a_relationship_to_comments_adhering_to_json_api_spec

()

569

BUILD AN API WITH LARAVEL

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$comments = factory(Comment::class, 3)->make();

$user->comments()->saveMany($comments);

$this->getJson("/api/v1/users/{$user->id}?include=comments", [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200)

->assertJson([

"data" => [

"id" => $user->id,

"type" => "users",

"attributes" => [

'name' => $user->name,

'email' => $user->email,

'created_at' => $user->created_at->toJSON(),

'updated_at' => $user->updated_at->toJSON(),

],

'relationships' => [

'comments' => [

'links' => [

'self' => route(

'users.relationships.comments',

['id' => $user->id]

),

'related' => route(

'users.comments',

['id' => $user->id]

),

],

'data' => [

[

'id' => $comments->get(0)->id,

'type' => 'comments'

],

570

FINISHING UP

[

'id' => $comments->get(1)->id,

'type' => 'comments'

],

[

'id' => $comments->get(2)->id,

'type' => 'comments'

]

]

]

]

],

'included' => [

[

'id' => '1',

'type' => 'comments',

'attributes' => [

'message' => $comments->get(0)->message,

'created_at' => $comments->get(0)->

created_at->toJson(),

'updated_at' => $comments->get(0)->

updated_at->toJson(),

]

],

[

'id' => '2',

'type' => 'comments',

'attributes' => [

'message' => $comments->get(1)->message,

'created_at' => $comments->get(1)->

created_at->toJson(),

'updated_at' => $comments->get(1)->

updated_at->toJson(),

]

],

[

'id' => '3',

'type' => 'comments',

'attributes' => [

'message' => $comments->get(2)->message,

571

BUILD AN API WITH LARAVEL

'created_at' => $comments->get(2)->

created_at->toJson(),

'updated_at' => $comments->get(2)->

updated_at->toJson(),

]

],

]

]);

}

It does seem like a daunting test at first, but in reality it’s just because of the

includedmember, which adds a bit more to the response document, because

of all the resource objects needed.

At this moment, our test is failing which tells us that there’s no comments

method on our User model. This is the method that tells Eloquent about

the relationship and we already know that it is a one-to-many relationship,

whichmeans that a comment belongs to one user, but a user can have many

comments.

The relationship here would then be that the user has many comments, so

let’s add that:

<?php

namespace App;

use Illuminate\Notifications\Notifiable;

use Illuminate\Contracts\Auth\MustVerifyEmail;

use Illuminate\Foundation\Auth\User as Authenticatable;

use Illuminate\Support\Str;

use Laravel\Passport\HasApiTokens;

class User extends Authenticatable

572

FINISHING UP

{

...

public function comments()

{

return $this->hasMany(Comment::class);

}

}

We add themethod to the bottom of the class like this, and our test changes to

an error telling us that we do not have the user_id column in our comments

table.

Let’s fix that, so jump into database/migrations/xxxx_xx_xx_xxxxx_cre-

ate_comments_table.php and add the following to the upmethod:

public function up()

{

Schema::create('comments', function (Blueprint $table) {

$table->bigIncrements('id');

$table->text('message');

$table->string('user_id')->nullable();

$table->timestamps();

});

}

Here, we add the user_id as a string because the primary key of our users is a

UUID, which is a string. We add nullable to avoid any errors about foreign key

constraints, since it would require us to have all relationships set up everytime

we want to do anything with a comment. We would have to go through all

of our existing tests and add the relationship for the test to work. Also, if we

should follow the JSON:API specifications rules for modifying relationships, it

will be a constraint on that. If we want comments to be deleted whenever a

user or book is deleted, we can add that functionality later on.

573

BUILD AN API WITH LARAVEL

Our test is still failing, but giving us a different output: a 400 status code back.

So let’s call thewithoutExceptionHandlingmethod in the top of the test to

get somemore information about what is failing:

We are now told that the given include is not allowed, and that is because it’s

not set up in our config file, so let’s do that:

'users' => [

'allowedSorts'=> [

'name',

'email',

],

'allowedIncludes' => [

'comments',

],

'validationRules'=> [

'create' => [

'data.attributes.name' => 'required|string',

'data.attributes.email' => 'required|email',

'data.attributes.password' => 'required|string',

],

'update' => [

'data.attributes.name' => 'sometimes|required|string',

'data.attributes.email' => 'sometimes|required|email',

'data.attributes.password' => 'sometimes|required|string

',

]

],

'relationships' => [

[

'type' => 'comments',

'method' => 'comments',

]

]

],

Here, we add comments to the allowedIncludes array and, while we’re at it,

574

FINISHING UP

wemight as well add the relationships, so in the relationships array, we add

the relationship for comments.

Now, it’s complaining about our routes not being defined, so let’s add these

to our routes/api.php file. We don’t have to worry about the controllers for

now, we just have to add the routes like this:

// Users

Route::apiResource('users', 'UsersController');

Route::get('users/{user}/relationships/comments', '

UsersCommentsRelationshipsController@index')->name('users.

relationships.comments');

Route::patch('users/{user}/relationships/comments', '

UsersCommentsRelationshipsController@update')->name('users.

relationships.comments');

Route::get('users/{user}/comments', '

UsersCommentsRelatedController@index')->name('users.comments');

Route::get('/users/current', function (Request $request) {

return $request->user();

});

We add the routes right under the apiResource routes, like we did with the

other resources, and our test is passing.

Users - Comments Rela onships

Now that we have both users and comments on the same level in terms of

implementation, let’s take a look at their relationships. We already have a

relationship implemented in our JSONAPIService class, which covers many-

to-many relationships. The relationship between users and comments,

however, is a one-to-many relationship. This means that the relationship

between users and comments and vice versawill actually get us around the full

circle of implementing relationships, since we will implement the to-many

575

BUILD AN API WITH LARAVEL

and to-one part of relationships through this part. If this all seems daunting

to you, don’t worry. We will go through it all together.

First test

Like before, we start with a test first, so let’s create a tests/Feature/UsersRe-

lationshipsTest.php file for us to write our relationships tests like this:

<?php

namespace Tests\Feature;

use Illuminate\Foundation\Testing\DatabaseMigrations;

use Tests\TestCase;

class UsersRelationshipsTest extends TestCase

{

use DatabaseMigrations;

}

Let’s write our first test. Here, we can take some inspiration from the tests we

have already written, and which tests that the relationship is adhering to the

JSON:API specification. If we break down this test, we

• 1. We set up our world

• a. We need a user to be able to fetch the user’s comments

• b. We need some comments in order to fetch these

• c. We need the comments to have a relationship to our user

• 2. We run the code we are testing here

• a. Wemake a request to the right endpoint

• b. We add the include query parameter with the value of comments

• 3. We assert against the result that

• a. We get the correct user back

576

FINISHING UP

• b. We get a relationship to comments back

• c. We get the correct links

• d. We get the correct resource identifier objects

• e. We get the included top-level member back

• f. The included array contains the related comments

We have written this test like so:

/**

* @test

* @watch

*/

public function

it_returns_a_relationship_to_comments_adhering_to_json_api_spec

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$comments = factory(Comment::class, 3)->make();

$user->comments()->saveMany($comments);

$this->getJson("/api/v1/users/{$user->id}?include=comments", [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200)

->assertJson([

"data" => [

"id" => $user->id,

"type" => "users",

"attributes" => [

'name' => $user->name,

'email' => $user->email,

'created_at' => $user->created_at->toJSON(),

'updated_at' => $user->updated_at->toJSON(),

],

577

BUILD AN API WITH LARAVEL

'relationships' => [

'comments' => [

'links' => [

'self' => route(

'users.relationships.comments',

['id' => $user->id]

),

'related' => route(

'users.comments',

['id' => $user->id]

),

],

'data' => [

[

'id' => $comments->get(0)->id,

'type' => 'comments'

],

[

'id' => $comments->get(1)->id,

'type' => 'comments'

],

[

'id' => $comments->get(2)->id,

'type' => 'comments'

]

]

]

]

],

'included' => [

[

'id' => '1',

'type' => 'comments',

'attributes' => [

'message' => $comments->get(0)->message,

'created_at' => $comments->get(0)->

created_at->toJson(),

'updated_at' => $comments->get(0)->

updated_at->toJson(),

]

578

FINISHING UP

],

[

'id' => '2',

'type' => 'comments',

'attributes' => [

'message' => $comments->get(1)->message,

'created_at' => $comments->get(1)->

created_at->toJson(),

'updated_at' => $comments->get(1)->

updated_at->toJson(),

]

],

[

'id' => '3',

'type' => 'comments',

'attributes' => [

'message' => $comments->get(2)->message,

'created_at' => $comments->get(2)->

created_at->toJson(),

'updated_at' => $comments->get(2)->

updated_at->toJson(),

]

],

]

]);

}

It does seem like a daunting test at first, but in reality it’s just because of the

includedmember, which adds a bit more to the response document, because

of all the resource objects needed.

At this moment, our test is failing which tells us that there’s no comments

method on our User model. This is the method that tells Eloquent about

the relationship and we already know that it is a one-to-many relationship,

whichmeans that a comment belongs to one user, but a user can have many

comments.

579

BUILD AN API WITH LARAVEL

The relationship here would then be that the user has many comments, so

let’s add that:

<?php

namespace App;

use Illuminate\Notifications\Notifiable;

use Illuminate\Contracts\Auth\MustVerifyEmail;

use Illuminate\Foundation\Auth\User as Authenticatable;

use Illuminate\Support\Str;

use Laravel\Passport\HasApiTokens;

class User extends Authenticatable

{

...

public function comments()

{

return $this->hasMany(Comment::class);

}

}

We add themethod to the bottom of the class like this, and our test changes to

an error telling us that we do not have the user_id column in our comments

table.

Let’s fix that, so jump into database/migrations/xxxx_xx_xx_xxxxx_cre-

ate_comments_table.php and add the following to the upmethod:

public function up()

{

Schema::create('comments', function (Blueprint $table) {

$table->bigIncrements('id');

580

FINISHING UP

$table->text('message');

$table->string('user_id')->nullable();

$table->timestamps();

});

}

Here, we add the user_id as a string because the primary key of our users is a

UUID, which is a string. We add nullable to avoid any errors about foreign key

constraints, since it would require us to have all relationships set up everytime

we want to do anything with a comment. We would have to go through all

of our existing tests and add the relationship for the test to work. Also, if we

should follow the JSON:API specifications rules for modifying relationships, it

will be a constraint on that. If we want comments to be deleted whenever a

user or book is deleted, we can add that functionality later on.

Our test is still failing, but giving us a different output: a 400 status code back.

So let’s call thewithoutExceptionHandlingmethod in the top of the test to

get somemore information about what is failing:

We are now told that the given include is not allowed, and that is because it’s

not set up in our config file, so let’s do that:

'users' => [

'allowedSorts'=> [

'name',

'email',

],

'allowedIncludes' => [

'comments',

],

'validationRules'=> [

'create' => [

'data.attributes.name' => 'required|string',

581

BUILD AN API WITH LARAVEL

'data.attributes.email' => 'required|email',

'data.attributes.password' => 'required|string',

],

'update' => [

'data.attributes.name' => 'sometimes|required|string',

'data.attributes.email' => 'sometimes|required|email',

'data.attributes.password' => 'sometimes|required|string

',

]

],

'relationships' => [

[

'type' => 'comments',

'method' => 'comments',

]

]

],

Here, we add comments to the allowedIncludes array and, while we’re at it,

we might as well add the relationships, so in the relationships array, we add

the relationship for comments.

Now, it’s complaining about our routes not being defined, so let’s add these

to our routes/api.php file. We don’t have to worry about the controllers for

now, we just have to add the routes like this:

// Users

Route::apiResource('users', 'UsersController');

Route::get('users/{user}/relationships/comments', '

UsersCommentsRelationshipsController@index')->name('users.

relationships.comments');

Route::patch('users/{user}/relationships/comments', '

UsersCommentsRelationshipsController@update')->name('users.

relationships.comments');

Route::get('users/{user}/comments', '

582

FINISHING UP

UsersCommentsRelatedController@index')->name('users.comments');

Route::get('/users/current', function (Request $request) {

return $request->user();

});

We add the routes right under the apiResource routes, like we did with the

other resources, and our test is passing.

Rela onship links - Fetching related comments

Let’s move on to the next test. Again, we follow the tests from our other

resource relationship tests and create a test for relationship links, more

specifically a test that shows that we can fetch resource identifier objects

by sending a get request to our relationship link.

Now, let’s just quickly break it down:

• 1. We set up our world

• a. We need a user to be able to fetch it through our API

• b. We need a couple of comments to exist to be able to fetch them as

comment by our user

• c. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a GET request to the right API endpoint

• 3. We assert against the result that

• a. We get to see the comments as proper resource identifier objects

We have written the test like this:

583

BUILD AN API WITH LARAVEL

/**

* @test

* @watch

*/

public function

a_relationship_link_to_comments_returns_all_related_comments_as_resource_id_objects

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$comments = factory(Comment::class, 3)->make();

$user->comments()->saveMany($comments);

$this->getJson("/api/v1/users/{$user->id}/relationships/comments

", [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200)

->assertJson([

'data' => [

[

'id' => '1',

'type' => 'comments',

],

[

'id' => '2',

'type' => 'comments',

],

[

'id' => '3',

'type' => 'comments',

],

]

]);

}

This test immediately fails with a 500 status code, and if we call thewithou-

tExceptionHandlingmethod at the top of the test, we can see that it is because

584

FINISHING UP

we are missing the UsersCommentsRelationshipsController, so let’s jump

into the terminal andmake that:

php artisan make:controller UsersCommentsRelationshipsController

Now, our test is complaining about a missing indexmethod, so let’s just get

in to app/Http/Controllers/UsersCommentsRelationshipsController.php

right away and add a constructor to inject our JSONAPIService class into our

controller and then add the indexmethod:

private $service;

public function __construct(JSONAPIService $service)

{

$this->service = $service;

}

public function index(User $user)

{

return $this->service->fetchRelationship($user, 'comments');

}

Here, we will return a call to the fetchRelationshipmethod on our service

class and give it our user. We will get through route-model binding and the

relationship we want to fetch which is comments.

Our test is now passing and everything is going great so far, because we are

leveraging a lot of the code we have written already. In the next test, we will

need to do a bit more work though, but let’s just write the test first.

585

BUILD AN API WITH LARAVEL

Rela onship links - Modifying rela onships to comments

In this test, we will test that we can use our relationships links to modify our

relationships and through this add new relationships. In terms of comments,

this might not make that much sense. When creating a comment, we want to

make the relation between a user and a comment right away, and we won’t

be modifying which user a comment belongs to after this. Later on, we will

implement the ability to add a relationship while creating a resource, but

for now let’s implement this part, also because we then get to implement

another relationship type in our JSONAPIService class, but also to adhere to

the JSON:API specification according to relationship links. Breaking this test

down:

• 1. We set up our world

• a. We need a user to be able to fetch it through our API

• b. We need a couple of comments to exist to be able to add a relationship

to them

• c. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a PATCH request to the right API endpoint

• 3. We assert against the result that

• a. We get a 204 status code back

• 4. We assert against the database that

• a. The comments have a relation to our user

We have written the test like this:

/**

* @test

* @watch

*/

public function

586

FINISHING UP

it_can_modify_relationships_to_comments_and_add_new_relationships

()

{

$this->withoutExceptionHandling();

$user = factory(User::class)->create();

Passport::actingAs($user);

$comments = factory(Comment::class, 10)->make();

$user->comments()->saveMany($comments);

$this->patchJson("/api/v1/users/{$user->id}/relationships/

comments",[

'data' => [

[

'id' => '5',

'type' => 'comments',

],

[

'id' => '6',

'type' => 'comments',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(204);

$this->assertDatabaseHas('comments', [

'id' => 5,

'user_id' => $user->id,

])->assertDatabaseHas('comments', [

'id' => 6,

'user_id' => $user->id,

]);

}

We have added a call to the withoutExceptionHandling to this test right

away, because we want to know which exceptions are being thrown from

the beginning. And, as you might have expected, the test is failing right away,

587

BUILD AN API WITH LARAVEL

because we don’t have an updatemethod in our app/Http/Controllers/User-

sCommentsRelationshipsController.php file. So let’s add this now:

public function update(JSONAPIRelationshipRequest $request, User

$user)

{

return $this->service->updateToManyRelationships($user, '

comments', $request->input('data.*.id'));

}

Here, we add our JSONAPIRelationshipRequest class as the request argument

to this method and our User model as the second argument to leverage route-

model binding. In the method, wemake a call to the updateToManyRelation-

shipsmethod on our JSONAPIService class. This method does not exist yet,

but we add it anyway, because it can then serve as a starting point for how we

want the signature of the method to look like. Here, we have chosen to keep

the arguments in line with the existing updateManyToManyRelationships

method to be consistent.

Of course, our test is failing, because we are trying to call a method that does

not exist, so let’s go to our app/Services/JSONAPIService.php file now and

add the method, and let’s add it right above our updateManyToManyRela-

tionshipsmethod like this:

<?php

namespace App\Services;

use App\Author;

use App\Book;

use App\Http\Resources\JSONAPICollection;

588

FINISHING UP

use App\Http\Resources\JSONAPIIdentifierResource;

use App\Http\Resources\JSONAPIResource;

use Illuminate\Database\Eloquent\Model;

use Illuminate\Http\Response;

use Illuminate\Support\Str;

use Spatie\QueryBuilder\QueryBuilder;

class JSONAPIService

{

...

public function fetchRelationship($model, string $relationship)

{

return JSONAPIIdentifierResource::collection($model->

$relationship);

}

public function updateToManyRelationships($model, $relationship,

$ids)

{

}

public function updateManyToManyRelationships($model,

$relationship, $ids)

{

$model->$relationship()->sync($ids);

return response(null, 204);

}

...

}

It was quite easy for us to implement the updateManyToManyRelationships

method, because the syncmethod onmany-to-many relationships naturally

removes all relationships and builds new ones to those given. But for our

to-many of our one-to-many relationship, it’s a bit more complex.

589

BUILD AN API WITH LARAVEL

Right out of the box, Laravel doesn’t have a method for detaching children

fromaparent in aone-to-many relationship. You canonly delete the children,

but that is not what we want.

The only way for us to break the relationships from the parents’ side of the

relationship in Laravel is to find the related children, in our case comments,

and set the value of their foreign key to null, hence the call to nullable in the

migration earlier.

Then, when the relationships have been broken, we can create a relationship to

the new children by finding these and setting their foreign key to our parents

ID, which in this case is the ID of our user.

In this method, we get the model of the parent, which is a User model in our

case. We get the relationship as a string, which in this case is comments and

we get the IDs of the commentswewant to add a relationship to. From this, we

need to find all of the comments that have a foreign key that points to our user,

but how can we do this when we don’t have access to the comments model

and the foreign key of each comment?

We could dismiss models and just make raw SQL queries, but where’s the fun

in that? In this case, you will need to do a little digging in Laravel’s source

code, because it is not documented. Fortunately for you, we have done the

hard work for you, so don’t worry about this. It turns out that Laravel actually

can help us do this with models, but to find out about this, we have to do a

bit of digging in the relationships classes, which ourHasMany relationship

inherits from.

The HasMany class inherits from HasOneOrMany, which inherits from the

Relation class. On theHasOneOrMany class,wefind thegetForeignKeyName

method, which we can call to get the foreign key for the relationship.

On the Relation class, we find the getRelatedmethod, which can give us an

590

FINISHING UP

anonymous Comment model and from this we can create new queries on this

model.

This might be a bit abstract, so let’s just show you the code and explain what

is going on:

public function updateToManyRelationships($model, $relationship,

$ids)

{

$foreignKey = $model->$relationship()->getForeignKeyName();

$relatedModel = $model->$relationship()->getRelated();

$relatedModel->newQuery()->where($foreignKey, $model->id)->

update([

$foreignKey => null,

]);

$relatedModel->newQuery()->whereIn('id', $ids)->update([

$foreignKey => $model->id,

]);

return response(null, 204);

}

We use the aforementioned methods to get the foreign key name and the

related model. The cool thing about these is that they are dynamic because of

the nature of PHP, which we leverage through the $model->$relationship()

call. Here, the PHP will interpret the string and call the right relationship

on our model, so when our code is run, it would become this $model-

>comments().

Now that we have both of these, we canmake a new query for comments and

find the comments where the foreign key corresponds to our user id. Then,

we can update all of these to have a foreign key with a value of null.

591

BUILD AN API WITH LARAVEL

Then, using the same approach, we find the comments that have the given

ids and update all of these to have a foreign key, pointing to our user’s id and

that’s it.

Our test is now passing but before wemove on, we just want to mention that

sometimes it can pay off to dig a little into the classes of Laravel. There are a

lot of useful methods that are not documented, but are perfect for edgecase

situations like these.

Rela onship links - Removing rela onships

For the next test, we want to test if it’s possible to remove all relations to

comments through the same endpoint. To break this down:

• 1. We set up our world

• a. We need a user to be able to fetch it through our API

• b. We need a couple of comments to be associated with the user in order

to remove them

• c. We need to be authenticated

• 2. We run the code that we are testing here

• a. Wemake a PATCH request to the right API endpoint

• 3. We assert against the result that

• a. We get a 204 status code back

• 4. We assert against the database that

• a. The comments no longer have a relation to our user

We have written the test like this:

/**

* @test

* @watch

*/

592

FINISHING UP

public function

it_can_modify_relationships_to_comments_and_remove_relationships

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$comments = factory(Comment::class, 5)->make();

$user->comments()->saveMany($comments);

$this->patchJson("/api/v1/users/{$user->id}/relationships/

comments",[

'data' => [

[

'id' => '1',

'type' => 'comments',

],

[

'id' => '2',

'type' => 'comments',

],

[

'id' => '5',

'type' => 'comments',

],

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(204);

$this->assertDatabaseHas('comments', [

'id' => 1,

'user_id' => $user->id,

])->assertDatabaseHas('comments', [

'id' => 2,

'user_id' => $user->id,

])->assertDatabaseHas('comments', [

'id' => 5,

'user_id' => $user->id,

593

BUILD AN API WITH LARAVEL

])->assertDatabaseMissing('comments', [

'id' => 3,

'user_id' => $user->id,

])->assertDatabaseMissing('comments', [

'id' => 4,

'user_id' => $user->id,

]);

}

This test should pass right away because of our implementation in the

JSONAPIService class.

Let’s quickly follow this up with a test that sends a PATCH request with an

empty collection removing all relations:

/**

* @test

* @watch

*/

public function

it_can_remove_all_relationships_to_comments_with_an_empty_collection

()

{

$this->withoutExceptionHandling();

$user = factory(User::class)->create();

Passport::actingAs($user);

$comments = factory(Comment::class, 3)->make();

$user->comments()->saveMany($comments);

$this->patchJson("/api/v1/users/{$user->id}/relationships/

comments",[

'data' => []

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

594

FINISHING UP

])->assertStatus(204);

$this->assertDatabaseHas('comments', [

'id' => 1,

'user_id' => null,

])->assertDatabaseHas('comments', [

'id' => 2,

'user_id' => null,

])->assertDatabaseHas('comments', [

'id' => 3,

'user_id' => null,

]);

}

This test should pass as well.

Rela onship links - Non exis ng comments

Next, we need to secure ourselves a bit more when someone gives a comment

that might not exist. Here, we would like the request to fail and send a 400

status code back. So let’s write a test for this where:

• 1. We set up our world

• a. We need a user to be able to fetch it through our API

• b. We need a couple of comments to be associated with the user in order

to remove them

• c. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a PATCH request to the right API endpoint

• b. We include a comment that does not exist in the request document

• 3. We assert against the result that

• a. We get a 404 status code back

We have written the following test for this:

595

BUILD AN API WITH LARAVEL

/**

* @test

* @watch

*/

public function

it_returns_a_404_not_found_when_trying_to_add_relationship_to_a_non_existing_comment

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$comments = factory(Comment::class, 3)->make();

$user->comments()->saveMany($comments);

$this->patchJson("/api/v1/users/{$user->id}/relationships/

comments",[

'data' => [

[

'id' => '3',

'type' => 'comments',

],

[

'id' => '4',

'type' => 'comments',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(404)->assertJson([

'errors' => [

[

'title' => 'Not Found Http Exception',

'details' => 'Resource not found',

]

]

]);

}

This test is failing now, because we haven’t implemented a check to see

596

FINISHING UP

if the given IDs exist in our updateToManyRelationships method in our

app/Http/Services/JSONAPIService class, so let’s do that now like this:

public function updateToManyRelationships($model, $relationship,

$ids)

{

$foreignKey = $model->$relationship()->getForeignKeyName();

$relatedModel = $model->$relationship()->getRelated();

$relatedModel->newQuery()->findOrFail($ids);

$relatedModel->newQuery()->where($foreignKey, $model->id)->

update([

$foreignKey => null,

]);

$relatedModel->newQuery()->whereIn('id', $ids)->update([

$foreignKey => $model->id,

]);

return response(null, 204);

}

Our test is still failing, but this is not because of our code, but rather that

the message sent back isn’t the one we were expecting. The one given

actually reveals a bit too much about our backend, so let’s change that.

We do this in our app/Exceptions/Handler.php file. Here, we want to add

another exception class to our check in the rendermethod, so that it is not

only on QueryException that we return a NotFoundHttpExceptionwith the

“Resource not found”method, but also onModelNotFoundException. We do

this like so:

597

BUILD AN API WITH LARAVEL

public function render($request, Exception $exception)

{

if($exception instanceof QueryException || $exception instanceof

ModelNotFoundException){

$exception = new NotFoundHttpException('Resource not found')

;

}

return parent::render($request, $exception);

}

And our test passes.

Rela onships links - Valida on

For the next tests, we will go a bit faster, since these cover validation and the

same pattern of validating id and type that we have donemany times now.

If you forgot the why and how, go back to Relationship Links in chapter 6.

The following tests are merely testing that our app/Http/Requests/JSON-

APIRelationshipRequest.php validation rules work as they should. It’s still

important to test that they work with this relationship, so please add the

following tests:

/**

* @test

* @watch

*/

public function

it_validates_that_the_id_member_is_given_when_updating_a_relationship

()

{

$user = factory(User::class)->create();

598

FINISHING UP

Passport::actingAs($user);

$comments = factory(Comment::class, 3)->make();

$user->comments()->saveMany($comments);

$this->patchJson("/api/v1/users/{$user->id}/relationships/

comments",[

'data' => [

[

'type' => 'comments',

],

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(422)->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.0.id field is required.',

'source' => [

'pointer' => '/data/0/id',

]

]

]

]);

}

/**

* @test

* @watch

*/

public function

it_validates_that_the_id_member_is_a_string_when_updating_a_relationship

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$comments = factory(Comment::class, 3)->make();

599

BUILD AN API WITH LARAVEL

$user->comments()->saveMany($comments);

$this->patchJson("/api/v1/users/{$user->id}/relationships/

comments",[

'data' => [

[

'id' => 1,

'type' => 'comments',

],

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(422)->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.0.id must be a string.',

'source' => [

'pointer' => '/data/0/id',

]

]

]

]);

}

/**

* @test

* @watch

*/

public function

it_validates_that_the_type_member_is_given_when_updating_a_relationship

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$comments = factory(Comment::class, 3)->make();

$user->comments()->saveMany($comments);

600

FINISHING UP

$this->patchJson("/api/v1/users/{$user->id}/relationships/

comments",[

'data' => [

[

'id' => '1',

],

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(422)->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.0.type field is required.',

'source' => [

'pointer' => '/data/0/type',

]

]

]

]);

}

/**

* @test

* @watch

*/

public function

it_validates_that_the_type_member_has_a_value_of_authors_when_updating_a_relationship

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$comments = factory(Comment::class, 3)->make();

$user->comments()->saveMany($comments);

$this->patchJson("/api/v1/users/{$user->id}/relationships/

comments",[

'data' => [

601

BUILD AN API WITH LARAVEL

[

'id' => '1',

'type' => 'random',

],

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(422)->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The selected data.0.type is invalid.',

'source' => [

'pointer' => '/data/0/type',

]

]

]

]);

}

Rela onship links - Related

It’s time to implement the last relationship link, which is the related link that

will fetch all of the resource objects of a relationship. When writing the test

for this:

• 1. We set up our world

• a. We need a user to be able to fetch it through our API

• b. We need a couple of comments to be associated with the user in order

to fetch them

• c. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a GET request to the right API endpoint

• 3. We assert against the result that

• a. We get a 200 status code back

602

FINISHING UP

• b. We get the correct resource objects for comments back

We have written the test like so:

/**

* @test

* @watch

*/

public function

it_can_get_all_related_comments_as_resource_objects_from_related_link

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$comments = factory(Comment::class, 3)->make();

$user->comments()->saveMany($comments);

$this->getJson("/api/v1/users/{$user->id}/comments",[

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(200)

->assertJson([

'data' => [

[

"id" => '1',

"type" => "comments",

"attributes" => [

'message' => $comments[0]->message,

'created_at' => $comments[0]->created_at->

toJSON(),

'updated_at' => $comments[0]->updated_at->

toJSON(),

]

],

[

"id" => '2',

"type" => "comments",

603

BUILD AN API WITH LARAVEL

"attributes" => [

'message' => $comments[1]->message,

'created_at' => $comments[1]->created_at->

toJSON(),

'updated_at' => $comments[1]->updated_at->

toJSON(),

]

],

[

"id" => '3',

"type" => "comments",

"attributes" => [

'message' => $comments[2]->message,

'created_at' => $comments[2]->created_at->

toJSON(),

'updated_at' => $comments[2]->updated_at->

toJSON(),

]

],

]

]);

}

This test fails right away because we don’t have the UsersCommentsRelated-

Controller so let’s get into the terminal andmake this now:

php artisan make:controller UsersCommentsRelatedController

Let’s jump into the app/Http/Controllers/UsersCommentsRelatedCon-

troller.php file right away and add a constructor so that Laravel can inject our

JSONAPIService into it. Then, let’s add the indexmethod like this:

604

FINISHING UP

<?php

namespace App\Http\Controllers;

use App\Services\JSONAPIService;

use App\User;

use Illuminate\Http\Request;

class UsersCommentsRelatedController extends Controller

{

/**

* @var JSONAPIService

*/

private $service;

public function __construct(JSONAPIService $service)

{

$this->service = $service;

}

public function index(User $user)

{

return $this->service->fetchRelated($user, 'comments');

}

}

We call the fetchRelatedmethod on our JSONAPIService class passing in our

model and the relationship, and our test is passing.

Included

For the next couple of tests, we want to test that giving and not giving the

include query parameter in our requestwith a value of comments, will include

the comments in our requests, both for a single user and a collection of users.

Now, the first test we could write here, we actually wrote as our very first test,

so let’s start out by testing that we don’t get the comments when we are not

adding an include query parameter. For this test:

605

BUILD AN API WITH LARAVEL

• 1. We set up our world

• a. We need a user to be able to fetch it through our API

• b. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a GET request to the right API endpoint

• b. We don’t add an include query parameter

• 3. We assert against the result that

• a. We get a 200 status code back

• b. We don’t get an included top-level member

• c. We don’t get any comments

We have written the test like this:

/**

* @test

* @watch

*/

public function

it_does_not_include_related_resource_objects_when_an_include_query_param_is_not_given

(){

$user = factory(User::class)->create();

Passport::actingAs($user);

$comments = factory(Comment::class, 3)->make();

$user->comments()->saveMany($comments);

$this->getJson("/api/v1/users/{$user->id}?include=comments", [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200)

->assertJsonMissing([

'included' => [],

]);

}

606

FINISHING UP

This test should pass right away, since we are leveraging code we have already

written.

For the next test, we want to test that we get the related resource objects in the

included top-level member whenmaking a request for a collection of users.

For this test:

• 1. We set up our world

• a. We need a bunch of users to be able to fetch them through our API

• b. We need a bunch of comments to be associated with the first user

• c. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a GET request to the right API endpoint

• b. We add an include query parameter for comments

• 3. We assert against the result that

• a. We get a 200 status code back

• b. We get an included top-level member

• c. We get the comments associated with the first user

We have written this fairly long test like so:

* @test

* @watch

*/

public function

it_includes_related_resource_objects_for_a_collection_when_an_include_query_param_is_given

()

{

$users = factory(User::class, 3)->create()->sortBy(function(

$item){

return $item->id;

})->values();

607

BUILD AN API WITH LARAVEL

$comments = factory(Comment::class, 3)->make();

$users->first()->comments()->saveMany($comments);

Passport::actingAs($users->first());

$this->getJson("/api/v1/users?include=comments", [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200)

->assertJson([

"data" => [

[

"id" => $users[0]->id,

"type" => "users",

"attributes" => [

'name' => $users[0]->name,

'email' => $users[0]->email,

'role' => 'user',

'created_at' => $users[0]->created_at->

toJSON(),

'updated_at' => $users[0]->updated_at->

toJSON(),

],

'relationships' => [

'comments' => [

'links' => [

'self' => route(

'users.relationships.comments',

['id' => $users->first()->id]

),

'related' => route(

'users.comments',

['id' => $users->first()->id]

),

],

'data' => [

[

'id' => $comments->get(0)->id,

608

FINISHING UP

'type' => 'comments'

],

[

'id' => $comments->get(1)->id,

'type' => 'comments'

],

[

'id' => $comments->get(2)->id,

'type' => 'comments'

]

]

]

]

],

[

"id" => $users[1]->id,

"type" => "users",

"attributes" => [

'name' => $users[1]->name,

'email' => $users[1]->email,

'role' => 'user',

'created_at' => $users[1]->created_at->

toJSON(),

'updated_at' => $users[1]->updated_at->

toJSON(),

]

],

[

"id" => $users[2]->id,

"type" => "users",

"attributes" => [

'name' => $users[2]->name,

'email' => $users[2]->email,

'role' => 'user',

'created_at' => $users[2]->created_at->

toJSON(),

'updated_at' => $users[2]->updated_at->

toJSON(),

]

],

609

BUILD AN API WITH LARAVEL

],

'included' => [

[

'id' => '1',

'type' => 'comments',

'attributes' => [

'message' => $comments->get(0)->message,

'created_at' => $comments->get(0)->

created_at->toJson(),

'updated_at' => $comments->get(0)->

updated_at->toJson(),

]

],

[

'id' => '2',

'type' => 'comments',

'attributes' => [

'message' => $comments->get(1)->message,

'created_at' => $comments->get(1)->

created_at->toJson(),

'updated_at' => $comments->get(1)->

updated_at->toJson(),

]

],

[

'id' => '3',

'type' => 'comments',

'attributes' => [

'message' => $comments->get(2)->message,

'created_at' => $comments->get(2)->

created_at->toJson(),

'updated_at' => $comments->get(2)->

updated_at->toJson(),

]

],

]

]);

}

Like before, this test is passing because we are leveraging existing code.

610

FINISHING UP

For the next couple of tests, we will be using the same principles. In the next

one, we are testing that we don’t get an included top-level member when we

don’t add the include query parameter, while fetching a collection of users.

We have written the test like this:

/**

* @test

* @watch

*/

public function

it_does_not_include_related_resource_objects_for_a_collection_when_an_include_query_param_is_not_given

()

{

$users = factory(User::class, 3)->create()->sortBy(function(

$item){

return $item->id;

})->values();

Passport::actingAs($users->first());

$this->getJson("/api/v1/users", [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200)

->assertJsonMissing([

'included' => [],

]);

}

This test should, like the previous tests, pass already. This is it for the users’

comments relationships. Now, we need to do the implementation for books

and comments next.

611

BUILD AN API WITH LARAVEL

Books - Comments Rela onships

The implementation of the books and comments relationship follows the exact

same steps as the users comments part we have just implemented. In fact,

now that we have also implemented the relationship in our JSONAPIService

class, you just have to use the code we have already written, so you should be

able to implement this on your own.

We recommend that you work in the tests/Feature/BooksRelationships.php

file and actually follow the structure of the file as it is already. So here, you

can just copy the existing test for books and authors and edit it to fit books

and comments.

You can skip all the tests that validate the id and typemembers— no need to

test the same class twice.

Another assignment for you is to write a test that includes both authors and

comments in the same response when using the include query parameter.

If you get lost, you can always look at our code on Github

Good luck!

Comments - Users and Comments - Books Rela onships

Now that you have been through an implementation of relationship twice,

we don’t want to force you through yet another round of relationship tests,

so for this section we will give you the tests and focus a bit more on the

implementation of the one-to part of our one-to-many relationship. There

will be slight changes in the tests and we will go through them shortly, so you

know what is going on. However, for the large part you must be well aware

about the why and the how of the tests.

612

FINISHING UP

Cloning from Github

If you haven’t cloned our Github repository yet, you should do it now by going

into your terminal and typing the following command andmake sure you are

in the right directory before cloning it:

git clone git@github.com:WackyStudio/build-an-api-with-laravel.git

If you are not using SSH, you can clone through HTTPS like this:

git clone https://github.com/WackyStudio/build-an-api-with-laravel.

git

When you have cloned the repository, go into the build-an-api-with-

laravel/steps/39_implemented_comments_books_and_comments_users_re-

lationships folder. Here, you should copy the tests/Feature/CommentsRela-

tionshipsTest.php file into the same position in your own project, open the

file, and we’ll start from there.

If you take a look at the first test: it_returns_a_relationship_to_user_ad-

hering_to_json_api_spec, the thing we really want you to notice is the

assertion for a single user resource, instead of a collection under the users

relationship member. This will be the theme for what we need to implement

now, since we don’t have any implementations that handle single resources.

So for this first test add a@watch annotation and let’s see what the test tells

us.

We are receiving a 400 status code back, which does not give us that much

information so let’s add a call towithoutExceptionHandling at the top of the

method. Now, we get a bit more information and can see it’s because of the

613

BUILD AN API WITH LARAVEL

missing configuration, so let’s jump to our config/jsonapi.php config file and

add the allowedIncludes and relationships for our comments resource like

this:

'comments' => [

'allowedSorts'=> [

'created_at'

],

'allowedIncludes' => [

'books',

'users',

],

'validationRules'=> [

'create' => [

'data.attributes.message' => 'required|string',

],

'update' => [

'data.attributes.message' => 'sometimes|required|string

',

]

],

'relationships' => [

[

'type' => 'books',

'method' => 'books',

],

[

'type' => 'users',

'method' => 'users',

],

]

]

Our test is now failing for a new reason, namely that we haven’t defined our

relationships on our Comment model, so let’s fix that. We know that we are

dealing with a one-to-many relationship, and we know that we are dealing

with the last one-to part of it, so we also know what kind of relationship we

614

FINISHING UP

should define on our model for both users and books. We have done it like

this:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Comment extends AbstractAPIModel

{

protected $fillable = [

'message',

];

/**

* @return string

*/

public function type()

{

return 'comments';

}

public function user()

{

return $this->belongsTo(User::class);

}

public function users(){

return $this->user();

}

public function book()

{

return $this->belongsTo(Book::class);

}

615

BUILD AN API WITH LARAVEL

public function books()

{

return $this->book();

}

}

We know that the plural methods pointing to the singular methods seem very

strange, but it’s actually because of our naming convention for our API that we

run into this issue. We could have just had the plural namemethods, adding

the relationship calls into these methods, but in case we want to domore with

our relationships on application level, we didn’t want to change the method

names and the conventions of Laravel. In this way, we satisfy both worlds,

but you are free to do as you like.

Our output of the test has now changed and tells us that it’smissing the routes

for the relationships, so let’s add these in to our routes/api.php file right

under the apiResourcemethod for comments:

// Comments

Route::apiResource('comments', 'CommentsController');

Route::get('comments/{comment}/relationships/users', '

CommentsUsersRelationshipsController@index')->name('comments.

relationships.users');

Route::patch('comments/{comment}/relationships/users', '

CommentsUsersRelationshipsController@update')->name('comments.

relationships.users');

Route::get('comments/{comment}/users', '

CommentsUsersRelatedController@show')->name('comments.users');

Route::get('comments/{comment}/relationships/books', '

CommentsBooksRelationshipsController@index')->name('comments.

relationships.books');

Route::patch('comments/{comment}/relationships/books', '

CommentsBooksRelationshipsController@update')->name('comments.

616

FINISHING UP

relationships.books');

Route::get('comments/{comment}/books', '

CommentsBooksRelatedController@show')->name('comments.books');

Now, our test output is telling us that it can’t call an undefinedmethodmap-

Into our User model. The reason for this is actually in our JSONAPIResource

class and this is the first sign of us not having any code to handle cases of

single resources instead of collections of resources, sincemapInto is amethod

on a Laravel collection, but it’s trying to call it on a model.

Let’s jump into app/Http/Resources/JSONAPIResource.php and take a look

at the prepareRelationshipsmethod. We look at this because, as we can see

on the outputted stack of the exception, it is around line 43where it origins.

Of course, the line numbers vary in terms of your preferred spaces and so

forth:

private function prepareRelationships(){

$collection = collect(config("jsonapi.resources.{$this->type()}.

relationships"))->flatMap(function($related){

$relatedType = $related['type'];

$relationship = $related['method'];

return [

$relatedType => [

'links' => [

'self' => route(

"{$this->type()}.relationships.{$relatedType

}",

['id' => $this->id]

),

'related' => route(

"{$this->type()}.{$relatedType}",

['id' => $this->id]

),

],

617

BUILD AN API WITH LARAVEL

'data' => !$this->whenLoaded($relationship)

instanceof MissingValue ?

JSONAPIIdentifierResource::collection($this->{

$relationship}) : new MissingValue(),

],

];

});

return $collection->count() > 0 ? $collection : new MissingValue

();

}

If you take a look at what happens at the datamember, it’s quite a long ternary

operator. Up until now it has worked, but it is only handling collections or

nothing, and in this case, where we get a single resource, it does not know

what to do.

Let’s refactor this into a method first. To make sure we are not breaking

anything, we should stop our Laravel test watcher and call PHPUnit manually

so we get to run through all the tests.

We’ll refactor it into a method called prepareRelationshipData and place it

right under our prepareRelationshipsmethod like this:

private function prepareRelationships(){

$collection = collect(config("jsonapi.resources.{$this->type()}.

relationships"))->flatMap(function($related){

$relatedType = $related['type'];

$relationship = $related['method'];

return [

$relatedType => [

'links' => [

'self' => route(

"{$this->type()}.relationships.{$relatedType

618

FINISHING UP

}",

['id' => $this->id]

),

'related' => route(

"{$this->type()}.{$relatedType}",

['id' => $this->id]

),

],

'data' => $this->prepareRelationshipData(

$relatedType, $relationship),

],

];

});

return $collection->count() > 0 ? $collection : new MissingValue

();

}

private function prepareRelationshipData($relatedType,

$relationship){

if($this->whenLoaded($relationship) instanceof MissingValue){

return new MissingValue();

}

if($this->$relationship() instanceof BelongsTo){

return new JSONAPIIdentifierResource($this->$relationship);

}

return JSONAPIIdentifierResource::collection($this->

$relationship);

}

Running PHPUnit now will give us a lot of failing tests, but if you look closely,

you’ll see that it’s actually the tests we’ve been given in the CommentsRela-

tionshipsTest and no other, so we’re ok for now.

Let’s then implement a way to return a single resource, whenever we are

facing a relationship that will only return single model instances. We know

619

BUILD AN API WITH LARAVEL

that Laravel does this forBelongsTo relationships, so ifwedo an introspection

for this and then return a single resource in this case, let’s see if that will make

a difference:

private function prepareRelationshipData($relatedType,

$relationship){

if($this->whenLoaded($relationship) instanceof MissingValue){

return new MissingValue();

}

if($this->$relationship() instanceof BelongsTo){

return new JSONAPIIdentifierResource($this->$relationship);

}

return JSONAPIIdentifierResource::collection($this->

$relationship);

}

If we run PHPUnit, we still get a lot of failing tests, but fewer failing tests than

before: all of them still in the same test class. Let’s run Laravel test watcher

again to see what happened with our single test class.

It’s still failing with that same message, so did we even do any changes? If

you look at the stack again, the line where the exception origins have changed

to a line further down in our JSONAPIResource class. It’s actually originating

from the relationsmethod now. And it makes sense, since it’s only handling

collections at the moment, so we face the same problem here in this method

that we did in prepareRelationshipData, where a model does not contain the

mapIntomethod. Unfortunately, we cannot use the same implementation,

since we do not have access to the relationship string in this method.

We can, however, do some introspection and see if we get a Model instance,

since all of our models inherit from this and if we do, then return a single

resource like this:

620

FINISHING UP

private function relations()

{

return collect(config("jsonapi.resources.{$this->type()}.

relationships"))

->map(function($relation){

$modelOrCollection = $this->whenLoaded($relation['method']);

if($modelOrCollection instanceof Model){

$modelOrCollection = collect([new JSONAPIResource(

$modelOrCollection)]);

}

return JSONAPIResource::collection($modelOrCollection);

});

}

Thismakes our test green and passing. Before wemove on, let’s just rearrange

the relations, included andwithmethods so that they are in this order:

1. with

2. included

3. relations

This follows the flow of how they are called and makes the class a bit more

readable.

Let’s move on to the next test: it_returns_a_relationship_to_book_ad-

hering_to_json_api_spec, which actually tests the same parts as the previ-

ous one, just for books instead of users. If you add a@watch annotation to

this test method, you should see that it passes.

Movingon to the: it_returns_a_relationship_to_both_book_and_user_ad-

hering_to_json_api where we are testing that we can include both the

book and the user for a comment. Watching this method, it should pass as

well. The next test, which is the a_relationship_link_to_user_returns_re-

621

BUILD AN API WITH LARAVEL

lated_user_as_resource_id_object, you should add a@watch annotation

to and you will see that it fails with a 500 status code. Let’s add a call to

withoutExceptionHandling to the top as well, so we can get some more

information about the thrown exception. Here, we can see that it is because

we haven’t created the necessary CommentsUsersRelationshipController

that we are referencing from our route. In fact, while we are at it, why don’t

we create all the needed controllers for the routes we just added, which are:

• CommentsUsersRelationshipsController

• CommentsUsersRelatedController

• CommentsBooksRelationshipsController

• CommentsBooksRelatedController

Go into your terminal and create all of these using the following artisan

command:

php artisan make:controller CommentsUsersRelationshipsController

When you’re done, let’s jump into app/Http/Controller/CommentsUsersRe-

lationshipsController.php. Here, we should add a constructor, injecting our

JSONAPIService class and then adding the indexmethod, like we have done

so many times before:

<?php

namespace App\Http\Controllers;

use App\Comment;

use App\Services\JSONAPIService;

class CommentsUsersRelationshipsController extends Controller

{

622

FINISHING UP

/**

* @var JSONAPIService

*/

private $service;

public function __construct(JSONAPIService $service)

{

$this->service = $service;

}

public function index(Comment $comment)

{

return $this->service->fetchRelationship($comment, 'users');

}

}

We will then receive the same output as earlier about the missingmapInto

method. This time, it’s not in our resource but in our JSONAPIService

class, so let’s go into the app/Services/JSONAPIService.php file and make

the following change to the fetchRelationshipmethod:

public function fetchRelationship($model, string $relationship)

{

if($model->$relationship instanceof Model){

return new JSONAPIIdentifierResource($model->$relationship);

}

return JSONAPIIdentifierResource::collection($model->

$relationship);

}

Just like in our JSONAPIResource class, we will check for a single instance of

a model and then return a single JSONAPIIdentifierResource. This will make

our test pass.

623

BUILD AN API WITH LARAVEL

Moving on to the next test, we will do the exact same thing in the ap-

p/Http/Controllers/CommentsBooksRelationshipsController.php file but

reference books instead:

<?php

namespace App\Http\Controllers;

use App\Comment;

use App\Services\JSONAPIService;

class CommentsBooksRelationshipsController extends Controller

{

/**

* @var JSONAPIService

*/

private $service;

public function __construct(JSONAPIService $service)

{

$this->service = $service;

}

public function index(Comment $comment)

{

return $this->service->fetchRelationship($comment, 'books');

}

}

Movingon to the it_can_modify_relationship_to_a_user_and_change_to_an-

other_user test, you should watch the test with Laravel test watcher, add

a call to the withoutExceptionHandler to the top of the test, and see that it

fails because of themissing updatemethod in our app/Http/Controller/Com-

mentsUsersRelationshipsController.php, so let’s go in and add it. Again, we

are facing a relationship we haven’t yet implemented on our JSONAPIService

class, so let’s write the method call like we want it to be, continuing the

624

FINISHING UP

conventions from the other relationships:

public function update(JSONAPIRelationshipRequest $request, Comment

$comment)

{

return $this->service->updateToOneRelationship($comment, 'users

', $request->input('data.id'));

}

Now our test is changing the output, but it’s not about the missing method

like you might think, but rather the validation fails. The reason for this is

that our JSONAPIRelationshipRequest is expecting a collection of resource

identifiers, not just a single resource identifier.

Let’s go into our app/Http/Requests/JSONAPIRelationshipRequest.php file

and change the rules in the rulesmethod to the following:

public function rules()

{

return [

'data' => 'present|array|nullable',

'data.id' => [Rule::requiredIf($this->has('data.type')), '

string'],

'data.type' => [Rule::requiredIf($this->has('data.id')),Rule

::in(array_keys(config('jsonapi.resources')))],

'data.*.id' => [Rule::requiredIf($this->has('data.0')), '

string'],

'data.*.type' => [Rule::requiredIf($this->has('data.0')),

Rule::in(array_keys(config('jsonapi.resources')))],

];

}

625

BUILD AN API WITH LARAVEL

Instead of just testing for a collection of resource identifiers, we test for either

a collection or a single resource identifier. We do this by changing all of our

rules string into an array, since we want to leverage the Rule class provided

by Laravel. On this, we would like to call the requiredIfmethod, which we

can use to tell if a member is required based on a condition. For the single

resource identifier, the condition is that thedata.typemembermust bepresent,

before thedata.id rules kick in and vice versa. For our previous collection rules,

these will kick in as soon as a collection is given, as noted by the data.0which

references the first key of an array.

After these corrections, our test is now failing because of the missing imple-

mentation in our JSONAPIService class, so let’s fix that going into app/Ser-

vices/JSONAPIService.php and add the updateToOneRelationship method

right above the updateToManyRelationshipsmethod:

<?php

namespace App\Services;

use App\Author;

use App\Book;

use App\Http\Resources\JSONAPICollection;

use App\Http\Resources\JSONAPIIdentifierResource;

use App\Http\Resources\JSONAPIResource;

use Illuminate\Database\Eloquent\Model;

use Illuminate\Database\QueryException;

use Illuminate\Http\Response;

use Illuminate\Support\Facades\DB;

use Illuminate\Support\Str;

use Spatie\QueryBuilder\QueryBuilder;

class JSONAPIService

{

...

public function fetchRelationship($model, string $relationship)

626

FINISHING UP

{

...

}

public function updateToOneRelationship($model, $relationship,

$id)

{

}

public function updateToManyRelationships($model, $relationship,

$ids)

{

...

}

...

}

Unlike the updateToManyRelationshipsmethod, where we had to do most

of the implementation ourselves, we can leverage some dedicated methods

for associate and dissociate relationships and, in fact, they are named

just that. Also, in order to find the new model that should be associated,

we can reuse the getRelated method we found when implementing the

updateToManyRelationshipsmethod.

We have implemented this method like so:

public function updateToOneRelationship($model, $relationship, $id)

{

$relatedModel = $model->$relationship()->getRelated();

$model->$relationship()->dissociate();

if($id){

$newModel = $relatedModel->newQuery()->findOrFail($id);

$model->$relationship()->associate($newModel);

627

BUILD AN API WITH LARAVEL

}

$model->save();

return response(null, 204);

}

We get the related model, and dissociate any existing relations. Then, to think

a little ahead, we only want to associate a model if its id is given. Otherwise,

we just remove the associated model and return. If an id is given, we try to

find it and then we associate it.

And just like that, our test is passing.

For thenext it_can_modify_relationship_to_a_book_and_change_to_an-

other_book, the concept is the same. Here, we add the following method

to the app/Http/Controllers/CommentsBooksRelationshipsController.php

file:

public function update(JSONAPIRelationshipRequest $request, Comment

$comment)

{

return $this->service->updateToOneRelationship($comment, 'books

', $request->input('data.id'));

}

We call the updateToOneRelationshipmethod that we have just created and

the test passes.

For the next couple of tests:

It_can_modify_relationship_to_a_user_and_remove_relationship

and it_can_modify_relationship_to_a_book_and_remove_relation-

ship we test that we can remove relations by giving a null in the PATCH

628

FINISHING UP

request to our relationship link. Remember that this is the equivalent of giving

an empty array, which will remove relationships of a collection. Here, a null

will remove a relationship to a single resource. If you watch both tests, they

should pass with the implementation we have now.

Next, we have the following tests:

It_returns_a_404_not_found_when_trying_to_add_relationship_to_a_non_ex-

isting_userand It_returns_a_404_not_found_when_trying_to_add_re-

lationship_to_a_non_existing_book. For these tests, we check that we

get a 404 response back when trying to add a relationship to a non existing

resource. In our implementation of updateToOneRelationship, we find our

new model by using the findOrFailmethod, which will ensure that we give

the 404 response in case we cannot find amodel for the given id. If you watch

these tests, both of them should be passing.

Since we have alreadymade the implementation of a single resource identifier

in our JSONAPIRelationshipRequest class, the following tests will all pass.

You can watch them to see for yourself, or otherwise you can skip for-

ward to the it_can_get_related_user_as_a_resource_object_from_re-

lated_link test. Watching this test and adding a call to thewithoutException-

Handlingmethod, shows us that this test is failing because we are missing an

indexmethod, so let’s add that:

<?php

namespace App\Http\Controllers;

use App\Comment;

use App\Services\JSONAPIService;

class CommentsUsersRelatedController extends Controller

{

629

BUILD AN API WITH LARAVEL

/**

* @var JSONAPIService

*/

private $service;

public function __construct(JSONAPIService $service)

{

$this->service = $service;

}

public function index(Comment $comment)

{

return $this->service->fetchRelated($comment, 'users');

}

}

Just like in anyof theother related controllers,we call the fetchRelatedmethod

on our JSONAPIService class, which we are injecting through a constructor in

the top of the class.

Our test is still failing though, but it’s because of the same issue as before:

we are only handling collections. So let’s go into app/Services/JSONAPISer-

vice.php and take a look at the fetchRelatedmethod to add the following:

public function fetchRelated($model, $relationship)

{

if($model->$relationship instanceof Model){

return new JSONAPIResource($model->$relationship);

}

return new JSONAPICollection($model->$relationship);

}

This will make the method return a single resource also and make our test

630

FINISHING UP

pass.

For the next test, the concept is the same and here we will add the following

to our app/Http/Controllers/CommentsBooksRelatedController.php:

<?php

namespace App\Http\Controllers;

use App\Comment;

use App\Services\JSONAPIService;

use Illuminate\Http\Request;

class CommentsBooksRelatedController extends Controller

{

/**

* @var JSONAPIService

*/

private $service;

public function __construct(JSONAPIService $service)

{

$this->service = $service;

}

public function index(Comment $comment)

{

return $this->service->fetchRelated($comment, 'books');

}

}

This is actually the last test where we have some implementation to do. For

the rest of the tests in the test class, we are testing existing code. If you go

through and watch all of them, they should all pass.

We have now implemented both our comments users and comments books

631

BUILD AN API WITH LARAVEL

relationships. We only need one last thing before we are completely done

with implementing relationship for this AP, and that’s creating and updating

relationships through resource endpoints. Let’s implement these now.

Modify rela onships while crea ng/upda ng a comment

We are almost at the last stop when talking about relationships and the

JSON:API specification. The last thing we need to cover is the ability to add or

modify relationships when creating resources.

Up until now, the parts we have implemented have been the ability to get and

manipulate relationships via the relationship links. And to create a comment

and attach it to both a user and book will, as things are implemented now,

require a request to create the comment and then a request for associating it

with a book and a user.

If you recall the chapter about the JSON:API specification, there is a protocol

for adding relationships when creating and updating resources as well. This

wouldmake things a bit easier when creating comments, since we can just add

the user and book right away.

Crea ng resource

Let’s start by implementing the ability to add a relationship when creating a

comment. The good thing is that we have the code for creating resources, but

we also have the code for adding relationships. Now, we just have to combine

these.

Let’s create a test for this in our tests/Feature/CommentsRelationship-

sTest.php file and place it in the bottom of the file. Before we write the test,

let’s just break it down:

• 1. We set up our world

632

FINISHING UP

• a. We need a user so the comment can be associated with this

• b. We need a book so the comment can be associated with this as well

• c. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a POST request to the right API endpoint

• b. We add the relationshipsmember to our request document

• c. We add the usersmember to our relationships object

• d. We add the booksmember to our relationships object

• e. We add the data member to both relationships

• f. We give the resource identifiers for both the user and book we want

associated with the comment

• 3. We assert against the result that

• a. We get a 200 status code back

• b. We get the correct response document for the comment

• c. We get the relationships we have just added

• 4. We assert against the database that

• a. We see that the user ID and book ID are added to the newly created

comment

We have written the test like this:

/**

* @test

* @watch

*/

public function

when_creating_a_comment_it_can_also_add_relationships_right_away

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$book = factory(Book::class)->create();

633

BUILD AN API WITH LARAVEL

$this->postJson('/api/v1/comments', [

'data' => [

'type' => 'comments',

'attributes' => [

'message' => 'Hello world',

],

'relationships' => [

'users' => [

'data' => [

'id' => $user->id,

'type' => 'users',

]

],

'books' => [

'data' => [

'id' => (string)$book->id,

'type' => 'books',

]

]

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(201)

->assertJson([

"data" => [

"id" => '1',

"type" => 'comments',

"attributes" => [

'message' => 'Hello world',

'created_at' => now()->setMilliseconds(0)->

toJSON(),

'updated_at' => now() ->setMilliseconds(0)->

toJSON(),

],

'relationships' => [

'books' => [

'links' => [

634

FINISHING UP

'self' => route(

'comments.relationships.books',

['id' => 1]

),

'related' => route(

'comments.books',

['id' => 1]

),

],

'data' => [

'id' => $book->id,

'type' => 'books',

]

],

'users' => [

'links' => [

'self' => route(

'comments.relationships.users',

['id' => 1]

),

'related' => route(

'comments.users',

['id' => 1]

),

],

'data' => [

'id' => $user->id,

'type' => 'users',

]

]

]

]

])->assertHeader('Location', url('/api/v1/comments/1'));

$this->assertDatabaseHas('comments', [

'id' => 1,

'message' => 'Hello world',

'user_id' => $user->id,

'book_id' => $book->id,

]);

635

BUILD AN API WITH LARAVEL

}

Notice how easy it is for us to add the relationship by simply adding the

resource identifier objects to the request document. Of course, this test is

failing. It does create the resource, but no relationships are being added so

let’s implement this now. For this, we will need to go into app/Http/Con-

trollers/CommentsController.php and take a look at the store method:

public function store(JSONAPIRequest $request)

{

return $this->service->createResource(Comment::class, $request->

input('data.attributes'));

}

Right now, we are calling the createResourcemethod on our JSONAPIService

class. If you ask us, it would be nice if we could just continue with this and

then pass on the relationships from the controller and let the service class

take care of the rest.

So let’s write the code here, even though we know it will fail right away and

the jump into the service class afterward:

public function store(JSONAPIRequest $request)

{

return $this->service->createResource(Comment::class, $request->

input('data.attributes'), $request->input('data.

relationships'));

}

636

FINISHING UP

Again, we leverage the inputmethod on our request to pick out the parts of the

request document we want, which in this case are the relationships for users

and books. In our app/Services/JSONAPIService.php file, let’s take a look at

the createResourcemethod, which at the moment, looks like this:

public function createResource(string $modelClass, array

$attributes)

{

$model = $modelClass::create($attributes);

return (new JSONAPIResource($model))

->response()

->header('Location', route("{$model->type()}.show", [

Str::singular($model->type()) => $model,

]));

}

It’s pretty simple: we create the model and then return it through our

JSONAPIResource class. What we want to do here is to add the relationship, if

it is given, right beforewe return themodel. Toadd the relationships,wewould

have to first add a new relationship argument, loop over the relationships

given in this argument, and then call our existing updateToOneRelationship

method for each relationship given like this:

public function createResource(string $modelClass, array

$attributes, array $relationships = null)

{

$model = $modelClass::create($attributes);

if($relationships){

foreach ($relationships as $relationshipName => $contents) {

$this->updateToOneRelationship($model, $relationshipName

, $contents['data']['id']);

}

637

BUILD AN API WITH LARAVEL

}

$model->load(array_keys($relationships));

return (new JSONAPIResource($model))

->response()

->header('Location', route("{$model->type()}.show", [

Str::singular($model->type()) => $model,

]));

}

We add the new relationships argument and to now break anything else we

have already implemented, we set it with a default value of null. Then, we loop

over the relationships and call the updateToOneRelationshipmethod.

Because we got themodel after creating it earlier, themodel is still in the same

state, meaning that because we have added our relationships, the model we

received does not know about these yet. It needs to load these first, or else we

will not return the newly created relationships with the model. So to do this,

we leverage eager loading through the loadmethod on the model.

This makes our test green and passing.

Beforewemove on,maybewe should do some refactoring here. Sincewe know

we are just about to make the same implementation for updating comments,

we should try to reuse this code, so let’s extract the implementation to another

method and call this method handleRelationship like this:

protected function handleRelationship(array $relationships, $model)

: void

{

foreach ($relationships as $relationshipName => $contents) {

$this->updateToOneRelationship($model, $relationshipName,

638

FINISHING UP

$contents['data']['id']);

}

$model->load(array_keys($relationships));

}

And our createResourcemethod can now become this:

public function createResource(string $modelClass, array

$attributes, array $relationships = null)

{

$model = $modelClass::create($attributes);

if($relationships){

$this->handleRelationship($relationships, $model);

}

return (new JSONAPIResource($model))

->response()

->header('Location', route("{$model->type()}.show", [

Str::singular($model->type()) => $model,

]));

}

That’s a bit better, since the concern of adding relationships are moved

away from the createResourcemethod, now it just delegates the job to the

handleRelationshipmethod and continues with its original task.

Our test is still passing, which means that it is a successful refactoring.

639

BUILD AN API WITH LARAVEL

Valida ng crea on

Before wemove on, we should do some validation. We don’t have anything

that catches if a consumer should give a request document that does not follow

our conventions, so let’s do this first. For our test:

• 1. We set up our world

• a. We need a user for authentication

• b. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a POST request to the right API endpoint

• b. We add the relationshipsmember to our request document

• c. We add the usersmember to our relationships object without a data

object

• d. We add the booksmember to our relationships object with wrong data

• i. We add an id that is not a string

• ii. We add a type that does not exist

• 3. We assert against the result that

• a. We get a 422 status code back

• b. We get the correct error document

We have written this test like so:

/**

* @test

*/

public function

it_validates_relationships_given_when_creating_comment()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$book = factory(Book::class)->create();

640

FINISHING UP

$this->postJson('/api/v1/comments', [

'data' => [

'type' => 'comments',

'attributes' => [

'message' => 'Hello world',

],

'relationships' => [

'users' => [],

'books' => [

'data' => [

'id' => 1,

'type' => 'random',

]

]

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(422)->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.relationships.users.data

field is required.',

'source' => [

'pointer' => '/data/relationships/users/data',

]

],

[

'title' => 'Validation Error',

'details' => 'The data.relationships.books.data.id

must be a string.',

'source' => [

'pointer' => '/data/relationships/books/data/id

',

]

],

[

641

BUILD AN API WITH LARAVEL

'title' => 'Validation Error',

'details' => 'The selected data.relationships.books.

data.type is invalid.',

'source' => [

'pointer' => '/data/relationships/books/data/

type',

]

],

]

]);

}

Immediately this test fails, telling us it’s getting a 500 status code back. So

let’s add a call to the withoutExceptionsHandling to the top of the test and

see which exception is being thrown. Here, it’s pretty clear that our validation

is not catching the mistakes made. Fortunately for us, we already have the

matching validation rules in our app/Http/Requests/JSONAPIRelationship-

sRequest.php files rules method:

public function rules()

{

return [

'data' => 'present|array|nullable',

'data.id' => [Rule::requiredIf($this->has('data.type')), '

string'],

'data.type' => [Rule::requiredIf($this->has('data.id')),

Rule::in(array_keys(config('jsonapi.resources')))],

'data.*.id' => [Rule::requiredIf($this->has('data.0')), '

string'],

'data.*.type' => [Rule::requiredIf($this->has('data.0')),

Rule::in(array_keys(config('jsonapi.resources')))],

];

642

FINISHING UP

}

We can just copy these to our app/Http/Requests/JSONAPIRequest.php and

change the dot notation for the rules, since these will be a bit more nested

now:

public function rules()

{

$rules = [

'data' => 'required|array',

'data.id' => ($this->method() === 'PATCH') ? 'required|

string' : 'string',

'data.type' => ['required',Rule::in(array_keys(config('

jsonapi.resources')))],

'data.attributes' => 'required|array',

'data.relationships' => 'array',

'data.relationships.*.data' => 'required|array',

'data.relationships.*.data.id' => [Rule::requiredIf($this->

has('data.relationships.*.data.type')), 'string'],

'data.relationships.*.data.type' => [Rule::requiredIf($this

->has('data.relationships.*.data.id')),

Rule::in(array_keys(config('jsonapi.resources')))],

'data.relationships.*.data.*.id' => [Rule::requiredIf($this

->has('data.relationships.*.data.0')), 'string'],

'data.relationships.*.data.*.type' => [Rule::requiredIf(

$this->has('data.relationships.*.data.0')), Rule::in(

array_keys(config('jsonapi.resources')))],

];

return $this->mergeConfigRules($rules);

}

First, we add the rules that will require the relationshipsmember to contain

643

BUILD AN API WITH LARAVEL

children if it’s given. Then, we add a rule stating that each child must contain

a datamember and afterward, we do as we did in the JSONAPIRelationship-

sRequest class where we test to see if a single resource is given. If so, the

data.relationships.users.data.id is required andmust be a string. The same

goes for data.relationships.users.data.type as well.

If a collection has been given, then the same goes for each resource identifier

in the collection. If we remove the call to the withoutExceptionsHandling

method, our test is now passing.

Upda ng resource

Let’s look at how we can implement a way to update our relationships, while

also updating our resource. For our test, the concepts are similar to the ones

before, but let’s just break the test down like we have done earlier:

• 1. We set up our world

• a. We need a user the comment will be associated with

• b. We need a book the comment will be associated with

• c. We need another user the comment should be associated with instead

• d. We need another book the comment should be associated with instead

• e. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a PATCH request to the right API endpoint

• b. We add the relationshipsmember to our request document

• c. We add the resource identifier object for the new user to the users

relationship

• d. We add the resource identifier object for the new book to the books

relationship

• 3. We assert against the result that

• a. We get a 200 status code back

• b. We get the correct response document for the comment

• c. We get the relationships we have just added

644

FINISHING UP

• 4. We assert against the database that

• a. We see that the new user ID and new book ID are added to the newly

created comment instead

We have written the test like this:

/**

* @test

* @watch

*/

public function

when_updating_a_comment_it_can_also_update_relationships()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$comment = factory(Comment::class)->make();

$user->comments()->save($comment);

$book = factory(Book::class)->create();

$book->comments()->save($comment);

$anotherUser = factory(User::class)->create();

$anotherBook = factory(Book::class)->create();

$this->patchJson('/api/v1/comments/1', [

'data' => [

'id' => (string)$comment->id,

'type' => 'comments',

'attributes' => [

'message' => 'Hello world',

],

'relationships' => [

'users' => [

'data' => [

'id' => $anotherUser->id,

'type' => 'users',

645

BUILD AN API WITH LARAVEL

]

],

'books' => [

'data' => [

'id' => (string)$anotherBook->id,

'type' => 'books',

]

]

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200)

->assertJson([

"data" => [

"id" => '1',

"type" => 'comments',

"attributes" => [

'message' => 'Hello world',

'created_at' => now()->setMilliseconds(0)->

toJSON(),

'updated_at' => now() ->setMilliseconds(0)->

toJSON(),

],

'relationships' => [

'books' => [

'links' => [

'self' => route(

'comments.relationships.books',

['id' => 1]

),

'related' => route(

'comments.books',

['id' => 1]

),

],

'data' => [

'id' => $anotherBook->id,

646

FINISHING UP

'type' => 'books',

]

],

'users' => [

'links' => [

'self' => route(

'comments.relationships.users',

['id' => 1]

),

'related' => route(

'comments.users',

['id' => 1]

),

],

'data' => [

'id' => $anotherUser->id,

'type' => 'users',

]

]

]

]

]);

$this->assertDatabaseHas('comments', [

'id' => 1,

'message' => 'Hello world',

'user_id' => $anotherUser->id,

'book_id' => $anotherBook->id,

]);

}

Just likewith our test for creating a resourcewith relationships added, we start

outwith a failing test, because it cannot see the updated relationships in the re-

turned JSON. So let’s just jump into our app/Http/CommentsController.php

again and take a look at the updatemethod:

647

BUILD AN API WITH LARAVEL

public function update(JSONAPIRequest $request, Comment $comment)

{

return $this->service->updateResource($comment, $request->input

('data.attributes'));

}

Here, we actually want to do the same with the updateResourcemethod on

our JSONAPIService class, just like we did with the createResourcemethod,

where we just pass in the relationships given in the request like this:

public function update(JSONAPIRequest $request, Comment $comment)

{

return $this->service->updateResource($comment, $request->input

('data.attributes'), $request->input('data.relationships'));

}

In our app/Services/JSONAPIService.php file, we then take a look at the

updateResource method. Here, we add the relationships argument to the

method and just like before we set its default value to null, so we don’t

break anything. Then, we just copy the conditional from the createResource

method, so that we also delegate the relationship part to our newly created

handleRelationshipmethod in our updateResourcemethod like this:

public function updateResource($model, $attributes, $relationships

= null)

{

$model->update($attributes);

if($relationships){

$this->handleRelationship($relationships, $model);

}

648

FINISHING UP

return new JSONAPIResource($model);

}

Our test is nowpassing. We hope you noticed howwe leveraged the refactoring

we just did to reuse our code in the updateResource as well, making this

implementationmuch easier.

Valida ng update

Before wemove on, we just want to add a test for testing the validation while

updating as well. This test isn’t much different than the last test for validating

creation of a resource with relationships, but as we have mentioned many

times, it’s better to have the test than not. For this test:

• 1. We set up our world

• a. We need a user the comment will be associated with

• b. We need a book that the comment will be associated with

• c. We need another user that the comment should be associated with

instead

• d. We need another book that the comment should be associated with

instead

• e. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a PATCH request to the right API endpoint

• b. We add the relationshipsmember to our request document

• c. We add the usersmember to our relationships object without a data

object

• d. We add the booksmember to our relationships object with wrong data

• i. We add an id that is not a string

• ii. We add a type that does not exist

• 3. We assert against the result that

• a. We get a 422 status code back

649

BUILD AN API WITH LARAVEL

• b. We get the correct error document

We have written the test like this:

/**

* @test

* @watch

*/

public function

it_validates_relationships_given_when_updating_comment()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$comment = factory(Comment::class)->make();

$user->comments()->save($comment);

$book = factory(Book::class)->create();

$book->comments()->save($comment);

$this->patchJson('/api/v1/comments/1', [

'data' => [

'id' => (string)$comment->id,

'type' => 'comments',

'attributes' => [

'message' => 'Hello world',

],

'relationships' => [

'users' => [],

'books' => [

'data' => [

'id' => 1,

'type' => 'random',

]

]

]

]

], [

650

FINISHING UP

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.relationships.users.data

field is required.',

'source' => [

'pointer' => '/data/relationships/users/data

',

]

],

[

'title' => 'Validation Error',

'details' => 'The data.relationships.books.data.

id must be a string.',

'source' => [

'pointer' => '/data/relationships/books/data

/id',

]

],

[

'title' => 'Validation Error',

'details' => 'The selected data.relationships.

books.data.type is invalid.',

'source' => [

'pointer' => '/data/relationships/books/data

/type',

]

],

]

]);

}

The difference here is the existingmodels that are associated with the existing

comment and that we are making a PATCH request instead of a POST request.

651

BUILD AN API WITH LARAVEL

This test should pass right away since we have implemented the correct

validation.

We are now done implementing the ability to add relationships, while creating

a comment resource, but let’s do the same for books, making us able to add

an author when creating a book.

Modify rela onships while crea ng/upda ng a book

Aswe justmentioned,wearegoing to implement the ability to addormodify an

authorwhile creating or updating a book. For this, we can leveragemuch of the

code we have just written, but there will be some important implementations

we have to do, sincewe are dealingwith a different relationship between books

and authors in contrast to users and comments.

Crea ng resource

Let’s just start from an end and create a test for the ability to add some authors

while creating a book. To break the test down:

• 1. We set up our world

• a. We need some authors the book can be related to

• b. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a POST request to the right API endpoint

• b. We add the relationshipsmember to our request document

• c. We add the authorsmember inside our relationshipmember

• d. We add a collection of resource identifier objects for the authors we

want to make a relationship to

• 3. We assert against the result that

• a. We get a 200 status code back

• b. We get the correct response document for the comment

• c. We get the relationships we have just added

652

FINISHING UP

• 4. We assert against the database that

• a. We see that the book has a relationship to the authors we have given in

the request

We have written the test like this:

/**

* @test

* @watch

*/

public function

when_creating_a_book_it_can_also_add_relationships_right_away()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$authors = factory(Author::class, 2)->create();

$this->postJson('/api/v1/books', [

'data' => [

'type' => 'books',

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

],

'relationships' => [

'authors' => [

'data' => [

[

'id' => (string)$authors[0]->id,

'type' => 'authors',

],

[

'id' => (string)$authors[1]->id,

'type' => 'authors',

],

653

BUILD AN API WITH LARAVEL

]

]

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(201)

->assertJson([

"data" => [

"id" => '1',

"type" => 'books',

"attributes" => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

'created_at' => now()->setMilliseconds(0)->

toJSON(),

'updated_at' => now() ->setMilliseconds(0)->

toJSON(),

],

'relationships' => [

'authors' => [

'links' => [

'self' => route(

'books.relationships.authors',

['id' => 1]

),

'related' => route(

'books.authors',

['id' => 1]

),

],

'data' => [

[

'id' => $authors->get(0)->id,

'type' => 'authors'

],

[

654

FINISHING UP

'id' => $authors->get(1)->id,

'type' => 'authors'

]

]

]

]

]

])->assertHeader('Location', url('/api/v1/books/1'));

$this->assertDatabaseHas('books', [

'id' => 1,

'title' => 'Building an API with Laravel',

])->assertDatabaseHas('author_book', [

'book_id' => 1,

'author_id' => $authors[0]->id,

]);

}

Like before, our test is failing because it does not get the relationships back

in the returned JSON. We now knowwhat this means, so let’s just jump into

our app/Http/BooksController.php and pass the given relationships from

the requests into the createResourcemethod on our JSONAPIService class,

injected into our controller:

public function store(JSONAPIRequest $request)

{

return $this->service->createResource(Book::class, $request->

input('data.attributes'), $request->input('data.

relationships'));

}

655

BUILD AN API WITH LARAVEL

Our test is still failing, but this time it’s getting a 500 status code back. Let’s

add a call to thewithoutExceptionHandlingmethod to the top of the test to

get somemore information about the exception being thrown.

We can now see that it fails because we are trying to access an id key that

does not exist in the array. This is because we are getting a collection of

resource identifier objects, instead of a single resource identifier object. Our

implementation of thehandeRelationshipmethod in our app/Services/JSON-

APIService.php only takes a toOne relationship into account, and thus it tries

to access the id key for a single resource object. So let’s go to the method

and change the implementation so it takes our relationships into account

and accesses the keys accordingly. We can do this with a conditional, using

introspection on the models relationship, determining if it is a BelongsTo

or a BelongToMany. If it is a BelongsTo, we would expect a single resource

identifier object, and if it is a BelongsToManywe would expect a collection.

The implementation would then become this:

protected function handleRelationship(array $relationships, $model)

: void

{

foreach ($relationships as $relationshipName => $contents) {

if ($model->$relationshipName() instanceof BelongsTo) {

$this->updateToOneRelationship($model, $relationshipName

, $contents['data']['id']);

}

if($model->$relationshipName() instanceof BelongsToMany){

$this->updateManyToManyRelationships($model,

$relationshipName, collect($contents['data'])->pluck

('id'));

}

}

$model->load(array_keys($relationships));

}

656

FINISHING UP

A thing tonote here is that thefirst conditional contains the implementation as

it was. In the next implementation, we call the updateManyToManymethod

with the model relationship name. To get an array of IDs, we use a Laravel

collection and the pluck method on this, to pluck out the IDs from all the

resource identifier objects, since we are only interested in the IDs in the

updateManyToManyRelationshipsmethod.

This implementation will also make our test pass now, since we are calling

the right method for handling our relationships.

Valida ng crea on

Like before, we would like to validate the request so we ensure that consumers

cannot give wrong information and possible do damage to our application.

Again, we start with a test so let’s break it down:

• 1. We set up our world

• a. We need some authors the book can be related to

• b. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a POST request to the right API endpoint

• b. We add the relationshipsmember to our request document

• c. We add the authorsmember to our relationships object

• d. We add the datamember to our authors object withwrong data for each

resource identifier object

• i. We add an id that is not a string

• ii. We add a type that does not exist

• 3. We assert against the result that

• a. We get a 422 status code back

• b. We get the correct error document

We have written the test like this:

657

BUILD AN API WITH LARAVEL

/**

* @test

* @watch

*/

public function it_validates_relationships_given_when_creating_book

()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$authors = factory(Author::class, 2)->create();

$this->postJson('/api/v1/books', [

'data' => [

'type' => 'books',

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

],

'relationships' => [

'authors' => [

'data' => [

[

'id' => $authors[1]->id,

'type' => 'authors',

],

[

'id' => (string)$authors[1]->id,

'type' => 'random',

],

]

]

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(422)->assertJson([

'errors' => [

658

FINISHING UP

[

'title' => 'Validation Error',

'details' => 'The data.relationships.authors.data.0.

id must be a string.',

'source' => [

'pointer' => '/data/relationships/authors/data

/0/id',

]

],

[

'title' => 'Validation Error',

'details' => 'The selected data.relationships.

authors.data.1.type is invalid.',

'source' => [

'pointer' => '/data/relationships/authors/data

/1/type',

]

],

]

]);

}

Because this test is testing the same validation class as we have just imple-

mented while implementing the modification of relationships while creating

comments, this test should pass right away.

Upda ng resource

Let’smove on and implement the ability tomodify our relationship to authors

while updating a book. Let’s break down how we want to test this:

• 1. We set up our world

• a. We need some authors the book can be related to and some we can

exchange to

• b. We need to be authenticated

• 2. We run the code we are testing here

659

BUILD AN API WITH LARAVEL

• a. Wemake a PATCH request to the right API endpoint

• b. We add the relationshipsmember to our request document

• c. We add the authorsmember inside our relationshipmember

• d. We add a collection of new resource identifier objects for the authors

we want to make a relationship to instead

• 3. We assert against the result that

• a. We get a 200 status code back

• b. We get the correct response document for the comment

• c. We get the relationships we have just added

• 4. We assert against the database that

• a. We see that the book has a relationship to the new authors we have

given in the request

We have written this test like so:

/**

* @test

* @watch

*/

public function

when_updating_a_book_it_can_also_update_relationships()

{

$this->withoutExceptionHandling();

$user = factory(User::class)->create();

Passport::actingAs($user);

$book = factory(Book::class)->create();

$authors = factory(Author::class, 3)->create();

$book->authors()->sync($authors->pluck('id'));

$this->patchJson('/api/v1/books/1', [

'data' => [

'id' => '1',

660

FINISHING UP

'type' => 'books',

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

],

'relationships' => [

'authors' => [

'data' => [

[

'id' => (string)$authors[2]->id,

'type' => 'authors',

],

]

]

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200)

->assertJson([

"data" => [

"id" => '1',

"type" => 'books',

"attributes" => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

'created_at' => now()->setMilliseconds(0)->

toJSON(),

'updated_at' => now() ->setMilliseconds(0)->

toJSON(),

],

'relationships' => [

'authors' => [

'links' => [

'self' => route(

'books.relationships.authors',

661

BUILD AN API WITH LARAVEL

['id' => 1]

),

'related' => route(

'books.authors',

['id' => 1]

),

],

'data' => [

[

'id' => $authors->get(2)->id,

'type' => 'authors'

]

]

]

]

]

]);

$this->assertDatabaseHas('books', [

'id' => 1,

'title' => 'Building an API with Laravel',

])->assertDatabaseHas('author_book', [

'book_id' => 1,

'author_id' => $authors[2]->id,

]);

}

Right away, this test fails and like before it is because we are not passing

our relationships to our updateResourcemethod on the JSONAPIService in

our update method in our controller, so let’s go into app/Http/BooksCon-

troller.php and fix this:

public function update(JSONAPIRequest $request, Book $book)

{

662

FINISHING UP

return $this->service->updateResource($book, $request->input('

data.attributes'), $request->input('data.relationships'));

}

This is enough— our test is now passing.

Valida ng update

Once more, we want to test that the validation is working. We are reusing the

same concepts here, so instead of going through the details yet again, we just

present the test to you so you can implement it. It should be passing right

away:

/**

* @test

*/

public function

it_validates_relationships_given_when_updating_a_book()

{

$user = factory(User::class)->create();

Passport::actingAs($user);

$book = factory(Book::class)->create();

$authors = factory(Author::class, 3)->create();

$book->authors()->sync($authors->pluck('id'));

$this->patchJson('/api/v1/books/1', [

'data' => [

'id' => '1',

'type' => 'books',

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

663

BUILD AN API WITH LARAVEL

'publication_year' => '2019',

],

'relationships' => [

'authors' => [

'data' => [

[

'id' => $authors[1]->id,

'type' => 'authors',

],

[

'id' => (string)$authors[1]->id,

'type' => 'random',

],

]

]

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(422)->assertJson([

'errors' => [

[

'title' => 'Validation Error',

'details' => 'The data.relationships.authors.

data.0.id must be a string.',

'source' => [

'pointer' => '/data/relationships/authors/

data/0/id',

]

],

[

'title' => 'Validation Error',

'details' => 'The selected data.relationships.

authors.data.1.type is invalid.',

'source' => [

'pointer' => '/data/relationships/authors/

data/1/type',

]

664

FINISHING UP

],

]

]);

}

This was the last part for us to implement of relationship for the JSON:API

specification, and we now have everything we need. So let’s move on to the

last parts before ending this chapter and the main part of the book.

Administrators and authoriza on

It’s time to look at administrators and authorization. Right now, anybody

who is authenticated to our API can do whatever they want. If a user wants to

delete all books or edit other users’ comments, they can do that.

The reason why we created the role attribute on our users model was for us to

be able to restrict access to certain actions on our API, based on the role each

user has. In other words, you are allowed certain actions, based on the type of

tenant you are.

But before we start implementing our authorization, maybe we should

make it easier to distinguish which users are regular users and which are

administrators.

You might think it would have been easier for us to create a resource just

for administrators, so that we have a clear separation for the consumers

of our API. In theory, this would be easier, yes, but then you would have to

build some logic into your authentication to return an administrator resource

when an administrator is being authenticated for your API. You would have

to reimplement a lot of relationships, since administrators should be able to

comment on books as well.

665

BUILD AN API WITH LARAVEL

By keeping everything in our users resource with a role attribute, our con-

sumers can leverage this attribute to do the proper authorization on the

frontend and we can reuse the implementation we have already done for users.

Through filters, we can distinguish the queries of our users by roles, and

through authorization we can use the role attribute to authorize the right

users to be able to call the endpoints they are allowed to.

Let’s start by implementing the filtering first.

Filtering administrators

Filters are mentioned in the JSON:API specification, but there are no rules or

conventions about how it should work, neither is it a requirement that your

API supports this feature. The reason why we implement this is to be able to

filter users based on their role, which is a nice feature to have if you aremaking

an administration dashboard and want to list the various users or admins.

For the implementation of our filters, we are actually going to leverage the

QueryBuilder by Spatie again. Just like we have done with allowed sorts and

allowed includes, the QueryBuilder supports allowed filters as well, which

enables it to give an array, telling which attributes we want to filter our users

by. Then, we can apply this filter through a filter query parameter, just like

with sort and include.

We know we are repeating ourselves here, but let’s start out by writing a test

first. Breaking this test down:

• 1. We set up our world

• a. We need some users to exist in order to fetch them

• b. We need one of our users to be an administrator

• c. We need to be authenticated

• 2. We run the code we are testing here

666

FINISHING UP

• a. Wemake a GET request to the right API endpoint

• b. We add the filter query parameter

• c. Wemake the filter query parameter point to our role attribute

• d. Wemake the value of the filter query parameter be admin

• 3. We assert against the result that

• a. We get a 200 status code back

• b. We count that we only get the administrator back

• c. We get a correct resource object for the administrator back

We have written the test like this:

/**

* @test

* @watch

*/

public function it_can_filter_administrators_by_role()

{

$users = factory(User::class, 3)->create();

$users = $users->sortBy(function ($item) {

return $item->id;

})->values();

$users->first()->role = 'admin';

$users->first()->save();

Passport::actingAs($users->first());

$this->getJson("/api/v1/users?filter[role]=admin", [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

]) ->assertStatus(200)

->assertJson([

"data" => [

[

"id" => $users[0]->id,

"type" => "users",

"attributes" => [

667

BUILD AN API WITH LARAVEL

'name' => $users[0]->name,

'email' => $users[0]->email,

'role' => 'admin',

'created_at' => $users[0]->created_at->

toJSON(),

'updated_at' => $users[0]->updated_at->

toJSON(),

]

],

]

])

->assertJsonMissing([

"id" => $users[1]->id,

"attributes" => [

'name' => $users[1]->name,

'email' => $users[1]->email,

'role' => 'user',

'created_at' => $users[1]->created_at->toJSON(),

'updated_at' => $users[1]->updated_at->toJSON(),

]

])->assertJsonMissing([

"id" => $users[2]->id,

"attributes" => [

'name' => $users[2]->name,

'email' => $users[2]->email,

'role' => 'user',

'created_at' => $users[2]->created_at->toJSON(),

'updated_at' => $users[2]->updated_at->toJSON(),

]

]);

}

We add the filter query parameter and the way we select which attribute we

want to filter, we use square brackets, like this: ?filter[role] then, like any

other query parameter, we set its value, which, in this case, is admin so filter

away regular users and only get the single admin back. A thing to note here

is that we have removed the typemember in the assertJsonMissing methods

because this will make the test fail, since our administrator has a typemember

668

FINISHING UP

as well.

At the moment, this test is failing because none of the users are being

filtered. Go into app/Service/JSONAPIService.php and take a look at our

fetchResourcesmethod:

public function fetchResources(string $modelClass, string $type)

{

$models = QueryBuilder::for($modelClass)

->allowedSorts(config("jsonapi.resources.{$type}.

allowedSorts"))

->allowedIncludes(config("jsonapi.resources.{$type}.

allowedIncludes"))

->jsonPaginate();

return new JSONAPICollection($models);

}

At themoment, we are using the allowedSortsmethod, pointing to an array in

our config/jsonapi.php configfile and the same goes for our allowedIncludes

method. Since we already know that the QueryBuilder from Spatie supports

filters through the allowedFilters method, which takes an array of the

attributes allowed to filter resources on, we can leverage our config file once

again. So let’s add the following:

public function fetchResources(string $modelClass, string $type)

{

$models = QueryBuilder::for($modelClass)

->allowedSorts(config("jsonapi.resources.{$type}.

allowedSorts"))

->allowedIncludes(config("jsonapi.resources.{$type}.

allowedIncludes"))

->allowedFilters(config("jsonapi.resources.{$type}.

allowedFilters"))

669

BUILD AN API WITH LARAVEL

->jsonPaginate();

return new JSONAPICollection($models);

}

Our test is failing because the array doesn’t exist in our configfile, so let’s go in

and add it. Now, thismethod is used in a lot of places in our application, which

means we need to add the array to each resource we have in our config file.

This doesn’t mean that we have to give the attributes that each resource can

be filtered on—we only have to give the role attribute for our users resource:

<?php

return [

'resources' => [

'authors' => [

...

'allowedFilters' => [],

...

],

'books' => [

...

'allowedFilters' => [],

...

],

'users' => [

...

'allowedFilters' => [

Spatie\QueryBuilder\Filter::exact('role'),

],

...

],

'comments' => [

...

'allowedFilters' => [],

...]

]

]

670

FINISHING UP

];

Wewant our consumers to be specific with the role attribute, which is why

we are using the QueryBuilder package’s Filter::exactmethod to define the

filter.

After this, our test passes. Now, to be surewe didn’t break anything, we should

stop Laravel Test Watcher and run PHPUnit to see if all our tests are passing,

which they should be.

Then, we can move on and do a test for the inverse, filtering our results for

regular users instead of admin. This test has the same buildup except that the

filter query parameter has a value of user this time, and the contents of the

assertJson and assertJsonMissing has been swapped:

/**

* @test

* @watch

*/

public function it_can_filter_users_by_role()

{

$users = factory(User::class, 3)->create();

$users = $users->sortBy(function ($item) {

return $item->id;

})->values();

$users->first()->role = 'admin';

$users->first()->save();

Passport::actingAs($users->first());

$this->getJson("/api/v1/users?filter[role]=user", [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

]) ->assertStatus(200)

->assertJson([

671

BUILD AN API WITH LARAVEL

"data" => [

[

"id" => $users[1]->id,

"type" => "users",

"attributes" => [

'name' => $users[1]->name,

'email' => $users[1]->email,

'role' => 'user',

'created_at' => $users[1]->created_at->

toJSON(),

'updated_at' => $users[1]->updated_at->

toJSON(),

]

],

[

"id" => $users[2]->id,

"type" => "users",

"attributes" => [

'name' => $users[2]->name,

'email' => $users[2]->email,

'role' => 'user',

'created_at' => $users[2]->created_at->

toJSON(),

'updated_at' => $users[2]->updated_at->

toJSON(),

]

]

]

])

->assertJsonMissing([

"id" => $users[0]->id,

"attributes" => [

'name' => $users[0]->name,

'email' => $users[0]->email,

'role' => 'admin',

'created_at' => $users[0]->created_at->toJSON(),

'updated_at' => $users[0]->updated_at->toJSON(),

]

]);

}

672

FINISHING UP

If you go ahead and start Laravel Test Watcher again, this test should be green

and passing.

Now, we just have to do the last test for the scenario where a consumer is

trying to filter users on an attribute that does not exist or is not allowed. For

this test

• 1. We set up our world

• a. We need some users to exist in order to fetch them

• b. We need one of our users to be an administrator

• c. We need to be authenticated

• 2. We run the code we are testing here

• a. Wemake a GET request to the right API endpoint

• b. We add the filter query parameter

• c. Wemake the filter query parameter point to a foo attribute

• d. Wemake the value of the filter query parameter be bar

• 3. We assert against the result that

• a. We get a 400 status code back

• b. We get the right error document back

Our test looks like this:

/**

* @test

* @watch

*/

public function

it_cannot_fetch_a_resource_with_a_role_that_does_not_exist()

{

$users = factory(User::class, 3)->create();

$users = $users->sortBy(function ($item) {

return $item->id;

})->values();

673

BUILD AN API WITH LARAVEL

$users->first()->role = 'admin';

$users->first()->save();

Passport::actingAs($users->first());

$this->getJson("/api/v1/users?filter[foo]=bar", [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

]) ->assertStatus(400)->assertJson([

'errors' => [

[

'title' => 'Invalid Filter Query',

'details' => 'Given filter(s) `foo` are not allowed.

Allowed filter(s) are `role`.'

]

]

]);

}

Since this part is already implemented in the QueryBuilder from Spatie, the

test should pass. If they should change this in the future, we now have a test

that can warn us if that happens, in which we would have to implement this

exception ourselves. Of course, we hope that doesn’t happen but like we’ve

said before, it’s better to have a test for it.

This is actually all there is for filtering. If you want, you can go ahead

and implement filters for the other resources. We will be moving on to

authorization now.

Authoriza on

It’s time to look at authorization and, like we havementioned earlier, starting

to specify which areas of our API and application can be accessed by which

roles.

Before we do this, why don’t we take a look at what each role should be able

674

FINISHING UP

to do. For this application, we have identified the following actions per role:

Users should have authorization for:

1. Fetching/reading books

2. Fetching/reading authors

3. Creating comments on books

4. Updating their own comment on a book

5. Deleting their own comment on a book

6. Updating their own user

7. Deleting their own user

Administrators should have authorization for:

1. Creating, updating, fetching/reading and deleting Users

2. Creating, updating, fetching/reading and deleting Books

3. Creating, updating, fetching/reading and deleting Authors

4. Creating comments on books

5. Updating their own comment on a book

6. Deleting their own comment on a book

7. Deleting regular users’ comments on a book

Now, youmight be wondering why a user does not have the ability to create a

user. This is because we use user registration for this, which is not something

we access in our API after we have been authenticated. The user registration

will then happen on a set of routes that are outside of our authentication, so

that anyone can access those and register for an account. This is also often

called a guest user.

To implement authorization in an API with Laravel, we can actually leverage

Laravel’s Policies and Gates, like you would in any other Laravel application.

675

BUILD AN API WITH LARAVEL

This is not specific to API development in Laravel, but the nice thing is

that Laravel, through these features, makes it super easy to implement

authorization into an API.

We won’t be covering all resources and endpoints, but instead we’ll give you

the basic knowledge through the books resource. With this, you are then able

to write tests and implement authorization for the rest of the resources.

Authoriza on for books

For authorization of our books resource, we will be using Laravel’s policies, a

feature of Laravel thatmakes it possible to center the logic of the authorization

for a specific model into a dedicated class. It is then possible for us to use a

policy on a controller, for instance the BookController to have authorization

on all the methods in this controller, without too much of a hassle. A thing

to note here is that it is only possible to have one policy class per model, so

we will not be able to use a policy in our relationship controllers without us

having to do some extra work. In these classes, we will instead use Laravel’s

Gate feature, whichmakes it possible for us to do single authorization rules

that we can apply inside each of our controller methods.

But before we get too ahead of ourselves here, let’s learn about all of this

through implementation. As always, let’s start with a test first.

For testing authorization, we always create a dedicated test class, so that we

separate the concerns of the tests a bit. For the tests we are about to write,

let’s create a tests/Feature/BooksAuthorizationTest.php file andmake sure

that we extend Laravel’sTestCase class and use theDatabaseMigrations trait

as well, like this:

676

FINISHING UP

<?php

namespace Tests\Feature;

use Illuminate\Foundation\Testing\DatabaseMigrations;

use Tests\TestCase;

class BooksAuthorizationTest extends TestCase

{

use DatabaseMigrations;

}

Then, we are ready to write our first test. When dealing with authorization,

we like to write our tests in the following form:

• A user cannot

• An admin can

Of course, there will be situations where both roles can access a resource

or action and situations where it’s reversed, but we generally write our

authorization tests in this form. We also start from a point where we know

this form can be used right away, like a test for creating a book. These test

methods will then be named as such:

• A user cannot create a book

• An admin can create a book

The benefits of this is that we then protect the resource or action from the

user, but also makes sure the admin can still access it.

While we are discussing the creation of a book, why don’t we write this test

first. Create a new test with the a_user_cannot_create_a_book and go

677

BUILD AN API WITH LARAVEL

into the tests/Feature/BooksTest.php and copy all of the contents from the

it_can_create_an_book_from_a_resource_object and paste it into your

newly created testmethod in the tests/Feature/BooksAuthorizationTest.php

file.

Then, change the contents of the assertJsonmethod to the following, and

change the status code from 201 to 403. We like to be explicit about the roles

of our users, so for our users model we want to show that the role is user:

/**

* @test

* @watch

*/

public function a_user_cannot_create_a_book()

{

$user = factory(User::class)->create([

'role' => 'user',

]);

Passport::actingAs($user);

$this->postJson('/api/v1/books', [

'data' => [

'type' => 'books',

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(403)->assertJson([

'errors' => [

[

'title' => 'Access Denied Http Exception',

'details' => 'This action is unauthorized.',

678

FINISHING UP

]

]

]);

}

This test is failing at the moment, but before we set out on our course to

implement this, let’s create the test for the admin user as well.

Here, you can just copy the testmethodwe have justmade, change the name to

an_admin_can_create_a_book, remove the assertJson, and set the status

code back to 201. Remember to set the role in the factory to be admin instead

of user:

/**

* @test

*/

public function an_admin_can_create_a_book()

{

$user = factory(User::class)->create([

'role' => 'admin',

]);

Passport::actingAs($user);

$this->postJson('/api/v1/books', [

'data' => [

'type' => 'books',

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

679

BUILD AN API WITH LARAVEL

->assertStatus(201);

}

Great! We are now ready to start our implementation. Aswementioned earlier,

in the cases where we work with the Book model itself, we will use a policy, so

let’s go out into the terminal and create a policy for our Bookmodel like this:

php artisan make:policy BookPolicy --model=Book

The cool thing about policies is that if we follow the naming convention

ModelNamePolicy, which, in our case, will be BookPolicy, and place our

policies inside the app/Policies folder, Laravel can automatically discover

these. Don’t worry, when generating a policy through an artisan command, it

is automatically placed inside the app/Policies folder. We just have to ensure

that we follow the naming convention, which we have done.

Open up the newly created app/Policies/BookPolicy.php file. Here, you will

see that Laravel has already done a lot of work for us. It has created a bunch

of methods where most of them correspond to the naming in our controller.

Now, go ahead and delete all methods except for:

• View

• Create

• Update

• Delete

We won’t be needing the last twomethods.

Then, let’s go into our app/Controller/BooksController.php and inside the

constructor, we add the following to use our newly created policy in this

controller:

680

FINISHING UP

public function __construct(JSONAPIService $service)

{

$this->service = $service;

$this->authorizeResource(Book::class, 'book');

}

Since we are using a resource controller, Laravel has a helper method we can

use in our constructor. This helper method is actually automatically adding

a middleware in front of all of our methods in our controllers, making sure

that the request goes through one of our methods in our policy class before

hitting our method in our controller. This also means that the methods in our

controller maps to the methods in our policy class.

The mapping is the following:

• The controller’s index and showmethods utilize the viewmethod in the

policy class

• The controller’s store method utilizes the create method in the policy

class

• The controller’s updatemethod utilizes the updatemethod in the policy

class

• The controller’s destroymethod utilizes the deletemethod in the policy

class

Tomake sure that only a user with the role of admin can create a book, all we

have to do is to add the following to the createmethod in our app/Policies/-

BookPolicy.php file:

public function create(User $user)

{

return $user->role === 'admin';

}

681

BUILD AN API WITH LARAVEL

This change is enough for both of our tests to fail. The first test will get a 403

response back where as the admin will get a 201, since it is allowed to create a

book.

Let’s move on to updating a book. The concept here is exactly the same, so we

will just show you our test and explain:

/**

* @test

* @watch

*/

public function a_user_cannot_update_a_book()

{

$user = factory(User::class)->create([

'role' => 'user',

]);

Passport::actingAs($user);

$book = factory(Book::class)->create();

$this->patchJson('/api/v1/books/1', [

'data' => [

'id' => '1',

'type' => 'books',

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(403)->assertJson([

'errors' => [

[

'title' => 'Access Denied Http Exception',

'details' => 'This action is unauthorized.',

682

FINISHING UP

]

]

]);

}

/**

* @test

* @watch

*/

public function an_admin_can_update_a_book()

{

$user = factory(User::class)->create([

'role' => 'admin',

]);

Passport::actingAs($user);

$book = factory(Book::class)->create();

$this->patchJson('/api/v1/books/1', [

'data' => [

'id' => '1',

'type' => 'books',

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(200);

}

Here, we have both the tests for the user and the admin users. We have

just copied the contents from the it_can_update_an_book_from_a_re-

source_object test in the test/Feature/BooksTest.php file. Then, we want

to be explicit about the role, so we add this to the factory. Then, we change

the contents in the assertJson method with the exact same contents from

the a_user_cannot_create_a_book test, since it’s the same response we

683

BUILD AN API WITH LARAVEL

will get for all the authorization exceptions. We, of course, also changed the

status code to 403. In the an_admin_can_update_a_book, we removed the

assertJsonmethod and kept only the status code. We are already testing what

we get back— now, we are just interested in the admin being able to update a

book.

To fix our failing test, let’s go into the app/Policies/BookPolicy.php file and

take a look at the updatemethod. Here, we should essentially do the same as

in the createmethod, since we only want the admin to access this:

public function update(User $user, Book $book)

{

return $user->role === 'admin';

}

Our test is passing now, so let’s move on to the next couple of tests.

Next, we will look at the deletion of books. Again, we follow the same

concepts of copying from our other test, setting the role and changing the

assertJson contents and status code:

/**

* @test

* @watch

*/

public function a_user_cannot_delete_a_book()

{

$user = factory(User::class)->create([

'role' => 'user',

]);

Passport::actingAs($user);

$book = factory(Book::class)->create();

684

FINISHING UP

$this->delete('/api/v1/books/1',[], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(403)->assertJson([

'errors' => [

[

'title' => 'Access Denied Http Exception',

'details' => 'This action is unauthorized.',

]

]

]);

}

/**

* @test

* @watch

*/

public function an_admin_can_delete_a_book()

{

$user = factory(User::class)->create([

'role' => 'admin',

]);

Passport::actingAs($user);

$book = factory(Book::class)->create();

$this->delete('/api/v1/books/1',[], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(204);

}

In the app/Policies/BookPolicy.php, we do the same again, since we only

want admins to be able to delete books:

public function delete(User $user, Book $book)

{

685

BUILD AN API WITH LARAVEL

return $user->role === 'admin';

}

And both our tests are passing.

The next couple of tests are a bit different. We do want both our regular users

and administrators to be able to fetch a single book and a collection of books,

so here we will change the test for the user a bit. We still copy from our other

test, since all the code is already written there, but we remove the assertions,

since they don’t matter here:

/**

* @test

* @watch

*/

public function a_user_can_fetch_a_list_of_books()

{

$user = factory(User::class)->create([

'role' => 'user',

]);

Passport::actingAs($user);

$books = factory(Book::class, 3)->create();

$this->get('/api/v1/books', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(200);

}

/**

* @test

* @watch

*/

public function an_admin_can_fetch_a_list_of_books()

{

686

FINISHING UP

$user = factory(User::class)->create([

'role' => 'admin',

]);

Passport::actingAs($user);

$books = factory(Book::class, 3)->create();

$this->get('/api/v1/books', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(200);

}

Both of our tests are passing already, so let’s move to fetching a single book,

since we will face some problems here. The tests for these are:

/**

* @test

* @watch

*/

public function a_user_can_fetch_a_single_book()

{

$this->withoutExceptionHandling();

$user = factory(User::class)->create([

'role' => 'user'

]);

Passport::actingAs($user);

$book = factory(Book::class)->create();

$this->getJson('/api/v1/books/1', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200);

}

687

BUILD AN API WITH LARAVEL

/**

* @test

* @watch

*/

public function an_admin_can_fetch_a_single_book()

{

$this->withoutExceptionHandling();

$user = factory(User::class)->create([

'role' => 'admin'

]);

Passport::actingAs($user);

$book = factory(Book::class)->create();

$this->getJson('/api/v1/books/1', [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(200);

}

Right now, these tests are failing and it is because of the viewmethod in our

policy class. At themoment, it utilizes route-model binding, but our controller

does not. Here, we only get an ID for the book and thenwe let the QueryBuilder

in the JSONAPIService class do the query for us. This mismatch will cause the

policy to block this route, but fortunately we can do something about it.

To explain what we will do, let’s take a look at the create method in our

app/Policies/BookPolicy.phpfile again. Thismethoddoesnot get anymodels

passed into it, since it’s a route that doesn’t leverage route-model binding.

Laravel knows this and will therefore only pass in the authenticated user. We

want the same to happen with our viewmethod and it turns out it can be done

pretty easily.

If we go into our app/Http/Controllers/BooksController.php and take a look

at the constructor again, we can see that we are making a call to the authoriz-

688

FINISHING UP

eResourcemethod on our controller class. This method actually stems from a

trait that is beingusedon theparent class of our controller. Let’s open this trait

for a second, which is placed at the following path: vendor/laravel/frame-

work/src/illuminate/Foundation/Auth/Access/AuthorizesRequests.php.

In the bottom of the trait, you should see the following property:

protected function resourceMethodsWithoutModels()

{

return ['index', 'create', 'store'];

}

This property is actually responsible for telling which methods in our con-

troller that utilizes route-model binding.

The thing with traits is that anything they provide can be overridden, so in

this case we can just copy this property to our controller and change the array

to contain our showmethod as well, like this:

...

class BooksController extends Controller

{

protected function resourceMethodsWithoutModels()

{

return ['index', 'store', 'show'];

}

/**

* @var JSONAPIService

*/

private $service;

public function __construct(JSONAPIService $service)

{

689

BUILD AN API WITH LARAVEL

$this->service = $service;

$this->authorizeResource(Book::class, 'book');

}

...

}

We remove the create method since our controller doesn’t contain it, and

then add the store method instead. Let’s go back to our view method in

our app/Policies/BookPolicy.php and return true, since anyone can view our

books. After this, both our tests will pass.

Again, this implementation is an example of the benefits of looking a bit deeper

into Laravel’s codebase.

This is actually it for the authorization rules for books. Next, we will look at

the relationships between books and authors. Unfortunately, we cannot use

policies here, but we can instead use Laravel’s gate feature, which is just as

convenient.

Authoriza on for books authors rela onships

For the authorization rules for books and authors, we cannot use policies as

we just mentioned. Here, we will use Laravel’s Gate features. This means that

there’s a bit more implementation for us to do, but on the positive side, we

can skip some tests. Because policies work on a controller level, we have to

test all scenarios, but gates will be used on amethod level, which means that

if a gate is not added to a method, all users can hit it. For our relationships,

we want both users and admins to be able to fetch relationships and related

resource, but we only want the admin to be able to modify the relationship.

This means that we only need a test for this.

For this test, we can copy the contents of the it_can_modify_rela-

tionships_to_authors_and_add_new_relationships test inside our

690

FINISHING UP

tests/Feature/BooksRelationshipsTest.php file. We will copy this into

two new test methods on our tests/Feature/BooksAuthorization.php file

named: a_user_cannot_modify_relationship_links_for_authors and

an_admin_can_modify_relationship_links_for_authors:

/**

* @test

* @watch

*/

public function a_user_cannot_modify_relationship_links_for_authors

()

{

$book = factory(Book::class)->create();

$authors = factory(Author::class, 10)->create();

$user = factory(User::class)->create([

'role' => 'user'

]);

Passport::actingAs($user);

$this->patchJson('/api/v1/books/1/relationships/authors',[

'data' => [

[

'id' => '5',

'type' => 'authors',

],

[

'id' => '6',

'type' => 'authors',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(403)->assertJson([

'errors' => [

691

BUILD AN API WITH LARAVEL

[

'title' => 'Access Denied Http Exception',

'details' => 'This action is unauthorized.',

]

]

]);

}

/**

* @test

* @watch

*/

public function an_admin_can_modify_relationship_links_for_authors

()

{

$book = factory(Book::class)->create();

$authors = factory(Author::class, 10)->create();

$user = factory(User::class)->create([

'role' => 'admin'

]);

Passport::actingAs($user);

$this->patchJson('/api/v1/books/1/relationships/authors',[

'data' => [

[

'id' => '5',

'type' => 'authors',

],

[

'id' => '6',

'type' => 'authors',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])->assertStatus(204);

}

692

FINISHING UP

Like before, we are explicit with the role in the factorymethod, and we change

the status code of the test that tests from the user’s point of view. Here, we also

add the assertJson contents for an authorization exception, just like in the

other tests. In the test for the admin’s point of view, we remove the assertJson

and keep the rest.

For now, only one of the tests passes, so let’s define our gate. We define gates

in our app/Providers/AuthServiceProvider.php and in the bootmethod like

this:

public function boot()

{

$this->registerPolicies();

Passport::routes();

//Passport::enableImplicitGrant();

Gate::define('admin-only', function($user){

return $user->role === 'admin';

});

}

We define a gate with the name admin-only, which we can use in all the

controller methods where we only want the admin to have access. We give it a

closure it will use for whenever the admin-only gate needs evaluation, and

here we convey that the user should have a role of admin to pass this gate.

Let’s then jump over to our app/Http/Controllers/BooksAuthorsRelation-

shipsController.php and take a look at the updatemethod. Here, we want

to add the gate and tell that if the gate denies access, then we will throw an

AuthorizationExceptionwith the samemessage as we are getting from our

policy classes to keep consistency. We do that like this:

693

BUILD AN API WITH LARAVEL

public function update(JSONAPIRelationshipRequest $request, Book

$book)

{

if(Gate::denies('admin-only')){

throw new AuthorizationException('This action is

unauthorized.');

}

return $this->service->updateManyToManyRelationships($book, '

authors', $request->input('data.*.id'));

}

This is enough for both our tests to pass.

Laravel makes it really easy for us to add authorization to our applications

and, as we mentioned earlier, this method is not only for APIs. You can use

this in all Laravel applications.

If you want to knowmore about Laravel’s policies and gates, we encourage

you to look at the documentation. This is all we will cover in this book, but it

should be enough for you to do authorization for the rest of the resources and

relationships.

Before we move on though, we should run PHPUnit to check if anything

has broken after our changes. Here, you will see that quite a lot of tests

in both our tests/Feature/BooksTest.php and tests/Feature/BooksRelation-

shipsTest.php are failing. These are, of course, also affected by the authoriza-

tion, but the fix is quite easy: you just have to add the admin role to all the

users you authenticate for each of the tests.

The easiest way is to add a state to the database/factories/UserFactory like

this:

694

FINISHING UP

$factory->state(App\User::class, 'admin', [

'role' => 'admin',

]);

Then in your test, you can add the state to the factory like this:

/**

* @test

*/

public function it_can_create_an_book_from_a_resource_object()

{

$user = factory(User::class)->state('admin')->create();

Passport::actingAs($user);

$this->postJson('/api/v1/books', [

'data' => [

'type' => 'books',

'attributes' => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

]

]

], [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

])

->assertStatus(201)

->assertJson([

"data" => [

"id" => '1',

"type" => "books",

"attributes" => [

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

'created_at' => now()->setMilliseconds(0)->

toJSON(),

'updated_at' => now() ->setMilliseconds(0)->

toJSON(),

695

BUILD AN API WITH LARAVEL

]

]

])->assertHeader('Location', url('/api/v1/books/1'));

$this->assertDatabaseHas('books', [

'id' => 1,

'title' => 'Building an API with Laravel',

'description' => 'A book about API development',

'publication_year' => '2019',

]);

}

And the test passes again. You should do this for the rest of the failing tests.

The next thing we will be taking a look at is the remaining route for our user.

Current authen cated user

If we take a look at our routes/api.php file, we see that we have a route for the

current user, which is actually still using a closure:

Route::get('/users/current', function (Request $request) {

return $request->user();

});

All this closure does is to return the current authenticated user, but it is not

being done in the conventions of the JSON:API specification, so let’s just create

a controller for this route and add the correct response document.

First, we should create a test so let’s create a new tests/Feature/CurrentAu-

thenticatedUserTest.php and add the following test to it:

696

FINISHING UP

<?php

namespace Tests\Feature;

use App\User;

use Illuminate\Foundation\Testing\DatabaseMigrations;

use Laravel\Passport\Passport;

use Tests\TestCase;

class CurrentAuthenticatedUserTest extends TestCase

{

use DatabaseMigrations;

/**

* @test

* @watch

*/

public function

it_returns_the_current_authenticated_user_as_a_resource_object

()

{

$this->withoutExceptionHandling();

$user = factory(User::class)->create();

Passport::actingAs($user);

$this->getJson("/api/v1/users/current", [

'accept' => 'application/vnd.api+json',

'content-type' => 'application/vnd.api+json',

]) ->assertStatus(200)

->assertJson([

"data" => [

"id" => $user->id,

"type" => "users",

"attributes" => [

'name' => $user->name,

'email' => $user->email,

'created_at' => $user->created_at->toJSON(),

'updated_at' => $user->updated_at->toJSON(),

]

]

697

BUILD AN API WITH LARAVEL

]);

}

}

This tests is basically just a copy of our it_returns_a_user_as_a_re-

source_object fromour tests/Feature/UsersTest.php, but insteadof fetching

a user by an ID, we make a query for the specific route:

GET: /api/v1/users/current

At the moment this test fails — not because the route doesn’t exist or the

returned JSON is incorrect — it is because of the routes’ position in our

routes/api.php file. Right now, it is placed after the Route::apiResource

method for our users, which will make Laravel think that we are querying

for a user ID called current. To make our specific route callable, we need to

place our route above the Route::apiResource like this:

// Users

Route::get('/users/current', '

CurrentAuthenticatedUserController@show');

Route::apiResource('users', 'UsersController');

Route::get('users/{user}/relationships/comments', '

UsersCommentsRelationshipsController@index')->name('users.

relationships.comments');

Route::patch('users/{user}/relationships/comments', '

UsersCommentsRelationshipsController@update')->name('users.

relationships.comments');

Route::get('users/{user}/comments', '

UsersCommentsRelatedController@index')->name('users.comments');

698

FINISHING UP

Also, while we are at it, wemight as well give the reference to our controller in

the route and then jump into our terminal andmake the controller like this:

php artisan make:controller CurrentAuthenticatedUserController

If we go into our newly created app/Http/Controllers/CurrentAuthenticate-

dUserController, we canmake a quick implementation of the showmethod

that will make our test pass like this:

<?php

namespace App\Http\Controllers;

use App\Http\Resources\JSONAPIResource;

use Illuminate\Http\Request;

class CurrentAuthenticatedUserController extends Controller

{

public function show(Request $request)

{

return new JSONAPIResource($request->user());

}

}

This is it forour current authenticateduser. It nowalsoadheres to the JSON:API

specification.

699

BUILD AN API WITH LARAVEL

Cross-Origin Resource Sharing

Cross-Origin Resource Sharing, also known as CORS, is a feature built into

modern browsers to prevent a resource from one domain to make a request to

another resource on another domain or sub-domain. In other words, if you

are visiting

http://example.com

and a script on that page wants you to access the data through an API on

http://api.example.com

CORS will prevent this.

The benefit of this is that attackers can’t plant scripts on websites that could

then access your bank on your behalf, so it’s simply a security measure.

But what do you do when you have a domain like example.com that needs the

users to be able to make a request to the API domain?

This is done by the API server in the form of an Access-Control-Allow-

Origin header that tells which domains can make requests to this domain.

Your browser then reads this header and allows the communication between

domains.

This is a very commonscenariowhenworkingwithAPIs, sinceAPIs are often

placed on another domain or subdomain for better separations of concerns on

a server.

InLaravel, this canbedone inmanyways. Wecanwrite amiddlewareourselves

that adds the needed Access-Controller-Allow-* headers, or we can use a

package that has already taken care of this for us.

700

FINISHING UP

We have talked about Spatie earlier, when we went through both sorting,

pagination and filtering. That same company has another package that takes

care of CORS for us, so let’s install that into our application. We do this by

requiring it through composer like this:

composer require spatie/laravel-cors

Then, when the package has been downloaded, we add the providedmiddle-

ware inside our app/Http/Kernel.php in the array of themiddleware property

like this:

protected $middleware = [

\App\Http\Middleware\CheckForMaintenanceMode::class,

\Illuminate\Foundation\Http\Middleware\ValidatePostSize::class,

\App\Http\Middleware\TrimStrings::class,

\Illuminate\Foundation\Http\Middleware\ConvertEmptyStringsToNull

::class,

\App\Http\Middleware\TrustProxies::class,

\Spatie\Cors\Cors::class,

];

Next, we export the config file like this:

php artisan vendor:publish --provider="Spatie\Cors\

CorsServiceProvider" --tag="config"

If you go into config/cors.php, you can see the default settings the package

ships with. These are useful for now, but keep in mind for your own APIs

that you give specific domain names instead of the * given in the array of the

allow_origins key. This is especially needed if you are using cookies, which

will only be allowed by specific domain names.

Awesome! Now we canmake requests to our API from our browsers.

701

BUILD AN API WITH LARAVEL

Summary

Phew, this was a long chapter! We hope you got through it without too much

difficulty.Let’s just recap what we have covered, because it has certainly been

a lot.

We went through the implementation of the relationship between authors and

books, so that the entire relationship has been implemented.

We implemented our users resource and took UUIDs and roles into account.

We gave you an assignment to implement the comments resource on your

own and if you have made it here, you have done a great job!

Then, we implemented the relationships between users and comments, where

we also implemented the toMany relationship into our JSONAPIService class.

We dug a little deeper into Laravel, and discovered that sometimes it can

benefit to look under the surface, to findmethods that can help us with out

implementations.

We gave you yet another assignment to implement the relationship between

books and comments, which you did really well.

After this, we went through the process of implementing the relationships

between both comments and users, and comments and book. Here, we also

implemented the toOne relationship, leveraging a lot of the knowledge we

gained about models from implementing the toMany relationships.

From there, we implemented the last part of relationships, with the ability to

both create and update relationships when creating and updating resources.

We went through filtering of users, so we can distinguish users and admin-

istrators. We implemented authorization using Laravel’s policy classes and

Gate feature.

702

FINISHING UP

We implemented a route for the current authenticated user that adheres to

the JSON:API specification

Lastly, we added CORS to our applications so we are able to make request to

our API from our browser.

We are now done with our API, and we hope you liked the journey as much

as we did. We also hope you have gained a lot of new skills that you want to

try out immediately. In any case, we think that you should read on and learn

where to go from here.

Where to go from here

We have now implemented our entire API and we have implemented it

according to the JSON:API specification. You have now gained an insight

into how to build an API with Laravel leveraging the JSON:API specification.

You have learned how to plan, build and test every part of the API and if you

look at the application you have now, you actually have a bunch of classes

you can port over to other applications as well. The code implemented in our

requests, resources, and service classes does not contain anything specific to

Anna’s Bookstore and can be reused together with a config file that follows

the same conventions.

From here on out, we first and foremost encourage you to work a bit more

with this application. As of right now, visitors to the bookstore have to be

registered to see the books they can buy at Anna’s Bookstore. Maybe there are

some routes that could be moved on the other side of authentication, so that

the books can be shown.

We will, of course, also encourage you to take what you have learned and

implement it into one of your own applications. You don’t have to start from

scratch— a small, existing application would also be a good starting point

703

BUILD AN API WITH LARAVEL

to implement what you have learned. This will cement your knowledge even

more and you will start to find yourself getting better at writing tests and

actually seeing howmuch these benefit youmore andmore.

Another thing we think you should do now, is to try to test out one of the client

libraries listed on the JSON:API specification website and see how much it

benefits you to have an API with clear conventions.

Chapter 9 - Bonus

In this chapter,wewill give abit of bonus information. It is completelyoptional

for you to read this chapter, but we think you should read it anyway. Wewill be

finishing our SetupDevEnvironment command, and then we will be looking

at how to consume our API from the frontend. We will be looking at existing

client libraries, which makes it super easy for us to implement our API on the

frontend.

Comple ng our SetupDevEnvironment command

First, let’s complete our SetupDevEnvironment command so let’s jump into

our app/Console/Commands/SetupDevEnvironment.php. At the moment,

it looks like this:

<?php

namespace App\Console\Commands;

use App\User;

use Illuminate\Console\Command;

use Illuminate\Support\Facades\Artisan;

704

FINISHING UP

use Laravel\Passport\PersonalAccessTokenResult;

class SetupDevEnvironment extends Command

{

protected $signature = 'dev:setup';

protected $description = 'Sets up the development environment';

public function __construct()

{

parent::__construct();

}

public function handle()

{

$this->info('Setting up development environment');

$this->MigrateAndSeedDatabase();

$user = $this->CreateJohnDoeUser();

$this->CreatePersonalAccessClient($user);

$this->CreatePersonalAccessToken($user);

$this->info('All done. Bye!');

}

public function MigrateAndSeedDatabase()

{

$this->call('migrate:fresh');

$this->call('db:seed');

}

public function CreateJohnDoeUser()

{

$this->info('Creating John Doe user');

$user = factory(User::class)->create([

'name' => 'John Doe',

'email' => 'john@example.com',

'password' => bcrypt('secret'),

]);

705

BUILD AN API WITH LARAVEL

$this->info('John Doe created');

$this->warn('Email: john@example.com');

$this->warn('Password: secret');

return $user;

}

public function CreatePersonalAccessClient($user)

{

$this->call('passport:client', [

'--personal' => true,

'--name' => 'Personal Access Client',

'--user_id' => $user->id

]);

}

public function CreatePersonalAccessToken($user)

{

$token = $user->createToken('Development Token');

$this->info('Personal access token created successfully.');

$this->warn("Personal access token:");

$this->line($token->accessToken);

}

}

If we take a look at the handlemethod, we see that we:

• Run a migrate fresh command to drop our database tables and migrate

them from scratch

• Run a seed command, which will seed our database with authors

• We create a John Doe user

• We create an access client for John Doe

• We create an access token for John Doe

Now that we have implemented our entire API, we want somemore models to

be seeded when running this command. We still want a bunch of authors, but

it would be nice with some books that are associated with these authors, so

706

FINISHING UP

that we have some data to query.

Now that we havemultiple user roles, it would be nice if we had an admin user

and a regular user as well, so we should add this too and also make sure that

the new user gets an access token.

Last, but not least, we want some more room around the details being

outputted—especially the details about our users, so we should do something

about this too.

Let’s start out by creating a seeder for books, so let’s jump into our terminal

and run the following command:

php artisan make:seeder BooksTableSeeder

Let’s go into our new database/seeds/BooksTableSeeder.php and add the

following code to the runmethod:

public function run()

{

Author::all()->each(function(Author $author){

$books = factory(Book::class, 2)->create();

$author->books()->sync($books->pluck('id'));

});

}

Here, wemake a query for all the authors in our database, create two books for

each author, and associate the books with the author, using the pluckmethod

on the books collection to get the ids only.

To ensure that the seeder for authors is running, let’s jump into the

database/seeds/DatabaseSeeder and add our new seeder to the runmethod,

andmake sure to put it below the seeder for authors like this:

707

BUILD AN API WITH LARAVEL

public function run()

{

$this->call(AuthorsTableSeeder::class);

$this->call(BooksTableSeeder::class);

}

If you run our artisan command now, you should see that the books are being

seeded as well.

Back in the app/Console/Commands/SetupDevEnvironment.php file, we

can continue to the next par, which is the creation of users. At the moment,

we have a dedicatedmethod for creating our John Doe user. Let’s make this

method a bit more general ,so we can create the users we want and also make

it possible to give a different role and password like this:

public function createUser($name, $email, $role = 'user', $password

= 'secret')

{

$this->info(PHP_EOL);

$this->info("Creating {$name} $role");

$user = factory(User::class)->create([

'name' => $name,

'email' => $email,

'role' => $role,

'password' => Hash::make($password),

]);

$this->info("Done");

return $user

}

With this method, we take in the name, email, role and password as argu-

ments. Both role and password has a default value so that they can be skipped.

Inside the method, we add a call to the info method where we pass in a

PHP_EOL constant. We use this to make a line break in the terminal, so that

we get some air around our user information. Then, we use a factory to create

the user just like before, replacing the hard coded values with the arguments

708

FINISHING UP

values and return the user.

Our handlemethod can then be changed to this:

public function handle()

{

$this->info('Setting up development environment');

$this->MigrateAndSeedDatabase();

$user = $this->createUser('John Doe', 'john@example.com', 'admin

');

$this->CreatePersonalAccessClient($user);

$this->CreatePersonalAccessToken($user);

$this->info('All done. Bye!');

}

It doesn’tmake thatmuch of a difference, but let’s do something to those calls

to CreatePersonalAccessClient and CreatePersonalAccessToken.

There’s really no need for these to be called in the handler. We can just call

these in out createUsermethod instead, or better yet, let’s make a dedicated

method for the call to these, so we canmake sure to get some air around the

information being outputted to our terminal like this:

public function createPersonalAccessClientAndTokenForUser(User

$user): void

{

$this->info(PHP_EOL);

$this->info("Creating personal access client and token for {

$user->name}");

$this->CreatePersonalAccessClient($user);

$this->CreatePersonalAccessToken($user);

$this->info(PHP_EOL);

}

This method can then be called in our createUsermethod like this:

709

BUILD AN API WITH LARAVEL

public function createUser($name, $email, $role = 'user', $password

= 'secret')

{

$this->info(PHP_EOL);

$this->info("Creating {$name} $role");

$user = factory(User::class)->create([

'name' => $name,

'email' => $email,

'role' => $role,

'password' => Hash::make($password),

]);

$this->createPersonalAccessClientAndTokenForUser($user);

$this->info("Done");

}

Then we do not need to pass the created user around in our handler anymore

andwe can just create users like this and be sure that the output in the terminal

is nice and easy to read:

public function handle()

{

$this->info('Setting up development environment');

$this->MigrateAndSeedDatabase();

$this->createUser('John Doe', 'john@example.com', 'admin');

$this->createUser('Jane Doe', 'jane@example.com');

$this->info('All done. Bye!');

}

We also get the benefit of now easily being able to add more users, so here

we have added Jane Doe as well, which is just a regular user. If you run this

artisan command now, you will have everything except comments prepared

for you, andmultiple user roles to test through.

710

FINISHING UP

JSON:API Client Implementa ons

One of the biggest benefits of using the JSON:API specification, and generally

using a strict set of protocols, is the ability to create not only reusable rules,

but also reusable implementations.

On the official JSON:API Site, there’s a page dedicated to both client and

server implementations and there is a lot to choose from ORM implementa-

tions that resemble Laravel Eloquent, to more simple implementations.

Unfortunately, at the time of writing this, the quality of the documentation

from implementation to implementation varies a bit much, so we have chosen

an implementationwe thought was simple and easy to get working right away,

which is named devour-client. This is also the client we will use later on to

show you how you can easily consume your API with Vue, but for now, let’s

just see how this works and how easy it is to get working without API.

To be able to get something up and running quickly without having to do a

lot of work with webpack first, we will be using Laravel Mix. Fortunately, it’s

possible to use it outside of a Laravel project and it’s really easy to install

thanks to a nice step by step guide by Jeffrey Way, the creator andmaintainer

of Laravel Mix.

For this part, we assume that you have node and npm installed on your

machine.

So let’s jump into our terminal and change into the directory on your

machine, where you keep all of your code. Let’s create a new folder here,

we will be calling ours jsonapi-client.

Then we need to initialize our project, which we can do through npm like

this:

npm init -y

711

BUILD AN API WITH LARAVEL

This will create a new package.json file for our project, which can hold the

dependencies for our project, just like composer.json files does for our PHP

projects. We can then install Laravel Mix like this:

npm install laravel-mix --save-dev

When it is done installing, we need to copy the initialwebpack.mix.js configu-

ration file, which we can use to set up which files we need to compile, just like

thewebpack.mix.js configuration file you know from your Laravel projects.

This is done through this command in the terminal:

cp node_modules/laravel-mix/setup/webpack.mix.js ./

We are almost done. We just need to add the following scripts into our

package.json file:

"scripts": {

"dev": "npm run development",

"development": "cross-env NODE_ENV=development node_modules/

webpack/bin/webpack.js --progress --hide-modules --config=

node_modules/laravel-mix/setup/webpack.config.js",

"watch": "npm run development -- --watch",

"hot": "cross-env NODE_ENV=development node_modules/webpack-dev

-server/bin/webpack-dev-server.js --inline --hot --config=

node_modules/laravel-mix/setup/webpack.config.js",

"prod": "npm run production",

"production": "cross-env NODE_ENV=production node_modules/

webpack/bin/webpack.js --no-progress --hide-modules --

config=node_modules/laravel-mix/setup/webpack.config.js"

},

712

FINISHING UP

This will make our package.json file look like this:

{

"name": "jsonapi-client",

"version": "1.0.0",

"description": "",

"main": "index.js",

"scripts": {

"dev": "npm run development",

"development": "cross-env NODE_ENV=development node_modules/

webpack/bin/webpack.js --progress --hide-modules --config

=node_modules/laravel-mix/setup/webpack.config.js",

"watch": "npm run development -- --watch",

"hot": "cross-env NODE_ENV=development node_modules/webpack-

dev-server/bin/webpack-dev-server.js --inline --hot --

config=node_modules/laravel-mix/setup/webpack.config.js",

"prod": "npm run production",

"production": "cross-env NODE_ENV=production node_modules/

webpack/bin/webpack.js --no-progress --hide-modules --

config=node_modules/laravel-mix/setup/webpack.config.js"

},

"keywords": [],

"author": "",

"license": "ISC",

"devDependencies": {

"laravel-mix": "^4.0.15"

}

}

Then we should be all set. Laravel Mix just has to install the last dependencies,

which it will do as soon aswe run a compilation of our assets files, even though

we don’t have any yet:

npm run dev

After the additional dependencies have been installed, let’s then create a

713

BUILD AN API WITH LARAVEL

new folder for our assets, called src. Inside the src folder, let’s create a new

src/app.js javascript file, which will be our main javascript file. This is the file

that will import the rest of the javascript files we need, which then makes this

the file that needs to be compiled with Laravel Mix. We tell Laravel Mix which

files it need to compile through thewebpack.mix.js file, so let’s open that up:

let mix = require('laravel-mix');

mix.js('src/app.js', 'dist/').sass('src/app.scss', 'dist/');

In this file, Laravel Mix is being required at the top and assigned to the mix

variable, which we then use to call both the js and sass functions on. Wewon’t

be needing SASS in this project though, so let’s delete the call to this function,

leaving only the compilation of the src/app.js file:

let mix = require('laravel-mix');

mix.js('src/app.js', 'dist/');

When being compiled, the src/app.js file will be placed in a dist folder.

We don’t have that yet, so let’s create this folder and let’s also create a

dist/index.html file we can use to run the app.js javascript file file in our

browser. We do this by adding the script to our dist/index.html file like this:

<!DOCTYPE HTML>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">

<meta name="viewport" content="width=device-width, initial-scale

714

FINISHING UP

=1.0, maximum-scale=1.0, user-scalable=0">

<meta name="apple-mobile-web-app-status-bar-style" content="black

">

<meta name="apple-mobile-web-app-capable" content="yes">

<title>JSON:API Client Implementation</title>

<script type="text/javascript" src="app.js" defer></script>

</head>

<body>

</body>

</html>

The last thing we need to do, is to be able to write some code and do some

queries to our API the download of the actual client implementation. As we

mentioned, we will be using devour-client, so let’s install it like this:

npm install --save devour-client

While this is installing, let’s take a look at the documentation for the client.

You can find this at their Github repository:

https://github.com/twg/devour#readme

Looking at their quickstart, we can see that they import the client and

afterward create an instance of this client and assign this to the jsonApi

constant. They then use this instance to define a model, which is this case is a

Post. Afterward, they show how tomake calls to fetch posts and also how to

create and update posts.

Let’s try to recreate this with our own API. As we have mentioned earlier,

715

BUILD AN API WITH LARAVEL

we are using Laravel Valet for our local setup, where the API is served on

http://annas-bookstore.test

you should take note on where yours is served, unless you are following the

same setup as us.

To be able to test our javascript code, we should set up Laravel Valet for this as

well. In our terminal, let’s change directory so that we are in the dist directory.

Here, we will leverage Laravel Valet’s link feature to be able to serve the files

inside the dist directory by a given domain name. Here, we want to serve

these files under the jsonapi-client.test. By default, the top-level domain for

Laravel Valet is .test so we will only need to give the name of the domain like

this:

valet link jsonapi-client

Then, we can change back to the parent directory again so we can run Laravel

Mix when needed.

To test that everything is set up, let’s go into our src/api.js file in our editor

and write the following line of code:

console.log('Hello world');

Save the file and go out into the terminal, and run Laravel Mix like this:

716

FINISHING UP

npm run dev

Go into your browser and, if you have the same setup as us, using Laravel Valet

to do the linking we just showed, you should be able to see a blank page at

http://jsonapi-client.test

Here, you should open the console in your browser and be able to see Hello

World being printed in the console.

Great! So far, so good. In the terminal, let’s make Laravel Mix watch for

changes and then compile our code, just like Laravel Test Watcher. You can do

this by running the following:

npm run watch

Then, it’s time to implement the devour-client, so we can make some calls

to our API. We will be following the recipe given from the documentation, so

let’s first import the package and instantiate a new instance of JsonApi like

this:

import JsonApi from 'devour-client';

const jsonApi = new JsonApi({

apiUrl:'http://annas-bookstore.test/api/v1',

});

717

BUILD AN API WITH LARAVEL

Here, we are giving our API URL, so that our client can make all future calls to

this. You should ensure that the right URL to the API on your setup is given.

Before we’re able to make calls to our API, we should ensure that we are

authenticated. We cando this bygetting anaccess token fromourAPI’s Laravel

Application through ourDevSetupEnvironment command, so let’s jump over

to our API’s Laravel Application and run the following artisan command:

php artisan dev:setup

You should get an output like this, except for the <placeholder> notes:

Creating personal access client and token for John Doe

Personal access client created successfully.

Client ID: 1

Client secret: <your client key>

Personal access token created successfully.

Personal access token: <your access token>

Take a copy of the access token and let’s go back to our code in the jsonapi-

client project and insert the token in the code like this:

const token = 'your access token';

jsonApi.headers['Authorization'] = `Bearer ${token}`;

Of course, this is bad practice. You should never hardcode access tokens in

like this, but this is only for testing and exploring the client implementation.

Then, we should define amodel the client can use to populate data from our

718

FINISHING UP

API into. This gives us a nice conversion from JSON into javascript objects

we can use in our code, which is super convenient. Here, we will define a

model for authors, since we will have test data for these by simply running

our DevSetupEnvironment command on our Laravel applications:

jsonApi.define('author', {

Name: '',

Books: {

jsonApi: 'hasMany',

type: 'books',

},

created_at: '',

updated_at: '',

});

Wearenow ready to beginmaking requests to ourAPI. Let’s follow the example

from the documentation and fetch all authors, which is easily done like this:

jsonApi.findAll('author').then(author => {

console.table(author.data);

});

We use the console.table to get a nice table layout in our browser’s console

and if you are using Google Chrome like us, you should see a result like this:

719

BUILD AN API WITH LARAVEL

Let’s try to make a request to a single author, which can be done like this:

jsonApi.find('author', 1).then(author => { console.table(author.

data);});

This result is a bit different, since it’s only outputting a single resource

which will result in an object instead of an array in javascript. When using

console.table or console.log, it will place the result in the top of the console

which should look like this:

As you hopefully recall from our API implementation, authors have a relation-

ship to books, which is also being seeded when running our DevSetupEnvi-

ronment command, so let’s try to include these.

Before we can do this though, we need to define the model for a book, so that

the incoming JSON from our API can be transformed to a javascript object by

devour. The model for a book is defined like this:

jsonApi.define('book', { title: '', description: '',

publication_year: '', authors:{ jsonApi: 'hasMany', type: '

authors', }, created_at: '', updated_at: '',});

720

FINISHING UP

We add the attributes we want to have transformed and add the inverse of the

relationship, and that is actually it. We can thenmake a request, including the

related books for our authors like this:

jsonApi.findAll('author', {include: 'books'}).then(author => {

console.table(author.data);});

This will give you the following result in the console. Notice the books column

in the table, which now states that there are two books for each author:

One of the cool things by using a client library like this, is that they do the

heavy lifting for you in terms of filtering the included resources and attaching

them to the author they actually belong to. If you recall, all of these are just

looped out into the included top-level member in our response document.

You can see this by unfolding the array right under the table in the console

like this:

721

BUILD AN API WITH LARAVEL

Here, the first author in the array is unfolded and unfolding the books array.

you can see the following books, which belong to this author.

We would go over create, update and delete as well, but we will be using these

in the next section about Vue, so you will have to wait a bit with these.

For now, we hope you can see the big advantages of using a client implemen-

tation and, if not now, you will quickly realize it when working with Vue.

Consuming your API with Vue

Vue.js has been our go-to javascript framework for years now, ever since we

were introduced to it by the Laravel community. Therefore, we wanted to

include a section of this bonus chapter for you to learn how to integrate your

API into a Vue application. This is not meant to teach you about Vue itself, but

more to show you how to leverage an API with strict protocols that leads to

client implementation that makes our Vue development easier as well.

722

FINISHING UP

For our Vue.js applications, we typically use other packages or plugins for Vue,

like the Vue Router, the Vuex store, andmanymore. Tomake this as easy to

grasp as possible, we won’t be using Vuex but keep the calls to our API in our

components, we will be using Vue router though, but we will keep the routes

at the minimum and we will also demonstrate a drag and drop component we

use very often.

Like any good cooking show on TV, we have prepared a little something from

home, so you will have to clone our Github repository in order to get the

code. We will have an annas-bookstore-vue application, where everything

has been implemented, and we will go through this together.

Before we dive into the code, we think it is important to take a look at how we

want to consume our API, how we are hosting the frontend and backend, and

how we handle the authentication with Laravel Passport.

We will be hosting our Vue application together with our Laravel application

for this scenario, which means that we can leverage the Laravel Passport

middleware called CreateFreshApiToken, which we talked about in chapter

4 and the section about Laravel Passport. This middleware takes care of the

entire token flow, so you don’t have to spend time issuing anything. We

especially do this since the Laravel framework ships with a Vue boilerplate,

where everything is set up and ready for you to build something with it. This

means that we can focus a littlemore on the communication with our API than

the actual authentication parts.

For this example, we will once more be using Laravel Valet for our local setup.

Remember, that if you are not using Laravel Valet on your setup, things might

not be exactly the same.

723

BUILD AN API WITH LARAVEL

Setup

Let’s jump into the annas-bookstore-vue directory. If you have been through

the entire book, you should have our repository cloned down to your machine

already, where you will find this directory. If not you should go through the

Cloning from Github section in chapter 7.

First, wewould like to be able to access this through our browser and the name

of the directory is actually fine for the domain of this project, which means

that calling the link command on Laravel Valet will suffice in order to set

this up. So let’s go into our terminal and, of course, make sure that we have

changed directories, so that we are in the root of this annas-bookstore-vue

project and then call the Laravel Valet command like this:

valet link

Then, we should install our dependencies, both for PHP but also Javascript.

We’ll start out with PHP using composer like this:

composer install

Then, we install the Javascript dependencies like this:

npm install

Last, but not least, to make sure that all dependencies has been downloaded,

let’s just run the asset compilation through Laravel mix like this:

724

FINISHING UP

npm run dev

Tomake sure that the Laravel application can connect to the database and so

forth, you should copy over the .env file from your annas-bookstore project,

since we want to connect to the same database and use the same data.

Dependencies

Before we go into the code, we just wanted to list the dependencies that npm

are installing here. Some of them you should be familiar with, since they are

shipped with Laravel, but there are a few we have added that we want to point

out, so let’s open the packages.json file and have a look at the contents:

{

"private": true,

"scripts": {

"dev": "npm run development",

"development": "cross-env NODE_ENV=development node_modules/

webpack/bin/webpack.js --progress --hide-modules --

config=node_modules/laravel-mix/setup/webpack.config.js

",

"watch": "npm run development -- --watch",

"watch-poll": "npm run watch -- --watch-poll",

"hot": "cross-env NODE_ENV=development node_modules/webpack-

dev-server/bin/webpack-dev-server.js --inline --hot --

config=node_modules/laravel-mix/setup/webpack.config.js

",

"prod": "npm run production",

"production": "cross-env NODE_ENV=production node_modules/

webpack/bin/webpack.js --no-progress --hide-modules --

config=node_modules/laravel-mix/setup/webpack.config.js"

},

"devDependencies": {

"axios": "^0.18",

"bootstrap": "^4.0.0",

725

BUILD AN API WITH LARAVEL

"cross-env": "^5.1",

"jquery": "^3.2",

"laravel-mix": "^4.0.7",

"lodash": "^4.17.5",

"popper.js": "^1.12",

"resolve-url-loader": "^2.3.1",

"sass": "^1.15.2",

"sass-loader": "^7.1.0",

"vue": "^2.5.17",

"vue-template-compiler": "^2.6.7"

},

"dependencies": {

"devour-client": "^2.0.17",

"vuedraggable": "^2.21.0",

"vue-router": "^3.0.6"

}

}

We have arranged this file so that all of the dependencies defined from the

Laravel framework installation are under the devDependenciesmember and

the dependencies we have installed are under the dependenciesmember.

Here, we have installed the devour-client again, since we want to leverage

this and show how easy it is to consume your API in Vue, using this client

implementation.

Then, we have installed vuedraggable, which we will use to solve the attach-

ment of authors to books.

Last, but not least, we have installed vue-router for navigation in our Vue

application.

Now that we know about the dependencies installed, we can look at how our

Vue app is being bootstrapped, since there are some things to note here.

726

FINISHING UP

Bootstrapping the Vue applica on

Open up the annas-bookstore-vue directory in your favorite editor, so that

you can access all the files in the project. The files we will focus on is mostly

the files in resources/js.

The first file we should take a look at is the resources/js/bootstrap.js file,

which is one of the files that Laravel ships with that actually takes care of the

token flow for us:

/**

* We'll load the axios HTTP library which allows us to easily issue

requests

* to our Laravel back-end. This library automatically handles

sending the

* CSRF token as a header based on the value of the "XSRF" token

cookie.

*/

window.axios = require('axios');

window.axios.defaults.headers.common['X-Requested-With'] = '

XMLHttpRequest';

/**

* Next we will register the CSRF Token as a common header with

Axios so that

* all outgoing HTTP requests automatically have it attached. This

is just

* a simple convenience so we don't have to attach every token

manually.

*/

let token = document.head.querySelector('meta[name="csrf-token"]');

if (token) {

727

BUILD AN API WITH LARAVEL

window.axios.defaults.headers.common['X-CSRF-TOKEN'] = token.

content;

} else {

console.error('CSRF token not found: https://laravel.com/docs/

csrf#csrf-x-csrf-token');

}

import Devour from 'devour-client';

window.jsonApi = new Devour({

apiUrl:'http://annas-bookstore-vue.test/api/v1',

});

jsonApi.axios = axios;

require('./models');

We have not included the top of the file, since it’s just requiring lodash and

popper.js.

The first part of this example shows how Axios, which is an HTTP client we

use to make requests to our API, is set up. Here, the CSRF token is set up as a

common header, so that we don’t have to add this on every request. Laravel

requires that we send along a Cross-Site Request Forgery token to ensure

that we are, in fact, the correct user making the request and not somebody

or something with a malicious intent, trying to make request on behalf of an

authenticated user.

Next, we set up our devour-client, where we set the apiUrl to the new url of

our system:

http://annas-bookstore-vue.test/api/v1

Remember that if your local setup is not like this, you will have to change this

728

FINISHING UP

URL so that it matches your local setup.

Since the devour-client is also using Axios for http requests, we can let it use

the Axios client already set up by Laravel, which will also make us able to

leverage the token flow with Laravel Passport without lifting a finger.

And lastly, we require the models, which we have been dedicated to their own

files, so that it is easier to grasp. Opening up the resources/js/models.js file

will show you the twomodels we have implemented for this example, which is

actually the exact same implementation ofmodels aswe had in the last section

about JSON:API Client implementations.

The next file we should take a look at, which we also view as a part of the

bootstrapping of the application, is the resources/js/app.js file:

require('./bootstrap');

window.Vue = require('vue');

import VueRouter from 'vue-router';

Vue.use(VueRouter);

Vue.component('example-component', require('./components/

ExampleComponent.vue').default);

Vue.component('passport-clients',

require('./components/passport/Clients.vue').default

);

Vue.component('passport-authorized-clients',

require('./components/passport/AuthorizedClients.vue').default

);

Vue.component('passport-personal-access-tokens',

require('./components/passport/PersonalAccessTokens.vue').

default

);

import routes from './routes';

729

BUILD AN API WITH LARAVEL

const router = new VueRouter({

routes

});

const app = new Vue({

router,

el: '#app'

});

Here, the file mostly follows what is shipped with Laravel out of the box. Of

course, there are the passport components we added earlier, but the thing to

note is the import of Vue router in the top of the file, right after the bootstrap

and import of Vue. We are then telling Vue to use the Vue router as a plugin,

and after the passport components, we import a file we have dedicated to our

routes, much like we did with our models.

Then, we instantiate the router and add this to Vue. When we ran the

auth:make artisan commandduring the chapter 4, in the section about Laravel

Passport, we got a couple of Blade views that is actually serving as the basis

for our entire authentication and Vue application. If we take a look at the

resources/views/layouts/app.blade.php file, the app is being mounted at the

top most div element using an id attribute with the value app. Then, we have

all the implementation of the navigation, before we end up down at themain

element, where we use a yield Blade directive.This directive makes it possible

for us to tellwhich content that should beplaced in between themain elements

using Laravel Blade.

The content is determined by Laravel and the route you are accessing, if we

added our Vue app here, it would be accessible by anyone. The place where

we want our Vue app to kick in is when a user has been authenticated, which

means that this has to happen in a view that inherits this one and give some

content to the yield directive. Through the auth:make artisan command, we

also get a resources/views/home.blade.php file, which is the view file for the

730

FINISHING UP

home route that we will land on when we are authenticated. Here, we have

removed everything that Laravel provides and instead we add our router view,

so that our Vue application won’t start until we are authenticated and on this

view. This also means that our Vue router won’t take over until a user has

logged in.

As mentioned, the navigation has been kept in the resources/views/layout-

s/app.blade.phpfile. Here, we have also added the few links for the Vue router

to keep everything in the same place. Not that these links won’t be shown

unless the user is authenticated, which is done by leveraging the Laravel Blade

@guest directive.

Enough about the setup and bootstrapping. Let’s look at the application and

the actual API calls.

The applica on

To understand this application, we think it’s easiest to begin with the

resources/js/routes.js file, since we can then see which routes are possible

to take in our application, but also easily see which components that are

associated with which route:

import Passport from './components/passport/passport.vue';

import AuthorsIndex from './components/authors/index.vue';

import AuthorsCreate from './components/authors/create.vue';

import AuthorsUpdate from './components/authors/update.vue';

import BooksIndex from './components/books/index.vue';

import BooksCreate from './components/books/create.vue';

import BooksUpdate from './components/books/update.vue';

export default [

731

BUILD AN API WITH LARAVEL

{path:'/', component: Passport, name:'passport'},

{path:'/authors', component: AuthorsIndex, name:'authors.index

'},

{path:'/authors/create', component: AuthorsCreate, name:'authors

.create'},

{path:'/authors/update/:id', component: AuthorsUpdate, name:'

authors.update'},

{path:'/books', component: BooksIndex, name:'books.index'},

{path:'/books/create', component: BooksCreate, name:'books.

create'},

{path:'/books/update/:id', component: BooksUpdate, name:'books.

update'},

];

We have added seven routes to this application, where the first route is a route

dedicated to the Laravel Passport components, so that you can still work with

access tokens and so forth.

Then, we have created routes for the CRUD of authors and the CRUD of books.

Thedeletepart of theCRUD is actuallydone in the indexview forboth resources.

This is why there are only three routes for each resource.

Before we look at the code, let’s log in to the application and see how it works.

If you are using the same setup as us, it’s as easy as accessing:

http://annas-bookstore-vue.test/login

If you have run a dev:setup artisan command, there should already be a

John Doe user ready for you to use, so let’s log in as him with the email:

john@example.com and password which is secret.

732

FINISHING UP

The landing page here is still the passport components noted by the / path in

the routes file, which is the place the router will first land:

Let’s click on the Authors link in themenu, which should take us to the listing

of authors as seen here:

If we look at the resources/js/routes.js file, we see that this route has the

nameof authors.index and that it points to the resources/js/components/au-

733

BUILD AN API WITH LARAVEL

thors/index.vue file, so let’s open this up:

export default {

name: "index",

data() {

return {

authors: [],

authorToDelete:null,

}

},

methods:{

getAuthors(){

jsonApi.findAll('author', {include: ['books']})

.then(authors => {

this.authors = authors.data;

});

},

setToDelete(author){

this.authorToDelete = author;

},

deleteAuthor(){

jsonApi.destroy('author', this.authorToDelete.id)

.then(response => {

this.authorToDelete = null;

this.getAuthors();

});

}

},

created() {

this.getAuthors();

}

}

Vue component files can get very long, especially if they contain both markup,

javascript and styling, so we will only show the javascript part of this, since

this is most important.

734

FINISHING UP

The list should be able to list authors. This is done through the getAuthors

method, which is called as the component is being created.

Here, we are using devour-client to fetch all authors and it’s actually done

with just a few lines of code, saving the result in a property in our component.

This component also handles the deletion of an author, and again, you can see

that only a few lines are needed. To be able to delete a resource, we use the

destroymethod on our jsonApi object that we created when bootstrapping

our application. This method only takes the model name, and the ID of the

author to be deleted. In our case, the request gets this ID from a property,

since we present the user with a modal overlay that needs acceptance from

the user, before we send the delete request.

Now, we could just remove the author from the array of authors and be done

with it, but in order to sync up without database, we fetch all authors again.

If we click theAdd author button, wewill be redirected to the add author route,

where we will be presented with a form like this:

Here, we should look in the resources/js/components/authors/create.vue

file in order to see the code:

735

BUILD AN API WITH LARAVEL

export default {

name: "create",

data() {

return {

name: '',

}

},

computed: {

validated() {

return String(this.name).length > 0;

}

},

methods: {

save() {

if(!this.validated){

return;

}

jsonApi.create('author', {

name: this.name

}).then(response => {

this.$router.replace({

name:'authors.index',

});

});

}

}

}

When the form is being submitted, we call the savemethod. Here, we check

if the form is validated and if not, we call the createmethod on our devour-

client jsonApi object that we created when bootstrapping the application. The

cool thing about the devour-client is that it handles all of the serialization

and deserialization, so we don’t have to follow the structure of the JSON:API

specification, when writing our applications. This means that we can just give

the name attribute in an object and that’s it. The devour-client will make

sure that this gets the right structure and is being sent off to our API. Then,

when a successful response is being sent back, we redirect the user to the index

736

FINISHING UP

page again. Speaking of which, let’s go back to the index page and click on

the name of an author, so that we end up at the Update author route, it should

look something like this:

To view the code, let’s open resources/js/components/authors/update.vue

file:

export default {

name: "create",

data() {

return {

author:null,

}

},

computed: {

validated() {

return String(this.author.name).length > 0;

}

},

methods: {

getAuthor(){

jsonApi.find('author', this.$route.params.id).then(

author => {

this.author = author.data;

});

},

737

BUILD AN API WITH LARAVEL

save() {

if(!this.validated){

return;

}

jsonApi.update('author', {

id: this.author.id,

name: this.author.name,

}).then(response => {

this.$router.replace({

name:'authors.index',

});

});

}

},

created() {

this.getAuthor();

}

}

Here, we start out by fetching a single author through the getAuthormethod.

To do this, we use thefindmethod on ourdevour-client and use the id given

in the Vue router parameter to fetch the right author from our API. We then

assign the fetched author to an author property, which the user will edit in

the form.

When the form is submitted, we call the savemethod where we test to see

if everything is validated. Then, we call the updatemethod on our devour-

client, passing in the ID and name. Again, the serialization will take care of

the correct structure: all we have to do is to wait for a response, and then

redirect the user back to the index listing.

This is actually all there is for authors. You see that by leveraging the devour-

client, we can do a lot with a few lines of code. Once our models are set up, we

are free to do the calls we need.

738

FINISHING UP

For books, things aremostly the same—especially on the index route. For the

create and update routes, we also add a relationship to the create and update

methods. So why don’t we take a look at the create book route at first.

Up in the menu on in the browser, let’s click on books and then click on the

Add book button, so that you see the following interface:

Here, we have a couple more inputs than for authors, but the thing to note

is the drag and drop functionality in the bottom, where you can assign the

authors for the book.

The drag and drop functionality is done through the vuedraggable plugin that

wementioned earlier.

Let’s look at the resources/js/components/books/create.vue file to see the

code for this:

739

BUILD AN API WITH LARAVEL

import draggable from 'vuedraggable'

export default {

name: "create",

components: {

draggable,

},

data() {

return {

title: '',

description: '',

publication_year: '',

authors: [],

availableAuthors: [],

}

},

computed: {

validated() {

return String(this.title).length > 0 &&

String(this.description).length > 0 &&

String(this.publication_year).length > 0 &&

this.authors.length > 0;

}

},

methods: {

getAuthors() {

jsonApi.findAll('author').then(authors => {

this.availableAuthors = authors.data;

});

},

save() {

if (!this.validated) {

return;

}

jsonApi.create('book', {

title: this.title,

description: this.description,

publication_year: this.publication_year,

authors: this.authors.map(item => {

740

FINISHING UP

return {

id: item.id,

}

}),

}).then(response => {

this.$router.replace({

name: 'books.index',

});

});

}

},

created() {

this.getAuthors();

}

}

There’s abitmore codehere, butdon’t get confusedby this. It’smostlybecause

there are more fields in the form, which, of course, will result in a bit more

properties needed.

When this component is being created, we call getAuthors which will fetch

the authors from our API, which we will use to create relations from the book

to be created and the selected authors. These authors will populate the list

to the left in the user interface, since this list is getting its authors from the

availableAuthors array. When we drag and drop an author to the selected

authors list, this author is actually actually copied from the availableAuthors

array over to the authors array.

When the form is submitted, we call the save method. Here, we check if

validation is passing. All fields must be filled and at least one author be

related before the validation is passing. Then, we call the createmethod on

our devour-clients jsonApi object.

We do almost like we did with authors, but the thing to note here is how we

handle the relationship to authors. Here, it’s enough with an array of IDs. No

741

BUILD AN API WITH LARAVEL

need to recreate the structure of the JSON:API specification — we can just

work with things in a simple request object. To create the array of IDs, we

take the authors array and run themapmethod on this. This does exactly like

maps of Laravel Collections, javascript developers are just lucky enough to

have these things included by standard in their language.

Wemapover the authors and take the IDs, andwait for a successful response,

and finally redirect the user back to the books index list.

Let’s go back to the books index list, and then select a book to edit. This should

take us to the update route, which should look something like this:

Let’s look at the file for this route, so let’s open resources/js/components/-

books/update.vue:

742

FINISHING UP

import draggable from 'vuedraggable'

export default {

name: "update",

components: {

draggable,

},

data() {

return {

book: null,

availableAuthors: [],

}

},

computed: {

validated() {

return String(this.book.title).length > 0 &&

String(this.book.description).length > 0 &&

String(this.book.publication_year).length > 0 &&

this.book.authors.length > 0;

}

},

methods: {

getBook() {

jsonApi.find('book', this.$route.params.id, {include: ['

authors']}).then(book => {

this.book = book.data;

this.getAuthors();

});

},

getAuthors() {

jsonApi.findAll('author').then(authors => {

this.availableAuthors = _.differenceWith(authors.

data, this.book.authors, (author, otherAuthor)

=> {

return author.id === otherAuthor.id

});

});

},

save() {

if (!this.validated) {

743

BUILD AN API WITH LARAVEL

return;

}

jsonApi.update('book', {

id: this.book.id,

title: this.book.title,

description: this.book.description,

publication_year: this.book.publication_year,

authors: this.book.authors.map(item => {

return {

id: item.id,

}

})

}).then(response => {

this.$router.replace({

name: 'books.index',

});

});

}

},

created() {

this.getBook();

}

}

Here, we fetch the book when the component is being created. Just like with

authors, we get the ID of the book through the route parameters of our Vue

router and use this to fetch our book. When we get the response back for the

book, we fetch all authors, but instead of saving these in the availableAuthors

array right away, we filter them against the authors already related to the

book, so that we can repeat the drag and drop functionality we have when

creating books.

When the form is submitted, we hit the savemethod. Here, we use the same

approach as when creating books, where we map over the selected authors

and find the IDs, which are used for the association.

744

FINISHING UP

Again,devour-clientmakes it really easy for us, and itwouldhave been almost

the same formany of the other client implementations we could have selected.

The reason is, of course, the strict protocols and conventions of the JSON:API

specification, which enables us to predict how the data structure of our API

will be, whether it’s complex relationships or just simple resource identifier

objects.

We hope you learn something about how to leverage the JSON:API with Vue

and hope you will try to build the comments section for yourself.

If you are really into the frontend part of this project, you could also use the

role attribute on users to have different user interfaces for admins and users.

Thank you

Wewould like to thank you for reading our book. We had a great time writing

it and sharing it with you. If you find the book helpful, we hope you’ll leave us

a review on Gumroad or Goodreads and tell us your thoughts. This is our first

publication, and we’re eager to learn and improve with your help. Thank you

again.

Writing APIs like the one in this book is only the tip of the iceberg, but with the

knowledge you have now received, you’ll be able to write a lot of great APIs

that are easy to consume and easy to understand, with conventions that will

never leave you in doubt of what to do next.

* * *

745

About the Author

Christian and Thomas are the founders of Wacky Studio, which is a small

design and development company, based in Denmark. Their field of expertise

is mainly web-based, and their projects are developed in everything from

Laravel, Vue, Go, HTML5, SASS to Unity3D.

Before they started Wacky Studio, they taught web design and development at

a local technical college and now they’ve added this book to their extensive

resumes.

Thomas, the coding wizard of the company, wrote most of the text. Christian,

the design superhero, made it look like a topnotch book.

Sille, their intern, wrote this description of them knowing they’d never praise

themselves (even though they should).

You can connect withme on:

http://wackystudio.com

https://twitter.com/wackystudiodk

https://www.facebook.com/wackystudio

Subscribe tomy newsletter:

https://wackystudio.com/en/contact

746

http://wackystudio.com
https://twitter.com/wackystudiodk
https://www.facebook.com/wackystudio
https://wackystudio.com/en/contact

	Errata
	Code samples and conventions
	Why Laravel?
	Prerequisites
	The Github Repository
	Introduction
	The JSON:API specification
	Planning
	Build your API
	Test-driven Workflow
	Books
	Dont repeat yourself
	Finishing up
	About the Author

